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STUDENTS’ PERCEPTIONS OF A GOOD TEACHER 

        Pamela Perger        Kim Timmins 

           University of Auckland         Bucklands Beach Intermediate School 

 

No one can make someone learn, they can only help and guide them. So what is it that 

makes some people better at teaching than others? Ministers of Education, 

researchers, principals, teachers, parents and students all have their own view on what 

makes a good teacher. This paper presents the views of a class of Year 8 students (12 

year olds) on what makes the perfect mathematics teacher. The characteristics the 

students identified show a mature understanding of which teacher characteristics 

support their learning of mathematics. Many of the characteristics the students 

identified align with the New Zealand Teachers Graduating Teacher Standards.  

INTRODUCTION 

It has long been recognised that the classroom teacher has a significant influence over 

student learning, (Anthony & Walshaw, 2007). Having spent at least eleven years in 

the schooling system, many people have a memory of at least one teacher whom they 

remember fondly (or otherwise). Based on their own experiences of school people 

develop a personal belief as to what makes an effective teacher. Hattie (2003) states 

that it is the teacher, after the student her/himself, who has the largest effect on student 

achievement. Developing effective teachers of mathematics continues to be a focus for 

anyone involved in mathematics education. There is a wealth of literature about good 

teaching but the debate about what characteristics make an effective teacher is ongoing 

(Anthony & Walshaw, 2007; Hattie, 2003; Murphy, Delli, & Edwards, 2004).   

So what are the characteristics of an effective teacher identified in the literature? Hattie 

(2003) states that ‘expert teachers’: 

 can identify essential representations of their subject, 

 can guide learning through classroom interactions,  

 can monitor learning and provide feedback,  

 can attend to affective attributes, and  

 can influence student outcomes’ (p6).  

Clarke and Clarke (2004) recognise that to be an effective teacher of mathematics you 

need to be able to: 

 focus students on the important maths ideas,  

 provide a clear structure to the learning along with purposeful tasks that will 

engage children,  

 use a variety of materials, representations, and contexts,  

 identify connections between mathematical tasks,  

 provide opportunities for students to engage in mathematical thinking,  

 engage children in learning communities,  
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 maintain high but realistic mathematics expectations for all learners,  

 encourage students to engage in mathematical reflection, and 

 effectively use assessment as part of the teaching and learning process.  

A current focus in education research is on building communities of inquiry that 

involve students in the process of learning. This process requires the student to take the 

responsibility for making sense of the mathematics they are learning. For students to 

be successful in this process of learning they require an effective teacher who is able 

to scaffold them into taking on this responsibility (Hunter, 2007). To be an effective 

mathematics teacher a teacher needs not only to be confident in their personal 

mathematics knowledge but also to have strong pedagogical knowledge, if they are to 

successfully engage students in the learning of mathematics (Anthony & Walshaw, 

2007; Clarke & Clarke, 2004). 

Researchers (Anthony & Walshaw, 2007; Clarke & Clarke, 2004; Hattie, 2003; Hunter, 

2007; Murphy, Delli, & Edwards, 2004) all identify characteristics important in 

making an effective teacher. Murphy, Delli, and Edwards (2004) believe students begin 

developing their idea as to what an effective teacher is the day they start school. 

Students starting school already have an expectation of the teacher’s role and what 

learning at school is ‘supposed’ to involve. McCullum, Hargreaves, and Gripps (2000) 

noted that students as young as six and seven years old demonstrated they could 

identify factors which impact on their learning. The factors the students identified 

included those associated with the role of the teacher. Brown & McIntyre (1993) found 

the twelve and thirteen year olds in their study recognised that an effective teacher 

needed to have a positive attitude if a teacher were to engage learners. The secondary 

school students Hill and Hawke (2000) interviewed identified that an effective teacher 

was one who respected their students, and encouraged/allowed students to work in 

pairs. Perger (2008) found that both higher and lower achievers (11 – 12 year olds) in 

a low socio economic area had the same expectations of their teacher. The 

characteristics identified in Perger’s study fell into two categories; personal attributes 

of the teacher, and the learning environment the students expected the teacher to 

provide for them. The criteria identified by these students included someone to inspire 

them, someone who enjoyed teaching maths, someone who would interact with them, 

who was firm but not too strict, who would challenge them, give them hints not 

answers, and someone who would respect them. 

Many of the characteristics described above are visible in the graduating teacher 

standards (New Zealand Teachers Council, 2014). The New Zealand Teacher 

Registration Board recognises seven standards a graduating teacher must meet to 

become a registered teacher. These seven standards are grouped into three categories; 

Professional Knowledge, Professional Practice, and Professional Values and 

Relationships. Standards One to Three (Professional Knowledge) state that graduating 

teachers need to: know what to teach, know about learners and how they learn, and 

understand how contextual factors influence teaching and learning. Standards Four and 

Five (Professional Practice) recognises that graduating teachers need to use 
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professional knowledge to plan for a safe, high quality teaching and learning 

environment. Standards Six and Seven focus on positive relationships with learners 

and the learning community and commitment to the profession. These standards ensure 

teachers entering the profession understand the complex but crucial role they have in 

enabling all learners to achieve (New Zealand Teachers Council, 2014). 

This study aims to identify what characteristics the students in the second author’s class 

considered a requirement for an effective mathematics teacher.  

METHOD 

The 30 Year 8 students whose views are discussed in this paper attended an 

Intermediate School (Years 7 and 8) in a high socio economic area in Auckland, New 

Zealand. The second author had been their teacher for the past six months. She had 

developed a class culture where students were supportive of each other, expected to 

take responsibility for their own learning, and were prepared to take on a learning 

challenge. As part of a long-term project, the students had been working towards 

developing peer-tutoring skills with the first author. One of the tasks set at an early 

stage in this process was to brainstorm the characteristics of an effective mathematics 

teacher. Students worked in self-chosen groups of three to record their responses to the 

question ‘What are the characteristics of an effective mathematics teacher?’ The use 

of small groups where participants can share their opinions often enables them to 

develop their ideas further than if they were involved in an individual interview 

situation (Flick, 2011). During the analysis of student responses the authors grouped 

characteristics the students had identified on the brainstorm sheets. Characteristics that 

were similar were collated into themes. During this process strong themes emerged. 

Once the themes were identified the occurrence of each response within each theme 

was noted as a percentage of the total responses (Figures 1 and 2).  

RESULTS 

Each brainstorm sheet contained between 7 and 21 characteristics (average number - 

10 characteristics per sheet) the group of students considered a requirement for an 

effective teacher of mathematics. The students’ responses were grouped into the four 

emerging themes: personal qualities, professional values / relationships, content 

knowledge of the teacher, and pedagogical knowledge of the teacher. Characteristics 

such as kind and caring were noted as personal qualities students considered a teacher 

required to be an effective teacher. Students also identified that effective teachers had 

to be fair to all students (Figure 1). 
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Figure 1: Personal Qualities, Professional Values / Relationships of Effective 

Teachers 

  

The students identified a range of responses that related to teacher knowledge. Eight 

of the ninety-six student responses identified actions / behaviours that clearly linked to 

teacher’s personal knowledge of mathematics. Responses that described or listed 

teaching actions / behaviours the students considered supported their learning of 

mathematics were collated under the theme relating to teacher’s pedagogical 

knowledge. This theme included responses regarding teacher knowledge and teacher 

expectations of students as well as specific teacher actions such as, breaking down the 

question so that student could understand what they were being asked to do (see Figure 

2). 
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Figure 2: Knowledge of the Teacher – Content and Pedagogy 
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DISCUSSION 

Student responses to the question ‘What are the characteristics of an effective 

mathematics teacher?’ showed that the students in the second author’s class were able 

to identify the characteristics of an effective mathematics teacher. The large majority 

of responses linked to the pedagogical knowledge / practices of a teacher. The students 

identified that an effective teacher would expect them to take responsibility for their 

learning (Clarke & Clarke, 2004; Hunter, 2007). The students recognised that they 

needed to do the thinking involved in solving problems, commenting that an effective 

teacher would ask questions that make you think and would make you work it out for 

yourself. The students identified that an effective teacher would be a guide (Clarke & 

Clarke, 2004; Hattie, 2003) helping the students to understand what the question was 

asking or explaining words they did not understand, explains things like what the 

problem means / what the words in the problem mean. Students also saw an effective 

teacher as someone who would help them make connections to what they already knew 

(Clarke & Clarke, 2004), relate it [the maths] to things you can do.  

The students saw the role of an effective teacher as someone who challenged them 

(Perger, 2008) - gets us to give it a go; someone who makes them work on a problem 

first then explains if they need help. Students also saw the teacher as the person who 

challenged them to monitor their own learning, doesn’t tell you you are wrong, makes 

you work it out for yourself, further reinforcing the idea that the students themselves 

are responsible for their own learning. An effective teacher was someone who provided 

activities that would engage them (Clarke & Clarke, 2004; Perger, 2008) - provides 

fun activities to get kids engaged and provide students with work that helped them 

consolidate their learning gives questions to work on at the end (Clarke & Clarke, 

2004). 

There was a strong feeling that an effective teacher would know your weaknesses and 

strengths and when you need help.  Students expected that an effective teacher would 

monitor their learning (Hattie, 2003) and know what is best for them. As well as having 

a good knowledge of student potential, the students in Kim’s class expected an 

effective teacher to know their maths (Anthony & Walshaw, 2007) implying the 

teacher would be able to actually know the answer to the mathematical problems they 

are asking their students to solve.  

The Year 8 students in this study had the same expectation of being respected by the 

teacher as the secondary students did in Hill & Hawke’s (2000) study. As well as not 

judging people and understanding [that] everyone is different the students believed that 

an effective teacher would treat every student equally, no favouritism. The students 

expected an effective teacher would be strict, but not too strict (Perger, 2008) and have 

reasonable rules and expectations so that all students knew what was expected of them. 

From the characteristics of an effective teacher identified by the students in this study, 

four strong themes emerged. The interesting point about these themes was how similar 

they were to the New Zealand Graduating Standards (New Zealand Teachers Council, 
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2014). Of the four identified themes: personal qualities, professional values / 

relationships, content knowledge of the teacher, and pedagogical knowledge of the 

teacher, three link directly with the Graduating Teacher Standards. Graduating Teacher 

Standard One (Professional Knowledge) states that Graduating Teachers know what to 

teach. The Year 8 students in the class identified that an effective teacher needed to 

have knowledge of the subject: Standard Two (Professional Knowledge) states that 

Graduating Teachers know about learners and how they learn (pedagogy). Most of the 

characteristics identified by the students in this study fitted into this theme showing 

that these students had developed an understanding of what it takes to teach. The 

characteristics that made up the third theme matched the Graduating Teacher Standard 

6 which states Graduating Teachers develop positive relationships with the learner.  

The comments on three brainstorm sheets (nine students) focused on the teacher 

showing students respect. The students recognised that an effective teacher was 

respectful towards students’ rights.  

An unexpected outcome of this study was, as the second author stated, seeing that 

students recognised and appreciated many of the ‘teaching practices’ I use. As a teacher 

having the effort I put into teaching recognised is very rewarding. The characteristics 

the students identified as required to make an effective teacher also strongly supported 

the classroom culture the teacher had strived to develop. The students’ brainstorms not 

only demonstrated that students can identify the characteristics of an effective teacher 

but that they were able to recogniseyo practices that support their own learning. 
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A REFLECTION ON MATHEMATICS EDUCATION AND                

LANGUAGE DIVERSITY IN PME CONFERENCES 

Mamokgethi Phakeng1, Arindam Bose1, Núria Planas1, 2 

University of South Africa1, University Autonomous of Barcelona2 

 

In this paper we review research on mathematics education and language diversity in 

the PME community by exploring Research Reports published in the conference 

proceedings since its first conference in 1977. A total of 36 contributions on 

mathematics and language diversity have been indentified and examined. Although an 

increase in the representation of this area of study can be confirmed, progress towards 

emerging themes still remains poor in terms of disparities throughout different 

countries and continents, with some regions being more widely involved in this area. 

We provide evidence of how several of the main themes have been distributed in the 

period 1977-2014, and finish by reflecting on what could be done to more strongly 

address newer terrains in this area of study. 

INTRODUCTION 

Research on mathematics education and language diversity is fairly recent. It began 

with the exploration of the role of language and mathematics learning with a focus on 

bilingualism, bilingual learners and on bilingual classrooms and thereafter the focus 

moved towards multilingualism (Phakeng, forthcoming). In the PME community, the 

shift to multilingualism came in 1995 with a paper entitled, “Participatory, inquiry 

pedagogy, communicative competence and mathematical knowledge in multilingual 

classrooms: a vignette”, authored by Adler almost after two decades into the PME 

conferences. This also marked the starting point of a shift to investigate the socio-

political role of language in mathematics teaching and learning. This analysis presented 

in this paper explores the emergence and growth of research in this field in the PME 

community as showcased in PME conferences since inception in 1977. We do this 

exploration by working through the Research Reports published in the conference 

proceedings and focusing on the following questions: 

 What research has been published in the PME proceedings in this area of study? 

 What are the major themes that have emerged in this area?  

 What are the gaps and silences? 

The first Research Report focusing on language diversity was presented at the fifth 

annual conference of PME in 1981. This was two years after the first paper in an 

international journal focusing on this area of study appeared in 1979 in Educational 

Studies in Mathematics authored by Austin and Howson. In the thirty-eight editions of 

PME conferences so far, 36 Research Reports on language diversity have appeared in 

the proceedings, out of which 22 appeared in the last twelve editions between 2003 and 

2014. Although these numbers give a clear indication of the growing body of research 
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focusing on language diversity, it is important for us to reflect on whether this research 

is moving ahead in terms of progress and growth of this area in mathematics education 

research, whether we are asking new questions and addressing newer terrains in this 

domain and whether we have better understanding of the complexities of mathematics 

teaching and learning in contexts of language diversity. 

Why this review and why now? 

The world has become more multilingual over the years and multilingual classrooms 

are becoming even more multilingual. With a change in the language policies and 

practices in some countries, the nature of multilingualism is also changing. This 

notwithstanding, in the PME community, mathematics and language diversity has 

remained an area of study that has received limited focus. The low number of Research 

Reports published in the PME proceedings indicate not only a slow growth but also a 

relatively smaller group of researchers internationally working in this research domain. 

It is now almost 40 years since the advent of PME conferences and thus timely and 

relevant for us as a community to look back and review the advances made and the 

gaps that remain so that we can craft future directions that emerge from this journey. 

THEORETICAL ORIENTATION 

Debates on the role of language diversity on mathematics teaching and learning 

received a major boost in the mid-70s with the occurrence of two major international 

events that acknowledged the lack of research on the relationship between mathematics 

learning and teaching and use of languages which in many cases are non-home 

languages. These events were the second International Congress on Mathematical 

Education (ICME-2) held in the UK in 1972 and the International Symposium on 

‘Interactions between linguistics and mathematical education’ held in Kenya in 1974. 

Historically, there was a widespread belief that bilingualism was a hindrance to 

language development, cognitive and intelligence growth and the ability to think 

(Reynold, 1928 as cited in Saunders, 1988). Only in the 60s did the effects of 

bilingualism on the intellectual functioning of children emerge and knowledge of more 

than one language was seen as an asset. However, there were criticisms over the 

validity of the claim that bilingualism was helpful (Macnamara, 1966). Studies that 

followed like that by Ianco-Worrall (1972) with Afrikaans-English bilinguals 

established the positive effects of knowing more languages by showing that the 

semantic differences of words were preferred over their phonetic qualities. 

Barwell (2003) highlights the dominance of the English language in the research 

presented at PME in comparison to other languages. Furthermore, he argues that there 

is an indication of possible discrimination that mathematics education research faces 

both within the “community of researchers” as well as “in the practice of research” 

generated on the basis of language (Barwell, 2003, p. 37). Such a phenomenon could 

be one of the possible reasons behind lesser number of papers in PME on language 

diversity. Even if one argues that the issue of language diversity is not ignored in PME, 

it is clear that the presence of multiple languages is not always acknowledged and 
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engaged with in much of the research in mathematics education even if that research 

was conducted in linguistically diverse classrooms. That may mean that we as 

researchers are getting only part of the story. 

With respect to research in mathematics education as it has developed over time, 

Skovsmose (2011) argues and conjectures that “90% of research in mathematics 

education concentrates on the 10% of the most affluent classroom environments in the 

world, while 10% of the research addresses the remaining 90% of the classrooms” (p. 

18). Skovsmose fears that “strong paradigmatic criteria might be operating within 

mathematics education research [that] has shaped and constructed the prototypical 

mathematics classroom [which also] dominates the research literature” (p. 18). 

METHODOLOGY 

To do this review we identified Research Reports in the PME proceedings that were 

focused on mathematics education and language diversity. We excluded presentations 

made in plenary lectures, research fora, short orals, posters, as well as discussion and 

working groups. Given the tradition of strict and rigorous reviewing criteria and 

process in PME conferences, it is reasonable to consider Research Reports as 

specialised quality representations of international research activity. Herein, we have 

ignored all those papers focussing on different aspects of language and communication 

in mathematics education or communicating mathematically or on the nature of 

mathematical language. We decided to exclude these papers because they do not have 

a specific focus on language diversity. Table 1 below gives details of the number of 

Research Reports published in PME proceedings since 1977. 

Period Number of RRs 

published 

Number of RRs 

published in 10 years 

1977-1986 1977-1981 1 3 

 1982-1986 2  

1987-1996 1987-1991 1 4 

 1992-1996 3  

1997-2006 1997-2001 8 17 

 2002-2006 9  

2007-2014 2007-2011 11 12 

 
 2012-2014 

1 
 

 Total  36 

Table 1. Decadewise number of Research Reports (RRs) published 
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Table 2 lists the dominant themes that were studied or focused on in the above 

contributions. In order to systematise this review, a framework has been developed by 

noting the central problem, research approach, arguments and level of education 

(school/ tertiary/vocational/out-of-school) of each study. It is complex to distinguish 

one single theme that a paper belongs to among others. This is why we have focused 

on the major topic in the wording of the central problem that the paper addressed rather 

than the issues that emerged therein. In order to make thematic groups of the RRs, we 

have created themes in ways that are sufficiently wide and do not consider unnecessary 

details according to our purposes of prioritising the major topic of the central problem. 

The final number of seven themes, as ordered by frequency in Table 2 below, was 

generated to assist the grouping of papers as well as the further analysis of work on 

mathematics education and language diversity in the context of the PME community.       

Theme of the RR Number of RRs 

Teaching activity 11 

Learner performance 7 

Code-switching 6 

Learner participation 6 

Theoretical perspectives 2 

Methodology 2 

Policy    2  

Total 36 

Table 2. Themes and number of RRs 

In what follows, we explore the extent to which the seven themes above have come to 

structure a visible, coherent and consistent theme on mathematics education and 

language diversity in PME Research Reports.  

REVIEW OF THE RESEARCH: AN ANALYSIS 

The themes that have received relative major focus since the inception of PME 

conferences are highly interconnected: ‘Teaching activity’, for instance, often appears 

in relation to how teachers support multilingual learners including language practices 

like ‘Code-switching’ (sometimes referred to as language-switching by authors). 

‘Learner performance’ and ‘Learner participation’ of students who learn mathematics 

in language(s) other than their home or first language has remained another major 

concern among researchers in this area. This is not surprising because as Setati (2012) 

has argued, what lies at the core of research in this area of study is a need to address 

the uneven distribution of knowledge and success in mathematics. Some of the studies 

compare performance of learners who learn mathematics in their home or first 
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language as against those who do not. Evans (2007) argues that poor performance is 

linked to the comprehension of the test language. It can be drawn from these studies 

that in order to enhance mathematical understanding, learners’ language(s) need to 

match with the language(s) of the teacher and the textbook used. Works published 

elsewhere (Clarkson, 2007) have also suggested that competence in the home (or first) 

language and the language of instruction is instrumental in mathematics achievement. 

While ‘Theoretical perspectives’ are attended to in all papers, tour analysis shows it as 

a less represented theme. Only a few reports elaborate on the role and use of theories 

in research on mathematics education and language diversity, along with awareness of 

issues in putting theories into frameworks for understanding practice. For example, a 

2003 Research Report by Morales, Khisty, and Chval relates theories of discourse with 

a complementary multimodal perspective for the analysis of mathematics learning in 

multilingual contexts. That paper prioritises the focus on how the integration of certain 

theoretical perspectives is central to the study of learning in the multilingual 

mathematics classroom. Other authors draw on the explanation and application of more 

specific theories like the ‘Pirie-Kieren theory’, as described by Manu in his 1995 report 

on mathematical understanding in bilingual settings. What is missing or weak in some 

of these papers is the examination of the constraints of the different theories that are 

contemplated and often recontextualised from linguistics into mathematics education.  

Although many of the examined papers pose important methodological questions, only 

two of them primarily address ‘Methodology’ as a major theme. Some of the authors 

tend to say that they have discussed methodological issues elsewhere. Barwell (2001) 

is the author who overtly discusses the need for and development of a methodology, in 

this case based on discursive psychology and conversational analysis to investigate 

data of what he refers to as “English as Additional Language” learners during 

mathematical interaction with English native speakers as they engage in solving word 

problems. This paper by Barwell also addresses learner participation but this theme 

comes across as a justification of why the explained methodology becomes valuable. 

It is interesting to note that two years later, in 2003, this same author contributes a 

second empirical paper that refines some of the initiated methodological concerns but 

now with a major focus on the study of learner participation. Still with respect to this 

author, we find in 2005 another paper that again foregrounds methodology. It 

summarises, however, a very different approach for the construction of a framework 

aimed at the comparison of PME research into multilingual mathematics education in 

diverse sociolinguistic settings.         

More generally, papers documenting works from single countries (such as the UK, the 

US, Australia, or South Africa) show responsibility for producing significant impact at 

an international level when describing policy issues which may transcend particular 

country boundaries. Nevertheless, ‘Policy’ has been only presented as the major focus 

in two of the reports during these years of PME conferences. Despite the few papers 

focusing on policy, it can be argued that the shift toward socio-political approaches is 

as a result of policy issues being included among the relevant aspects in the analyses 
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of some of the recent papers. What we have, therefore, is that political complexity tends 

to be commented on in these papers as something that importantly affects the 

conditions of mathematics teaching and learning, however, this is often done on the 

level of additional considerations and future research, or in ways that are not 

empirically situated. An exception is the paper by Civil in 2008, where the policy 

around the relationships between the learners’ families and the school system is a clear 

variable in the analysis of interview data. 

The research approach adopted in most Research Reports of empirical nature has 

commonly been small-scale qualitative studies (often in the form of case studies) as 

well as a few conceptual studies. Alongside the strength of rigorous qualitative 

research, quantitative approaches are equally necessary to further advance the domain 

of mathematics education and language diversity. Adoption of quantitative 

methodology as a research approach has remained minimal in the examined RRs with 

a slight exception of a Research Report by Clarkson (1984) entitled, “Language and 

mathematics in Papua New Guinea: A land of 720 languages”. In this paper, Clarkson 

used statistical techniques to conclude that the extent of students’ use of English did 

not significantly correlate with their mathematical tests.  

Excluding the few reports that drew on data from research in out-of-school contexts 

and taking into account the total absence of Research Reports on vocational contexts 

of learning and language diversity, it can be seen that a majority of the reported studies 

were conducted at the school level up to the learner-age of 15 years and practically 

none at the tertiary level (post-school and university). Although the published Research 

Reports help us understand the complexities of mathematics education and language 

diversity at the school level, similar exposure to complexities of language at the 

university level remains elusive. 

GAPS AND SILENCES 

Almost after 10 years of the publication of the Handbook of Research on the 

Psychology of Mathematics Education: Past, Present and Future, it is even more 

relevant what was stated there: “In the real world, multilingualism is closer to the norm 

than monolingualism. However, much research reported at PME conferences is 

conducted in classrooms where many (or all) the students are multilingual and learning 

in a second or additional language, but usually no mention is even made of this” (Gates, 

2006, p. 387). In our analysis of the Research Reports, we have updated the diagnosis 

by Gates and have detected enduring gaps and silences that have become even more 

visible.   

Research Reports that focus on the complexities and challenges faced by immigrant 

learners who learn mathematics in a language that is not their own are largely 

conducted in developed countries in Europe and the USA. This remains the case almost 

40 years since inception of PME conferences, despite the growing number of 

immigrant communities all over the world. What we also found interesting is the 

absence of Research Reports from developing countries that are multilingual such as 
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India and Pakistan as well as the Middle East and in the Eastern European region. The 

first Research Report on mathematics and language diversity published in the PME 

proceedings was authored by Dawe in 1981, “Bilingualism and reasoning in 

mathematics”, and reported on a study conducted in Great Britain. While there were 

many papers that reported studies conducted in locations like Australia, Germany, 

Malaysia, Mozambique, Papua New Guinea, South Africa, Catalonia-Spain, UK, and 

US, papers from other countries in Africa, Asia, Europe, and Latin America are elusive 

in the PME proceedings.  

Studies focused on pre-service and in-service teacher education and language 

development among teacher educators as support for pedagogical practices have not 

clearly emerged in the analysis. In the Research Report published so far there is no 

consideration of how language issues are dealt with in the professional knowledge that 

is being constructed by pre-service and in-service mathematics teachers. This means 

in particular that Research Reports that deal with teacher education and teaching 

activity have not yet taken on the significant contributions by Adler on the dilemmas 

that teachers have to face while teaching mathematics in contexts of language diversity. 

Although this research domain is growing, as a prominent research community, PME 

remains elusive of a clear and unanimous message of how to address the complexities 

of teaching and learning mathematics in contexts of language diversity. There are 

reports from small-scale studies that show the depth in a particular problem, but as 

argued earlier there are not many large-scale studies that can help us see the extent of 

the problem. Moreover, there have been no large-scale cross-country studies which 

might increase our understanding of commonalities in this research domain beyond 

boundaries. 

LOOKING AHEAD BY LOOKING BACK 

Not only is there a limited number of published work in this area of study but the 

themes explored are also limited. For example, the current trend of papers in the PME 

proceedings on this topic shows that they are not connected – they neither draw on 

previous research nor build a coherent body of knowledge. There has been a discrete 

and discontinuous nature of the flow of the knowledge build-up. In addition, most of 

the recent papers published in the recent PME proceedings are disjointed. Such a trend 

raises questions about how does the PME community build a body of knowledge. What 

have we learnt from the work and how have we addressed the gaps? Are recent papers 

citing other PME papers? Are we asking the same questions that have been explored 

in the past? 

In the 2013 reconstruction of the PME research categories for authors to submit their 

papers for review, the category of studies in mathematics education and 

multilingualism was added. This is an internal small change in the review system that 

well represents the commitment of the International Committee in charge of the PME 

community toward the research domain that we have discussed in this report. These 

sorts of technical rearrangements are helpful in moving relatively new terrains ahead. 
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Many adults need to interpret workplace data as part of their employment. Their 

capacity to do so depends on their statistical literacy levels and their attitudes to 

statistics. To identify and develop the statistical literacy of adults with limited 

understanding it is important to know what approaches to professional learning might 

be effective. This paper presents an overview of an extended project that examined 

teachers’ statistical literacy for dealing with student achievement data, and developed 

professional learning materials to support teachers in areas of identified difficulty. It 

highlights several issues associated with workplace statistical literacy.  

INTRODUCTION AND CONTEXT 

Statistical literacy, vital in today’s data-driven world, involves the ability to interpret, 

evaluate, and communicate statistical information. Many professionals require 

knowledge of numeracy, statistics, and data presentation to make use of quantitative 

reports in a professional setting, and they also need a positive disposition towards the 

use of such data (e.g., Gal, 2002; Watson, 2006). The specific technical knowledge 

required will vary among and within professions, and so professionals may require 

targeted learning opportunities. This paper reports on a project that investigated 

teachers’ professional statistical literacy and used this data to design instructional 

materials. Although teachers are the focus of the study, the study involves general 

principles that have the potential to be applied in other professional contexts.  

In Australia a national push towards assessing students’ literacy and numeracy 

understanding has resulted in schools and teachers receiving data that report on 

individual, class, school, state, and national outcomes. As in many countries, there has 

been contention about the value of such testing, which may impact on attitudes to the 

data. The preparation and distribution of reports occur at the state level, and, in Victoria 

where the study took place, many results are presented using boxplots (with whiskers 

to the 10th and 90th percentiles). The present study, then, is concerned with Victorian 

teachers interpreting data about “system reports of student achievement” (hereafter, 

SRSA), with the boxplot a common representation. Beyond this specific context and 

data representation type, however, the broader question of interpreting data—in 

whatever form or in whatever workplace—is a complex one. To investigate this, two 

frameworks were useful for the present study, and may be useful elsewhere.  

FRAMEWORKS 

The framework for professional statistical literacy shown in Figure 1 was used to 

interpret the statistical demands of the SRSA data presented to teachers, and 

underpinned the design of tasks to assess statistical literacy. Past research literature 
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guided the framework’s development. Curcio’s 1987 study of graph comprehension 

highlighted the ideas of “reading the data” (to read literally the direct factual 

information on the graph), “reading between [or within] the data” (attend to two or 

more data points on the graph, often for comparisons), and “reading beyond the data” 

(extend, predict, and infer). More recent work of Shaughnessy, Garfield and Greer 

(1996) suggested an additional category, “reading behind the data,” which attends to 

the context from which the data arise. Watson (2006) also emphasised the place of 

context in the interpretative process, with a three-tiered hierarchy building on basic 

terminology, through understanding of concepts in their context, to challenging and 

questioning statistical claims. The statistical knowledge base posited by Gal (2002, p. 

10) also indicates the importance of knowing why data are needed, having familiarity 

with basic terms, and understanding how statistical conclusions are reached.  

 

Figure 1: Framework for professional statistical literacy (Pierce & Chick, 2013) 

Each of the earlier frameworks alone was insufficient for examining the statistical 

literacy required to interpret typical workplace data (Chick & Pierce, 2013). The 

framework in Figure 1 draws on all of them, however, indicating a hierarchy associated 

with increasingly sophisticated statistical knowledge at the same time as 

acknowledging the impact of context on interpretation. Figure 1 implies that reading 

values is simpler than comparing values, which is easier than analysing the data set 

holistically. The hierarchy suggests higher-level interpretation demands competencies 

from the lower level/s. Statistical skills are applied in a real-world context, with 

interpretation of data/statistical reports dependent on understanding these contexts as 

well as the technical aspects of the statistics. In the education workplace professional 

context would include understanding the source of test data (e.g., how the scores arise 

from testing and are used in reports), and factors specific to the professional’s local 

context may also be needed to interpret data successfully (e.g., the socio-economic 

background of a school or knowing a child was ill on test day). 

The second framework useful for investigating professional statistical literacy was the 

Theory of Planned Behaviour (TPB), (Ajzen, 1991). This looks at factors that either 

encourage and enable or, in contrast, create real/perceived barriers to change. The TPB 

suggests that three main groups of factors affect a person’s intention to change 
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behaviour, which in this case refers to engaging with statistical reports on SRSA data. 

These factors are attitudes (Do I think it will be professionally informative and 

worthwhile?), subjective norms (Do I think that others, whose opinion I value, think it 

is important?), and perceived behavioural controls (Do I see barriers that will make the 

new activity difficult for me?). In this study TPB was taken as a framework for 

examining teachers’ disposition towards engagement with statistical reports. 

THIS STUDY 

This study first examined the attitudes and perceptions of school teachers towards 

SRSA (the statistical data that they received about students’ literacy and numeracy 

performance), and then how well teachers understand and interpret the statistics of 

SRSA. Based on the frameworks above data collection instruments were designed and 

data collected in 2010 and 2011 as set out in Table 1.  

Data collected Sample and sample size 

2010: Paper-based survey targeted 

demographics, access to SRSA, 

attitudes, and statistical literacy. 

Cluster sample of 10 primary and 10 secondary 

government schools across Victoria, with 7 teachers 

plus principal or nominee from each school (n=150) 

2011: Online survey using revised 

form of paper survey.  

Random sample of 104 primary and secondary 

government schools (n=704) 

2011: Face-to-face professional 

learning trialled, and evaluated.  

2010 sample split into experimental (n=42) and 

control (n=31) groups.  

2012: Online tutorials created, 

trialled, and evaluated 

3 secondary and 6 primary schools not previously 

involved (n=86)  

2013: “Using Assessment Data” 

tutorials online 

Available from: http://usingassessmentdata. 

vcaa.vic.edu.au/index.aspx/ 

Table 1: Data collected during the project 

Later stages of the project (2011-2013) used the teachers’ statistical literacy results to 

develop professional learning experiences, first for face-to-face presentation, and then 

via on-line learning modules, as discussed later. Our main purpose was to consider 

teachers’ statistical literacy, specifically, and factors influencing their capacity to 

interpret student assessment data, but there are implications for broader issues of 

workplace statistical literacy: what attitudinal factors affect it, what statistical 

knowledge is required, and what might enhance that statistical knowledge.  

RESULTS ABOUT TEACHERS’ STATISTICAL LITERACY 

Results from items framed by the Theory of Planned Behaviour  

Items investigating attitudes framed by TPB were included on both paper and online 

surveys from 2010-2011. The results showed that a majority of the teachers had a 

positive attitude towards the use of student achievement data (SRSA), as indicated by 

agreement or strong agreement with statements in Figure 2. A minority had negative 
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views, perhaps reflecting negativity about the whole national student testing process. 

The results showed little impact of subjective norms (influence of peers), but did 

indicate that a significant minority perceived difficulties that would be barriers to their 

engagement with SRSA. More details about these results are found in Pierce and Chick 

(2011) and Pierce, Chick, and Gordon (2013). 

Attitude (perception of the worth/value of the activity) 

85%  Student achievement data are something that my school’s leadership team expect me 

to pay close attention to. 

82%  SRSA are useful for identifying topics in the curriculum that need attention. 

80%  SRSA are useful to inform whole school planning. 

67%  SRSA are helpful for grouping students according to ability. 

58%  SRSA are helpful for planning my lessons. 

55%  SRSA tell me things about my students that I had not realised. 

Perceived behavioural controls (perception of factors influencing ability to engage) 

15%  I don’t feel I can adequately interpret the SRSA I receive at our school. 

29%  SRSA take too long to interpret. 

33%  The amount of data presented in the SRSA I see is overwhelming. 

Figure 2: Percentage of teachers who agreed with the given statements 

Statistical knowledge: Results from Rasch modelling  

Early work informed by the Figure 1 framework which investigated the statistical 

literacy demands of data representations being sent to teachers (Chick & Pierce, 2013) 

led to the design of items for the surveys that would assess teachers’ capacity to 

interpret statistical data, including the boxplots that were typically used in their context. 

Teachers were presented with items using reports of the same format that they receive 

at their schools (see Figure 3). Items focused on the different statistical literacy levels: 

reading, comparing, and analysing. The teachers’ responses on these items were 

subjected to Rasch modelling (see Pierce, Chick, Watson, Les, & Dalton, 2014) to rank 

the items’ difficulties. Items that respondents found easiest involved: 

 Reading values from a table; and 

 Identification of school’s weakest area from box plots or table (where the 

differences were sufficiently gross that interpretation was straightforward). 

The items that teachers found hardest required: 

 Justification of their choice of a box plot that matched a given histogram; 

 Understanding what the “box” component of a boxplot represents; 

 Recognising that the boxplots used in these particular reports have whiskers 

extending only to the 10th and 90th percentiles; and 
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 Correctly conceiving that boxplots indicate the distribution and density rather 

than the frequency of scores. 

 

Figure 3: School summary report for a fictitious Example College 

The teachers demonstrated appropriate basic statistical expertise, even considering 

their diverse backgrounds. Many teachers had little or no in-depth statistical training 

beyond interpreting simple histograms, and determining means, medians, and modes. 

Once the tasks became more complex, however, requiring an understanding of the 

nuances of the representation, many teachers’ limited statistics backgrounds impacted 

on their capacity to correctly interpret the data. In particular, the density/frequency 

misconception arose often for boxplots, exacerbated because the visual impact of the 

representation tempts the inexperienced user’s brain to interpret “more box” as “more 

data points.” An added complexity here was the fact that the Victorian boxplots have 

non-standard whiskers, although a key was supplied to indicate what was depicted. 

These results provided evidence that a professional learning program to develop 

teachers’ statistical literacy should focus on alleviating misconceptions with regard to 

boxplots, assist teachers to analyse data in ways that will inform not only whole school 

planning but also classroom teaching, and embed a message that these reports provide 

information about students and classes and are not meaningless numbers. 

Investigating workplace statistical literacy more generally 

As discussed, these results apply to teachers and the SRSA data that they receive. For 

other professions in which adults are expected to interpret data, similar issues might be 

expected to arise. The TPB items require only straightforward adaptation for research 

in other contexts; the attitudes towards the use, usefulness, and interpretation of data 

are likely to reflect the workers’ statistical backgrounds, their attitudes about the value 

of the data itself (and not just its presentation), and the context in which they work with 
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the data (e.g., the teachers felt that the SRSA data came too late in the year for them to 

use it in adapting their teaching). In terms of investigating statistical knowledge and 

skills, the focus on boxplots in this study was very much associated with the Victorian 

teaching context; in another workplace context it seems reasonable to expect that, while 

boxplots may not be the representation-of-the-day, there might well be other 

representations that give rise to interpretation difficulties peculiar to those particular 

data approaches. Furthermore, it is likely that, like teachers, the workers’ difficulties 

will be associated with the complexity of the statistical situation involved and limits 

on their background statistical knowledge.  

DEVELOPING A PROFESSIONAL LEARNING PROGRAM 

The professional learning program to help teachers develop statistical literacy went 

through two design phases: a face-to-face program first and then an on-line program 

for wider dissemination. The focus of the program was informed by the results of the 

statistical literacy surveys, specifically boxplot understanding and developing 

appropriate language for describing statistical results.  

A key activity for the face-to-face program involved a set of 30 fictitious students 

representing an Australian Year 7 class, illustrated as cartoon characters on cards with 

their test scores. The data were constructed to produce boxplots exhibiting 

characteristics the teachers had found difficult to interpret correctly. Figure 3 above 

was produced from these data. Teachers first placed the individual cards on a scale to 

create a pictogram. Then a rough but conceptually-based boxplot was constructed by 

dividing the class into quarters, placing a rectangular card over the middle 50%, turning 

over the cards for the top and bottom 10% of students (to depict the outlying students 

not shown because the Victorian boxplots have whiskers to the 10th and 90th 

percentiles), and then placing appropriate strips of card to depict the whiskers. Finally, 

the student cards were removed, leaving the “abstract” boxplot. A number of audible 

“ah-ha” moments occurred as teachers realised what could and could not be inferred 

about the boxplot distribution. Their difficulties interpreting boxplots usually had their 

basis in not reading the key and misunderstanding the role of the percentiles. Many 

participants expressed surprise that longer whiskers did not equate to more students but 

rather to a greater spread of results. A consistent comment was how the use of students 

with names and faces brought the data to life and helped teachers think about such 

statistics providing information about their own students. This activity helped to link 

“abstract” data to “concrete” interpretations. 

Other materials included ten printed statements describing boxplots. Participants 

judged the merits of the statements, discarding incorrect ones, and ranking the 

remainder in terms of their professional usefulness. As participants worked in groups, 

they clarified their thoughts regarding the wording of these statements, particularly in 

light of their recent insights gained through the building of a boxplot activity.  

The following quote from one participant summarises teachers’ feedback six weeks 

following the professional learning program. 
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It was excellent. However, you tend to forget … stuff because you are only exposed to it 

for a short period of time. You need … a few more sessions to not only become confident 

with it … but then become so familiar … that it becomes second nature. 

For these teachers their school data typically would be analysed once each year. The 

evaluation of the face-to-face professional learning program showed it was highly 

successful on the day, with teachers immediately and appropriately applying the 

principles learnt to their own school’s data. However teachers were not able to recall 

this knowledge some weeks later. To address this, online “refresher” tutorials were 

developed. These new tutorials were trialled during 2013; they were designed to have 

a focus on a single issue per tutorial, with each taking only a few minutes to complete. 

This time the teachers’ feedback focused almost exclusively on technical layout and 

computer concerns rather than issues of statistical literacy. Where possible the tutorials 

were made interactive, and the teachers responded positively to these drag-and-drop 

tasks and sections requiring them to enter answers to questions with immediate 

feedback. It seems that the hands-on face-to-face activities laid the foundations for 

understanding that later use of “just in time” support via the online resources could 

help sustain. The extent to which the online tutorials alone can provide appropriate 

professional learning has not been investigated yet. 

CONCLUSIONS 

The research showed that teachers were generally positive about interpreting and using 

student achievement data, but that there were limitations to their capacity to do so, due 

to misconceptions associated with the statistical representations being used. When 

statistical approaches summarise data—through calculating a single statistical value 

like the mean, or producing a depiction of a distribution as in the case of boxplots—

there is compression of information, and so establishing the possibilities for what the 

original data set might be like can prove challenging. For these teachers, this was 

reflected in their difficulties with certain aspects of boxplots, exacerbated by the fact 

that most had little prior experience with this particular representation. In other 

professional environments similar issues are likely to arise: there are characteristic 

features of any data-summarising approach that need to be deeply understood in order 

to interpret data successfully. As soon as interpretation requires understanding of 

distributions then dealing with statistics starts to become complicated, and intuitions 

will need to be actively developed rather than assumed.  

This means that, as in the professional learning sessions provided for the teachers, it is 

essential to identify and target key misconceptions in any training that is provided to 

develop professionals’ statistical literacy. Moreover, if professionals are only 

consulting data intermittently there may well be a need not only for initial professional 

learning, but for accessible “just-in-time” follow up material that reviews key issues 

effectively. Increased confidence in their ability to interpret data is likely to reduce the 

barriers to engaging with data, and make data usage more effective. 
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Finally, it should be noted that although the statistical literacy framework is intended 

to treat statistical literacy as a broad construct, the teachers’ situation had some very 

specific technical requirements (e.g., understanding boxplots). There is no guarantee 

that a professional’s need to understand a particular statistical tool is necessarily 

generalizable. So, for example, while the project may have enhanced teachers’ capacity 

to deal with boxplots and possibly increased some aspects of broader statistical literacy, 

it is not clear that it will have increased their understanding of other specific 

representations. 
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TO EXPLORE RELEVANT ASPECTS OF DIDACTIC-

MATHEMATICAL KNOWLEDGE OF TEACHERS 
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This paper presents some of the results obtained in a study that explored prospective 

secondary teachers’ Didactic-Mathematical Knowledge (DMK) regarding the 

derivative. The specific focus was on mathematical dimension of DMK. The study was 

carried out in three stages: 1) design of a questionnaire; 2) pilot application of this 

questionnaire so as to develop its final version; and 3) application of the final version 

to a sample of Mexican prospective secondary teachers. Both the design of the 

questionnaire and the responses of the prospective teachers reveal the complex set of 

mathematical practices, objects and processes that are brought into play when solving 

tasks on derivatives. The three mentioned stages are provided as a useful methodology 

for the design of instruments for assessing relevant aspects of teachers’ knowledge. 

INTRODUCTION  

As we noted in a previous study presented at the 36th Conference of the International 

Group for the Psychology of Mathematics Education (Pino-Fan, Godino, Font & 

Castro, 2012), the last three decades have seen a growing interest in determining the 

knowledge which teachers require to teach specific topics such as the derivative. Our 

understanding of this knowledge has been advanced through the work of authors such 

as Shulman (1986), Ball (2000) and Hill, Ball and Schilling (2008). However, this 

research, along with that carried out by Fennema and Franke (1992), Llinares and 

Krainer (2006), Ponte and Chapman (2006), among others, has led to a multifaceted 

view of the way in which knowledge for teaching is constructed. Indeed, there is no 

universal agreement as to the theoretical framework that should be used to describe 

mathematics teachers’ knowledge. Furthermore, although progress has been made in 

terms of defining the categories of knowledge that mathematics teachers need in order 

to teach effectively, a number of questions remain to be resolved. For example, how, 

or according to what criteria, might we measure the knowledge corresponding to each 

of these categories? Having identified such criteria, are they then useful for developing 

and promoting among prospective teachers the kinds of mathematical knowledge 

required by the different aspects of mathematics teaching? The research described in 

this paper seeks to address precisely these two questions.  

In Pino-Fan et al. (2012) we presented the results obtained in the first part of a study 

that explored what we call the epistemic facet of prospective secondary teachers’ 

didactic-mathematical knowledge about the derivative. The study as a whole involved 

three stages: 1) design of a questionnaire to evaluate teachers’ knowledge, specifically 

as regards the epistemic facet of didactic-mathematical knowledge about the 
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derivative; 2) analysis both of the results obtained in a pilot application of this 

questionnaire, as well as of the comments made by a number of experts who were 

consulted regarding the validity and reliability of the questionnaire; and 3) based on 

the information gathered in stage 2, development and application of a final version of 

the questionnaire, and analysis of the results obtained. This third stage also included 

interviews in order to obtain a more detailed understanding of prospective teachers’ 

knowledge. The present paper provides an overview of these three stages. However, as 

stage 1 and part of stage 2 have already been addressed in Pino-Fan et al. (2012) the 

emphasis here is on stage 2 and, especially, stage 3. The results obtained provide partial 

answers to the two questions that motivated the research. Furthermore, the three 

mentioned stages are provided as a useful methodology for the design of instruments 

for assessing both the mathematical dimension and other dimensions of DMK. 

THEORETICAL FRAMEWORK  

The reference framework for this study is the Onto-Semiotic Approach (OSA) to 

mathematical knowledge and teaching; one that has been developed in several studies 

since 1994 (Godino, Batanero & Font, 2007). More specifically, we make use of a 

model developed by Godino (2009), and refined in different works (Pino-Fan, Godino 

& Font, 2013; Pino-Fan, Godino & Font, 2014), within the framework of the OSA, 

namely the Didactic-Mathematical Knowledge (DMK) model, which was designed to 

categorise and analyse the knowledge that teachers require to teach specific topics. The 

DMK model interprets and characterises a teacher’s knowledge from three dimensions 

(Pino-Fan, et al., 2014): mathematical dimension, didactical dimension and meta 

didactic-mathematical dimension. Each of these dimensions considers subcategories 

of knowledge, which, in turn, also include theoretical and methodological tools that 

allow operationalising knowledge analysis regarding each subcategory. Furthermore, 

these dimensions, with their corresponding analysis tools, are involved in each of the 

phases proposed for the elaboration of Instructional Designs: preliminary study, 

design, implementation and evaluation. The relationships between dimensions and 

theoretical-methodological tools proposals by the DMK, with the contributions of other 

models of teachers’ knowledge, can be found in Pino-Fan and Godino (2014). 

In the case of the present paper, the topic is the derivative, and the focus is on 

mathematical dimension and one of the six facets included in the didactical dimension 

of DMK model, the epistemic facet. DMK’s mathematical dimension makes reference 

to the knowledge that allows the teacher to solve the problem or mathematical activity 

that is to be implemented in the classroom and link it with mathematical objects that 

can later be found in the school mathematics curriculum. It includes two subcategories 

of knowledge: common content knowledge and extended content knowledge. The first 

subcategory, common content knowledge, is the knowledge of a specific mathematical 

object, which is considered as sufficient to solve problems and tasks proposed in the 

mathematics curriculum and in the textbooks of a certain educational level. The second 

subcategory, extended knowledge, refers to the knowledge that the teacher must have 

about mathematical notions that, taking the mathematical notions that are being studied 
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at a certain time as a reference (for example, derivatives), come ahead in the curriculum 

of the educational level in question or in the next level (for example, integers in high 

school or the fundamental theorem of calculus in college). Extended content 

knowledge provides the teacher with the necessary mathematical foundations to 

suggest new mathematical challenges in the classroom, to link a certain mathematical 

object being studied with other mathematical notions and to guide students to the study 

of subsequent mathematical notions to the notion that is being studied (Pino-Fan, et al., 

2014). For its part, the epistemic facet, one of the facets involved in the didactical 

dimension of DMK, refers to specialised knowledge of the mathematical dimension. 

The teacher must have a certain amount of mathematical knowledge “shaped” for 

teaching; that is to say, the teacher must be able to mobilise several representations of 

a mathematical object, to solve a task through different procedures, to link 

mathematical objects with other mathematical objects taught at a certain educational 

level or from previous or upcoming levels, to comprehend and mobilise the diversity 

of partial meanings for a single mathematical object, that are part of the holistic 

meaning for such object (Pino-Fan, Godino & Font, 2011), to provide several 

justifications and argumentations, and to identify the knowledge at play during the 

process of solving a mathematical task (Pino-Fan & Godino, 2014). For the 

mathematical dimension and the epistemic facet, two levels of analysis are proposed: 

1) mathematical and didactic practices; in other words, a description of the actions 

performed to solve the proposed mathematical tasks, so as to contextualise content and 

promote learning; 2) configuration of objects and processes; that is, a description of 

the mathematical objects and processes involved in the mathematical practices under 

study, as well as those which emerge out of them.  

METHOD  

The research was based on a mixed methods approach (Johnson & Onwuegbuzie, 

2004), since it was an exploratory study that examined both quantitative (level of 

accuracy of answers to questionnaire items: correct, partially correct and incorrect) and 

qualitative variables (type of cognitive configuration activated when solving the tasks 

set). The three stages of the research were as follows. 

Stage 1: design of the questionnaire 

In this first stage we began by creating a bank of tasks involving the derivative. These 

tasks were drawn from various studies on the teaching of calculus. In order to select 

the tasks that would be included in the questionnaire we considered three criteria: 1) 

the questionnaire needed to cover the different meanings of the derivative, taking as a 

reference the holistic view of the derivative that is set out in Pino-Fan, et al., (2011); 

2) it had to capture movement between the different ways of representing both the 

function and its derivative; and 3) it had to reflect the type of didactic-mathematical 

knowledge that corresponds to the epistemic facet and mathematical dimension. This 

first stage is described in detail in Pino-Fan et al. (2012). 
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Stage 2 (part one): pilot application of the questionnaire 

Having designed the initial version of the questionnaire, which included seven tasks 

that reflected the three criteria, we then selected an intentional sample of prospective 

secondary teachers, all of whom were students in the degree in mathematics teaching 

offered by the Autonomous University of Yucatan (UADY) in Mexico. This degree 

course comprises eight semesters, and the 53 prospective teachers who made up the 

sample were enrolled in semesters six and eight. These students had already taken 

courses related not only to mathematical analysis (differential and integral calculus, 

differential equations, etc.) but also to the teaching of mathematical subject areas 

(geometry, differential and integral calculus, conceptual development of calculus, etc.). 

The questionnaire was administered at the beginning of February 2011, and took two 

hours to complete. The results are reported in Pino-Fan et al. (2012). 

Stage 2 (part two): expert triangulation 

In order to ensure the reliability and validity of the questionnaire, it was subjected to a 

process of expert triangulation. By means of a survey, eight experts were asked to 

assess the relevance of the questionnaire items for evaluating each of the following 

aspects: 1) different meanings of the derivative; 2) representations activated both in the 

item statements and their possible solutions; and 3) the type of didactic-mathematical 

knowledge (corresponding to the epistemic facet and mathematical dimension) 

required to solve the tasks. In order to make any necessary improvements to the pilot 

version, the experts were also asked for their opinion regarding any important content 

that was missing from the questionnaire, as well as the wording and comprehensibility 

of items. It should be noted that we use the word “expert” to refer to researchers who 

have extensive trajectory in the research on the didactic of calculus and the teachers 

training. So, research professors from France, Mexico, Spain, Colombia and Portugal, 

participated in this study of the “expert triangulation”. 

Stage 3: application of the final version of the questionnaire 

The final version of the questionnaire was administered to 49 prospective teachers at 

the beginning of February 2012. These prospective teachers constituted the total 

number of students who, at that time, were enrolled in semesters six and eight of the 

degree in mathematics teaching offered by the UADY. As in the pilot, the final version 

took two hours to complete, and the students to whom it was administered had, like 

their counterparts in stage 1 of the research (in 2011), already taken courses about 

mathematical analysis and how to teach calculus. One week after administration of the 

questionnaire, and once the results had been gathered, a series of semi-structured 

interviews were scheduled with the students. The aim of these interviews, which took 

into account the suggestions of the eight experts, was to explore in greater detail the 

knowledge and, specifically, the cognitive configurations used by the prospective 

teachers when solving the tasks set. 
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RESULTS AND DISCUSSION  

Stage 2 (part two): expert triangulation 

In general, the DMK-Derivative Questionnaire was viewed positively by the experts, 

as illustrated by the following two comments: 

I think the questionnaire is very thorough. It’s worth noting that it measures not only the 

types of knowledge but also the way in which they have been acquired. I’m referring here 

to the difference between a highly mechanical or routine form of learning and one that is 

meaningful, where the derivative of a point has various representations (Expert E7). 

…I would like to point out that the proposed tasks are rich and varied, and I think they are 

capable of measuring prospective secondary teachers’ didactic-mathematical knowledge 

about the derivative. I would also like to highlight the importance of the criteria defined in 

order to select the tasks: different meanings of the derivative; the use of different 

representations activated both in the item statements and the solutions to them; and the 

three components of prospective teachers’ didactic-mathematical knowledge [common, 

extended and specialised content knowledge] (Expert E8). 

The experts also made a number of observations regarding each of the tasks included 

in the questionnaire, notably the following: 

Some students may have a background in economics or business administration, where the 

derivative is associated with concepts such as marginality, and where it appears as the 

function of marginal utility... It would be useful to include a question that relates the 

derivative to economics… (Expert E5). 

…it is necessary to include activities related to modelling, such as optimisation problems 

or those involving the instantaneous rate of change. In my view it would also be important 

to include a problem in which verbal expressions play a more significant role … (Expert 

E1). 

Along with other observations and suggestions these comments by experts E5 and E1 

led us to include the tasks shown in Figure 1. One of the experts (E8) proposed the 

inclusion of five new tasks so as to explore in greater depth the variety of 

representations. However, we did not follow this suggestion, as we agreed with a 

comment made by expert E7: 

Rather than add new tasks I think it would be better to complement the questionnaire with 

interviews that could provide more detailed information about the students’ responses. Of 

course, more tasks can always be added, but it is important that the questionnaire does not 

become too long. 
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Figure 1. Three new tasks included in the final version of the Questionnaire 

Stage 3: application of the final version of the questionnaire 

In order to evaluate the quantitative variable ‘level of accuracy of the students’ 

answers’, each of the questionnaire items was scored as follows: 2 points if the answer 

was correct, 1 if it was partially correct and 0 if it was incorrect. Thus, the maximum 

possible score for a student who offered a correct solution to all the items of all the 

tasks was 36. Figure 2 shows the distribution of scores obtained by the 49 prospective 

teachers when responding to the final version of the questionnaire, and also indicates 

that the mean score was 13.8 (38.3% of the possible total score). It should be noted that 

of the 49 students who responded to the questionnaire, only 28 (57.1%) scored higher 

than the mean, and none of them reached a score of 24. This means that 42.9% of these 

prospective teachers scored below the mean. The tasks which they found most difficult 

were the three shown in Figure 1, which had a difficulty index of almost zero.  
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Figure 2: Distribution and mean of the scores obtained on the questionnaire 

The qualitative variable of interest in the present study was the type of cognitive 

configuration, which refers to the systematic description of primary mathematical 

objects (linguistic elements, concepts, propositions, procedures and arguments) and of 
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configurations involved in the students’ solutions, together with the data obtained 

through the subsequent interviews, revealed that: 1) the prospective teachers did not 

make connections between the different partial meanings of the derivative; 2) when 

attempting to solve the tasks they found it difficult to make use not only of the elements 

considered to be part of mathematical dimension of DMK (primary mathematical 

objects, processes and their links) but also of the epistemic facet in general; and 3) their 

grasp of the epistemic facet of didactic-mathematical knowledge would not be 

sufficient to enable them to manage adequately their future students’ learning about 

the derivative. For reasons of space we are unable here to present one of the tasks to 

illustrate the type of qualitative analysis carried out. However, examples of the type of 

analysis, as well as of the cognitive configurations observed in the prospective 

teachers’ answers, can be found in Pino-Fan, et al., (2014). 

FINAL REFLECTIONS   

This paper has described aspects of a research project carried out over the last three 

years and whose purpose was to explore the epistemic facet of prospective teachers’ 

didactic-mathematical knowledge (DMK) about the derivative. Originally one of our 

aims was to examine and foster this kind of knowledge so that prospective teachers 

would be better equipped to teach the derivative. However, we then encountered the 

difficulty of how to explore all the different aspects of the mathematical knowledge 

that is required to teach the derivative. Consequently, we restricted our study to the 

mathematical dimension and the epistemic facet of DMK among prospective teachers. 

The results of our research show that the variable and theoretical-methodological tool 

‘type of cognitive configuration’ activated in the prospective teachers’ answers is 

useful for understanding the kind of didactic-mathematical knowledge they possess. 

Specifically it helps us understand their mathematical knowledge. This variable was 

analysed by means of a tool that we refer to as the ‘configuration of primary 

mathematical objects and processes’; one which facilitates the analysis and 

categorisation of certain features of the epistemic facet of prospective teachers’ 

didactic-mathematical knowledge. Likewise, the dimensions and sub-dimensions 

proposed by the DMK, as well as the theoretical-methodological tools proposed to 

operationalise these dimensions, allow an approach to the answers of the questions 

raised at the beginning. The design of the questionnaire used in this study, as well as 

the responses of prospective teachers to it, reveal the complex set of mathematical 

practices, objects and processes that are brought into play when solving tasks related 

to the derivative. Teachers need to become aware of this complexity during their 

training so that they will be able to develop and assess the mathematical competence 

of their future students.  
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In this research report, we describe a comparative study between two theoretical 

approaches that allowed carrying out cognitive analysis from the subjects’ 

performance: Theory of Register of Semiotic Representation and the Onto-Semiotic 

Approach of mathematical cognition and instruction. In order to carry out this study, 

we analysed the performance of a future high school teacher in a task related to the 

differentiability of the absolute value function. As a result of this study, the 

complementarities between these two theoretical perspectives, which might allow more 

complete and detailed analysis of the students’ performance, are evidenced. 

INTRODUCTION 

One of the main concerns of the research community in Mathematics Education is 

determining which are the difficulties that learners face on their way to understanding, 

and therefore, learning, mathematical notions. This interest is reflected in the fact that 

one of the main focuses of research within our scientific discipline has been the features 

of the learner’s cognitive activity. Currently, there are several theoretical positions that 

allow carrying out cognitive analysis (of students, prospective teachers or teachers) 

depending on what is desired to observe and which is the concerned mathematical 

notion (Duval, 2006; Asiala, Brown, DeVries, Dubinsky, Mathews & Thomas, 1996; 

Godino, Batanero & Font, 2007). However, the complex nature of the subjects’ 

learning phenomena has directed research groups to make efforts to revise and find 

possible complementarities between theoretical and methodological approaches that 

allow providing more detailed and precise explanations of such learning processes.  

In this research report, we present a comparative study between two theoretical 

approaches, the Theory of Register of Semiotic Representation (TRSR) and the Onto-

Semiotic Approach (OSA) of mathematical cognition and instruction, which allows 

carrying out cognitive analysis from the subjects’ performance. In order to carry out 

this study, and following the proposed methodology for the works within the 

framework of the networking of theories, we analysed the performance of a future high 

school teacher in a task related to the differentiability of the absolute value function. 

As a result of this study, the complementarities between these two theoretical 

perspectives, which might allow more complete and detailed analysis of the students’ 

performance, are evidenced.  
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THEORETICAL FRAMEWORKS 

Theory of Register of Semiotic Representation (TRSR) 

In the context of cognitive psychology, the notion of representation plays an important 

role regarding the acquisition and the treatment of an individual’s knowledge. As 

Duval (1995) points out: “There’s no knowledge that can be mobilised by an individual 

without a representation activity” (p. 15). 

The comprehension of the theory on registers of representation requires consideration 

of three key characteristics: 

1. There are as many different semiotic representations of the same mathematical 

object, as semiotic registers utilised in mathematics. 

2. Each different semiotic representation of the same mathematical object does not 

explicitly state the same properties of the object being represented; what is being 

explicitly stated is the content of the representation. 

3. The content of semiotic representations must never be confused with the 

mathematical objects that these represent. 

One of the specificities of semiotic representations consists of its dependence on an 

organised system of signs such as language, numerical writing, symbolic writing and 

Cartesian graphs. Consequently, all semiotic representations must be considered, 

primarily, based on the register where it was produced; then, based on what it explicitly 

does and what it cannot represent; secondly, based on what it explicitly does and what 

it cannot represent of the properties of the object of knowledge being analysed; and 

finally, based on the object itself to which it refers to. 

Another of the essential specificities of the semiotic representations is the cognitive 

operation of conversion of the representations from one system into another; in other 

words, the transformation of semiotic representations into other semiotic 

representations. Duval (1995, p. 17) points it out as: “The notion of semiotic 

representation presupposes the consideration of different semiotic systems and a 

cognitive operation of conversion of the representations form one system into another”. 

This conversion operation has been considered as a change of form: moving from a 

verbal statement into an algebraic operation, or draw the curve of a second-degree 

equation. These examples illustrate the change in the form that knowledge is 

represented. 

It is important to point out that there are two fundamental cognitive activities within 

the TRSR: treatment and conversion. The activity of treatment consists of a 

transformation carried out in the same register, in other words, only one register is 

mobilised. The activity of conversion, on the other hand, consists of the mobilisation 

from one register into another, where the articulation of representation becomes 

fundamental. According to Duval (1995), the study of the activity of conversion makes 

it possible to comprehend the close relation between ‘noesis’ and ‘semiosis’, which is 

essential in intellectual learning. However, it must be taken into account that the 
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operation of conversion brings some difficulties, including the fact that the 

representation of the source register does not have the same content as the destination 

register. Another difficulty lies in the treatment, which becomes complex by the use of 

the register of natural language and those registers that allow ‘visualizing’ (graphs, 

geometrical shapes, etc.). 

Semiotic systems that allow studying the pairs ‘representation, knowledge’, must 

satisfy the three cognitive activities related to representation: 1) Constituting a trace or 

an assembling of traces that are identifiable as a representation of an object or thing; 

2) Transforming representations according to the rules typical to the system in order to 

obtain other representations that might provide more knowledge to the initial 

representations;  3) Converting representations produced in a system of representation 

into another system, so that the latter allow making other meanings explicit to what is 

being represented. Not all semiotic systems allow these three cognitive activities. 

Semiotic systems that do allow said cognitive activities are what Duval (1995) calls 

registers of semiotic representation. These registers of semiotic representation 

constitute the degrees of freedom that a subject has to objectify an idea that is initially 

confusing, a beating feeling, taking advantage of information, or communicating with 

an interlocutor. 

The Onto-Semiotic Approach of mathematical cognition and instruction 

The Onto-Semiotic Approach (OSA) to cognition and mathematical instruction is a 

theoretical and methodological framework that has been developed since 1994 by 

Godino and colleagues (Godino, Batanero & Font, 2007; Font, Godino & Gallardo, 

2013). The theoretical framework includes an epistemological model about 

mathematics, on anthropological and sociocultural bases, a cognitive model on 

semiotic bases from a pragmatic nature, and an instructional model coherent to the 

others mentioned above. There are then six facets or dimensions that are considered in 

OSA, for the study of the processes of teaching and learning, in relation to a specific 

mathematical content (Godino, Batanero & Font, 2007): epistemic, cognitive, 

affective, interactional, meditational and ecological. The cognitive facet refers to the 

development of personal meanings (learning of students). 

Within the onto-semiotic approach, the notion of ‘system of practices’ plays an 

important role for the teaching and learning of mathematics. Godino & Batanero (1994) 

refer to the system of practices as “any performance or manifestation (linguistic or not) 

carried out by someone in order to solve mathematical problems, to communicate the 

solution to others, to validate the solution and to generalise it to other contexts and 

problems” (p. 334). Font, Godino & Gallardo (2013), point out that mathematical 

practices can be conceptualised as the combination of an operative practice, through 

which mathematical texts can be read and produced, and a discursive practice, which 

allows the reflection on operative practices. These practices can be carried out by one 

person (system of personal practices) or shared within an institution (system of 

institutional practices). 
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Within the OSA, certain pragmatism is adopted since mathematical objects are 

considered as entities that emerge from the systems of practices carried out in a field 

of problems (Godino & Batanero, 1994). Font, Godino & Gallardo (2013) put it this 

way: “Our ontological proposal originates from mathematical practices, and these 

become the basic context from which individuals gain experience and mathematical 

objects emerge from. Consequently, the object gains a status originated from the 

practices that precede it” (p. 104). Ostensive objects (symbols, graphs, etc.) and non-

ostensive objects (concepts, propositions, etc.) intervene in mathematical practices, 

which we evoke while doing mathematics and are represented in a textual, oral, 

graphic, symbolic and even gestural way. New objects emerge from the systems of 

operative and discursive mathematical practices and these show their organisation and 

structure (Godino, Batanero & Font, 2007). If the systems of practices are shared 

within the core of an institution, then the emerging objects will be considered as 

‘institutional objects’, while, on the other hand, if such systems correspond to one 

person, then these will be considered as ‘personal objects’. The emergence of a 

personal object is progressive during the history of a subject, as a consequence of 

experience and learning, while the emergence of an institutional object is progressive 

over time.  

The notion of ‘system of practices’ is useful for a certain type of macro didactic 

analysis. For a ‘finer’ analysis of mathematical activity, the following typology of 

primary mathematical objects that intervene in the systems of practices, have been 

introduced in the OSA: 1) situations-problems (extra-mathematical applications, 

exercises,…); 2) linguistic elements (terms, expressions, notations, graphs,…) in 

diverse registers (written, oral, gestural,…); 3) concepts/definitions (introduced 

through definitions or descriptions: line, point, number, average, function, 

derivative,…); 4) propositions/properties (statements about concepts,…); 5) 

procedures (algorithms, operations, calculation techniques,…);  and 6) arguments 

(statements used to validate or explain propositions and procedures, deductive or of 

another type,…).  When an agent performs and evaluates a mathematical practice, a 

conglomerate formed by situation-problems, languages, concepts, propositions, 

procedures and arguments, is activated. These primary mathematical objects are 

connected with each other, forming intervening networks of objects, emerging from 

the systems of practices, which in OSA are known as configurations. These 

configurations can be socio-epistemic (networks of institutional objects) or cognitive 

(networks of personal objects). 

METHODOLOGY 

We use the proposed methodology for studies on networking of theories, which suggest 

for this type of studies, among other things, to select a problem or particular case and 

analyse this case or problem under the theoretical perspectives involved in the study. 

In our case, we select a task on the differentiability of the absolute value function and 

the solution provided by a student of university level to this task. This student, whom 

we refer to as Juliet, was enrolled in the final modules (eighth semester) of the degree 
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in mathematics teaching offered by the Autonomous University of Yucatan (UADY) 

in Mexico. She had studied differential calculus in the first semester of their degree 

course, and had subsequently completed other modules related to mathematical 

analysis (integral calculus, vector calculus, differential equations, etc.). She had also 

studied subjects related to the teaching of mathematics. Both the task and the solution 

provided by Juliet can be found in the study of Pino-Fan (2014). Juliet's answer was 

chosen intentionally due to its cognitive complexity. 

The task and the solution provided by Juliet 

This task (Figure 1) has been studied in an investigation on teacher training 

(Pino-Fan, 2014).  

 

Figure 3: Task about derivability of the absolute value function 

Juliet’s solution, translated from Spanish to English language, is presented in Figure 2. 

The answer of Juliet was analysed from two perspectives (TRSR and OSA). From the 

point of view of the TSRS, the analysis focused on the identification and description 

of the semiotic registers of representation mobilised by Juliet, and the study of 

congruence between the activities of treatments or conversions/passages. From the 

point of view of the OSA, the mathematical practice of Juliet and the cognitive 

configuration (linguistic elements, concepts/definitions, properties/propositions, 

procedures and arguments) that mobilised as part of such a practice, were 

characterised. 
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Figure 4: Juliet’s solution to the task 

ANALYSIS FROM BOTH PERSPECTIVES 

For reasons of space, we present in this research report a summary of analyses carried 

out from both approaches. The analysis carried out both with TRSR and OSA, show 

deficiencies in Juliet’s mathematical activity, related to the lack of connection of the 

interpretations and treatments that she makes in the graphic and symbolic 

representations of the absolute value function. Through the lens of the TRSR it could 

be observed that the Juliet’s answers for the items a), b) and c), show that she knows 

the definition of the absolute value function, and that she can express it in the symbolic 

register. Regarding the derivative function, however, she shows deficiencies, because 

although she answers that if the graphic of the function presents a corner or peak on 

x=0, then the function is not derivable, in her upcoming arguments some confusions 

are perceived regarding the domain and little detailed graphic of f ’(2). She manages 

representing for the non-negative values of x, the derivative of f in symbols, but does 

not represent it graphically, perhaps indicating insufficient knowledge. Although 

cognitively, she had the symbolic and graphic registers, she does not succeed in the 

mathematical knowledge of the derivative function, which might be because it appears 

in an implicit way in the task. In conclusion, a disconnection between the graphic and 

symbolic registers in which Juliet stands to give her answers is observed. In this sense, 

we can conclude that Juliette does not carry out a cognitive operation of coordination 

and articulation between such registers. 

With the lens of OSA we observe that Juliet begins her practice based on a visual 

justification to answer, although wrongly, subtask a), pointing out the existence of a 

‘peak’ at the point of domain of the function x=0. From the beginning of her practice, 

we can observe that Juliet confuses the non-derivability (local) at a point of domain of 

the absolute value function with her misconception of non-derivability of the function 

(global). Later, Juliet writes the symbolic definition, by parts, of the absolute value 
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function. We could say that, in a certain way, such definition is correct, however, she 

does not make crucial considerations, for example, that the point of domain of the 

function x = 0 belongs to both f (x) = x and f (x) = –x. This fact leads her to a cognitive 

conflict that is shown in her sentence “If it is considered as a function of the type... the 

function would be differentiable in the whole domain, in other words, (-∞,∞)”. This 

cognitive conflict generated from her visual interpretation of the graph of the function 

(the function is not derivable since it has a peak in x = 0) in contraposition to her 

interpretation of the symbolic definition, by parts, of the function (she considers that f 

(x) = x exclusively for x≥0), is what leads her to give incorrect answers to the other 

subtasks.  

CONCLUSION 

The results of the comparison of analysis show that between these two theoretical 

perspectives there are complementarities that would allow performing more precise 

and ‘finer’ cognitive analysis, from the subjects’ production. In this way, it is plausible 

to provide better explanations about the aspects that make it possible or impossible to 

comprehend mathematical notions. While the analysis from the OSA perspective 

focused on the subjects’ mathematical practices, and mathematical objects, processes 

and their meanings, that emerge from such practices, the TRSR focused its analysis 

primarily on the registers of representation that the subject mobilises in his/her 

productions. In this way, the methodology proposed by TRSR can be considered as 

more ‘global’, in the sense that the subjects’ cognitive activity is analysed without 

performing valuations from a mathematical point of view, as it is done with the tools 

of OSA. So, the OSA provides a level of analysis of the subject’s cognitive activity 

that shows mathematical objects that are involved in the processes of treatment and 

conversion/passages between registers of semiotic representation. This level of 

analysis complements the analysis carried out using the tools of TRSR, because with 

the tools ‘configuration of objects and processes’ and ‘semiotic function’, the contents 

of representations become explicit and are utilised as part of such cognitive activity. It 

is clear that the registers of representation are implicitly involved in semiotic functions; 

however, these emphasise the mathematical content of the representation. However, it 

should be noted that within the OSA there is not systematisation for the analysis of 

linguistic elements. As a part of the methodology proposed by OSA, language signs –

linguistic elements– can be identified, but these different languages could make 

reference both to register of semiotic representation and semiotic systems. TRSR 

makes a clear distinction between register of semiotic representation and semiotic 

system. Thus, the notion of register of semiotic representation of TRSR, complements 

and enriches the notion of linguistic elements of OSA, by making a very clear 

distinction between register and semiotic system, and systematising the analysis of 

such registers.  

Finally, these complementarities between the TRSR and OSA show us guidelines for 

creating a methodology to perform cognitive analysis most ‘comprehensive’ and 

‘profound’, which is the next step in our research. We are convinced that the 
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relationship between notions of mathematical objects (as considered in OSA) and 

semiotic representation (as considered in TRSR), are essential for the analysis and 

characterisation of mathematical knowledge.  
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THE CHALLENGE OF ALTERNATIVE WORLDS  
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In this report we explore language practices when learning and teaching mathematics 

in a classroom with bilingual learners and a bilingual teacher. We focus on data from 

the analysis of the whole class discussions in seven lessons. Up to eight episodes 

distributed in five of the lessons reveal the fragility of switching languages as a 

reiterated finding, particularly experienced by those learners whose dominant home 

language is not the language of instruction. Each time a student “dares” to switch 

languages there are more or less subtle reactions which affect the course and contents 

of the discussion. We conclude that individual positions and language practices are 

resources for research in that their study informs of interpretative and action frames 

that can be mobilised to explain shifts in the direction of mathematical interactions. 

INTRODUCTION AND RATIONALE 

For many years now, we have been examining (non-) participation trajectories of 

students in mathematics classrooms in our two geographically and linguistically 

different research contexts. In Civil and Planas (2004), we reported cases of students 

with diverse recognised statuses and “disadvantages” on the basis of socioeconomic 

issues, all of them with home languages different from the language of instruction and 

histories of recent immigration in their families. We have come to know that none of 

our respective school systems are properly supporting mathematics learners whose 

home languages are not dominant in the class. Our situated use of the terms (non-) 

participation draws on the idea of participation as a shifting collective activity of 

individuals oriented by identity work (Cobb & Hodge, 2011). Prior results from 

numerous lessons and interviews raise the value of this approach to participation as an 

activity that keeps shifting (Civil & Planas, 2012; Planas & Civil, 2013). 

In this report we address individual positions and language practices as two of the 

interconnected reasons why students whose home language is not official in their 

school system may resist mathematical participation and challenge monolingual 

practices. The notions of positions (Wagner & Herbel-Eisenmann, 2009) and practices 

(Setati, 1998) put the emphasis on different aspects of mathematics teaching and 

learning (i.e., positions are more oriented to identity work, while practices are more 

oriented to action). Nevertheless, these two notions are resources for research in that 

their study leads to interpretative frames that can be mobilized to explain situations of 

mathematical (non-)participation in the classroom as well as shifts in the direction of 

mathematical interactions. To illustrate how we work with the notions of individual 

positions and language practices in the analysis of the bilingual mathematics 

classroom, we take an episode where a bilingual student code-switches in the middle 
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of a mathematical explanation to the whole group and the bilingual teacher translates 

the switched term into the language of instruction. 

FIGURED AND PARALLEL WORLDS 

We claim that a double focus on positions by the learners and the teacher and language 

practices is necessary for understanding the way mathematics participation is 

performed and may shift in particular classroom interactions. Along with the study of 

how positions and practices are actually experienced by some participants, we also 

claim the relevance of examining how they are alternatively experienced, intended or 

imagined by some others. This view is informed by the constructs of “figured worlds” 

(Holland, Lachicotte, Skinner, & Cain, 1998) and “parallel worlds” (Jorgensen, Gates, 

& Roper, 2013). They are complementary constructs that overlap in many senses but 

come from the elaboration on different types of data.     

The anthropological construct of “figured worlds” was introduced by Holland et al. 

(1998), on the basis of individual narrative accounts, to refer to sites where (future) 

identities are produced in ways that are not completely determined by the social and 

cultural dominant conditions. People modify and develop identities in figured worlds 

under the strong influence of their individual positions and the movements in the 

relationships with other people who are participants in those same worlds. It may 

happen that some of the practices coming up point to alternative forms of relationships 

and practices with little significance in other simultaneous intersecting worlds.   

Similarly to Holland et al. (1998) but contextualised into mathematics education and 

on the basis of lesson accounts, Jorgensen et al. (2013) take a sociological perspective 

to frame conditions for participation and success in mathematics classrooms with 

working-class and culturally diverse students. These authors examine structural 

circumstances with an influence on the social practices taking place within the micro 

context of the classroom, some of them working to marginalize certain students while 

preserving the participation of others. What interests us from that work is the idea of 

the students and the teacher creating “parallel worlds which are structured quite 

differently inside and outside the classroom” (p. 221). Thus it makes sense to imagine 

forms of resistance in the mathematics classroom that challenge the status quo in ways 

that would not be possible or predictable in other contexts. This is a perspective that 

leaves room for identity work among participants toward the continuous creation and 

implementation of new forms of mathematical participation.  

For students who are marginalized due to issues of status and home languages, 

participation in the mathematics classroom needs additional effort in comparison to 

other students whose home language is the language of instruction and whose social 

group represents or is closer to hegemonic knowledge. The metaphor of parallel 

worlds, which geometrically suggests worlds that never get in touch, is indeed an 

exaggeration as all contexts of social participation are connected. This metaphor, 

however, is useful in that it focuses on the development of different positions and 

practices in different scenarios. Also, it enables us to view classrooms as unique 
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organizational alternatives where participants reconstruct (future) conditions from 

other worlds by means of particular positions and new improvised practices.    

Various authors have examined innovative language practices in the multilingual 

mathematics classroom from the perspective of their contribution to the increase of 

mathematical participation. Code-switching, for example, has been documented as a 

tool for the benefit of Latina/o bilingual students in their learning of mathematics 

(Moschkovich, 2007). More generally, in the work with Latina/o bilingual students in 

the US, Gutiérrez (2002) enumerates a number of successful pedagogical practices like 

group work and relates them to the use of the students’ home language. Gutiérrez states 

that practices of switching languages help to develop alternative worlds in the 

classroom by encouraging the mathematical participation of students from socially 

underrepresented group whose home language is not the language of instruction. This 

author, however, anticipates the issue of tensions and contradictions between counter-

hegemonic bilingual practices and mainstream monolingual discourses.  

Tensions coming from the dominance of monolingual practices and the needs for the 

learning of mathematics, for which the use of and the competence in the home language 

and the language of instruction are instrumental, point to the many challenges of 

teaching and learning mathematics in the bilingual classroom.  

METHODS FOR INTERPRETING DATA 

For the last fifteen years, we have conducted small-scale qualitative work in 

multilingual classrooms with lesson observations as well as individual and group 

interviews. We have focused on the obstacles and affordances to the participation in 

whole class discussion for learners whose home language is different from the 

language of instruction. Our analytical approach concentrates on the significance and 

impact of particular mathematical interactions from the perspective of how the 

participants involved seem to be interpreting these interactions, either individually or 

collectively, and with a critical eye on the role and use of the students’ languages.  

We argue that it is critical that we look at whole class interactions guided by the 

bilingual teacher, where the course of student mathematical participation tends to be 

dominated by those whose home language is the language of instruction. For this 

purpose, we have been examining moments of whole class interaction by means of 

episodes. To conform what we call an episode, we group consecutive turns of a lesson 

in which more than one language is used or referred to with respect to the resolution of 

a mathematical task. This procedure leads to episodes of various sizes, sometimes with 

several turns in between those for which we have detected explicit uses of more than 

one language. Moreover, we have often conducted interviews with teachers and 

students afterwards, to hear their interpretations and explanations of concrete events in 

a lesson (what happened in that part of the lesson, who did what, how and why); this 

method has allowed us to match diverse interpretations for one episode (as multiple 

positions, relationships and practices can be outlined) and from there to elaborate 

explanations that are consistent with what is prioritised in the analysis.       
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In an episode of a given lesson, for the identification of individual positions with 

respect to a language practice, we search for turns that introduce the use of or reference 

to that practice and the related positions by the teacher and by at least a learner whose 

home language is not the language of instruction. The episode becomes somehow the 

context of mathematical activity in which positions toward public language practices 

are manifested. In order to consider the emergence of parallel/figured worlds, we 

explore distinct and apparently opposite meanings between what is done through the 

actual practices in the episode and what is intended by means of other suggested or 

explicitly recommended practices. We refer to a pair of opposite language practices 

(with some distinct opposite meanings) when one of them promotes the use and value 

of the students’ languages while the other promotes the exclusive use and value of the 

language of instruction. Consequently, we concentrate our study on classroom 

practices involving references to or uses of the students’ languages during instances of 

whole class mathematical interaction. Although the episode is the primary source for 

the analysis, interviews are important in that they help to confirm some interpretations 

and may reveal insights which the videos and transcripts of the lesson could not show.  

In what follows we focus on one mathematics classroom that the first author observed 

for seven lessons in Barcelona, Catalonia-Spain. The students were in their first year 

of secondary school (12 years old). This author also conducted audio-taped interviews 

with the teacher and some of the learners. All students and the teacher were bilingual 

because they could speak Spanish and Catalan, though they were not equally fluent in 

their two languages, particularly those from Latin American families whose parents 

did not speak Catalan. The teacher, with ten years of teaching experience, was 

dominant speaker of Catalan, the language of instruction in that part of the country.   

POSITIONS AND PRACTICES AROUND CODE-SWITCHING 

In the selected example, a tension comes from the experience of opposite practices 

around code-switching during the resolution of a task. The task in the lesson asks for 

rectangles with equal perimeter and area, without any mentioning of magnitudes or 

units of measure. The students had been working in small groups for about thirty 

minutes before the whole class discussion started. In two of the groups, respectively 

with two and three students of Latin American origin out of four, the conversation took 

place with frequent instances of code-switching between Spanish and Catalan, but all 

groups used only Catalan to produce their written reports of the task. At the beginning 

of whole class discussion, a student took the initiative to explain that, “squares whose 

sides measure four solve the problem because four times four is four squared”. 

Amanda, a girl from Argentina with Spanish as her home language, reacted to it by 

sharing what had been mathematically discussed in her group when the same case had 

been considered. This is the starting point of the episode below.  

00  Amanda: No pot ser perquè el perímetre és el contorno. No n’hi ha. [It’s not possible 
because the perimeter is the boundary. There aren’t.] 

01  Teacher: Vols dir que és el contorn? [Do you mean it’s the boundary?] Contorn, sí? 
[Boundary, eh?] I doncs? Per què? [So what? Why?]  
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02  Amanda: Això… contorn. [This… boundary.]  

03  Teacher: D’acord. Què havies dit? [Okay. What did you say?] 

04  Amanda: (Silence) 

05  Students:  El perímetre del rectangle... [The perimeter of the rectangle.]  

06  Teacher:  [Looking at Amanda] Volies dir una cosa important! Endavant! [You 
wanted to say something important! Go ahead!] 

07  Amanda:  Volia dir contorn. [I meant boundary.]  

08  Teacher: Sí, però dius que no hi ha solucions? [Yes, but you say that there are not 
solutions?] 

09  Amanda: Perquè l’àrea és una altra dimensió i no poden ser iguals. [Because the 
area is another dimension and they cannot be the same.] 

10  Teacher:  Què vols dir amb una altra dimensió? [What do you mean by another 
dimension?] 

11  Amanda: Les àrees volen dir dues dimensions i els perímetres volen dir una 
dimensió. No es poden igualar els nombres sense tenir en compte això. 
[Areas stand for two dimensions and perimeters stand for one dimension. 
You cannot equal the numbers without taking this into account]  

Amanda code-switches to Spanish in the first turn of the episode, and the teacher 

quickly translates the Spanish term for boundary, contorno, into Catalan, contorn, in 

the second turn. Italics, in this case, are used for the switched term, in its two linguistic 

forms. This situation does not necessarily point to resistance toward the language of 

instruction or to any other intentional strategy of contestation on the side of the student. 

It can be inferred that she is behaving as a bilingual person who uses her two languages, 

with different levels of intensity, as resources for communication and participation 

with other bilinguals. In this episode, Amanda’s use of Spanish follows from her group 

work in which she has been alternating Catalan and Spanish to elaborate on the idea of 

the task not being solvable due to differences in the measured magnitudes. From the 

video of the lesson and field notes, it is clear how she positions herself as bilingual in 

the small group with two other peers from Colombia who are Spanish dominant and 

one Catalan dominant speaker. Her position toward the use of her two languages seems 

less strong in whole class discussion with the presence of all students and the teacher, 

but it is still there with the introduction of the term contorno. 

The teacher reacts to Amanda’s practice of code-switching with a practice of literal 

translation. Literal translation can be interpreted as either removing an error or 

revoicing a term, with different implications for the development of participation. We 

regard code-switching and literal translation as opposite practices in that they consider 

differently the value and the use of the students’ languages in the course of the 

mathematical discussion. Although neither the student nor the teacher may be 

intending to impose, respectively, bilingual and monolingual practices, and they may 

not be consciously competing for specific language use, a tension in the direction of 

the discussion comes across when its emphasis on the mathematics is interrupted by an 

emphasis on the language. This shift in the direction of the discussion suggests tensions 

between the actual world of a classroom in a school system with a preferred language 
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(i.e., what needs to be done with the language of instruction), and a figured alternative 

world with other languages in use (i.e., what can be done with the students’ languages 

and why it is (not) done).  

From our data in this classroom we could have chosen a different example of an 

episode with a similar tension resulting in an interruption in the mathematical 

participation by the learner who code switches. We have decided, instead, to select an 

example where the fragility of the alternative figured world is expressed in a more 

subtle way because, in the end and despite a brief silence, the student in question can 

finish her explanation. In the example, the teacher goes back to Amanda, reestablishes 

her participation and, by doing it, he contributes to letting her create a relevant learning 

opportunity around the inaccurate comparison of two numbers representing measures 

of different magnitudes. The situated effect of literal translation may not be 

mathematically severe for Amanda in the short term of this episode, but it can become 

severe for other students (or even for Amanda if it is a recurring practice) who may 

choose not to participate if they do not know or remember a word in the language of 

instruction. In the construction of figured present and future actions, the teacher’s 

reaction to code-switching informs about what language use is preferred in this class. 

Up to eight episodes distributed in five of the seven lessons reveal the fragility of 

switching languages as a finding of the analysis of whole class interaction in that 

classroom. A similar pattern takes place when a learner switches to Spanish for a word 

or sentence, and the teacher translates it to the language of instruction (six episodes 

including the example with Amanda) or asks other students if they know how to say it 

in Catalan (two episodes). Eight episodes are not representative of a frequent 

phenomenon but we cannot say that such fragility is rare. After the sixth lesson, in an 

interview the teacher was asked to talk about learners switching languages in his class. 

The episode with Amanda, which had happened that morning, served to initiate the 

conversation on this topic:  

Author 1:  (...) Què ha passat amb la paraula per contorn? [What happened with the 
word for boundary?] 

Teacher: No res. Potser l’havia d’aprendre. [It’s nothing. Maybe she had to learn 
it.] 

Author 1: El que deia, s’entenia. [What she was saying, it was understandable.] 

Teacher:     Sí, esclar, s’entenia bé. [Yes, of course, it was well understandable.]    

Author 1: Llavors? [So?] 

Teacher: Expressar-se correctament és important. [To express oneself correctly is 
important.]           

The teacher points to a normative lens when interpreting code-switching in the course 

of mathematical explanations: students have to learn to express themselves correctly 

and the teacher has a role in that. We do not question that the teacher used literal 

translation to help Amanda, and indeed we assume that his idea of students’ expressing 

themselves correctly is based on a mathematically strong notion of correctness and far 

more complex than only considering language choice. What we miss, however, is a 
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clear understanding of what he means by “correctly” in a bilingual context of 

mathematics teaching and learning, whether he would see it differently with 

monolingual students, and how tightly in his teaching activity he might be relating the 

use of the language of instruction to the recognition of mathematical correctness.   

FINAL REMARKS AND FUTURE RESEARCH 

Truxaw and Rojas (2014) stress that mathematical participation of learners who are not 

dominant in the language of instruction requires a position where one “dares to do it” 

(p. 26), that is, where one exercises sufficient power to make decisions about when and 

how to participate in the classroom discussion even if this implies that others are 

confronted with the use of a non official language. For the creation of worlds in the 

bilingual classroom that benefit all mathematics learners independently of their 

dominant language, positions like that of Amanda “daring” to publicly use her two 

languages are crucial, but also collective practices that reinforce such positions are 

necessary. In the example, Amanda draws on the language capital that serves her in 

other worlds of experience, but the creation of a bilingual world in the classroom is 

resisted in the ways that code-switching is contested. This is not a mere result of the 

language practices by the bilingual teacher and his modelling of monolingualism 

within the local context of the classroom, but something that requires the examination 

of the diversity of intersecting worlds (see Barwell, 2012, for a discussion on forces in 

competition from diverse worlds entering the multilingual mathematics classroom).    

In this report we have explored the experience of a bilingual mathematics learner and 

a bilingual mathematics teacher in a classroom with an official language of teaching 

and learning. On the one hand, the strength of individual positions has offered an 

explanation for the introduction of bilingual practices and for the fragility of the 

suggested alternative worlds; on the other, the phenomenon of fragility around 

switching languages has been discussed from the perspective of access to recognized 

mathematical correctness. These are important findings for further exploration in the 

area of mathematics education research and language diversity with a focus on 

bilingual classrooms, bilingual teachers and bilingual learners. While the complexities 

and challenges faced by multilingual students in their mathematics learning have been 

increasingly studied in several countries, not many studies around bilingual students 

who are taught mathematics by bilingual teachers have emerged yet. This is a gap that 

needs to be addressed by researchers in this area of study.            
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SOLVING PROBLEMS AND MATHEMATICAL ACTIVITY 

THROUGH GIBSON’S CONCEPT OF AFFORDANCES 

Jérôme Proulx 

Université du Québec à Montréal, Canada 

 

In this paper I explore James Gibson’s notion of affordance, a concept that is being 

increasingly studied in mathematics education research. In my explorations I intend to 

delve into epistemological aspects related to this concept and how these enable fruitful 

conceptualisations of mathematical problem-solving. In order to emphasise this 

epistemological exploration of affordances, I ground my study in the enactivist theory 

of cognition and supplement it with data extracts to illustrate what thinking in terms of 

affordances (at the epistemological level) can offer. 

Recently, a number of mathematics education researchers have developed an interest 

in James Gibson’s (e.g. 1986) concept of affordance as a way of discussing learning 

environments and how students interact with these, particularly in PME/PME-NA 

conferences (see e.g. Gresalfi, 2013; Brown, 2014). Most researchers make use of 

affordances by relating them to tasks solved or to the technological environments into 

which students are plunged (see e.g. WG-15 at CERME-8). However, something seems 

missing. The epistemological grounding of the notion of affordance, that is, regarding 

the generation of knowledge and the nature of the mathematical activity, has not been 

explored in depth in mathematics education research. And as it has often been argued 

in our community, delving into the epistemological roots of a concept or a theory can 

offer significant insights and distinctions for better understanding mathematical 

teaching-learning processes and enrich our research endeavours. In sum, we could gain 

from exploring Gibson’s notion of affordance at an epistemological level, for example 

in order to strengthen our understanding of students’ mathematical activity when 

solving problems (and our analysis of it). 

This paper is partly theoretical, offering a perspective for conceptualizing students’ 

mathematical solving processes, and partly practical, using data from my own studies 

to illustrate and make sense of the points highlighted. Hence, in this paper, I develop 

and push deeper the concept of affordance at an epistemological level, in order to 

enrich understandings of students’ mathematical activity. I say “push deeper” because 

I do not use Gibson’s concept of affordance as a rigid thing, a fixed once-and-for-all 

concept that is immutable and cannot grow. Rather, I use it as a springboard for 

exploring where it can lead, for delving into epistemological possibilities and 

dimensions for understanding students’ mathematical activity when solving problems. 

To do so, I first discuss Gibson’s concept of affordance and outline its meaning and 

possible outcomes for understanding students’ solving processes. I then relate it to 

aspects of the enactivist theory of cognition (inspired e.g. by Maturana & Varela, 1992; 

Varela, Thompson & Rosch, 1991; see Research Forum05 at PME-33) to ground 
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theoretically the understandings put forth. Then I illustrate what an analysis in these 

terms, that is, of affordances taken at an epistemological level and related to enactivist 

thought, might mean by looking at data taken from a mental mathematics study on 

operations on functions (building on last year’s PME-38 paper in Proulx, 2014). I then 

draw conclusions on its potential for understanding students’ solving processes. 

GIBSON’S CONCEPT OF AFFORDANCES 

In his work, Gibson positioned himself strongly against dualism, that is, the separation 

of the environment and the organism, and argued for their inseparability. For this, he 

developed the discipline of ecological psychology, recognizing the co-evolution of 

animals and their environment, thus emphasising animal-environment reciprocity. This 

mutual reciprocity, complementarity, and inseparability of animal and environment 

became important in his work to the point where he argued for the presence of one in 

the other: “[…] to perceive the world is to coperceive oneself” (1986, p. 141); 

“Information about the self accompanies information about the environment, and the 

two are inseparable” (1986, p. 126). It is thus in this context that Gibson developed, 

and coined, the concept of affordances: 

The affordances of the environment are what it offers the animal, what it provides or 

furnishes […] I mean by it something that refers to both the environment and the animal 

in a way that no existing term does. It implies the complementarity of the animal and 

the environment […]. If a terrestrial surface is nearly horizontal (instead of slanted), 

nearly flat (instead of convex or concave), and sufficiently extended (relative to the 

size of the animal) and if its substance is rigid (relative to the weight of the animal), 

then the surface affords support […]. Note that the four properties listed – horizontal, 

flat, extended, and rigid – would be physical properties of a surface if they were 

measured with the scales and standard units used in physics. As an affordance of 

support for a species of animal, however, they have to be measured relative to the 

animal. They are unique for that animal. They are not just abstract physical properties. 

(1986, p. 127, emphasis added) 

Thus, an affordance could be said to be about interaction. It is in the interaction that 

the properties of objects arise and become the properties of objects, when the observer 

interacts with it. It is in interaction with it that a wall is rigid for humans, that air affords 

flying for birds, that a task affords algebra for a student or a teacher. Let me build on 

these examples. A sheet of paper or a tree leaf is rigid for an ant and affords solidity 

for walking on it. For a human like myself, it is malleable and can even be crushed if I 

walk on it. So is a tree leaf rigid in itself? Yes, in interaction with the ant. Is it 

malleable? Yes, in interaction with humans. Thus, rigidity and malleability are not 

properties of the object in an absolute manner, but only in relation, in interaction, with 

the ant or a human or any other species. The qualities of objects, their properties, 

emerge in the interaction with them (whether by physically interacting with them or by 

simply making sense of them, as I discuss below). 
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The concept of affordances that Gibson developed challenges traditional realist 

ontologies. For Gibson, properties and “truth” do not lie in the objects themselves, as 

realists would assert (see e.g. Vacher, 1998): the key to nature is not in nature. However 

it is, because these properties become properties through the interaction of an organism 

with the environment. Thus it does not offer a solipsistic view, for which constructivists 

have often been criticized, and neither does it offer a representationalist view, for which 

realists have also been criticized. 

But, actually, an affordance is neither an objective property nor a subjective property; 

or it is both if you like. An affordance cuts across the dichotomy of subjective-objective 

and helps us to understand its inadequacy. It is equally a fact of the environment and 

a fact of behaviour. It is both physical and psychical, yet neither. An affordance points 

both ways, to the environment and to the observer. (Gibson, 1986, p. 129, my 

emphasis) 

This perspective offers a particular way of conceptualising what a problem is in 

mathematics. For example, in “solve 6/x = 3/5”, Gibson’s affordance theory suggests 

that there is no “algebra”, “proportionality”, or anything else inherent in the task 

because these properties arise in the interaction between the solver and the task. This 

is not to say that these properties are not “there” and appear suddenly “out of the blue”, 

created from scratch. It is mainly that they arise in the interaction between the solver 

and task: these properties emerge from this interaction.  

To better ground theoretically this epistemological view of affordances, based on 

interaction, I refer to aspects of the enactivist theory of cognition, which is especially 

concerned in mathematics education with issues of emergence and contingency of 

learners’ mathematical activity in interaction with their environment. In particular, I 

focus on the distinction made between problem-posing and problem-solving to offer 

ways to deepen this conceptualisation of affordances at the epistemological level.  

BRIDGING ASPECTS OF THE ENACTIVIST THEORY OF COGNITION 

For Varela (1996), problem-solving implies that problems are already in the world, 

independent of us, waiting to be solved. Varela explains, on the contrary, that we pose 

them, specifying the problems we encounter through the meanings we make of the 

world in which we live. We do not choose problems that are out there in the world 

independent of our actions. Rather, we bring problems forth: “The most important 

ability of all living cognition is precisely, to a large extent, to pose the relevant 

questions that emerge at each moment of our life. They are not predefined but enacted, 

we bring them forth against a background.” (p. 91). The problems that we encounter, 

the questions that we ask, are as much a part of us as they are a part of our environment: 

they emerge from our interaction with it. 

In this perspective one cannot assume, as René de Cotret (1999) explains, that 

properties are present in the tasks and that these causally determine solvers’ reactions. 

Even if each prompt is designed following specific intentions, which can play a role in 

how solvers pose problems (e.g. one often does not react to a square-root function as 
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one does to a linear function), properties of the task, its affordances, emerge in the 

interaction of the solver with the task; they are affordances of this task for this solver. 

In that sense, following Simmt (2000), it is not tasks that are given to students, but 

mainly prompts that are taken up by students who themselves create tasks with. 

Prompts become tasks when students engage with them, when, as Varela would say, 

they pose them as problems. Students make the “wording” or the “prompt” a 

multiplication task, a ratio task, a function task, an algebra task, and so forth. It is in 

this sense that each prompt can be seen to have affordances that emerge in the 

interaction between solver and tasks. 

For Maturana and Varela (1992), these affordances play the role of triggers in relation 

to the solver’s posing. Hence reactions to a prompt do not reside in either the solver or 

the prompt: they emerge from the solver’s interaction with the prompt, through posing 

it as a task. Strategies are triggered by the prompt’s affordances (for that solver), where 

issues explored in a prompt are those that resonate with the solver. This being said, the 

notion of emergence does not assert that strategies are new in the sense that they have 

never been encountered, but mostly that these strategies are generated for solving the 

task posed, created for or gave birth to, as Hannah Arendt would say, at the meeting of 

solver and prompt. Thus, the task posed is as much representative of the solver as it is 

of the prompt itself. The notion of affordances offers a way to make sense of solving 

processes, stressing the fundamental issue of interaction to analyse the emergence of 

students’ mathematical activity. 

ANALYSING STRATEGIES THROUGH AFFORDANCES 

Here, I re-visit the data presented in last year’s paper-38 (Proulx, 2014), but now 

through the angle of affordances and exploring what this can offer for data analysis 

through an epistemological lens and what meanings can be developed from it. The 

study focused on the nature of the mathematical activity that students brought forth 

when working on mental mathematics tasks, here on operations on functions in a 

graphical environment. This study took place in two Grade 11 classrooms where 

students had to operate mentally on functions in a graphical environment, that is, 

solving without paper-and-pencil or any other computational/material aids. E.g. a 

typical prompt consisted of showing two functions (without their algebraic expression) 

in the same graph and asking students to add or subtract them (see Fig.1). 

 

Figure 1: Example of a graphical prompt on operations on functions [f(x) ± g(x)] 

I offer here examples of three strategies put forth by students to solve the task and focus 

on using the concept of affordances in order to give meaning to these strategies (for a 

more complete analysis of the data, see last year’s paper in Proulx, 2014.) 
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Strategy 1. Algebraic/Parametric 

Explanation of the strategy. Many students engaged in algebra to solve the prompts, 

even if these were proposed in a graphical context with no algebraic expressions. 

Students brought forth parameters from the algebraic expression (the ‘a’ and ‘b’ of the 

linear function f(x)=ax + b) to make sense of the graphs and add them. E.g. in the 

addition prompt (see Fig.2), many students explained that “both functions looked 

symmetrical, so the ‘a’ parameter of each line would cancel out, as well as the ‘b’ and 

thus give x=0”. 

 

Figure 2: Addition of function graphical prompt 

In prompts where e.g. a linear function f would be added to a constant function, students 

would say that the “a” parameter of the function f does not change when added with a 

constant function that “does not have an ‘a’ parameter, so the function’s steepness stays 

the same and only the ‘b’ changes” giving a function parallel to f with a y-intercept at “b” 

instead of at 0.  

Discussion in terms of affordances. Making sense of this strategy in terms of 

affordances, one can say that these students were able to draw out an algebraic context 

from the prompt, to pose the prompt as an algebraic task and develop a strategy to solve 

with/in that context. Literally, the algebra is not there in the prompt: it arises in the 

interaction of the solver with the prompt. The prompt afforded algebra for these 

students. Students made emerge the ‘a’ and ‘b’ parameters, posing the task in these 

terms and solving it in these same terms. But the task is not algebraic per se, even if an 

a priori analysis could state that this might be a possibility for solving it. Re-using 

Gibson’s above quotation, one can say that “as an affordance of [algebra] for [these 

students], they have to be measured relative to the [students]. They are unique for [these 

students]. They are not just abstract [attributes of the prompt].” 

Strategy 2. Graphical/Geometric 

Explanation of the strategy. When facing a function that was not linear (e.g. quadratic, 

square root, rational, hyperbolic), students generated particular ways of working with 

slope and parallelism. They assigned a constantly changing rate of change/slope to 

some nonlinear functions with which they were dealing (students used the expressions 

slope and rate of change interchangeably, hence the “/”). E.g. with the addition of a 

quadratic and a constant function (see Fig.1), students explained that the rate of change 

of the quadratic function was not affected by the addition of a constant function, 

because a constant function “did not have a variation” and thus the slope of the 

quadratic function: “will continue to vary in a constant way”. Thus the resulting 

function of their addition would have the “same rate of change as the quadratic 



Proulx 

4-54 PME39 — 2015 

function” but would be “translated down” in the graph since the constant function was 

“negative”. For another prompt, one student said that for the square-root function “its 

rate of change is left untouched when i add the constant function, since it has no 

variation”. Also, in cases where students faced more than one nonlinear function, some 

students began analysing functions in terms of “parallelism”. E.g. in Figure 3 where 

the function g is to be found, some students expressed that “each function was parallel 

to the other” and that g had to be a constant function “for the curve to be translated 

down” and that it was “negative for bringing the curve lower”. 

 

Figure 3: A prompt for which the parallelism strategy was used 

Discussion in terms of affordances. Students brought forth a geometrical view of slope 

as a property not of the function, but of the curve present on the graph, talking about a 

geometric rate of change/slope (reminiscent of Zaslavsky, Hagit & Leron, 2002). By 

posing the prompt in geometrical terms, they generated geometric affordances and 

developed graphical/geometric strategies for solving it. One can then say that these 

prompts afforded geometry for these students. Through their geometrical slope, 

students brought forth the nonlinearity of nonlinear functions and developed ways of 

engaging with it. This geometrical path arose in the interaction of solver and the 

prompt, not as a property of the prompt, but as something that arose when interacting 

with it. Thus the same can be said as for the algebraic/parametric strategy, that is, that 

the geometry has to be measured, its presence has to be assessed relative to these 

students, because it is unique for these students. In fact, these geometric posings of the 

task are indeed unique, as they can even be mathematically questioned (e.g. the notion 

of parallelism of curves is a matter that is not settled in mathematics). By posing the 

task in geometrical terms, students made emerge affordances of the prompt for them 

and solved in relation to these affordances.  

Strategy 3. Graphical/Numerical  

Explanation of the strategy. For solving, some students referred to points in the graphs 

of functions (related to Even’s, 1998, pointwise approach). Through those points, they 

generated exact and approximate answers (Kahane, 2003), which they combined to 

find the resulting function. E.g. in Figure 4 students had to find the function that 

resulted from the addition of f and g. In this case, they would bring forth specific points: 

(1) where f crosses the x-axis (x-intercept), giving an exact calculation, as the addition 

of the image for f (which is of length 0) with that for g results in an image for f+g that 

is the same as that for g (it has the same image for g to which 0 was added); (2) where 

both f and g intersect, giving an approximate calculation, as both images at f and g are 

the same, so the resulting image is double the value of the intersection point; but a 
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precise location is impossible without knowing the exact location of the intersecting 

point in terms of precise length; (3) where f and g cross the y-axis (y-intercept), giving 

the same as in case (2); (4) where g cross the x-axis (x-intercept), giving the same as in 

case (1). In doing this, students mingled both exact and approximate answers to find 

points for the resulting function. 

 

Figure 4: An addition of function prompt for which points were outlined 

Discussion in terms of affordances. Students generated precise and approximate points 

to determine the resulting function. They were no longer in an algebraic context, but 

in a blend of numerical and graphical contexts, generating numbers/coordinates that 

had meaning for them in the graph. Using Gibson’s affordances, these coordinates 

arose in the interaction of students and prompt, where this prompt afforded a 

numerical/pointwise interpretation for these students. Their numerical/pointwise 

posing made the prompt about points, illustrating how the prompt afforded points for 

these students, as they developed a strategy for solving it. 

DISCUSSION OF FINDINGS AND FINAL REMARKS 

These various entries into the same sort of prompts show how students posed their 

problems, making emerge affordances of the problems when interacting with them, 

that is, algebraic, parametric, geometric, point-wise, and so forth. Thus an algebraic 

posing of the functions produced an algebraic strategy; a graphical posing produced a 

graphical strategy; a numerical/pointwise posing produced a numerical/pointwise 

strategy. These affordances are to be seen relative to students and the prompts, as 

affordances for these students interacting with these prompts: they are not properties 

of the prompt in themselves, but are brought forth in the interaction with it when posing 

it as such. In this sense, the affordances (hence the task posed) are not independent of 

who the poser/solver is. Gibson’s affordances underline that tasks do not possess 

attributes in themselves, but mainly in relation to a solver who interacts with it. 

Through the generation of affordances, students illustrate how they posed the task (it 

became a task about these affordances) and how they solved it (concerning these 

specific affordances). It can thus be seen as a double-emergent phenomenon, from the 

posing to the solving. By posing the task, students generate a context in which to solve 

it: here an algebra context, a graphical context, a point-by-point context. The task for 

them then becomes about this. 

This being said, the concept of affordances can lead us much farther in this 

epistemological quest, because I have accounted for only one side of the story: that of 
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the prompts. Because affordances and solver go hand in hand, affordances are said to 

be relative to the solver. But also, the solver can be said to be relative to the affordances 

themselves. If there are no affordances outside of the interaction with the solver, there 

can be no solver outside of the interaction with the affordances. This raises questions. 

Could this mean that the solver affords the task in return? That students emerge as 

solvers when they pose the task and make affordances; that is, that affordances make 

students emerge as solvers? Considering this would request stepping out of the 

subjectivity/objectivity duality, as Gibson emphasized. It is entering a terrain where 

subject and object co-define and mutually specify each other; an epistemological 

terrain where enactivism has offered promises for understanding students’ 

mathematical meaning making (again see Research Forum05 at PME-33); it is a terrain 

worth exploring for mathematics education research. 
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SOLVING PERFORMANCE: PERSPECTIVES FROM GRADE 6 

STUDENTS 
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This study investigated the ways in which 807 Grade 6 students’ encoded and 

processed mathematics information. Specifically, the study examined the relationship 

between the students’ cognitive style, spatial visualisation and mathematics 

performance. Results revealed that students who employed spatial imagery 

information processing, in contrast to object imagery or verbal processing, tended to 

have higher spatial visualisation ability and higher mathematics problem-solving 

performance. In subsequent analysis, the instrument used to measure the cognitive 

style constructs was tested for content validity.    

BACKGROUND AND CONTEXT 

An individual’s proficiency in solving mathematical tasks depends on a myriad of 

factors associated with cognitive ability and task design. Additionally, psychologists 

suggest that it is important to consider the ways in which an individual encodes and 

decodes cognitive tasks (Blazhenkova, Becker, Kozhevnikov, 2011). Problem solvers 

tend to have a preference for how they encode mathematical information, often referred 

to as cognitive style. Some individuals rely more on imagery to process cognitive tasks 

(referred to as visualizer) while others tend to use more verbal-analytical strategies 

(referred to as verbalizer).  

Although there has been strong agreement regarding cognitive style on a dichotomous 

verbalizer-visualizer continuum, researchers have proposed additional categorisations. 

For instance, Krutetskii (1976) added an intermediate dimension that he referred to as 

harmonic cognitive style to suggest that some people tend to be both visualizers and 

verbalizers. Riding (1991) focused on this continuum in terms of Wholistic-Analytic 

and Imagery-Verbal as measured by the often-cited Cognitive Style Analysis (CSA) 

instrument. Recently, Blazhenkova & Kozhevnikov (2009) added a third dimension to 

the bipolar Visual-Verbal cognitive style. They distinguished among three dimensions 

of cognitive style, namely object imagers, spatial imagers and verbalizers. Object 

imagers prefer to use concrete, detailed and pictorial images of objects to interpret 

information. Spatial imagers represent spatial relations among objects schematically 

and perform complex spatial transformations. Verbalizers prefer to use verbal-

analytical tools to solve cognitive tasks. This study is framed within this three-tier 

categorisation of cognitive style.    

Given the observed relationship between cognitive style and mathematical 

performance in previous research, there is ongoing interest to understand the ways in 
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which the former influence the latter or the interrelationship between them. For 

instance, Chrysostomou, Pitta-Pantazi, Tsingi, Cleanthous, and Christou (2013) 

observed that spatial imagery is related to number sense and algebraic reasoning. 

Similarly, Pitta-Pantazi and Christou (2010) observed that students with different 

levels of spatial imagery performed differently in problems involving spatial tasks such 

as arranging three-dimensional arrays of cubes. Anderson et al. (2008) found that both 

spatial imagery and verbal deductive cognitive style were important in geometry tasks 

unlike object imagery. In terms of word problems, Hegarty & Kozhevnikov (1999) 

pointed out that spatial imagery was positively correlated to success in finding the 

solution.   

Previous studies (Hegarty & Kozhenikov, 1999; van Garderen, 2006) have provided 

evidence for the relationship among the three variables of interest, namely mathematics 

problem solving performance, spatial visualisation and cognitive style. However, these 

studies involved relatively small samples of students (33 boys and 66 students 

respectively). Thus, these studies are quite limited in terms of the nature and size of 

their samples. The current investigation involved 807 students and provides a more 

extensive base for investigation. 

The following two research questions were posed:  

 To what extent are cognitive styles (verbal information processing, spatial-

imagery and object-imagery) related to spatial visualisation and performance 

on mathematics tasks?  

 To what extent does the self-reported C-OSIVQ instrument provide valid 

measures of cognitive style?  

The second research question emanated in the course of answering the first research 

question. As we compared the characteristics of verbalizers, object-imagers and 

spatial-imagers on the basis of the C-OSIVQ scales, we could observe the proximity 

of the content of the items in the spatial imagery dimension. This led us to question the 

extent to which the self-report C-OSIVQ instrument measure the three constructs in 

terms of content validity. 

METHOD 

Participants  

Eight hundred and seven Grade 6 (aged 11-12) students (392 boys, 415 girls) from 8 

Singapore schools (6 government and 2 government-aided) took part in the study.  

Instrument 1: Measurement of cognitive style  

The C-OSIVQ questionnaire (Blazhenkova, et al., 2011) consists of 3 sets of 15 items, 

each set corresponding to one particular type of cognitive style; namely object imagery, 

spatial imagery or verbal information processing. Participants rated each item on a 5-

point Likert scale (1 = total disagreement; 5 = total agreement). The scores in each of 

the three sets were averaged to produce an object-imagery score, a spatial-imagery 
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score and a verbal information processing score (see Discussion and Conclusion 

sections for sample items). 

Instrument 2: Measurement of spatial visualisation  

The Paper Folding Test (Ekstrom, French, & Harman, 1976), abbreviated as PFT, is 

one of the most commonly used instruments for measuring spatial visualisation ability. 

It also gives indication of students’ use of schematic representations (Hegarty & 

Kozhevnikov, 1999). In this timed test, students are required to visualise the folding 

action of a square sheet of paper. A hole is then punched in one part of the fold and 

students are to identify the resultant design when the paper is reopened.  The Paper 

Folding Test consists of 20 items. A correct item is given a score of 1 mark. The total 

score is calculated as follows: Number of items marked correctly minus one-fifth the 

number marked incorrectly. The minimum score is -4 and the maximum score is 20.  

Instrument 3: Measurement of problem solving performance in mathematics  

The mathematics performance of the students was measured through the Mathematics 

Processing Instrument (Lowrie, 2013), abbreviated as MPI. This instrument consists 

of 24 contextual items involving a combination of purely word problems and graphic-

embedded tasks. It involves items from different areas of mathematics including 

numbers, measurement, statistics, probability, pre-algebra and spatial reasoning. 

Although the MPI is not a standard test of mathematics ability, the nature of the higher 

order tasks gives a measure of Grade 6 students’ problem solving performance. A 

correct answer is given a score of 1 while an incorrect answer is marked as 0. Thus, the 

maximum score on this test is 24.  

RESULTS 

Cognitive style, spatial ability and performance in mathematics 

Descriptive statistics for the five constructs are presented in Table 1. 

Test Minimum Maximum M SD 

PFT  -1.60 20 9.98 4.17 

MPI 3 24 17.13 4.63 

C-OSIVQ-Object 1.60 5.00 3.75 0.68 

C-OSIVQ-Spatial 1.00 5.00 3.20 0.78 

C-OSIVQ-Verbal 1.33 5.00 3.20 0.68 

Table 1: Distribution characteristics of the instruments  

There were significant correlations among the object, spatial and verbal dimensions of 

cognitive styles (see Table 2). Among the three dimensions, spatial imagery has the 

highest correlation to spatial visualisation ability as measured by the Paper Folding 

Test. The verbal dimension was not correlated to spatial visualisation ability as 

expected. Similarly, only the spatial imagery dimension of cognitive style was 



Ramful & Lowrie 

4-60 PME39 — 2015 

correlated to performance in the mathematics test. There was a significant correlation 

between spatial visualisation ability and mathematics performance. 

Measure C-

OSIVQ 

Object 

C-OSIVQ  

Spatial 

C-OSIVQ 

Verbal 

PFT MPI 

C-OSIVQ-

Object 

1.00 0.41** 0.57** 0.09** 0.04 

C-OSIVQ-

Spatial 

 1.00 0.29** 0.22** 0.11** 

C-OSIVQ-

Verbal 

  1.00 -0.00 0.06 

PFT    1.00 0.36** 

MPI     1.00 

Note: ** p < 0.01 

Table 2: Correlations among variables  

Relation between the three dimensions of C-OSIVQ and MPI  

The performance of the students on the MPI was split into three categories to determine 

whether there were variations in students’ performance and the three dimensions of 

cognitive styles. The participants were classified as Low-Math (bottom 25% of the 

distribution, MPI score <14.75), High-Math (top 25% of the distribution, MPI score 

>21) and Average-Math (middle 50%, MPI score between 14.75 and 21). The 95% 

confidence interval for the three dimensions of the cognitive style is presented in Figure 

1(a). The mean of the object scores were much higher than the two other categories of 

cognitive styles across performance level of students. This observation is in accord 

with Blazhenkova, et al. (2011) who maintained that object scale ratings tended to be 

higher than the other two scales. In addition, the verbal score of the high-performing 

students was higher than the two other groups. Further, ANOVA results (F(2,739) = 

4.84, p = 0.008), suggested that there were significant differences among the three 

performance levels in the spatial imagery dimension of the C-OSIVQ between Low-

Math and High-Math; and between Average-Math and High-Math. However, such 

differences were not exhibited for the other two dimensions of cognitive style. 

Relation between Paper Folding Test, spatial imagery and object imagery scores 

Table 2 revealed significant correlations between two of the three dimensions of 

cognitive style (namely spatial imagery and object imagery) and spatial visualisation. 

We attempted to study whether the level of spatial visualisation of the participants was 

related to the cognitive style (as we did for performance earlier in Figure 1(a)). Students 

with high spatial visualisation ability had high spatial imagery scores. Further, there 

are significant differences in spatial imagery scores between students who had low 
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spatial visualisation ability compared to those who had high spatial visualisation ability 

(Figure 1(b)). 

  
(a) (b) 

Figure 1: Distribution of cognitive style according to (a) performance level in 

mathematics (b) level of spatial visualisation ability 

Relation between spatial visualisation ability and performance on the MPI 

Table 3 showed that Medium and High spatial visualizers had significant correlations 

with problem solving performance in mathematics, in contrast to Low spatial 

visualizers. Thus, mathematics performance is related to spatial visualisation ability. 

Level of Spatial  

Visualisation Ability 

Correlation coefficient Significance 

(p-value) 

Low -0.029 0.685 

Medium 0.186 0.000 

High 0.206 0.004 

Table 3: Correlation between spatial visualisation ability and performance on MPI 

A re-analysis of the factor structure and content validity of C-OSIVQ  

In order to measure the cognitive styles of the students using the C-OSIVQ instrument, 

the students were asked to rate a set of items on a Likert scale. Although the reliability 

of the instrument is reported to be high, it is critical to determine the extent to which 

these self-ratings provide adequate measure of unobservable behaviors involved in the 

encoding and processing of mathematical information. The C-OSIVQ questionnaire is 

based on three constructs assumed to characterize cognitive style, namely object 

imagery, spatial imagery and verbal image processing. For the present sample of 

Singapore elementary students, Cronbach’s ∝ for the Object scale, Spatial scale and 

Verbal scale was 0.87, 0.88, and 0.84 respectively. The first two of these values are 
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above the minimum coefficients (0.85) recommended by McKelvie’s (1994) 

guidelines for judging psychometric properties of imagery scales. The test designers 

(Blazhenkova, et al., 2011) established the three dimensions of the C-OSIVQ by 

conducting Principal Component Analysis. We performed a similar analysis to 

determine how our sample compared with that reported by the test designers. The 

Kaiser-Mayer-Olkin measure verified the sampling adequacy for the analysis, KMO = 

0.92. The initial Principal Component Analysis revealed nine components with 

eigenvalues greater than 1 but the scree plot suggested the retention of only three 

components. These 3 factors cumulatively accounted for 38.3% of the variance.  

We rotated the solution orthogonally (using Varimax) as used in the parent version of 

the C-OSIVQ questionnaire (Blazhenkova & Kozhevnikov, 2009) to be able to 

interpret the factor structure. The first component consisted of nine spatial-imagery 

items while the second component consisted of nine verbal information processing 

items. The third component consisted of six object-imagery items. We were 

particularly interested in the spatial-imagery dimension as it had larger correlations 

with performance in mathematics compared to object-imagery and verbal information 

processing. Items that loaded on the spatial-imagery factor were mostly related to 

connecting devices or computers or playing construction games and included: “I can 

connect two electronic devices”, “I am good at playing 3D action video games”, and 

“I am very good at construction games”. Thus, the content validity of the instrument 

may be an issue that needs to be addressed to improve the instrument. 

Among the 15 questions designed to assess spatial-imagery, only three questions were 

directly related to the encoding and processing of information from school 

mathematics. These three items loaded on separate factor: (1) I can easily imagine and 

rotate three-dimensional figures in my mind; (2) I am good at solving geometry 

problems with 3-D figures; (3) It is easy for me to solve geometry problems.  

DISCUSSION AND CONCLUSION  

Research Question 1: To what extent are cognitive styles (verbal information 

processing, spatial-imagery and object-imagery) related to spatial visualisation 

and performance on mathematics tasks?  

We used the C-OSIVQ self-reporting instrument to obtain measures of students’ 

cognitive styles in terms of verbal information processing, object imagery, and spatial 

imagery. There were significant correlations between the spatial imagery information 

processing and the two measures of ability, namely spatial visualisation ability (as 

measured by the PFT) and mathematics problem solving performance (the MPI).   

Given the correlation between spatial imagery and performance in the two measures of 

ability, we investigated further the ways in which different ability levels varied in this 

dimension of cognitive style. In the MPI, the high performers had higher mean spatial 

imagery scores than the average and low performers, a result that tallies with previous 

research findings (van Garderen, 2006). This may suggest that higher mathematical 

performance is associated with schematic processing of information as is characteristic 
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of spatial imagery. Conversely, the mathematics ability level of students may give an 

indication of their preferred cognitive style. Similarly, when we split students by level 

of spatial visualisation ability, those with high spatial visualisation ability had high 

mean spatial imagery score. The foregoing observations allow us to conclude that high 

performers in mathematics have higher spatial visualisation ability and have preference 

for spatial imagery. These observations align with previous research (Hegarty & 

Kozhevnikov, 1999), which underlined the relation between spatial imagery and 

success in mathematics problem solving. By considering a relatively larger sample, 

this study clarifies further how problem solvers having different ability levels vary in 

terms of using spatial imagery.  

Research Question 2: To what extent does the self-reported C-OSIVQ 

instrument provide valid measures of cognitive style?  

We re-analysed the factor structure and the content validity of the C-OSIVQ instrument 

in an attempt to understand the extent to which it measures cognitive style in relation 

to encoding and processing mathematical information.  The three dimensions of 

cognitive style were inter-correlated. This may suggest that if a person has preference 

for a certain way of processing information (e.g., using pictures rather than making a 

schematic representation) then that does not mean s/he does not use the verbal-

analytical way of interpreting information. Such inter correlations were also observed 

by Blazhenkova and Kozhevnikov (2009).  

Given that this instrument had been validated, we expected a higher number of items 

to load more consistently on each of the three dimensions. However, only half of the 

items loaded on the three components, with more items loading on the spatial-imagery 

component. This prompted us to analyse the content of the items with specific focus 

on the spatial-imagery component as it is more related to mathematics performance. 

The 15 items in this dimension consist of three categories of situations: 9 items 

associated with connecting devices and construction games, 3 items associated to 

school geometry and 3 items associated to schematic representations. The close 

resemblance of the 9 items related to connecting devices and computers put into 

question the content validity of the instrument in relation to the spatial-imagery 

dimension. Further, only three items in the questionnaire are directly related to school 

mathematics. As Blazhenkova and Kozhevnikov (2009) indicated, self-reports allow 

for the assessment of subjective aspects of imagery. Nevertheless, self-reports should 

assess what they are purported to measure. 

Implications of the study and future research 

Given the correlation between spatial-imagery and performance in problem solving in 

mathematics, it is important to support students to develop habits of representing 

mathematical information more schematically. Not all students may have a propensity 

for this mode of encoding and processing mathematical information. Instructions 

should encourage students to represent relations in problems schematically so that such 

a mathematical behaviour becomes a habit of mind.     
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There is a need for a more extensive conceptualisation of cognitive style, aligned to 

learning mathematics. This can be accomplished by more empirical work, especially 

in terms of qualitative studies. Merely extrapolating ideas from psychology to 

mathematics may not serve the purpose of mathematics educators.  It appears that there 

is a need to improve the content validity of the self-reported cognitive style instrument. 

This is important if cognitive style is to be regarded as having practical pedagogical 

implications among pragmatic educators. 
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STUDENT UNDERSTANDING OF PROOF AND PROVING:  

IS INTERNATIONAL COMPARISON POSSIBLE? 

David A Reid 

Universität Bremen 

 

Research on proof and proving includes international assessments of argumentation 

competencies, comparisons of proofs in school contexts, and application of research 

results from one national and cultural context to others. There are a number of 

obstacles to such international comparisons, arising from linguistic, epistemological, 

cultural, and educational differences, which are outlined in this article. Ways in which 

these obstacles are addressed or ignored, and the degree to which they are avoidable 

are discussed, and an example is given of an international comparison in which these 

obstacles informed the research methodology in a useful way. 

INTRODUCTION  

In recent decades there has been an increasing emphasis on student understanding of 

mathematical processes, among which proving is included. This is reflected in the 

increasing number of research studies on proving (Reid & Knipping, 2010, p. xiii), and 

in influential policy documents, such as the NCTM Principles and Standards (2000) as 

well as in national mathematics curriculum documents. A parallel development is a 

shift in focus of international mathematics assessments from curriculum content to 

mathematical processes and competencies. This article explores the degree to which it 

is possible to extrapolate research results across international and intercultural borders, 

and especially whether it is possible to compare student understanding of proving 

across such borders. 

There are a number of studies that are often cited as evidence for “students’ low level 

in understanding and building mathematical proofs (Galbraith, 1981; Fischbein, 1982; 

Senk, 1985; Martin and Harel, 1989; Chazan, 1993; Battista and Clements, 1995; 

Zaslavsky and Ron, 1998; Healy and Hoyles, 2000; Recio, 2000)” (Recio & Godino, 

2001, p. 83). Note that the majority of these studies, and others on proof and proving 

reported at PME and in international mathematics education journals, were conducted 

in English speaking countries. However, for reasons discussed below, there is good 

reason to be cautious about applying these findings to other national and cultural 

contexts. As Bell (1976) notes, “Viewed internationally, the proof aspect of 

mathematics is probably the one which shows the widest variation in approaches” 

(p. 23).  

INTERNATIONAL ASSESSMENTS 

The concerns outlined in this article apply to any kind of research on proof and proving 

that is conducted or applied across borders, but international mathematics assessments 
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are a special focus, because of the increasing emphasis on comparing proving and other 

mathematical processes using such assessments.  

This emphasis is especially clear in the PISA assessments which focus on 

“competencies” such as “argumentation” which includes 

knowing what mathematical proofs are and how they differ from other kinds of mathe-

matical reasoning; following and assessing chains of mathematical arguments of different 

types; ... and creating and expressing mathematical arguments (OECD, 2009, p. 106).  

In the most recent assessment framework, the terminology of “competencies” has been 

dropped, and the process of proving appears implicitly as part of a more general 

process. “This process of employing mathematical concepts, facts, procedures, and 

reasoning includes activities such as … reflecting on mathematical arguments and 

explaining and justifying mathematical results” (OECD, 2013, p. 29). 

This interest in international assessment of mathematical processes raises the question 

of what obstacles might exist to doing so, and how they might be overcome. This paper 

explores four such obstacles: word usage, epistemological perspectives, cultural 

differences, and educational differences.  

DIFFERING USAGES OF THE WORDS “PROOF” AND “PROVING” 

As Godino and Recio (1997, Recio & Godino, 2001) point out, the words “proof” and 

“proving” are used differently in foundations of mathematics and mainstream 

mathematics, to refer on one hand to a purely formal derivation from explicit axioms 

and on the other to refer to a deductive but only partly formal argument that “convinces 

someone who knows the subject” (Davis and Hersh, 1981, p. 40). In mathematics 

education there is a further variation of usage, both in reference to the object called a 

“proof” and the process of “proving”.  

The object called a proof might be either a written text or a convincing argument. The 

NCTM uses “proof” in the first sense when they write, “High school students should 

be able to present mathematical arguments in written forms that would be acceptable 

to professional mathematicians” (NCTM, 2000, p. 58). “Proof” has been used to mean 

“convincing argument” by a number of authors, including Mason, Burton, and Stacey 

(1985) and Davis and Hersh (1981). 

“Proving” can refer to three distinct processes: reasoning deductively, reasoning “to 

remove or create doubts about the truth of an observation” (Harel & Sowder, 1998, 

p. 241) or “collective processes in which students and teacher develop the proof 

together” (Knipping, 2004, p. 73).  

Clearly, when assessing proof and proving the meaning of these words must be made 

explicit. This is true in reporting research and especially in international assessments. 

As noted above, the PISA frameworks have become less explicit over time about what 

is being assessed related to proving, but it may be that there are more explicit 

unpublished documents and item analyses that ensure that consistent meanings of proof 
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and proving are used. But readers of the results are left not knowing what exactly is 

assessed that might be considered “proving” by the assessment designers. 

EPISTEMOLOGIES OF PROOF 

Balacheff (2008) describes “epistemologies of proof” which relate to the concept of 

proof more generally, and especially the connection between proof, truth, and validity.  

Our epistemology of proof (the relationship we have with truth and validity) first shapes 

our research framework, even before the choice of a problématique (i. e., the choice of the 

relevant questions and research problems), and the choice of a theoretical framework and 

its related methodology. (p. 502)  

Balacheff does not include Fischbein among the researchers whose epistemology he 

describes, but Fischbein’s work offers a very clear example of how a researcher’s 

epistemology guides the choice of research questions, theories and methods. Fischbein 

(1982) asserts that, “the concept of formal proof is completely outside the main stream 

of behavior” (p. 17). 

A new “basis of belief”, a new intuitive approach, must be elaborated which will enable 

the pupil not only to understand a formal proof but also to believe ... in the a priori 

universality of the theorem guaranteed by the respective proof. (p. 17) 

On the basis of this epistemology of proof, Fischbein and Kedem (1982) designed a 

study to test the hypothesis that most students “do not have a clear idea of what a formal 

mathematical proof means” (p. 128). They tested this by presenting students with 

proofs, and then asking if additional checks would increase their confidence. They 

found that the majority felt that additional checks would increase their confidence, and 

hence did not understand mathematical proof as “further checks are superfluous since 

a formal proof guarantees a priori the absolute validity of the statement” (p. 131).  

Starting from a different epistemology, one might propose different research questions 

such as, “Why do students use examples to increase their confidence when given a 

proof?”. Chazan (1993) interviewed students to explore more deeply their reasons for 

distrusting proofs and their attitudes towards examples. Some of the reasons students 

gave for using examples reflect a nuanced view of proof; for example, they noted that 

the assumptions used in the proof might be wrong.  

While it may be possible to be explicit about usages of the words “proof” and “proving” 

and to agree on specific usages in the context of an international assessment, it is less 

clear that epistemologies of proof can be agreed.  

Is a consensus possible? By consensus I mean at best a common theoretical framework, at 

least a glossary guaranteeing a minimal set of shared meanings. The deadlock on the route 

towards achieving such a programme is our own epistemology of mathematical proof. … 

Indeed, researchers themselves cannot avoid involving in their work their own 

epistemology of mathematical proof and, beyond it, their own epistemology of 

mathematics. (Balacheff, 2008, p. 508) 

This suggests that an international assessment must either adopt a number of 
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incompatible epistemologies that come with differing meanings of key concepts, or 

adopt a single epistemology, excluding those whose epistemologies differ. Adopting a 

single epistemology makes it possible to consistently assess proving but at the cost of 

narrowing the perspectives represented. This could create biases in cases where 

particular epistemologies are dominant in some national or cultural contexts more than 

in others.  

CULTURAL DIFFERENCES 

As the PISA frameworks quoted above indicate, the process of proving is often related 

to argumentation in general. But the nature of argumentation varies across cultures. In 

the West, it is associated with a ‘struggle’ to ‘defend’ a claim, words that suggest 

conflict. Sekiguchi and Miyazaki (2000) provide an insightful description of the 

process of “hanashi-ai” which they see as the counterpart to argumentation in the West, 

but which lacks any connotation of conflict.  

The word [hanashi-ai] means mutual conversation or consultation, and does not signify a 

war. Because people try to avoid direct confrontation, they try to put their opinions 

ambiguously so that they can withdraw or change them easily when others indicate 

opposition (Nakayama, 1989). As a result, people in “hanashi-ai” do not usually bring up 

such full logical defense devices like “grounds,” “warrants,” and “backing.” Even in those 

situations where the social exchange model is working, people tend to avoid bringing up 

logical armaments because they feel that arguing logically is impersonal (“katakurushii”). 

(Sekiguchi & Miyazaki, 2000, Communication and Argumentation in Japanese and 

Western Cultures section, para. 10) 

Because of such cultural differences, differences in epistemologies of proof exist 

between cultures, and these differences cannot be overcome by agreeing to particular 

usages of words. For example, defining a ‘proof’ as a ‘convincing argument’ gives it a 

different meaning in Japan than in English speaking countries.  

EDUCATIONAL DIFFERENCES 

For almost everyone the primary exposure to mathematical proof is in school. But 

school systems differ in many ways, some of which are clearly relevant to international 

comparisons of proof and proving. This can be illustrated by looking at one of the few 

traditional proof tasks that have been included on an international assessment.   

One item on the Third International Mathematics and Science Study (TIMSS-95) for 

advanced mathematics students in their final year of secondary school asked the 

students to write a proof (see Figure 1). In most countries the percentage of correct 

answers is close to the international average (34%) and the percentage of wrong or 

partial answers is higher (TIMSS 1998a, 1998b). However, in some countries (e.g., 

France, Switzerland, Russia) about half the students responded correctly, and about a 

third gave wrong or incomplete answers.  
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The results from Greece 

indicate that national diff-

erences in schooling are a 

factor. There 65% of the 

students were able to con-

struct a valid proof, and only 

6% gave wrong or incom-

plete answers. The remain-

der did not attempt the item 

either because they ran out of 

time or because they skipped 

it. This suggests that for 

these students proof is an all 

or nothing affair; either they 

know the proof and write it 

correctly or they recognise 

that they do not know it and 

write nothing. There is a 

continued emphasis on 

Euclidean geometry in the 

Greek mathematics 

curriculum (Kuzniak & 

Vivier, 2009) which has 

been the case since the 

beginning of organised schooling (Toumasis, 1990). It is reasonable to conclude that 

exposure to similar proofs in school accounts for the results of the Greek students on 

this assessment item. In other countries with a less strong emphasis on traditional 

Euclidean geometry (which includes most English speaking countries) students may 

not be able to predict in advance whether they will be able to construct such a proof 

and so they are more likely to attempt it and fail.  

CONCLUSIONS 

The obstacles described above vary in seriousness. Differences in word usage could be 

addressed by increased awareness of such differences and explicitness in published 

research, curriculum and policy documents and international assessment frameworks. 

It may even be possible to agree on specific usages for purposes on international 

comparisons. Differences in epistemologies of proof are more serious. It is possible to 

be more aware of and explicit about our epistemologies, but as Balacheff (2008) notes, 

consensus is not possible. Epistemologies of proof can be seen as an aspect of culture, 

and cultural differences in general, including differences in the nature of argument and 

justification may be the most difficult obstacles to overcome in conducting research 

and making comparisons internationally. Much of culture is implicit, and it is 

impossible to be clear to others about assumptions we ourselves are unaware we are 

Figure 1: Item K18 from the released Advanced 

Mathematics items, TIMSS 1995, reproduced from 

TIMSS, 1998c, p. 89. 
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making. Finally, there are educational differences which in some ways would seem to 

be the most easily overcome obstacles, but which experience indicates may not be. One 

effect of international assessments like TIMSS and PISA is an increased interest in 

how education is conducted in other national contexts. However, this interest has not 

translated into a significantly better understanding of different educational systems. 

Too often a simple answer is sought to the complicated question of what is different 

about education in Finland, Shanghai, or elsewhere. When no single variable is found 

that accounts for differences in performance, interest wanes. But it is possible to trace 

some effects of educational differences. For example, the emphasis on Euclidean 

geometry proofs in Greece is documented, and seems to account well for the different 

pattern of answers on the proof item in TIMSS-95. By asking more specific questions 

about differences in performance, and expecting more complicated answers, it may be 

possible to convert educational differences from an obstacle to conducting 

international comparisons, into a useful way to gain insight into the effects of education 

on learning.  

SOME CAUSE FOR HOPE 

Given the obstacles outlined above, there seems to be little point in attempting to 

measure differences in student performance or understanding of proof and proving. 

However, the very same obstacles create a research opportunity, to better understand 

how linguistic, epistemological, cultural, and educational differences between 

countries influence teaching related to proof. There have been a few studies that have 

attempted to do so, and which suggest possible approaches. Cabassut (2005) compared 

textbook proofs and Knipping (2004) compared classroom teaching in France and 

Germany. They describe differences in practice, and in accounting for these differences 

they take linguistic, epistemological, cultural, and educational differences into 

consideration. Similarly, Hemmi, Lepik, and Viholainen (2013) compared the role of 

proof-related competences in Estonian, Finnish, and Swedish curricula and consider 

linguistic, epistemological, cultural, and educational differences in accounting for 

differences observed in the development of proof in the curricula compared. 

Grundey (2014) offers another case of comparative research on proof, in which the 

expectation of linguistic, epistemological, cultural, and educational differences guided 

the methodology. Grundey conducted a design experiment in which instructional 

materials were used to reveal students’ understandings of proof, not in comparison to 

a normative expectation but rather in comparison to other students. The teaching then 

attempted to influence the students’ understandings. Two classrooms each in Germany 

and Canada were involved and this allowed further comparisons of the initial 

understandings of the students and the changes that occurred during the teaching. By 

attempting to make explicit differences between students, both within and across 

classrooms, Grundey incorporated those differences into the knowledge she gained of 

their understandings of proof. As a result, differences that could have been obstacles 

became sources of insight.  
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PROSPECTIVE ELEMENTARY TEACHERS’ DIAGNOSTIC 

PROCEEDING IN ONE-ON-ONE DIAGNOSTIC INTERVIEWS: 

FACETS OF DATA COLLECTION AND ATTENTION  

Simone Reinhold 

Leipzig University 

 

The focus of the research presented in this paper is on cognitive diagnostic strategies 

prospective elementary mathematics teachers (PTs) use in the reflection of one-on-one 

interviews about arithmetic problems with children in Grade 1. Thereby, it responds 

to the detected lack of knowledge regarding qualitative facets of diagnostic proceeding 

in interview assessments. Results of a part-study reveal that collecting information to 

supply interpretation and conclusion within a diagnostic micro-process may vary 

concerning the choice of information or concerning the type of collecting. The 

discussion takes up the relevance of these findings for teacher education and touches 

“hidden” high-leverage practices in terms of diagnostic attention.   

INTRODUCTION 

The challenges of every-day classroom situations include the design of appropriate 

learning opportunities which refer to adaptive teaching competence and include 

diagnostic competence (cf. Wang, 1992). To meet these demands, beginners and 

experienced teachers benefit from a constructivist view on their students’ individual 

progress in developing mathematical concepts: A powerful method to gain particular 

information on children’s mathematical conceptions is provided with diagnostic one-

on-one interviews which stem back to the clinical method of interviewing developed 

by Jean Piaget (cf. Ginsburg, 2009). Standardised task-based interviews enable one to 

assess the range and depth of children’s thinking as (in-service) teachers actively 

explore qualitative facets of children’s approaches to mathematical tasks. Prepared 

interview tools and empirically based growth points for the analysis may guide through 

these one-on-one interviews and thereby foster teachers’ professional development 

(e.g., ENRP task-based assessment interview/CMIT/EMBI; cf. Clarke, 2013; Bobis et 

al., 2005; Peter-Koop, Wollring, Spindeler, & Grüßing, 2007).  

Additionally, there is a need to sensitise prospective elementary mathematics teachers 

(PTs) to the varieties, ranges and depth of young children’s mathematical thinking and 

to qualify them for informal formative assessment. In this sense, preparing, conducting 

and analysing students’ mathematical conceptions in one-on-one interviews offers 

substantial learning opportunities and supports the development of PTs’ diagnostic 

attitude (cf. Peter-Koop & Wollring, 2001; Prediger, 2010; Sleep & Boerst, 2012). Yet, 

qualitative facets of the diagnostic proceeding during a one-on-one interview have 

scarcely been studied so far. This includes facets of data collection, i.e., the question 

how actions or utterances are taken up before being used for interpretation. 
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THEORETICAL FRAMEWORK 

The concept of diagnostic competence and domains of teacher knowledge 

Recent studies on (the development of) diagnostic competence mainly focus on 

measuring the accuracy of teachers’ judgments (cf. Südkamp, Kaiser, & Möller, 2012). 

With an emphasis on those numerical indicators, diagnostic competence is most often 

“operationalized as the correlation between a teacher’s predicted scores for his or her 

students and those students’ actual scores” (Helmke & Schrader, 1987, p. 94). In this 

concept, questions of qualitative aspects of diagnostic competence and its acquisition 

remain unanswered, and processes of diagnosing by which teachers evaluate an 

individual student’s learning development are unaccounted for.  

Ball et al. (2008) suggest that pedagogical content knowledge (PCK) includes 

knowledge about common mathematical conceptions or misconceptions that are 

frequently encountered in the classroom. Options to achieve this kind of knowledge 

may arise from analysing individual cases which refers to knowledge of content and 

students (KCS) defined as subdomain of PCK (Ball et al. 2008, p. 403). Thus, the 

capability of “eliciting and interpreting individual students’ thinking” can be found 

among the set of “high-leverage practices” with which novices should be familiarised 

(cf. Ball et al., 2009; Cummings Hlas & Hlas, 2012). Sleep & Boerst (2012, p. 1039) 

conceptualise this particular “high-level practice” as subcomponent of the domain 

“assessing student thinking”. In this sense, analysing an individual’s mathematical 

concept may contribute to a deeper understanding of widespread (mis)conceptions. It 

may develop KCS, improve a teacher’s practices in terms of diagnostic attention and 

expertise, and thereby enrich his or her diagnostic competence. 

Modeling phases of the diagnostic process  

In the field of elementary mathematics education research (which deals intensely with 

qualitative aspects of children’s wide-ranging learning developments), expertise in this 

area reaches beyond teachers’ accuracy in measuring children’s achievements. It 

additionally includes rather vague aspects like diagnostic sensitivity, curiosity, an 

interest in children’s emerging understanding and learning or the aptitude to gather and 

interpret relevant data in non-standardized settings (e.g., Prediger, 2010). Following 

this process-oriented attitude towards diagnostic competence, activities of formative 

assessment in a one-on-one interview can be seen as a multidimensional cyclic process 

(Klug, 2011; Klug, Bruder, Kelava, Spiel, & Schmitz, 2013). According to this model, 

a pre-actional phase (e.g., considerations of preparing diagnostic activities; choice of 

tasks/methods) prepares for an actional phase (including data collection and data 

interpretation) which is followed by a post-actional phase. The latter implies taking 

the necessary action from data collection/interpretation which leads to the design/the 

evaluation of a concept for an individual support in a repeated run through phases of 

this diagnostic macro-process. 

Focusing on micro-processes within the actional phase of diagnosing, collecting data, 

interpreting and drawing further conclusions have deep impact on the diagnose via 
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an interview and are based on different kinds of knowledge (e.g., KCS, see Figure. 1).  

 

 

 

 

 

Fig. 1: Differentiating the micro-process in the actional phase of diagnosing 

When conducting a one-on-one interview, there is no direct access to students’ 

conceptions. Instead and in terms of cognitive activity, those conceptions “must be 

reconstructed by interpreting their utterances” (Prediger, 2010, p. 76). Facets of 

interpreting within the actional phase of the diagnostic process in a one-on-one 

interview have already been discussed and shown in detail by Reinhold (2014): Those 

findings support the notion that cognitive elements of PTs’ ways of proceeding in 

diagnostic interviews often resemble basic processes in qualitative data analysis. Here, 

cognitive elements of diagnostic strategies which were reconstructed from PTs’ 

external (verbal) articulation in re-interviews included different sub-categories of 

interpreting, namely contrasting, enriching, isolating, coding, and supporting.  

Collecting as a source for interpretation and conclusion 

The elements of PTs᾿ interpretation interact with facets of collecting and concluding 

in distinct types of diagnostic strategies (Reinhold, 2014). Yet, the implications of 

collecting or “gathering information” (Klug et al., 2013, p. 39) are still implicit 

concerning details of collecting within the actional phase of the diagnostic process. 

Collecting valuable information is obviously of high importance as this information is 

the source for interpretation and conclusion. Sleep and Boerst (2012, p. 1038) point out 

that the available information initially relies on the (previous) choice of tasks for the 

diagnostic situation as tasks “yield sound and useful information about student learning 

of particular content” (Sleep & Boerst , 2012, p. 1038). For one-on-one interviews, 

these tasks are usually chosen in the pre-actional phase, but they influence 

opportunities for data collection in the actional phase as well. Moyer and Milewicz 

(2002) identified general questioning categories (check-listing/instructing/ probing and 

follow-up questions) used by PTs while collecting data in one-on-one interviews. 

Furthermore, interpreting within any diagnostic situation is based on a substantial 

perception of the diagnostic situation. This “includes the ability to structure the 

situation cognitively, the ability to change the focus of attention and the willingness 

and ability to adopt other perspectives” (Barth & Henninger, 2012, p. 51). 

Thus, attention and the capability to focus this attention tend to be crucial prerequisites 

for collecting within the actional phase. Attending as integral element of “professional 

noticing of children’s mathematical thinking” defined by Jacobs, Lamb, and Philipp 

(2010) refers to the skill of “being able to recall the details of children’s strategies” (p. 
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172).  

In the actional phase of diagnosing in a one-on-one interview, noticing and collecting 

includes the motivation to listen and watch, the ability to observe with keen eyes, and 

the capability to detect important details or to value particular aspects in children’s 

utterances or actions. Yet, little is known about the facets of collecting PTs use in one-

on-one interviews they prepare and conduct with children: How is all this information 

“gathered” and what kind of information is it that tends to be interesting for those who 

“act systematically”, for those who interpret and conclude? 

RESEARCH QUESTIONS 

Aiming at an empirically grounded theoretical framework for a qualitative view on 

PTs’ cognitive activities in one-on-one interviews with children, the main purpose of 

the project diagnose: pro is to detect traits of  diagnostic strategies: We intend to find 

out what cognitive elements characterise the PTs᾿ diagnostic strategies when they 

diagnose individual arithmetic approaches in one-on-one mathematics interviews with 

first-graders and try to reconstruct how these strategic elements interact. Former 

reports on this research project already exemplified facets of interpreting within the 

micro-process in the actional phase of diagnosing (cf. Reinhold, 2014). This paper is a 

further excerpt from this larger study and directs the attention to facets of collecting 

PTs use in their diagnostic proceeding: 

 What kind of information is collected to supply any kind of interpretation and 

conclusion during the actional phase of the diagnostic process? 

 What differences in the way this information is collected can be detected? 

 (How) Do differences concerning the choice of collected information or in the 

way of collecting influence the type of diagnostic strategies which can be 

reconstructed from interviews? 

METHODS 

In the sense of theoretical sampling (Corbin & Strauss, 2008), data collection intended 

to capture the range of PTs’ practices and proceedings and focused on re-interviews of 

one-on-one diagnostic interviews. All PTs attended mathematics methods courses in 

the last year of their university studies (Master of Education). In cooperation with an 

elementary school, these courses provided the opportunity to prepare, conduct and 

analyse individual diagnostic interviews with up to six first-graders per PT. Drafts for 

these interviews were prepared at the beginning of the course where the PTs could 

make use of theoretical work on concepts of arithmetic learning trajectories and the 

method of task-based mathematics interviews (e.g., Peter-Koop et al., 2007). Until fall 

2013, 7 PTs from these courses agreed to take part in retrospective interviews which 

focused on the video-recording of an interview they had conducted shortly before. With 

deliberately general advice at the beginning of the retrospective interviews, the PTs 

were asked to “analyse the interview” while watching the video-recording. The 

interviewee was requested to stop the video at any scene in order to comment on the 
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diagnosis he or she would derive from this specific situation. If comments were rather 

short or pure in detail, the interviewee was asked to explain what knowledge, 

information or evidence warranted his or her uttered hypothesis. These retrospective 

analyses of diagnostic interviews offered the chance to narrow the focus and to pay 

attention to details. In this sense, data collection obviously differed from real-time 

practice in an interview which requires being concurrently aware of many more details. 

As all interviews’ analyses are based on Grounded Theory methodology, codes are 

derived from data via open, axial and selective coding or contrasting comparison of the 

data. Use of the software ATLAS.ti enables direct coding of video-data. To approach 

the aim of capturing identified characteristics of diagnostic proceeding in whole range 

(“saturated”, Corbin & Strauss, 2008, p. 143), we also include data which consists of 

written comments of 31 PTs (collected in 2011) and video/audiotaped peer-talks 

among 28 PTs about video-scenes of  diagnostic interviews (collected in 2012). 

FINDINGS 

Results of the study reveal that collecting information within the actional phase of a 

diagnostic micro-process may vary concerning the type of collecting and concerning 

the choice of information, as the following excerpts from the re-interviews (n=7) 

exemplary display. In our process-oriented analyses of the PTs’ process-oriented 

analyses we took into account that facets of data collection may include observations 

which are not mentioned by the PTs: Subconsciously grasped information (e.g., on a 

child’s hidden insecurity or motivation while working on a task) could also have an 

influence on a conclusion which is drawn, later on. In this sense, we are restricted to 

focus on the mentioned items. Besides, there is no way to tell data collection in the 

interview from data collection which can definitely be assigned to the re-interview.  

Collecting: From observing to tracking 

PTs’ data collection was coded as observing when we considered the PTs to watch 

closely what was happening in the diagnostic situation. All PTs did listen attentively 

to the child’s utterances. They paid attention to significant details, but they most often 

(also) noticed the (singular) occurrence of micro-incidents which were only loosely 

connected. In this sense, data collection included various details (see list in table 1) and 

often ended up in collections which resembled a “colorful bunch of flowers”. 

On a higher level, facets of collecting coded as tracking refer to the skill of following 

a series of activities or utterances. This includes to follow a child’s action over a longer 

sequence and to maintain attentive during the diagnostic situation. This can be seen in 

the following protocol of Lisa’s re-interview on an interview with 6-year old Sam. He 

is asked to take five chips (one side blue, the other side red) and comment on possible 

ways of displaying an addition with this material. Sam starts with spreading the chips 

and starts to sort them “Three red ones and two blue ones” as Lisa stops the video: 

Lisa (01:51):  To comment on this, I’d say he separated red and blue from the 

beginning and named what was lying on the table. 
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Later on, Lisa tracks this idea and collects further information from subsequent 

situations which refer to this issue (sorting and considering position of colors).  

Lisa (02:16): Here, it is clear that he separated the colours from the beginning.  

Lisa (10:20): We wanted them to find that sorting the possible additions helps to  find all 

of them, yes and he is arranging them in any kind of structure, but… not the one we 

had intended them to find, and no one could find out if he had an idea of how to sort 

it. But in a way he does sort the possible arrangements because in this corner here, 

the blue ones are closer together. In the next row, the blue ones stick closely 

together, too, and there the red ones. 

Collecting in the sense of recognising or sorting 

PTs’ data collection was coded as recognising when they repeatedly identified details 

they had already noticed in previous situations. In contrast to tracking, this was 

restricted to single incidents. Sorting in PTs’ data collection was identified when PTs 

found/intentionally searched for groups or patterns in children’s utterances or actions. 

What kind of data is mentioned in re-interviews on one-on-one interviews? 

A further analysis of PTs’ comments on children’s work also reveals a wide range of 

mentioned details as exemplified in Table 1 in which all interview excerpts are 

translated into English by the author. 

Collected Example 

verbal utterance “This boy, he was able to identify the summands and he said 

“This number and this number equals this number.” (Anne) 

activity “He’s drawing a circle around this piece of the pattern.” (Pam) 

(in)correctness of 

solution 

“He was supposed to draw a circle around repeating parts of the 

pattern, but he failed.” (Pam) 

(elements of) strategy “He used counting strategies, saw 4 and continued counting from 

that first summand.” (Sue) 

eye movement “He hesitated and looked the other way.” (Anne) 

(subtle) movements 

of lips, head or hands 

“I see he is nodding and I guess he’s counting up to five here.” 

(Lisa) 

emotional state “I got the impression he’d start crying.” (Anne) 

interviewer’s 

behaviour 

“Okay, I liked what I did in this situation as we decided to accept 

‘wrong’ answers, too.” (Sue)  

Table 1: Various sources for interpretation: What is collected? 

DISCUSSION 

The study responds to the detected lack of knowledge regarding qualitative facets of 

diagnostic proceeding in one-on-one interviews and thereby contributes to strengthen 

the “power of task-based one-on-one interviews” (Clarke, 2013) in daily practice. Even 

if the reported findings are restricted to a certain type of tasks (arithmetic issues) and 
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that they refer to a small number of participants (n=28 in peer-talks; n=7 re-interviews), 

the study takes “a look behind the scenes” of PTs’ diagnosing.  

PTs’ attention was most often attracted by children’s obvious or prominent activities 

or utterances. Items were also collected if the PTs found surprising deviations from 

what they had expected before. Furthermore, other incidents obviously exactly 

matched what they had expected. This emphasises the importance of KCS (e.g. 

knowledge of common (mis)conceptions) as both deviation and alignment can only be 

stated if there is knowledge which can be used for this comparison. Additionally, this 

underlines the close relationship between collecting data and reasoning about the 

collected details (interpreting and concluding). Yet, this relationship does not 

necessarily appear as a linear process. Instead, PTs may run through these intertwined 

micro-processes in circles: a type of diagnostic strategy we call a branched 

interpretation. At the same time, we detect other diagnostic strategies, namely the 

strategy of being a descriptive collector, when the PTs focus on collecting and 

describing the child’s actions and neglect both interpreting and concluding (see 

Reinhold, 2014). This reveals “hidden” diagnostic practices which have to be 

uncovered in order to make them explicit. They are assumed to be of great importance 

for teacher education and further investigations in the project diagnose:pro will explore 

e.g., how elements of diagnostic strategies and types of strategies can be taken up in 

discussions of university courses. Awareness in this domain (including awareness of 

“strategic diagnostic tools”) may contribute to appropriate interpretations of children’s 

utterances in interviews and help to identify “high-leverage diagnostic practices” to 

cope with diagnostic challenges in class. 
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This paper focuses on primary prospective teachers’ specialised knowledge for 

teaching (MTSK) while posing a problem for a given expression in the context of 

division. Using a particular expression, where the result was an infinite 

repeating decimal, we found some special relationships between different sub-domains 

of prospective teachers MTSK. From the fact that we gave prospective teachers a 

particular starting expression to pose a problem we also discuss some findings 

concerning problem posing as a way to develop teachers’ knowledge.  

INTRODUCTION 

Internationally it is more or less accepted that problem solving is one of the core aspects 

in and for developing mathematical reasoning. At the same level should be problem 

posing, as good problems need to be posed to allow solvers to develop their 

mathematical ability and knowledge. Although problem solving and posing should be 

considered at the same level, most research focuses on problem solving, and of the few 

studies that consider problem posing, most focus on students, ignoring the teacher’s 

role and knowledge in students’ learning.  

Considering that teachers’ knowledge is a crucial factor in students’ learning (e.g., 

Grossman, 2010), and the fact that prospective teachers need to acquire a deep 

understanding of the mathematical concepts (Tichá & Hošpesová, 2013), problem 

posing is perceived as a way to access (and develop) problem posers’ mathematical 

knowledge (considering the different specificities of such knowledge). It is also 

perceived as a way to enrich the understanding of the content of teachers’ knowledge 

and the relationships between its different aspects/sub-domains. Amongst different 

possible ways of perceiving teachers’ knowledge, we consider the Mathematics 

Teachers’ Specialised Knowledge (MTSK) (Carrillo et al., 2013) conceptualization. 

We assume that identifying, understanding and developing such knowledge (in and for 

problem posing) would allow teachers to teach with a different focus and 

understanding to that with which they have been taught (e.g., Cooney, 1994), as well 

as conceptualize tasks for teachers’ training that would allow (and focus on) 

developing such specialised knowledge. 

Considering one of the core tasks of teaching is giving sense to students’ productions, 

teachers’ knowledge should include a broad range of strategies and representations for 

problem solving that could help them successfully develop such an endeavour (Ribeiro, 

Mellone & Jakobsen, 2013). In that sense, considering that one of students’ difficulties 
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concerns number sense and problem solving in the context of the operations, in 

particular division (e.g., Fosnot & Dolk, 2001), and that students’ difficulties are 

aligned with teachers’ knowledge (e.g., Hill, Rowan & Ball, 2005), we perceive it as 

crucial to focus teachers’ training in those aspects. A starting point can be identifying 

critical mathematical situations linked with the specificities of teachers’ knowledge 

while posing problems (using a practice-based approach), having as an end point the 

design of tasks that would allow the development of teachers’ specialised knowledge. 

In this paper we expand previous work that identified particular features and 

dimensions involved in prospective teachers’ knowledge. Here in particular we focus 

on the following question: what problems (kind, content, nature) do early years 

prospective teachers pose from a given division expression and what characteristics of 

MTSK does such a process bring to front? 

MATHEMATICS TEACHERS’ SPECIALISED KNOWLEDGE ON 

PROBLEM POSING IN DIVISION  

Sharp, Garofalo and Adams (2002) consider that students’ difficulties in understanding 

concepts involved in operations and algorithms are grounded in teachers’ approaches 

that focus on remembering and on solving exercises. In order to allow for the 

connection of concepts, procedures, symbols, and their semantic referents when 

working on the idea of the operational composition of a number (Subramaniam & 

Banerjee, 2011) with students, a conceptual understanding is essential: this would 

allow them to link number sense and the algorithm, considering one of the number 

sense dimensions to be the meaningful use of symbols and mathematical language. 

Developing such conceptual understanding and multiplicity of connections in students’ 

knowledge is only possible if teachers themselves have the knowledge that would 

allow them to pose mathematically rich problems, exploring them in a mathematically 

demanding practice (Ribeiro & Carrillo, 2011). 

Teachers’ knowledge is perceived with its particularities associated with the 

specificities of the tasks of teaching, considering that such tasks are developed with the 

aim of allowing students to understand what they do, why, and what it is for. In the 

context of this work, we consider the MTSK conceptualization (Carrillo et al., 2013), 

aiming also at contributing to enrich the knowledge of the content of its sub-domains. 

Such sub-domains are perceived as a relevant starting point for designing tasks for the 

mathematical preparation of teachers and for doing research on what inputs to teacher 

training and teacher knowledge produce effects on practices and students. The MTSK 

conceptualization considers three sub-domains in both Subject Matter Knowledge 

(SMK) and Pedagogical Content Knowledge (PCK). Besides needing a rich and ample 

knowledge of examples, strategies, and representations for problem solving (Chapman, 

2012), teachers need also to possess a specific mathematical knowledge that would 

allow them to pose mathematically rich problems that do not concern PCK. Here we 

will focus only on the SMK sub-domains: Knowledge of Topics (KoT), Knowledge of 

the Mathematical Structure (KSM) and Knowledge of Mathematics Practice (KMP). 
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Knowledge of Topics (KoT) includes teachers’ knowledge linked with, amongst 

others, phenomenology, meanings, definitions and examples. It relates to dimensions 

characterizing the specific mathematical content, complementary to the disciplinary 

mathematical content. Considering division, teachers’ knowledge needs to include 

knowing how to perform the operation (with or without using an algorithm), having 

interpretative knowledge that would allow them to give sense to students’ answers and 

comments, and to anticipate such possible answers outside their own primary space of 

solutions (Ribeiro et al., 2013). It corresponds, for example, to knowing that 44.7 is an 

incorrect answer for 536:12 when using an algorithm, as well as to the (im)possibility 

of using, in the problem for the previous expression, contexts linked with different 

variables (continuous or discrete) or different types of problems ((im)possible, with or 

without a mathematical context, with (in)sufficient data).       

The Knowledge of the Mathematical Structure (KSM) concerns teachers’ knowledge 

of an integrated system of connections, allowing them to understand and develop 

advanced concepts from an elemental standpoint and elemental concepts from 

approaches considering an advanced mathematical standpoint. Concerning problem 

posing and division it is related, amongst other things, to number sense and operation 

(e.g., Slavit, 1999) as well as to the mathematical whys that allow for considering 

division as measurement, addition, subtraction or multiplication. It includes also, for 

example, possible connections between division and fractions and the existence of 

quantities expressed in terms of infinite repeating or non-infinite repeating decimal and 

the possibilities of its representation in terms of measurement of a segment – linking it 

with the History of Mathematics. 

The Knowledge of Mathematics Practice (KMP) includes knowing and creating 

mathematics (in the sense of the syntactic knowledge of Schwab, 1978), as well as 

aspects concerning mathematical communication.  

When thinking in problem posing when a given division expression is presented, 

teachers’ knowledge involved – both accessed and potentialities for its development – 

is aligned with the possible connections (nature, type) and with the advanced and 

elemental concepts it allows to be explored, leading to the creation of “new” 

mathematical knowledge and awareness. In the context of division, such knowledge is 

linked with number (and operation) sense and indirectly with fractions, and as these 

aspects/topics are pervasive in many other mathematical domains they are crucial and 

strategic mathematical topics of inquiry (Ribeiro et al., 2013). In that sense it is 

fundamental to discuss with teachers the choice, importance and role of the contexts 

chosen at the time of posing problems, allowing considering problem posing as a way 

of identifying the conceptual understanding of students (Silver & Cai, 1996). It is also 

fundamental at the moment of allowing teachers (and students) to pose problems and 

in giving sense to their productions (Ribeiro et al., 2013). 

CONTEXT AND METHOD   

We present part of a broader study aimed at obtaining a deeper understanding of 
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teachers’ knowledge and abilities and of conceptualizing tasks allowing the 

development of such knowledge.  

Here we focus on data gathered during a non-compulsory course for early years 

prospective teachers (PTs) on their last year of graduation (3rd). (In order to become 

teachers (from kindergarten or primary) all prospective teachers are required to 

complete a Master’s degree – two semesters for kindergarten and three semesters for 

primary (from Year 1 to Year 6)).Eighteen prospective teachers from a Portuguese 

University participated in such a course. The focus of the course was on teachers’ 

specialized knowledge on different mathematical topics and its “evolution” from 

kindergarten till primary (students aged 3 till 12). The first author was the lecturer of 

such a course and all the classes were audio and video recorded and all the prospective 

teachers’ written productions were scanned at the end of each class. One of the 

proposed tasks concerned division and problem posing. The first part of the task asked 

prospective teachers to find the solution for a set of given divisions (with or without 

using an algorithm – it was a solver option) and afterwards to pose a problem that could 

be solved using such expressions, indicating also the grade level they consider to be 

most adequate to pose such a problem. The second part of the task required them to 

solve the problems they had posed as they assumed students would solve them and on 

the third part, a set of students’ productions was given and prospective teachers were 

required to give sense to those non-standard solutions – this last part was designed 

following previous work on interpretative knowledge (Ribeiro et al., 2013). After the 

three parts were solved (individually) a mathematical discussion was orchestrated in 

whole group.  

Our focus here will be on the first part of the task (find the result to a given expression 

and pose a problem that could be solved using such an expression). Solving the first 

question of the first part of the task (find a solution to the expression) requires 

knowledge that, supposedly, any Portuguese fifth grader should have. The starting 

amount to be divided was always the same (536) and here, due to space constraints, we 

will focus only on the second (of five) given expressions (536:12). The choice of this 

particular expression (where the result is an infinite repeating decimal) is justified by 

the possibilities for obtaining a deeper understanding of prospective teachers’ 

knowledge of division and number sense (in particular concerning the links with 

infinite repeating decimal numbers) as well as the knowledge involved in posing 

problems. For the kind of problem they considered, we started using Leung and Silver’s 

(1997) categorization, but from the specificity of having a starting situation a new 

category emerged. Thus, we started looking at problems posed by prospective teachers, 

considering that they could be: (i) not a problem (a loose sentence or just a description 

– Peter has 536 marbles and 12 cookies); (ii) not a mathematical problem (it contains 

a questions not directly linked with mathematics – Peter is going to travel from Faro to 

Coimbra, corresponding to 536 km in 12 hours. In what country is Peter?); (iii) 

impossible (no answer can be given, even with complementary information – Peter’s 

school has 536 students and he wants to divide them equally into 12 classes. How many 
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students in each class?); (iv) insufficient (when it can be solved with complementary 

information – Peter has 536 toys to share with 12 friends. How many toys does each 

friend get? (Does Peter have some left?)) and (v) sufficient (it can include some extra 

information – Peter owns a company with 12 employers, each producing 536 litres of 

biodiesel each hour. If such production is going to be split amongst 12 recipients for 

selling, what is the minimum capacity of each recipient?). The newly emergent 

category concerns the correspondence between the given starting situation (in our case 

the given division) and the problem posed. We consider it as a lack of correspondence.   

In the following section we start by presenting and discussing prospective teachers’ 

answers to the expression (in the sense of knowing to find a correct answer). The 

answers contain rich evidence of their MTSK of division. Then we discuss the 

problems posed, their nature and links with prospective teachers’ MTSK. 

RESULTS AND DISCUSSION 

When finding the solution to the operation 536:12, all PTs used the algorithm (the one 

traditionally used in Portugal) and presented three different types of solutions, using 

four types of different numerical representations: (a) 44 (seven PTs); (b) 44.7 (2 PTs); 

(c) 6.44 ; 44 (6) or 44… (six PTs); 44.66 (three PTs). The three answers in (c) are 

considered of the same type as we assume they intend to represent the same quantity 

(operational representation, in the sense of Subramaniam and Banerjee (2011), 

considering the answer as an infinite repeating decimal). Such diversity of solutions 

reveals different aspects of these prospective teachers’ mathematical knowledge 

included at KoT and linked with number sense and operation (e.g., Slavit, 1999). It is 

surprising that despite using the algorithm, two of the PTs present as a correct answer 

for the given division 44.7. Such results call our attention to the need for a deeper 

discussion of the focus of the given training (they had already taken one course 

focusing on numbers and operations), as being able to give a correct solution for such 

division is a content of year five, which these prospective teachers will be teaching in 

some time.    

Concerning the second part of the task (to pose a problem that can be solved using the 

given division), all prospective teachers tried to pose a problem that they considered 

adequate to the given expression. Most of prospective teachers also considered the 

posed problems to be adequate for a much higher grade level than they really were, 

according to the National Curriculum. Analysing and reflecting upon the posed 

problems gives some insights on these prospective teachers’ mathematical knowledge, 

mainly concerning number sense and operation; the role of the considered variables 

and the (in)ability to connect the two stages of the task (most of the correct answers to 

the division did not lead to a correct problem).  

Although all the prospective teachers posed problems, 13 of them posed impossible 

problems. Such impossibility comes from the considered contexts/variables (e.g., 

Peter’s school has 536 students and he wants to share them equally into 12 classes. 

How many students in each class?). Such impossible problems were found to be 



Ribeiro & Amaral 

4-86 PME39 — 2015 

associated with the three types of solutions, (a), (b) and (c), previously mentioned, 

revealing some critical features of the mathematical knowledge that would allow them 

to connect different kinds of variables (outside the space of statistics – also a specific 

“theoretical” content of one of the courses they had already taken), different ways of 

representing the same quantity, and the possible problems to pose in order to explore 

such quantities (KFLM).  

Only one prospective teacher (the one who gave 44 as an answer) posed an insufficient 

problem (Tiago's mother has 12 children, including Tiago. She received a bonus at 

work (536 euros) and wants to share the money amongst her twelve children. How 

many euros does each child get? And how many euros are left to the mother to buy 

herself a t-shirt?). It is considered an insufficient problem, to which different kinds of 

connections can be associated (KSM) – the multiplicity of possible answers is linked 

with the decimal basis of the euro, but also with the fact that, physically, there are only 

hundredths (cents) – and thus it is also a good candidate for a starting point for 

elaborating tasks allowing discussing and developing teachers’ interpretative 

knowledge (e.g., Ribeiro et al., 2013), leading also to a deeper discussion and 

understanding of teachers’ KSM (e.g., functions and optimization).  

The remaining four prospective teachers posed problems included in the sufficient 

category. In the first part of the task all of these prospective teachers gave as an answer 

an infinite repeating decimal, but when posing the problem only one of them made the 

correspondence between the given expression, the solution presented and the problem 

posed. That led to a new sub-category in the sufficient problems: absence of 

correspondence. A typical example of problems included in such a sub-category is: A 

baker made 536 bread loaves and divided them amongst 12 bags. How many loaves 

are there in each bag? Are some left out? From a “simple” mathematical point of view 

(and considering that it was proposed as adequate for year 4) the problem contains 

sufficient information to be solved, but it requires integers as answers. If aimed at 

expanding the domain of integers, it would also be a good candidate for developing 

professional learning tasks (Smith, 2001), focusing particularly on connections with 

fractions and exploring their pervasiveness in different topics (KSM). The only 

problem posed that could be considered as sufficient and with correspondence was: 

There are 536 litres of water for 12 gardens. How many litres does each garden 

receive?   

These results, revealing the need for a change in the focus of teachers’ training, 

reinforce Tichá and Hošpesová’s (2013) ideas on the need for focusing on problem 

posing in teachers’ training in order to allow the introduction of prospective teachers 

to the teaching of mathematics, and in particular to the development of their MTSK 

that would enable them to create an awareness of its role (as teachers) and of the role 

of their knowledge in and for such teaching.  

CONCLUDING REMARKS AND FUTURE POSSIBIBLE FOCUSES 
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The first part of the task gives insights on PTs knowledge (difficulties) concerning 

number sense (Slavit, 1999). The problem posing part reveals PTs’ difficulties 

concerning mainly the role and connections of the kinds of variables and contexts 

considered (and their implications for solving the problem with correspondence to their 

own solution to the given expression). These kinds and natures of the identified aspects 

of knowledge “should” also inform on aspects to be the focus of change in the teachers 

training program. The PTs knowledge revealed, both on division and problem posing, 

is mainly included in KoT, and albeit it should have been developed during their period 

as students – as problem posing (and solving) should be one of the core aspects in a 

mathematical class – it was not knowledge developed during their training, which will 

limit the learning opportunities these PTs will provide to their students, continuing the 

vicious circle. In order to allow PTs to allow their future students to develop the ability 

to solve problems, good problems need to be posed and explored, involving contexts 

and mathematically demanding practices (Ribeiro & Carrillo, 2011). 

The need for further research seems evident, as well as its potential for developing a 

deeper understanding of the content of the different sub-domains of MTSK – aimed 

both at enriching the conceptualization theoretically and in conceptualizing tasks for 

accessing and developing such knowledge. A focus on problems sufficient and with 

(an absence of) correspondence would also allow for the opening of a window for 

accessing and developing teachers’ knowledge on posing problems and 

complementarity and on giving sense to problems posed by others, contributing to 

developing their knowledge on giving sense to the reasoning that leads to such 

elaboration (Ribeiro et al., 2013). It would be, thus, a good starting point for elaborating 

professional learning tasks (Smith, 2001), allowing discussing teachers’ MTSK in 

contingency moments (Rowland, Huckstep, & Thwaites, 2005), contributing to 

focusing training on where it is actually needed. 
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The authors introduce the notion of ‘Culture of Rationality’ (CQ) in order to research 

–based on the Toulmin Model, with an ethnographic focus and with a case study– 

whether argumentation standards of disciplinary affirmations exist in a regular 

mathematics classroom. In the class observed, the researchers discovered a CQ (e.g., 

regularities in terms of the type of arguments, and in the trajectories of participation) 

that enables foreseeing future actions of the teacher involved. 

ANTECEDENTS AND THE PROBLEM PROPOSAL  

One prototypical trait of mathematics is its rationality, if by this one understands the 

set of justification standards based upon which a certain community of mathematicians 

habitually sustains mathematical statements.  

The research presented here is interested in studying a general phenomenon, namely 

determining the existence of a rationality in the mathematics classroom –as happens in 

disciplinary mathematics. The authors specifically raise the idea of examining whether 

in regular mathematics classrooms there are standards of sustentation of disciplinary 

affirmations that are made therein in a systematic and consistent manner (rather than 

just on certain points or barely raised at all). In order to gather empirical evidence, an 

exploratory case study is carried out (Stake, 1999); for the analysis, the authors have 

adopted an ethnographic focus (Berteley, 2000), whereby it is a matter of determining 

the possible rationality of the class studies by way of direct empirical observation and 

of the recovery of voices, actions and meanings of the actors. Moreover an ethnological 

focus is also assumed (Berteley, 2000) –resorting to a more longitudinal-type study –

pursuant to which the authors seek to identify the habits and patterns related to 

rationality. Consistent with this cultural perspective, rationality is conceived of here as 

a sub-culture (contained in the school culture), which in this research is called ‘Culture 

of Rationality’. The latter construct is part of the interpretative framework based upon 

which the authors identify, describe and interpret (Denzin & Lincoln, 1994) within the 

last paragraph of this paper, the possible components that determine and give structure 

to the rationality of mathematics class in the study. In order to undertake the analysis 

of the backings that take the shape of arguments in the class, the authors have used the 

Toulmin Model (1974). 

There is much in the way of research on the rationality of mathematics education that 

is based on the Habermas Model, in turn based on epistemic, teleological and 

communicative rationality. Amongst others, there are those of Boero and Planas (2014) 

and that of Morselli and Boero (2009). There are also several works that resort of 
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Toulmin, for instance the work of Krummheuer (1995), that of Yackel (2002) or that 

of Martinez and Pedemonte (2014).  

INTERPRETATIVE FRAMEWORK 

Epistemic Schemes: Their definition  

The mechanisms to which a person or a community habitually resorts to sustain 

mathematics facts, are denominated by Rigo (2013) as ‘epistemic schemes’. In this 

paper, she defines epistemic schemes of a mathematics type (e.g., instantiations of 

rules) as well as epistemic schemes based on extra-mathematical considerations, such 

as the operational scheme, by way of which validity is granted to a rule by resorting to 

the authority of mathematics.  

Functional interpretation of arguments: The Toulmin Model 

According to the Toulmin Model (1974), an argument is comprised of three elements, 

namely: Claim (C, a conclusion whose merits are attempting to be established), Data 

(D, facts to which one appeals in order to provide the foundations of the affirmation) 

and Warrant (W, by way of which one can account for the rules, principles or licenses 

of inference that authorize going from one evidence to an affirmation). Backing also 

exists (B, and it supports the guarantee offering its theoretical, practical or 

experimental foundations).  

The Culture of Rationality: A characterisation 

The following are, inter alia, the components of the Culture of Rationality:  

CR.i. Standards of sustentation. The baggage of arguments that a community 

habitually activates in order to sustain affirmations or mathematics facts. 

They is a matter of recurring practices and the most well accepted 

practices of argumentation or sustentation that arise in a community. The 

arguments are integrated by the epistemic schemes (both mathematics 

and extra-mathematical) that appear in C, D, W and B. 

CR.ii. Trajectories of participation and distribution of responsibilities. This 

refers to the person who gives out the C, D, W and B, and sanctions 

those participations. The trajectories of participation are made up of a 

succession of interventions of the class actors in the argumentation 

process.  

TECHNIQUES AND INSTRUMENTS OF EMPIRICAL RESEARCH 

The research reported here is of the interpretative (Denzin & Lincoln, 1994) and 

ethnographic type (Berteley, 2000); it is furthermore based on a case study (Stake, 

1999). In order to determine the case, observations were made without any intervention 

of three teachers in a school that has a reputation for academic prestige in the area. 

Teacher Noemí, who has two years of service experience, was chosen because she 

presented the greatest tendency toward mathematical justification. When she was 

observed, she was teaching a mathematics class to a group of first year secondary 



 Rodríguez & Rigo 

PME39 — 2015 4-91 

school students that was made up of 42 students. During the first stage, she was 

observed throughout 5 sessions, while during a second stage she was observed during 

6 sessions (that were analysed in this paper), and during a third stage she was again 

observed during another 5 sessions. The classes were video-taped and transcribed.  

THE CULTURE OF RATIONALITY OF A REGULAR MATHEMATICS 

CLASS - EMPIRICAL STUDY  

For the analysis presented here, the authors examined a didactic sequence that dealt 

with proportional distribution. The didactic sequence, given in six modules of 50 

minutes each, was fragmented into episodes. In each of said episodes, one or several 

arguments were proposed in order to provide backing to a single affirmation. For this 

report, the authors analysed 33 episodes and 68 arguments. 

First level of reconstruction: One case analysis 

In the mathematics classroom, what is meant by arguing or sustaining mathematics 

affirmations, that is what is meant by taking part in practices of rationality (and of 

educating oneself in that rationality and of learning on the basis of it) is created and 

recreated in daily school activities (Cf. Berteley, 2000; Stake, 1999). This is why in the 

section below the authors present the analysis of a fragment of class given by a teacher 

who took part in the study. In that analysis, what frequently takes place in the classroom 

on a daily basis is revealed and pinpointed. It is a matter of an empirical referent made 

up of three arguments that are part of one and the same episode, which properly 

illustrates the habitual means of sustentation in the class observed. The transcription of 

the class arguments appears in the first column of Table 1 and its functional 

interpretation, based on the Toulmin Model (1974), is included in the second column.  

 



Rodríguez & Rigo 

4-92 PME39 — 2015 

 

Table 1: Record of the class and analysis of arguments using the Toulmin Model. 

In the first argument that appears in Table 1, a student provided as evidence (D1) 

instantiation of an intuitive rule (the Isomorphic Property of multiplication –IPM, for 

its acronym. Vergnaud, 1989); The warrant that provided backing is the use of a rule 

(W1), which in turn was backed (at B1) by a mathematics backing and the basic notion 

of proportionality. In the second argument, conveyed by the teacher, there is evidence 

(D2) of a different level than that of (D1) which was facilitated by the student in the 

preceding argument. The teacher took advantage of the student’s intervention to carry 

out a case analysis that enabled her to introduce and justify (by way of a semi-inductive 

scheme at D2.iv) the concept of proportionality. In order to accomplish this, she based 

herself on three considerations related to said notion of proportionality, namely: that if 

quantities of a space of measure are doubled or tripled, the same has to be done with 

the other spaces of measure (IPM for basic cases, at 83); that the quantities of spaces 

of measure either increase or they decrease (a property of the isomorphisms that, albeit 
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not defining proportionality, is generally used in basic education as an essential 

hallmark, at 85-92); and that said variation between spaces occurs in “couples”, 

perhaps referring to the case of IPM application to a scalar (93).  The connection 

between evidence and affirmation was sustained in W2, composed of an epistemic 

scheme, that of IPM viability, which was supported by mathematical backing (B2), 

specifically, in proportionality properties which imply a medium knowledge. The third 

argument was provided by a student, who used a school rule as evidence (D3), rule of 

three (R3); the argument’s warrant (W3) was the use of that school rule and the backing 

(B3) an extra-mathematical operational scheme, since the application of said rule was 

supported by the confidence the boy had in mathematical formulae. Table 2 shows a 

summary of this fragment of class.  

 

Table 2: Summary of the analysed episode. (C: Claim, NA: name of argument, T: 

teacher, and St: student). 

Salient characteristics of the rationality practices in Noemí’s class are then: Trajectory 

of participations (first a student, who suggested the affirmation and first evidence; next 

the teacher, who enriched and deepened the student’s statement with her argument; 

then another student, who provided different evidence); the quality of participations 

(rule instantiation, in the case of the children; conceptual explanation of rules or of rule 

usage, or an explanation of their viability, from the teacher); and the type of arguments 

(mostly, although not always, backed by mathematical considerations). The episode 

under examination also provides clarity about how the teacher negotiates her own 

rationality practices —an objective that, by way of dialogical exchange, involves the 

students by means of constant questions, not only about what but also about why— 

and how this enculturates her students in that rationality.  

The features of practices of rationality in this section are notable, in the next one they 

will be substantiated with an additional level of analysis, a numerical one. This 

examination is intended to show that the features described here are a concrete 

expression of the sustentation patterns that delineate and make up the Culture of 

Rationality of the observed class.  
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Second level of reconstruction: Pattern identification  

The recurring arguments formulated in Noemí’s classroom are described in table 3.  

Also included in that table are the type of backing on which the argument 

(mathematical or extra-mathematical) is supported, the frequency with which it 

occurred in class, and the actor who formulated. The relatively high incidence of these 

arguments in the observed class suggests ties with sustentation rules (CR.i) which 

shape and update the Culture of Rationality in said class.   

 

Table 3: Recurring arguments in the observed class. 

Another rule that possibly makes up the Culture of Rationality of the observed class 

(CR.i, and that also emerges from the analysis of quantities in table 3) makes reference 

to a balanced division of the number of arguments that the students gave and those that 

the teacher gave: while nearly 45% were provided by them, the remaining (55%) were 

given by the teacher. It is interesting that 80% of the arguments given by students 

involve the instantiation of a rule.  

Without any doubt, one of the most salient features of the rules of sustentation (CR.i) 

of the Culture of Rationality that reigns in Noemí’s class is the observed tendency 

towards backing based on mathematical considerations: of the 39 arguments given by 

the teacher, 28 of them had mathematical backing (nearly 72%); of the 29 arguments 

provided by the students, 26 had mathematical backing (nearly 90%), and of the 68 

arguments in total, 54 (nearly 80%) were backed by mathematics. It stands out that 

nearly 12% of the arguments are conceptual (V and EGCP). 

The predominant or more remarkable trajectories of participation in Noemí’s class 
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appear on Table 4 (CR.ii). The first column denotes the first argument that was given 

in class for backing a mathematical statement and the second, the argument that 

followed it and the basis for justifying that 

statement. 

In that Table 4 it is possible to detect some 

regularities that, as in previous cases, very 

possibly define one of the patterns of the 

Culture of Rationality in  Noemí’s class (in 

CR.ii): in nearly 56% of the arguments 

(38) that were formulated in the didactic 

sequence, the students provided the first 

evidence, with the intention of letting the 

type of strategy they used to back their 

affirmation be known; in these cases, the 

teacher’s participation ensued, who, as 

previously mentioned, provided depth with 

her complementary comments, with the 

purpose of endorsing the child’s 

participation, even if not directly, as well 

as to explain and make relations and 

concepts involved in the rules used by the 

student explicit (for which she resorted to 

the EGUR and the EGCP, among others).  

FINAL REMARKS 

Using the ethnographic analysis shown here, based on the notion of Culture of 

Rationality, there is interest in discovering the rationality that –from the necessarily 

interpretational view of the investigators– dominates the ordinary mathematics 

classroom, in attempts to distinguish what occurs there from what is desirable.  

Without a doubt it would be ideal for students in a classroom to be educated in the 

Culture of Rationality that school mathematics define in the curriculum, and that as 

students make scholarly progress, this rationality leans more towards that of 

disciplinary mathematics. However, to achieve these objectives, it is currently 

essential, among other things, that teacher and those involved in his formation 

approach the classroom with an open view so that they may discover and take 

conscience of the rationality that truly dominates the classroom and based on which 

students are enculturated (Morselly & Boero, 2009) on a daily basis.  

Every school and every mathematics class has its own culture in terms of the 

knowledge, beliefs and values of its participants. The culture will differ from one class 

to another. Although with this in mind it is ‘rationally’ to be expected, it continues to 

be astounding how well articulated her practice is and the clear and recognizable 

presence of a rationality structure, with systemic and clear backing rules, and 
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trajectories of participation that are consistent with said rules.  This offers the junction 

between the terrain of pure description and that of prediction, because although the 

culture is not deterministic, the regularity in the teacher’s practices –integrated and 

organized in the Culture of Rationality as an interpretative construct– they provide the 

well founded possibility of foreseeing the actions and decisions of the mentor from a 

reasonable range of options. This way, the Culture of Rationality and the theoretical-

methodological instruments suggested and applied here may become useful tools for 

teachers and the people involved in their formation to achieve the objectives posed in 

the preceding paragraph. 
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Using Variation Theory, preservice teachers’ specialized content knowledge (SCK) of 

place value was qualitatively analysed. The notions of discernment, critical features, 

and critical aspects helped to characterize PSTs’ SCK by revealing the variety of ways 

they interpreted a student’s erroneous solution to a subtraction task.  

INTRODUCTION 

Building upon Shulman’s notion of pedagogical content knowledge (1986), Ball, 

Thames, and Phelps (2008) developed the Mathematical Knowledge for Teaching 

framework. The framework identifies three discrete but related subdomains of both 

subject matter and pedagogical content knowledge. One of the subdomains of subject 

matter knowledge is referred to as Specialized Content Knowledge, or SCK. It 

describes the knowledge needed by teachers to analyse students’ solutions, recognize 

the existence of multiple solution strategies, understand unusual student solutions, and 

ultimately analyse student errors for misconceptions (Ball et al., 2008). Teachers use 

their SCK to analyse and make sense of students’ approaches and errors in order to 

maximize the learning potential of tasks (Sullivan, Clarke, & Clarke, 2013). Because 

selecting tasks and analysing students’ thinking on those tasks is a significant aspect 

of teaching practice, determining approaches to support preservice teachers (PST) in 

developing SCK is important. While there have been attempts to characterize and 

improve PSTs’ SCK (e.g., Morris, Hiebert, & Spitzer, 2009; Rayner, Osana, & Pesco, 

2013), the literature lacks a coherent framework for examining PSTs’ SCK to analyse 

student errors. We propose Variation Theory (Marton & Booth, 1997) as one such 

framework; it is a versatile theory of learning and has been used to inform task 

development for PSTs (Nicol & Bragg, 2009), analyse the mathematical content 

implemented in lessons (Fermsjö et al., 2014), and assess student learning following a 

lesson (Olteanu, 2014).  

This paper highlights the potential of Variation Theory as an analytical tool to examine 

PSTs’ SCK of place value. It draws upon data collected from a larger mixed methods 

study focused on understanding the role of conceptual and procedural knowledge in 

how PSTs made sense of a hypothetical student’s erroneous solution to a subtraction 

task. This paper extends that research to examine PSTs’ knowledge from a more 

expansive qualitative perspective. It seeks to better understand the kinds of 

interpretations PSTs offered and in doing so provides insight into how PSTs might be 

supported in their learning of SCK in their teacher education programs.  

REVIEWING THE LITERATURE 
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SCK requires conceptual knowledge, procedural knowledge, and an understanding of 

how conceptual and procedural knowledge are interrelated (Ball et al., 2008). It seems 

reasonable, therefore, to examine the development of SCK in terms of conceptual and 

procedural knowledge. To better understand PSTs’ SCK, Royea and Osana (2012b) 

designed a study to determine the effects of various lesson sequences on elementary 

PSTs’ knowledge of place value and multi-digit arithmetic. Building on the 

mathematical knowledge acquisition research on K-12 students (Rittle-Johnson & 

Koedinger, 2009), the study compared the effects of three different lesson sequences 

(teaching concepts before procedures, teaching procedures before concepts, and 

iterating teaching between concepts and procedures) for developing PSTs’ conceptual 

and procedural knowledge, and SCK. Using a three condition pretest-posttest 

experimental design, the results of the study were analysed both quantitatively (Royea 

& Osana, 2012b) and qualitatively (Royea & Osana, 2012a). Where statistically 

significant changes in the PSTs’ knowledge were revealed by the quantitative analysis, 

qualitative analyses were performed to better understand the nature of these 

improvements. More specifically, Grounded Theory techniques (Corbin & Strauss, 

2007) were used to openly analyse the data to look for common themes across the 

PSTs. The themes that emerged were then used to code the data. For SCK, a statistically 

significant main effect of time was revealed and four qualitative themes emerged from 

the PSTs’ interpretations of the hypothetical student’s work on a subtraction task. That 

is, the PSTs’ explanation of the student’s work was either: (a) strictly procedural in 

nature, as indicated by PSTs’ use of terminology associated with a procedural 

understanding of place value such as “borrowing” or “taking from” and references to 

procedural steps; (b) strictly conceptual, as indicated by terminology associated with 

conceptual understanding, such as “regrouping” and explanations about conceptual 

rationales; (c) a combination of procedural and conceptual explanatory elements, but 

with no connections made between the concepts and procedures; or (d) a combination 

of procedural and conceptual elements with connections between the concepts and 

procedures used (Royea & Osana, 2012a).  

Although examining PSTs’ SCK strictly in terms of conceptual and procedural 

knowledge provided some understanding of the nature of their knowledge, such a focus 

is also limited. First, while being distinct at certain levels, conceptual and procedural 

knowledge are closely related and have been shown to be difficult to separate in 

practice (Hiebert & Wearne, 1996). Therefore, it is simplistic to conclude that PSTs 

lack conceptual knowledge or coordinated conceptual and procedural knowledge when 

they use exclusively procedural language in articulating their thinking. Among other 

explanations, it is possible that their procedural language was learned from previous 

instruction, and is thus the most direct way for them to express their thinking. This 

account this does not preclude their understanding of more than the procedures they 

tend to favour in their explanations. Furthermore, aside from potential flaws in the 

criteria used by Royea and Osana (2012a) to investigate the nature of the knowledge 

used by PSTs in their interpretations of the student’s response, the Grounded Theory 
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analysis did not provide a complete picture of the PSTs’ SCK either. Even though 

Suzuka et al. (2009) explicitly delineate the important role such knowledge plays in 

teachers’ interpretations of students’ mathematical productions, the Grounded Theory 

analysis did not reveal the variety of ways the PSTs interpreted the student’s 

misconceptions. This led us to the question: What other analytical tools are available 

to describe PSTs’ SCK as measured by their analysis of a hypothetical student’s 

erroneous solution to a multi-digit subtraction task? 

THEORETICAL FRAMEWORK 

As a type of knowledge uniquely required for the work of teachers, SCK plays a vital 

role in teaching for understanding. The SCK tasks relevant to the present study include 

being able to understand the conceptual underpinnings of mathematical procedures, 

acknowledge multiple solution strategies, interpret students’ mathematical 

productions, and use appropriate mathematical language. Variation Theory has 

promise as an analytical tool to describe these aspects of PSTs’ SCK. Variation Theory 

views learning as a function of the learner’s awareness. It places particular emphasis 

on how the learner’s attention is drawn to aspects of the object of learning (Marton & 

Booth, 1997). Learning is characterized as seeing an object of learning with a more 

thorough understanding, within a wider perspective, or even in a completely new way 

(Lo, 2012). Discernment, simultaneity, and variation are three integral components of 

Variation Theory (Marton & Booth, 1997). As an analytical tool, the notion of 

discernment is of particular interest. Discernment refers to an ability to go from a 

holistic experience of an object to experiencing the different parts or features of an 

object. All objects have a multitude of features. The way any given object is understood 

is determined by which critical features are placed in focus. As a result, teachers and 

students may see the same object in dramatically different ways. To create the 

necessary conditions for students to understand an object in the way the teacher desires, 

identification of the object’s critical features is needed. While a critical feature is the 

value of a dimension of variation, a critical aspect refers to a dimension of variation 

that needs to be developed to see an object in the desired way (Marton & Booth, 1997). 

For example, to understand ¼ as a part-whole relationship, at least two aspects of the 

fraction, or object of learning, need to be discerned: (a) the numerator represents the 

number of parts being referred to; and (b) the denominator represents the number of 

parts into which the whole is equally divided. Some students, however, see “¼ of a 

pizza” as one pizza divided into four parts instead of one part of a pizza that is divided 

into four parts (Mack, 1995). For these students, their understanding of the numerator 

represents a critical aspect.  

A teacher’s ability to identify and draw out critical features of something to be learned 

affects student learning. At the same time, discerning critical features can be 

particularly difficult for a teacher because these features are often taken for granted 

(Lo, 2012). Therefore, in addition to having a deep understanding of mathematics, 

teachers must be able to discern the critical features of an object of learning and 

furthermore identify the critical aspects responsible for student learning difficulties. In 
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terms of SCK, this means that teachers would draw upon this form of knowledge to 

adequately discern critical features and aspects from students’ mathematical work. 

Analysing students’ mathematical productions to identify their understandings and 

misconceptions requires identifying the critical features and aspects of a specific 

mathematical task. Although Marton and Booth (1997) indicate that teachers should 

empirically determine critical features through carefully designed assessments, Lo 

(2012) points out that most critical features can be discerned through careful reflection 

and analysis of students’ work.  

For our study, we described the PSTs’ SCK in terms of the critical features and aspects 

discerned while performing an error analysis of a subtraction problem with regrouping. 

The participating PSTs analysed the hypothetical student’s solution before and after 

completing the intervention in the larger study (Royea & Osana, 2012b). Only the 

PSTs’ interpretations of the student’s work after the intervention were analysed here 

using Variation Theory to explore how the theory may be used to provide a more 

complete portrait of their SCK.     

METHODOLOGY 

Participants were 31 PSTs enrolled in a four-year elementary teacher education 

program at an urban, English language university in Canada. All the PSTs were 

registered in the first of three required teaching mathematics methods courses and had 

completed the intervention as described in the Royea and Osana (2012b) study. The 

majority of the PSTs were female (n = 30) with the ages ranging from 19 to 43 years. 

All of the PSTs but one reported having some teaching experience in the form of 

internships, tutoring, or classroom teaching. The item that was used for this extended 

analysis was a task designed to assess a specific aspect of the participants’ SCK: their 

ability to interpret an elementary students’ erroneous solution to a multi-digit, 

vertically presented, subtraction with regrouping problem (see Figure 1).  

The standard procedure for the operation in the subtraction task is to decompose the 

hundred into 90 tens and 10 ones, add the 10 ones to the existing 4 ones, and then 

subtract the 9 ones to arrive at a difference of 95. In the case of the hypothetical student 

depicted in the written work (Figure 1), it appeared that the student either decomposed 

the hundred into a group of 10 or may have decomposed the hundred into tens and ones 

but neglected to record the number of groups of ten that remained. Being able to 

recognize if the student’s answer was correct or incorrect requires common content 

knowledge (Ball et al., 2008), but analysing the student’s mathematical production to 

determine the nature of the error requires flexible thinking and meaning making that is 

unique to SCK (Ball et al., 2008; Suzuka et al., 2009). We examined the PSTs’ written 

analyses of the student’s solution to identify the critical aspects and features of the 

subtraction problem that were discerned by the PSTs. To demonstrate adequate SCK, 

PSTs were required to provide a reasonable explanation of the student’s work as 

evidenced by the student’s mathematical production while also identifying the critical 

aspect that needs to be developed for the student. In this case, the critical aspect for the 
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student is the need to recognise the positional values of the numbers at regrouping. We 

took detailed notes about the features and aspects discerned by the PSTs as indicated 

by their written interpretation of the student’s work.  

Instructions: Look at the solutions below produced by an elementary school student. 

Indicate if the student got the right answer. If the student solved the problem correctly, 

explain the steps used. If the student solved the problem incorrectly, describe the mistake(s) 

made by the student. 

 

The student’s work: 

 

 

Figure 1. Multi-digit Subtraction SCK Item 

RESULTS 

SCK includes the knowledge and skills required to be able to unpack and repack 

mathematical knowledge in order to appropriately evaluate and address students’ 

mathematical understandings, misunderstandings, and “why” questions. When we 

used the notions of discernment, critical features, and critical aspects to analyse the 

PSTs’ interpretations of the student’s solution, we uncovered elements of their SCK 

that were not made explicit by our previous Grounded Theory analysis. Specifically, 

examining the PSTs’ responses in term of critical features revealed the variety of ways 

that PSTs actually interpreted the student’s erroneous solution.  

PSTs either analysed what the student had done using the evidence provided in the 

student’s work, described what the PST thought the student should have done, or 

provided an unacceptable response. Fourteen of the PSTs’ responses were judged to 

have adequately demonstrated appropriate SCK in their analysis of the student’s work. 

Responses that we considered adequate demonstrations of SCK were those that 

reasonably and clearly explained what the student may have done based on the limited 

evidence that was provided and used appropriate mathematical language. For example, 

the PST quoted below discerned why regrouping was required and provided an 

explanation that was reasonable based on the evidence provided in the student’s work. 

There were no drastic leaps in the interpretation or errors in the mathematical language 

used.  

The student recognized that 9 could not be subtracted from 4 and therefore borrowed from 

the 1 in the hundreds column and the 0 in tens column at the same time in order to add ten 

ones to the 4 in the ones column but the student forgot or didn’t know to write down that 

there are nine tens left in the tens columns. Because of that, the answer is off by 90.  

Most of the PSTs discerned at least some of the critical features, even if their responses 

did not always reflect well-developed SCK. Table 1 presents the frequencies of the 

types of interpretations of the student’s work. 
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Type of PST Response Description  Frequency  

Analysed Student Response based 

on Evidence Provided 

Regrouped tens and hundreds 

simultaneously 

14 

 Thought was borrowing tens rather than 

hundreds  

2 

Described What Student Should 

have Done 

Two phases of regrouping required 13 

Unacceptable Inaccurate/Unclear 2 

 Total 31 

Table 1: Distribution of Features of Student Solution Discerned 

PSTs’ responses that analysed the student’s work based on the evidence provided were 

further categorized as either interpreting that: (a) the student regrouped the tens and 

hundred simultaneously but did not record the number of tens that remained; or (b) the 

student thought he/she was borrowing from the tens but borrowed from the hundreds. 

Fourteen of the PSTs in this study interpreted the student’s work as containing the 

regrouping error described in (a) and 2 interpreted the student’s work as borrowing 

from the wrong column as described in (b). Below is an example of a PST who 

indicated that the student had regrouped the tens and hundreds simultaneously. We did 

not consider the response adequate in terms of demonstrating well-developed SCK 

because the mathematical language used was not sufficient. 

[the student]…borrowed from the neighbour to subtract 9 from 14 but cancelled out the 

100 when it should have become a 9 in the tens place. 

Rather than analysing the student’s work for what the student actually did, 13 PSTs 

described instead what the student should have done to get the correct answer. All of 

these PSTs indicated that to get the correct answer the student should have regrouped 

in two phases. That is, for the first phase the student should have regrouped the 

hundreds to tens, and for the second phase, from tens to the ones. For example: 

...[the student] understood that 9 couldn’t be subtracted from 4… and borrowed from the 

1 hundred directly to the ones column when he should have borrowed from the 1 hundred 

to the tens to make the zero a ten and then from the tens to the ones to make 9 and 14. Here, 

they didn’t have the 9 to bring down to the answer. 

We suggest that describing what the student should have done indicates incomplete 

SCK because it does not take two important components into account: acknowledging 

the possibility of multiple solutions to the same task and understanding unusual student 

solutions (Ball et al., 2008).  

Two of the PSTs provided responses to the task that were considered unacceptable 

because the responses were unclear or inaccurate. For example, the following PST 

response does not explain what the student may have done and reverses the digits in 

the one’s place. Furthermore, it is unclear and does not use appropriate language. 
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[The student] took the 1 and the 0 and perceived it as a ten when he could have just 

subtracted the 4 from the 9. The student does not understand that the 10 comes from the 

value of the number to its left and is transferred to the number on the right. 

DISCUSSION 

Using different theoretical perspectives to examine the same data can shed new light 

on research findings (Cobb & Yackel, 1996). In our study, a Variation Theory-based 

analysis complemented the previous Grounded Theory analysis of PSTs’ SCK (Royea 

& Osana, 2012a). While the Grounded Theory analysis provided insight on the 

conceptual and procedural nature of PSTs’ SCK, using the notions of discernment and 

critical features helped reveal the particularities of the PSTs’ interpretations of the 

student’s work. That is, the Variation Theory perspective helped characterize PST 

developing conceptions of SCK as their understandings of the critical features of the 

task emerged. Using Variation Theory in this way also provides insight on the features 

that remain critical to the PSTs’ SCK development such as acknowledging multiple 

solution strategies and understanding unusual solutions. Insights on the features that 

remain critical to PSTs’ SCK can inform teacher educator’s pedagogical decisions 

when selecting and designing tasks that use patterns of variations to help develop PSTs’ 

mathematical knowledge for teaching. At the same time, a single, brief, written 

analyses of a student’s work provides only limited information about PSTs’ SCK. 

Future research investigating a variety of tasks requiring this knowledge and extended 

contact and discussion with PSTs would yield more information on the potential value 

of using Variation Theory to analyse and develop SCK. Consistent with the view that 

Variation Theory can be used to better understand the relationship between 

mathematics, teaching, and student learning (Runesson, 2013), our work demonstrates 

that Variation Theory can be productively used to characterize SCK. 
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HOW CHALLENGING TASKS OPTIMISE COGNITIVE LOAD 

James Russo 

Monash University 

 

This theoretical paper argues that the reform in mathematics towards more problem-

based learning can be made consistent with cognitive load theory through the use of 

carefully designed challenging tasks. It is argued that such tasks can provide the 

benefits of problem-based approaches whilst being cognisant of the issue of cognitive 

overload. Possible directions for future research are suggested. 

CONTEXT: A REFORM IN MATHEMATICS TOWARDS PROBLEM-

BASED APPROACHES 

Over the past several years, there have been calls to reform mathematics education in 

Australia to increase the amount of time students spend engaged in deep problem 

solving (e.g., Hollingsworth, Holden, & McCrae, 2003). This reform has paralleled 

similar developments in other countries, particularly the United States. For example, 

teachers have been encouraged to utilise more cognitively demanding tasks to better 

engage students in rich mathematical discussions (e.g., Stein, Engle, Smith, & Hughes, 

2008). As part of this reform process, it has been argued that traditional lesson 

structures (i.e., teacher explanation, followed by student practice and correction) are 

inherently inadequate for meeting contemporary mathematical learning objectives 

(Sullivan et al., 2014). Instead, reform-oriented teaching approaches have frequently 

employed a triadic lesson structure: Launch, Explore, Discuss (Stein et al., 2008). The 

lesson begins with the launch phase during which the teacher introduces students to the 

task, which generally represents a challenging problem to be solved. During the 

explore phase, students work on the problem, sometimes collaboratively, while the 

teacher provides support and guidance. Finally, after students have spent sufficient 

time engaged with the problem, the lesson enters the discuss phase, during which time 

various student-generated approaches to the problem and possible solutions are 

discussed. The teacher generally finishes by offering some form of summary comment 

(Stein et al., 2008). 

There is some support for the notion that this Launch-Explore-Discuss lesson structure, 

which can be characterised as a form of problem-based learning, more effectively 

meets the contemporary aims of mathematics education. For example, there is 

empirical evidence to suggest that higher-order mathematical goals, such as the ability 

to reason and think critically, are more likely to be realised when students are given an 

opportunity to explore concepts prior to direct instruction (Marshall & Horton, 2011). 

Furthermore, building a lesson around students first tackling a cognitively demanding 

task may improve student persistence, as students work through the “zone of 

confusion” (Sullivan et al., 2014, p. 11).  
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However, this recent emphasis on problem-based learning in mathematics is not 

without its critics, particularly within certain branches of educational psychology. In 

particular, some cognitive load theorists have argued that launching a lesson with a 

cognitively demanding activity, which is not explicitly linked to teacher instruction and 

prior learning, is problematic (Sweller, Kirschner, & Clark, 2007). This argument, 

which is briefly elaborated below, is based on the idea that our working memory has 

limited capacity to process novel information, and is therefore easily overloaded when 

required to solve an unfamiliar problem (Sweller, 2010).  

CRITIQUE OF PROBLEM-BASED APPROACHES 

It has been asserted that an understanding of human cognitive architecture should lead 

to the unequivocal rejection of problem-based, and other “minimally-guided”, 

approaches to learning (Kirschner, Sweller and Clark, 2006, p. 75). Specifically, 

Sweller, and colleagues argue that such pedagogical approaches are less effective than 

traditional learning approaches that rely more on carefully scaffolded direct instruction. 

The relative ineffectiveness of minimally-guided approaches is thought to be due to 

unnecessary and irrelevant cognitive load (extraneous cognitive load) brought about 

by poor instructional design, and/or the overly ambitious nature of the learning 

objectives resulting in the cognitive load inherent in the learning task (intrinsic 

cognitive load) being too high (van Merrienboer & Sweller, 2005). In either case, it is 

contended that adopting minimally-guided approaches tends to result in cognitive 

overload. This unsustainably high load in turn impedes the formation of new schemas, 

thus undermining learning (Sweller, 2010). 

This assertion outlining how cognitive load theory establishes the superiority of direct 

instruction over minimally-guided approaches is not uncontroversial and has attracted 

a number of critical commentaries (e.g., Schmidt, Loyens, van Gog, & Paas, 2007). 

Sweller and colleagues, however, maintain that proponents of minimally-guided 

approaches are choosing to ignore contemporary knowledge of human cognition when 

designing instruction (Sweller et al., 2007):  

The process of discovery is in conflict with our current knowledge of human cognitive 

architecture which assumes that working memory is severely limited in capacity when 

dealing with novel information sourced from the external environment but largely 

unlimited when dealing with familiar, organized information sourced from long-term 

memory. If this view of human cognitive architecture is valid, then by definition novices 

should not be presented with material in a manner that unnecessarily requires them to 

search for a solution with its attendant heavy working memory load rather than being 

presented with a solution (Sweller et al. 2007, p. 116). 

However, the current paper will contend that Sweller and his colleagues’ critique of 

minimally-guided approaches is an overreach, as it does not apply to some of the more 

nuanced approaches to problem-based learning that have evolved in mathematics 

education. Specifically, the current paper will advance several arguments in support of 

the notion that launching a lesson with a challenging problem is in fact consistent with 

our knowledge of human cognitive architecture, provided that the tasks themselves 
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meet particular criteria. Moreover, this analysis will be couched in language and ideas 

central to cognitive load theory.  

WHAT ARE CHALLENGING TASKS? 

Sullivan and Mornane (2013) describe challenging tasks as complex and absorbing 

problems with multiple solution pathways. Such problems are presented to the entire 

class, with the teacher encouraging all students to make an attempt at the problem. 

After a student has spent some time in the ‘zone of confusion’ and remains unsure how 

to proceed, he or she is given access to ‘just in time’ support through ‘enabling 

prompts’ (Sullivan, Mousley, & Zevenbergen, 2006). Enabling prompts reduce the 

intrinsic cognitive load of the task through changing how the problem is represented, 

helping the student connect the problem to prior learning and/ or removing a step in 

the problem (Sullivan et al., 2006). Students who complete the problem early are given 

access to an ‘extending prompt’. This is designed to expose the student to an additional 

task that is more challenging, however requires them to use similar mathematical 

reasoning, conceptualisations and representations as the main task. 

Consequently, challenging tasks can be viewed as a subset of problem-solving tasks 

that meets specific criteria. Adapted from the work of Sullivan and his colleagues (e.g., 

Sullivan & Mornane, 2013), criteria relevant to the issue of optimising cognitive load 

are presented below.  

The task must: 

be solvable through multiple means (i.e., have multiple solution pathways) and may have 

multiple solutions; 

involve multiple mathematical steps (i.e., as opposed to a single insight facilitating 

completion of the problem); 

have at least one enabling prompt and one extending prompt developed prior to delivery 

of the lesson;  

involve students having primary control over how they are able to approach the task and 

when they are able to access enabling and extending prompts, within some 

constraints established by the teacher. 

HOW CAN CHALLENGING TASKS REDUCE EXTRANEOUS COGNITIVE 

LOAD? 

This section introduces two effects discussed in the cognitive load literature which 

have been linked empirically with extraneous cognitive load. It is argued that 

challenging tasks possess particular structural characteristics that allow them to 

leverage off these effects, reducing extraneous cognitive load relative to more teacher-

directed learning approaches.  

Goal-free (and means-free) effect 

One of the earliest ideas within cognitive load theory to gain empirical support was the 

notion that goal-free tasks can reduce extraneous cognitive load through reducing 
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reliance on a cognitively taxing means-end analysis (Sweller, 1988). Sweller argued 

that the absence of established schema require individuals to problem solve through 

adopting a means-end analysis. Although he acknowledges this may be an efficient 

means of solving a problem, he argues that it places a substantial strain on working 

memory. Specifically, he suggests that using a means-end analysis requires the 

problem solver to continually hold in mind several elements simultaneously, including 

the original problem state, the end goal state, how the two states relate to one another, 

strategies and operators that could bridge the two states and any sub-goals that the 

problem solver needs to reach as he or she works through a problem. He suggested that 

this substantial extraneous load inhibits learning, because building an appropriate 

schema to understand how the relevant concepts interrelate and solving the problem 

are not compatible goals. Sweller suggested that to circumvent this issue, instructors 

should provide students with goal-free problems, which allow them to more 

comprehensively explore and comprehend a concept. Empirical support for the goal-

free effect is well established within the literature (e.g., Bobis, Sweller, & Cooper, 

1994). 

Challenging tasks are open-ended in the sense that they may have multiple solutions. 

This may result in lower extraneous cognitive load, as described by the goal-free effect. 

Perhaps more importantly, the fact that challenging tasks have multiple solution-

pathways means that they may have a lower (extraneous) cognitive load compared with 

traditional learning approaches, which emphasise algorithms and ‘one-best method’. 

This may be termed a ‘means-free effect’. The rationale is similar to the goal-free 

effect. Essentially, through ensuring that there are multiple viable pathways to a 

particular solution, instructors are increasing the probability that learners have some 

prior knowledge of strategies that can bridge the problem and solution states. 

Moreover, it is likely that the search time for locating an appropriate strategy is 

reduced, as learners only have to recall one of the multiple means of solving the 

problem to proceed. Similarly, there is likely to be less emphasis on reaching a specific 

sub-goal, and even when a particular sub-goal is still vital to solving the problem, there 

are almost certainly multiple pathways for reaching that sub-goal. To summarise, this 

enhanced connectivity between the problem and solution states reduces the cognitive 

load required to productively engage in the problem, and, therefore, enhances the 

likelihood of learning occurring.  

Reducing/ removing the expertise reversal effect 

Many of the mechanisms and techniques that have been associated with lower 

extraneous cognitive load when learners are novices have a paradoxical effect when 

learners are more expert (Kalyuga, 2007). For example, Renkl and Atkinson (2003) 

argued that as learner experience with a particular problem type increased, they should 

progress from worked examples, to completion problems, and finally to fully intact 

problems. They demonstrated empirically that attempting to provide experts with more 

scaffolding than they required actually inhibited their learning. This perhaps counter-
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intuitive finding within the cognitive load literature has been termed “the expertise 

reversal effect” (Kalyuga, 2007, p. 509). 

The expertise-reversal effect has been attributed to another phenomenon within 

cognitive load theory, termed the redundancy effect (Kalyuga, 2007). Specifically, 

requiring experts to process additional information intended to support learning but 

irrelevant to their learning needs unnecessarily burdens their working memory, 

resulting in an extraneous cognitive load. It has been suggested that, in order to reduce 

the expertise-reversal effect and optimise how much support is provided to learners, 

learning environments need to be tailored so they can adapt to learner expertise 

(Kalyuga, 2007). Challenging tasks include enabling prompts to provide scaffolding 

for a problem for those students who require it. Students are primarily responsible for 

determining if and when they should access these prompts. Structuring support in this 

manner can reduce the likelihood of the expertise reversal effect inhibiting learning.  

While it can be argued that all problem-based approaches by definition reduce the 

expertise-reversal effect because their low-support approach fundamentally caters to 

the needs of experts, challenging tasks appear to do so without compromising the level 

of support offered to non-expert learners. Through the withholding of information, 

which would otherwise simplify or breakdown the problem (i.e., not automatically 

providing all students with the enabling prompts), experts are not provided with 

potentially redundant information.  

A further strength of the challenging task approach is that no initial judgements need 

be made by the teacher in relation to the expertise of the student, and therefore the level 

of scaffolding and support they will require. Instead, students self-select based on their 

perceptions of the difficulty of the task. Although teachers clearly have a role in 

encouraging students who are struggling unproductively with a task to access an 

enabling prompt, this self-determination increases the accuracy with which expertise 

is identified. This in turn should serve to further reduce the expertise-reversal effect, in 

comparison to less precise ways of determining expertise with a given task (e.g., 

relying on past test scores). In a more general sense, the use of prompts potentially 

optimises the level of challenge inherent in the task (i.e., the intrinsic cognitive load).  

HOW CAN CHALLENGING TASKS OPTIMISE INTRINSIC COGNITIVE 

LOAD? 

Intrinsic cognitive load is determined by the extent to which the various elements 

inherent in a particular learning task interact (Sweller, 2010); in other words, task 

complexity (Schnotz & Kurschner, 2007). A large number of interacting elements 

requiring simultaneous information processing suggests a high intrinsic cognitive load. 

In addition to task complexity, intrinsic cognitive load is also determined by the extent 

of the learner’s expertise with similar tasks (which will impact on subjective task 

complexity) and the level of outside support provided to tackle the task (Schnotz & 

Kurschner, 2007). In contrast to extraneous cognitive load, the level of intrinsic 

cognitive load is considered fixed for an individual with a given level of expertise. 
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Changing the level of intrinsic cognitive load can only be achieved through altering the 

task, which in turn would imply different learning objectives (Sweller, 2010). 

To maximise learning, intrinsic cognitive load needs to be at an appropriate level as 

determined by the interaction between the complexity of the problem and the expertise 

of the learner (Sweller, 2010). If intrinsic cognitive load is too high, students will 

become overloaded and learning will not occur. However, if intrinsic cognitive load is 

too low, learning is also undermined. Not only is cognitive capacity underutilised, but 

as Schnotz and Kurschner (2007) argue, more expert learners may choose to disengage 

and ‘tune out’ if the challenge inherent in the task is inadequate. Essentially this last 

point is an alternative interpretation of the expertise-reversal effect discussed earlier.    

It is proposed that challenging tasks can optimise the level of intrinsic cognitive load 

through learners utilisng enabling prompts and extending prompts on a ‘just in time’ 

basis. In the first instance, accessing sequenced enabling prompts can reduce the 

amount of interactivity amongst the elements of the task until the task is at an 

appropriate level of challenge for a given learner’s expertise. For example, consider a 

challenging task for a Grade 2 student: “Can you add all of the digits from one to nine 

together, and explain your approach to a partner?” The first enabling prompt may 

represent the task for the student as a number sentence (1+2+3+4+5+6+7+8+9=), 

making the problem to be solved far less opaque and unfamiliar. The second enabling 

prompt may remind students that they do not need to add numbers in the order they are 

first presented in. The third enabling prompt may ask students to consider if they can 

see any number bonds equalling ten, and the fourth enabling prompt may provide 

students with some examples of number bonds equally 10 taken from the problem (i.e., 

1+9; 2+8). In contrast, an extending prompt essentially attempts to increase the number 

of interacting elements to make the problem more challenging. For example, modifying 

the above challenging task so that multi-digit numbers need to be added (e.g., “Can 

you add all of the numbers from eleven to twenty together?”) introduces additional 

place-value elements to the task (i.e., adding multi-digit numbers; understanding place-

value to 3-digits).  

It needs to be noted that in using prompts to enable the activation of requisite 

knowledge and facilitate the creation of new ‘intermediate’ knowledge, the nature of 

the problem has been changed and therefore the learning objectives of the task have 

been somewhat altered. However, although students are in reality working on slightly 

different problems, critically they have a similar experience in having worked on the 

same challenging task. This enables them to actively participate in the discussion 

component of the lesson, and reflect on the key mathematical concepts explored. 

Indeed, systematically modifying intrinsic cognitive load by reducing or increasing the 

number of elements and/or the interactions between elements without undermining the 

primary learning objective has some precedent within cognitive load theory (see the 

part-whole approach; van Merrienboer, Kester & Paas, 2006). 
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Consequently, if a particular learning objective is a central focus of a lesson, it should 

not be compromised by any of the enabling prompts. For example, in the task outlined 

above, if the primary learning objective was for students to be able to translate worded 

problems into number sentences, then the first enabling prompt, which effectively does 

this for the student, is clearly not appropriate.  

SUMMARY AND FUTURE RESEARCH DIRECTIONS 

Whilst there is some evidence that the reform in mathematics education towards 

problem-based learning has been efficacious (e.g., Marshall & Horton, 2011), other 

authors cite evidence that problem-based approaches impose too high a cognitive load, 

and therefore undermine learning (e.g., Sweller et al., 2007). This paper has argued that 

teaching with challenging tasks can provide the benefits of problem-based approaches 

(e.g., higher order thinking, persistence) whilst being cognisant of the issue of 

cognitive overload. There are at least two lines of future research suggested by the 

arguments put forward in this paper.  

Firstly, the contention that enabling and extending prompts effectively modify the 

intrinsic cognitive load of a task so that it is optimised for a given learner could be 

examined in a classroom context. This would require multiple measurements of 

cognitive load to be taken during a particular lesson, as well as data around whether 

students perceive the level of challenge on offer as optimal. Changes with respect to 

learners’ perceptions of cognitive load and challenge optimality could then be 

examined in relation to time.  

Secondly, student learning outcomes achieved in classrooms adopting the Launch-

Explore-Discuss lesson structure could be contrasted with student learning outcomes 

achieved by classrooms adopting more traditional lesson structures (i.e., lessons 

beginning with a period of teacher-facilitated instruction). This would get to the heart 

of the debate by addressing concerns about whether problem-based learning contexts 

generate extraneous cognitive load, therefore undermining student learning. Any such 

study would need to ensure that both classroom types essentially contained the same 

content and pedagogy, with lesson structure being the only factor allowed to vary.   
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MEASUREMENT ESTIMATION IN PRIMARY SCHOOL:  

WHICH ANSWER IS ADEQUATE? 

Silke Ruwisch, Marleen Heid, Dana Farina Weiher 

Leuphana University Lueneburg, Germany 

 

Measurement estimation is seen as an important part of mathematics learning, 

although still very little is known about children’s abilities in this respect. To make 

matters worse, criteria for the adequacy of estimates are arbitrarily chosen and differ 

in studies on this topic. If teachers have to evaluate students’ estimation performances, 

they need criteria, too. In this paper, we first present some of those studies and their 

criteria for adequacy. These criteria are evaluated and prepared for discussion by 

applying them to data from an interview study with 4th grade students estimating length 

and capacity. This empirical basis for discussion is complemented by data of expert 

opinions about the items and children’s results. 

INTRODUCTION 

Mathematics in primary school is usually seen as a discipline of precision. Children 

have to learn how to calculate correctly. Even lessons in measurement encourage 

students to measure as accurately as they can. For this reason, students gain a one-sided 

picture of mathematics as a discipline. But as Freudenthal stated already in 1978, there 

are two different ‘worlds of mathematics’ that have to be known by students: one in 

which precision is virtuous and one in which it is vicious.  

Depending on the context and the questions one tries to answer, numbers and measures 

have to be more or less accurate. Whereas calculation is a procedure in the exact world 

of mathematics, estimation is an integral part of the second view of mathematics. 

Therefore, estimation recently gained more attention in the curricula of different 

countries such as Germany or Taiwan (see Huang, 2014).  

In our study, we are mainly interested in strategies fourth-graders use to estimate length 

and capacity (see Ruwisch & Heid, 2015). Interpreting the answers quantitatively as 

well, we realised that there is no clear criterion that allows us to decide, whether an 

estimation is a good one. Although some studies about measurement estimation had 

also included a quantitative analysis (e.g. Swan & Jones, 1980; Hildreth, 1980; Siegel, 

Goldsmith, & Madson 1982; Clayton 1992; Jones, Forrester, Gardner, Andre, & 

Taylor, 2012; Huang, 2014), the authors used different criteria for this decision. This 

fact motivated us to take a closer look at those criteria and evaluate them here by 

applying them to our data.  

THEORETICAL BACKGROUND 

Estimation processes in mathematics lessons can be divided into three different 

contents: computational estimation, numerical estimation, and measurement 

estimation (O’Daffer, 1979; Sowder, 1992). We will restrict ourselves to the last one 
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in this paper. Measurement estimation is a mental process that is thought to be 

analogous to real measurement processes but without handling a measurement tool 

(Bright, 1976; Sowder, 1992). Most research in measurement estimation is focused on 

lengths (see Sowder, 1992; Jones et al., 2012). Since our own study also deals with 

length and capacity, we will mainly focus on items in these measurement areas. 

Adequacy of estimated measures: the terminology 

In the literature dealing with the adequacy of estimated measures, there is also no 

agreement concerning the terminology. Most researchers use ‘accuracy’ (e.g., Swan & 

Jones, 1980; Siegel et al., 1982; Jones et al., 2012; Huang, 2014). In our opinion, this 

term overemphasises the aspect of precision and correctness. Huang (2014) also uses 

‘acceptability’, a term that already includes the scope for decision making by the 

researcher. Other researchers use ‘reasonable estimates’ (Clayton, 1992) or 

‘reasonableness’ (Siegel et al., 1982) as well, but even these terms differ in their 

meaning. Whereas Siegel et al. (1992) call comprehensible estimations ‘reasonable’, 

Clayton (1992) emphasises the complex situation that has to be taken into account 

when deciding the adequacy of estimations. The term ‘adequacy’ which is used in this 

paper, focuses on the equivalence between the estimation and the real measure, and 

may also evoke the association of precision. In German the word ‘angemessen’ is used 

as a synonym for ‘adequate’. ‘Angemessen’ literally means ‘to be measured with 

reference to something else’. In this sense, the adequacy of estimations is dependent 

on a reference point. So one of our questions is: Which reference point(s) can be useful 

to decide, whether an estimated measure is adequate? 

Criteria for adequacy of estimated measures in the literature 

In 1980, Swan and Jones reported about their measurement estimation studies from the 

seventies. 780 elementary school children (Grades 4 to 6) participated in 1971, and 304 

did so in 1977. Every child had to provide written answers to eight estimation 

problems. Four of these problems dealt with length: “two distance intervals one of 

which was between 50 and 75 meters in length, the other 5 to 10 meters in length. […] 

two heights, one of which was about 20 meters tall, and the other shorter (such as a 

flagpole).” (Swan & Jones, 1980: 299). As the authors admitted, they arbitrarily judged 

an estimate within a maximum deviation of 25 % from the real value as ‘accurate’. 

Although the students performed better in 1977, only 13 to 39 % gave an ‘accurate’ 

estimate of the lengths under these conditions. Junior high school students (Grades 7 

to 8) performed significantly better but still poor: 21 to 50 %. Since the authors did not 

present their raw data, no conclusions about the deviations from the real values can be 

drawn. 

In 1980, Hildreth published his PhD dissertation about the use of estimation strategies 

for length and area. Since we were not able to access the entire dissertation, raw data 

and detailed results of this study with 24 fifth-graders, 24 seventh-graders, and 24 

college students cannot be reported here. Nevertheless, it can be stated that Hildreth 

measured the estimation ability by “the number of items on which the relative error 
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was less than 1/3” (phdtree.org/pdf/24304583). Thus, a good estimation deviates 

within a 33 % range from the real value. 

In 1982, Siegel et al. reported about skills in estimating length and numerosity. Six 

different types of estimation problems in four contexts were presented to 20 children 

of each grade (Grades 2 to 8). Two problem types dealt with numbers only, two others 

with length only. The remaining two problem types asked for a combination of 

estimating numbers as well as lengths and to calculate them. Siegel et al. differentiated 

between ‘accuracy’ and ‘reasonableness’. Whereas an ‘accurate’ estimation was 

defined as a maximum deviation of 50 % from the actual value, the authors scored an 

estimation ‘reasonable’, if it was “plus or minus an order of magnitude of the actual 

value” (217). Since the authors were interested in the different problem types no overall 

data were given in the paper. Unreasonable answers only were given if the estimation 

process got difficult (e.g., in the combined estimation problem type). Nevertheless, 

benchmark problems dealing only with length were performed much better than the 

other problem types – no unreasonable answers were observed here – and older 

students performed better in all problem types than did younger students. Again, no 

raw data are given, so no conclusions about the adequacy of the criteria are possible. 

In a recent study Huang (2014) used a two-step process to score the estimated measures 

of 72 fourth-, fifth-, and sixth-graders. In her study she presented 12 problems that 

required the estimation of length and area. In scoring the children’s answers, she 

differentiated between ‘accurate’ and ‘acceptable’. ‘Accuracy’ was defined as a 

maximum deviation of 10 % from the real value and scored by 2 points, whereas 

‘acceptability’ was defined as a maximum deviation of 25 % from the real value and 

scored by 1 point. In length-estimation the children could achieve a maximum of 12 

points. The results show that on average fourth-graders achieve of 5.91 points, whereas 

fifth- and sixth-grader did slightly but not significantly better. Again, no conclusion 

about the adequacy of the evaluating process is possible due to the fact of missing raw 

data. Nearly the same process is used by Hogan and Brezinski (2003). They decided to 

use a three-step scoring: 3 points for an answer within a range of 10 %, 2 points within 

10 to 20 % and 1 point within 20 to 30 %. Since measurement estimation was a very 

small part of the whole study with college students as participants, no further 

information will be presented here. 

Although there are some other suggestions how to evaluate the adequacy of estimations 

– Lörcher (2000) defined accuracy by an interval from the half to the double of the real 

value; Clayton (1992) proposed a logarithmic model, but applied it to numerosity only 

– we will focus on the criteria mentioned above. 

METHOD 

Measurement estimation tasks 

Our tasks for estimating length and capacity were constructed with reference to 

Bright’s (1976) typology of requests in estimating length. First of all, it can be 

differentiated if a suitable measure has to be given to a representative or if a suitable 
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representative has to be found to a given measure. In each case the (possible) 

representatives can be physically present or absent as well as the unit itself may be 

visible or not (for more details see Ruwisch & Heid, 2015).  

If the representatives are given and physically present, it can clearly be said how long, 

wide, tall or high they actually are, when a subject is asked to estimate their lengths. 

This applies equally for the estimation of the capacity of objects: If the representatives 

are given and physically present, it can clearly be said how much capacity they actually 

take.  

Therefore, the answers to these tasks will be chosen for discussing our question 

concerning the adequacy of estimations given by the children. The following objects 

were presented to estimate their lengths: the diameter of the head of a wooden bug 

(5 mm), the length of a piece of chalk (8 cm), the length of a book with an unusual 

format (46 cm), the height of the table (70 cm), and the height of the room (3 m). The 

following objects were presented to estimate their capacities: a test tube (10 ml), a 

small glass (100 ml), a vase (300 ml), a carafe (500 ml or 1 l), and a big pot (3.5 l). 

Sample 

One hundred and thirty fourth-graders from 13 primary schools in the north of 

Germany were involved in this part of the study, but not every child estimated all tasks 

given above. As the data in Table 1 show, the total numbers of answers differ from 77 

(test tube) to 128 (table).  

Table 1: Total numbers of answers to each item 

Although estimation should be part of the curriculum since 2004, none of the teachers 

participating in this study fostered it in their classes. All students were familiar with 

the measurement of length, and had already gone through one unit about capacity 

during this school year. All children were interviewed individually during the second 

half of the school-year; the whole interviews lasted about 20 to 25 minutes (see 

Ruwisch & Heid, 2015 for more details). 

Tasks for estimating length Tasks for estimating capacity 

Item Length Number of 

answers 

Item Length Number 

of answers 

bug 5 mm 117 test tube 10 ml 77 

chalk 8 cm 112 glass 100 ml 116 

book 46 cm 95 vase 300 ml 115 

table 70 cm 128 carafe a) 500 ml 80 

room 3 m 88 carafe b) 1 l 44 

   pot 3.5 l 117 
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On the purpose of comparison, 17 mathematics educators who participated in a 

conference workshop estimated themselves the ten items given above. Afterwards, 

they were asked to evaluate given ranges of deviations. They should choose that range 

they think to be adequate for the evaluation of estimates given by 4th grade students. 

Data 

Table 2 shows the minimum and maximum estimations that were given by any child.  

Tasks for estimating length Tasks for estimating capacity 

Item Actual 

length 

Min. 

estimate 

Max. 

estimate 

Item Actual 

length 

Min. 

estimate 

Max. 

estimate 

bug 5 mm 0.35 

mm 

15 cm test tube 10 ml 1 ml 200 ml 

chalk 8 cm 1 cm 15 cm glass 100 ml 1 ml 1 l 

book 46 cm 3 cm 90 cm vase 300 ml 3 ml 2 l 

table 70 cm 8 cm 1.30 m carafe a) 500 ml 2 ml 2 l 

room 3 m 2 m 6 m carafe b) 1 l 500 ml 3.5 l 

    pot 3.5 l 200 ml 10 l 

Table 2: Maximum deviations from the real values 

For almost all objects an underestimation of nearly 100 % can be found. Only one item 

of the lengths (room: 40 % deviation) and one item of the capacities (big carafe: 50 % 

deviation) show better values. Looking at the overestimations, a greater variety can be 

stated: Whereas the overestimations of the lengths differ by 80 to 100 % from the real 

values, the maximum deviations of the capacities range between 100 and nearly 

2,000 %.  

The same tendencies can be seen in the extremes of the experts’ estimations, although 

the deviations are much smaller.  

If we do not focus on the extremes, but on the means of deviations in the children’s 

estimations, it can be stated, that on average the lengths were mostly underestimated, 

whereas the capacities were underestimated as well as overestimated.  

Length overestimated: room (+2%).  

Length underestimated: table (-6%), book (-17%), chalk (-20%), and bug (-30%).  

Capacities overestimated: glass (+7%), small carafe (+20%), test tube (+68%).  

Capacities underestimated: vase (-11%), big carafe (-15%), pot (-26%).  

Looking at the means of the positive values of deviations, the estimations of lengths 

show a very uniform picture with the positive exception of the room: bug (M 37.8%; 

SD 27.3), chalk (M 31.8%; SD 22.0), book (M 32.2%; SD 23.1), table (M 31.0%; SD 21.0), 

room (M 18.2%; SD 21.4). Perhaps the height of the room is a known value for a greater 
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number of children. The values of the estimated capacities show much greater mean 

deviations as well as very high standard deviations: test tube (M 113.4%; SD 248.1), 

glass (M 93.6%; SD 95.0), vase (M 71.2%; SD 44.4), small carafe (M 42.2%; SD 38.2), 

big carafe (M 27.2%; SD 36.8), pot (M 41.1%; SD 25.1). Again, it may be that the carafes 

are better known than a test tube.  

All in all, the results of the experts show less extreme deviations and were in total 

closer to the real values. But they are more likely to overestimate than to underestimate. 

Since only 17 experts participated, no means and standard deviations are given here. 

THE DATA FROM THE PERSPECTIVE OF DIFFERENT CRITERIA 

Overall application of different criteria 

Tables 3 and 4 show the overall results of the children, and the experts. All estimations 

were accumulated and evaluated by the criteria mentioned above.  

Criteria of ‘accuracy’ 10 % 25 % 33 % 50 % > 50% 

Length (total # answers: 540)      

  absolute  115 255 325 442 98 

  relative 21.3 % 47.2 % 60.2 % 81.9 % 18.1 % 

Capacity (total # answers: 549)      

  absolute  92 161 166 277 272 

  relative  16.8 % 29.3 % 30.2 % 50.5 % 49.5 % 

Table 3: cumulated ‘accurate’ answers of the children using different criteria 

The results of the children as well as of the experts show, that the estimation of lengths 

is easier than the estimation of capacities. 

Criteria of ‘accuracy’ 10 % 25 % 33 % 50 % > 50% 

length (total # answers: 85)      

  absolute  48 76 78 81 4 

  relative 56.5 % 89.4 % 91.8 % 95.3 % 4.7 % 

Capacity (total # answers: 81)      

  absolute  24 45 50 64 17 

  relative  29.6 % 52.9 % 58.8 % 79.0 % 21.0 % 

Table 4: Cumulated ‘accurate’ answers of the experts using different criteria 

Concerning the different criteria, there is nearly no difference for the children’s results 

between 25 % or 33 % in the capacity-condition, whereas it gives a good differentiation 
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in the application to the estimated lengths and also to the experts’ results, if this 

differentiation is necessary.  

Ranges of deviations from the perspective of different groups of students 

Table 5 shows the deviation-ranges of the estimation that were given by the best quarter 

and the best half of the children.  

Table 5: Ranges of deviations of the best 25 % (50 %) estimations 

Again, the results for the room and the carafes show that these estimations have been 

easy for at least the best quarter of students. It also becomes clear that the items differ 

in their difficulty especially in the capacity-condition.  

DISCUSSION 

Looking at the data and the application of the criteria, the following suggestions have 

to be discussed: 

 It seems necessary to use different criteria for the evaluation of estimates in 

different measurement areas. The children and the experts gave better 

estimations for lengths than for capacities. The 17 experts also chose smaller 

ranges for lengths as adequate for evaluating children’s estimations. But: Which 

ranges are adequate for which measurement area? 

 A multi-step evaluation seems to be more adequate than a single-step one. But: 

How many steps should be differentiated? Is the number of steps different in 

different measurement areas?  

 Since even our items differed in their difficulty, we seem to need different 

evaluations for them. But we are not sure yet, if there is a medium bandwidth in 

every measurement area in which it is easier to estimate. Do we have to define 

such bandwidths and use different criteria for evaluation if an item is in it or not? 

 Last but not least: How many items have to be estimated to get a realistic picture 

of a child’s performance? How do we take the age of the child into account? 

Deviations in estimating length Deviations in estimating capacity 

Item Best quarter Best half Item Best quarter Best half 

bug 10 % 35 % test tube 20 % 77 % 

chalk 13 % 25 % glass 48 % 85 % 

book 11 % 30 % vase 33 % 65 % 

table 14 % 28 % carafe a) 0 % 40 % 

room 0 % 13 % carafe b) 0 % 10 % 

   pot 21 % 43 % 
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Nevertheless, the overall question remains, if the decision about an adequate estimate 

is a normative one or if it may be solved experimentally. But: Should a poor result get 

a good evaluation because it’s the average of performance? 
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SELF-EXPLANATIONS AND GESTURES 

Alexander Salle 

Bielefeld University, Germany 

 

To investigate the role of gestures for the identification of self-explanations, thinking 

aloud sessions of 33 undergraduate students who learned with worked-out examples 

dealing with complex numbers were analysed. Two coding procedures were applied to 

the recorded video data. During the first one, solely the verbal (audio track of the 

recordings) and written data (spontaneous notes of the participants) of the recordings 

was available to the raters. Nonverbal video data were included only in the second 

procedure. A comparison of the coding results revealed distinctly different numbers of 

identified self-explanations. In addition, an example of a self-explanation that was not 

identified until the second coding procedure is presented. 

A plethora of studies show that learners who engage in self-explaining – a specific 

cognitive process that occurs during learning (Chi 2000) – have statistically significant 

higher learning outcomes than learners who do not self-explain (cf. Wylie & Chi 2014). 

Research on self-explanations usually analyses written texts or verbal protocols from 

learners who think aloud. Gestures and other body movements are not regarded in those 

analyses (see literature review below). In this paper, consequences of an inclusion of 

gestures into self-explanation analyses based on thinking aloud protocols are shown. 

LITERATURE REVIEW 

Self-Explanations 

Self-explaining is “a constructive activity that engages students in active learning and 

insures that learners attend to the material in a meaningful way” (Roy & Chi. 2005, p. 

272). Self-explanations are defined as productions by self-explaining that consists of 

“units of utterances” which are meant to be verbal (Chi, 2000, p.165). Instances of self-

explanations are, for example, integrating different representations, inferencing from 

depicted data, explaining the goal of an operation, or activating prior knowledge (Chi, 

Bassok, Lewis, Reimann, & Glasser, 1989; Renkl 1997; Aleven & Koedinger , 2002). 

Studies that investigate self-explanations with thinking aloud protocols follow a more 

or less similar procedure. The participants are asked to think aloud while they are 

learning with materials such as worked-out examples, tasks or texts. These learning 

sessions are recorded and transformed into protocols based on verbal expressions. 

Actions or gestures performed during learning are not considered in the protocols (the 

reviewed studies are: Chi et al. (1989), Chi and VanLehn (1991), Chi, de Leeuw, Chui, 

and LaVancher (1994), Pirolli and Recker (1994), Bielaczyc, Pirolli, and Brown 

(1995), Recker and Pirolli (1995), Renkl (1997), Renkl, Stark, Gruber and Mandl 

(1998), Neuman and Schwarz (1998), Stark (1999), Neuman, Leibowitz, and Schwarz 

(2000), Wong, Lawson and Keeves (2002), Renkl (2002), Ainsworth and Loizou 
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(2003), McNamara (2004), Renkl, Schworm, and Hilbert (2004), Butcher (2006), 

Ainsworth and Burcham (2007) and de Koning, Tabbers, Rikers, and Paas (2011)). 

Gestures 

A growing body of research verifies the important role that gestures play in 

mathematical thinking and communicating (e.g., Alibali & DiRusso, 1999; Goldin-

Meadow & Singer, 2003; Radford, 2009; Edwards, Ferrara, & Moore-Russo, 2014). In 

this paper gestures are seen as “body movement[s] fulfilling communicational 

function” (Sfard, 2008, p. 194). Different studies describe the learners’ subtle use of 

gestures in combination with verbal utterances when talking about functions, fractions, 

numbers and other topics (Arzarell, Paola, Robutti, & Sabena, 2008; Edwards, 2008; 

Yoon, Thomas, & Dreyfus, 2011). 

A special case of mathematical communication is thinking aloud in individual sessions. 

Research studies that investigate the use of gestures in thinking aloud settings found a 

frequent use of gestures accompanying verb phrases with “individual differences in the 

use of gesture in both communication and inference” (Hegarty. Mayer, Kriz & 

Keehner, 2005). Having analysed students’ behavior while they were solving gear 

problems, Schwartz and Black (1996) reported on numerous pointing and tracing 

gestures that could be observed during the solving process. Emmorey and Casey (2001) 

found out that more gestures occurred if an experimenter to whom the participants have 

to explain their solutions was in sight. 

RESEARCH QUESTION  

From these findings it could be hypothesised that gestures – shown in nonverbal video 

data – could play a role for the identification of self-explanations. The following 

analysis follows the question: 

How does the consideration of gestures influence the identification of self-

explanations? 

To investigate the role of gestures for the identification of self-explanations, the 

definition of a self-explanation is slightly modified: Instead of defining self-

explanations as units of exclusively verbal utterances, also nonverbal utterances like 

gestures and representations of utterances like drawings and writings are taken into 

account (Nemirovsky & Ferrara, 2008, p. 162). 

METHODS AND CATEGORIES 

Participants, materials and procedure 

Due to the research focus, the data collection follows a common procedure that was 

derived from the literature review of self-explanations (see above and Ericsson & 

Simon, 1993). The participants were 33 undergraduate students (22 female, 11 male) 

from a German university. Worked out examples were chosen as learning material 

because they allow a structured analysis of self-explanations and are used in many of 

the reviewed research studies. The chosen worked-out examples addressed the 
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multiplication of complex numbers in Cartesian and polar coordinates as well as the 

transformation from one form into another. The students were unfamiliar with the 

transformation and multiplication of complex numbers, and obtained a brief 

introduction in essentials of complex numbers. 

During the intervention phase, the participants worked individually with three worked-

out examples printed on paper without a time limit. They were asked to learn from the 

worked-out examples, to signal when they were finished and to think aloud during their 

work. The use of a ‘cheat sheet’ with definitions and formulas, a triangle ruler and a 

calculator application were permitted. The intervention phase was audio- and 

videotaped; the notes of each participant were collected afterwards. No guidelines on 

taking notes or gesturing were given. 

Data analysis 

A two-phase qualitative content analysis was applied to investigate the collected data 

(Mayring, 2010, p. 59; Lamnek, 2010, p. 460). During the pilot phase, the recorded 

learning sessions of two students who were no participants of the main study, were 

analysed. The units of analysis were combinations of utterances, written notes, gestures 

and actions. The preliminary category scheme derived from the literature review was 

adapted to the empirical findings of this phase (Mayring, 2010, p. 62). 

The unit of coding of the main phase consisted of the video sequences from 33 

participants described above. Two coding procedures were applied to all of the 33 

recorded learning sequences by two coders familiar with the topic. (1) The first coding 

procedure was based only on the audio track and the written notes of each participant 

(verbal and written data, no video data was available for the raters). (2) The second 

coding procedure was based on all available data collected during the intervention 

phase (verbal, written and nonverbal video data). 

The inter-rater reliability of both coding procedures was ascertained based on 

classifications of 10 % of the data that was coded by both raters. Due to possible 

random matches, Cohen’s Kappa was chosen for the calculation of the inter-rater 

reliabilities. The first procedure features a Kappa of 88.93%, the second one 89.2%. 

Category Scheme 

Self-explanation: A segment was coded as self-explanation if it fitted into one or more 

of the identified self-explanation categories. No distinctions between the different 

instances were made. For each participant, an overall self-explanation score was 

calculated. Typical self-explanation categories are (see also literature review): 

activating prior knowledge for explanations of steps, calculations, representations; 

integrating different representations, e.g., symbolic and geometrical; drawing 

inferences from information depicted in the worked-out examples and the ’cheat sheet’. 

No self-explanation: No self-explanation could be identified. 
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RESULTS 

First, the coding results are depicted. Second, a short protocol gives an impression of 

a self-explanation that can only be identified based on all available data. 

Coding Results 

 

Figure 1: Results of the two coding procedures, sorted by number of coded self-

explanations after the second procedure. The coding results of the second coding 

procedure are the individual sums of dark and light grey bars. 

In summary, 738 self-explanations could be identified during the first coding 

procedure based on verbal and written data (Fig. 1, dark grey bars). The mean for the 

self-explanations is 22.36 and the standard deviation is 13.1. The individual results 

range between 3 (participant 33) and 55 self-explanations (participant 3). During the 

second coding procedure, which was based on all available data, 935 self-explanations 

could be identified with a mean of 28.33 and a standard deviation of 15.29 self-

explanations. The individual results range between 10 self-explanations (participants 

31, 32 and 33) and 66 (participant 1). 

Therefore, 197 self-explanations were not identified in the first procedure. During the 

second procedure, 5.97 additional self-explanations per participant could be identified 

with a standard deviation of 5.29 self-explanations. These self-explanations were 

distributed unequally among the participants with a minimum of 0 (participants 26 and 

31) and maximum of 27 (participant 1). 

Moreover, two phenomena could be identified in the video data. First, the participants 

performed actions. They used the triangle ruler or the calculator. Such actions reveal 

connections between information in the material or integrations of different 

representations. In combination with verbal and written data, self-explaining processes 

could be reconstructed. From 197 self-explanations, 31 self-explanations could be 

identified because of the above described actions. 
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The remaining 166 self-explanations were coded because of the visible gestures in the 

recordings. All but three of these gestures had mainly deictic functions and therefore 

connected verbal utterances with words, numbers or symbols on the example sheets or 

the ‘cheat sheet’. The question whether the participants were pointing or tracing to 

themselves or the video camera has to remain open. 

An example of a specific self-explanation only coded based on all available data 

The following transcript gives insight into the way gestures allow to identify self-

explanations in the second coding procedure that were not categorised during the first 

coding. 

Brian tries to verify a part of the worked-out example which features three solution 

steps: i) transformation of two complex numbers given in Cartesian coordinates into 

trigonometric form, ii) multiplication of these numbers in symbolic representation, iii) 

geometrical representation of the result. Brian then deals with the transformation of the 

complex number s = 2 + 2i (Figure 2).  

Brian: In the example with (points with right middle finger at #1) …(points with pencil in 

his left hand to #2) square root of 8, (traces along #3 with right index finger) that is the 

magnitude of the vector. Exactly (lifts the pencil), you get the magnitude, if you … 

 

Figure 2: Snippet of Brian’s example sheet. Dashed lines with identification numbers 

indicate locations to which pointing or tracing gestures refer. 

First, Brian points at #1 – at this point it is unclear, if he is referencing to the R-axis, 

the angle , the angle , or the whole coordinate system. With the pencil in his left 

hand, he points at the symbol ‘square root of 8’ (#2) and says “square root of 8, that is 

the magnitude of the vector”. Both speech and gestures combined, it seems as if he 

names the transformation of vector s as “the example” here. It could be concluded that 

his first gesture (#1) was a pointing at the angle  and the vector s. 

His words can be found reordered in the written text of the example in which it says 

“the magnitude of s is s = 8”. The word “vector” is in the text, too. While he is 

speaking, he traces along vector s in the coordinate system (#3) and links the magnitude 
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to the length of the arrow. Thus, he integrates different representations: the symbol 

from the text and the length of the geometrically represented vector. 

Without recognising this gesture, this brief scene could not be identified as self-

explanation in the first coding procedure. However, based on all available data and 

especially the video track, it could be identified as one. 

DISCUSSION AND PERSPECTIVES 

The difference between the two coding procedures reveals to what extent the inclusion 

of video data influences the coding results in the reported study. The results also reveal 

individual differences of gesture use in thinking aloud sessions and hence, are in line 

with the findings of Hegarty et al. (2005). Nonetheless, it remains unclear on which 

personal factors the individually different use of gestures depends. 

The observed gestures were almost exclusively pointing and tracing gestures that locate 

areas on the example sheets. To what extent this depends on the content to be learned 

or on the presence of worksheets, remains unclear. For example, Edwards (2008) 

reports a smaller proportion of pointing gestures but more iconic-physical (referring to 

concrete actions), iconic-symbolic (referring to symbolic inscriptions) and metaphoric 

(referring to abstract ideas, see also McNeill 1992) gestures when teachers talk about 

fractions without learning material. 

The depicted transcript highlights how subtle pointing and tracing gestures are 

coordinated with speech and how they allow the identification of self-explanations. For 

future studies it would be interesting to find out in how far these phenomena appear in 

other domains and with participants of different age. 
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SHIFTING THE EMPHASIS TOWARD A STRUCTURAL 

DESCRIPTION OF (MATHEMATICS) TEACHERS’ 

KNOWLEDGE 

Thorsten Scheiner 

University of Hamburg, Germany  

 

Despite the wide range of various conceptualisations of (mathematics) teachers’ 

knowledge, the literature is restricted in two interrelated respects: (1) the focus is 

(almost always) limited to the subject matter content, and (2) the form and nature of 

teachers’ knowledge seem not to have been noticed by researchers working in the field. 

The paper seeks to address these gaps by (a) broadening the current perspective to 

include an epistemological, cognitive, and didactical lens on the knowledge base for 

teaching mathematics, and (b) going beyond what the teachers’ knowledge is about to 

take account of how the knowledge is structured and organised. The theoretical work 

presented here intends to stimulate discussion about the structural description of this 

kind of knowledge.  

CONCEPTUALISATIONS OF TEACHERS’ KNOWLEDGE: MAPPING THE 

TERRAIN  

Over the past decades, several interesting approaches, partly distinct and partly 

overlapping, in conceptualising the knowledge base for teaching have been developed; 

the majority of them follow Shulman’s (1986, 1987) distinction between subject matter 

knowledge, pedagogical knowledge, pedagogical content knowledge, and knowledge 

of various aspects of the educational setting (including knowledge of the educational 

context). The frameworks and models that shape the landscape in research on teachers’ 

knowledge are at various levels of specificity – ranging from general to discipline-, 

domain-, and concept-specific frameworks (see, Scheiner, 2015).  

Quite a few general frameworks contributed to the field, particularly in (a) shifting the 

attention to subject matter knowledge for teaching (in addition to subject matter 

knowledge per se) (Shulman, 1987), in (b) providing insights into critically important 

determinants of what teachers do and why they do it, namely teachers’ resources 

(including knowledge), orientations (including beliefs), and goals (Schoenfeld, 2010), 

and in (c) highlighting the multiple dimensions of teachers’ proficiency, including, but 

not limited to, knowing students as thinkers and learners (Schoenfeld & Kilpatrick, 

2008). The latter contribution builds the bridge to discipline-specific frameworks since 

Schoenfeld and Kilpatrick initially developed the framework of teachers’ proficiency 

in the context of mathematics.  

A substantial body of research work is located in mathematics education, providing 

both discipline- and domain-specific frameworks and models (e.g., Ball, Thames & 

Phelps, 2008; Baumert et al., 2010; Blömeke, Hsieh, Kaiser, & Schmidt, 2014; 
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Fennema & Franke, 1992; Kilpatrick, Blume, & Even, 2006; Rowland, Huckstep, & 

Thwaites, 2005; Tatto, Schwille, Senk, Ingvarson, Peck, & Rowley, 2008). These 

frameworks and models of knowledge for teaching mathematics can be understood as 

elaborating rather than replacing Shulman’s (1986; 1987) contribution to the field. The 

approaches taken, and the conceptualisations of mathematics teachers’ knowledge 

proposed, are not inclusive, nor are the identified dimensions of mathematics teachers’ 

knowledge mutually exclusive. In contrast, the identified dimensions are 

complementary, and provide, taken together, a more refined picture of the knowledge 

base for teaching mathematics (see, Scheiner, 2015).  

Notice that, with few exceptions (e.g., Even, 1990), researchers have almost 

overlooked concept-specific frameworks. However, from the author’s perspective, 

investigating teachers’ knowledge at the level of specific concepts is an important issue 

that needs particular attention in future research efforts.  

MOVING BEYOND PAST AND CURRENT TRENDS IN RESEARCH ON 

MATHEMATICS TEACHERS’ KNOWLEDGE 

As described in detail elsewhere (Scheiner, 2015), several trends can be identified in 

past and current practices in research on mathematics teachers’ knowledge. For the 

purposes of this paper, the attention is drawn to two particular trends:  

(1) Although the discipline-specific frameworks mentioned above differ in detail, many of 

them converge in efforts to further extend and refine the construct of subject matter 

knowledge (SMK) and pedagogical content knowledge (PCK). 

(2) With few exceptions, the literature tends to a particular orientation, namely the idea of 

a teachers’ capacity to unpack subject matter knowledge in ways that are accessible to their 

students. 

In more detail, the literature suggests that subject matter knowledge (SMK), for 

instance, can be further extended and refined in qualitatively different sub-dimensions 

such as Bromme’s (1994) distinction between school mathematical knowledge and 

academic content knowledge. However, of particular importance and interest are 

contributions that reflect the idea that there is unique content knowledge for teaching 

mathematics. For instance, the notion of ‘specialised content knowledge’ introduced 

by Ball and her colleagues is described as pure content knowledge “that is tailored in 

particular for the specialised uses that come up in the work of teaching” (Hill et al., 

2008, p. 436). In this sense, and in contrast to Shulman (1986) treating ‘SMK for 

teaching’ as equivalent to PCK, these considerations lead to the claim that there is pure 

mathematical knowledge specialised for teaching mathematics. Thus, it seems 

reasonable to distinguish between mathematical content knowledge per se (MCK per 

se) and mathematical content knowledge for teaching (MCK for teaching) (see, 

Scheiner, 2015).  

However, recent approaches in the literature on the knowledge base for teaching 

mathematics center their focus on the subject matter content and articulate the 

importance of the central teaching task that is making the mathematics content 
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accessible to students. In the literature on mathematical knowledge for teaching, these 

recent practices are reflected in the metaphor of ‘teachers’ unpacking of mathematics 

content in ways accessible to their students’. The author argues that this dominating 

content-oriented focus can be traced back to Shulman’s (1987) conceptualisation of 

PCK as the capacity of ‘transforming’ subject matter of the discipline to subject matter 

of the school subject. To put it in other words, most of the contributions in the 

‘mathematical knowledge for teaching’ literature tend to be associated with a particular 

‘school of thought’, namely Shulman’s (1987) idea of a teacher’s capacity for 

transformation of the subject matter – the capacity to deconstruct one’s own knowledge 

into a less polished final form where critical components are accessible and visible.  

Drawing on recent theoretical reflections on conceptualising (mathematics) teachers’ 

knowledge (e.g., Scheiner, 2015), the work calls to broaden the perspective to include 

an epistemological, a cognitive, and a didactical dimension (see, Figure 1), in addition 

to a content dimension.  

 

Figure 1: The epistemological, cognitive, and didactical perspective 

The epistemological dimension refers to knowledge about the epistemological 

foundations of mathematics and mathematics learning (see, Bromme, 1994). For 

instance, Harel (e.g., 2008) calls for teachers’ knowledge of epistemological issues 

involved in the learning of specific mathematical concepts including knowledge of 

epistemological obstacles. The cognitive dimension refers to knowledge of students’ 

cognitions (Fennema & Franke, 1992), in particular, knowledge of students’ common 

conceptions, knowledge of students’ cognitive difficulties involved in concept 

construction (Harel, 2008), and the interpretation of students’ emerging thinking (Ball 

et al., 2008). In other words, it includes knowledge of how students think, learn, and 

acquire specific mathematical knowledge (Fennema & Franke, 1992). The didactical 
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dimension refers to what Shulman (1986, p. 9) described as knowledge of “the most 

useful ways of representing and formulating the subject that make it comprehensible 

to others”, including teachers’ illustrations and alternative ways of representing 

concepts (and the awareness of the relative cognitive demands of different topics) 

(Rowland et al., 2005) and knowledge of the design of instruction (Ball et al., 2008). 

These various dimensions (epistemological, cognitive, and didactical) are considered 

as useful lenses in investigating (mathematics) teachers’ professional knowledge, in 

particular, in describing the interconnectedness of knowledge of subject matter, 

knowledge of students’ understanding, and knowledge of instructional strategies. 

These three resources (subject matter, students’ understanding, and instruction) should 

be directed towards the same goals (i.e., learning goals) and reinforce each other rather 

than working past each other. However, this is often challenging to achieve. Often what 

is missing is a central theoretical framework or model about knowing and learning 

which guides the process and around which the three resources can be coordinated. 

From this perspective, a model of cognition and learning may serve as a cornerstone 

that brings cohesion to subject matter, students’ understanding, and instruction (see, 

Fig. 1). 

Bringing these perspectives into focus, several extensions and refinements of 

Shulman’s initial categories of subject matter knowledge and pedagogical content 

knowledge can be identified, namely (a) knowledge of students’ mathematical thinking 

and understanding (KSU), (b) knowledge of learning mathematics (KLM), (c) 

knowledge of teaching mathematics (KTM), (d) mathematical content knowledge per 

se (MCK per se), and (e) mathematical content knowledge for teaching (MCK for 

teaching).  

In summary, the teachers’ knowledge base can, and should, be examined from a range 

of angles using different lenses, including an epistemological lens (knowledge of 

learning mathematics), a cognitive lens (knowledge of students’ mathematical thinking 

and understanding), a didactical lens (knowledge of teaching mathematics), and a 

content-oriented lens (MCK per se and MCK for teaching).  

A STRUCTURAL DESCRIPTION OF TEACHERS’ KNOWLEDGE: THE 

NATURE AND FORM  

In the past, the literature concentrated its focus on what the teachers’ knowledge is 

about. In doing so, the literature limited its attention to the content teachers do or should 

possess. What is missing in the current landscape of the conceptualisation of 

mathematics teachers’ knowledge are efforts in going beyond what the teachers’ 

knowledge is about to include a structural description of teachers’ professional 

knowledge. Of course, several perspectives for theoretical reflection on the nature and 

form of teachers’ knowledge can be presented (Scheiner, accepted), including those 

concerning the nature of the knowledge such as 

(a) source    What are the constituent knowledge bases?  
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(b) development  Does the transformation of subject matter knowledge per so to 

subject matter knowledge for teaching takes place by the 

individual teacher situated in the act of teaching or is it supported 

by educators and curriculum?  

(c) specificity   Is the knowledge general, subject-, domain-, or topic-specific? 

as well as those concerning the form of the knowledge such as  

(i) degree of integration  Does the amount of knowledge in each knowledge domain matter 

most or the degree of integration? 

(ii) size  Does the knowledge comes in pieces, units, or schemes? Is the 

knowledge stable and coherent or contextually-sensitive and 

fluid? 

From the author’s perspective, the major issues that need better resolution if we are to 

understand teachers’ acquisition of an integrated knowledge base are questions 

concerning the nature and form of teachers’ professional knowledge. In the following, 

new avenues for theoretical reflection on these issues are outlined. The objective of 

such theoretical reflection is evolving – aiming to make new theoretical extensions and 

innovations.  

Teachers’ knowledge as a complex system of ‘knowledge atoms’ 

Although the various frameworks and models on the construct of mathematics 

teachers’ knowledge have provided crucial insights on what mathematics teachers’ 

knowledge is about, several of the discipline-specific frameworks represent 

conceptualisations of mathematics teachers’ knowledge by a very general approach 

that seem ad hoc. The author, by contrast, does not believe in the existence of a general 

framework on teachers’ knowledge but rather thinks that in investigating the form and 

nature of teachers’ knowledge various frameworks may be discovered, which will be 

quite specific to particular mathematical concepts and individuals.  

 

Figure 2: The ‘knowledge atom’ 

The author calls for paying attention to investigating what in this paper is called 

‘knowledge for teaching mathematics’ considered as a pool of personal and private 

constructed pieces of knowledge that have been transformed along a variety of 

knowledge bases identified in previous research investigating the multidimensionality 

of teachers’ knowledge. In more detail, this work emphasises to view the professional 
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knowledge for teaching mathematics as the repertoire of ‘knowledge atoms’ that have 

been transformed along (1) knowledge of students’ mathematical thinking and 

understanding (KSU), (2) knowledge of learning mathematics (KLM), and (3) 

knowledge of teaching mathematics (KTM), taking (4) mathematical content 

knowledge per se (MCK per se) and (5) mathematical content knowledge for teaching 

(MCK for teaching) as the cornerstones (see, Fig. 2). Notice that (i) the notion of 

‘transformation’ implies that the constituent knowledge bases are inextricably 

combined into a new form of knowledge that is more powerful than the sum of its parts 

(degree of integration). (ii) In contrast to Shulman and his proponents’ work, it is KSU, 

KLM, and KTM, together with MCK per se and MCK for teaching that build the 

knowledge dimensions that serve as the constituent knowledge bases for teaching 

mathematics (source). (iii) The notion of ‘knowledge atom’ indicates that knowledge 

is of a microstructure, highly context-sensitive, and concept-specific and has to be 

considered as of a fine-grained size (specificity and size). (iv) The notion of ‘repertoire’ 

indicates that knowledge is personal and private and that teacher education programs 

can only provide (as good as possible) rich resources for building up a fruitful 

repertoire of knowledge atoms (development).  

The above mentioned considerations draw on the ‘knowledge in pieces’ framework 

developed by diSessa (e.g., 1993), in particular taking the view of knowledge as 

microstructures coming in a loose structure of quasi-independent, atomistic knowledge 

pieces. Form the author’s perspective, the ‘knowledge in pieces’ framework provides 

a rich resource on which to explore these, and related, issues.  

NEW PRACTICES IN RESEARCH ON TEACHERS’ KNOWLEDGE: 

MODELING TEACHERS’ KNOWLEDGE AT THE ‘KNOWLEDGE LEVEL’ 

As stated in the previous section, with few exceptions, past and current research seems 

to have skipped describing and characterising the structure and organisation of 

teachers’ knowledge. One of the aims of this work was to progress toward a structural 

description of teachers’ knowledge, and the previous section may have moved in that 

direction. Since the lack of a theoretical foundation of an adequate description 

concerning the form and nature of teachers’ knowledge is recognised, research is 

needed that looks at knowledge (and processes of knowledge development) in fine-

grained detail, through which a theoretical framework evolves. A structural description 

of teachers’ knowledge is, at least from the author’s perspective, an ongoing process 

that is always subject to new information and insights. With this, the objective of such 

research is evolving – by simultaneously developing theory and empirical research. 

Though a comprehensive theory is targeted, seeking not ‘grand theory’ but “humble 

theory” (diSessa & Cobb, 2004) with multiple cycles of revision and extension seems 

to be appropriate. 

Research efforts on the way to a suitable description concerning the form and nature 

of teachers’ knowledge should take place at the background of well-established 

practices in research on teachers’ professional knowledge describing and identifying 
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what the knowledge is about (concerning content). From the author’s perspective, it is 

time to move toward new practices in research on teachers’ knowledge that examine 

in a dialectic way both (1) the nature of certain kinds of teachers’ knowledge (theory 

development, concerning form) and (2) what people know of that kind (empirical work, 

concerning content).  

Research is needed that aims to model (mathematics) teachers’ knowledge at the 

‘knowledge level’, for instance, by drawing on the methodological approach employed 

by researchers working with the ‘knowledge in pieces’ framework (diSessa, Sherin, & 

Levin, in process), namely knowledge analysis. Within the wide range of types of 

methodologies in ‘knowledge analysis’, in terms of time-scale, empirical and 

theoretical focus, in particular, microanalytic and microgenetic methods provide a 

good target for a complex, integrated, and dialectical research design. From the 

author’s perspective, knowledge analysis may challenge the boundaries of what is 

known, and may provide a rich resource for a more complete and nuanced 

understanding of teachers’ knowledge.  
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EFFECTS OF ENJOYMENT AND BOREDOM ON STUDENTS’ 

INTEREST IN MATHEMATICS AND VICE VERSA 
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Enjoyment, boredom, and interest are important for students’ learning. To clarify the 

interplay between these affective variables, data from an interventional study of 119 

ninth graders were analysed. Interest was assessed before and after, and emotions 

(enjoyment and boredom) were assessed during the five-lesson teaching unit. The 

results showed that (1) students who enjoyed their lessons were less bored than 

students who did not enjoy their lessons (2) enjoyment, but not boredom, during a 

teaching unit depended on students’ initial interest in mathematics, and (3) students’ 

initial interest and enjoyment during the teaching unit predicted their interest at 

posttest, but boredom did not influence students’ interest at posttest.   

INTRODUCTION 

Emotions and motivational orientations such as interest are important for students’ 

learning (Zan, Brown, Evans, & Hannula, 2006) and are related to students’ 

performance in mathematics (Schukajlow, accepted; Schukajlow & Krug, 2014a). 

However, we do not know much about the development of interest or the role of 

emotions in this process. In the current study, I address this research gap by examining 

the interplay of interest, enjoyment, and boredom in the framework of a short-term 

intervention with regard to the teaching of modelling competency. The research 

questions were about the relation between students’ enjoyment and boredom in 

mathematics classes, the importance of students’ initial interest for enjoyment and 

boredom in mathematics classes, and the influence of initial interest, enjoyment, and 

boredom on interest at posttest.  

THEORETICAL BACKGROUND AND RESEARCH QUESTIONS 

Interest  

Interest characterises a relation between a person and an object such as mathematics. 

Interested learners engage with the object of their interest over time (Hidi & Renninger, 

2006). Models of interest development assume that this motivational variable develops 

from the situational interest that can be captured, for example, in the so-called interest-

dense situations of a given moment (Bikner-Ahsbahs, 2004) by individual (or personal) 

interest. Individual interest is comprised of cognitive and affective aspects. Cognitive 

aspects include the attribution of personal significance to object-related activities and 

feelings of competence in the target domain. Emotions refer to the affective aspects of 

interest. Positive emotions occur when a person engages with an object of interest, 

whereas negative emotions do not accompany such an engagement. According to this 

conception, interested students enjoy doing mathematics and are not bored when 
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solving mathematical problems. 

Students’ interests change during the school years. In most studies, students tend to 

report a decline in their interest in mathematics and science from primary to secondary 

school. In Frenzel et al.’s (2012) study, which assessed the cognitive and affective 

aspects of interest in student interviews, students in grade 5 frequently verbalised the 

affective aspects and rarely verbalised the cognitive aspects of interest in comparison 

with students in grade 9. This finding is in line with the four-phase theory of interest 

development (Hidi & Renninger, 2006). In the initial phase, which often occurs in the 

early grades, positive feelings are crucial for triggering interest. In the second and third 

phases, other variables such as knowledge and reengagement in the domain accompany 

interest development. Finally, students achieve a self-generated phase of interest and 

can regulate their interest-related activities on their own. We know from research in 

other domains that only a few students attain a well-developed level of interest in 

school. Thus, initiating situations that stimulate positive, and prevent negative, 

emotions during mathematics lessons is important for improving students’ interest in 

both primary and secondary school. 

Enjoyment 

Enjoyment is one the most frequently reported positive emotions in the classroom. 

Students’ enjoyment was found to be related to effort and performance (Schukajlow & 

Krug, 2014a) and was found to predict self-regulation skills and academic 

achievements (Ahmed, van der Werf, Kuyper, & Minnaert, 2013). According to the 

control-value theory of achievement emotions (Pekrun, 2006), enjoyment is a positive 

activating emotion and can affect whether students will engage and reengage with the 

enjoyable content. In this way, enjoyment might not only accompany interest 

development but may also have a positive influence on it. Self-concept has been 

identified as an important predictor of students’ enjoyment (Goetz, Frenzel, Hall, & 

Pekrun, 2008). Another valuable factor for the development of students’ academic 

enjoyment may be the solving of demanding, authentic problems or cooperation during 

the learning process (Pekrun, 2006).  

Boredom 

Similar to enjoyment, achievement boredom is an activity-related emotion that 

accompanies learning. Feelings of boredom are not simply a lack of interest or 

enjoyment. If students are not interested in mathematics or do not enjoy mathematics 

classes, they may feel very different negative emotions such as anger or frustration, but 

they are not always bored with it. Self-perceived levels of boredom depend to a large 

extent on students’ general experiences in school and in particular on their experiences 

in specific school subjects (Jablonka, 2013). Boredom is one of the negative 

deactivating emotions and is reported more frequently during learning than anxiety, 

anger, frustration, hopelessness, and shame (Ahmed, van der Werf, Minnaert, & 

Kuyper, 2010). Boredom results from a lack of controllability over actions (Pekrun, 

2006) and in most studies has been found to be negatively related to performance in 
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mathematics (see summary by Schukajlow, accepted).   

Affect measurement 

One important characteristic of measures of affect are their trait-like vs. state-like 

nature. Trait-like scales assess the construct in general, that is, over time. A sample 

item representing enjoyment as a trait is: “I enjoy mathematics.” State-like scales 

collect data with regard to a specific point in time: “I enjoyed mathematics class today.” 

The two potential ways to assess affect differ in their stability and sensitivity. The trait-

like scales are more stable and show low sensitivity with regard to interventional 

programs, whereas the state-like scales show minor changes in the affective measures 

and are sensitive to treatment.  

Items that measure affect assess different dimensions of the constructs such as 

cognitive or emotional ones for interest and describe typical situations or activities. For 

mathematics, one of the key activities is problem solving. Thus, self-reported items for 

the measurement of affect often refer to the solving of problems, to mathematical 

reasoning, or recently – in task-specific questionnaires – even demonstrate sample 

problems for students (Krug & Schukajlow, 2013; Schukajlow et al., 2012).   

The relationships between interest, enjoyment, and boredom 

Most studies have found a positive relationship between interest and enjoyment. The 

value of correlations between interest and enjoyment for young secondary school 

students depends on the measures used to assess the affective constructs and ranges 

from low for task-unspecific questionnaires (Ahmed, Minnaert, Van der Werf, & 

Kuyper, 2008), to high, for task-specific questionnaires (Schukajlow et al., 2012).  

The subjective psychological state of disinterest in response to low levels of arousal 

accompanies the state of boredom (Vogel-Walcutt, Fiorella, Carper, & Schatz, 2012). 

Because of its aversive and avoidance-oriented nature, boredom is incompatible with 

interest or enjoyment. Thus, a negative relationship between boredom and interest or 

enjoyment can be expected. A low, but statistically significant negative correlation 

between enjoyment and boredom, was reported for 7th graders (Ahmed et al., 2010). 

For university students studying the social sciences, boredom during lessons was 

negatively related to intrinsic motivation, which is closely related to interest (Pekrun, 

Goetz, Daniels, Stupnisky, & Perry, 2010). No results were found that addressed this 

issue in school students in the mathematics domain. 

Research questions 

The research questions derived from the theoretical framework I addressed were: 

1) Is students’ boredom during mathematics classes related to their enjoyment? 

2) How important is students’ initial interest for enjoyment and boredom during 

mathematics classes?  

3) To what extent do students’ initial interest, as well as enjoyment and boredom during 

mathematics classes, influence interest at posttest?  
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METHOD 

One hundred and nineteen German ninth graders from 6 middle-track school classes 

(62% female; mean age=15.2 years) were asked about their initial interest before a 5-

lesson-long teaching unit, about their enjoyment and boredom during the teaching unit, 

and about their interest after the teaching unit (see Fig. 1). During the teaching unit, 

students solved modelling problems with, vs. without, missing information in group 

work and were asked to find one vs. two solutions for each problem. At least one person 

from the research group was present to administer the tests and to observe the 

implementation of the treatment. All students’ solutions were collected. Analyses of 

the reports and solutions showed that students worked on the modelling problems as 

intended (for more information, see Schukajlow & Krug, 2014b).  

 

 

 

Fig.1: An overview of the study  

Measures 

Interest, enjoyment, and boredom were assessed with scales used in other studies and 

each consisted of 3 statements that were answered on 5-point Likert scales ranging 

from 1 (strongly disagree) to 5 (strongly agree). Sample items are “I am interested in 

mathematics,” “I enjoyed task processing,” or “Task processing was boring.” The 

Cronbach’s alpha reliabilities were .80 and .74 for interest (on the pretest and posttest), 

.84 and .82 for enjoyment, and .85 and .86 for boredom (at the first and second 

measurement points during the teaching unit) (cf. Fig. 1). Enjoyment and boredom 

were measured twice during treatment and were aggregated into a mean value. 

RESULTS 

The means and standard deviations for interest, enjoyment, and boredom are presented 

in Table 1. Students’ interest in mathematics at pretest and posttest was slightly under 

and students’ enjoyment during the teaching unit was slightly above the theoretical 

mean of 3. Most of students were not bored during instruction. 

 initial interest  interest at 

posttest 

enjoyment  boredom 

Mean (SD) 2.56(.940) 2.71(.94) 3.40(.87) 1.95(.81) 

Table 1: Means and standard deviations for interest, enjoyment, and boredom. 

The first research question was about the relation between boredom and enjoyment 

during the teaching unit. The analysis supported my expectation of a negative relation 

between the two emotions: The correlation between enjoyment and boredom was 

moderate and negative (-.51, see Table 2). Thus, students who enjoyed the task 

processing did not feel bored when solving the problems.   

Initial 
Interest 

Enjoyment  
Boredom 

Teaching modelling competency (5 lessons) 
Interest  
Posttest 

Enjoyment  
Boredom 
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 initial interest  interest at posttest enjoyment  boredom 

initial interest 1 .60* .24* .07 

interest at posttest  1 .36* .00 

enjoyment   1 -.51* 

boredom    1 

Note: *p<.05 

Table 2: Pearson correlations between interest, enjoyment, and boredom. 

Second, the effects of initial interest on students’ enjoyment and boredom during the 

teaching unit were analysed. As initial interest was measured before the teaching unit, 

the correlations between initial interest and emotions might be interpreted as 

regressions. This analysis partially confirmed expectations about the impact of initial 

interest on emotions - there were positive effects of initial interest on enjoyment but 

not on boredom. Thus, students with higher initial interest in mathematics enjoyed the 

task processing more than students with low interest did. However, interested and 

uninterested students showed equal amounts of boredom during task processing.  

The third research question concerned the effects of initial interest, enjoyment, and 

boredom on students’ interest at posttest. To answer this question, a linear regression 

analysis with interest at posttest as the dependent measure and initial interest, 

enjoyment, and boredom as the independent measures was applied. Forty one per cent 

of the variance in students’ interest at posttest was explained by the hypothesised 

regression model (R2=.41). Students’ initial interest was revealed to be the most 

powerful predictor of interest at posttest (=.52, p<.05). Furthermore, enjoyment but 

not boredom during the teaching unit affected interest at posttest (enjoyment: =.30, 

p<.05; boredom: =.11, p>.10). This result was partly in line with the theoretically 

derived assumptions. The analysis indicated the importance of students’ initial interest 

and their enjoyment during task processing for students’ interest at posttest. Students’ 

boredom while solving mathematical problems did not negatively influence their 

interest at posttest.  

SUMMARY AND DISCUSSION 

The current paper investigated the interplay between interest, enjoyment, and boredom 

using student questionnaires administered before, during, and after the teaching unit 

with regard to the enhancement of students’ interest in solving real-world problems.  

Descriptive findings revealed a high level of enjoyment and a low level of boredom 

during the teaching unit. Enjoyment measured in other studies was clearly under 2.5 

(between 1.98 and 2.36 by Ahmed et al., 2013) and boredom was over 2.0 (between 

2.19 and 2.64 by Ahmed et al., 2013). One possible explanation for this finding may 

be the processing of cognitively stimulating tasks with a connection to the real world 

and cooperative group work during the teaching unit (Schukajlow & Krug, 2014b). 
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In line with the results of other studies (Ahmed et al., 2010; Pekrun et al., 2010), a 

negative relationship between enjoyment and boredom was found. Indeed, as expected 

according to the control-value theory of achievements emotions, the avoidant, aversive, 

and low-arousal psychological state of boredom is incompatible with students’ 

enjoyment (Pekrun et al., 2010; Vogel-Walcutt et al., 2012). Thus, stimulating 

students’ enjoyment decreases the level of boredom they feel during task processing 

and vice versa. 

Students’ initial interest in mathematics was expected to be an important factor that 

would positively influence enjoyment and negatively influence boredom because 

interested students enjoy engaging with their object of interest and are not bored with 

it. In line with theoretical considerations and previous empirical results on the 

correlation between the two variables (Ahmed et al., 2008; Schukajlow et al., 2012), 

initial interest in mathematics positively affected enjoyment during the teaching unit. 

One implication of this finding is that it is necessary to improve students’ interest in 

mathematics so that they can achieve greater enjoyment while solving mathematical 

problems. Theories of interest suggest that interest-dense situations while students 

learn can capture their situated interest in the classroom, which can be developed into 

a stable individual interest in mathematics over time (Bikner-Ahsbahs, 2004). 

Stimulating learning materials and opportunities for students to engage in social 

interactions while solving mathematical tasks are important features of learning 

environments that offer opportunities for interest development. Experiences of 

competence while solving mathematical problems, which can be improved, for 

example, by teaching students to provide multiple solutions to real-world problems, 

has been revealed to be a crucial factor that positively affects students’ individual 

interest (Schukajlow & Krug, 2014b).  

An unexpected result of the present study was a zero correlation between prior interest 

and boredom. However, previous findings on the negative connection between the two 

affective variables have been based on samples of university students from the social 

science domain. Thus, the connection may be different for school students and in the 

domain of mathematics. Another explanation for the zero correlation between interest 

and boredom may be the specific kind of task (real-world problems) that was used in 

the current study. It is possible that students’ interest in mathematics emerges from a 

positive relationship with intra-mathematical tasks, which are often solved in the 

regular mathematics classroom. Conversely, real-world problems are rarely solved in 

school. Students’ interest in intra-mathematical tasks is connected with their interest in 

real-world problems, but the two are not identical (correlation of .68 by Schukajlow et 

al., 2012). Thus, the influence of initial interest on boredom may be different if intra-

mathematical tasks are used in the classroom. 

Finally, I found positive effects of initial interest and enjoyment but not boredom on 

students’ interest at posttest. The positive effect of prior interest on interest at posttest 

found in other studies was also confirmed in the present study and showed that interest 

in mathematics remains stable over time (Schukajlow & Krug, 2014b). Students’ 
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enjoyment while solving problems during the teaching unit was also found to be a 

valuable predictor of their interest. Students who enjoyed solving the mathematical 

problems reported higher interest than students who did not enjoy the task processing. 

As students’ self-concept was previously shown to be an important factor for students’ 

enjoyment (Goetz et al., 2008), fostering their self-concept can affect their enjoyment 

and by affecting their enjoyment, it may also positively affect students’ interest. The 

use of authentic mathematical tasks, cooperation during the learning process, as well 

as teacher enjoyment and enthusiasm have also been found to be valuable factors that 

influence students’ enjoyment (Pekrun, 2006), and according to the results of the 

present study, these factors could also affect their interest in mathematics. How to 

improve enjoyment and interest is an important open question for future studies.  

The main limitations of the current study are that we applied an intervention with a 

short duration and that we used problems that differed from the specific kinds of 

problems that are usually solved in the classroom. Different results may occur in long-

term studies and if students are asked to solve other kinds of problems that are more 

typically found in mathematics classrooms. 

Summarising the results of the present study, I would like to emphasise that a close 

reciprocal connection between the positive emotion of “enjoyment” and interest was 

found. Initial interest influenced enjoyment during task processing, and enjoyment 

while learning mathematics affected students’ interest after the teaching unit. The 

analysis of the students’ negative emotion “boredom” revealed a different pattern. 

Boredom was related to enjoyment but was not related to interest. This result enhances 

the importance of overcoming a simplistic view of emotions with regard to their value 

as positive or negative (Hannula, Pantziara, Wæge, & Schlöglmann, 2009). More 

research on specific emotions using quantitative and qualitative methodology is 

essential as each emotion may have its own dynamic and might show different relations 

to other motivational and achievement factors.  
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VALIDATION OF PROOFS AS A TYPE OF READING AND 

SENSE-MAKING  
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We present results on the proof validation behaviours of 16 U.S. undergraduates after 

taking an inquiry-based transition-to-proof course. Participants were interviewed 

individually towards the end of the course using the same protocol used by Selden and 

Selden (2003). We describe participants’ observed validation behaviours and provide 

descriptions of their evaluative comments and their sense-making attempts. We make 

the, perhaps counterintuitive, suggestion that taking an inquiry-based transition-to-

proof course emphasising proof construction, in which validation was modelled, may 

not enhance students’ abilities to judge the correctness of other students’ proof 

attempts.  

INTRODUCTION 

We consider proof validation as a type of reading and sense-making within the genre 

of proof. In line with reading comprehension researchers, we view reading as an active 

process of meaning-making in which readers use their knowledge of language and the 

world, including the mathematical world, to construct situation models of texts in light 

of their backgrounds and experience (e.g., Kintsch, 2004).  

Past validation studies include: first-year Irish undergraduates’ validations and 

evaluations (Pfeiffer, 2011); U.S. undergraduates’ validations at the beginning of a 

transition-to-proof course (Selden & Selden, 2003); U.S. mathematics majors’ 

validation practices across several content domains (Ko & Knuth, 2013); U.S. 

mathematicians’ validations (Weber, 2008); and comparison of U.K. novices’ and 

experts’ validation behaviours, using eye-tracking (Inglis & Alcock, 2012). In contrast, 

we considered students’ validation behaviours after having taken a course in proof 

construction that emphasised validation, something not done by the other studies. 

THEORETIAL PERSPECTIVE 

We view the proof construction process as a sequence of mental or physical actions in 

response to situations in a partly completed proof. This process, even when 

accomplished with few errors or redundancies, contains many more actions, or steps, 

than appear in the final written proof and cannot be fully reconstructed from a final 

written proof. For example, actions, such as “unpacking” (Selden & Selden, 1995) the 

conclusion to see what one is being asked to prove, or drawing a diagram, may not 

appear in the final written proof, and hence, are often unavailable to students for later  

consideration and reflection. 

Many proving actions appear to be the result of the enactment of small, automated 

situation-action pairs that have been termed behavioural schemas (Selden, McKee, & 
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Selden, 2010). A common beneficial proving behavioural schema consists of a 

situation where one has to prove a universally quantified statement like, “For all real 

numbers x, P(x)” and the action is writing into the proof something like, “Let x be a 

real number,” meaning x is arbitrary but fixed. Focussing on such behavioural schemas, 

that is, on small habits of mind for proving, has two advantages. First, the uses and 

interactions of behavioural schemas are relatively easy to examine. Second, this 

perspective is not only explanatory but also suggests concrete teaching actions, such 

as the use of practice to encourage the formation of beneficial schemas and the 

elimination of detrimental ones. (See Selden, McKee, & Selden, 2010, pp. 211-212). 

While a number of proof construction actions have been investigated, thinking about 

proof validation actions is still in its infancy. However, it seems reasonable to 

conjecture, based on the extant proof validation literature (e.g., Inglis & Alcock, 2012; 

Selden & Selden, 2003; Weber, 2008) that examination of the overall structure of a 

proof is crucial for determining whether a given proof attempt, if correct, actually 

proves the statement (theorem) that it sets out to prove. In addition, it also seems that 

a careful line-by-line reading of a proof attempt is useful for determining whether 

individual assertions are warranted, either explicitly or implicitly (e.g., Weber & 

Alcock, 2005). However, one often also wants to “get a sense of” a proof—What makes 

it work? What are the key ideas? These questions refer to the explanatory function of 

proof. Our specific research question was: Would having taken a transition-to-proof 

course emphasising proof construction, in which validation was modelled, enhance 

university students’ abilities to judge the correctness of other students’ proof attempts? 

ROLE OF VALIDATION 

Although we are focussing here on the validation practices of U.S. undergraduates who 

are at least in their second-year of mathematics study, validation has a role to play 

throughout mathematics students’ education and in mathematicians’ practice.      

Holders of U.S. bachelor’s degrees in mathematics are normally expected, not only to 

know considerable mathematics content, but also to be able to construct moderately 

complex proofs and to solve moderately non-routine problems. Indeed, one major way 

that an individual’s mathematical knowledge of a theorem is sometimes taken to be 

warranted is by the ability to “produce” a proof, not in a rote way, but in the way a 

mathematician would produce it, namely, with understanding (Rodd, 2000). However, 

constructing or producing proofs appears to be inextricably linked to the ability to 

validate them reliably, and a “proof” that could not be validated would not provide 

much of a warrant. Pre-service secondary mathematics education majors and in-service 

secondary mathematics teachers also need to be able to validate proofs reliably because 

school mathematics curricula are likely to place increasing emphasis on justification 

and proof (e.g., Common Core State Standards for Mathematics, 2014).  

In addition, validation appears to play a fundamental role in mathematicians’ practice. 

While some mathematicians can sometimes obtain conviction in other ways (Weber, 

Inglis, Mejia-Ramos, 2014), mathematicians’ belief in the general reliability and 
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unproblematic nature of validation supports the assurance needed to use a theorem in 

later work. That is, once a theorem is proved one can expect it to “stay proved.” 

RESEARCH SETTING 

The course, from which the interviewees came, has been taught by the authors for 

several years at a U.S. Ph.D.-granting university. It is meant as a second-year university 

transition-to-proof course for mathematics and secondary education mathematics 

majors, but is often taken by a variety of other majors and by more advanced 

undergraduate students. The course is taught in a very modified Moore Method way 

(Mahavier, 1999). The students are given course notes with definitions, questions, 

requests for examples, and statements of theorems to prove.   

The students in this course prove the theorems in the course notes outside of class and 

present their proofs in class on the blackboard and receive extensive critiques. These 

critiques consist of careful line-by-line readings and validations of the students’ proof 

attempts, often with corrections and insertions of missing warrants. In a sense, the 

second author models proof validation for the students. The students are aware that 

being asked to present their proof attempts does not necessarily mean that these are 

correct, but rather that their proof attempts probably provide interesting points for the 

second author to discuss. This validation is followed by a second reading of the 

students’ proof attempts, indicating how the proofs could be written in “better style” 

to conform to the genre of proofs. Once these corrections and suggestions have been 

made, the student, who made the proof attempt, is asked to write it up carefully, 

including the indicated corrections and suggestions, for duplication for the entire class. 

Given these careful critiques of student work—consisting of the line-by-line checking 

of students’ proof attempts (i.e., modelling proof validation), followed by a second 

reading to help with the “style” in which proofs are written, and finally, a carefully 

rewritten final proof—we expected that the students might “adopt” some of the second 

author’s techniques of validation and be able to implement them in their own proving 

attempts.  

METHODOLOGY 

Sixteen of the 17 students enrolled in the course opted to participate in the study for 

extra credit. Of these, 81% (13 of 16) were either mathematics majors, secondary 

education mathematics majors, or were in mathematics-related fields (e.g., electrical 

engineering, civil engineering, or computer science). Interviews were conducted 

outside of class during the final two weeks of the course. The students signed up for 

convenient one-hour time slots. They were told that they need not study for this extra 

credit session. The protocol was the same as that of Selden and Selden (2003).  

Upon arrival, participants were first informed that they were going to validate four 

student-constructed “proofs” of a single number theory theorem (see Figure 1), indeed, 

that the proof attempts that they were about to read were submitted for credit by 

students, who like themselves, had been in a transition-to-proof course. The 

participants were asked to think aloud and to decide whether the student-constructed 
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proof attempts were indeed proofs. Participants were encouraged to ask clarification 

questions and were informed that the interviewer would decide whether a clarification 

question could be answered. 

For any positive integer n, if n2 is a multiple of 3, then n is a multiple of 3. 

“Proof (a)”: Assume that n2 is an odd positive integer that is divisible by 3. 

That is n2 = (3n + 1)2 = 9n2 + 6n + 1 = 3n(n + 2) + 1. Therefore, n2 is divisible 

by 3. Assume that n2 is even and a multiple of 3. That is n2 = (3n)2 = 9n2 = 

3n(3n). Therefore, n2 is a multiple of 3. If we factor n2 = 9n2, we get 3n(3n); 

which means that n is a multiple of 3.  

“Proof (b)”: Suppose to the contrary that n is not a multiple of 3. We will 

let 3k be a positive integer that is a multiple of 3, so that 3k + 1 and 3k + 2 

are integers that are not multiples of 3. Now n2 = (3k + 1)2 = 9k2 + 6k + 1 = 

3(3k2 + 2k) + 1. Since 3(3k2 + 2k) is a multiple of 3, 3(3k2 + 2k) + 1 is not. 

Now we will do the other possibility, 3k + 2. So, n2 = (3k + 2)2 = 9k2 + 12k 

+ 4 = 3(3k2 + 4k + 1) + 1 is not a multiple of 3. Because n2 is not a multiple 

of 3, we have a contradiction.  

“Proof (c)”: Let n be an integer such that n2 = 3x where x is any integer. 

Then 3|n2. Since n2 = 3x, nn = 3x. Thus 3|n. Therefore if n2 is a multiple of 

3, then n is a multiple of 3.  

“Proof (d)”: Let n be a positive integer such that n2 is a multiple of 3. Then 

n = 3m where m  Z+. So n2 = (3m)2 = 9m2 = 3(3m2). This breaks down into 

3m times 3m which shows that m is a multiple of 3.  

Figure 1: The student-constructed proof attempts that the participants saw  

The interviews were audio recorded. The participants wrote as much or as little as they 

wanted on the sheets containing the student-constructed proof attempts. Participants 

took as much time as they wanted to validate each proof, with one participant initially 

taking 25 minutes to validate “Proof (a)”.  

The interviewer, who is the first author, answered an occasional clarification question, 

such as the meaning of the vertical bar in 3|n2, but otherwise only took notes, and 

handed the participants the next printed page when they were ready for it. The data 

collected included: the sheets on which the participants wrote, the interviewer’s notes, 

and the recordings of the interviews.  

These data were analysed and tallies were made of such things as: the number of correct 

judgments made by each participant individually; the percentage of correct judgments 

made by the participants (as a group); the validation behaviours that the interviewer 

observed; the validation comments that the participants made; the amount of time taken 

by each participant to validate each proof attempt; the number of times each participant 

reread each proof attempt; the number of participants who underlined or circled parts 
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of the proof attempts; and the number of times the participants substituted numbers for 

n.   

RESULTS 

Given that validation can be difficult to observe, it is remarkable how verbal and 

forthcoming the participants in this study were. All participants appeared to take the 

task very seriously and some participants spent a great deal of time validating at least 

one of the student-constructed proof attempts. For example, LH initially took 25 

minutes to validate “Proof (a)” before going on, and VL initially took 20 minutes to 

validate “Proof (b)”. Here LH and VL are pseudonyms. 

Participants’ Evaluative Comments  

The participants sometimes voiced what they didn’t like about the student-constructed 

proof attempts. For example, CY objected to “Proof (b)” being referred to as a proof 

by contradiction. He insisted it was a contrapositive proof and twice crossed out the 

final words “we have a proof by contradiction”. Fourteen (87.5%) mentioned the lack 

of a proof framework, or an equivalent, even though they had been informed at the 

outset that the students who wrote the proof attempts, unlike them, had not been taught 

to construct proof frameworks.  

Participants seemed to be bothered by: (1) lack of clarity in the way the student-

constructed proof attempts were written. Some referred to parts of the proof attempts 

as “confusing”, “convoluted”, “a mess”, or not “making sense” (68.75%); (2) the 

notation, which one participant called “wacky”; (3) the fact that “Proof (d)” started 

with n, then introduced m, and did not go back to n; (4) not knowing what the students 

who had constructed the proof attempts knew or were allowed to assume; (5) having 

too much, or too little, information in a purported proof. For example, one participant 

said there was “not enough evidence for a contradiction” in “Proof (b)”; (6) the “gap” 

in “Proof (c)” which was remarked on by six participants. 

Some Participants’ Local and Overall Comments 

Local comments on “Proof (a)”:“[I] don’t like the string of = s.” (MO). “3n+1, if n=1, 

is not odd, [rather it] would be even.” (KW). “This [pointing to n2 = 9n2] isn’t equal.” 

(AF). 

Overall comments on “Proof (a)”: “[It] needs more explanation -- I can’t see where 

they are going.” (CL). “[The] first case doesn’t seem right.” (CY). “Not going where 

they need to go.” (KW). “Not a proper proof”. (FR). “Partial proof”. (MO). 

Local comments on “Proof (b)”: “Not seeing the closing statement.” (FR). “Not a proof 

because we don’t introduce n, but we use n.” (KK). 

Overall comments on “Proof (b)”: “[This makes] a lot more sense to me [than “Proof 

(a)”]” (CL). “[It’s] not written well.” (SS). “[I] feel like it’s a proof because [they’re] 

showing that the two integers in between are not multiples of 3” (AF). 



Selden & Selden 

4-150 PME39 — 2015 

Local comments on “Proof (c)”: Commenting on the use of the universal quantifier 

with x, “[The bit about] where x is any integer worries me” (CJ).  

Overall comments on Proof (c)”: “Just can’t get my head around [it].” (CY). “Need 

more information. Don’t buy it.” (CJ). “[This one is] closer [to a proof] than the 

others.” (KK). “Sound proof”. (MO). 

Local comments on “Proof (d)”: “Why would you use m? ... [It’s] kind of confusing 

with that m.” (LH). 

Overall comments on “Proof (d)”: “[He is] putting [in] more information than needs to 

be [there]. [This does] not help his proof.” (MO). “Not a strong proof.” (LH). 

What Participants Said They Do When Reading Proofs 

In answer to some final debrief questions, all participants said that they check every 

step in a proof or read a proof line-by-line. All said they reread a proof several times 

or as many times as needed. All, but one, said that they expand proofs by making 

calculations or making subproofs. In addition, some volunteered that they work 

through proofs with an example, write on scratch paper, read aloud, or look for the 

proof framework. All of these actions can be beneficial. Indeed, it is quite reasonable 

to suspect something might be wrong with a proof, if in an initial line-by-line reading, 

one or more logical implications cannot be warranted by the reader (Weber & Alcock, 

2005). Such a situation calls for a rereading, or a rethinking, of the proffered argument. 

In addition, ten (62.5%) said they tell if a proof is correct by whether it “makes sense” 

or they “understand it”. These are cognitive feelings that, with experience, can be 

useful. Four (25%) said a proof is incorrect if it has a [single] mistake, and four (25%) 

said a proof is correct “if they prove what they set out to prove.” These last two views 

of proof call for some caution during implementation.  

INTERPRETATION OF RESULTS 

Participants’ comments did not seem to focus primarily on whether the theorem had 

been proved. Rather, these included evaluative comments about whether they liked the 

student-constructed proof attempts, found them confusing or unclear in some way, or 

were lacking in some details or information.  

According to the reading comprehension literature (e.g., Kintsch, 2004; Zwaan & 

Radvansky, 1998), unless reading is done totally superficially, the reader makes a 

situation model of the text being read. We conjecture that the participants in our study 

may have been attempting to make a “situation model” of each of the proofs, that is, 

they were trying to understand, and make sense of, where the authors of the proof 

attempts were “coming from”. Perhaps that is why they made comments about the 

student-constructed proof attempts not “making sense”, having “wacky” notation, or 

being “confusing”, “convoluted”,  or “a mess”. Students are not unique in their interest 

in understanding proofs. As Rav (1999) has stated, one important reason that 

mathematicians read proofs is to expand their understanding. 
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In addition to interpreting their task as first making sense of what they were reading, 

probably due to their prior experiences with reading and making situation models more 

generally, we conjecture that the participants in this study might have felt it important, 

perhaps even necessary, to gain a top-level view of each proffered argument, that is, to 

be able to comprehend it holistically (Mejia-Ramos, Fuller, Weber, Rhoads & 

Samkoff, 2012, pp. 10-11) before making a judgment on its validity. Indeed, Selden & 

Selden (2003, p. 5) said of an ideal validation that, “Towards the end of a validation, 

in an effort to capture the essence of the argument in a single train-of-thought, 

contractions of the argument might be undertaken.” Thus, perhaps the participants 

implicitly felt that making sense of the other students’ proof attempts, that is, of where 

the student authors’ were “coming from”, was a prerequisite to being able to judge 

whether they were indeed  proofs. 

DISCUSSION AND TEACHING IMPLICATIONS 

 In answer to our research question, the participants in this study took their task very 

seriously, but made fewer final correct judgments (73% vs. 81%) than the 

undergraduates studied by Selden and Selden (2003) despite, as a group, being 

somewhat further along academically. In this study, 56% (9 of 16) of the participants 

were in their fourth-year of university, whereas just 37.5% (3 of 8) of the 

undergraduates in the Selden and Selden (2003) study were in their fourth year.  

Because the participants in this study were completing an inquiry-based transition-to-

proof course emphasising proof construction, in which validation had been modelled 

extensively by the second author, we conjectured they would be better at proof 

validation than those at the beginning of a transition-to-proof course (i.e., those studied 

by Selden and Selden, 2003), but they weren’t. We have tentatively concluded that if 

one wants undergraduates to learn to validate “messy” student-constructed proof 

attempts, in a reliable way, one needs to teach validation explicitly, perhaps through 

validation exercises or activities.  

We stress this because it may seem counterintuitive. We note that, as students, most 

mathematicians have received considerable implicit proof construction instruction 

through feedback on assessments and on their dissertations. However, most have 

received no explicit validation instruction, but are apparently very skilled at it; for 

otherwise, they would submit some invalid proofs for publication. 

Finally, we note that, at least in the U.S., many future teachers of secondary or tertiary 

mathematics take a transition-to-proof course. Thus, for future pedagogical purposes, 

it would be useful for today’s mathematics and mathematics education majors to be 

taught to distinguish between a proof being valid (i.e., guaranteeing the truth of the 

claimed theorem) and having additional positive or negative features.  
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Mathematics teacher noticing is important for improving teaching.  The ability to 

notice instructional events and to respond appropriately to these events can be 

challenging.  Mentoring conversations can be structured to enhance teacher’s ability 

to notice issues of mathematical content and student learning.  This paper presents a 

case study of mentoring conversations between a mentor and a teacher on a Primary 

4 lesson on comparing decimals in a Singapore classroom.  Based on data which 

include observations of mentoring sessions and classroom lessons, field notes and 

semi-structured interview, findings from this study suggest that mentoring 

conversations direct teacher to pay attention on relevant issues during lesson planning.  

This enhances teacher’s ability to notice during teaching.  

INTRODUCTION  

Learning to notice classroom events and students’ mathematical thinking is important 

for improving teaching.  This skill empowers teachers to work towards building 

connections between learners and mathematical content.  Mason (2011) advocates 

noticing as an intentional act and one needs to sensitise oneself so as to notice 

opportunities in the future and to be able to select a preferred action based on a 

collection of alternative actions instead of habitual reactions.  Professional 

development efforts to build teachers’ capacity to notice often involves showing video 

clips of classroom teaching to teachers, and asking them to notice certain features of 

instruction (Miller, 2011; Star & Strickland, 2008; van Es, 2011).  In this paper, we 

provide another perspective of professional development on noticing by studying the 

discussion points during mentoring conversations to raise the teacher’s awareness to 

attend to students, to the mathematics content and to make decisions based on the 

instructional situations.  One of the key questions addressed in this study is the impact 

of mentoring conversations on the processes of teacher noticing (attending, interpreting 

and deciding).   

THEORETICAL CONSIDERATIONS 

Teacher Noticing 

This study is underpinned by the theoretical construct of noticing.  Although there are 

different notions of mathematical noticing, scholars on teacher noticing, such as Mason 

(2002) and Erickson (2011), suggest that what teachers notice has direct bearings on 
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their pedagogical responses.   Based on the concept of situational awareness, noticing 

is essential for effective teaching (Miller, 2011).  Extending the work of Goodwin 

(1994) on professional vision, which was described as ways of making sense of events 

that are of interest to specific groups, the construct of noticing has evolved to 

encompass the ability to notice significant events and decide how to respond based on 

what is noticed (Jacobs, Lamb, & Philipp, 2010).  In this process, teachers maintain an 

“awareness of awareness” (Mason, 2011, p. 43), meaning that teachers are cognizant 

about the extent to which they are conscious about classroom happenings. When 

noticing, teachers draw attention to students’ thinking in instances that are most 

pertinent for improving instruction. 

While teaching a lesson, teachers who notice are cognizant about student 

understanding and misconceptions occurring in the classroom (Miller, 2011).  In a 

classroom where multiple events are happening simultaneously, it requires expertise to 

identify noteworthy aspects of a classroom situation.   Choy (2013) makes a distinction 

between more productive and less productive noticing and highlights the potential of 

collaborative teacher learning in enhancing the productivity of mathematical noticing.  

He advocates directing teacher’s attention to key mathematical ideas and students’ 

learning difficulties related to these concepts during lesson planning as an approach to 

support teachers’ ability to notice mathematical features (Choy, 2014). 

Mason (2002) describes noticing as a set of practices that work together to improve 

teachers’ sensitivity to new responses during teaching situations.  These practices 

include reflecting systematically; recognising choices and alternatives; preparing and 

noticing possibilities; and validating with others (Mason, 2002).  To develop 

professional practice, teachers must first develop their own sensitivities and awareness 

in order to stay attuned to fresh possibilities when they are needed and be alert to such 

a need through awareness of what is happening at any given time.  Mason therefore 

highlights the need for advanced preparation to notice and the use of prior experience 

to enhance noticing in order to have a different act in mind.  In this paper, we refer to 

teacher noticing as a teacher’s noticed moment, her understanding of that moment, and 

her response to that moment. 

Teacher Noticing and Mentoring  

Scholars on noticing have emphasised the need to explicitly teach preservice teachers 

to notice because they are initially quite weak at observing classroom events and 

interpreting student understanding (Star & Strickland, 2008).  At the same time, 

research has also called for the support of inservice teachers to deepen their noticing 

capabilities (Jacobs et al., 2010).  Building on the noticing framework by van Es and 

Sherin (2008), Jacobs and colleagues propose a structure for teachers to better 

understand and act on their students’ mathematical conceptions and practices.  They 

characterise noticing into three interrelated phases: attending, interpreting and 

deciding.  Attending is about noting aspects of a mathematical moment as a way to 

gather meaningful evidence.  Interpreting involves coordinating the observed actions 
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(attending) with what is known about mathematical development in a particular area.  

Deciding refers to conceiving (and executing) an effective strategy drawn from the 

interpretation of a student’s mathematical thinking.    

Noticing is not just an individual cognitive process.  According to Goodwin (1994), 

“The ability to see a meaningful event is not a transparent, psychological process, but 

is instead a socially situated activity” (p. 607).   He illustrated how the discourses and 

tools of a discipline shape the ways professionals make sense of, or notice, complex 

events.  For example, in the 1992 trial of Rodney King, Goodwin illustrated how a 

police expert was critical in shaping what features the jurors noticed that led to their 

verdict of an acquittal.   

Murray (2001) broadly defined mentoring as a one-on-one relationship between an 

experienced and less experienced person for the purpose of learning or developing 

specific competencies.   Mentoring is based on the idea that individuals make meaning 

of knowledge within a social context and as a result of interactions with others (St 

George & Robinson, 2011).  Situating the emergence of what teachers notice within 

the lesson and structures of the classroom, the mentor plays a key role in pointing the 

way, offering support, and challenging ideas (Daloz, 1983).  In grounding noticing 

within a collaborative mentorship, we posit that in the presence of a mentor, a less 

experienced teacher will be empowered to notice specific mathematical details and 

students’ possible misconceptions during lesson planning.  This advanced preparation 

to notice will serve as the bedrock upon which the mentee construct ways to respond 

with a different act in mind during teaching situations. 

METHODOLOGY 

This paper presents two vignettes drawn from a case study which formed part of a 

larger exploratory study on mentoring of teachers to teach low progress learners in 

primary mathematics in Singapore.  It uses data from a full-cycle of mentoring sessions 

which comprised pre-lesson discussion, lesson observation and post-lesson discussion 

as shown in Figure 1.  The mathematics mentor had 15 years of teaching experience 

and good mathematics pedagogical content knowledge.  She had participated in a 

workshop on mentoring skills based on Figure 1 and four sessions of networked 

learning which were facilitated by the researchers.  The mentor had weekly mentoring 

sessions with the teacher for about four months.  The teacher had about two years of 

teaching experience and was new to teaching mathematics at Primary 4. 

We adopted an experimental model to teaching as a systematic approach to learning 

from teaching (Hiebert, Morris, & Glass, 2003).  In this theoretical model, teachers 

view lessons as experiments to inquire and make sense of their teaching in order to 

improve their knowledge and practice.  Mentoring as a collaborative inquiry, therefore, 

supports the underlying assumption that the key to learning to teach is the ability to 

plan lessons that are aligned to specific learning goals, and to monitor the effectiveness 

of the lesson based on evidence collected during implementation.  To facilitate 

conversations between the mentor and teacher, we introduced a mentoring framework 
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(Figure 1) to focus discussions on identifying readiness of students and the specifics of 

mathematical concepts the teacher wanted to teach. This is premised on the belief that 

for mentoring to be beneficial and effective, it calls for specific discussion points 

pertaining to the subject area (Curran & Goldrick, 2002).   A study by Hudson (2009) 

on mentoring pre-service primary mathematics teachers also highlighted the need for 

a set of specific mentoring practices for the mentors to focus on.    

Figure 1 shows the various discussion points which the mentor used to direct the 

teacher to notice key mathematical ideas and students’ learning difficulties related to 

these concepts.   These discussion points guided the mentor to focus the mentoring 

conversations on what the teacher needed to attend to in terms of the mathematical 

content and students’ learning during lesson preparation and actual lesson.  The 

conversations with the mentor aimed to empower the teacher to interpret instructional 

events more meaningfully and to provide the teacher with an increased repertoire of 

potential instructional decisions.  

 

 

 

 

 

 

 

 

 

 

                              

 

Figure 1:  Mentoring Framework for Math Mentors 

The authors took on the role of non-participant observers, made field notes and audio 

recordings of the mentoring sessions and video recording of the lesson conducted by 

the teacher.  Semi-structured interviews with the mentor and teacher were also audio-

recorded.  The transcripts of the audio-recordings and video-recording were parsed into 

episodes according to the processes of noticing, namely attending, interpreting and 

deciding.  This paper focuses on the findings drawn from mentor-teacher discourses 

from one pre-lesson discussion, one lesson observation which was followed by a post-

lesson discussion, as well as semi-structured interview with mentor and teacher. 
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RESULTS AND DISCUSSION  

To investigate the impact of mentoring conversations on teacher noticing, we discuss 

two note-worthy episodes; one that occurred during pre-lesson conversation and one 

during the lesson.  The first episode illustrates discussion points directed by the mentor 

to empower the teacher to see the salient points in comparing decimals during lesson 

planning.  The second episode focuses on teacher noticing during the actual lesson and 

her sensitivity to respond as a result of her advanced preparation to notice during the 

pre-lesson discussions on issues of mathematical concept of comparing decimals and 

student learning. 

Vignette 1:  Lesson Planning on Comparing Decimals  

During the pre-lesson discussion on a lesson on comparing decimals up to three 

decimal places, the teacher highlighted the importance of building students’ factual 

fluency in expressing a fraction with a denominator of 10 or 100 as a decimal before 

proceeding to the concept of comparing decimals.  Students’ difficulties in recognising 

tens with tenths and hundreds with hundredths and the concept that tenth is greater than 

hundredth were also discussed in great detail.  The teacher then suggested using a menu 

of food with prices listed to engage students to relate comparing decimals to their 

everyday experiences of buying food. 

Teacher: I will ask them, with $2.50 what can you buy from this list of items? 

Mentor:  There is only one item that is cheaper than $2.50 or less than $2.50. 

Teacher: Ya, why is that so? So over here I will be able to elicit the word ‘more 

than’ and ‘less than’ when they are trying to decide which item is more 

expensive.  So, this will be able to lead us to the lesson objectives to 

compare decimals. 

Mentor: I see (pause) there are some key words…more than, less than, more 

expensive (pause) but I couldn’t link it to the tenths, hundredths and 

thousandths for comparing decimals….So, using the concept of money, 

would it be effective in achieving your lesson objective? 

The concept between comparing money and comparing decimals is a subtle one.  

Through the mentor’s questions, the teacher noticed that, in money, the dot separates 

the dollars and the cents.  So, given two amounts of money ($2.50 and $2.05), it is 

about comparing the values of dollars and the value of cents.    In comparing decimals 

(2.50 and 2.05), the key concept is on the place value and that decimals are part of the 

base-ten system of numeration.  The teacher subsequently noticed the importance to 

focus students’ attention on the mathematical concepts of place value and decimals; 

the digit before the decimal point indicates the number of wholes and the digit written 

after the decimal point represents the fractional/decimal parts.   

The teacher’s noticing was less productive in the beginning as she seemed more 

concerned about eliciting words such as ‘more than’ rather than focussing on students’ 

conception of place value.  However, her noticing became productive when the mentor 
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directed her attention to applying the concepts of place value when comparing 

decimals.  This led her to redesign her instructions to emphasis the meaning of tenths, 

hundredths and thousandths.  Although she still believed in the importance of the menu 

as a strategy to help her students appreciate the relevance of comparing decimals, it 

was used only for the purpose of illustrating the idea of comparing which students 

experienced in their everyday situations, such as buying food.  Parallel to the study by 

Choy (2014), the findings in Vignette 1 also highlight the importance of productive 

noticing during lesson preparation because it sensitises teachers to think about the key 

mathematical idea, students’ possible misconceptions, and the various instructional 

strategies to deal with these problems.   

Vignette 2:  Responding to Students’ Thinking during Classroom Observation 

During the lesson, although her students were able to give the correct answers to her 

questions, the teacher noticed that some of them may not be sure of the underlying 

mathematical concepts in comparing decimals. The transcript below shows her probing 

her students’ thinking when they said that 0.1 is greater than 0.01. 

Teacher: 0.1, yes.  Do you want to explain to me why do you say that 0.1 is greater 

than 0.01? 

Student:  It has less digits. 

Teacher: If you say a decimal has less digits, does it tell us that it must be a greater 

decimal? 

Noticing students’ misconception that a decimal with fewer digits is greater, the teacher 

needed to interpret the content from the perspective of the student and made a decision 

to relate students’ understanding of 0.1 and 0.01 to their prior knowledge of fractional 

parts.  This was modelled with a whole chocolate bar being shared by 10 people and a 

whole chocolate bar being shared by 100 people.  Following this, the teacher used the 

example of comparing 1.2 and 1.20 to further address the misconception that ‘a bigger 

decimal will have fewer digits’ and to deepen students’ conceptual understanding of 

decimals.      

During the post-lesson discussion with her mentor, the teacher reflected that she needed 

to make the concepts of place value very explicit to her students and the process of 

comparing the whole number parts first before the decimal parts, starting from the left. 

Teacher: Because their mindset is such that less digits means to say more tenths, 

no hundredths or no thousandths.  That’s why, so I think the common 

misconceptions would be, you know, the number of digits in a decimal 

will affect their understanding.  The most important thing is to have them 

compare the digits in the similar place value.  That’s the key takeaway. 

Analysis of the transcript of the semi-structured interview showed that the teacher 

attributed this mathematical noticing to the questions by her mentor.  



 Seto & Loh 

PME39 — 2015 4-159 

Teacher: …sometimes when I craft my lesson, there are some parts whereby I 

didn’t realise the misconceptions certain students have….having a 

mentor actually will be able to point out for you … like this topic, 

requires more probing of students’ understanding of tenths and 

hundredths and concept of comparing. 

Hence, it can be argued that advanced preparation to notice has sensitised the teacher 

to listen to students’ mathematical reasoning and make sense of what she heard in order 

to respond appropriately to her students’ thinking (Mason, 2011).  Attending to the 

mathematical aspects of students’ reasoning, therefore, provided the teacher with 

insights into students’ thinking (Jacobs et al., 2010) which led her to make a meaningful 

interpretation based on the evidence of students’ verbal explanation.  Having attended 

and interpreted this relevant information, the teacher made a thoughtful instructional 

decision which resulted in enhancing students’ learning.   

By describing what and how she intended to teach, the negotiation with her mentor 

provided a foundation for the teacher to recognise in-the-moment when a similar 

incident (place value of decimals) began to emerge.  Through the lens of her mentor, 

she developed the awareness to stay attuned to fresh possibilities in the future and 

hence, to be more adaptive to instructional events.  As she became more attuned to how 

her students perceive the learning, she was also better prepared to engage in more 

productive mathematical noticing.   

CONCLUSION AND IMPLICATIONS  

Teaching noticing is specialised and it is not a natural extension of being observant in 

daily life.  As it does not naturally develop with teaching experience, the processes of 

attending, interpreting and deciding must be deliberately refined through practice 

(Jacobs et al., 2010).  The two vignettes show that mentoring conversations encouraged 

the teacher to notice specific mathematics in students’ reasoning and facilitated her 

understanding of that moment as well as her response to that moment.  As teachers and 

mentors reflect systematically, explore various alternatives and validate their practices 

with one another, mentoring conversations are avenues to develop teacher’s 

mathematical noticing.   

Despite the limitations of a case study, this paper highlights the value and potential of 

mentoring conversations to develop teacher noticing to improve teaching, and provides 

a start towards understanding the role mentors can play in building teachers’ capacity 

to connect instructional decisions to interpretations based on attending to evidence for 

effective mathematics teaching. 
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Bishop (1991) pointed out the importance of research on values in mathematics 

education. Based on this idea, Shimada and Baba (2012) developed three “socially 

open-ended” problems, in which students’ values play an important role (Baba 2010). 

We gave each of the problems to fourth graders once per month, and identified 

characteristics of classroom interaction. However, an issue remains regarding how 

students appreciated others’ values and transformed their own values in the classroom 

interaction (Shimada & Baba 2012). The objective of this research is to study this issue. 

As a result of the analysis, we identified four characteristics of the transformation of 

students’ values such as diverse mathematical models, existence of implicit values, 

transformation of values, and change of mathematical models.  

RESEARCH BACKGROUND 

Baba (2012a) points out that there are two types of research on values: one involving 

a cultural and/or historical analysis of the values which students and teachers hold; and 

the other involving the taking up values appearing through problem-solving and even 

positively developing them through interaction. This paper is based on the latter kind 

of research. In the previous study (Shimada & Baba, 2012) we identified three values 

that we should foster in mathematics education: mathematical values, social (human) 

values and personal values. In this paper, we focus on social (human) values and 

explore the transformation of students’ values through classroom interaction. There are 

three interrelated reasons for this exploration. 

The first reason relates to whether or not students transform their values. Seah (2012, 

p. 1) described values as being extremely internalised and stable (see Krathwohl, 

Bloom & Masia, 1964) within an individual, and they are usually not acquired 

overnight. We understand that adults’ values become more stable after encountering a 

variety of values through various experiences in their lives. Thus it is of interest 

whether or not students’ values are transformed in problem-solving during a 

mathematics lesson. 

The second relates to whether or not we are able to evaluate a transformation in 

students’ values. If we observe students’ values during a mathematics lesson, we must 

be able to evaluate those values. This evaluation does not mean determining whether 

students’ values are good or bad, especially when we deal with social values. Thus, 

from the educational point of view, it is necessary for the teacher to grasp how students 

transform their values during a mathematics lesson.  

The third relates to how the research into the transformation of students’ values during 
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problem-solving takes place. The difficulty of studying the transformation of students’ 

values is that values usually stay implicit without being spoken out loud. Of the study 

of values, it may be said that we have been studying them with the aim of clarifying 

values that are implicit. Seah, one of the leaders of the Third Wave international 

research project on values, stated the following in an overview of research on values:  

The researching of values in the mathematics classroom has traditionally been approached 

using the research methods of questionnaires, observation, and/or interviews. … By the 

late 2000s, values were also identified through content analyses of artefacts such as 

photographs and drawing, often followed by participant interviews which served to clarify 

initial findings or questions. (Seah, 2012, pp. 2-3) 

In this paper, we document and research the transformation of students’ values as they 

appear in the problem-solving process.  

RESEARCH OBJECTIVE 

The objective of this paper is to study the transformation of students’ social values as 

they occur through the teaching of problem-solving. This is associated with one 

purpose of the international comparative survey, the Third Wave, that is, how these 

values are negotiated by the students and the teacher. In the classroom, the students 

introduce their values and interact with each other, and they may or may not transform 

their values.  

Thus, the following research questions are set up: 1. What models are created for what 

values? 2. How do implicit values become apparent? 3. Are values transformed? 4. Are 

mathematical models changed? 

RESEARCH METHODOLOGY 

Overview of the class: The first author carried out a problem-solving lesson using 

the socially open-ended problem*1 “Hitting the target” with fourth graders in a private 

elementary school in Tokyo on March 12, 2013. The problem is shown in Figure 1. 

“Hitting the target:” At a school cultural festival, your class 

offers a game of hitting a target with three balls. If the total 

score is more than 13 points, you can choose three favorite gifts. 

If you score 10 to 12 points, you get two prizes, and if you score 

3 to 9 points, you get only one prize. A first grader threw a ball 

three times and hit the target in the 5-point area, the 3-point 

area, and on the border between the 3-point and 1-point areas. 

How do you give the score to the student?  

Figure 1: Problem-solving task 

There were 38 students, comprising 19 boys and 19 girls. The first author is a teacher 

who has specialised in mathematics education, with 40 years of teaching experience. 

In this study, he taught the same fourth grade class in the same school in which 

Shimada and Baba (2012) had practiced, employing almost the same class design. In 
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other words, the lesson follows the sequence of provision of a problem, individual 

solutions, presentation and discussion of the mathematical models and reasons, and 

finally selection of one model with its reason at the end by each other.  

The research method on the transformation of the students’ values 

Shimada and Baba (2012) reported that some of the students’ values exist both 

implicitly and explicitly in a problem-solving lesson. Furthermore, they proposed a 

method for the students to become aware of the implicitness of values through 

comparisons. This paper will also employ this method of comparing, because “Values 

do not often appear in daily life, but when we are challenged, and we meet opposing 

values, we can be conscious of the implicitness of values for the first time. This is the 

nature of values.” (Baba, 2012b, p.1) 

We let the students write the mathematical models and the reasons on a worksheet at 

the beginning of problem solving. The students’ values appear in the reasons written 

by the students (Shimada & Baba, 2012). Of course, in some cases, students’ values 

remain implicit at the beginning stage. However, through the process of sharing ideas 

in the classroom, the implicit values become explicit, in contrast to different and 

sometimes opposing values. 

After the students present their models, we set the scene where students were to select 

models and write the reasons for their selection on a worksheet. As Seah (2007) has 

noted, “Selection and decision-making are the important keys.” We even ask the 

students during the class: “Why did you choose this idea?” In this research we consider 

the “transformation of students’ values” through the comparison of mathematical 

models and the reasons at the beginning and at the end of the lesson. 

Analysis of classroom interaction and students’ data 

The analysis of classroom interaction and the worksheets revealed four characteristics 

of students’ cognition and transformation of values such as diverse mathematical 

models, existence of implicit values, transformation of values, and transformation of 

mathematical models. 

Diverse mathematical models for the same values 

The first characteristic is that diverse models are being created with the same values. 

Table 1 summarizes students’ values and mathematical models after students engaged 

in initial self-resolution. For example, the value “kindness to the first grader” is given 

with diverse mathematical models such as “a. 5+3+3,” “b. 5+3+(3+1),” “c. 

5+3+3+1+1,” and “d. 5+3+2.” The same thing can be said for the value of “fairness 

and equality.” All numbers in Table 1 are percentages except those in parenthesis. In 

the “Percentage of explicit values” column, the fractions in parenthesis show (the 

number of students who expressed the values explicitly)/(the total number of students 

who wrote the mathematical model). The models are categorised into a, b, c, d, e, f and 

g with typical examples.  
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Mathematical 

model (Typical 

example) 

Values 
Percentage of 

explicit values  

Type-wise 

Percentage of 

explicit values  

a. 5+3+3 
Kindness to the first 

grader (Specific 

person) 

92.9 (13/14) 

94.4 (17/18) 
b. 5+3+(3+1) 100.0 (1/1) 

c. 5+3+3+1+1 100.0 (1/1) 

d. 5+3+2 100.0 (2/2) 

e. 5+3+2 Fairness and equality 

to the whole class (all 

students)  

0.0 (0/9) 

0.0 (0/20) f. 5+3+1 0.0 (0/10) 

g. 5+3+3 0.0 (0/1) 

Table 1: Students’ Values and Mathematical Models at the Initial Self-Resolution 

Time (n = 38) 

Implicit values became apparent through comparison with other values 

The second characteristic is that implicit values become apparent through comparison 

with other values as stated in the method. Looking at Table 1, we can see that the value 

of “kindness to the first grader” (94.4%) is elicited more than the values “fairness and 

equality” (0.0%). We found that the latter implicit values are manifested in the 

following protocols.  

1 T1: So, please make a presentation on how you think 

about this problem. S.J., please. 

 

2 S.J.1: I gave 3 points to the first grader, so I wrote 

5+(3×2)=11, 11 points, because the first grader 

should be welcomed. (Fig. 1) 

3 2: Does anyone have any questions for S.J.? 

4 S1: I think that we do not have to write parentheses in 

the expression because we calculate the 

multiplication before the addition. 

5 S.J.2: Thank you, I understand. I will rewrite it as 

5+3×2=11. 

6 T3: And who did you think of, S.J.? 

7 

8    

S.J.3:  

T4: 

I thought of the first grader. 

I will write the words “kindness to the first grader” 

next to S.J.’s idea.  

Next, please present your idea, K.K.                    

9 K.K 

1: 

The ball is on the boundary of 3 points and 1 point. 

I give 1 point because the 1-point area of the ball is 

larger than the 3-point area of the ball. So, 

5+3+1=9, 9 points. (Fig. 2) 

 

Fig. 2: K.K.’s 

presentation 
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10 T5: Does anyone have any questions for K.K.? 

 

11 S2: What points will you give to the first grader when 

the ball reaches the middle just above the line? 

12 K.K.

2: 

I will give 2 points. 

13 S3: What points will you give to the first grader when 

the ball reaches the middle of just above the line of 

1 point and 0 points? 

14 

15 

K.K.

3: 

T6: 

I will give 0.5 points. 

S.J. gave 3 points to the first grader. And who did 

you think of, K.K.? 

16 K.K.

4: 

I thought about all the people who play the game. I 

want to be impartial to all people. 

17 T7: So I will write the words “fairness to all people” 

next to K.K.’s idea. 

Analysis of the above transcripts reveal that the value “kindness to the first grader” is 

explicit in S.J.’s presentation, so in T3, the teacher confirmed S.J.’s values, and wrote 

it in T4. On the other hand, we cannot explicitly see values in K.K.1. In his opinion of 

considering the area coverage, we can see the mathematical interpretations and models, 

but we cannot see who K.K. is thinking about, so the teacher uses S.J.’s explicit values 

to contrast with K.K.’s. In this way, the teacher made the implicit values apparent in 

K.K.4: “I thought about all the people who play the game. I want to be impartial to all 

people.” The teacher employs the same method in dealing with other opinions 

including implicitness.  

The mathematical models of the students in the class are shown in Table 2 below, in 

order of presentation.  
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Table 2: Students’ mathematical models presented in a classroom after S.J. and K.K. 

Some students transform their values from the initial self-resolution time to the final 

selection time 

The third characteristic regards the existence of both students who transform their 

values and those who do not. Table 3 is a cross-tabulation table showing the 

relationship between the values at the initial self-resolution time and the final selection 

time. All numbers are percentages except those in parenthesis. The fractions in 

parenthesis show (the number of students who expressed the values both at the initial 

self-resolution time and the final selection time) / (the number of all students in the 

class). 

 
Table 3: Values at the initial self-resolution time and the final selection time (n = 38) 

Table 3 shows the values by types, at the initial self-resolution time and at the final 

selection time. The percentage of students who selected the values “fairness and 

equality” at the self-resolution time and selected the value of “kindness to the first 

grader” at the final selection time is 15.8%. About one-third of students who selected 

different values at both times is (6/38+6/38=12/38, 12÷38≓0.32). 

Table 4 below shows 1/2 (3÷6=1/2) of students, U.K., T.M., N.M., who selected the 

value of “fairness and equality” at the self-resolution time and transformed it at the 

final selection time, supporting K.U.’s idea (Table 2). They thought, such as “The first 

grader will be happy and come here again.” On the other hand, K.U. himself 

transformed his idea to the idea of T.R. (Table 2) at the final selection time. He 

transformed his value after knowing the value of “fairness and equality,” and stated “I 

think that it is nice to give two points because of equality.” 



 Shimada & Baba 

PME39 — 2015 4-167 

 

 Table 4: Four students who transformed their values and their reasons  

Some students remain with the same values but change the mathematics models 

with the same values 

The fourth characteristic is the existence of students who did not transform their values 

but changed the mathematical models. Table 5 is a cross-tabulation showing the 

relationship between mathematical models at the initial self-resolution time and the 

final selection time against the same values. Numbers are percentages except those in 

parenthesis. The fractions in parenthesis show, for example, in the case of 5/14, (the 

number of students who expressed the same mathematical models at both times with 

respect to the values “fairness and equality”) / (the number of all students who 

expressed the same values “fairness and equality” at both times). 

 

Table 5: Mathematical Models at the Initial Self-Resolution Time and the Final 

Selection Time with the Same Values 

The percentage of students who selected the same value “fairness and equality” at both 

times but changed their mathematical models is 64.3%. However, the percentage of 

students who selected the same value “kindness to the first grader” at both times but 

selected different mathematical models is 75.0%. Overall, the percentage of students 

who changed mathematical models with the same values is 69.2%. From this fact 

alone, it can be said that social interaction has had an impact on the students.  

Table 6 shows M.H. changed the mathematical model because of the beauty of formula.  
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Table 6: Three students who transformed the mathematical models and their reasons 

M.H. described about mathematical value. On the other hand, 6 students (e.g., T.Y., 

K.R.) supported K.U.’s model. K.U.’s idea is accepted by several students. 

CONCLUSION AND FUTURE ISSUES 

We have analysed transformations of values within a lesson and concluded that more 

than half of students did not transform their values. However, many of them modified 

mathematical models according to their values. This illustrates the stability of values 

within an individual (Seah, 2012, p. 1), and at the same time, the possibility of gradual 

or small scale transformation of values, which necessitates with change of 

mathematical models. This variability that a teacher experiences in the classroom when 

introducing problems that have implications for exploring students’ values related to 

mathematics will indicate ttransformation may occur gradually over a longer period. 

Next we would like to discuss a more sensitive and long-term transformation.  

*1 A socially open-ended problem is one (Baba, 2010) which has been developed to elicit students’ 

values by extending the traditional open-ended approach (Shimada, 1977). 
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The aim of this paper is to construct a theoretical framework for curriculum 

development in the teaching of mathematical proof at the secondary school level. To 

accomplish this aim, we first search for, through the review of related literature, the 

principal aspects of mathematical proof that should be taken into consideration for the 

framework. In particular, we consider the idea of “local organization” introduced by 

Freudenthal (1971) and the idea of “mathematical theorem” proposed by an Italian 

research group (Mariotti et al., 1997). In terms of these ideas, we then develop a 

framework for teaching mathematical proof and examine elements of the framework in 

line with mathematics curricular content in Japan. Examples and implications for 

curriculum development are also discussed. 

MATHEMATICAL PROOF IN CURRICULUM 

Traditionally, the teaching of mathematical proof was relegated to geometry at the 

secondary school mathematics level. It might be a well-known fact that the majority of 

students were unable to construct valid proofs. Currently, however, there seems to be 

a general trend towards including proof and proving at all levels of school mathematics 

(e.g., NCTM, 2000). Therefore a number of research studies carried out at all levels of 

mathematics have been reported the teaching and learning of proof and proving in light 

of explanation, reasoning, argumentation, and so on (e.g., Mariotti, 2006; Stylianou et 

al., 2009; Reid & Knipping, 2010; Hanna & de Villiers, 2012). In retrospect, what does 

such an endeavour mean for improving the teaching of mathematical proof at the 

secondary school level? We think that it is necessary to consider—from the perspective 

of important results of earlier research on proof and proving—a more synthesised 

approach to the mathematical or formal proof in curriculum. We cannot ignore the 

influences of curricular content and sequencing when we analyse students’ 

constructions of mathematical proofs (Hoyles, 1997). However, because of “the huge 

variation in when proof in introduced and how it is treated in different countries” 

(Hoyles, 1997, p. 7), only a few attempts have so far been made at a broader discussion 

of curricular content and sequencing of mathematical proof that could be explicitly 

introduced at the secondary level in some countries, including Japan. There is room for 

argument on this point. 
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This paper reports on part of an ongoing research project regarding the developmental 

study of the teaching of mathematical proof throughout six years (Grades 7-12) of 

secondary schooling in Japan. It focuses on proposing a theoretical framework for 

curriculum development in the teaching of mathematical proof. For this reason, we 

must draw attention to the theoretical perspectives with a few examples, but the 

discussion of empirical aspects of the framework would take us beyond the scope of 

this paper. Although the present study is targeting Japanese secondary school 

mathematics, in developing a framework we attempt to synthesise multiple theoretical 

perspectives well known within the international mathematics education community in 

order to enable the framework to be comparable with those in other countries. Thus, 

the research questions in this paper are as follows: What kinds of teaching contents 

should be included in the secondary curriculum for the teaching of mathematical 

proof? and What kinds of evolution should be envisioned in the course of the 

curriculum? 

THEORETICAL PERSPECTIVES 

“Proof” and “Demonstration” 

What is meant by “mathematical proof”? There is the distinction often made in some 

countries between “proof” and “demonstration”. For example, Balacheff (1987) 

describes the French distinction between “prevue” and “démonstration” as follows: 

We call proof an explanation accepted by a given community at a given moment… Within 

the mathematical community only explanations adopting a particular form can be accepted 

as proofs. They are an organised succession of statements following specified rules: a 

statement is known to be true or is deduced from those which precede it using a deductive 

rule taken from a well defined set of rules. We call such proofs “démonstrations”. 

(Balacheff, 1987, p. 148: English translation cited from Reid & Knipping (2010, pp. 32-

33)) 

In Balacheff’s sense, “démonstration” in French can be translated as “mathematical 

proof” in English, and it is distinguished from “proof”. Although “most English writers 

do not use ‘proof’ and ‘mathematical proof’ in the same way as Balacheff does” (Reid 

& Knipping, 2010, p. 33), within the Japanese mathematics education community, we 

sometimes make a similar distinction between “proof (shoumei)” and “mathematical 

proof (ronshou)” (e.g., Hirabayashi, 1991; Japan Society of Mathematical Education, 

1966). Thus, in this paper we would like to use the word “mathematical proof” in the 

special sense of “démonstration” as Balacheff says.  

The distinction between proof and mathematical proof implies that these words are 

often discussed in relation to the statements or theorems to be proven and the system 

of mathematics in which the proof is carried out. We, therefore, attempt to consider 

organisation or systematisation of statements as the principal aspects of mathematical 

proof. In order to do so, the idea of “local organization” (Freudenthal, 1971) and the 

idea of “mathematical theorem” (Mariotti et al., 1997) are taken into account.  
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Local Organization 

Freudenthal (1971; 1973) proposed the idea of local organization and emphasised the 

significance of mathematical activities based on the local organization in geometry. 

Local organization is an important didactic idea proposed as distinguished from the 

idea of global organization based on the axiomatic system:  

Indeed, a student who never exercised organising a subject matter on local levels will not 

succeed on the global one. (Frendenthal, 1971, p. 426) 

In general, what we do if we create and if we apply mathematics, is an activity of local 

organization. Beginners in mathematics cannot do even more than that. Every teacher 

knows that most students can produce and understand only short deduction chains. They 

cannot grasp long proofs as a whole, and still can they view substantial part of mathematics 

as a deductive system. (ibid., p. 431) 

What Freudenthal means by local organization is shown by this example of the proof 

of the perpendicular bisectors of a triangle. Consider a question by the teacher: “draw 

the bisectors of AB and BC, which intersect at M; look where the bisector of AC 

passes”. Freudenthal provides the analysis of the following proof: 

The proof rests on the property of the bisector of XY being the set of all points equidistant 

from X and Y, which may have been recognised by symmetry arguments. M is on the 

bisector of AB whence 

 MA = MB ; 

M is on the bisector of BC where 

 MB = MC 

From both follows 

 MA = MC, 

whence M is on the bisector of AC. (Freudenthal, 1971, p. 429)  

In his view, students need not be able to prove the equidistance property of the 

perpendicular bisector, because this property may be, for students who do not have the 

idea of a relational system, taken for granted, and it “cannot contribute anything to the 

understanding of the circumcircle theorem” (ibid., p. 430). In line with Freudenthal’s 

idea, Hanna and Jahnke (2002) proposed a distinction between “small theory” and 

“large theory”, and they remarked that “instead of building a large theory (namely, 

Euclidean geometry) in the course of the curriculum, it seems to be more appropriate 

to work in several small theories” (p. 3). Here it is important to note that the property 

taken for granted in the local organization or small theory is consistent with the theorem 

proven in the global organization or large theory. We think that such a distinction can 

be one of the principal aspects of teaching mathematical proof that should be taken into 

consideration when developing a curriculum.  

Mathematical Theorem 

In order to elaborate on the relationship between mathematical proof and local 

organization, we consider another important theoretical perspective—the idea of 

“mathematical theorem” proposed by the Italian research group (Mariotti et al., 1997; 
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Mariotti, 2006: Antonini & Mariotti, 2008). According to the characterisation by 

Mariotti et al. (1997), a mathematical theorem consists of a system of relations between 

a statement, its proof, and the theory within which the proof make sense. Indeed, in 

mathematicians’ mathematical practice, a mathematical assertion such as a proposition 

and its validation is always considered in a certain theoretical context such as 

geometrical, arithmetic, algebraic, and other contexts; “the existence of a reference 

theory as a system of shared principles and deduction rules is needed if we are to speak 

of proof in a mathematical sense” (Mariotti et al., 1997, p. 182). We consider that these 

three elements—statement, proof, and theory—that characterise a mathematical 

theorem can be principal aspects of teaching mathematical proof that evolve 

throughout secondary school mathematics. We think that, in particular, the nature of 

theory can be well characterised by the idea of local organization.  

ELEMENTS OF A THEORETICAL FRAMEWORK OF TEACHING 

MATHEMATICAL PROOF 

The methodology we adopt in the present study is that of synthesising the theoretical 

perspectives mentioned in the previous section and of examining the contents and 

levels of mathematical proof in terms of “statement”, “proof”, and “theory” in line with 

mathematics curricular content in Japan. In this way, we develop a framework for 

teaching mathematical proof that allows us to design a curriculum. 

Contents of “Statement”, “Proof”, and “Theory” 

We first attempt to identify the contents of “statement”, “proof”, and “theory” 

respectively. Here we lean on logical points of view to identify the different kinds of 

“statement” that could be included in secondary mathematics. We think that there are 

four kinds of propositions: a) singular proposition, b) universal proposition, c) 

existential proposition, and d) other proposition such as negative proposition. Although 

these four kinds of propositions are included in both primary and secondary school 

curriculum in Japan, the distinctions between them—such as distinct universal from 

existential proposition—are not explicitly taught even at the secondary level. 

We next consider the contents of “proof” to be types of proof such as: a) direct proof, 

b) indirect proof, and c) mathematical induction, which are included in the secondary 

school curriculum. As far as indirect proof is concerned, it is formally introduced in 

Grade 10 in Japan, but informally students spontaneously produce indirect 

argumentation (Anotinini & Mariotti, 2008). Therefore it is necessary to examine how 

we could deal with indirect proof progressively in the course of the curriculum.  

In general, the contents of “theory” are both mathematical theory—Euclidean 

geometry, number theory, and so on—and the logical inference rules, such as modus 

ponens, conjunctive inference, and so on. In particular, the latter is referred to “meta-

theory” (Antonini & Mariotti, 2008). This distinction also becomes important in 

discussing secondary school mathematics. Although “mathematical theory” can be 

explicit teaching content, “meta-theory” remains implicit at the secondary level in 
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Japan. In order to understand what “meta-theory” is like, let us show a proof by 

contradiction as an example (see Antonini & Mariotti (2008) for detailed analysis). 

Statements: Let a and b be two real numbers. If ab = 0, then a =0 or b =0. 

 Proof: Assume that ab = 0, a≠0, and b≠0. One can divide both sides of the equality ab 

= 0 by a and by b, obtaining 1 = 0. It is a contradiction (1≠0). Therefore a =0 or b =0. 

Theory: Properties of equality, real numbers. 

Meta-theory: Law of excluded middle, law of double negation, modus ponens, etc. 

Levels of “Statement”, “Proof”, and “Theory” 

We then attempt to identify the levels of “statement”, “proof”, and “theory” 

respectively. As far as levels of “statements” are concerned, there are two different 

kinds of educational evolution in terms of the setting of a proof. One level is about the 

object that the statement refers to. It seems reasonable to suppose that there are two 

levels: i) an object of the real world, and ii) an object of the mathematical world. For 

example, in the beginning stage of learning geometry, if the statement (probably a 

singular proposition) refers to “a written triangle”, the object of investigation is in the 

real or material world. At a higher stage, if the statement (probably a universal 

proposition) refers to “any triangle”, the object of investigation is in mathematical 

world. Another evolution is about the formulation of the statement, because the same 

statement is able to have different representations. In the course of curriculum, it seems 

that there are three levels of formulation of the statement: i) figure, manipulation, and 

gesture; ii) ordinary language and word; and iii) mathematical word and symbol. In the 

case of the universal proposition, for example, the statement can be formulated as “the 

sum of the interior angles of any triangle is 180°”. This formulation is the second level, 

although the universal quantifier is not represented as the symbol “"”, which is the 

third level. In Japanese language, we rarely say “any triangle” or “all triangles” in a 

textbook or geometry class. Although the third-level formulation is not dealt with in 

the current curriculum, we think that the progressive formulation of the statement can 

be a crucial point of the curriculum development in this research project.  

Concerning the levels of “proof”, we consider two different kinds of evolution. Since 

these have been discussed in Balacheff’s (1987) categories of proof so far, similar 

categories can be applied to our framework as levels of “proof”; that is, the validation 

and formulation of “proof”. Since the same may be said about the formulation levels 

of the statement, here we just mention validation levels. It is fair to say that there are 

three levels of validation: i) explanation, ii) mathematical proof, and iii) formal proof. 

“Explanation” includes a discourse by informal reasoning, such as inductive and 

abductive reasoning. Although both “mathematical proof” and “formal proof” are 

considered as intellectual proof in Balacheff’s sense, “formal proof” is based on naïve 

formalist language such as symbolic logic. And “mathematical proof” that can be an 

accepted discourse in the mathematicians’ community which means a simplified 

version of “formal proof”. For the consideration of a transition from one level to a 
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higher level, well-known Balacheff’s subcategories—naïve empiricism, crucial 

experiment, generic example, and thought experiment—may be useful.  

We rely on Frendenthal’s idea of local organization, or on “small theory” and “large 

theory” by Hanna & Jahnke (2002), in order to characterise different levels of “theory”. 

By focusing on the nature of each system within which the proof is carried out, we 

propose three levels of “theory” as follows: i) logic of the real world, ii) local theory, 

and iii) (quasi-) axiomatic theory. The first level is not the main focus of the study in 

secondary mathematics. If one accepts that a geometric property is to be true by means 

of physical experiment or measurement based on the real world, it can be interpreted 

that the nature of “theory” is based on “logic of the real world”. The distinction between 

“local theory” and “(quasi-) axiomatic theory” is rather important in secondary schools. 

The former can be the main focus of study in lower secondary school. We put the label 

“quasi-” onto “axiomatic theory”, because it is not relevant to deal with a globally 

organised axiomatic system explicitly in secondary school mathematics. As a result, 

Table 1 provides a summary of the framework that resulted from considering contents 

and levels of three elements. Additionally, in the next section, since the transition from 

“local theory” to “quasi-axiomatic theory” can be a key to the curriculum development 

in upper secondary school, we attempt to draw a brief sketch of such a crucial 

transitional aspect by means of a mathematics textbook.  

 

Table 1: A framework for curriculum development in the teaching of mathematical 

proof—contents and levels 

EXAMPLES AND IMPLICATIONS FOR CURRICULM DEVELOPMENTS 

Let us consider the introduction of mathematical induction [MI] as an example to 

illustrate the nature of “local theory” and “quasi-axiomatic theory”. MI is a teaching 

content that is included in the teaching unit of sequence in upper secondary school in 

Japan. MI as a teaching material is a kind of capstone in this teaching unit, which 

 

 

 Statement Proof Theory 

 a. Singular proposition 

b. Universal proposition 

c. Existential proposition 

d. Others 

a. Direct proof 

b. Indirect proof 

c. Mathematical induction 

a. Normal theory (e.g., 

algebra, geometry, 

calculus, etc.) 

b. Meta-theory (e.g., 

modus ponens, etc.) 

 Object 
i. An object in the real world  

ii. An objects in the 

mathematical world 

Formulation 
i. Figure, manipulation, 

gesture 

ii. Ordinary language, word 

iii. Mathematical word, 

symbol 

Validation 
i. Explanation 

ii. Mathematical proof 

iii. Formal proof 

Formulation 
i. Figure, manipulation, 

gesture 

ii. Ordinary language, word 

iii. Mathematical word, 

symbol 

Nature of system 
i. Logic of the real 

world 

ii. Local theory 

iii. (Quasi-) axiomatic 

theory 

§1. Arithmetic sequence and geometric sequence 

1.1 Sequence and the general term 

1.2 Arithmetic sequence 

1.3 Arithmetic series 
1.4 Geometric sequence 

1.4 Geometric series 

The sum of Sn of the first n terms of 

an arithmetic sequence with the first 

term a and common difference d is 

given by the following formula. 

Sn =
n

2
2a+ (n -1)d{ }  

§2. Other kinds of sequence 

 2.1 The sigma notation Σ 

 2.2 Difference of sequence 

 2.3 The sum of various series 

By using above formula and given 

identical equation, the following 

equations are proven. 
1+ 2 + + n = n(n+1) / 2
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consists of the following items in a textbook that has been mostly used in an 11th Grade 

class. In Table 2, there is space only for the items (left side) and some excerpts of 

concrete statements (right side), though proofs are also described in the textbook. 

 

Table 2: Outline of the teaching unit “sequence” and some excerpts from a textbook 

On the one hand, the contents of §2 can be seen as proof and proving at the level of 

“local theory”, because the accepted formula (e.g., the sum of Sn of the first n terms) 

and/or given identical equation are deductively used for proving the statements (e.g.,

1+2+ +n= n(n+1) / 2). But part of the formula used in the proof has been acquired by 

a generic pictorial explanation that cannot be accepted as mathematical proof (it may 

be at the level of “logic of the real world”), and ready-made identical equations (e.g., 

k3 - (k-1)3 = 3k2 -3k+1 ) without proof are used for proving the statement (e.g., 

12 +22 + +n2 = n(n+1)(2n+1) / 6). On the other hand, contents of §3 can be seen as proof 

and proving at the level of “quasi-axiomatic theory” because the statements (some of 

them are the same statements proved in §2) are proven by appeal to the Principle of 

Mathematical Induction (Peano’s fifth axiom for the foundation of natural number) that 

permits the application of “a meta-theory” (i. e., modus ponens, etc.) to establish the 

truth of the statement about the elements of sets that can be placed in one-to-one 

correspondence with the set N (cf. Tall et al., 2012, p. 39). What does it imply for 

further developmental research? Although the appeal to Peano’s axiom is usually 

implicit in the proof method of MI, it may be worthwhile at this point to relate to the 

other aspects such as the formulation of “statement” or the validation of “proof”, and 

to investigate how more-precise mathematical words might affect students’ proof and 

proving at the level of “quasi-axiomatic theory” for the sake of curriculum 

development. 

 

 

 

 

 

 

 

 

ii. Ordinary languages, words 

iii. Mathematical words, 

symbols 

 

ii. Ordinary languages, words 

iii. Mathematical words, 

symbols 

§1. Arithmetic sequence and geometric sequence 

1.1 Sequence and the general term 
1.2 Arithmetic sequence 

1.3 Arithmetic series 

1.4 Geometric sequence 

1.4 Geometric series 

The sum of Sn of the first n terms of 

an arithmetic sequence with the first 
term a and common difference d is 

given by the following formula. 

Sn =
n

2
2a+ (n -1)d{ }  

§2. Other kinds of sequence 

 2.1 The sigma notation Σ 

 2.2 Difference of sequence 

 2.3 The sum of various series 

By using above formula and given 

identical equation, the following 

equations are proven. 
1+ 2 + + n = n(n+1) / 2

12 + 22 + + n2 = n(n+1)(2n+1) / 6
 

§3. Mathematical induction 

 3.1 Recurrence relation 

 3.2 Mathematical induction 

The following statements are proven 

by mathematical induction. 

- The sum of the first n positive 

integers is n(n+1)/2 

- The sum of the first n2
 positive 

integers is n(n+1)(2n+1)/6 



Shinno, Miyakawa, Iwsaki, Kunimune, Mizoguchi, Ishii, & Abe 

4-176 PME39 — 2015 

Note 

This research project is supported by the Grant-in-Aid for Scientific Research (No. 24330245), 

Ministry of Education, Culture, Sports, Science and Technology - Japan. 

References 

Antonini, S. & Mariotti, M. A. (2008). Indirect proof: what is specific to this way of proving? 

ZDM-The International Journal of Mathematics Education, 40(3), 401-412. 

Balacheff, N. (1987). Processus de preuves et situations de validation. Educational Studies in 

Mathematics, 18(2), 147-176. 

Freudenthal, H. (1971). Geometry between the devil and the deep sea. Educational Studies in 

Mathematics, 3(3/4), 413-435. 

Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht: Reidel. 

Hanna, G. & Jahnke, H. K. (2002). Another approach to proof: arguments from physics. 

ZDM-The International Journal of Mathematics Education, 34(1), 1-8. 

Hanna, G., & de Villiers, M. (Eds.), Proof and proving in mathematics education: The 19th 

ICMI study. New York: Springer. 

Hirabayashi, I. (1991). Reviews and issues on the teaching contents of geometry. In N. Noda, 

et al. (Eds.), A course of new practice and examples in junior high school mathematics 

teaching: volume 3, geometry (pp. 3-34). Tokyo, Japan: Kaneko-shobou. (in Japanese) 

Hoyles, C. (1997). The curricular shaping of students’ approaches to proof. For the Learning 

of Mathematics, 17(1), 7-16. 

Mariotti, M. A. (2006). Proof and proving in mathematics education, In A. Gutiérrez, & P. 

Boero (Eds.), Handbook of research on the psychology of mathematics education: past, 

present and future (pp. 173-204). Rotterdam, The Netherlands: Sense Publishers.  

Mariotti, M. A. et al. (1997). Approaching geometry theorems in contexts: from history and 

epistemology to cognition. In E. Pehkonen (Ed.), Proceedings of the 21st Conference of 

the Psychology of Mathematics Education, Vol. 1, 180-195, Lahti, Finland: PME. 

NCTM (2000). Principles and standards for school mathematics. Reston, VA, USA: NCTM. 

Japan Society of Mathematical Education (Ed.) (1966). Modernization of mathematics 

education. Tokyo, Japan: Baihukan. (in Japanese) 

Reid, D. A. & Knipping, C. (2010). Proof in mathematics education. Rotterdam, The 

Netherlands: Sense Publishers. 

Stylianou, D. A. et al. (Eds.) (2009). Teaching and learning proof across the grades: A K-16 

perspective. New York, Routledge: NCTM. 

Tall, D. et al., (2012). Cognitive development of proof, In Hanna, G., & de Villiers, M. (Eds.), 

Proof and proving in mathematics education: The 19th ICMI study (pp. 13-49). New York: 

Springer.



  

2015. In Beswick, K., Muir, T., & Fielding-Wells, J. (Eds.). Proceedings of 39th Psychology of 
Mathematics Education conference, Vol. 4, pp. 177-184. Hobart, Australia: PME.  4-177 

USE OF I-POEMS TO UNCOVER ADOLESCENTS’ DYNAMIC 

MATHEMATICS IDENTITY WITHIN SINGLE-SEX AND 

COEDUCATIONAL CLASSES 

Amber Simpson  S. Megan Che 

 Clemson University  Clemson University 

 

The purpose of this study is to inform our understanding of the middle grade female 

and male students’ mathematics identity construction within single-sex and 

coeducational mathematics classrooms. Students’ mathematics identities were 

understood as being composed of and shaped by an interplay of “voices,” which were 

gleaned from participants’ I-statements within their personal narratives. Results 

support the notion that one’s mathematics identity is complex, and suggest that being 

in a single-sex or coeducational classroom does not shape participants’ multiple voices 

differently. On the other hand, participants’ gender and teacher influenced identity 

construction differently.  

SITUATING THE PROBLEM 

The manner in which one views and portrays him or herself in relation to mathematics, 

or one’s mathematics identity, is an abstract and complex construct (Cobb, Gresalfi, & 

Hodge, 2009) that is multiple, dynamic, and constantly in flux (Bishop, 2012). In this 

study, I seek to gain an understanding of how female and male middle grade students 

narrate their mathematics identity within single-sex and coeducational mathematics 

classroom settings within the same public coeducational school in the United States. 

Therefore, the perceptually salient feature of gender is utilised in segregating students 

into these classes, which is a visible marker that has historically situated female 

students as an “outsider” within a subject area deemed more suitable for males 

(Bartholomew, Darragh, Ell, & Saunders, 2011). Relevant to the conference theme, in 

the United States, researchers are exploring this institutionalised practice and Climbing 

Mountains and Building Bridges in regards to ideologies and beliefs concerning the 

purpose of single-sex education held by parents, teachers, administrators, and 

policymakers, as well as the possible impacts of single-sex education on students such 

as academic achievement (e.g., Pahlke, Hyde, & Mertz, 2013) and academic self-

concept (e.g., Sullivan, 2009). This study focuses on the following research questions, 

(1) What voices shape the mathematics identities of female and male students? (2) How 

are these voices embodied in different types of class composition (i.e., all-female, all-

male, and coeducational)? This study will contribute to the scholarly work on single-

sex education because there is no known study that explores students’ mathematics 

identity within such settings, as well as to the scholarly work on mathematics identity 

as it has been historically overlooked in mathematics education (Bishop, 2012). 

Unlike other countries such as Australia (e.g., Carpenter & Hayden, 1987), single-sex 

education, particularly, single-sex mathematics classrooms within coeducational 



Simpson & Che 

4-178 PME39 — 2015 

public schools in the United States were non-existent until 2006 when the federal 

government made revisions to Title IX legislation (USDOE, 2006). Additionally, a 

majority of research has been conducted within single-sex private and public school 

settings rather than single-sex classes in coeducational public schools (e.g., Pahlke, 

Hyde, & Mertz, 2013). Research involving single-sex education is diverse, 

inconclusive, and still evolving in that validated and replicated results have yet to 

transpire (Pahlke, Hyde, & Allison, 2014). Therefore, this study relied on the scholarly 

research grounded in gender when considering the possible voices shaping 

participant’s mathematics identity. For instance, one voice considered was student’s 

self-confidence in mathematics, defined as “one’s perceptions of their ability do well 

in mathematics and to learn mathematics quickly” (Else-Quest, Hyde, & Linn, 2010, 

p. 117). Research in general suggests that boys tend to report higher levels of self-

confidence in their mathematical abilities than girls do (e.g., Else-Quest et al, 2010), 

as well as attribute their success in mathematics to ability, while girls tend to attribute 

their success in mathematics to effort (e.g., Gilbert, 1996). Self-confidence in this study 

is also viewed as a performative act in which students take an active or passive role 

(Hardy, 2007); acts possibly being shaped by the extent students feel accepted and 

included (or not) within the mathematics classroom.  

THEORETICAL FRAMEWORK 

This study utilises the notion of “voice” as the basic unit for understanding female and 

male’s dynamic mathematics identity. The work of Gilligan (1982) emphasised that of 

the missing voice from human development theories, the voice of women. Omitting 

the voice and experience of women positioned them as the subordinate gender and 

established a dichotomy of “appropriate” gender roles, resulting in women feeling 

pressured to conform and reject their “true” sense of self. Additionally, through the 

cumulative work of Bakhtin (1981), it can be argued that one’s voice(s) is composed 

of and shaped by the words, utterances, and social languages not of our own, but of 

others’ that have lived before us and that presently live with us; termed hybridisation. 

Yet in this process, students negotiate the authoritative voice of others, such as 

teachers, parents, and mathematics curriculum to be internally persuasive; making it 

one’s own voice through language populated within their own meanings, intentions, 

and accents. Evans (2008) extends Bakhtin’s notion of hybridisation to contend that 

individuals have a lead voice that is a hybrid of voices, rather than that of language, 

composed of all societal influences and voices of others that affect who we are. These 

multiple voices are vying for audibility and are constantly in interplay with one another, 

rejecting voices, accepting voices, and creating new voices. In summary, these 

theoretical perspectives guided my understanding and analysis of female and males’ 

dynamic mathematics identity as constructed by their narrated voices. 

METHODOLOGY 

This research employed narrative inquiry, a qualitative research method that privileges 

the experiences and voices of individuals and serves as a means for researchers to gain 
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an understanding of individual’s voices as “truth” (Connelly & Clandinin, 1990). More 

specifically, this study relied on descriptive narratives because the intent is not to 

explain why something has happened, but to render the multiple voices of one’s 

mathematics identity as narrated by participants. 

Participants 

Participants were twelve 7th grade students (6 males, 6 females) enrolled in one of the 

mathematics class types, all-female, all-male, or coeducational, and instructed by one 

of two teachers in a coeducational middle school located in the southeast region of the 

United States. Twelve participants were purposively selected based on several criteria: 

returned consent forms, class composition (i.e., single-sex or coeducational), gender of 

participant, and results from the Mathematics as a Gendered Domain instrument 

(Forgasz, Leder, & Kloosterman, 2004). Utilising this instrument reduced selection 

bias, as participants were not selected based on researchers or teachers’ subjectivities.  

Data sources 

Mathematics identity is a construct that cannot be easily observed, but best represented 

by how participants talk about themselves as a mathematics student within a single-sex 

or coeducational mathematics classroom (Polkinghorne, 1988). Therefore, the primary 

data source for this study was semi-structured interviews. As an example used to gain 

an understanding of participants’ mathematics identity, they provided at least three 

adjectives that described themselves as math students and explained how each 

adjective described them. The interviews lasted between 20-30 minutes, conducted 

during their enrichment period (11:00-11:50), and took place in the school’s library. 

The interviews were transcribed verbatim.  

Data analysis 

The interviews were analysed using I-poems, which are part of a four-step interview 

analysis technique known as the Listening Guide (Brown, Debold, Tappan, & Gilligan, 

1991). The Listening Guide was developed to provide a safe space for females to speak 

freely about their experiences such as silence and depression (Beauboeuf-Lafontant, 

2008). I-poems were utilised as an evocative and potent way to capture participants’ 

narrative of self (“I”) as they spoke of themselves as mathematics students within a 

single-sex or coeducational classroom. They provided participants with a space to be 

partially heard and not silenced through the research process (Bhattacharya, 2008). 

This is a two-step process. One, the researcher underlined every participant’s use of 

“I” along with the verb and any accompanying important words or phrases. Two, each 

“I” phrase was taken out of context and positioned on a separate line of a poem in the 

same sequential order of the text. Stanzas were subsequently created to represent the 

varying voices narrated by participants.  
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RESULTS 

The first research question asked what voices shape the mathematics identities of 

female and male students. Table 1 provides a few voices, along with an accompanying 

example, expressed by participants.  

Voice Defined Example 

Voice of 

Oscillation 

Voice expresses contradictory 

statements in regards to 

mathematics abilities 

I am good 

I am super 

I get A’s 

I am a little not good 

I am bad 

I don’t get it 

Voice of Assist Voice expresses giving 

mathematical or non-

mathematical help to others 

I am helpful 

I feel good 

I can help 

I like to help 

Voice of 

Invisibility 

Voice expresses taking a passive 

role in the classroom 

I have stage fright 

I don’t like 

I would rather not 

I don’t like talking 

Voice of Outsider Voice expresses being “picked 

on” by one’s peers; feelings of 

being “the other” 

I dislike the people 

I felt like nobody liked me 

I don’t know 

Voice of Effort Voice expresses working hard 

and efficiently in order to be 

successful in mathematics 

I am willing 

I will put forth 

I do the homework 

I spend a lot of time 

Voice of “Good” 

Student 

Voice expresses actions that are 

associated with being a “good” 

student 

I am always focused 

I am always turning 

I am always on time 

I am always there 

Table 1. Sample voices that emerged from participants’ I-poems. 

The second research question explored how voices were embodied in different types 

of class composition (i.e., all-female, all-male, and coeducational). To illustrate the 

interplay of voices shaping one’s mathematics identity (Evans, 2008), I will briefly 

discuss Matthew, a male enrolled in a single-sex class. His I-poems expressed an 

interplay of voices composed of Voice of Pride, Voice of Subordinate, Voice of 

Manipulation, and Voice of Outsider. Below is an abbreviated version of Matthew’s I-

poems. Readers are encouraged to listen to Matthew’s voices and form a relationship 

with Matthew, rather than simply read the I-poems as a form of data. 
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All I got to do is go over it once 

 I like to prove how smart 

 I go the harder way 

I am top dog 

I always compete 

I feel smart 
 

I dislike the teacher 

I feel bad 

I have a negative attitude 

I can’t be myself 
 

 I was trying to act out 

 I would get moved 

 she thought I was quiet 

 I will pretend to raise 

 she thinks I know the answer 
 

I think they are jealous 

I wouldn’t volunteer 

 I don’t want to see 

 I don’t want people 

 I make mistakes 
 

Expounding upon Matthew’s I-poems, Matthew’s use of first person indicated a dislike 

for the teacher because of her inability to teach him effectively. This view of his teacher 

was being shaped by his Voice of Pride or his abundant confidence in himself as a 

mathematics learner. His Voice of Pride also narrated his feeling as a victim of his 

teachers’ instructional methods and procedures, and interactions with him as a 

mathematics student (i.e., Voice of Subordinate). For instance, he expressed how his 

teacher had a tendency to make him feel bad when she disregarded his questions such 

as, is infinity a rational number. Therefore, Matthew articulated a Voice of 

Manipulation in which he purposefully experienced behaviours to control or influence 

his teacher. Additionally, Matthew situated himself as an outsider in relation to his 

peers (i.e., Voice of Outsider), which similar to the Voice of Subordinate, this voice 

was being shaped by his Voice of Pride. 

When examining the voices composing participant’s mathematics identity, researchers 

deduced that participants’ voices did not differ based on class composition. In other 

words, being enrolled in a single-sex or coeducational mathematics classroom had little 

to no influence in shaping the interplay of voices of participants’ mathematics identity 

differently. The voices shaping participants’ mathematics identities are more a function 

of students’ personal experiences as a mathematics student. However, when 

considering the voices as distinct entities, differences were noted in respect to the 

gender of the participants. For example, four of the six female participants expressed a 
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Voice of Assist (see Table 1), while none of the six male participants expressed this 

voice. This voice expressed accepting and participating in the societal gender norms 

expected of females, voices expressing an ethic of care and relationships (Gilligan, 

1982). As an additional example, male participants were the only to self-narrate the 

Voice of Effort rather than a voice expresses a natural mathematical ability (Gilbert, 

1996). Results also suggests a difference in voices based on participants’ teachers; thus, 

reinforcing the impact of teachers’ instructional practices, interactions and dispositions 

on how students’ perceive themselves as learners (e.g., Horn, 2008). One teacher 

instructed participants (n = 6) that expressed negative voices, such as Voice of 

Invisibility, while all the participants (n = 6) instructed by the other teacher expressed 

the Voice of “Good” Student. 

CONCLUSION 

Insights from analysis of the I-poems reinforced the idea that mathematics identity is a 

complex (Cobb et al., 2009) and individualistic construct as no two participants 

expressed the same interplay of voices (Evans, 2008). In considering the mathematics 

identity of one participant, Matthew, we gain some sense of how the interplay of his 

multiple voices is vying to be heard. For instance, his Voice of Pride and his Voice of 

a Victim seem to be in competition, influencing one another in a play for this lead voice 

in narrating his mathematics identity (Evans, 2008). In addition, the findings suggest 

that across the three class types, participants in this study are more similar than they 

are different. Any noted distinction is apparent in regards to participants’ gender and 

teacher. This suggests that student’s voices, and hence their mathematics identity, is an 

interplay between the local context (i.e., teacher) and global context (i.e., gender).  

The notion of students’ mathematics identity being composed of multiple voices 

present and challenge researchers to study identity differently and to continue building 

theoretical ideas that explain how adolescents negotiate and narrate subject-specific 

identities, particularly through the use of I-poems; therefore, building upon our current 

understanding of adolescents’ mathematics identity. This study also contributes to the 

current scholarship on single-sex education within the United States in particular, 

which as noted above is inconclusive (Pahlke et al., 2014). Based on the findings from 

this study, one continuing line of research is to explore how teachers’ mathematics 

identity and teacher identity is in accordance or conflict with the mathematics identity 

of their students and what this means in regards to shaping students’ voices. 
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THE ENGAGEMENT OF STUDENTS WITH HIGH AND LOW 

ACHIEVEMENT LEVELS IN MATHEMATICS 

Karen Skilling, Janette Bobis and Andrew Martin 

King’s College London, University of Sydney and University of NSW 

 

Student engagement is a significant issue in mathematics classrooms. It plays a major 

role in students’ enjoyment, interest and future participation in mathematics study. 

Interviews with 37 high and low achieving Year 7 students from ten high schools 

explored perceptions of their engagement and achievement levels in mathematics. 

Results indicate that highly engaged students were more ‘alike’ in terms of their 

attitudes towards mathematics, strategies for learning the subject, interest and 

behaviour regardless of differences in their achievement levels. Conversely, the 

profiles of high and low achieving students disengaging from mathematics were less 

alike. These findings shed light on student engagement in mathematics because they 

disentangle characteristics of engagement from those attributed to achievement.  

BACKGROUND 

Student disengagement in mathematics is a significant issue for education (McPhan, 

Morony, Pegg, Cooksey, & Lynch, 2008; Tytler, Osborne, Williams, Tytler, & Cripps 

Clark, 2008). Recent reports (McPhan et al., 2008) note concerns about the proportion 

of students achieving acceptable levels of proficiency in mathematics and the poor 

level of student engagement in the subject. In particular, there is concern about 

decreasing interest, participation and achievement in mathematics as students move 

from primary and through lower secondary years of schooling. There is an emphasis 

on the need for a thorough understanding of the relationship between engagement and 

achievement in mathematics as this is expected to guide teachers’ practices that are 

motivationally supportive and effective for promoting student engagement in 

mathematics. 

This study focused on understanding individual and classroom level factors that 

influence engagement and achievement through in-depth interviews with Year 7 

students (approximately 11 to 13 years of age). One of the key aims of the study was 

to understand the influence of salient factors on levels of engagement distinct from 

students’ achievement levels in mathematics, specifically asking: 

What individual and classroom level factors do students perceive as influencing their 

engagement, motivation and achievement in mathematics?  

Addressing this question required eliciting students’ feelings towards mathematics, 

their views about their mathematical abilities, their thoughts about what takes place 

and reports of their behaviour in mathematics classroomsand the effect this has on 

their engagement and achievement in mathematics 
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Student Engagement and Motivation 

Although researchers adopt different conceptual approaches when investigating 

engagement and motivation, the relationship between the two is broadly agreed upon. 

Motivation is concerned with the psychological processes that are underlying sources 

of energy displayed by visible engagement characteristics (Skinner & Pitzer, 2012). 

Motivation is considered to underpin engagement, creating a cycle in which motivation 

and engagement are inherently linked to learning outcomes (Martin, 2012). However, 

although they are linked, motivation and engagement are viewed as distinct: motivation 

is viewed as encompassing the internal, private and unobservable factors of the outer, 

public and observable engagement.  

Certain features are shared between engagement and motivation because of the 

underlying sources of energy that are reflected in engagement characteristics. For 

example, persistence (being an adaptive motivation) may be observed by time spent on 

tasks and asking questions, which are also characteristics of behavioural engagement. 

Often, engagement is more obviously connected to the learning environment because 

it reflects an individual’s interaction within contexts (Fredricks, Blumenfeld, Friedel 

& Paris, 2005) as the underlying motivational processes may be harder to determine. 

The relationship between motivation and engagement is an important one although it 

is at times difficult to distinguish between the two and ultimately how they are 

differentiated depends on the conceptualisations and definitions applied by researchers. 

As noted by Reeve (2012), the focus taken by researchers influences their perspectives 

because “those who study motivation are interested in engagement mostly as an 

outcome of motivational processes, whereas those who study engagement are mostly 

interested in motivation as a source of engagement” (p.151).  

THEORETICAL FRAMEWORKS 

The present study sought to consider engagement and motivation together, using two 

complementary frameworks. One provides detailed definitions of types of engagement 

and the other identifies a range of motivational factors underlying engagement. 

Importantly, by investigating these together adds clarity about specific motivational 

sources of student engagement in mathematics.  

The first framework describes and clarifies types of student engagement (Fredricks, et 

al., 2005; Fredricks, Blumenfeld, & Paris, 2004), framing it as a meta-construct 

incorporating behavioural, cognitive and emotional engagement elements. The second 

framework organises dimensions of academic motivation and engagement within a 

higher and lower order construct framework (Martin, 2003; 2007). The 

multidimensional approach incorporates 11 motivational factors relevant to adaptive 

and maladaptive student behaviours, emotions and cognitive strategies. In some cases 

researchers consider student engagement from a specific motivational perspective such 

as self-efficacy (Schunk & Mullen, 2012), in other cases, from a selection of motivation 

constructs, for example, autonomy, competence relatedness and meaningfulness 

(Turner, Christensen, Kackar-Cam, Trucano & Fulner, 2014). The approach reflected 



 Skilling, Bobis, & Martin 

PME39 — 2015 4-187 

by Martin’s Motivation and Engagement Wheel (2007) aims to comprehensively 

consider the influence of motivational constructs on engagement more broadly than 

research with particular perspectives. 

The overarching theoretical orientations of Martin’s Motivation and Engagement 

Wheel (2003; 2007) and Fredricks et al., (2004) ‘Types of Engagement’ align and draw 

together motivational theories and engagement factors related to academic 

achievement outcomes. Martin (2007) notes that motivation and engagement play a 

large part in students’ energy and drive to participate and learn at school, affecting their 

interest and enjoyment in what they do at school including their academic outcomes. 

Therefore, identifying the factors that influence engagement levels in students is 

important, and the frameworks used in this study aim to provide a basis for a deeper 

inquiry into the nature of engagement in mathematics learning.  

Student Perceptions and Beliefs 

Both student perceptions and beliefs are relevant to this study. Perceptions are 

understood to be personal in nature because individuals interpret factors and respond 

to their environments through personal ‘filters’ as they process information 

(Broadbent, 1958). Beliefs are defined as “psychologically held understanding, 

premises, or propositions about the world that are felt to be true” (Richardson, 1996, 

p.103) and also vary according to the bearer of the beliefs. Therefore, there is an 

intricate process between perceptions and beliefs. The beliefs an individual holds are 

filtered by what they perceive or notice, similarly, how an individual perceives objects 

and events are filtered by how they construct their beliefs of (knowledge) and in 

(values) phenomena (Philip, 2007). Consequently, for this study, amongst other things, 

students were asked to report their beliefs about their mathematical achievement and 

their perceptions of mathematics teaching. Student self-reports were considered an 

appropriate method for sourcing student perceptions and beliefs because students are 

able to “accurately report on their own engagement and environments” (Reschly & 

Christenson, 2012, p. 9) and critically, they can provide rich data about aspects of 

engagement that are not easily observable such as emotional and cognitive factors. 

METHODOLOGY 

This study was initially nested within a larger project that utilised a validated 

Motivation and Engagement Survey [MES] (Martin, 2007) with over 1600 middle year 

students (Years 5 to 8, approximately 10 to 15 years of age). Mathematics achievement 

was assessed using an adaption of the Wide Range Achievement Test 3 (Wilkinson, 

1993) so as to be administered across a range of age groups. Reliability, descriptive 

and distributional properties, and confirmatory factor analytic results of the 

quantitative component have been published elsewhere (Martin, Bobis, Anderson & 

Way, 2011). 

The MES and the achievement test were undertaken in Time 1 (May 2008) and Time 

2 (May 2009) by students in 47 comprehensive primary and secondary schools from 

one district in a major capital city on the east coast of Australia. Targeted Year 7 
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students were invited for interview based on the size of the shifts in engagement and 

disengagement over a period of 1 school year (between Time 1 and Time 2). From 

Time 1 and Time 2 quantitative data, Year 7 students were grouped into one of four 

categories: low achieving + disengaged (LAD), low achieving + engaged (LAE), high 

achieving + disengaged (HAD) and high achieving + engaged (HAE). Thirty-seven 

Year 7 students drawn from each of 10 secondary schools involved in the quantitative 

component of the project were interviewed. The numbers of students interviewed from 

each category are presented in Table 1. 

 Disengaged Students Engaged Students 

Low Achieving 10 10 

High Achieving 8 9 

Total 18 19 

Table 1: Number of disengaged and engaged students interviewed 

The students were purposefully grouped into one of the four categories because the 

researchers were interested in understanding the perceptions of students with varying 

levels of engagement and achievement in mathematics. Therefore the interviews 

focused on understanding individual and classroom level factors that influenced 

engagement and achievement through in-depth semi-structured interviews 

(approximately 30 to 40 minutes in duration) with students. The interview questions 

related to four key themes: (1) student beliefs about their mathematics achievement; 

(2) student emotions toward mathematics; (3) student perceptions of mathematics 

teaching; and (4) student behaviours while learning mathematics. Student responses to 

questions were transcribed and then coded by the researcher, using a second researcher 

to establish an average inter-rater reliability accuracy rate of 95.8%.  

The four themes captured the main characteristics of student perceptions towards 

mathematics that they brought to the classroom including their attitudes, feelings, 

behaviours, and beliefs about their mathematical ability. By using the student 

groupings of LAD, LAE, HAD and HAE the themes could be viewed from two 

different perspectives—levels of engagement and levels of achievement. The benefit 

of this was to understand the characteristics of students with varying levels of 

engagement in mathematics untangled from their achievement levels. 

RESULTS 

Analysis of interview data indicated that a complex mix of factors influenced student 

engagement levels in mathematics. However when examined through the lens of the 

different student groupings—LAD, HAD, LAE and HAE—some generalities 

pertaining to each group were revealed. The results of the two engaging groups both 

low and high achieving are presented first, followed by findings from the disengaging 

groups – both low and high achieving students. Summaries of the findings are 

represented in Figure 1.  
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Engaging Students (LAE and HAE) 

Engaged students portrayed positive feelings towards mathematics even when they 

found concepts challenging or difficult. Low achieving students reported enjoying 

learning new concepts and liked the challenges the work presented once they were able 

to ‘get it’. High achieving students enjoyed learning more complex concepts and 

solving problems with multiple parts, reported a history of liking mathematics and 

talked about the importance of mathematics for their future. High achieving students 

also expected that mathematics required effort and frequently equated this as 

contributing to their achievement. 

Importantly, the overall results indicated that low levels of student engagement in 

mathematics are not always aligned with low levels of achievement and vice versa, as 

is often commonly assumed in educational contexts. Further, engaged students were 

more ‘alike’ in terms of their attitudes towards mathematics, strategies for learning the 

subject, interest and behavioural engagement in mathematics regardless of differences 

in their achievement levels. Conversely, high and low achieving students disengaged 

from maths, were less alike. They reported a greater variety of strategies for learning 

mathematics with high achieving student strategies very different to their lower 

achieving disengaged counterparts. However, common amongst disengaged students 

was their general lack of interest in mathematics and their lack of confidence to achieve 

well in the subject. 

Disengaging Students (LAD and HAD) 

The disengaged group included students of both low (LAD) and high mathematical 

achievement levels (HAD). The interviews specifically sought to explore if the reasons 

for disengagement of high achieving students were different to those of low achieving 

students. The negative feelings about learning mathematics for low achieving 

disengaged students’ were strongly linked to their lack of general understanding of 

mathematics concepts with some reporting experiences of frustration and anger. 

Although many low achieving disengaged students maintained their efforts in 

mathematics they often ‘forgot’ what they were taught, knew they did not really ‘get’ 

what was going on and ‘felt lost’. On the contrary, high achieving disengaged students 

found mathematics learning more challenging than they had previously done so in 

elementary school and the increased effort (persistence) required to master 

mathematical concepts in secondary school made mathematics less enjoyable. Some 

students reported an indifferent attitude towards the subject and others found repetitive 

instruction boring which also reduced their interest in learning mathematics. A 

summary of the key results for each student group reflecting their beliefs about their 

mathematical ability, feelings about and behaviours towards mathematics, as well as 

their perceptions of mathematics teaching, are presented in Figure 1.  
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Figure 1: Profiles of engaging and disengaging students in mathematics  

DISCUSSION AND CONCLUSION 

The findings of this research significantly enhance and extend our understanding of the 

engagement construct by revealing that nuances surrounding student engagement in 

mathematics are differentiated for low and high achieving students. Student 

engagement in learning is seen as an important predictor of general academic 

achievement and positive academic outcomes (Fredricks et al., 2004; Lutz, Guthrie, & 

Davis, 2010), and even necessary for constructive educational beliefs and behaviours 

(Middleton & Midgley, 2002). Yet as is evident from this research, not all students 

who were highly engaged experienced high achievement. This is apparent by the 

existence of the LAE group — students who were identified as engaged in mathematics 

but experienced low levels of achievement. Understanding the reasons why students 

remain engaged in learning mathematics despite low achievement is important 

information for mathematics educators.  

The study drew attention to the contrary case, where high levels of student achievement 

were not necessarily indicative of high levels of engagement—evident by the high 

achieving disengaged (HAD) group of students. This group of students were, despite 

their relative success in mathematics, identified as ‘disengaging’ from mathematics. 

Increases in student disengagement (indicated by disinterest and lack of participation 

in mathematics beyond compulsory requirements) during secondary school are of 

concern in Australia and whilst achievement in mathematics is related to these declines 
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it is only one of the influencing factors (Forgasz, Barkatsas, Bishop, Clarke, Keast, 

Tiong Seah et al., 2008; McPhan et al., 2008). Uncovering reasons for students’ low 

levels of engagement when their achievement is high in mathematics is central for 

understanding the underlying needs of these students. Understanding students’ needs 

and the degree to which they are being met is necessary to halt the shift towards 

disengagement and to re-engage students in mathematics. In particular, knowing that a 

variety of teaching practices will be required to address student disengagement, with 

the more effective ones being dependent upon the achievement level of the students in 

question, is a crucial practical implication of the findings presented. 
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RESEARCH ON MATHEMATICAL ARGUMENTATION: 

A DESCRIPTIVE REVIEW OF PME PROCEEDINGS 

Daniel Sommerhoff, Stefan Ufer, Ingo Kollar 

University of Munich (LMU) 

 

Mathematical argumentation and proof (MA&P) traditionally are major topics of 

mathematics education in secondary and tertiary education. Although many studies 

focus on MA&P it remains unclear how they contribute to a coherent understanding 

of MA&P processes. We have analysed PME research reports focusing on MA&P 

published 2010 to 2014 to determine the different prerequisites as well as goals of 

argumentation and proving processes investigated within these reports. Results 

indicate that research on MA&P covers a broad range of processes, sub-skills and 

knowledge facets, but that individual reports predominantly address only singular 

aspects. A holistic approach to MA&P, taking into account the whole process or 

multiple sub-skills, is rare. We discuss implications for future research of MA&P. 

INTRODUCTION 

Mathematics is a proving science, and mathematical argumentation and proof (MA&P) 

therefore are central to mathematical activity (Ubuz, Dincer, & Bulbul, 2012). Many 

standard documents worldwide put forward MA&P as one central goal of mathematics 

learning (CCSSI, 2010), especially in secondary and tertiary education. Accordingly, 

mathematics education research has traditionally approached this field from various 

perspectives. It is widely agreed that MA&P comprise complex skills that integrate 

diverse individual cognitive prerequisites and different kinds of mathematical 

activities. From our understanding, an aim of MA&P research must be an increasingly 

coherent understanding of these diverse facets, since otherwise effective support of 

MA&P processes is not possible. 

The purpose of this review is to analyse current research on mathematical 

argumentation and proof in secondary and tertiary education. To cover the diversity of 

MA&P extensively, we have based our analysis on existing theoretical frameworks of 

scientific reasoning which highlight prerequisites, processes and goals of MA&P: 

Predictors for mathematical argumentation skills (Ufer, Heinze, & Reiss, 2008), 

epistemic activities in scientific argumentation (Fischer et al., 2014), and 

argumentative and proving activities (Giaquinto, 2005). 

THEORETICAL FRAMEWORK 

Argumentation and proof 

According to Balacheff (1999), there are two meanings of argumentation within the 

field of mathematics. Thus, mathematical argumentation can be considered a 

discursive activity aimed at convincing a listener. On the other hand, based rather on 
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Toulmin’s view, argumentation is an activity which is aimed at the generation, 

exploration and validation of conjectures and hypotheses in terms of their objective 

and individual rationality (Pedemonte, 2007). For our review we adopt this second 

view. Accordingly, mathematical proof is seen as a more formal form of mathematical 

argumentation, which is subject to (mostly implicit, social, and possibly changing) 

norms of the mathematical community. This difference between argumentation and 

proof is nicely put by Pedemonte (2008, p. 385): 

“There is a ‘structural gap’ between argumentation and proof because in argumentation 

inferences are based on content while in proof they follow a deductive scheme (data, claim, 

and inference rules).” 

Sub-skills and knowledge facets 

The success of mathematical argumentation and proving depends on individual 

prerequisites like domain-general and domain-specific knowledge facets, beliefs and 

more overarching skills. Over the last decades researchers have proven a variety of 

such sub-skills and knowledge facets to be predictive for mathematical argumentation 

skill (e.g., Ufer, Heinze, & Reiss, 2008), which therefore often are called predictors. 

For this review we adopt a framework of predictors worked out in Ufer, Heinze and 

Reiss (2008) that a) is well based on research from the last decades, b) is not limited to 

a specific mathematical area, and c) allows separation of domain-specific and more 

domain-general predictors. The framework contains six main predictors. 

Methodological knowledge is knowledge of the nature and the functions of proof as 

well as the acceptance criteria for a valid proof (Healy & Hoyles, 2000). Mathematical 

knowledge base consists of basic conceptual and procedural knowledge in the field of 

mathematics (Ufer et al., 2008). Mathematical strategic knowledge is knowledge about 

cues within mathematical tasks and problems that indicate which concepts and 

representation systems can be used productively (Weber, 2001). Problem-solving skills 

consist of domain-general and domain-specific problem solving skills and strategies 

(Schoenfeld, 1985). Finally there are beliefs about the mathematical content and nature 

of mathematics (Leder, Pehkonen, & Törner, 2002; Schoenfeld, 2010) as well as 

affective aspects like emotions and motivation towards mathematics (Hannula, 2006). 

Similar approaches to consider complex skills together with various predictors can also 

be found for self-regulated learning (De Corte, Verschaffel, & Eynde, 2000), 

mathematical problem solving in general (Schoenfeld, 1985) or mathematical proof in 

geometry (Chinnappan, Ekanayake, & Brown, 2011), with very similar predictors. 

Epistemic Activities 

Besides their predictors, we describe MA&P processes by analysing their sub-activities 

with a framework that has been proposed by Fischer et al. (2014). It describes eight 

such “epistemic activities” (Table 1) from an interdisciplinary viewpoint that allow 

comparisons among different domains and topics. The idea is that cognitive aspects of 

individual MA&P processes can be described in terms of these basic activities. Albeit 

the linear presentation of these activities, they do not need to occur in this specific 
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order, can be iterated in cycles and not necessarily are all present in an argumentative 

process. 

Epistemic Activity Description 

Problem 

identification 

Perceiving a mismatch concerning the explanation of a 

problem and building a problem representation 

Questioning One or more initial questions are identified 

Hypothesis 

generation 

Possible answers to the questions are derived from 

models, theoretic frameworks, … 

Construction and 

redesign of artifacts 

Development of a prototypical object, axiomatic system 

or another object used in order to work on the problem 

Evidence generation Evidence for the hypothesis is generated 

Evidence evaluation Evaluating evidence according to some norms 

Drawing conclusions 
Integrating different pieces of evidence, reevaluating the 

initial claim considering the new evidence 

Communicating and 

scrutinizing 

Sharing and discussing individual reasoning and 

argumentation within a community 

Table 1: Overview of epistemic activities (Fischer et al., 2014). 

Argumentative and proving activities 

Not only the individual cognitive sub-activities within an argumentative process can 

be distinguished, but also the overall goal of the reasoning process with reference to 

task contexts. Mejia-Ramos and Inglis (2009) introduced a framework of 

argumentative and proving activities based on work by Giaquinto (2005). They divide 

argumentative activities associated with mathematical proof into the three categories 

construction of novel arguments, reading arguments and presenting arguments, each 

with a few sub-categories. Even though this distinction sounds very similar to some of 

the epistemic activities, it refers to the overall goal of MA&P processes, not the 

sequence of activities within this process. 

AIM AND RESEARCH QUESTIONS 

The goal of this review is to analyse which aspects of MA&P have been investigated 

in the last 5 years within the PME community, and to identify patterns that might yield 

directions for future research in understanding and supporting MA&P as a complex 

individual skill. The review was therefore guided by the following questions: 

 To which extent does research on MA&P consider the different predictors, 

sub-activities, and goals of MA&P processes? 

 Which combinations of predictors and epistemic activities are being 

considered in MA&P research? Can research gaps be identified with regard 

to a comprehensive understanding of MA&P processes? 
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THE CURRENT STUDY 

Literature selection, coding and analysis 

We decided to restrict our review to PME research reports (RRs) published from 2010 

to 2014, because we considered them to be a fair representation of latest good-quality, 

international mathematics education research. All 782 RRs of the PME proceedings 

from 2010 to 2014 were selected as data basis for the review. This selection bears the 

danger of overlooking research that is not published within the PME proceedings, but 

includes research that is of good quality and is not limited to journal publications, thus 

giving a more extensive picture of the activities in the community. A similar approach 

was taken by Matos (2013) for his literature review. 

Based on an initial coding of the research topic and grade level, we selected those 129 

RRs for detailed analysis which studied MA&P and which were situated in secondary 

or tertiary education. The focus on reasoning and argumentation in secondary and 

tertiary education is due to the fact that it differs considerably from that in pre-primary 

and primary education, particularly proof is rather non-existent. 

A coding scheme was created to categorize these RRs according to the predictors 

investigated, the epistemic activities studied, and the type of reasoning activity 

(according to its goal) in the study. Reading the RRs completely, we coded the main 

research foci of each report with respect to the three theoretical frameworks. For each 

predictor we coded if it was a variable central to the RRs (e.g., it was the sole focus of 

the report), if it was considered substantially (e.g., it was analysed together with other 

predictors), if it was only mentioned (e.g., as a variable to be controlled), or if it did 

not occur at all. The goals of MA&P processes were coded in the categories argument 

construction, argument reading, and argument presentation where possible, but also 

codes not explicit and multiple goals were introduced. Moreover, we coded for each 

epistemic activity if it was focused in the report. The notion of “focused” is very 

important to understand the whole coding process. For example, if participants of a 

study were talking or discussing a problem only for purposes of the study (e.g., to foster 

collaboration or as a “thinking aloud” technique) this would neither be coded as the 

activities proof presentation or communication and scrutinizing, nor as the goal proof 

presentation. After several steps of refinement, the coding reliability reached an 

acceptable level with a mean inter-rater reliability of κMean = 0.77 (SD = 0.15). Except 

for the interrater reliabilities of the epistemic activities drawing conclusions (κ = 0.56) 

and communicating and scrutinizing (κ = 0.46) all IRRs were acceptable (above κ = 

0.64). 

In an additional step the results of the descriptive analysis were backed up by 

considering examples of reports from the respective categories in order to ensure 

coding validity and to gain qualitative insight. 
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RESULTS 

A total of 532 (68%) articles were situated in secondary (44%) or tertiary (24%) 

education and 160 (20%) RRs focused on MA&P. The intersection of both groups 

contained 129 (16%) RRs, which met the inclusion criteria, and were coded in detail. 

Comparing the research methods of these RRs (57% qualitative, 26% quantitative, 11% 

mixed methods, and 6% theoretical) to the ones found by Matos (2013), the selected 

reports are quite representative for PME RRs in terms of research methods. The same 

holds for the RRs’ distribution of participants (Figure 1, left side). 

 

Figure 1: Distribution of number of participants (left) and use of predictors (right). 

Starting our analysis with the predictors, mathematical knowledge base was studied by 

far most often (47% of the RRs; Figure 1, right side). Only 17% considered 

methodological knowledge and 18% problem solving. Strategic knowledge, beliefs and 

affective aspects were studied even less frequently (3%, 5%, and 3%, resp.). All in all 

only 22% of the RRs considered at least two of these predictors simultaneously, over 

two thirds of these cases focused on the predictor mathematical knowledge base in 

combination with any one predictor. 

  

Figure 2: Frequencies of argumentative (left) resp. epistemic activities (right) 

Regarding the goals of the argumentative processes (Figure 2, left side), almost 60% 

of the RRs focused on argument construction, 1% on argument presentation and 7% 

on argument reading. The number of reports including two or more of these goals is 

also low with 7%. Almost a third of the RRs (29%) could not be associated with one 
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of these three activities, for example because they were theoretical. These results 

resemble those of Mejia-Ramos and Inglis (2009), who found argument construction 

in 64% of their sample, but no contribution on argument presentation. 

In line with this focus on the dominating goal of argument construction, evidence 

generation was the most frequently studied epistemic activity (Figure 2, right side), 

followed by hypothesis generation and evidence generation. Nevertheless, all 

epistemic activities were studied at least in some form in some RR. A qualitative 

analysis of the RRs focusing at least one epistemic activity (96 of 129 RRs) revealed 

four main clusters (named A, B, C, D) of RRs, a finding also supported by a cluster 

analysis. Two of these clusters (A, D) focus on one epistemic activity only, the others 

(B, C) on several. Cluster A focuses solely on evidence generation and constitutes the 

largest cluster with 32% of the 96 RRs. A representative of this cluster is a RR on 

unjustified assumptions in geometry proofs, where students’ written geometry proofs 

were analysed for these assumptions. The second largest cluster with 30% of the RRs 

is cluster B, the conjecturing cluster that focuses on the activities of hypothesis 

generation, construction and redesign of artefacts and evidence generation. A 

representative of this cluster is a videotaped interview study of the ways successful 

provers use examples when exploring and proving conjectures given to them. The third 

biggest cluster with 24% of the RRs is cluster C, the “complete” process cluster, which 

incorporates RRs looking at multiple epistemic activities at once. A representative of 

this cluster is a RR on the role of dynamic geometry on the process of exploration, 

conjecturing and proving geometrical problems. Finally, the smallest cluster with only 

14% of the RRs is cluster D, the evaluation cluster, which focuses on the epistemic 

activity of evidence evaluation. A representative of this cluster is an eye-tracking study 

of the role of pictures while reading proofs. 

These clusters also differ in the sample sizes and the applied research methods. The 

mean sample size in cluster A is 85, whereas the other clusters have mean sample sizes 

of 50 and below, with cluster D having the smallest mean sample size of 32. Although 

all clusters predominantly contain qualitative RRs, the percentages are especially high 

in the complete (C) and conjecturing (B) clusters with 77% resp. 79%. Apparently a 

qualitative approach is used more often when having a wider perspective on MA&P 

and/or focusing on several epistemic activities. 

Data also reveal a strong connection between the processes and goals of MA&P 

investigated. Thus, RRs with a focus on argument construction predominantly studied 

the activities of hypothesis and evidence generation, whereas the RRs on argument 

reading or presentation focused exclusively on evidence evaluation. Especially in the 

case of argument presentation this seems surprising as a focus on communicating and 

scrutinizing would be obvious. 

DISCUSSION 

The aim of our review was to analyse the inclusion and combination of different 

predictors, sub-activities, and goals of MA&P in research on MA&P in PME and how 
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it contributes to a comprehensive understanding of MA&P. The results reveal that 

perspectives on MA&P are often restricted to very specific aspects such as single 

epistemic activities or one or few predictors. Initially, such more focused analyses are 

necessary as a first approach to better understand complex skills. Nevertheless, MA&P 

require the coordination of multiple processes and knowledge facets. Even though 

taking a broader perspective of MA&P poses major methodological problems, e.g., in 

terms of sample size or time for testing or analysis, it is important to find ways to study 

the complex interactions of the often disconnected aspects described in existing 

research. This may include studies comparing the influence of different predictors or 

research on the coordination of different epistemic activities during MA&P processes. 

We also find that MA&P are mostly researched in situations where argument 

construction is the main goal of the activity. This may be one reason why certain 

epistemic activities resp. their combinations are studied in more detail than others. 

However, Meija-Ramos and Inglis (2009) suggested that argument presentation and 

argument comprehension may be more important in learning settings than argument 

construction. Certainly, the relative importance of different goals of MA&P and 

different epistemic activities has to be seen in conjunction with the overall aims of 

mathematics instruction that may be more focused on argument construction. Still, we 

cannot expect to gather a comprehensive understanding of MA&P while having blind 

spots in our research. 

Despite these imbalances and potential research gaps it must be underlined that, with 

over 20% of the RRs focusing on argumentation and proof, we have a sound basis of 

research on the separate aspects of MA&P. Thus, it may be time to build on that basis 

and to start studying the relations and interactions between the different facets of 

MA&P in order to obtain a coherent picture as well as more detailed knowledge how 

to foster MA&P effectively. 
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PISA’S REPORTING OF MATHEMATICAL PROCESSES 

Kaye Stacey and Ross Turner 

University of Melbourne and Australian Council for Educational Research 

 

The OECD’s 2012 PISA survey reported for the first time on student proficiency in 

processes of doing mathematics, in addition to the scores for overall mathematical 

literacy and four content categories. The three process categories (Formulate, Employ 

and Interpret) are derived from the mathematical modelling cycle, emphasising PISA’s 

focus on what students can do with the mathematics they know. The paper describes 

this change and reviews initial country-level results. It then presents an empirical 

investigation of the categorisation by examining responses to multiple choice items to 

find the sources of major cognitive demand. This demonstrates the general success of 

the new categorisation and further underlines the difficulty that students have with 

formulating problems mathematically. Further research is recommended. 

AIMS  

The aims of this paper are to describe and investigate some conceptual and practical 

aspects of the scores that are reported by the OECD’s PISA mathematics survey. 

Before 2012, PISA mathematics outcomes were reported as an overall score of 

mathematical literacy (for every participating country/economy and for nominated 

subgroups within them), and also scores for four content categories (see below). From 

PISA 2012, mathematics also reported scores in computer-based mathematics and in 

three process categories, which are the subject of this paper. This paper reviews the 

reasons for reporting the process categories, describes how it is done with reference to 

the mathematical modelling cycle, reviews some initial findings and then discusses 

some criteria by which the success of the new venture could be judged. The paper then 

demonstrates one method for empirically evaluating the success, working at the item 

level, and provides suggestions for ways in which this investigation could be improved 

and extended. Since PISA is very important for educational policy, PISA-related 

research by mathematics educators is encouraged.  

THE NEED TO REPORT MATHEMATICAL PROCESSES 

As described in the first reports of the results of OECD’s PISA 2012 survey (OECD 

2014a), the aim of the PISA project is to assess the “key knowledge and skills that are 

essential for full participation in modern societies” noting in particular that “modern 

economies reward individuals not for what they know, but for what they can do with 

what they know” (p. 24). For mathematics, PISA therefore has an emphasis on 

mathematical literacy, defined (in part) as “an individual’s capacity to formulate, 

employ and interpret mathematics in a variety of contexts” (OECD 2014a p. 37). Real 

world challenges are therefore inherent to PISA.  
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For all PISA surveys to date, mathematical breadth is ensured by having approximately 

equal numbers of PISA items in each of four content categories (Quantity, Space and 

Shape, Change and Relationships, Uncertainty and Data). In addition to reporting 

overall scores for mathematical literacy, PISA surveys in which mathematics has been 

the major survey domain have also reported scores for these four content categories 

(OECD 2014a). Variation in the scores across the content categories have provided 

useful information for educational jurisdictions, helping them interpret overall scores 

and sometimes pointing to desired or accidental differences in curriculum emphasis as 

a whole or for students of PISA age. For example, Shanghai-China, Chinese Taipei, 

Korea and Macao-China, all of which have extremely high overall scores, do 

particularly well on the Space and Shape scale (19 or more score points higher than 

their 2012 overall scores) and relatively poorly on Uncertainty and Data (11 or more 

points below) (OECD 2014a). In PISA 2012, five of the ten lowest performing 

countries/economies (hereafter abbreviated just to ‘countries’) had scores in Change 

and Relationships 11 or more points below their overall scores (OECD 2014a).  

Since PISA 2006, student performance in science has been reported as an overall score 

as well as three knowledge of science scores (earth and space, living systems, physical 

systems), a score on knowledge about how science is conducted, and three scientific 

competencies (Identifying scientific issues, Explaining phenomena scientifically, and 

Using scientific evidence). When, in 2012, mathematics became the survey’s major 

domain for the second time and received a major review, it was a priority that 

mathematics follow the science lead and provide detailed reporting on students’ 

proficiencies in the processes of doing mathematics, not just content categories. More 

detailed reporting gives educational jurisdictions better information about the strengths 

of their students. But how should reporting on processes be done? 

By the late 1980’s, components of the process side of mathematics made their way into 

curriculum documents. Among many such initiatives, the first NCTM Standards 

(NCTM 1989) listed valuing mathematics, being confident, mathematical problem 

solving, communicating mathematically and reasoning mathematically. The Australian 

Curriculum Profile (Curriculum Corporation 1994) divided ‘working mathematically’ 

into investigating, conjecturing, using problem solving strategies, applying and 

verifying, using mathematical language and working in context. In Denmark, the KOM 

project led by Mogens Niss described a set of eight competencies for use in curriculum 

design and assessment (reasoning, problem handling, modelling, mathematical 

thinking, representation, symbols and formalism, communication, using aids and 

tools). This scheme, in various guises, has been adopted by PISA mathematics and has 

been present in the frameworks for all the PISA surveys (Niss 2015). A modified 

version of the scheme is now used to predict the difficulty of items during test 

construction (Turner, Blum & Niss 2015). However, despite its influence on PISA’s 

conceptualisation, this scheme could not be used for formally reporting on the 

processes of doing mathematics. Eight components are too many for strong statistics 
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and multiple competencies are involved in solving nearly all problems, whereas the 

psychometric model requires that items be allocated to only one category. What to do? 

PISA’s emphasis on mathematical literacy means that items are set in real-world 

contexts. Hence, mathematising the real world and using mathematical modelling to 

solve problems have always been foundations of PISA, although variously named in 

the various surveys (Stacey & Turner 2015). Within the mathematics education world, 

mathematical modelling has for many years been widely described by means of the 

modelling cycle (Blum and Niss 1991). For PISA 2012 the modelling cycle provided 

the basis of the new reporting of student proficiency in three mathematical processes. 

A simple version of this cycle is used, as shown in Figure 1. The label “mathematical 

processes” was arrived at after a great deal of discussion in the PISA 2012 Mathematics 

Expert Group, taking into consideration translation into many languages and also 

existing terminologies within PISA and OECD documents. The three processes, which 

are defined and illustrated in OECD (2014a) are: 

 Formulating situations mathematically 

 Employing mathematical concepts, facts, procedures, and reasoning  

 Interpreting, applying and evaluating mathematical outcomes. 

Figure 1 shows that the processes correspond to the arrows in the diagram. Formulate 

and Interpret move between the real world and the mathematical world, whereas the 

process Employ operates within the mathematical world. In the real world, there are 

concepts such as value for money; in the mathematical world this becomes a measure 

such as dollars per kilogram. Three, not four, processes were defined, with interpreting 

mathematical results in real world terms and evaluating the real world solution against 

the problem requirements combined, because items solved under PISA conditions are 

unable to incorporate any deep evaluation of solutions against real world criteria. 

Figure 1. Mathematical modelling cycle showing PISA processes. (OECD 2014a) 

In order to report scores for each process for PISA 2012, items were allocated to the 

process that experts judged to be the source of greatest cognitive demand of the item. 

This requires mathematical analysis of the item and judgements about solution paths 

that 15-year-olds are likely to take and difficulties they are likely to encounter. It is 

often the case that a solution involves more than one process and mathematics from 

more than one content category. For example, PM942Q02 Climbing Mt Fuji Q2 

(OECD 2013) requires students to assemble information about walking speeds, 

distance, breaks, etc., and formulate a mathematical model in order to find an 
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appropriate starting time for a walk up Mt Fuji. However, finding the starting time also 

requires employment of significant intra-mathematical skills. Hence, decisions – in this 

case between Formulate and Employ ‒ have to be made ‘on balance’. In professional 

life, working even once around the mathematical modelling cycle can be a substantial 

undertaking, but many PISA items are just a small fragment of this. Identifying exactly 

where they best fit requires thought. This issue is explored by Stacey (2015). In the 

PISA survey, approximately 50% of the items belonged to Employ, and 25% to each 

of the Formulate and Interpret processes (OECD 2014a). The items in each process 

category are balanced across content categories, the nature of the real contexts and 

cover the full range of difficulty.  

The purpose of this paper is to investigate some aspects of the reporting by processes. 

In the next section, we review some of the first published results to demonstrate that 

interesting insights into students’ mathematical proficiency have already emerged. 

Then we report an empirical investigation into how the categorisation of items has 

operated in practice. This is a rich field for further investigation.  

PATTERNS IN MATHEMATICAL PROCESS SCORES 

The first report of results of PISA 2012 (OECD, 2014a) shows there are interesting 

patterns in the process scores. The correlations between overall mathematical literacy 

scores and the seven other reported scores (four for content, three processes) are all 

high. The average OECD score for overall mathematical literacy is 494, for 

formulating 492, for Employ 493 and for Interpret 497. This means that Formulate 

items were found to be more difficult than the average item, and Interpret items were 

easier. However, nine of the ten top performing countries scored more than three points 

higher in Formulate. (This and the following comparisons are relative to the country’s 

own scores, not the OECD average). Top performers are generally Asian countries 

which stereotypes might have predicted had their greatest strength instead in 

calculation and hence in the Employ process, not Formulate. Interestingly the four 

highest performing countries scored relatively low on Interpret. Netherlands, Denmark 

and Sweden scored relatively high on both Formulate and Interpret (where real world 

contexts matter), and low on the intra-mathematical Employ. Non-Asian English 

speaking countries (Canada, Australia, New Zealand, UK, USA) were relatively 

stronger in Interpret only. Nine European countries were lower in Formulate but higher 

in both Employ and Interpret. The biggest difference between boys and girls was in 

Formulate. These results warrant further investigation. 

AN EMPIRICAL INVESTIGATION INTO PROCESS CATEGORISATION 

This section reports on an initial investigation into the categorisation of items to 

processes, using empirical results from PISA 2012. Consistent and meaningful 

categorisation is essential to ensure the usefulness of results. PISA’s Mathematics 

Expert Group was responsible for categorisation with initial suggestions from item 

writing teams. The task is to identify where the item is best placed within the modelling 
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cycle and if more than one process is involved, to make a decision about the source of 

greatest cognitive demand for most students in most countries.   

What empirical evidence from PISA results might assist in testing these expert 

categorisations? Looking at the most common errors could give information about the 

source of greatest cognitive demand. PISA items use various types of multiple choice 

and constructed response formats. Simple multiple choice, where students answer one 

question by selecting from four or five options, seemed to provide the best possibility 

to understand students’ thinking from the data published. Therefore, these items were 

examined to identify what process caused the most common errors. There are many 

untested assumptions behind this approach (some highlighted below) but it does seem 

important to see what information can come from the empirical data. 

Method 

There were 32 simple multiple choice items in the main 2012 survey, with 7 allocated 

to Formulate, 13 to Employ, and 12 to Interpret. On average 3.2% of responses were 

missing, with no item having more than 10% missing. To locate items where it was 

likely that there had been one main error, two criteria were chosen. A main error was 

defined as an incorrect option chosen by over 25% of students for four options or 20% 

for five options, or an incorrect option selected by more than half of the incorrect 

students (including missing responses). So, for example, the OECD success rate for 

PM942Q01 Climbing Mt Fuji was 46.93%. Option E was selected by 21.01% (over 

20%) so it was regarded as the main error. The success rate for PM918Q05 Charts was 

76.67%, so that 23.33% of students were not correct. Option C was selected by more 

than half of these students (14.84%) so was deemed the main error. 

Once main errors were identified, the two authors independently examined them to 

determine the process behind them. Both authors were familiar with the definitions of 

processes through their work on PISA 2012. For example, in PM942Q01 Climbing Mt 

Fuji (OECD, 2013) students must work out an average number of climbers per day 

given there are 200 000 climbers between July 1 and August 27. The main error (Option 

E) resulted from calculating with 27 days, rather than (31 + 27) days. Both authors 

decided this is a Formulate error, as it arises during the translation from real world 

situation to mathematical form. Of course amongst almost 500 000 PISA students, 

there will be many reasons for selecting Option E, but we expect this failure of 

Formulate is probably the most common. This empirical evidence supports the 

categorisation of PM942Q01 as Formulate. The authors rated items independently, 

discussed disagreements and uncertainties, and then made final decisions. 

RESULTS AND DISCUSSION 

Table 1 shows the 15 items from the main 2012 survey that met the criteria for having 

a main error. There was never more than one main error. Six items met both criteria. 

The table gives the names and identifiers of items (non-shaded items have been 

released and can be found in OECD (2013)); the process allocated for PISA 2012; the 

average percent correct (Table A2, OECD 2014b); the main error (with average percent 
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responses); the number of countries given the item (with number of OECD countries 

in brackets); and the authors’ decision on the process of the main error. The percents 

are averages for the OECD countries doing the items. Two OECD countries and 15 not 

from the OECD chose to include booklets of easier items in their rotation to get a better 

measure of low performing students. Because two countries seems small (even 

involving thousands of students), the average percents were calculated for this set of 

17 countries. With this new data, five of the eight items in Table 1 met the criteria and 

the other three failed by 0.4%, 1.04% and 2.12% respectively. It was decided, therefore, 

to retain all items. Note that because the populations for the OECD average differ 

across these items, percent correct is not a reliable guide to item difficulty here.  

Item ID 
Abbreviated 

Name 

Allocated 

Process 

% 

correct 

Main 

error  

Countries 

(OECD) 

Error 

Process 

PM564Q01 Chair Lift Formulate 46.11 C (42.93) 71 (34) Formulate 

PM942Q01 Climbing Fuji Formulate 46.93 E (21.01) 17 (2) Formulate 

PM982Q04 Employment  Formulate 51.45 B (37.64) 71 (34) Formulate 

PM800Q01 Comp. Game Employ 88.39 B (8.34) 71(34) Formulate 

PM915Q01 CO2 tax Employ 40.18 A (30.25) 71(34) Interpret 

PM918Q05 Charts Employ 76.67 C (14.84) 54 (32) Formulate 

PM957Q01 Helen Cyclist Employ 52.91 A (28.91) 17 (2) Formulate 

PM957Q02 Helen Cyclist Employ 36.86 B (25.61) 17 (2) Employ 

PM961Q03 Chocolate Employ 44.68 A (25.83) 17 (2) Employ 

PM985Q02 Which car? Employ 37.48 A (49.29) 17 (2) Employ 

PM423Q01 Tossing Coins Interpret 79.05 C (10.58) 71 (34) Employ 

PM918Q01 Charts Interpret 87.27 D (7.87) 54 (32) Interpret 

PM939Q02 Racing Interpret 38.14 B (52.42) 17 (2) Interpret 

PM948Q01 Part time work Interpret 85.91  D (8.69) 17 (2) Interpret 

PM991Q01 Garage Interpret 65.14  D (20.86) 17 (2) Interpret 

Table 1. Items, allocated processes, average results and error process categories. 

Table 1 shows that the allocated process and main error process coincide for 10 

of the 15 items examined. This is supportive evidence that the major source of 

cognitive demand in the item arose from the allocated process. There was complete 

agreement for the Formulate and Interpret categories except for item PM423Q01. 

Rethinking this item led us to believe that both the allocated and main error process 

should have been Employ and that the item was wrongly categorised initially.  
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The agreement between allocated and the current post-hoc analysis of categories 

was not strong for Employ items with four of seven items mismatched. Three of the 

four main errors were Formulate errors. PM918Q05 Charts (OECD, 2013) illustrates 

what happened. Students had to extrapolate a trend in five data points and the 

Mathematics Expert Group expected that the proportional reasoning and getting all the 

calculations correct would be the major challenge, hence Employ. However students 

making the main error probably misinterpreted the word ‘trend’ (a Formulate error) 

and therefore thought that they only had to read one data point and do no calculations. 

Hence they had no opportunity to make the expected Employ errors. This item is 

discussed in detail by Stacey (2015). It was the same situation in the other two Employ 

items above with Formulate main errors: students making the common Formulate error 

had almost no intra-mathematical work to do.  

Further analysis of the mismatched PM915Q01 CO2 tax, allocated to Employ 

with main error Interpret, showed the usefulness of examining the reasons behind all 

the options, not just the main error. In that case, whilst the identified main error was 

Interpret (30.25%), the authors judged that the main difficulty of a correct solution and 

the errors leading to the two other options were all within Employ, and hence applied 

to 65.22% of students. The allocated Employ process therefore is justified. Hence these 

four mismatched Employ items demonstrate two reasons why the main error is not 

necessarily a guide to the source of greatest cognitive demand for the item. The Employ 

category may be most affected by this, since different solution paths can vary so much 

in the intra-mathematical work they require. 

CONCLUSION AND FUTURE DIRECTIONS 

In summary, the results in Table 1 support most of the expert allocations and the 

analysis has led to deeper understanding of the items. Furthermore, the finding that 

nearly half of the Employ items had Formulate main errors demonstrates again that 15-

year-olds find formulation of a mathematical model from the real world situation 

difficult. The activity of analysing the main error processes has demonstrated some 

reasons why this empirical evidence does not prove that the correct or incorrect process 

allocation has been made. At best it provides support. In particular, it has shown that 

the most significant driver of cognitive demand may depend on the solution path, 

which is often linked to the ability of the student. The need to look more widely across 

all options was also highlighted. Data will reflect the actual options offered and their 

process errors, which has implications for test item writers.  

Because PISA is very influential in educational policy, more detailed research by 

mathematics educators into items and their functioning, categorisation, results and the 

conceptual underpinnings is to be encouraged. The new reports on mathematical 

processes provide an additional dimension for understanding country and subgroup 

differences and open new areas for research. The country patterns are interesting, but 

there are more patterns to find and links to curriculum, pedagogy or other factors can 

be explored. The wide range of publicly available PISA information supports this.  
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The empirical work presented above is a beginning that could certainly be improved. 

Items, including all their options, should be examined more closely (see CO2 tax 

example). Investigation beyond multiple choice items is important, such as with the 

‘double digit coded’ constructed response items, where answers are coded for both 

correctness and method used or errors made. Actual student responses from PISA 

scripts or written or verbal smaller scale studies could be used. There are also 

fundamental questions such as whether there are other links between the items in each 

of the process categories that better explain the results. With the process category 

reporting a new dimension of analysis of PISA outcomes becomes possible, and new 

opportunities open to investigate mathematics teaching and learning. 
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Many primary school children face barriers when solving word problems, in particular 

with regard to the process of reaching the target state from the initial state. A training 

program that encourages children to construct external representations and 

specifically use them to find solutions has been proved to positively influence their 

problem-solving success. One goal of our study was to find out which external 

representations (e.g., sketches, tables) are good predictors of problem-solving success. 

The results concerning this research question are presented in this paper. Additionally, 

findings regarding the effects of the representation training on the predictors will be 

discussed on the conference.  

THEORETICAL BACKGROUND 

Mathematical word problems  

Mathematical word problems are characterized by a demanding and complex 

mathematical structure. Several mutually interdependent conditions make the process 

of arriving at the target state from the initial state difficult. The problem solver is faced 

with a barrier; the solution is not readily accessible (Hussy, 1993). Indeed, finding the 

solution requires thinking processes that specifically enable problem solvers to 

establish new links between the properties of the initial and target states (Hussy, 1993). 

If they can perform the transformation in their memory, then it is not a problem for 

them (Franke & Ruwisch, 2010; Hussy, 1993; Winter, 2000). Problem barriers can 

present challenges. Challenging, yet solvable tasks require a greater willingness to 

work hard, which enables problem solvers to reach the zone of the next development 

(Vygotskij, 2002). Problem solvers have to "pay painstaking attention to detail" in 

order to find new links within the information (Kurt Reusser cited from Rasch, 2001, 

42). To solve the word problem, the student has to find a different way of approaching 

the situation in the task by reflecting on the content, considering other structures, and 

finding different relationships between the elements (Rasch, 2001; Verschaffel, Greer, 

& De Corte, 2000). 

External representations as a way of overcoming barriers 

The process of constructing external representations produces mental pictures. 

Students producing representations express their individual thoughts, show which 

contents they have in mind, and give them an external appearance (Bruner, 1996). This 

enables the recipients to reconstruct the mental pictures of the persons who produced 

them (Schnotz, Baadte, Müller, & Rasch, 2010). Externalizations are considered to be 
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"benefits" both in psychology and mathematics education (Bruner, 1996; Franke & 

Ruwisch, 2010; Schnotz et al., 2010). From a psychological perspective, external 

representations relieve the working memory, because the task conditions no longer 

have to be kept in mind. The free capacities can be used for finding the solution 

(Schnotz et al., 2010; Sweller, 2005). From a constructivist point of view, these help 

the problem-solving process if they are individually constructed by the problem 

solvers. By means of a dynamic analysis, the students uncover new links within the 

available information, restructure it, and overcome the existing barriers. The main 

didactic advantage is considered to be the creative phase of the problem-solving 

process. By externalizing the content, it is possible to identify relationships between 

the initial and target states. The problem is structured, sub-goals are recorded, and the 

search area is reduced (Franke & Ruwisch, 2010). Empirical studies (cf. Rasch, 2001) 

have confirmed that external representations, as an approach for supporting problem 

solving, help to overcome problem barriers.  

Findings from current learning research 

In spite of their manifold advantages, external representations are rarely used by 

novices for solving word problems. They struggle to externalize their mental models 

(Hohn, 2012; Rasch, 2001). To recognize and accept the fact that producing and using 

representations is helpful, students have to acquire experience working with them, 

independently discover their benefits, and learn how to identify suitable representations 

for the respective problems (Rasch, 2001). In this way, they develop a repertoire of 

external representations which they can draw on to work on the problem they are trying 

to solve and they can decide which representation is appropriate for them and their task 

(Cox, 1999; Kindfield, 1994). Novices have a lack of ability and skills as well as 

confidence for constructing appropriate representations, which is why they require 

support to put their mental models onto paper. Thus, there is a need for training in order 

to exploit the benefits of external representations (Fehse, 2001). Empirical studies (cf. 

collection in Fehse, 2001) have shown that depictive representation skills can be 

trained and that they enhance problem-solving success.  

RESEARCH QUESTIONS 

There is a gap in learning research regarding the role of individual external 

representations in problem solving. For teaching practice it is of interest to know which 

representations help students to successfully solve problems. As our study aim is to 

generate findings that are useful for primary school mathematics instruction, we 

developed the following research questions:  

 Which representations are good predictors of success in solving mathematical 

word problems? 

 Do trained classes perform differently to untrained classes regarding the good 

predictors? 
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METHOD AND DESIGN 

Design of the intervention study 

The study focused on a training program that fosters the construction of representations 

to enhance success in solving difficult word problems. In total, 366 third-graders from 

20 classes participated in the empirical study. Ten of these classes completed the 

representation training program. Every student solved one word problem in one lesson 

per week over a period of twelve weeks. Students taking part in the training were 

encouraged to construct external representations and integrate them into their problem-

solving process. At the beginning of each lesson, the class discussed and analyzed the 

problem-solving protocols of four students: a sketch, a calculation, a table, and a 

reasoning statement. Based on this range of problem-solving approaches, they learned 

that a task could be solved in several different ways. The important properties of the 

respective representations were analyzed and emphasized. In the next step, the third-

graders independently solved a new word problem, applying their newly acquired 

knowledge. Students working on the same tasks in a regular mathematics lesson were 

not explicitly encouraged to generate external representations. Their mathematics 

teachers were not aware of the content of the training program.  

The analysis is based on a total of 1071 problem-solving logs of 357 third-graders from 

Rhineland-Palatinate, Germany. The student protocols, which were collected after the 

12-week intervention in a post-test, provide the basis for evaluating the problem-

solving success and the self-generated representations of the third-graders.  The 

students worked on a self-constructed problem-solving test made up of three word 

problems from different task areas (Sturm & Rasch, in press). During the test, neither 

the trained nor the untrained classes were explicitly asked to use external 

representations.  

Method of the intervention study 

Coding of problem-solving success: Problem-solving success, i.e., whether the word 

problem was successfully solved, was measured dichotomously: (1) correct solution 

and (0) incorrect solution. If the solution was only partly correct or if only some of the 

steps had been correctly carried out, the solution was still marked as incorrect. This 

dependent variable focuses on the end product and not on the process.  

As the problem-solving test involved solving three tasks, problem-solving success was 

aggregated across all three tasks. As a result, the following number of points could be 

scored: (0) no task, (0.33) one task, (0.66) two tasks, and (1) all three tasks were 

correctly solved.  

Coding of students' external representations: Based on qualitative and quantitative 

content analyses, external representations were divided into four main categories: 

sketches, tables, calculations, and reasoning statements. In addition, specific properties 

were identified that described the individual main categories in more detail and put 
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them into concrete terms. These properties made up the sub-categories for the different 

types of representations.  

Properties of sketches:  

 Represented state: What is actually represented? Initial state; target state; 

approach; initial state and approach; target state and approach; initial and 

target state; initial state, target state and approach. 

 Structure: Surface characteristics are shown and the incorrect task structure 

(decorative sketch); correct sketch-text relationship but the incorrect task 

structure (more than surface characteristics); correct sketch-text relationship 

but the incomplete task structure; all conditions were correct. 

 Depiction of the situation: The sketch depicted the situation of the task; the 

sketch did not depict the situation of the task.  

 Systematic approach: The sketch reflected an unsystematic approach; the 

sketch reflected a systematic approach. 

 Monitoring the conditions: The conditions of the task were not controlled in 

the sketch; the conditions of the task were controlled in the sketch. 

Properties of tables: 

 Dimensions: One column; two columns; more than two columns. 

 Depiction of the situation: The columns depicted the situation of the task; the 

columns did not depict the situation of the task. 

 Use: tables as trial-and-error record; tables as "working-out" record. 

 Systematic approach: The table reflected an unsystematic approach; the table 

reflected a systematic approach. 

 Constancy of a condition: None of the conditions were kept constant in the 

table; one condition was kept constant in the table. 

 Monitoring the conditions: The conditions of the task were not controlled in 

the table; the conditions of the task were controlled in the table. 

Properties of calculations:  

 Number of calculations: One calculation was used; more than one calculation 

was used.  

 Written, mathematical language: The equals sign was misused; the equals 

sign was used correctly. 

 Depiction of the situation: The calculation was not labeled with the situation 

of the task; the calculation was labeled with the situation of the task. 

 Use: Calculation(s) fulfilled: working-out function; entry function; control 

function; entry and control function. 

 Systematic approach: An unsystematic approach was applied to the 

calculation; a systematic approach was applied to the calculation. 

 Constancy of a condition: None of the conditions were kept constant in the 

calculation; one condition was kept constant in the calculation. 
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 Monitoring the conditions: The conditions of the task were not controlled in 

the calculation; the conditions of the task were controlled in the calculation.  

 Diversity of arithmetic operations: Use of one arithmetic operation; use of 

more than one arithmetic operation.  

Properties of reasoning statements (cf. Neumann, Beier, & Ruwisch, 2014): 

 Mathematical structured reasoning: Description of mathematical findings 

without reasoning; description of mathematical findings with partial 

reasoning; description of all mathematical findings with complete reasoning; 

reasoning contains generalizing aspects. 

 Written language used for structured reasoning: Descriptive verbalization 

without structured reasoning; reason-and-consequence relationship with 

structured reasoning but with no link to the task; reason-and-consequence 

relationship with structured reasoning but with a link to the task; complete and 

consistent reasoning with a link to the subject matter of the task. 

 Correctness and completeness: None of the conditions were verbalized in the 

text; one condition was verbalized in the text; all conditions were verbalized 

in the text. 

The categorical, non-dichotomized predictors were dummy coded, producing 32 

predictors to be measured from the 22 properties.  

Additional influencing factors: Problem-solving success is not only determined by 

the representation selected. We also expected problem-solving success to vary 

depending on whether the children had participated in the training program or not 

(influence of the group). Children’s intelligence was measured using the Coloured 

Progressive Matrices test, their text comprehension using the ELFE 1-6 test, and their 

abilities and skills in mathematics using the HRT 1-4 test. The data collection took 

place at the end of the second grade. Moreover, we also recorded the children's native 

language by asking whether they mainly spoke German or another language at home.  

RESULTS  

In our analyses, we only considered properties that were found in more than 5 % of the 

students' solutions. Three items that violated this assumption were eliminated: ‘initial 

state and approach’ and ‘target state and approach’ of the sketch property represented 

state and the 'entry and control function' of the calculation property use. A principal 

axis factor analysis was conducted on the 29 items to identify clusters of variables and 

reduce the data set. The Kaiser-Meyer-Olkin measure verified the sampling adequacy 

of the analysis, KMO = .73 (‘middling’ according the Hutcheson & Sofroniou, 2009), 

but the KMO values for the individual item ‘control function’ of the calculation 

property use and the item ‘working-out record’ of the table property use were smaller 

than .5, which is below the acceptable limit of .5 (Field, 2013). These items were 

excluded from the analysis. In a next step, a second principal axis factor analysis was 

conducted on the 27 items with orthogonal rotation (varimax). KMO = .77 and all 

KMO values for the individual items were greater than .57, which is above the 
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acceptable limit of .5. An initial analysis was run to obtain eigenvalues for each factor 

in the data. Seven factors had eigenvalues above Kaiser’s criterion of 1; together they 

explained 71.53% of the variance. The scree plot showed inflexions that justified 

retaining four factors. Due to the discrepancy, we conducted a parallel analysis 

according to Horn. We retained the four factors because the parallel analysis confirmed 

the result of the scree plot.  

 b SE B ß p 

Step 1     

Constant -.496 .108  p < .001 

Group .076 .014 .239 p < .001 

Language .048 .033 .067 p = .149 

Intelligence .019 .004 .232 p < .001 

Text comprehension .004 .004 .052 p = .284 

Mathematical abilities  .004 .001 .360 p < .001 

Step 2     

Constant -.353 .103  p = .001 

Group .034 .014 .108 p = .018 

Language .054 .031 .076 p = .077 

Intelligence .014 .004 .173 p < .001 

Text comprehension .001 .003 .011 p = .810 

Mathematical abilities  .004 .001 .289 p < .001 

Sketches .112 .020 .239 p < .001 

Tables .382 .086 .196 p < .001 

Calculations .387 .083 .207 p < .001 

Reasoning statements .039 .018 .093 p = .030 

Note. R2 = .35 for step 1; ∆R2 = .10 for step 2 (p < .001). 

Table 1: Linear model of predictors of problem-solving success 

The items that cluster on the same factor suggest that Factor 1 represents the sketches, 

in particular only the properties of sketches load on this factor. The same applies to the 

other three factors tables, calculations and reasoning statements. Except for the 

calculations properties depiction of the situation and use (‘entry function’), all the other 

properties loaded > .4 on the respective factors. All Characteristics of a factor, whose 

loadings were > .4 were aggregated. First, the influencing factors (group, language, 

intelligence, text comprehension, and mathematical abilities) were included in the 

regression model. In a second step, the aggregated factors followed respectively. Table 
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1 shows the linear model of predictors of problem-solving success. The first model 

explained 35% of the variance. In addition, 10% more of the variance was explained 

by the use of sketches, tables, calculations, and reasoning statements. In summary, our 

model explains almost 50% of the variance. 

RELEVANCE FOR SCHOOL TEACHING AND DISCUSSION 

For the purpose of teaching practice, it is not surprising that sketches are the strongest 

predictors of problem-solving success. Their importance in mathematic classrooms, 

especially for solving word problems, is emphasized in mathematics education. The 

construction of sketches rank among the most important heuristic strategies in 

problem-solving (Franke & Ruwisch, 2010; Winter, 2000). This strategy is taken up 

and implemented by many textbooks. For instance “create a picture of the situation” is 

a typical instruction for students while solving word problems. However, constructions 

of tables and suitable calculations are rarely considered, while reasoning statements 

are not encouraged at all. Results confirmed this given the fact that reasoning skills 

revealed to be the weakest predictor of problem-solving success. This might be due to 

the fact that third-graders are novices in reasoning and still have to develop reasoning 

skills. It is of interest for instructors to know which representations should be integrated 

into lessons and which properties they should have to help children solve word 

problems. Research in mathematics education investigated questions such as: What 

impact does a helpful sketch have? What has to be included when producing tables? 

What types of calculations lead to problem-solving success? How does a reasoning 

statement have to be structured for the problem solver to reach his or her goal? Our 

project includes analyses on the properties of representations used to solve word 

problems and, therefore, helps provide answers to these questions. 

Solving difficult word problems is like climbing a mountain. At the beginning there is 

a barrier, comparable with a big mountain. Students cannot imagine that they are able 

to manage to reach the top. But if they succeed, they are satisfied and proud of their 

performance. External representations can help to build bridges for students to 

overcome barriers and be successful in problem-solving.  
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This paper extends the notion of a dynamic model of teacher knowledge from a school 

to a university setting. I consider both mathematics content knowledge and 

mathematics pedagogical knowledge in the context of university mathematics 

lecturing. The dynamics of mathematical knowledge of six research mathematicians 

are analysed. Findings from open-ended, semi-structured interviews suggest dynamic 

changes are pertinent more with regard to research mathematicians' mathematics 

pedagogical knowledge relative to mathematics content knowledge. Further, research 

mathematicians describe that some mathematical knowledge is static. 

INTRODUCTION 

Understanding the nature of mathematical knowledge in teaching is instrumental to 

understanding how teachers hold and use knowledge (Ball, 1988; Elbaz, 1981). Ball 

and Bass (2000) contend that the use of mathematical knowledge in teaching is often 

'taken for granted' and thus the nature of mathematical knowledge in teaching remains 

unexamined. Researchers (Elbaz, 1981; Fennema & Franke, 1992) agree on the 

dynamic nature of mathematical knowledge, which continually changes and develops. 

However, it is important to look at how it changes and what experiences contribute to 

the change and growth of lecturers' mathematical knowledge (Fennema & Franke, 

1992) particularly in university teaching, which "remains a largely unexamined topic 

in mathematics education" (Speer, Smith & Horvath, 2010, p. 100). In this paper, I 

extend Fennema & Franke's (1992) dynamic model of teacher knowledge from a 

school to a university setting focussing on the two components of mathematics content 

knowledge and mathematics pedagogical knowledge. The main research question is: 

what are the dynamics of university research mathematicians' mathematical 

knowledge?  

THEORETICAL BACKGROUND 

Dynamic nature of teacher knowledge 

Many researchers (Davis & Renert, 2013; Elbaz, 1981; Fennema & Franke, 1992; 

Hashweh, 2005; Meredith, 1995) have discussed the notion of the dynamic nature of 

mathematical knowledge in teaching. Elbaz (1981) proposed teacher knowledge as 

dynamic and interactive 'held in active relationship to practice and used to give shape 

to that practice' (p. 48). However, the notion of the dynamic nature of mathematical 

knowledge was widely discussed following Shulman's (1986) theoretical framework 

on teacher knowledge. The need is to conceive mathematical knowledge for teaching 

as dynamic rather than seeing it as one-dimensional and static (Meredith, 1995). 
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Hashweh (2005) proposes interaction between different knowledge categories within 

the knowledge used in teaching. From a participatory framework, Davis and Renert 

(2013) discussed teachers’ disciplinary knowledge of mathematics having a dynamic, 

evolving form. Fennema and Franke's (1992) model of dynamic teacher knowledge 

was based on conceptualising school mathematics teaching. It has four components: 

mathematics content knowledge, knowledge of mathematics pedagogy, knowledge of 

students' cognition and teachers’ beliefs. They propose that teachers’ knowledge of 

mathematical content is connected to the knowledge of mathematics pedagogy and to 

students’ cognition. They argue that these combine with teachers’ beliefs to decide 

teacher's classroom practice. Teachers’ knowledge is seen as process of development 

where these four components interact and develop in the classroom. Also, teachers 

change their existing knowledge and create new knowledge in the developing context 

of teacher knowledge. However, the changes in dynamics of the different components 

are not clear in this model and additionally, whether some components are more 

dynamic than others is not discussed. This paper extends the dynamic teacher model 

from school to university setting and investigates the dynamics of mathematical 

knowledge of university research mathematicians focussing on two components from 

the model proposed by Fennema and Franke (1992). 

Focussing on two components - extending dynamic model of teacher knowledge 

to university mathematics lecturing  

The choice to focus on two components from the model is based on a hypothesis 

comparing school and university settings. The two components are mathematics 

content knowledge and mathematics pedagogical knowledge. The hypothesis is that 

compared to school teachers', university mathematicians are strong in mathematics 

content knowledge and lack significant formal mathematics pedagogical knowledge. 

Further, to extend Fennema and Franke's (1992) model from school setting to 

university lecturing; it needs to take into account the main differences between school 

and university setting, namely teacher qualifications and mathematics subject 

knowledge. Because most school teachers will have formal teacher training 

qualifications, it is reasonable to assume that they will have better understanding of 

mathematics pedagogical knowledge. Most university lecturers will not have formal 

teaching qualifications or training in teaching (Wood et al., 2011). This leads us to 

assume that university lecturers may lack significant formal mathematics pedagogical 

knowledge. The other factor is subject knowledge. Studies have revealed the limited 

mathematics content knowledge of school teachers (Ma, 1999). So, there are good 

reasons to think that university research mathematicians are stronger in their 

mathematics content knowledge (Speer & Wagner, 2009) because of their advanced 

mathematical qualifications and knowledge they gain from research studies. The 

dynamics of university research mathematicians' knowledge are studied, considering 

these variations in mathematics content knowledge and mathematics pedagogical 

knowledge between school and university settings. I propose that the changes in 
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dynamics of research mathematician's mathematics pedagogical knowledge are more 

pertinent relative to mathematics content knowledge. 

METHODOLOGY 

This paper uses data collected from six research mathematicians at a university 

mathematics department in New Zealand. The study used semi-structured interviews. 

Six mathematicians (RM1, RM2, RM3, RM4, RM5 and RM6) are all researcher 

mathematicians with more than 20 years experience. None of them have a formal 

teaching qualification.  

Interviews are a useful method to infer research mathematician's experiences of the 

changing nature of mathematical knowledge (Ball & Bass, 2000). These interviews 

were designed to be open-ended and semi-structured to give freedom to the participant 

in sharing experiences and perceptions (Bryman, 2012). The interview questions were 

framed to understand the dynamics of research mathematicians' mathematical 

knowledge comparing their experiences as novice lecturer to those as an experienced 

research mathematician. This orientation was chosen because the dynamic 

conceptualisation of mathematical knowledge develops over time and not at a specific 

point of time (Fennema & Franke, 1992). Also, we already know that there exists a 

difference in mathematical knowledge of novice and experienced teachers (Leinhardt 

& Smith, 1985). The semi-structured interview questions were; 'Has the mathematical 

knowledge you use in your lecturing changed comparing as a novice lecturer and 

experienced research mathematician?', 'How will you describe that change?', 'What has 

changed?'  

The interviews were audio-recorded and transcribed for the purpose of this study. The 

episodes from the transcripts were separated into categories and were coded to analyse 

the interview data (Bryman, 2012) based on constructs from the literature relating to 

the goal of the study. 

RESULTS AND DISCUSSION 

Using the two components of mathematics content knowledge and mathematics 

pedagogical knowledge, data from the research mathematicians seem to suggest some 

changes to our dynamic teacher knowledge model.  

The dynamic nature of mathematical knowledge  

When comparing change in mathematical knowledge as novice lecturer and 

experienced research mathematician, RM1 said; 

"But mostly some things haven't changed from that time [novice lecturer]. Umm...we have 

been having ways of thinking about it now, but certainly I have no more mathematics that 

I use in my teaching now than I did then." [RM1]  

This quote is interpreted as RM1 suggesting that something (some knowledge) has not 

changed from that time (as novice lecturer). I suggest that this is probably the 

mathematics content knowledge based on the hypothesis of this study. However, 
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mathematics pedagogical knowledge has changed, as confirmed by the discussion with 

RM1 on lecturing practice. 

"It [lecturing practice] did not change my ability to do mathematics, but it did change my 

ability to teach". [RM1] 

RM2 shares the same line of thought on the changing nature of mathematical 

knowledge. RM2 perceives change in mathematical knowledge from two perspectives 

and thinks that actual relevant knowledge (or mathematical content knowledge) is not 

significantly different, but what he uses in lecturing (which is mathematics pedagogical 

knowledge) has changed.  

"I would say, slightly more, I have a much better idea of how things fit in, but in terms of 

actual knowledge, yeah, I would say it is probably very similar when I first started out [as 

novice lecturer]... but I have more of other views, sort of point of views of what's being 

done, which is of different strengths I guess, but in terms of actual relevant knowledge, is 

not significantly different." [RM2] 

RM3 does perceive changes in his mathematical knowledge from novice lecturer to 

present and asserts that the changes are a positive increase in mathematical knowledge. 

‘Having experience in lecturing a variety of courses’ and ‘actually doing mathematics’ 

and ‘research in mathematics’ all increased his mathematical knowledge.  

" I've had more experience teaching quite a variety of courses, so umm, it has been said 

that the best way to learn something is to actually teach it, so various times, especially 

earlier on, I have taught some things that actually made quite a lot. Yeah, and then just 

actually doing mathematics, doing research in mathematics over the years has and been 

exposed to mathematics in the ways I mentioned, earlier on, has increased my 

mathematical knowledge." [RM3] 

It is suggested here that 'I’ve had experience in teaching a variety of courses’ and ‘I 

have taught some things that actually made quite a lot’ have brought more changes in 

RM3's mathematics pedagogical knowledge. Mainly because RM3 being an expert 

mathematician, it is assumed that the changes to RM3's mathematical knowledge are 

more to his pedagogical knowledge rather than content knowledge (based on the 

hypothesis). Another reason could be that RM3 might not be taking content knowledge 

different from pedagogical knowledge as this study assumes.  

He further goes on and says, 

“ ...But pretty much I would say it [change] has been a development of what I originally 

had." [RM3] 

This is not 'new knowledge substituting old knowledge' as Fennema and Franke's 

(1992) dynamic model on teacher knowledge argues.  

Similarly, RM4 perceives change his mathematical knowledge, the change being 

increase.  

“Sure, I mean, well, first because I have a broader knowledge of mathematics, I see more 

the interaction between different fields of mathematics that I was not seeing before and so 
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especially when I teach mathematics students, it is better, because then I can more easily 

point out to them, look what you are doing here seems to be something like discrete 

mathematics and you can also use that in some other fields like this one and this one and 

this one.” [RM4] 

RM4 says that his expert mathematics content knowledge is useful for making more 

changes to his mathematics pedagogical knowledge. This is because as RM4 uses his 

broader mathematics content knowledge in lecturing; he transforms his content 

knowledge to make his pedagogical knowledge better. The changes are more brought 

about to his pedagogical knowledge through lecturing practice. 

These analyses show that research mathematicians' do see dynamic changes both in 

their mathematics content knowledge and mathematics pedagogical knowledge. Also, 

the research mathematicians specifically attribute more dynamic changes to their 

mathematics pedagogical knowledge relative to mathematics content knowledge. 

Lecturing practice is identified to be an influencing factor in the dynamics of research 

mathematicians' knowledge. The development of knowledge is seen as adding up to 

and developing the existing expert knowledge rather than substituting existing 

knowledge with new knowledge. This is different from Fennema and Franke's (1992) 

dynamic model on teacher knowledge where they propose that school teachers change 

their existing knowledge and create new knowledge. The underlying reason for their 

suggestion is probably because of the assumption that school teachers lack sufficient 

mathematics content knowledge which is not necessarily true in the case of university 

research mathematicians. So, extending Fennema and Franke's (1992) dynamic model 

of teacher knowledge from school to university suggest some differences in the 

dynamics of university research mathematicians' pedagogical knowledge. 

Furthermore, extending the model to university lecturing indicates a static component 

of mathematical knowledge.  

The static nature of mathematical knowledge  

A static component associated with the mathematical knowledge of research 

mathematician is identified.  

Research mathematician RM2 says he had lost some expertise in his mathematical 

knowledge now; for no longer using or practising that knowledge in lecturing.  

"I guess I had particular expertise in calculus [as novice lecturer] and certain things which 

I no longer have because I am not practising that so much." [RM2] 

Thus, the lack of practise of lecturing is indicated as a factor influencing the static 

nature of mathematical knowledge. 

Further RM2 asserts the static nature as follows, 

"...but most of that knowledge [mathematical knowledge I had as novice lecturer] is not 

relevant to anything that we teach because mathematics is such a huge subject and what 

we teach in university is just a tiny bit." [RM2] 
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As learners of mathematics during their formal mathematics learning, mathematicians 

learn a lot of mathematics. But when they start practising university mathematics by 

lecturing one or two courses, they limit their opportunity to make advances in the other 

areas of mathematics they have expertise in. This causes expert mathematicians to lose 

some mathematics. 

RM3 identified some mathematical knowledge not developing; the reason being not 

using and practising some mathematical knowledge in lecturing thus making that 

mathematical knowledge 'stagnant'.  

"I probably have forgotten some as well over the time. I guess my mathematical knowledge 

has changed, some is forgotten and some is learned, I have forgotten some old stuff, learned 

some new stuff probably." [RM3] 

The static nature of mathematical knowledge in this study is characterised as the non-

developing mathematical knowledge for various reasons such as being lost expertise 

in for not using or practising in lecturing. However, it is reasonable to ask if the 

forgotten knowledge is able to return and be put into practice. The answer is sometimes 

it may be possible, as in the case of RM2 and RM3; if they can practise that 

mathematical knowledge in lecturing again. But there are other factors that make it 

difficult. RM5 shares the same line of thought about the forgotten mathematical 

knowledge, but also shares the thought that some knowledge is retrievable, but some 

difficult. 

RM5 describes the static nature as follows, 

"If I had to go and learn about something which I had studied as an undergraduate and 

forgotten, then I could probably pick up some kind of reasonable text book and find out 

again more quickly. But, there are some other things I did when I was a PhD student and I 

think I would find it harder to do that because they are more; technically more complicated. 

It is because I have forgotten, although some of these things I never really understood very 

well in the first place." [RM5] 

Probably reading mathematics books and practising that knowledge in lecturing may 

develop static mathematical knowledge the mathematicians had expertise in, but there 

are some that are forgotten for they are more complicated mathematics and the 

mathematicians do not have extra time to invest in redeveloping that mathematical 

knowledge.  

Research mathematician RM6 talks about how habituation leads to stagnant 

knowledge. 

"I mean, the first time is obviously, you know what it is [to lecture] and the second time, 

probably there will be some fairly big changes and then each subsequent time the changes 

get smaller and smaller and smaller. It would be sort of the first to the second and second 

to the third, are most of the changes happened, and in subsequent times, you just mostly 

make some little tweaks here and there to adjust that they [students] did not quite 

understand. So I can do it a little bit better or motivate, but in after the first two times, I 

would say it didn't change that much." [RM6] 
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RM6 is talking about mathematics pedagogical knowledge rather than mathematics 

content knowledge. After lecturing, we can imagine that RM6 uses student feedback 

and other information to adjust his mathematics pedagogical practice. He is aware that 

changes occur more when starting lecturing a new course, and as the lecturing 

continues, he feels that the process of change narrows and becomes stagnant. As the 

pedagogical change approaches a certain level, there is still the possibility to make 

changes, but overall it is getting closer to a static practice, and static knowledge 

underlying it. 

CONCLUSION AND IMPLICATIONS 

In summary, this study extends the notion of the dynamic nature of teacher knowledge 

to university lecturing focussing on the two components of mathematics content 

knowledge and mathematics pedagogical knowledge. This study highlights the 

dynamic nature of mathematical knowledge of university research mathematicians 

based on the hypothesis that they have better mathematics subject knowledge and lack 

significant formal mathematics pedagogical knowledge. Findings from interviews with 

research mathematicians suggest that they identified their mathematical knowledge as 

dynamic and developing, thus useful in developing existing mathematical knowledge 

rather than substituting existing knowledge. The dynamics are more pertinent in 

research mathematicians' mathematics pedagogical knowledge relative to their 

mathematics content knowledge which is consistent with the hypothesis. Further, this 

study identified the static nature of some mathematical knowledge that is stagnant, and 

may lead to losing some mathematical knowledge. The static nature of mathematical 

knowledge happened in some areas which they no longer practised or used in lecturing. 

Additionally, habituation in lecturing is found to lead some mathematics pedagogical 

knowledge to approach stagnant nature. Lecturing practice is found to be one of the 

main factors influencing university mathematicians' dynamic and static nature of 

mathematical knowledge. More study is needed to understand how other components 

from the dynamic teacher model works in university settings and what other factors 

contribute to dynamics of mathematical knowledge. Further, understanding nature of 

mathematical knowledge has implications to professional development of university 

lecturers; by providing necessary opportunities for growth and development of new 

mathematical knowledge and hindering factors leading to static mathematical 

knowledge. 
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In our study we analyse strategies observed in combinatorial problem-solving. The 

study was carried out among the students of the Elementary Teacher Training College 

of Eötvös Loránd University (N = 128). Our research shows the variety of strategies 

appearing during the solution of tasks with the same mathematical structure, but with 

different wording. In line with our most important hypothesis, building mental models 

for the tasks corresponding to both the text of the word problem and the combinatorial 

structure are essential. However, as revealed by this investigation, students often build 

superficial models, i.e. they choose one of the algebraic expressions (e.g., factorial, 

binomial coefficients) from their high-school repertory, and use it without sense-

making of the problem.  

INTRODUCTION 

Combinatorics is a branch of mathematics which has an obvious practical use; on the 

other hand combinatorics is especially suitable for students to perform mathematical 

activities via simple experiments and observations already in their early development. 

In Hungary today along the development of combinatorics, the issue of developing 

combinatorial thinking has again have been put into the limelight. In the entrance 

examination tasks secondary-school students have to solve combinatorics a lot more 

dominant than it is present in the guidelines of the Frame Curriculum. The relatively 

small number of hours allocated to combinatorics and the low proportion of such tasks 

in the textbooks justify the importance of investigating the topic.  

In Hungary, at the end of the 1960s researchers started to think about teaching 

combinatorics (Varga, 1968), and the topic was included in general education at the 

start of the school-year in 1978 (Halmos & Varga, 1978). Tamás Varga and his 

colleagues defined the levels of teaching combinatorics, which have been built in the 

methodology of Hungarian mathematics. In accordance with the level of development 

of students the levels of combinatorial tasks built on each other are the following 

(Pintér, 2013): 

 Differentiating the cases 

 Listing all possible cases as brainstorming  

 Regular listing 

o Two types of representations: objects – images (drawings, letters, 

tables, graphs) 
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o Strategies: (change, fixing, cyclicality) 

 Applying formal methods  

o Two types of representations: objects – images  

o Strategies (multiplication, addition, one-to-one mapping, recursion) 

 Recognition of structures 

During the elaboration of the topic and the solution of the tasks, finding the best fit 

model is essential (see Godino, Batanero, & Roa, 2005). Therefore it is not worthwhile 

requiring task solution always on the highest possible level available for the age group. 

Pupils will understand and find abstract models and formal methods when simpler lists 

with a lower number of elements and systemisations are deducted on a manipulative 

(and later on an image level) in many types of specific forms. Often the same task 

occurs on every level: by increasing the number of elements from the specific objective 

activity through image depiction we reach the application of symbolic methods (Varga 

& Dumont, 1973).  

Two main questions have to be taken into consideration when solving combinatorial 

calculation problems: Have we added different cases?  Have we added all the cases? 

Combinatorial ideas from a very young age appear and can be developed (English, 

1991; 1993) however we can find typical errors at all levels of learning combinatorics  

(Batanero, Navarro-Pelayo, & Godino, 1997). 

The role of combinatorics is special in mathematics teaching. Solving combinatorial 

tasks helps the flexibility of thinking in approaching problems, and selecting 

representations. The majority of the tasks cannot be solved mechanically, but need 

critical thinking, thus activating metacognitive skills, strategic planning, thus 

improving mathematical performance. (Csíkos, Szitányi, & Kelemen, 2012) There is 

hardly any topic which could improve the skills of pupils so extensively as 

combinatorics (Sriraman & English, 2004, p. 182). 

Combinatorial problems are generally given as word problems. Research on maths 

word problems, according to Verschaffel, Greer and Torbeyns (2006), has moved in 

recent years into the direction of research within the framework of general problem-

solving. Theories of problem solving have long ago acknowledged the importance of 

metacognitive processes (planning, monitoring and evaluation strategies). One 

important aspect of metacognitive knowledge is students’ conscious use of different 

types of drawings while solving the problem (Van Meter & Garner, 2005). 

The hypothesis that analogical thinking has an important role in knowledge acquisition 

has been verified in previous investigations. Analogies are usually considered to be 

development tools of inductive thinking (Nagy, 2000) Learning via analogy means that 

in a new situation we try to recall a known, successfully solved similar situation, so 

that we can reconstruct the successful solving strategy and apply it to the present 

situation. (Gick & Holyoak, 1990) In our research, the possibility to build analogies in 

the area of combinatorics has been investigated.  
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Research questions 

 What is the difficulty and teachability of the topic assessed among 

elementary school teacher training college students?  

 What level of performance do pre-service elementary teachers have on a set 

of deep-structurally similar combinatorics tasks? 

 What kinds of combinatorial reasoning strategies they have? Do they 

recognise the analogous structures? What kinds of visual aids do they give 

themselves? 

 What is the connection between their performance and strategy use? 

METHODS 

Sample 

Our research was conducted at the Eötvös Loránd University’s Faculty of Primary and 

Pre-School Education. There were 128 students involved who represented not only the 

student pre-service elementary teacher population of that Faculty but a much wider 

student population. The members of that much wider population is characterised by 

having a diploma and they do not consider themselves as mathematics teachers but 

rather school subject generalists. 

Elementary teachers are required to possess combinatorial reasoning structures and at 

the same time to be able to solve problems by means of simple strategies which are 

expected to be used by their pupils. At the beginning of their tertiary studies, they 

already have learnt combinatorics in the high schools: permutations, variations and 

combinations are listed among the target topics of the maturation exam. They have to 

know the n! or (𝑛
𝑘
)  (

n
k
) expressions. At the time of the data collection they had not yet 

encountered further combinatorics studies at the university.  

Measures 

Questionnaire 

The questionnaire addressed students’ attitudes towards combinatorics and to other 

mathematical sub-domains. Besides attitude measures students were asked how 

difficult they consider teaching combinatorics, and how they self-assessed their level 

of knowledge in combinatorics. 

A test of combinatorial reasoning 

The test consisted of seven tasks that were deep-structurally similar to each other. Five 

out of the seven tasks was built on same combination structure chose of 7 elements 2, 

while the other two tasks were built on the (8
2
) or (7

2
) +7 scheme. Two examples are 

given here: 

Anna, Béla, Cili, Dóra, Erik, Fanni and Gizi are drinking champagne. What is the sum of 

the toasts if everyone is clinking with everyone else? 
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In a domino set the maximum number of spots on each side is six. There can be identical 

number of spots on two sides of a domino, and any side may remain empty. What is the 

number of dominos in the set? 

Video footages and audio-files  

13 students were asked to fill in the questionnaire and the test in front of a video 

camera. The analysis of these video footages enabled us to more reliable categorise the 

students’ answers on the paper-and-pencil tests. 

Analysis 

Students’ solutions were assessed according to two aspects. Besides the dichotomous 

assessments of the rightness of the solution, their strategies were coded as follows:  

1 - Staircase-like visualisation: This method was often applied in the first problem. 

Those, for whom the selection of element pairs is not primary, addition is performed 

according to the following: A toasts 6 people, B only five, C four, thus the number of 

cases is 1+2+3+4+5+6. In our problems, most often this correspondence was found. 

An example is shown in Figure 1 from an answer given to this strategy. 

 

Figure 1: An illustration of the “Staircase-like visualisation” strategy 

2 - Polygon as visual aid: The Figure 2 shows that pictures are a bit more difficult to 

use and follow when the elements are depicted as the vertices of a polygon.  

 

Figure 2: An illustration of the “Polygon as visual aid” strategy 

In this case, in case of accurate addition the 6+5+4+3+2+1 structure, or  
𝑛(𝑛−1)

2
. appears. 

The following is a quotation from an interview: 

“I recalled the drawing. Indeed, the drawing example, how many are there? 7, yes. I 

absolutely recalled the linking drawing, and theoretically everybody toasts 6 people, we 

divide it by two, because we add everything twice, therefore 6×7/2 is 21, theoretically.” 

However, the well-chosen representation does not always lead to the accurate result, 

the following two examples show this: 
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 “From one point I can draw 6 lines, so this is 7×6, and the points I have already used 

should be deducted, so it is 6x6.”; “It can be solved in different ways, when we draw the 

lines of the polygon defined by these 7 points, we get a polygon with 7 sides. Then we 

draw the diagonals, and so on… And we know the number of diagonals, n-3×n, this means 

4×7=28 + 7 sides” 

3- Lines drawn: As seen in Figure 3, the person solving the problem places the 7 

elements on one line, of which she selects two by connecting them. This solution is a 

little problematic, as it is not easy to follow and add the drawn lines. 

 

Figure 3: An illustration of the “Lines drawn” strategy 

4 - Graphs: A technical process often applied was to build a graph, which is not 

connected. An example is shown in Figure 4 from an answer given to the 2nd problem. 

 

Figure 4: An illustration of the “Graphs” strategy 

5 - Listing cases: It occurred that the person solving the problem listed all the cases, 

but we could not find any structure.  

6 - Calculation solely with numbers: The students tried to recall a formula based on 

earlier studies, or operated with the four basic operations from the numerical data. For 

example: 

“I am still calculating in my head and I recall an image, automatically in my head 7 

choose 5 and 7 choose 2, and I am trying to arrange in my head how accurate my 

thinking is. As we have to think aloud, and we tend to be shy, therefore I will start. 7 

choose 5, this is 7! multiplied by 2!” 

7 - Recursion: A learnt method often applied in the solution of combinatorial tasks: 

When you cannot understand the problem, solve it with a smaller number of elements. 

In our task system there was only one problem suggesting this method.  
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RESULTS 

Concerning pre-service elementary teachers’ beliefs about the difficulty of 

combinatorial knowledge and about the difficulty of teaching the topic, the correlation 

is strong (.68), i.e., the stronger the person considers their combinatorial problem-

solving skills, the more they like teaching the topic (p < .005). Correlation between 

belief on own combinatorial knowledge and the results achieved in the test proved to 

be also significant (.58). As compared to other mathematical domains, combinatorial 

knowledge and teaching of the topic is apparently at the worst place, as seen in Table 

1. 
 

Domain Own knowledge Difficulty of teaching 

Algebra  3.59 3.41 

Combinatorics  2.90 2.58 

Functions 3.35 3.20 

Geometry 3.84 3.83 

Logic 3.57 3.14 

Number theory 3.45 3.32 

Sets 4.14 4.23 

Table 1: Students’ beliefs on a five-point Likert-scale about their knowledge and 

about the difficulty of teaching mathematical domains 

The system of the seven tasks has a marginally acceptable reliability (Cronbach’s  = 

.64). Taken the small number of items into account, this reliability coefficient suggests 

that the task system measure a psychological construct, i.e. a subsystem of 

combinatorial reasoning. 

The mean solution rates for the seven tasks are shown in Table 2. 
 

Task Mean (%) SD 

1. 79 41 

2. 24 43 

3. 93 26 

4. 84 37 

5. 82 39 

6. 55 50 

7. 51 50 

Table 2: Mean solution rate and standard deviation in each task 

To explore the relation between the success of the solution and the applied strategy 

first we examined whether the average of those using unidentified strategies was 

different from the others. In tasks 5 and 6, significant differences were found. 
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The frequency of the strategies used in each task is shown in Table 3. 

Strategy/Task 1 2 3 4 5 6 7 

1 - staircase 93 80 96 100 100 100 100 

2 - polygon 79   100 89 78 0 

3 - line 91    100 100 50 

4 - graphs 88 80 100 92 100  83 

5 - cases 100 65  93 91  50 

6 - calculation 60 2 56 44 77 79 42 

7 - recursion   100     

No strategy identifiable 79 16 88 70 66 25 48 

Table 3: Solution rates for each task according to observed strategies (%) 

As for the consistency of strategy use, correlation between the number of tasks where 

the student used an identifiable strategy and the number of right solutions is .24, which 

is significant at p = .007 level. 

Six people solved the problems by only looking at them, without using any visual aid 

or written calculations. Besides them, the connection between identifiable strategy use 

and the number of right solution is obvious: the more somebody used some visible 

strategy, the higher score they achieved. Except for these six persons, the correlation 

above is .42, which is significant on a level of p < .001.  

DISCUSSION 

The first research question concerns the assessment of the topic of combinatorics. 

Results show that combinatorics has the worst place compared to other fields of 

mathematics considering the belief related both to own knowledge and the teaching of 

the topic. Our task sheet contained problems with the same structure, but with different 

contents. Therefore it is not true that in case someone acquired one type of process, 

they could solve the tasks better. The majority of our students used image depiction 

when solving the problems.  

The variety of methods used in the solution (an average of 3.84 different strategies 

used) suggests the analogy among the tasks was difficult to recognise for students. The 

lack of analogies used points to the difficulty of recognising the combinatorial 

structures the tasks were based on. Finally, our research has shown that the use of 

recognisable strategies are associated with better performance. It is worth being noted 

that it indicates the use of metacognitive strategies. 
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USING METAPHORS TO ASSESS STUDENT MOTIVATION AND 

ENGAGEMENT IN MATHEMATICS 

Marley Taing, Janette Bobis, Jenni Way and Judy Anderson 

University of Sydney, Australia 

 

This study examined the use of metaphors as a viable tool for assessing primary 

students’ motivation and engagement in mathematics. Data were gathered from 20 

Year 6 students from one classroom via a metaphor task and focus group. Metaphors 

were inductively and deductively analysed. Information from the focus group was used 

to validate qualitative interpretations. Of interest is the degree to which elements in 

established theoretical frameworks of motivation and engagement were depicted in 

student metaphors. Aspects of emotional engagement were most notably expressed, 

followed by cognitive and behavioural aspects such as self-belief, persistence, valuing 

of mathematics, and uncertain control. The implications for assessing student 

motivation and engagement are addressed. 

 

INTRODUCTION 

Teachers routinely use a wide range of information about their students when planning 

for instruction; including how motivated and engaged they are to learn (Bobis, 

Anderson, Martin & Way, 2011). Such information not only influences the teaching 

strategies teachers adopt, but their responses to students and the efforts they make in 

their teaching (Hadrè, Davis & Sullivan, 2008).  

Numerous research endeavours have investigated student motivation and engagement, 

mainly utilising surveys (Fredricks, Blumenfeld & Paris et al., 2004; Martin, 2007). 

While validated quantitative instruments provide results comparable to established 

standards, they are often not practical for regular classroom use – usually requiring a 

specific skill set to analyse and interpret, and considerable lag-time for collated results 

to be returned, thus making them of little use for immediate instructional needs. In the 

absence of suitable alternative data gathering instruments, teachers rely on intuitive 

assessments of student motivation and engagement. Such assessments have been 

proven unreliable, particularly regarding student emotional engagement — students 

are easily able to mask their true motivations and levels of engagement (Hadrè et al., 

2008). Viable alternative tools are needed to assist teachers make accurate judgements 

about the nature of their students’ motivation and engagement in mathematics. This 

paper reports on research that explored the viability of using metaphors as a tool for 

teachers to easily and accurately assess upper primary students’ motivation and 

engagement in mathematics. 
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MOTIVATION AND ENGAGEMENT: CONCEPTUAL FRAMEWORKS 

The terms motivation and engagement are often used interchangeably, possibly due to 

their close relationship. While acknowledging their connectedness, we differentiate 

between them, defining motivation as an individual’s intention or willingness to act, 

and engagement as the actual involvement (Gettinger & Walter 2012). Furthermore, 

engagement is conceived as a meta-construct, incorporating three interrelated types: 

behavioural, emotional and cognitive engagement (Fredricks et al., 2004). Behavioural 

engagement refers to active involvement and participation; emotional engagement 

encompasses positive and negative reactions; and, cognitive engagement refers to the 

intellectual investment one is willing to employ in efforts to learn (Fredricks et al., 

2004). While adopting these three categorises of engagement, we recognise that they 

often overlap, such as when intense negative emotions (e.g., anxiety) incorporate 

cognitive aspects (a ‘mental block’ during a test). With this in mind, we also drew upon 

Martin’s (2007) multidimensional motivation and engagement framework to guide our 

investigation (see Figure 1).  

 

Figure 1: Motivation and Engagement Wheel (Martin, 2010, p. 9). 

Drawing upon theory and research, Martin (2007, 2010) developed the Motivation and 

Engagement Wheel to integrate a number of theoretical perspectives and articulate a 

framework that is readily accessible to researchers and practitioners (see also Bobis et 

al., 2011). The upper quadrants contain adaptive cognitive and behavioural factors such 

as self-belief, mastery orientation, valuing of school, persistence, planning and study 

management. The lower quadrants include maladaptive behavioural and impeding 

cognitive factors, such as disengagement, self-handicapping, uncertain control, failure 

avoidance and anxiety. Importantly, affective factors are not prominent in the Wheel, 
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and neither Martin’s (2007) nor Fredricks et al.’s (2004) frameworks specifically relate 

to mathematics. However, when considered in tandem, the two cover a breadth of 

behavioural, cognitive and affective motivational and engagement factors that are 

clearly relevant to mathematics. 

It is imperative teachers understand student motivation and engagement in 

mathematics, as they are key agents for improving educational success (Bobis et al., 

2011). There is a need to provide teachers with accessible, low-tech tools that will 

provide viable assessments of their students’ motivation and engagement in 

mathematics. 

ASSESSING STUDENT MOTIVATION AND ENGAGEMENT  

Extensive research has been undertaken to investigate and assess student motivation 

and engagement through the use of both quantitative and qualitative methods. Most 

quantitative approaches utilise different forms of surveys and scales, originally 

designed to measure motivation and engagement in only generic terms (Hardré et al., 

2008). Drawbacks to this approach include the non-return of tests, self-reporting of 

perceptions, laborious analysis of data and generalised questions that usually yield a 

numeric score or set of scores as the sole information about students’ motivation and 

engagement. They can, however, provide data that describes the nature of existing 

conditions at a specific point in time from a very large number of students.  

Conversely, qualitative methods usually encompass observations, interviews and open-

ended response questionnaires (Hardré et al., 2008; Turner, Warzon, & Christensen, 

2011). Although these methods capture rich detail, they present trade-offs, including 

that they are time-consuming and human-resource intensive to both implement and 

analyse (Fredricks et al., 2004). Hence, they typically consist of small-scale sample 

sizes, yielding results that may be incorrect to generalise to the larger population. 

However, qualitative methods usually provide enriched understandings of motivation 

and engagement levels that can be student, subject, and even topic-specific. 

Recently, Cai and Merlino (2011) expressed a need for more practical, classroom-

friendly tools to help teachers analyse students’ dispositions towards mathematics due 

to a “near-universal lament of low student motivation” (p. 147). They introduced a 

strategy involving short metaphor tasks as a way to effectively assess student 

motivation and engagement. Such tasks are considered particularly appropriate for use 

with middle and high school students (rather than younger students) due to their ability 

to think metaphorically. There is wide agreement regarding the benefits of metaphors 

and what they can expose about students (e.g., Solomon & Grimley, 2011). For 

instance, Lakoff and Johnson (2003) considered metaphors capable of revealing 

expressions of feelings and thoughts which expose deep underlying meanings that 

might otherwise remain undetected. 

This study examined the use of metaphors as a viable tool for teachers to easily and 

accurately assess upper primary students’ motivation and engagement in mathematics. 

In particular, it addressed: (1) What do metaphors reveal about students’ engagement 



Taing, Bobis, Way, & Anderson 

4-236 PME39 — 2015 

in mathematics?; and (2) How do these results align with established theories of 

motivation and engagement? 

METHODOLOGY 

The current study was nested within a larger project that aimed to explore the 

mathematical engagement of Year 5 to 7 students from schools located in the northern 

suburbs of a large city on the east coast of Australia. Several teachers and their classes 

were invited to take part in a case study component of the larger project. Case studies 

were intended to provide in-depth information of a small number of classes using 

qualitative methods (Yin, 2009). The mixed-ability Year 6 class (n=20; 11 to 12 year 

old students) involved in the current investigation was one of the case study classes. It 

was ultimately chosen due to the teacher’s willingness and availability to participate in 

the case study component.  

Data collection methods, process and analysis 

Facilitated by the classroom teacher, the Year 6 students undertook a mathematics 

metaphor task. The metaphor task required students to complete a written response to 

the statement: “If mathematics was a food, it would be …”. They were also required to 

provide a written explanation for their choice of food. Cai and Merlino (2011) 

recommended using prescribed topics (including food) because some students invent 

metaphors that do not lend themselves to rich descriptions. It was considered that 

‘food’ would be a familiar topic to Year 6 students and would instigate a richness and 

range of responses that could be analysed in terms of their mathematical engagement.  

In the same week, five students were purposefully selected to participate in an hour-

long focus group interview conducted at the school and facilitated by one of the 

researchers. Based on their metaphors and discussions with the class teacher, students 

were selected so as to obtain a representative sample of varying mathematical 

dispositions and achievement levels in mathematics. The main purpose of the focus 

group was to provide student explanations of their metaphors that would help validate 

our interpretations. Hence, students were provided with a copy of their metaphor and 

asked to further explain why and how it reflected their view of mathematics. They were 

encouraged to give examples from the mathematics classroom to elaborate their 

meanings. These examples provided a springboard for other students to contribute to 

the discussion. The focus group was video recorded to enable follow-up clarifications 

to occur. A second researcher observed the focus group and took field notes.  

Metaphors were analysed using both inductive and deductive approaches. They were 

first transcribed to a spreadsheet to assist analysis. For the inductive analysis, we 

categorised each metaphor to determine the kinds of foods students used and why. 

Metaphors were then individually read several times and examined for commonalities 

and differences by two researchers. The researchers discussed and agreed upon several 

prevalent themes. Throughout the inductive process both researchers viewed relevant 

segments of the focus group video and consulted the field notes to assist their 

interpretations and help settle any disagreements in interpretations.  
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The deductive analysis was guided by Fredricks et al.’s (2004) and Martin’s (2007) 

theoretical frameworks. Each metaphor was interpreted and categorised according to 

the presence of any words, implied feelings or ideas related to the three types of 

engagement and/or pre-determined definitions for each aspect on the Wheel by the 

first-named researcher. Hence, each metaphor was considered to exhibit, or not exhibit, 

an aspect of the Wheel – scoring a point for each aspect present to a total of 7 points 

for adaptive and 5 points for maladaptive aspects. A second researcher independently 

followed the same process. The two analyses were compared, revealing an overall 

interrater reliability of 86% agreement and a 95% agreement on emotional and some 

cognitive engagement aspects. A metaphor was only considered to exhibit a particular 

aspect if both researchers were in agreement. Interpretations were drawn upon and 

validated with the assistance of the field notes and video recording of the focus group.  

RESULTS AND DISCUSSION 

Findings derived from the inductive analysis of the metaphors are presented first. Due 

to space restrictions, only selected metaphors are drawn upon to support our 

interpretations. Most of the metaphors (18 out of 20) included affective responses 

towards mathematics (see Table 1 for examples of affective responses).  

Category/ 

Sub-category 

Metaphor example Frequency 

Level of enjoyment  

Like/love Chocolate. I love chocolate and think it is 

nice and smooth and creamy, like maths. 

4 

Variable 

enjoyment 

Ice-cream. Sometimes you love maths and 

look forward to it. Where as sometimes it 

can be hard or melted and very yuck and 

boring. Plus the good thing about ice 

cream is trying new flavours. With maths 

you can try new topics. Yum! 

14 

Table 1: Affective responses included in metaphors. 

While no metaphors displayed an absolute and definitive dislike for mathematics, the 

majority revealed variable levels of enjoyment (a mix of both positive and negative 

affective responses). Twelve students conveyed their variable affective responses by 

juxtaposing words such as, “rotten and ripe”, “bruised or ripe”, “hard” or “soft”, and 

“sour or sweet”, indicating that the emotional engagement of these students with 

mathematics was capable of changing quiet dramatically.  

Students’ conceptions about the nature and structure of mathematics were also clearly 

depicted in their metaphors, ranging from a narrow view of mathematics (e.g., “Meat”, 

“Fish” and “Banana”) by the majority (15) to five students who depicted mathematics 

as dynamic and multi-layered (e.g., “Lasagne. Maths is complicated just like lasagne. 
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You need to eat your way through all the layers and you need to work through a maths 

problem to find the answer…”). Cognitive demands associated with mathematics were 

also depicted in over half the metaphors (e.g., “Fish is hard to eat but is very 

flavoursome, but there can be bones… which are hard to eat”). Thirteen metaphors 

depicted strategies for dealing with difficult mathematics content, including 

‘persistence/effort’ (“Apple is hard to get at, at first, but once you bite into it, it is so 

sweet and tasty you want more…”), ‘practice’ (“…it is hard to eat at first but the more 

you practice the easier it gets”), and ‘chunking’ (“Watermelon. It’s nice to eat and you 

can break it up into chunks…”). 

Using the deductive analysis process described earlier, metaphors were determined to 

depict a total of 61 occurrences of motivation and engagement aspects contained in the 

selected theoretical frameworks (Fredricks et al., 2004; Martin, 2007) (see Table 2).  

Type and Aspect  Frequency 

Adaptive Cognitions and Behaviours  

Self-belief  8 

Learning Focus  5 

Valuing of mathematics  5 

Planning  2 

Task Management  4 

Persistence  8 

Emotional Engagement   

Liked/Positive  4 

Variable  14 

Maladaptive and Impeding Cognitions and Behaviours 

Anxiety  1 

Failure Avoidance  3 

Uncertain control  7 

Self-handicapping  0 

Disengagement  0 

Table 2: Frequency of each aspect’s occurrence in student metaphors. 

As evident from Table 2, emotional elements (e.g., “love”, “like”, “enjoy”, “dislike”) 

were the most prevalent to be depicted in the metaphors, but as determined during the 

inductive analysis, the majority of student metaphors expressed variable emotional 

engagement rather than an absolute emotional response towards mathematics. This is 

consistent with Solomon and Grimley’s (2011) finding that Year 5 and 6 “children 
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expressed a wide range of strong feelings about mathematics” (p. 700) in their 

drawings. It is also consistent with our conceptions of motivation and engagement that 

view them as variable and highly malleable constructs (Bobis et al., 2011).  

There were 18 occurrences of metaphors exhibiting adaptive (positive) behaviours and 

cognitions. The two most frequently occurring adaptive aspects were ‘self-belief’ and 

‘persistence’ (8 occurrences each), followed by ‘valuing of mathematics’ and ‘learning 

focus’. Conversely, there were fewer negative aspects depicted – only 11 occurrences 

of maladaptive/impeding cognitions and behaviours, with ‘uncertain control’ proving 

to be the most common issue (7 occurrences) expressed. There was one occurrence of 

‘anxiety’ noted and no instances of ‘self-handicapping’ or ‘disengagement’. It is 

possible that the selected topic of the metaphor (food) made it more likely that some 

theoretical aspects would be expressed more often than others. For instance, students 

could easily relate to enjoy eating or not enjoy eating certain foods (emotional 

engagement), or to consider the presence of “bones in fish” or “seeds in watermelon” 

as being out of their control (impeding cognitive engagement), but few students might 

associate ‘anxiety’ with eating a food. Such limitations may be overcome if students 

respond to two or three different metaphors (Cai & Merlino, 2011). Another suggestion 

by Solomon and Grimley (2011) is to supplement metaphor information with that 

gained from other sources, like focus groups (such as the current study) or student 

interviews. 

SUMMARY AND CONCLUSIONS 

The analysis of metaphors revealed rich, mathematics-specific information about the 

class as a whole and about individual student’s motivation and engagement. The 

deductive analysis of the metaphors especially contributed to our understanding of 

student engagement by directing our attention to specific behavioural, cognitive and 

emotional aspects contained in each of the theoretical frameworks. Albeit a result of 

the selected topic for the metaphor, they were chiefly beneficial in providing insights 

into students’ varying emotional responses towards mathematics – an area of 

motivation and engagement research that has lagged behind other areas partly due to 

difficulties associated with conventional quantitative methods being able to viably 

assess it (Martin, 2007). The metaphors also revealed insights into students’ beliefs and 

conceptions about the nature of mathematics, and their cognitive and behavioural 

strategies for learning it and dealing with challenging problems. The analysis shows 

that metaphors can be used to detect very specific aspects of individual students’ 

motivation and engagement in mathematics, which make it a viable, low-tech tool 

suitable for use by classroom teachers. However, to truly realise the full power of 

metaphors as an assessment tool, teachers also need to have in-depth knowledge of 

motivation and engagement. Future research could investigate the skills and knowledge 

that teachers require to successfully implement and analyse metaphors within a 

classroom context.  
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MATHEMATICS TEACHER EDUCATORS’ PURPOSES FOR K-8 

CONTENT COURSES 

Cynthia E. Taylor     Aina Appova 

 Millersville University of Pennsylvania Ohio State University 

 

This report provides empirical findings from a study that examined the purposes of 

eight experienced mathematics teacher educators, who taught mathematics content 

courses for prospective K-8 teachers. The data revealed 15 common purposes, aligned 

to providing the opportunity to develop prospective teachers’ pedagogical content 

knowledge and subject matter knowledge. Two of the purposes aligned with the 

pedagogical content knowledge (knowledge of curriculum and instructional strategies) 

are elaborated in this paper. Implications from this study contribute to the literature 

on mathematics teacher educators’ purposes and provide insights into the teacher 

educators’ classroom practices from the K-8 content courses.  

INTRODUCTION 

Research suggests many prospective teachers do not receive adequate experiences 

from their teacher education programs in order to develop deep, conceptual knowledge 

of the mathematics they will teach (e.g., Greenberg and Walsh 2008). As a result, the 

Conference Board of Mathematical Sciences (CBMS) (2012) proposed that all 

institutions preparing elementary teachers offer and require at least nine credits of 

mathematics content courses designed specifically for this population and focused on 

mathematical relevance, depth, and breadth, concluding that “teaching elementary 

mathematics requires both a wide range of pedagogical skills and considerable 

mathematical knowledge’’ (p. 55). Research also suggests developing pedagogical 

content knowledge (PCK) and subject matter knowledge (SMK) is critical for 

prospective teacher education (An, Kulm, & Wu, 2004, Blömeke, Suhl, & Kaiser, 

2014). In support of these efforts, various mathematics teacher education curriculum 

materials have been developed to help address these issues, however, very little 

research exists on what content (and how) are being taught in these courses, what PCK 

and SMK aspects are being emphasised and addressed, and what goals and purposes 

do the mathematics teacher educators (henceforth referred to as teacher educators) have 

in mind when teaching these courses.  

Some research efforts have examined the development of mathematics teacher 

educators, their practice, self-studies, professional development, teacher educator 

collaborations, and more recently, the differences between the knowledge of K-12 

teachers and teacher educators (e.g., Even, 2008; Goodell, 2006; Superfine & Li, 2014, 

Taylor, 2013; Tzur, 2001). Although these efforts represent a useful start, additional 

research and development work are needed in order to accumulate an empirical and 

conceptual knowledge base for mathematics teacher education. Superfine and Li 

(2014) recommend researching teacher educators’ reflection on their practice and this 
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could provide “insights into the potential mathematical and pedagogical purposes of 

those interactions” (p. 313). Building off of this recommendation, we present a 

conceptual depiction of teacher educator purposes for teaching K-8 content courses for 

prospective teachers based on empirical data collected during a case study of what eight 

teacher educators said during an initial interview. More specifically, we sought to 

understand, document, and investigate the research question: What purposes do 

experienced teacher educators have for prospective teachers to develop knowledge 

about teaching mathematics in a K-8 content course for teachers? We define purposes 

as what teacher educators want prospective teachers to learn from K-8 content courses. 

More specifically, the teacher educators’ professional and personal intentions, that may 

or may not be included in the course syllabus and/or curriculum, for prospective 

teachers’ specific knowledge development and learning outcomes. 

THEORETICAL FRAMING FOR THE STUDY 

Ball and Bass (2000) suggest that teachers’ mathematical knowledge is important, and 

that ‘‘simply looking at the math problem or considering the content on which students 

are working does not lead to a sufficient appreciation of the specific mathematical 

knowledge or sensibility that it takes to teach that problem or that content’’ (p. 91). An, 

Kulm, and Wu (2004) also argue that prospective teachers’ knowledge of pedagogy is 

especially important in mathematics teacher preparation programs. We frame this work 

in the research perspectives focused on teachers’ knowledge development. In 

particular, this study is grounded in the perspective that aims at capturing teacher 

educators’ purposes that support the development of prospective teachers’ PCK and 

SMK. For the purpose of this paper, the focus of analysis is on teacher educators’ 

purposes specifically supporting prospective teachers’ development of PCK and SMK 

domains. 

Pedagogical content knowledge, originally coined by Shulman (1986), is defined as 

teachers’ knowledge about “the most useful ways of representing and formulating the 

subject that make it comprehensible to others” (p. 9). Grossman (1990) built on 

Shulman’s work and identified four central domains of PCK: knowledge of curriculum, 

knowledge of instructional strategies, knowledge of students’ understanding, and 

knowledge of assessment. Magnusson, Krajcik, and Borko (1999) further modified 

Grossman’s perspective by adding a fifth element of PCK: orientation towards 

teaching.  

In contrast, subject matter knowledge contains common content knowledge (i.e., math 

knowledge and skills used in professions other than teaching), knowledge at the 

mathematical horizon (i.e., awareness of mathematical connections between topics), 

and specialised content knowledge (Ball, Thames, & Phelps, 2008). The authors argue 

that specialised content knowledge is a critical domain of SMK, which entails the type 

of mathematical knowledge that is specifically unique to teaching and is “not typically 

needed for purposes other than teaching” nor used in professions other than teaching 

(p. 400). 
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Accordingly, this work is framed in the perspective that teacher educators have various 

purposes aimed to provide the opportunities for prospective teachers to develop 

necessary knowledge bases, specifically attending to PCK, as well as SMK. It is critical 

that the teaching practices utilised by teacher educators, during teacher preparation 

courses, provide the opportunity for prospective teachers to develop the necessary 

knowledge that will enable prospective teachers to become effective mathematics 

teachers and successful educators. 

METHODOLOGY 

This study is a case study (Stake, 2005), where the “case” is a group of eight 

experienced teacher educator volunteers (5 males; 3 females) from five different 

universities in the Eastern portion of the U.S. who regularly teach content courses for 

prospective K-8 teachers. We define experienced as: a) having at least a Master’s 

degree; b) having at least 20 years of K-12 teaching experience and teaching 

mathematics content to K-12 teachers; and c) being professionally active by 

attending/presenting at local, state, and national professional meetings. We treated the 

group of eight teacher educators as a single prototypical case, which allowed us to 

make claims about the nature of their purposes for teaching K-8 content courses as a 

whole. Data for the project were gathered through 1-hour semi-structured initial 

interviews, during which participants were asked about their educational background, 

their purposes for the K-8 content course they teach (i.e., intentions for small group 

and whole group instruction), whether (and how) explicit they were with prospective 

teachers about their purposes, and the approaches they used to engage prospective 

teachers to address the identified purposes. Interviews were audio-recorded, 

transcribed, and coded using constant comparison analysis (Corbin & Strauss, 2008).  

A total of 326 codes emerged from the data analysis. They were arranged under 15 

different purposes mirroring the knowledge domains of PCK and SMK. Instances of 

teacher educators’ purposes were identified through interview responses as reflection 

on various tasks the teacher educators used to engage prospective teachers with course 

content. Two researchers independently coded each interview. Researchers met 

throughout the coding process to compare, verify, and finalise the codes. Through 

several iterations of sorting the purpose codes, a coding dictionary was created from 

the data to define and illustrate each purpose. The researchers collaborated to refine 

descriptions of specific purposes the teacher educators articulated. 

RESULTS 

Across the U.S., most content courses for prospective teachers are treated as a regular 

college mathematics course, hosted and taught by mathematics faculty in the 

mathematics department (Greenberg & Walsh, 2008). As we analysed the data from 

the classrooms of experienced teacher educators, we noticed numerous K-8 

connections with regard to students’ learning, curriculum, and classroom connections. 

In fact, we identified 15 different purposes that experienced teacher educators utilised 

via these K-8 connections in effort to develop prospective teachers’ PCK and SMK. 
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For the purpose of this paper, we present the results from two (out of 15) purposes 

related to PCK: 1) knowledge of instructional strategies; and 2) knowledge of 

curriculum. 

Know about instructional tools used in K-8 teaching  

Teacher educators mentioned they desire for prospective teachers to know about 

instructional tools used in K-8 teaching—a purpose that addresses the PCK component 

of providing the opportunity for prospective teachers to develop their knowledge of 

instructional strategies. That is, they incorporate models, physical manipulatives, and 

representations in their content courses to articulate mathematical concepts studied and 

taught at the K-8 level. A common theme among the teacher educators was that in their 

content course, they wanted to provide the opportunity for prospective teachers to 

develop multiple approaches, representations, and tools for learning and teaching 

mathematics. They indicated they used instructional tools (i.e., physical models and/or 

manipulatives) to help prospective teachers make better conceptual connections of 

mathematical concepts and become familiar and comfortable with using the tools in 

their future classroom. All study participants perceived the use of manipulatives as an 

integral part of the mathematics content courses. For example, one teacher educator 

shared, “I want the [prospective teachers] to come away [from the course] 

understanding the power of physical models…that they feel comfortable in seeing how 

to use those physical models when they’re working with kids” [Ian]. Similarly, another 

teacher educator commented,  

I think [prospective teachers] get the message that the answer isn’t always good enough. 

They realise they’re going to be teaching children. They’re going to have to be explaining 

things. They’re going to need a deeper understanding. They kind of get that, and so they 

seem to get the message by the end [of the course] that the process of being able to explain 

“what and why” is what’s important… and that manipulatives can provide a visual for 

helping them explain the “what and why” to their students. [Trina] 

Every teacher educator in our study mentioned his/her personal and professional 

intentions and purposes for their students to be well equipped mathematically and 

pedagogically for K-8 teaching, in which (the teacher educators believed) that K-8 

models and manipulatives play a critical role. Furthermore, they indicated that they 

primarily used K-8 instructional tools to extend prospective teachers’ mathematical 

thinking to go beyond “the answer,” to model and make better sense of mathematical 

concepts, and to be able to construct more accurate and thorough mathematical 

explanations and justifications of their work.  

Expose to policy documents on curriculum, content, and teaching 

Teacher educators indicated that they want to expose prospective teachers to K-8 

standards and policy documents on curriculum, content, and teaching—this purpose 

aligns to the PCK component of providing the opportunity to develop prospective 

teachers’ knowledge of K-8 school curriculum. Two different types of K-8 curriculum 

connections were articulated by the teacher educators. One, teacher educators 
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discussed the scope and sequence (i.e., specific grade bands) of where prospective 

teachers might encounter the mathematical topics they were learning during the content 

course in K-8 school curriculum. For example, one teacher educator talked about 

division of fractions and the grade levels at which this topic is typically introduced to 

children. He verbalised, 

We mainly talk about how the content we’re covering relates to what the students they are 

going to have in class have to do. For example, we talk about how modelling the division 

of fractions is actually something that appears in 5th grade, so [school children] are going 

to be asked to do these things that we are doing in class. [Oliver] 

The second K-8 connection the teacher educators articulated was that they specifically 

addressed mathematics teaching practices described in K-8 standards documents. They 

wanted prospective teachers to know key processes and proficiencies for the type of 

mathematical thinking and reasoning K-8 students should engage in, which teacher 

educators modelled for them during content courses. The teacher educators mentioned 

several documents that helped them to make these connections: Standards for 

mathematics practices (CCSS, 2010); Principles and standards for school 

mathematics (NCTM, 1989); and Adding it up: Helping children learn mathematics 

(NRC, 2001). Teacher educators shared that they either directly referenced these 

documents or selected a few focal points from the documents to discuss with 

prospective teachers. For example, one teacher educator stated,  

I [want] my students to be familiar with the NCTM Process Standards and now the 

Standards for Mathematical Practice of the Common Core…I love the new buzzword of 

“sense making.” I am somewhat explicit with them about that. [I say to them that] math 

makes sense, math had better make sense, and it had better make sense to you if you’re 

going to teach it to kids. [Ethan] 

Teacher educators also indicated that these documents play a dual purpose in their 

content courses: a) they help to unveil and put forth a few “practical” suggestions to 

the prospective teachers about teaching and learning K-8 mathematics, and b) they help 

teacher educators to model the methods and practices (described in these documents) 

directly with prospective teachers. Teacher educators shared that they structure the 

learning opportunities in their content courses to specifically address these standards 

through course activities so that their prospective teachers are able to experience the 

mathematical learning echoed in these documents firsthand.  

In the study, a total of 15 different purposes (i.e., teacher educators’ personal and 

professional intentions) were identified from interviews, which indicated classroom 

opportunities for prospective teachers to develop PCK or SMK during mathematics 

content courses (see Table 1).  
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Teacher Educator’s Purposes for 

Developing PCK for Prospective 

Teachers is to: 

Teacher Educator’s Purposes for 

Developing SMK for Prospective 

Teachers is to: 

Know about instructional tools used in 

K-8 teaching 

Understand mathematical concepts at a 

deeper level and articulate the why 

behind the concepts and formulas 

Expose them to policy documents on 

curriculum, content, and teaching 

Develop multiple ways and/or 

approaches to solve mathematical tasks 

Know about K-8 

experiences/experiences K-8 students 

have 

Have concrete experiences (e.g., 

manipulatives) to develop conceptual 

understanding of mathematical concepts  

Experience mathematical success and 

confidence 

See mathematics conceptually 

Change their attitude to a positive one 

towards the subject of mathematics 

Experience mathematical learning in 

different ways 

Change their attitude towards teaching 

math 

Know K-8 mathematical concepts they 

will teach  

Have fun with math and see that math 

can be fun 

Develop and improve their 

mathematical explanations and language 

Engage in collaboration  

Table 1: Summary of teacher educators’ mathematical and pedagogical purposes for 

teaching K-8 content courses 

CONCLUDING REMARKS 

Results indicate that teacher educators not only focus their content courses on 

developing the mathematical knowledge of prospective teachers, but on providing the 

opportunity for prospective teachers to develop four components of PCK: knowledge 

of curriculum, knowledge of instructional strategies, knowledge of students’ 

understanding, and orientation towards teaching. The experienced teacher educators 

used the processes of reconceptualising, revisiting, revising, and re-learning 

mathematics in the course while making connections to K-8 students’ learning, 

teaching, and curriculum as channels to develop prospective teachers’ PCK. We did 

not find any data indicating that teacher educators provided the opportunity to develop 

prospective teachers’ knowledge of assessment—a fifth component of PCK.  

The highlighted purposes are representative of eight experienced teacher educators’ 

reasons for engaging prospective teachers in various mathematical learning 

experiences throughout K-8 content courses. These 15 purposes may help teacher 

educators of all experience levels to design, plan, and teach courses for prospective 

teachers. The list of purposes may not be exhaustive and may vary across different 
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settings based on the experiences of teacher educators; however, these empirical data 

provide a foundation on which other teacher educators may build their practice.  

With this study, we join others (e.g., Superfine & Li, 2014; Taylor, 2013) in providing 

new insights into the knowledge and purposes that teacher educators draw on to enrich 

the learning experiences of prospective teachers. Ultimately, this study serves as a 

window for engaging teacher educators in professional conversations about specific 

purposes embedded in the teaching of content courses to explore further questions: (a) 

What PCK connections are critical to make in the content courses? (b) What SMK 

connections are essential to address in content courses for prospective teachers? and 

(c) How do we help university faculty (especially the non-educators) in making these 

PCK and SMK connections in the content courses?  
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WHICH CONTINUATION IS APPROPRIATE? KINDERGARTEN 

CHILDREN'S KNOWLEDGE OF REPEATING PATTERNS 

Pessia Tsamir, Dina Tirosh, Ruthi Barkai, Esther Levenson, Michal Tabach 

Tel Aviv University 

 

This study explores kindergarten children’s ability to identify possible continuations 

of repeating patterns. Children were presented with two ABB patterns, one which 

ended with a complete unit of repeat and one which ended with a partial unit. Children 

were then shown, for each pattern, four possible continuations of the pattern, two 

appropriate continuations and two inappropriate continuations. Results indicated that 

more children were able to continue the pattern which ended with a complete unit than 

the pattern ending with a partial unit. The role of the unit of repeat in children’s 

performances is discussed.  

INTRODUCTION AND BACKGROUND 

Mathematics has been described as the “science of patterns with theory built on 

relations among patterns and on applications derived from the fit between pattern and 

observation” (Steen, 1988, p. 611). The importance of engaging young children with 

pattern activities is supported by mathematicians, mathematics education researchers, 

and curriculum developers (Sarama & Clements, 2009). To begin with, pattern 

exploration and recognition may support children as they learn a variety of 

mathematical skills developed at this age. For example, recognising repeating patterns 

may help children develop skip counting, such as 5, 10, 15, 20, 25, 30 ... where the 

ones digit forms the pattern 5, 0, 5, 0, … Recognition and analysis of patterns are 

important components of young children’s’ intellectual development as they provide a 

foundation for the development of algebraic thinking and provide children with the 

opportunity to observe and verbalise generalisations as well as to record them 

symbolically (Threlfall, 1999). While there are several types of patterns, this study 

focuses on repeating patterns and preschool children’s ability to identify possible 

appropriate continuations of a repeating pattern. 

Repeating patterns are patterns with a cyclical repetition of an identifiable 'unit of 

repeat'. For example, a pattern of the form ABBABBABB… has a (minimal) unit of 

repeat of length three. Lüken, Peter-Koop, & Kollhoff (2014) found that preschool 

children’s repeating pattern abilities have an influence on their mathematical 

competencies at the end of first grade. Warren and Cooper (2007) suggested that 

repeating patterns may be used as a stepping stone for learning the concept of ratio. 

Describing how two patterns, such as "red, red, blue, red, red, blue" and "step, step, 

clap, step, step, clap" are the same and how they are different, could help children focus 

on underlying structures and introduce children to the powers of algebra (Rivera, 

2013). The cyclical nature of repeating patterns also sets the stage for investigating 
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oscillating patterns in other mathematical contexts, such as repeating decimals and 

rational numbers, and trigonometric models (Rivera, 2013).  

Seo and Ginsburg (2004) found that during natural play, such as block activities, young 

children engage in pattern activities such as building block towers with an ABAB 

pattern. However, while most children by the end of kindergarten will be able to copy 

a repeating colour pattern, few will be able to extend or explain it (Clarke & Clarke, 

2004). If they can copy a pattern, does it mean that they recognise the structure of the 

pattern? Papic, Mulligan, & Mitchelmore (2011) found that some preschool children 

may be able to draw an ABABAB pattern from memory by recalling the pattern as 

single alternating colours of red, blue, red, blue, basically recalling that after red came 

blue and after blue came red. However, when shown a more complicated pattern such 

as ABBC, they could not replicate the pattern. Rittle-Johnson, Fyfe, McLean, & 

McEldoon (2013) found that when young children were asked to duplicate or extend 

an ABB pattern, some children could not produce more than one unit of repeat correctly 

while others reverted to producing an ABAB pattern. 

In the above mentioned studies, children were only presented with repeating linear 

patterns which ended in a complete unit. However, repeating patterns, such as repeating 

decimals, do not always present themselves by ending in a complete unit. When 

dividing one by seven on a calculator, students might receive a solution of 

0.142857142857142. Students need to recognise the pattern and surmise that after the 

two comes an eight, etc. Another occasion of repeating patterns which do not always 

end with a complete unit may be seen in modulo n problems. For example, if the first 

car in a row is yellow, the second, blue, and the third red, and this repeats consistently, 

then what colour is the 26th car? Zazkis and Liljedahl (2006) suggested that experience 

with repeating patterns and recognising the unit of repeat will assist children in solving 

such problems. In the above problem, the length of the unit of repeat is three, there are 

eight complete units and two extra cars in a row of 26 cars and thus, the 26th car is the 

second element in the unit of repeat, which is blue.   

This study explores kindergarten children’s ability to identify appropriate 

continuations for repeating patterns that do not end in a complete unit. Our first 

question is: Is there a difference between children’s ability to extend a pattern which 

ends with a complete unit of repeat and their ability to extend a pattern which ends with 

a partial unit? Previous studies requested children to extend a given repeating pattern 

by adding one element at a time. However, requesting children to extend a pattern, one 

element at a time, may reinforce a recursive approach, which in turn may hinder 

children’s successful generalisation (Orton & Orton, 1999). This study investigates 

whether children are able to look ahead and consider three or four elements at a time. 

Our second question is: Given different possibilities of extending a pattern by adding 

three or four elements at a time, are children able to choose an appropriate extension? 

Related to the second question we ask a third question: When extending a pattern, do 

children tend to extend the pattern so that it ends with a complete unit or do they accept 

that the pattern may end with a partial unit?  
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METHODOLOGY 

According to the mandatory Israel National Preschool Mathematics Curriculum 

(INPMC, 2008) by the end of kindergarten, children should be able to identify create, 

extend, describe patterns. That being said, at the time of the study, the curriculum was 

still fairly new and preschool teachers were only just becoming familiar with the 

standards. Informal interviews with some preschool teachers revealed that most of the 

patterning activities taking place in the kindergartens consisted of children drawing 

borders or frames for pictures, albeit borders which were made up of repeating patterns. 

Few activities aimed to develop children’s appreciation for pattern structure or for the 

unit of repeat in a repeating pattern.  

Participants in this study were 156 kindergarten children between the ages of 5-6 years. 

All of the kindergartens were located in middle to low socioeconomic neighbourhoods 

in urban locations. A researcher sat with each child individually in a quiet corner of the 

kindergarten and recorded all verbal utterances and gestures.  

The tools of this study were two pictorial linear repeating patterns, each presented on 

a strip of paper, each with the same unit of repeat – ABB. This unit was chosen so as 

not to be too simple, and so that children would not merely attach themselves to 

alternating pictures, as was found in Papic, et al.’s study (2011). Pattern One (see 

Figure 1) included three instances of the repeating unit (ABBABBABB), ending with 

a complete unit. Pattern Two (see Figure 2) included three instances of the repeating 

unit and in addition the first two elements of the unit of repeat (ABBABBABBAB). In 

other words, Pattern Two ended with a partial unit. 

The activity began by placing Pattern One on the table and then placing the four 

continuations also on the table and asking the child: Are there any continuations which 

are appropriate to place here? The researcher demonstrated the meaning of her question 

by placing each continuation, one at a time, at the end of the pattern on the blank space, 

and saying each time: Is this appropriate? Is this appropriate? Is this appropriate? Is 

this appropriate? She then placed the four continuations to the side of the pattern and 

let the child choose. After the child chose a continuation, the researcher took it off the 

table and asked if there was another appropriate continuation. This was repeated until 

the child replied that no more continuations were appropriate. The same procedure was 

followed for Pattern Two. 

 

 

 

                          1a: appropriate           1b: inappropriate        1c: appropriate    1d: inappropriate 

Fig. 1: Pattern One and four continuations shown to the children 

Regarding the continuations for Pattern One, both 1a and 1c are appropriate ways of 

continuing the pattern. Both continuations begin in the same way as the pattern begins, 
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which might encourage children to choose these continuations. However, continuation 

1c is basically the unit of repeat and so choosing 1c will end the pattern in a complete 

unit. On the other hand, choosing continuation 1a will end the pattern in a partial unit. 

Regarding inappropriate continuations, both 1b and 1d are inappropriate. Continuation 

1b is a reflection of the unit of repeat, while continuation 1d may be considered as the 

beginning of the reflection of the presented pattern. Guez-Sandler (2010) found that 

when asked to extend patterns, some children reflect the given pattern instead. 

Regarding the continuations for Pattern Two, both 2b and 2d are appropriate ways of 

continuing the pattern. Choosing continuation 2d will continue the pattern so that it 

ends in a complete unit while choosing continuation 2b will continue the pattern but 

will end it with a partial unit. Continuations 2a and 2c are both inappropriate choices. 

Continuation 2c is exactly the unit of repeat while continuation 2a is the reflection of 

the unit of repeat. We were interested in exploring if children would choose 

continuation 2c, perhaps recognizing it as the unit of repeat, perhaps looking for a 

continuation which begins in the same manner as the pattern, but disregarding that it 

was inappropriate for the continuation of a pattern which ended with a partial unit. 

 

 

 

                    2a: inappropriate     2b: appropriate      2c: inappropriate        2d: appropriate 

Fig. 2: Pattern Two and four continuations shown to the children 

RESULTS 

Of the 156 children who participated in this study, 20 children, for each of the patterns 

presented, chose all four continuations as appropriate for the pattern. These children 

were excluded from the final analysis because it was thought that they might have 

merely chosen each continuation until all the possibilities ran out. One of those children 

actually took each possible continuation in hand and placed it under the presented 

pattern in such a way so that it always matched up to some part of the presented pattern. 

He did not seem to understand, despite the demonstration by the researcher, that the 

continuation was supposed to be placed in the blank space at the end of the strip. The 

following sections describe the results for the rest of the participants, first for each 

pattern separately, including some statements made by children as they worked on the 

activity, and then for the two patterns together.  

Pattern One 

From Table 1 we see that nearly two-thirds or more of the children succeeded in 

recognising which continuations were appropriate and which continuations were not 

appropriate. We also note that there was no difference between children’s ability to 

correctly choose appropriate continuations and their ability to correctly not choose 

inappropriate continuations. Thus, the task of choosing appropriate continuations was 

neither simpler nor more difficult than not choosing inappropriate continuations. 
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Continuation 1a 

appropriate 

1b 

inappropriate 

1c 

appropriate 

1d 

inappropriate 

Frequency (%) of 

correct responses 

65 65 79 76 

Table 1: Frequency of correct responses to Pattern One (N=136) 

A paired-samples t-test was used to investigate any difference between the children's 

reactions to the two appropriate continuations and if there was a difference between 

the children's reactions to the two inappropriate continuations. Results indicated that 

significantly more children correctly chose continuation 1c, the unit of repeat which 

would end the pattern in a complete unit (M=.79, SD=.41) than those who chose 

correctly continuation 1a, which would end the pattern with a partial unit (M=.65, 

SD=.48), t(135)=2.78, p<.01). A significant difference was also found between 

correctly not choosing continuation 1d (M=.76, SD=.43) and correctly not choosing 

continuation 1b (M=.65, SD=.48), t(135)=2.59, p=.01), i.e., more children incorrectly 

chose the reflection of the unit of repeat than the reflection of the presented pattern. 

Pattern Two 

Results for each of the continuations in Pattern Two are summed up in Table 2. 

Approximately 60% of the children responded correctly to each continuation. As with 

Pattern One, the task of choosing appropriate continuations was neither simpler nor 

more difficult than the task of not choosing inappropriate continuations. 

Continuation 2a 

inappropriate 

2b 

appropriate 

2c 

inappropriate 

2d 

appropriate 

Frequency (%) of 

correct responses 

69 59 57 61 

Table 2: Frequency of correct responses to Pattern Two (N=136) 

Paired-samples t-tests were carried out to compare children's choices of continuations. 

Results indicated that no significant difference was found between choosing the 

appropriate continuations of 2b and 2d. However, significantly more children correctly 

did not choose continuation 2a (M=.69, SD=.46) than continuation 2c (the unit of 

repeat) (M=.57, SD=.50), t(135)=2.17, p<.05). 

Children’s gestures and utterances during the activity 

When deciding whether or not to choose some continuation, some children merely 

seemed to guess, while others had some strategy. One strategy was to physically move 

each continuation to the end, trying it out before deciding whether or not it was 

appropriate. Another strategy aligned each continuation with the pattern’s beginning 

to see if it matched. One child chose continuations based on the last element of the 
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pattern. Since both patterns ended with a tree, he claimed that all of the continuations which 

began with a tree were appropriate, disregarding the aspect of the pattern.  

Some children’s verbal utterances hinted at their recognition of a unit of repeat while 

others merely reflected what they were looking at. For example, C8 would place a 

continuation at the end of the pattern and then read out loud each element of the pattern 

from the beginning. On the other hand, when C88 correctly chose 1a for Pattern One, 

he said, “Because it has two trees and here is a house (pointing to the house.) Similarly, 

C28 correctly did not choose 2a for Pattern Two and said, “Because there are two trees 

here.” Both of these children hinted at the unit of repeat by noting two trees and a house 

and did not merely say “tree, tree, house.” Likewise, C5 correctly did not choose 

continuation 1b for Pattern One and said, “Here, there are four trees.” She noticed that 

if 1b would be placed as the continuation, the pattern would not continue because 

instead of there being two trees, there would now be four trees. A few children 

specifically alluded to the completion or the incompletion of a unit. For Pattern One, 

C106 correctly chose 1a and said, “… and you need to continue (with) tree, tree.” In 

other words, while she did choose this appropriate continuation, it seemed to bother 

her that the unit was not complete and so she stated that it should be continued more 

by adding another two trees. Likewise, for Pattern Two, C108 did correctly choose 

continuation 2b but added, “If there wasn’t a tree here at the end, it would be best.” On 

the other hand, C102 incorrectly did not choose continuation 2b and said, “It is not 

appropriate because you are left with an extra tree at the end.” It seems to bother him 

that the pattern will not end in a complete unit. When he correctly chose 2d, he said, 

“This is appropriate. It is house, tree, tree.” 

Comparing the two patterns 

The difference between the results of the two patterns may be seen in Table 3, which 

presents the frequencies of those who chose all appropriate continuations as well as 

correctly did not choose inappropriate continuations. As can be seen from Table 3, few 

children responded correctly to all of the possible continuations for both of the patterns. 

For each child, we configured a grade based on the number of correct choices made (0, 

1, 2, 3, or 4) and a mean score was configured for the group per pattern. Results of a 

paired-samples t-test found that children scored significantly higher (M= 2.96, 

SD=1.20) on Pattern One than they did for Pattern Two (M=2.46, 1.17), t(135)=2.82, 

p<.01). In other words, children had greater success extending the pattern which ended 

with a complete unit, than for the pattern which ended in a partial unit. 

 Pattern 

One 

Pattern 

Two 

Patterns One 

and Two 

Frequency (%) of perfect scores 41 22 15 

Table 3: Frequency (%) of perfect scores per pattern (N=136) 
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SUMMARY AND DISCUSSION 

This study focused on children’s ability to identify appropriate extensions for two ABB 

patterns, one that ended with a complete unit and one that did not. Results indicated 

that more children made correct choices regarding all of the possible continuations for 

Pattern One than for Pattern Two and the average score was greater for Pattern One 

than for Pattern Two. In other words, in answer to our first research question, being 

presented a pattern which ends with a complete unit, as opposed to ending with a partial 

unit, impacts on children’s choices of appropriate continuations.  

In regards to the second research question, children’s success at choosing appropriate 

continuations of more than one element was dependent on the type of continuation. 

Regarding appropriate continuations, for Pattern One, more children accepted the 

continuation which ended the pattern with a complete unit than the continuation which 

ended the pattern with a partial unit. This seems to support the first finding in that it 

shows children’s preference for patterns that end with a complete unit. However, we 

also note, that this way of extending the pattern, basically consisted of choosing the 

unit of repeat. It is possible that some children chose this continuation because they 

recognised it as the unit of repeat, which is commendable, but does not always allow 

for correctly extending the pattern. In fact, choosing the unit of repeat as a continuation 

for the second pattern was incorrect. Regarding the second pattern, no difference was 

found between children’s choices of appropriate continuations. When the pattern was 

not presented ending with a complete unit, children did not necessarily choose the 

continuation that would end it with a complete unit, despite children’s statements 

which show a preference for ending a pattern with a complete unit. Thus, in answer to 

the third question, perhaps if children are presented with a pattern which ends with a 

partial unit, they more readily accept extending it so that it will still end with a partial unit. 

Regarding inappropriate continuations, on the first pattern, many children incorrectly 

chose the reflection of the unit of repeat. On the second pattern, many children 

incorrectly chose the unit of repeat. These results hint at the centricity of the unit of 

repeat. It could be that children recognised the unit of repeat, in its presented form or 

in its reflected form, and automatically chose it, without discerning if it was an 

appropriate way to extend the pattern in the specific case. While we acknowledge, as 

do other researchers (e.g., Zazkis & Liljedahl, 2006), the significance of the unit of 

repeat in supporting children’s knowledge of structure, these results suggest that this 

recognition might not be enough. In addition to the unit of repeat, children need to 

recognise the sequencing aspect of the pattern and how to continue a pattern from any 

point. Educators agree that patterning is an essential activity for young children, one 

that can help children seek out structure and generalisations. Part of recognising the 

structure may be recognising not only the basic elements of the unit of repeat, but also 

where in the unit of repeat a pattern left off and how to continue the pattern, not only 

one element at a time as in recursive reasoning (Orton & Orton, 1999) but several 

elements at time. This study adds to existing knowledge by showing how the 

dominance of the unit of repeat, in conjunction with a tendency to end patterns with a 
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complete unit, may actually hinder children’s ability to see the sequencing and general 

structure of a pattern. Activities such as those presented here may help promote 

children’s recognition of the unit of repeat, the overall structure of the pattern, as well 

as an appreciation for recognising location within the structure. 
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THIRD-ORDER VIABILITY IN RADICAL CONSTRUCTIVISM 

Yusuke Uegatani1           Masataka Koyama1 

1Graduate School of Education, Hiroshima University 

In this paper, we will address the methodological problem of extending second-order 

models in radical constructivism. As a solution, we propose to convert second-order 

models to third-order viable first-order models. This conversion consists of identifying 

what information the students could not precisely access, in the case that their 

behaviors were the most rational in the situation. Because of this conversion, any 

converted model is expected to be viable, not only for the observer (first-order viable) 

and for the observed subject (second-order viable), but also for other persons (third-

order viable). We will discuss the educational implications. 

INTRODUCTION 

Radical constructivism (RC) is a philosophy of knowing which assumes: 

[1-a] Knowledge is not passively received, either through the senses, or by way of 

communication; [1-b] knowledge is actively built up by the cognizing subject. [2-a] The 

function of cognition is adaptive, in the biological sense of the term, tending towards fit or 

viability; [2-b] cognition serves the subject’s organization of the experiential world, not 

the discovery of an objective ontological reality. (von Glasersfeld, 1995a, p. 51; 

Numbering added for citation) 

One of the recent contributions of RC to mathematics education is the study of how 

second-order models are developed, and what potential impact RC may have on 

practice (Ulrich, Tillema, Hackenberg, & Norton, 2014). A second-order model is a 

model of a particular student’s thinking processes, used to explain the observer’s 

experience (Steffe & Thompson, 2000, p. 205). The reflective use of second-order 

models can provide strong guidance for teachers and researchers (Thompson, 2000, 

pp. 303–304). However, according to Sánchez Gómez’s (2014) comment on Ulrich et 

al. (2014), the validity of the extension of second-order models for a particular student 

to new students is not methodologically warranted. 

Although Tillema, Hackenberg, Ulrich, and Norton (2014) claimed that Sánchez 

Gómez’s interpretation was “different from [Tillema et al.’s] understanding of the 

purpose of creating second-order models and the nature of these models” (p. 355), this 

does not seem to be a valid counterargument against Sánchez Gómez (2014) from the 

RC perspective itself. Following the RC principle [2-a] cited above, any interpretation 

should be viable for the interpreter. RC should not be able to claim that Sánchez Gómez 

misinterprets. In this paper, we will address the methodological problem of extending 

second-order models in RC (the extension problem). For this, we will start with a 

review of the nature of knowing in RC. 

NATURE OF KNOWING IN RC 

The concept of viability is the most important concept in this paper. For students, the 
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condition that pieces of knowledge reflect the absolute truth is neither necessary nor 

sufficient for their use. Rather, students seem to use them if they are viable; that is, “if 

they fit the purposive or descriptive contexts in which [the students] use them” (von 

Glasersfeld, 1995a, p. 14). RC is “uninhibitedly instrumentalist” (p. 22). The term 

viable is not a synonym for the terms true or valid. The observation that a particular 

piece of knowledge is viable for the subject does not mean that the person has a 

particular justified belief. Rather, it means that in a particular situation, the subject has 

the disposition to make a decision to use a particular cognitive tool. 

This instrumentalist view of knowledge becomes more clear with the concept of 

knowledge-how in the sense of Ryle (1949). For example, the reason that one can speak 

logically is not that one can recall the rules of inference and apply them, it is because 

one implicitly knows how to speak in such a way. Such implicit knowledge is described 

as knowledge-how, while a propositional knowledge is described as knowledge-that. 

With this terminology, we can say that RC does not acknowledge any piece of 

knowledge-that because we cannot have access to the absolute truth. Rather, RC only 

acknowledges knowledge-how, and regards any type of knowledge (e.g., ideas, 

strategies, cognitive structures, or models) as knowledge-how. 

It is noteworthy that even cognition like “seeing ... as ...” or “recognizing ... as ...” is 

treated as knowledge-how. For example, suppose that a subject uses a stone to drive a 

nail into a wall because s/he cannot immediately access a hammer (cf. von Glasersfeld, 

1995b, p. 374). Let S be the subject. Seeing a stone as a hammer is S’s knowledge-how. 

The reason that S saw the stone as a hammer is not that S volitionally decided to see a 

stone as a hammer, and so actually saw the stone as a hammer. It is because S implicitly 

knew how to see the stone as a hammer, for example, how to decide which parts of the 

stone would correspond to the face, or the grip of a hammer. If S knew only how to see 

a small and hard substance as a stone, the stone would be only a stone for S. 

S cannot arbitrarily construct any knowledge-how which S wants, because the 

environment constrains the viability of S’s knowledge-how (von Glasersfeld, 1990, p. 

24). However, note that S can arbitrarily construct any knowledge-how as long as the 

constraints are not violated. Whatever S learns from the fact, is what S selectively and 

hypothetically constructs. In the above example, the expectation that the stone can be 

used as a hammer is an ill-grounded hypothetical construct. Generally speaking, S 

actively uses, not only justified knowledge, but also hypothetical knowledge when 

trying to achieve a particular goal. In this paper, we will call this characteristic of 

knowledge use as the hypothetical nature. 

In summary, any knowledge-how construction and use are valid for S. In this sense, 

even a young, uneducated child is regarded as a mini scientist (or a mini 

mathematician). This view has shed light on the nature of children’s construction of 

knowledge. However, it diminishes the distinction between naïve, and sophisticated, 

knowledge construction. Especially within the context of second-order models, any 

methodological critique of the use of second-order models becomes invalid, because 
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any temporal knowledge construction is scientifically valid. In the next section, we will 

address this problem. 

REAL PROBLEMS IN EXTENDING SECOND-ORDER MODELS 

The purpose of building a second-order model is “to organize his or her experience in 

a way that helps him or her effectively interact with multiple students at different stages 

of reasoning, often at the same time” (Tillema et al., 2014, p. 356). That is, building 

and using second-order models is the observer’s knowledge-how. 

Let us take an example of extending second-order models from Ulrich et al. (2014). 

They used the models of two composite units (two units of units) and only single 

composite unit (one unit of units) to explain responses from a sixth grade student 

(Charice). Two problems were given to her for promoting a meaning of powers. 

The Two-Suit Card Problem: You have the Ace through King of hearts (13 cards). Your 

friend has the ace through King of spades (13 cards). You and your friend make two-card 

hands by drawing a card from your hand, then drawing a card from your friend’s hand, and 

putting them together. Use an array to show how many different two-card hands you could 

make. 

The Password Problem: students are creating two-character passwords for their computer 

account at school (e.g., “FD” is an example password). They can choose from the 

characters A through N to create the password. How many two-character passwords are 

possible (Assume “FD” and “DF” count as different passwords)? (p. 333) 

The teacher/researcher expected Charice to solve each problem with two composite 

units. The two sets of 13 hearts and 13 spades are regarded as two units of units, 

because we must choose one from each of them in the Two-Suit Card Problem. The 

two sets of 14 characters are regarded as two units of units because we must choose 

one from each of them in the Password Problem. For the first problem, the teacher gave 

Charice all of the hearts in a deck of cards, and for the second problem, the teacher 

presented Charice with 14 cards on which one of the letters A through N was printed. 

Although Charice easily solved the first problem, she could not solve the second 

problem, and expressed that there is no number that is multiplied by 14. Because she 

seems to make passwords by choosing from a single set of 14 characters, her thinking 

is constrained by the model of only single composite unit (pp. 333–334). 

This extension of the second-order model is valid due to the hypothetical nature of 

knowledge use. It is, in fact, hypothetical, but reasonable and promising. Although 

Tillema et al. (2014) claimed that Sánchez Gómez’s (2014) interpretation was different 

from theirs, we can now properly understand both Sánchez Gómez’s and Tillema et 

al.’s interpretations. The former viewed the hypothetical nature of the extension as a 

methodological problem, while the latter accepted the risk of the potentially invalid 

extension for possible future benefit. 

“A drowning man will clutch at a straw.” That is, when a person must make a decision 

without enough justified knowledge, s/he tends to use any knowledge, even ill-

grounded knowledge, in order to make the decision. Using ill-grounded knowledge and 



Uegatani & Koyama 

4-260 PME39 — 2015 

risking biased decisions is not always irrational, because making no decision and taking 

no action may make the situation worse than making the wrong decision. In the case 

of extending the second-order model, as cited above, the purpose is to promote 

effective interactions with students. No matter how likely the extension of a model is 

to be invalid, it is more rational for teachers to extend it, and to interact with their 

students, than to make no decision and take no action. 

Even if so, we cannot say that any methodological critique of extending second-order 

models is meaningless. Any extension of second-order models is idiosyncratically 

rational and valid for the extender himself or herself, while it is not always viable for 

others. Thus, as a methodological critique, we can ask the following question: How 

likely is the second-order model to be second-order viable? In RC, first-order viability 

is the viability of a piece of knowledge for the knowledge holder, while second-order 

viability is the viability of the piece of knowledge “not only in [the knowledge holder’s] 

own sphere of actions but also in that of the other” (von Glasersfeld, 1995a, p. 120). 

Simply speaking, we can say that Ulrich et al.’s (2014) extension was not viable for 

Sánchez Gómez. This does not necessarily mean that he misunderstood Ulrich et al.’s 

intention to promote effective interactions with students. Rather, it means that he did 

not think that he would extend and use the second-order model in the same way if he 

were the teacher of Charice. For example, Ulrich et al. (2014) wrote that the 

teacher/researcher 

… asked [Charice] to elaborate on her observation, which opened the way for her to 

continue thinking about a solution to the problem. As she moved forward in her solution, 

she determined that she could pair A with each of the 13 other letters, then concluded that 

A could also be paired with itself so that A could be paired with 14 letters, and eventually 

that each of the 14 letters could be paired with 14 other letters. (p. 335) 

The above quotation expresses only what decision the teacher actually made. It does 

not include the information on why she determined to teach in such a way. It is implicit 

from the reader’s point of view how the extended second-order model works when the 

teacher made the decision. The proverb “a drowning man will clutch at a straw” is 

second-order viable because we share the implicit assumption that there is nothing but 

the straw around the man. We naturally think that we would clutch at a straw if we 

were drowning. On the other hand, the second-order model of only one composite unit 

does not necessarily have high second-order viability because we cannot assume that 

there are no different second-order models. Thus, in the next section, we will discuss 

how we can make the model to be second-order viable. 

FROM SECOND-ORDER VIABILITY TO THIRD-ORDER VIABILITY 

A possible reason that the second-order model of only one composite unit does not 

have high second-order viability is that it does not explain why some students think in 

such a way. Any second-order model is problematic for the same reason. 

This problem is similar to Confrey’s (1991) critique of using the label misconception: 

Labeling a student’s model as a misconception fails to take in consideration the perspective 
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of the student, for whom the belief may explain all instances under consideration, and fail 

only in cases to which s/he is not privy. [...] Finally, others have chosen more simply 

conception, which omits any indication that the perspective may deviate considerably from 

the expert’s position. (p. 121) 

Although the term second-order model does not have a modifier like mis, labeling a 

student’s thinking as a second-order model is often equal to misconception. The 

second-order model has provided the distinction between correct and incorrect thinking. 

It has not provided the explanation of idiosyncratic rationality for students. Unless we 

identify the students’ idiosyncratic reason that they think with only single composite 

unit, we still implicitly keep the label mis. 

For RC, it is important to explain idiosyncratic rationality. Based on the RC principle 

[2-b], all decisions are idiosyncratically rational. The fact that a person made a 

particular decision means that there was at least a moment when s/he thought that it 

was the most rational decision, even if it is later understood to be irrational, based on 

new information. Since human beings have only a limited capacity to deal with 

incoming information, we cannot deal with too much information at one time. We 

become, however, able to deal with a great deal of data at once if we acquire the ability 

to abstract and mathematise information. Thus, in mathematics education, we should 

assume that novices might not know what information is important to them, while 

focusing on that which is trivial; but the novices will always behave in the most rational 

way from their own point of view. Lacking the knowledge of what information is 

important is not necessarily careless; it is a result of overconcentration on other pieces 

of information. This characteristic of novices is referred to as local rationality. In 

contrast, experts’ rationality, developed by dealing regularly with relatively large 

amounts of information, is referred to as global rationality. 

Although the use of second-order models fails to explain the local rationality of 

students, there is one possible solution to this problem. It is to convert the already 

existing second-order models to the observer’s first-order models. This would be 

achieved by identifying the information the students were not able to access, provided 

their behavior was otherwise rational, given the information they did have. 

For example, in case of Charice, the teacher (i) presented the Password Problem to 

Charice, (ii) demonstrated a way of creating two-letter passwords with a set of 14 cards, 

and (iii) asked Charice if she could make a chart to solve for the total number of 

passwords. Then, (iv) Charice wrote down the list of 14 characters, and stopped solving 

(p. 333). In this case, Charice’s response would be considered rational, even from our 

perspective, if step (i) did not exist. The teacher’s question at step (iii) seems to shift 

Charice’s interest from the Password Problem to the question itself. At this moment, 

she lost the need to solve the Password Problem, and suddenly needed to make a chart. 

According to the assumption of local rationality, Charice probably over concentrated 

on creating a chart. This situation is one in which the information presented at steps (i) 

and (ii) became inaccessible. 
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Suppose that we were she, and that we could not access the precise information 

presented at steps (i) and (ii). Then, for making a chart, we would have to recall how 

we had made similar charts. Although we had made them by choosing two units (e.g., 

hearts and spades in the Two-Suit Card Problem) until now, we could find only one 

unit (a set of 14 cards). We would not notice that we used only one set twice previously, 

because the information that we used a set twice was inaccessible because of our 

current assumption. As a result, we would be confused, because we could not make a 

chart in the same way as before. In this way, we find that we ourselves would also use 

only one composite unit, if important information suddenly became inaccessible. 

There are two advantages to the above conversion. First, the converted model enables 

the teacher to empathise with the students. The model of only one composite unit is 

converted from a second-order model for explaining the students’ behavior, to a first-

order model for explaining the observer’s virtual experience. While second-order 

models are only first-order viable, the converted models are not only first-order viable, 

but also second-order viable for the observer, because it is viable not only for the 

observer, but also for the students. Because of this second-order viability, it is easier 

for the observer to understand the students’ thinking with the converted models, than 

with the corresponding second-order models. 

If we understand the local rationality of the students, the question of why there are such 

students is easily answered. The reason that there are students modeled by the model, 

is that some teachers’ behavior unintentionally causes them to lose focus on the 

important information. For example, in case of Charice, the reason that she used only 

one composite unit is that the teacher’s question at the step (iii) unintentionally caused 

her to lose the focus on the information in steps (i) and (ii). Although, of course, there 

is the possibility that the student is careless, attributing the cause of the student’s 

behavior to the teacher’s behavior makes it easy for the teacher to empathise with the 

student, and to consider what to do next. 

The second advantage is that the converted model is expected to be not only second-

order viable for the observer, but also second-order viable for the third person, like the 

readers of research papers. For example, although the second-order model of only one 

composite model does not seem to be viable for Sánchez Gómez, the converted model 

is viable, even for him, because it provides him with a method to empathise with the 

student. If it is still not viable for him, the reason is not that the converted model itself 

lacks viability, but that he cannot accept the assumption of local rationality. The 

conversion includes the process of explaining novices’ local rationality so that even 

experts can understand it. Thus, as long as the nature of local rationality is assumed, 

any converted model is expected to be viable not only for the observer (i. e., the first 

person “I”) and for the observed subject (i. e., the second person “you”), but also for 

other persons (i.e., the third persons “they”; e.g., the readers of the research papers). 

Second-order viability is stronger than first-order, and this new viability is stronger 

than second-order. Therefore, we will call it third-order viability. 
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Third-order viability is the key concept for solving the extension problem. The first-

order viable second-order models are retrospectively built after some observation. 

Since it strictly depends upon observation, the models are fragile. Since they are not 

related to any other information, we are constrained to use them without any 

supplemental information. On the other hand, the third-order viable first-order models 

are assimilated into the observer’s existing knowledge when they are converted from 

the corresponding second-order models. That is, much of the observer’s past 

experience will support using the third-order viable first-order models. Although it is 

never safe, in the sense that they are only approximate models of absolute reality, it is 

useful in that the observer can use them in accordance with his or her own empirically, 

well-tested, viable, existing knowledge. In the next section, we will discuss how to use 

third-order viable first-order models as educational tools. 

EDUCATIONAL IMPLICATIONS AND CONCLUSION 

Before discussing the implications of using third-order viable first-order models for 

education, note that we do not intend to criticise Charice’s teacher in the discussion 

below. According to the assumption of local rationality, we believe that the teacher’s 

real-time practice was done to the best of her ability and understanding, based on her 

experience. We do not believe that the teacher should have done anything differently. 

Here, we will discuss what we could do in similar circumstances as Charice’s teacher. 

Even if we discover the cause of the students’ behavior, we must keep in mind that 

eliminating that cause is not always the best way to improve the lesson. For example, 

the cause of Charice’s behavior seemed to be the teacher’s question as to whether 

Charice could make a chart. However, if the teacher presented only the Password 

Problem itself, and provided no support to solve it, then Charice could not know what 

to do. Since ancient times, it has been well known that introducing sub-questions in 

assignments is one of the most effective ways of supporting students. To cease 

introducing sub-questions would be ineffective. 

Let us elucidate the model of Charice’s thinking: From the hypothesis that she lost the 

need to solve the Password Problem because of the requirement to make a chart, it is 

deduced that she was not ready to make a chart. In fact, no one can a priori determine 

what a given problem will require one to do. It is determined after solving the problem. 

Thus, generally speaking, a student needs to notice, by himself or herself, that making 

a chart is a useful solution for this problem. 

Keeping in mind the above, we can provide a useful approach to teaching the Password 

Problem in the future. A possible situation in which a student notices the usefulness of 

creating a chart is one in which s/he must make new passwords one after another. For 

example, suppose that (i) students engage in a game; (ii) it requires them to make new 

passwords by turns; and (iii) one wins the game by making more passwords than the 

other students make. In the game, the students may randomly create passwords, but 

gradually they will realise that it becomes more difficult to create new passwords 

according to the rules the longer the game lasts. Then, they will realise that a system 
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for generating these passwords is required. The need to make a chart will arise. If they 

make many passwords by themselves, we can also expect them to notice on their own 

that the pile should be used twice. In this case, the role of the teacher will not include 

prompting them to make a chart. Rather, the teacher would (i) find the first student who 

makes a chart, (ii) share the information that that particular student is creating and using 

a chart, and (iii) encourage the students to consider what kind of chart would be the 

best for winning the game. This approach would be expected to help the students to 

understand the usefulness of tables as a preliminary step towards understanding powers. 

In this paper, as a solution of the methodological problem of extending second-order 

models, we proposed to convert second-order models to third-order viable first-order 

models. However, the paper does not provide a general strategy for converting second-

order models. The method of conversion still depends on each second-order model. 

Developing a practical strategy is an issue to be addressed in the future. 
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THE ROLE OF STUDY MOTIVES AND LEARNING ACTIVITIES 

FOR SUCCESS IN FIRST SEMESTER MATHEMATICS STUDIES 

Stefan Ufer 

University of Munich (LMU) 

Research on the transition from school mathematics to university mathematics study 

has identified major challenges for students. Students’ study prerequisites as well as 

their study behaviour are repeatedly mentioned when trying to explain the difficulties 

in this transition. We present a study with N=333 university mathematics students that 

analysed the relations between students cognitive and motivational study prerequisites, 

their learning behaviour, and study success in the first semester. We propose a specific 

conceptualization of students’ motives to choose a mathematics programme. We find 

that specific motives play an important role in the activation of learning activities that 

go along with study success. Implications for research as well as for support of 

beginning university mathematics students are discussed. 

PROBLEMS AT THE SECONDARY-TERTIARY TRANSITION 

Problems of students entering university mathematics education have been reported for 

many years and in many countries (de Guzman, Hodgson, Robert, & Villani, 1998; 

Heublein, 2014). A substantial amount of students (up to 50%) drop out of university 

mathematics programmes, mostly at a very early stage (Heublein, 2014). There are 

numerous theoretical and explorative studies into reasons for these difficulties (e.g., de 

Guzman et al., 1998; Rach, 2014), which usually identify two central challenges 

explaining students’ problems. Firstly, the nature subject mathematics is considered to 

change dramatically in the transition from school to university. This includes a shift in 

the main goal of mathematical activity from a focus of applying mathematics at school 

(Dörfler & McLone, 1986) towards building up a scientific theory at university. 

Moreover, the nature of the mathematical theory itself changes from a mostly “locally 

ordered” system of perception-based statements towards an axiomatic theory with 

definitions, axioms and a central role of deductive proofs (e.g., Tall, 2008) as well as 

formal-symbolic representations (e.g., Clark & Lovric, 2008). Secondly, the nature of 

mathematical learning opportunities changes. For mathematics teachers it is central to 

explicate also the genesis of mathematical rules and concepts and to support students 

in building up a concept image of new concepts. In contrast to that, university 

mathematics teaching often focuses on the product aspect of mathematical activity like 

definitions, theorems, and proofs (e.g., Clark & Lovric, 2008; Siebert, Rach, & Heinze, 

2013).  

Accordingly, it is repeatedly argued that beginning university students have to adapt 

their cognitive and meta-cognitive learning behaviour to the new learning goals and 

learning opportunities (e.g., de Guzman et al., 1998; Thomas & Klymchuk, 2012). In 

order to support students in this transition, it is thus vital to understand how their 
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learning behaviour relates to their prerequisites at the beginning of university study and 

their success in the transition process. 

THEORETICAL FRAMEWORK AND PRIOR RESEARCH 

Learning prerequisites for university mathematics study 

Beginning mathematics students vary considerably in several prerequisites that are 

considered to be necessary for a successful transition to university study (Eilerts, 2009; 

Rach, 2014). Final school qualification grades, a very general measure of (not 

exclusively cognitive) learning prerequisites, have been shown to be predictive for 

study success (e.g., Eilerts, 2009; Rach, 2014; Trapmann, Hell, Weigand, & Schuler, 

2007). Apart from these very general indicators, sound understanding of mathematical 

concepts from the school context has been put forward as an important prerequisite (de 

Guzman et al., 1998) and was empirically shown to have a positive effect (Eilerts, 

2009; Rach, 2014). From the affective-motivational side, interest and self-concept in 

mathematics have been proposed theoretically and studied empirically as learning 

prerequisites of university mathematics study, yet not yielding a conclusive pattern of 

positive effects. For example, interest in mathematics goes along with study success in 

Eilert’s (2009) study, but not in Rach’s (2014). Instead, Rach (2014) found that a 

positive self-concept in mathematics reduced the danger of drop-out during the first 

semester. Summarizing, there are some consistent results showing a positive effect of 

cognitive learning prerequisites on study success, while there is no clear pattern for 

student prerequisites like interest and self-concept. Moreover, motivational 

dispositions of students towards their studies are often mentioned as possible reasons 

for problems in the transition to university mathematics (e.g., de Guzman et al., 1998), 

but empirical evidence of such their effects is scarce at the best. 

The role of study motives in university study 

In self-determination theory (Deci & Ryan, 1985), motives are conceptualized as types 

of reward, which individuals value in an activity. Following this concept, study choice 

motives are defined here as the potential reward which students anticipate from 

choosing a specific study programme. These motives can be considered an important 

prerequisite of study success: Models of self-regulated learning (cf. Zimmerman, 2011) 

usually describe the role of such overarching motives as an important factor in 

individuals’ choices of learning strategies and activities. It is very plausible that the 

motive for a student to enrol in a university mathematics program directs his/her 

learning activities towards specific learning opportunities and contents offered in the 

programme. In current research, such motives are usually conceptualized as intrinsic 

vs. extrinsic motives (Blüthman, Lepa, & Thiel, 2008) and it was shown that students’ 

actual choice of study (e.g. Retelsdorf & Möller, 2012 for teacher programmes) reflects 

their self-reported study choice motives, that extrinsic motives increase the probability 

of programme drop-out, and that intrinsic motives go along with study satisfaction 

(Blüthmann et al., 2008).  
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What actually should count as an intrinsic vs. extrinsic motive to choose a mathematics 

programme is not easy to decide. If a student chooses a mathematics programme in 

order to learn how to solve complex everyday problems with mathematical tools, this 

might quite well be considered intrinsic to mathematics when viewed from the 

perspective of school mathematics (Dörfler & McLone, 1986). When taking the nature 

and content of university mathematics programmes into account, this can be doubted 

since this motive is clearly not well aligned with the content and learning opportunities 

of the programme. Departing from this reasoning, we focus four motives for studying 

mathematics: A motive of good financial and professional perspectives, a motive to 

apply mathematics to complex real world problems, a motive to engage in mathematics 

problems, and a motive to become acquainted with the methods and ideas of scientific 

mathematics. These motives can be perceived as increasingly more aligned with the 

content and learning opportunities in the first semester of a university mathematics 

programme. Following models of self-regulated learning, it can be expected that 

individual motives which are aligned with the nature of such a programme go along 

with more effective individual learning behaviour and higher study success. 

Describing students’ learning behaviour 

A typical approach to describe students’ learning behaviour in research on self-

regulated learning is to survey students’ learning strategies. Rach’s (2014) summary of 

current research as well as her own study indicate that the resulting empirical evidence 

is not conclusive. In particular, general learning strategies surveyed by questionnaires 

were sometimes found to be unrelated to study success. Effects are usually only 

detected if questionnaires asked for very specific and concrete study behaviour. For 

example, Rach and Heinze (2012) found that students solving weekly exercise tasks or 

self-explaining others’ solutions to these tasks were more successful in the first 

semester of a university mathematics programme than other students. Moreover, 

students who solved these tasks on their own had high self-concept and high 

mathematics knowledge at the start of the first semester university (Rach, 2014). 

Chi (2009) proposes a different approach to describe learning behaviour: She 

introduced three kinds of so-called learning activities, which are described by 

observable student behaviour, but are explicitly related to specific cognitive processes: 

Active learning activities are described by primarily physical actions, which include 

mainly the activation or storing of existing knowledge. Constructive learning activities 

produce new information beyond the presented information. Interactive learning 

activities correspond to a substantive dialogue with a partner, building on and 

extending the partners’ ideas. Chi’s main assumption is that learning becomes 

increasingly effective from active over constructive to interactive learning activities. 

Solving the tasks on weekly exercise sheets, which are part of most German university 

mathematics programmes (Rach, 2014), is an example of a constructive learning 

activity. 
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GOALS OF THE STUDY AND RESEARCH QUESTIONS 

The main goal of this study was to understand the relationship between students’ 

cognitive and motivational learning prerequisites, their learning behaviour and their 

success in the first semester of mathematics study. More precisely, we addressed the 

following questions: 

 Do students’ self-reported study choice motives relate to their choice of a 

more or less application-oriented mathematics programme? 

 How do students’ affective and cognitive learning prerequisites relate to their 

learning activities? We expected, in particular, that more mathematics-related 

study motives should go along with more sustainable (constructive and 

interactive) learning activities. 

 How do students’ learning prerequisites and learning activities relate to their 

study success? Apart from a strong relation between cognitive learning 

prerequisites and study success, we expected also that more mathematics-

related study motives and more sustainable learning activities should go along 

with higher study success. Moreover, we expected that less mathematics-

related study motives would relate to lower study success. 

Construct and example item Cronbachs α 

Study motive – professional perspectives (3 items) 

I chose math because I will earn much money. 
.80 

Study motive – application of mathematics (3 items) 

I chose math because I will learn to solve complex application problems. 
.78 

Study motive –engage in mathematics problems (3 items) 

I chose maths because I like to think about maths questions. 
.77 

Study motive –mathematics as a science (3 items) 

I chose maths because I want to learn about research in mathematics. 
.66 

Learning activities – active (4 items) 

When I do not know how to solve a task, I ask a teacher for advice. 
.70 

Learning activities – constructive (4 items) 

In lectures, I try to check if it makes sense to me what the lecturer says. 
.52 

Learning activities – interactive (4 items) 

I discuss my solutions to exercise tasks with other students. 
.78 

Table 1: Questionnaire instruments and reliability coefficients 

DESIGN AND METHODS 

We conducted a longitudinal survey study with N=333 (169 female) first semester 

mathematics students enrolled in a regular mathematics programme (N=94) or a 

financial mathematics programme (N=238) at the University of Munich, Germany. We 

do not focus on programme or gender differences in this contribution for reasons of 

space, but these variables were used as control variables. 
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During the first lecture of the semester, we conducted a pre-test on calculus knowledge 

(e.g., concepts of limit and derivatives, example item: Prove that the function f: ➝ 
, x ↦ |x| has no derivative at x=0, WLE-Reliability .54, Rach, 2014) and surveyed 

students’ high school qualification grade (HSQG [values were recoded so that higher 

grades correspond to higher school achievement]) as well as their study motives. After 

four weeks, we surveyed students’ self-reported learning activities. See table 1 for 

constructs, example items, and reliability coefficients. At the end of the term, we 

collected students’ scores on the final exam of the analysis lecture. The same lecture 

was part of both study programmes. Moreover, as an additional measure of 

constructive learning activities, we scanned and counted all exercise sheets that were 

handed in by each student to receive written feedback. Datasets were linked using 

anonymous personal codes for each student. For regression analyses, we estimated 

missing data with the FIML algorithm. 

RESULTS 

To validate our measures we compared the study choice motives reported by students 

from the more application-oriented financial mathematics programme to those of the 

regular mathematics programme (table 2). 

Motive Perspectives Application Problems Science 

Regular math. 1.44 (.84) 1.46 (.80) 2.23 (.66) 2.43 (.45) 

Financial math. 1.92 (.73) 1.99 (.77) 1.67 (.68) 2.07 (.52) 

ANOVA 
p<.001 

η2=.07 

p<.001 

η2=.09 

p<.001 

η2=.12 

p<.001 

η2=.09 

Table 2: Means, standard deviations, and ANOVAs for study choice motives of 

students in the regular mathematics and in the financial mathematics programme 

(scaling 0: strongly disagree, 1: disagree, 2: agree, 3: strongly agree) 

As expected, students from the more application-oriented financial mathematics 

programme reported stronger motives related to professional perspectives and 

application, while students in the regular mathematics programme agreed more to 

motives of engaging in mathematics problems and mathematics as a science. 

We used separate regression analyses to study the relation between students’ learning 

prerequisites and their self-reported active, constructive and interactive learning 

activities. Cognitive learning prerequisites showed no significant relations to students’ 

reports of learning activities and all learning prerequisites together explained a 

substantial amount of variance only in constructive learning activities (R2=.33). 

Reports of constructive learning activities were significantly negatively related to a 

perspective motive (β=-.29, p<.001) and significantly positively related to both, 

content- and science-related motives (β=.27, p<.01 resp. β=.21, p<.01). For active and 

interactive learning prerequisites, no significant relations to learning motives could be 
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uncovered and the overall variance explanation by learning prerequisites was low 

(R2=.05). 

To predict study success, as described by students’ score on the end-of-semester 

analysis exam, we used a stepwise regression approach. For space reasons, we focus 

on the result of the final, full regression model here. Students’ learning prerequisites 

explained 51% of variance in study success, which increased to 54% when including 

students’ learning activities to the model. In the final model, students’ cognitive 

learning prerequisites (calculus knowledge, HSQG) showed a significant positive 

relation to students’ success (calculus knowledge: β=.34, p<.001; HSQG: β=.28, 

p<.001). Of students’ study choice motives, only an application-related motive showed 

a significant relation to study success (β=-.13, p<.01). Only  students’ constructive 

learning activities related significantly to study success (β=.17, p<.05). 

The number of exercise sheets handed in by each student was correlated significantly 

to self-reported constructive, but not active or interactive learning activities (r=.25, -

.02, and .01 for constructive, active, and interactive learning activities). To support our 

results on students’ constructive learning activities, we repeated both regression 

analyses, replacing self-reported learning activities by the number of exercise sheets: 

The number of handed-in exercise sheets was predicted significantly by students’ high 

school qualification grades (β=.34, p<.001), but not by their prior calculus knowledge 

(β=.06, p>.05). Only a science-related study motives related significantly to the 

number of handed-in exercise sheets (β=.20, p<.01). Study success was predicted 

positively by the number of handed-in sheets (β=.25, p<.001), with almost unchanged 

results for the learning prerequisites compared to the previous analysis. 

DISCUSSION 

The goal of this study was to analyse relations between students’ cognitive and 

motivational learning prerequisites, their learning activities, and their study success 

during the first semester. To start with, the results indicate that self-reported study 

motives differentiate clearly between two mathematics programmes that vary in terms 

of application-orientation, which provides validation our motive measures. 

We found that students’ self-reported study choice motives provided specific 

predictive information about their study behaviour and were partially predictive for 

study success. In particular, clearly extrinsic motives (professional perspectives) went 

along with less constructive learning activities. Those motives that are well aligned 

with the nature of university mathematics programmes (e.g. engaging in mathematics 

problems) were connected to more constructive learning activities. Moreover, we 

found a direct connection between a motive to apply mathematics and reduced study 

success. This is particularly interesting, since this motive can be considered intrinsic 

to mathematics as a school subject, but not well aligned with the nature of university 

mathematics programmes. These results underpin the view that only those motives can 

support in coping with the transition from school to university mathematics, which are 

in line with the programme under study. 
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As hypothesized by Chi (2009), self-reported constructive learning activities were 

connected to higher study success. This result was largely confirmed when using a 

different, correlated measure of constructive learning, the number of voluntarily 

handed-in exercise sheets. Thus, the idea of surveying constructive activities by a self-

report questionnaire can be considered sufficiently valid for our purposes. Given these 

stable results, it might be worth to investigate means to direct students towards 

constructive learning, in particular if they start their study with less adequate motives. 

Yet, the results are less assuring for active and interactive learning activities. Self-

reports of both kinds of activities were neither significantly connected to cognitive and 

motivational learning prerequisites nor to study success. As for active learning 

activities, additional analyses show at least that these go along with reduced drop-out 

from the analysis course. Following Chi (2009), it is also plausible that active learning 

is not strongly connected to study success. Nevertheless, also interactive learning 

activities were connected to almost no other measure in our current analyses (apart 

from gender, with females reporting more interactive learning activities). We would 

like to discuss two related explanations: First, it is well documented that even if 

students engage in collaborative forms of learning, this does not imply that they really 

engage in substantial discussions, taking up and developing the contributions of their 

partner (Kollar, Fischer, & Slotta, 2006). What students report in the questionnaire 

might partially account for less effective or superficial collaboration strategies. Second, 

and connected to that, we must admit that reconsidering our questionnaire items for 

interactive learning activities made us doubt that these really addressed effective, deep 

collaborative activities in a clear way (cf. table 1). Thus, it seems warranted not to take 

strong conclusions before improved survey instruments or ways to study students in 

real interaction instead of using self-reports are available. 

Summarizing, our results indicate that students’ motives for choosing a university 

mathematics programme are connected to their learning behaviour and study success. 

In particular, goals that relate to the nature of mathematics programmes as described 

in the literature on the secondary-tertiary transition (Clark & Lovric, 2008; de Guzman 

et al., 1998; Rach et al., 2012) go along with sustainable learning activities. Theories 

of self-regulated learning (Zimmerman, 2011) form a plausible framework for the 

effects of these motives.  In view of our results, it might seem vital to provide future 

mathematics students with sound information about the nature and goals of 

mathematics university programmes and about the differences to school mathematics 

during their decision for a programme. Moreover, it seems promising to provide 

support for students during the transition phase to adapt their own goals and learning 

activities to the specific demands and nature of the programme. 

References 

Blüthmann, I., Lepa, S., & Thiel., F. (2008). Studienabbruch und -wechsel in den neuen 

Bachelorstudiengängen. Zeitschrift für Erziehungswissenschaft, 3, 406-429. 



Ufer 

4-272 PME39 — 2015 

Clark, M., & Lovric, M. (2008). Suggestion for a theoretical model for secondary-tertiary 

transition in mathematics. Mathematics Education Research Journal, 20(2), 25–37. 

Chi, M. T. (2009). Active, constructive, interactive: A conceptual framework for 

differentiating learning activities. Topics in Cognitive Science, 1(1), 73-105. 

Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human 

behavior. New York: Plenum. 

Dörfler, W., & McLone, R. (1986). Mathematics as a school subject. In B. Christiansen, A. 

Howson & M. Otte (Eds.), Perspectives on Mathematics Education, 49-97. Reidel: 

Dordrecht. 

Eilerts, K. (2009). Kompetenzorientierung in der Mathematik-Lehrerausbildung: Empirische 

Untersuchung zu ihrer Implementierung. Zürich, Münster: LIT. 

Guzman, M. de, Hodgson B., Robert, A., & Villani, V. (1998). Difficulties in passage from 

secondary to tertiary education. In G. Fischer & U. Rehmann (Eds.), Proceedings of the 

International Congress of Mathematicians, Vol III, 747-762. 

Heublein, U. (2014). Student Drop-out from German Higher Education Institutions.  

European Journal of Education 4, 497-513. 

Kollar, I., Fischer, F., & Slotta, J. D. (2007). Internal and external scripts in computer- 

supported collaborative learning. Learning and Instruction, 17(6), 708-721. 

Rach, S. (2014). Charakteristika von Lehr-Lern-Prozessen im Mathematikstudium: 

Bedingungsfaktoren für den Studienerfolg im ersten Semester. Münster: Waxmann. 

Rach, S., & Heinze, A. (2012). Studying mathematics at the university: The influence of 

learning strategies. In B. Ubuz (Ed.). Proc. 35
th 

Conference of the International Group for 

the Psychology of Mathematics Education, Vol. 4, pp. 9-16. Ankara, Turkey: PME. 

Retelsdorf, J., & Möller, J. (2012). Grundschule oder Gymnasium? Zur Motivation ein 

Lehramt zu studieren. Zeitschrift für pädagogische Psychologie, 26(1), 5-17. 

Siebert, U., Rach, S., & Heinze, A. (2013). Teaching quality of mathematics university 

courses. In A. Lindmeier & A. Heinze (Eds.). Proceedings of the 37
th 

Conference of the 

International Group for the Psychology of Mathematics Education, Vol. 5, p. 269. Kiel, 

Germany: PME. 

Tall, D. (2008). The transition to formal thinking in mathematics. Mathematics Education 

Research Journal, 20(2), 5–24. 

Thomas, M. & Klymchuk, S. (2012). The school-tertiary interface in mathematics: teaching 

style and assessment practice. Mathematics Education Research Journal, 24(3), 283–300. 

Trapmann, S., Hell, B., Weigand, S., & Schuler, H. (2007). Die validität von schulnoten zur 

vorhersage des studienerfolgs - eine metaanalyse. Zeitschrift für pädagogische 

Psychologie, 21(1), 11-27. 

Zimmerman, B. (2011). Motivational sources and outcomes of self-regulated learning and 

performance. In B. Zimmerman & D. Schunk (Eds.). Handbook of Self-Regulation of 

Learning and Performance, 49-64. New York & London: Routledge. 



  

2015. In Beswick, K., Muir, T., & Fielding-Wells, J. (Eds.). Proceedings of 39th Psychology of 
Mathematics Education conference, Vol. 4, pp. 273-280. Hobart, Australia: PME.  4-273 
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The natural number bias is known to explain many difficulties learners have with 

understanding rational numbers. The research field distinguishes three aspects where 

natural number properties are inappropriately applied in rational number tasks: 

density, size, and operations. A comprehensive test was constructed to characterize the 

development of 4th to 12th graders’ natural number bias. This test was administered 

to 1343 elementary and secondary school students. Results showed an overall natural 

number bias that was weakest in size tasks, somewhat stronger in operations tasks, and 

by far the strongest in density tasks. An overall decrease of the strength of the natural 

number bias – but no disappearance except for size tasks – could be found with grade. 

INTRODUCTION 

A good understanding of rational numbers is an essential part of mathematical literacy, 

which is not only important in learners’ school career, but also in their everyday 

experiences. Although a good rational number understanding is found to be very 

important, many people have great trouble understanding the different aspects of 

rational numbers (e.g. Vamvakoussi, Van Dooren, & Verschaffel, 2012). Recent 

research literature ascribes many of the difficulties learners have with the 

understanding of rational numbers to a phenomenon called the natural number bias.  

The natural number bias is described as the tendency to (inappropriately) apply natural 

number features in rational number tasks (e.g. Van Hoof, Lijnen, Verschaffel, & Van 

Dooren, 2013). While the origin of the natural number bias is still a matter of debate, 

there is large consensus in the literature that before children are introduced to rational 

numbers, they already have formed an intuitive idea of what a number is, which is 

primarily based on natural numbers (Vamvakoussi & Vosniadou, 2010). Indeed, in 

their daily experiences, children encounter natural numbers much more often than 

rational numbers (one example is finger counting). This intuitive idea of numbers as 

natural numbers is confirmed and systematized in the first years of mathematics 

education that a learner goes through (Greer, 2004). When rational numbers are then 

introduced in the classroom (mostly in the middle years of primary education), the 

principles and features of natural numbers are no longer always applicable, but learners 

continue to apply them. So, learners are found to make systematic mistakes specifically 

in rational numbers tasks where reasoning purely in terms of natural numbers results 

in an incorrect solution (these will later be denoted as incongruent items). At the same 
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time, much higher accuracy levels are found in rational number tasks where reasoning 

merely in terms of natural numbers also results in a correct solution (denoted as 

congruent items). In the research literature, three main aspects of the natural number 

bias are distinguished: density, size, and operations.  

The first aspect concerns the dense structure of rational numbers. Natural numbers are 

characterized by discreteness: You can always point out the successor number of any 

given number (for example: after 4 comes 5). Rational numbers, on the contrary, are 

characterized by a dense structure: There is no such thing as a successor number of a 

given rational number, as there are always infinitely many numbers between any two 

rational numbers. Still, learners are reported to think that for instance between 2/5 and 

3/5, there are no other numbers (Vamvakoussi & Vosniadou, 2010).  

The second aspect is related to the numerical size of rational numbers. Learners have 

the wrong assumption that, as is the case with natural numbers, “longer decimals are 

larger”, “shorter decimals are smaller” and “a fraction’s numerical value increases 

when its denominator, numerator, or both increase” (Meert, Grégoire, & Noël, 2010; 

Resnick et al., 1989).   

The third aspect of the natural number bias concerns the effect of arithmetic operations. 

While addition and multiplication with natural numbers will always result in a larger 

number and division and subtraction will always result in a smaller number, these rules 

do not longer necessarily apply in the case of rational numbers (for example 0.4 × 9 

will result in an outcome smaller than 9), but learners still wrongly assume them to be 

true (Van Hoof, Vandewalle, Verschaffel, & Van Dooren, 2014).  

In line with the above, a theoretical framework that has been frequently used to explain 

the natural number bias is the conceptual change theory, and more specifically 

Vosniadou’s framework theory approach towards conceptual change (Vosniadou, 

1994; 2006; Vosniadou, Vamvakoussi, & Skopeliti, 2008). The main assumption of 

this theory is that learners gradually tend to organize their daily experiences in quite 

coherent framework theories (Vamvakoussi & Vosniadou, 2010). When learners are 

confronted with new information which is not in line with their framework theory, they 

will have more difficulties to understand this information than when the new 

information affirms or extends their initial framework theory. In the former cases, 

conceptual change is needed: Learners need to accommodate their initial framework to 

the new incompatible information. This accommodation is typically not an all at once 

process. Learners often attempt to assimilate the new information without completely 

revising the assumptions of their initial framework theories, which often results in 

inconsistencies or misconceptions (Vosniadou et al., 2008).   

THE PRESENT STUDY 

The overall goal of this study was to characterize the development of the natural 

number bias in all three aspects (density, size, and operations) across the wide span 

between 4th and 12th grade. By doing so, we addressed various issues that – despite 
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the extensive attention that the topic of rational number understanding recently has 

received – were not covered by research so far.  

Since no comprehensive test instrument was available to measure the natural number 

bias, a secondary goal of our study was to create such a comprehensive paper-and-

pencil test. We administered this paper-and-pencil test to learners from 4th until 12th 

grade, with the aim to investigate: 

 The overall occurrence of a natural number bias.  

 The relative strength of this bias in the decimal vs. fraction format.  

 The relative strength of the natural number bias across the density, size, and 

operations aspects of rational number understanding.  

 The evolution with age of the natural number bias as a whole and specifically 

within each of the three aspects.  

METHOD 

Participants 

Data were collected in 21 schools (9 primary schools and 12 secondary schools) from 

different parts of Flanders, Belgium. This resulted in a representative sample of 1343 

learners distributed over 4th grade (n = 213), 6th grade (n = 230), 8th grade (n = 293), 

10th grade (n = 302), and 12th grade (n = 305).  

Design 

Starting from a broad literature review and an exploration of the Flemish mathematics 

curriculum, a comprehensive paper-and-pencil test (the Rational Number Sense Test, 

further abbreviated as ‘RNST’) was constructed with the aim to measure learners’ 

natural number bias in rational number tasks. The test contained items addressing the 

three aforementioned aspects of the natural number bias (density, size, and operations), 

with items presented in fraction or decimal form or using a combination of both. The 

test further contained open and multiple choice questions and items of a varying 

difficulty degree for each of the aspects, in order to tap the full range of learners’ 

natural number bias. The reliability of the test instrument was high (Cronbach’s alpha = 

.87).  

In this paper we report data from 63 items that were solved by learners from every 

grade (the higher grades received additional items that were more sophisticated, but 

these are not considered in the current paper). In total there were 15 density items (2 

congruent and 13 incongruent), 33 size items (15 congruent and 18 incongruent), and 

15 operations items (2 congruent and 13 incongruent). Further, 37 items involved 

fractions, 23 decimal numbers, and 3 items allowed a fraction or a decimal number as 

an answer. Examples of congruent and incongruent items are given in Table 1.  

 Congruent item Incongruent item 
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Density Write a number between 

1/4 and 3/4 

Write a number between 

3.49 and 3.50 

Size Choose the largest 

number: 

14/18 or 29/31 

Choose the largest 

number: 

3/9 or 2/5 

Operations Is 50 × 3/2 bigger or 

smaller than 50? 

Is 72 × 0.99 bigger or 

smaller than 72? 

Table 1: Examples of test items 

Analysis 

Because we had a repeated measures design, data were analysed using the Generalised 

Estimation of Equations (GEE) in order to correct for repeated (and thus likely 

correlated) measures within participants. The degree of difference in accuracy on the 

congruent versus incongruent items was seen as an indicator of the strength of the 

natural number bias.  

RESULTS 

Congruency Main Effect  

A significant main effect of congruency was found X²(1, N = 1343) = 1456.13, 

p   <.001. The accuracy level for congruent items (87.9%) was significantly higher than 

for incongruent items (66.8%) for the whole group of participants. Given this 

difference, our results clearly confirm an overall occurrence of a natural number bias. 

In what follows, we will investigate the impact of the representational format, the 

aspect of the natural number bias and the grade level on the strength of the natural 

number bias, which implies that we will look specifically at the interaction between 

congruency and the aforementioned variables.   

Congruency × Representation Interaction Effect 

No significant interaction effect between representation and congruency could be 

found, X²(1, N = 1343) = 0.03, p = .87. This indicates that the natural number bias was 

equally strong in rational number tasks with decimal numbers as with fractions.   

Congruency × Aspect Interaction Effect 

A significant interaction effect between congruency and aspect was found X²(3, 

N = 1343) = 439.86, p <.001. The odds ratios and their 95% confidence intervals 

showed that the natural number bias was weakest in size tasks (OR = 1.48, 95% CI 

[1.40, 1.57]), somewhat larger in operations tasks (OR =1.66, 95% CI [1.58, 1.74]) and 

clearly largest in density tasks (OR = 11.48, 95% CI [10.01, 13.17]).  
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Congruency × Grade Interaction Effect 

A significant interaction effect between congruency and grade was found X²(8, 

N = 1343) = 998.95, p <.001. The odds ratios and their 95% confidence intervals of 

each grade level are shown in the upper right panel in Figure 1. The strength of the 

natural number bias was not significantly different for 4th graders (OR = 5.16, 95% CI 

[4.72, 5.63]) and 6th graders (OR = 5.66, 95% CI [5.12, 6.25]). However, the natural 

number bias was significantly weaker in 8th graders (OR = 3.85, 95% CI [3.45, 4.31]) 

and even significantly weaker in 10th graders (OR = 2.52, 95% CI [2.24, 2.83]) and 

12th graders (OR = 2.26, 95% CI [1.98, 2.59]). The strength of the natural number bias 

did not significantly differ between these latter two grades.  

Congruency × Grade Interaction Effect for Every Aspect  

Besides the overall evolution, Figure 1 provides an overview of the evolution of the 

strength of the natural number bias for each aspect separately. 

Density 

Only a limited number of density tasks were provided in the test of the 4th graders. 

Consequently, the data from the density tasks of the 4th graders were not used in the 

current analysis. There was a significant interaction effect between congruency and 

grade X²(3, N = 1130) = 15.14, p <.01. The odds ratios showed that the natural number 

bias was very strong in all grades: 6th graders (OR = 25.71, 95% CI [18.95, 34.89]), 

8th graders (OR = 24.02, 95% CI [15.77, 36.58]), 10th graders (OR = 11.69, 95% CI 

[7.33, 18.65]), and 12th graders (OR = 8.05, 95% CI [4.92, 13.18]). 

Size 

There was a significant interaction effect between congruency and grade, X²(4, N = 

1343) = 80.81, p <.001. The odds ratios showed that the strength of the natural number 

bias was largest in 4th graders (OR = 3.56, 95% CI [3.20, 3.97]), somewhat smaller in 

6th graders (OR = 1.85, 95% CI [1.60, 2.14], and nearly absent in 8th graders 

(OR =1.23, 95% CI [1.05, 1.44]). No natural number bias for size items was found in 

the odds ratio of the 10th (OR = 0.97, 95% CI [0.82, 1.15]) and 12th graders (OR =0.87, 

95% CI [0.72, 1.07]). 

Operations 

There was a significant interaction effect between congruency and grade, X²(4, N = 

1343) = 80.90, p <.001. The odds ratio showed that the strength of the natural number 

bias was largest in 4th graders (OR = 4.49, 95% CI [3.74, 5.41]), somewhat smaller in 

6th graders (OR = 2.45, 95% CI [2.04, 2.96], 8th graders (OR =2.11, 95% CI [1.68, 

2.65]), and 10th graders (OR = 1.71, 95% CI [1.35, 2.16]), and nearly absent in 12th 

graders (OR =1.43, 95% CI [1.08, 1.87]).  
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Figure 1: Overall evolution and evolution per aspect of the strength of the natural 

number bias as represented by the odds ratio (and 95% confidence interval) of 

accuracy for congruent and incongruent items (an odds ratio of 1 indicates an absent 

bias) 

CONCLUSION AND DISCUSSION 

Based on the existing literature and an analysis of the Flemish curriculum, we created 

and validated a comprehensive test instrument that enabled us to systematically and 

directly compare the strength of the natural number bias in the different aspects 

(density, size, and operations) and representations (fractions, decimal numbers) 

between 4th and 12th grade. By administering the new test instrument to a large group 

of 4th to 12th graders, we first of all found that there was a clear natural number bias, 

as shown in the significantly higher accuracy to congruent than to incongruent items. 

Second, it was found that this bias was equally strong in tasks with decimal numbers 

as with fractions. This is an interesting finding, particularly because the available 

theoretical and empirical literature contains evidence that different kinds of natural 

number-based errors may occur in items involving these two representations. Third, 

our results indicated that learners’ natural number bias decreases with grade and that it 

develops over a period of at least six years, without completely disappearing at the end 

of secondary education. Fourth, results showed that the natural number bias was 

weakest in size tasks, somewhat stronger in operations tasks, but by far the strongest 
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in density tasks. This is in line with previous research (see for example Vamvakoussi 

et al., 2012). Fifth, while an evolution can be found in learners’ understanding of all 

three aspects of the natural number bias, they continue to struggle particularly with the 

operations and density aspect. The dense structure of rational numbers remains 

especially difficult to grasp, even for students at the very end of secondary education. 

Besides the above-mentioned theoretically relevant findings, the present study also 

resulted in another valuable outcome, namely a valid and reliable test instrument that 

measures learners’ natural number bias in rational number tasks. This test could be 

useful in future research in this domain. This RNST could, for example, be used to 

conduct (internationally) comparative research. It could further be used as an 

effectiveness measure in intervention studies aimed at improving learners’ rational 

number understanding. Lastly, the RNST could also be used to investigate the relation 

between learners’ rational number understanding and other aspects of learners’ number 

sense and/or other learner characteristics.   

One of the limitations of our study was that we only used performance data collected 

in a collective paper-and-pencil test. With a view to investigating the interference of 

learners’ natural number knowledge in rational number tasks, it would be interesting 

to complement these performance data with data about learners’ reaction times. As 

shown by numerous studies (see for example Vamvakoussi et al., 2012), reaction time 

data are effective in investigating the natural number bias. The core finding of these 

reaction time studies is that it takes more time to respond correctly to incongruent than 

to congruent tasks. The main advantage of reaction times, therefore, is that they still 

can shed light on the natural number bias even in learners who no longer make errors.

   

We finally turn to an important educational implication that emerges from this study. 

Given that the understanding of rational numbers has been shown to relate to later 

general mathematics achievement, it is quite worrying that the majority of learners 

have troubles understanding the several aspects of rational numbers, some of which 

even last until the end of secondary school. Consequently, the acquisition of rational 

number understanding – and particularly of the understanding of the differences with 

natural numbers – deserves more attention in the mathematics class. In this respect, we 

note that errors committed by learners may be partly caused by formal instruction, or 

at least by the fact that they are not sufficiently addressed by instruction. Debou and 

Verschetze (2012) systematically investigated the three most often used textbooks for 

elementary school mathematics in Flanders. Their analysis showed that textbooks pay 

almost no explicit attention to the (conceptual) differences between natural and rational 

numbers, but rather tend to only point to similarities between both. We believe that if 

textbook designers and teachers have a thorough understanding of the natural number 

bias, they will be better able to address the natural number bias, for instance by pointing 

the learners systematically to differences between natural numbers and rational 

numbers.    
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TEACHER REPRESENTATIONS OF FRACTIONS AS A KEY TO 

DEVELOPING THEIR CONCEPTUAL UNDERSTANDING 

Jennifer Way, Janette Bobis and Judy Anderson 

University of Sydney, Australia 

 

This paper presents a case study of one Year 6 teacher who, over a period of one year, 

developed a deeper understanding of equivalent fractions. Evidence from assessment 

of teacher pedagogical content knowledge, interviews and classroom observation 

reveals that the exploration of representations of fractions was central to the teacher’s 

growth in knowledge for teaching. Also apparent was a change in pedagogy, from a 

focus on procedural understanding to an emphasis on developing conceptual 

understanding. We propose that the deliberate exploration of representations may be 

a key to increasing both the mathematical and pedagogical knowledge of teachers, 

supporting their ability to foster conceptual understanding in their students. 

 

INTRODUCTION 

As well as possessing sufficient mathematics knowledge, teachers must be able to 

skilfully design learning experiences, including the use of representations, 

explanations, examples, and identify and address student misconceptions (Ball, 

Lubienski & Mewborn, 2001; Baumert & Kunter, 2010). The blending is often referred 

to as pedagogical content knowledge or PCK (Schulman, 1987). One indicator of a 

deficit in teacher knowledge and PCK appears to be the under-utilisation of a variety 

of representations of mathematics concepts and an over-reliance on symbolic notation 

(Ball, Thames, & Phelps, 2008; Isak, 2008). This suggests that developing a teacher’s 

understanding of representations in a mathematics topic may be a productive focus for 

professional learning. However, as pointed out by Lee, Brown and Orill (2011), 

although much attention has been given to researching representations associated with 

students’ conceptual understanding, limited attention has been given to teachers’ 

facility with representations. This study explores the proposition that attending to a 

teacher’s understanding of representations of fractions can have a direct influence on 

pedagogy. 

DEVELOPING UNDERSTANDING: THEORETICAL BACKGROUND 

Central to the thinking guiding this study is the premise that the goal of mathematics 

education is deep conceptual understanding of mathematics concepts and relationships. 

Insufficient conceptual understanding of mathematics content increases a teacher’s 

reliance on procedural understanding. Deeper understanding of fraction concepts 

allows teachers to use “representations to attach meaning to mathematical procedures” 

as part of their pedagogy (Charalambous, 2010, p. 273) and so attend to conceptual 

understanding. 
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We use the expression ‘development of understanding’ to reflect constructivist 

learning theory, in which the learner actively responds to experiences by continuously 

reorganising and building knowledge (von Glaserfeld, 1987). Compatible with the 

constructivist view of learning is the Pirie-Kieren Dynamical Theory for the Growth 

of Mathematical Understanding (Pirie & Kieren, 1989, 1994). The Pirie-Kieren Theory 

consists of eight layers usually depicted as a set of nested rings and are named, from 

the centre outwards: Primitive Knowing, Image Making, Image Having, Property 

Noticing, Formalising, Observing, Structuring, and Inventising. The layers of knowing 

build from a learner’s existing knowledge towards more sophisticated generalisation 

and abstraction, yet do not indicate a hierarchical linear progression, because the 

learner will constantly cycle back through preceding layers as the tentative new 

understanding is challenged by unfamiliar contexts. In this ‘folding back’ to an inner 

layer the learner brings new insights and seeks to refine or expand the earlier thinking 

(Pirie & Kieren, 1989, 1994; Pirie & Martin, 2000). The model is not restricted to the 

learner’s internal thought processes but encompasses social interactions, concrete 

experiences and actions (Pirie & Martin, 2000). 

Of particular interest in this study are the inner layers of Image Making, Image Having 

and Property Noticing where the formation of mental imagery plays a critical 

transitional role towards abstraction. Like Wright (2014), we interpret the ‘Image 

making’ layer to include the use of concrete materials and the manipulation of 

representations. However, we acknowledge that the image-making process involves 

‘reflecting’ on existing knowledge and memories, not only the mental images of actual 

objects (Wright, 2014).  

While the Pirie-Kieren theory describes the growth of understanding in young learners 

(school students), we see parallels in the development of understanding in teacher-

learners. Importantly, the Pirie and Kieren model helps to interpret the significance of 

shifts in the ways a teacher represents fractions in terms of conceptual understanding. 

UNDERSTANDING FRACTIONS 

Siegler, Fazio, Baily and Zhou (2013) describe a comprehensive understanding of 

fractions to be composed of conceptual knowledge, procedural knowledge, as well as 

non-symbolic and symbolic knowledge. Conceptual knowledge of fractions includes 

“…understanding of the properties of fractions: their magnitudes, principles, and 

notations”, and procedural knowledge requires “…fluency with the four fraction 

arithmetic operations (Siegler et al., 2013, p14). Non-symbolic knowledge refers to 

concrete models and various representations, and symbolic knowledge is competence 

with conventional written expressions of fractions. 

Unfortunately, teachers tend to rely on symbolic notation or use one only one type of 

representation (typically area diagrams) in their teaching, rather than selecting the most 

appropriate representation from a range of options (Ball, et al., 2008; Isak, 2008). 

Consequently, the lack of purposeful exploration of the relationships between multiple 

representations can inhibit understanding the properties of fractions. 
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Previous research has demonstrated that the teaching of fractions is typically limited 

to the part-whole construct as modelled by area diagrams such as shaded parts of 

circles, which provides limited scope for comparing magnitudes of fractions, 

understanding equivalence, and operations with fractions (Clarke & Roche, 2009; 

Lamon, 2007). Recent research points to the importance of developing an 

understanding of the multiplicative structure of equivalent fractions as a basis for 

deducing a mental strategy rather than simply being taught a procedure (Wong & 

Evans, 2007, 2010).  

This study examined one teacher’s use of representations for equivalent fractions and 

the growth of her understanding – using the research question: What is the relationship 

between changes in the teacher’s use of fractions representations and the development 

of her understanding?  

METHODOLOGY 

The study is situated within a larger project that supported teachers’ professional 

learning as they strove to improve student engagement with, and understanding of, 

mathematics concepts and processes. A collaborative inquiry approach to teacher 

learning was taken, in which emphasis was placed on supporting teachers to be self-

directed learners (Timperley, Wilson, Barrar & Fung, 2007).  

The motivation for this particular case study arose from analysis of the data from a set 

of written tasks completed twice by all the project teachers. Along with changes in 

PCK, the researchers observed changes in the drawn representations of fractions used 

by the teachers in their task responses (Way, Bobis, Anderson & Cameron, 2013). This 

prompted a deeper investigation of the reasons for the representational changes, 

drawing on the additional data collected for the project’s case study teachers. Due to 

space restrictions, only data pertaining to the first task (See Table 1) is reported here. 

The case teacher, referred to as Lyn, was an early career teacher (4 years experience) 

in a non-government primary school (Catholic School system) in the metropolitan area 

of a large city in Australia. At the time of the study Lyn was teaching a mixed-ability 

Year 6 class of 23 children (approx. 12 years of age).  
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Scenario: Student Task Teacher Task 

Which fraction is larger 2/3 or 

5/6? Draw and write 

something to explain your 

reasons. 

Give three examples of student responses 

(correct or incorrect) to this task and 

comment on the likely thinking behind each 

response. 

Table 1: Task to assess teacher pedagogical content knowledge on equivalent 

fractions 

Design and methods 

An instrumental case study approach (Stake, 2003) was selected as being compatible 

with the primary goal of gaining insight into a particular phenomenon – that is, the 

change in a teacher’s use of representations of fractions and the growth of 

understanding. In this type of case study the researcher is focused on interpreting the 

available qualitative data using deductive ‘pattern matching’ techniques (Yin, 2009) 

under the guidance of a pre-determined proposition or conceptual framework, rather 

than attending to the full range of details of the case in an open-ended approach. This 

meant that the data in this study was deliberately searched for references to the two 

major ‘variables’ of representations and understanding, and other pieces of information 

excluded. As with all case studies the process of triangulation played an important role 

– comparing the information from different data sources – as the more convergent the 

data, the stronger the confidence in interpretation of meaning.  

Three data sources were searched to identify instances explicitly relating to 

representations and understanding, then pooled and compared to create a description: 

a) PCK assessment task (See Table 1), completed in February and again in June; 

teacher interviews from post-lesson observation (June), small group (November), and 

the final reflection (December); c) classroom lesson observation and video (early 

June). 

RESULTS AND DISCUSSION 

Initial procedural understanding 

Lyn began the project with a procedural understanding of equivalent fractions, which 

she came to realise had been influencing the way she taught fractions to her class.  

I didn't have a great understanding of fractions and I looked at the text book sort of things 

to help me and that's how I taught my lessons…. So to start with when I was first teaching 

fractions I was just teaching …- when you're changing it to an equivalent function whatever 

you do at the bottom you do at the top - procedural stuff.  

(Group interview Nov 2013) 

The responses to the PCK task (Time 1-Feb) also indicated limited deep understanding. 

For example, one of Lyn’s responses was a drawn pair of circles, one divided into three 

parts (2/3 shaded) and the other six parts (5/6 shaded). The comments on student 

thinking did not explain how the diagram might be used, or deal with the concept of 



 Way, Bobis, & Anderson 

PME39 — 2015 4-285 

equivalence. Another response for the task gave the procedure of multiplying the 

numerator and denominator, expressed in both words and symbolic notation. This 

aligns with Isak’s (2008) findings that teachers mostly use symbolic procedures, or use 

drawn diagrams in a basic illustrative manner, rather than as a conceptual tool. 

Exploration of representations and emergence of conceptual understanding. 

The use of the grid overlays to represent fractions (See Figure 1), introduced by the 

researchers in the May workshop, was new to Lyn, and her efforts to make sense of the 

model proved to be important for increasing her conceptual understanding. 

I can learn something myself and I think the biggest thing for me was having those overlays 

and actually seeing how equivalent fractions are made from another fraction. It was just 

amazing - it actually took me along time to get my head around it myself but once I got my 

head [around it]…. it was like oh, that's what it is. (Final interview Dec) 

The Time 2 PCK assessment task (June) was administered five weeks after Lyn’s first 

encounter with the grid overlays, and one week after the observed lesson Lyn drew a 

rectangle with vertical divisions to show thirds, and described the repartitioning of the 

whole into sixths by drawing a horizontal dividing-line across the rectangle. Her 

comment on student thinking referred to noticing that “5/6 is greater than the equivalent 

fraction [for 2/3] of 4/6”. 

 

 

A set of grid overlays consists of squares 

divided into equal parts to represent fractions, 

printed on transparencies. A grid is formed by 

overlaying one square with another – one with 

horizontal bars, the other with vertical bars. 

For example, overlaying the square showing 

halves with the square showing fifths creates a 

grid showing tenths. The halves and fifths are 

still observable, allowing comparison of 

fraction size or determination of equivalent 

fractions.  

Figure 1: Grid overlays. 

Working with the grid overlays provided Lyn with the opportunity to return to the 

Image-making and Image-having layers as described in the Pirie-Kieren theory. This 

then allowed the properties of equivalent fractions to be ‘noticed’. Lyn’s use of a single 

diagram to show both fractions in the comparison problem clearly demonstrates 

reference to the same whole (Lee, Brown & Orill, 2011) and the multiplicative 

relationship between the fractions (3 being a factor of 6), signifying a conceptual 

approach to the problem rather than procedural (Wong & Evans, 2011).  



Way, Bobis, & Anderson 

4-286 PME39 — 2015 

Translating new understanding into teaching strategies 

Lyn was motivated to share her new comprehension of equivalent fractions with her 

students and used the grid overlays as the basis for an “exploration and discovery 

lesson” observed by one of the researchers. She commented that the students “…could 

actually see the equivalent fractions forming in front of them” (Post lesson interview 

June). Reflecting on the student responses, Lyn decided she would like to “… give 

them some more time on their actual overlays and drawing and finding of fractions” 

and planned further lessons with the grid representation working with “specific 

denominators such as half and twelfths.” (Post lesson interview June) 

After several lessons using the grid overlays (not observed by the researchers) Lyn 

moved back to the written tasks that many of the students had found difficult at the 

start of the year. She attributes gains in the students’ conceptual understanding to the 

use of representations. 

But then introducing the overlays it was allowing the kids to see for themselves how an 

equivalent fraction is made and from there they were then able to do written tasks and all 

the other stuff. I've got the conceptual ideas forming….  So with that I'm using more hands-

on, more concrete materials.  From there, they're understanding different concepts….. 

(Final interview Dec) 

Through her teaching interactions, Lyn continues her own development of 

understanding (Pirie & Martin, 2000), while recognising the critical role the 

representation plays in her students’ learning. 

SUMMARY AND CONCLUSIONS 

The findings suggest that when Lyn began the project she did not possess a robust 

representation or imagery for the comparison of fraction magnitude and the 

relationship between equivalent fractions, and that this manifested in a reliance on 

symbolic procedures and inadequate models in her teaching. The exploration of the 

grid-overlays representation allowed Lyn to develop a deeper conceptual 

understanding of fractions, and inspired changes in pedagogy. 

We propose that the deliberate exploration of representations of mathematics concepts 

may be a key to increasing both the mathematical and pedagogical knowledge of 

teachers, supporting their ability to foster conceptual understanding in their students. 

Lyn’s case provides an example that can inform further investigations. 
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PRESERVICE TEACHERS’ TEMPERATURE STORIES FOR 

INTEGER ADDITION AND SUBTRACTION 

Nicole M. Wessman-Enzinger & Jennifer M. Tobias  

Illinois State University  

 

Ninety-eight elementary and middle school preservice teachers posed eight stories for 

integer addition and subtraction number sentences. Stories that were posed about 

temperature were analysed using a modified Marthe’s (1979) framework for integer 

problem types. This framework was modified based on the stories provided by the 

preservice teachers. This paper reports on the problem types utilized by the preservice 

teachers. Results highlight that preservice teachers do not frequently use some problem 

types.  Also, results may indicate that some number sentence types (e.g., -23 – -5=☐) 

support different problem types (e.g., State-State-Translation).   

INTRODUCTION  

Negative numbers and operations about them are notoriously challenging. Piaget 

(1948) reflected on this noting that, “Everyone knows the difficulty that secondary 

students [and even university students!] have in understanding the algebraic rules of 

signs – ‘minus times minus equals plus’” (p. 104). This is further complicated when 

our students are asked to reason conceptually about integers or apply integers to various 

contexts.  

BACKGROUND LITERATURE  

Research focusing on student thinking about integers and the ways young children 

reason has gained recent momentum in the field (e.g., Bofferding, 2014; Bishop et al., 

2014). Within this increased research about integers, a subset has focused on 

understanding the role of context within the realm of student thinking (Stephan & 

Akuyz, 2012; Whitacre et al., 2014). Yet, research situated in making sense of how 

preservice teachers (PSTs) reason about and use integers has mainly focused on their 

solution strategies to integers arithmetic problems (Bofferding & Richardson, 2013; 

Chrysostomou & Mousoulides, 2010). However, making sense of integers within 

contexts is important for PSTs to develop, as they will be teaching this topic to their 

students in the future.  

Both children and PSTs have difficulties with creating contexts for integer operations 

(Kilhman, 2009; Mukhopadhyay, 1997; Wessman-Enzinger & Mooney, 2014). 

Mukhopadhyay (1997) asked 32 students in grades 5, 6, and 7 to solve problems 

involving negative integers and tell a story that matched the equations. Four case 

studies were provided that demonstrated that students struggled to generate stories. She 

hypothesized that this was attributed to the various mental models the students were 

possibly employing. Similarly, Kilhman (2009) asked 99 PSTs to solve and describe 

their thinking for number sentences (e.g., -8 – -3= ☐). Of the 99 PSTs, Kilhman found 
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that only 23 utilized a model or context to explain the mathematics and did so with 

either number lines and/or temperature to explain their reasoning.  

Research with children has found that stories they pose for integer addition and 

subtraction can be classified in to the Conceptual Models for Integers of Addition and 

Subtraction (CMIAS), or ways of mathematically reasoning about and using the 

integers (Wessman-Enzinger & Mooney, 2014).  Temperature was found to be a useful 

context for developing two CMIAS, Translation and Relativity.  For example, 

translation concepts surface when a context suggests increasing or decreasing a 

temperature.  Relativity conceptions develop because the temperature scale itself is a 

relative scale with an arbitrarily, although intentionally, selected zero. 

THEORETICAL PERSPECTIVE 

For informing the translation conceptual model, it is important to understand 

contextual problem types that may support those ways of thinking. Marthe (1979) , in 

the first paper published about negative integers in PME proceedings, classified 

different problem types for additive structures for integers. The first category was 

SiTSf, where the initial state (Si) is translated (T) to the final state (Sf). Marthe then 

described that Si, T, or Sf could represent the unknowns in any given problem. A second 

category was T1T2T3. He described T1, T2, and T3 as “transformations,” although they 

can also be described as linear translations. From this problem type, Marthe described 

that there are three subsequent problems that can be posed, where T1, T2, or T3 are 

unknowns having differing magnitudes and signs.  For example, T1T2T3 with T2 

unknown, T1 and T3 with opposite signs, and |T1| < |T3|, could be contextualized as, “A 

car makes an initial journey of 20 km upstream. Then it makes a second journey. If it 

had made only one journey from its starting-point to its destination, it would have made 

a journey of 25 km downstream. Describe the second journey” (Marthe, 1979, p. 156).  

Marthe also included a category, SSS, which is composed of all states and no 

translations.  

Although Marthe did not provide examples for temperature, his problem types are 

applicable to the context of temperature. The dropping of temperature can be compared 

to travelling downstream; and, a relative position on a stream can be compared to the 

relative position on a temperature scale. Identifying the types of contextualized that 

PSTs pose can shed light into the difficulties that they may have and ways to support 

their learning as future mathematics educators.  

Research Question 

What kinds of stories about temperature do PST elementary and middle school teachers 

pose for integer addition and subtraction number sentences? 

METHODOLOGY 

Ninety-eight elementary and middle school PSTs participated in a study focusing on 

integer addition and subtraction while enrolled in an introductory mathematics content 

course.  The authors, who are also professors for this course, analysed the written tasks 
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from their students. The mathematics content course is designed to promote 

conceptually-oriented discourse around number and operations. To prepare PSTs to 

become mathematics educators, they are encouraged solve problems in multiple ways, 

present their own solution strategies, and understand the reasoning of others (Cobb & 

Yackel, 1996).  

Data Collection 

Data was collected across two academic semesters, Fall 2013 and Spring 2014. The 

PSTs were given 8 integer addition and subtraction number sentences (i.e., 16 – 4 = ☐, 

-17 + 12 = ☐, 18 + -13 = ☐, 8 – 20 = ☐,  -2 – 3 = ☐, -14 – -20 = ☐, -6 + -9 = ☐, -23 – 

-5 = ☐ ) and asked to pose stories that they thought best matched these number 

sentences. This task was given to the PSTs prior to instruction on integer operations 

and reasoning about integers contexts in the course. Although other integer tasks were 

given to the PSTs, this preliminary task is the focus of this paper. 

Data Analysis 

The 98 PSTs posed 8 stories each for a total of 784 stories. Of these, 108 (13.8 %) were 

posed utilizing the context of temperature. The 108 stories about temperature constitute 

the unit of analysis for this study. These 108 temperature stories were organized by 

integer addition and subtraction problem types and examined for themes. The authors 

identified themes such as: the realism of context, mathematical correctness, and the 

consistency of the problem type to the story. Although these themes became codes, this 

paper reports on the themes about problem types that emerged and were guided by 

Marthe’s (1979) macro-problem types (i.e., STS, TTT, SSS).  

The authors used constant comparative methods (Glaser & Strauss, 1967) to analyse 

the temperature stories. After an initial pass through of the temperature stories, the 

authors discussed and agreed on modifying Marthe’s STS problem type by extending 

it to State-State-Translation (SST) and State-State-Distance (SSD). Our SST is similar 

to Marthe’s problem type STS with T unknown, but we felt that making the 

permutations of the letters explicit captured an imperative difference in the problem 

types SST and STS. For SST, the S’s represent two relative numbers and T represents 

a translation from one relative number to another. We also wanted to make directed 

distance explicit, which is why we added the problem type SST and differentiated it 

from SSD, where the D represented distance without established direction. Although 

one may mathematically argue that all distance is directed, the PSTs posed stories in a 

way that direction was relative. We maintained Marthe’s problem types TTT and SSS. 

After the authors agreed upon these modified problem types (i.e., STS, SST, SSD, 

TTT, SSS), the authors coded each of the 108 temperature stories posed by the PSTs 

with these codes. The authors agreed on 92 of the 108 codes or 85.2% of the time. All 

of the disagreements were negotiated and resolved.  
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RESULTS & DISCUSSION  

Results are reported by problem type (i.e., STS, SST, SSD, TTT, and SSS). Though no 

stories were posed by the PSTs about temperature for 16 – 4 = ☐, the other seven 

number sentences each had ten or more stories about temperature posed for them.  

STS Problems  

When a story was posed with a relative temperature and a translation with the second 

relative temperature as the unknown, it was considered to be an STS problem. The 

PSTs posed STS problems the most for the number sentences -17 + 12 = ☐ and 8 – 20 

= ☐  (See Table 1).  

Number Sentence STS Problem Type  

-17 + 12 = ☐ 21/23 (91.3%) 

18 + -13 = ☐ 8/14 (57.1%) 

8 – 20 = ☐ 11/13 (84.6%) 

-2 – 3 = ☐ 13/16 (81.3%) 

-14 – -20 = ☐ 11/16 (68.8%) 

-6 + -9 = ☐ 12/16 (75%) 

-23 – -5 = ☐ 6/10 (60%) 

Table 1: Number Sentence and STS Problem Type  

A few common examples of STS problems that the PSTs posed for these number 

sentences are shown below.  

PST 31: The temperature is 8 degrees and then it goes down 20 degrees. What is the 

temperature now? 

PST 91: In New York the temperature was -17°F in the morning. If the temperature 

went up 12°F, what is the temperature? 

PSTs posed STS problems the least for the problem types 18 + -13 = ☐  and -23 – -5 = 

☐ .  Some common examples of the STS problem posed for 18 + -13 = ☐  are shown 

below.  

PST 26: During the day, the temperature was 18 degrees. By the end of the day, the 

temperature decreased by 13 degrees. What temperature was it by the end 

of the day? 

PST 29: The temperature is 18 degrees and it goes up by -13 degrees. What is the 

temperature? 

PST 18: The temperature is 18°. By tonight it will drop -13. What will the 

temperature be? 

Although each of these examples is considered to be a STS problem type, there are 

notable distinctions between these stories. PST 26’s story is for 18 – 13 = ☐, which is 
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equivalent to 18 + -13 = ☐. Although PST 29 posed a story that is mathematically 

equivalent to 18 + -13, it is not realistic to talk about temperature increasing by a 

negative number. However, PST 18 posed a story that is not mathematically equivalent 

to 18 + -13 = ☐ and instead posed a story for 18 – -13 = ☐, which is also not realistic.  

Number sentences like -17 + 12 = ☐ and 8 – 20 = ☐ seem to support STS problems 

more than number sentences like 18 + -13 = ☐ and -23 – -5 = ☐. 

SST and SSD Problems 

When a story was posed with two give relative temperatures and the translation is 

unknown, it was considered to be an SST problem. Whereas, when the story was 

provided with two relative temperatures and a distance, without direction, it was 

considered to be an SSD problem. Although not mathematically correct, PST 25 posed 

a SST problem for the number sentence -17 + 12 = ☐.  

PST 25: It was 12° outside Wednesday. It was 17 below zero degrees Thursday. 

How much had the temperature dropped since Wednesday? 

In this story both the temperatures are provided, and the question provides a distinct 

direction by indicating Wednesday to Thursday. Interestingly, the SST problem type 

was utilized more for problems like -17 + 12 = ☐, rather than other more reasonable 

number sentences, like -14 – -20 = ☐  (see Table 2).  For example, PST 74 provided 

an example of an SST problem that works well. 

PST 74: It is -23°F in Antarctica and it is -5 degrees in Illinois. What is the difference 

between Antarctica’s temperature and Illinois? 

The distinguishing feature of the stories posed that were consider to the SSD problem 

type is that no direction is provided in the stories. The most common number sentence 

used for the SSD problem type was -14 – -20 = ☐  (see Table 2). A common story for 

this number sentence and problem type is shown below.  

PST 4: One day in New York it is -14 degrees out. In Maine the same day it was -

20 degrees. What is the difference between the two states’ temperatures? 

Again, the direction is not established. Thus, one could use both number sentences -14 

– -20 = ☐  and -20 – -14 = ☐  to describe this story. -14 – -20 = 6 could be described 

as representing 6 degrees warmer in New York. Whereas, for -20 – -14 = -6, the -6 

could be described as representing 6 degrees colder in Maine. The SSD problem type 

was used more for problem types like -14 – -20 = ☐ and -23 – -5 = ☐. This could point 

to evidence that these number sentences could promote use of these problem types 

more. Overall, many PSTs did not use either the SST or SSD problem types frequently. 

Instead of SST or SSD problem types for number sentences like -14 – -20 = ☐ , PSTs 

would often pose stories like:  

PST 14: The temperature last night was -14°F. When I woke up, it had gone up 20°. 

What is the temperature right now? 
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Although -14 – -20 = ☐ is mathematically equivalent to -14 + 20 = ☐, the stories posed 

for both are not equivalently appropriate. PSTs need to be able to pose stories for -14 

– -20 = ☐ that are appropriate and realistic, rather than just posing mathematically 

equivalent stories for -14 + 20 = ☐. 

Number Sentence SST Problem Type  SSD Problem Type 

-17 + 12 = ☐ 2/23 (8.7%) 0/23 (0%) 

18 + -13 = ☐ 1/14 (7.1%) 1/14 (7.1%) 

8 – 20 = ☐ 1/13 (7.7%) 1/13 (7.7%) 

-2 – 3 = ☐ 1/16 (6.3%) 2/16 (12.5%) 

-14 – -20 = ☐ 0/16 (0%) 5/16 (31.3%) 

-6 + -9 = ☐ 0/16 (0%) 1/16 (6.3%)  

-23 – -5 = ☐ 1/10 (10%) 3/10 (30%) 

Table 2: Number Sentence and SST & SSD Problem Types  

TTT and SSS Problems  

None of the PSTs in this study posed stories for the TTT problem type presented by 

Marthe (1979).  However, some PSTs posed stories where two relative temperatures 

were provided and a third relative temperature was unknown, a SSS problem type.  

The SSS problem type was only used for the number sentences 18 + -13 = ☐ and -6 + 

-9 = ☐. The following examples are stories considered to be the SSS problem type for 

the number sentence -6 + -9 = ☐.  

PST 85: It is -6 degrees outside at 12 pm. At 12 am another -9 degrees is added. 

How many degrees is it at 12 am? 

PST 91: It is -6°F in Bloomington and -9°F in Chicago. What is the sum of the two 

temperatures? 

Number Sentence SSS Problem Type  Other 

-17 + 12 = ☐ 0/23 (0%) 0/23 (0%) 

18 + -13 = ☐ 2/14 (14.3%) 2/14 (14.3%) 

8 – 20 = ☐ 0/13 (0%) 0/13 (0%) 

-2 – 3 = ☐ 0/16 (0%) 0/16 (0%) 

-14 – -20 = ☐ 0/16 (0%) 0/16 (0%) 

-6 + -9 = ☐ 2/16 (12.5%) 1/16 (6.3%)  

-23 – -5 = ☐ 0/10 (0%) 0/10 (0%) 

Table 3: Number Sentence and SSS & Other Problem Types  
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Piaget (1952) referred to temperature as an example of how he defined intensive 

quantities, pointing out that temperatures cannot be summed. Here, the context of 

temperature, the SSS problem type is not appropriate. Perhaps some of the PSTs posed 

these types of stories for number sentences like 18 + -13 = ☐ and -6 + -9 = ☐ because 

there are not many temperature contexts that are appropriate for these number 

sentences. It seems that the SSS problem type is not even appropriate for the 

Translation CMIAS. Three stories that used wind chill incorrectly were classified as 

other because there wasn’t enough information to determine if the PSTs intended the 

problem to be TTT or STS. For example, a PST wrote, “It’s 18 degrees outside. There 

is a wind chill of -13 degrees. How warm does it feel outside?”  

CONCLUSION 

Most of the PSTs posed temperature stories that were the STS problem type. Although 

it is certainly important for PSTs to be able to make sense of integer addition and 

subtraction with the STS problem type, it is also important for PSTs to utilize other 

problem types like SST, SSD, and TTT. This study also provided evidence that certain 

integer addition and subtraction number sentences facilitate reasoning about integers 

in different ways and with different problem types. Number sentences like 18 + -13= 

☐ and -23 – -5= ☐ are potentially rich areas for robust discussions with PSTs given 

their struggles for appropriate problem types for these number sentences. For example, 

if it is -23 degrees in Chicago and -5 degrees in Boston, then discussions about how 

both -5 – -23= ☐ and -23 – -5= ☐ could fit that story would be productive. Because 

certain number sentences may support some problem types more than others, a variety 

of number sentences should be given when teaching integers to facilitate reasoning in 

different ways. Identifying PSTs’ conceptions, like we did in this paper, is instrumental 

to develop rich instructional tasks and understand how to prepare them to become 

future mathematics educators. 
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EXPLORING EARLY SECONDARY STUDENTS’ ALGEBRAIC 

GENERALISATION IN GEOMETRIC CONTEXTS 

Karina J Wilkie 

Monash University 

Exploring multiple representations of a relationship between two variables has been 

shown to help students learn conceptually about functions in algebra. This paper 

discusses an investigation of 102 Year 7 students, prior to their study of algebra, which 

considered their making sense of a linear functional relationship in two geometric 

contexts - through generalisation of a 2-dimensional figural growing pattern and 

through representation of its variables on a Cartesian plane. This provided the 

opportunity to consider how algebraic and geometric understandings might reinforce 

each other in different representations of the same function. Students used a variety of 

ways to describe the structure of the figural pattern and 40% were able to use this to 

create an explicit rule, with over 20% already using a symbolic expression or full 

equation. Two thirds of the students created an incorrect graphical representation of 

the relationship and the other third drew either a column or line graph. Implications 

for middle-school algebra learning are discussed. 

Understanding functions is foundational to Calculus, an important area of algebra used 

in many economic, science, and engineering domains. A key aspect of learning about 

functions as relationships between two variables is generalisation: the ability to notice 

and express mathematically this relationship. One route to developing students’ ability 

to generalise has been through the use of geometric growing patterns. Even young 

students have been able to learn about variables and functions in the context of varying 

quantities of things they can see (Blanton & Kaput, 2004), rather than learning rote 

procedures for creating equations from numerical sequences. There is still much to 

understand, however, about “how students can be assisted in becoming aware of 

structure in patterns and in using symbols to express these patterns” (Kieran, 2007, p. 

729). The generalisation of patterns and their representation symbolically and 

graphically are mentioned in curriculum for the middle years of schooling, such as the 

Principles and Standards for Mathematics (National Council of Teachers of 

Mathematics [NCTM], 2000). Students are also expected to learn coordinate geometry 

and systems such as the Cartesian plane. This paper discusses an investigation of Year 

7 students’ use of algebraic generalisation in two geometric contexts: their visualisation 

of the geometric structure of a pattern to then represent its linear functional relationship 

symbolically, and creating a representation of the variables on a Cartesian plane to 

describe spatially their ideas about the functional relationship. 

BACKGROUND  

There are a variety of strategies for teaching pattern generalisation and developing 

students’ functional thinking but one key focus is “the interaction of context, multiple 

representational forms, and technological tools” (Confrey & Smith, 1994, p. 32). These 
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are seen as crucial in supporting students’ development of functional thinking since 

they help students to explore the nature of functions conceptually, spatially, and 

symbolically. “The idea of a function embodies multiple instances, all collected within 

a single entity (e.g., a list, table, graph), a process that also involves generalising – 

answering the question, ‘What is it that all these instances have in common?’” (Kaput, 

1999, p. 146). This study focuses on the figural representation of a linear function with 

a 2-dimensional geometric growing pattern, and students’ ability to visualise, 

generalise, and symbolise it algebraically. It also investigates their subsequent ability 

to use spatial reasoning to represent and notice features of the same function to see how 

they might describe algebraic ideas.  

Students’ recognition of functional relationships seems to be enhanced by asking them 

first to describe the features of a geometric pattern before expressing these 

algebraically (MacGregor & Stacey, 1995). Warren and Cooper (2008) used concrete 

materials to create the structure of growing patterns and found that specific questioning 

highlighted for students the relationship between the two variables: a pattern item 

quantity and its position number in the sequence. The first part of the task discussed in 

this paper asked students to extend the pattern (shown in Figure 1), describe their 

visualisation of its geometric structure in words, and then generalise a relationship 

between the number of houses and the number of matchsticks needed. 

There are two approaches to generalising quantifiable aspects of a growing pattern. 

Finding the next item using step-by-step drawing or counting is referred to “near 

generalisation”; creating a general rule for any item in the pattern is known as “far 

generalisation” (Stacey, 1989, p. 150). These are also termed co-variation and 

correspondence respectively (Confrey & Smith, 1994). A co-variation approach which 

describes the relationship between successive items in a pattern is also known as 

recursive generalisation or a local rule (Mason, 1996). A correspondence approach 

describes the relationship between any item position number in the pattern/sequence 

and a quantifiable aspect of that item – also known as explicit generalisation or a direct 

or closed or relational rule. Figure 1 provides an example of these two approaches using 

the geometric growing pattern used in this study. 

The second part of the task asked students to create a graph of the growing pattern 

(with a provided Cartesian plane labelled with the two variables). The students’ 

responses to these two aspects of the task were analysed using a learning progression 

framework (Figure 2) adapted from an empirically substantiated instruction theory 

about geometric growing pattern generalisation (Markworth, 2010). A higher level 

represents more sophisticated functional thinking, showing the progression from co-

variation (recursive) to correspondence (explicit) approaches and the subsequent 

application to multiple representations. 
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Matchstick houses 

 

 

 

 

Co-variation: One house has 5 matchsticks and with each extra house 4 new matchsticks are added – the total 
numbers of sticks for each item in the pattern are 5, 9, 13, 17… 
Correspondence: Each group of houses has 4 matchsticks per house plus 1 extra for the left wall of the first house (t 
= 4n + 1)  

Figure 1: Two approaches to describing a geometric growing pattern 

1. Extend a growing pattern by identifying its physical structure, features that change, and features that remain 
the same (figural reasoning). 

2. Identify quantifiable aspects of items that vary in a geometric growing pattern. 

3. Articulate the linear functional relationship between quantifiable aspects of a growing pattern by identifying 
the change between successive items in the sequence (co-variation or recursive generalisation). 

4. Generalise the linear functional relationship between aspects of a growing pattern by: 
4.1 describing the relationship between a quantifiable aspect of an item and its position in the sequence 

(correspondence or explicit generalisation); or 
4.2 using symbols or letters to represent variables; or 
4.3 representing the generalisation of a linear function in a full, symbolic equation. 

5. Apply an understanding of linear functional relationships between variables to further pattern analysis and 
multiple representations. 

Figure 2: Learning progression framework for generalisation of geometric growing 

patterns (Wilkie, 2014, adapted from Markworth, 2010, p. 253) 

RESEARCH DESIGN 

This paper describes part of a design-based research project with six Year 7 

mathematics teachers and their classes which aimed to investigate how students can be 

assisted in developing their functional thinking through noticing geometric structure in 

patterns and exploring how variables and relationships can be represented in multiple 

ways. An initial survey of students (n = 102), prior to any algebra teaching that year, 

sought insight into their prior algebraic thinking to focus the teachers’ understanding 

and to inform the subsequent preparation of learning tasks for the teaching experiment. 

The students attended a large independent school in Melbourne and their mathematics 

teachers all agreed to participate in the project that year. Student learning and teacher 

learning were joint goals of the research (Gravemeijer & van Eerde, 2009). Three key 

aspects of the overall methodology were instructional planning and design, ongoing 

analysis of classroom events, and retrospective analysis (Cobb, 2000).  

The survey was developed by the author from adaptations of examples of problem 

types (e.g., Markworth, 2010; Mason, 1996; Rivera, 2010; Stacey, 1989). The task 

discussed in this paper asked students to extend, describe, and generalise the 

matchstick houses pattern (Figure 1). Their responses were analysed and assigned a 

score based on the levels from the learning progression framework (Table 1). A process 
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of cyclic check-scoring with pairs of researchers had been used in previous research to 

increase the reliability of results and the effective use of this framework as a rubric 

(Wilkie, 2014). These established principles were applied to this study. 

The types of visualisations students demonstrated were categorised and analysed in 

terms of the students’ subsequent ability to generalise explicitly the functional 

relationship. They were also asked to represent the pattern graphically, and to explain 

what they noticed about their graph’s spatial features. 

RESULTS AND IMPLICATIONS 

The following section focusses on four aspects of the matchstick houses task. 

Levels of functional thinking evidenced in pattern generalisation 

Table 1 presents the results of students’ attempts to visualise spatially, and then 

generalise algebraically, the matchsticks pattern with scores from the previously 

presented learning progression framework. 

Score on 
learning 

progression 

Description Percentage 
of students 

Illustrative example 

Pre-1 Did not demonstrate 
ability to extend pattern 
 

2.9%  

1 
 

Extend pattern correctly 
by drawing 
 

17.6%  

2 Use quantifiable aspects of 
pattern to find num. 
matchsticks in 7 houses 

15.7% “5+4+4+4+4+4+4=29 matchsticks” 
“29; add 4 each time” 

3 Use co-variation  
(recursive) approach to 
find num. matchsticks in 
17 houses and to describe 
recursive rule for any num. 
houses 

19.6% “Your first house will have 5 sticks so then for every 
new house you plus 4” 
“Every time you add a new house, all you need to do 
is add 4 matchsticks each time” 

4.1 Use correspondence 
(explicit) approach to 
describe in words the rule 
to find num. matchsticks 
for any num. houses 

18.6% “You simply times the amount by 4 and then plus one 
for the originating matchstick” 
“Draw or do the amount of houses minus 1 and times 
by 4 and plus 5 at the end” 

4.2 Represent rule as an 
expression using 
symbols/letters 

14.7%  “(4 × ?) + 1” 
“n × 5 - (n - 1)” 
“N × 4 + 1” 

4.3 Represent rule with full, 
symbolic equation 

6.9% “a × 4 +1 = b” 
“4 × x + 1 = ?” 

Unscored 
response 

Unclear student response 2.9% “Count the middle house first then the sides of the 
other houses”; “5 + (4 × number of other houses)” 
“Find out how much is in a number that goes into it 
or is close to it” 

No response  1.0%  

Table 1: Students’ highest level of generalisation on the matchsticks task (n = 102) 
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It can be seen that 40% of the students demonstrated a correspondence (explicit) 

approach to the task, with just over 20% using symbols or letters in an expression or 

equation. Another 20% used a recursive (co-variation) approach to find the number of 

matchsticks for 17 houses. Nearly 16% could find the number of matchsticks for 7 

houses but not 17 houses. Nearly 20% of the students demonstrated their ability simply 

to extend the pattern correctly, but not to use either a recursive or explicit strategy for 

generalisation. Nearly 3% of the students were unable to extend the pattern correctly 

and a further 3% made an unclear response to the task. Examples of symbols that the 

students used included question marks, underscores, N, n, a, b, x, Y, and h. Some 

students used a mixture of symbols and words such as ‘4 × ? + 1 = how many 

matchsticks’ or ‘(number × 4) + 1’. One student defined their question mark as ‘? = 

number of houses’ and then wrote ‘(4 × ?) + 1 =’. According to the Australian 

curriculum, students of this age are expected to be able to generalise explicitly, but not 

necessarily to use symbolic representation yet (Australian Curriculum Assessment and 

Reporting Authority [ACARA], 2009); this study found that less than half the students 

could generalise explicitly, but just over 20% of students could already use symbols or 

pronumerals in their functional rules. 

Noticing the geometric structure and subsequent generalisation 

By asking students to explain in writing how they visualised the matchstick structure, 

it was possible to gain insight into their spatial reasoning and to relate their 

visualisation descriptions to their subsequent generalisation. There were four 

noticeable types of visualisations that led to different but equivalent expressions of the 

rule. Table 2 presents the percentage of students who described their visualisation a 

certain way and then used it to generate a correct explicit rule (words or expression or 

full equation). 

It can be seen that the most common type of visualisation was Type 3 – one matchstick 

for the first wall and then ‘broken’ houses made up of four matchsticks each. A few 

students described the structure according to one type but then represented the rule as 

Type 3. One student created a table of values to explain how they saw the structure and 

then wrote an explicit rule. A few unusual uses of pronumerals emerged from the 

students’ geometric reasoning but space limits their inclusion in this paper. 

Representing the pattern on a Cartesian plane 

The ability to apply an understanding of functions to multiple representations is 

considered to demonstrate flexible and conceptual functional thinking. In addition to 

exploring the function through a geometric growing pattern and by creating a symbolic 

rule, the students were asked to draw a graph of the number of matchsticks for 1 to 10 

houses (with Cartesian axes provided and labelled). Interestingly none of the students 

correctly plotted discrete points for each ordered pair of values. Nearly 18% drew an 

accurate column graph and nearly 14% drew an accurate line graph. Two thirds of the 

students made an incorrect graphical representation and 3% made no response. 

Although use of the Cartesian plane (all four quadrants) is explicitly included in the 
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Australian curriculum for students at this level (ACARA, 2009), it seems that students 

may not have experienced its use in a conceptual context involving pairs of quantities 

of things; instead it appears that for this task they relied on their experiences with 

statistical representation (in the form of column graphs).  

Table 2: Students’ different types of visualisation and subsequent ability to write 

correct explicit rule (n = 102) 

Noticing geometric aspects related to the functional relationship 

Although none of the students correctly drew a set of points for the two variables on 

the axes provided, nearly one third did produce an accurate column or line graph. In 

terms of noticing aspects of the functional relationship from the spatial features of the 

graph, the most frequent response from these students was that the graph was 

increasing by 4 (14% of the total number of students). Nearly 9% referred to the graph 

as increasing or going up and 4% referred to the rate of change of the graph, e.g., “the 

number of matchsticks is increasing 4 per one house”. Relating the slope of a graph 

(gradient) to the rate of change of a function is an important conceptual idea that 

connects the spatial features of a function’s graphical shape to its symbolic equation 

(for a linear function, m in y = mx + c). It appears that some students were able to use 

their graph to notice spatially the change in one variable as compared to the other. 

Samples of other students’ explorations of spatial features of functional relationships 

via representing growing patterns using a Cartesian plane will be presented at the 

conference. 

Type of visualisation Illustrative example Students who wrote a 
correct explicit rule 

TYPE (1) 
 
 
One complete house then ‘broken’ houses (or 
vice versa: one complete at end) 

“5 matches is needed to make the first 
house therefore there will be one less 
house to make, the rest of the houses 
need 4 matches.” 

8.8% 

TYPE (2) 
 
 
Complete houses all joined but extra matchsticks 
in between to be removed 

“Original pattern has 5 matchsticks. 
Houses join sides (one less than the 
number of houses.” 

2.0% 

TYPE (3) 
 
 
One wall then all ‘broken’ houses 

“times 4 because that’s how many 
matchsticks per house, + 1 because 
that was the starting matchstick.” 

19.6% 

TYPE (4) 
 
 
 
Numbers of roofs, walls, and floors 

“roof  -> double number of houses 
sides of house -> number of house 
plus 1 
base -> the number of houses 
plus them together” 

4.9% 

TRANSITION BETWEEN TYPES / OTHER STRATEGY  4.0% 
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CONCLUSION 

A survey of 102 Year 7 students provided an opportunity to examine how students’ 

ability to make sense of the structure of a geometric growing pattern related to their 

subsequent ability to generalise it explicitly. It was found that students visualised and 

described the structure in four different ways and 40% were subsequently able to use 

their spatial understanding of the geometric pattern to create an explicit rule for the 

functional relationship. This is an expected ability in algebra for students at this age 

according to numerous middle-school curricula. Just over 20% also demonstrated the 

successful use of symbols and pronumerals for representing variables in their rules. 

From this evidence of many students’ ability both to define and use pronumerals in 

expressions and equations, it appears that it would be worthwhile to incorporate this 

aspect of algebra learning for primary pre-service and practising teachers to be able to 

develop students’ conceptual knowledge. Although the use of pronumerals to represent 

variables is not introduced in the Australian curriculum until Year 7 (ACARA, 2009), 

it appears that students may be ready for this important aspect of algebra before 

reaching secondary school. Further research on effective contexts for helping students 

learn about variables conceptually at this age would be valuable, to address the 

disengagement many students experience when learning algebra in more abstract ways 

at secondary school (Greenes, Cavanagh, Dacey, Findell, & Small, 2001). 

The study also provided opportunity to see if and how students could connect their 

understandings of the spatial features of another representation (on a Cartesian plane) 

to the same functional relationship and notice algebraic ideas from it. None of the 

students created a discrete set of points for each of the matchstick houses items (1 – 

10) even though the use of such a coordinate system is prescribed for upper primary 

students in the Australian curriculum (ACARA, 2009). Many students’ experience 

with graphing appeared to be limited to column graphs in the domain of statistical 

representation. It is unclear whether students have explored the use of Cartesian plane 

but did not link this to the type of context in the survey, or if this aspect of geometry 

in the curriculum is in fact being covered at primary levels. Nonetheless a small 

proportion of students were able to describe the gradient, rate of change or slope of 

their graphs. It would be worthwhile to consider ways to connect students’ algebraic 

and geometrical understandings to help them explore functional relationships spatially 

and provide another helpful conceptual context for their learning of algebra. 
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In the context of a reported decline in the proportion of Australian students opting to 

study higher-level mathematics, this qualitative study explored school leaders’ 

perspectives on their school-based approaches for influencing student subject choice. 

Dweck’s (2007) mindsets framework was used to analyse and discuss findings from the 

interviews of seven leaders. Tensions both within and between individuals were related 

to the pressure to consider student mathematics performance and the desire to promote 

learning for its own sake. 

Globally there seems to be a decline in the proportion of tertiary education students in 

Science, Technology, Mathematics and Engineering (STEM) fields. In 2006, a 

working group comprising of representatives from 16 countries in the Organisation for 

Economic Development published some findings and recommendations for the decline 

in student interest in STEM areas (OECD, 2006). The report indicated that there was a 

decline over the decade (1994-2003) in various countries in the absolute numbers of 

students in tertiary mathematics courses. Australia was one of the countries in the 

report. In these last two decades there has been a national decline in the proportion of 

Australian students electing to study intermediate and advanced mathematics in senior 

secondary years of schooling (McPhan, Morony, Pegg, Cooksey, & Lynch, 2008). This 

has implications for students’ eligibility for and ability to study in many of the tertiary 

STEM courses. While there has been an increase in the absolute number of students 

taking lower level mathematics subjects, the number of students selecting intermediate 

level mathematics subject has remained relatively stable, but the number opting to take 

advanced level mathematics subject has declined (Kennedy, Lyons, & Quinn, 2014). 

The concern is that Australia, as with other OECD economies, needs STEM expertise 

in upcoming generations to support its economic well-being and international 

competitiveness (OECD, 2006). 

Dweck’s (2007) theoretical framework on mindsets was used in this study to 

investigate leaders’ school-based approaches for influencing student subject choices 

and how these might relate to their beliefs about mathematics teaching and learning. 

The following section provides details on the context for the study by reviewing 

research on Australia’s declining enrolments and by providing an overview of the 

literature on factors that are implicated. 
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BACKGROUND 

In Victoria, Australia, senior secondary students in Years 11 and 12 study a number of 

subjects to obtain a Victorian Certificate of Education (VCE) for tertiary education 

(Victorian Curriculum and Assessment Authority [VCAA], 2015). In the various 

research studies found on factors affecting student VCE mathematics subject selection, 

there were common interacting themes related to student-based factors, school-based 

factors, and other external factors, discussed in the following paragraphs. 

Students’ beliefs about, attitudes and motivation towards school mathematics were 

found to be important influences in their decisions to continue with mathematics into 

their senior secondary and tertiary years. Beliefs about mathematics included students’ 

self-perception of ability and perceptions of subject difficulty and its usefulness 

(Kennedy et al., 2014). Attitudes such as students’ interest and liking in the subject, 

affected by their prior experiences and previous achievement in mathematics, were also 

factors (McPhan, et al., 2008). Mathematics teachers and how they teach mathematics 

affect how students perceive school mathematics ‒ their beliefs and self-concept ‒ and 

consequently their subject choices (McPhan et al., 2008). Career advisers also play a 

crucial role in informing students about their subject selection in accordance to their 

career options and to maximise university entrance scores for their choice of university 

courses (McPhan et al., 2008). In a national study on factors affecting the educational 

and occupational aspirations of young Australians, parental influences and academic 

performance were the two strongest predictors of occupational aspirations (Gemici, 

Bednarz, Karmel, & Lim, 2014). University entrance requirements and future career 

requirements are also critical considerations in students’ decisions about studying 

mathematics (Gemici et al., 2014). As many Australian universities no longer require 

students to study advanced level mathematics as a pre-requisite, even for STEM 

courses (McPhan et al., 2008), this external incentive to study advanced level 

mathematics has been removed. School programs such as the availability of subjects 

impact students’ subject choices. In a nationwide survey in 2005, only 63.8% of 

Australian secondary schools offer advanced level mathematics subject (Harris & 

Jensz, 2006).  

Overall, studies on students’ reasons for studying or not studying mathematics 

implicated student, school and external factors. In a number of these factors, the 

teachers’ influence and the school context play an important part in the formation and 

the development of students’ beliefs, motivation and attitudes, and consequently their 

decisions about subject choices for mathematics.  

The study described here was designed with the consideration of the literature reviewed 

and sought to incorporate elements that were highlighted as important for investigating 

student enrolments. The following section describes its design in detail. 

RESEARCH DESIGN 

As an initial phase of a larger study, the perspectives of Victorian mathematics leaders 

(coordinators, head of mathematics), who have a direct influence on their schools’ 
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policies and programs relating to student VCE subject enrolments, were explored using 

a qualitative case study approach. The research questions were: (a) What are secondary 

mathematics school leaders’ perceptions about the reasons for and the ways their 

schools address the issue of declining percentages of VCE students choosing 

intermediate and advanced mathematics subjects? (b) How do these perceptions inform 

our understanding of the influences on students’ mathematics subject choices, using 

Dweck’s (2007) theoretical framework? 

In-depth interviews of the mathematics leaders were conducted and audio-recorded. 

After obtaining ethics approval from the university, schools with different profiles 

(government, independent, or catholic sectors, co-educational and single-sex, from 

different social economic status [SES] backgrounds; details to be provided in 

conference presentation) were approached by the researchers via email or phone. A 

one-hour face-to-face interview with the mathematics leader was conducted for those 

who agreed to participate, with the exception of one leader who preferred to provide 

written responses to the interview questions. 

The interview transcripts were coded using Nvivo qualitative analysis software. An 

initial coding framework was developed jointly by the researchers. Each researcher 

then coded two interviews individually and then discussed results to ensure 

consistency. The coding framework was then modified for the next round of coding. 

This cyclical process was repeated multiple times for the full set of interviews. Themes 

emerged through the coding process, which were then analysed using Dweck’s (2007) 

theoretical framework of mindsets. 

Theoretical framework used for the analysis 

Dweck (2007) defined the fixed mindset as incorporating the belief that one’s qualities 

are carved in stone – that one has a fixed amount of intelligence, a certain personality, 

and certain moral character. Teachers with a fixed mindset tend to believe that 

“intelligence is a static trait” (Dweck, 2010, p. 26) and that they have no influence on 

their students’ basic intellectual capabilities. She defined the growth mindset as 

incorporating the belief that qualities are able to be cultivated through one’s effort, and 

although everyone differs “in their initial talents, attitudes, interests, or temperaments”, 

each person can grow through application and experience (Dweck, 2007, p. 7). It 

includes the belief that a person’s true potential is both unknown and unknowable, a 

focus on learning through effort, and the value of resilience in the face of setbacks. 

Studies on teachers’ mindsets found that low-achieving students were more likely to 

improve their progress with teachers who demonstrated a growth mindset (Dweck, 

2007). Although the two mindsets are conceptualised as either/or, Dweck (2007) 

cautioned that it is possible for an individual to hold different mindsets in different 

areas; her research found that the type of mindset held in a particular area is likely to 

guide an individual’s decisions in that area.  

Dweck’s (2007) framework on mindsets was considered a helpful analytic tool for the 

study because it provides a useful way to focus on the leaders’ perspectives on their 
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school’s management of students’ subject selection and how these might relate to their 

beliefs about mathematics teaching and learning. Additionally, it accommodates the 

multidirectional influences of beliefs among students, leaders, teachers, and parents, 

and also allows for the possibility of an individual holding different types of mindsets 

for different aspects of their beliefs. Nonetheless, this study acknowledges that the 

interplay between so many perspectives and how these correlate with or even mismatch 

what actually happens with a school’s enrolment process are obviously more complex 

in reality.  

DISCUSSION 

The following discussion focuses on the findings of preliminary analysis - two types 

of school-based approaches for influencing student subject selections in Years 11 and 

12 that the leaders raised in their interviews – and relates these to Dweck’s fixed and 

growth mindsets. Pseudonyms are used. 

Providing information and recommendations 

Six of the seven leaders described some type of input from the school for Years 9 and 

10 students when choosing Years 11 and 12 subjects. This input might come from the 

students’ mathematics teachers, careers staff, and a school coordinator or adviser. 

Several schools provided meetings with staff and students and parents to discuss 

options together; sometimes students had multiple meetings with different staff. 

Students’ Year 10 results, either midway through the year or towards the end of the 

year, were used as a key indicator of what subject/s might be most appropriate. The 

rationale behind these school-based strategies seemed to vary, depending in part on the 

leader’s own beliefs and mindset about mathematics learning. Several leaders indicated 

that their stance or that of their school advisers was one of the encouragement: “trying 

to do the highest level of maths which you’re capable” (Diana) or pushing “brighter 

students” to do intermediate and advanced level mathematics subjects (Angela). One 

leader encouraged Year 10 students to give higher-level mathematics a go as “you can 

always drop down” and “you don’t want people underrating themselves” (Eddie). 

Quite a few leaders referred to this ability to “drop down” from a higher level to an 

easier level of mathematics – “it’s possible to go that direction, it really is impossible 

to go the other” (Eddie). 

One leader indicated that some independent schools in Victoria encourage their 

brighter students to do the easier mathematics subject to try and maximise their 

university entrance score. Since final scores are allocated by rank according to a 

Gaussian (Normal) distribution for each unit (VCAA, 2015), it was expressed that this 

strategy was not only unfair to other students who needed to do the easy mathematics, 

it also discouraged students from learning mathematics at an appropriate level for them 

– a type of “dumbing down” (Angela). 

It can be seen that there are competing influences on a student’s subject choices. 

Encouraging students to choose a higher level of mathematics, “to give it a go” (Barb), 

seems to relate to a growth mindset, to challenge themselves and focus on learning and 
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mastery of mathematics. Yet although arguments about maximising one’s university 

score might relate to a fixed mindset and its focus on performance, the pressure on 

young people to think strategically about their future options is a significant one. One 

leader also explained that students, who enjoy mathematics and would do well in a 

higher level subject, nonetheless opt out due to pragmatic reasons that limited their 

choices to a certain number of subjects in Year 12 to maximise their scores. She 

described their teachers as “lamenting” over their understandable that disappointing 

choice to give up mathematics (Barb). 

Some leaders expressed that conflicting advice might be given to students by teachers 

and career advisers. One leader said “I have actually learned a few things this year 

about what Careers tells them that’s different from what we tell them as maths 

teachers” (Fiona). She described that  

Careers recommend everyone to do a VCE maths, particularly if they don’t know what 

they want to do, because it leaves options open. But, we know well and truly there are 

some students who are just not going to be successful at what we offer. 

While some leaders described encouraging some students – particularly capable ones 

– to challenge themselves (growth mindset), there was also an expressed concern about 

other students choosing a subject that their teacher believed would not result in 

successful outcome – “it’s just not viable, they’re just not going to (be successful) and 

they stress and then teachers stress and parents stress, and it’s not worth it” (Fiona). 

This response resonates with previous research on mathematics teachers which found 

that in the face of a student’s poor results, teachers demonstrating a fixed mindset 

tended to respond by saying that not everyone could be good at mathematics (Dweck, 

2007). 

Most leaders indicated that although students are given recommendations, their school 

policy is that students are free to go against them. Two leaders expressed particular 

concern about “migrant” or “EAL” (English as an Additional Language) students. One 

leader came from a high SES school and the other from a low SES school yet both 

indicated that many of these students “often want to do this subject (intermediate level 

mathematics) even if they are not capable enough” (Geena). One leader suggested that 

this was because “students have high expectations and their future studies require 

Maths Methods (intermediate level subject)” (Geena). The other leader related the 

issue to the design of examinations that “have increased in the level of English literacy” 

particularly the “extended response questions” which EAL students struggle to 

understand and therefore “just leave them blank” (Angela). She felt that these students 

were nevertheless opting for the more challenging subjects because “they’re 

prestigious”. In this situation, the students’ desire for progress in a harder subject 

(growth mindset) is at odds with the leaders’ belief that they may not have the 

capability to perform well (fixed mindset). Only one of the leaders indicated that their 

school imposed restrictions on students and did not allow them to go against the 

school’s decision for their subject choice. This is discussed in the next subsection. 
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Establishing school structures and pathways  

Several leaders described school-based structures that incorporated some form of 

streaming or tracking to provide pathways for students’ mathematics study, with the 

proviso that once the students reached Year 11, they could nonetheless still choose 

their subjects. One school leader did not advocate or employ streaming at all until 

midway through Year 10 where two streams (based on Levels 10 and 10A in the 

Australian Curriculum) are offered to students. This was viewed as an encouragement 

strategy to “build their confidence” and enable students who “would’ve bailed at the 

end of Year 10” to achieve some sort of success: “actually maths is not too bad; I’ll 

stick with it.” It also allowed “brighter kids to really start to extend themselves” (Barb). 

She saw this approach in terms of promoting a growth mindset – an opportunity to 

learn. Another leader (Angela) also kept mixed-ability classes but until the end of Year 

10, with separate programs for withdrawing students for support or extension. Yet she 

described pressure on her from her mathematics teaching staff to stream Year 10 into 

two levels and to prevent students in the lower stream from choosing the higher levels 

of mathematics in Year 11. Angela, unlike Barb, described her reluctance to stream 

Year 10 because it promoted a fixed mindset – she felt that streaming focussed students 

too much on their performance rather than on progress. She described her staff insisting 

that they did not have time to extend the “high fliers” if they had mixed-ability classes 

in Year 10 but she speculated that they were unwilling to take responsibility for their 

weaker students. She was also critical of many schools preventing students from 

completing Year 12 subjects earlier in Year 11 and she explicitly provided this option 

at her school to enable ongoing progress for those students who were ready and willing. 

Although Angela sent out letters of concern to students at the end of Year 11 about low 

results, she resisted her staff’s interest in introducing a “cut-off” (an E grade in Year 

11 would mean not being allowed to continue in Year 12). She felt that it was important 

to maintain students’ ability to choose, rather than sending a message that it was too 

late to make progress. She wished she could have more students “not caring about 

results but whether or not they’re improving”. This focus on progress not performance 

epitomises the growth mindset. Yet how to manage and maintain this mindset 

alongside pressures for university entrance and the current education system structure 

that focuses on performance, remains a challenge for those who want students to master 

mathematics for the inherent sake of their learning and development. 

Another leader, Diana, described her school’s structure (being trialled for the first time 

that year) that did in fact impose restrictions on a student’s subject choices, based on 

Year 9 examination results and some “shuffling” in Year 10. Students were placed into 

three streams based on their performance and only the students in the top stream were 

permitted to study the intermediate and higher-level mathematics in Years 11 and 12. 

The Year 9 teachers were asked to remind students about this “first little fork in the 

road for them” as a way to address “mucking [fooling] around and being lazy”. A 

flowchart showing these pathways was shown to lower secondary students to show 

them how their performance in Year 9 might “cut off the whole top row” (Diana). The 
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leader described this approach as an encouragement strategy since she believed that 

students appeared to work harder earlier on, yet the criterion for students was clearly 

about performance. Strategies for targeting younger students were also raised by two 

other leaders.  

CONCLUSION 

From the interviews with seven secondary school mathematics leaders, it can be seen 

that schools employ a variety of strategies for influencing and guiding students’ study 

choices in the senior years and include input from multiple sources – the leader, the 

mathematics teachers, the careers staff, coordinators, and parents. These strategies 

were often described by the leaders in terms of encouraging students to aim high and 

challenge themselves (growth mindset), or discouraging students from attempting a 

subject in which they were not deemed capable of succeeding (fixed mindset). 

Nonetheless, a majority of leaders indicated that students could override the 

recommendations and choose for themselves. One school was trialling a structure that 

disallowed students with low results from accessing the higher-level mathematics and 

another leader described pressure from the teaching staff to introduce a similar system 

in Year 11. 

There was the sense that the growth mindset was described by leaders when discussing 

the importance of enjoying mathematics learning through seeing its usefulness or 

relevance, or valuing opportunities for students to try and challenge themselves by 

attempting a harder mathematics subject, at least to begin with. But this was countered 

by strong concerns about some students not heeding the warning of teachers that they 

may be aiming too high and that realistically they were not capable of achieving 

success, which can be related to a fixed mindset. This tension between the need to 

consider performance and the desire to promote progress – learning for its inherent 

sake – was noticeable. There was also the sense that the leaders experienced tension 

through differences between them and the careers staff, or between them and their 

mathematics teaching staff, or between them and parents.  

Many believe that Australia needs increasing STEM expertise. Understanding their 

own mindsets and the mindsets of others may provide school leaders with insights into 

multiple perspectives on mathematics teaching and learning. This might help them 

develop effective strategies for encouraging more students to take higher level 

mathematics, not only at secondary levels but also in future learning. School’s 

curricular structure and content, and assessment modes and opportunities for 

mathematical experiences at lower year levels might “channel” students to certain 

academic pathways. Mobility between pathways, particularly upward mobility, might 

be limited. Such streams or pathways seemed more likely to determine students’ 

mathematics subjects in the middle years rather than later on. What is needed is a 

growth mindset and also ways to resolve the tension between the need for performance 

and the desire for progress. Further research would be worthwhile to explore these 
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tensions from the perspectives of students and with reference to their own mindsets in 

mathematics.  
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USING CRITICAL INCIDENT TECHNIQUE TO INVESTIGATE 

PRE-SERVICE TEACHER MATHEMATICS ANXIETY 

Sue Wilson 

Australian Catholic University 

 

High level of mathematics anxiety in pre-service primary teachers affects both their 

current study, and their future teaching of mathematics. This paper proposes Critical 

Incident Technique as an appropriate research method, and reports how it was used 

in a teacher education course to increase pre-service primary teachers’ understanding 

of the impact of previous mathematics classroom experiences on their identities as 

learners and teachers of mathematics. The results also provided insights for teacher 

educators and teachers into strategies that could prevent or diminish their students’ 

mathematics anxiety. The discussion highlighted the need for teacher educators to be 

aware of the perspectives of PSTs, the importance of verbalisation and the sharing of 

emotions, and outlined recommendations for further research. 

INTRODUCTION 

This paper demonstrates the use of the Critical Incident Technique (CIT), a robust 

research technique that is widely used for problem solving. This study applied CIT in 

order to investigate primary pre-service teachers’ (PSTs’) images of themselves as 

learners and future teachers of mathematics. The PSTs were asked to recall critical 

incidents in their mathematics learning, and examine their associated emotions. These 

written reflections were used to identify factors contributing to primary PSTs’ 

mathematics anxiety (mathematics anxiety).  

Critical incident reflections are descriptions of events that people remember as being 

meaningful in their experience. As this research sought to investigate factors that had 

an influence on PSTs, this paper defines “critical incident” in the sense of an incident 

that the participant selects and defines as having had an impact (Hughes et al., 2007); 

whereas some researchers, for example, Vandercleyen, Boudreau, Carlier, and Delens 

(2012) define a ‘critical incident’ as any incident on which the PST critically reflects.  

Research methods are needed which will identify strategies to elucidate the impact of 

mathematics anxiety. The paper suggests CIT as a method in teacher education to 

investigate the issue of mathematics anxiety. It contributes to an ongoing project 

investigating the use of CIT and bibliotherapy to address PST mathematics anxiety 

(Wilson, 2014), and aims to assist PSTs with mathematics anxiety to perceive their 

past experiences differently and re-evaluate their potential to become effective teachers 

of mathematics. 

THEORETICAL FRAMEWORK AND LITERATURE REVIEW  

This study is based in the interpretive paradigm, which holds that people socially and 

symbolically construct their realities. Blumer (1969) coined the term “symbolic 
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interactionism” for the idea that people’s actions are based on the meaning things have 

for them, derived from social interaction and modified through interpretation.  

Emotional responses are not determined by objective reality but by interpretation of 

events - by subjective reality. The ‘transactional model of emotion’ (Lazarus, 1991) 

links motivational, social and cognitive dimensions. According to Lazarus, a lived 

experience consists of contextual and personal factors, which determine whether the 

event will be appraised: primarily as harmful or threatening (negative emotion), or 

challenging or beneficial (positive emotion); and secondly, for likely future outcomes, 

and their coping strategies. 

Emotion disrupts cognitive processes, but PSTs learn when their beliefs, knowledge 

and skills are challenged. The self-analysis of an emotionally-charged experience is an 

opportunity to analyse their past actions and emotions, and the process of writing can 

be used to reflect on their actions and decisions. 

Causes of mathematics anxiety in PSTs 

Anxiety towards mathematics in PSTs has been widely publicised as an international 

issue. Mathematics anxiety refers to feelings of tension and fear in mathematical 

situations in school and in everyday life. High mathematics anxiety impacts on 

performance and achievement in mathematics (Sheffield & Hunt, 2006; Stubblefield 

2006). Primary PST’s mathematics anxiety has important impacts. It affects not only 

their current study but also their future teaching. Hence, identifying and addressing 

primary PSTs’ perceptions of these experiences, is a critical aspect of their education. 

Previous researchers have investigated the sources of mathematics anxiety, using a 

range of methods. Hoyles (1982) using semi-structured interviews, identified three 

areas for explanations of anxiety particularly related to mathematics - those derived 

from the nature of the subject mathematics, based on the influence of past experiences 

in mathematics and the self-concept of ability in the subject, and, concerned with how 

mathematics is taught and learned (including teacher pace and pressure). A number of 

researchers have used PSTs’ mathematics autobiographies (Ellsworth & Buss, 2000; 

Sliva & Roddick, 2001) to identify themes such as the powerful effect of teachers, the 

ways mathematics was presented (relevance, comprehension, and emphasis on skills 

and memorisation); and fear failure, and avoidance, in mathematics experiences. More 

recently, Lutovac and Kaasila, (2009), using an autobiographical interview with a 

student, identified that the teacher was the main character in her memories of negative 

experiences. Teachers who are hostile, hold gender biases, or embarrass students in 

front of peers play a powerful role in mathematics anxiety (Vukovic, Keiffer, Bailey, 

& Harari, 2013). The perceptual changes that occur as a result of mathematics 

classroom experiences are persistent and enduring. 

“People who claim that they were born without mathematical ability will often admit that 

they were good at the subject until a certain grade, as though the gene for mathematics 

carried a definite expiry date. Most people will also recall an unusual coincidence: that the 

year their ability disappeared, they had a particularly bad teacher.” (Mighton, 2004, p. 20) 
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Reflective thinking and Critical Incident Technique in PST education 

Reflective thinking is important to identify the assumptions that underlie thoughts and 

actions. Researchers have suggested scaffolds to elicit detailed reflections; for 

example, Gibbs’ (1988) reflective model can be summarised under six headings: 

Description – what happened? Feelings – what were you feeling? Evaluation – what 

was good or bad about the experience? Analysis – what sense can be made of the 

situation? Conclusion – what else could you have done? and, Action plan – if the 

situation arises again what would you do?  

Although Flanagan (1954) developed CIT to establish facts in situations where the 

critical incidents relied on accurate and truthful reporting, he later adapted his 

technique, and CIT has been widely used to solve problems in education, health, and 

industry, by focusing on real-life incidents. In particular CIT was modified to include 

individual perspectives and affective responses (Chell, 1998). 

Critical incident technique (CIT) is a well proven qualitative research approach that offers 

a practical step-by-step approach to collecting and analysing information about human 

activities and their significance to the people involved. It is capable of yielding rich, 

contextualized data that reflect real-life experiences. (Hughes et al., 2007 p. 49) 

The exploration of critical incidents can to challenge participants’ concepts of self. 

When analysing a critical incident, individuals ask: Why did I view the original 

situation in that way? What assumptions about it did I make? How else could I have 

interpreted it? What other action(s) might I have taken that could have been more 

helpful? What will I do if I am faced again with a similar situation? (Serratt, 2010) 

These questions can extend and elaborate the Analysis, Conclusion and Action plan 

sections of Gibbs’ (1988) reflective model.  

Critical incidents focus on participants’ lived experience. The method allows 

researchers to examine common situations, shared by a group, from the individuals’ 

unique perspectives, and in their own words. CIT permits a degree of replication, in 

that the context and outcomes may be apparent in other PSTs’ experiences. At the same 

time CIT provides the opportunity to identify and analyse even quite rare events, which 

may have devastating effects on vulnerable people (Pedersen, 1995). 

Flanagan (1954) was concerned to make sure that descriptions were factually correct 

because he was trying to identify good procedures, and accurate reporting was 

essential. However, where critical incidents are descriptions of vivid events that people 

remember as being meaningful, it is not important if the interpretation is correct, as the 

way a person perceives an event is real in its consequences. 

… like all data, critical incidents are created. Incidents happen, but critical incidents are 

produced by the way we look at a situation: a critical incident is an interpretation of the 

significance of an event. To take something as a critical incident is a value judgment we 

make, and the basis of that judgment is the significance we attach to the meaning of the 

incident (Tripp, 2012, p 8.) 
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The process of writing helps PSTs reflect on their perception of the event and its impact 

on their construction of themselves as a learner of mathematics. The study used CIT to 

access the narrative or storied nature of experiences, as narratives are important for 

meaning construction (Ricoeur, 1985). The aim was to understand the meaning PSTs 

attach to lived experiences. Instead of researchers selecting which parts of mathematics 

autobiographies to analyse for themes, in CIT the participant chooses the experience 

and identifies the impact. Participants were not guided to the selection of a negative 

experience, so their choice provided comparative data on PSTs’ positive and negative 

responses. By asking the research question: How do PSTs describe their mathematics 

experiences? the researcher used critical incidents identified by PSTs to illuminate key 

factors in the development of mathematics anxiety. 

METHODOLOGY 

The research aimed to examine the range of ways mathematics anxiety is experienced 

within a given context, with a range of participants. Given the complex nature of the 

phenomenon, and the aim of the study to access the narrative or storied nature of 

experience, a qualitative approach was appropriate. The interpretive tradition is 

characterised by prioritising lived experiences, with a focus on meaning of interactions 

and events. Erickson (1986) argued that it be used for answering questions like "What 

is happening, specifically, in social action that takes place in this particular setting? 

What do these actions mean to the actors involved in them, at the moment the actions 

took place?" (p. 121). These are clearly the type of questions asked in this study. The 

researcher attempted to understand mathematics anxiety by accessing the meaning that 

the participants gave to it, and to develop insights into lived experience from point of 

view of the participant. The quotations from PST narratives and vignettes reflect real 

experiences, chosen to illustrate themes identified by the literature. 

Procedure 

Ethics approval was based on accepted informed consent procedures. PSTs who agreed 

to participate in the study wrote a description during a tutorial of a critical incident 

(positive or negative) from their own school mathematics education that impacted on 

the way they thought about themselves as learners and future teachers of mathematics. 

Two important aspects of the research method were that PSTs chose the incident, and 

that they could choose a positive or negative experience. The participants were 268 

primary PSTs studying mathematics education units from Bachelor of Education 

(Primary) degree courses, at an Australian university. Data were collected from the 

perspectives of the participants, using their own words. Pseudonyms were used for 

privacy. 

Critical incident data analysis 

The traditional, binary analysis using Lazarus’ model of emotion, was used to identify 

ratios of positive and negative responses. A preliminary analysis based on the themes 

identified by other researchers was commenced, and further thematic analysis is in 

progress. 
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RESULTS AND DISCUSSION 

The critical incidents described occurrences that were pivotal not only personally, but 

also potentially had an impact professionally. They were related to situations that 

impacted on and potentially interfered with the PSTs’ beliefs, and identities. The binary 

analysis showed that the majority of the critical incidents were perceived as threats. Of 

the 268 PSTs, 236 (88%) wrote incident reflections. Of these, 102 (39%) were 

negative, 157 (61%) were negative and 2 (1%) described a neutral incident. 

The thematic analysis of the critical incidents identified similarities with themes from 

the existing literature. Of the 236 PSTs, 135 (57%) wrote about the teacher. Of the 140 

comments about the teacher, 46 (33%) were positive and 94 (67%) were negative. To 

be coded as teacher, comments had to specifically mention the teacher. If a comment 

mentioned two teachers, in separate years, both were counted separately. The emphasis 

on the role of the teacher reflected findings from other researchers (Ellsworth & Buss, 

2000; Sliva & Roddick, 2001; Lutovac & Kaasila, 2009). 

In addition, themes of the cycle of fear failure and avoidance, the students’ perceptions 

of the nature of mathematics, their self-image as a learner of mathematics, and the 

influence of parents, were consistent with the themes identified from mathematics 

autobiographies (Sliva & Roddick, 2001; Ellsworth & Buss, 2000). The themes show 

specific links to Hoyles’ (1982) second and third categories. Themes are illustrated 

using quotations from the PSTs’ transcripts. 

The role of the teacher 

Many PSTs recognised the lasting impact on individual teachers. For example Amanda 

wrote: “I never had a teacher that taught. They used the textbook and board and said, 

‘I've taught you’”. Another theme that emerged from interactions with the teacher was 

shame and humiliation. PSTs recalled experiences where the teacher made them feel 

embarrassed in front of their peers, for example, “I felt all the students at the tables 

were watching me and thinking I was stupid” (Patsy). Josh, another PST, recalled an 

incident from Year 8: 

On one occasion the teacher made me complete problem in front of the entire class on the 

whiteboard. I had absolutely no idea what I was doing and yet the teacher still made me 

complete the task. I tried to attempt the problem and it made me a joke in front of all the 

other students. It was a humiliating and degrading experience. 

These feelings of humiliation have strong links to avoidance. Previous researchers 

identified that PSTs retain intense memories of their experiences with disabling 

teachers. (Ellsworth & Buss, 2000; Sliva & Roddick, 2001; Wilson & Thornton, 2008).  

Cycle of fear, failure, and avoidance 

Feelings of embarrassment gave way to resignation and a sense of inadequacy –for 

example, Joyce wrote: “Can anyone blame a girl for wanting to stick to what they feel 

they can cope with – rather than risking the humiliation of tackling the unknown 

connections between big ideas”. This demonstrates the cycle of fear, failure and 
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avoidance (Sliva & Roddick, 2001) and is similar to reflections reported in previous 

research (Wilson, 2014). When an incident is perceived as a threat, the outcome can be 

lack of action, emotion focused coping, or the strategy of minimisation. 

The PSTs accepted blame, and felt inadequate, struggling with a lack of understanding. 

“We never understood what the formulas were or why they worked” (Joyce). “If I did 

finally work out how, as soon as the question changed slightly, I wouldn’t be able to 

do them” (Christine). Some responses showed the coping mechanisms that some PSTs 

used in situations that they found extremely stressful. “I didn’t understand and 

everything began to move away too quickly. I questioned and questioned but still 

couldn’t come to an understanding, so I quit.” (Hilary)  

Nature of mathematics and ways mathematics was presented  

The accounts highlighted the prevalence of a right/wrong dichotomy in school 

mathematics, and the discomfort that comes from mistakes. Mandy explained “this is 

how I viewed mathematics, as long as I knew the set of rules and applied them 

appropriately then I didn't really need to know why. To me mathematics was all about 

getting the right answer.” Kay wrote:  

Every morning we had an A4 sheet of multiplications. That just wrecked me. We were 

timed to do it. I couldn't do it and everyone else could. I still get anxious when papers are 

handed out in class and with multiplication. 

Debbie said she “was able to retain the formula, and put the correct variable in it but I 

did not really understand the concept”.  

Parents 

Although comments about the influence of parents and families tended to be less 

common, some PSTs felt pressured by parental expectations: 

I was okay up until Year 9 when I was taken into the 5.3 pathway and I could deal with it 

for a bit but it got VERY overwhelming. Anyway, my parents wanted me to stay in 5.3- it 

was a big thing for them that I was 'excelling' but in truth I was drowning (Danielle).  

Dad was good at mathematics. Mum was not. I got blessed with mum's background. Mum 

tried to help. Dad could do it straight away. He said: “why are you crying, this is the 

answer.” Dad yelled the roof off. He couldn't see why I couldn't understand. I said: “I get 

it” to stop him. Then I wouldn't ask him. (Marilyn) 

CONCLUSIONS 

The purpose of this paper was to explore CIT as a mechanism to encourage and analyse 

prospective primary teachers’ reflections on key aspects of their mathematics learning 

experiences, and to better understand the impacts of these incidents on their anxiety 

about mathematics. The technique helps PSTs to reflect on their construction of 

themselves as a learner of mathematics, as a result of their perception of that event. 

CIT can provide the catalyst for introducing a contradictory consciousness (Gramsci, 

1971) to question previous assumptions that they made as a student and stimulate 
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different ways of reflecting on past experiences. Understanding their appraisal 

processes and coping strategies helps them to reassess their anxiety towards 

mathematics and their previous evaluations of themselves as potential teachers.  

The findings contribute to teacher educators’ knowledge and understanding of the 

experiences of PSTs and their context, and how CIT could be incorporated into teacher 

education courses. Teacher educators need to know about the experiences of PSTs, and 

the importance of verbalisation and sharing of their emotions. The research also 

provides insights for school teachers on how their actions may be interpreted by 

students, and strategies to help avoid stimulating students’ mathematics anxiety. 

Future research will investigate the application of the critical incident techniques used 

in the study, in combination with bibliotherapy, to investigate their potential to combat 

mathematics anxiety in PSTs. Additional analysis will explore the themes of shame 

and humiliation that have arisen so strongly in the accounts. 
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Awareness of Mathematical Pattern and Structure (AMPS) has been described as a 

general construct that underpins early mathematical development. Five structural 

groupings of concepts that contribute to AMPS were assessed through a Pattern and 

Structure Assessment (PASA) interview conducted with 818 Kindergarten and Grade 

1 students. Network analysis was applied to map relationships between the levels of 

structural development and structural groupings coded from student responses. The 

network analysis revealed a complex web of interrelationships between students 

obtaining high and low AMPS levels and within and between particular structural 

groupings. The analysis showed also that responses in counting-based structural 

groupings may have masked the difficulties encountered in other structural groupings.  

INTRODUCTION 

Structural thinking can emerge from, or underlie mathematical concepts, procedures 

and relationships. Mason, Stephens and Watson (2009) view structural thinking as 

more than simply recognising elements or properties of a relationship but also as 

having deeper awareness of how those are used, explicated or connected. Over the past 

decade the Australian Pattern and Structure project has investigated, in a series of 

related studies, the development of patterning and structural relationships among 4 to 

8 year olds across a range of mathematical concepts (Mulligan, Mitchelmore, English, 

& Crevensten, 2013). These studies have shown that Awareness of Mathematical 

Pattern and Structure (AMPS) underpins the development of relationships in 

mathematics and can enable simple forms of generalisation from an early age. An 

interview-based Pattern and Structure Assessment (PASA) and a Pattern and Structure 

Mathematics Awareness Program (PASMAP) have been developed and evaluated 

(Mulligan et al., 2013; Mulligan, Mitchelmore, & Stephanou, 2015).  

In initial PME28 and PME29 reports a descriptive study of 103 first graders found that 

levels of structural development were consistent across a wide range of mathematical 

domains (see Mulligan et al., 2013). There was a high positive correlation (0.944) 

between student performance on 39 PASA tasks and four levels of structural 

development: pre-structural, emergent, partial, and structural (later extended to 

advanced structural). Multiplicative structure (including unitising and partitioning) and 

spatial structuring were found critical to development of pattern and structure. 

Individuals tended to show a single level across their responses, but the influence of 

task difficulty was evident. 
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At PME33, Mulligan and colleagues reported a 2-year longitudinal evaluation study of 

316 Kindergartners (see Mulligan et al., 2013). They found highly significant 

differences on the PASA between PASMAP students and the ‘regular’ group at the 

retention point (p < 0.002) and increased levels of structural development for PASMAP 

students. The study produced a valid instrument (PASA) and a Rasch scale of AMPS. 

While there was wide variance in student AMPS levels across items, there was a 

positive correlation between high AMPS levels and the successful solution of a broad 

range of novel mathematical items (tasks), including items involving growing patterns 

and multiplicative reasoning, not usually expected of 5 and 6 year olds.  

Research questions 

Further research questions arose concerning: (i) the coherence of proposed Structural 

Groupings (SGs) of PASA items (ii) the extent to which variance in student AMPS 

levels was reflected consistently across the SGs, and (iii) the influence of task difficulty 

on consistency of structural levels of student responses. In order to address these 

questions, a new validation study was conducted to examine complex connectivity 

within AMPS using revised forms of PASA with Kindergarten and Grade 1 students. 

This paper aims to provide insights into such connectivity using an innovative 

approach based in network theory. Network analysis was used to map connections 

between the SGs for students with high or low AMPS levels in order to test a theoretical 

prediction that some students who performed at a high level in particular SGs may not 

have performed well in other SGs.  

NETWORK ANALYSIS  

Network theory, a modern development of graph theory, has proven useful in 

examination of complex connectivity of concepts apparent in student learning in 

mathematics (e.g., Woolcott, Chamberlain, Scott, & Sadeghi, 2014). Mowat and Davis 

(2010), working from within the assumptions of Lakoff’s embodiment theory (e.g., 

Lakoff & Núñez, 2000), developed a theoretical approach to complex learning in 

mathematics using network theoretical approaches. Network connectivity may 

underpin the development of mathematics expertise, with student failures related to 

inadequate development of concept connectivity (see e.g., Woolcott et al., 2014).  

The exploration of networks and the connectivity of nodes within them, using empirical 

data, has developed rapidly in recent years (e.g., Newman, Barabási, & Watts, 2006). 

Network analysis offers significant potential, largely because the rules governing the 

relationships within such networks remain independent of the nature of the subjects 

being linked (Hanneman & Riddle, 2005) and because of rapid advances in software 

for analysing big data (e.g., Borgatti, 2012). 

Although network analysis has been applied widely in a number of differing 

disciplines, from economics to neural pathways (Newman et al., 2006), there has been 

little such application in education (e.g., Kop & Hill, 2008). Network analysis, 

however, has been used, without software, to examine the development of learning in 

school mathematics (Strom, Kemeny, Lehrer, & Forman, 2001). At PME38, Woolcott 
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et al. (2014) applied network analysis to the examination of mathematics multiple 

choice items and student responses, both within and across Grades 3 to 6. Such analysis 

illustrated complex connectivity between concepts derived from curriculum outcomes 

and concepts inherent in items, for example between words, symbols and graphics. 

This complex connectivity suggests opportunities for educators to recognise and better 

utilise conceptual relationships across mathematics.  

METHOD 

The study employed a purposive sample of 396 Kindergarten and 422 Grade 1 students 

from two metropolitan schools and represented students from a diverse range of 

cultural and socio-economic contexts. The PASA interviews were conducted 

consistently following protocols from previous studies (see Mulligan et al., 2013). Six 

trained interviewers piloted protocols for conducting the interviews and coding 

responses, with inter-rater reliability 0.82. The interviewers coded student responses to 

each item as one of five structural levels according to PASA descriptors: pre-structural 

(L1); emergent (L2); partial (L3); structural (L4); and, advanced structural (L5). 

PASA - The pattern and structure interview-based assessment instrument 

There were two forms of PASA used in interviews, PASA1 (14 items) and PASA2 (16 

items), with 7 common items (see Table 2). The items in each of PASA1 and 2 were 

based on five SGs (see Table 1 and description following the table).  

Sequences (SG1) involves recognising a (linear) series of objects or symbols arranged 

in a definite order or using repetitions, such as repeating and growing patterns and 

number sequences.  

Structured Counting (SG2) involves counting in groups, such as counting by 2s or 5s 

or on a numeral track with the equal grouping structure recognised as multiplicative.  

Shape and Alignment (SG3) involves recognising structural features of two- and three-

dimensional (2D & 3D) shapes and graphical representations, and constructing units 

of measure, such as colinearity (horizontal and vertical coordination), similarity and 

congruence and such properties as equal sides, opposite and adjacent sides, right 

angles, horizontal and vertical, parallel and perpendicular lines. 

Equal Spacing (SG4) involves partitioning of lengths, other 2D or 3D spaces and 

objects into equal parts, such as constructing units of measure. It is fundamental to 

representing fractions, scales and intervals.  

Partitioning (SG5) involves the division of lengths, other 2D or 3D spaces, objects and 

quantities, into unequal or equal parts, including fractions and units of measure. 
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Structural grouping PASA1 PASA2 Structural grouping PASA1 PASA2 

SEQUENCES 

(SG1) 

Item number 

 

SHAPE & 

ALIGNMENT (SG3) 

Item number 

 

Repeating pattern 1 — Grid completion 11 11 

Border pattern 2 2 
EQUAL SPACING 

(SG4) 
  

Spatial pattern 

continuation 
7 7 Distance 14 — 

Visual memory 1 - 

Triangular array 
3 3 The ruler — 14 

Growing pattern 

continuation 
— 13 The clock 10 10 

STRUCTURED 

COUNTING (SG2) 
  Bar chart — 15 

Visual memory 2 - 

Rectangular array 
8 8 

PARTITIONING 

(SG5) 
  

Skip counting by 3s 6 6 
Partitioning length 

thirds 
5 1 

Groups of four 9 — Comparing triangles — 12 

Ten frames 13 5 Partitioning money 4 4 

Hundred chart — 9 Comparing capacities 12 16 

Table 1: Structural Groupings (SGs) of PASA1 and 2 items.  

The development of the AMPS construct is based on the interrelationships between 

these SGs where some features are salient across SGs and some are more integral to a 

particular SG. For example, Sequences (SG1) and Structured Counting (SG2) both 

involve the idea of equal groups or units represented in a linear way. These SGs may 

be linked to Shape and Alignment (SG3) where students may count using a 2D grid. 

Equal Spacing (SG4) and Partitioning (SG5) both involve division into equal parts. A 

student’s AMPS level influences how these interrelationships may occur for that 

individual.  

Statistical analysis 

Primary analysis, based on coded student responses for one of the five structural levels, 

resulted in an AMPS scale (see e.g., Mulligan et al., 2015). Data for each of PASA1 

and 2 for each individual were organised in a matrix (item by structural level) with 

matrix construction following Woolcott et al. (2014). A statistical analysis was 

conducted on responses in this matrix to determine item difficulty in each of PASA1 

and 2 as a complement to network analysis. The percentage of responses at each level 

for each item was reviewed and, if this percentage was greater than 33%, the response 

across the cohort at this level was considered as ‘high frequency’ (see Table 2 in 

Results and Discussion).  
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Network analysis: Structural Groupings (SGs) 

Each matrix was analysed using network software (Borgatti, 2012) in order to visualise 

(map) pairwise connections between items for students who obtained level 5 and/or 4 

(L5/L4) in some items and level 2 and/or 1 (L2/L1) in others. If students, for example, 

obtained L4 in a PASA1 item, then a network map (graphical representation) was 

generated that showed connections to the other items in which these students also 

obtained L4 and, as well, connections also to items in which these students also 

obtained L1.  

There were four maps generated to show all such connections, with a supplementary 

set of 24 maps providing more significant connections on a 10% to 60% basis—for 

example, where 10% of the students who obtained L4 on item 8 also obtained L4 or 

L2 on other items (e.g., see Figure 1). If at least one student obtained the same level on 

each item in an entire SG, then this was considered a ‘coherent grouping’. Network 

maps were used in conjunction with the statistical analysis to examine variance across 

levels, and coherence within SGs.  

RESULTS AND DISCUSSION 

Statistical analysis 

There was variance across levels for most students: no student obtained a single level 

in all items in either PASA1 or 2; and, no student obtained only L4 or only L5 in either 

assessment. This variance appeared biased toward high levels in SG1 (Sequences) and 

SG2 (Structured Counting). There was a high frequency, for example, for numbers of 

students who performed at L5/L4 in PASA1 in the SG1 and SG2 items 1 & 7 and 6, 8, 

9 & 13, respectively (Table 2). In contrast, there were higher frequencies in L2/L1 in 

the SG4 (Equal Spacing) and SG5 (Partitioning) items 4, 5 & 12 and 10, respectively 

(Table 2). In PASA2, there were also high frequencies in L5/L4 in SG1 and SG2 and 

high frequencies in L1/L2 in SG4 and SG5, but there were also high frequencies in the 

single item SG3 (Shape and Alignment) at L5/L4. 

 PASA1  PASA2 

Level 
High frequency (>33%) 

of responses in items 
Common items 

High frequency (>33%) 

of responses in items 

1 4, 5  4, 5 (=1) 1, 4, 12 

2 8, 9, 10, 11, 12 12 (=16) 14, 16  

4 1, 6, 7, 9, 12  6, 7, 12 (=16) 6, 7, 11, 16 

5 1, 7, 8, 13  8 6, 8, 9, 11  

Table 2: Summary of high frequency levels of responses in PASA1 and 2 items. 

The difference between the frequency of responses at L5/L4 and L2/L1 for SG1 and 

SG2 may be attributed to the relative difficulty of the items or to the way that students 
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used these structures. For example, in item 1 in SG1 the model of the repeating pattern 

provided the structure of the unit of repeat and hence this item was easier than those in 

which a student had to construct the unit (Mulligan et al., 2015). Similarly, SG2 items 

involved a student using structured representations (e.g., number track), where the 

structure is partially developed. In some cases, a student identified the structural 

features of the representation, such as identifying equal spaces, but others managed to 

elicit a correct response without utilising the structural feature. Hence, it was possible 

to use superficial strategies to obtain a L5/L4 response without attending to deep 

structural features (e.g., see Mulligan et al., 2013).  

Network analysis 

This paper focuses on three selected features of the network maps: connections from 

high (L5/L4) to low (L2/L1) AMPS levels; connections within SGs; and, connections 

between SGs, these being observed at L5/L4 with students connected to L2/L1. 

First, using all connections, the network maps showed that in PASA1 and 2 there were 

some students who obtained L5/L4 in one item who also obtained L1/L2 in at least one 

other item. Although the items were similar to those of high frequency in the statistical 

analysis, an averaged value, the network maps provide evidence that some individuals 

obtained several of the high frequency items connected at either L4/L5 or L2/L1. This 

variance, however, was not consistent across the cohort when more detailed 

connectivity maps (10%-60%) were examined (e.g., see Figure 1).  

 

Figure 1: Network map showing detail of connections (10%) from L4 to L1 in 

PASA1. The annotation PASA1.6_4 indicates PASA1, item 6 at L4.  

In PASA1, there were no connections of L5 with L2/L1 in any of the detailed maps 

and in PASA2, connections of L5 items with L2/L1 were seen only in one detailed map 
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(10%), for the counting-based items in SG2 and item 11 in SG3 (at L5). This was 

expected since very few students obtained the most advanced structural level (L5). 

What distinguishes students at L5 is that they can generalise.  

In PASA1 there were, however, L4 to L2/L1 connections for SG1 and SG2, as well as 

for item 12 in SG5, but only in the 10% map (see Figure 1). This connectivity was 

similar in PASA2, except that additional connections were found for item 10 in SG4 

(clock) and item 16 in SG5 (capacity). This may reflect item difficulty, i.e., item 12 

(=16 in PASA2) involved comparing the capacity of cups where the cup size was given. 

Students may, therefore, have used estimation and superficial counting strategies. 

These findings again reflect the statistical analysis, but pinpoint individuals with 

connections across these SGs.  

Second, in both PASA1 and 2 there were both coherent groupings and connections 

within SGs at L5, for maps of all connections of L5 with L2/L1, but not in the detailed 

maps. This was similar for all connections of L4 with L2/L1, but in detailed maps there 

were connections within the counting-based SG1 and SG2.  

Third, in PASA1 and 2, maps for all connections of L5 with L2/L1, there were 

connections between some items across all SGs, but predominantly between items 

across SG1, SG2 and SG3. There were, however, no connections between SGs in the 

more detailed maps. This may reflect the small number of students at L5. In PASA1 

and 2, maps for all connections of L4 with L2/L1 showed connections between the 

coherent groupings SG1 and SG2, and these also connected to SG3. Connections 

between items across all SGs were seen in all maps of L4 with L2/L1. This finding is 

consistent with other forms of connectivity shown for the SGs linking simple 

repetitions, growing patterns and counting sequences. 

IMPLICATIONS AND FUTURE RESEARCH DIRECTIONS 

This paper provides only a limited description of particular forms of connectivity seen 

in the network analysis, but it does provide exemplars of important interrelationships 

between mathematical concepts. The application of network theory outlined here draws 

on extensive research on complex connectivity in mathematics (e.g., Lakoff & Núñez, 

2000; Mowat & Davis, 2010) and the exemplars provide an initial examination of 

whether network analysis is functional in the context of early mathematical 

development. The innovative combination of statistical and network analysis 

illustrated in this paper provided insight into the complex connectivity in the construct 

AMPS (Mulligan & Mitchelmore, 2009). This complementary approach indicates that 

students who obtain high AMPS in the counting-based SG1 and SG2 may also obtain 

high AMPS in items where they can use superficial counting strategies. Importantly, 

an arguably significant number (10% or more) of these students obtained also L2/L1 

in items of other SGs, such as SG4 and SG5. 

A more comprehensive study is being undertaken to examine whether the theoretical 

SGs are as meaningful as the initial analysis here suggests. Such a study will be 

multidimensional and make use of network analysis as a complement to other statistical 
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methods, such as Rasch analysis (e.g., Mulligan et al., 2015). This may shed more light 

on the interconnectivity of theoretical SGs since these sometimes overlap. This may 

also facilitate the disentanglement of the influence of item difficulty and student 

awareness of pattern and structure in their responses—task difficulties may depend 

partly on prior knowledge, skills and experiences as well as on AMPS. This may be 

complicated by differential individual student development across the structural 

elements being examined. A more comprehensive study may also enable examination 

of the limitations of using a small numbers of items in each SG. Additionally, 

longitudinal network analysis of the growth of student AMPS over time could provide 

new direction for establishing pedagogies promoting more coherent structural 

development in early mathematics. 
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SOME FEATURES OF MATHEMATICS ANXIETY FROM 

COGNITIVE NEUROSCIENCE FOR THE FUNCTIONAL TASKS 
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This study used EEG in the functional tasks to investigate mathematics anxiety. We 

divided the participants into two groups of undergraduate students, twenty of high 

mathematics anxiety (HMA) and twenty of low mathematics anxiety (LMA). All 

participants solved the functional tasks composed of the quadratic function with 

graphical and algebraic representations. To this end, HMA group had longer reaction 

time and larger amplitude than LMA group. In addition, both LMA and HMA groups 

had larger amplitude in graph-to-algebra tasks than algebra-to--graph tasks. We 

suggest that mathematics anxiety must be studied through EEG in more specific ways 

to help students to lessen their MA. 

INTRODUCTION 

In the modern research, the topic of mathematics anxiety (MA) in mathematics 

education, which is experienced during learning mathematics has been interested since 

the mid-19th century. Especially in Korea, the problem of the affective domain is 

getting more attention than the cognitive domain in the mathematics achievement in 

relation to building up the character of education. By the advance of the tools in the 

brain science technology, it becomes possible to measure EEG that had been hard to 

check before. 

This study was to find some features of MA by brain-based measurement in order to 

understand clearly what happens in our brains during doing mathematical tasks, and to 

provide a way to study MA with implications for the future of mathematics education. 

For the purpose of the study, in order to investigate the relationship MA and EEG 

measurement in the tasks of function, the research questions were set as follows: 

Firstly, what percent showed in the correct answers and the reaction time between the 

MA groups? Secondly, what differences of functional thinking in EEG showed 

between the graph-to-algebra and the algebra-to-graph translations of the HMA and 

LMA groups? 

THEORETICAL FRAMEWORK 

1. Definition of MA 

In this study, we defined that MA is individual’s feeling of anxiety in situations where 

it is necessary to solve a mathematical problem. 

2. Brain-based Research 

One of the research of MA through the EEG during execution of the arithmetic is 

Colome, Nucez-Pena, and Suarez-Pellicioni (2013). In their study, the researchers 
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analysed the differences of people who were evaluated as high mathematics anxiety 

(HMA) when solving arithmetic problems by EEG. Since it was P600, and P3b waves 

that were known related to logic, decision, and cognition in brain, the researchers 

analysed them on the EEG by event-related brain potentials (ERPs). This experiment 

illuminated the research of Faust (1996) by EEG.  Faust (1996) had argued that children 

who had HMA needed more time to solve simple or comlpex addition than children 

who had LMA. Regardless of MA, there are some research using brain-based 

measurement in the functional tasks, which are Waisman et al. (2013), and Thomas et 

al. (2010). These studies suggested how the functional tasks were constituted and 

practiced. In the study, Thomas et al. (2010) classified functional concepts into four 

formats because this functional concept is too complex and limited portions that could 

be measured by EEG. They used linear function and quadratic function made into eight 

tasks which were constituted in four formats, i.e., graph to graph, algebra to algebra, 

graph to algebra, and algebra to graph. 

Waisman et al. (2013) developed the tasks of algebra and graph for children divided 

into five groups who were genius children, normal children, children having good 

mathematics practice, children not, and super genius children. They tried to find out 

factors about the genius by ERPs. In results, the children of more genius or more having 

more good mathematics practice had smaller EEG width. This meant that when solving 

problems, HMA group had more loads in the brain than LMA group. 

METHODS 

1. Participants 

To achieve this research purpose, the participants were 40 of undergraduate students 

attending one university which located in Kyunggi State, Korea. They consisted of 20 

of students who enrolled in the department of natural science and 20 in the department 

of humanities and society. Each participant completed the MASS before taking the 

mathematical tasks. After the data were collected, we analysed statistically using SPSS 

after using the brain wave analysing program, ERP. An average of MASS of the total 

of 40 students was shown 2.99 points. Therefore students were divided into the low 

mathematics anxiety (LMA) group and the high mathematics anxiety (HMA) group 

based on 3.0.  On the contrary, the MA of students of social sciences was scored at 

average 3.7 which was much higher than the students of natural science. In particular, 

MA in the factor of “test and performance” had the highest score on average 4.0. They 

showed the lowest core, 3.0 in the factor of 'motivation'.  

2.  Research Instruments 

1)  Mathematics Anxiety Scale for Student 

Ko, & Yi (2011) revised a Mathematics Anxiety Scale for Students (MASS), referring 

to MARS, MAS, MAQ, MARS for Adolescent students developed in the previous 

research in order to identity mathematics anxiety per factor and to help Korean students 

figure out what factors of MA affected more so that the reasonable intervention can be 
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provided. It was constructed in a total of 65 items of the questionnaire. The MASS was 

divided into four domains with twelve factors. Its alpha value of Cronbach per factor 

was proved from 0.7 to 0.9. We revised some words and phrases to make them proper 

to the undergraduate students. 

2)  Functional tasks  

Functional tasks were composed of , ,  in standard 

type . Each participant solved a total of 20 of graph-to-algebra and 20 of 

algebra-to-graph problems. Thus, each participant solved a total of 40 numbers of 

problems. 

The progressive order of functional tasks was as follows. After informing the beginning 

with a mark, “*” presented for 500ms, there is a blank time of 200ms. After the graph 

or algebra was presented for 3300ms, there is a blank time of 2000ms. Then, After the 

algebra or graph was presented for 3000ms, then it was supposed to inform the end 

with a mark, “+” for 500ms. Finally, there was a blank time of 500ms before the next 

problem was presented. Therefore, the total time to solve one set of problems was 

10000ms. 

  Fig. 1: Time table of one graph-to-algebra format 

3.  Methods of Measuring EEG 

The machine was the Brain Products, V-AMP developed by Brain Vision standard Inc. 

The electrode is composed 16 channels. Their Professional Recorder software and 

analysis program were used as an Analyzer. For the method of the measurement EEG, 

we used the event-related brain potentials (ERPs) measurement method in the case of 

using the visual stimuli. Because ERP experiments are performed by opening the eyes, 

eye movement can affect the measurement of EEG so we used the filtering function of 

Analyzer to remove the unrelated signals.  

EEG measurements were carried out in a state of controlling the movement of the 

subject's body in a quiet environment. Interrupts in EEG generated by the influence of 

electromagnetic waves of the PC and the monitor used to measure the EEG, were 

reduced by allowing some distance about 1.5m between the monitor and a participant. 

Also, the experiments were carried out by using a shielding fiber. After the participant 

entered the experiment room and had the time of 10 minutes to adjust the electrode to 

wear the EEG senser, and another 10 minutes of time are needed to stabilise EEG. 

When brain waves were stable on the screen, they were asked to raise their hand to run 
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the E-Run program and executed the task. After the task performance was saved in the 

EEG, we removed the EEG senser and conducted simple interviews with participants. 

RESULTS 

1. Research question 1 

 MA RT 

 N=40 

MA -  

RT .681* - 

* p<.05 (Mathematics Anxiety=MA, Reaction Time=RT) 

Table 1: Correlation analysis of MA and RT in algebra to graph format 

 MA PCA 

 N=40 

MA -  

PCA .131* - 

* p<.05 (Mathematics Anxiety=MA, Percent of Correct Answers=PCA) 

Table 2: Correlation analysis of MA and PCA in algebra to graph format 

As we see in the table above, the relationship of MA and RT was statistically significant 

in algebra to graph format (r=.681, p<.05). That is, MA and RT were found to have a 

correlation of about 46% (  =.46), having a positive correlation. This is the same as 

the result of Colome (2013) that the process of the group of HMA in determining the 

working memory took longer. Contrariwise, MA and PCA were not correlated 

significantly (r=.131, p<.05). 

In the graph to algebra format, the average of RT and the average of the HMA group 

were 2.105 second and 89.793% respectively. The answers of 47 problems out of a 

total of 460 problems were incorrect. Among 47, in 20 of correct problems they chose 

incorrect answers and in 27 of incorrect problems they did in an opposite way. 

In graph to algebra format, the average of RT and the average PCA of LMA group 

were 1.576 second and 90.699% respectively. The answer of 32 problems out of a total 

of 340 problems is wrong. Among 32, in 14 of correct problems they chose incorrect 

answers and vice versa in 18 problems. 
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 MA RT 

 N=40 

MA -  

RT .552* - 

* p<.05 (Mathematics Anxiety=MA, Reaction Time=RT) 

Table 3: Correlation analysis of MA and RT in graph to algebra format 

 MA PCA 

 N=40 

MA -  

PCA .269* - 

* p<.05 (Mathematics Anxiety=MA, Percentage of Correct Answers=PCA) 

Table 4: Correlation analysis of MA and PCA in graph to algebra format 

As we see in the table above, the relationship of MA and RT was statistically significant 

in graph to algebra format (r=552, p<.05). That is, MA and RT were found to have a 

correlation of about 30% (  =.30), which had a positive correlation. Also, MA and 

PCA had a weak correlation (r=.269, p<.05). 

 HMA group LMA group 

algebra to graph 93.044% 92.069% 

graph to algebra 89.793% 90.699% 

Table 5: PCA by the degree of MA in formats 

 HMA group LMA group 

algebra to graph 1.567 sec 1.201 sec 

graph to algebra 2.105 sec 1.576 sec 

Table 6: RT by the degree of MA in formats 

As a result, HMA group responded more slowly than the LMA group when performing 

the graph to algebra format tasks 

2.  Research question 2. 

In this study, we analysed P300 which was a brain wave that corresponds to 200ms ~ 

400ms from stimuli. “The P300 is considered to be an endogenous potential, as its 
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occurrence links not to the physical attributes of a stimulus, but to a person's reaction 

to it. More specifically, the P300 is thought to reflect processes involved in stimulus 

evaluation or categorization” (referred to Wikipedia). We tried to observe EEG of two 

processes. One process is that students watched the graph of a quadratic function first 

and memorised it, then verified whether an algebraic expression related to the graph 

through visual stimuli was true or not. We named this process the graph to algebra 

format. The other process is the reverse of these two representations which we named 

the algebra to graph format.  

Fig. 2: EEG in algebra to graph tasks Fig. 3:  EEG in graph to algebra tasks 

black: HMA, red: LMA black: HMA, red: LMA 

As shown above, the result of EEG in both algebra to graph format and graph to algebra 

format was that the amplitude of HMA group was shown larger than LMA group. In 

the algebra to graph format, the maximum amplitude of LMA group was -28μV and 

the maximum amplitude of HMA group was –36μV (See Fig. 1). In the graph to algebra 

format, the maximum amplitude of LMA group was –35 μV and the maximum 

amplitude of HMA group was –42μV (See Fig. 2). It was analysed that students with 

HMA showed greater loads on working memory when solving two kinds of tasks. This 

result is matched to the previous study. 

 

  



 Young Min & Choi-Koh 

PME39 — 2015 4-335 

Fig. 4: The difference of S1 and S2 in 

LMA group 
Fig. 5: The difference of S1 and S2 in 

HMA group 

black: S1, red: S2 black: S1, red: S2 

The EEG outcome when performing algebra to graph format is referred to S1. The 

EEG outcome when performing graph to algebra format is referred to S2. Figure 4 

shows that the difference of minimum of S1 and S2 is 11 in LMA group. Figure 5 

shows that the difference of minimum of S1 and S2 is 14 in HMA group. And the 

amplitude of S2 was larger than S1 both LMA and HMA group. This means that there 

are more loads on working memory when performing the graph to algebra format than 

the algebra to graph format. 

CONCLUSION 

The correlation between the percent of correct answers and the math anxiety did not 

show any significant difference regardless of the groups of mathematics anxiety, since 

the participants had the skills to understand the quadratic function as college students. 

In addition, the participants who had mathematics anxiety or not had the lower 

percentage of correction and the longer reaction time at the tasks from graph to  

algebraic equation than the tasks from algebraic equation to graph. Also, as a result of 

the analysis of the EEG brain waves of a HMA group and LMA group, HMA group’s 

brain waves were recorded higher amplitude. So we founded HMA group was using 

more working memory of brain to solve the same task than LMA group. Through this 

analysis, we found math anxiety with psychological pressure affected by brain nerves. 

In light of this result, we suggest that teacher must construct teaching materials 

carefully and provide it by realising the tasks from graph to algebraic equation are 

much harder tasks. In addition, when performing functional tasks based on the fact that 

there were significant differences in reaction time, we should be careful that sufficient 

time be provided. In particular, it needs more careful concern to the HMA group. 

Of course, this research has many limitations and restrictions. However, before the 

present study, there has been no study about MA through functional tasks using EEG. 

We suggest that research should be studied about MA using the EEG in a more specific 
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way. It needs more understanding of MA with sufficient samples, and more technically 

advanced neuroscience devices. 
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CHINESE SECONDARY TEACHERS’ AND STUDENTS’ 

PERSPECTIVES OF EFFECTIVE MATHEMATICS TEACHING: 
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This paper explores the underlying values of effective mathematics teaching perceived 

by both secondary teachers and students in Chinese Mainland. Four secondary 

mathematics teachers and twenty-four students accepted an invitation to express their 

perceptions of effective mathematics teaching and of effective mathematics teachers. 

Some common characteristics of effective teaching like fun, multiple methods, 

involvement, and examples are valued by both students and teachers. Some 

discrepancies in the perceptions of effectiveness also existed.  

INTRODUCTION 

Effective mathematics teaching has long been a focus of attention in mathematics 

education around the world. NCTM (2000) proposed that “effective mathematics 

teaching requires understanding what students know and need to learn, and then 

challenging and supporting them to learn it well” (NCTM, 2000, p. 16). However, the 

construct of effective teaching is often ill-defined and subject to differing 

interpretations (Wilson, Cooney, & Stinson, 2006). Most research implied either that 

effective teaching is a well-agreed-upon construct or that it is so relative to any 

classroom context that it is meaningless to establish a single definition (Anthony & 

Walshaw, 2008; Atweh & Seah, 2008). In various international comparative studies, 

such as TIMSS and PISA, they generally arrive at similar conclusions that effective 

teaching is more about responding to and valuing the socio-cultural aspect of the 

learning environment than it is about adopting particular teaching methods 

(Hollingsworth, Lokan, & McCrae, 2003; OECD, 2004).These different socio-cultural 

contexts might be a major factor to explain why the definition of effective teaching is 

ill-defined in research. Each person could have his/her own perceptions of 

effectiveness, which – we will argue here – is regulated by what s/he values in effective 

teaching.  

Values are general guide for the behaviour emerging from one’s experience and 

relations in his/her life (Raths, Harmin, & Simon, 1987). Values in mathematics 

education are inculcated thought the nature of mathematics and individual experience, 

and thus become the personal convictions that an individual regards as being important 

in the process of learning and teaching mathematics (Seah & Kalogeropoulos, 

2006).Values related to mathematics education express the extent to which we value 

aspects of classroom norms and practices that relate to the teaching/learning of school 

mathematics (Bishop, 2008).Teachers’ and students’ values on effective teaching play 

a subtle yet influential role. Although research has investigated teachers’ or students’ 
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views or beliefs on effective teaching in different cultural contexts (e.g. Cai, Kaiser, 

Perry, & Wong, 2007; Wilson, Conney, & Stinson, 2005), much of existing research 

about effective teaching had been investigated in Western cultures. Recently, Chinese 

students have achieved outstanding performances in TIMMS and PISA. With an 

increasing interest in unfolding the ‘Chinese learner’s phenomenon’, we are interested 

in looking into how the Chinese value effective mathematics teaching.  

The study reported here is part of the Third Wave Project, an international collaborative 

research consortium of 21 research teams located across 18 different countries/regions. 

The Third Wave Project is aimed at identifying specific understandings of what 

constitutes effective mathematics teaching through harnessing the socio-cultural 

factors of values from teachers’ and students’ perspectives (Seah & Wong, 2012). In 

this study, the socio-cultural perspective of considering values as personal convictions 

that an individual regards as being important enough to be emphasized will be adopted 

to help us interpret what constitute effectiveness in the lessons observed, and in turn 

stimulate the conceptualisation of effective teaching. Specifically, this study seeks to 

shed light on the following research questions: 

What are Chinese teachers’ and students’ perceptions of an effective mathematics 

lesson and an effective teacher?  

What might be the underlying values of effective teaching from Chinese teachers’ 

and students’ perspectives? 

RESEARCH METHODOLOGY 

Participants 

Four secondary mathematics teachers from Shenzhen city located in the south of the 

Chinese mainland were invited – and subsequently agreed – to share their perceptions 

of effective mathematics lessons and effective mathematics teachers through teacher 

journals prior to lesson visits and semi-structured interviews after lesson visits. Two 

teachers (A1 and A2) are from a junior secondary school (School A). Both of them 

have ten years teaching experience each. The other two are from a senior secondary 

school (school B). One (B1) has taught 5 years and the other (B2) has taught 20 years. 

A total of 24 secondary students participated in the study. Their ages ranged from 13 

to 16 years. Six students are chosen by each teacher according to their performance. 

Two students are high-achieving, middle-achieving, and low-achieving respectively. 

The goal of this study involves understanding, describing, discovering, and 

hypothesis/theory generating, all characteristic of qualitative research (Neuman, 2003). 

Validity of research findings will be enhanced through triangulation of data sources in 

two ways, namely through the use of multiple data sources (written documents, visual 

documents, lesson observations, interviews, and research field notes), and through the 

inclusion of cross-checking mechanism within each data source. 
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Data collection 

The data collection in this study includes the following sections: open-ended questions 

through teacher journal and questionnaire, lesson observation, and interviews. Prior to 

the first lesson visit, each teacher participant was invited to maintain a teacher journal 

for three weeks. In the journal, each teacher was asked to respond to the following open 

questions: 

• In your opinion, what should an effective mathematics lesson look like?  

• What is your vision of being an effective teacher of mathematics? 

• Why do you think you have been nominated as a particularly effective teacher of 

mathematics? And,  

• What would make you an even more effective teacher of mathematics?  

Each student participant was asked to respond to an open-ended questionnaire. Items 

in the questionnaire included these two questions: 

• A good mathematics lesson should be: _________. 

• A good mathematics teacher should be:_________.  

All open-ended questions aim to investigate their views of effective mathematics 

teaching. “Good lesson” or “effective lesson/teaching” is both used in the study. 

In order to have a deep understanding of what teachers and students perceived of 

effective teaching, three mathematics lessons facilitated by each teacher participant 

were observed. During observation, the six student participants of each teacher would 

raise a bottle of water when they felt they were learning mathematics particularly well 

in the lesson. These moments were recorded by observers and a video camera, which 

provided the basis for the teachers’ and students’ interview sessions. During the 

students’ group interviews, these students were encouraged to talk about what they 

found important at the respective moments of effective teaching, the extent to which 

identified values were unique and personal to them, and the extent to which they 

emphasised those values in their mathematics learning experiences. In the teacher’s 

interview, each teacher was expected to talk about the effective teaching moments what 

they thought. All the data in this study, also in the Third Wave project, were analysed 

through a multiple-pass approach, utilizing the three-staged open, axial, and selective 

coding that typifies the grounded theory research approach (Seah & Wong, 2012; 

Strauss & Corbin, 1990).  

RESULTS AND DATA ANALYSIS 

The study aimed to identify specific understanding of what constitutes effective 

mathematics teaching in China, from both students’ and their teachers’ perspectives. 

In particular, we were interested to achieve this by identifying and considering the 

underlying values. From the students’ open-ended questionnaire, eight values in 

effective mathematics teaching were found. They are fun, involvement, creativity, 

board writing, multiple methods, explanation, focus and examples. Indeed, half of the 

students valued an enjoyable classroom environment (coded as fun). While many 

students valued more on involvement in the classroom, teachers’ clear and detailed 
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explanations were also important to them, which included giving summaries and 

establishing relationships between mathematical concepts. In particular, the students 

thought an effective lesson should include both important points and difficult points of 

content, which was coded as the value of focus. Junior secondary students emphasized 

more on involvement than senior secondary students. Board writing and focus were 

only valued by senior secondary students.  

Further, we investigated these students’ perceptions of what an effective teacher should 

look like. Generally, across the four grades, the students expressed the view that a good 

mathematics teacher needs to have humour, to be able to give clear expressions, teach 

in a lively and skilful manner, and to be able to encourage and motivate their students. 

Particularly, there were 10 students who highlighted the importance of teachers’ 

encouragement. Only junior secondary students proposed a good mathematics teacher 

should be warm and patient. Here, patience means that the teacher could take the time 

and effort to explain problems to students. It was also found that junior students valued 

more on teachers’ personalities (e.g., having passion, genial, humorous, patient), senior 

secondary students valued more on teachers’ teaching manner (e.g., lively, having 

focus, motivate students) (see Zhang, 2014). 

What are teachers’ perceptions of an effective lesson? Our analysis of the teacher 

journal entries revealed that all teachers emphasized students’ active participation and 

students’ understanding as important factors of an effective mathematics lesson. 

Particularly, junior secondary mathematics teachers put more focus on students than 

senior secondary teachers when they talked about an effective lesson. For instance:  

In an effective lesson, each student could benefit. In an effective mathematics classroom, 
the emphasis is not how much knowledge is taught, but whether each student has 
understood what the teacher taught. (A1) 

In an effective lesson, students can understand what the teacher says, can solve problems, 
and can speak out their own thinking. (A2) 

Senior secondary mathematics teachers also emphasized the role of students in an 

effective lesson, but at the same time they also emphasized the teacher’s influence. 

An effective lesson should be student-centred. At the same time, teacher is a leader. (B1) 

The teacher should know his students, emphasize their feedback and let them actively 

involve the activities. The teaching content should be clear, specific, and meet the 

requirement of examination syllabus. The teaching strategies should be flexible. (B2) 

To become an effective teacher, junior secondary teachers held the perception that the 

teacher should love his/her students and be appreciated by them. Senior secondary 

teachers valued teachers’ professional knowledge and the ability of proactive reflection. 

Among the four teacher participants, only one senior secondary teacher (B2) thought 

of himself as a successful teacher. Twenty years of teaching experience might have 

made him more confident. He also valued his students’ performance and peers’ 

evaluations on him with regard to an effective teacher. The other three teachers, 
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however, felt that the passion of teaching and teaching experience would make them 

become an effective mathematics teacher. 

After classroom observations, the teacher and student participants were interviewed 

about the “effective moments” during the observed lessons. An example of such an 

effective moment could be found in one of A2’s lesson. At that time, A2 had thought 

there was an effective moment when a student answered a question by using his own 

method. Particularly, his method was out of her expectation. She was willing to let 

students speak more.  

This example [about quadratic equation] has two emphases. One is to decide the equal 

relationship and the other is to decide the proper solution from two roots. His [a student] 

method is out of my expectation. He is well done and his explanation is also good. So I 

let him go on even though we spend much more time than my schedule. (A2) 

This effective moment was also valued by her students during the group interview. One 

student remarked that “I think that moment is effective. His method is great! Nobody 

think of it except him” said by a student of A2. Senior secondary teachers’ students 

also mentioned if their solutions are different from teacher’s solution, they would think 

that moment is very wonderful and effective.  

From the interviews, it was also found that students would value some teaching 

moments which are not valued by the teacher. For instance, in the last five minutes of 

A2’s lesson, when she gave a summary on solving an example of plan geometry, she 

connected two cases with category discussions. While students had thought that it was 

effective because she had provided them with another analytic method, A2 did not 

think so. The teacher commented, “I think at the time their understandings are not deep. 

So I show the results to them. But I expect they could find solutions by themselves.” 

This mismatch also happened in other lessons. For instance, the senior secondary 

teacher B1 valued the use of PPT to explain 3D-shapes while her students emphasized 

more on detailed blackboard writing. “Blackboard writing is important. We can have 

time to write the notes and review what we have learned”, said one student of B1. The 

senior secondary teacher B2 emphasized the explanation of concepts and mathematical 

thinking while his students valued more on doing challenging or difficult problems.   

DISCUSSION AND CONCLUSION 

The present study explored the desires and expectations of a sample of secondary 

students and teachers in Chinese mainland in relation to the teaching of mathematics. 

In the light of the results above, we are now better able to develop a picture about what 

students and their teachers value with regards to effective teaching. 

Some common characteristics of effective teaching like fun, multiple methods, 

involvement, and examples are valued by both students and teachers. An effective 

secondary teacher needs to facilitate students’ self-learning. An effective lesson should 

have clear objects and systematic structure. Teachers’ clear expression is thought as a 

factor of being effective teacher. These expressions not only could be the verbal 

instructions but also the blackboard writing.  
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Both students and teachers thought systematic and structured mathematics knowledge 

are important for an effective mathematics lesson. The value of focus was emphasised 

by both of them. Valuing focus could be thought as a main characteristic of Chinese 

classroom teaching (Li & Huang, 2012) and was not mentioned in other regional 

studies of Third Wave project (Seah & Wong, 2012). In an effective lesson, the teacher 

played an important role. The students depended much on their teacher in the class. 

Their teachers also emphasized teachers’ guidance is important for an effective lesson. 

A teacher-centred mathematics teaching was preferred by both of students and teachers 

even though they valued students’ participations. 

At the same time, the analysed data suggest that students’ values on effective teaching 

do not exactly match what the teacher values. A teacher who showed his/her patience, 

humour to the students, would always be appreciated by their students. Their teacher 

may value a high peer evaluation and excellent students’ performance which are the 

crucial factors to become an effective/successful teacher. A teacher emphasized the 

explanation of concepts and mathematical thinking while his students may value more 

on doing challenging or difficult problems. 

Given the small number of participants, we do not propose to generalise these findings 

here. Although some values of effective teaching have been found in other education 

systems (see, for example, Seah & Wong, 2012), such as fun, board writing and 

patience, the nature of the valuing can differ from education system to education 

system. For example, in Malaysia, students valued boardwork as a platform to learn 

from other students (Lim, 2012), while in Chinese mainland, students wanted to learn 

more from teachers’ detailed and clear writing on the blackboard. This subtle 

difference in the context of what is being valued similarly (i.e. boardwork) is also 

embodied in the classroom environment. From the questionnaire, although half of the 

students valued an enjoyment environment (fun), we were not able to fully unpack what 

the real meaning of this enjoyment environment was to be. In Chin and Lin (2000)’ 

study, the value of fun was related to interesting mathematics problems which could 

raise students’ curiosity in mathematics. In Seah and Peng’s (2012) study, the value of 

fun reported by students implied a fun atmosphere in mathematics or the jokes and/or 

games during lessons. Hong Kong students valued playing games or doing quiz as 

means of maintaining a sense of liveliness and an enjoyable environment (Law, Wong, 

& Lee, 2012). Thus, further investigation is needed to clarify the meaning of each value, 

especially, how they (students and teachers) interpret their values. At the same time, 

given the mismatches between what a teacher and what his/her students value, we also 

suggest that it would be insightful for us to examine how the different values are 

negotiated in mathematics classroom discourse.  

The findings derived from this study have identified students’ and teachers’ most 

appreciated and important values. These values are subject to their preferences or 

choices. Many features of effectiveness indeed reflect the valuing of meaningful and 

constructive classroom interactions between teacher and students. Bishop (2012) also 

proposed that understanding what students value in relation to mathematics pedagogy 



 Zhang & Seah 

PME39 — 2015 4-343 

would allow us to facilitate students’ growth in terms of levels of mathematical well-

being. With a deep understanding of what their students value, teachers are better 

placed to design more effective pedagogies to promote classroom learning of 

mathematics. 
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