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2017. In Kaur, B., Ho, W.K., Toh, T.L., & Choy, B.H. (Eds.). Proceedings of the 41

st
 Conference of the International 

Group for the Psychology of Mathematics Education, Vol. 3, pp. 1-8. Singapore: PME. 

STUDYING PRESCHOOL CHILDREN’S REASONING THROUGH 
EPISTEMOLOGICAL MOVE ANALYSIS 

Maria Hedefalk
1
 and Lovisa Sumpter

2 

1
Department of Education, Uppsala University, Sweden; 

2
Department of 

Mathematics and Science Education, Stockholm University, Sweden 

In this paper, we propose a theoretical tool for analysing mathematical reasoning 

using Epistemological Move Analysis (EMA) in combination with a framework 

focusing on arguments and the foundation of these. We also suggest the addition of 

evaluative arguments when talking about different types of arguments besides 

predictive and verifying arguments. The tool was applied on data of preschool 

children’s mathematical reasoning. The results indicate that different types of 

epistemological moves are connected to the different types of or the lack of 

arguments, and will fill (or not fill) gaps that occurs in the reasoning. 

INTRODUCTION 
Research focusing on young children’s mathematical thinking indicates that young 

children are more capable than previously has been reported when it comes to 

develop and demonstrate mathematical thinking including processes such as 

mathematical reasoning (Mulligan & Vergnaud, 2006; Säfström, 2013). Recent 

studies show that children can not only use different competencies in their reasoning 

(Sumpter & Hedefalk, 2015) but also that other skills do not have to be developed in 

beforehand (Säfström, 2013). However, looking at the development of mathematical 

thinking, there is evidence that children do not develop these competencies without 

someone providing the learning opportunity (Bobis et al, 2005). Mathematical 

reasoning is such a competence (Bergqvist & Lithner, 2012). Also, it has been 

indicated that if children have access to a guide, they are more likely go further in 

their mathematical thinking (Björklund, 2008) especially if that person is asking key 

questions (van Oers, 1996).  

With regard to mathematical reasoning, one of the goals that Swedish preschools 

should aim for is that children “develop their mathematical skill in putting forward 

and following reasoning” (School Agency, 2011, p. 10). In order to so, following the 

idea of learning opportunity, teachers need to be able to pick up children’s 

mathematical ideas (Bergqvist & Lithner, 2012; van Oers, 1996; Shimizu, 1999). 

This should happen independent of the activity is planned or informal since the key 

thing of Swedish preschool education (children age 1-5) is the emphasis of play and 

should not be formal schooling (School Agency, 2011). Previous research looking at 

education of mathematical reasoning, although on secondary level, reports that in 

Swedish teachers’ presentations, most task solutions are based on algorithms with 

only rare opportunities to see aspects of creative mathematical reasoning (Bergqvist 
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& Lithner, 2012). At present moment, we don’t know how such results are translated 

to preschool level especially with informal settings as an important learning 

opportunity. Our future aim is to study the opportunities to develop different types of 

mathematical reasoning presented to children at preschool level, which would be a 

similar aim to Bergqvist and Lithner (2012). However, at preschool level such 

opportunities are most likely to occur in a play based education. Therefore, other 

theoretical tools are needed compared to Bergqvist and Lithner (2012). This is the 

aim of this paper: to propose and discuss a theoretical tool that would allow us to 

perform such an analysis. The tool needs to allow us to look at the conversations, 

interactions, between teachers and children and in particular the role of the teachers 

in these conversations, but at the same time focus on the mathematical reasoning and 

the different types of arguments in the reasoning. Here, we will test this theoretical 

tool on a subset of a data set to show different types of arguments in mathematical 

reasoning and teachers’ role in these situations.  

THEORETICAL BACKGROUND 
We propose the parallel use of two theoretical frameworks. One framework helps us 

to study mathematical reasoning, in particular the different arguments in 

mathematical reasoning, that take takes place in conversations in play based 

activities. In order to study the conversations and the teacher’s input, we use a 

method called Epistemological Move Analysis (EMA). The starting point for this 

study is, just as Bergqvist and Lithner (2012), an ecological perspective meaning that 

the teachers’ choices or actions are not seen from a right/wrong dichotomy. 

Mathematical reasoning 
Young children’s mathematical reasoning is getting more attention in research 

(Sumpter & Hedefalk, 2015), but a general problem in mathematical reasoning 

research is that mathematical reasoning is used to denote a ‘higher quality’ thinking 

without defining what this would encompass (Lithner, 2008). To avoid this, we use a 

framework that has a clear definition of mathematical reasoning and also allow 

different types of reasoning including those that are not based on deductive logic. 

Reasoning is defined as the line of thought adopted to generate assertions and 

conclusions when solving mathematical tasks (Lithner, 2008). This is a product and 

we see it as a sequence or several sequences that starts with the tasks and ends with 

an answer, where the answer could be no conclusion at all. When organizing the data, 

we use the following four step structure: (1) A task situation is met (TS); (2) A 

strategy choice is made (SC); (3) The strategy is implemented (SI); and, (4) A 

conclusion is obtained (C). Lithner (2008) has attached two types of arguments to 

two of these steps. The strategy choice can be supported with predictive arguments 

and the implementation with verifying arguments. The first type of arguments aims to 

answer the question ‘Why will the strategy solve the task?’. The second type aims to 

answer the question ‘Why did the strategy solve the task?’. While these two types of 
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arguments focus on the strategy, no arguments focus on the conclusion and the 

evaluation of it: how and in what way is this an answer to the initial question? 

Inspired by the argumentation research in the field of artificial intelligence, we would 

like to add evaluative arguments to the different types of arguments. Evaluative 

arguments serve the purpose to persuade that something is right or wrong (Carenini 

& Moore, 2006). We suggest that evaluative arguments fill the void that occurs in the 

conclusion step answering the question ‘How do the conclusion answer the TS?’ We 

argue that evaluative arguments could function as part of control (Schoenfeld, 1985) 

or review (Polya, 1945) in problem solving.  This is yet to be tested in this paper.  

To be able to analyse the arguments, Lithner (2008) introduce the notion of 

anchoring. It is important to note that anchoring does not refer to the logical value of 

the argument since it allows us to talk about reasoning that is incorrect. This helps us 

to look at the foundation and how it is used (Sumpter & Hedefalk, 2015). Anchoring 

is seen as the fastening of the relevant mathematical properties, or what is the 

replacement of it, of the components that you are reasoning about. These components 

are objects, transformations, and concepts (Lithner, 2008). Certain mathematical 

properties will be surface and other intrinsic depending on the task such as when 

comparing fractions, the size of the numerator and denominator is a surface property 

whereas the quotient is the intrinsic property. In Lithner’s (2008) framework, 

different types of reasoning can be classified. Here, we will only focus on the 

different types of arguments and their foundation and connect these to the teachers’ 

input, the role of the teacher.  

Epistemological Move Analysis (EMA) 
EMA is an analytical method that aim to generates knowledge about the role the 

teacher plays in children’s meaning making. The focus of the analysis is on how the 

teacher directs the children’s meaning making in different ways (Lidar, Lundqvist & 

Östman, 2006; Lundqvist, Almqvist & Östman, 2012). When the children respond, 

verbally or non-verbally, to the teacher’s direction, we call it an epistemological 

move.  The epistemological moves from the teacher show the children both what 

counts as knowledge and appropriate ways of obtaining knowledge. The following 

moves have been identified in science and technology education in primary school 

and secondary school (Lidar et al., 2006): confirming, reconstructing, instructional, 

generative, and reorienting moves. In the confirming move, the teacher confirms that 

the children are recognizing the correct phenomenon, or confirms that the children 

are undertaking a valid process, by agreeing with what the children say or do. The 

reconstructing move makes the children pay attention to the “facts” they have already 

noticed but have not yet perceived as valid. The instructional move gives the child a 

direct and concrete instruction for how to act, to discover what is worth noticing. In 

the generative move, the teacher enables the children to generate explanations by 
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summarizing the important facts in the context of the activity. Finally, the reorienting 

move indicates that other properties may be worth investigating and encourages the 

children to take another, alternative direction.  

How the teaching affects the meaning making process is studied by analysis of 

practical epistemologies. Practical epistemology is used as a tool for describing the 

route that meaning making takes, and the meaning making processes involved. Four 

concepts are used in a practical epistemology analysis, namely: encounter, stand fast, 

gap and relations (Wickman & Östman 2002). An encounter is a specific situation in 

terms of what the participators interact with and here we will focus on encounters 

between children and teachers. What stands fast for the participator is identified in 

their actual use of words within the practice. When the participator uses a word 

without hesitation or questioning, such words are said to stand fast in the particular 

situation. Standing fast is a situational description of the meaning that words have in 

action (Wittgenstein, 1969/1992). When the participator hesitates, when what is 

happening cannot be taken for granted, there is a gap. When a gap is noticed it can, 

according to Wickman and Östman (2002), be filled through establishing relations to 

what stands fast in the encounter. Then it is possible for the participators to proceed 

in their meaning making again. 

APPLYING THE TWO FRAMEWORKS 
The data comes from a larger set that was used to study children’s collective 

mathematical reasoning. For more information of how data was collected, see 

Hedefalk and Sumpter (2015). Here, we have chosen a part of a longer episode, 

divided into three parts, to apply the proposed theoretical model. As a first step, the 

encounter and its goal is described. This is related to TS. In this encounter, Kasper 

and Karolina is playing in the woods. They have found a rock that they are trying to 

climb. Teacher Kristina, marked with [T], sees this and interacts with the children. 

The main TS for this encounter is: what is rock’s height in relation to other objects/ 

people? In the next step, we identify what epistemological moves the teacher uses 

with the children in the encounter and if the actions (the practical epistemology) is 

changed. We also analyze the arguments using the four step structure to identify the 

different types of arguments and the foundation of these. The last step is to connect 

the results from the two analysis.  
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Line Person Data         Argument      EMA 

2443 

 

Kasper: […] Oh, this is not so easy. Oh! 

Oh! Kristina, this is not so easy 

because it is so slippery. [trying 

to climb a rock. Successful.] 

  

2444 Kristina 

[T]: 

I can understand that, and do 

you know. That one, that one is 

pretty big. I think it is bigger 

than me. 

Prediction: rock taller than 

a specific person. 

Confirming 

move 

2445 Kasper: Yes. Agreeing with previous 

conclusion: Rock’s height 

> teacher’s height. 

 

2446 Kristina 

[T]: 

Should we try? Initiating TS: is rock’s 

height > teacher’s height? 

Instructional 

move 

2447 Kasper: Should we measure? SC suggested. No further 

arguments. 

 

2448 Kristina 

[T]: 

Yes, let’s measure. Agree to SC. Confirming 

move. 

Table 1: Part 1 of TS. 

In the first part of this episode, the teacher initiated the TS by first a confirming move 

and then, the actual initiation, with an instructional move. When Kasper suggests a 

SC with no predictive arguments, it is not challenged by the teacher but instead the 

SC is confirmed. This confirming move agrees that the SC is correct and/or relevant 

however do not encourage further arguments such as predictive arguments. 

Line Person Data      Argument      EMA 

2449 Karolina: It is bigger than me anyway. 

[walks and stands next to the 

rock and looks up, using her 

own body as a measure.] 

SC, SI and C: rock is taller 

than Karolina as a result 

from measuring with a 

Karolina as a measure unit: 

Karolina’s height < rock’s 

height. No further arguments 

are given. 

 

2450 Kristina 

[T]: 

Yes, it is bigger than you 

anyway. 

Agreeing to previous 

conclusion: rock is taller 

than Karolina. 

Confirming 

move. 

2451 Kasper And me, too. Another C: no arguments 

provided. Since Karolina 

and Kasper are about the 

same height it is plausible to 

think that Kasper compares 

his own height with Karolina 

and the rock. Rock taller 

than Kasper. 

 

2452 Kristina 

[T]: 

Oh look! I think it is, maybe 

a bit smaller than [up] to my 

nose. Oh, that is big isn’t? 

Another SC, SI and C: 

teacher’s height > rock’s 

height. Going against 

previous conclusion. 

 

Table 2: Part 2 of TS. 

In this part, there is a solution to a sub-task of the main task. There is one move from 

the teacher, a confirming move, to Karolina’s conclusion. This confirming move 
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could function as an evaluative argument: since a teacher agrees to the conclusion, 

this is a correct answer to the sub-TS. In line 2452, it could have been a reorienting 

move but since there is no change in practice, this move doesn’t occur. 

Line Person Data Argument       EMA 

2453 Kasper: But you are as big. 

[meaning as tall] 

Different C: 

Disagreeing with 

previous statement with 

a comparison: teacher 

as big as rock. 

Teacher’s height = 

rock’s height 

 

2454 Kristina [T]: This stone is a bit smaller 

than me. Isn’t? 

C: Teacher’s height > 

rocks height. 

 

2455 Kasper: It is bigger, a little bit 

bigger. 

C: Rock’s height > 

teacher’s height. 

 

2456 Kristina [T]: Yes, yes…no, I am a bit 

bigger. 

C: No argument 

provided. Teacher’s 

height > rock’s height. 

 

[…]  [The children climb the 

rock and are now sitting on 

the rock] 

  

2501 Kasper: Yes, but the house is bigger 

than the rock. 

Final C. New TS and C. 

Argument not provided. 

House’s height > rock’s 

height. 

 

2502 Kristina [T]: Where?   

2503 Kasper: The house is bigger than 

the rock. 

House’s height > rock’s 

height. 

 

2504 Kristina [T]: The house? Yes, definitely. 

Because the house, I can 

step in [the house], right? 

Agreeing to C: provides 

argument using 

transitivity: Since 

House > Teacher, and 

Teacher > Rock, 

therefore House > 

Rock. 

Confirming 

move 

Table 3: Part 3 of TS. 

In this part, there are two incidents where a gap occurs. When the teacher argues that 

the rock is up to her nose, Kasper disagrees as he says that “you are as big” (line 

2453). The gap occurs as the participants in the encounter show hesitation about the 

size of the rock in comparison with the teacher’s body. The comment from the 

teacher does not result in a change of epistemology, i.e. a move, as the children does 

not change their arguments in line with the teacher’s argument. The gap is visible 

again in line 2454 and line 2455. In these situations, no further arguments are given. 

When Kasper says that the house is bigger than the rock (line 2501) the teacher 

confirms that it is a valid statement (line 2502) but she also gives arguments for her 

conclusion. Since they are related to the TS and not SC and SI, they are evaluative 

arguments functioning as control. In this chain of interactions, the gap is not filled. 
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The relations they create to what stands fast is that the rock is smaller than the house 

which is the final C to the TS. 

DISCUSSION 
The purpose of this paper was to find a theoretical tool to study mathematical 

reasoning in settings including both formal and informal learning. The choice was to 

combine EMA and Lithner’s (2008) framework. EMA allowed us to identify 

different moves and using the four step structure, we could see when these moves 

occur but also when gaps occurs and if these gaps were filled. It is important to stress 

that gaps are not seen as needed to be filled using an ecological perspective. In this 

episode, an instructional move initiated the task situation which could be compared to 

hatsumon, the asking of a key question (Shimizu, 1999). This main TS were 

addressed by several sub-tasks initiated by the children. There were also confirming 

moves connected to evaluative arguments meaning that these arguments came from 

the teacher instead of the teacher initiated these types of arguments from the children. 

Such a situation would have been a generative move. EMA helped us to distinguish 

between these two different situations. Here, there were no arguments based on 

mathematical properties but instead a repeated statement of conclusions and the gap 

was not filled. If we were to use the concepts provided by Shimizu (1999), there was 

no ‘polishing up’ (neriage). Compared to Bergqvist & Lithner (2012), the proposed 

analysis stresses the role of the teacher but at the same time allowing a focus on 

reasoning. We see this as contribution to mathematical reasoning research theories 

besides the addition of evaluative arguments. 
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INSCRIPTIONS THAT MEDIATE INTERACTIVE 
CONSTRUCTION OF NEW MATHEMATICAL MEANING IN A 

PRIMARY MATHEMATICS CLASS 
Keiko Hino 

Utsunomiya University 

 

This study explores how teachers and students construct interactions to develop new 

mathematical meaning. By using the lens of discursive focus by Sfard, we discuss 

herein the progress of interaction in five consecutive fifth-grade lessons on 

comparing fractions with unlike denominators. In particular, we examine the written 

record (i.e., on the blackboard) of student thinking, which mediates the interaction. 

The result shows that the interaction progresses in three critical phases in which the 

students’ early focus on the calculation moves to its meaning, which is made explicit 

by the creation of new words, and then refined by further clarification. The students 

produce drawings in parallel with this process, and these drawings are repeatedly 

questioned and examined and serve as a springboard for new foci. 

INTRODUCTION 
Research is increasing on the structure of classroom discourse to support student 

thinking and understanding. Researchers have now explored the conditions of high-

quality discursive practices and classroom interactions that allow students to achieve 

desirable outcomes (see, e.g., Walshaw and Anthony, 2008). 

Through a case study on mathematics lessons in Japan, we have examined how 

student attention is focused onto new mathematical content by the interaction 

between teacher and students (Funahashi and Hino, 2014). By analyzing a classroom 

episode, Hino and Koizumi (2014) show a progress of interaction in terms of how a 

vague student attention to a subject is questioned and how different study targets are 

presented or modified. In the present paper, to investigate the relationship between 

the process of focus building and the students’ development of mathematical 

meaning, I look closer at the different foci that were questioned, presented, or 

modified. The modification of foci is expected to provide rich information on the 

features of interaction and on the roles played by the teacher. 

To capture different foci developed by the students, this paper considers the written 

record of student thinking, as written on the blackboard. Stigler and Hiebert (1999) 

pointed out that Japanese teachers use visual aids to “provide a record of the 

problems and solution methods and principles that are discussed during the lesson” 

(p. 74). In the lessons analyzed in this paper, the teacher developed detailed records 

of student drawings and utterances on the blackboard and used them to organize the 

interactions throughout the lessons. Such records can be conceived as inscriptions in 

the sense that they are signs materially embodied in a medium (Roth and McGinn, 
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1998). Furthermore, “because of their material embodiment, inscriptions (in contrast 

to mental representations) are publicly and directly available, so that they are 

primarily social objects” (Roth and McGinn, 1998, p. 37). As social objects, I 

examine the inscriptions in the lessons from the perspective of how they provide 

opportunities for students to propose and discuss different foci. 

Thus, this paper addresses the following research question: How does student 

attention shift toward new mathematical meaning during interactions involving 

student inscriptions?  

THEORETICAL FRAMEWORK 
Funahashi and Hino (2014) proposed a guided focusing pattern to describe the 

interactive process in which new mathematical content is introduced to students. It 

comprises four phases: A proposing the problem, B eliciting student ideas, C 

focusing on the object of examination, and D formulating the result on the basis of 

the object. In this pattern, phases C and D are especially crucial because it is in these 

phases that students come to focus more explicit attention on the important ideas that 

become the foundation of new mathematical knowledge. The focus of this paper is 

phase C.  

To capture the progression of student attention in phase C, we use Sfard’s construct 

of discursive focus (Sfard, 2000). Sfard distinguishes three components of focus used 

to understand the object in question. Pronounced focus is “the word used by an 

interlocutor to identify the object of her attention” (p. 304). Attended focus is “what 

and how we are attending—looking at, listening to, and so forth—when speaking” (p. 

304). Finally, intended focus is the “interlocutor’s interpretation of the pronounced 

and attended foci;” this component includes “the whole cluster of experiences evoked 

by these other focal components as well as all the statements he or she would be able 

[to] make on the entity in question, even if they have not appeared in the present 

exchange” (p. 304). The three ingredients of focus are considered to indicate an 

actual, context-dependent discursive occurrence. In the commognitive approach to 

study learning, they are made use of articulating discursive objects and examining 

changes in student discourse (Sfard, 2008; Tabach and Nachlieli, 2015). 

The three targets help us explore student-attention paths and the guidance given by 

the teacher. In the present paper, I further analyze the interaction with another 

experienced teacher in a prolonged discussion. By looking at the inscriptions working 

in the conversation, I analyze an awkward process of focus building. 

RESEARCH METHOD 
This study uses data from nine consecutive lessons on comparing fractions with 

unlike denominators. The lessons were taught by Mr. Taka (all the names herein are 

pseudonyms) in a university-affiliated primary school in Tokyo. The lessons were 

conducted as part of the Learner’s Perspective Study–Primary (Fujii, 2013). The data 

were collected from the lessons and from interviews with the teacher and focus 

students (see Fujii, 2013, for a detailed description of the data-collection procedure). 



Hino 

________________________________________________________________________________________________________________________ 

 PME 41 – 2017    3-11 

The objectives of these lessons were to understand that fractions can be compared if a 

common unit fraction is found and to understand the methods to compare fractions by 

finding a common denominator. In the interview, Mr. Taka repeatedly stressed the 

idea of finding a common unit fraction and remeasuring the original fraction in terms 

of the new unit fraction. Once the new unit fraction is found, one can compare 

fractions and add or subtract them in the same way as whole numbers. Mr. Taka said 

that these concepts are important to build up an understanding of fractions as 

numbers.  

Table 1 briefly describes the tasks and activities in the nine lessons. To direct the 

students toward his lesson objectives, Mr. Taka addressed repeatedly the meaning 

and ways of making equivalent fractions in the context of comparing fractions. The 

students continued to elaborate the explanation by using figural representations. 
Lesson Task and activity 

1 Which is larger 2/4L, 3/4L, or 2/3L? Students explained 2/4<3/4 and 2/4<2/3. 

2 For 3/4 and 2/3, a student gave a way of finding common numerator. 

3 For 3/5 and 2/3, students discussed how to justify the way of finding common 

numerators. 

4 Which is larger, 2/5 or 3/8? Students tried to further justify the approach by 

clarifying the meaning of “×3” or “÷3” to make 6/15 from 2/5. 

5 Discussion continued. The word unit fraction was introduced by Mr. Taka to clarify 

the object of discussion. 

6 Students applied the same approach to 3/8 and justified the approach to make 6/16 

from 3/8. 

7 Students expressed and explained 2/5 = 6/15 = 12/30 by using figural 

representations. 

8 Which is larger, 3/4 or 2/3? Students justified the method of finding common 

denominators. 

9 Which is larger, 1/2 or 1/3, and by how much? Students explained their ways and 

found that the common denominator better clarifies the difference between the two 

fractions. 

Table 1: Brief description of tasks and activities. 

The analysis was done qualitatively by catching the shift of student foci on the 

construction of equivalent fractions. In so doing, I identified and categorized student 

inscriptions on the blackboard and examined the ways in which new inscriptions are 

produced from older ones. Some inscriptions were referred to by several students and 

the teacher in their discussions. For those anchored inscriptions, I examined closely 

how the focus is built and what role the teacher plays.  

PROGRESS OF INTERACTION WITH INSCRIPTIONS DEVELOPED BY 
STUDENTS 
This section illustrates progress of interactions between teacher and students in 

lessons 1 to 5 (L1-5) because these lessons are especially rich from the perspective of 

building focus toward the remeasurement of a fraction. Due to space limitation, I 

briefly illustrate some of the inscriptions and the interactions they mediated. 
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Interaction with early inscription 
Two early inscriptions were developed by the students to explain how to make an 

equivalent fraction. One was proposed by Miku in L1 when they were comparing 

2/4L and 2/3L. She explained why 2/4L<2/3L by using her inscription, which was 

drawn by Mr. Taka on the blackboard (Figure 1). 
Miku: The least common multiple between 3 and 4 is 12. So, I divided a rectangle into 

12. I connected 12 blocks. This is one block [pointing to 1/12 part, Figure 

1 bottom]. [Mr. Taka wrote a block by red.] For 2/4, I divided the blocks 

into 4 chunks, and 1, 2, well, I marked here [pointing to the area of 2/4 in 

Figure 1 top]. [She explained 2/3 in the same way.] Then we know that 

2/3 is larger by the difference of 2 blocks. [Mr. Taka drew a dotted line.] 

 

 

 

 

 

Miku said, “The least common multiple between 3 and 4 is 12. So, I divided a 

rectangle into 12.” She first did the calculation and then expressed its results via the 

tape diagram. The diagram is subordinate to the calculation in the sense that it 

expresses only the result of the calculation. Miku did not discuss changing the unit 

fraction, either. Therefore, at this point, her focus was likely on the numerical 

calculation. Remeasuring was not yet the object of her attention. Similar observations 

were made of the other early inscription. 

Based on these inscriptions, Mr. Taka asked for the reasoning behind their calculation. 

For example, for Miku’s explanation, he said, “Why must you make the denominators 

the same?” However, the students only repeated the calculation procedure or insisted 

that the tape diagram clearly showed the result. 

Emergence of focus on remeasuring the fraction 
In L3, the students compared the two fractions 3/5 and 2/3. After individual activity, 

they presented their reasoning for claiming 3/5<2/3. Ino gave the following 

procedural reasoning: “I found a common numerator. Six is the smallest number that 

divides both 2 and 3, so I used 6. Since 3 was doubled and became 6, so 5 was also 

doubled. [She continued her explanation.]” Mr. Taka 

asked if someone could show her procedure in a 

drawing. Ida gave an explanation based on circles 

(Figure 2 shows part of Ida’s inscription). 

Reflecting on Ida’s drawing, Mr. Taka pointed out that 

the circle drawing did not explain the procedure given 

by Ino. Ino first doubled the numerator 3 and applied 

the same procedure to the denominator 5. However, Ida first divided a circle into 10 

Figure 2: A circle by Ida 

Figure 1: Tape diagram by Miku 

 

Figure 2: A circle by Ida 
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parts (denominator) and shaded 6 of them (numerator). This question invited the 

students to give further explanations. Among them, Naka showed an inscription 

(Figure 3). 
Naka: First is 6, so, now, here we have three equal parts, the red part is divided into 

three equal parts, so we make them six equal parts. [In place of Naka, Mr. 

Taka divided each of the three red parts in half (see 3-1 in Figure 3)] … 

Well, it became 6 equal parts. But I think this state (3-1) is 6/5. 

Mr. Taka: Is this OK as a fraction? 

Naka: No, it isn’t. 

Mr. Taka: Why isn’t it OK? 

A student: Because it is not divided evenly. 

Naka: But this state expresses exactly that case (with lauder voice). It came to be 6/5, 

but, we must do the same thing all over, doubling and tripling them, too 

(referring to 5 and 3 in 3/5 and 2/3.) We draw lines for these parts, too. 

[He moved his finger straight to divide each of the two unshaded parts in 

half.] 

Mr. Taka: [By following Naka’s instruction, he wrote 3-2 in Figure 3.] 
 

 

 

 

 

The inscription 3-1 evoked different reactions from the students. Some expressed 

their dissatisfaction with the unevenly divided circle. Others understood Naka’s 

intention and said, for example, “This expresses the state when only the numerator is 

doubled.” Mr. Taka settled the argument by saying “This is not expressing 6/5 as it is 

…. This is the figure that was made to explain how 3/5 becomes 6/10.” 

Naka’s inscriptions (Figure 3) were the first that expressed an attending procedure of 

remeasuring the fraction using a new unit fraction, i.e., (i) by evenly dividing the part 

that represents the numerator of the original fraction such that the result becomes the 

part that represents the numerator of the equivalent fraction and (ii) using the new 

unit fraction to divide the remaining part. It deliberately accompanied an 

inappropriate drawing of the fraction. The inscription caused some debate between 

the students. Yet, it contributed to attracting student attention to the procedure of 

remeasurement.  

Creation of pronounced focus by student 
In L4, the class compared the fractions 2/5 and 3/8. To clarify the object of the 

explanation, they concentrated on 2/5 and explained their reasoning by using 

drawings to show why the denominator 5 must be tripled once the numerator 2 is 

tripled. Initially, the students again proposed early inscriptions in which the drawings 

they developed only showed the result of the calculation. When a student asked about 

the connection between the drawing and the calculation, several students attempted to 

Figure 3: Three circles by Naka 

3-1 3-2 
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explain how to make 6/15 from 2/5 by using an inscription similar to that shown in 

Figure 3 (Figure 4 shows part of it). In refining the explanation, Naka participated in 

the conversation. The transcript below details part of the interaction between Naka 

and the teacher. 
 

 

 

 

 

 

Naka: The size of a whole (meaning 2/5) is not changing, but, the size of one numerator 

is from 1/5 to, …, well, it was, well, 1/5 was evenly divided by 3. [Mr. 

Taka shaded the part 1/5 by red. (4-1 in Figure 4)] … well, 1/5 became 

1/15…  

Mr. Taka: Yes, but you are talking about this, aren’t you? [Mr. Taka drew arrows (4-2).] 

Naka: 1/5, oh, one numerator … [Mr. Taka repeated 1/5] was divided evenly by 3. 

Mr. Taka: Can we call this numerator? 

Naka: One numerator. 

Mr. Taka: One numerator. (For the class,) Do you understand? Now you know? Do you 

understand what he is talking about?  

A student: It is not numerator. 

Mr. Taka: It is not numerator. What he said was this, one numerator // 

Naka：[Is it] moto (meaning base in Japanese)? 

Mr. Taka: 1/5 became 1/15. You said moto? 

Naka：Yeah, moto, …, well, the left part, …, the 1/5… [Mr. Taka repeated moto.] 

Naka：… I mean there are two 1/5s. Well, I think 1/5 is the moto [of 2/5] … There are 

two 1/5s … And, for the new one … [Mr. Taka pointed to the 6/15 (4-3 in 

Figure 4)], 1/15 is the moto, … there are six of them (meaning moto). 
 

During the conversation, Naka created a word moto, which he brought from everyday 

language, to refer to the unit fraction. From the beginning, Naka tried explaining that 

the size of the unit fraction changes although the size of the fraction itself does not 

change. The pronounced focus moto was created by his need to clearly convey to Mr. 

Taka and his peers the distinction between “fraction as a whole (or numerator)” and 

“one numerator.” In the last utterance, he narrated 2/5 and 15/6 in terms of moto. 

Owing to the familiarity of its usage, the procedure of remeasurement became 

clearer. 

Talking about calculation in terms of new focus of remeasurement 
The explanation continued in L5. Mr. Taka led the students to connect (i) the process 

of remeasuring the fraction with a new unit fraction and (ii) the calculation 

procedure. 

Figure 4: Two circles that mediated the interaction 

 

Figure 2: Figure by Naka 

4-2 

 

1-1 

4-3 

 

1-2 

4-1 

 

1-3 
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He asked the students the following questions: “This part was divided evenly by 

three. What do you call this [tracing the outline of 3/15 of the circle 4-3 in Figure 

4]?” The students expressed it in different ways; for example, quantity of numerator, 

sector’s central angle, or arc. When one student said area, Mr. Taka repeated this 

answer: “Yes, it is area or how large it is.” They ensured that the area became smaller 

upon being divided by three. Mr. Taka then asked “as a result, what was multiplied 

by three?” Several students replied that the number was increased. At this point, Mr. 

Taka introduced the word unit fraction, and summarized the discussion as follows: 
Mr. Taka: The reason why the numerator is multiplied by three is that the unit fraction 

became smaller. The size of the whole (meaning 2/5) is unchanged. But 

the number of pieces increased [because] the area of one piece became 

smaller. 

After this, Mr. Taka asked the students why the denominator was multiplied by three. 

After discussion, Koma finally gave the explanation: “Since a unit fraction was 

divided by three, I think there are five [pieces that were] divided by three.” 

The students had difficulty making an explicit connection between the 

remeasurement of the fraction (a focus they had been building) and the procedure of 

multiplying both numerator and denominator by the same number. Mr. Taka focused 

the students’ attention on distinguishing between the “area” and the “number.” These 

pronounced foci clarified for the students that changing moto changed both the area 

and the number. Attending to these two aspects seems to enable the students to build 

such a connection. 

DISCUSSION 
This paper illustrates the process in which the student focus shifts toward the target 

that reflects the objectives of the lessons. The shifting process contains three critical 

phases: First, the students’ object of attention changes from a procedure for 

calculating a common numerator or denominator to the meaning of this procedure. 

This major shift is enabled by Naka’s proposal of remeasuring the fraction with a 

new unit fraction that accompanies an inappropriate figure of the fraction. Second, a 

pronounced focus moto was proposed, which was created by Naka’s need to more 

explicitly explain the concepts to his peers. Third, the new focus was connected with 

and used to talk about the method of making equivalent fractions. Here additional 

pronounced foci were produced, which seem to contribute to refining the students’ 

procedure. 

The three phases are consistent with the result of our previous analysis (see, e.g., 

Hino and Koizumi, 2014). A common feature of this process is that the attended 

focus is repeatedly negotiated and refined by calling for new pronounced foci. By 

analyzing the inscriptions made by students during the discussions over five lessons, 

this paper reveals that the process advances nonlinearly and fluctuates between newer 

and older inscriptions. A salient observation is the prevalence of the students’ 

attention to the calculation procedure. Early inscriptions reappeared over and over. 
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Nevertheless, each time one appeared in a student inscription, it was questioned or 

problematized either by the teacher or by the students.  

The student inscriptions provided fruitful opportunities for a disequilibrium to 

emerge between the focal ingredients that were conceived as the major drive of 

discursive growth (Sfard, 2000). Every student inscription reflects strongly on his or 

her current understanding of fractions and of equivalent fractions. His or her intended 

focus is reflected not only in the layout of elements but also in how they are 

inscribed. The act of drawing on the blackboard publicizes the intended focus and 

thereby invites different interpretations by other students. In this way, as social 

objects, inscriptions enable an iterative and dialectical process between signs and 

referents (Roth and McGinn, 1998) and serve to impel discursive practice. 

Since this work deals with the first five lessons, the analysis will be continued by 

considering more lessons from the point of view of focus building. Furthermore, note 

that the teacher gave high priority to the student inscriptions and used them as a 

crucial pedagogical device. The shift of focus was made possible by his conscious 

lesson objectives and consistent support and guidance of the students toward these 

objectives (Funahashi & Hino, 2014). Articulation of this aspect is a productive 

future task. 
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PROVING SUBGROUP’S CLOSURE UNDER INVERSES: 
COMMOGNITIVE ANALYSIS OF STUDENTS’ RESPONSES  

Marios Ioannou  

Alexander College, Cyprus 

 

Encounter with the Subgroup Test is, more often than not, the first major challenge 

that undergraduate mathematics students face in their first Group Theory course. 

This study focuses on students’ responses to the proof of one of the tests’ conditions, 

namely closure under inverses. Analysis suggests that there have emerged 

inaccuracies of two categories: the first is related to the involved mathematical 

concepts per se and the other with the actual process of proof. Additionally, analysis 

suggests that incomplete learning of these concepts has an unfavourable impact on 

the process of proving closure under inverses. For the purposes of this study there 

has been used the Commognitive Theoretical Framework.  

INTRODUCTION 
Subgroup Test is one of the first routines undergraduate students need to cope with in 

their first engagement with Group Theory, where they need to prove the three 

conditions, namely, non-emptiness, closure under operation and closure under 

inverses.  Often, though, this apparently simple task proves to be an arduous 

endeavour, partly due to the abstract nature of Group Theory (Hazzan, 2001). In fact, 

Group Theory “is the first course in which students must go beyond ‘imitative 

behavior patterns’ for mimicking the solution of a large number of variations on a 

small number of themes” (Dubinsky et al., 1994, p268). A typical first Group Theory 

module requires a deep understanding of the abstract concepts involved, namely 

group, subgroup, coset etc. In addition, the deductive way of teaching Group Theory 

is unfamiliar to students and, in order to achieve mastery of the subject, it is 

necessary to “think selectively about its entities, paying attention to those aspects 

consistent with the context and ignoring those that are irrelevant” (Barbeau, 1995, 

p140). Moreover, Gueudet (2008) suggests that many pedagogical issues emerging in 

undergraduate Mathematics Education are based on the transition from secondary to 

tertiary Mathematics, which can still occur in their second year. In fact, student 

difficulties in Abstract Algebra may be an indication of problematic transition, 

mainly due to the particular nature of this module (Ioannou, 2012). The aim of this 

study is to investigate the undergraduate mathematics students’ responses to the 

concept of subgroup, and in particular in proving closure under inverses, during their 

first encounter with Group Theory. For the purposes of this study, there has been 

used the Commognitive Theoretical Framework (CTF) (Sfard, 2008), due to its great 

potential to investigate mathematical learning in both object level and meta-

discursive level (Presmeg, 2016).   
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THEORETICAL FRAMEWORK  
CTF is a coherent and rigorous theory for thinking about thinking, grounded in 

classical Discourse Analysis. It involves a number of different notions such as 

metaphor, thinking, communication, and cognition (Sfard, 2008). In mathematical 

discourse, objects are discursive constructs and form part of the discourse. 

Mathematics is an autopoietic system of discourse, namely “a system that contains 

the objects of talk along with the talk itself and that grows incessantly ‘from inside’ 

when new objects are added one after another” (Sfard, 2008, p129). Moreover, CTF 

defines discursive characteristics of mathematics as the word use, visual mediators, 

narratives, and routines with their associated metarules, namely the how and the 

when of the routine. In addition, it involves the various objects of mathematical 

discourse such as the signifiers, realisation trees, realisations, primary objects and 

discursive objects. It also involves the constructs of object-level and metalevel 
rules. Thinking “is an individualized version of (interpersonal) communicating” 

(Sfard, 2008, p81). Contrary to the acquisitionist approaches, participationists’ 

ontological tenets propose to consider thinking as an act (not necessarily 

interpersonal) of communication, rather than a step primary to communication (Nardi 

et al., 2014).  

Mathematical discourse involves certain objects of different categories and 

characteristics. Primary object (p-object) is defined as “any perceptually accessible 

entity existing independently of human discourses, and this includes the things we 

can see and touch (material objects, pictures) as well as those that can only be heard 

(sounds)” (Sfard, 2008, p169).  Simple discursive objects (simple d-objects) “arise 

in the process of proper naming (baptizing): assigning a noun or other noun-like 

symbolic artefact to a specific primary object. In this process, a pair <noun or 

pronoun, specific primary object> is created. The first element of the pair, the 

signifier, can now be used in communication about the other object in the pair, which 

counts as the signifier’s only realization. Compound discursive objects (d-objects) 

arise by “according a noun or pronoun to extant objects, either discursive or 

primary.” In the context of this study, subgroups are an example of compound d-

objects. The (discursive) object signified by S in a given discourse is defined as “the 

realization tree of S within this discourse.” (Sfard, 2008, p166)  

Sfard (2008) describes two distinct categories of learning, namely the object-level 
and the metalevel learning. “Object-level learning […] expresses itself in the 

expansion of the existing discourse attained through extending a vocabulary, 

constructing new routines, and producing new endorsed narratives; this learning, 

therefore results in endogenous expansion of the discourse” (Sfard, 2008, p253). In 

addition, “metalevel learning, which involves changes in metarules of the discourse 

[…] is usually related to exogenous change in discourse. This change means that 

some familiar tasks, such as, say, defining a word or identifying geometric figures, 

will now be done in a different, unfamiliar way and that certain familiar words will 

change their uses” (Sfard, 2008, p254). 
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LITERATURE REVIEW 
Research in the learning of Group Theory is relatively scarce compared to other 

university mathematics fields, such as Calculus, Linear Algebra or Analysis. Even 

more limited is the commognitive analysis of conceptual and learning issues (Nardi et 

al., 2014). In the context of this research strand, Ioannou (2012) has, among other 

issues, focused on the intertwined nature of object-level and metalevel learning in 

Group Theory and the commognitive conflicts that emerge.   

The first reports on the learning of Group Theory appeared in the early 1990’s. 

Several studies, following mostly a constructivist approach, and within the Piagetian 

tradition of studying the cognitive processes, examined students’ cognitive 

development and analysed the emerging difficulties in the process of learning certain 

group-theoretic concepts. The construction of the newly introduced d-object of group 

is often an arduous task for novice students and causes serious difficulties in the 

transition from the informal secondary education mathematics to the formalism of 

undergraduate mathematics (Nardi, 2000). Students’ difficulty in the engagement 

with the Group Theory concepts is partly grounded on historical and epistemological 

factors: “the problems from which these concepts arose in an essential manner are not 

accessible to students who are beginning to study (expected to understand) the 

concepts today” (Robert and Schwarzenberger, 1991, p129). Nowadays, the 

presentation of the fundamental concepts of Group Theory, namely group, subgroup, 

coset, quotient group, etc. is “historically decontextualized” (Nardi, 2000, p169), 

since historically the fundamental concepts of Group Theory were permutation and 

symmetry. Moreover, this chasm of ontological and historical development proves to 

be of significant importance in the metalevel development of the group-theoretic 

discourse for novice students. 

Research suggests that students’ understanding of the concepts of group proves often 

primitive at the beginning, predominantly based on their conception of a set. An 

important step in the development of the understanding of the concept of group is 

when the student “singles out the binary operation and focuses on its function aspect” 

(Dubinsky et al., 1994, p292). Students often have the tendency to consider group as 

a “special set”, ignoring the role of binary operation. Iannone and Nardi (2002) 

suggest that this conceptualisation of group has two implications: the students’ 

occasional disregard for checking associativity and their neglect of the inner structure 

of a group.  

An often-occurring confusion amongst novice students is related to the order of the 

group  and the order of its element . This is partly based on student inexperience, 

their problematic perception of the symbolisation used and of the group operation. 

The use of semantic abbreviations and symbolisation can be particularly problematic 

at the beginning of their study. Nardi (2000) suggests that there are both linguistic 

and conceptual interpretations of students’ difficulty with the notion of order of an 

element of the group. The role of symbolisation is particularly important in the 
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learning of Group Theory, and problematic conception of the symbols used probably 

causes confusion in other instances.  

A distinctive characteristic of university mathematics is the production of rigorous 

and consistent proofs. Proof production is far from a straightforward task to analyse 

and identify the difficulties students face. These difficulties have been extensively 

investigated for various levels of student expertise. Weber (2001) categorises student 

difficulties with proofs into two classes:  the first is related to the students’ difficulty 

to have an accurate and clear conception of what comprises a mathematical proof, 

and the second is related to students’ difficulty to understand a mathematical 

proposition or a concept and therefore systematically misuse it.   

METHODOLOGY 
This study is part of a larger research project, which conducted a close examination 

of Year 2 mathematics students’ conceptual difficulties and the emerging learning 

and communicational aspects in their first encounter with Group Theory. The module 

was taught in a research-intensive mathematics department in the United Kingdom, in 

the spring semester of a recent academic year. 

The Abstract Algebra (Group Theory and Ring Theory) module was mandatory for 

Year 2 mathematics undergraduate students, and a total of 78 students attended it. 

The module was spread over 10 weeks, with 20 one-hour lectures and three cycles of 

seminars in weeks 3, 6 and 10 of the semester. The role of the seminars was mainly 

to support the students with their coursework. There were 4 seminar groups, and the 

sessions were each facilitated by a seminar leader, a full-time faculty member of the 

school, and a seminar assistant, who was a doctorate student in the mathematics 

department. All members of the teaching team were pure mathematicians. 

The lectures consisted largely of exposition by the lecturer, a very experienced pure 

mathematician, and there was not much interaction between the lecturer and the 

students. During the lecture, he wrote self-contained notes on the blackboard, while 

commenting orally at the same time. Usually, he wrote on the blackboard without 

looking at his handwritten notes.  In the seminars, the students were supposed to 

work on problem sheets, which were usually distributed to the students a week before 

the seminars. The students had the opportunity to ask the seminar leaders and 

assistants about anything they had a problem with and to receive help. The module 

assessment was predominantly exam-based (80%). In addition, the students had to 

hand in a threefold piece of coursework (20%) by the end of the semester. 

The gathered data included the following: Lecture observation field notes, lecture 

notes (notes of the lecturer as given on the blackboard), audio-recordings of the 20 

lectures, audio-recordings of the 21 seminars, 39 student interviews (13 volunteers 

who gave 3 interviews each), 15 members of staff’s interviews (5 members of staff, 

namely the lecturer, two seminar leaders and two seminar assistants, who gave 3 

interviews each), student coursework, markers’ comments on student coursework, 

and student examination scripts. For the purposes of this study, the collected data of 
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the 13 volunteers has been scrutinised. Finally, all emerging ethical issues during the 

data collection and analysis, namely, issues of power, equal opportunities, right to 

withdraw, procedures of complain, confidentiality, anonymity, participant consent, 

sensitive issues in interviews, etc., have been addressed accordingly. 

DATA ANALYSIS 
Incidences of incomplete mathematical learning appeared in eight of the thirteen 

(8/13) students’ attempts to prove closure under inverses.  Due to limited space, there 

will be presented only three characteristic examples of such incidences. 

The most common inaccuracy, which occurred, was related to the proof of the 

uniqueness of the inverse.  For instance, in an attempt to solve the following task: 

“For any  the sets  and  

are subgroups of ”, Student A, successfully applies the routine for a set to be 

a subgroup for the first set, i.e. . Her solution 

indicates complete object-level learning of the d-objects involved, successful 

application of the governing metarules, as well as good connectivity across different 

mathematical discourses, such as Linear Algebra. For the second set, 

, she successfully applies the routine and proves non-

emptiness and closure under operation, and for the closure under inverses she 

correctly states that the inverse in this case is the transpose.  Yet she has omitted to 

clarify the uniqueness of inverse taken both from the right and the left as shown 

below.  Without this clarification the algebraic manipulations would be unjustified.    

 

Figure 1: Part of Student A’s solution 

A second incidence of incomplete mathematical learning regarding closure under 

inverses appeared in the coursework of Student B. In her attempt to solve the 

following task “Suppose  is a non-empty set and Let  and 

Prove that  is a subgroup of .”, she demonstrates a rather 

complete object-level learning of the involved d-objects.  In addition, she 

successfully uses the condition that  to prove that 

 is non-empty and that the closure under operation holds.  Nevertheless, her attempt 
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to prove that  is closed under inverses is problematic, due to problematic 

application of the governing metalevel rules.  She assumed that since , it is 

given that it belongs to  as well, instead of showing it.  Instead she should apply 

 in both sides of  and get that .  This suggests incomplete 

metalevel learning and consequently inaccurate application of metarules, particularly 

regarding the precision and rigor that mathematical reasoning in this advanced 

context requires. 

 
Figure 2: Part of Student B’s solution 

Apart from Student B’s problematic application of the governing metarules, in this 

particular exercise her performance seems to be unfavourably influenced by 

incomplete object-level learning, particularly at the initial stages of her attempt to 

solve the task, as the following interview excerpt suggests. 

Um... but I did manage to sort it out eventually – I just think – I found it hard cos – I was 

going between  and  and  and , there was just a lot of – different groups, that I was 

trying to get my head round, but um, I did manage to sort that out eventually. Student B 

Student B’s object-level disengagement at this initial stage is related to the 

identification of the difference between the various sets and the groups, which would 

allow her to apply with facility the routine for a set to be a subgroup.  

Similarly, incomplete object-level learning seems to occasionally, but not necessarily, 

have negative impact in the application of the governing metarules.  This is obvious 

in Student C’s attempt to prove closure under inverses in the following mathematical 

task: “Suppose  is a group and are subgroups of . Show that  is a 

subgroup of .” 

In Figure 3, one can detect incomplete object-level learning of the involved d-objects.  

In particular, there are indications of problematic engagement with the d-object of 

subgroup as such and its elements. These indications are particularly obvious in the 

notation used in the narrative , since Student C possibly does not 

realise what  and  represent, and the circumstances under which the 

operation of intersection can be used.   
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Figure 3: Part of Student C’s solution 

In addition to the aforementioned issues with object-level learning, there are also 

indications of problematic engagement with metarules. In particular, Student C seems 

not to have a clear idea of how and when his proof needs to be further developed, 

indicating some difficulty with the applicability conditions of the routine, as well as 

the how of the routine and the ‘course of action’. This is obvious in his attempt to 

prove closure under inverses, since he does not seem to be fully aware that he has to 

prove that  if . Moreover, Student C expressed his concern 

about applying the particular routine and connected it with his ability to communicate 

the proof in a way that was comprehensible to others.   

But I – yeah, again, it might be – me not – it makes perfect sense, but I might not... make 

it – it’s just like you know – I can understand it, but it’s trying to, I mean because proof is 

really trying to make someone else understand it, and I say, possibly I do struggle at – 

giving, you know, making someone else understand it by writing it down, but, so it’s 

where I might lose some marks, but... Student C 

More generally, Student C’s writing as seen in his scripts is personalised with signs 

of tentativeness on many occasions. Tentative writing occurs when his mathematical 

learning is incomplete.  In these instances, his solutions are nonlinear and messy.   

CONCLUSION 
The subgroup test is the first major routine that undergraduate mathematics students 

are invited to be engaged with in the context of Group Theory. This study has 

focused on the student’s responses regarding the proof of closure under inverses, 

adopting a participationist perspective. In agreement with other studies in the field, 

there have emerged difficulties that are related to the object-level learning of the 

concepts of group, subgroup and set (in agreement with Iannone and Nardi, (2002); 

Robert and Schwarzenberger, (1991)), as well as difficulties that are related to the 

application of metarules and the level of rigor that the process of proof requires (in 

agreement with Weber, (2001); Nardi (2000)).  The last characteristic example of 

Student C, indicates that incompleteness of object-level learning has an unfavourable 

impact on the application of metarules and the proof production overall. 
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PRE-SERVICE TEACHERS’ USES OF A LEARNING 
TRAJECTORY TO NOTICE STUDENTS’ FRACTIONAL 

REASONING 
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Learning Trajectories are seen as a tool that can help pre-service teachers (PTs) 

focus on students’ mathematical thinking to make instructional decisions. The aim of 

this study is to examine PTs’ use of a Learning Trajectory for fractions to notice 

students’ fractional reasoning. Our results show that the use of a Learning 

Trajectory for fractions as a scaffold allowed PTs to interpret students’ fractional 

reasoning. However, they interpreted students’ fractional reasoning in different 

ways, differing in the professional discourse generated. Our results also suggest a 

relationship between the way in which PTs interpreted students’ fractional reasoning 

and the instructional decisions made. PTs who used a more detailed mathematical 

discourse proposed more activities to help students progress in their fractional 

reasoning. 

NOTICING AND LEARNING TRAJECTORIES  
Noticing what is happening in a classroom is an important skill that teachers should 

acquire to actively respond to complex and challenging situations that arise in their 

classrooms. Although the skill of noticing has been conceptualised from different 

perspectives (Jacobs, Lamb, & Philipp, 2010; Mason, 2002; van Es, & Sherin, 2002), 

we are going to focus on the conceptualisation given by Mason (2002; 2011). For 

him “noticing is a movement or shift of attention” (Mason, 2011, p. 45) and he has 

identified different ways in which people can attend (p.47): 

Holding wholes is attending by gazing at something without particularly discerning 

details. 

Discerning details is picking out bits, discriminating this from that, decomposing or 

subdividing and so distinguish and, hence, creating things. 

Recognizing relationships is becoming aware of sameness and difference or other 

relationships among the discerned details in the situation. 

Perceiving properties is becoming aware of particular relationships as instances of 

properties that could hold in other situations. 

Reasoning on the basis of agreed properties is going beyond the assembling of things 

you think you know, intuit, or induce must be true in order to use previously justified 

properties as the basis for convincing yourself and others, leading to reasoning from 

definitions and axioms. 
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Jacobs et al. (2010) particularised Mason’s work conceptualising the skill of noticing 

students’ mathematical thinking as a three interrelated skills: attending to students 

strategies (discerning details), interpreting students’ mathematical thinking taking 

into account the details identified before (recognising relationships) and deciding 

how to respond on the basis of students’ reasoning (perceiving properties). However, 

recent research has shown that the skill of deciding how to respond on the basis of 

students’ mathematical thinking is the most difficult one to develop in teacher 

education programs (Choy, 2013) since “the specificity of what teachers notice while 

necessary, is not sufficient for improved practices” (p. 187). In other words, teachers 

can be very specific about what they notice without having a teaching decision 

according to what it has been noticed.  

On the other hand, previous research has shown that the use of Learning Trajectories 

could focus teachers’ attention on students’ mathematical thinking and that when pre-

service teachers attend to students learning progressions in a particular mathematical 

domain, they are better in making decisions about next instructional steps (Wilson, 

Mojica, & Confrey, 2013). In this context, students’ Learning Trajectories could help 

pre-service teachers interpret students’ mathematical reasoning and respond with 

appropriate instruction (Sztajn, Confrey, Wilson, & Edgington, 2012). Furthermore, 

the use of Learning Trajectories could provide pre-service teachers with a 

mathematical language to describe students’ mathematical thinking (Wickstrom, 

Baek, Barrett, Cullen, & Tobias, 2012). 

Our study is embedded in these two lines of research and analyses how pre-service 

teachers’ learning of a Learning Trajectory for fractions helps them to notice 

students’ fractional reasoning. Our research question is: to what extent do pre-service 

teachers use a Learning Trajectory for fractions to interpret students’ fractional 

reasoning and make instructional decisions on the basis of students’ reasoning?  

A Learning Trajectory for fractions 
A Learning Trajectory (LT) is a way of articulating the students’ conceptual progress 

from informal thinking to a more sophisticated mathematical reasoning, and consists 

of three components: (i) a learning goal, (ii) a hypothetical learning process and (iii) 

learning activities (Simon, 1995). The learning goal of the Learning Trajectory for 

fractions used in this study takes into account the Spanish Primary Education’s 

curriculum: the meaning of fraction as a part-whole relation and its different 

representations and, the meaning of fractions operations. The student’s learning 

process takes into account how the student’s fractional reasoning develops over time 

and is organised in six proficiency levels of fractional reasoning (Battista, 2012; 

Steffe, 2004; Steffe, & Olive, 2009) (Figure 1). Regarding to the learning activities, 

the Learning Trajectory for fractions used in this study includes activities to help 

students progress to a more sophisticated level of reasoning, particularly, activities of 

identifying, representing, and comparing fractions, and operations with fractions in 

both, discrete and continuous contexts. 
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In this study, we focus on pre-service primary teachers’ uses of the three initial 

proficiency levels of the Learning Trajectory for fractions. These levels are focused 

on the meaning of fraction as a part-whole and its representations: the recognition 

that the parts of the whole must be congruent, the representation and identification of 

fractions in continuous and discrete contexts and the identification of equivalent 

fractions recognising that a part can be divided into other parts. 

 

Figure 1: Learning Trajectory proficiency levels 

METHOD 
Participants and the task 
Participants were 95 pre-service primary school teachers (PTs) enrolled in their third 

year of a degree to become primary school teachers. They were enrolled in a subject 

related to the teaching and learning of mathematics in primary school. In previous 

courses, these PTs had participated in a subject related to Numerical Sense and in a 

subject related to Geometrical Sense.  

The task consists of the answers of three couples of primary school students that have 

a different fractional reasoning proficiency level in an activity of identifying fractions 

(Figure 2) (to see a complete version of the task, Ivars, Fernández, & Llinares, 2016). 

The answer of Xavi and Víctor (couple 1) shows characteristics of the level 1 since 

they do not take into account that the parts of a whole must be congruent. The answer 

of Joan and Tere (couple 2) reflects characteristics of the level 2 since they take into 

account that the parts must be congruent in continuous contexts but they still do not 

recognise that a part can be divided into other parts. This last characteristic is 

evidenced when they say that Figure E is not three quarters because it is divided into 
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24 equal parts and there are 18 shaded. Finally, Álvaro and Félix (couple 3) take into 

account that the parts must be congruent and that a part can be divided into other 

parts (they consider Figures B, D, E, and F as representations of ¾).  

1. Which of the following diagrams represent ¾. Explain your answers. 

 

Figure 2: Activity of identifying fractions (adapted from Battista, 2012) 

Considering the answers of the three couples of students, pre-service teachers had to 

answer the next four questions.  

 Q1- Describe the activity taking into account a learning objective: what are 

the mathematical elements that a student needs to know to solve it? 

 Q2- Describe how each couple of students has solved the problem indicating 

how they have used the mathematical elements involved and the difficulties 

they have had with them. 

 Q3- What are the characteristics of students’ reasoning (Learning 

Trajectory) that can be inferred from their answers? Explain your answer. 

 Q4- How could you respond to these students? Propose a learning objective 

and an activity to help students progress in their fractional reasoning. 

Pre-service teachers were provided with information about the mathematical 

elements of the fraction concept and the Learning Trajectory for fractions (Figure 1). 

We hypothesise that these questions and the theoretical information could focus pre-

service teachers’ attention on identifying the relevant mathematical elements of 

students’ answers (discerning details); on interpreting these answers (recognising 

relationships between the mathematical elements and students’ reasoning) and on 

deciding how to respond on the basis of students’ mathematical reasoning. 

Analysis 
We analysed PTs’ answers taking into account three aspects. Firstly, if they had 

identified relevant elements of the fraction concept in students’ answers (discerning 

details). Secondly, how pre-service teachers interpreted students’ fractional reasoning 

(recognising relationships between the mathematical elements of the fraction concept 

identified in the students’ answers and the different levels of students’ fractional 

reasoning). Finally, how pre-service teachers made instructional decisions (using 

what they have identified about students’ reasoning to propose activities that help 

students progress in their fractional reasoning).  
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To carry out the analysis, a subset of PTs’ answers was analysed and coded by three 

researchers, independently, considering the three aspects mentioned above. Then, we 

put together our analyses and compared and discussed our discrepancies until we 

reached an agreement. Then, new data samples were added to review our allocation. 

RESULTS  
We can highlight two main results. On the one hand, pre-service teachers interpreted 

students’ fractional reasoning in three different ways. On the other hand, these ways 

of interpreting students’ fractional reasoning influenced the instructional decisions 

made.  

Different ways of interpreting students’ fractional reasoning   
The analysis revealed that 90 out of the 95 PTs identified the mathematical elements 

of the fraction concept in the students’ answers (discerning details), that is, they used 

the mathematical elements, the parts must be congruent and a part can be divided 

into other parts to describe the students’ answers. Furthermore, 89 out of 90 PTs who 

discerned details were able to interpret students’ fractional reasoning recognising the 

relationships between the mathematical elements of the fraction concept in the 

students’ answers and the different proficiency levels of students’ fractional 

reasoning (Learning Trajectory). However, these PTs interpreted students’ fractional 

reasoning in three different ways depending on if they were able to elaborate a more 

detailed discourse using the Learning Trajectory: 

Non-evidencers: These PTs interpreted students’ reasoning recognising the 

relationship between the mathematical elements and the levels of the LT but did not 

provided evidence from the students’ answers (23 PT). For instance, the PT 85 

described Felix and Alvaro’s answer indicating (emphasis is added underlying the 

mathematical elements recognised): 

Couple 3 (Félix and Álvaro).These students are in level 3 of the LT because, as Tere and 

Joan (the second couple of primary school students), they identified that the parts must be 

congruent but, they did not have difficulties in recognising that a part can be divided into 

other parts. 

This PT recognised the mathematical elements in the students’ answers and 

determined the level of students’ fractional reasoning but he did not provide evidence 

from students’ answers to support his inference.   

Adders: These PTs interpreted students’ fractional reasoning recognising the 

relationship between the mathematical elements and the levels of the LT and 

provided evidence from the students’ answers but adding unnecessary information (7 

PT). For instance, the PT 62 wrote in relation to couple 3 answers (emphasis is added 

underlying the mathematical elements not related to the activity that the PT added 

unnecessarily): 

Couple 3 (Félix and Álvaro). These students are in Level 3. They identified fractions in 

discrete contexts recognising that the groups must be congruent because they identified F 
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as ¾. Furthermore, they said that E was ¾ too, so they recognised that a part can be 

divided into other parts. Finally, when comparing fractions they recognised that the 

wholes must be equal and they stablished the inverse relation between the number of 

parts and the size of each part. 

This PT provided evidence of her interpretation from the students’ answers when she 

wrote “…they identified F as ¾” “…they said that E was ¾ too”. However, she 

added unnecessary information about the comparison of fractions that was not related 

to the problem (although this information is appropriated in the level of the LT 

identified). 

Evidencers: These PTs interpreted students’ fractional reasoning recognising the 

relationship between the mathematical elements and the levels of the LT and 

provided evidence from students’ answers (59 PT). For example, the PT 49 wrote for 

the couple 3: 

Félix and Álvaro. These students reasoned about figures A, B, C, D in the same way that 

Joan and Tere. However, in figure E, as the whole has 6 equal squares in each line and 

there are 3 lines out of 4 shaded, they said that this figure represents ¾. And, in figure F, 

they grouped the eight squares in groups of 2, obtaining 4 groups of 2 squares each. 

Then, they realised that 3 groups of 2 squares are shaded. They are at level 3 because 

they recognised that a part can be divided into other parts. 

How the ways of interpreting influenced the instructional decisions made 
The way that the PTs interpreted students’ fractional reasoning influenced their 

instructional decisions. Taking into account that each PT had to propose an activity to 

each couple of students (3 activities x 89 PTs), we obtained the data of Table 1. The 

23 non-evidencers were able to propose only a new activity in the 19% of the cases, 

the 7 adders only in the 29% of the cases, and, finally the 59 evidencers in the 38% 

of the cases. These data suggest that when PTs provided details of their 

interpretations from the students’ answers, they were able to propose more activities 

to support the students’ progress. 

   From Level 1 

to Level 2 

From Level 2 

to Level 3 

From Level 

3 to Level 4 

Total 

 PT’s Act. % Act. % Act. % % 

Non-evidencers 23 3 13% 8 35% 2 9% 19% 

Adders 7 3 43% 2 29% 1 14% 29% 

Evidencers 59 26 44% 38 64% 4 7% 38% 

Total 89  33%  43%  10% 29% 

Table 1: Instructional decisions made by PTs who recognised relationships 

Table 1 also indicates that the non-evidencers and evidencers groups had more 

difficulties in proposing activities to help students progress from level 1 to level 2 of 

the LT than from level 2 to level 3 (non-evidencers 13% vs 35% and evidencers 44% 

vs 64%). However, proposing an activity to help students progress from Level 3 to 

the Level 4 is the most difficult one for PTs in all the groups.  
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DISCUSSION AND CONCLUSIONS  
Our results have shown that the use of a Learning Trajectory for fractions as a 

scaffold by pre-service primary teachers allowed them to interpret students’ fractional 

reasoning since 89 out of 95 of the PTs who participated in this study were able to 

recognise relationships between the important mathematical elements involved in the 

students’ answers and the different levels of the Learning Trajectory.  

Nevertheless, the way in which these 89 PTs interpreted students’ fractional 

reasoning was different. All of these 89 PTs recognised relationships between the 

mathematical elements in the students’ answers and the proficiency levels of the 

Learning Trajectory, but they differed in the professional discourse generated to 

interpret students’ fractional reasoning. In fact, non-evidencers generated a less 

detailed discourse without giving evidence from students’ answers, adders started to 

use a more detailed discourse giving evidence from students’ answers but adding 

unnecessary information and, evidencers generated a detailed discourse giving 

evidence from students’ answers.  

Our results also suggest a relation between the way in which PTs interpreted 

students’ fractional reasoning and the instructional decisions made. PTs who used a 

more detailed mathematical discourse (using students’ answers to support their 

interpretations) proposed more activities to help students progress in their fractional 

reasoning. Noticing details helped PTs to propose more activities taking into account 

the students’ fractional reasoning. This data support the claim that the more sensitive 

pre-service teachers are to noticing details in students’ answers, the more capable 

they are to act responsively (Mason, 2002).  

In relation to noticing, the task used appears to be a powerful tool that helped PTs 

focus their attention on discerning the mathematical details of students’ answers, on 

interpreting students’ reasoning and on making instructional decisions on the basis of 

students’ reasoning. Furthermore, the Learning Trajectory could act as scaffold to 

improve PTs’ mathematical discourse since it provides to PT’s with a specific 

language to describe students’ thinking (Wickstrom et al., 2012). 

Our results provide a snapshot of how pre-service teachers, through the use of a 

students’ Learning Trajectory for fractions, begin to notice students’ fractional 

reasoning. Further research could be focused on analysing if pre-service teachers’ 

noticing skill is developed when they are enrolled in a learning environment that uses 

a students’ Learning Trajectory as a referent. 
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WHAT DO MATHEMATICS PRE-SERVICE TEACHERS LACK 
FOR MASTERING INSTRUCTIONAL DEMANDS? 

Colin Jeschke, Anke M. Lindmeier, & Aiso Heinze 
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In addition to subject-specific professional knowledge, research in teacher education 

recently focusses on teachers’ abilities to master subject-specific instructional 

demands. Although knowledge is seen as a prerequisite for according competences 

with close relation to instructional demands, the complex relationship between 

knowledge and according competences is not understood in detail. In order to 

investigate this relationship, we analysed answers to video-based instructional 

situations of 4 mathematics pre-service teachers. The case study illustrates that 

despite of sufficient teacher knowledge and perception abilities, the ability to give 

helpful feedback in instructional situations can be lacking. Our cases give 

indications, what factors might further the area of research. 

RESEARCH IN TEACHER COGNITION 
Subject-specific knowledge 
Research in teacher education brought up a variety of models for teacher 

competences (e.g. Hill, Schilling, & Ball, 2004; Kunter et al., 2013). In this research, 

there is a tendency of narrowing teachers’ cognition to declarative knowledge. 

Especially when it comes to subject-specific knowledge, research often focusses on 

teachers’ content knowledge (CK) and pedagogical content knowledge (PCK). Those 

constructs have been successfully described, conceptualized, and operationalized in 

many studies so far (e.g. Shulman, 1986; Kunter et al., 2013; Hill et al., 2004). 

Despite some conclusive evidence that mathematics-specific knowledge is a predictor 

for instructional quality and student learning (e.g. Kunter et al., 2013), recent 

discussions pointed out limitations. In particular, it is questioned if standardized 

measures for teacher knowledge are sufficient to predict teachers’ abilities to use this 

knowledge in the classroom (e.g. Blömeke, Busse, Kaiser, König, & Suhl, 2016; 

Knievel, Lindmeier, & Heinze, 2015). Given this issue, recent studies brought up 

alternative approaches of modelling and assessing teachers’ subject-specific skills 

and abilities which are beyond declarative knowledge and complement previous 

research. 

Subject-specific action-related competence 
There are currently different approaches on expanding classical models of teacher 

knowledge. For the present research, we use the model of Lindmeier (2011).  In this 

model, the understanding of subject-specific competences considers the variety of 

typical demands that come along with teaching a subject and, in a European tradition, 
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defines competence as the ability to master those demands. Consequently, the model 

defines the ability to master “core teacher tasks” (Lindmeier, 2011, p. 108) of 

instructional processes as action-related competence (AC) which are characterized by 

spontaneous, immediate, and interactive demands (Knievel et al., 2015). 

AC comes into play when teachers e.g. have to react to a conceptual misconception 

displayed through a student’s statement during classroom discourse or have to give 

immediate feedback to a student’s mathematical question. However, separating 

action-related competence from teacher knowledge from a theoretical perspective 

leads to the need to investigate how knowledge and competence relate to each other. 

It can be assumed that AC covers PCK and CK as necessary components 

supplemented by the ability to apply or enact this knowledge (Lindmeier, 2011). 

Hence, teacher knowledge is not found sufficient to master demands of actual 

teaching. With this study, we want to investigate which skills might be suited to 

disentangle the complex relation between a profound knowledge and high-quality 

actions. 

PREREQUISITES FOR ACTION-RELATED COMPETENCE  
Describing skills and abilities that are necessary for teaching on a conceptual level 

has relevance not only for research in teacher education but also for teacher education 

at university. There is evidence from the TEDS-M study indicating that characteristic 

differences of teacher education programmes between countries result in 

characteristic differences in pre-service teachers’ knowledge (Wang & Tang, 2013). 

Evidence for the initial acquisition of action-related competence during teacher 

education is missing so far. Understanding the conditions that lead to teacher 

competence might help to improve programmes for mathematics teachers at 

university. In the following, we delineate individual factors that may have an effect 

on action-related competence. 

As AC is conceptualized based on demands that typically occur during mathematics 

instruction, a closer look at prototypical processes of teacher action in instruction 

gives indications for possible influencing factors. They can be described as traits that 

are necessary for three steps usually modelled for such processes (e.g. Blömeke et al., 

2016): 1) perceiving a situation in teaching and see what is essential e.g. paying 

attention to a student’s production in class despite of competing attentional 

distractions in the complex teaching situations, 2) interpreting and making sense of 

the perceived, e.g. in order to identify a misconception, and 3) reacting adequately to 

the situation, e.g. through offering an apt hint that may turn the student’s 

misconception into a mathematical learning opportunity. Since the demands are 

considered to be subject-specific, it can be assumed that teacher knowledge (CK and 

PCK) is needed to master these demands. 

Focusing on the first steps, research on professional noticing skills may be helpful to 

delineate cognitive dispositions necessary at the stage of perception. For example, 

mathematics teachers’ noticing has been described as the ability to attend (step 1) and 

then use existing knowledge to interpret events (step 2) that are mathematics-specific 
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(e.g. Sherin, Russ, & Colestock, 2011). Although noticing could therefore be useful 

for investigating mathematics action-related competences, the need of subject-

specific knowledge makes it difficult to separate perception skills from knowledge 

when it comes to operationalization. Another approach is followed by Miller (2011). 

Teachers’ basic abilities to ‘perceive important features in a given classroom 

situation’ are described as teachers’ situation awareness (SA) (p. 51). SA is seen as a 

function of general cognitive abilities which allow teachers to quickly realize 

simultaneous events in a situation (e.g., student 1 talks to student 2, student 3 raises 

his hand, student 4 is doing something under her desk). The concept of situation 

awareness therefore might be useful to describe teachers’ perception skills for 

‘prototypical’ instructional situations that are, to a certain extent, independent from 

subject-specific knowledge. However, neither the concept of situation awareness nor 

another fundamental perception skill has recently been investigated empirically with 

respect to its relation to teacher competences. Regarding the third step, skills like 

decision-making were suggested as influencing factors, but research on teachers is 

still emerging in this field. 

To sum up, it is currently an open question on which traits other than subject-specific 

knowledge mathematics teachers’ AC is based. From a theoretical perspective, 

situation awareness – in instructional processes – is a subject-unspecific construct 

which, together with subject-specific knowledge, contributes to AC. 

RESEARCH QUESTIONS 
Considering the need of research pointed out in the previous section, we considered 

the following research questions: Is situation awareness (SA), in addition to 

mathematics-specific knowledge (CK, PCK), influencing action-related competences 

(AC) of pre-service teachers? Is there evidence for further factors contributing to 

action-related competence (AC)? 

METHODS 
In order to investigate our research question, we administered tests for the constructs 

in question to a group of mathematics pre-service teachers of Kiel University 

(quantitative survey). On the basis of the test performance we then selected specific 

cases in order to investigate and identify factors influencing AC.  

Instruments 
This section reports on the instruments used for the quantitative survey as far as 

possible within the limits, as it is necessary to access the case study reported below. 

Mathematics AC was measured by a video-based instrument (extension of 

Lindmeier, 2011). Each of the 8 items contains a short video-vignette of a classroom 

situation typical for secondary mathematics instruction. The situations focused on 

problems in algebra (5 items) and calculus (3 items). Depending on the item type, the 

response should be e.g. an explanation that solves a students’ mathematical question 

or an adaptive feedback that helps students with a mathematical problem without 
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giving the solution. Since AC is characterized by its spontaneous and immediate 

demands, AC items had to be answered in a microphone with an oral statement under 

time pressure. A specialized software was used for the computer based 

implementation (see Lindmeier, 2011, Knievel et al., 2015 for a details on AC 

operationalization).The resulting audio recordings were coded and scored by three 

trained persons independently under usage of a detailed a-priori developed manual. 

Partial scores were applied (score 2: adequate; score 1: partially adequate, score 0: 

inadequate answer). The responses were considered adequate if they comply with the 

following aspects of high quality teaching (cf. Knievel et al., 2015): correctness of 

content, building on students’ thinking, and clarity and appropriateness of 

explanation/stimulus without giving irrelevant information. First results for interrater 

reliability were acceptable with a range of  = .65–.89 (Fleiss’ Kappa). 

Items for assessing mathematics PCK and (school-related) CK have been developed 

for pre-service teachers in previous studies (e.g. Loch, Lindmeier, & Heinze, 2015). 

For the present study, we used their empirical results to select items and assemble the 

instruments (PCK: 12; CK: 7 items). All items were in a constructed response format. 

Situation awareness was conceptualized as a subject-unspecific ability of teachers to 

perceive critical incidents. In particular, our conceptualization of situation awareness 

focusses on classroom management issues and situations that typically occur in class 

(e.g. noticeable or inappropriate student behaviour). We developed an 8-item 

instrument using material of other-than mathematical instruction of a German video 

study (Seidel, Prenzel, & Kobarg, 2005). For each item, a short video clip is to be 

watched once. After that, a constructed-response question shows up offering (true 

and false) details of the situation in the video-clip (Figure 1).  

 

Figure 1: Item for situation awareness (left: video clip; right: single-choice question). 

Case selection 
The survey was conducted with pre-service teachers enrolled for the mathematics 

teacher programme for upper secondary level at Kiel University (Germany). For our 

analysis, we selected a sample of 4 cases (3 females, mean age 25.3 years) out of 41 

according to the following criteria: Person shows high scores in CK, PCK and SA, 

but low scores in AC. Five participants reached the criterion for CK, PCK and SA, 
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with only four of them having low AC-scores below the average. Theoretically 

speaking, those four participants should have good pre-requisites for achieving high 

scores in AC, but were not able to achieve expected scores. Overall, the AC data of 

this sample contains 26 responses, 4 empty responses, and 2 missing due to test 

abortion. Hence, analysing those responses might give evidence why knowledge and 

perception skills do not suffice for the mastery of teaching demands. 

RESULTS 
In order to get an insight why the selected participants showed a poor performance in 

AC, we reviewed the oral answers in the video-based test with the aim of describing 

why these were not adequate. For that, we analysed whether answers rated as not-

adequate in the survey (score 0 and 1) can be characterized in categories that e.g. 

describe problems in perceiving, interpreting or reacting to the given situation.  

We found that the 26 answers can be characterized using only four categories: (1) 

answers that are not useful at all, e.g. statements that do not contain an explanation 

although it was expected, (2) answers that lack correctness of content, e.g. 

suggestions that are mathematically wrong, (3) answers that are partially adequate but 

contain supplements that are irrelevant or irritating, and (4) answers that are 

considered not helpful for the students, although the students’ problem and the 

problem solution is (probably) understood by the participant, e.g. explanations that 

are targeted at an intellectual level far beyond the skills of the student/grade level or 

hints that trigger a strategy that is likely to hinder the conversion of a situation into an 

opportunity to learn. None of the 26 answers explicitly showed a misunderstanding of 

the situations that might occur due to the fact that the situations had to be answered 

spontaneously and under time-pressure. That gives evidence that the participants did 

indeed not lack perception skills, what can be seen as validity evidence for the 

measure of SA. 

The deficit that occurred – by far – most often is characterized by category 4. The 

participants seemed to know what the student’s problem is (which indicates sufficient 

content/pedagogical content knowledge in line with the case selection criteria), but 

were not able to phrase an answer that is helpful for the student:  
Situation (Item 1): 6

th
 grade, topic: total order of fractions. Three students are working 

on a mathematical task. The teacher asks them, if they have 

finished and what exactly their task was. The students reply that 

they had to find five fractions between 3/8 and 7/8, but that they 

have found only the three fractions 4/8, 5/8 and 6/8.  

Participant 2: There are more fractions than just eighth. There are also half and 

quarters. Maybe you can find more fractions with this hint. 

In item 1, it was asked to give a helpful stimulus so that the students may find the 

correct solution on their own. Participant 2 correctly focussed on different 

representations of the fractions. That indicates that participant 2 understood the 

mathematical problem and the problem of students’ thinking. Possibly, the participant 

even knew the right strategy to solve the mathematical task herself. However, the 
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participant prompted a strategy that might infer negatively with finding more 

fractions as it lacks coherence with the presented situation. Therefore, this answer is 

considered to be not adequate and was characterized with category 4. Overall, we 

found 14 other responses that comparably lack instructional coherence. 

Besides that, we found 5 statements that are partially adequate, but contain further 

information that is irrelevant and not helpful or, even worse, irritating:  
Situation (Item 3): 6

th
 grade, topic: division of fractions. Two students were asked to 

present their results on the board. The first student, Simon, 

multiplies 4 x 3/5 using (4x3)/5. The second student, Mailin, 

divides 2 by 2/3 using (2:2)/3. 

Participant 3: Mailin, we already discussed that multiplying and dividing 

fractions work differently. Do you remember the reciprocal rule of 

division? (…) What does division mean? What does multiplication 

mean? Multiplication means that we get a part of something (…) 

and dividing means that we divide something, e.g. to people. (…) 

You have to turn the second fraction upside down (…). And then, 

you can go on just like Simon did. 

For item 3, it was asked to give a solution and an explanation for Mailin’s problem. 

Participant 3 gave the correct solution and an adequate explanation using the 

reciprocal rule of division. However the participant added several phrases that do not 

help to solve this particular problem, in contrast, might irritate as the expressed 

conceptions for multiplication and division are not fitting to the problems presented.  

 

Participant Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 

1 4 3, 4 3 3, 4 4 1 4 4 

2 4 3, 4 4 2 1 2 4 4 

3 correct 2 3 1 correct 4 4 missing 

4 1 1 4 4 correct correct 2 missing 

Table 1: Classification of the answers to AC items of the selected participants  

(1: no useful answer, 2: lacking correctness of content, 3: irrelevant/irritating supplements, 

4: feedback not helpful) 

Given the characterization of all analysed answers (Table 1), some tendencies are 

visible regarding the participants’ action under time pressure. Participant 1 showed 

sufficient knowledge for perceiving and interpreting the situations but deficits in 

providing precise and helpful teacher actions in almost every item. Participant 2 most 

often showed deficits in mathematical correctness, giving evidence for lacking CK. 

She additionally showed deficits in providing helpful feedback twice, although the 

required knowledge seemed to be present. Participant 3 showed multiple deficits in 

CK, although this case only contained a smaller number of answers that were rated 

non-adequate. Participant 4 skipped two items after watching the video, which could 
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indicate problems with understanding the situation (lacking SA, CK or PCK) or 

missing strategies for responding to the situation (lacking PCK).  

DISCUSSION AND IMPLICATIONS 
The main aim of the present study was to explore factors that may contribute to pre-

service mathematics teachers’ action-related competence, i.e. teachers’ ability to react 

adequately in a classroom situation under time pressure. We selected specific 

participants from a quantitative survey with high knowledge (CK, PCK) and situation 

awareness (SA). The results indicate that the low AC of the selected participants is 

often not simply a lack of knowledge or situation awareness. More than half of the 

answers did not show an adequate or helpful teacher action for the given situations, 

although the participants seemed to be aware of the students’ problem and the 

problem solution. Some of the remaining answers contained adequate approaches but 

turned out to be only partially adequate due to irrelevant or inappropriate 

supplements. Again, this gives evidence that the difficulties rather resulted from 

difficulties in responding than understanding a problematic situation. 

Based on these results we conclude that the pre-service teachers were able to apply 

their CK, PCK and SA to understand the challenges in the classroom situations even 

under time pressure. In the terms of Sherin, Russ, and Colestock (2011), the 

participants noticing skills were sufficient. However, they showed a weak 

performance when they had to use their CK and PCK for an adequate subsequent 

teacher action. The latter might be caused by two different reasons. First, we see 

(indication of category 3) that the quality of knowledge may be a factor to be 

considered in more detail. Instruments in teacher knowledge usually focus on 

declarative knowledge, therefore, measures of teacher knowledge may not reflect the 

usability of this knowledge for specific situations. Recent research shows how PCK 

can be differentiated in the types of declarative, propositional and episodic case 

knowledge with expected different characteristics with respect to usability (e.g. 

Kuhn, Alonzo, & Zlatkin-Troitschanskaia, 2016). Future approaches may hence seek 

to assess also different qualities of PCK with more rigour. Second, we see (indication 

of category 4) that despite of a good understanding of the situation, the decision-

process may lead to incoherent teacher actions. The problems in phrasing helpful 

teacher actions may also partly be attributed to a lack of usable teacher knowledge. 

The findings also indicate that a closer look on teacher-specific skills for decision-

making can help to explain the difficulties. 

The results of this case study should be considered as only tentative as sample size, 

possible selection effects regarding the overall sample as well as the design of the 

study constitute limitations. To overcome these limitations, further studies will be 

conducted. Consequently, we are currently gathering data of a larger sample of pre- 

and in-service teachers aiming on both corroborating our findings and being able to 

describe in more detail the differences between more and less competent mathematics 

teachers. That knowledge could not only improve current models of teacher 

competence, but also teacher education itself as it may yield starting-points for 
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fostering pre-service teachers’ abilities to apply their knowledge already in an early 

stage of teacher education. 
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This paper outlines an analytical framework that was developed, to examine the 

mathematics in mathematics lessons of competent teachers in Singapore secondary 

schools. The framework is guided by Schoenfeld’s Teaching for Robust 

Understanding (TRU) framework and also the field notes of the project – A study of 

the enacted school mathematics curriculum which is presently underway in 

Singapore. The framework was trialled and the indicators were suitable but may not 

be comprehensive. Therefore more trials and also more codes on how the teacher 

aided students in developing mathematical knowledge and student engagement with 

mathematical ideas are needed. In addition student perspectives of the lesson are 

also necessary to make any valid claims related to the quality of the lessons.   

 

TEACHING OF MATHEMATICS IN SINGAPORE SCHOOLS 
A few studies done so far provide us with glimpses about how teachers teach 

mathematics in Singapore schools (See Kaur & Yap, 1997; Chang, Kaur, Koay & 

Lee, 2001; Kaur, 2009; Hogan et al., 2013). In this paper we briefly elaborate the 

findings of two studies, the CORE 2 research led by Professor Hogan (Hogan et al., 

2013) and Learner’s Perspective Study (LPS) in Singapore led by Professor Kaur 

(Kaur & Low, 2009). As part of the CORE 2 research the quality of the enacted 

curriculum in Secondary 3 (grade 9) mathematics lessons was assessed using criteria 

and standards identified by Hattie in Visible Learning (2012). Thirty-one 

mathematics teachers, sampled randomly, teaching secondary three mathematics in 

Singapore participated in the study. Sequences of lessons of the teachers in the study 

were video-recorded. Two main findings from the study were that: i) teachers 

focused more on procedural knowledge than conceptual knowledge and engaged 

students in domain-specific knowledge practice in about a third of the phases of a 

typical lesson. Of the domain-specific knowledge practices, knowledge 

representation was emphasized. Also, procedural learning support was evident as 

teachers often helped with the “how to do” steps; ii) students were engaged in doing 

performative tasks (77.3%) more often than knowledge building tasks (22.7%). A 

performative task mainly entails the use of lower order thinking skills such as recall, 

comprehension and application of knowledge while a knowledge building task calls 

for higher order thinking skills such as synthesis, evaluation and creation of 

knowledge. 
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Kaur (2009) in her study of grade eight competent mathematics teachers found that 

lessons were deemed good by students and teachers when they had the following 

characteristics: i) whole-class demonstration (exposition) where the teacher explained 

clearly the concepts and steps of procedures; made complex knowledge easily 

assimilated through demonstrations, use of manipulatives, real life examples and 

introduced new knowledge, ii) seatwork and out of class assignments where teacher 

gave clear instructions related to mathematical activities for in class and after class 

work; provided interesting activities for students to work on individually or in small 

groups; provided sufficient practice tasks for preparation towards examinations, and 

iii) review and feedback – where  teacher reviewed past knowledge, and used student 

work or group presentations to give feedback to individuals or the whole class.  

The findings of both Hogan et al. (2013) and Kaur (2009) indicate that there appears 

to be an apparent focus on the development of skills in mathematics lessons in 

Singapore schools. These findings certainly do not explain the stellar performance of 

Singapore students in PISA 2012 and 2015 that required students to complete tasks 

that were of the knowledge building type (OECD, 2014, 2016). As noted by Fan and 

Bokhove (2014), perhaps mathematical algorithms lead to proficiency of skills 

thereby stimulating thoughts about the conceptual aspects of the mathematics 

explored.   

At present a study of the enacted school mathematics curriculum (secondary schools) 

is underway in Singapore. It attempts to document the practices of 30 competent 

mathematics teachers. The study aims to examine i) pedagogies adopted by 

competent teachers when enacting the curriculum, and ii) competent teachers’ use of 

instructional materials for the enactment of the curriculum. Amongst others, one of 

the research questions explored is “How does the pedagogy of the teachers compare 

with that of mathematically powerful classrooms advocated by Schoenfeld (2011)?” 

To explore this question an appropriate analytical framework, comprising five parts, 

is being developed by the researchers of the study. This paper is based on one part of 

the  framework which is used to examine the mathematics in the mathematics lessons 

of competent teachers in the study. 

MATHEMATICALLY POWERFUL CLASSROOMS 
The three decades of extensive research by Schoenfeld in the US on mathematical 

problem solving and mathematics instruction (2011) affirms that people’s moment to 

moment decision making in teaching can be modelled as a function of their i) 

resources (esp. knowledge); orientations (esp. beliefs) and goals. He advocates that 

the five dimensions of mathematically powerful classrooms are: i)The mathematics 

context; ii) Cognitive demand; iii)Access to mathematical content; iv)Agency, 

Authority and Identity; and v)Uses of assessment. The Teaching for Robust 

Understanding framework proposed by Schoenfeld, Floden, and the Algebra teaching 

Study and Mathematics Assessment Project (2014) provides a tool for teacher 

learning and growth, according to the five dimensions of mathematically powerful 
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classrooms, with regards to student learning of mathematics. Figure 1, provides a 

general top-level description of the Teaching for Robust Understanding (TRU) 

framework Schoenfeld, 2016, p. 10). In our study reported in this paper, we use the 

TRU framework instead to examine two dimensions, namely the mathematics and 

cognitive demand, in mathematics lessons of two competent teachers in Singapore. 

The Five Dimensions of Mathematically Powerful Classrooms 

The Mathematics The extent to which the mathematics discussed is focussed and coherent, 

and to which connections between procedures, concepts and contexts 

(where appropriate) are addressed and explained.   

Cognitive Demand The extent to which classroom interactions create and maintain an 

environment of productive intellectual challenge conducive to students’ 

mathematical development. 

Access to 

Mathematical 

Content 

The extent to which classroom activity structures invite and support the 

active engagement of all of the students in the classroom with the core 

mathematics being addressed by the class. 

Agency, Authority, 

and Identity 

The extent to which students have opportunities to conjecture, explain, 

make mathematical arguments, and build on one another’s ideas, in ways 

that contribute to their development of agency and authority resulting in 

positive identities as doers of mathematics. 

Formative 

Assessment 

The extent to which the teacher solicits student thinking and subsequent 

instruction responds to those ideas, by building on productive beginnings or 

addressing emerging misunderstandings. 

Figure 1. The five dimensions of mathematically powerful classrooms 

METHODOLOGY 
The analytical framework we created for the dimension: The Mathematics was 

guided by i) the respective prompts for teacher thought and discussion in the TRU 

guide (Schoenfeld, Floden, and the Algebra Teaching Study and Mathematics 

Assessment Project, 2014), and also the field notes from the project – A study of the 

enacted school mathematics curriculum.  

Four researchers involved in the study of the enacted school mathematics curriculum, 

contributed towards the crafting of the indicators guided by the prompts from the 

TRU framework. Figure 2 shows the analytical lens that was created to examine 

lessons of competent mathematics teachers in Singapore for the dimension – The 

Mathematics.  The analytical lens crafted was used to examine the lessons of two 

teachers. These teachers were “experienced and competent”, where experience is a 

measure of the number of years they have taught mathematics in secondary schools 

and competency is a composite measure of their students’ performance at 

examinations and their performance in class in the eyes of their students. The 

teachers were nominated by their respective school leaders and the research team 

followed up on the nominations and interviewed the teachers. A strict requirement for 

participation in the study was that the teacher had to teach the way she / he did all the 

time, i.e. no special preparation was allowed. The lessons of these two teachers were 

selected, as they are both lead teachers and they also taught the same topic. Teacher 1 
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[T1] is a male who has taught mathematics for the last 20 years and Teacher 2 [T2] is 

a female teacher who has also taught mathematics for the last 20 years. For both 

teachers sequences of their lessons were recorded according to the protocol 

developed for the Learner’s Perspective Study in Singapore (Kaur, 2009). 

 Dimension 1 – The 

Mathematics 

What we looked out for in the lessons? 

Aspect Indicators 

Were the mathematical goals 

of the lesson apparent? 

Did the teacher articulate the goal/s of the lesson? 

Did the teacher articulate the goal/s of the mathematics students 

worked on during the lesson? 

Did the teacher articulate the goal/s of the mathematics students 

were assigned to do after the lesson during out of class time? 

Were important ideas in the 

lesson connected with those 

in past and future lessons? 

Did the teacher connect the important idea/s in the lesson to 

what students already know? 

Did the teacher relate concepts to each other — not just in a 

single lesson, but also across lessons and units in past and 

future? 

How were math procedures 

in the lesson justified and 

connected with important 

ideas? 

How did the teacher develop mathematical knowledge in the 

class? (Telling and showing / developing concepts through 

student activities / through systematic logical steps)  

Did the teacher identify the important ideas behind concepts and 

procedures? 

Did the teacher highlight connections between skills and 

concepts? 

Were students engaged with 

mathematical ideas during 

lessons? 

Did the teacher get the students to participate in meaningful 

math learning, so that they could make sense of concepts and 

ideas for themselves during lessons? 

Did the teacher get the students to participate in meaningful 

math learning, so that they could make sense of concepts and 

ideas for themselves as part of their out of class work after 

lessons? 

Did the teacher engage the students in authentic performances of 

important disciplinary practices (e.g., reasoning from evidence, 

communicating one’s thinking, clarifying doubts, etc.) 

Did the teacher invite the students to explain things, or just give 

answers? 

Figure 2. Analytical lens for the dimension – The Mathematics 

Altogether two, the first in the sequence of lessons of the two teachers were coded. 

Both teachers were teaching the same topic – Vectors and they covered the same 

content during their first lesson. As part of the science curriculum, students had 

knowledge of vectors as this topic had been taught to them by their Science teachers 

during Physics lessons. The mathematical ability of students in the class of T1 was 

slightly below average as they were from the 40
th
 percentile of their cohort and those 

in the class of T2 were from the 50
th

 percentile of their cohort.  

The coding was done in the following manner. Two researchers viewed the video-

records of the lessons. They first segmented a lesson into episodes. An episode was 
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delineated by the beginning and end of an activity, for e.g. it may comprise the 

teacher beginning the lesson and telling the class about the day’s lesson, or the 

beginning of an activity that had a specific goal such as engaging students in recall of 

past knowledge. Next they scanned one episode at a time for indicators of the 

dimension and recorded its presence. The inter-rater agreement was 83%. When a 

disagreement arose, the two researchers discussed their differences and arrived at 

consensus, either agreeing on the presence of the indicator or dismissing it.  

The following show a few of the indicators with sample excerpts from the lessons.  

Were the mathematical goals of the lesson apparent? 

Did the teacher articulate the goal/s of the lesson? 

T2 – Episode 1: (2:50) we will see what are vectors, how do we represent vectors on a diagram, 

how do we find magnitude, add/subtract vectors, and the use of vectors. 

Did the teacher articulate the goal/s of the mathematics students worked on during 

the lesson? 

T1 – Episode 11: 20:18) I’d like to test your understanding now….(25:16) The reason why I’m 

giving you this task is … 

Did the teacher articulate the goal/s of the mathematics students were assigned to do 

after the lesson during out of class time? 

T2- Episode 11: 52:38) I want you to do some thinking on your own. You need to understand 

what you’ve just learnt.(53:33) Why do I give you part a and part b? Are they 

the same? (54:05) You will show me the answers tomorrow. And then tomorrow 

we will do addition of vectors. 

Were important ideas in the lesson connected with those in past and future lessons? 

Did the teacher connect the important idea/s in the lesson to what students already 

know? 

T2-Episode 2: (05:05) How do you represent your vectors when you do Science? 

Did the teacher relate concepts to each other — not just in a single lesson, but also 

across lessons and units in past and future? 

T1-Episode 2: 42:21) Many quantities have only magnitude… you are all familiar with that in 

the primary school. When you come to secondary school, you started learning in 

physics, … These are the various quantities that you are familiar with. 

How were math procedures in the lesson justified and connected with important 

ideas? 

How did the teacher develop mathematical knowledge in the class? 

T1-Episode 7: (08:37) Now, what did you observe about these four vectors? How are 

they different and how are they the same? (09:14) What other 

observations did you observe? (10:08) What do you notice about OA and 

OC? 
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T2-Epiosde 4: (15:00) If your vector is not represented by a column vector, then how do you 

find the magnitude? … And you will use all kinds of knowledge that you have 

to find length. (16:49) Look at the diagram and ask yourself, what do you know? 

What are the concepts, what are the skills your already have? What can you use 

to find … 

Table 1, shows the number of episodes in which the respective indicators were 

present in the lessons of the two teachers.  

Dimension 1 – The Mathematics Teacher 1  

(18 episodes) 

(68 minutes) 

Teacher 2  

(12 episodes) 

(52 minutes) 

Did the teacher articulate the goal/s of the lesson? 

Did the teacher articulate the goal/s of the mathematics students 

worked on during the lesson? 

Did the teacher articulate the goal/s of the mathematics students 

were assigned to do after the lesson during out of class time? 

8 

(2+7+1)* 

6 

(1+3+2) 

Did the teacher connect the important idea/s in the lesson to what 

students already know? 

Did the teacher relate concepts to each other — not just in a single 

lesson, but also across lessons and units in past and future? 

5 

(3+4) 

5 

(3+7) 

How did the teacher develop mathematical knowledge in the class? 

(Telling and showing / developing concepts through student 

activities / through systematic logical steps)  

Did the teacher identify the important ideas behind concepts and 

procedures? 

Did the teacher highlight connections between skills and concepts? 

6 

(10+7+5) 

5 

(8+5+4) 

Did the teacher get the students to participate in meaningful math 

learning, so that they could make sense of concepts and ideas for 

themselves during lessons? 

Did the teacher get the students to participate in meaningful math 

learning, so that they could make sense of concepts and ideas for 

themselves as part of their out of class work after lessons? 

Did the teacher engage the students in authentic performances of 

important disciplinary practices (e.g., reasoning from evidence, 

communicating one’s thinking, clarifying doubts, etc.)? 

Did the teacher invite the students to explain things, or just give 

answers? 

5 

(5+1)** 

7 

(7+1) 

 

Note: in some episodes, more than one aspect was present. Also in some episodes more than one 

indicators of an aspect was present. * (?+?+?) shows the number of times the respective indicators 

in an aspect were present. ** (?+?) represents the number of episodes for the first two indicators. 

Table 1: Number of episodes where the respective indicators were apparent  

 

FINDINGS AND CHALLENGES  
From Table 1, it is apparent that for all the four aspects of the dimension – the 

Mathematics the indicators crafted by the researchers were apparent in the episodes 

of the lessons of the two teachers, though with varying density. We found the 

indicators suitable but may not be comprehensive as they were only trialled with two 
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lessons. Therefore they have to be trialled more extensively. In addition, we also 

found that specifically for the indicators:   

 How did the teacher develop mathematical knowledge in the class? 

 Did the teacher engage the students in authentic performances of important 

disciplinary practices (e.g., reasoning from evidence, communicating one’s 

thinking, clarifying doubts, etc.) 

 Did the teacher invite the students to explain things, or just give answers? 

we needed sub-codes to capture the range of approaches used by the teachers. Some 

of these approaches may be unique to the pedagogy of mathematics learning in 

Singapore. Furthermore in trying to rate the lessons according to the rubric shown in 

Figure 3 taken from Schoenfeld (2011) we felt that the level of both lessons may be 

rated as high but a more fine grained rubric may be needed to differentiate between 

lessons at this level for our research project. 

Dimension Level  

The 

Mathematics 

How 

accurate, 

coherent, and 

well justified 

is the 

mathematical 

content? 

Low Classroom activities are unfocussed or skills-oriented, lacking 

opportunities for engagement in key practices such as 

reasoning and problem solving. 

Medium Classroom activities are primarily skills-oriented, with cursory 

connections between procedures, concepts and contexts (where 

appropriate) and minimal attention to key practices such as 

reasoning and problem solving. 

High Classroom activities support meaningful connections between 

procedures, concepts and contexts (where appropriate) and 

provide opportunities for engagement in key practices such as 

reasoning and problem solving. 

Figure 3. Summary Rubric of Dimension 1 – The Mathematics 

Also, to make any valid and rigorous claims, we feel that we have to interrogate our 

data from the perspective of the students and answer the following questions which 

were presented by Schoenfeld (2016) during his plenary lecture at PME 40 in Szeged. 

The questions are: 

Dimension 1 – The Mathematics 

 What’s the big idea in this lesson? 

 How does it connect to what I already know? 

Dimension 2 – Cognitive Demand 

 How long am I given to think, and to make sense of things? 

 What happens when I am stuck? 

 Am I invited to explain things, or just give answers? 
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THE TEACHER IDENTITY OF MATHEMATICS TEACHERS 
Hyung Won Kim 

University of Texas Rio Grande Valley 

 

This study explores how mathematics teachers’ pedagogical identity develops in the 

social context of their classroom interactions, and what challenges teachers perceive 

in advancing their pedagogical identities. The study draws on a dialogical approach 

to identity that sees the self as something that individuals develop through interaction 

between their core “substantial self” and context-dependent “situational selves.” 

Data were collected from four in-service high school teachers. The findings shed 

light on the variability of mathematics teachers’ pedagogical identity and the 

processes through which they develop that pedagogical identity in the classroom 

context. 

INTRODUCTION 
Math teachers sometimes face a disjuncture between their natural inclinations as 

teachers and who they are expected to be in the classroom (Gainsburg, 2012). For 

example, many credentialing programs favor reform-oriented teaching approaches 

that emphasize classroom interaction. A math teacher thus educated might believe 

that reform-oriented teaching is the most effective approach. But if such a teacher is 

naturally introverted, she might struggle to implement student-teacher interactions. 

This study seeks to understand the nature of such struggles in terms of teacher 

identity. 

Grootenboer and Ballantyne (2010) defined teacher identity as a teacher’s own 

conception of who s/he is as a teacher, including beliefs, classroom behaviors and 

learning experiences. In the context of teaching math, Grootenboer, Smith and 

Lowrie (2006) held that teachers’ identities change in response to continuing 

experience, continuing education and new dilemmas. Aligning with this perspective, 

this study seeks to learn how mathematics teachers’ identities develop and interact 

with the ways the teachers design and implement classroom activities. The 

exploration of these issues will help us understand how the social setting of the 

mathematics classroom, which determines classroom interaction, shapes and is 

shaped by teacher identity. 

Peressini et al. (2004) considered teacher identity (or professional identity) to have 

both cognitive aspects – goals, values, commitments, knowledge, beliefs – and 

sociocultural aspects – the ways in which teachers participate in the activities of their 

professional communities and present themselves to others in the context of 

professional relationships. In this study, I define the pedagogical characteristics of a 

teacher as the elements that constitute both cognitive and sociocultural aspects of 

teacher identity, and I refer to a math teacher’s unifying and connective concept that 



Kim 

________________________________________________________________________________________________________________________

3-50    PME 41 – 2017 

brings together these elements in the classroom context as pedagogical identity. To 

understand how pedagogical identities are formed, I adopt a dialogical approach to 

identity (Akkerman & Meijer, 2011), which considers the self as comprising and 

balancing between a substantial self and situational selves (Nias, 1989). The 

substantial self is embodied by beliefs and values shaped in one’s early years, and is 

relatively impervious to change. Situational selves incorporate such beliefs and 

values, but change over time and context. The study’s main research question is: how 

does a math teacher’s pedagogical identity develop in the social context of her/his 

classroom interactions? In particular, how do math teachers’ pedagogical experiences 

prior to their teaching, such as classroom experience as a learner, inform their 

pedagogical identities in the early years of their teaching career? And how do 

teachers achieve balance between their substantial and situational selves in the 

classroom context? 

DIALOGICAL APPROACH TO IDENTITY 
The notion of identity has changed over time, reflecting changing value systems 

(Akkerman & Meijer, 2011). In the modern era, identity was perceived as singular 

(not varied or dynamic within the individual), continuous (keeping the core identity 

consistent regardless of the social context) and individual (regardless of the social 

environment). In contrast, in the postmodern view of identity, it is decentered into 

multiplicity in the sense that an individual has multiple identities, different ones of 

which come to the fore depending on the social setting; discontinuous in the sense 

that the multiple identities that emerge in different social settings are not necessarily 

interrelated; and social in the sense that identity is understood in a social context. 

These three characterizations of the postmodern view suggest that identity is neither 

an overarching and unified framework nor a fixed, stable entity. Rather, it is viewed 

as being fragmented along with the multiple social worlds that people engage in, and 

as shifting with time and the context of the society of which people are a part. 

Akkerman and Meijer (2011) typified teacher identity as both unitary and multiple, 

both continuous and discontinuous, and both individual and social, with the two 

opposing natures (unity-continuity-individuality and multiplicity-discontinuity- 

sociality) taking turns in a dialogical relationship of intersubjective exchange and 

temporary dominance. That is, one develops identity by engaging in a dialogical 

relationship between the two. In this dialogical relationship, the self is understood 

further as both the core, substantial self (unity) and the situational selves 

(multiplicity) (Nias, 1989; Rodgers & Scott, 2008). Drawing upon this dialogical 

approach to identity formation, this study aims to understand the dialogical nature of 

teachers’ identity development. Some studies have discussed how the personal 

histories of novice teachers influence their teaching in the context of the workplace 

(e.g., Flores & Day, 2006). But little research has taken a dialogical approach to 

understanding how teachers’ pedagogical characteristics inform their identity as 

teachers.   
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METHODS 
Using field observations, surveys and interviews, I collected data from four in-service 

math teachers at two high schools – School A and School B – in the United States. 

Table 1 summarizes the participants’ pedagogical backgrounds. 

 

Teacher School Experience Classes observed Grade levels taught 

Mr. A A 3.5 years Pre-Calculus 9–11 

Mr. B A 5 years Advanced Calculus 2 9–11 

Ms. C B 4 years Algebra 1 9 

Mr. D B 18 years (Remedial) Algebra 1 9–12 & lower levels 

Table 1: Pedagogical background of teacher participants 

Speer (2005) described teachers’ beliefs and practices as professed if stated by the 

teachers, and attributed if inferred based on observations. I used field observation 

believing that “attributed” practices would depict the participants’ behavioral 

patterns. During observation, I took field notes in which I focused on pedagogical 

habits the teachers had developed to facilitate learning, the kinds of teacher-student 

interactions they allowed to occur in class, what difficulties they revealed in 

managing classroom activities, how they dealt with unexpected student behavior, 

how they responded to student questions and whether they showed signs of making 

efforts to overcome difficulties they encountered. I conducted field observations two 

to nine times for each teacher over a six-week period. Observed classes were audio-

recorded. Only the parts of the recordings deemed significant for the study were 

transcribed, including participant comments that (1) revealed the teacher’s 

pedagogical characteristics; for example, pedagogical beliefs, and (2) characterized 

their teaching styles.  

After I completed field observations, participants took a 17-item survey. The first 

eight items asked about their academic background. The other items sought the 

participants’ perceptions of their value systems: the factors of their pedagogical 

knowledge they value most, their math teaching philosophy, how they compare their 

own learning experiences as a student with the teaching they do, and whether they 

experience conflicts caused by disjuncture between their personal and pedagogical 

identities.  

The interview inquired into the participants’ reasons for certain practices. The actual 

interview questions varied to reflect the participants’ individual responses to the 

survey items. The interviews took about one hour and were audio-recorded for 

transcription and coding purposes. All interviews were transcribed completely, and 

coded with the line-by-line and focused coding methods commonly used in grounded 

theory approaches (Charmaz, 2004). Continually reading the transcripts within and 

across categories, I first developed preliminary hypotheses and then picked out 

valuable, overarching, emerging themes, using concept maps, by comparing and 

contrasting the participants’ different pedagogical characteristics.  
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RESULTS 
The results largely rely on the teachers’ descriptions of what they thought contributed 

to their pedagogical characteristics. I address notable pedagogical characteristics of 

each teacher, and discuss them in terms of Nias’s (1989) view of the self as a balance 

between the substantial self (I-position) and the situational selves (me-position).  

Mr. A: Mr. A’s interview revealed an autonomous learning inclination, teaching 

approaches characterized by minimally interrupting his classes and imposing few 

rules, and an introverted social nature.  

His autonomous learning inclination is evidenced in [A].  
[A] I learned it [math] by trying different things, and seeing. … [I was] trying, you know, 

‘how do we figure this out?’ For me, it was always a puzzle. That was what math was 

about. Doing things you didn’t know how to do given certain relationships.   

As [A] implies, Mr. A’s belief that students should learn by trying different things 

comes from his own inclination toward learning autonomously. [B] and [C] connect 

this teaching belief to his own autonomous learning inclination.  
[B] I try to teach it [autonomous learning] … which I think actually doesn’t work very 

well for teaching because I think a lot of kids aren’t trying different things.  

[C] …[autonomous learning] is only successful with some of the kids. For most of the 

kids, you still have to give them the information you wanted them to know in the end. I 

am not gonna say, ‘Hey, you gotta figure it out. I am not gonna help you until you figure 

it out.’ 

[B] and [C] show Mr. A’s frustration in implementing autonomous learning. In 

particular, [C] shows his compromises to meet his students’ needs, and implies that 

he takes a me-position regarding his belief in autonomous learning. 

Mr. A views students’ working on difficult problems as a valuable learning 

experience. This is shown in his written ([D]) and verbal ([E]) responses to a survey 

item, which asked about conflicts between the math teachers’ own beliefs about 

what/how to teach and others’ expectations of what/how they should teach. 
[D] … I think that mostly a sense of inadequacy arises at times about how I conduct my 

classroom and how well my students perform … it is a valuable experience for kids to 

work with difficult math … sometimes I let them struggle rather than just hold their 

hand. 

[E] I would rather let kids fail than just be this constant coach. … If I have to push a kid 

every step of the way, I don’t think they are learning. They may be learning some math, 

but in the end, they don’t learn how to deal with difficult things in their life
1
. … If I try to 

help motivate kids, but if they just continually give up, then I let them give up. … If a kid 

puts his head down for whatever reason, day in and day out, I will try to make a real 

connection with them. … But I am not gonna go every class like, ‘take your head up’
2
. 

These claims confirm that Mr. A values “learning by discovery”: he will let his 

students struggle in the hope that they will move forward in discovery-learning (E
1
). 

However, he would rather give up on “strongly unmotivated students” if improving 

their learning requires intervening in their work frequently (E
2
). This contrast shows 
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how he handles conflict between what he believes is ideal (having students learn by 

discovery) and reality (having unmotivated students). His refusal to compromise – 

balancing closer to his beliefs – shows his I-position in handling such conflicts. 

Mr. B: Mr. B’s interview showed his passion for teaching, tendency to associate with 

his students, and an inclination to learn math concepts by justification. His prior 

learning and teaching experiences seem to have affected his pedagogical identity.  

To a question asking what challenges one faces in interacting with students and how 

he or she manages the challenges, Mr. B made the following two claims.  
[F] I personally think these (unmotivated) kids are kids with needs that aren’t being met 

… they are way higher up than a math education. You know, like, ‘where am I going to 

spend the night tonight, what am I going to eat when I get home’, stuff like that. I don’t 

know if high school has an answer for those [pause], those kids. 

[G] … my job is to teach kids algebra, whatever their course is, but also to teach a lot of 

life skills there as well. I think they get a lot of that from me. 

As [F] and [G] show, Mr. B sees the scope of his teacher role as extending beyond 

teaching math. This implies that he takes a me-position to accommodate student 

needs. To a question about challenges in promoting student-teacher interaction, Mr. B 

responded:   
[H] … it’s not a typical room, in the sense that ‘you’ll get in there and I’ll be lecturing 

and everyone will be writing down what I am saying.’ They are freer to talk … they care 

about what they are doing. They are pretty directed, but there are times when you have to 

talk to kids and say ‘hey, you are not really doing what you need to be doing.’ 

As [H] shows, Mr. B perceives student distraction as a disciplinary challenge.  

Further, [I] shows Mr. B’s preference for allowing students the freedom to talk over 

upholding discipline. 
[I] The disciplinary thing is tough for me, um because, you walk by some classrooms and 

you say, ‘Wow, look at all those kids just sitting there’, you know. I don’t think you see 

that in my room. So I think it’s a weakness in some regard. But, it’s a sacrifice I’m kind 

of making. … I know the disciplinary stuff might be there and I’m allowing for it to be 

there, but I think it’s a chance that is worth taking. 

As [I] shows, he engages in self-reflection in his balancing, and is willing to 

compromise on discipline to attain student learning in his classroom context, 

implying that Mr. B is balancing closer to his me-nature than his I-nature.   

Ms. C: Ms. C had an inclination to modify her teaching strategies, and an introverted 

social nature. Further, her teaching experience appears to be the dominant factor 

informing her teaching style for the first three years of her teaching career.  

Her inclination to modify teaching strategies is shown in [J] and [K].  
[J] I think throughout the college classes they weren’t very good about preparing you for 

the real life situations. … Every child had a different need, every year there were 

different kids, a different chemistry in the classroom, a different dynamic, so I had all 

these modified myself, and you know the lessons, to try to reach out to more and more 

students … I don’t think you can learn that without the experience.  
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[K] I learned the hard way that those types of kids won’t do homework. So, I don’t assign 

homework anymore. … I used to give homework to everyone, and …  

Ms. C’s comments in [K] show a compromise in her pedagogical approach between 

what she had believed her students would do to learn and what they really turned out 

to do, providing evidence of her me-position. Ms. C further described the challenges 

that lead to her continuous modification, as in [L].  
[L] A teacher education [program] may really emphasize the set-up of lesson plans … 

but I learned every day isn’t predictable … some days you may have to throw your 

lesson out the window and say ‘you know what? This kid had a bad day. I’m not going to 

be able to teach as much as I wanted to, the kids are rowdy’ and you have to keep 

molding it. So, my belief has changed in terms of preparation. You have to be prepared to 

be unprepared. 

This excerpt explains how Ms. C’s beliefs differ from what teacher education 

programs suggest and how she came to these beliefs. [L] implies that she takes a me-

position in adapting her teaching methods to fit her class’s nature.   

[M] and [N] again show Ms. C taking a me-position, as she describes herself as an 

introvert who tries to act like an extrovert to bring energy to her classes.  
[M] I am shy, and self-conscious in a crowd … but in the classroom you are the center 

stage, so it kind of forces you to become an extrovert whether you are or not.  

[N] I may be, um, a little too friendly. … The atmosphere, I try to make it light and airy, 

and I try to make sure the kids are joking … I want it to be a positive experience. 

[O] further shows her taking a me-position in designing her classes, as she carefully 

considers the math level of the students: 

[O] I would still bring my energy (to upper level classes). I would still bring the positive 

attitude. … I really want to make math fun and approachable using my personality and 

students’ personalities, but I would do less side conversations and more material. 

Mr. D: Mr. D had a unique one-on-one teaching approach: he sat at his desk for most 

of the class, having each student come to him to teach the content individually. His 

pedagogical identity originated largely from his non-academic work experience.  

Mr. D’s understanding of the challenges struggling students face is shown in [P].   
[P] You saw me how many times in class, where some things happened. … they might 

start yelling … when you are a lawyer, conflict is part of the job. … you have to be able 

to communicate in a way where you can get your point across without creating conflict or 

getting all emotional. … I did represent a lot of kids in court. And I represented parents 

who had their children removed by the state because they were being [inaudible] by their 

parents. And any of these situations create, um, conflict at home, and negative situations 

at home. So I’ve been in there and I understand what, when they leave school and go 

back home, I know what they go to. 

As Mr. D’s comments in [P] imply, his conflict-handling experience as a lawyer 

helps him diffuse tense situations with his students. To my follow-up question, “You 

have this strong idea that individual relationship with the students is an important 

thing … where do you think this idea came from?” he responded: 



Kim 

________________________________________________________________________________________________________________________ 

 PME 41 – 2017    3-55 

[Q] I think I know where kids are from, I mean I know what they are living … treating 

someone as an individual and trying to know what makes them tick, to get them to 

perform clearly is from coaching. And those were the people that influenced me the 

most. 

[Q] suggests Mr. D’s belief in treating students in need the way a sports coach treats 

players. Further, he sees the importance of treating students in ways that work for 

them. This shows Mr. D’s taking a me-position in how he deals with his students.  

Further, Mr. D had a theory most math conceptualization starts to happen around 5
th
 

grade. To my question, “In math education we talk a lot about the conceptual 

understanding versus the procedural [inaudible], do you ever think of these things 

when you teach?” Mr. D responded:  

[R] Absolutely … we do various types of visual type situations … I did a lot of it with 5
th

 

through 8
th

 grade, which is where your conceptualization should really be founded in the 

middle schools. I did far more of that in the middle school (than the high school). 

Mr. D’s view that math conceptualization happens at a certain grade band may be 

attributed to either his (15 years of elementary school) teaching experience or his lack 

of math content knowledge (he has taken no math courses at the college level). Such 

experiences might have impacted how he balances between I- and me-positions. Mr. 

D teaches high school students with practices based on pedagogical views developed 

from his K–8 teaching experience. He believes that he has a good understanding of 

struggling students, but he does not try to understand how his high school students 

learn, implying that he balances closer to an I-position in his high school teaching. 

DISCUSSION 
This study shows the varying routes math teachers take to form their pedagogical 

identities. Each participant had found a different balance between an I-position and a 

me-position, and had distinct pedagogical beliefs and practices that had been shaped 

by different factors. For example, Mr. B expanded the scope of his teacher role 

beyond teaching the subject, and Ms. C, who claimed to be an introvert, acted as an 

extrovert to bring energy to her classes, both showing a stronger me-nature than I-

nature. Mr. D, in contrast, seemed to take a me-position on certain issues and an I-

position on others. 

The findings of this study show how math teachers’ pedagogical identities constantly 

change as different factors that shape identity come into play. The study contributes 

to the math education community by providing evidence that the formation of a math 

teacher’s pedagogical identity impacts his or her choice of teaching approaches. By 

shedding light on how math teachers develop their pedagogical identities, the study 

provides an explanation for the disjuncture between what teachers do in the 

classroom and the practices that are encouraged by teacher education programs 

(Gainsburg, 2012). If such disjuncture are inevitable, then preservice math teachers 

need to be aware (1) that they will be engaged in struggles between their beliefs, or 

who they are, and what they face in reality in their early years of teaching and (2) that 
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they will need to develop ways to respond to students, including incorporating 

student reactions in their class design. In other words, they should be prepared to take 

a me-position to reconcile their beliefs or natural inclinations to their teaching context 

if necessary.  

This study’s conclusions are largely based on the participants’ professed beliefs and 

practices (Speer, 2005), which may lack accuracy: a teacher may not be aware or may 

not be frank with a researcher regarding his or her own pedagogical identity 

development. These limitations constrain the extent to which the findings can be 

generalized. Larger-scale research that depends less on self-report would provide 

firmer and more generalizable findings. Further research is needed to identify factors 

that influence how teachers’ negotiation between their substantial and situational 

selves leads to each one’s unique balance between a me-position and an I-position, 

and in turn affects their teaching practices. 

References 
Akkerman, S., & Meijer, P. (2011). A dialogical approach to conceptualizing teacher 

identity. Teaching and Teacher Education, 27(2), 308–319.  

Charmaz, K. (2004). Grounded theory. In S. N. Hesse-Biber & P. Leavy (Eds.), Approaches 

to qualitative research (pp. 496–521). New York: Oxford University Press. 

Flores, M. A., & Day, C. (2006). Contexts which shape and reshape new teachers’ 

identities: A multi-perspective study. Teaching and Teacher Education, 22(2) 219–232. 

Gainsburg, J. (2012). Why new mathematics teachers do or don’t use practices emphasized 

in their credential program. Journal of Mathematics Teacher Education, 15, 359–379. 

Grootenboer, P., & Ballantyne, J. (2010). Mathematics teachers: Negotiating professional 

and discipline identities. Adelaide, Australia: MERGA.  

Grootenboer, P., Smith, T., & Lowrie, T. (2006). Researching identity in mathematics 

education: The lay of the land. In P. Grootenboer, R. Zevenbergen, & M. Chinnappan 

(Eds.), Identities, cultures and learning spaces: Proc. of the 29
th

 Annual Conf. of the 

Mathematics Education Research Group of Australasia (Vol. 2, pp. 612–615). Adelaide, 

Australia: MERGA. 

Nias, J. (1989). Teaching and the self. In M. L. Holly & C. S. McLoughin (Eds.), 

Perspectives on teacher professional development (pp. 155–173). London: The Falmer 

Press. 

Peressini, D., Borko, H., Romagnano, L., Knuth, E., & Willis, C. (2004). A conceptual 

framework for learning to teach secondary mathematics: A situative perspective. 

Educational Studies in Mathematics, 56(1), 67–96. 

Rodgers, C., & Scott, K. (2008). The development of the personal self and professional 

identity in learning to teach. In M. Cochran-Smith, S. Feiman-Nemser, D. McIntyre, & 

K. Demers (Eds.), Handbook of research on teacher education (pp. 732–755). New 

York: Routledge. 

Speer, N. M. (2005). Issues of methods and theory in the study of mathematics teachers’ 

professed and attributed beliefs. Educational Studies in Mathematics, 58(3), 361–391. 

 

 



 

_______________________________________________________________________________________________________________________

3-57 
2017. In Kaur, B., Ho, W.K., Toh, T.L., & Choy, B.H. (Eds.). Proceedings of the 41

st
 Conference of the International 

Group for the Psychology of Mathematics Education, Vol. 3, pp. 57-64. Singapore: PME. 

PRESERVICE TEACHERS’ RECOGNITION OF AFFORDANCES 
AND LIMITATIONS OF CURRICULUM RESOURCES 

Ok-Kyeong Kim
1
 and Ji-won Son

2 

1
Western Michigan University, 

2
State University of New York at Buffalo 

 

This study examined elementary preservice teachers’ interaction with curriculum 

resources, focusing on their recognition of affordances and limitations of the 

resources in the context of lesson planning in a mathematics methods course in the 

United States. Because of the prevalence of the curriculum programs with a direct 

teaching model in the country, preservice teachers need to develop the capacity to 

use them productively to design instruction. For this reason, the preservice teachers 

in this study were asked to critique and modify lessons from such programs to make 

lesson plans in the methods course. Data were gathered in this setting and analysed 

to inform for better teacher preparation using curriculum resources.     

INTRODUCTION 
This study examined preservice teachers’ (PSTs) recognition of affordances and 

limitations of curriculum resources in the context of lesson planning in a mathematics 

methods course in the United States. Recognizing affordances and limitations of 

resources is critical in designing instruction. For a productive enactment of 

curriculum, teachers need to utilize its affordances and fill the gap in it. This study 

focused on PSTs’ critiques of written lessons with a direct teaching model in terms of 

the extent of student engagement with mathematical exploration and teacher support 

for it. The purpose of the study was to account for PSTs’ reasoning about curriculum 

resources in order to design a better methods course that helps them develop 

pedagogical design capacity (PDC), i.e., “a teacher’s skill in perceiving affordances 

[of resources], making decisions, and following through on plans” (Brown, 2009, p. 

29). The results of the study provide implications for using curriculum resources in 

teacher education.  

THEORETICAL BACKGROUND 
Curriculum resources in this study are defined as artefacts that mediate teachers’ 

instructional actions (Brown, 2009). They are static representations of content and 

pedagogy, which teachers enact and make dynamic for student learning in 

instruction. Prior studies examined how inservice and preservice teachers interpret 

reform-based materials (Atanga, 2014; Kim & Atanga, 2014; Lloyd, 2009; Nicol & 

Crespo, 2006; Son & Kim, 2015) and how teachers’ evaluation of curriculum leads to 

various adaptations (Sherin & Drake, 2009). Investigating teachers’ use of curriculum 

resources to design instruction, Atanga (2014), Kim (2015), and Kim and Atanga 

(2014) found that some teachers did not recognize significant affordances of the 
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resources they used and failed to utilize them in critical moments during instruction. 

For example, whereas the written lesson includes helpful intervention suggestions for 

struggling learners, the teacher, not using them, mainly repeated the same procedural 

explanations to students in confusion (Kim, 2015).     

Researchers argue that curriculum resources can be inherently educative for teachers 

(Ball & Cohen, 1999; Davis & Krajcik, 2005) and that teacher education should 

incorporate teachers’ investigation of curriculum resources as a pathway to building 

both content and pedagogical knowledge (Drake, Land, & Tyminski, 2014; Son & 

Kim, 2015). In particular, Drake et al. (2014) emphasized the importance of 

supporting PSTs’ learning about and from curriculum materials in elementary 

mathematics methods courses and recommended principles for using curriculum 

resources, such as the need for providing opportunities for PSTs to attend to 

educative features in the curriculum resources. Using both curriculum resources with 

a direct teaching model and those with a student-centered model, this study further 

accounts for how curriculum materials can be used in teacher preparation in order to 

develop PSTs’ pedagogical design capacity. 

METHODS 
The data of the study were collected from 19 PSTs in an elementary mathematics 

methods course about two thirds of the way through the semester.  

The Setting 
Early on in the semester, the PSTs were introduced to a set of standards, including 

the Mathematical Practices of the Common Core State Standards for Mathematics 

(National Governors Association Center for Best Practices & Council of Chief State 

School Officers, 2010) and Professional Standards for Teaching Mathematics 

(National Council of Teachers of Mathematics, 1991), to analyse videotapes of 

mathematics classrooms, such as whole group discussions and interactions between a 

teacher and a student. These standards were also used to examine to what extent 

written lessons provided opportunities for students to engage in mathematical 

explorations. The purpose of these examinations was to help the PSTs develop a 

critical thinking about curriculum resources and be prepared to use them productively 

to design instruction in the future. The course included an opportunity for the PSTs to 

look at one lesson with a direct teaching model and one with a student-centered 

model early on in the semester. Later in the semester a more extensive opportunity 

was provided to examine those two types of lessons in order to make a lesson plan 

with more student exploration than direct teaching. The process in which the PSTs 

were engaged in lesson planning includes two simultaneous steps. One was to 

critique and modify a lesson with a direct teaching model in class; the other was to 

make a lesson plan using another lesson as a project outside class in pairs. When 

issues arose regarding lesson planning, however, those were discussed in class as 

well. In these two simultaneous steps, the PSTs were also asked to examine lessons 

with a student-centered model as comparison that had similar mathematics contents. 
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The PSTs were required to use and modify lessons with a direct teaching model for 

lesson planning, because of the prevalence of such curriculum programs in the United 

States. The PSTs will be likely to teach in a school district in which one such 

program is being used. They need to develop the capacity to use them productively in 

the teacher education program. 

The Procedure 
The data were gathered from the two simultaneous steps (in-class and outside class) 

of examining lessons with a direct teaching model in order to modify them for more 

student inquiry. In class, the PSTs were asked to respond individually on paper to 

some questions about a lesson on fractions and division, including the goal of the 

lesson, the main task for students, useful resources included, potentially useful 

resources not present, and suggestions for modification. Once the PSTs finished 

responding to the prompts, they were asked to share what they noticed in the lesson 

without looking at their responses on paper. The reason for this sharing was to 

capture the PSTs’ overall impression of the lesson along with any critical issues of 

the lesson that grabbed their attention. During this period of sharing and interaction 

among the PSTs, main ideas publicized were captured in field-notes. Individual 

responses on paper were gathered to examine the PSTs’ initial thoughts about 

curriculum resources before collectively critiquing the lesson. In addition, the lesson 

plans that PSTs completed in pairs outside the class were gathered to examine their 

recognition of the critical aspects of the written lesson on fraction comparison they 

modified, after having opportunities to discuss various ideas about the lessons with a 

direct teaching model extensively. In the lesson plan, the PSTs were asked to 

describe the extent to which the written lesson provided opportunities for students’ 

mathematical exploration by using some of the standards mentioned above.    

The PSTs’ individual responses and lesson plans, and field-notes were coded in terms 

of their recognition of affordances and limitations of the lessons they analysed. Then, 

similar codes in each data source were grouped together to find a general pattern.   

RESULTS    
In this section, the PSTs’ recognition of the critical issues is described along with 

each of the two written lessons mentioned above.    

The Lesson on Fractions and Division 

The lesson the PSTs were asked to critique and modify in class was on division 

involving fractional parts, such as 3÷4, in grade 5 (Charles et al., 2008). The lesson in 

the student text has four parts: (1) Learn, (2) Check, (3) Practice, and (4) Mixed 

Review and Test Prep. The first part (Learn) basically illustrates two examples of 

problem and solution with diagrams divided into equal parts and regrouped to show 

the answers. One of the examples is provided with a real-life context: “Anna, Tim, 

Mark, and Deb are sharing 3 quesadillas. What fractional amount does each one get?” 
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This example shows how to solve the problem in the section of “what you think” 

along with a diagram as shown in Figure 1. 

Divide each quesadilla into 4 equal parts. 

 

 
Each person gets 1 piece from each quesadilla. So, each  

person gets 3 pieces. This is the same as ¾ of one quesadilla. 

Anna Tim

Mark Deb

Anna Tim

Mark Deb

 

Anna Tim

Mark Deb

 

Figure 1: The solution of a quesadilla problem in the student text (Charles et al., 

2008) 

 The other example provided in the student text only includes the problem (“Find 

4÷6”), the answer (4÷6=4/6), and a diagram (four rectangles divided into six equal 

parts each that are shaded in six different colours). This example is also explained in 

the teacher’s guide, suggesting teachers to “Point out that each color covers 1/6 of 

each bar. There are 4 bars. When the same-color squares are put together, they cover 

4/6 of one bar.” Basically, the two examples illustrate the same strategy. A prompt 

for discussion is followed by the two examples: “Explain why one piece from each 

quesadilla in Example A [the first example] is the same as ¾ of one quesadilla.” 

Besides one sample response expected (“All pieces are the same size and each person 

gets 3 pieces”), there is no further guidance for the discussion.  

Although there are some suggestions for teachers regarding how to teach the lesson, 

the student pages are the main resources for the lesson. The first page shows the two 

examples and a discussion prompt described above. Then, the next page includes 11 

division problems without any context or representation, such as 9÷10 and 1÷3, in the 

second and third parts of the student text (i.e., Check and Practice). It is assumed that 

students apply what they were shown in the “Learn” part in order to find the answers 

of the practice problems in a mechanical way. In fact, suggestions for “ongoing 

assessment” and “error intervention” in the teacher’s guide seem rather directive, 

unilateral, and procedural than supporting students’ thinking, as shown below. 

If students do not see why one piece from each quesadilla is the same as ¾ of one 

quesadilla, then have them copy the second part of the diagram, cut out the model, cut 

out the pieces, and then regroup the pieces for each person.  

If students reverse the numbers in the numerator and denominator, then remind them that 

the number in the numerator represents the object being divided, or the dividend, and the 

number in the denominator is the number they are dividing by, or the divisor. (p. 398) 



Kim and Son 

________________________________________________________________________________________________________________________ 

 PME 41 – 2017    3-61 

The last part of the student text (Mixed Review and Test Prep) provides three 

different diagrams and students are asked to write the fraction for each diagram. 

There is also one multiple-choice item on geometry. None of the problems in this part 

are related to the mathematical idea of the lesson, i.e., fraction as division. 

PSTs’ Recognition of Critical Issues 
During the discussion of the lesson on fractions and division, the PSTs were asked to 

share the first thing that they wanted to talk about the lesson without looking at their 

responses to the prompts on paper. The main ideas that they discussed are shown 

below in order of sharing: 

 In the lesson students find the pattern and copy it to do other problems but 

little understanding is promoted. 

 The visuals and hands-on examples are good. 

 Terms such as denominator and numerator should be explained. 

 Problems are too small and too many, which are not connected much. 

 Discussions on how students did the problem are needed. 

 Students need to solve problems on their own without a given diagram 

(along with story contexts). 

Besides the second and third points above, the PSTs seemed to recognize significant 

limitations of the lesson. They expressed concerns about providing “the” solution 

strategy to students and mechanical applications of the strategy to practice problems, 

instead of having students solve problems on their own and share different strategies. 

The PSTs’ individual responses on paper also indicate that they recognized critical 

issues from the written lesson. Table 1 presents the limitations of the lesson the PSTs 

identified (some PSTs mentioned multiple limitations). All but two PSTs identified 

significant shortcomings of the lesson. 

Issue PSTs  (n=19) 

Students’ own exploration is needed rather than 

providing the strategy with the given diagram 

12 

Clear teacher moves are needed (e.g., assistance for 

struggling students, guidance for discussion, and teacher 

questions)  

  3 

Different learning modes are needed (e.g., discussion and 

small group)  

  3 

A clear connection among the problem, the 

representation and the answer is needed to support 

student understanding. 

  2 

No significant recognition of limitations   2 

Table 1: PSTs’ recognition of limitations 
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It seemed that the biggest issue to the PSTs was the solution strategy given from the 

start. Twelve PSTs recognized that the strategy given limits students’ thinking and 

their own ways of solving problems and this part must be modified in their lesson 

plan. Three PSTs noticed that the guidance to teach the lesson lacked important 

aspects of instruction: They looked for assistance for struggling students (rather than 

those in “ongoing assessment” and “error intervention”), guidance for group 

discussion, and specific teacher questions to probe and support students’ thinking. 

Two PSTs did not consider that the problem, the representation and the answer were 

fully connected in the written lesson because the connection was rather superficial.  

Besides those included in Table 1, some PSTs mentioned resources that they thought 

were needed but not provided in the lesson, such as resources for differentiation 

(eight PSTs), assessments (two), and vocabulary (two). The resources that the PSTs 

mentioned as helpful include guidance for struggling students (11 PSTs), visual 

representations (four), questions to support student thinking (two), and assessment 

(two). Interestingly, whereas one PST mentioned that the lesson did not have 

sufficient guidance for struggling students, 11 indicated that the ongoing assessment 

and error intervention shown previously “give teachers an idea of common points of 

confusion to look for and ways to mange the confusion.” Also, two PSTs thought that 

the lesson provided questions to promote student thinking based on the discussion 

prompt. 

The Lesson on Fraction Comparison and PSTs’ Critiques 
The lesson plans that the PSTs created were based on a fraction comparison lesson in 

Grade 3. Similar to the “fractions and division” lesson above, this lesson included 

moments for students’ discussion on mathematical ideas and yet the written lesson 

treated them mechanically. For example, the most explicit part of the lesson for 

student exploration of size of fractions was a discussion on comparing fractions with 

same denominators and same numerators and unit fractions. “Is it easier for you to 

compare ¼ and ¾ or 2/6 and 2/8? Why?” “What happens to the size of the pieces as 

the denominator gets larger? ½, 1/3, ¼, 1/5, 1/6, 1/7” There was no specific guidance 

regarding this portion of the lesson. It seemed rather straightforward responses were 

expected, based on the subsequent examples for fraction comparison and practice 

problems on the next pages of the student text. Mainly, pictures (circles or rectangles) 

equally partitioned already were used to determine which fraction was larger in each 

pair in both examples and exercise problems. There is not much connection between 

the first page (the discussion portion) and the second page (examples and practice 

problems) of the student text of the lesson. 

In order to modify the lesson, the PSTs were asked to critique it in terms of the extent 

to which it provided opportunities for students’ engagement with two particular 

Mathematical Practices of the Common Core State Standards for Mathematics: (1) 

Making sense of problems and persevering in solving them and (2) Constructing 

viable arguments and critiquing the reasoning of others. They were also asked to use 
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two particular NCTM Professional Standards for Teaching Mathematics to critique 

the lesson: (1) asking students to clarify and justify their ideas and (2) letting a 

student struggle with a difficulty. Some PSTs’ critiques are as follows: 

The first question asked is “Is it easier for you to compare ¼ and ¾ or 2/6 and 2/8? 

Why?” This does prompt for a justification of why but … I feel that the student would 

need to prove why with clarification and may need to be promoted more explicitly. I feel 

a class discussion on this question could allow for this to surface, but the teacher’s role 

would consist of more than just these two questions [the discussion prompts above].  

They are asked to simply state what happens to the size of the pieces when the 

denominator increases in fractions. It could be potentially extended in a discussion 

setting to have students explain or justify their reasoning. 

Providing the student with a strategy from the start does not allow for the process of a 

student working and thinking on their own to understand what the problem is asking and 

think of a reasonable way to come to the solution. By placing the correct way to reach the 

answer is skipping the step in which a student is to struggle and make sense of the 

problem. This can hinder the child from developing and understanding math concepts. 

All PSTs (eleven lesson plans) provided similar responses in varying degree of 

description, concerned about the simplicity of discussion and mechanical approach to 

the practice problems, particularly in terms of the specific standards suggested to use.   

CONCLUSION AND IMPLICATIONS 
The results indicate that using the curriculum resources in this methods course 

supported the development of PSTs’ critical thinking about curriculum resources and 

capacities to use curriculum resources productively to teach mathematics. Although 

many important ideas had been addressed earlier in the course, not all PSTs noticed 

some critical aspects of the written lessons before explicitly discussing them. 

Moreover, they identified some superficial resources as helpful. Once they shared 

what each thought about the lessons and discussed specific aspects of the written 

lessons explicitly by using some focused standards, they recognized actual limitations 

and affordances of the lessons more and clearly, and were able to modify them for a 

deeper student thinking of the mathematics of the lessons based on their examination 

of the written lesson.  

This study highlights the importance of specific aspects to look for and detailed 

prompts in critiquing lessons before planning a lesson. Also examining lessons of the 

same mathematics content with different teaching models helped the PSTs see the 

difference in the nature of students’ learning of the same content that lesson 

modification can create. This preparation (along with exploration of anticipated 

student thinking and struggle around the mathematics of the lesson, although not part 

of the data in this study) encouraged the PSTs to design and adapt tasks that support 

student exploration of mathematics and come up with useful instructional guidance 

on how to enact the tasks. In addition, the simultaneous steps of critiquing and 
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modifying lessons in class and outside the class further prompted the PSTs to develop 

a critical thinking about curriculum resources and pedagogical design capacity.  
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How does video-based professional development (PD) influence teacher practice? In 

this paper we explore what teachers took back to their classrooms based on a 

specified PD experience. Survey data, focus group conversations and video from PD 

sessions was qualitatively analysed to triangulate data on teachers’ learning and 

uptake from the PD. Teachers were classified into four different user categories -- 

Generative, Transformative, Incremental, or Non Users – based on how the teachers 

carried their PD experiences into their mathematics classrooms. Teachers differed in 

their classifications based on their mathematical understandings and contextual 

influences. These classifications help us to understand how and why teachers take up 

learning from PD programs in unique ways and to varying degrees. 

INTRODUCTION 
Video based professional development (PD) generally relies on selected clips for 

teachers to collaboratively discuss and analyse. In these cases, video serves as a tool 

with wide-ranging potential to guide meaningful inquiry, reflection, and learning 

(Brophy, 2004).  The use of video clips varies greatly depending on the PD model. 

We posit that PD models fall on a continuum from adaptive to specified (Koellner & 

Jacobs, 2015). Adaptive models of PD, such as video clubs (Sherin, Linsenmeier & 

Van Es, 2009) and the Problem-Solving Cycle (Borko, Jacobs, Koellner & 

Swackhamer, 2015), generally utilize video clips from the participating teachers’ own 

classrooms. On the other hand, in specified models of PD, video clips are typically 

pre-selected and come from other teachers’ classrooms. Across both models of PD, 

video clips are expected to provoke inquiry and productive discussion relative to 

identified learning goals - around exploring targeted content, pedagogical strategies, 

and/or student thinking.  

Much of the research on the uses of video clips in mathematics PD focuses on 

teachers’ analysis of own classrooms or that of their colleagues. Less is known about 

using strategically selected video from other teachers’ classrooms in specified PD 

programs to promote teacher learning and instructional change. The research 

questions guiding this paper are: What do teachers take up from specified video-

based PD and enact in their classroom? How do teachers vary in what they take up 

from the same PD experience? 
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THEORETICAL FRAMEWORK 
Mathematics teachers come to PD workshops with varying levels of knowledge, 

much like the K-12 students who come to their math classrooms. Sherin (2007) 

argued that teachers’ knowledge includes their “professional vision,” which drives 

their ability to notice and analyse classroom interactions. VanEs and Sherin (2002) 

defined noticing as having three components: (1) identifying the important features of 

a classroom situation; (2) making connections between classroom interactions and the 

broader principles of teaching and learning; and (3) using what one knows about the 

context to reason about classroom events. Over the years, diverse conceptions of 

noticing have emerged, but in general most discussions of mathematics teacher 

noticing involve two main processes: (1) Attending to particular events in an 

instructional setting, and (2) Making sense of events in an instructional setting 

(Sherin, Jacobs, Philipp, 2011).  

Participants in video-based PD do not necessarily make sense of the video clips or the 

classroom situations they depict in the same way; rather individuals bring differing 

knowledge and beliefs about teaching and learning, students, content, and curriculum 

to bear on what they notice (Erickson, 2011; VanEs, 2011). Furthermore, there are 

important individual differences in terms of what teachers bring to and take from 

video-based mathematics PD experiences (Kazemi & Hubbard, 2008; Kersting, 

Givvin, Sotelo & Stigler, 2010; Santagata & Yeh, 2014). More research is needed to 

categorize these differences, and connect the use of video to both noticing and 

uptake. 

LTG MATERIALS VIDEOCASE DESIGN  
The Learning and Teaching Geometry

1
 (LTG) materials use videocases as the 

centrepiece of the PD, which is intended to improve the teaching and learning of 

mathematical similarity based on geometric transformations. Video alone is not 

viewed as a sufficient learning tool by the developers of the materials; instead the 

materials incorporate pre- and post-video tasks - which combined with a selected clip 

comprise a videocase - thereby ensuring a holistic foundation for the representation 

of authentic practice (Seago, Koellner, Jacobs, in press). The Learning and Teaching 

Geometry materials engage teachers in learning about similarity, congruence, and 

transformations through carefully designed and sequenced videocases that offer 

access to specific and increasingly complex mathematical concepts presented within 

the dynamics of classroom practice (Seago, Driscoll & Jacobs, 2010). 

Video clips were selected for inclusion in the LTG materials based on the expectation 

that they would support multiple access points for teachers within the PD setting. 

Some clips contain challenging mathematics content, a conceptual hurdle, student 

misunderstanding, and/or interesting pedagogical moves. The activity that most 

commonly comes before watching a given video clip is working on the mathematical 

task that is in the clip. Solving the same task as the students in the video allows the 

teachers to develop an adequate understanding of the mathematical demands faced by 
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the students, and helps them to better engage with the video clip. The assumption 

behind this type of pre-video activity is that teachers need a period of time to become 

sufficiently immersed in and familiar with the mathematics content they are about to 

see, so that they can readily follow the pertinent issues that arise in the video 

episodes.  

Post-video viewing activities in the LTG materials include: careful unpacking of the 

ideas presented in the video clip, taking into account how those ideas apply in 

different mathematical contexts, discussing the pedagogical issues that were brought 

up by the video clip, and reflecting on how teachers can apply their emerging insights 

to make improvements in their own lessons (Jacobs, Seago & Koellner, in press). 

Facilitators of the LTG materials are encouraged to promote a culture of inquiry and 

reflection, supporting teachers to offer alternative and dissenting viewpoints, which at 

the same time focusing on specified learning goals. Furthermore, participating 

teachers are encouraged (but not required) to take any of the mathematical materials 

(such as math tasks and computer applets) from the PD to their classrooms. 

THE LTG EFFICACY STUDY 
The data from this paper are from an efficacy study investigating the impact of the 

LTG PD materials on teachers’ instruction and students’ knowledge. The LTG 

Efficacy Study aims to explore the effectiveness of the LTG PD using a randomized, 

experimental design. The sample is comprised of 108 mathematics teachers (serving 

grades 6-12) and their students from two contexts- one in the northeast United States 

and the other in the western mountain region. Approximately half of the teachers 

were randomly assigned to take part in the LTG PD in the first intervention year and 

half will take part in the second intervention year. The intervention consists of the 

entire LTG PD program, including a one-week summer institute and four days of 

academic year follow-up sessions beginning in Summer 2016. This paper looks at the 

teachers assigned to the treatment group based on data from their participation after 7 

of the 9 workshop days (Note: the remaining two workshops will be held in Spring 

2017).  

DATA COLLECTION AND ANALYSIS 
The analysis for this study entailed an examination of a small portion of the entire 

data corpus that included focus group interviews, a written survey by participants, 

and video from PD sessions. First, we studied the focus group interview and written 

survey from the participants. We took detailed notes on teachers reported use of the 

LTG materials in their classrooms as well as their perspectives on how the PD 

supported their learning. Lastly we used ‘episodes’ of video data. An episode 

consisted of a period of time found in the PD where teachers were discussing 

connections from PD content to their classroom. We then created categories of 

participants based on use, and identified teachers who exemplified each category. 

In the next section, we detail our findings from the analysis of survey, focus group 

and video data. We describe four categories of teachers based on how they have 
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taken up the PD materials in their classrooms so far, highlighting teachers who are 

representative of each category using illustrative quotes and other information about 

their experience of the PD.  

FINDINGS  
Based on qualitative data analyses conducted to date, we found that participants used 

information from the LTG PD in very different ways depending on their experiences 

during the PD, school context, and the mathematics courses they currently teach. We 

identified four categories of teachers that highlight the different ways they report 

using mathematics content and pedagogical strategies from the PD in their practice: 

Generative Users, Transformative Users, Incremental Users, and Non Users.  

Generative users are teachers who went beyond the scope of the LTG workshop by 

using the knowledge and skills gained in the PD to generate new and innovative 

instructional materials for their classrooms. Generative users reported incorporating 

both their own newly developed instructional materials, along with materials and 

practices taken from the LTG PD program, in order to engage their students in the 

types of content and pedagogical experiences promoted by the PD. Transformative 

users intentionally took what they learned about content and pedagogy from the LTG 

PD into their classrooms, using many of the given materials and observed practices in 

a substantive way to transform their mathematics instruction. Incremental users took 

up some of the materials and/or pedagogical strategies from the PD for use in their 

own classroom, but not to the degree of the transformative users. Lastly, Non Users 

are participants who did not use either the LTG content-based materials or pedagogy 

strategies in their classrooms. In the next section, we provide examples of each type 

of user, highlighting what they noticed and took up from the PD program and how 

particular elements of the PD appeared to influence their learning. 

Generative User Example 
Peter was classified as a generative user because he not only applied what he learned 

from the LTG PD, he used that learning to create new instructional materials that 

expanded on critical mathematical and instructional components of the PD. Peter was 

heavily influenced by the emphasis on transformations in understanding geometric 

similarity, and he noticed that his own learning was deeply impacted by opportunities 

to explore technology on this topic (both through video clips and post-video 

activities). Peter, a high school geometry teacher with a strong math background, 

explained why he was driven to generate innovate classroom materials based on his 

PD experience:  

“I am someone who has very strong visual-spatial reasoning. I regularly manipulate 

shapes and objects in my mind. I know that this is not something that everyone else has. 

So it was very beneficial to get to see something that would allow everyone to have a 

common dynamic vision of similarity. Using Geogebra applets during the workshops 

inspired me to develop my own Geogebra Applets and also worksheets so my students 
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can self-guide through some of our investigations. I even invested in a class set of tablets 

to make sure that I can use Geogebra applets as often as possible.”  

The LTG PD highlights a visual, transformations-based approach to congruence and 

similarity. As part of many of the post video-viewing experiences, teachers had 

opportunities to explore Geogebra applets that supported their visualization of the 

dynamic relationships among similar figures. Peter was inspired by these experiences 

to develop his own Geogebra applets and accompanying classroom materials that 

went beyond the scope of the LTG PD materials. 

Transformative User Example 
Whereas Peter was particularly attentive to the impact that technology could have on 

teaching and learning similarity, Nancy was very interested in the use of patty paper. 

Nancy not only found herself learning important content by watching videos of 

students using patty paper and then using it herself, she brought this experience to her 

own classroom. However, unlike Peter, Nancy did not report generating new ways to 

use patty paper that were different from those explored during the PD. Nevertheless, 

Nancy described her use of patty paper as supporting a significant shift in her 

students’ learning:  

“I used patty paper with transformations, which was helpful because students moved 

them around and we haven’t ever done that before. This clearly helped them learn in 

more conceptual ways.”  

Patty paper as a tool to understand transformations-based geometry is an important 

focus of the LTG PD materials, and is highlighted in several video clips. During 

those clips, students use patty paper in unique mathematically appropriate ways, 

which commonly influences teachers to begin exploring patty paper. Nancy, like 

many other teachers, was cognizant of the learning opportunities afforded by this tool 

and brought it into her classroom, closely following the examples of the videotaped 

students and the mathematics tasks used during pre- and post-video activities. Nancy 

is considered a transformative user because she brought critical tools from the PD 

into her classroom in what appears to be a substantive and appropriate manner. 

Incremental User Example 
Carol, who is currently teaching Algebra II and no geometry classes, is an example of 

a typical incremental user. Although she has not brought any of the content focused 

materials from the LTG PD into her classroom, she reports changes in her pedagogy 

that she ascribes to her PD experience. Carol explained that she has not yet had the 

opportunity to utilize her increased content knowledge due to the fact that she is not 

currently assigned to teach geometry, however she has intentionally incorporated 

newly learned instructional practices in her algebra classes:  

“I am trying to incorporate some of the teaching methodologies that we observed in the 

videos from the workshops. For instance, I am having students present and explain their 

work to the others and making students defend their positions by further questioning 

them when they are not clear in their responses.” 
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The video clips that Carol and her colleagues viewed, discussed and analysed over 

the course of the LTG PD provided a mirror to reflect on her own practice, and 

consider aspects that she could improve on. In many of these clips, as Carol noticed, 

students presented their ideas to their classmates in whole and small groups, 

questioned each other, disagreed with each other’s methods or solutions, or defended 

and clarified their mathematical arguments. These videocases helped Carol to 

recognize new pedagogical possibilities, and she is striving to incorporate them into 

all of her math classes regardless of the content focus. 

Non User Example 
Very few participants reported that they had not used any of the content materials or 

pedagogical tools from the LTG PD in their classrooms. However, one high school 

teacher, Barb, who fell into this category explained her non-use by describing the 

school-imposed barriers she faced: 

 “I haven’t used anything so far. We teach 2-hour block periods of math per semester, 

covering one year of material each semester. It is hard to use stuff from this PD with the 

rapid pace of our math blocks. The pace is harder for me as a teacher than the students.” 

Barb teaches in a high achieving school, and was concerned that the materials and 

tools used in the LTG PD program will cause her to slow down her instruction too 

much. Although she recognized the benefits of incorporating a transformations-based 

approach, she could not see a way to incorporate anything from the PD into her own 

classroom given her school’s demands to cover a large amount of information in a 

short time frame.  

CONCLUSIONS  
The LTG PD materials, through the use of videocases, provide extensive 

opportunities for teachers to notice and analyse the dynamic relationships among 

content, pedagogy and student thinking. Videocases in specified PD provide an 

interesting study because while they target carefully composed content and pedagogy 

learning goals, individual teachers may find particular components of the videocases 

to be personally meaningful and relevant to their classrooms. This phenomenon is 

analogous to how students learn from a given mathematics curriculum. Although the 

curriculum is likely to have a variety of identified learning goals, students actual 

learning will vary widely depending upon their prior knowledge, learning styles, and 

classroom contexts. 

Teachers who participated in the LTG PD reported many different ways the 

workshops impacted their practice, with video clips appearing to play a central role in 

their learning. For instance, Peter shared, “The most significant thing about the video 

clips was the ability to analyse different "levels" of student understanding. I think 

understanding these different levels will help me encourage more students to share 

their thinking. Understanding students’ levels of thinking would allow us as teachers 

to compare between partially correct and correct responses in class discussion. It 
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actually would allow us to make rubrics that are explicitly focused on students 

thinking.” 

Other teachers reported that seeing effective pedagogical strategies in the video clips 

helped them to envision how pedagogical strategies or content may play out in their 

classroom. At the same time, it is clear that the teachers learned not only from the 

video clips, but from the activities that supported viewing and discussion of the clips. 

The fact that teachers. As we have noted, videocases incorporate not only video clips 

but pre- and post-video viewing activities. As such, videocases provide teachers with 

multiple avenues to stimulate content learning and access pedagogical strategies in 

ways that are aligned with teachers’ prior experiences and unique contexts.  

We found that the videocases in the LTG materials anchored teachers’ noticing and 

insights in various ways, around a multitude of topics. We conjecture that teachers’ 

unique experiences in and learning from the PD was likely due to individual 

differences in their noticing skills and/or their instructional context including grade 

level, courses taught, and curriculum requirements. We further hypothesize that this 

combination of differential noticing and variation in instructional context contributed 

to teachers’ classification as different types of users of the PD materials in their 

classrooms. More research should be undertaken to explore and disentangle this 

connection, such as by more carefully examining what individual teachers noticed 

and discussed during the workshops and whether those workshop experiences are 

correlated with their classroom use categorizations. In addition, information on 

teachers’ observed classroom practices is essential to validating data on their self-

reported uptake of information from the PD. 

Note 
1
The National Science Foundation provided support for the Learning and Teaching 

Geometry Study (NSF Award #0732757) and the Learning and Teaching Geometry 

Efficacy Study (NSF Award #1503399).  
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HOW DO UNDERGRADUATES SQUARE-ROOT IN ℝ AND IN ℂ?  
Igor’ Kontorovich 

The University of Auckland 

 

This study was concerned with undergraduates’ images of the square root concept 

with a focus on consistencies and inconsistencies. The images were explored through 

square-rooting – a mental act associated with extracting roots from different 

radicands in the field of real and complex numbers, validating and sustaining the 

obtained results. The data was collected with an online questionnaire from first-year 

university students. A qualitative analysis of students’ reasoning revealed a variety 

and complexity of students’ webs of knowledge, in which a square root was 

compartmentalized into distinct domains of consistency and linked with other 

concepts through schemes. The phenomena of real number bias and complex number 

bias were indicated. 

PRELUDE 

Imagine Israela, a diligent student in her last year of Israeli school, who is studying 

towards her matriculation exam in mathematics. As part of her preparations, she 

decided to review various concepts and she started with roots. Israela opened Yaquel 

(2004), a popular Israeli textbook, and read: 

“We have already met square roots many times in the past when solving quadratic 

equations. We recall that the domain of the expression a  is all non-negative 

numbers and also a  is a non-negative number, the square of which is a” (bold in 

the origin, ibid, p. 581). 

The textbook’s explanation made perfect sense to Israela, she thought to herself, “ 9  

is 3 only because y x  is a function and then for every x in the domain there 

should be a single y in the range”. Then, she decided to recall how roots of complex 

numbers are extracted. Israela went over the conversion of a number from Cartesian 

(z=a+bi) to polar form (z= re
iθ), De Moivre’s theorem for raising a number to a 

natural power, and the formula for extracting roots of the n-th degree: 
2 k

i
nn re

  
 
 

 for 

k=1,2,…,n.  

The formula was very confusing for Israela, “How can it be!”, she exclaimed, “If 

according to page 581, 9 =3 and 9 is real and complex, so why does 9 =±3 on 

page 543? How did it grow another root in just forty pages?”. 

After struggling some more, Israela turned to her mathematics teacher for 

clarifications. The teacher flattered Israela’s curiosity and said, “Don’t overthink it, it 

is much easier than it seems. In the matriculation exam, Question 3 is the only one 

with complex numbers. So answer with two values there, in the rest of the exam give 

just one root”.  
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The presented anecdote is based on my conversations with secondary teachers, high-

school and university students who were well-familiar with the root concept in the 

field of real and complex numbers. However, many of them struggled with making 

sense of the presented inconsistency. The study reported in this paper was concerned 

with undergraduates’ images of the square root concept with a special focus on their 

consistencies and inconsistencies. 

MOTIVATION FOR FOCUSING ON THE ROOT CONCEPT 

This study is a part of a larger project on teaching and learning cross-curricular 

concepts. These are threshold ideas that appear multiple times in the students’ 

landscape of mathematics education, when each time the ideas are reconsidered in a 

new domain. A domanial shift is often accompanied by a redefinition and an 

introduction of new properties, which entail a substantial change in the ways these 

concepts are approached. Kontorovich (2016) showed that a root concept appears in 

intermediate-school, high-school and university mathematics curricula.  

An examination of various textbooks and mathematicians’ approaches revealed that 

there is no consensus in regard to a conventional definition and notation of the 

concept (Kontorovich, 2016). Specifically, various answers exist to the questions 

whether an even root of positive numbers is single- or double-valued, whether a 

verbal identifier ‘root’ and a radical sign have the same meaning, and how the 

concept should be defined in the field of complex numbers. Therefore, school 

teachers and university lecturers could benefit from an evidence-based picture of how 

students can understand the concept and what inner logic can be behind their 

thinking.  

THEORETICAL BACKGROUND 
The construct of concept image has been introduced by Vinner (1975) to mathematics 

education to account for the total cognitive structure that a learner associates with the 

concept, which includes all mental pictures, properties, and processes. For 42 years 

this construct has been successfully utilized for obtaining insightful research findings 

(e.g., Alcock & Simpson, 2011). For instance, it has been extensively used in 

classification studies focused on how learners judge whether a stimulus is or is not an 

example of a particular concept (e.g., Alcock & Simpson, 2011; Hershkowitz, 1989; 

Tall & Bakar, 1992). Mathematically, the decision should be based on the critical 

attributes that appear in the formal definition (Hershkowitz, 1989). Practically, it has 

been found that in many cases students and teachers classify based on the critical 

attributes of prototypes – special examples that incorporate features the most highly 

correlated with all examples from one’s concept image (e.g., Hershkowitz, 1989). 

Other studies showed that the reasoning for classification can be not example-based. 

Indeed, Tall and Bakar (1992) found that for many students, candidates for a function 

“should be defined for all real numbers” and their y “should equal an expression of 

x”. I will use prototype conceptions to refer to a learner’s pool of ‘should-bes’ that a 

stimulus needs for being accepted as a concept example.  
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In the last decade, research on classification and concept images has been critiqued. 

Alcock and Simpson (2011) argued that studies often assume concept consistency – 

students’ classification of stimuli being driven by a single mechanism. In their study, 

the researchers demonstrated that when given a list of sequences with a request to 

determine whether each of them is increasing, decreasing, neither or both, the same 

student could rely on a definition for some sequences and on local behaviors for other 

sequences. Concept consistency became central for this study.   

Another critique can be that research has been often concerned with students’ images 

of a single concept (e.g., see Tall & Bakar, 1992 for a function; Alcock & Simpson, 

2011 for a sequence). However, mathematics has been acknowledged for its 

interconnected nature, and then an individual can hold “a connected web of 

knowledge, a network in which the linking relationships are as prominent as the 

discrete pieces of information” (Hiebert & Lefevre, 1986, pp. 3-4). Accordingly, 

when working on a problem, a solver chooses the concepts that she or he is going to 

operate with, images, definitions and prototypes included. Harel’s (2008) ways of 

understanding and ways of thinking were used in this study for capturing these 

choices. 

Harel (2008) considers ways of understanding (WoU) and ways of thinking (WoT) in 

the context of a mental act, which is a primary notion of his framework. The 

researcher illustrates mathematical mental acts with proving, interpreting, connecting, 

modeling, generalizing and symbolizing. WoU are defined as products of a mental act 

that are observable through a person’s statements and actions. WoT refer to the 

common cognitive characteristics of the WoU that emerged from repeated 

observations. 

RESEARCH GOALS AND ANALYTICAL FRAMEWORK 
Harel (2008) maintains that an exploration of one mental act cannot be isolated from 

other acts. This study is concerned with square-rooting, which consists of extracting 

square roots from numbers, validating and explaining the emergence of the obtained 

values. The goals of the study were to explore undergraduates’ square-rooting WoT, 

and particularly students’ webs of knowledge that connect an image of a square root 

with images of other mathematical concepts and ideas. The driving force behind 

these goals was to explore potential changes in students’ square-rooting as a response 

to variations of a field (real numbers ℝ  and complex numbers ℂ) and a radicand 

(either from ℝ+
, ℝ⎻ or ℂ\ℝ). 

The constructs of connecting schemes and domains of consistency were introduced 

for capturing potential changes in students’ square-rooting. A connecting scheme is a 

coherent cognitive mechanism that answers the questions of what and how 

mathematical concepts were used in one’s reasoning about a mental act, square-

rooting in this case (see Dubinsky & McDonald’s, 2001 for a similar interpretation of 

a scheme). One example of a connecting scheme can be found in the Prelude where 

Israela relied on the concept of a function to sustain that 9  is single-valued. 

Obviously, one can concentrate on the prompted concept itself and reason with the 
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prototype conceptions that she or he attributes to it. Although such reasoning does not 

provide data on the one’s web of knowledge, it can spotlight various aspects of a 

person’s concept image.  

A domain of consistency characterizes the stimuli as a response to which one’s 

cognitive products share particular attributes. The notion accounts for Alcock and 

Simpson’s (2011) critique by answering the questions “what stimuli prompted the 

same WoU or WoT, and what stimuli were different?”. For example, Israela’s 

confusion in the Prelude could be explained with a struggle to make sense of 9 , 

which was conceptualized as the same stimulus that can be classified either to the 

domain of real or to the domain of complex numbers. However, the connecting 

schemes in each domain produced different results, which contradicted the 

conception of sameness. 

METHOD 

According to Harel (2008), an exploration of one’s WoT necessitates repeated 

observations of her or his WoU. Accordingly, the data for this study was collected 

with a questionnaire consisting of 12 triples of questions. The formulations of the 

questions in each triple differed only in the radicands belonging to the same 

numerical set: either ℝ+
, ℝ⎻ or ℂ\ℝ. Consider an example of a triple: “In the field of 

complex numbers 9 ?  / 144 ?  / 81 ?  ”. The assumption underlying this 

design was that the questions in a triple probe the same domain in one’s concept 

image, and then she or he is expected to demonstrate the same WoU. The responses 

of the participants that did not align with the expected consistency were excluded 

from the analysis. The questions involved radicands that were convenient for 

manipulation to enable students to concentrate on the reasoning rather than on 

computational issues. Each participant was assigned with a randomized set of 

questions from different triples. Cronbach’s alpha of the questionnaire was 0.92, 

which indicated a high level of internal consistency within the specific sample. 

Participants were asked to complete the questionnaire via a Google form, in which 

the questions were accompanied by two opposite numbers, the squares of each of 

them equal the given radicand. The participants could respond with either one of the 

numbers, both of them, or provide values of their own. The participants were 

encouraged to provide explanations for their responses. 

The questionnaire was spread in an online closed asynchronous forum in a popular 

social network. The forum was intended for students enrolled in first-year 

mathematics courses in a technological university in Israel. An average respondent 

was 24 years old (SD=3.54) and 96% of them were studying towards a bachelor 

degree in engineering. All respondents had already taken at least one course in 

calculus or linear algebra, and then they were exposed to roots, real functions and 

complex numbers in high-school and university. In line with Harel (2008), 

participants’ WoU were associated with final numerical responses and the 

accompanying reasoning that they provided. WoT emerged from the content data 
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analysis with pre-determined categories of connecting schemes and domains of 

consistency. 

FINDINGS 
The findings presented in this paper emerged from 39 students who explained their 

responses to the questionnaire. Overall, their square-rooting can be described with 

classification of a stimulus to a particular domain of consistency in their concept 

image and application of conceptions and schemes that were prototypical to the 

domain. In terms of consistency, four square-rooting patterns were identified: (1) a 

single domain, when students responses were consistent for all the questions (n=21); 

(2) real and complex square-rooting which were field-dependent (n=7); (3/4) square-

rooting from positive / negative radicands, in which the students accounted for 

whether a radicand belonged to a particular half of a real number line regardless of 

the field assigned in the question (n=7/4). Some characteristics of the identified 

square-rooting WoT, including the patterns (1-4), are illustrated next. The 

characteristics intertwine, and then the analysis is focused on the underlined 

characteristics.  

Classification according to distinct domains of consistency: Let us consider an 

example of a stimulus that was classified by two students with different square-

rooting WoT. As a response to 625 0 ?i  , Alex wrote, “it is a complex number 

because it is presented in its complex form”. For Ben, on the other hand, it was “a 

positive number with two square roots”. The presented reasoning illustrates that the 

students classified the stimuli according to the domains, upon which their square-

rooting depended. Indeed, Alex distinguished between real square-rooting, which was 

single-valued and complex square-rooting, which produced two results. She 

classified the stimulus to the latter domain based on the attribute of the “complex 

form” 625+0i. Note that simplifying the radicand to 625 would have complicated the 

classification because then the stimulus could have been considered in the field of 

real and in the field complex numbers, the square roots in which were different for 

Alex. Accordingly, preservation of the a+bi form was critical. Ben, on the other 

hand, accounted for whether the radicand was ‘positive’ (and then single-valued) or 

not (and then double-valued). His reasoning suggested that positivity was determined 

by whether the radicand could be simplified to belong to ℝ+
. In this way, 

simplification was helpful for distilling the attribute that was critical for 

classification. 

Coordination of prototype conceptions and connecting schemes: In their 

explanations, 17 students used some variation of “a square root yields two numbers”, 

nine students wrote, “there can be only one result for a square root”. The connecting 

schemes that students demonstrated aligned with these conceptions. Two popular 

schemes for the double-valued conception were: squaring both values to show that 

the result equal the assigned radicand; and making a link with the concept of inverse, 

which produced two values for an even function f(x)=x
2
. The popular connecting 
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scheme among adherents of a single-valued conception was based on an inverse 

function.  

Five students explicitly addressed the importance of coordination between the 

domanial conception and the applied scheme. For example, as a response to 121  in 

the field of real numbers, Katie wrote, “a root is a multivalued function. It is a 

worldwide convention to give a positive [square] root in real numbers”. When she 

encountered 16  in the field of complex numbers, she explained, “4·4=16, –4·–4=16 

and a root of a complex number can be negative”. Katie’s reasoning indicates that for 

her, positivity and negativity existed in both domains, but positivity was critical for 

real square-rooting only; complex square-rooting, on the other hand, resulted in 

positive and negative values. Accordingly, her responses were tailored to align with 

the conceptions prototypical to the distinct domains in her concept image. 

An unexpected explanation was proposed by Larry for real square-rooting being 

single-valued and complex square-rooting being double-valued. As a response to 

16  in the field of complex numbers, he wrote: “It is accepted in reals that square 

roots are positive. There is no order relation in ℂ and then you cannot prefer 4 over –

4”. Larry’s reasoning showed that he was aware of the lack of order relation in the 

field of complex numbers, which made sign-based schemes for selecting between the 

root candidates invalid. Accordingly, in his comlex square-rooting he was using the 

same connecting scheme without filtering one of the candidates for a root. This is an 

interesting WoT in which an amendment of the scheme was justified with the same 

conception; a conception which was valid in one domain and invalid in another.  

Different domains of consistency – unrelated connecting schemes: In their reasoning, 

five students accounted for different domains of consistency, where they square-

rooted with schemes based on different concepts and ideas. For example, in the field 

of complex numbers, Ella accounted for three domains and demonstrated three 

connecting schemes. In the questions with radicands belonging to ℝ+
, she responded 

with two values and explained that, “both equal the given number when squared” 

(scheme a). When radicands from ℝ⎻ were under consideration, her reasoning was 

based on the theorem stating that if a complex number ai is a solution of a 

polynomial with real coefficients (x
2
+a

2
=0 in this case)  then the conjugate –ai is a 

solution as well (scheme b). In the questions with non-real radicands, Ella converted 

the radicands to the polar form re
iθ and applied De Moivre’s theorem (scheme c). As 

a result, Ella’s complex square-rooting from real numbers was double-valued but 

square roots of non-real radicands resulted in a single 2
i

re


.  

Notably, while the connecting schemes (a) and (b) that Ella applied for positive and 

negative radicands were unrelated, they were compatible in the sense that each of 

them could be applied in both domains and result with the same values. The third 

scheme was effort-consuming and incompatible. It does not seem that Ella was 

concerned about the same concept ‘behaving’ differently in different cases. Possibly, 

this was because the incompatible scheme (c) that she used in the domain with non-

real radicands computed the roots, the schemes applied in two other domains 
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validated the provided root candidates. In terms of Harel (2008), a computation 

scheme could have fulfilled Ella’s intellectual need for certainty by ensuring that all 

the roots were obtained and the need for causality by explaining the inconsistency 

between the domains.         

Real number bias: Square-rooting of 16 students involved two connecting schemes 

based on the conception of positivity. For example, in the questions with positive 

radicands (in Ben’s sense), Henry explained that an inverse function of x
2
 is a 

bijection only for x>0. Accordingly, he wrote, “a root is always positive”. When 

radicands from ℝ⎻ and ℂ\ℝ were under consideration, he chose the responses from 

the upper half of the y-axis and the right half of the complex plane, correspondingly; 

he explained, “we still need to choose the positive root”. Another student, Inga, relied 

on the concept of an absolute value. In her explanations, she wrote 
2x x , which 

was interpreted in alignment with Henry’s conception of positivity.   

Henry and Inga’s reasoning illustrate how a prototype conception can be expanded 

from real to non-real numbers. In ℝ the connecting scheme of an inverse function 

required x>0 (the case of x=0 was missed by Henry). In ℂ a number is often 

represented with x+iy. The students referred to    | 0 | 0x iy x iy y     as 

‘positive’, which made    | 0 | 0x iy x iy y     ‘negative’. Accordingly, the 

conception of positivity enabled them to apply the same connecting scheme for 

choosing between two complex candidates for a root. 

Complex number bias: In their reasoning, ten students demonstrated awareness to 

distinct domains of consistency and applied variations of the same connecting 

scheme in them. For example, when extracting a square root of 121 in the field of real 

numbers, Fred wrote, “I am solving the equation x
2
=121 which yields two solutions 

according to the Fundamental Theorem of Algebra. Both of them are real and then 

they both fit”. As a response to 36  in the field of real numbers he explained, 

“x
2
=⎻36 yields complex ±6i and then there are no roots”. Another student, Gloria, 

associated the assigned radicands (real and complex) with vectors re
iθ  on a x-y plane. 

She extracted two square roots 2
i

re


  with a variation of De Moivre’s theorem and 

responded with the values that belonged to the assigned field.  

Notably, both students square-rooted with concepts and methods that are valid in the 

field of complex numbers. When it was necessary, they filtered the obtained results to 

fit ℝ. Such square-rooting can be interpreted as a complex number bias since ℂ is an 

algebraic field with an axiomatic system of its own which is not reducible to ℝ. 

Another bias was indicated in the field of complex numbers when three students 

connected between 1  and square roots of radicands belonging to ℝ⎻. In his 

explanations, John wrote that 1  equal i because, “this is the definition”. While his 

square-rooting from positive and non-real radicands was double-valued, 144 , for 

instance, was approached as 144 1  and resulted in a single 12i. I interpret this 

WoT as an extension of a prototype example 1  to a new domain with a 
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multiplicative conception ab a b ; a conception which is valid in ℝ but not in 

ℂ.   

CONCLUDING REMARKS 
I would like to conclude with remarks situating the findings of this study in university 

teaching and learning. It is a reality in many countries that a curriculum condensed 

with concepts is delivered through lecturer-centered instruction to students coming 

from various mathematical backgrounds. Such pedagogical setting can intensify a 

practice in which a lecturer interprets the errors that students make as 

misunderstandings that can be ‘patched up’ with speedy reteaching (Kontorovich, 

2016). This study showed that erroneous mental products can be a result of 

understandings rooted in webs of knowledge compartmentalized into multiple 

domains and connections with other concepts. Accordingly, an error can be not 

indicative of the complexity of the concept images that students hold and advanced 

mathematical processes that they carry out. Furthermore, it seems unlikely that as a 

result of a speedy exposure to the mathematically correct WoU, students will 

reformat their WoT and calibrate it with the one promoted by the lecturer without 

further assistance. Lastly, a root is just one example of many concepts that lack a 

consensual approach in the mathematical community. This situation invites a 

reconsideration of such discoursive labels as ‘erroneous’ and ‘mathematically 

correct’ WoU and WoT.  
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IDENTITIES AS MATHEMATICS LEARNERS?  
Eirini Kouvela, Paul Hernandez-Martinez, Tony Croft  

Loughborough University, Loughborough, United Kingdom  

 

This paper explores how first year mathematics students narrate their identities as 

mathematics learners during their transition to university. We focussed our interest 

on the messages that the students received from their lecturers and on the ways that 

these influenced their identities. The results of the study suggest that students with a 

strong mathematical identity maintain it and are not influenced by strongly framed 

messages. But for others, the degree of control exerted through the transmitted 

messages plays an important role in reshaping students’ existing identities as they 

move into university. These results have important implications for teaching and 

learning policy and practice in HE and demonstrate the need to raise awareness of 

the importance of incorporating student agency into the design and delivery of 

mathematics education.   

INTRODUCTION  
The transition from school to university mathematics has been and still is a persistent 

and often problematic issue in the field of mathematics education. The existent 

literature recognises several factors as the root cause. These refer mainly to the 

difficulties that students face due to changes in the content of mathematics taught at 

university (Brandell et al., 2008), changes in the ways of thinking and 

communicating mathematics (Engelbrecht, 2010), changes in the way of teaching 

(Thomas & Klymchuk, 2012) and changes in the social and cultural context of the 

new institution (Holmegaard et al, 2013). In this study, we employ a socio-cultural 

theoretical framework to investigate how variations in the degree of power and 

control of messages transmitted from lecturers influence the construction of students’ 

identities as mathematics learners in transition. For this purpose, we use Bernstein’s 

(2000) concepts of classification and framing, and the notion of positional identity 

developed by Holland, Lachicotte, Skinner and Cain (1998). This is an approach that 

to the best of our knowledge has not been employed before in transitional studies. 

THEORETICAL FRAMEWORK 
Classification and framing depict the underlying structures of power and control that 

a message carries and here we use them to explore in what ways messages can 

influence how students reshape (or affirm) their identity. Bernstein (2000) developed 

his theory on educational transmissions to show how knowledge is reproduced by 

controlling what can be taught, and how, by those in power. With the concepts of 
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classification and framing he intended to demonstrate how transmitted knowledge is 

transformed into discourse. In this study, we use these concepts to show how 

messages transmitted by lecturers transform the knowledge that they possess, 

regarding the learning of mathematics at university and the content of mathematics 

itself, into pedagogical discourse. In the discourse that takes place during the 

teaching-learning interactions the concept of classification helps us recognize the 

power of the message; it sets the limits of the discourse, specifies the specialty of the 

context and makes clear what meanings are going to be put together. For instance, 

consider a lecturer who strongly suggests that students use induction to prove a 

certain theorem. This message carries a high level of power by setting the limits of 

what students can do – i.e. not following the suggestion of the expert would be 

unwise. A message with strong classification carries a lot of power. With the concept 

of framing we can identify the degree of the exerted control that a message conveys; 

it sets the form of realisation of the discourse and shows how the meanings that the 

transmitter intends to address are going to be put together. When the framing is 

strong, the degree of control is also strong. In that case the control is with the 

transmitter (Bernstein, 2000). Consequently, the person who transmits the message 

does not leave space for the acquirer to shape her/his own thinking; the thinking of 

the acquirer is regulated entirely by this strong control. Drawing on the previous 

example, the lecturer might then remind students of the particular steps in a proof by 

induction; the control of this message is then strong, it shows students explicitly how 

they should prove the theorem and directs their thinking.   

Bernstein (2000) argued that changes in the formation of identity may occur because 

of variation in the distribution of power and variation in the principles of control, 

through different ways of communication. In addition, we draw on the concept of 

‘positional identity’ developed by Holland et al. (1998), which refers to the ways that 

a person identifies their position in relation to others, mediated through the ways that 

make them feel comfortable or constrained. We focus particularly on their concept of 

space of authoring. Here an individual can orchestrate the social discourses and 

practices which allow them to act in a particular way. In this sense a message 

transmitted by the lecturer which varies in classification and framing can influence 

how students participate differently in university practices (i.e. opens up or constrains 

their space of authoring), hence shaping their identities as mathematics learners in 

different ways while they participate in these practices (e.g. a brilliant mathematician, 

a dropout, etc.). As Lerman (2000) argues the individual trajectories in the 

development of a person’s identity when s/he engages in social practices are 

influenced by the ways that this person functions in this specific practice. Through 

the engagement in the practice an individual is attributed a different positioning. In 

our context, this means that the identity that the students bring with them from school 

can be reshaped through their involvement with university practices. The messages 

presented in this paper are carried through these practices and contribute to the 

reshaping of students’ identities by positioning students with respect to the new 

practices of university.  
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METHODOLOGY  
The research took place in a UK research-intensive university among ten first year 

honours degree mathematics students. During semester one, we observed lectures of 

two compulsory modules and we employed questionnaires, focus groups and 

interviews with the students in order to see what messages are transmitted and how 

students interpret them. To explore students’ identities, we gathered information 

about their background, the reasons behind choosing this particular degree, the ways 

they approach mathematics at university and the ways they deal with the changes 

(e.g. subject content, teaching practices, structure of the programme, etc.). We 

conducted two individual interviews with the lecturers of the modules (Lecturer A 

and Lecturer B hereafter). All the observations and interviews were audio recorded 

and transcribed.  

We constructed narratives from students’ interviews and focus groups to explore how 

their identities mediated the interpretation of the received messages. We investigated 

how these messages positioned students in relation to the practices of university, 

hence affecting their existing identities. These narratives emerged from the ways that 

students described themselves as mathematics learners during the passage between 

the two educational settings (Bruner, 1996), and the influence that the received 

messages had on them. We chose messages that were transmitted during lectures and 

which we considered crucial for the learning of mathematics in the new context (e.g. 

interaction among students, assessment methods, teaching practices). These were 

analysed using Bernstein’s (2000) concepts of classification and framing to identify 

the conveyed power and control. Then we explored how these messages positioned 

students in the university setting, using Holland’s et al. (1998) concept of positional 

identities, and the effect this had on their identities. We wanted to know if the same 

message was received by different students and if they interpreted it differently 

according to their particular identities, and what consequences this had for their 

transition.  

RESULTS  
We now describe two of the messages that the two lecturers transmitted about 

mathematical discussion and assessment methods. We present narratives of two of 

the students, hereafter Lesley and Jason (pseudonyms), through which we identify the 

influences that the messages had on the shaping and re-shaping of their identities. We 

chose to present these two messages here because they have the same level of 

classification (both strongly classified) but vary in the degree of framing (one is 

weakly framed, the other one strongly), and they influence the students in very 

different ways.  

Message 1: Mathematical discussion among students  
One of the strongly framed messages that both Jason and Lesley referred to 

concerned mathematical discussion among students and was transmitted by Lecturer 

A. The lecturer herself stated in the interview her intention for transmitting this 
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message: “…being able to talk about the ideas, and being able to explain why you 

think what you think, even if … you are wrong, I think that’s important…” In every 

lecture, she invited the students to engage in discussions mostly by giving them 

mathematical tasks, included in a set of notes that she provided, or by asking them to 

work on things that would come up spontaneously, such as finding a counter example 

for a statement discussed at that time. In the first lecture, she invited the students 

eight times to engage in a conversation, asking them “tell the person next to you…” 

whether a specific statement is true or what the explanation for a particular argument 

could be. She explained why it is important to do so: “At university the aim is not just 

for you to ‘do’ mathematics, but to learn to communicate clearly…”. The message 

she intended to transmit through this practice is explicit, carries a lot of power and 

sets clear boundaries about the importance of being able to communicate 

mathematics. The power carried through this message makes the students recognise 

that at university they need to develop the skill and habit of communicating 

mathematics clearly. It also has a high degree of control; students will learn how to 

communicate clearly by engaging in the discussion with specific tasks chosen by the 

lecturer.  

Message 2: Assessment methods  
We notice weaker framing transmitted through Lecturer’s B message regarding the 

assessment of the module. As a part of the assessment for this module students need 

to complete a two-piece coursework which contributes 50% to their overall module 

mark. Lecturer B admitted in the interview that by employing this coursework he 

wanted students to spend time working on their own (or in groups) on the material 

that was covered during lectures. Although the message that he intended to transmit 

with the use of the coursework is powerful - students have to work on the coursework 

in order to understand the material and achieve good marks - it was not strongly 

framed. During the 17 lectures we observed, Lecturer B referred to it only three 

times, with the most prolonged time being in the first lecture when he provided 

general information about the course: “Coursework information are on the other sheet 

[sic]… issue dates, handing dates and return dates… And you will be given three 

weeks to do the coursework. The first coursework is to be done individually, and the 

second can be done in groups of three… It can be done individually but it’s advisable 

to work in groups… Each coursework will be worth 25% of the total module.” 

Jason’s narrative  
Jason’s family and teachers were important influences on his decision to study 

mathematics. His parents’ professional background played an important role in his 

interest in mathematics: “My mom is an artist and my dad is a computer programmer 

so he is obviously very mathematical… the combination of the two was very good...” 

He acknowledged that two of his school mathematics teachers inspired him with their 

love of mathematics: “I had two Further Maths teachers that I will always remember 

and they will always be an inspiration for me. They were very strict and very old 

fashioned and it is what I needed, someone straight, and they were very 
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enthusiastic… I think just having two great teachers was enough for me to be inspired 

to want to do this for the rest of my life… I wanted to do my best for them…”. The 

differences in the content of mathematics taught at university did not trouble him; he 

approached these as opportunities to challenge his mathematical knowledge: “I didn’t 

mind, I wanted the challenge, I didn’t come here for a repeat of last year… I wanted 

new material, I wanted to find how stuff works with integration, differentiation...”.  

He received the message that Lecturer A transmitted about mathematical discussion 

and recognised the logic behind it. Nevertheless, it did not prompt him to take further 

action. He explained: “I don’t speak to anyone from the course, I go there and sit on 

my own and make notes. It’s quite an arrogant thing to do but I find it most useful for 

me... I tend not to engage in the conversation about the answer, sometimes I am 

wrong but sometimes it’s very obvious and I don’t think it worth conversation… I 

hate conversations around me, they are extremely silly…”. Through his narration it is 

obvious that he is not influenced by this message. Jason’s identity created during 

previous years through schooling affects the ways through which he deals with the 

practices taking place at university and consequently in what ways he positions 

himself. He does not value any social interaction with other students, and approaches 

mathematics as a challenging task that needs to be done individually. This has as a 

consequence a disregard for this strongly classified and framed message. 

On the contrary, the weakly framed message that Lecturer B transmitted had more 

influences on Jason. Through this message he identified a challenge to deal with. He 

was the only one among the students who took part in the study that interpreted the 

message in this way. He is independent and more prone to agree with the messages 

that promote such challenges. This contrasts with the rest of the students who, in 

most cases (as we see shortly in Lesley’s case), struggled with the different structure 

of assessment at university. He argued: “I like having a challenge to be set every 

week and to go away to try it over. Even if I get it wrong and I get a bad mark… I 

still enjoy it… The best example was Lecturer’s B question 4d, that was really good. 

It was induction of power sets and it was a proof by induction and that was a real 

challenge, I had to spend hours on that question try to get it right.” We notice that 

Jason is influenced by the transmitted message despite its weak control, he still puts 

work in and encounters it as a challenge. It is his identity as a mathematics learner 

that makes him position himself as someone who enjoys and looks for challenges. 

This practice makes him feel comfortable and lets him extend his mathematical 

horizons. His actions are not prompted by the degree of control of the message but 

from his intrinsic interest in the content of mathematics.   

Lesley’s narrative  
Lesley chose to study mathematics because of her personal interest in the subject: “I 

came to study maths just because I really enjoy the actual I’d say sort of methods 

type [of] maths, like sort of complex but not so much proofs and I thought that’s what 

university mathematics is.” She was encouraged by her school teachers to follow this 

choice: “Teachers gave me advice, like my Further Maths teachers... [They said]... 

basically that you can do it. Like don’t think you can’t, don’t regret it...” Eventually 
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university mathematics was not as she expected it to be; her expectations were based 

on “rumours” which were supported by the view that university mathematics 

resembled A Level Further Mathematics: “I listened to rumours that it wasn’t going 

to be that hard, like everyone said that the jump from school to 6th form is harder 

than the 6th form to uni, but they lied! ...I got told that 1st year was just Further 

Maths A Level, but that wasn’t true either.” The main difference that she recognised 

between the two institutions, and which made her struggle, was the necessity to study 

proof at university. She commented: “There is a lot more proofs and I find them quite 

difficult to understand, I think that’s the main difference... maybe that’s why I am 

struggling more, and missing something from the lectures...”  

When Lesley talked about the strongly classified and framed message that Lecturer A 

transmitted regarding the discussion among peers she showed a completely different 

grasp of it compared to Jason. She recognised the discussion on mathematical 

activities as a familiar practice, like the ones taking place at school, and she 

acknowledged it as beneficial for students’ understanding. This specific practice used 

during her schooling played an important role in the way that Lesley formed her 

identity as a mathematics learner and consequently it influenced the way that she 

dealt with an analogous situation at university. In the focus group she said: “School 

was a lot more discussions and stuff like work with your partner and things like that 

and I think some lecturers… try to make you discuss.” A few weeks later in the 

interview she elaborated further: “I do find that really helpful... When you explain 

something to someone else it helps you as well and is nice to hear somebody else’s 

point of view... Just to hear another explanation, it can just sort of make you 

remember more or in an easy way.” Although she finds the differences in the new 

context troublesome she seems to be eager to take action from this strongly framed 

message which resembles school practices. The practice of talking to her peers is 

similar to the school practices and therefore she agrees readily with this message. In 

turn, this helps her deal with the problematic situation. 

The same though did not happen with the strongly classified but weakly framed 

message from Lecturer B. Lesley did not anticipate such a difference in terms of 

assessment between the two educational settings: “I didn’t expect it to be this much 

coursework... and I am not used to it, ’cause at 6th form we had exams at the end of 

the year and that was it for maths. So it is hard having something constantly in the 

back of your mind and have to hand it in... It’s quite stressful but then maths at 

university it was always going to be stressful...” In order to cope, Lesley admitted 

that she focused more on the things that the lecturer says during lectures and tried to 

find bits that would fit as possible answers in the coursework’s questions: “I feel like 

I am looking for certain... things that come up in the questions and then pay like extra 

attention and stuff like that, so I learn differently, in that way... Like this morning we 

had a question that used words that were really similar to a question in my 

coursework, so I was like, right! Extra focus on this, I do focus on quite a lot but I 

was like writing my notes really good for this bit, it’s just sort of extra pressure kind 

of thing.” We notice that, for Lesley, the lack of control in this message makes the 
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gap seem bigger between the practices used at school and at university. She sees 

mathematics as mainly procedural and positions herself as a student that needs 

explicit explanations of the mathematical methods seen in lectures. The weak control 

in Lecturer’s B message, where he gave freedom to the students to act independently, 

made her feel undirected. She reacted to this challenge by adopting a strategical way 

of approaching the coursework without grasping the intention behind the message 

(i.e. make students act and think independently, encourage conceptual 

understanding). During the lecture, she tried to link words that sounded relevant to 

the questions in the coursework. Through this strategy she attempted to orientate 

herself in specific parts of the notes in order to be efficient with the coursework. This 

tactic limited her space for exploring mathematics and therefore, we suggest, shaped 

her mathematical identity in a very different way to that of Jason. 

DISCUSSION AND CONCLUSIONS  
The practices and messages at university positioned the two students differently, and 

hence shaped their developing identities in different ways. On the one hand, we have 

Jason who chose to study for a degree in mathematics inspired by two enthusiastic 

mathematics teachers who instilled a love of mathematics in him, ready to accept the 

challenge in the new context, willing to work and conscious about the differences in 

the content. On the other hand, Lesley liked mathematics and decided to study it 

encouraged by her teachers that she would be able to cope with it. She held a strong 

belief that the content would be like A Level Further Mathematics and she struggled 

with the new elements, such as the need to study proof at university.   

We notice that students’ identities are shaped differently according to the variations 

in the degree of control in the transmitted messages. Jason’s identity as a 

mathematics learner is affirmed by the weakly framed message regarding the 

assessment method. This happens because the degree of framing here presents 

individual challenges and he is more willing to take action as a consequence. 

Through the narration of his identity he seemed to be self-aware about his 

mathematical abilities and choices and well prepared for the changes that he found at 

university. On the other hand, the message regarding mathematical discussion among 

peers, made him feel constrained; and he chose not to take any action from it 

because, for him, mathematics is an individual task.  

Contrarily, strongly framed messages appeal to Lesley, whose mathematical identity 

is constructed on the perception that mathematics is about methods. She tries to find 

similarities between the two contexts and is keen on taking actions from messages 

with high degree of control because they can regulate explicitly her thinking, like the 

message about mathematical conversations. This agrees to some extent with 

Hernandez-Martinez’s (2016) study where students entering university were alienated 

because their identities did not resonate with the new practices. Similarly, Lesley 

finds the change of assessment methods uncomfortable due to the weakly framed 

message that Lecturer B transmitted about coursework. The lack of control makes her 

feel constrained, leaves room for independence and Lesley did not seem ready for 

that yet. 
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These two cases show how messages with different degrees of power and control 

position students’ in different ways according to their individual identities; therefore, 

it would be wrong to suggest that, for example, only strongly classified and framed 

messages should be transmitted by lecturers. The implication of our analysis is that 

university actors should account for the learners’ identities and agency when 

designing educational practices. This confirms Pampaka’s et al. (2016) work on 

current debates on the ‘what works’ agenda where the authors stress the need to 

consider the learners’ agency in policy and practice in mathematics education. As we 

argued elsewhere (Kouvela, Hernandez-Martinez and Croft, 2016, under review) 

importance should be given to the discourses taking place in the teaching-learning 

interactions during the transitional phase. Taking these into account we can explore 

in what ways messages transmitted by university actors position students in relation 

to the practices of the new institution and how this shapes their identities during their 

transition to university.  
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ICONICITY IN SIGNED FRACTION TALK OF  
HEARING-IMPAIRED SIXTH GRADERS 
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This paper reports from a project on the investigation of the influences of sign 

language on the development of conceptualizations of mathematical ideas. Following 

research in Deaf Studies, iconic aspects of an idea represented in the related sign are 

considered one factor impacting the understanding of the signed concept. This paper 

adopts this approach and proposes a categorization of the diverse types of iconic 

references made by the students when signing about fractions, based on interviews 

with deaf and hard-of-hearing students using sign language as natural everyday-

language. 

INTRODUCTION AND THEORETICAL BACKGROUND 
How do deaf students learn mathematics? How do they think about mathematical 

ideas? And how can answering these questions help us gain more comprehensive 

insights, not only about how to better respond to the specific needs of deaf students, 

but also about what influences learning and conceptualisation in general? While these 

questions are inspired by Healy (2015), research from the field of Deaf Studies 

suggests approaches towards answering them by considering  specific features of sign 

language that have been found to influence the conceptualization of the signed idea.  

This contribution presents part of a larger study that aims at understanding the 

influence of sign language on mathematical learning and establishing sensitizing 

concepts to foreground the impact of sign language in mathematical discourse. 

Specifically, this current report focuses on examining how students sign about 

fractions and how this might influence their understanding of fractions. Therefore, 

the objective of this paper is to provide first categories to describe how students sign 

in fraction talk. 

Assuming that knowledge is constructed by individuals through co-construction in 

social interaction, communication as it is carried out in the gestural-somatic mode of 

sign language is considered to have a non-trivial impact on this learning process from 

two perspectives. On the one hand, visual aspects represented in the sign might 

influence ‘what is actually talked about’ and how the signed utterance may be 

interpreted as a whole, similar to as it is already considered for the case of gestures 

accompanying speech in learning processes of hearing children (Krause, 2016). On 

the other hand, following the theory of embodied cognition we can assume that 

bodily existence and the being in and experiencing the physical world impacts how 

we construct meaning and what kind of meaning we construct (Núñez, Edwards, & 
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Matos, 1999, p. 53). With respect to the role of body in cognition, Wilson and Foglia 

state in their embodiment thesis more specifically: 
Many features of cognition are embodied in that they are deeply dependent upon 

characteristics of the physical body of an agent, such that the agent's beyond-the-brain 

body plays a significant causal role, or a physically constitutive role, in that agent's 

cognitive processing. (Wilson & Foglia, 2016, paragraph 3) 

One aspect they highlight with respect to the body’s role in cognition concerns the 

“body as constraint”, which implies that 

 Some forms of cognition will be easier, and will come more naturally, because of 

an agent's bodily characteristics; likewise, some kinds of cognition will be 

difficult or even impossible because of the body that a cognitive agent has. 

 Cognitive variation is sometimes explained by an appeal to bodily variation. 

(Wilson & Foglia, 2016, paragraph 3) 

Therefore, the conditions for deaf students with respect to cognitive processing can 

be considered being different to those of their hearing peers due to bodily variation. 

Furthermore, from a socio-cultural perspective, mathematics is mediated semiotically 

and the way we come in touch with mathematics – whether it is through auditive 

signs or mainly through visual signs – alters the structure and the flow of how we 

think mathematically (Healy, 2015, referring to Vygotsky, 1917). In accordance with 

this, it is not the question if deaf students can develop mathematical skills just as their 

hearing counterparts, but rather how these skills develop and how the “profound 

restructuration of the intellect” (Healy, 2015, p. 299) caused by the substitution of the 

bodily tool in semiotic mediation changes how the mathematical thinking and 

knowledge becomes structured. 

Influence of sign language on conceptualization 
Research in the field of Deaf Studies points out that certain features of sign language 

influence the conceptualization of the corresponding signed ideas (Grote, 2013). One 

of these features concerns the iconicity of a sign, that is, the relationship between a 

sign and the aspects of the idea or object that can become reflected in this sign as 

evoked by some kind of similarity, e.g. to an action or object. According to Grote 

(2013), the iconicity of the sign influences which ideas become marked as 

distinctively linked to the concept. While in this study, only German Sign Language 

(DGS) is considered, the feature of iconicity encompasses sign languages in general 

(see Grote, 2013). 

Sign languages are naturally growing languages and as such, they have been 

acknowledged as languages only since the last century. While for many mathematical 

concepts there is no common consensus about corresponding ‘mathematical signs’, 

these signs often develop in the discourse in the mathematics classroom (Fernandes 

& Healy, 2014). Investigating which aspects are reflected iconically in the signs used 

is thus key to getting a better understanding of how this idea becomes encountered 

and which aspects become considered important to ‘stand for’ the mathematical idea.  
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METHODS 
This study was carried out in cooperation with a German school for special 

educational needs that focuses on ‘Hearing and Communication”. Ten deaf or hard-

of-hearing students from a grade six class, were invited to participate in the 

interviews. German Sign Language was the primary language of each of the students. 

In the mathematics lessons, the hearing mathematics teacher used sign language as 

well as spoken language. The topic focused on in the interviews – fraction numbers – 

was covered in class two months earlier.  

Interview methodology 
One purpose of the interview is to investigate the students’ fraction talk, that is, to 

find out more about how the students talk about fractions and ideas related to fraction 

numbers. Therefore, two aspects become key in the methodological approach to the 

interviews:  

 The students have to be encouraged to talk in their natural language, that is, 

they need to feel free to use sign language.  

 The interviewer themselves shall not provide signs to refer to mathematical 

ideas that stand in the focus of investigation to not influence how the 

students talk about these ideas. 

The first issue is encountered by having the interviews carried out by a deaf assistant 

that already contributes in the project by subtitling video data gathered in the 

classroom (see also Krause, in press). The interviewer has neither a research nor a 

specific mathematical background, which required to design an interview guideline 

and introducing her thoroughly to the purpose and the aims of the interview. While 

this proceeding provides good conditions for the first of the two aspects mentioned 

above, it obstructed the researcher to intervene in cases where further questioning 

may have helped assessing the students’ ideas of the mathematical concepts.    

The second methodological aspect underlying the planning of the interviews was 

encountered by a specifically geared interview design that made use of ‘term cards’ 

and ‘fraction cards’. In the course of the interview, cards have been presented to the 

students, each labelled with a fraction term. The fraction terms given to the students 

were (English translation provided in brackets): ‘Bruch’ (fraction), ‘Zähler’ 

(numerator), ‘Nenner’ (denominator), ‘kürzen’ (simplifying/reducing), ‘erweitern’ 

(expanding), ‘Bruchrechnung’ (fractional arithmetic), and ‘Brüche vergleichen’ 

(comparing fractions). 

The students are asked to talk about one term after the other, initiated by the 

interviewer asking “I will give you some words. How would you explain the 

meaning?” (signed as “words give-to-you content meaning explain-to-me (what?)”) 

after a first introduction to the interview situation. Subsequently, the interviewer asks 

the students “what fits together what?”, lets them regroup the cards on the table and 

asks for an explanation for the grouping they made. This slimmed down version of a 

concept map is trialled to gather further insights about the aspects considered 

significant for the students with respect to the mathematical ideas. 
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Following this, two fraction cards are given to the students, one labelled with the 

fraction , the other one with the fraction . The final task consists of students 

comparing these two fractions and deciding which one is bigger. The students’ 

explanations ought to provide a further perspective on how the students talk about 

fractions in the specific context of a concrete task. 

Data preparation and analysis 
The video data has been subtitled by the deaf assistant using the German words 

corresponding with the signs, preserving the linguistic structure of German Sign 

Language as best as possible. These subtitles served as basis to identify the students’ 

use of the fraction terms to then reconstruct their iconic reference.   

KINDS OF ICONICITY IN STUDENTS’ SIGNS FOR FRACTION TERMS 
The investigation of the iconic aspects reflected in the students’ signs used in the first 

part of the interview showed diverse types of iconicitiy, that is, diverse kinds of 

iconic similarity as reflected in the sign. In the following, the different categories will 

be presented by means of illustrative examples. 

Innerlinguistic iconicity 
A large amount of ‘mathematical signs’ used by the students when talking about the 

fraction terms has been found to be based on signs used in everyday sign language.  

That is, the sign resembles another, possibly nonmathematical, sign in handshape 

and/or motion of the hand, and placing of performance of the sign. Assuming that the 

iconic reference fosters a stronger link to the idea referred to in the similar sign, the 

reference of the innerlinguistic iconicity and its ‘fit’ with the corresponding 

mathematical idea need to be considered for the development and appropriate use of 

‘mathematical signs’. 

For example, the DGS-sign for ‘zählen’ has been used as ‘mathematical sign’ for the 

term ‘Zähler’ (numerator). As nominalization of ‘zählen’ (counting), hence ‘the one 

that counts’, the idea of ‘Zähler’ could be conceptually linked to ‘counting’ the given 

number of the parts the whole is divided in, embedded in an understanding of 

fractions as ‘part of a whole’ (e.g. Kieren, 1980; Lamon, 2012). 

 
Fig.1: Sign used for “Zähler” (numerator) as innerlinguistically iconic to “zählen” 

(counting) in DGS (from two perspectives) 

 

Another sign used for ‘Zähler’ reflected innerlinguistic iconicity to the DGS-sign for 

‘Zahl’ (number). That is, the innerlinguistic iconicity to the sign for ‘number’ 

provides a link to a more general feature of the ‘Zähler’ – being a number – rather 
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than providing a conceptual link to some idea of what the ‘Zähler’ could be 

understood as within the concept of fraction.  

While potentially chosen due to the similarity of the written word ‘Zahl’ to the word 

‘Zähler’ –-some kind of innerlinguistic iconicity in written language –-the sign for 

‘Zahl’ furthermore also evokes innerlinguistic iconicity to the sign for “rechnen” 

(calculating). The shape of the hands matches for both signs, but the signs differ in 

movement insofar as the hands move down for ‘Zahl’ while they move up and down 

as opposed to each other for ‘rechnen’ (see Fig 2).    

    

     

Fig.2: Sign used for ‘Zähler’ (numerator; left side) as innerlinguistically iconic to 

‘Zahl’ (number) in DGS. On the right side, the sign for ‘rechnen’ (calculating). 

 

That this actually seems to influence conceptualization is revealed in a student’s 

choice for grouping the terms in the second part of the interview. Being asked “what 

fits together?”, she explains her choice of grouping ‘Zähler’ and ‘Bruchrechnung’ 

together by pointing at the card ‘Bruchrechnung’, performing the sign for ‘rechnen’, 

then performing the similar sign for ‘Zahl’, placing the hand beneath the card for 

‘Zähler’ and nodding before continuing with her explanation for the rest of her 

grouping. 

The signs the students used for ‘Nenner’ (denominator) have been found to be similar 

to each other, all providing an innerlinguistic iconicity to the sign for ‘Name’ (name) 

or ‘nennen’ (naming). However, differences have been found in the features the sign 

used as ‘Nenner’ shared with the one of ‘Name’/’nennen’. The signs can coincide  

 by only sharing the same shape, the DGS-sign for the letter “n” in this case. 

Since this is a rather general match, the link provided through innerlinguistic 

iconicity is a rather weak one.  

 by sharing the same shape and the same motion.  

 by sharing the same shape and the same motion and by furthermore being 

performed at the same place, the cheek in this case. The link provided here 

between “Nenner” and the idea of “Name”/”nennen” is a stronger one. 

Iconic-symbolic and iconic-physical reference 
Iconic-symbolic reference in this context concerns a signs’ reference “to a symbolic, 

written inscription, which in turn represents a specific mathematical entity or 

procedure” (Edwards, 2009, p. 138). Iconic-physical reference, on the other side, 

concerns the similarity to real objects or physical actions (Edwards, 2009). Although 

the students’ referred in their explanations of ‘fraction’, ‘numerator’ or ‘denominator’ 
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often to the symbolic representation of the fraction as one of the numbers being 

located above the fraction bar, the other one below, none of the signs referring to the 

fraction terms where purely iconic-symbolic or iconic-physical. Nevertheless, all of 

the students used a sign for ‘kürzen’ (simplifying) that combined both (see Fig. 3). 

 

     

    

Fig. 3: Sign used for ‘kürzen’ (simplifying), reflecting the action of striking off in the 

symbolic representation of the fraction while simplifying (above: from two 

perspectives; below: subsequent movements) 

 

The signs reflect the idea of striking off when dividing the numerator and the 

denominator by the same number. It therefore refers iconically to a physical action 

that is performed within the symbolic notation of the fraction. With this, it recalls an 

aspects of the procedure performed when simplifying a fraction.  

Iconic aspects of fraction talk in fraction comparison: an enacted iconic 
approach 
8 out of 10 students approached the comparison of the fractions by activating area 

models of cake, chocolate or pizza pieces (Lamon, 1999). For this, they subsequently 

‘placed’ respective imagined ‘wholes’ in the signing space in front of their body and 

‘cut’ them into parts. This enacted iconic approach reveals an interpretation of the 

fraction as ‘part of a whole’, providing a visual basis to solve the task by means 

partitive division within the ‘quotient subconstruct’ (e.g. Marshall, 1993). However, 

all of these eight students mixed up the roles of the dividend and the divisor and 

identified the denominator as providing the number of wholes and the numerator as 

giving the parts of each whole. Since all the students visit the same class this might 

be explained by being prompted by some approach to fractions followed in the 

lessons, but not yet being fully elaborated.  

CONCLUSIONS AND DISCUSSION 
In this paper, I have presented diverse ways of how signed fraction talk might feature 

iconic aspects of mathematical ideas in the signs and gestures used and proposed how 

these aspects might influence the way these ideas become perceived and processed. 

For example, these iconic aspects might concern a certain similarity to other signs 

that are already used as conventionalized with another meaning and in this sense, 

bear an innerlinguistic iconicity within the specific sign language. The mathematical 
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idea might then become linked to and interpreted against the background of some 

association the conventionalized meaning might evoke. Also, a sign can refer to a 

symbolic representation of a mathematical idea or to some sort of procedure carried 

out in its context. That way, it might foster a link to this representation or procedure 

by means of providing iconic-symbolic or iconic-physical reference to them. 

Furthermore, explanations carried out in sign language can provide a visual basis to 

the mathematical idea. 

Grote points out that “assuming that epistemic processes are processes inherently 

mediated by signs, the similarity that forms the relationship between icon and 

referential object is constituted actively” (Grote, 2010, p. 312, translated by the 

author). That is, a sign does reflect iconic aspects of a referential object, or idea; it 

does so only for those who are aware of this iconic relationship. For signs referring to 

mathematical ideas, the reference has to develop hand in hand with the mathematical 

idea. Therefore, two intertwined processes of meaning making – of the mathematical 

idea and of the corresponding sign – have to be combined. In (Krause, in press) I 

describe this reconstruction of the ‘process of iconization’ to survey the gestures and 

signs used by a teacher while introducing the concepts of axial symmetry and point 

symmetry in an all-deaf classroom. The former becomes grounded in the activities of 

folding and mirroring, the latter in the activity of rotating around a point. The 

corresponding signs the teacher conventionalizes for “axial symmetry” and “point 

symmetry” respectively reflect these ideas iconically, showing aspects of 

innerlinguistic iconicity (mirroring) and iconic-physical references to folding and 

rotating. This raises the questions, are there general ways in which certain iconic 

relationships develop in processes of encountering mathematical ideas? Are these 

observable in the mathematics classroom?  

As has also been seen in the description of the results, students do not necessarily use 

the same signs in their fraction talk. Still, there needs to be some degree of 

conventionalization if they want to communicate in the mathematics classroom. How 

does the use of multiple diverse signs for one mathematical idea influence the variety 

of conceptual links available for a student with respect to the signed idea?  

The different types of iconicity presented in the examples are by no means thought of 

as exhaustive categories but rather as providing a first approach to describing the 

features of signed mathematical talk, based on a specific empirical basis. Further 

research needs to be done to widen the scope and uncover other categories so as to 

investigate the nature of mathematical signs and related visual-gestural 

representations as they develop and become established and used in the mathematics 

classroom.  

Making claims about what makes a mathematical sign beneficial or hindering for 

learning mathematics is beyond the scope of this paper. The results presented here 

moreover raise awareness of how a ‘mathematical sign’ can be more than just a mere 

‘name’ for a mathematical idea and how visual aspects of sign language can 

influence the shaping of mathematical thought. On the one hand, this provides an 

important baseline for attempts of developing dictionaries of ‘mathematical signs’, a 
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current discussion in the DGS-community. On the other hand, knowledge about the 

influence of the shaping of mathematical signs provides a starting point for the 

elaboration of teaching methods in the mathematics classroom of deaf and hard-of-

hearing students. In addition, research towards a more comprehensive knowledge 

about how those visual-gestural representations influence learning might also shed 

another perspective on how our body in general and gestures in particular might 

contribute to and shape the learning of mathematics. 
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In an experimental study with ninth graders (N=165), we investigated whether 

presenting reading comprehension prompts would have a positive impact on 

students’ enjoyment and performance in modelling. Contrary to our expectations, the 

enjoyment and modelling performance of students who received reading 

comprehension prompts were similar to those of the students in the control group. 

Further, we found that students’ success in answering the reading comprehension 

questions was positively related to their enjoyment and modelling performance. 

However, after we controlled for intra-mathematical performance, the relation 

between reading comprehension and modelling disappeared, whereas the relation 

between reading comprehension and enjoyment remained significant. Implications 

for future research are discussed. 

INTRODUCTION 
Reading comprehension is an essential precondition for successful modelling, and 

deficits in reading comprehension can be responsible for the occurrence of errors in 

solving modelling problems. Hence, it is important to ask whether presenting reading 

comprehension prompts, which have been found to improve students’ reading 

comprehension in different domains (Levin & Pressley, 1981; Rickards, 1976), can 

also lead to better modelling performance. In the present paper, we examined whether 

reading comprehension prompts would have a positive influence on students’ 

performance and enjoyment in solving modelling problems. Further, we investigated 

whether answering the reading comprehension questions correctly would play a role. 

We therefore analyzed the relation between success in answering the reading 

comprehension questions and modelling performance and the relation between 

reading comprehension and task enjoyment. 

THEORETICAL BACKROUND AND RESEARCH QUESTIONS 
The Role of Reading Comprehension in Mathematical Modelling 
The core of mathematical modelling is the translation of a real-world situation into a 

mathematical model. The translation process requires an adequate understanding, 

structuring, and simplification of the initial real-world situation. This means that 

students need to be able to build an adequate mental model of the situation before it 

can be mathematized. Even the first step of “understanding the situation” in the 
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modelling process can be demanding for students and is often a source of errors 

(Blum, 2015; Leiss, Schukajlow, Blum, Messner, & Pekrun, 2010). This is not only 

because the reading comprehension that is necessary to solve modelling problems is 

cognitively demanding but also because students are used to word problems that can 

be solved without the effort of building an adequate mental model of the real-world 

situation (“Situation model”) through the direct application of the given numbers in a 

straightforward calculation (Verschaffel, Greer, & de Corte, 2000). However, for 

modelling problems, which often include superfluous or missing information, such 

strategies are not sufficient and can lead to incorrect solutions (Krawitz, Schukajlow, 

& Van Dooren, 2016). Because of the fact that the real-world situation is mostly 

presented in written form (Verschaffel et al., 2000), it is obvious that reading 

comprehension is a necessary condition for deriving a situation model from the text, 

and it plays an important role in understanding and further structuring and 

simplifying the written information that is presented about the real-world situation. 

A first indication of a positive relation between reading comprehension and 

performance in solving modelling problems comes from research on word problems. 

The positive relation between the two factors was found to remain significant even 

after technical reading skills were controlled for (Vilenius-Tuohimaa, Aunola, & 

Nurmi, 2008). Leiss et al. (2010) demonstrated that mathematical reading 

comprehension – assessed via the request to select the numerical information that was 

important for solving a given modeling problem – is even more important for 

modelling problems than for word problems. This study showed a significant relation 

between mathematical reading comprehension and performance in solving modelling 

problems (.486) and a smaller but also significant relation with performance on word 

problems (.183). Also, in Leiss et al.'s (2010) study, general reading comprehension 

was measured with a standardized reading test. In contrast to mathematical reading 

comprehension, general reading comprehension was not correlated with performance 

on the word problems or the modelling problems. This suggests that the specificity 

with which reading comprehension is assessed plays an important role. 

Although mathematical reading comprehension was found to be important for 

modelling, we do not know much about how improvements in reading 

comprehension influence modelling processes. Because posing questions that were 

focused on the contents of the text was found to benefit students’ understanding in 

research on reading comprehension (Levin & Pressley, 1981; Rickards, 1976), we 

applied this approach to investigate how the use of reading comprehension prompts 

would affect modelling performance. 

Reading comprehension and enjoyment while solving modelling problems 
Students’ enjoyment as they solve math problems depends on whether they assign 

value to the activity of solving math problems and whether they perceive this activity 

to be sufficiently controllable (Pekrun, 2006). Because the perception of control, 

which is often assessed via self-efficacy, is closely related to performance, higher 

performance should result in greater enjoyment. Empirical evidence for this impact 

has been provided by the findings that students’ mathematical performance in grades 
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3 and 6 has a positive impact on enjoyment in grades 6 and 9, respectively (Hannula, 

Bofah, Tuohilampi, & Metsӓmuuronen, 2014) and that students’ grades at the 

beginning of the school year are positively related to their enjoyment during the 

school year (Ahmed, van der Werf, Kuyper, & Minnaert, 2013). As reading 

comprehension is an important part of modelling activities, and modelling is 

positively related to enjoyment (Schukajlow & Krug, 2014), higher reading 

comprehension should also result in greater enjoyment. 

Further indications for the positive relation between reading comprehension and 

enjoyment in modelling has come from research in other domains. Deep reading 

comprehension was found to be accompanied by enjoyment (Guthrie et al., 2007). As 

students’ enjoyment in solving modelling problems might refer to all modelling 

activities, deeper reading comprehension should result in greater enjoyment in 

modelling. Moreover, improvements in reading comprehension should also positively 

affect students’ enjoyment in modelling. 

However, to the best of our knowledge, we could not find research that had 

investigated the relation between students’ reading comprehension and their 

enjoyment while solving modelling problems. 

Research Questions 
These considerations led us to pose the following research questions: 

1. Does the presentation of reading comprehension prompts have a positive effect 

on modelling performance? Is higher reading comprehension positively related 

to modelling performance? 

2. Does the presentation of reading comprehension prompts lead to greater 

enjoyment in solving modelling problems? Is higher reading comprehension 

positively related to enjoyment? 

We expected that presenting reading comprehension prompts would lead to better 

modelling performance because answering the reading questions might lead to a 

deeper comprehension of the real-world situation presented in the text (Levin & 

Pressley, 1981) and thus to better solutions on the modelling tasks. Further, taking 

into account previous research (Leiss et al., 2010), we expected a positive relation 

between reading comprehension and modelling performance. Regarding the extent to 

which students enjoyed solving the modelling tasks, we expected benefits of 

presenting reading comprehension prompts because previous research showed that 

deep text comprehension was accompanied by enjoyment (Guthrie et al., 2007). 

Moreover, because of the positive impact of prior performance on enjoyment (Ahmed 

et al., 2013; Hannula et al., 2014; Pekrun, 2006), we expected that students who 

answered the reading comprehension prompts correctly would show greater 

enjoyment when solving the modelling tasks. 

 

 



Krawitz, Schukajlow, Chang and Yang 

________________________________________________________________________________________________________________________

3-100    PME 41 – 2017 

METHOD 
Sample and design 
Data were collected within the Taiwanese-German research program (TaiGer) on the 

influence of cultural-societal factors on mathematics education. The sample involved 

65 ninth graders (46 % female, mean age = 15.12 years) in seven middle-track classes 

(German Realschule) at three different schools. Students in each classroom were 

randomly assigned to an experimental (EG) or a control condition (CG). All students 

had to take a 60-minute test that included three descriptions of real-world contexts 

(here, called situation statements) and corresponding modelling problems. The test 

version for the experimental condition also included reading comprehension prompts 

corresponding to the situation statements. 

Measures 
Two of three situation statements and the related modelling tasks were adapted from 

previous studies, and we developed other tasks on our own. In the following, one of 

the three situation statements from the test is presented as an example (see Figure 1). 

 

Figure 1: Situation statement of the real-world context “Fire brigade” 

The test version for the experimental condition included six reading-comprehension 

prompts (two prompts for each situation statement). For the “fire brigade” context, 

one of the two reading comprehension prompts was:  

“What is the longest possible length of the ladder?” 

The answers to the reading comprehension prompts were scored dichotomously as 

right or wrong. The mean of the six answers to the reading comprehension prompts 
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was used to assess reading comprehension performance. Thereby, the internal 

consistency was low, as expected, since the reading comprehension prompts were 

developed to address different aspects of the problem (Cronbach’s α = .518).  

Students in both groups were given six modelling problems (two for each situation 

statement). All of the modelling problems referred to the Pythagorean Theorem. For 

the “fire brigade” context, one of the modelling problems is presented here as an 

example: 

“What is the maximal height from which the Munich fire brigade can rescue 

people with this fire engine? Find one possible solution and briefly explain your 

solution.” 

The solutions to the modelling problems were coded by applying a three-step coding 

scheme (from wrong = 0 to right = 2). The reliability for the six modelling problems 

was acceptable (Cronbach’s α = .719). 

In line with Schukajlow and Krug's (2014) study, students’ enjoyment was 

operationalized in a prospective and task-specific manner. Therefore, the students 

were first asked only to read the modelling problems and to use a 5-point Likert scale 

ranging from 1 (not at all true) to 5 (completely true) to rate whether they would 

enjoy working on the tasks (“I would enjoy solving these problems”). After 

answering this question, the students solved the respective modelling problems. The 

reliability of the scale was satisfactory (Cronbach’s α = .738). 

Moreover, an intra-mathematical performance test on the Pythagorean Theorem was 

administered (10 minutes, Cronbach’s α = .635). The intra-mathematical performance 

test was used to control for students’ intra-mathematical abilities in assessing the 

relation between reading comprehension and modelling performance or enjoyment, 

respectively, and also to verify the comparability of the groups. A sample task is 

presented in Figure 2. 

 

 

Figure 2: Sample task from the intra-mathematical performance test 

We removed three of the 165 students from our analysis because they did not answer 

the enjoyment questions. We included the remaining 162 students (NEG = 81; 

NCG = 81) in our analysis. Missing values on the reading comprehension prompts and 

the modelling problems were coded zero, whereas for enjoyment the mean of the 

remaining items was calculated. 
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RESULTS 
As a preliminary result, we found that the two groups had comparable intra-

mathematical performances (EG: M = .29 (.20); CG: M = .29 (.21); t(160) = -0.048, 

p = .962). This result confirmed the comparability of the groups. 

To investigate whether the presentation of reading comprehension prompts had an 

effect on modelling performance (research question 1), we used an independent t-test 

to compare the modelling performance of the EG (M = .27, SD = .35) with that of the 

CG (M = .24, SD = .33). The results showed that the groups did not differ 

significantly in their modelling performance (t(160) = .609, p = .543). Thus, the 

reading comprehension prompts did not have a significant effect on modelling 

performance. A correlational analysis (Pearson correlation) was used to examine the 

relation between students’ modelling performance and the correctness of their 

answers to the reading comprehension prompts (research question 1). A low 

correlation between reading comprehension and modelling performance was found 

(r(79) = .198, p < .05, one-tailed). However, a much greater proportion of the 

variance in modelling performance was explained by intra-mathematical performance 

(r(160) = .519, p < .01, one-tailed), and the relation between reading comprehension 

and modelling performance disappeared after intra-mathematical performance was 

controlled for (partial correlation: r(79) = .077, p = .248, one-tailed). 

Regarding students’ enjoyment (research question 2), the EG (M = 2.58, SD = .97) 

reported nearly the same enjoyment as the CG (M = 2.59, SD = .94, t(160) = -.123 

p = .902). Thus, the reading comprehension prompts did not have a significant effect 

on students’ enjoyment. However, similar to the relation found in research 

question 1, reading comprehension was positively related to students’ enjoyment 

(r(79) = .220, p < .05, one-tailed). Moreover, this relation remained significant even 

after intra-mathematical performance was controlled for (r(79) = .202, p < .05, one-

tailed). 

SUMMARY AND DISCUSSION 
In the present study, we investigated the effects of reading comprehension prompts 

on students’ modelling performance and enjoyment. Further, we examined the 

relations between students’ success in answering the reading comprehension prompts 

and their modelling performance and enjoyment. Contrary to our expectations, the 

results showed that presenting reading comprehension prompts did not lead to an 

improvement in students’ modelling performance or enjoyment. This indicates that 

the positive impact that was previously found from asking questions about text 

comprehension (Levin & Pressley, 1981; Rickards, 1976) could not be directly 

transferred to modelling performance in the current study. Thus, simply providing 

reading comprehension prompts does not seem to be sufficient for improving 

modelling. It is possible that students answered the prompts superficially so that the 

intended engagement with the text and the expected deeper understanding was not 

fulfilled. This explanation was supported by the results of our correlational analysis, 

which showed that success in answering the reading comprehension questions was 
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positively related to students’ modelling performance and enjoyment, respectively. 

Students who answered the reading comprehension questions successfully showed 

better modelling performance and greater enjoyment of the modelling tasks. Hence, it 

is not the presentation of the reading comprehension prompts on its own but rather 

students’ actual engagement with the questions that seems to be the determining 

factor. The positive relation between reading comprehension and modelling 

performance confirms findings from previous studies, although the correlation we 

found was lower (.198 compared with .486, which was reported by Leiss et al. 

(2010)). This may have occurred because the reading comprehension test in our study 

focused on the construction of a situation model, whereas in Leiss et al.'s (2010) 

study, the students were asked to select the information that was important for 

solving the problem. Thus, in addition to general reading comprehension activities, 

the students in the previous study had to idealize and structure their situation model, 

and therefore were strongly engaged in modelling activities. 

The positive relation between answering the reading comprehension questions 

correctly and students’ modelling performance disappeared after we controlled for 

intra-mathematical performance. Hence, students’ intra-mathematical performance 

seems to be crucial for students’ modelling performance. However, the positive 

relation between students’ reading comprehension and their enjoyment of the tasks 

remained even when we controlled for intra-mathematical performance. Students 

with deeper reading comprehension enjoyed solving the modelling problems more 

than students with surface reading comprehension, even when the two groups of 

students had comparable intra-mathematical abilities. This confirms the previous 

finding that a deeper understanding is accompanied by greater enjoyment (Guthrie et 

al., 2007) and moreover indicates that a deeper comprehension of the real-world 

situation results in a greater enjoyment of modelling. 

Finally, we want to acknowledge the following limitations of our study. The benefits 

of prompting students to answer reading comprehension questions were hypothesized 

because of the findings of prior studies. In the present study, we thus used the reading 

comprehension prompts to enhance students’ understanding of the text as well as to 

measure their reading comprehension. With this design, however, it is not possible to 

examine whether the prompts led to better reading comprehension in the 

experimental group compared with the control group. In addition, the modelling 

problems we used were found to be very demanding for the students in terms of 

constructing a mathematical model, so it is possible that this interfered with the 

examination of the interplay between reading comprehension and modelling because 

even students with a good understanding of the situation potentially had trouble 

solving the modelling problems. 
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In this paper, we present a comparative case study of two students with different 

epistemological frames watching the same real analysis lectures. We show that 

students with different epistemological frames can interpret the same lecture in 

radically different ways. These results illustrate how different students’ 

interpretations of a lecture are not inherently tied to the lecture, but rather depend on 

the student and that student’s perspective on mathematics. Thus, improving student 

learning may depend on more than improving the quality of the lectures, but also 

changing student’s beliefs and orientations about mathematics and learning. 

INTRODUCTION  
In recent years, several researchers have explored the relationship between students’ 

epistemological beliefs and their learning of advanced mathematics. In particular, 

some scholars have claimed that some students struggle to learn mathematics because 

they lack the epistemological beliefs to support this learning (e.g., Alcock & 

Simpson, 2004, 2005; Dawkins & Weber, in press; Lew et al., 2016; Solomon, 2006). 

The primary aim of this paper is to extend this research. In particular, we introduce 

the notion of epistemological frames, a construct from physics education (e.g., 

Redish, 2004), and illustrate how students who hold different epistemological frames 

can interpret the same advanced mathematical lecture in different ways. In particular, 

using Mason’s (2002) account of/account for distinction, we give an account of two 

students’ epistemological frames in an advanced mathematical setting and then use 

these frames to give a fine-grained account for their different interpretations of the 

same utterances by a lecturer.  

THEORETICAL PERSPECTIVE AND RELATED LITERATURE 
Goffman (1997) introduced the notion of frame to describe how individuals develop 

expectations to help them make sense of the complex social spaces that they inhabit. 

For instance, most adults in the Western world have a “restaurant frame” consisting 

of expectations that are activated when they enter a restaurant. In a restaurant, an 

individual likely would expect that the restaurant employees will prepare food for the 

individual, the individual will be obligated to pay for this food, the menu consists of 

the food items that the individual may order, and so on (Schank, 1990).  

Physics educators have introduced the notion of an individual’s epistemic frame (or 

e-frame) as consisting of their epistemological expectations about a pedagogical 
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situation. These consist of an individual’s responses to questions such as “what do I 

expect to learn?”, “how do I build new knowledge?”, and “what counts as knowledge 

or an intellectual contribution in this environment?” (Redish, 2004). If a teacher and 

her students approach the same pedagogical activity with different e-frames, the 

students likely will not learn what their teacher intends, which Redish illustrated with 

a student focused on computation while the professor’s aim was conceptual thinking.  

We are not aware of any mathematics education research that has specifically used 

the specific construct of e-frames to account for students’ behaviors, but many 

scholars have explored the general relationship between students’ epistemological 

beliefs and their concomitant cognition. For instance, students’ e-frames can be 

viewed as a subset of the sociological norms of a classroom (Yackel & Cobb, 1996) 

and conventional e-frames can be viewed as part of the didactical contract (Brousseau 

et al., 2014). Thompson (2013) illustrated how students who have a procedural 

orientation toward mathematics are likely to ignore or misinterpret the conceptual 

explanations that their mathematics teachers provide.  

Logical versus psychological understandings in advanced mathematics  
In this paper, we distinguish between two ways in which a mathematical proposition 

can be known. We say that an individual knows a proposition psychologically if the 

individual has grounds for believing that proposition is true. The individual knows a 

proposition logically if the individual perceives how the statement is a deductive 

consequence of other propositions that are known or assumed to be true. We also 

focus on a type of activity that deVilliers (1990) has coined systematization. In this 

activity, mathematicians transform an existing theory—i.e., a constellation of 

concepts and related statements that are accepted as true—into a unified whole. 

Mathematicians do so by creating a system of axioms and definitions and then 

demonstrating that commonly accepted statements are deductive consequences from 

this system of axioms and definitions. As deVilliers (1990) noted, with 

systematization, “the main objective is clearly not to check whether statements are 

really true” (p. 21, emphasis was the author’s). In our interpretation, the purpose of 

systematization is not to psychologically know, rather, the purpose is to logically 

know statements (or to logically know these statements in a novel way).  

METHODS 
Rationale 
In this paper, we report a comparative case study (Yin, 2013) in which we attempt to 

illustrate how a particular phenomenon unfolds within a given context. Specifically, 

we aim to illustrate how students’ e-frames influence their interpretation of a 

mathematical lecture To accomplish this we interviewed two students as they 

watched real analysis lectures that had previously been posted on youtube. Here, the 

students can act as if they were attending an actual lecture yet the interviewer or 

student could pause the video to discuss their in the moment impressions of what was 

being discussed.  
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Participants 
Two participants, Alice and Brittany (pseudonyms), agreed to participate in this 

study. Both participants were mathematics majors at a large state university in the 

northeast United States. At the time of the study, both students had completed a 

transition-to-proof course, were not currently enrolled in a real analysis course, but 

their university considered them appropriately prepared for one.  

Procedure 
The lectures consisted of Professor Su, a mathematics professor at Harvey Mudd 

College, beginning a real analysis course by constructing the rational numbers and 

then the real numbers from the integers. Prior to conducting the study, the research 

team studied the lecture and parsed the lecture into five to ten minute segments in 

which coherent mathematical content was being presented.  

Each participant met individually with the first author of the paper once a week for 

four video-recorded clinical interviews. Interview 1 was a one-hour interview in 

which the participant discussed their experience in their transition-to-proof course to 

provide the interviewer with a sense of the participants’ understanding of the course 

content (e.g., proofs, rationals) as well as their learning strategies and dispositions.  

Interviews 2, 3, and 4 were two-hour interviews in which the research team attempted 

to explore the e-frames, ways of knowing, and any associated mental schemes that 

each participant used to interpret the mathematical lectures. During each interview, 

the participant watched Professor Su’s lecture and was instructed to stop the video 

whenever something noteworthy occurred. The interviewer would also stop the tape 

to probe the participant’s thinking when the professor had stated something that the 

research team had identified as important or at the end of a segment. The next 

interview began with the interviewer asking that the research team had generated 

after watching the previous video. The next interview then had the student watch 

more of Professor Su’s lecture. 

After all four interviewers were conducted, we transcribed all four interviews and 

clarifying our initial hypotheses of participants’ e-frames from the prior concurrent 

analysis. We then engaged in cyclic retrospective analysis, using Mason’s (2002) 

account of/account for distinction, and had two main purposes: (1) we first aimed to 

analyze broad characteristics of Alice and Brittany’s behavior in our interview to give 

an account of the e-frames that they are using; (2) we then analyzed specific 

interpretations that they gave to Professor Su’s lectures and used their e-frames to 

give an account for these interpretations. To identify e-frames, for each segment of 

the lecture, we summarized Alice and Brittany’s comments. We focused on what 

mathematical contribution Alice and Brittany perceived was being made and, when 

possible, inferred the criteria against which they were evaluating that contribution. 

For each aspect of a participant’s hypothesized epistemological frame, each member 

of the research team individually read the transcripts, identifying all instances that 

either supported or disconfirmed that the participant held this frame. The research 
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team then met to determine how well the proposed epistemological frame was 

supported by the data and either kept the frame, or, as needed revised it and re-coded 

or removed the aspect from the e-frames attributed to the student. The result of this 

retrospective analysis was epistemological frames for Alice and Brittany that were 

grounded in our data. With these hypothesized e-frames, we revisited episodes where 

Alice and Brittany had different interpretations of the meaning of segments of 

Professor Su’s lectures. We chose differences that we felt were representative of the 

data set and engaged in interpretive analysis in which we accounted for Alice and 

Brittany’s different interpretations via our posited e-frames. 

DATA AND RESULTS 
We first note two aspects that both Alice and Brittany appreciated, understood, and 

enjoyed mathematical proof and that both exhibited an internal locus of control.  

Alice’s e-frames 
One needed to define a concept to be able to reason about it 
At the end of Interview 1 and before watching Professor Su’s lectures, Alice was 

asked what the real numbers were. Alice’s response was revealing: “That’s an 

excellent question [long pause]. I don’t know the formal definition of a real number”. 

This was representative of Alice’s tendency to express an epistemic need to see 

concepts defined, something which she displayed throughout her four interviews. For 

instance, in Interview 1, Alice was asked if the fractions 9/15 and 12/20 were “the 

same thing”. She responded, “You need to assign a definition. Same thing does not 

tell me anything. […] So based on how we want to define in the same thing, they 

may or may not be”. The importance that Alice assigned to concepts being defined 

led her to continually seek out definitions when she was watching the lectures.  

When constructing a system, you need to distinguish between what you know 
through experience and what you are allowed to know within the system 
As Professor Su constructed the rational numbers, Alice continually distinguished 

between what she knew based on her psychological understanding of the rationals 

and what was permissible to assume as the rationals were being constructed, her 

logical understanding. At 14 different points, Alice stressed the need to differentiate 

between the two, reminding herself and the interviewer that “we only assumed that 

we have knowledge about the integers” and “we don’t know anything about what 

[rational numbers] do or look like if they are not an integer”. 

What were the lectures all about?  
In the last interview after the conclusion of the lecture, the interviewer asked Alice 

“how do you understand the rationals?”. Her response was as follows:  

[I understand the rationals] on a very simplified level. [The rationals] are just 

fractions of an integer, numerator and denominator, and I’ve been working 

with those types of fractions all my life. […] But on a construction level, we 
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are trying to build them. It’s like I want to already know this but the attitude 

that it is newly explored material which is a little ironic. It’s the attitude that 

you kind of have to have. 

In the first excerpt, Alice distinguishes between what she knows on a “simplified 

level” (what we call knowing in a psychological sense) and at the “construction 

level” (knowing in a logical sense), noting that you are trying to construct what you 

already know simplistically (justifying logically what you know psychologically). In 

the second excerpt, Alice expressed a similar sentiment. You are trying to discover 

logically what you already knew psychologically.  To Alice, the point of these 

lectures was to ignore everything we knew about the rational numbers and construct a 

logical foundation for the content from definitions.  

Brittany’s e-frames 
Brittany believed definitions were used to enhance understanding 
Brittany viewed the role of definitions as to help her understand a concept. This 

belief was exhibited in multiple ways. First, at six points, Brittany said that Professor 

Su was presenting definitions to ensure that the class had a shared understanding of 

what was being discussed. At six other points, Brittany recognized that Professor 

Su’s characterization of the rational numbers as equivalence classes of ordered pairs 

differed from her understanding. In each case, Brittany figured that Professor Su was 

trying to enhance her understanding of the rationals by providing an alternative 

perspective on the topic, saying “you’re seeing it [the rationals] in a new way”. 

Brittany would use what she knew about the rationals to answer the questions 
that Professor Su discussed in class 
Brittany rarely expressed a distinction between what she knew from prior experience, 

her psychological understanding, and what she knew from deduction from 

definitions, her logical understanding. Only twice during our four interviews did 

Brittany question what she was allowed to assume. At 18 other points, she invoked 

facts about the rational numbers that had not been stated in the lectures to answer 

questions about the rational numbers, meaning she consistently relied on her 

psychological understanding of the rational numbers.  

What were these lectures all about?  
Brittany primarily viewed the purpose of these lectures as an extended review of the 

rational numbers. When asked about the main purpose of the lectures, Brittany said, 

“yeah, that [referring to the construction of the rationals], I guess, was important to 

take away.” When asked what it meant to construct the rationals, Brittany responded, 

“I think he was just going over properties of it—order, addition, multiplication, what 

it means putting them all on the number line”. Brittany was generally frustrated 

because she wanted to learn new material and did not find value in what she 

perceived as an extended review, as can be illustrated in the following exchange: 
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Interviewer: So what I'm hearing you say is it’s more interesting to talk about 

things you don't know than things you do know, to answer some questions that 

you might not really know that are interesting? 

Brittany: Yeah, I think that’s like true for everything. 

In general, Brittany wanted to apply her robust understanding of the rational numbers 

to the content that Professor Su was discussing and was annoyed that he did not. 

Differing interpretations of the lecture 
At multiple points, the two students interpreted Professor Su’s lecture in different 

ways. Professor Su defined addition by <(a,b)> + <(c,d)> = <(ad+bc, bd)>. When 

Alice was asked what Professor Su was trying to convey, Alice responded that 

providing this definition was necessary. 

Alice: [Without the definition], we wouldn’t know what addition is. We want 

to keep that mentality that the whole thing that we are doing is we are defining 

that construction, so we need to make these rules these definitions. 

Alice proposed one such criterion for evaluating a definition for addition was 

verifying that the definition implied that <(a, 1)> + <(b, 1)> = <(a+b, 1)>. Recall that 

Alice’s e-frames specified that new concepts required precise definitions and one 

could not use their previous knowledge about the rationals in justifying claims about 

the rationals. Our interpretation is that these e-frames led Alice to see the necessity of 

defining addition precisely. But, while she recognized the importance of justifying 

the adequacy of the definition, she also knew it would “work” based on her prior 

experience with rational numbers: 

Alice: The other half of me, well I know how to get to this. Do I really want to 

seem like lay it all out or do we just accept this definition? Like I know why 

cause it works and that’s just what I’m told […] I feel like a lot of this would 

be considered valuable but I wouldn’t say its significant and new.  

Our interpretation of this excerpt is that although Alice appreciates the need to justify 

that Professor Su’s definition of addition is an adequate one (it “would be considered 

valuable”), a part of her does not want to see this justified because, based on her 

experience, she knows it is going to work. 

When Brittany was asked about the definition, she thought the definition that 

Professor Su provided was adequate, saying, “I liked the definition because it’s true. I 

can totally see how he got it. I thought it was going to be that. It proves I know 

what’s going on”. However, later in the interview, Brittany also complained that she 

saw little value in the lecture in its entirety, saying, “it’s not that useful because I 

already know what addition is, know what rational numbers are, and what fractions 

are”. We had previously discussed that in Brittany’s e-frames, definitions were used 

to enhance understanding and good definitions were comprehensible. Our 

interpretation is that Brittany liked this definition, as it was consistent with her 
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previous experience and she was able to comprehend it. However, because she 

already understood what the rational numbers were, the definition was superfluous. 

After defining rational addition, Dr. Su then argued that the operation was well-

defined. To illustrate what he meant by well-defined, Professor Su presented two 

other candidates for addition, one of which was well-defined but useless (an 

operation whose output is always <(0, 1)>) and another operation that not well-

defined  (<(a, b)> + <(c, d)> = <(a+c, b+d)>). Alice claimed she understood 

Professor Su meant by the term well-defined, saying “we can put in different 

elements of the same equivalence class, and we should still expect the same result”. 

Nonetheless she objected, “when he says this definition is well-defined, the specific 

definition requirements for something being well-defined was not gone over. The 

term well-defined was actually not well-defined”. We suggest that Alice understood 

the concept of well-defined psychologically, but without a formal definition she 

could not understand the concept logically. Due to her e-frame that concepts need to 

be defined precisely, she found Professor Su’s presentation inadequate. 

Brittany viewed the definition favourably.  

Brittany: I like the definition of well-defined. It was really clear and 

understandable because well-defined is a word we use a lot. When he did the 

example with the bad definition of arithmetic and then he used two equivalent 

fractions and got a different answer. He was like ‘so we use two things that are 

supposed to be the same’. So it worked. 

We claim Brittany found Professor Su’s examples adequate to get a psychological 

understanding of what the concept of well-defined meant and so she was satisfied.  

DISCUSSION 
We use the general finding that students’ epistemological frames can enable or 

prevent students from interpreting mathematical lectures in a productive manner to 

make two points. First, previous research on lectures in advanced mathematics has 

generally focused on what the professor says but did not consider student’s 

interpretation of what was said. Our results illustrate how students’ interpretations of 

a lecture are not inherent in the lecture itself but also depend on the student doing the 

interpreting. Consequently, we argue that ignoring students’ interpretations of 

lectures is a significant shortcoming of most studies on lectures in advanced 

mathematics. Second, our results suggest that the key to improving students’ learning 

from lectures does not consist only of improving the quality of the lectures. Rather, it 

is important to attend to their epistemological frames as well, a point that Solomon 

(2006) and Dawkins and Weber (in press) argue has received limited attention in the 

mathematics education literature. While we showed how a student's distinction 

between logical and psychological understandings led students to interpret and 

evaluate the mathematical contributions of a systematization lecture differently, we 

believe this is representative of the more general phenomena that e-frames influence 

how lectures are interpreted and what is learned (e.g., Lew et al., 2016). 
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CONTEXTUAL PRINCIPLES FOR THE DEVELOPMENT OF 
PROBLEM SOLVING MATERIAL  

Ana Kuzle 

University of Potsdam 

Plethora of research on problem solving undergoing since the 1970s identified 

pivotal practices for problem solving instruction. Despite almost five decades of this 

accumulated knowledge teachers lack practical teaching materials to systematically 

foster students’ development of problem solving competence. In the context of this 

reform agenda, problem solving material was developed, implemented, and evaluated 

with respect to problem solving theoretical foundation. As a result contextual 

principles for the development of problem solving material were derived. 

INTRODUCTION 
The (inter-)national educational standards (e.g., KMK, 2003; NCTM, 2000) and 

mathematics educators (e.g., Bruder & Collet, 2011; Liljedahl et al., 2016; 

Schoenfeld, 1985) have strongly endorsed the inclusion of problem solving in school 

mathematics. Empirical studies and large-scale studies, however, portray a different 

picture: Students are often unable to solve problem tasks and many teachers lack 

teaching materials to systematically foster students’ problem solving competence 

(Kuzle, 2016). This is not surprising as problem solving is an extremely complex 

human endeavor involving much more than the simple recall of facts and concepts, or 

the application of well-learned procedures (Schoenfeld, 1985).  

Problem solving competence relates to cognitive (here heuristic), motivational and 

volitional knowledge, skills and actions of an individual required for independent and 

effective dealing with mathematical problems (Bruder & Collet, 2011). Accordingly, 

students should learn approaches (heuristics) for solving mathematical problems and 

how to apply them in a given situation, develop reflectivity on own actions, and 

develop willingness to work hard. Consequently, problem solving instruction should 

include teaching practices aligned with those goals. Concretely, theoretical 

foundation guiding the problem solving instruction should base on problem solving 

teaching approaches, theories of self-regulated learning and self-regulation in 

problem solving, and theories of motivation (Bruder & Collet, 2011).  

In this paper I report on a small part of the SymPa – implementation research project 

(Systematical and material based development of problem solving competence) 

focusing on research-based development of problem solving material for grade 6 

students. The guiding question was: How can research-based material supporting 

findings from mathematics education research on problem solving be developed in 

practice? In this paper I outline the material design basis and its design before 

outlining its implementation and evaluation. As a result of evaluation, I discuss 

contextual principles for the development of problem solving material. 
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PROBLEM SOLVING THEORETICAL FOUNDATION 
There are at least seven practices for problem solving curriculum that researchers 

(e.g., Kilpatrick, 1985; Liljedahl et al., 2016) have claimed to be important for 

helping students grow in their problem solving ability. These are, however, isolated 

practices. In the recent years Bruder and Collet (2001) developed a problem solving 

teaching concept in combination with self-regulation focusing around Lompscher’s 

(1975) idea of “flexibility of thought”, which has shown to improve students’ 

problem solving competence in higher grades of middle school (Bruder & Collet, 

2011). This long-term teaching and learning concept encompasses five phases: 

Intuitive familiarization: In this phase teacher serves as a role model when 

introducing a problem to students. This is achieved through moderation of behaviors 

typical for the problem by engaging in self-questioning pertaining to different phases 

of the problem solving process. In that way the teacher guides the students.  

Explicit strategy acquisition: During this phase the students get explicitly introduced 

to new heuristics on the basis of a reflection from the first phase. Here the 

particularities of the heuristics get discussed and are given names.  

Productive practice phase: During this phase the students practice solving the 

problems using new heuristics. Differentiation should be a guiding principle during 

this phase, so that the students can choose at what cognitive level they want to work 

and adapt the observed problem solving behaviors. 

Context expansion: In this fourth “delayed” phase the students practice the use of 

heuristics independent of a mathematical context aiming at more flexibility use. 

Awareness of own problem solving model: Awareness of own problem solving model 

can be induced by having students reflect and document their problem solving model. 

This teaching model focuses on the two subcomponents of the problem solving 

competence. However, problem solving competence encompasses also the ability to 

work hard (Bruder & Collet, 2011; KMK, 2003), which is related to motivation. 

Student motivation is a major factor for the successful problem solving. Without an 

effort from the learners, there will be no successful learning. Bruder and Collet 

(2011) summarize criteria for motivating tasks as follows: understandable and clear 

problem, age-appropriate choice of context, and visible competence growth. 

DESIGN: IMPLEMENTATION OF THEORY INTO PRACTICE 
The implementation of theory into problem solving material can be seen in Figure 1, 

which I elaborate on in connection to the research base used in the project. 

Heuristic training: Learning approaches (heuristics) for solving mathematical 
problems 
In the phase of intuitive familiarization, students solve a representative problem for 

the heuristic in focus (e.g., 2.2.1 Coin problem) together with the teacher, who serves 

as a role model. Here the imitation of teachers’ behavior takes place through self-

questioning. The problem represents the students’ first encounter with the new 

heuristic. In the phase of explicit strategy acquisition, the new heuristic gets 

explicitly introduced through a short student-centered information text and a sample 

problem. In the phase of productive practice, usually three problems (2.2.2-2.2.4) of 
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different cognitive level are presented. This allows for differentiation, where each 

student can solve as many problems as he or she can. In addition, problems from 

different mathematical content areas are covered, to allow for transfer (context 

expansion phase), which pertains to the fourth phase of the teaching concept. In 

addition, the heuristics are interrelated, so it is important that the students 

comprehend this. The last task (2.2.4) allows students to make this connection by 

comparing the two heuristic techniques and reflect on the solving process. In that 

manner students get to build on their problem solving model. This concept was used 

throughout.  
2.2	Table	
2.2.1	Coin	problem	I	

Probi	wants	to	buy	a	bar	of	chocolate	for	27	cents.	He	has	only	10-,	5-,	and	2-cent	

coins.	In	how	many	different	ways	can	Profi	buy	the	chocolate?	

	

	

	

	

	

What	is	a	table?			

Tables	are	useful	heuristic	auxiliary	tools	when	trying	to	structure,	reduce	and	focus	

the	information	in	problem	tasks.	They	are	well	suited	for	documenting	different	

approaches	or	different	possible	solutions,	and	record	all	possible	cases	of	a	solution	

without	losing	track.		
	

Example	

	

	

	

	

	
	

2.2.2	Usage	of	a	table	
	

	

Write	a	letter	to	Probi,	in	which	you	explain	him	how	you	have	solved	the	

problem	using	the	table.		
	

2.2.3	Choice	for	outfits	
Probi	was	invited	to	Probi’s	garden	party.	He	is	standing	in	front	of	his	wardrobe,	and	

doesn’t	know	what	he	should	wear.		

	

	

	

a) How	many	different	possibilities	does	Profi	have	for	his	outfit?	List	them	all.		
b) How	can	a	table	be	helpful	when	solving	the	above	problem?	

	

2.2.4	Table	instead	of	informative	figure		
	

	

	

Explain	Probi	how	you	solved	the	problem.	Which	approach	do	you	prefer?	Why?

Profi,	I	still	don’t	understand	how	you	approached	the	problem	in	the	

example.		

Wozu	dient	die	Tabelle	da?	

Probi,	here	I	want	to	show	you	that	problems	can	be	solved	with	

different	heuristic	auxiliary	tools.	For	example,	I	solved	here	“The	

Age	problem“	(2.1.3)	using	a	table.		

I	solved	now	the	“Sliding	task“	using	a	table.	Probi,	how	did	I	do	it?		

Hmmm…	

27	Cents	per	chocolate	

Mmmh	chocolate!	How	can	I	combine	my	

coins,	so	that	I	don’t	get	any	change?		

I	wanna	wear	my	favorite	jeans	in	any	case.		

I	am	missing	then	only	a	T-shirt,	a	hat,	and	a	pair	of	

shoes.	

Uiii,	I	have	a	lot	of	possibilities	for	my	outfit.	

 
Figure 1: A sample page from the material on the heuristic auxiliary tool of table.  

With respect to heuristics, focus laid on those heuristic techniques prescribed for 

grade 6 students (KMK, 2003), namely heuristic auxiliary tools (informative figure, 

table), heuristic strategies (working systematically, working forwards, working 
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backwards), and heuristic principles (composing and decomposing). With respect to 

mathematical content, problems covered the content areas of 5
th

 and 6
th

 grade 

mathematics (operations with natural numbers and fractions, combinatorics, 

measurement pertaining to 2- and 3-dimensional figures).  

A particularly high quality of self-regulated problem solving can be achieved, when 

its different aspects with short occasional successive phases (before - objective, 

motivation, while - introspection, willingness to work hard, after - reflection (self-

evaluation, self-reaction)) are promoted in the problem solving process (Landmann & 

Schmitz, 2007; Pólya, 1945/1973).  For that reason, a problem solving question 

catalogue was given in the form of a table at the end of the material (see Figure 2). 

The students formulate questions (e.g., “What technique did I use to solve a similar 

problem in the past?” “What is the problem asking for?”) independently, as the 

teacher moderates the problem solving process in the phase of intuitive 

familiarization. The questionnaire created in this way was intended to serve as a 

reference in order for student to be able to progress independently in further phases of 

the problem solving concept by means of self-regulatory questions. 

 

Figure 2: A problem solving question catalogue. 

Reflectivity on own actions 
Self-regulation plays a special role during a problem solving process. Structured 

reflection on the problem solving process (self-monitoring, reflection) has presented 

a key variable on four different levels in the problem solving material: on the one 

hand, reflection was called for in the individual tasks, for example by comparing the 

heuristics with one another or by expressing preferences (see task 2.2.3b, 2.2.4). On 

the other hand, at the end of each problem solving chapter, there were separate 

reflection questions connected to that chapter (see Figure 3). The aim here was that 

the students develop an overview and thereby reflect their own preferences by 

reviewing the chapter and identifying connections between the heuristics. 

Through these different levels of reflection, students are prompted to reflect on their 

problem solving behavior (for example, concrete planning, application, goals, 

strategies), but also reflect on their learning behaviors, identify conducive and non-

beneficial conditions, and then use them constructively for the further development of 

their problem solving behavior. Through these activities and documentation of these, 

the students are in the last phase of the teaching concept on problem solving 

(awareness of own problem solving model). 
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Figure 3: Reflection questions at the end of first problem solving chapter.  

Willingness to work hard 
The problems focused on contexts that are motivating and appropriate for middle 

school students. Transparent organization of the problem solving material was 

important, as it was intended for students to learn to work independently with it. For 

that reason, an icon/color-concept was used (see Figure 4), which reflected different 

components of the problem solving teaching concept. Through continuous connection 

between the problems and reflection, individual competence growth was aimed at.  

 

Figure 4: Icon/color-concept used in the problem solving material. 

Lastly, one other design element was used to support students willingness to work 

hard, namely two figures who came in a “direct contact” with the students (see Figure 

1). Probi was a figure in a shape of a question mark and offered a problem context. 

Students were supposed to help Probi solve the problem, as he himself was not able 

to do so. Profi represented a supporting figure in a form of an exclamation mark with 

glasses. He gave hints of different nature or prompted different thinking, with the 

goal of supporting and guiding the students’ problem solving process. In other words, 

Profi illustrated a professional problem solver. Only two figures were used in the 

problem solving material in order not to distract the students too much. 

METHODOLOGY 
The project was implemented in one urban school in Germany. Students of 6

th
 grade 

were chosen to participate in the project lasting one school quarter, which is about 16 

lessons (1 lesson = 45 min). Each heuristic was covered within 2 lessons. During the 

lessons students worked with the material and solved the problems according to the 



Kuzle 

________________________________________________________________________________________________________________________

3-118    PME 41 – 2017 

teaching concept as was outlined earlier. The material got implemented 7 times and 

in total 107 students participated in the project, who were randomly chosen. Data 

collection took place after the implementation phase. For that purpose a student 

questionnaire was developed, which entailed 5-level Likert items (1 = strongly 

disagree, 5 = strongly agree) pertaining to material’s design elements (see Table 1). 

The first scale entailed 3 categories of the problem solving teaching concept (intuitive 

familiarization, explicit strategy acquisition, productive practice / context expansion) 

with accompanying subscales. The second scale entailed 3 subscales related to 

different levels of reflection (in-task reflection, chapter reflection, problem solving 

catalogue). The third scale entailed 3 subscales pertaining to elements related to 

students’ willingness to work hard (problem context, material transparency, figures). 

Descriptive statistics was calculated for all quantitative data from the questionnaire.  

Scale Sample item Cronbachs-α 

Heuristic training (20 

items) 

Information text was helpful to understand 

the new heuristic. 

0,81 

Reflectivity on own 

actions (12 items) 

Problem solving question catalogue helped 

me solve the problems independently. 

0,73 

Willingness to work 

hard (8 items) 

Profi motivated me to work harder. 0,71 

Table 1: Scales and reliability of problem solving material’s design elements. 

RESULTS 
Here I address the project’s research question and discuss the extent to which design 

elements supported the development of problem solving competence (see Table 2).  

Heuristic training 

Constant prompts: Material offering constant prompts guarantee gradual 

familiarization. Through this process students develop a need to question their 

actions, which is necessary for long-term problem solving.  

Supporting strategy acquisition: Material offering several accesses to learning new 

heuristics supports learners of different styles. Access through sample problem or text 

information or its combination is important for reaching diverse learners.  

Wide spectrum of problems with differentiated difficulty: In order for students to work 

on different cognitive levels, differentiated problems must be offered. This can be 

achieved by means of choice problems, open problems or problems with an 

increasing cognitive demand level. 

Independent work: Using problem solving catalogue that was created through 

students’ own language selection allowed them a closer relationship to it. In addition, 

it supported students to work independently during different phases of problem 

solving concept, especially in the phase of productive practice. In the phase of 

intuitive familiarization this was limited despite well-chosen representative problem. 
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Scale Subscale Mean (SD) Median 

Heuristic training I. phase  representative problem 

problem solving catalogue 

3.52 (0.63) 

4.40 (0.67) 

3 

5 

Heuristic training II. phase text information 

sample problem 

3.91 (1.01) 

4.31 (0.48) 

4 

4 

Heuristic training III./IV. 

phase 

number of problems 

increasing cognitive level of 

problems 

differentiated problems 

problem solving catalogue 

4.04 (0.45) 

4.20 (0.52) 

 

4.51 (0.50) 

4.68 (0.54) 

4 

4 

 

5 

5 

Reflectivity on own actions  in-task reflection 

chapter reflection 

problem solving catalogue 

4.23 (0.57) 

3.98 (0.27) 

4.35 (0.70) 

4 

4 

4 

Willingness to work hard  problem context 

material transparency 

figures 

4.50 (0.50) 

4.53 (0.80) 

4.73 (0.47) 

5 

5 

5 

Table 2: Mean ranking, standard deviation, and median ranking of students’ 

evaluation of problem solving material’s design elements. 

Reflectivity on own actions 

Implicit reflection: The familiarity with the figures can be used to train reflectivity. 

The students help their “friends” to understand something by explaining their 

approaches. Such behavior is more comprehensible than explaining one’s own action. 

Explicit reflection: Constant prompts for reflection after each task or problem solving 

unit guarantee gradual self-questioning. Through this process students develop a need 

to question their actions, which is necessary for long-term problem solving. Problem 

solving catalogue contributed to reaching this goal. 

Willingness to work hard 

Transparent material structure: A material structure, that reflects teaching concepts 

and approaches for heuristic training, unburdens the teachers on the one hand, and 

ensures the compliance with the teaching concept on the other hand. A transparent 

structure focused around the entrance task, information text and sample problem, and 

differentiating problems supported students’ independent work. Suitable icon/color- 

concepts serve as helpful visualization. 

Use of figures in motivating contexts: For the transport of problems as well as for the 

provision of support, figures for the sixth graders represent a motivational moment. A 

separate world with everyday problems is opened to the students. They want to help 

their “friends” and recognize in the solution of a problem a benefit. The use of figures 

throughout the material allows students to get familiar with the figures and by doing 

so the support of the figures may be given a special value. 
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CONCLUSION 
In this paper I focused on the question of how research-based material supporting 

findings from the research on problem solving can be developed in practice. The 

material was developed through collaboration between the researcher and the school. 

As a result context-related design principles for the development of problem solving 

material for grade 6 students were developed. The results show that students need an 

emotional incentive (here by the figures) in order to want to solve problems and to 

prompt their reflective behaviors. Transparency of the material structure and problem 

solving catalogue support students’ independent work. Material design 

(differentiation, transparent material structure with explicit reflections) is an 

important factor in the development of self-regulatory processes when problem 

solving. Lastly, various design elements (text information, sample problem) allow for 

explicit strategy acquisition and 3 to 4 problems seem optimal for flexibility use. To 

what extent these context-related design principles apply to other contexts, can only 

implementation followed by an evaluation in other schools or other grades show. 
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TWO LANGUAGES – SEPARATE CONCEPTUALIZATIONS? 
MULTILINGUAL STUDENTS’ PROCESSES OF COMBINING 
CONCEPTUALIZATIONS OF THE PART-WHOLE CONCEPT 

Taha Kuzu & Susanne Prediger  

TU Dortmund University, Germany 

 

Different languages are said to provide slightly different conceptualizations for mathe-

matical concepts, e.g. for the part-whole concept of fractions. But how do multilingual 

learners make use of these different conceptualizations in their individual conceptual 

pathways? This case study investigates how fourteen German-Turkish seventh graders 

develop their part-whole concepts in a bilingual design experiment. The qualitative ana-

lysis shows that they use the conceptualizations across both languages and merge them 

into a multi-facetted part-whole concept. These findings provide a topic-specific 

empirical elucidation for the general idea of dynamic and interconnected multilingual 

repertoires.  

Starting points and Theoretical backgrounds  
Language-related conceptualizations and research needs for multilingual learners  

The observation that languages sometimes provide different structures and concep-

tualizations has fueled controversial academic discourses on the so-called linguistic 

relativity hypothesis since von Humboldt and Sapir and Whorf (Lucy 1992; Gumperz 

& Levinson 1996). In mathematics education, the discourse led to empirical compa-

rative studies that investigate if speakers of one language have advantages or dis-

advantages for their (habitual, not potential) mathematical thinking compared to 

speakers of other languages (e.g., Miura et al. 1988; Leung 2016). These comparative 

studies tend to adopt a monolingual perspective, assuming each student to be shaped 

predominantly by one language. However, for multilingual students, the question is 

not whether they are acquainted to one or the other conceptualization, but how the 

interplay of different languages and conceptualizations shapes their learning 

processes on the micro-level. This shift of research focus corresponds to the idea of 

dynamic and interconnected multilingual repertoires in multilingual communication 

rather than separate language proficiencies (Cummins 2000; House & Rehbein 2004; 

Lüdi 2006).  

In this paper, we contribute to this research need by studying a case involving Ger-

man-Turkish seventh graders’ bilingual teaching and learning processes of the part--

whole concept of fractions. The research question is: How do learners in a bilingual 

teaching intervention adopt and combine (possibly language-related) conceptualiza-

tions of the part-whole concept across both languages? After presenting the theore-

tical backgrounds and the methods, the qualitative analysis of 14 students shows that 

they relate several conceptualizations to each other in mostly fruitful ways.  
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Language-related nuances in conceptualizing the part-whole concept of fractions 

In most countries, the part-whole concept of fractions counts as one major meaning 

of fractions, besides rates and ratios (Cramer et al. 1997). However, different 

languages seem to provide different nuances in the conceptualization of the part-

whole concept, connected to the reading and writing order: In Western languages, 

fractions are read and written top down (3 fifths in English or 3 Fünftel in German), 

whereas in most Asian languages fractions are read and written bottom up (“five 

parts, take two” in Mandarin (Bartolini-Bussi et al. 2014), or beşte üç, “five-therein 

three” in Turkish).  

 

Fig. 1: Different conceptualizations in German (G, orange) and Turkish (T, red) 

These language-related differences seem to not be restricted to single words but to 

more general habitual modes of thinking (Lucy 1996) and ways of linguistic action. 

This was confirmed in the case of geometric constellations by Leung’s (2016) 

analysis of how order differences can shape mathematical thinking: Leung 

distinguishes the typical Asian analytic approach (first consider the whole, then the 

pieces) from the Western synthetic approach (first consider the pieces, then the 

whole) and shows far-reaching consequences for students’ problem solving. In the 

case of fractions, the distinction of synthetic and analytic directly corresponds to the 

different conceptualizations in Turkish (with its Asian influences) and German (a 

Western language).  

The German and English expressions “three fifths” also reveal a second nuance 

called quasi-cardinal conceptualization: considering a fifth as a unit and then 

counting the units (Cramer et al. 1997). The Turkish everyday language of German-

Turkish immigrant students also provides a second expression, with another 

grammatical case: the ablative suffix –ten (used for movement away conditions) 

instead of the locative suffix of –te (used for static position conditions). In sum, 

Figure 1 shows four different nuances of conceptualizations for the part-whole 

concept.  
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So far, little is known how multilingual students with their access to both languages 

adopt and combine these different conceptualizations.  

Alternative hypotheses for students’ use of language-related conceptualizations 

The idea of functional distinctions of languages for different purposes that underlies 

much research on code-switching (summarized in Barwell 2009) leads to Hypothesis 

H1: Multilingual students will learn all four conceptualizations and use each in the 

language in which it can be expressed best. The alternative hypothesis is shaped by 

the idea of dynamic and interconnected “multilingual repertoires” rather than separate 

languages (Lüdi 2006). On this basis, Hypothesis H2 is that students adopt the con-

ceptualizations across different languages. 

Methods of the learning-process study 
Research context. The research question was pursued in a learning-process study 

that was part of the larger mixed-methods project MuM-Multi. The larger project 

combined a randomized control trial with German-Turkish seventh graders (n = 139) 

in a teaching intervention on fractions in groups of 2-5 students (Schüler-Meyer et al. 

2017) with several in-depth case studies analyzing videos and transcripts with respect 

to the integration of verbal and nonverbal communication (e.g., Wagner et al. 2016).  

Data corpus of the learning-process study. From the large video data corpus, we 

selected about 230 minutes of video material for the learning-process study presented 

here. We concentrated the analysis on seven tasks (treating the part-whole concept in 

contexts of comparing fractions) done by n = 14 focus students (who were sampled 

according to contrasting backgrounds in their German and Turkish language profi-

ciency and pre-test results on conceptual understanding of fractions). All students 

spoke at least German and Turkish, all were educated in Germany without prior 

formal experience of learning mathematics in Turkish. 

Methods for qualitative data analysis. The transcripts were analyzed with respect 

to students’ conceptual development across languages. For this purpose, an analytic 

tool for fractions was adopted based on Vergnaud’s (1996) theorems- and concepts-

inaction. After sequencing the transcript, the individual theorems- and concepts-in-

actions were extrapolated for each sequence and then related to the language-related 

socially shared conceptualizations from Figure 1, e.g., the individual theorem-in-ac-

tion <For comparing fractions, I compare the size of the pieces> (which is only ade-

quate for unit fractions) is shaped by the individual concept-in-action <fraction as 

size of the pieces> rather than <fraction as part-of-whole>. In the analytic schemes 

(e.g., in Figures 3 and 4), the individual conceptualizations are presented graphically 

to show proximity/variation to the socially shared language-related 

conceptualizations; the colors of the utterances signify the language used by students 

to express them. The color codes allow the relation between language used and 

language-related conceptualizations to be conveyed. Two episodes (chosen to show 

the phenomena in a nutshell) are analyzed in some detail. The result of the complete 

analysis is summarized in a table that reveals more global pattern with respect to 

Hypotheses H1 and H2. 
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EMPIRICAL RESULTS  

The following two episodes show that both hypotheses can apply in the multilingual 

learning processes.  

Episode 1: Ilknur and the 
complementary use of languages 

In Session 2, Task 3, the students are 

asked to draw 1/2, 2/3, 3/4, 4/5, and 5/6 in 

fraction bars (see Figure 2). One of the 

students, Ilknur, explains the task to her 

partner Akasya.  

 

Ilknur explains how to draw the fractions in suitable bars of the bar table (see Figure 

2). She starts using an analytic, localizing perspective where the whole is only 

implicit (Buni boyuyorsun, “this one here”) in #91. When her partner Akasya signals 

misunderstanding, Ilknur changes languages and, with it, perspectives (a strategy 

often found for teachers and students; see Wagner et al. 2016): Within a Turkish 

phrase, Ilknur switches to German, bis zwei Drittel (until two thirds), in #95 to 

express a quasi-cardinal view, counting the pieces of the bar from the left zero until 

the two- thirds point in the bar.  

Fig. 2: Ilknur’s fraction bars for Task 3 
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From the German preposition bis (“until”) we infer 

that using the German expression really corresponds 

to the conceptualization in her thinking at that 

moment. She repeats this conceptualization in #95 

(bis dahin, “until here”) and later in #99 and #101. 

In #96, Akasya connects both conceptualizations by 

combining the German expression zwei Drittel 

(“two thirds”) with the Turkish burda (“here”) and 

das hier alles anmalen (“color all of this here”).  

 

In sum, the analysis of Episode 1 (in Figure 3) shows a typical example of code- 

switching in Ilknur’s complementary use of languages that supports Hypothesis H1. 

Akasya’s reaction shows how combining two nuances of conceptualizations in two 

languages can enhance conceptual understanding, a phenomenon that could be found 

by means of deep linguistic analysis in various cases (Wagner et al. 2016). 

 

Episode 2: Emir and the travel of conceptualizations from Turkish to German  

In another group, the students work on the same Task 3, which asks them to draw 

1/2, 2/3, 3/4, 4/5, and 5/6 in fraction bars (see Figure 2). Emir and Osman 

immediately draw one half, and the teacher asks them in Turkish where they see the 

half. 

 

Fig. 3: Analysis of Episode 1 
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When asked to explain how to draw one half, 

Emir speaks in a mixed utterance, and refers to 

the Turkish –therein expression for the analytical 

conceptualization in Turkish (in #27 and #29). 

Again, we see an initial moment of code- swit-

ching. But then, Osman adopts the typical Ger-

man synthetical conceptualization: He first names 

only the parts (“two pieces” in #47, “three pieces” 

in #48) and completes the whole only implicitly. 

In #53, he addresses the five-element bar as the 

whole explicitly (in Turkish). Emir, in contrast, 

keeps his Turkish reading order even when spea-

king German in #54. When asked to write down 

what they saw, Emir prefers to explain in #67 the 

Turkish –thereof conceptualization in German 

words.  

Hence, Episode 2 gives evidence for both Hypothesis H1 in the beginning and then 

later for Hypothesis H2. Figure 4 summarizes the analysis and shows the travel of 

conceptualizations from Turkish to German.  

Overview on more cases and tasks:  

Travel of conceptualizations through languages 

Both episodes show phenomena that could also be found for the other cases of 

students and tasks. Table 1 shows a summary of the analysis of five of the 14 focus 

students. For each student, the sequence of uttered nuances of conceptualizations for 

the part-whole concept is ordered from up to down and is in arranged in columns 

according to the socially shared conceptualizations to which the utterance refers. The 

transcript lines are shown in different colors for German (G) and Turkish (T) so that 

shifts of nuance become visible by placement along the horizontal axis and switches 

in language by changing colors along the vertical axis.  

This summary illustrates that all students, not only Ilknur and Emir, start activating a 

nuance of conceptualization in one language, but when they use other languages, then 

also refer to the same nuance of conceptualization in the other language and in a 

mixed code. This might be different in other groups. What is made visible here for a 

sequence of four tasks seems to apply even more when considering several sessions 

of the intervention and more nuances of conceptualization than those presented in 

Figure 1.  
 

Fig. 4: Analysis of Episode 2 
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Table 1: Travel of conceptualizations through the languages for five focus students 

DISCUSSION  
Two languages, two separate conceptualizations? By investigating the learning pro-

cesses of 14 seventh graders on their pathways towards the part-whole concept of 

fractions, we found moments, such as those in Episode 1, that conform with 

Hypothesis H1 in that language is used complementarily for different 

conceptualizations. These complementary uses seem to enrich the multi-faceted 

conceptual understanding. However, across all of the video material and transcripts 

of the 14 students, we find more moments that conform to Hypothesis H2: In their 

learning processes, most students activate different conceptualizations, and, in the 

long run, address them across both languages. The case studies presented and the 

larger analysis of the data provide evidence that the travel of conceptualizations 
across languages can enrich the conceptual understanding by merging the different 

conceptualizations into a multi-faceted part-whole concept.  

Although these findings are still shaped by methodological limitations such as the 
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limited number of focus students and the specific tasks, it is already an interesting 

contribution to the idea of dynamic and intertwined multilingual repertoires which 

resonates with Cummins’s (2000) and Lüdi’s (2006) arguments against considering 

multilingual learners as having separate language proficiencies that may work only 

complementarily. The findings correspond to previous findings from the same project 

that it is not the complementarity, but the connection of languages (like the 

connection of different representations) that can substantially enhance students’ 

conceptual development (Wagner et al. 2016, Schüler-Meyer et al. 2017). The 

findings motivate further studies of the connections of languages as specific 

resources of multilingual. 
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EXPLORING GENERATIVE MOMENTS OF INTERACTION 
BETWEEN MATHEMATICS TEACHERS ON SOCIAL MEDIA  

Judy Larsen and Peter Liljedahl 

Simon Fraser University 

Stimulating sustainable mathematics teacher collaboration can be challenging in 

many commonly found professional development contexts. Despite this, an 

unprompted, unfunded, unmandated, and largely unstudied mathematics teacher 

community has emerged where mathematics teachers use social media to 

communicate about the teaching and learning of mathematics. This paper presents an 

analysis of one episode where teachers engage in a prolonged exchange about 

responding to a common mathematical error. Analytical tools drawn from complexity 

theory are used to explain moments of productivity. Results indicate that enough 

redundancy and diversity among members is necessary to make conversations 

productive. Identified sources of redundancy indicate the ‘taken-as-shared’ values of 

this group. 

INTRODUCTION 
Teacher professional development is essential for enhancing the quality of teaching 

and learning in schools (Borko, 2004). As such, various approaches to professional 

development, such as lesson study (Stigler & Hiebert, 1999) and communities of 

practice (Wenger, 1998), have been explored. What is known from this research, is 

that the robustness of a professional development initiative is dependent on ensuring 

both teachers and facilitators adopt a stance of inquiry, activities reflect and are 

driven by teacher needs and interests, and community building and networking are at 

the core (Lerman & Zehetmeier, 2008). This means that ongoing teacher 

collaboration is indispensable. However, due to constraints around time, funding, and 

facilitation, teacher professional development initiatives are commonly limited to 

sparse one-time professional development workshops held in face-to-face 

synchronous settings. Such workshops, due to their temporal nature, are generally 

unconducive to building communities that engender ongoing professional growth.  

In contrast to these centrally organized, and sometimes compulsory, professional 

development initiatives, teachers from across North America are participating in 

decentralized, virtual, and autonomous professional communities. One such 

community involves mathematics teachers who regularly use Twitter and blog pages 

to asynchronously communicate their musings and practices, and have come to be 

identified as the Math Twitter Blogosphere (MTBoS) (Larsen, 2016). This 

unprompted, unfunded, and unevaluated teacher community is a rich phenomenon of 

interest that is largely unstudied and deserving of attention. As such, the study 

presented in this paper is driven by the overarching question – what can participation 

in the MTBoS occasion for mathematics teachers? 
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THEORETICAL FRAMEWORK 
With an aim to understand the autonomous organism of the MTBoS, this study is 

guided by complexity theory (Davis & Simmt, 2003; Davis & Sumara, 2006). 

Complexity theory provides the tools to describe a system of individual agents who 

seem to generate emergent macro-behaviours. Complex systems don’t merely exist, 

they also learn. In complexity theory, learning is expanding the space of the possible 

and is primarily concerned with “ensuring conditions for the emergence of the as-yet 

unimagined” (Davis & Sumara, 2006, p. 135). The goal of complexity theory is not to 

identify interpersonal collectivity, as do other social theories of learning, but rather to 

understand ‘collective-knowing’, where knowledge is not attributed to any one 

member, but sits atop of the social network. 

To this end, Davis and Simmt (2003) identify five interdependent conditions 

necessary for complex emergence, that is, for a complex system to learn. These 

conditions include internal diversity, redundancy, neighbour interactions, 

decentralized control, and organized randomness. Davis and Sumara (2006) further 

theorize these conditions into complementary pairs: specialization (tension between 

diversity and redundancy), trans-level learning (neighbour interactions
1
 enabled 

through decentralized control), and enabling constraints (balancing randomness and 

coherence). These conditions form the basis of the theoretical framework that 

informs the overall study. For purposes of brevity, only the first pair of conditions, 

diversity and redundancy, will be used in the analysis presented in this paper.  

The interplay between diversity and redundancy, also referred to as the ‘zone of 

creative adaptability’, is a key contributor to the ability of a system to adapt to 

changing conditions. Diversity allows for novel actions and possibilities because it 

refers to the diversity among the agents, while redundancy allows for stability and 

coherence because it refers to the common ground among agents. Without 

redundancy, agents may not be able to communicate, but without diversity, agents 

may never have anything to communicate about. Therefore, both are necessary for a 

system to be productive. Further, because of decentralized control, no agent is ever in 

a position of final authority, and knowledge is always tentative. Holding authority 

within a complex system means to have the capacity to use a prevailing discourse, or 

to act within the consensual domain of the system, with the overall aim of 

occasioning ‘collective-knowing’ (Davis & Sumara, 2006).  

As such, this study takes interest in the possibility of ‘collective-knowing’ in the 

MTBoS, and pursues the question of how diversity and redundancy can contribute to 

the complex emergence of ‘collective-knowing’ in the MTBoS.  

METHODS 
Given that the MTBoS began developing as early as 2007 when mathematics teacher 

bloggers began to incorporate the use of Twitter into their blogging practice, and that 

there are over 500 self-identified MTBoS members, many of whom post multiple 

times a day, the sheer mass of data that has accumulated over the past few years 
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makes the phenomenon too large to study within the confines of this paper. As such, 

a very specific subset is chosen as the data set for this paper. This subset contains all 

responses to a given Twitter post made by one particularly well-followed member. 

This conversation reflects the breadth and depth of MTBoS because it includes both 

very brief responses that do not continue conversation, and responses that initiate 

further conversation, both of which are generally encountered within the MTBoS.  

Since Twitter is an ultra-personalized environment where users only see posts made 

by members they subscribe to as ‘followers’, we have taken an ethnographic 

approach as participant observers by immersing ourselves in the MTBoS community 

and subscribing to over 500 mathematics teachers who engage in the MTBoS. 

Without such an immersion, noticing and identifying the data set would be near to 

impossible. In addition, Twitter offers a feature which gives updates on the most 

relevant and most replied-to tweets one has missed. This feature enabled us to 

identify one particular post that generated a significant number of replies from 

mathematics teachers around the world.  This post was made by Michael Fenton, who 

has over 4000 followers, and asked about how users would respond to a student’s 

mathematical error (see fig. 1). 

 

Figure 1: Fenton’s initial math mistake query 

Fenton’s post elicited 254 replies from a total of 87 users, 52 of whom identify 

themselves as mathematics teachers. Replies included explaining the error, 

explaining why the error could have been made, describing a teaching approach to 

help the student come to a deeper understanding about the nature of the error, and 

generating activities to use with students to help mitigate this error. With an effort to 

maintain the reply structure as well as the chronological order of the posts, the data 

was organized into threads. Some of these threads were considered as non-continuing 

replies because they were made by one user and spawned little to no discussion. 

Other threads were considered as continuing because they included conversation 

between at least two users and elicited more than four subsequent replies. Out of the 

total 254 tweets, 84 were identified as non-continuing, 155 were identified as 

continuing, and 15 were irrelevant. The 155 continuing tweets were reconstructed 

into ten threads based on both chronology and logical conversation order.  

With an aim of understanding the substantial variance in engagement in this 

conversation and to illuminate the complex emergence and ‘collective-knowing’ of 
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the MTBoS, we analysed the data using the five conditions for complex emergence, 

as outlined by Davis and Simmt (2003) and further elaborated by Davis and Sumara 

(2006). As mentioned, in this paper, we discuss only the aspects of diversity and 

redundancy within the continuing threads in pursuit of the more specific question – 

what are possible sources of internal diversity and redundancy within a series of self-

organized neighbour interactions in the MTBoS, and what complex emergence do 

they contribute to? 

RESULTS AND ANALYSIS 
In what follows, we exemplify continuing interchanges through the presentation of 

three interchanges along with an analysis of each with respect to diversity and 

redundancy, and draw out key conclusions. 

Example 1: Check your answers 
Kathy Howe (@kdhowe1) responds to Michael Fenton’s (@mjfenton) math mistake 

query by explaining that she would get students to check their answers.  

That's a popular error. I focus on "lots of things multiply to 2, so there are lots of 

answers to that factored equation" … also, "Great! Do those answers check in the 

original equation? Oh, they don't? Why not?"  (@kdhowe1, June 10, 2016, 7:15 

AM) 

Fenton provokes her by responding with a sample student response to her approach.  

"But Mr. Fenton, I checked the first one, and it worked. I figured the second one 

would work too."     (@mjfenton, June 10, 2016, 7:23AM) 

Howe then notes that she explains to her students what counts as a valid response.  

I explain to them early on that "right for the wrong reason" is still not a correct solution. 

       (@kdhowe1, June 10, 2016, 7:54AM) 

Howe’s last comment is ignored, and the conversation does not continue further.  

In example 1, some redundancy is evident in that Howe and Fenton seem to both 

have familiarity with the student error and with the mathematics. They have a ‘taken-

as-shared’ understanding of a general classroom context where a teacher explains to 

students what to do. They both can envision a prototypical student. This enables them 

to communicate. However, there is diversity in approaches. Howe focuses on 

explaining to students that they need to check their answers and that they should 

know what’s ‘right’ and what’s ‘wrong’. Fenton offers a potential student response to 

Howe’s request for checking answers. Fenton is not only challenging the request for 

‘checking answers’, but is also illuminating that he chose to design the mistake so 

that one factor works and the other doesn’t. There is an opportunity to continue 

discussing the design of the task here that is not recognized by Howe. Fenton’s 

responses elsewhere in the data indicate that he is interested in more than a typical 

response. The diversity in intentions seems to halt the conversation, and Howe’s last 

comment is ignored. This diversity can also be attributed to the different levels of 
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membership in the MTBoS between Howe and Fenton. Howe is a newer member, 

with less than 200 followers, while Fenton joined early on and has over 4000 

followers. In this example, there seems to be too much diversity between Fenton and 

Howe in terms of how they approach interpreting each other’s posts, their 

pedagogical approaches, and their membership in the MTBoS to continue 

conversation. 

Example 2: Looking for patterns 
Avery Pickford (@woutgeo) responds to Michael Fenton’s (@mjfenton) query by 

expressing she loves the mistake and offers a string of equations from which she’d 

have students notice patterns. 

<3 this mistake. I'd probably try to subtly slip them (x-2)(x-3)=0, (x-2)(x-3)=9, & (x-

2)(x-3) = 13 & ask them 2 look for patterns. (@woutgeo, June 10, 2016, 4:00PM) 

Pickford further notes that she thinks discussion around this mistake can lead to new 

approaches to finding roots. 

what i love about this mistake is that i can see it naturally leading to a new 

method for finding roots involving factor pairs.  (@woutgeo, June 10, 2016, 4:04PM) 

A few hours later, Max Ray-Riek (@maxmathforum) asks her to predict patterns that 

could be noticed. He also asks if these patterns could “get kids thinking about the 

new method of factoring [she] mentioned” (@maxmathforum, June 10, 2016, 

6:27PM). Pickford responds with a few options.  

idk. maybe 1) not the same answers (hmm) 2) 1st is easy, 2nd is medium (should have 

made it =20, not 9), 3
rd

 is hard    (@woutgeo, June 10, 2016, 6:17PM) 

Ray-Riek agrees with Pickford that this is a useful mistake to entertain and claims 

that “it stretched [his] math brain” (@maxmathforum, June 10, 2016, 6:14PM). The 

conversation does not continue further. 

In example 2, Pickford and Ray-Riek seem to have a fair amount of redundancy in 

their pedagogical approaches, which both involve asking learners to notice patterns 

among several examples chosen specifically to illuminate properties without telling. 

In fact, Pickford invokes a ‘problem string’ structure, known as a practice where 

“students answer related questions, the teacher models student thinking, [and] 

students construct relationships and connections” (Harris, n.d., para 3). This structure 

shows up elsewhere in the data, and is used by members who are relatively active in 

the MTBoS. It is referred to as an instructional routine, and acts as a source of shared 

language. Pickford and Ray-Riek are both familiar with this approach, and both agree 

that using a ‘string’ helps students notice mathematical properties without direct 

instruction. They also both entertain the idea of finding some sort of new 

mathematical approach given this student scenario. Since Ray-Riek offers similar 

examples as Pickford elsewhere in the data, the only source of diversity is in the 

specific examples they provide, and the choices they make in ordering and selecting 

numerical values with aims of illuminating various features. Pickford emphasizes the 
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increasing difficulty in the examples, while Ray-Riek focuses on merely changing the 

product in different ways. In this example, there seems to be too much redundancy 

between Pickford and Ray-Riek to generate any further conversation because they 

both agree on their approach to interpreting each other’s posts, and their pedagogical 

approaches. They are both also relatively well-connected with the MTBoS and its 

overarching values. 

Example 3: Generating strings 
Ray-Riek responded to Fenton’s post earlier that day, responding to himself several 

times in a journal-like fashion. 

(x-3)(x-2) = 2 still only has 2 answers ... there is only one set of factors of 2 that make 

this true. Why those? Hmm ...            (@maxmathforum, June 10, 2016, 7:50AM) 

I think the direction I'd go is to look at solving a bunch of quadratics that = 2. They all 

have different factors. Compare to = 0           (@maxmathforum, June 10, 2016, 7:56AM) 

I think I'd look at (x+8)(x+4) = 12, (x-1)(x-2) = 12, and (x-6)(x-10) = 12. Analytically we 

could come up w/ different sol'ns … (@maxmathforum, June 10, 2016, 8:22AM) 

 

About five days later, Michael Pershan (@mpershan) replies to Ray Riek’s musings 

with examples of ‘equation strings’.  

How does the approach this equation string aims at compare to what you'd be aiming for? 

     (@mpershan, June 15, 2016, 5:19PM) 

 

Ray Riek responds by saying that he’s “not thinking of it as eqn string . . . [but that] 

each has solns at different factors of 2” (@maxmathforum, June 15, 2016, 7:30PM). 

However, he then notes that he can see the ‘string’ Pershan is referring to.  

oh now I see the string you are talking about. Is the idea here that 1) is easy and 2) is not 

b/c hard to get 7*5?     (@maxmathforum, June 15, 2016, 7:30PM)  

oh! Now I see the whole string. X=7, A=0, A=10, Y=3 or 10 ... No, I don't think your 

string gets at the same idea I had.  (@maxmathforum, June 15, 2016, 7:33PM) 

Pershan replies that he thought it was referring to the same idea because he’s 

emphasizing multiplication in his example. However, Ray-Riek notes that although 

it’s related, he wants “three problems that all = 12 but in different ways” 

(@maxmathforum, June 15, 2016, 3:35AM). They continue discussing their 

intentions, and both offer additional examples. Ray-Riek explains he expects that 

students ignore negative and non-obvious solutions, and wants to emphasize this 

through different ways of factoring. Ray-Riek then offers an alternative option that 

may further elicit the type of student noticing they both expect.  
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@mpershan @mjfenton I wonder about a #wodb with    

 What might kids notice? (@maxmathforum, June 15, 2016, 5:55AM) 

Ray-Riek’s ‘which one doesn’t belong’ example attracts another member to engage 

in thinking through the options and entertaining what students may notice. This 

conversation includes a total of 29 tweets, and prompts Pershan to post further about 

it in other threads. 

In example 3, similarly as in example 2, both Ray-Riek and Pershan are active 

members of the MTBoS, and exhibit redundancy around the way they interpret each 

other’s posts through inquiry and their general pedagogical approach of teaching 

without telling by asking students to observe patterns within a series of examples, 

guiding them towards mathematical generalization. They are both familiar with the 

instructional routines of ‘problem strings’ and ‘which one doesn’t belong’, both 

common approaches to teaching discussed throughout the MTBoS, and they are able 

to communicate their intentions through examples of these. However, there is a slight 

amount of diversity in their approaches to and representations of the mathematics and 

to the instructional routines. They seem to use the redundancy to explore sources of 

diversity in a productive manner that leads them to generating several examples for 

use in teaching mathematics. 

Overall, members who are connected to the MTBoS exhibit patterns of interaction 

such as thinking like a learner, generating examples, invoking shared language, and 

using instructional routines. They also indicate ‘taken-as-shared’ pedagogical 

approaches of teaching without telling that involve a teacher helping students arrive 

at a generalization through carefully chosen examples that will be discussed, which 

follows the ‘notice and wonder’ approach commonly exhibited in MTBoS 

discussions. These are all sources of redundancy in the MTBoS that allow users to 

communicate meaningfully. When this redundancy is not available, as in example 1, 

the conversation cannot become generative. When this redundancy is not paired with 

enough diversity, as in example 2, the conversation ends with agreeance. However, 

when this redundancy is paired with enough diversity, which is exposed through 

communication, there is possibility for the system to generate new as-yet unimagined 

tasks and approaches. 

CONCLUSIONS 
Engaging in the MTBoS with authority means to act within the consensual domain, 

which is to share sources of redundancy unique to the MTBoS. This investigation 

shows that the consensual domain of the MTBoS includes patterns of interaction such 

as thinking like a learner, generating examples, invoking shared language, and using 

instructional routines, as well as being guided by pedagogical values related to 

teaching without telling and guiding students towards mathematical generalization. 

Without these sources of redundancy, it is difficult to communicate productively. 
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However, it is also essential for there to be diversity around approaches and 

representations of mathematical ideas to allow for emergence of novel ideas for 

teaching and learning mathematics. Those with authority over the consensual domain 

of the MTBoS have greater capacity to push new meanings, and in turn, contribute to 

the complex emergence of the MTBoS.  

This study indicates the potential for complex emergence in the MTBoS, and points 

to sources of redundancy and diversity that can contribute to the MTBoS as an 

autonomous asynchronous complex system that occasions space for generating an 

ideational network of mathematical tasks, pedagogy, and beliefs about mathematical 

teaching and learning. Further study should explore other cases where productivity 

occurs within the MTBoS to identify conditions that contribute to this productivity. 

The products of the MTBoS have great potential implications for teaching that need 

to be explored given that they are quickly unfolding and are developing at every 

moment. 

Note 
1
Neighbour interactions refer to ideational interaction rather than social interaction. 

However, a physical component such as oral or written expression through various 

representations is often used for ideas to interact. 
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This study investigates patterns exhibited by preservice teachers (PSTs) during 

feedback practice in responding to student work in a procedure-based mathematics 

assessment. First, we developed an analytical framework for understanding PSTs’ 

written feedback. Second, we looked into how a learning module on a multimedia 

platform influenced PSTs’ feedback, and identified the ways PSTs improved their 

written feedback through revision. Along with an operational list of emergent 

patterns in PSTs’ written feedback, our findings suggest that about two-thirds of the 

PSTs showed improvement in providing written feedback after they completed the 

feedback module. The implications for developing PSTs’ written feedback skills 

through an emerging teacher education curriculum are discussed. 

INTRODUCTION 
Assessment is the process of gathering and interpreting evidence related to student 

learning with the goal of improving instruction. Therefore, a teacher’s assessment 

practice serves as a crucial link among learning outcomes, teaching strategies, 

learning activities, and ultimately promoting a productive cycle of teaching and 

learning in the classroom (Black & Wiliam, 1998; Hattie & Timperley, 2007). In 

mathematics education, research has shown that effective formative assessment 

strategies enable teachers to shift their aims from merely grading and fixing students' 

work to increasing the understanding of student thinking and moving students 

forward in their learning (Allsopp et al., 2008; Collins, 2012). In particular, 

descriptive and detailed feedback from the teacher can guide students to take active 

steps for improving their work (Bee & Kaur, 2014). 

Well-designed assessments, among other key factors, include non-evaluative, 

specific, timely, and personalized feedback related to the learning goals (Gearhart & 

Saxe, 2004; Jenkins, 2010). To that end, mathematics teacher educators are beginning 

to refocus their attention on training PSTs to develop skills in providing personal, 

relevant, and informative written feedback for students rather than relying only on the 

numbers, marks, or letter grades of summative assessments. Given the evidence in 

prior research that mathematics teachers have several weaknesses with respect to 

written feedback (Bee & Kaur, 2014), further research is necessary to investigate how 

teacher education programs can help improve this skill. In this study, we investigated 

patterns exhibited by PSTs for crafting written (i.e., detailed and descriptive) 

feedback on students’ mathematical solutions in procedure-based assessment items. 
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First, we developed an analytical framework for understanding PSTs’ written 

feedback comments. Second, we looked into how an online module designed to foster 

emerging feedback skills influenced PSTs’ feedback; the module utilized the 

LessonSketch platform (available at www.lessonsketch.org). Third, we identified the 

ways in which PSTs improved their written feedback through revision.  

LITERATURE REVIEW 
Effective Feedback Practice 
Studies regarding the impact of feedback indicate that feedback has the potential to 

significantly impact students’ learning achievement (Callingham, 2008; Volante, 

2010). As such, the teacher should provide feedback in a strategic way so as to create 

opportunities for students to use this feedback. That is, the feedback students receive 

should tell them what they are doing well, where they need to improve, and what they 

should do next. Research has shown that students’ learning improves when they get 

informative and constructive feedback on their work; feedback also must clearly 

relate to the learning goals (Crisp, 2007; Gregory & Kuzmich, 2004). In addition, 

feedback is more effective when it presents achievable goals with a high degree of 

sensitivity to self-esteem (McFarlin & Blascovich, 1981). By contrast, the impact of 

feedback on learning achievement is low when feedback is focused on praise, 

rewards, or punishment (Hattie & Timperley, 2007).  

Written Descriptive Feedback 
Written descriptive feedback has been the primary method of teacher feedback for 

writing tasks in language arts education (Goldstein, 2006), especially in the form of 

evaluative comments along with a letter grade. The main factors influencing the 

effect of such feedback on students’ writing activities are the nature of feedback, 

which should be clear and specific with opportunity for revision based on the 

feedback (Hyland, 1998).  

Because students’ mathematical work largely exist as written work, the same 

principle of the effectiveness of informative written feedback to improve student 

learning applies in mathematics education. To date, mathematics education research 

has focused on teachers’ approaches to student errors, including the value of 

addressing student errors with written feedback on test papers and homework. That 

is, researchers have weighed in on the efficacy of written feedback specific to student 

errors, rather than on the cognitive and affective issue of how different types of 

written feedback impact student learning. Although the efficacy of written feedback 

is still under scrutiny (Sadler, 2010), the consensus is that student learning can 

improve through feedback based on analysis of student work as well as clarity of 

learning goals, and explication of criteria for success (Shepard, 2006). In keeping 

with this trend, more research on the ways preservice teachers conceptualize written 

feedback and develop feedback skills through the teacher education curriculum is 

warranted.  

http://www.lessonsketch.org/
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METHODS  
Participants in this study were 42 elementary PSTs and 40 secondary PSTs at two 

university-based teacher education sites in the U.S. Participants were in their junior 

or senior year of teacher preparation programs. Each PST was enrolled in an 

elementary or a secondary mathematics methods course. 

 A learning module with a series of five tasks was implemented in two sections each 

of the elementary and secondary mathematics methods courses; the module was 

administered towards the end of the fall semester of 2015 and again in the spring 

semester of 2016. In the first task of the module PSTs read graphic frames in a comic 

format which scripted a conversation between a methods professor and a preservice 

teacher about feedback (see Figure 1). Then the PSTs described important attributes 

of constructive written feedback on students’ mathematical work. In the second task 

the PSTs reviewed the strengths and weaknesses evident in a sample student solution 

to the question: What is the slope of the line defined by the equation 8x + 2y = 5? 

The PSTs then composed 

written feedback for the student. 

In the third task, the PSTs 

compared their feedback with 

the feedback of other PSTs on 

the same work (see Figure 2). In 

the fourth task, the PSTs 

reviewed another scripted 

dialogue (see Figure 3) designed 

to help them reflect on 

meaningful feedback comments. 

In the last task, the PSTs revised 

their initial feedback.  

 

                                                         Figure 1: Scripted conversation about feedback 

To analyze the changes between PSTs’ initial and revised feedback, we used the 

inductive content analysis approach (Grbich, 2007). Initially we organized raw data 

into a spreadsheet, read the responses, and created codes. Drawing on the literature 

about effective feedback practices as well as levels of feedback skills, we developed 

an analytical framework. Due to the technology-based context of the feedback tasks 

in our study, we revised the initial analytical framework to reflect these two 

conditions: (a) the setting is technology-based (i.e., PSTs should provide written 

feedback on the LessonSketch platform) and (b) PSTs provide a sample of feedback 

in response to student solutions for a procedure-based mathematics assessment item. 

Then we analyzed PSTs’ feedback with the revised framework (see Table 1). Finally 

we interpreted the data using both quantitative and qualitative methods. 

Figure 2: Scripted conversation about feedback 
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    Figure 2: Sample feedback         Figure 3: Debriefing feedback task with PSTs 
 

Level Descriptions 

1A Feedback is praise (e.g., nice work; great job) or vague comments (e.g., 

better than last time) unrelated to mathematics content. 

1B Feedback comprises general comments on test-taking skills (e.g., double 

check your work; read instructions carefully). 

2 Feedback provides correct answers or identifies student errors (e.g., you 

added the denominator incorrectly; you did not simplify). 

3 Feedback is given to directly remediate student errors (e.g., be sure to use 

this formula; add the exponents and see what happens). 

4 Feedback provides an analysis of student strengths and areas of 

improvement. 

5 In addition to Level 4 feedback, feedback provides opportunities (e.g., 

challenges) for new learning and encourages students to reflect on their 

thinking. 

N/A Feedback is not provided. 

Table 1: Revised descriptions of PSTs’ written feedback 

 
RESULTS 
For elementary PSTs, before going through the feedback module on LessonSketch, 

the most common level was level 2 (36%), followed by level 3 (30%) and level 4 

(17%). However, after completing the module, level 5 had the highest frequency 

(33%), again followed by level 3 (26%) and 4 (17%) (Table 2). For secondary PSTs, 

before the module, the majority of feedback was at level 3 (47%) followed by level 2 

(24%). However, after the module, most of these PSTs demonstrated either level 3 or 

level 4 (see Table 2). 
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Level 
Elementary PSTs Secondary PSTs 

Before After Before After 

1A 3 (8%) 0  2 (6%) 0 

1B 2 (5%) 2 (5%) 6 (18%) 3 (9%) 

2 15 (36%) 7 (17%) 8 (24%) 6 (18%) 

3 13 (30%) 11 (26%) 16 (47%) 16 (47%) 

4 7 (17%) 7 (17%) 2 (6%) 8 (24%) 

5 1 (2%) 14 (33%) 0 1 (3%) 

No response 1 (2%) 1 (2%) 0 0 

Table 2: Distribution of PST feedback levels before and after use of the module 

 

Overall, more than half of the PSTs (58% of elementary PSTs and 59% of secondary 

PSTs) demonstrated improvement in providing feedback after going through the 

module, while 40% of PSTs remained at their pre-module levels (see Table 3). These 

results showed that the module was helpful for PSTs to develop feedback skills -- 

most PSTs learned to go beyond praising and fixing student errors in order to 

investigate student thinking.  

 

Levels Number of elementary PSTs Number of secondary PSTs 

Increased 24 (58%) 20 (59%) 

Did not change 16 (38%) 14 (41%) 

Decreased 1 (2%) 0 

N/A 1 (2%) 0 

Table 3: Change in PST feedback skills 

 
DISCUSSION  
The module implemented in this study offers examples of scenario-based feedback 

tasks in methods courses. The design of the tasks is such that PSTs are situated in the 

classroom interacting with students on their mathematical work. Our findings suggest 

that both elementary and secondary PSTs respond positively to feedback tasks in 

which they are asked to craft teacher comments and review comments of peers and 

have the opportunity to revise their comments. We also found several distinct 

patterns of feedback between elementary PSTs and secondary PSTs. Initially most 

PSTs had level 2 or 3 feedback skills, but a number of elementary PSTs were able to 

demonstrate level 5 after they completed the module -- whereas the secondary PSTs’ 

progress was more incremental. This suggests that there may exist some barrier for 

secondary PSTs to frame their written feedback as a way to promote metacognition, 

or new learning, beyond the scope of the mathematical concept confined within the 

mathematics item at hand. Our hunch is that secondary PSTs may perceive feedback 

as an opportunity to engage in immediate content learning (i.e., levels 3 and 4) while 

overlooking the role of feedback as a way to motivate students to revisit the work and 

think on their own (i.e., level 5 and beyond).        
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While this study generally supports a case for a curriculum in teacher education that 

nurtures PSTs’ emerging feedback skills, what is particularly important is the 

development of curricular materials with the following ideas in mind. First, the 

curriculum should provide curricular materials that encourage PSTs to develop an 

interest in the teaching skills necessary to provide feedback. Second, the curriculum 

should focus on opportunities for teacher educators and PSTs to co-construct various 

feedback comments with clear reference points to students’ solutions; this practice 

should also be accompanied by a discussion of how these comments communicate 

awareness of students’ strengths and weaknesses and how this awareness prompts 

students’ further thinking and reasoning. Third, the focus of the curriculum should be 

on how high quality feedback helps students to identify the next steps in their own 

learning.   

Traditionally, mathematics teacher educators have relied on a lecture-seminar format, 

which typically involves assigning research articles followed by either round-table 

discussion or having students write reflection papers. This may have been the 

dominant approach to teaching feedback strategies or any instructional practice in 

methods courses. Given the current disconnect between learners’ need for effective 

feedback and the base knowledge of how to provide it, as well as the level of interest 

in developing effective feedback skills among PSTs, we believe they need 

meaningful and multiple experiences to practice crafting teacher comments on their 

own, which can then serve as the basis for discussion in the methods course. Such 

discussion can support a model for incorporating theoretical knowledge into the re-

construction of comments, thereby establishing a pattern of improving feedback skills 

through revision. Thus we suggest a shift in the structure of teacher education toward 

instructional patterns that provide PSTs with opportunities to compose teacher 

comments, engage in the analysis of various teacher comments, and reflect on their 

own comments through revisions. As for the specific module in our study, we caution 

that some PSTs may not be receptive to the comic format of the graphic frames. 

However, LessonSketch as an online multimedia platform can be useful for creating 

optimal learning conditions. For example, we found such negative reactions were 

ameliorated when students observed the graphics privately rather than in a whole 

group setting, which was where objections to viewing comics like graphic frames 

arose.        

IMPLICATIONS 
This research contributes to the current literature on written feedback practices in 

mathematics education. In particular, this study has implications for designers of 

mathematics education courses for PSTs, as well as for researchers pursuing deeper 

understanding of PSTs’ written feedback skills. For example, we found that a 

majority of PSTs easily advanced past levels 1 and 2 when they realized their 

feedback was too general and consisted mostly of praise. This rapid advancement 

suggests that the teacher education curriculum should focus on helping PSTs achieve 

higher-level feedback skills. It should also focus on helping PSTs compose 

appropriate feedback comments for various contexts (i.e., descriptive vs. evaluative 
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vs. affective) and revise their strategies depending on how students are likely to 

respond.  

Our future studies will investigate whether and how procedure-based items could 

restrict opportunities to provide quality feedback, and whether and how open-ended 

items can better provide a meaningful space for PSTs to develop written feedback 

skills. Related, we plan to refine our research to identify the type of learning in the 

math methods course that directly contributes to PSTs’ development of feedback 

skills by enabling them to (1) create teacher messages that motivate students to think 

more deeply about mathematics and (2) to go beyond the correctness of a solution. 

Ultimately, we are interested in research on creating the type of learning 

opportunities in teacher education through which PSTs can develop the skills 

necessary to examine student work and plan for the next steps in meeting their needs. 

These learning opportunities will enable teachers to develop their written feedback 

skills as an integral part of effective and affective teacher language that motivates 

students to refine and extend their thinking and reasoning.  
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TOOL-BASED MATHEMATICS LESSON: A CASE STUDY IN 
TRANSITIONS OF ACTIVITIES IN DIDACTICAL CYCLE 

Huey LEI and Allen LEUNG 

Hong Kong Baptist University 

 

Tools are made by human aiming at not only solving technical problem but also 

developing high-order thinking. Teaching and learning with tools create student-

centred learning environment fostering rich interactions between students and 

teachers. This paper presents a case study investigating the implementation of a tool-

based lesson in secondary level. The study explored the interactions among students, 

teacher and tools used, which mainly focused on the transitions of activities 

conducted in the lesson. Didactical Cycle is the main frame for analyzing the data 

collected via document review, interviews, classroom observation and worksheets 

completed by students. Reversible transitions in the didactical cycle frame between 

various tool-based activities were found in the case. 

INTRODUCTION 
In traditional mathematics classrooms, teachers implement mathematics lessons in 

deductive and authoritative teaching approaches while mathematics knowledge is 

developed in de-contextualized approach that usually standardizing as introduction 

followed by application. These approaches, including teachers’ talk, often offer 

students few opportunities to construct mathematics knowledge on their own. 

One role of tools played in mathematics classroom may pedagogically flip from 

teacher-centred to student-centred learning approach. Mathematics task designed by 

teachers which involves the use of tool is known to be tool-based task. Leung and 

Bolite-Frant (2015) defined tool-based task as doing or acting on thing in order for 

students to activate an interactive tool-based environment where teacher, students, 

and resources mutually enrich each other in producing mathematical experiences. 

Tool-based mathematics lesson is therefore viewed as a lesson including tool-based 

task that conceives these interactive activities. Furthermore, different from traditional 

teacher-centred approach, social interaction in the acquisition of knowledge is 

encountered in the interactive activities involved in tool-based task. To conceive 

interactive and collaborative mathematics experiences, the use of tools mediates the 

connection between construction of mathematics knowledge of students and actions 

taken by them. Thus, tools can be viewed as mediation between the generated 

production of signs while the tool-based task is being accomplished and the sign 

related to mathematics knowledge (Bartolini Bussi & Mariotti, 2008). The idea of 

signs mentioned by Bartolini Bussi and Mariotti (2008) was inspired by Vygotsky 

that involving words, drawings, gestures and the like accompanying actions produced 

in learning and teaching environment. 
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In tool-based lesson design and implementation, Bartolini Bussi and Mariotti (2008 

and 2012) developed an iteration called didactical cycle based on semiotic mediation, 

which consists of three phases of activities conducing to the construction of 

mathematics in the lesson. The ultimate goal of the didactical cycle is to foster the 

development of shared meanings recognizable and acceptable by teachers and 

students through the active activities performed by the students in the mathematics 

classroom (Mariotti, 2012). Research studies on the didactical cycle contextualized in 

mathematics and science lessons focusing on the individual phases of activities were 

conducted in the past (e.g. Bartolini Bussi & Mariotti, 2008; Corni, Giliberti & 

Mariani, 2011; Mariotti, 2012). However, previous studies mainly focused on 

individual phase only. This research study aims at exploring and analysing the 

transitions of the activity phases captioned in the didactical cycle in Hong Kong 

classroom context in order to compensate the analysis of the didactical cycle and 

contribute to a research gap where the transitions of the activity phases are essentially 

considered. 

This paper presents a study aims at exploring pedagogical interaction in a school 

mathematics classroom with a teacher designing mathematical task making use of 

tools in Hong Kong. We explicitly investigate the tool-based mathematics lesson with 

the didactical cycle, specifically analyze the transitions of activity phases which 

aspires to develop a contextualized model of tool-based pedagogical interaction.  

THEORETICAL FRAMEWORKS 
In tool-based task design and implementation, mathematical knowledge can be 

constructed via a semiotic process where two types of sign production are generated: 

1) personal written or verbal signs and 2) mathematics signs (i.e. formal mathematics 

knowledge) (Bartolini Bussi & Mariotti, 2008). Bartolini Bussi and Mariotti 

introduced semiotic mediation to describe the interrelations among tool, mathematics, 

teacher and students through sign productions. Tool as a mediator cognitively 

simulates students with the features of it through interactions between students and 

the tool guided by the teacher. The sign generated from tool manipulation creates 

twofold cognitive functions. One function is for the students to accomplish the 

mathematics task. Another function is the sign production related to the process of 

interpretation of the exchanged information and the subsequent socio-semiotic 

process for the communication between collaborating parties like groupmates and 

teacher. However, this developmental process is not automatically activated without 

teacher’s intervention (Bartolini Bussi & Mariotti, 2008). Therefore, from this 

viewpoint, the role of tool is a social-semiotic mediation to produce signs that 

stimulate teaching and learning in the mathematics classroom. Using tools in the 

classroom enhances students’ cognitive ability to engage in the experience of 

generating personal mathematics signs from the manipulations of tools on the one 

hand, while on the other hand, the generated of signs helps students to conceive 

mathematical ideas from it with teachers’ guidance. This dual tool-based sign 



Lei and Leung 

________________________________________________________________________________________________________________________ 

 PME 41 – 2017    3-147 

functions intertwine in the mathematical knowledge acquisition process. The 

didactical cycle consists of an iterative cycle of three 

phases (see Figure 1): 

Phase 1: Activities with tools/artifacts: It is generally 

a starting point of the didactical cycle where tools 

become indispensable elements for students to act on 

the task. These actions or activities are usually 

formed in small groups in social settings that promote 

social exchange accompanied by words, sketches and 

gestures done by students. 

Phase 2: Individual production of signs: It engages 

students to undertake different semiotic activities 

individually concerning mainly the written signs for 

the next step. The production of signs does not 

require students to produce formal mathematical 

language (mathematics signs), but the signs rooted in the tool and the given task, 

which creates different artifact signs (e.g. tool-related production) for collective 

activities and discussions followed. 

Phase 3: Collective production of signs: It includes Mathematical Discussion 

(Bartonlini Bussi, 1998) which is the core of semiotic process orchestrated by 

teachers. The individual signs collectively produced by the students in the previous 

step are shared and discussed for analyzing, commenting and elaborating. The 

discussion explicitly directs students to transform the personal signs to mathematical 

signs in cognitive dialectics process with the guidance of teacher. Therefore, the main 

purpose of the teacher is to collect personal signs and convert them to mathematical 

signs. Semiotic mediation advocates another view of constructing mathematics 

knowledge by producing polysemy signs representing the tool and mathematics. 

“This cycle was not rigidly fixed and was open to changes, according to the particular 

conditions of activity” (Bartolini Bussi & Mariotti, 2008, p.763). According to 

Bartolini Bussi and Mariotti, the didactical cycle is a theoretical framework to guide a 

tool-based mathematics lesson; in addition, it allows diverse pedagogies to occur. 

This study will examine the issue in a situational context in a case that originally 

proposed to investigate the transitions of the phases in the didactical cycle. 

RESEARCH METHOD 
This research study is a naturalistic inquiry research on the formation of pedagogical 

practices. It is also a part of a tool-based research project with over twenty 

participating mathematics teachers from primary and secondary schools in Hong 

Kong. The participants have conducted tool-based lessons which were video-

recorded. Each teacher implemented the designed tool-based lesson(s) with pre-

lesson clinical interviews and post-lesson interviews which aimed at probing 

teachers’ perceptions of tool-based task design and the performance in the lessons 

Figure 1: The Didactical Cycle. 

Adapted from (Mariotti, 2012)  
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respectively. For the mathematics content, diverse types of topics and grades from 

primary to secondary levels were performed. 

As a part of the research project, we present here a single case of a secondary 

mathematics teacher teaching an elite class of secondary three students (Grade 9) and 

the topic in estimation of the volume of a concrete object (a frustum-liked container). 

Primary data sources were taken before, during and after the lesson. Audio record of 

the pre-lesson and post-lesson interviews, video record of the implemented lesson 

along with the photocopies of the worksheets of the students was gathered as the data 

of the case. In addition, the interviews and implemented lesson were transcribed for 

analysis. 

Research Lesson 
The tool-based lesson was designed and conducted by a experienced secondary 

mathematics teacher. The teacher discussed the design of the task with researchers in 

the project and modified it for implementation. The mathematics knowledge in the 

lesson emphasized by the teacher in the interviews was the estimated process with 

tools and the accuracy of estimation. In the lesson, he allowed the students to select 

and bring any tools themselves. The flow of the lesson was mainly designed and 

implemented in four parts, 1) introduction; 2) carrying out the estimation process; 3) 

group presentations; and 4) checking the volume. 

Data Analysis 
In order to focus on student-tool, student-student and student-teacher interactions, a 

coding scheme was devised to characterize the phases of the didactical cycle in the 

implemented tool-based lesson. Three phases mentioned in the didactical cycle are 

coded and named as A1, A2 and A3, according to the iterative activities. Three 

complementary sub-codes (rt - Related to tool; nt - Not related to tool; o - Other) 

under these three levels were used to document the classroom interactions in a more 

complete manner in order to identify potential subtle forms of interactions. The 

conversations and actions from the transcription were analyzed and coded to 

precisely discern the phases for deeper understanding of addressing role of tool in the 

activity (e.g. ‘rt’ coding refers to the conversation related to the tool involved). 

Additionally, pattern analysis was focused on the transitions between the three phases 

in the didactical cycle. 

RESULTS 
The iteration of activity phases in the cycle and notable transitions of phases are 

presented for addressing critical factors that determined the phase changes. The 

excerpts below are three examples extracted from the analytical transitions. 

Iteration of the didactical cycle 
The didactical cycle presented and theorized as a unidirectional flow of phase 

changes. However, in the implemented research lesson, we have found a non-cyclic 

sequential transitive flow of phases of the didactical cycle where the phases were not 

strictly on a track of A1→A2→A3 pattern. The phase transitions within the 

didactical cycle were interchanged among phases, therefore, reversible flows of 
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phases were observed. The result showed each phase may direct to the other two 

adjacent phases or stayed on its own stage. Therefore, the phases in the didactical 

‘cycle’ may not be implemented as a unidirectional cyclic pattern in the observed 

tool-based lesson. 

Transition of A1 → A3 

The students were engaged in the manipulations of tools (i.e. A1) to find slant height 

of the container. During the manipulation, the teacher intervened (i.e. A3) and 

questioned the group.  
Excerpt 1 (10:08) 

1  Ss: (A group of students is starting to plan how to measure and is trying to use rulers 

to measure the slant of the container.) (A1) 

2 T:  Slant will make it longer. Then the next question will be how much does it slant? 

You should think about whether this measurement is accurate or not. (A3, rt) 

3 S1: Oh, I see. (A student from the group is jotting down the steps they have 

discussed) (A3, rt) 

Excerpt 1 showed the transition of pattern from A1 to A3. Verbatim 1 revealed the 

students worked in groups as a social setting on the task to generalize artifact signs 

(Mariotti, 2012). It is gradually emerged at the beginning of the lesson that allows 

students to manipulate the tools to produce personal meaning signs. In general, the 

didactical cycle proposed that A2 will follow to produce signs (either in verbal or 

written forms) by the manipulators. However, in verbatims 2 and 3, the teacher had 

an intervention to the group by probing question about the features of the container 

linked with the measurement. The guidance of teacher would be viewed as collection 

and clarification of production from previous activities. Therefore, the transition of 

phases from A1 to A3 emerged. 

In the didactical cycle, activities in A1 mainly conceive possibility for producing sign 

from individual or group, i.e. A2; while A3 follow for the collection of the 

production in A2. However, the translation from in excerpt 1 blurred the phase of A2. 

The teacher tried to provide guideline, even though some signs were not produced by 

students, to the students when the students were planning and manipulating the tools 

with struggles and confusions. When the teacher discovered the students focused on 

the experiment itself but did not produce any sign, he reminded them to 

mathematically focus the construction of slant of the container. 

Transition of  A2 → A1 
The students manipulated the tools individually and collaboratively in order to 

produce verbal and written personal signs. 

Excerpt 2 (13:32) 

4  Ss: (A group of students is drawing tangents to find the centre of a circle on a paper) 

(A2, rt) 

5 S2:  It’s ok. Let’s calculate. (A student from the group is marking down measured 

values on a paper) (A2, nt) 
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6 S3: (Another student from the same group is counting the radius on a grid paper) 

(A1) 

This episode showed an interchangeable transition between A1 and A2. The group 

started the experiment in a way of tracing the concrete location of centre of a circle 

(the base of the container) in the paper in order to find its radius. The group produced 

mathematical terms, e.g. circle, radius, touch at a point (i.e. tangent), and the students 

consented that the measurement was the radius. Verbatims 4 and 5 also revealed that 

the measured values were substituted in formula written by the group. After all, 

instead of analyzing the calculation, verbatim 6 showed the group was using another 

ways of measurement to find the radius. The students triangulated the answers 

obtained from various methods.  

In the didactical cycle, activities for producing signs in A2, are followed by A3 which 

is the collection of the signs. On the other hand, excerpt 2 showed the group was 

moving back and forth between the phases A1 and A2. As said in previous paragraph, 

manipulating tools in A1 helps students to produce their own signs, i.e. A2 activity. 

However, students may ‘return’ to repeat the same experiment or conduct another 

one, i.e. A1 again, instead of analyzing the production, in order to triangulate the 

measurement and check the consistency of the calculation. Therefore, collection of 

production of sign was not readily emerged. In addition, the first two phases (A1 and 

A2) were inseparable in this situation. 

Transition of A3 → A2 

The activity for the collection of students’ production simulated the students to justify 

their productions and to modify their ways of experiments.   

Excerpt 3 (36:12) 

7  S4: (A student is presenting her idea to the whole class) We used two rulers, one 

vertical and one horizontal. And the slant height. (A3, rt) 

8 T:  Can you draw a figure? What is the goal of your calculation with this figure? 

(A3, nt) 

9 Ss: (The presentation was stopped and the students were thinking) 

10 S5: (Another student from the group is going to say something) 

11 S4: Oh, I know, I know. We add two rods here to form a pyramid…(A2, rt) 

In verbatim 7, a student was presenting the manipulation and measurement of what 

their group had performed. The terms, i.e. artifact and/or mathematics signs, were 

used by the student and shared with the whole class in order to consolidating formal 

mathematical thinking. After the teacher probing a question to the group, they tried to 

generate and refine the ideas in the presentation by doing an experiment shown in 

verbatim 11. 

Theoretically, the collective activity of signs, i.e. A3, gradually completes a ‘cycle’ 

and re-starts again at A1. However, the phase A3 did not end the cycle in this case. 

Students were trying to produce signs/terms that convince others what experiment 

had done. Therefore, the collective phase includes students’ production of signs with 

the help of using tools as a representation. 
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REMARKS 
The theoretical framework of the didactical cycle guided us to analyze the interactive 

activities in the empirical tool-based lesson. Three types of activities in the cycle 

interacted with each other and transited from phase to phase. The first remark is that 

the transitions of phases were not practically restricted in unidirectional pattern of 

A1→A2→A3. Particularly, reversible transitions of phases were found in the 

research lesson. In addition, we enact a modified didactical cycle and name it as 

Didactical Interaction (see Figure 2). The word 

‘interaction’ inclusively considers not only the cyclic 

flow of phases captioned by the didactical cycle, but 

also accommodates reversible directional transitions 

of phases hence multidirectional transitions of the 

phases. The second remark is that various kinds of 

transitions of phases were emerged in the lessons. In 

fact, teacher intervention was critical in these 

different kinds of transition. The students in the 

lesson were inspired by the teacher’s question and 

modified their plan of experiment when they had 

received the feedback from the teacher. These kinds 

of action taken by the teacher initiated the phase change that justified the model of 

the didactical cycle which some phases were being skipped, blurred and reverted in 

the iteration direction. In addition, iteration analysis told us that the some phases in 

the cycle were difficult to be discerned in terms of its features. For example, students’ 

manipulation of tools included individual instrumentation and instrumentalization 

(Rabardel, 2003) which naturally produced some terms and calculation. These kinds 

of productions were closely related to the activities with the tools, e.g. A1 and A2, 

which are inseparable. The third remark is notably placed on the role of tool in 

associated with the transitions of the activities. The transitions were changed 

according to the actions taken by the students and the teacher that the relevance of the 

tools was considered in the analysis. For example, the teacher questioned the students 

about the features of the tool that semiotic potential of the tool was critically 

encountered in the conversation (See verbatim 2). Another example showed that the 

students discussed on calculation which was extracted from the tool (See verbatim 5). 

In short, the cyclic feature of the didactical cycle should be critically reframed 

according to the implemented lesson. For example, Leung has discussed that a nested 

epistemic process in tool-base activities are conducive to learning (Leung, 2011). 

Therefore, further analysis will be conducted to study deeply the interrelationships 

among these activity phases. 

As a part of the research project, several in-depth investigations will be continued. 

For examples, analysis of questioning from teachers, manipulations of tools by the 

students and correctness of calculation will be further studied. Moreover, similar 

Figure 2: The Modified Didactical 

Cycle/The Didactical Interaction 
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analysis on the relationship of transition will be conducted in other research lessons 

conducted by other participants in the project to enrich and modified the didactical 

interactions.  
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This proposal discusses the extent to which mathematicians agree on some of the 

linguistic conventions of mathematical proof writing. Mathematicians (n=128) 

responded to an online survey indicating whether proof excerpts were 

unconventional in each of three undergraduate contexts: how proofs appear in 

mathematics textbooks, what instructors write on the blackboard in mathematics 

courses, and how students write proofs in these courses. These data point to a lack of 

agreement among mathematicians on the linguistic expectations of the proofs written 

by their students.  

INTRODUCTION 
Research has shown that undergraduate mathematics students have difficulties when 

constructing (Weber, 2001), reading (Conradie & Frith, 2000), and validating (Selden 

& Selden, 2003) mathematical proofs. Among several reasons for why 

undergraduates struggle with constructing mathematical proofs, Moore (1994) 

included students’ unfamiliarity with the language of mathematical proof writing. 

However, there is a dearth of empirical and systematic research in the field of 

mathematics education on the language of mathematical proof writing at the 

advanced undergraduate level.  

In particular, how advanced undergraduate mathematics students and mathematicians 

understand and use the technical language of mathematical proof writing is largely 

unknown. Lew & Mejía-Ramos (Under review) showed that the mathematicians and 

undergraduate students who participated in their study did not agree on the extent to 

which one should attend to English grammar, the introduction of new objects in a 

proof, and the context in which a proof was constructed when considering the 

exposition of said proof. While the interviews provided a clearer picture of how some 

mathematicians and students perceived the language of mathematical proof writing, 

the present study investigated how a larger sample of mathematicians evaluated parts 

of the same proofs via an online survey. Lending a quantitative perspective on how 

mathematicians understand technical mathematical language, this work further 

informs researchers’ and instructors’ understanding of mathematicians’ expectations 

regarding the presentation of mathematical proofs at the undergraduate level.  



Lew and Mejia-Ramos 

________________________________________________________________________________________________________________________

3-154    PME 41 – 2017 

RELATED LITERATURE AND THEORETICAL PERSPECTIVE 
There is little systematic, empirical work on the language of mathematical proof 

writing. Konior (1993) studied over 700 mathematical proofs written in academic 

textbooks and monographs investigating the construction of mathematical proofs. He 

identified a common structure that framed the arguments of a proof by highlighting 

the plan of procedure and using cues to direct the reader through the proof. Burton 

and Morgan (2000) found that the norms suggested in professional mathematical 

writing guides (e.g. Gillman, 1987; Krantz, 1998) are sometimes broken by, 

especially by those highly regarded in the field. Selden and Selden (2014) also 

described seven features of the style in which mathematicians write proofs (e.g. not 

including the statements of entire definitions within written proofs). While these 

studies begin to further the understanding of professional mathematical proof writing, 

research on the language of proof writing at the undergraduate level is lacking.  

As referenced above, a number of mathematicians (e.g. Gillman, 1987; Krantz, 1997; 

Higham, 1998) have written texts describing proper and effective use the language of 

mathematics for professional purposes such as journal articles, dissertations, and 

books. Meanwhile, since these guides were written based on the authors’ assumptions 

and personal experiences, further work is necessary to investigate the extent to which 

these expectations of advanced mathematical proof writing are shared by the general 

population of mathematicians and how these conventions apply to different contexts.  

Linguistic Conventions of Proof Writing in Different Contexts 
As a particular type of mathematical writing, we see mathematical proof as a 

particular genre of the language of mathematics. Mathematician Armand Borel 

(1983) equated mathematical proofs to the genre of poetry in natural language, 

emphasizing not only that the language of mathematics is distinct from the 

vernacular, but also that one must be knowledgeable in the language of mathematics 

in order to understand mathematical proofs. In this work, we assume that the genre of 

proof is a way of using mathematical language defined by both the formal properties 

and structures of language, as well as the communicative purposes of texts in 

particular contexts. This view of genre is consistent with the genre theory literature 

(Hyland, 2002). Our consideration of proofs in this light is in the pursuit of helping 

students to understand and follow the linguistic conventions of the genre, as work has 

done in other discourses (Hyon, 1996).  

To study the genre of mathematical proof writing, we sought to identify and validate 

the existence of linguistic conventions of proofs. We assume conventions are 

rationally justifiable customs of practice to which members of that practice are 

expected to conform in the manner of Jackman (1998). Thus, we take linguistic 

conventions to be rationally justifiable customs of linguistic communication. Existing 

literature (e.g. Gillman, 1987; Higham, 1998) has suggested some conventions of 

writing proofs for professional contexts, such as correctly situating notation within a 
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sentence according to proper grammar, and structuring the proof to guide a reader 

through the argument.  

Meanwhile, it is important to consider how the context of the proof might affect how 

conventions are followed as suggested by mathematicians in Lew & Mejía-Ramos’s 

(2016) study. In particular, we investigate how mathematicians believe conventions 

of mathematical proof writing apply in the contexts of undergraduate textbooks, and 

in two classroom contexts: the way proofs are written on the board in class, and the 

ways in which proofs are written by undergraduate students. The consideration of this 

variation of context allows this work to highlight important similarities and 

differences in the contexts created by mathematical discourse, as Bondi (1999) had in 

her study of research papers, textbooks, and newspaper articles in economic 

discourse.  

Researchers in higher education (Becher, 1987), linguistics (Hyland, 2004), and 

composition (Bizzell, 1982; Batholomae, 1985) have highlighted that different 

disciplines have characteristic discourse practices and that without knowledge of such 

practices students will struggle to successfully enter the discipline. We extend this 

necessity to acquire specialized literacy to undergraduate students of advanced 

mathematics, who—we argue—must understand the genres and conventions of 

mathematical discourse which includes the genre of mathematical proof in the 

different contexts that pervade their undergraduate study. Given the fundamental role 

of proof in mathematical practice (e.g. Thurston, 1994; Rav, 1999), understanding the 

language of mathematics in which proofs are written is of utmost importance for 

undergraduate students studying advanced mathematics.  

In the present study, we investigate the conventions of mathematical proof writing 

from the perspective of mathematicians – the most prevalent instructors and 

examiners of undergraduate students’ proof writing. As such, the present study 

investigates the following question:  To what extent do mathematicians agree among 

themselves on what the linguistic conventions of mathematical proof writing are in 

the three contexts of textbook proofs, blackboard proofs, and student-produced 

proofs? Do conventions exist for the language of undergraduate mathematical proofs? 

Does the context of said proofs affect what conventions are upheld in mathematical 

proof writing? 

METHODS 
In order to evaluate how mathematicians perceive linguistic conventions in 

mathematical proofs, the survey adopted the methodology of breaching experiments 

in the style of Herbst and Chazan (2003). The survey asked participants to make 

evaluations regarding the language used in several partial proofs, which were based 

on student work, but truncated to discourage participants from focusing on the logical 

validity of the purported proof being evaluated. Four of the seven partial proofs used 

in Lew & Mejía-Ramos’s (Under review) study were included in the survey. 

These breaches were identified by Lew & Mejía-Ramos (2015) as common, 

potentially unconventional uses of mathematical language found in student-produced 
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proofs from 149 exams at the introduction to proof level. The breaches were 

categorized based on suggestions from mathematical writing guides and the authors’ 

personal experiences with proof writing at the undergraduate level. One of the partial 

proofs and potential breaches included in the survey is illustrated below. Figure 1 

shows the marked partial proof exhibiting the use of the unspecified variable, z, and 

the explanation for why someone might think it’s unconventional, as presented in the 

survey. The explanations used in the survey are based on the mathematicians’ 

discussions of the same potential breaches and proofs in Lew & Mejía-Ramos (Under 

review).  

Each potential breach was presented on a separate page of the survey. Participants 

were provided a marked partial proof and an explanation of why a colleague might 

believe the corresponding proof excerpt had been written in an unconventional 

manner, as shown in Figure 1. For each of the three contexts (a textbook proof, a 

blackboard proof, and a student-produced proof), participants indicated if they agreed 

the proof excerpt was indeed unconventional for the stated reason and to what extent 

it affected the quality of the proof.  
Marked partial proof exhibiting the potential breach: 

Uses an unspecified variable 
Explanation of the potential breach 

 

A mathematician suggested that this is 

unconventional mathematical writing 

because the variable z should be 

introduced prior to its use in the proof. 

Figure 1: Example potential breach and explanation presented in the survey. 

Participants (128 mathematicians) were recruited from 25 of the top mathematics 

departments in the United States through email solicitation through their department 

secretaries, which included a link directing those choosing to participate to the 

survey.  

Analysis  
The analysis for this study included investigating if the mathematicians answered the 

various aspects of the survey differently – in particular, whether they agreed or 

disagreed on which the potential breaches were unconventional in the three contexts. 

Table 1 presents some of the findings from this study, indicating the proportion of the 

sample that agreed that the proof excerpt was unconventional for the reason provided, 

for each of the three contexts. To evaluate if the proportions of agreement indicated a 

high agreement, the thresholds of a high agreement that a potential breach was 

unconventional and was not unconventional were set to 75% and 25% respectively. 

Chi-squared tests for equality of proportions were conducted to check for proportions 

p=0.75 and p=0.25 with a level of significance of α=0.05/42 (fourteen potential 

breaches in each of three categories). The results of these Chi-squared tests are 

indicated with ++ and --, respectively. Proportions of agreement were categorized in 

the following ways: high agreement that the use is unconventional (significantly 
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different and greater than 75%), high agreement that the use is not unconventional 

(significantly different and less than 25%), or not shown to have high agreement.  

RESULTS 
Survey results suggest a lack of agreement amongst mathematicians whether the 

potential breaches are unconventional of mathematical proof writing for the reasons 

provided. Table 1 shows that fewer than half of all judgments made yielded 

agreement percentages significantly different and above 75% or significantly 

different and below 25%. However, in textbook proofs, responses also showed more 

internal agreement.  

 

Table 1: Mathematicians’ responses indicating if they agree that the proof excerpt 

was unconventional for the reason provided in each context. 

Figure 2 shows the percentage of participants who agreed the potential breaches were 

unconventional in each of the three contexts. Lines connect the agreement 

percentages for evaluations in the same context and the shaded sections indicate the 

percentages significantly different and greater than 75% or significantly different and 

less than 25%. This section of the proposal discusses the types of potential breaches 

for which participants’ responses showed high agreement and provides a post hoc 

analysis of the potential breaches for which the samples’ responses did not show high 

agreement. 

 

Figure 2: Mathematicians’ agreement percentage for each potential breach by context 
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Potential breaches for which the participants’ responses showed high agreement  
Based on Figure 2, the mathematicians’ responses showed high agreement that eight 

of the fourteen potential breaches were unconventional in the context of a textbook 

proof for the reasons presented. Moreover, for the proof excerpts exhibiting the use 

of non-statements and the overuse of variable names there is high agreement among 

mathematicians that these potential breaches are unconventional in all three contexts. 

These findings provide further evidence that these eight potential breaches of the 

conventions of mathematical language are indeed unconventional in the context of 

textbook proofs for the reasons provided. The proof excerpts that overused variable 

names or used non-statements were also indicated to be unconventional in the two 

classroom contexts by the mathematicians. 

Finally, Figure 2 also shows the percent of mathematicians that agreed the inclusion 

of statements of definitions in a student-produced proof was unconventional is 

significantly different from and less than 25%. That is, there is a high agreement 

among the mathematicians that a proof excerpt including the statement of definitions 

is not unconventional in a student-produced proof. Moreover, fewer than 42% of 

mathematicians agreed the inclusion of statements of definitions was unconventional 

in any of the three contexts considered. We note this is in contrast to claims that 

mathematicians do not include statements of entire definitions within written proofs 

(Selden & Selden, 2014). While the scope of the present study focuses on proofs at 

the undergraduate level, we note two of the contexts considered are written by 

mathematicians (textbook proofs and blackboard proofs). Thus, it may not be that the 

features of proof writing described by Selden and Selden (2014) extend to different 

contexts of proofs written by mathematicians or proofs written by students. 

When the samples’ responses did not show high agreement  
For 29 of the 42 judgments made by the mathematicians, agreement percentages did 

not cross the thresholds for high agreement. Figure 2 further shows that for five of the 

potential breaches, mathematicians’ responses did not show high agreement in any of 

the contexts. When we restrict analysis to only classroom contexts (blackboard proofs 

and student-produced proofs), eleven of the fourteen types of potential breaches the 

results did not show high agreement. Finally, Figure 2 highlights that a number of 

these agreement percentages are close to 50%. In particular, eight of the 42 

agreement percentages were between 40% and 60%, including two judgments in the 

textbook context. These findings suggest that beyond failing to give confirmation that 

many of these potential breaches are indeed breaches of linguistic conventions in 

proof writing, that the disagreement among mathematicians may be higher in 

classroom contexts, and that for some types of potential breaches the disagreement 

amongst mathematicians may be particularly extreme, even in the context of textbook 

proofs.   

Moreover, it is clear that a larger percent of the mathematicians agreed that a 

potential breach was unconventional in the textbook context than when the same 

potential breach was assessed in either of the other contexts. In fact, Figure 2 
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suggests for some of the potential breaches, the fewer mathematicians that agreed a 

proof excerpt was unconventional proof writing in the textbook context, the fewer 

that perceived the same excerpt was unconventional in the classroom contexts.   

CONCLUSION 
The findings of this report highlight the existence of some potential breaches of 

mathematical language that mathematicians widely agree are unconventional in the 

context of textbook proofs. Specifically, mathematicians in our study widely agreed 

that including incomplete statements, overusing variable names for different 

mathematical objects, lacking proper punctuation and capitalization, carelessly 

mixing mathematical notation and text, failing to use connectives to bridge steps, 

using formal propositional language, using pronouns with unclear referents, and 

using an unspecified variable are all unconventional usage of mathematical language 

in textbook proofs. Moreover, mathematicians widely agreed on the specific rational 

justifications for why the proof excerpts breached linguistic conventions or 

mathematical proof writing on that context. On the other hand, mathematicians also 

widely agreed that one of the potential breaches studied (including full statements of 

definitions within proofs) was not unconventional in the context of student-produced 

proofs for the reasons provided, which suggests that Selden and Selden’s (2014) 

claim that mathematicians do not include definitions in their proofs may not extend to 

other contexts and to mathematicians’ expectation of how students write proofs. 

Meanwhile this report gives insight on how these mathematicians’ evaluations 

differed of the language of mathematical proof writing at the introduction to proof 

level in the classroom contexts. In particular, the results suggest that mathematicians’ 

linguistic expectations of student-produced proof are unclear. In the student context, 

the mathematicians’ responses did not indicate high agreement for twelve of the 

fourteen types of potential breaches, which may indicate the possibility that 

mathematicians do not have a shared understanding or expectation of how students 

should write proofs. 

If it is indeed the case that there is not a consensus among mathematicians of how 

their students in introduction to proof courses should write their proofs, then how are 

instructors of these courses presenting proof writing to their students? Discussions 

amongst mathematicians, especially those who teach introduction to proof courses, 

concerning their expectations for language use in the writing of proofs by their 

students would be a useful step towards a shared understanding of linguistic 

conventions of proof writing in the context of student-produced proofs. Further 

research is necessary to understand these varied expectations amongst 

mathematicians and how to address students’ confusion when it comes to their 

professors’ expectations of their proof writing. In turn, better understanding of 

mathematicians’ expectations of their students’ writing could enable the creation of 

interventions and curriculum to help undergraduate students in the transition to 

abstract and advanced mathematics courses. 
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In this article, we look closely at the relationship between the creative process and 

creative products. Using a combination of theoretical and empirical analysis we call 

into question the validity of measuring creativity by examining products – using 

products as a proxy for processes. 

INTRODUCTION 
At PME 40 there were 21 papers presented (2 plenary activities, 10 research reports, 

6 oral communications, and 3 poster presentations) on the topic of creativity. Seven 

of those articles (1 PL, 3 RR, and 3 OC) describe instruments that, in one way or 

another, for one purpose or another, measure creativity. In the case of Leu, Luo, and 

Lo (2016), for example, the intent of the RR was to measure creativity for the 

purpose of comparing mean scores of groups from different countries. Gilat and Amit 

(2016), on the other hand, measured creativity before and after an intervention to 

compare learning gains from a control and an experimental group. 

Regardless of the intent or the means by which creativity was measured, the 

aforementioned research is predicated on an assumption that creative products are 

indicators for an a priori creative process. In this paper we look more closely at this 

assumption.  

CREATIVITY 
Torrance (1966) defined creativity as  

a process of becoming sensitive to problems, deficiencies, gaps in knowledge, missing 

elements, disharmonies, and so on; identifying the difficulty; searching for solutions, 

making guesses, or formulating hypotheses about the deficiencies: testing and retesting 

these hypotheses and possibly modifying and retesting them; and finally communicating 

the results. (Torrance, 1966, p. 6) 

In his pursuit to understand this process, and building on Guilford’s theory (1967), 

Torrance (1974, 1966) designed a test to measure a person's creative thinking through 

the proxies of fluency, flexibility, originality, and elaboration. The Torrance Test of 

Creative Thinking (TTCT) is based on Guilford’s Alternative Uses Task (e.g., name 

all uses for a brick) and adds several test formats such as the Ask and Guess Test in 

which participants are requested to ask questions to given drawings. Other parts of 

the TTCT include non-verbal assignments such as the Picture Completion Test which 
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consists of the completion of incomplete figures. The results on each of these items is 

scored independently and compiled to produce a measure of creativity. But there is a 

question as to whether these metrics, these measures of products, “capture the 

essence of creativity” (Leikin & Pitta-Pantazi, 2013, p. 160). It is exactly this 

question we are interested in pursuing in this paper. More specifically, we are 

interested in the relationship between the originality of a solution and the creativity of 

the process that spawned it.  

To get at the answer to this question, however, we need to first understand more 

clearly the relationship between creative process and creative products.  

Creative Process 
In 1902, long before Torrance came up with his test for creative thinking, the first 

half of what eventually came to be a 30 question survey was published in the pages of 

L’Enseignement Mathématique, the journal of the French Mathematical Society. 

Édouard Claparède and Théodore Flournoy, two Swiss psychologists, who were 

deeply interested in the creative process, authored the survey. During this same 

period Henri Poincaré (1854–1912), one of the most noteworthy mathematicians of 

the time, had already laid much of the groundwork for his own pursuit of this same 

topic and in 1908 gave a presentation to the French Psychological Society in Paris 

entitled L'Invention mathématique—often mistranslated to Mathematical Creativity 

(c.f. Poincaré, 1952). Inspired by this work, Jacques Hadamard (1865–1963), a 

contemporary and a friend of Poincaré’s, began his own empirical investigation into 

the creative process. Hadamard retooled the survey and gave it to friends of his for 

consideration—mathematicians and scientists such as Henri Poincaré and Albert 

Einstein, whose prominence were beyond reproach. In 1943, Hadamard gave a series 

of lectures on mathematical invention at the École Libre des Hautes Études in New 

York City. These talks were subsequently published as The Psychology of Invention
1
 

in the Mathematical Field (Hadamard, 1945).  

Hadamard’s treatment of the subject of invention at the crossroads of mathematics 

and psychology is an extensive exploration and extended argument for the existence 

of unconscious mental processes. To summarize, Hadamard took the ideas that 

Poincaré had posed and, borrowing a conceptual framework for the characterization 

of the creative process from the Gestaltists of the time (Wallas, 1926), turned them 

into a stage theory consisting of four separate stages stretched out over time. These 

stages are initiation, incubation, illumination, and verification (Hadamard, 1945). The 

first of these stages, the initiation phase, consists of deliberate and conscious work. 

This constitutes a person’s voluntary, and seemingly fruitless, engagement with a 

problem. Following the initiation stage the solver, unable to come to a solution stops 

working on the problem at a conscious level and begins to work on it at an 

unconscious level (Hadamard, 1945; Poincaré, 1952). This phase is referred to as the 

incubation stage of the inventive process, can last for any period of time from 

minutes to weeks, and is inextricably linked to the conscious and intentional effort 
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that precedes it. After the period of incubation, a rapid coming to mind of a solution, 

referred to as illumination, may occur. After illumination the correctness of the 

emergent idea is evaluated during the fourth and final stage, verification. In the end, 

the verification step may show that the solution revealed in the moment of 

illumination is, in fact, incorrect. For Hadamard (1945) such failures were as much a 

part of the creative process as the successes and that the creative process is not 

judged based on the correctness of the solution.  

The creative process, extended over time and being punctuated by the sudden 

appearance of a solution, has traditionally been researched through the a posteriori 

self-reports of this private and subjective experience (Hadamard, 1945; Liljedahl, 

2013; Poincaré, 1952). More recently, however, Liljedahl (2013) has argued, and 

used the fact, that illumination is largely an affective experience which results in an 

observable emotive response.  

Creative Product 
Especially in its beginnings, research on creativity focused on self-reports of 

exceptionally talented individuals as well as analyses of their works (e.g., literary, 

musical compositions, or scientific discoveries) (cf. Silver, 1997). This lead to the so-

called genius view of creativity which is often associated with exceptional knowledge 

or products that change our perception of the world (Sriraman et al., 2014).  

Since then, research has turned away from the assumption that only geniuses can be 

creative and researchers have focused their attention to ordinary or everyday 

creativity (ibid.; Pehkonen, 1997).  

For a professional artist, some new, ground-breaking technique, product, or process that 

changes his or her field in some significant way would be creative, but for a mathematics 

student in lower secondary school, an unusual solution to a problem could be creative 

(Sriraman et al., 2014, 110).  

And, for the sake of objectivity, researchers shifted their attention away from the self-

reporting of the creative process and towards the evaluation of products. Within this 

new paradigm, a solution to a mathematics problem is determined to be creative if it 

is deemed to be original with respect to the rest of the solutions produced within a 

cohort of participants. As such, quantitative studies looking at creativity through the 

lens of solutions will, along with other metrics, calculate frequencies of occurrences 

for each solution found within a cohort of students.  

CREATIVE PROCESS VS. CREATIVE PRODUCT 
The question of whether creative products can stand as proxies for the creative 

process, then, can only be answered if it can be shown that there is a one-to-one 

correspondence between the creative process and the originality of a solution. More 

specifically, we would need to show that, in every problem solving situation 

1. a student goes through a creative problem solving process and produces a 

creative solution, or  
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2. a student goes through a routine problem solving process and produces a 

routine solution.  

Further, we would need to show that there exist no problem solving situations in 

which  

3. a student goes through a creative problem solving process but either does 

not solve the problem, or produces a routine solution, or 

4. a student goes through a routine problem solving process, yet produces a 

solution that is deemed to be creative. 

These four scenarios can be summarized into a 2x2 grid (see fig. 1) where creative 

vs. routine process is on one axis and creative vs. routine product is on the other axis.  

  PROCESS 

  creative routine 

P
R

O
D

U
C

T 

creative 1 4 

routine 3 2 

Figure 1: The four scenarios represented on 2x2 grid.  

Data reflecting scenario 1 and 2 would show that creative products are indicators of a 

creative process while scenarios 3 and 4 would show the opposite. In what follows 

we look at student problem solving data through the lens of the aforementioned four 

scenarios.  

METHODOLOGY 
Data for this study comes from student work on the triangle problem (see fig. 2), one 

of three multiple solution tasks (MST's) from a German project on mathematical 

giftedness in upper secondary school (MBF2). This project looked at gifted and non-

gifted students with a focus on traits that help to identify mathematical giftedness in 

upper secondary students. 

Consider triangle ABC. Points P and Q, and S and 
R, divides side AB and AC into three equal parts.  

What is the area of the quadrilateral PQRS with 
respect to the area of triangle ABC? 

Find as many different ways to solve this 
problem as possible.   

Figure 2: The triangle problem 
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Twenty students from grades 11 and 12 (age 16 – 18) participated voluntarily in this 

project, coming to the university every second week to work on non-routine 

problems. These students chose to participate in this project mostly because of their 

great interest in mathematics with many having shown great achievement in their 

regular mathematics classes. 

The students had 30 minutes to work on each of three MST's. After each task was 

completed, the students participated in a group discussion in which the students 

presented their findings and reflected on their processes. The data for this project, 

then, are the solutions to the three MST's as well as video recordings of the students 

working on the MST's and the group discussions. 

These data were analysed from two different perspectives – process and product. 

That is, the video recordings of the students solving the MST's were analysed for 

evidence of creative process, mostly through attention to affective responses that 

could signal an illumination having occurred. The group discussions were also 

analysed for self-reported utterances of a creative experience.  

From the other perspective, the creativity of student solutions to the MST's were 

analysed collaboratively by a team of researchers. More specifically, the creativity of 

a solution was determined by its originality compared to all solutions to the same 

MST produced by all participants. The creativity of a specific participant was 

determined through the aggregation of all of their individual solution creativity 

scores. For the purposes of this paper the relevant results have been translated from 

German to English.  

RESULTS 
In what follows we present four cases from the data. Each of these cases corresponds 

with one of the four aforementioned scenarios.  

Scenario 1: Creative process & creative product 
Kirsten (fig. 3, upper left) was the only student in the group that solved the triangle 

problem by clearly stating the similarity of the three triangles in one of her solutions. 

Because of the uniqueness of this argumentation, this solution was deemed to be 

original and, thus creative.  

The video of her problem solving process shows clearly that she initially did not 

know how to address this problem. Her work was anything but routine as she 

alternated the use of a variety of heuristics with getting stuck. After a time, however, 

she suddenly had the solution. Taken as a whole, her process was also deemed to be 

creative. 
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Figure 3: Four solutions to the triangle problem sorted by the grid from fig. 1 

Scenario 2: Routine process & routine product 
Patrick (fig. 3, lower right) solved the problem by dividing the triangle ABC into 

smaller triangles and parallelograms. This allowed him to compare the area of PQRS 

to that of ABC. This solution was very common within the presented cohort and, 

therefore, not rated as original.  

Patrick's process related to this solution was identified as not being creative because 

he came to the solution very quickly and because, in the discussion phase, he 

admitted that this kind of geometrical problem was very familiar to him. 

Scenario 3: Creative process & routine product 
Lilly (fig. 3, lower left) solved the triangle problem by rotating the triangle ABC 

around the midpoint of AC, creating a parallelogram in the process. The middle 

segment of this parallelogram is one third of the whole parallelogram. Therefore, 

Lilly reasoned that the area of PQRS must be one third of the area of ABC. Not only 
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is this solution incorrect, but it is not even original in that a lot of students produced 

the exact same solution.  

Her videotaped process, however, shows that she struggled for a long time with this 

problem. She drew two completely different sketches, then stopped writing for 

several minutes.  Suddenly she started writing again, producing the solution 

involving the point of reflection. Therefore, the process that led to her incorrect 

solution was judged to have been creative. 

Scenario 4: Routine process & creative product 
Steven (fig. 3, upper right) used linear algebra (defining vectors, calculating areas) in 

his approach to the triangle problem. No other student used linear algebra while 

working on this problem so his solution was deemed to be original and, as such, 

creative.  

His process, however, reveals that for Steven, this approach was not creative. At the 

time the problem was posed to him, he was taught linear algebra at school and in the 

group discussion, he stated that solving this kind of problem was a routine task for 

him. 

DISCUSSION 
There is no doubt that there some problem solving processes are creative and that 

some are routine. Likewise, there is no doubt that there are original solutions and that 

there are routine solutions. The question we asked in this paper is whether creative 

processes can always be attributed to original solutions. That is, can an original 

solution “capture the essence of creativity” (Leikin and Pitta-Pantazi, 2013, p. 160)? 

The case of Kirsten clearly shows that this can be the case. Kristen's original solution 

was the product of a creative process. Further, Patrick's routine solution was the 

product of a routine process. However, the cases of Lilly and Steven show the 

opposite relationship. The case of Lilly shows that the creative process does not 

necessarily produce correct and unique solutions. And the case of Steven shows that 

unique solutions can be the product of routine processes.  

Taken together, it is clear that the originality of a solution is not a reliable indicator of 

the creativity of a solution that produced it. Where then does this leave the research 

has relied on, at least in part, the scoring of originality as an indicator of student 

creativity? 

The results of the research presented here only argues that originality is not a good 

indicator of creative process. We say nothing about the inherent value in scoring, 

measuring, or ranking student solutions to MST's. Within this context, the 

methodologies used are, no doubt, effective instruments for categorizing, ranking, 

and quantifying the relative creativity of these solutions. Our research simply shows 

that these metrics cannot be used to reliably say something about the a priori creative 

process.  
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Note 
1
Within the context of creativity research the terms creativity, discovery, and 

invention are often used interchangeably. 
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The study examined prospective middle school mathematics teachers’ use of written 

symbolic and narrative language in presenting mathematical solutions. Results 

indicate that there exist different patterns in the use of language between these two 

modes of writing. The narrative solutions provided more logical connectors than the 

solutions featuring only symbols. The two types of solutions were different in regard 

to the sequence of procedures used in problem solving. Furthermore, those who 

demonstrated more formal language, such as rich mathematical vocabulary, complex 

sentences, or high adherence to standard syntax in mathematics, were not necessarily 

more successful in problem solving than those who used less formal language. 

INTRODUCTION 
Academic language (AL) generally refers to the language of schooling to acquire new 

or deeper understanding of the content and to facilitate communication within the 

practice of formal disciplines (Schleppegrell, 2004; Sfard, 2000). For example, the 

learning of mathematics is considered to be the appropriate context for the 

development of mathematical AL. Considering the critical role of teachers in 

students’ acquisition of AL, it is essential to assess prospective teachers’ (PTs’) 

current use of AL as well as to create activities that promote PTs’ use of AL. To do 

so, teacher educators must understand how PTs process and use AL in mathematics 

and the degree to which it facilitates learning. However, research regarding the ways 

in which PTs use academic language, especially in writing to solve, reflect upon, 

describe, or explain their own mathematical reasoning, is limited.  

The study provides analysis of the baseline data regarding the ways PTs process and 

use AL to express their mathematical thinking. Specifically, it examined the 

following research question: When given an identical set of mathematical problems 

to solve and write mathematical solutions, to what extent do PTs demonstrate the use 

of AL in two different modes of writing (i.e., symbolic and narrative writing)? 

THEORETICAL PERSPECTIVES 
Academic language  
The notion of AL is fraught with ambiguities in terms of its elements, structure, role, 

and value in the learning process (Bailey et al., 2007). However, communicative 

approaches in mathematics education (Morgan, Craig, Schuette, & Wagner, 2014) 

might characterize AL sufficiently for teacher educators to approach it pedagogically, 

without the limitations imposed by register and similar specialized uses of language. 

This study proposes a working definition of academic language and its qualifier: 
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Language is academic when there is optimal semantic correspondence between the 

message sent by the teacher and the message received by the learner. Negotiation of 

meaning between teacher and learner is fundamental to the process and goal of 

effective communication within an instructional setting. Pedagogically, therefore, the 

goal of AL is effective communication regardless of the requirements and nuances of 

a specific register or whatever set of linguistic criteria one wishes to designate as 

necessary for students to learn. 

Symbolization and narrative writing in school mathematics   
Students study mathematical texts and participate in dialogic interactions with peers 

about mathematics (Chapman, 1993). In mathematical texts, symbolization—

including numbers, operations, various syntax or conventional grammar of 

relationships—is proposed and strictly enforced; mathematicians learn to use this 

symbolic language to represent their ideas (Morgan, 1996). The AL of mathematics 

may not be part of students’ colloquial language as it includes specialized ways of 

using words and symbols (i.e., the mathematics register) with certain syntactic 

preferences; this is especially true for written mathematics. Mathematical texts can be 

characterized as rhetorical, narrative, or argumentative (Dietiker, 2013), and the 

arguments in these texts are made in words and sentences; therefore, the use of 

language is evident. The language demands in mathematical texts include various 

rhetorical structure patterns more formal than the structures in colloquial language. 

The school mathematics register is most readily identifiable through highly 

specialized vocabulary. This vocabulary includes terms with definitions that are 

specific to mathematics, such as: parallelogram, polygon, trigonometry, or quadratic 

equation. Some of these terms, like line or factor, are used extensively in general 

language but have precise, math-specific meaning (Thompson & Rubenstein, 2000).  

The grapheme system  
Narrative skills relate to an ability to tell stories with literary precision and clarity 

with regard to organization and semantics (Conle, 2000). In order to differentiate 

writing systems in our study, we used the graphemic system to refer to the total 

writing system, inclusive of mathematics symbolization. A variable is a symbol 

representing an object in mathematics; so variable is the differentiating feature for 

writing consisting of symbols. In narrative form, a word (lexical) is the differentiating 

feature. Thus, for our theoretical and coding purposes, we used Variable Graphemic 

Symbol Set for mathematics (VGS) to refer to the mode of writing solutions in which 

the participants used symbols only. We used Lexical Graphemic Symbol Set for 

narrative (LGS) to refer to the mode of writing solutions in which the participants 

used words and sentences in addition to symbols and diagrams. We acknowledge that 

all language systems are symbolic and that the use of symbol to refer specifically to 

mathematics is a convention. 
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METHODS 
Ten middle school PTs from a large state university in the southern United States 

participated in the study in the spring of 2014. The notion of academic language was 

previously addressed to varying degrees in the teacher education programs from 

which participants were drawn. Our data included the participants’ written responses 

to five tasks in VGS and LGS respectively.  

Each task had two parts in response to the same math item. Part I (VGS) asked to 

solve a problem using only symbols. Part II (LGS) asked to provide a solution using 

various forms of language. Each part took up to 25 minutes, and about an hour of 

break was given between Parts I and II. Considering that participants are middle 

school PTs, five intermediate algebra problems were posed (see Table 1). 

 
Table 1:  List of algebra problems used in the study 

The analysis focused on the patterns of language use and processes evident in the 

data (see Table 2). Use of VGS forms indicated the frequency of formulas to guide 

calculations and LGS forms to represent concepts. Use of logical connectors included 

symbols (e.g., arrows or numerals to indicate sequence). Linking words were 

analyzed to determine whether the narrative provided a logical argument with 

appropriate points of connection. Calculations included frequency of mathematical 

work exclusively for operational computations. Syntax errors included frequency of 

forms that were not preferred or acceptable. Correctness indicated whether the 

particular participant’s solution was correct or incorrect. Syntactic complexity was 

rated by counting syntactic compound sentences versus complex sentences and by 

determining whether the overall writing style was basic or complex. Vocabulary use 

was analyzed by counting specialized terms and technical terms.  

Modes  Elements of Analysis 

VGS  Use of forms and diagrams; Use of logical connector; 

Calculations; Syntax errors; Correctness of solution 

LGS  Use of specialized and technical mathematical terms; Use 

of forms and diagrams; Calculations; Syntax errors; 

Correctness of solution; Use of logical connector; Key 

characteristics of the solution; Audience and Subject; 

Complexity level  

Table 2: Elements of AL in the analysis of written mathematical solutions 
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RESULTS 
Patterns of using mathematics symbols 
First, an obvious finding was that most solutions in LGS did not include as many 

math symbols as those in VGS. The symbols used by PTs were limited to those that 

referenced algebraic variables as part of calculations rather than as forms or notations 

relating to concepts and reasoning. Figure 1 illustrates the use of symbols in the 

computational process of solving for b with the equation y = -3x + b where (x, y) = (-

2, 7) and the process for validating the solution b = 1 by using a point (3, -8) on the 

line, y = -3x + b where b = 1. An example of symbols that can represent a translation 

of a geometric figure from a right triangle in the coordinate plane to a right triangle as 

a rigid object with the measures of each leg was indicated. Other idiosyncratic 

symbols include ↕, ⤻, □, @, ▶, #, *, ♪, !, , and .  

  

Figure 1: Use of symbols in the computational process vs. the illustration of objects 

Less obvious, but evident, was the pattern of symbolic forms in solutions. Table 3 

shows the frequency of symbols used in each solution of LGS. The variance indicates 

within-participant variability. For example, the participant, Pan (Var = 5.3) was less 

consistent in the use of symbols than the participant Ladybug (Var = 1.0). It is 

worthwhile to note that Ladybug, with low variance (i.e., consistent), also used the 

largest number of symbols in the group. So it is convincing that Ladybug can use 

multiple symbols consistently. To the contrary, Pan has the highest variance and a 

low number of symbol uses. While both Ladybug and Pan have a similar number of 

symbols for items 1, 2 and 4, Pan provided no symbols for items 3 and 5, which 

contributed to the high variance and the low mean value. The mean score is the 

average value of the frequency across all items. Most participants used about 2 – 3 

symbols in each solution. However, it is obvious that overall the participants used 

very few symbols for items 3 (M= 1.9) and 5 (M= 0.8). Item 1 generated the highest 

use of symbols.  
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Table 3: Frequency of symbols used in each solution of LGS 

Second, a clear pattern of symbol uses emerged: one use for concept and the other 

use for procedure-based computations. In our analysis we asked two university-based 

mathematicians to review the math items and decide, by consensus, the number of 

key symbols that should be present in VGS solutions in order to represent concept 

and calculations respectively. We used this predetermined level to indicate excessive 

use of symbols by (+) and deficit use of symbols by (–) (see Table 4).  

 
Table 4: The indication of economical use of symbols in VGS in two ways  

(Con = Concept; Cal = Calculation) 

For example, the participant Debby needed 2 more symbols to represent key concepts 

related to item 1 but used 4 excessive symbols to indicate calculations associated 

with the solution to item 1. Table 4 shows that participants overall did not use a 

sufficient number of symbols to represent the concepts but instead used too many 

symbols and variables for trivial calculations and procedures. Taking the two broad 

patterns together it was determined that the participants used symbols to show 

calculations more than to represent mathematical ideas. It is also found that the LGS 

solutions showed a large reduction in the number of symbols.  
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Patterns of narrative language 
There were participants whose narrative language helped in clarifying or correcting 

both solutions and errors in VGS. In these cases narrative solutions helped identify 

misunderstandings, and the logical connectors in LGS helped the writer to discover 

missing steps in VGS. For example, the following narrative (see Figure 2) was 

written in response to item 2 in which the participant was asked to write a general 

form of consecutive integers, n, (n+1), (n+2) by first defining n, and then writing the 

forms for the next two consecutive numbers. This process was not evident in the 

participant’s VGS response, which resulted in the incorrect solution.  

The pattern related to the use of academic 

language, chiefly rich vocabulary (i.e., 

specialized and technical math terms) and 

syntax in LGS, did not necessarily result 

in more successful solutions. We counted 

the frequency of vocabulary in each 

solution of LGS and found that higher 

variance (inconsistency) occurred in the 

participants who demonstrated higher 

average vocabulary counts than among  

 Figure 2: A sample narrative solution 

 which helped identify misunderstandings 

those who averaged 3.6 to 8.4 words. For example consider the cases of Ladybug, 

who used the largest number of vocabulary (8.4 words), and Debby who used only 

3.6 words per item. Although Ladybug (Var = 10.8) is not as consistent in using 

vocabulary as Debby (Var = 6.3), it is clear that Ladybug always used more 

vocabulary than Debby regardless of the items.  

The syntax errors in VGS were little related to the correctness of the solutions. There 

were many correct solutions that contained syntax errors. We also examined the level 

of syntactic complexity in narratives. There existed a very low variance across the 

participants (the level ranges from 1.5 to 4.2), indicating that most participants 

remained consistent towards the use of narratives with syntactic sophistication. For 

example, Ladybug and Jersey both demonstrated high syntactic complexity, which 

corresponds to their use of vocabulary as well. However, Ladybug was a top 

performer in symbols, but Jersey lagged behind because he struggled with items 3, 4, 

and 5. As illustrated by these cases, there existed little evidence to indicate any 

correlation between the use of symbols and the use of narratives.  

Patterns of interrelation between VGS and LGS 
The solutions in VGS were not necessarily sequenced the same way as those in LGS. 

The narrative solutions displayed more logical connectors with linking words than 

did symbolic solutions. Evidence of logical connectors in the VGS included arrows 

and numerals. Five solutions out of 50 in VGS used ‘arrows’ or ‘numbers’ to indicate 

sequence, but 32 solutions in LGS used linking words; one solution used numbers to 

indicate the sequence of thinking. Although procedural description was a primary 
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pattern of LGS, the solutions in LGS were conceptual or procedural depending on the 

question. It was not rare that the same participant wrote a procedural narrative for a 

problem, then wrote a conceptual narrative for another one.  

There were six cases where the solutions in VGS were not congruous with the 

solutions in LGS. Among these cases, the symbolic solution helped identify 

notational mistakes and the narrative solution helped identify conceptual 

misunderstanding. For example, the first image below indicates a mistake of using 

“and” in writing the solution set. More formally, the solution should be {x| x < -3  x 

> 3}; the “and” should have been the disjunction, “or”. This suggests that either the 

participant was not attentive to the language of sets or did not process the solutions as 

elements of the set for all x where x
2
 – 6 > 3. In the second figure, the participant 

proposed a quadratic function, y = x
2
 – 6 with (0, -6) as the y-intercept, and stated that 

the parabola across the x-axis at x = -3 and x = 3. This implies that the participant 

may not understand that the critical numbers (i.e., boundary values) for the inequality 

x
2
 – a > b, where a and b are real numbers, are equivalent to the zeros of the 

quadratic function y = x
2
 – a – b.   

  
Figure 3: The symbolic solution with notational mistake and the narrative solution 

with conceptual misunderstanding 

 

IMPLICATIONS 
Research seeking to identify the process and nature of mathematical learning with 

regard to the importance of math symbols, narrative language, and how the two are 

perceived in future teaching of mathematics is necessary. For example, the case in 

which narrative solutions helped identify misunderstandings, and the logical 

connectors in LGS helped discover missing steps in VGS indicates the importance of 

narrative language and its potential to guide the learner by using the language to 

facilitate logical thinking and argument. Some participants recognized the role of 

language in the teaching of mathematics by using narratives to “teach students correct 

procedures,” and “language use allows teachers to see student’s conceptual 

understanding.”  

This supports the view that writing narratives in mathematics can ameliorate the 

tendency of relying solely, or even predominantly, on calculations or procedures and 

can create opportunities for productive discourses. Future research should seek to 
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determine, to a greater degree of precision, how language facilitates the 

understanding, expression, and transmission of mathematical content understanding. 

If we understand how VGS and LGS relate to each other, particularly in terms of 

capitalizing upon their respective instructional and learning strengths, then we will be 

able to enhance, and perhaps refine, how PTs learn mathematics in order to better 

support their students’ learning needs and improve their instructional skills.  

These teachers need their students to have meaningful engagement with activities that 

complement subject-matter instruction while also developing English language 

proficiency. Ideally AL aspects of language proficiency would be sought; however, 

the goal should be substantive movement towards academic achievement. In this way 

the probability of successfully completing the schooling cycle is improved, as is 

preparation for college and beyond.  
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A follow-up to Lin and Ho (2015, 2016), this study compares the conceptions of 

mathematics classroom teaching held by students and two groups of teachers. The 

participants comprised 53 fifth graders, 59 pre-service teachers and 38 in-service 

teachers, all of whom were asked to rank six selected drawings of mathematics 

classroom teaching based on their preferences. In addition, the student group was 

asked to describe their feelings about mathematics teaching in the drawings while the 

two teacher groups were asked to predict the students’ rankings. Overall, students’ 

and teachers’ preferences were fairly similar, with both preferring reform-based 

teaching over traditional methods. However, all groups of participants expressed a 

high affinity for traditional teaching if it was characterized by extensive student-

teacher interactions. Pre-service teachers’ preferences were more closely correlated 

to those of students than in-service teachers’ preferences were. 

INTRODUCTION 
This study extends our previous work that used a drawing-based method to 

investigate teachers’ conceptions about mathematics classroom teaching, along with 

students’ reactions to a selection of six drawings based on sketches made by teachers 

(Lin & Ho, 2015, 2016). For the present research, we recruited pre-service and in-

service teachers and asked them to rank the same teacher drawings that were used in 

our previous studies, and to predict how fifth-grade students would rank them. Then, 

the teachers’ ranking results from this study and the students’ results from our earlier 

study were compared. 

The drawing method has been used for more than two decades, and is especially 

popular for research in the social science (e.g., psychology, education) (Lee & 

Zeppelin, 2014; Mitchell, Theron, Stuart, Smith, & Campbell, 2011). It has generally 

been recognized as a way of accurately capturing teacher conceptions or beliefs about 

mathematics classroom teaching, the implicit or unconscious nature of which can be 

difficult to access via traditional methods such as Likert scales or interviews; this is 

because a drawing usually shows a person’s whole picture of something, including 

aspects s/he is not fully conscious of (Mitchell et al., 2011). Moreover, researchers 

have confirmed that using a drawing method can help obtain information such as 

attitude, emotion or identity that may strongly influence teachers’ conceptions or 

beliefs about mathematics classroom teaching. An argument can even be made that 



Lin 

________________________________________________________________________________________________________________________

3-178    PME 41 – 2017 

teachers’ conceptions or beliefs will not be well understood if the drawing method is 

not utilized (Lee & Zeppelin, 2014). 

This study extends the drawing method through the use of ranking and the prediction 

of ranking by others. A single drawing of classroom teaching may reflect one’s whole 

picture about mathematics teaching in the classroom. As such, ranking classroom 

teaching drawings could help us understand how students and teachers think about 

these drawings (different types of teaching) and their preference to these drawings 

may reveal their conceptions of good mathematics teaching in the classroom. 

Drawings used in this study could help us to investigate the relationships between the 

differing conceptions held by students and teachers both more efficiently and more 

broadly (e.g., collect feeling data by asking participants’ emotion about a drawing). 

To the extent that we accept conceptions and beliefs as the core of teacher change 

(Philipp, 2007), this will eventually benefit teacher educators responsible for 

mathematics pre-service teacher training and in-service teacher professional 

development. 

METHOD 
We adopted a survey method that used questionnaires to collect the participants’ 

opinions about teacher-generated drawings of mathematics teaching. 

Participants 
Student group  
This part of the sample consisted of 53 fifth-grade students (28 male, 25 female) from 

two classes at a school in Taiwan (also see in Lin & Ho, 2016). 

Pre-service teacher group 
We recruited 59 pre-service elementary teachers (12 male, 47 female) from a public 

university in the north of Taiwan that specializes in teacher training. Three of them 

were master’s students majoring in Taiwanese language teaching, and the other 56 

were undergraduates. Among these 56, only four were majoring in scientific subjects, 

as compared to 43 in education and nine in other social-science subjects. 

In-service teacher group 
This group consisted of 38 in-service elementary teachers (4 male, 34 female), of 

whom 23 had bachelor’s degrees; of these 23, 13 were pursuing master’s degrees in 

mathematics education. The other 15 in-service teachers already held master’s 

degrees. The group’s mathematics teaching experience ranged from four to 30 years, 

with the average being 9.4 years. More than two-thirds of the in-service group (n=26) 

reported using a mixture of teacher-centered and student-centered approaches when 

teaching elementary mathematics. Eight others favored a more teacher-centered 

approach, and two implemented a more student-centered one. The majority (n=21; 

55%) of the in-service teachers taught at urban elementary schools in the north of 

Taiwan, while the remainder were employed in suburban schools (n=8; 21%) or rural 

ones (n=9; 24%) were employed at suburban schools and rural schools, respectively. 
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Student Questionnaire 
In order to create our student questionnaire (SQ), six distinctive drawings of 

mathematics classrooms were selected from among 32 such drawings that had been 

created by a separate group of pre-service teachers in our earlier study (Lin & Ho, 

2015). Each drawing represents a specific type of mathematics teaching, ranging 

from very traditional (Math Test; hereafter, MT) to reform-based teaching (Play a 

Math Game, MG); all are shown in Figure 1. 
The MT drawing shows a teacher watching a mathematics test in the classroom, 

which may imply the conception that teaching mathematics is centered on testing. 

The drawing Walk Around (WA) also depicts a teacher-centered approach, but with 

some teacher-student interactions, and notably, the teacher seems very happy in her 

role. The drawing Mini-whiteboard (MW) shows a mixed teaching approach: a 

teacher is lecturing, but students have chance to write down their own thinking and to 

discuss it with their peers. Interactive Whiteboard (IW) relates to the use of the titular 

technology in a lecture-based instructional setting, and Group Work (GW) represents 

a typical reform-based teaching style in which the teacher and students work together 

on a hands-on activity. Lastly, MG shows an ideal form of teaching, with the teacher 

and students playing a mathematics game together.  

In order to reduce bias, these selected drawings were re-drawn by a skillful cartoonist 

in a uniform style. For example, the teachers and students look similar across all six 

drawings. In the SQ, all students were asked about (1) how much they liked each 

drawing (five-point Likert scale), (2) their reasons for these preferences, (3) their 

feelings about each of the drawings, and (4) their reasons for these feelings. Lastly, 

(5) they were asked to rank all six drawings according to how much they liked them. 

The SQ is more fully described in Lin and Ho (2016). 

Teacher Questionnaire 
Our teacher questionnaire (TQ) was revised from the SQ used in Lin and Ho (2016). 

In the TQ, the respondents were firstly told that they would see the six selected 

drawings of mathematics classroom teaching, based on sketches made by pre-service 

teachers in our earlier study (Lin & Ho, 2015). Then, each drawing was shown to 

each teacher participant on a separate page, along with annotations that described 

what the teacher and students were doing. It is noted that these annotations were 

written by the pre-service teachers in Lin and Ho (2015) who made the drawings. 

Next, the respondents were asked to rank all six drawings from “Like most” to “Like 

least” based on their personal preferences, and then rank them again based on their 

prediction of fifth-grade students’ preferences. They were also asked to write down 

their reasons for both their own preferences and their predictions of student 

preferences. 

Data Analysis 
Respondents’ rankings – including student preferences, teacher preferences and 

teacher predictions – were scored from 1 (“Like least”) to 6 (“Like most”), and the 

reasons given for ranking choices were carefully and repeatedly reviewed by the 

research team for their underlying logic/arguments. 
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The mean scores and also the total number of positive and negative feelings were 

calculated using SPSS 22.0. Additionally, Kendall’s tau (τ) was employed to analyze 

the relationships between the differing conceptions of mathematics classroom 

teaching held by students, pre-service teachers and in-service teachers, also within 

SPSS 22.0. 

             

         

Figure 1: The six selected drawings, ranging from very traditional: watch a math test 

(MT) to very reform-based: play a math game (MG) 

RESULTS 
Table 1 shows ranking orders for the six drawings by (1) the fifth-graders’ mean 

preference scores, (2) their mean ranking scores, (3) their numbers of positive vs. 

negative feelings, (4) the in- and pre-service teachers’ mean self-ranking scores, and 

(5) the mean teacher-prediction scores for student rankings. 

Overall, the results across all scales and groups were somewhat similar. As we might 

expect, MT was the least liked drawing among all three groups and across all scales, 

consistently receiving the lowest scores (all rank 6 in Table 1). Moreover, all the in-

service teachers identically predicted that drawing MT would be least liked by 

students (Mean rank scores=1, SD=0). GW and MG were the two drawings liked the 

most by all three groups, but the students favored MG, whereas both teacher groups 

preferred GW. Nevertheless, both in- and pre-service teachers successfully predicted 

the student rankings that would be assigned to drawings MG and GW (MG: Student 

Rank=In-service Pred=pre-service Pred=1; GW: Student Rank=In-service Pred=Pre-

service Pred=2). 
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 Students (n=53)  In-service (n=38)  Pre-service (n=59) 

ID Pref. Rank N+ N-  Self. Pred.  Self. Pred. 

MT 6 6 6 6  6 6  6 6 

WA 2 3 4.5 4  3 5  3 5 

MW 5 5 4.5 5  4 4  5 4 

IW 4 4 3 3  5 3  4 3 

GW 3 2 2 2  1 2  1 2 

MG 1 1 1 1  2 1  2 1 

Note. Pref=student preference (5-point Likert scale); Rank=student ranking; N+= number of 

positive feelings (interested + happy + innovative + others); N-= number of negative feelings 

(bored + scared + worried + others); Self.=teacher self-ranking; Pred.=prediction of student ranking 

Table 1: Rank orders of the six drawings by different scales and groups 

For the remaining three drawings (WA, MW, and IW), the results across different 

scales and groups exhibited more variation. WA garnered an overall rank-3 position 

across different groups (Student Rank=In-service Self.=Pre-service Self.=3), but the 

mean ranking scores varied across other scales (Student Pref.=2; N+, N-= 4; In-

service Pred.=Pre-service Pred.=5). Drawings IW and MV likewise attained overall 

rank-4 and rank-5 positions, but again based on varying results across different scales 

and groups (e.g., IW: Students Rank=4, In-service Self.=5; MW: In-service self.=4, 

Pre-service Self.=5). As such, the results pertaining to drawings WA, IW, and MT 

were of greater interest than those of the other three drawings, and are therefore 

further discussed below. 

Drawing WA. Among both in- and pre-service teachers, there was a marked 

difference between the teachers’ own preference for drawing WA (both Rank 3) and 

their prediction of students’ preference for it (both Rank 5). However, the students’ 

actual ranking of this drawing (Rank=3) was much closer to the teachers’ ranking of 

it, while the students’ mean preference score for it were even higher (Rank=2). The 

in- and pre-service teachers reported liking drawing WA because it was a typical 

mathematics classroom setting (the way they usually do every day) and the activity it 

depicted made it easy to convey concepts. However, due to drawing WA depicting a 

teacher-centered approach, teachers tended to believe that students would not like it 

as much they did. As one in-service teacher (In-Teacher 01) explained: 

“This is a common teaching strategy used in the classroom. Teachers are able to 

demonstrate concepts and check the correctness of students’ thinking at the same 

time. Maintaining control of their classrooms all the time. [But regarding the 

prediction]: Would it be better if [teachers] could provide a slightly different 

teaching approach for students’ learning?” (Self=1st, Pred=3rd) 

This was echoed by a pre-service teacher (Pre-Teacher 03), who said: 
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“This teaching approach could better help students build foundations of concepts. 

[But regarding the prediction]: Students prefer more activities, instead of listening 

all the time.” (Self=3rd, Pred=5th) 

However, many students said they liked WA because it reflected the caring 

relationships they expected to have with their teachers: 

Student 03: “[Walking around] can let the teacher and students interact more 

closely, and the teacher can actually supervise student learning.” (Pref=4 of 5 point, 

Rank=1st) 

Student 35: “[I]f some students are afraid of asking questions, they have a chance to 

ask the teacher when she walks nearby.” (Pref=4 of 5 point, Rank=4th) 

Drawing IW. Technology is not frequently used in Taiwanese mathematics 

classrooms. Therefore, we had no strong sense of how students or teachers would 

respond to this depiction of an innovative classroom technology. As can be seen from 

Table 1, none of our three respondent groups seemed to like it very much (Student 

Rank=4, In-service Self=5, Pre-service Self=4). Nevertheless, both teacher groups 

predicted that students would like it better than teachers did (Pred=3>4). In their 

written responses, some students said they did not like IW because they were 

uncomfortable about being seated in a circle, or that they did not think using an 

interactive whiteboard would make any difference: “If we are seated in a circle, 

students who sit at the sides or at the back cannot see the board. It reduces our 

learning efficiency”, as Student 7-03 put it. 

Drawing MT. Even though Drawing MT received the lowest overall rank (Table 1), 

some students (n=9) still expressed a preference for taking examinations. For 

example, Student 1-10 reported, “it can help us know how much we have learned.” 

However, more than half of the students who said they liked MT (n=5) associated it 

with a negative feeling – “worried” – and only one student gave MT both a high 

preference score and a positive feeling (the remaining three expressing neutral 

feelings). The student who responded the most positively (Student 1-10) wrote: 

“Sometimes, you can pretend it is playing a game.” 

The great majority of the teacher participants (In-service: n=35/38, Pre-service: 

n=54/59) gave drawing MT low ranks (Rank 5 or 6). However, two in-service and 

two pre-service teachers have it high ranks (Rank 1 or 2). One in-service teacher 

(Teacher 07) said she preferred it because “teachers can take a rest when watching 

an exam”. Both teacher groups were able to successfully predict the ranking that 

students would assign to drawing MT (Pred=Student Rank=6). 

Table 2 shows the Kendall’s tau correlation coefficients across our different scales 

and groups. Overall, the correlation coefficients among the student-, in-service and 

pre-service groups were somewhat positive. Notably, the in-service and pre-service 

teachers’ predictions of student rankings were exactly the same (τ=1, p<.01), and 

both sets of teachers’ predictions significantly correlated to the student group’s 
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ranking and feelings either strongly or very strongly (τSRank=.733, p<.05; τSN+=.966, 

p<.01; τSN-=.867, p<.05). However, the teachers’ predictions did not have a 

significant correlation with student preferences (τSPref.=.600, p>.05). 

If we compare the in-service and pre-service teachers’ self-rankings shown in Table 

2, it is noteworthy that the pre-service group’s self-rankings were more correlated to 

students’ rankings than the in-service teachers’ self-rankings were. The correlation 

coefficient between pre-service teachers’ and students’ rankings was τ=.867 (p<.01), 

as compared to τ=.733 (p<.05) for in-service teachers. In addition, pre-service 

teachers’ self-rankings were significantly correlated to the rank of students’ mean 

preference scores (τ=.733, p<.01) whereas pre-service teachers’ self-rankings were 

not (τ=.600, p>.05). More importantly, the pre-service teachers’ self-rankings seemed 

to work better as predictors of student rankings than their predictions of student 

rankings did (τPreSelf-SRank=.867 > τPrePred-SRank=.733, τPreSelf-SPref=.733 (p<.05) > τPrePred-

SRank=.600 (p>.05)). 

 SPref SRank SN+ SN- InSelf InPred PreSelf PrePred 

SPref --        

SRank .867* --       

SN+ .690 .828* --      

SN- .733* .867* .966** --     

InSelf .600 .733* .552 .600 --    

InPred .600 .733* .966** .867* .467 --   

PreSelf .733* .867* .690 .733* .867* .600 --  

PrePred .600 .733* .966** .867* .467 1.00** .600 -- 

  Note. “S”=students; “In”= in-service teachers; “Pre”=pre-service teachers  

Table 2: Kendall’s tau correlation coefficients across different scales and groups. 

CONCLUSION 
The results of this study indicate that the conceptions of mathematics teaching held 

by Taiwanese fifth graders, pre-service teachers and in-service teachers are 

reasonably consistent. In particular, both groups of teachers’ predictions of students’ 

ranking results were exactly the same. This result is somewhat inconsistent with 

Murphy, Delli, and Edwards (2004) which shows beliefs about good teaching 

between elementary students, pre-service teachers and in-service teachers were 

somewhat different. In addition, to our surprise, pre-service teachers’ self-rankings 

were even more closely correlated to students’ preferences, rankings, and feelings. 

Such results contradict previous studies’ findings that experienced teachers know 

students better than inexperienced teachers do (Herbst & Kosko, 2014). Conceivably, 

though pre-service teachers have not developed solid knowledge of students in 
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teaching mathematics, they may nevertheless have a level of rapport with students 

due to their age and their own current roles as students. 

Our results also indicated that, although both teacher groups and the student group 

tended to prefer reform-based teaching (e.g., MG), drawing WA appealed to all three 

of them. This may imply that traditional teaching is not totally disliked by students. 

Provided that it contains appropriate student-teacher interactions, students will still 

like it. More importantly, this drawing helped us identify a misconception among 

teachers that students did not like this kind of traditional teaching as much as they 

themselves did. 

In short, the results across the three scales that we used – preference, rank and feeling 

– were mostly highly correlated, but not exactly the same; and we also found that the 

student positive-feeling was more correlated to teachers’ predictions than the other 

two scales were. However, it remains unclear which scale best reveals students’ own 

conceptions, and we recommend that future studies further explore this issue.  
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PRE-SERVICE TEACHERS’ REFLECTIONS OF THE 
SUMMARISE PHASE OF A LESSON STUDY 

Sharyn Livy, Ann Downton and Eisuke Saito 

Monash University 

There is growing consensus that we need to improve the quality of pre-service 

teacher education. This paper reports on pre-service teachers’ observations and 

reflections of the ‘summarise phase’ of a lesson study in which Year 5 and 6 students 

engaged with a challenging mathematical task. The findings suggest that the lesson 

study assisted pre-service teachers to challenge their preconceived notions of the 

teachers’ role within a lesson to support learners, and to identify critical aspects 

within the ‘summarise phase’ of a lesson that demonstrated effective pedagogy. Such 

an experience may equip them to better understand student learning and current 

pedagogical practices for teaching primary mathematics. 

INTRODUCTION 
Recently within Australia there has been an increased focused on how best to 

improve teacher education. The Teacher Education Ministerial Advisory Group 

(2014) recommended that teacher education should be integrated with practice in 

schools as part of pre-service teachers’ professional learning. This view concurs with 

those of earlier scholars who argued that teachers learn best when activities are 

conducted in a school context (Darling-Hammond, 1998). Given that, recent scholars 

(Saito & Yeo, 2017), suggest that purposeful learning experiences for primary pre-

service teachers might include lesson study. Such a study provides participants with 

opportunities to develop understanding of how students learning and current 

pedagogical practices including how to guide productive discussion.  

The primary pre-service teachers, reported here, had an opportunity to experience a 

lesson study as part of their course.  The purpose of the study was to link theory and 

practice in relation to the lesson sequence and use of a challenging mathematical task. 

The emphasise within the lesson structure used in this study focused on students’ 

learning from each other during the discussion or the ‘summarise phase’ (Sullivan et 

al., 2015) of the lesson.  It is the pre-service teachers’ observations and reflections of 

the ‘summarise phase’ of the lesson study that is reported in this paper. The following 

research question guided our research. 

What are the critical aspects of the ‘summarise phase’ that pre-service teachers 

report on during a lesson study? 

REVIEW OF LITERATURE 
Challenging student thinking 
Students should be provided with rigorous experiences when learning mathematics 

and encouraged to rely on their knowledge in different contexts including unfamiliar 
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situations (Sullivan et al., 2013). The teacher plays an important role when planning 

these experiences which require students to take responsibility for their own learning. 

For instance, the teacher might minimise the lesson introduction to enable students to 

first attempt the task by themselves and engage in productive struggle (Livy, Holmes, 

Ingram, Linsell, & Sullivan, 2016). 

Whole class discussion is integral to effective teaching and learning as it provides an 

opportunity for students to clarify their understanding, justify their thinking, consider 

different solution strategies, and provides teachers with insights into student thinking 

(Anthony & Walshaw, 2009). A teacher’s role in discussion is to listen, hold back 

from telling, invite different students to contribute, and encourage students to 

construct and evaluate their own and others’ mathematical ideas (McDonough & 

Clarke, 2003). To orchestrate such discussions requires skill, and Smith and Stein 

(2011) argue that novices require a set of practices to use to facilitate productive 

mathematics discussion. They advocate the following five practices: anticipating, 

monitoring, selecting, sequencing and connecting. Sequencing and connecting 

practices are included within a ‘summarise phase’ (Sullivan et al., 2015) where the 

lesson is paused, and selected students discuss and model their response, and share 

their thinking and strategies. Experiences such as this extend the understanding for 

other class members (Smith & Stein, 2011)  

Perceptions of learning and teaching 
Lesson study is an approach of professional development and generally speaking the 

participants – (1) collaboratively plan the study, (2) implement the study lesson, (3) 

discuss the lesson, (4) revise the lesson plan (optional) and (6) share thoughts about 

the lesson (Fernández & Yoshida, 2004). Pre-service teachers participating in lesson 

study have an opportunity to revisit their judgements about students’ abilities and 

teacher expectations, strengthen their subject knowledge, and extend their 

understanding of the complexities of teaching by reflecting together in a mutually 

supportive climate (Cajkeler & Wood, 2016). Cluphf, Lux, and Scott (2012) agree 

that by collaborating with professional teachers, pre-service teachers can reduce their 

initial anxiety by applying what they learnt in their teacher education programme to 

the real classroom contexts. A recent study highlighted that pre-service teachers and 

their mentors learnt together whilst focusing on the improvement of teaching (Cajkler 

& Wood, 2016). We adopted a lesson study approach for our study as it provided a 

structure for the pre-service teachers’ observations, and post lesson reflection and 

discussion.  

METHODOLOGY 
The data reported in this paper were collected during 20 pre-service teachers’ course 

experience that included a lesson study and observation of a Year 5 and 6 (N=23) 

lesson related to geometric reasoning. The first author taught a lesson asking the 

students to solve a mathematical task related to geometric reasoning and in particular 

the size of angles within pattern blocks (Figure 1). The pre-service teachers and the 

second author observed the lesson, taking field notes. 
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In a circle there are 360 degrees. Work out the 

exact size of as many of the angles in this shape 

as you can. Explain how you worked them out. 

Figure 1: Working out the size of angles. 

The approach chosen for the study was a lesson study including pre- and post-testing 

(of students), implementing and observing the research lesson, evaluating the 

research lesson, and reporting (Saito & Yeo, 2017). The process of lesson study in 

this case, was designed to support and extend pre-service teachers’ pedagogical 

knowledge for teaching geometry. The lesson included three phases, launch, explore, 

summarise. In the ‘launch phase’ students are expected to attempt the task without 

help from the teacher or their peers. During the ‘explore phase’ the teacher monitors 

and selects students to present in the ‘summarise phase’, and provides prompts for 

students requiring help or extension. In the ‘summarise phase’ the teacher stops the 

lesson and selected students share their responses to the task. This phase can occur 

more than once during the lesson (Sullivan et al., 2015). After the lesson the pre-

service teachers met with the classroom teacher and first two authors to discuss and 

reflect on their experience. 

Data collection and analysis 
Qualitative data collected from the pre-service teachers included their reflections of 

the research lesson and written assignments reporting on their experiences and 

observation of one student. This paper reports on the results from the analysis of the 

pre-service teachers’ assignments relating to the ‘summarise phase’ of the lesson. The 

data from the assignments were collated to identify descriptions categorised 

according to themes that emerged from the analysis (Miles, Huberman & Saldana, 

2014). The first two authors checked each other’s coding for consistency and 

identified a total of 12 categories. These categories and their descriptors are presented 

in Table 1. While it could be argued that all of these categories relate to pedagogical 

practices, the purpose of this paper is to identify the particular aspects pre-service 

teachers noticed or attended to when observing an experienced teacher in a 

mathematics lesson. 

 
Category Descriptor 

Timing Spacing of student sharing during each ‘summarise phase’ 

Nature of the task Describing aspects of the task such as challenge, open-ended 

Choice of teacher questioning Strategic questions used to probe or challenge student thinking or 

orchestrate student led discussion 

Selection of students Teacher strategically chose students to share their thinking 

Scaffolding student learning  Experiences that enhance student learning and understanding (e.g., 

use of enabling and extending prompts, questioning, wait time) 

Awareness of how children learn Pre-service teachers’ discussion of how children learn mathematics 

Challenging student thinking Students present different strategies to their peers, and peers 

challenging strategies used 

Learning how to teach Pre-service teachers’ discussion of the pedagogies the teacher used 
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to orchestrate the ‘summarise phase’ during the lesson 

Minimal teacher instruction or 

assistance 

Teacher held back from assisting students to allow them to 

experience ‘productive struggle’ and refrained from summarising 

student learning and thinking 

Students learning from others Student recording and sharing their thinking provided a springboard 

for other students to explore alternative pathways 

Strategies students use Noticing the range of strategies students used 

Positive disposition The teacher valuing all students’ contributions including incorrect 

answers  

  Table 1: Categorisation of critical aspects of the ‘summarise phase’ 

RESULTS AND DISCUSSION 
From the analysis of the 20 pre-service teachers’ assignments it was evident that they 

all reported on at least one category of the critical aspects of the ‘summarise phase’ 

of the lesson. The frequency of use of each category is presented in Table 2. The 

most common category was students learning from each other (15) followed by how 

children learn, and student disposition (13), scaffolding student learning (12), then 

timing, learning how to teach, and strategies students use (11). The fact that so many 

pre-service teachers reported on these aspects highlights the benefit of engaging them 

in a lesson study. The fact that so many comments related to how children learn 

mathematics is reflected of their learning experience provided during tutorials and 

their academic reading, hence important when developing their knowledge for 

primary mathematics teaching. A key feature of the lesson was that student 

misconceptions or errors were discussed as part of the learning and students had an 

opportunity to assist with identifying the correct solution or error (Alice, Rose and 

Erin). The three least common categories were selection of students, challenging 

student thinking, and minimal teacher instruction or assistance (4). A possible reason 

for the pre-service teachers’ lack of attention to these categories was due to the fact 

that the lesson approach that they observed was not typical of their education 

program (practicum experiences) or their own schooling.  
Category     Frequency of use 

Timing 11 

Nature of the task 8 

Choice of teacher questioning 7 

Selection of students 4 

Scaffolding student learning 12 

Awareness of how children learn 13 

Challenging student thinking 4 

Learning how to teach 11 

Minimal teacher instruction or assistance 4 

Students learning from others 15 

Strategies students use 11 

Positive disposition 13 

 Table 2: Frequency of pre-service teachers’ (n=20) reporting on aspects of the 

 ‘summarise phase’ of the lesson 

Having seen the distribution of pre-service teachers’ insights, providing examples of 

these in Table 3 indicates the range of perspective on each category and the nature of 

their noticing. For instance, some pre-service teachers commented on how particular 
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aspects impacted on the students’ learning (scaffolding learning, and learning from 

others) while others related to their own learning (Kylie, Dora, Lily). Some overlap 

between the categories is evident, for example, Carla’s comment on timing related to 

learning how to teach in this way. Dora’s reflections were insightful as she was 

particularly sceptical before the lesson about the structure and how students would be 

supported in their learning. Limited space within this paper precludes us from 

reporting on all the pre-service teachers’ insights.  

Category Evidence extracted from pre-service teachers’ assignments 

Timing Every ten minutes there was sharing after the independent learning time... providing a 

chance to hear other solutions and work out whether their way of thinking was getting 

them to the right answer. (Casey) 

The working time between each student presenter gave students a chance to think about 

their answers and apply their knowledge or strategy they learnt from their peers. (Naomi) 

Nature of 

the task 

Challenging tasks encourage students to connect ideas and apply to another context. 

(Sally) 

Providing a challenging task allowed students to learn outside their comfort zone and 

approach tasks with new strategies. (Libby) 

Throughout this experience, I learnt about the benefits of offering students challenging 

tasks and a lot about myself as a mathematical learner. (Kylie) 

Choice of 

teacher 

questioning 

Each prompt is targeted and should be well planned and thought out ... I was able to see 

that this approach could work despite my reservations. (Dora) 

The teacher probed Imogen’s thinking to merely try to help her to justify her answer and 

understand her way of thinking. (Alice)  

Selection of 

students 

These summaries were ordered in a particular way to provide the most benefit to the 

students. Starting with the easier shapes... then moving onto the harder ones was an 

effective strategy to help students who may be struggling with the task and to help them 

gain a greater understanding. (Rose) 

When selecting students to share it is important that teachers select some who have 

incorporated common strategies, and some that lead to incorrect answers. (Alice) 

Scaffolding 

student 

learning  

The summary phases promoted the sharing of worthwhile ideas, which then facilitated the 

learning of those in the class who may have been struggling or needed a prompt. (Maria) 

Following the [second] summary Hazel realized she had the wrong angles for her 

triangles and corrected her mistake, then following on from this she applied this 

knowledge to the rest of the triangles in the hexagon. (Rose). 

The summary stage was especially helpful in reassuring Penny was on the right track 

when she saw that other students had found the same angles as her in the red hexagon. 

(Erin) 

The emphasis on peer discussion allowed students who were both struggling and who 

were confident in their own working out to see other students’ way of thinking and ways 

of understanding different procedures of discovering an answer. (Megan) 

Awareness 

of how 

children 

learn 

Leaning by exploring different strategies. (James)  

By highlighting common misconceptions, the teacher positions the students to be 

corrected and learn from other students rather than merely being told they have answered 

incorrectly. (Alice) 

Challenging 

student 

The lesson highlighted to me that students require a specific level of challenge, and that 

students’ benefit immensely from this type of challenge... (Eva) 
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thinking It also helped to make learning more concrete for those selected to share as they were 

challenged to express their knowledge in words that their peers would understand. 

(Maria) 

Learning 

how to teach 

Having the opportunity to see the summary phase in action allowed me to see the benefits 

to student learning. (Dora) 

It was interesting to watch the class have a go on their own and then share different 

solutions roughly every ten minutes. Teaching the class in this way gave students 

independent learning time while at the same time, gave them a chance to hear others’ 

solutions and whether their way of thinking was getting them to the answer. (Carla) 

Minimal 

teacher 

instruction 

or assistance 

The students were able to work on their own through the challenging task with minimal 

instruction and minimal assistance from teachers and pre-service teachers. (Cassie) 

Noticing how little talking the teacher does during the lesson was powerful. (Dora) 

Providing a problem-solving question allows students to delve into their own knowledge 

without listening to a teacher tell them how it should be completed. (Libby) 

Students 

learning 

from others 

Highlights the influence of peer-oriented learning has on student potential. (Erin) 

It was an interesting way to see students use their prior knowledge and ideas from their 

fellow classmates to progress through the learning tasks as students had little or no help 

from their teacher. (Anne) 

From the class discussion, Maisie learnt how to work on some of the shapes she was 

struggling with and she also applied the new learning she learnt from others. (Carla) 

The emphasis on peer discussion allowed students who were both struggling and who 

were confident in their own working out to see other students’ way of thinking and ways 

of understanding different procedures of discovering an answer. (Megan) 

Even if a student already knew how to solve the problem their knowledge was expanded 

as they were exposed to and considered other approaches. (Maria) 

Strategies 

students use 

When students had to explain their strategies, convince others of their answers, students 

collaborated together to try and help each other to explain their working out. (Naomi) 

Within the lesson I became familiar with various methods students used when answering 

a particular learning task. The summary phase highlighted the student thinking which was 

an aspect of the lesson I found most stimulating, these students managed to use existing 

knowledge on division, the angles of an equilateral triangle equaling 180 degrees as well 

as a straight line. (Lily) 

Positive 

disposition 

The teacher did not let on that a solution was wrong but asked the class if anyone could 

help out… by doing so this showed the students that all mathematical thinking is valued. 

(Dora) 

Creating an engaging classroom can allow students to feel engaged in their work and 

allow them to achieve more. (Libby) 

The findings from the lesson demonstrated that a challenging task and effective peer 

learning can influence a student’s ability to be persistent and successful when exposed to 

an unfamiliar task. (Rhonda) 

 Table 3: Categorisation of critical aspects identified by pre-service teachers 

The pre-service teachers’ reflection within each category demonstrates the breadth 

and depth of the value of this experience. Two key aspects that many pre-service 

teachers noticed were the conscious spacing of timing of students’ independent 

working time on task and sharing of student discussion, and how the teacher 

sequenced the student learning by pausing the lesson at regular intervals as part of the 

‘summarise phase’. Not only did the lesson study link theory to practice, it enabled 
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them to see the specific skills required by the teacher to facilitate a productive 

mathematics discussion and how to enact the five practices (Smith & Stein, 2011). 

Their reflections also indicated the power of the ‘summarise phase’ to scaffold 

student learning and for students to learn from their peers in a supportive learning 

environment (Anthony & Walshaw, 2009; McDonough & Clarke, 2003), and the 

impact this had on their pedagogical content knowledge (Cajkler & Wood, 2016).   

An overall reflection by Alice highlighted the nature of the task and pre-service 

teachers learning how to teach. 

Throughout the process of observing this lesson and later analysing the student’s 

achievement and responses, I learnt that the discussion during the ‘summarise phase’ of a 

lesson has more instructional benefit than any other stage of the lesson. For this to occur, 

teachers must select worthwhile tasks in order to promote worthwhile discussion.  

CONCLUDING REMARKS 
Critical aspects of the pre-services teachers’ responses highlighted that engaging in 

this experience helped to dispel some of their preconceived notions of how student 

learn mathematics and the teacher’s role within a lesson to support learning. Learning 

experiences during tutorials can assist pre-service teachers to develop their 

knowledge of how to teach mathematics, how children learn, and suggestions for 

differentiating learning. However, the opportunity to observe a lesson, interact with 

students enabled the pre-service teachers to identify critical aspects of the ‘summaries 

phase’ and realise the importance of minimal teacher talk or assistance and consider 

how they might implement these strategies within their future teaching. These results 

highlight the many opportunities for pre-service teachers to extend their knowledge 

for teaching by observing a lesson study and provided an example of one way to 

possibly improve teacher education. 
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This investigation examines the spatial orientation performance of a nationally-

representative cohort of secondary school students drawn from national mathematics 

assessment data. This investigation analyses the changes in performance on spatial 

orientation tasks (maps) of Grade 7 (ages 12-13) and Grade 9 (ages 14-15) cohorts 

across two time periods. Although spatial orientation performance increased 

significantly from Grade 7 to Grade 9, effect sizes were relatively small. Males 

outperformed females on both items, with performance differences increasing from 

Grade 7 to Grade 9. Both males and females had difficulties re-orientating 

themselves within the map, especially when the question had multiple changes in 

orientation.  

INTRODUCTION 
There is a strong nexus between mathematics outcomes and assessment, with similar 

links between assessment, learning and instruction. In Australia the national 

assessment platform is the National Assessment Program –Literacy and Numeracy 

(NAPLAN). This assessment covers mathematics content and numeracy elements 

from the national curriculum and is conducted annually across Grades 3, 5, 7, and 9. 

One feature of the NAPLAN is the use of spatial items, that is, items that require 

spatial thinking and require minimal, if any, number computation. These items are 

directly associated with the using spatial reasoning element of Numeracy embedded 

throughout the Australian curriculum. Spatial reasoning has been identified as an 

important aspect of mathematical understanding (Lowrie, Logan & Ramful, 2016; 

Sinclair & Bruce, 2014) and studies suggest strong associations between spatial 

reasoning and success in Science, Technology, Engineering and Mathematics 

(STEM) disciplines (Wai, Lubinski, & Benbow, 2009; Uttal & Cohen, 2012). Hence, 

items that assess spatial reasoning provide insight into a somewhat silent aspect of 

many curricula, but one that may have important implications as students’ progress 

through the schooling years.  

Another feature of the NAPLAN is the repetition of items across grade levels within 

any given yearly test. For example, the same item may appear in the Grade 3 and 

Grade 5 assessment. This is undertaken to ensure consistency and validity across 

grade levels. This paper reports on two such spatial items that appeared across Grade 

7 and Grade 9 assessments. These spatial items were map questions, where the 

students were required to navigate and orientate themselves within the question 
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space. This study investigated the difference in performance between the two grade 

levels and considers gender differences with respect to performance and multiple-

choice responses on the two map items.  

UNDERSTANDING AND INTERPRETING MAPS 
Maps provide a relatively authentic context for learning mathematics and assessing 

spatial knowledge, with the ability to interpret or decode maps requiring students to 

analyse locations (through position and placement) and attributes (what is actually 

represented); and understand that the map representation is presented within some 

form of scale (Wiegand, 2006). However, students do not always find their 

interpretation straightforward. For example, Diezmann and Lowrie (2008) reported 

that 10- to 13-year-olds experienced difficulty with some of the vocabulary presented 

in maps; students were distracted by different foci on the map; and information 

critical to understanding was often overlooked. Other difficulties identified in Liben’s 

(2008) research relate to children misinterpreting the representation of symbols and 

confusion over perspectives and angles used to represent different maps (for example, 

elevation view and birds-eye view). As a consequence, decoding and understanding a 

map require knowledge of map attributes. Wiegand (2006) identified a framework 

with three levels of sophistication involved in map interpretation. This framework 

was used to interpret the data. The first stage involves extracting information from a 

map and generally reading symbols, texts and attributes. The second analysis stage, 

involves ordering and sequencing information, recognising perspective and 

wayfinding. Finally, interpretation requires higher levels of problem solving and 

decision making involving the application of information, such as multiple 

navigational cues and scale. In addition, proficiency with map tasks requires 

perceptual and cognitive processing associated with visualization and spatial 

orientation ability respectively.  

Spatial orientation and gender differences 
Spatial orientation relates to the self-to-object representational system (Kozhevnikov 

& Hegarty, 2001) which is seen as establishing “spatial relations in body-centered 

coordinates, using the body axes of front-back, right-left, and up-down” (McNamara, 

2003, p. 181). Generally, spatial orientation is associated with navigation, wayfinding 

and perspective taking. Previous research has examined the differences between 

males and females on spatial orientation tasks, with males generally outperforming 

females (Bosco, Longoni, & Vecchi, 2004). However, Wolbers and Hegarty (2010) 

highlighted that much of the research manifests from the different strategies and 

approaches used to navigate and wayfind by males and females. Lawton and Kallai 

(2002) found that females preferred route-based information strategies, for example, 

receiving directions that explained the number of streets to pass before turning. By 

contrast, males preferred orientation-based information strategies such as keeping in 

mind the direction from which they came and keeping track of the relationship 

between where they were and the next place to change direction. Other studies have 
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indicated that females prefer using landmarks and known routes, focusing on more 

environmental signs in order to stay orientated. However, males prefer to use cardinal 

directions and Euclidean information and are more likely to utilise geometry-based 

thinking to remain oriented within an environment (e.g., Bosco, Longoni, & Vecchi, 

2004; Coluccia & Louse, 2004; Lin et al., 2012; Saucier et al., 2002). 

This body of research highlights the need to consider performance differences (or 

otherwise) with respect to gender, but also the strategies employed to solve these 

spatially-demanding tasks.  

DESIGN AND METHODS  
This study utilised a secondary data analysis design, from a large nationally-

represented data set. The data are drawn from the Numeracy assessment of the 

NAPLAN provided by the Australian Curriculum, Assessment and Reporting 

Authority (ACARA). Within this paper three research questions are explored: 

 Are there performance differences between students from Grade 7 and 

Grade 9 on the same spatial orientation items?  

 Are there performance differences between males and females on the same 

Map items across grade levels? 

 What difficulties do males and females experience on Map items across 

grade levels?  

The Spatial Orientation Map Items 
The two items chosen for this paper were typical map items found across the 

NAPLAN and required students to contend with multiple changes in orientation (see 

Appendix for items). The Plum Road item was selected from the 2010 NAPLAN and 

the Park Map was selected from the 2013 NAPLAN. Both items were repeated in the 

Grade 7 and Grade 9 assessment of the respective years, and were of varying 

difficulty based on reported means (see Queensland Studies Authority, n.d.).  

Participants 
The number of participants for each item across the two grade levels was as follows: 

Plum Road Grade 7 = 20,441 (Female = 9,954) and Grade 9 = 29,369 (Female = 

14,073); and Park Map Grade 7 = 18,947 (Female = 9,772) and Grade 9 = 29,552 

(Female = 15,128). The average ages of students taking the NAPLAN were: 2010 

Grade 7 = 12 years, 6 months and Grade 9 = 14 years, 5 months; and 2013 Grade 7 = 

12 years, 6 months and Grade 9 = 14 years, 6 months.  

RESULTS 
The first two research questions were investigated through two, 2-way analysis of 

variance (ANOVAs) to determine whether there were statistically significant 

differences between Grade and Gender on the two items, namely; Plum Road item 

and Park Map item. The first ANOVA revealed statistically significant differences 
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for the Plum Road item across Grade [F(1,49806=595.9, p ≤.000] and Gender 

[F(1,49806=151.2, p≤.000]. The second ANOVA revealed statistically significant 

differences for the Park Map item across Grade [F(1,48495=472.9, p≤.000] and 

Gender [F(1,48495=155.6, p≤.000]. For the Park Map item, there was also a 

significant interaction between Grade and Gender [F(1,48495=10.8, p≤.001]. Table 1 

presents the mean and standard deviation for grade and gender across the two items. 

Item 

Year 7 Year 9 

Male Female Total Male Female Total 

Plum Road  .60 (.49) .55 (.50) .57 (.49) .71 (.50) .65 (.48) .68 (.47) 

Park Map .40 (.49) .36 (.48) .38 (.49) .52 (.50) .45 (.50) .48 (.50) 

Table 1: Mean (and Standard Deviation) for the Two Map Items by Grade and 

Gender. 

Post-hoc analysis revealed that the Grade 9 students outperformed the Grade 7 

students on both items. While this may be expected, effect sizes of d = 0.23 for Plum 

Road and d = 0.20 for Park Map highlight relatively low performance differences 

across two years of schooling.  

With respect to Gender, males outperformed females on both items, at both Grades. 

For the Park Map item, the significant interaction highlights that the males’ 

improvement was greater than the females in Grade 9 (see Figure 1). In order to 

better understand such effects, the multiple choice responses of students were 

collated to establish the difficulties encountered during the assessment.  

 

Figure 1: The Park Map interaction effect for Grade and Gender. 

The third research question was investigated through descriptive analysis of the 

multiple choice responses. Often, the multiple choice responses of students reveal 

insights into their thinking about certain tasks and through analysing these data, it is 

possible to highlight some of the difficulties encountered by students as they solved 

the questions. Table 2 presents the percentages of the multiple choice responses for 

the two map tasks, organised by grade and gender.  

For the Plum Road item (correct response “D”), the main incorrect response was “A 

– north-east”. It appears that students who chose “north-east” were unable to apply 
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the second aspect of directional information, where they needed to provide the 

direction after the car turned right. Noteworthy, in both grades, more females chose 

this option. The fact that the item does not show a compass or have North orientated 

toward the top of the page may have caused difficulties for students as the prototype 

direction for North on maps is toward the top of the page.  

 

Option 

Plum Road Park Map 

Year 7 Year 9 Year 7 Year 9 

Male  

% 

Female 

% 

Male 

% 

Female 

% 

Male 

% 

Female 

% 

Male 

% 

Female 

% 

A 20 25 13 18 15 12 13 10 

B 9 9 7 7 26 29 18 23 

C 10 12 9 10 18 22 17 22 

D 60 54 70 65 40 36 52 44 

Note: due to a small percentage of missing data and rounding, totals may not equal 100% 

Table 2: Percentage of Multiple Choice Responses to the Two Map Items by Grade 

and Gender. 

For the Park Map item, in Grade 7, “B” was the main incorrect response, however, by 

Grade 9 the distribution of incorrect responses spread across “B” and “C”. Those 

students who chose location “B” on the map seemed to have started at either the top 

or bottom gate on the map and have not applied the first navigational cue that he 

walked south-east along the path. Whereas, those who chose “C” seemed to have 

entered the park through the correct gate, but turned left instead of right. This 

highlights that they weren’t able to re-orientate themselves in space or to visualise 

movement from a different perspective. An interesting finding for response “C” is 

that the relatively high proportion of females choosing this option did not differ from 

Grade 7 to 9, suggesting that the females tended to interpret the first required 

movement correctly but they struggled with the subsequent directional change.  

DISCUSSION AND CONCLUSIONS 
Our study examined the performance differences of Grade 7 and Grade 9 cohorts on 

two spatially-demanding mathematics items. Although the Grade 9 cohorts were 

more successful in solving both map items, performance differences were not large 

given the additional two years of schooling the older students had. In fact, the effect 

sizes between Grade on the two tasks were less than one quarter of a standard 

deviation. Given the fact that the administration of a test is likely to produce an effect 

size of d = 0.3 and Hattie (2008) suggested that one year of educational improvement 

equates to an effect size of approximately d = 0.4, it was anticipated that the Grade 9 

performance would have been much greater. Each cohort (by grade level) found the 

Park Map item to be much more difficult to solve than the Plum Road item. For both 



Logan, Lowrie and Ramful 

________________________________________________________________________________________________________________________

3-198    PME 41 – 2017 

tasks, the students were required to make orientations decisions 135
o
 from North 

orientation. Thus, the initial spatial orientation processing demands were similar. In 

fact, three aspects of Wiegand’s (2006) decoding requirements were similar—that is 

the map’s perspective, the need to wayfind within similar context (i.e., a road), and 

the fact that the map represented space. We maintain that the increased cognitive 

demands associated with the use of scale, and the more challenging use of symbols 

and texts, raised the item complexity. The relatively low performance increase across 

Grade 7 and Grade 9 cohorts suggest that insufficient attention may be afforded to 

these important perceptual elements. As Diezmann and Lowrie (2008) indicated, 

explicit teaching of the various information graphics embedded in mathematics tasks 

is required, since there are low performance associations across maps and graphs. 

There were significant performance differences in relation to gender, across both 

tasks and grade levels. These results support sustained research findings that identify 

performance differences in favour of males on spatial orientation items (Wolbers & 

Hegarty, 2010). In fact, the Grade 7 male cohort’s performances were similar to that 

of Grade 9 female cohort’s, on both the Park Map and Plum Road items.  

The difficulties faced by students as they were asked to orientate and re-orientate 

themselves within the map where relatively similar across grade and gender. The 

uncertainty of the starting point on the Park Map was evidenced by the higher 

percentages across the three incorrect options. For both items, the requirement for 

one or more re-orientations within the map proved a barrier to many students, 

especially the females. Such spatial reasoning relates to the self-to-object 

representational system (Kozhevnikov & Hegarty, 2001) in which movement or 

orientation is considered relative to the position of oneself. 

IMPLICATIONS 
The two implications drawn from the study are associated with the relationship 

between assessment, learning and instruction, namely: (1) the need to provide explicit 

pedagogical attention to spatial orientation in the school mathematics curriculum; and 

(2) increased support for females’ spatial development. Evidence from this 

investigation indicates that instruction in mathematics needs to provide opportunities 

for students to become proficient in interpreting (and creating) map questions that 

require spatial orientations, especially multiple orientation processing. Since the 

performance differences between males and females increased over time (especially 

with the more difficult Park Map item), more instructional attention needs to be given 

to analysing and interpreting maps. These two higher levels of Weigand’s (2006) 

framework go beyond the less sophisticated reading and extracting aspects of map 

content presented in school curricula. These distinct differences need to be addressed, 

especially in an age where spatial reasoning is becoming increasingly important to 

life aspirations. Given spatial reasoning is closely associated with success in STEM 

professions (Uttal & Cohen, 2012), and women are much less likely to transition into 

these profession, school instructional practices need to attribute more attention to 

these spatial dimensions of intelligence.  
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THE INFLUENCE OF STUDENTS’ SPATIAL REASONING ON 
MATHEMATICS PERFORMANCE ACROSS DIFFERENT TEST 

MODE FORMATS 
Tom Lowrie and Tracy Logan 

University of Canberra 

This study compared the performance of students who solved mathematics tasks in 

either a traditional pencil-and-paper test (PPT) format or computer-based test (CBT) 

format. Specifically, this study examined the effect students’ spatial reasoning had on 

their performance across the respective test formats. The results of the study revealed 

(1) no performance differences across the two test formats; however, there were (2) 

significant performance differences in the favour of students with higher spatial 

reasoning; and (3) there was an interaction effect between test format and students’ 

level of spatial reasoning. The students with lower levels of spatial reasoning 

performed better in the CBT format, while the high spatial ability cohort performed 

best in the PPT format.   

INTRODUCTION 
The utility and function of spatial skills seem increasingly important in our 

technology-rich societies—from navigation via global positing systems to health 

diagnosis from medical imaging. Unsurprisingly, the notion of “learning to think 

spatially” has been embedded in most school curricula for the past ten years (Downs, 

& DeSouza, 2006). During the same time period, there has been a dramatic shift in 

how mathematics is assessed, both in terms of task representation and the medium in 

which the tasks are presented. Mathematics tasks used to assess students’ 

performance are much more likely to contain graphical information. For example, in 

countries such as Singapore and Australia, graphics-based tasks have replaced more 

traditional word problems in national assessments. Australia’s National Assessment 

Plan: Literacy and Numeracy (NAPLAN) consists of approximately 70% graphics 

tasks while Singapore’s Primary School Leaving Examination (PSLE) constitutes 

41% of items that are graphics based (Lowrie & Logan, 2015). To some degree, the 

focus on graphics-rich tasks has evolved from advances in technology, with 

mathematics assessment reflecting applications of mathematics concepts. These 

graphics-rich tasks contain more spatial features and require decoding of information 

associated with rotations, translations, location and arrangement. As testing agencies 

move toward digitally- and adaptive-based testing, how students encode and decode 

mathematics information is likely to change. For example, the Programme for 

International Student Assessment (PISA) has been gradually introducing digital-

based testing since the first optional electronic module in 2006 and has included 

innovative item formats since 2015.  
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BACKGROUND 
Decoding and encoding mathematics tasks 
According to Brizuela and Gravel (2013), representations refer to products and 

processes that we create or interpret in order to “capture, understand, and translate an 

idea, an event, or a phenomenon” (p. 1). Representations can either be decoded or 

encoded. Decoding takes place when the problem solver is required to interpret the 

symbol systems, graphics and text embedded within a task—the process involves 

interpreting information they have not constructed. The information includes specific 

conventions that need to be interpreted (Roth, 2002). In the current investigation, 

participants are required to decode information from both traditional word-based 

tasks and more graphics-rich geometry tasks. By contrast, encoding involves 

constructing “one’s own” representations, which are usually developed from specific 

heuristics or personal (and sometimes idiosyncratic) constructions. Encoded 

representations can be produced “in the mind’s eye” (Smith & Kosslyn, 2013), or 

externally through some physical or concrete approach. Elsewhere, (Lowrie, Logan 

& Ramful, 2016) we have found that students are more likely to externally encode 

mathematics tasks when the mode of delivery is PPT, including drawing pictures and 

diagrams to process information. By contrast, students are more likely to solve 

problems by internally encoding (using visualisation) or using mental computations 

in a CBT mode.  

Spatial reasoning and mathematics performance 
A number of studies have demonstrated the strong association between mathematics 

performance and spatial reasoning. Students who perform well on spatial tasks 

typically perform better on mathematics tasks (Holmes, Adams, & Hamilton, 2008; 

Rasmussen & Bisanz, 2005). Mathematics concepts are spatial in nature, since 

students need to be able to imagine and visualize information (Battista, Wheatley, & 

Talsma, 1982). In fact, spatial visualization ability predicts talent in mathematics 

(Wei, Yuan, Chen, & Zhou, 2012). 

The relationship between spatial and mathematics ability is evident from the early 

years of school (Kurdek & Sinclair, 2001) and are still prevalent with college 

graduates (Wai, Lubinski, & Benbow, 2009). These relationships seem most 

plausible when students encounter geometric mathematics tasks (Battista, 1990) since 

the transformation of 2-D and 3-D objects require spatial reasoning. Nevertheless, 

moderate relationships between spatial ability and traditional word problems exist 

(Hegarty & Kozhevnikov, 1999), even though the mental or physical manipulation of 

objects is not required. More recently, Mix et al. (2016) found that mental rotation 

best predicted mathematics performance in younger students, while spatial 

visualization was the best predictor of performance by Grade 6 (especially place 

value, word problems and algebra concepts). These associations, across both 

geometry and traditional word-based mathematics tasks, have been confirmed even 

when expertise is accounted for (Sella, Sader, Lolliot & Kadosh, 2016). 
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DESIGN AND METHODS 
The research questions of the study were: 

 Does Mode of Delivery (PPT or CBT) effect student performance on 

mathematics assessment tasks? and 

 Is spatial ability an influential factor in student performance on mathematics 

tasks and Mode of Delivery? 

Participants  
The participants (N = 162; 81 Male, 81 Female) comprised Grade 6 students (Mean 

Age = 11 years, 4 months) from four Australian primary schools. One hundred and 

six students completed the mathematics test on iPads (67% male) and 56 completed 

the test on paper (33% male). Males were represented in the low, mid- and high 

spatial groups at rates of 27%, 35% and 38% respectively. 

The instrument and administration 
The participants in the study completed a 45-item Spatial Reasoning Instrument 

(SRI), which comprised an equal number of mental rotation, spatial orientation and 

visualisation items (see Ramful, Lowrie & Logan, 2016). The students also 

completed a Mathematics Test (MT)—a 12-item instrument used to determine 

students’ performance across mathematics tasks. It consisted of five number and 

seven geometry and measurement items. The tasks were drawn from the Australian 

standard test for grade 5 students (NAPLAN) and reflected the format of the 

assessment with 75% of items containing a graphic relevant to the task.  

Two members of the research team attended the participating schools during their 

morning classes. The two Instruments were administered to whole (intact) classes to 

minimise disruption to both the school and the students’ daily classroom routine. The 

classroom teachers and the research staff administered the activity.  

Data coding 
The participants were scored according to the number of tasks they answered 

correctly. Hence, the highest possible score for the SRI was 45 and MT was 12.  

Students were classified as low, middle or high spatial ability based on their scores 

on the Spatial Reasoning Instrument. Range and sample size for each group are 

presented in Table 1. 

Spatial Reasoning Category Range N (%) 

Low-spatial Reasoning 5-20 56 (30%) 

Mid-spatial Reasoning 21-27 68 (37%) 

High-spatial Reasoning 28-42 61 (33%) 

Table 1: Distribution of students in low, mid and high spatial groups 
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RESULTS AND DISCUSSION 
A factorial Analysis of Variance (ANOVA) was conducted to examine the two 

research questions; with scores on the mathematics test as the dependent variable and 

spatial reasoning ability (low, mid, high) and mode of delivery (PPT or CBT) as 

factors. There was no main effect for test presentation (Mode of Delivery) on 

mathematics test scores, F(1, 161) = .92, p = .34. Although these results are 

consistent with a comprehensive meta-analysis conducted by Wang et al., (2008), 

they are in contrast to studies conducted with students of this age group (ie., primary 

school students). In a study with over 800 Singaporean students, Lowrie and Logan 

(2015) found that student performance was significantly higher in a CBT (iPad) mode 

than a PPT mode. In the current study, it is worth noting that this cohort of Australian 

students was not as mathematically able as the Singaporean cohort.   

A main effect for spatial ability level on mathematics test performance was found, 

F(2, 161) = 52.67, p < .001, d = 1.55, with high spatial students performing better on 

the mathematics test than medium and low spatial ability students, and mid-spatial 

students performing better than low spatial students. Means are presented in Figure 1. 

To some degree, these results are unsurprising since there is a substantial body of 

literature that that shows strong positive correlations between spatial reasoning ability 

and mathematics performance (Mix et al., 2016). Noteworthy is the magnitude of the 

differences (effect size = 1.55), indicating the large differences in student 

performance across the low, mid and high categorisations of spatial reasoning.  

There was also significant interaction effect between mode of delivery and spatial 

reasoning rank, F(2, 161) = 3.52, p = .03, d = .32.  

 

Figure 3: Means on MT by testing mode and spatial ability (bars denote standard 

error) 

Students within the low- and middle-ranked spatial reasoning group scored higher on 

the mathematics test when it was delivered in a CBT (iPad) format, whereas the high 

spatial reasoning cohort performed better in the PPT format (as represented in Figure 

1). This result was unexpected—since we envisaged that the increased demands of 
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processing information in the digital form would impact on performance. Moreover, 

students are less likely to use “working-out paper” on mobile devices, which result in 

higher visualisation demands (Lowrie & Logan, 2015).   

Further analyses addressed the interaction effect of test mode and spatial ability on 

the two mathematics streams incorporated into the test, namely geometry and 

measurement items. An interaction effect was found for the number items, F(2, 161) 

= 5.13, p = .007, d = .44, but not for the geometry and measurement items, F(2, 161) 

= .94, p = .39. Means and standard errors for both sets of items are presented in Table 

2.  

Graphic representations of the five number items are displayed in Appendix A. Three 

of the five number items (namely, Q.1; Q.4; and Q.5) highlight interactions between 

spatial reason rank and mode of delivery. In each instance, the high-ranked spatial 

students’ performance on the PPT mode increased, and the mid-ranked spatial 

student’s performance decreased.  

 

Mode of Delivery 
Low spatial Mid-spatial High spatial 

M (S.E.) M (S.E.) M (S.E.) 

Geometry (7 items)    

 
iPad 1.77 (.22) 2.94 (.23) 4.03 (.21) 

 
Paper and pencil 1.40 (.34) 2.26 (.25) 4.07 (.35) 

Number (5 items) 
   

 
iPad 1.15 (.15) 1.94 (.16) 2.31 (.14) 

 
Paper and pencil 1.20 (.23) 1.41 (.17) 2.93 (.24) 

Table 2: Descriptive statistics for mathematics assessment items 

CONCLUSION  
The two major findings of the study are associated with (1) the influence of spatial 

reasoning on students’ mathematics performance and (2) differences in students’ 

performance in relation to mode of delivery, especially for number-concept items.  

There were no performance differences in students’ mathematics scores across mode 

of delivery. Although these results are inconclusive across the literature base, such 

findings support the large meta-analysis undertaken be Wang et al., (2008). There 

were substantial differences between student performances when the cohort was 

categorised according to spatial reasoning performance. There were significant 

differences between high-performing and mid-performing students, and between 

mid-performing and low-performing students. These results are consistent with a 
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burgeoning literature base (including recent studies of Mix et al., 2016; Sella et al., 

2016; Wei et al., 2012).  

The second finding of the study highlighted an interaction effect between spatial 

reasoning and mode of delivery. To our knowledge, this is the first time such results 

have been reported in the literature. Students are more likely to use encoding 

strategies and heuristics in a PPT form than a CBT mode of delivery. By contrast, a 

CBT mode tends to encourage students to utilise visualisation strategies and mental 

imagery processes (Threlfall, Pool, Homer & Swinnerton, 2007). In addition, 

students are less likely to encode representations from a CBT mode, since the 

transition to another format presents different challenges in terms of re-representing 

information that needs to be decoded (Lowrie & Logan, 2015; Yahya & Hershkowitz, 

2013). The multiple representations provide additional cognitive demands. 

Consequently, we hypothesised that students with lower levels of spatial reasoning 

would tend to be more successful in the PPT form, since they could draw on 

diagrams, encode information on the test booklet itself and generally monitor their 

thinking from one point of reference (Logan, 2015). Research suggests that 

interactions with technology in problem solving can take different forms (Jacinto & 

Carreira, 2013). It is important for future work to examine the different strategies 

employed when using CBT to ensure low spatial students are not disadvantaged by 

technology-based assessment.  
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Appendix A  
(All items: © Australian Curriculum, Assessment and Reporting Authority. Used with permission). 

[Q.1] A baker made a total of 175 rolls on the 

weekend.  

 

She made 15 more rolls on Saturday than on 

Sunday.  

 

How many rolls were made on Sunday?  

 

[Q.2] Ben has 2 identical pizzas.  

 

He cuts one pizza equally into 4 large slices.  

He then cuts the other pizza equally into 8 

small slices.  

A large slice weighs 32 grams more than a 

small slice.  
 

What is the mass of one whole pizza?  
 

[Q.3] The spinner is used in a board game.  

 
Sanjay spins the arrow.  

On which number is the arrow most likely 

to stop?   

[Q.4] Lucy made 4 tree designs using sticks.  

There is a pattern in the way the trees grow. 

 
 

Lucy continued the pattern in the same way.  

How many sticks will Tree 5 have?   

[Q.5] The sum of the opposite faces of a 

standard six-sided dice is always 7.  

Hannah rolls three dice.  

The sum of the top faces is 11.  

What is the sum of the three opposite 

faces?  
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MATHEMATICAL KNOWLEDGE AS MEMORIES OF 
MATHEMATICS 

Wes Maciejewski 

San José State University, United States of America 

 

I propose that an understanding of a mathematical concept is comprised of both a 

conceptual understanding of, and recollections of working with that concept. That is, 

a mathematical concept may not be immediately distilled in its abstract form from 

lived experience, didactical or otherwise, and this milleu is brought along in 

subsequent recollections of the concept. In an effort to balance pedagogical 

recommendations for increased conceptual teaching/understanding, I propose that 

memories of encountering a mathematical concept improve its utility in novel 

problem situations. I support this claim by drawing on the literature on episodic 

future thinking and on our developing understanding of how users of mathematics 

perform in authentic mathematical situations. 

INTRODUCTION 
Students receive a constant stream of experiences when learning mathematics — both 

external and mental, and taking the forms of sensory, cognitive, social, and otherwise 

— this stream of experience is interpreted and coloured by the student's current 

knowledge of and dispositions towards mathematics. From this they distil off 

mathematical knowledge. How exactly this process of mathematical knowledge 

formation takes place has long been a central subject of the cognitive psychology of 

mathematics learning. This article argues that mathematics education literature 

written from a cognitive psychology perspective has maintained too narrow a focus 

on the mathematical content of mathematics learning and ought to consider a 

student's broader remembered experience.  

A discussion of the role of memory in mathematics learning is noticeably lacking in 

contemporary research despite advancements in memory research in psychology over 

the last two decades. This is not a new observation, having been identified in the 

mathematics education literature three decades ago (Byers & Erlwanger, 1985). This 

may be due in part to a conflation of memory and memorizing. I take the stand that, 

from a cognitive perspective, knowledge is a part of memory. Therefore, any serious 

discussion of the cognitive psychology of mathematical knowledge acquisition and 

development must consider the role of memory. My focus here is on the 

mathematical knowledge constucted in the mind of an individual. What led to this 

constructed knowledge, whether social interaction, bodily movements, individual 

reflection, or other situations, is not explicitly considered. I emphasise, however, that 

these modes of knowledge construction are not entirely disregarded; as will become 

clear, they form the substance of episodic memories. 
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The main impetus of this work is to gain insight into how a mathematics learner 

forms their idiosyncratic, personal understanding of mathematical concepts. That is, I 

am concerned with understanding the development of a student's concept image of a 

mathematical concept. Tall and Vinner define concept image as “the total cognitive 

structure associated with a mathematical concept” (Tall & Vinner, 1981). This is a 

powerful defintion, but has not realised its potential in the literature. I argue, and 

substantiate with examples in the Results section, that personal memories – so called 

episodic memories –  of learning or working with the concept comprise a  portion of 

this cognitive structure, especially during the initial stages of concept image 

formation. As such, these memories ought to receive greater attention in the 

mathematics education research literature. In the conclusion of this paper I conjecture 

that episodic memories associated with a student’s concept image are what may 

facilitate the utilization of the concept in novel situations. This conjecture meshes 

well with the current understanding of the role of episodic memories in planning for 

general, to-be-experienced events found in the psychology literature.  

Episodic and Semantic Memory 
The human memory system has been described by a number of qualitative models, 

the one used here – attibuted to Tulving (1983), having built on earlier work – has 

come to be widely accepted in the psychology community. In this model there is first 

a distinction between short- and long-term memory. Short-term memory — also often 

called working memory — lasts only less than a minute and is a key resource when 

interpreting a current experience. Long-term memory is partitioned into implicit, or 

procedural, and explicit, or declarative, memory systems. Implicit memory is the 

memory of rote tasks, those that are completed without conscious thought, such as 

walking, riding a bicycle, or teaching calculus. Declarative memories are those that 

can be explicitly recalled and stated. A further refinement of declarative memory into 

two qualitatively, and perhaps neurologically, different memory systems was 

proposed by Tulving (1983). Semantic memories are those that are not fixed to a 

particular individual's experience and can be known by anyone. That is, semantic 

memories are memories of shared, socially-available knowledge. Episodic memories 

are held by an individual and pertain to an event experienced by that individual. They 

are highly idiosyncratic, contain perceptual and temporal information, and can only 

be known by the individual. A memory of learning to ride a bicycle, for example, is 

episodic. Even though riding a bicycle is a fairly universal activity, each individual 

forms their own unique episodic memories of learning to do so. The analogy with 

constructs in the mathematics education literature is clear: episodic memories of a 

mathematical concept are a part of a student’s concept image of the underlying 

concept.  

The purpose of this paper is to present evidence that students experience personal 

memories of mathematics when recalling mathematical concepts. These memories 

were often voiced freely, without prompting, by the student participants in this study, 

suggesting that the memories form a strong component of the students’ concept 

images. These personal memories, I argue, are valuable; in the wider field of the 
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psychology of memory, episdoic memories are known to improve problem-solving 

ability (Taylor, et al., 1998; Schacter, 2012). Further, episodic memories may prove 

valuable to education theoreticians, insofar as they often reveal discrete moments in 

time in which a student’s knowledge evolves.  

METHODS 
Student volunteers were recruited from two first-year mathematics courses, covering 

linear algebra and calculus, at a major, research-intensive New Zealand university. In 

total, 11 students volunteered; 9 from the general stream of the course, intended for 

science and business students, and 2 from the advanced stream for mathematics and 

science honours degree students.  

Students were interviewed individually in two sessions. The results from the second 

set of interviews are reported in companion articles (Maciejewski & Barton, 2016; 

Maciejewski, Roberts, & Addis, 2016). In the first set of interviews, which forms the 

set of data used in the current study, each student was presented with a list of topics 

from their mathematics course and asked to rank them according to their own, 

personal familiarity with each; 1 for least familiar and 10 for most. The intention with 

the personal ranking of the topics was to have an increased diversity of episodic 

recollections. The researcher proceeded to ask the following set of questions for the 

topics ranked 1, 5, and 10. 

For each topic, general questions about thoughts experienced by the participant when 

thinking about the given topic were asked first: “Describe the contents of your 

thoughts when thinking about [topic X] in as much detail as possible. Importantly, we 

are not looking for mathematical accuracy at this stage, we’d just like you to describe 

everything that comes to mind when you think about that topic. This may or may not 

include 1) mental imagery, 2) conceptual knowledge, and 3) personal memories.” 

More specific questions followed:   “Can you describe how you came to understand 

(topic x) as you do now? Do you recall when you first encountered this topic? When 

was that? Can you describe that in detail? Do you understand this topic differently 

now than when you first encountered it? What led to this change? (If specific events 

are mentioned: Can you describe this event in detail?) Did these experiences come to 

mind in the first part of this study (even if you didn’t talk about it)?” 

Each of the interviews were recorded and subsequently transcribed. The 

transcriptions were analyzed from a phenomenographical perspective: a qualitative, 

interpretive methodology that seeks to understand individuals' idiosyncratic 

experiences of a common reality (Marton, 1986). The intention is to describe and 

categorize the range participants' experiences with, critically, equal weight given to 

each experience; no effort is made to identify which are the most prominent. In this 

way phenomenography is a powerful method for empirically uncovering possible 

lived experience.  

The particular phenomenographical analysis is as follows. Student utterances were 

first categorized roughly as episodic, semantic, and other. Semantic utterances were 

those that contained “factual” information from an experience and no specific 



Maciejewski 

________________________________________________________________________________________________________________________

3-212    PME 41 – 2017 

reference to the personal nature of the lived experience; semantic memories are 

abstract in the sense of not being tied to a particular experienced event. Semantic 

memories, and their associated utterances, are not the focus of this study and will 

fenceforth not be considered. 

Episodic utterances were those that contained particular details specific to a lived 

experience. Explicit mention is made of some context of the experience. For 

example: 

Interviewer: When you think about these methods, do you have any images that 

come to mind? 

Participant [104]: Well, the image that comes to mind from that is the page in the 

course book and just the way the lecturer ... just explains it ... I can see the page and 

the way she laid it out and the method, how she goes step-by-step to solve it.  

The participant recalls a specific instance of learning a mathematical method while 

sitting in class. They recall the lecturer talking and refering to the page in the 

textbook which, though not mentioned here, is displayed on a projector for the class.  

Utterances classed as “other” were those that did not fit into either of the other two 

categories and often included clarifying statements, or comments unrelated to the 

questions. 

The next stage of the analysis involved creating a categorization of the episodic 

utterances following phenomenographical methods (Marton, 1986). First, the 

collection of episodic utterances were read through and broad categories were 

formed. These are temporal – referencing the, at least relative, time an event 

occurred; physical – concerning the interaction of the participant and their 

environment; and emotional – the participant's recalled emotions during the 

experience. These three cateogories, though originating organically from the data, 

agree well with Tulving's description of episodic memories (Tulving, 1983).   

Having formed these categories, each utterance was grouped into the category it best 

fit. Often an utterance contained elements of more than one category and was 

therefore duplicated in the corresponding categories. The categorisation part of the 

analysis was halted at this stage; further analysis appeared to lead to too fine 

categories which resisted succinct descriptors.  

The subcategories were summarized by the researcher and combed for representative 

utterances. These are presented in the next section.  

RESULTS 
I present my analysis of the interview data according to the three identified categories 

– temporal, physical, and emotional – and present the corresponding subcategories. 

In each of the following subsections, I weigh the category topic against the students' 

self-reported familiarity of the mathematical topics. This allows for a richer analysis 

and informs conjectures about the role of memory in conceptual development we 

make in the subsequent section.  

First, I comment on the prominence of these memories. All participants recalled 

episodic memories associated with at least one of the concepts. These recollections, 
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notably the emotional recollections, were often offered by the participants without 

prompting. I take this as an indicator of how pervasive episodic memories are in 

students’ mathematical conceptions.  

Temporal Aspects 
There were two types of responses in this category: 1) first encounter with the 

concept, 2) subsequent use of the concept. Participants generally recalled their first 

encounters with each concept. However, the vividness of these recollections varied 

with the participants' stated level of understanding. Less understood concepts tended 

to be associated with more vivid memories of a first encounter. 
I: Do you recall when you first encountered [least well understood concept]? 
S106: Yep. Because [the instructor’s] accent just made it sound so cool, so, ya I do 

remember doing it and using matrices to solve something for it. But I don't remember 

what to do with it or anything. 

More well-understood topics were associated with less vivid first-encounter 

memories. 
I: Do you remember when you first encountered [most well understood concept]? 
S106: I don't think so, actually ... I have a vague recollection of when I was supposed 

to have learned it.  

Perhaps not surprisingly, more memories of subsequent work with the concept arose 

when the participants discussed more well-understood concepts. Of course, this may 

be because more well-understood concepts have been used more and so the 

participants have had greater opportunity to form memories of these concepts. This 

does not seem to be the case, however. Participants often mentioned using less 

understood concepts while solving problems, but these recollections were of “going 

through the motions” with the concept. 
S105: ...I came across a question in the assignment concerning Taylor Series, I had to 

answer it, so I kinda looked in the course book, I looked on the internet, asked my 

friend how to do it. He said it's kinda complicated so I looked on the internet and 

compared the answer, tried using one method to see if I got the answer...tried using 

another...just repeat that until I got the correct answer...I don't really like it, so after I 

answered that question, I sort of avoided Taylor Series.  

Physical Aspects 
Participants mentioned only a small number of physical aspects. Therefore, I present 

them here without grouping them further into larger categories. These are: 

1) sitting in class: 
I: But what comes to mind when you think about [the concept]? 
S110: Our lecturer talking about it and me kinda not listening … it was a Friday 

morning, which isn’t so conducive to learning. Um, and she was kinda talking about 

it and I wasn’t listening ‘cause they kept relating it to real life and I can’t be bothered 

about real life … It’s the last part of  linear algebra as well and the test was coming 

up and I ignored it. 
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2) reading a book: 
S104: I kinda associate these concepts more with the page in the textbook...I 

remember pictures. And like, certain bits of the course book that I thought were more 

important. So, I can visually remember how the things look on the page. 

3) attending a tutorial: 
S102: I remember … I was in the tutor room and one of the maths tutors actually 

thought I was stupid for asking such silly questions. And he came over and he 

actually explained step by step what he was doing for a couple of things, and he 

showed me a couple of little tricks … it clicked and then I could do those at least, 

and then it was just a case of applying that to everything else.  

4) working with friends: 
I: Can you think of what led to that change of understanding for you? 
S100: When I was doing the Taylor Series with my friend … she was helping me … 

she had written a different number for the denominator, and I didn’t understand why 

because from the example it seemed like what I was doing was correct, but then she 

explained to me that she was using factorial and I was ‘timesing’ the number, so that 

obviously made a difference. 
and, 5) revising/reviewing/studying for an exam: 

I: Do you recall specific events that led to this change in understanding? 
S105: I think the assignment that we had and the test. 'cause I remember cramming 

for the test, 'cause I didn't understand, like, Taylor Series, really. I wasn't quite sure 

of them, so, studying for the test with friends and going over practice questions and 

searching examples online again. 

Emotional Aspects 
Though participants were not specificially asked about emotions they experienced 

when learning mathematics, all mentioned emotions in connection with at least one 

mathematical concept. These covered a wide range. Less understood concepts were 

associated with less favourable emotions, such as anxiety, trepidation, confusion.  
S101: It was just, like, pretty overwhelming...I really was not looking forward to 

learning something new.  
Perhaps not surprisingly, more well-understood concepts had more favourable 

associated emotions: familiarity, enjoyment, happiness, and confidence, for example. 
S101: [I learned this concept on my own] because I was just bored...and I just was 

reading it and I kind of got it...and it felt...because, like, once you know how to do it, 

it becomes really easy, and it comes with practice, so yeah...I have an image of just 

sitting in class feeling pretty smug because I had already know how to do it...so yeah, 

it was a lot more pleasant than [the least understood concept] 

DISCUSSION 
The development of a student's mathematical knowledge may proceed episodically or 

semantically, or both. I propose that an exclusive accumulation of either one is 

necessarily undesirable. This is certainly the case for episodic memories; indeed, 

much of the research in mathematics education in the last half-century cautions 

against the accumulation of context-bound knowledge. Given that the same literature 

encourages the growth of context-transcending knowledge, it may seem an odd 
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suggestion that students should not focus on acquiring semantic memories 

exclusively. I highlight a contemporary result from the psychology literature that may 

substantiate this claim, while being mindful of the need for further investigation in 

mathematics learning.  

Contemporary reseach on the psychology of planning for to-be-experienced events 

indicates the humans often mentally simulate how an event might unfold and, in so 

doing, create episodic memories of the event before it takes place. This episodic 

future thinking (Atance & O’Neill, 2001) can facilitate planning and improve 

outcomes in general problem solving domains (Taylor, et al., 1998; Schacter, 2012). 

The key observation is that episodic future thinking relies on the same neurological 

regions and processes as are utilised in recalling episodic memories. Therefore, 

effective planning for to-be-experienced events is closely related, and influenced by, 

recollecting past events. Given the emphasis placed by some authors (Pólya, 1945; 

Schoenfeld, 1985) on planning in mathematical situations, it appears a worthwhile 

endeavour to investigate episodic future thinking in mathematical situations, its effect 

on planning, and how such future thinking is affected by episodic memories of 

mathematics.  

Not much is known about episodic future thinking in specialized, context-specific 

domains, such as mathematics. There is emerging evidence that both mathematicians 

(Maciejewski & Barton, 2016) and mathematics students (Maciejewski, Roberts, & 

Addis, 2016) engage in episodic future thinking when solving mathematics problems. 

This is, of course, not the exclusive way of solving mathematics problems; some 

problems may invoke automaticity or an existing problem schema, or nothing at all 

(Maciejewski & Barton, 2016). What is needed is a better understanding of how a 

problem might relate to its solver and of which types of these relationships are likely 

to promote episodic future thinking. I conjecture that it is for those problem situations 

that are not too familiar to invoke a schema yet are familiar enough that progress can 

be made. This conjecture fits well with the literature on general problem solving 

behaviour, and further research in the context of mathematics is highly desirable.  

One further point to be made is that episodic memories could act as signposts for the 

educational researcher. They signal discrete moments, locating the genesis of an idea 

or the punctuated evolution of understanding. Treating these memories as such may 

aid in deepening theoretical models of knowledge development.  

CONCLUSION  
This paper presents observations that personal experiences of mathematics pervade 

students’ thoughts when recalling mathematical concepts. These episodic memories 

are a part of a student’s understanding of the concept and present challenges and 

opportunities to educators. On the one hand, an exclusive reliance on episodic 

memories of using a concept could result in too-rigid knowledge without wide 

applicability. On the other, a diversity of rich episodic memories of mathematics may 

facilitate more effective planning in mathematical situations for a student. It is not 

clear to what extent educators ought to promote the formation of students’ episodic 



Maciejewski 

________________________________________________________________________________________________________________________

3-216    PME 41 – 2017 

memories of mathematics nor is it clear how best to do this. What is clear, however, 

is that students will continue to form episodic memories of mathematics whether or 

not they are attended to by educators. It is up to educational researchers to further 

investigate students’ episodic memories of mathematics and ways in which they may 

be harnessed to aid students in reaching their potential. 

References 
Atance, C. & O’Neill, D. (2001). Episodic future thinking. Trends in Cognitive 

Neuroscience, 5, 533-539. 

Byers, V. & Erlwanger, S. (1985). Memory in Mathematical Understanding. Educational 

Studies in Mathematics, 16, 259-281. 

Maciejewski, W. & Barton, B. (2016). Mathematical foresight: thinking in the future to 

work in the present. For the Learning of Mathematics, 47(3), pp. 31-37. 

Maciejewski, W., Roberts, R., & Addis, D.R. (2016). Episodic future thinking in 

mathematical situations.. In C. Csikos, A. Rausch & J. Szitányi (Eds.). Proceedings of 

the 40
th

 Conference of the International Group for the Psychology of Mathematics 

Education (vol. 3, pp.227-234).  Szeged, Hungary: PME.  

Marton, F. (1986). Phenomenography—A research approach to investigating different 

understandings of reality. Journal of Thought, 21(3), 28-49. 

Pólya, G. (1945). How to Solve It. Garden City, NY: Doubleday.   

Schacter, D.L. (2012). Adaptive constructive processes and the future of memory. American 

Psychologist, 67, 8, 603-13. 

Schacter, D.L., Addis, D.R., & Buckner, R.L. (2007). Remembering the past to imagine the 

future: the prospective brain. Nature Reviews Neuroscience, 8, 657-661 

Schoenfeld, A. (1985). Mathematical problem solving. New York, New York: Academic 

Press.  

Tall, D. & Vinner, S. (1981). Concept image and concept definition in mathematics with 

particular reference to limits and continuity. Educational Studies in Mathematics, 12, 

151-169. 

Taylor, S.E., Pham, L.B., Rivkin, I.D., & Armor, D.A.  (1998). Harnessing the imagination. 

Mental simulation, self- regulation, and coping. American Psychologist, 53, 4, 429-39. 

Tulving, E. (1983). Elements of episodic memory. Oxford: Oxford University Press. 

 

 

 

 

 

 

 



 

_______________________________________________________________________________________________________________________

3-217 
2017. In Kaur, B., Ho, W.K., Toh, T.L., & Choy, B.H. (Eds.). Proceedings of the 41

st
 Conference of the International 

Group for the Psychology of Mathematics Education, Vol. 3, pp. 217-224. Singapore: PME. 

CONFIDENCE AND COMPREHENSION BUILDING PROCESSES 
REGARDING MATHEMATICAL CONTENT 

Benjamín Martínez Navarro, Mirela Rigo Lemini 

Centro de Investigación y de Estudios Avanzados del IPN 

The authors contend, following from Damasio and Grounded Theory, that the 

convincement and comprehension experienced by a student (through distance 

interaction with her tutor) occur around a process that results from the confluence of 

sub-processes, where the student’s states are a consequence of her actions -in which 

she mobilizes content (of linear equations) based on certain forms of sustentation-, 

actions that are in turn explained on the basis of previous confidence and 

comprehension, added to other tutor conditions.  

BACKGROUND AND RESEARCH QUESTION 
Several lines of research have highlighted the weight of convincement and security 

regarding mathematical facts that classroom agents experience during learning 

processes.  Krummehuer (1995) for instance, highlighted convincement associated 

with argument backings, which he analyzed on the basis of the Toulmin Model. The 

omission of Modal Qualifiers Q is salient in his application, as Inglis, Mejia-Ramos 

& Simpson (2007) pointed out. The latter authors hold that one of the goals of 

instruction should be to develop the ability of students to “adequately” equate types 

of warrants with modal qualifiers Q (p.3). From that vantage point, in a detailed 

analysis of the confidence states of students, Foster (2016) suggests that students 

‘well calibrated’ in a topic trust their correct answers and doubt their incorrect 

answers. In contrast, this paper, which follows some ideas of Damasio and takes 

direction from Grounded Theory, is interested not only in describing, but in 

explaining how the states of confidence, presumption or doubt regarding the 

mathematical content that a student experiences with her tutor are built.  

THEORETICAL FRAMEWORK 
In this study a functional analysis of the arguments proposed by a student is 

performed, using the guidance of the Toulmin Model (1984). In that model, an 

argument is composed of a Claim (C), data (D) supporting the claim, warrants (W) 

that bridge the logical gap between the data and the conclusion, a backing (B) that 

includes a general framework on which the argument is based, and the modal 

qualifiers (Q).   Two components of B are identified in this work. First, one 

consisting of the resources upon which the argument is grounded; those having the 

characteristics of “invariant organizations of behavior” are referred to as “epistemic 

states” of sustentation by Rigo (2013). According to the latter author, while some 

grounds are rooted around mathematical reasons, such as instantiations of general 

rules, others are articulated based on extra-mathematical reasons, such as operational 

schemes that are activated when a rule is introduced without justification. Another 

component of B refers to mathematical content that is mobilized in the argument and 
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in said epistemic states. The fragments chosen for this paper deal with solving linear 

equations, so in this paper one can distinguish content related to the transposition of 

terms and the properties of equality. The 3UV Model (Ursini, Escareño, Montes & 

Trigueros, 2005) is taken as the mathematically accepted version for solving 

equations in this paper. According to said model, two of the aspects that must be 

fulfilled when solving linear equations are: interpreting the symbolic variable that 

appears in an equation as a representation of specific values (I1) and determining the 

unknown amount that appears in equations or problems, by performing algebraic or 

arithmetic operations or both (I4). Comprehension is evaluated according to the 

above (Fig. 1) taking the mathematical standards of content, epistemic schemes and 

logical connections as reference.   
C1 Content (B) The content corresponds to the accepted mathematical meaning 

(specifically, with aspects I1 and I4 and the properties of transposition 

and equality). 

C2 Epistemic Schemes 

(B) 

Mathematical-type schemes are mobilized (e.g. generalized induction 

from specific instances). 

C3 Logical Connections 

(W) 

Warrants are conclusive (the allow for the steps to be made from the 

data to the conclusion). 

Figure 1: Theoretical-methodological Instrument for Distinguishing Comprehension 

Rigo & Martinez (in press) suggest that, associated with the epistemic schemes, as 

well as with the mathematical content mobilized within them, students experience 

states of confidence, presumption or doubt, which Rigo (2013) calls “epistemic states 

of convincement” (esc). Toulmin et al (1984) introduce Modal Qualifiers Q in the 

functional analysis, and said qualifiers correspond precisely here to the esc. 

Following the view of Damasio (2010), Rigo & Martinez suggest that the esc are 

certain types of emotions and feelings. Damasio holds that emotions are a complex 

set of chemical and neural responses forming a distinctive pattern. These responses 

are produced by the brain when it detects an emotionally competent stimulus, that is, 

an object or event which presence, real or as a mental remembrance, triggers the 

emotion. Rigo and Martinez suggest that beliefs and epistemic schemes act as stimuli 

that activate the esc. For Damasio, emotions and feelings are changing phenomena 

that act as links triggering chain reactions, where one thing leads to another. Just as 

with esc, which are temporary and lead to new beliefs and epistemic schemes that 

operate as stimuli that could in turn modify the initial states, leading to a process of 

continuous transformation. The esc, in terms of emotion and feelings, are expressed 

more or less firmly through patterns of behavior and bodily expression, some of 

which are used here as criteria for identifying esc (see Figure 2). 

 

 

 



Martinez and Rigo 

________________________________________________________________________________________________________________________ 

PME 41 – 2017   3-219 

Elements of 

Speech 

The person uses emphasizer language that may reveal a higher degree of 

commitment to the truth of what he says. For instance, when the person uses 

the indicative form of verbs (e.g. “is”). 

Action The subject’s actions are consistent with his speech.  

Determination The person is determined and spontaneously manifests adherence to the truth 

of a mathematical sentence.  

Interest The participations of a person intervening with interest regarding a specific 

mathematical fact in a virtual forum are: systematic (i.e., the subject answers 

all questions addressed to him with the greatest detail possible), informative 

(his assertions, procedures and/or results are sufficiently informative), clear 

and precise.  

Consistency In his various interventions, the person shows consistency. 

Figure 2: Theoretical-methodological Instrument for Distinguishing confidence 

METHOD 

The research was undertaken on a distance program which objective was to 

strengthen the training of tutors instructing adults in algebra. The data used in the 

study was recorded in the Moodle platform for subsequent analysis, and is part of the 

interactions between a tutor (Author 1) and his students (Laura, specifically). The 

description and, especially, the explanation of the process of building epistemic states 

turns to the methodology of Grounded Theory (Corbin & Strauss, 2015), particularly 

in terms of the axial analysis and the process-based analysis. Axial analysis allows for 

a complex action to be deployed in categories related to conditions (reasons upon 

which the subject bases her actions-interactions, and that may be differentiated as 

those inherent to the subject, i.e. micro conditions, and those beyond the subject i.e. 

macro conditions); actions-interactions (people’s responses to events or problematic 

situations) and consequences (anticipated or real results of the action-interaction). 

The process analysis is understood as the changes that take place in the action-

interaction taken as the response to changes in the conditions. The set of conditions, 

actions-interactions and consequences are considered sub-processes (of a general 

iterated process), which consequences may act as conditions of a new sub-process, 

which combined with others lead to new actions, and so on and so forth.  

ANALYSIS OF RESULTS PART ONE: SUB-PROCESSES  

Following Damasio and the Grounded Theory, the process of building the esc is 

thought to be composed of a series of sub-processes in which we may identify: A set 

of actions-interactions performed by the student, described in the steps Pn (v. 1ª. 

Column Fig. below); the interest here is to contrast the additive-related steps with the 

division-related steps. Said actions-interactions are examined (v. 2ª.  Column 

Figures) under the scope of Toulmin’s functional analysis; the epistemic schemes (S) 

activated by the student in her participation stand out in B, as do the contents (C), 

while the W refer to logical connections (L) on which Laura bases her solutions. In 

keeping with the Theoretical Framework, Laura`s comprehension and esc are 

consequences generated during and that stem from her actions. 
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First Sub-process: First Participation of Laura and the Tutor 
The interaction began with the tutor stating the following: 

We have certainly solved an equation, but have we reflected on 

its meaning and usefulness? … Let’s do the following. If a can 

yellow container weighs 2 kg; a can  green container weighs 4kg; 

a purple box weighs 1 kg. a) Is the scale balanced? b) What 

would make the scale imbalanced? c) If it were imbalanced, how 

could we restore the balance? 

 

d) Using the above, how would you explain the process for finding out the weight of the green 

sphere to a learner? 

Here, the tutor highlighted the properties of equality. However, in the first 

participation (v. Fig. 3) Laura discarded the suggestion and followed her own 

strategy: 

 

Figure 3: Analysis of Laura`s first participation. 

In P1 (Fig. 3), Laura conclusively (C3) converted an initial equation to an equivalent 

one by transposing terms (as per I1 and I4, C1), which she introduced without 

justification, thus activating operational-type epistemic schemes (C2).  Moreover, the 

presence of an action scheme is salient (as we shall see, it acts as an epistemic 

scheme of sustentation); we will refer to it as an explicitation scheme, and it is of an 

extra-mathematical type; it entails making general properties involved in solving a 

task explicit by using natural language (v. P1a), using natural language to explain 

how these general properties apply to specific cases (v. P1b) and making the 

mathematical properties involved explicit by using mathematical language (v. P1c).  

It follows from the above that Laura reached an operational-type level of 

comprehension here (one in which the content and logical structure are consistent, 

but are based on operational schemes). Additionally, Laura showed confidence in the 

content, given the following: she used her conclusion in the following step of the 

resolution; she avoided use of mitigators when stating her plan; she showed 

determination in using a different strategy from the one suggested by her tutor; and 

she demonstrated interest in explaining it. The 2nd sub-process will show how this 

confidence and comprehension serve, together with the intervention of the tutor, as 

conditions for the subsequent actions.  

Second Sub-process: Second Participation of Laura and the Tutor 
Faced with Laura`s response, the tutor stated the following in an effort to activate 

within Laura mathematical epistemic schemes in her solution of equations: 
Once the equation is stated we often “transpose terms”, but why does it work? To find out ... 

Click the link and assemble the equation on the scale. Describe each step of your solution. For 

example: -2x-4=4x-4; To isolate x I do the following: T1. I add 4 on both sides. We now have -
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2x=4x; T2. I add 2x to both sides. Then we have: 0=6x; T3.- I divide both sides by 6. We get: 

0=x. the solution is 0!!! 

Figure 4 shows Laura’s response to the Tutor’s participation. 

 
Figure 4: Analysis of Laura`s second participation. 

The presence of the explicitation epistemic scheme stands out anew (v. P1a-P1c), 

which Laura using it again to suggest an induction (mathematical scheme) or 

generalization of the additive property (V.P1a), that the tutor only mentioned in a 

specific instance (v. T1), and that further served for her as a guide to understand the 

new content the tutor introduced, which by the way acted as a macro condition. In 

this step P1, the student obtained equivalent equations (content consistent with I4, 

C1) conclusively (C3), but did not reduce them (inconsistent with I1, C1); this shows 

some degree of comprehension of the additive case of the property of equality 

(derived from the activation of mathematical and extra-mathematical epistemic 

schemes), but a lack of comprehension regarding its use in solving equations.  In step 

P5 -related to the content associated with the property of dividing both sides by some 

number- the student once again turned to the explicitation scheme, although she only 

used it to state the property at stake in mathematical language, for which the tutor 

incidentally only described one way of using.  Unlike in step P1, she justified step P5 

with a property of equality that in addition to allowing her to obtain equivalent 

equations (content consistent with I4), it also enabled her to reduce the equation 

(consistent with I1). Here Laura shows comprehension of the division case of the 

equality property and comprehension of its application in solving equations. In terms 

of her epistemic states, the student showed greater confidence regarding the 

properties of equality in terms of addition and subtraction in her comment of step 7, 

which in her words “apply to all equations”, but less confidence in the multiplicative 

properties of equality (in addition to a lack of understanding of the topic), which -the 

student says- “don’t always apply”. Future participations will show how her 

confidence regarding the additive properties of equality increases throughout the 

episode alongside increased comprehension, while doubts regarding the properties 

associated with division gain depth in parallel to her lack of comprehension. 
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Third Sub-process: Third Participation of Laura and the Tutor 
In their third participation, the tutor asked the following questions: 

Hello Laura. Very well! You are talking about the properties of equality.; 1.- What are the 

properties of equality and what do they do for us?; 2.- Could you share with us what each of the 

properties of equality that you mention in your participation refer to? 

Figure 5 shows Laura’s responses. 

 

Figure 5: Analysis of Laura`s third participation. 

In P1, Laura included division-related contents, to which she had associated doubt 

and lack of comprehension in her previous participation. In this third participation, 

she maintained those states, which can be seen by her brief description and lack of 

action regarding the content. In contrast, for the properties of equality referring to 

addition and subtraction (v, P2), with which she associated confidence in her 

previous participation, the student activated her explicitation scheme. For the addition 

property, she attached a scheme by authority to that explicitation scheme, by copying 

an example from a book. She then transferred that knowledge to the subtraction case, 

where she made her own example (with content C1 and structure C3 consistent).  

With these actions, Laura consolidated her confidence (revealed by her use of the 

emphasizer “I insist”) and her comprehension of the properties of equality for 

addition and subtraction.  

Fourth Sub-process: Fourth Participation of Laura and the Tutor 
In this new intervention, the tutor asked the student to use the properties of equality 

to solve: -9x+4=12x-15. Fig. 6 analyzes Laura’s response. 

 

Figure 6: Analysis of Laura`s fourth participation.  
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Two matters are salient in this participation. For the additive case of the equality 

properties, about which Laura showed confidence in previous interventions, 

activation of the explicitation scheme is noteworthy, in mathematical language to 

obtain equivalent equations (as per I4, C1) and the value of the variable (as per I1, 

C1, which she only does for the independent term).  In this sub-process, Laura 

showed confidence and increased comprehension, transferring additive properties to 

the context of solving equations. Possibly in order to increase her confidence, the 

student turned to the epistemic scheme of repetition; she recognizes that this scheme 

acted as a source of confidence in the result obtained when she states “I did it several 

times ... so I’m sure of my work” (P8). In contrast, of note is the fact that Laura 

performs increasingly fewer actions related to the properties of equality that refer to 

division, thus showing (as in previous cases) her doubt and lack of comprehension 

regarding that property.  

Laura’s Fifth Participation: Explicitation of Epistemic States 
The comprehension and confidence in the additive properties of equality, which 

Laura consolidated in her fourth intervention, and her doubt and lack of 

comprehension regarding division also in said participation and of which she became 

aware to a certain extent, both served as conditions for her to finally make those 

states explicit in her fifth participation: 
[In the fourth participation] ... I was ... doubtful, as despite using several properties of equality 

(addition, subtraction, multiplication) I always got the same result, and that’s why I’m sure of 

my work. I also kept thinking about whether I failed to apply another equality, do you think I 

did? Classmates, can you help us? 

ANALYSIS OF RESULTS PART TWO: GENERAL PROCESS 
Fig. 7 illustrates the configuration process for epistemic states that, imbricated in the 

evolution of comprehension, are broken down into iterated sub-processes. The 

consequences that stem from them (epistemic states and the student’s 

comprehension) together with the conditions of the tutor act as new conditions that 

lead to actions-interactions of the student, in turn deriving into certain states of 

convincement and comprehension, reinforcing the former, maintaining or mitigating 

them.  In this process, confidence in and comprehension of an addition topic coexist 

with doubt and lack of comprehension in division. 

FINAL CONSIDERATIONS A NOTE ON DIDACTICS 
Epistemic states make up a sophisticated caneva, which components constantly speak 

to each other so as to configure themselves one step at a time.  This process is 

relevant to learning. According to Damasio and the research presented, stimuli that 

produce confidence or doubt are never definitive. That is to say, the connections 

between beliefs and grounds, on the one hand, and epistemic states, on the other, are 

not fixed. The connections are re-trainable and can be re-defined under certain 

conditions. One possible re-training strategy for epistemic states could consist of 

subjecting a student to continuous experiences, accompanied by the teacher and 

opportune guidance, so the student becomes aware of the confidence gained by 

mathematical assertions and the epistemic states that support them, and of the 
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confidence that rules of inference activate in him, by reinforcing or re-directing his 

connections. Indeed, awareness of her epistemic states and the comprehension gained 

in her fifth participation were possibly the result of Laura’s constant activation of her 

explicitation scheme, fostered deliberately by her tutor, which enabled her at that 

point to ask for help suited to her learning needs.  

 

Figure 7: Process of Epistemic States and Comprehension 
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Action-Process-Object-Schema Theory (APOS) is used to study students’ geometric 

understanding of partition of a rectangular domain and corresponding Riemann sum 

of an integral of a function of two variables. In this paper we mainly consider the 

most basic case of a partition, that consisting of a single rectangle (the domain 

itself). Semi-structured interviews were conducted with ten students who had just 

finished taking a traditional course in multivariable calculus. Results show that these 

students had many difficulties with even the most basic mental constructions needed 

to relate Riemann sum and double integral. This is an important observation since 

some of these mental constructions are commonly assumed to be obvious to students.  

INTRODUCTION 
There is not much research in the mathematics education literature dealing with the 

integral multivariable calculus. In one of the few papers we know about, McGee and 

Martínez-Planell (2014) report on the positive effect on student learning of 

consistently using a specific semiotic chain to guide instruction of integration of 

functions of two and three variables. This semiotic chain stressed the importance of 

conversion processes relating geometric and numeric representations, and also 

stressed the role of treatments relating different symbolic representations: finite 

extended sum, sum in sigma notation, the limit of that sum, and the double integral in 

standard notation. While the case of the multivariable integral calculus has been 

much neglected in the literature, the teaching and learning of integrals of functions of 

one variable has received considerably more attention. In particular, we base some 

ideas of our work on that of Sealy (2014) who proposed a framework for student 

understanding of Riemann sums and definite integrals consisting of an Orientation 

Pre-layer, and four other layers: Product, Summation, Limit, and Function. She found 

that the Orientation Pre-layer, in which students attend to the individual meaning of 

( )f x  and x , and the Product Layer, in which the product ( )f x x  is given meaning, 

played a key role in allowing student understanding. This is an important observation 

given the apparent simplicity of the operations involved in forming such a product. In 

this article we build on the work of McGee et al. (2014) by stressing the importance 

of relating geometric, numeric, and contextual representations, as well as by initiating 

a detailed theoretical study that attempts to explore from the perspective of APOS 



Martinez-Planell and Trigueros 

________________________________________________________________________________________________________________________

3-226    PME 41 – 2017 

Theory the reasons, in terms of mental constructions, for students’ improved 

performance in the semiotic chain mediated instructional approach used by McGee et 

al (2014). We also base part of our work on Sealy’s (2014) observations, which are 

now interpreted in terms of integrals of functions of two variables. Consistent with 

her underscoring the importance of the Orientation Pre-later and Product Layer, we 

restrict our attention on this article to what would be the equivalent ideas of attending 

to the individual meaning of ( , )f x y , x , y  and giving meaning to the product 

( , )f x y x y   relative to the corresponding double integral of f. 

THEORETICAL FRAMEWORK 
We use APOS Theory (Arnon, et al, 2014). In APOS, an Action is a transformation 

of a mathematical object that is perceived as external. It may be the rigid application 

of an explicit algorithm or of a memorized fact or procedure. The Action is external 

in the sense that it is relatively unconnected from other mathematical knowledge so 

that the individual will not be able to justify it. Repetition and reflection may allow 

an Action to be interiorized into a Process, where the Action is now perceived as 

internal, so that it may be imagined and reflected upon without having to explicitly 

perform the Action. The Process is perceived as internal in the sense that it has 

meaningful connections to other mathematical knowledge so that the individual will 

be able to justify it. When an individual feels the need to apply Actions on a Process 

and is able to apply or imagine applying such Actions, then one says the Process has 

been encapsulated into an Object. A Schema is a coherent collection of Actions, 

Processes, Objects, and other previously constructed schema related to a specific 

mathematical notion. In this article we focus on the interiorization of Actions into 

Processes and do not directly consider the mental constructions involved in 

constructing an Object conception or Schema development.  

When applying APOS it is necessary to use a genetic decomposition (GD). This is a 

conjecture of mental constructions students may do in order to understand a specific 

mathematical topic. The GD is based on the mathematics itself, teaching experience, 

and any previous data or research study. A GD is not meant to be unique. It is used to 

analyse students’ mental constructions when solving mathematical problems on the 

specific topic of interest. This potentially results in refinements to the GD to improve 

its capacity to predict student behaviour and guide instruction. In the following 

paragraphs we include the portion of the GD which was tested in this study with 

student interviews. 

Recognition of rectangle and function 
Actions are performed on a given function in any representation with domain 

restricted to a rectangle, to produce the geometric representation of the restricted 

domain either as a subset of the Cartesian plane or as a subset of 3D space 

(identifying (x,y) with (x,y,0)). Actions are performed on the same function to obtain 

values of the function on the given domain and to represent them in the 3D space. 

These actions are interiorized into a Process to represent the graph of the function 

over the given rectangle together with the rectangle so that the student can imagine 
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the relation between function and rectangle as a graph in space over a rectangle in the 

xy plane. 

Forming one term of a Riemann sum 
Actions of evaluating the given function of two variables at a specific point of a 

given sub-rectangle of its domain, multiplying it by the length and width of the 

rectangle to obtain a product ( , )f a b x y   are done. These actions are interiorized into 

a Process which can be coordinated with conversion Processes between different 

representations of function, rectangle, and given point. The resulting Process allow 

representing the product in space as a rectangular prism and also recognizes the units 

of this product when necessary. 

Recognition of underestimate, overestimate, and exact value 
Given a continuous function in different representations defined on a rectangle, with 

the function simple enough so that its maximum and minimum values on the 

rectangle may be quickly recognized without doing any explicit computation, the 

Actions of obtaining an overestimate and an underestimate of the product ( , )f a b x y   

are done. These Actions are interiorized into a Process when these estimations are 

calculated for the same function on different rectangles or for different functions in 

different rectangles. Actions are performed to change the chosen point in order to 

construct a rectangular prism that better approximates a given exact value of the 

volume between surface and rectangle. These Actions are interiorized into the 

Process that makes it possible to recognize that for a continuous function defined on a 

rectangle, there is a point somewhere on the rectangle that will produce the exact 

value of volume between surface and rectangle or of the quantity being computed. 

Forming a partition and computing a value in each sub-rectangle of the 
partition 
Given two small specific positive integers (not in symbolic form, but actual 

numbers), n and m, the Action of subdividing given intervals [a,b] and [c,d] into 

subintervals of equal length ( ) /x b a n    and ( ) /y d c m    both numerically and 

geometrically in order to obtain a subdivision of the rectangle [ , ] [ , ]a b c d . These 

Actions are interiorized into a Process of subdivision of rectangles so that the student 

can imagine how for any given positive integers, n and m, the respective subdivisions 

of [a,b] and [c,d] give rise to a subdivision of the rectangle [ , ] [ , ]a b c d  without 

having to explicitly do so for any other specific values of n and m. The Action of 

choosing a prescribed point ( , )i jx y  on each sub-rectangle of the given partition and 

producing the products ( , )i jf x y x y  is repeated for different points and the result is 

interpreted numerically (as a collection of numbers) and geometrically (as a set of 

rectangular figures in space), and verbally (interpreting the products in terms of its 

units). These Actions are interiorized into a Process that enables imagining forming 

such products for the collection of sub-rectangles of any given partitioned rectangle. 

At this point the student might not think of adding the products over all rectangles in 

the partition. 
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METHOD 
The above portion of the GD for integral of functions of two variables was used to 

prepare an interview instrument to test it. The instrument was used in semi-structured 

interviews with 10 students taking a multivariable calculus course in a public 

university in Puerto Rico. The interviews took place in the last week of a semester 

course. The students were chosen by their professor so that 4 were over average, 3 

average, and 3 under average, as defined by the course average grade they had before 

presenting the final exam. The professor had more than 25 years of experience, and 

had taught the course repeatedly over the years. The course was “traditional” in the 

sense that most of the classroom time was dedicated to lecturing, and the textbook 

(Stewart, 2012) and syllabus were followed very closely. In particular, since the 

professor was not one of the researchers of this article, no classroom or homework 

activity was explicitly guided by the GD. Thus APOS is used in this paper to describe 

the mental constructions demonstrated by a group of students who completed a 

traditional lecture/recitation course, as discussed in Arnon et al. (2014, p. 106).  

The interviews lasted an average of 46 minutes. They were recorded, transcribed, 

individually analysed by the researchers, and differences were negotiated. Each 

interview problem was also graded on a 0 to 2 scale. 

The interview problems are summarized below. 

(1a) The following is the complete graph of function ( , )z f x y . Represent the 

domain of f in the figure [See Figure 1; the graph appeared in all parts of problem 1, 

except 1b]. (1b) Let 2( , )g x y x y   be a function with domain restricted to 0 2x   

and 1 2y  . Represent the domain of the function in three-dimensional space. (1c) 

The above functions f and g are the same. If 2x   and 1y  , what is the numerical 

value of (0,1)f x y   and what does it represent geometrically? (1d) Let 2x   and 

1y  . How does (0,1)f x y   compare with ( , )
D

f x y dA ? [No numerical computations 

are needed in parts d, e, f, and g] (1e) How does (2,2)f x y   compare with 

( , )
D

f x y dA ? (1f) Is there any point (a,b) in the domain D of f such that ( , )f a b x y   is 

equal to ( , )
D

f x y dA ? (1g) Let 2x   and 1/ 2y  . Consider the Riemann sum  f 

(0,1)∆x∆y + f (0,1.5)∆x∆y + f (1,1)∆x∆y + f (1,1.5)∆x∆y of the integral ( , )
D

f x y dA . 

What does the Riemann sum represent geometrically and how does its value compare 

to that of ( , )
D

f x y dA ? 

(2) Let p be a function defined on a region D of the plane. Suppose that D models a 

thin plate whose surface has a contaminant. If x and y are measured in centimetres 

and ( , )p x y  is the density of the contaminant in units of mg/cm
2
, what does a term of 

the form (0,1)p x y   in a Riemann sum represent and what does ( , )
D

p x y dA  represent? 
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RESULTS 
Students showing an action conception 
APOS states that the overall tendency of students when dealing with different 

problem situations involving a specific concept, will be different, depending on 

whether the student thinks of the concept as an Action, a Process, or an Object. Nine 

of the ten interviewed students showed an Action conception of Riemann sum and 

double integral over a rectangle. We include below excerpts showing one 

representative student’s responses and how his difficulties can be explained in terms 

of the lack of interiorization of some of the Processes conjectured in the preliminary 

GD. In this short article we are constrained to showing a few sample transcripts of 

one specific student, without examining the other students’ overall tendency and 

specific difficulties. The reader should keep in mind that all students showing 

behaviour consistent with an Action conception did so in multiple instances, and that 

each of the difficulties exemplified below were shared by several students. 

As observed in Martínez-Planell and Trigueros (2012), students tend to have 

difficulty understanding the notion of domain of functions of two variables, and 

particularly, restricted domains. This was observed with Luis and 8 of the 10 

interviewed students. 
Interviewer: (in 1a) so you used set notation [correctly] to tell me what is the domain.  

Could you represent it as part of the figure? [See Figure 1] 

Luis: I can tell you what the domain is but if I don’t have a function I don’t think I can 

tell you the exact point where each of the points in the graph is. I can tell 

you that in x2 and y1 it will be this point here [darkening (2,1, f(2,1)) in 

Figure 1], and in x0 and y1 it will be this point here [darkening (0,1, 

f(0,1))]. 

Interviewer: So, is the graph part of the domain?  

Luis: No, the domain is obtained from the graph. I can obtain the domain having the 

function but to do so I have to define the function.  

Interviewer: Is there any way to represent that set of ordered pairs you gave me as part 

of that figure? 

Luis: Well, having these two limits the only thing I can tell you is that the function is 

enclosed by these two limits [referring to 0 2x   and 1 2y  ] but I 

can’t tell you which is the function because if I’m going to graph these 

two domains I’d be left with a rectangle and the function is inside this 

rectangle, so it would be... [See Figure 2]. The only thing this tells me is 

that it is enclosed by all this and I’m only talking about the xy plane, I’d 

be missing z, that is, with x,y I can get z. 

Interviewer: So the domain, is it only x and y or may it also include z? 

Luis: The domain may include the z. 

In the above excerpt, Luis gives evidence of not having interiorized a Process to 

recognize the relationship between domain rectangle and function. He seems to be 

aware that the domain is formally a set of ordered pairs but also seems to believe that 

each ordered pair (x,y) in the domain is represented in three-dimensional space by its 
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corresponding point on the graph rather than by (x,y,0). As could be expected, he 

went on to show difficulty representing terms of a Riemann sum and partitions 

graphically.  

Figure for Problem 1a and Luis’ drawing Luis’ drawing for problem 1a 

  

Figure 1: Luis’ work and drawings for Problem 1a 

Interviewer: does the product (0,1)f x y   represent some geometric entity? 

Luis: I think of x y   as an area, as the area at that point. 

Interviewer: And (0,1)f , how do you think of it geometrically? 

Luis: I see it as a z... as see it as the height in that function... at that same point, what is 

the height of that function... 

Interviewer: So you just referred to x y   as an area and to (0,1)f  as a height, then 

when one multiplies area times height... 

Luis: That is what I don’t know 

The above excerpt exemplifies that a student might know the meaning of the 

individual components of (0,1)f x y   but might not be able to do the Action of 

putting them together to form one term of a Riemann sum and to interpret it as the 

volume of a rectangular prism, as conjectured in the genetic decomposition. So in 

problems 1d, 1e, 1f he could not do the necessary Process to relate the given term to 

an underestimate, overestimate or exact value of the integral, another of the Processes 

contemplated in the GD. Luis went on to state that the double integral represented the 

surface area, and then latter on to argue that it represented the volume of the surface 

itself. He was also unable to make sense of the four-term Riemann sum in problem 1g 

nor relate it to the integral. In problem 2, where the function was given as a rate, Luis 

also showed not to have interiorized the Process involved in forming a term of the 

Riemann sum. When analysing the units of (0,1)p x y   he stated: 

Luis: ... it will end up in milligrams since I have cm
2
... which is x  times y ... I have 

the function... density of the contaminant in units milligrams per cm
2
... 

this will give me a constant in milligrams. 

Interviewer: ... What does the double integral of ( , )p x y dA  represent?  

Luis: It would be the total density of the figure. 

Interviewer: What units would you get from computing the double integral? 

Luis: What it measures is volume. 

It can be observed that Luis responds according to memorized scripts, consistent with 

an Action conception. He did not relate Riemann sum to the integral. 
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Some of the nine students who were able only to perform Actions considered f(0,1) 

as “a point” but would not relate it to a length of a line segment. Some thought of it 

as the thickness of the surface and argued that the double integral would compute the 

volume of the surface itself. Some of these students did not show flexibility in the use 

of variables and still thought of x  and y  as related to a rate of change, derivative 

or slope. Even when shown the geometric meaning of (0,1)f x y   with a drawing of a 

rectangular prism in space most still had difficulty making sense of the partition and 

different terms of the Riemann sum in problem 1g. These results evidence the 

importance of constructing the Processes conjectured in the GD so that students can 

overcome these difficulties.  

Students showing a process conception 
Only one of the ten interviewed students, Fermin, showed behaviour consistent with a 

Process conception of Riemann sum and its relation to the integral of a function of 

two variables over a rectangle. In problems 1a and 1b he gave evidence of having 

constructed a Process to imagine function, rectangle and their relation (See Figure 2). 

In problem 1c he also gave evidence of doing a Process to put together the terms 

f(0,1), ,  x y   and interpret the resulting product as the volume of a box (See Figure 

2).  

Drawing for Problem 1a Drawing for problem 1c Drawing for problem 1g  

   

Figure 2: Fermin’s work and drawings for Problems 1a, 1c, and 1g 

In problems 1d, 1e, and 1f he was able to argue the cases when he obtained an 

underestimate, an overestimate, and, with some help, the exact value. Also, in 

problem 1g he gave evidence of understanding the corresponding partition and the 

relation between the Riemann sum and the double integral. 
Fermin: ... the change in y is 1/2 the change in x is 1. Let me draw region D on the xy 

plane, and one took as sample points, (0,1) which would be here, (0,1.5)... 

[He draws two of the boxes; See Figure 2] one would then take the four 

cubes under the function. How does this value compare? It would be a 

more approximate value... to the value of the double integral of f(x,y)... it 

would be a smaller value. 

DISCUSSION AND SUMMARY 
Although one would think that recognizing the relationship between a rectangle, the 

sample point, and the function in a partition corresponding to a Riemann sum of a 

double integral of a function of two variables, putting these quantities together in a 



Martinez-Planell and Trigueros 

________________________________________________________________________________________________________________________

3-232    PME 41 – 2017 

product, and representing that product as the volume of a corresponding box in three-

dimensional space, is a simple idea, readily understood by most students, that seems 

not to be the case. This stresses the fact that these mental constructions must appear 

in the GD of integrals of functions of two variables and should be considered in 

instruction. Indeed, the interviews were scored and of the possible 20 points that 

could be obtained, the best performing student, Fermin, obtained a score of 17; the 

next best performing students obtained scores of 7.5, 7, and 6.5 respectively. The 

average for the remaining six students was 1.6 out of 20 possible points. Only one 

student showed behaviour consistent with a Process conception and the nine other 

students gave evidence of being limited to an Action conception, applying 

memorized facts, not being able to imagine Actions without explicit computation, 

rigidly applying algorithms, and not relating symbolic and geometric representations. 

For the most part, these students did not recognize the geometric interpretation of a 

Riemann sum, the units and the meaning of a Riemann sum when the function is 

given as a rate, or its relation with the corresponding double integral. Students also 

showed not to have constructed Processes for recognizing underestimates, 

overestimates, and the possibility of choosing a sample point to obtain the exact value 

of a double integral over a rectangle. Also, most students did not manage to discuss 

the partition in problem 1g. Hence this demonstrated that all portions of the GD are 

needed in the construction of the integral of two variable functions. The case of 

Fermin suggests that it is possible to construct a Process conception of Riemann sums 

and their relation to a double integral in a traditional classroom. However, this 

study’s results also suggest that the traditional mode of instruction may play an 

important role in limiting the possibility of students’ understanding. An investigation 

of this aspect is left for future studies. 
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In this paper we explore the ways in which mathematicians talk about explanation in 

their research papers. We analyze the use of the words explain/explanation (and 

various related words) in a large corpus of text containing research papers in both 

mathematics and physical sciences. We found that mathematicians do not frequently 

use this family of words and that their use is considerably more prevalent in physics 

papers than in mathematics papers. In particular, we found that physicists talk about 

explaining why disproportionately more often than mathematicians. We discuss some 

possible accounts for these differences. 

INTRODUCTION 
The notion of explanation in mathematics has received a lot of attention in both 

mathematics education and the philosophy of mathematics. In mathematics 

education, scholars have been particularly interested in proofs that explain 

mathematical theorems (i.e. proofs that provide an insight into why a mathematical 

claim is true) and their role in the mathematics classroom (e.g. Hanna, 1990). 

Philosophers of mathematics have discussed at length possible equivalents for 

mathematics of existing philosophical theories of scientific explanation (e.g. Steiner, 

1978). Some of these discussions bring to bear the extent to which explanation is 

relevant to the actual practice of mathematicians and often cite individual 

mathematicians’ views on mathematical explanation (more often than not that 

mathematician seems to be Henri Poincaré, Paul Halmos, or William Thurston). In 

this report we explore the extent to which mathematicians talk about explanation in 

their research papers, and the ways in which they do so. 

LITERATURE REVIEW 
In an influential paper in mathematics education, de Villiers (1990) argued that proof 

serves several different roles in mathematics, that proof is not only used in 

mathematics as a way to verify results, to provide conviction of the truth of those 

results (see also Bell, 1976). One of those other functions of proof was to explain 

mathematical results, to provide an insight or understanding into why these results 

were true, as opposed to just evidence in support of that result. Hanna (1990) made a 

similar distinction in the context of the teaching and learning of mathematics, 

discussing the idea that certain proofs fulfilled this explanatory function better than 

others, to the point that among the set of all proofs one could identify proofs that 

explain why a theorem is true, while others simply demonstrate that a theorem is true. 
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Mathematics educators have generally suggested that in the mathematics classroom, 

mathematical explanation should be an important, if not the primary role of proof (de 

Villiers, 1990; Hanna, 1990; Hersh, 1993).  

This distinction between proofs that explain and proofs that demonstrate has a longer 

history in the philosophy of mathematics. Steiner (1978) put forward a model of 

mathematical explanation, arguing that a mathematical proof could be better defined 

in terms of what he called a characterizing property of a concept in the theorem, as 

opposed to other alternative defining characteristics such as the abstractness or the 

generality of the proof. Steiner’s top-down approach to modeling mathematical 

explanation by providing a general definition of explanatory proof (and thus creating 

an absolute distinction between explanatory and non-explanatory proofs) has been 

criticized by other philosophers of mathematics. In particular, Hafner and Mancosu 

(2005) argued that ascribing explanatoriness to specific proofs should be done based 

on practicing mathematicians’ evaluations, not philosophers’ own intuitions (such as 

Steiner’s). The extent to which practicing mathematicians not only agree with 

philosophers’ characterization of mathematical explanation, but simply talk about 

explanation in their practice plays an important role in the general argument for the 

existence of explanation in mathematics (which not all philosophers believe). As 

such, it is not uncommon for a discussion of mathematical explanation to mention 

how much mathematicians talk about it. For example, Steiner claimed that 

“mathematicians routinely distinguish proofs that merely demonstrate from proofs 

which explain” (p.135), and Hafner and Mancosu (2005) supported their claim that 

mathematicians seek and value explanation in mathematics by presenting several 

examples of what they called “explanatory” talk in mathematical practice: passages 

of research mathematics papers in which the authors explicitly discuss the role of 

explanation in their own work. However, we do not currently have empirical 

evidence, other than these small selections of introspective accounts, about the extent 

to which talk about mathematical explanation is part of mathematical discourse. We 

believe one of the reasons this has not been studied at a larger scale may be 

methodological: a researcher would have to be able to process and analyze a large 

number of mathematical research papers or conversations among mathematicians. 

One method of studying mathematical discourse at such a scale is to use the 

techniques of corpus linguistics, a branch of linguistics that statistically investigates 

large collections of naturally occurring text, known as corpora. Methods developed 

by corpus linguists can be used to investigate many different types of linguistic 

questions. Here, we report a study that employs some of these techniques to address 

the following questions: to what extent do mathematicians discuss explanation in 

their research papers, how does it compare to the extent to which they discuss other 

important related notions (such as showing or proving given mathematical results), 

and how does it compare to discussions about explanation in other types of scientific 

discourse? 
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THEORETICAL PERSPECTIVE 
Discussions about mathematical explanation tend to differentiate between 

explanations of other mathematics (i.e. mathematics X explains mathematics Y, or X 

is an explanatory proof of theorem Y), and explanations of physical phenomena (i.e. 

mathematics X explains physical phenomenon Y). Colyvan (2011) refers to these two 

types of explanation as intra-mathematical and extra-mathematical, respectively. 

Here we focus on intra-mathematical explanations.  

Hafner and Mancosu (2005) further differentiated between two uses of intra-

mathematical explanations: those that are “instructions” on how to master the tools of 

the trade (as in explaining how to employ a certain mathematical technique), and 

those that “call for an account of the mathematical facts themselves, the reason why” 

(p. 217). While Hafner and Mancosu considered the latter to be a “deeper” use of 

mathematical explanation, which is also the focus of the larger philosophical 

discussion around explanatory proofs, others have emphasized the importance of the 

former type of explanation in mathematical practice. For instance, Rav (1999) 

insisted that one of the main reasons mathematicians read proofs is because of all the 

mathematical know-how embedded in them, emphasizing the mathematical 

methodologies and problem solving strategies/techniques contained in proofs. 

According to Rav, “proofs are for the mathematician what experimental procedures 

are for the experimental scientist: in studying them one learns of new ideas, new 

concepts, new strategies—devices which can be assimilated for one's own research 

and be further developed.” (p. 20) Indeed, there is empirical evidence (from both 

small scale interview studies and large scale surveys) that mathematicians maintain 

that one of the main reasons they read proofs is to gain insights into how they can 

solve problems that they are working on (Weber & Mejía-Ramos, 2011, Mejía-

Ramos & Weber, 2014). 

An interesting question related to the specific ways in which mathematicians talk 

about explanation in their papers, relates to these two types of “explanatory” talk: to 

what extent do mathematicians discuss explanations of why a certain mathematical 

statement is true, compared to their talk about explanations of how to do something 

in mathematics? 

METHODS 
One of the main ways in which mathematicians around the world communicate about 

mathematics is through research papers stored in the ArXiv. The ArXiv is an online 

repository of electronic preprints of scientific papers in the fields of mathematics, 

physics, astronomy, computer science, quantitative biology, quantitative finance, and 

statistics. These papers constitute a large corpus of scientific text that can be used to 

analyze mathematical discourse. 

We downloaded the bulk source files (mostly TeX/LaTeX) and converted the source 

code to plain text, which we could then analyze using standard software packages for 

corpus analysis. We then sorted these articles based on their subject classification 
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(Alcock et al., 2017, discussed the details about the processing of these source files). 

All analyses reported here are based on a proper subset of this corpus, containing all 

mathematics and physics articles (based on their primary subject classification) 

uploaded in the first four months of 2009. This left us with 5087 mathematics papers 

(30,892,695 words) and 11787 physics papers (58,859,660 words). 

RESULTS 
Frequency of explicit “explanatory” talk in mathematics papers 
Table 1 shows the frequencies of all words linguistically related to the word explain 

(henceforth explain-words) in our corpus of 5087 mathematics and 11787 physics 

papers. Explain-words showed up 4871 times in the set of mathematics papers, or 

approximately once every 1.04 papers. While this certainly provides an existence 

proof of explicit “explanatory” talk in this corpus, it is not very surprising (it would 

very rare if no word based on the word explain showed up in these many 

mathematics papers). In comparison, explain-words showed up 21305 times in the set 

of physics papers, approximately once every 0.55 papers, or about twice as often as 

they showed up in the mathematics papers. In order to get a sense of the extent to 

which these frequencies were high or low in this type of mathematical discourse, we 

compared them against the frequencies of words related to other important 

mathematical activities. 

Explain-word Mathematics Physics 

explain 1827 7768 

explained 1690 6513 

explanation 498 3564 

explains 484 1601 

explaining 175 914 

explanations 119 675 

explanatory 51 62 

unexplained 22 177 

unexplainable 4 8 

explainable 1 23 

Total 4871 21305 

Table 1: Frequency of words related to explaining appearing in the mathematics and 

physics papers 

Table 2 presents the frequencies of words linguistically related to the notions of 

showing, solving, and proving, which were chosen based on their relevance in 

mathematical explanation. Measured against these other frequencies, mathematicians 



Mejia Ramos and Inglis 

________________________________________________________________________________________________________________________ 

PME 41 – 2017   3-237 

used explain-words rather infrequently. Indeed, mathematicians used explain-words 

in their papers approximately 11 times less frequently than show-words or solve-

words and nearly 23 times less often than prove-words. 

Show-word Frequency 

show 31691 

shows 12890 

shown 10235 

showed 2414 

showing 2129 

Total 59359 

  
 

 

 

Solve-word Frequency 

solution 25845 

solutions 15956 

solve 2204 

solving 1717 

solvable 1618 

solved 1342 

solves 1071 

solvability 429 

solver 145 

unsolved 95 

solvers 56 

nonsolvable 39 

unsolvable 32 

cosolvable 29 

equisolvable 18 

unsolvability 12 

Total 50608 

Prove-word Frequency 

proof 56452 

prove 29481 

proved 12842 

proves 4160 

proofs 3892 

proving 2661 

proven 1902 

provable 159 

reprove 58 

disprove 43 

provability 29 

reproved 29 

disproved 17 

unprovable 13 

unproven 12 

reproving 11 

disproving 10 

reproves 10 

prover 7 

unproved 7 

subproof 5 

disproof 4 

Total 111804 
 

Table 2: Frequencies of words related to showing, solving, and proving appearing 

in the mathematics papers 

Finally, the search for explain-words may be thought of as requiring an extremely 

explicit discussion of explanation, one that would leave unnoticed a significant 

amount of the “explanatory” talk in these papers. Hafner and Mancosu (2005) 
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offered a list of eight expressions that they had found to be commonly used in the 

mathematics and philosophy of mathematics literature to describe the search for 

explanations. Table 3 lists these expressions along with the specific concordance 

search we made to investigate their prevalence in both the mathematics and physics 

papers. We note that the total number of occurrences of these expressions is only 

about 10% of the total amount of explain-words in each set of papers (with 

disproportionately more occurrences of these expressions in the physics papers than 

the mathematics ones) and thus this analysis does not affect the finding made by only 

investigating the appearance of explain-words. 

Alternative expression Concordance search Mathematics  Physics 

"the deep reasons" deep* reason* 5 16 

"an understanding of the 

essence" 
understand* the essence 0 5 

"a better understanding" better understand* 161 767 

"a satisfying reason" satisfy* reason 0 0 

"the reason why" reason* why 312 924 

"the true reason" true reason 3 1 

"an account of the fact" an account of the fact 0 0 

"the causes of" cause* of 16 609 

 
Total 497 2322 

Table 3: Frequencies of alternative expressions of related to “explanatory” talk 

Explaining why vs. explaining how 

In order to investigate mathematicians’ discussion of explanations of why a certain 

mathematical statement is true (Hafner and Mancosu’s “deep” explanation), in 

comparison to their talk about explanations of how to do something in mathematics 

(related to Rav’s notion of mathematical know-how), we created a concordance of 

the corpus of papers and identified every instance an explain-word had been 

immediately followed by the words why or how (e.g. unexplained why, explanation 

how). We did this by searching the concordance for *expla* why and *expla* how, 

and checking that all results were indeed uses of explain-words. We then repeated the 

process with the corpus of physics papers. Table 4 shows there is a clear difference in 

the ways that explain-words are used in the mathematics and the physics papers. 

We note that when taken together the total of *expla*-why and *expla*-how 

expressions were roughly as common in math papers as they were in physics papers, 

with approximately one of these expressions showing up every 7-9 papers in the 

corresponding set, and also a relatively small subset of the wider use of explain-

words (roughly 14% and 6% of explain-word usage in mathematics and physics, 
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respectively). However, the distribution of these two different types of expressions in 

the two sets of papers was significantly different (Fisher’s exact test, p < .001), with 

mathematicians using nearly twice as many *expla*-how expressions than *expla*-

why expressions, and physicists on the other hand using a little under three times as 

many *expla*-why expressions than *expla*-how expressions. 

 
Mathematics Physics 

*expla* why 247 952 

*expla* how 458 353 

Total 705 1305 

Table 4: Frequencies of explain-words immediately followed by the words why or 

how in the mathematics and physics research papers 

DISCUSSION 
Our analysis of “explanatory” talk in a large sample of mathematics papers does not 

offer support for a claim often made in the philosophy of mathematics: that this type 

of talk is prevalent in mathematical discourse. When compared to explicit discussion 

of other related mathematical practices (showing results, solving problems, and 

proving theorems), mathematicians do not seem to discuss explanation nearly as 

much. Furthermore, when compared to another scientific discourse, we found that 

mathematical discourse contains only a fraction of “explanatory” talk as research 

papers in physics. Indeed, we believe these findings suggest that the prevalence of 

“explanatory” talk in mathematical discourse has been widely exaggerated. 

Furthermore, by analyzing the frequency with which variations of the expressions 

explain why and explain how occur in mathematics and physics research papers, we 

found that, to the extent to which they engage in “explanatory” talk, mathematicians 

seem to be much more interested in discussing explanations of how to do something 

in mathematics, than in explanations of why things are the way they are in 

mathematics. In physics we found the situation to be the opposite. This is particularly 

interesting given mathematics educators’ and philosophers’ of mathematics 

preoccupation with the type of intra-mathematical explanations of the form X 

explains why Y (where X and Y are mathematical assertions), and particularly with 

the notion of explanatory proofs (in which proof X explains why theorem Y is true). 

This focus may have been inherited from the more traditional study of the notion of 

scientific explanation, which is not only naturally concerned with this type of 

explanations (the desire to explain the real world is full of why-questions), but 

according to our findings may also be more commonly discussed in scientific 

discourse in terms of answers to why-questions. However, our findings suggest that 

this focus may also be misguided for those interested in studying the notion of 

mathematical explanation as it more commonly occurs in the discourse of 

professional mathematicians. Indeed, as suggested by Rav (1999), it seems that when 

it comes to proofs and explanations, mathematicians are primarily interested in 
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learning how to solve other problems, possibly over learning the reasons why some 

mathematical results hold true. 

Now, one must be careful about several inferential jumps made in this kind of 

analysis. First, while the ArXiv may well be the largest, most widely used repository 

of this type of preprints and postprints in the world, we have analyzed a very specific 

type of mathematical discourse, leaving open the possibility that studies of 

mathematical discourse in others settings (conversational or other digital 

communications) could lead to contrasting findings. Second, we have analyzed these 

research papers for a limited type of “explanatory” talk, one required to contain 

explain-words or a limited number of alternative, related expressions. While this was 

an obvious place to start to investigate “explanatory” talk in mathematical discourse, 

it is certainly possible that the analysis of other expressions related to mathematical 

explanation may skew our results. These limitations of the present study indicate 

clear avenues for future empirical research on mathematical explanation. 
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Different communities, speaking different languages, employ different naming 

systems to describe the phenomena of the mathematics classroom. The International 

Lexicon Project has documented the lexicons of middle school teachers of 

mathematics in nine countries. This paper reports on aspects of the naming systems 

in use by Australian and U.S. middle school mathematics teachers. Members of the 

research community and groups of practitioners in both countries participated in the 

process of negotiating their own lexicons, whilst the education community at large 

assisted in the validation of that lexicon. Despite cultural similarities, the 

professional language available to mathematics teachers in Australia and America is 

different in content and in structure, with implications for comparative research. 

INTRODUCTION 
The research outlined in this paper is being undertaken as part of a larger 

international project. The International Lexicon Project has initiated cross-cultural 

dialogue to identify pedagogical terms from selected educational communities and 

use these as analytical tools to categorise, interrogate and enrich classroom practice, 

classroom research, and educational theorising. This project seeks to identify and 

compare the naming systems employed in teaching communities in Australia, Chile, 

China, the Czech Republic, Finland, France, Germany, Japan and the USA. 

Documenting these lexicons, “the vocabulary of a person, language, or branch of 

knowledge” (Stevenson, 2015), will allow for the expansion of the variety of 

constructs available for the purpose of theorising about classroom practice, and for 

identifying the characteristics of accomplished practice. In this paper, we focus on the 

lexicons of the only two English-speaking teaching communities in the project. 

Lortie (1975), in his social portrait of the ‘Schoolteacher’ reported a lack of 

‘technical language’ in teaching. Lampert (2000) agreed that “no professional 

language for describing and analysing practice has developed in the United States” 

(p. 90). More recently, Grossman and her colleagues (2009) also concurred that the 

teaching profession’s ‘grammar of practice’ was under-developed. Certainly, Connell 

(2009) has noted that a lively occupational culture in teaching which includes “the 

informal processes by which practical know-how is passed to new teachers in on-the-

job learning” is not always present. We suggest that the promotion of such a culture 

would be dependent on a suitable professional language by which the teaching 
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community might discuss its practice. Lampert (2000) concluded that the lack of 

opportunities for American teachers to work collaboratively with peers on the 

problems of practice result in “a language of practice [that] remains flat or 

nonexistent” (p. 90). This is in contrast with a well-articulated structure in China and 

strong traditions in Japan of educators and teachers discussing research lessons 

(Lampert, 2000). 

Of interest also is the recent focus on noticing as a key component of teacher 

expertise (e.g., Sherin, Jacobs & Philipp, 2011). The idea here is that because of the 

complexity of instruction, teachers cannot notice everything with equal weight, and 

instead must choose from among this complexity where to focus their attention. What 

we notice is, of course, constrained by our knowledge and experience and, we argue, 

by what we can name. The Sapir-Whorf hypothesis suggests that our lived experience 

is mediated significantly by our capacity to name and categorise our world. 

 
We see and hear . . . very largely as we do because the language habits of our community 

predispose certain choices of interpretation (Sapir, 1949, p. 162). 

Our interactions with classroom settings, whether as learners, teachers, or 

researchers, are mediated by our capacity to name what we see and experience. If the 

Australian (or American) teacher’s conception of the mathematics classroom is 

constructed around activities that they can name, then it may follow that they are 

unlikely to engage in activities that they cannot name. Marton and Tsui (2004) 

suggest that categories not only express the social structure but also create the need 

for people to conform to the behaviour associated with these categories (p. 28). Thus 

teachers’ activity in the classroom is channelled by those practices they are able to 

name, obliging their behaviour to correspond to this normative construction of 

practice. Comparison of the lexicons of Australian and American middle school 

mathematics teachers indicates the variation possible within two teaching 

communities speaking the same language but with different pedagogical traditions. 

THE RESEARCH DESIGN 
Protocols and approaches common to both Australian and American settings 

Compiling the national lexicons from each country involved the assembly of local 

terms used to identify classroom practices reflecting the well-established pedagogical 

traditions by which each of the participating communities describe the activities of 

the mathematical classroom. These terms were supplemented with the clearest 

possible operational definitions (a description with examples and non-examples) 

describing both the form and function of each named term. 

The composition of the local research team in each country was stipulated to include 

the team leader (senior researcher), junior researchers and at least two experienced 

teacher practitioners, with strong preference given to mathematics teachers of grades 

seven to nine who were currently teaching.  

Each of the nine country teams contributed video material, time-stamped transcripts 

and classroom supporting material for one lesson of mathematics at year eight. These 
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nine lessons were re-packaged as “three-ups” (see Figure 1) and each local research 

team was given access to the entire stimulus package of nine lessons. 

 

Figure 1. The video “three-up” (three camera angles with time-code and subtitles) 

The lesson videos presented in their combination a variety of instructional 

approaches in classroom settings both familiar and unfamiliar to the research team 

members in each country. Each team used a standardised recording template to 

record anything in the lesson for which they had a name. The initial prompt used for 

stimulating thought about the video was, “What do you see that you can name?” This 

very general prompt and approach was crafted so that restrictions were not placed on 

what could be named. The use of the video material was to stimulate thinking about 

possible lexical terms. Importantly, it was not necessary that every term refer to 

something occurring in one of the videos. Terms that came to mind during the 

viewing that were not present in the video material were also recorded. The 

fundamental criterion for the inclusion of a term in the lexicon was that it was 

familiar to at least two-thirds of middle school mathematics teachers in that country. 

Detailing local protocols and approaches: Australia 
The Australian national team consisted of four university researchers and three 

practising teachers. They all viewed the video of the Australian lesson, however, the 

remaining eight video-recorded lessons were assigned to team members using a 

matrix structure ensuring at least one experienced teacher viewed each lesson and 

each lesson was viewed by a minimum of four team members. 

The Australian team met regularly to share terms or phrases that were felt to be 

possible candidates for inclusion in the Australian Lexicon. Team consensus was 

required for the inclusion of a term in the lexicon and, in problematic cases, authority 

was accorded primarily to classroom experience and the team member’s capacity to 

argue that the term was in current use by teachers. The essential point was to record 

single words or short phrases that are consistently and widely used within the 

mathematics teaching community. 

An important matter for the Australian team was distinguishing the language of the 

discipline (mathematics) from the language of practice (mathematics 

teaching/learning). On occasion, a purely mathematical term would be considered for 
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inclusion; these opportunities allowed us to reaffirm that the aim of the Lexicon 

project was to identify terms and short phrases that relate specifically to classroom 

phenomena, not those that describe solely mathematical activity (without implied 

reference to the mathematics classroom). An example of this is the familiar activity 

of Graphing a Linear Equation. We can identify and name this activity in the videos, 

it is clearly recognisable, however, the activity is not being named as a specifically 

classroom practice such as ‘Worked Example’ or ‘Explaining’ and, therefore, would 

not be included in the Australian Lexicon. 

While identifying terms for inclusion in the lexicon thought was given to the possible 

structure or format that would best communicate the content of the lexicon. A 

university class of practicing teachers was invited to assist in the grouping of lexical 

items into categories of their own choosing. As a result the items in the Australian 

lexicon have been organized in five categories. The five categories include those that 

were identical across different working groups (Administration, Assessment, 

Classroom Management) and two additional ones that captured the spirit of the 

teachers’ suggestions (Learning Strategy, Teaching Strategy). 

Detailing local protocols and approaches: USA 
The U.S. national team initially consisted of two university researchers and two 

practising teachers, with an additional researcher and teacher joining later. The first 

four members all viewed and discussed the U.S. lesson, and then teams of one 

researcher and one experienced teacher watched each of the remaining eight lessons. 

As with the Australian team, the U.S. team met regularly to discuss terms and phrases 

that arose through viewing the videos and that might be included in the U.S. lexicon. 

The first draft of the lexicon included all terms that the four initial team members 

agreed were in current use by middle school mathematics teachers, as well as terms 

that the participating teachers highlighted as very familiar within their teaching 

communities. Additional teachers and researchers were also consulted to propose 

new terms, in case the list generated from the video viewing and associate discussion 

was incomplete. A total of 157 terms were identified as candidates for inclusion. 

Subsequently, through focus groups with teachers at three different schools in a large 

midwestern city and a survey taken by more than 250 teachers around the United 

States, we solicited feedback on the lexicon as it then existed. Drawing on ratings of 

familiarity from teachers around the U.S., we developed a final national lexicon that 

includes 100 terms. Some details of the lexicon will be discussed in the section 

below.  

Two key challenges arose in the process of developing a U.S. lexicon. First, teaching 

contexts differ widely across different states, districts, and schools in the U.S. Thus, it 

was especially important for us to seek input on our lexicon from teachers in a range 

of geographic locations and school types (public/private, rural/urban/suburban, etc.). 

Although we did receive survey responses from teachers in a variety of different 

contexts, we acknowledge that many contexts are underrepresented in our sample, 
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and new terms would likely emerge with feedback from an even broader set of 

teachers. A second challenge concerned the difference in familiarity of terms among 

even experienced teachers in the greater Chicago area. For example, some terms were 

very familiar to teachers in one district, while teachers in another district were 

unfamiliar with those same terms. Although levels of familiarity sometimes differed 

considerably, we strived for consensus whenever possible, and our final lexicon 

represents terms that were familiar to at least 75% of participating teachers.  

THE LEXICONS 
For the purposes of the project, specification of the lexical terms required the 

combination of the following elements: i) a description, ii) examples, and iii) non-

examples (see Table 1). 

Assessment 
(from Australian 

Lexicon) 

Any activity undertaken 
by the teacher or a 
student(s) with the 
primary purpose of 
generating information 
about student learning 
or achievement. 

For example: 
• The teacher administers a test. 
• The teacher observes students while they work, 
making notes on each student's progress. 
Non-example: 
• Assigning homework, unless the teacher explicitly 
indicates that the purpose is assessment. 

Practising 
(from Australian 

Lexicon) 

The activity of repeating 
a procedure for the 
purpose of improving 
efficiency or accuracy in 
its use. 

For example: 
• A student solves ten consecutive tasks all involving 
the addition of fractions. 
• A student works through the problems on past exam 
papers. 
Non-example: 
• A student attempts to make use of the property of 
similar triangles in a real-world context for the first time. 

Warm-Up 
(from U.S. Lexicon) 

Brief activity used at the 
beginning of class, often 
for review or entry into a 
new topic. 

For example: 
• Two short problems are written on the board for 
students to begin working on when class begins. 
• At the start of class, students are asked to identify 
whether they agree or disagree with three mathematical 
statements.  
Non-example: 
• At the start of class, students review the homework. 

Worked Example 
(from U.S. Lexicon) 

Step-by-step 
demonstration of how to 
solve a problem. Often 
provided by teacher to 
students as a model. 

For example: 
• The teacher solves a problem out loud at the board 
while students follow along. The teacher explains each 
step as she completes the problem. 
• The teacher shares a completed solution to a problem 
with the class, discussing each step in the solution with 
the class. 
Non-example: 
• Students use an answer key to check a solution to a 
problem. 

Table 1: A selection of lexical terms developed for the Australian and U.S. Lexicons 

The Australian National Lexicon consists of 63 terms that are familiar and in 

widespread use (e.g., Assigning Homework, Rephrasing, Worked Example). The 

lexical items have been organized in five categories as follows: Administration (8 

terms); Assessment (11 terms); Classroom Management (6 terms), Learning 
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Strategies (27 terms) and Teaching Strategies (50 terms). A lexical item appeared in 

more than one category if the Australian team decided on the basis of teacher advice 

that there was a strong association with each category. 

The U.S. Lexicon consists of 100 terms that are widely familiar in the United States 

(e.g., Going Over Homework, Classroom Environment, Worked Example). The 

lexical items have preliminarily been organized into eight categories as follows: 

Administrative Practices (9 terms); Classroom Climate (14 terms); Forms of 

Participation (7 terms), General Classroom Practices (18 terms); Math Practices (21 

terms); Tasks and Activities (11 terms); Teacher Assessment (10 terms); and Teacher 

Tools/Approaches (12 terms). Currently, a lexical item appears in more than one 

category if it has multiple definitions. Moving forward, we will seek further input 

from teachers to validate this categorisation scheme. 

One feature of the Australian Lexicon is that none of the 63 terms identifies a 

practice unique to the mathematics classroom. The terms all refer to general 

pedagogical practices. Also worthy of note is the prevalence of ‘gerunds’ (a verb 

form that also functions as a noun; “teaching” and “learning” are relevant examples) 

in the Australian National Lexicon. The generic character of the Australian Lexicon 

content suggests that the lexicon might also be applicable to other school settings 

besides the mathematics classroom.  

In a preliminary validation exercise over two-thirds of 83 respondents described the 

terms in the Australian lexicon as “familiar” or “very familiar.” By this criterion, all 

of the 63 terms were validated for inclusion in the national Australian Lexicon. When 

questioned about the use of these terms in conversations with colleagues, however, 

responses spanned the full five-point scale from ‘Used extremely often’ to ‘Not at all 

used’. 

An interesting feature of the U.S. Lexicon is that despite the widespread familiarity 

of terms, teachers reported using terms to varying degrees. While all terms were 

either very or extremely familiar to more than 75% of the responding teachers, some 

terms were used by most teachers only monthly or yearly (e.g., Assign Seats, Student 

Presentation, Extra Credit). In contrast, many other terms were used either daily or 

weekly by most of the teachers (e.g. Asking Questions, Listening, Struggling). 

Variations in usage may be attributable to several different factors that merit further 

systematic investigation. 

A comparison of the lexical term names and organisational structure of the lexicon of 

these two teaching communities reflect interesting similarities and differences. There 

are 37% fewer lexical items in the Australian lexicon and 23 terms (approximately a 

third of the entire terms in the Australian lexicon) are present in the U.S lexicon (see 

Figure 2). A further four terms were noted as highly similar (see Figure 3). There are 

currently only two categories in the respective organisational frames that match 

(Administration and Assessment). A selection of distinctive terms in each lexicon is 

shown in Figure 3; whether these differences are superficial or represent profound 

differences in pedagogical orientation remains to be investigated. 
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Figure 2: Terms that appear in both the Australian and U.S. Lexicons  

 

Figure 3: Similar and Distinctive Terms from the Australian and U.S. Lexicons 

 

Additional details of each lexicon will be published elsewhere, following a process of 

national validation, currently underway in each participating country. The key 

features reported here serve to indicate just how much variation in professional 

language exists, even between teaching communities that might be thought to have 

much in common. 

CONCLUSION 
Our purpose in this paper has been to contrast not only some features of the 

Australian and American lexicons as these have emerged, but also to share the 

processes whereby each lexicon was developed. In both process and product, the 

Australian and American lexicons necessarily reflect differences in context, 

community, educational culture, and pedagogical history. These differences are 

particularly interesting, arising from the comparison of two teaching communities 

that are both English-speaking, new world affluent societies. As is evident from other 

studies (Lamb & Fullarton, 2002) middle school mathematics classrooms in these 

two countries share many common features yet the professional language available to 

mathematics teachers in Australia and America is both different in content and 

different in structure. Further analyses will identify other similarities and differences 



Mesiti, Clarke, Dobie, White and Sherin 

________________________________________________________________________________________________________________________

3-248    PME 41 – 2017 

in both the lexicons and in the communities and cultures that they reflect. It is 

expected that comparisons undertaken as part of The International Lexicon Project, 

particularly where the teaching communities differ even more profoundly in culture 

and in national language, will provide powerful insights into the way in which each 

community has constructed and named the practices of its mathematics classrooms.  
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There have been limited studies which have investigated young Pāsifika and Maori 

students’ understanding of growing patterns. The aim of this study was to explore 

young culturally diverse students’ initial understandings of growing patterns before 

formal introduction within the classroom. Data are drawn from a class of Year 2 

students (6-year-old), including analysis of pretest interview questions. Results 

indicate that young culturally diverse students had more success continuing growing 

patterns that were drawn from their own culture. A small group of students were able 

to identify recursive generalisations from the growing patterns. 

INTRODUCTION 
Important changes have been proposed for mathematics classrooms of the 21

st
 

century in order to meet the needs of a “knowledge society”. A key aspect of 

proposed changes is greater emphasis on the teaching and learning of early algebra in 

primary classrooms (Blanton & et al., 2015). In part, this emphasis has arisen in 

response to the growing recognition of the inadequate algebraic understandings many 

students develop during their schooling and the role this has in denying them access 

to prospective educational and employment opportunities (Knuth, Stephens, McNeil, 

& Alibabi, 2006). In response, some curricula including New Zealand (Ministry of 

Education (MoE), 2007) advocate teaching arithmetic and algebra as a unified strand 

across the mathematics curriculum. This approach focuses on using students’ 

informal knowledge and numerical reasoning to build early algebraic thinking. Tasks 

involving functions and numeric patterning activities offer an opportunity to integrate 

early algebraic reasoning into the existing mathematics curriculum. The focus in this 

paper is on an exploration of young culturally diverse students’ initial understandings 

of growing patterns before formal introduction within the classroom. 

Mathematical achievement of culturally diverse students is a challenge in many 

countries. Similar to other countries, New Zealand has a changing student population 

that is increasingly culturally diverse. This includes the largest group of Pāsifika 

students in the Western world as well as indigenous Maori students. Students of a 

Pāsifika background are not from a single ethnicity, nationality, language or culture 

but are a diverse group including those born in New Zealand, those who have 

migrated from the Pacific Islands, or those who identify themselves with the Pacific 

Islands and culture (Coxon, Anae, Mara, Wendt-Samu, & Finau, 2002). In regards to 

mathematical achievement, both Pāsifika and Maori students are characterised by 

unenviable statistics in which a large percentage are under-achieving compared to 
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their peers. Educators frequently attribute this under-achievement to the learners 

themselves and position Pāsifika and Maori cultures as being mathematically 

deficient (Hunter, et al., 2016). However, both Pāsifika and Maori cultures have a 

rich background of mathematics including a strong emphasis on patterns used within 

craft design (Finau & Stillman, 1995). This includes geometrical designs which are 

used in repeating and growing patterns. There have been limited studies which have 

investigated young Pāsifika and Maori students’ understanding of growing patterns. 

In this paper, we investigate student responses to growing pattern tasks. This includes 

an analysis of the responses related to a pattern typically used in Pāsifika art-work 

and one which would be more typical of a Western mathematics classroom task.           

RESEARCH LITERATURE  
Studies with non-Indigenous primary students demonstrate that engaging with early 

algebra assists students to develop a deeper understanding of mathematical structures 

that can lead to mathematical generalisations (Radford, 2010). One particular path for 

developing this thinking is through students working with growing patterns (Warren, 

2005). Research studies have focused on fostering early algebraic thinking through 

the use of patterning activities, in particular geometric patterns (e.g., Radford, 2010; 

Rivera & Beckner, 2011). Growing patterns are characterised by the relationship 

between elements which increase or decrease by a constant difference. As a means to 

develop early algebraic thinking, students in the elementary school engage in 

activities that provide students with the opportunity to copy, continue, and extend 

growing patterns. Eventually, there is a need for the student to see the relationship 

between the pattern and their position (stage). This relationship can be termed a 

generalisation.  

There are two ways students generalise growing pattern structures; recursive 

generalisations and functional generalisations (Blanton et al., 2015). Recursive 

strategies are commonly used by young students as a means to generalise a functional 

relationship (Radford, 2010; Rivera & Beckner, 2011). While this recursive strategy 

assists students in predicting the next element in a pattern, students are not 

identifying the underlying structural relationship between the pattern and the position 

(two data sets) in order to identify the underlying general rule (Moss & Beatty, 2010).  

This study aims to explore the following research questions: 

1. What are young culturally diverse students’ initial understandings of growing 

patterns prior to formal introduction at school?  

2. How do young culturally diverse students describe growing pattern tasks with 

a cultural connection or those typically used in Western mathematics 

classrooms? 

THEORETICAL FRAMEWORK 
Mathematics as a subject was long considered by many to be value and culture free 

(Presmeg, 2007). Despite this belief, in the past few decades researchers (e.g., 
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Bishop, 1991; D’Ambrosio, 1985) have shown that mathematics is a cultural product. 

We take the perspective that the teaching and learning of mathematics cannot be 

decontextualised from the learner. In this view, the teaching and learning of 

mathematics is wholly cultural and is closely tied to the cultural identity of the 

learner. The underachievement of specific groups of students (such as Pāsifika and 

Maori within New Zealand) is related to a mismatch between the practices within the 

classroom and the cultural background of the students (Bills & Hunter, 2015). One 

key aspect of developing a culturally responsive classroom is ensuring that 

mathematical tasks are set within the known and lived, social and cultural reality of 

the students. An example of this within the context of early algebra is drawing upon 

the patterns within Pāsifika and Maori culture for exploration in the mathematics 

classroom.  

RESEARCH DESIGN 
This research reports on one aspect of a larger study focusing on young culturally 

diverse students’ developing understanding of functional patterns. It was conducted 

with one classroom of Year Two students in a low socio-economic, high poverty, 

urban school in New Zealand. Twenty-nine students (aged 6 years old) participated in 

the study including 17 male and 12 female students. The students were 

predominantly of Pāsifika descent (n = 24), with three students from an indigenous 

New Zealand Maori background, and two students from South East Asia.  

To explore the students’ initial understandings of growing patterns, each student 

participated in an individual task-based interview. The interview tasks were designed 

by the researchers and focused on growing patterns. In the New Zealand curriculum, 

students by the end of Year Two are expected to create and continue repeating 

patterns (MoE, 2007). Students in this classroom had engaged with tasks involving 

repeating patterns but growing patterns were unfamiliar as this is not a curriculum 

expectation until Year Four (MoE, 2007). The interview consisted of four tasks and 

took between 15 to 20 minutes. It included two patterns drawn from Pāsifika and 

Maori culture and two patterns used typically in New Zealand or Western 

mathematics lessons. This study will focus on two of the four tasks which will be 

described below.  

One of the tasks used a design which was based on a border pattern of a tapa cloth 

(Figure 1). 

 

Figure 1: Tapa cloth 

Tapa cloth is a decorated bark cloth of social importance which is often given as a 

gift. This was chosen as it is common across many of the Pacific Island nations and 

also displayed within schools, therefore it would be a familiar authentic pattern to 
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these students. The task was introduced within a cultural context. The second task 

was de-contextualised and involved a growing pattern of rows of squares. Figure 2 

dispays both tasks.  

    

        

Figure 2: Growing pattern tasks.  

For each task, the students were asked to continue the pattern. Follow-up questions 

asked the students to draw and describe the pattern for the ninth position. Students 

were also asked to provide a growing pattern rule. All the interviews were video-

recorded and the interviewer also recorded the student responses in written form.  

The systematic approach of constant comparative method was used to analyse the 

interview data. The video footage of the interviews was wholly transcribed and 

analysed to identify themes. To manage these documents a coding system was 

utilised to determine how to examine, cluster, and integrate the emerging themes 

(Creswell, 2008). Researchers coded the data at each phase with respect to early 

algebraic thinking and tasks design and met to discuss their themes and recode any 

data. Insights gained from the students’ initial interview are presented in the 

following sections.  

RESULTS 
Each section in the results will provide an overview of the student responses to the 

tasks shown in Figure 2.  

Continuing a growing pattern  
The first interview question asked the students to continue the pattern. It appears that 

students had more success continuing the tapa cloth pattern (see Table 1), than the 

square pattern (see Table 2). The following tables show the types of student 

responses, examples, and frequencies of the responses.  

Type of Response Example Frequency 

Did not accurately replicate the pattern  
 

8 

Continued the pattern but drew a different 

pattern position (e.g., 8
th

 position) 
 

7 

Continued the pattern but did not draw the 

alternating design (up and down)  
4 

Successfully continued the pattern 
 

9 

Table 1: Types of student responses, example and frequency of continuing the tapa 

cloth pattern 
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Type of Response Example Frequency 

Did not accurately replicate the pattern  

 

9 

Drew a multiplicative structure 

 

10 

Drew a square number (four by four)  

 

8 

Successfully continued the pattern 

 

2 

Table 2: Types of student responses, example and frequency of continuing the square 

pattern 

Pattern for the 9th position (near generalisation)  
Students were asked to draw the pattern to the 9

th
 position of the tapa cloth pattern. 

Two of the students drew the triangle pattern to the ninth position. One student drew 

nine sets of pairs of triangles but did not follow the alternating pattern of the original 

design and another drew nine sets of pairs of circles. Other students (n = 8) drew 

varying sets of pairs of triangles or wrote numbers which did not correspond with the 

pattern (n = 6).  The remaining students (n = 11) gave non-relevant responses (e.g., 

16 months; or it will be down because the sun goes down) or did not respond. When 

asked to describe how the pattern was growing, the most common response (n = 18) 

was to identify that the pattern was getting bigger. Six of the students did not respond 

to the question. A small group (n = 4) identified that the pattern was growing by two 

triangles each time. One student focused attention on the direction of the triangles as 

a repeating pattern and described the way the pattern was growing as: it is going up 

and down, and then up and down.    

One student successfully drew the square pattern to the ninth position and another 

indicated that it would be a nine by nine grid. Some of the students (n = 4) drew nine 

individual squares and others (n = 8) drew a multiplicative array of varying amounts. 

The remaining students (n = 15) either gave irrelevant responses or did not respond. 

When asked to describe how the pattern was growing, two of the students identified 

that the pattern was growing by three: it’s growing in the three times-tables. One 

student began to skip count in threes but then made an error: Three, six, nine, 13, 18. 

Five students identified that the pattern was growing bigger: another layer of 

squares. The remaining students (n = 21) did not answer or gave irrelevant answers.  

It appeared that the students found this question more challenging than the tapa cloth 

pattern. 

What is my growing pattern rule?  
Students were asked to identify the growing rule for each pattern.  Seventeen students 

provided a response for the tapa cloth pattern. The most common response (n = 6) 
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was that it was growing: by twos or counting up in twos. Three students identified 

that it was getting bigger, and three students stated that it was counting up or adding 

more on. The remaining students (n = 5) gave irrelevant responses.  

Twenty-five students provided a response for the square pattern. Four students 

identified that the square pattern was: counting on by threes. The most common 

response from students was that: it was getting bigger (n = 9). One student attempted 

to count in threes, while another described that it was getting an extra layer each 

time. The remaining students (n = 10) gave irrelevant responses.  

DISCUSSION  
While past research has indicated that having a culturally responsive pedagogical 

approach to teaching and learning mathematics benefits students from diverse 

cultural backgrounds, there are few studies (e.g., Miller, 2014) focused on the 

teaching of growing patterns to young culturally diverse students. Acknowledging 

that students bring their own cultural knowledge to the classroom provides an 

opportunity for culturally diverse students to make more meaningful connections. 

While the young students in this study had difficulties with both tasks, it appears that 

they were better able to continue the tapa cloth growing pattern rather than the square 

pattern. It is conjectured that this is because the task was using the students’ known 

world (Matthews et al., 2005). This shows the importance of drawing on authentic 

tasks in a non-tokenistic way to provide opportunities for young culturally diverse 

students to make connections to their own contexts when learning new mathematical 

concepts.  

As the tapa cloth pattern was a familiar pattern structure, we conjecture that this 

assisted students to ‘see’ the structure of the pattern. Past research has examined 

students engaging with growing patterns from a mathematical context (e.g., tiling 

patterns), where students have to continue, predict, find missing elements, determine 

the additive rule, and generalise geometric growing patterns (Moss & Beatty, 2006; 

Warren, 2005). It is argued that these types of patterns are initially challenging for 

young students (as evidenced in the square pattern). The results of this study indicate 

that it is important to consider how the context of the pattern impacts on students’ 

ability to access the structure and relationship between the variables. In other words, 

how the type of context beyond the visual display used for the pattern impacts on 

their ability to see and potentially generalise the pattern structure. Past studies have 

indicated that the types of geometric growing patterns presented to students did not 

impact on their ability to extend the pattern (Leung, Krauthausen, & Rivera, 2012). 

However, in contrast in the initial stages of the present study, the context of the 

pattern did impact on students’ ability to extend the pattern. For example, students 

were more competent at extending the familiar triangle tapa cloth pattern rather than 

the growing pattern represented by decontextualised geometric shapes (e.g., squares).  

The ways in which these young culturally diverse students generalise growing pattern 

rules mirrors aspects of how non-Indigenous students generalise growing patterns. 
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For example, we observed recursive thinking, where students focused on the additive 

component of the growing pattern (Blanton, et al. 2015). When predicting near 

generalisations, (e.g., 9
th
 position), some students were able to provided general rules 

that were defined by a recursive element of the pattern (e.g., adding 2 each time). In 

the case of the square pattern, similar to young Australian Indigenous students 

(Miller, 2014), these culturally diverse students were more concerned with giving the 

pattern quantity (e.g., total number of squares required) than focusing on the general 

structure of the pattern.  

CONCLUSION AND IMPLICATIONS 
This study begins to shed light as to how young Pāsifika and Maori students engage 

in tasks involving functions and numeric growing patterning activities. It is apparent 

that these young students can engage in early algebraic concepts, such as continuing 

growing patterns, before formal introduction within the classroom. It appears that 

they have greater success when these patterns are come from a context that is familiar 

to the students, as in the case of the tapa cloth task. An important implication is the 

need for researchers and teachers to consider drawing upon familiar pattern structures 

when introducing culturally diverse students to growing patterns. 
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DEVELOPING A SCALE TO MEASURE AWARENESS OF 
MATHEMATICAL PATTERN AND STRUCTURE (AMPS) 

Michael Mitchelmore and Joanne Mulligan 

Macquarie University, Sydney, Australia 

 

Awareness of Mathematical Pattern and Structure (AMPS) has been described as a 

general construct that underpins early mathematical development. To measure and 

validate AMPS, a 14-16 item interview-based instrument (the Pattern and Structure 

Assessment, PASA) was re-constructed, administered to a reference sample of 618, 5 

to 6-year olds, and subjected to a Rasch analysis. PASA provided a reliable and valid 

measure of AMPS and was found highly correlated with a test of mathematical 

achievement (PATMaths). PASA advances early numeracy assessment and learning 

by integrating structural aspects: sequences, shape and alignment, equal spacing, 

structured counting and partitioning, linked to a pedagogical  program (PASMAP).  

INTRODUCTION 
It has long been regarded that “mathematics [is] the science of patterns” and that the 
main occupation of mathematics is with abstract structures (Resnick, 1999). In 
parallel to this belief, many mathematics educators believe that the recognition of 
mathematical patterns and the abstraction of their underlying structures lies at the 
heart of mathematics learning (Mason, Stephens, & Watson, 2009). Over the past 
decade research in early childhood mathematics education has turned attention to the 
importance of a range of mathematical domains including patterning and early 
algebra, spatial skills, measurement, data exploration, and mathematical reasoning 
(Carraher, Schliemann, Brizuela, & Earnest, 2006; Clements & Sarama, 2007; 
English, 2012). An emerging line of research, focused on mathematical patterns and 
structures, aims to provide a more coherent picture of the common underlying bases 
of mathematical development (Mulligan & Mitchelmore, 2009). These studies have 
focused on how children can develop connected mathematical knowledge leading to 
generalisation—through the development of patterns and structural relationships. The 
Australian Pattern and Structure Mathematical Awareness project has investigated, 
in a series of related studies, the development of patterning and structural awareness 
among 4 to 8 year olds across a range of mathematical concepts (Mulligan, 
Mitchelmore, English, & Crevensten, 2013). In these studies, students’ responses to a 
wide variety of individually administered pattern-eliciting task have repeatedly 
confirmed two findings: 

1. Responses can be reliably classified into the five ordered structural categories 

defined in Table 1. 

2. Although the same student’s responses to different tasks invariably vary from 

task to task, students who respond at a high structural level on one task tend to 
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respond highly on other tasks. The similar pattern is found for students who 

respond at a low structural level. 

Examples of these studies have previously been reported at PME28, PME29 and 

PME33 and a summary of these is available in Mulligan et al. (2013). Mulligan 

reported a 2-year longitudinal evaluation study of 316 Kindergartners assessed by a 

PASA interview and a standardised measure of mathematical achievement. An 

intervention program was trialled with an experimental group over the entire first 

year of schooling. They found highly significant differences on the PASA between 

intervention students and the ‘regular’ group at the retention point (p < 0.002) and 

increased levels of structural development for intervention students. The study 

validated the instrument (PASA) and constructed a Rasch scale indicating item fit.  

As a result of these studies, the authors identified and described the construct of 

Awareness of Mathematical Pattern and Structure (AMPS) comprising two 

interdependent components: one cognitive — knowledge of structure, and one meta-

cognitive — a tendency to seek and analyse patterns (Mulligan & Mitchelmore, 

2009). It is our hypothesis that the degree of a student’s AMPS determines how 

readily they develop relationships in mathematics and form simple structural 

generalizations. The research question to be addressed in this paper is: 

 Can AMPS be measured validly and reliably? 

We shall answer this question by describing the construction of a Rasch scale for the 

measurement of AMPS. 

METHOD  
A Pattern and Structure Assessment (PASA) interview, developed for prior studies of 

Kindergarten and Grade 1 students was redeveloped for assessing AMPS in students 

in the first three years of formal schooling (students aged approximately 4.5 years to 

8 years). The study employed a new sample of 618 students to validate the 

instrument, and to also assess the same students for general mathematical 

achievement using PATMaths (Stephanou & Lindsey, 2013). Because of the 

observed variation across these three years, three separate forms were constructed: 

one for the beginning of the first year (PASA-F), one for the end of the first year or 

the beginning of the second year (PASA-1), and one for the end of the second year or 

the beginning of the third year (PASA-2). Each PASA focused on similar core 

concepts ranging from 14 to 16 items from Foundation to Grade 2. These included 

repeating and growing patterns, partitioning 2-D and 3-D shape and space, skip 

counting and base ten structure, arrays and grids, distance and scale, and units of 

length, area, volume/capacity, mass and time.  

Procedures: Three forms of PASA were administered by the researchers and a group 

of trained research assistants to a sample of 618 students in the first two years of 
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schooling in two schools in Sydney. PASA-F was administered to a total of 213 

students, PASA-1 to 189 students, and PASA-2 to 216 students. The two schools 

were chosen to be typical of Sydney schools in general but cannot be regarded as a 

representative sample. The researchers trained six interviewers and piloted protocols 

for conducting the interviews and coding responses, obtaining inter-rater reliability of 

0.82. The PASA interviews were conducted consistently following protocols from 

previous studies (see Mulligan et al., 2013). The interviewers coded student 

responses to each item as one of five structural levels according to Table 1 using 

detailed guidelines aligned with each task: prestructural (L1); emergent (L2); partial 

(L3); structural (L4); and, advanced structural (L5). Data from this administration 

were then used in a Rasch analysis.  

Response category Characteristics of response Example (drawing a clock face) 

Advanced structural 

An accurate, efficient and 

generalised use of the 

underlying structure 

Places 12, 3, 6 and 12 accurately and 

then fills in the remaining numbers 

Structural 
A correct but limited use of 

the underlying structure 

Places the numbers approximately 

equally spaced by eye  

Partial structural 

Shows most of the relevant 

features of the pattern but 

inaccurately organised 

Makes an unsuccessful attempt to 

space the numbers equally 

Emergent 

Shows some relevant 

features of the pattern but 

incorrectly organised 

Writes the numbers 12, 1, … around 

the circumference, leaving a large 

gap between 11 and 12 

Prestructural 

Shows at most limited and 

disconnected features of the 

pattern. 

Declares the task is too difficult 

Table 1: The five response categories used in scoring PASA items. 

The wide range of tasks developed in previous studies (See Mulligan et al., 2013) 

were first analysed both in terms of their content and their item discrimination. It was 

found that all the items represented one or more of the five structures shown in Table 

2. Some new items were devised and others discarded to achieve a balance between 

the five structures. For example, a task assessing the Equal Spacing structure required 

students to draw a representation of a ruler; this task was judged only suitable for 

PASA-2 because younger students may well not have used a ruler.  

Items that had previously shown to a narrow range of categories at a particular age 

(i.e., were either too easy or too hard) were discarded or limited to a particular form. 

Otherwise, preference was given to tasks that were suitable for all three forms. For 

example, a task inviting students to fold a strip of paper into thirds was found fairly 

difficult by the youngest students but gave a good spread otherwise. This task was 

retained for all three forms, but a similar task inviting students to fold the paper into 

halves was included in PASA-F. All new tasks were pretested before being included 

in the resulting PASA.  
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 Structure Definition Example 

Sequences 
A series of objects arranged in a 

definite order 

Red, white, blue, red, white, 

blue, … 

Shape and alignment Spatial relationships 
Parallel, horizontal, square, 

aligned 

Equal spacing 
A series of marks arranged at 

equal spacing 
The scale on a ruler 

Structured counting Counting in groups 
Counting 10 objects as 2, 4, 6, 

8, 10 

Partitioning 
Dividing an object or set of 

objects into equal parts 

Partitioning an object into 

halves 

Table 2: The five structures measured in PASA. 

RASCH ANALYSIS  
The Rasch model (Andrich, 2005) assumes that each student has a certain amount of 

AMPS that can be captured by a single score locating the student on an AMPS scale. 

For each task, the five response categories should represent increasing and non-

overlapping amounts of AMPS. The data were analysed using the Quest-Interactive 

program (Adams & Khoo, 1996) to determine how well these conditions were met. 

Initial analysis showed that several items did not meet the second condition. In some 

cases, the threshold between the categories could not be determined with sufficient 

accuracy; in others, the mean AMPS score of the students giving responses in one 

category was not greater than for students in a lower category. To solve this problem, 

categories were combined to create “measurement categories” for each task. For 

example, for the task of folding a strip into thirds in PASA-1, the emergent and 

partial structural categories were combined and the structural and advanced structural 

categories were combined—thus giving three measurement categories for this task. 

The process of combining response categories was carried out in an iterative fashion 

for each PASA form, until the analysis gave adequate results for goodness of fit to 

the Rasch model for that form. 

Combining the results from the three forms to yield a single scale presented further 

problems: The measurement categories for the common tasks were often different in 

the different forms, so that they could no longer be considered the same task. 

However, there remained sufficient genuinely common tasks for a single scale to be 

constructed. This scale was adjusted to give a mean of 100 and a standard deviation 

of 15. Table 3 shows some characteristics of this scale for the various forms. 

 

Form Range Mean 
Standard 

deviation 
Reliability 

PASA-F 40-138 83 9 0.72 

PASA-1 50-148 92 12 0.76 

PASA-2 48-163 110 11 0.84 

Table 3: Characteristics of the AMPS scale for the three PASA forms. 
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It will be noticed that each of the three forms gives a reliable estimate of a student’s 

AMPS. To assess content validity, a detailed analysis was made of the response 

characteristics of each of the measurement categories for each task in each form; 

these characteristics were then plotted against the corresponding segment of the 

AMPS scale and commonalities sought. It was found that the AMPS scale could be 

divided into four levels, as indicated in Table 4. (Due to measurement error, there is 

some overlap between the four levels). These four levels showed the expected 

development in AMPS and support the argument that PASA really does measure 

AMPS.  

Level AMPS range Student characteristic Examples 

4 From 118 
Aware of the generality of 

some fundamental structures 

 Quickly draws an accurate grid  

 Explains structure of 2-digit 

numbers 

3 97-123 
Aware of some fundamental 

structures 

 Draws an accurate measurement 

scale 

 Uses “counting on” for addition 

2 77-102 
Recognises some simple 

patterns 

 Extends alternating block  

 Divides a length into halves by 

eye 

1 Up to 83 
Only recognises some very 

simple patterns 

 Copies block patterns by 

matching 

 Counts up to 3 groups of two 

Table 4: Descriptions and examples of the four AMPS levels. 

The fact that mean AMPS scores increased as students got older (Table 3) is a further 

indication of content validity. We do however, recognise that the conceptual 

coherence of the AMPS construct is limited to the scope and content of the items that 

were designed explicitly to measure it.  

A similar analysis was completed for each of the five underlying structures (see 

Table 1) and again the expected relations to a student’s AMPS and age were found. 

For further details, see Mulligan, Mitchelmore and Stephanou (2015). To assess 

concurrent validity, PATMaths (Stephanou & Lindsey, 2013) data were collected 

from the students who had been administered PASA-1 and PASA-2 data (N=371). 

Although the two assessments provide different information about the child’s 

mathematical competence they were found to be highly correlated; Foundation 

(0.72), Year 1 (0.76) and Year 2 0.84). The AMPS scale makes it possible to compare 

children’s level of amps across year (grade) levels, regardless of which PASA 

assessment form they are given. This is considered very high given the reliability of 

PASA and the fact that PATMaths is a group test that is not scored for awareness of 

pattern and structure. Further analysis (Stephanou & Lindsey, 2015) confirms that the 

two instruments are essentially measuring different aspects of mathematical ability. 
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IMPLICATIONS AND FUTURE RESEARCH DIRECTIONS 
Classroom teachers can use PASA as a simple but effective tool for assessing the 

AMPS of their students. After entering students’ response categories into an Excel 

sheet provided by the Australian Council for Educational Research, teachers obtain 

AMPS scores for each student as well as their scores on each of the five structures 

listed in Table 2. These data enable the teacher to identify students with particularly 

high or low AMPS, as well as identifying particular aspects of core mathematical 

structures that may be above or below average. Similarly, the data would show which 

aspects of AMPS are particularly high or low in a significant number of students in 

the class. Such information can be invaluable in designing planning their learning 

experiences that address deep conceptual understandings and the students’ ability to 

seek and use mathematical relationships. 

In the course of the Pattern and Structure Mathematical Awareness project, the 

authors developed and evaluated a wide range of tasks and materials that could be 

used for teaching the awareness of pattern and structure. A formal evaluation 

(Mulligan et al., 2013) showed that the learning tasks and the accompanying 

pedagogical approach were indeed effective. Because pattern and structure underlines 

the mathematics school curriculum, an early mathematics program has been 

developed based on promoting children’s AMPS. This program, the Pattern and 

Structure Mathematics Awareness Program (PASMAP), takes the form of two 

volumes of Learning Pathways organised around the structural groupings measured 

by PASA (Mulligan & Mitchelmore, 2016).  A pegagogical approach focused on 

promoting and connecting concepts and relationships, and ultimately generating 

simple mathematical generalisation directs learning sequences to particular AMPS 

levels in particular structures, giving the teacher explicit descriptors and examples to 

inform their pedagogical choices.  

An important outcome of the development of PASA and PASMAP has been an 

understanding of the fundamental role of spatial reasoning in developing AMPS. Two 

of the five basic structures that have been identified (Table 2) are explicitly spatial: 

Shape and alignment and Equal spacing. The other structures (Sequences, Structured 

counting and Partitioning) appear to focus on be numerical processes, but these 

integrate core aspects of spatial structure. For example, repeating sequences are 

basically visual, grids and arrays are closely linked to structured counting, and 

partitioning requires spatial skills. 

Further study, utilising network analysis (Woolcott et al., 2015) provides visual links 

between the five AMPS structures as network maps of connectivity. This form of 

analysis complements Rasch analysis because it highlights the connections, or lack 

thereof, that children make between structural groupings and specific items. 

A new Australian government funded project (2017-2020), Connecting Mathematics 

Learning through Spatial Reasoning (Mulligan, Woolcott, Mitchelmore & Davis) 
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utilises network mapping to investigate the relationships between the structural 

groupings and spatial reasoning tasks. The project will develop a new PASA 

interview and a Spatial Reasoning Mathematics Program (SRMP) for students in 

Grades 3 through 5 (students aged approximately 7 to 11 years). The PASMAP will 

be expanded in both scope and depth to include a larger component on Spatial 

Reasoning, such as spatial transformations, spatial structuring of 2-D and 3-D shapes, 

spatial measurement, angles, axis differentiation, collinearity and direction 

perspective taking and dynamic spatial representations ( Bruce et al., 2015).  
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VERBALISING SPATIAL KNOWLEDGE: AN EMPIRICAL 
INVESTIGATION OF STUDENTS’ STRATEGIES FOR SOLVING 

SPATIAL-VERBAL TASKS 
Angel Mizzi 

 University of Duisburg-Essen 

This study analyses how students solve spatial-verbal tasks by focussing on the 

strategies used to describe spatial-geometrical configurations. German Fifth-grade 

students were required to solve spatial tasks with language as a mode of 

representation, i.e. verbalizing the (re)construction of a spatial object and its spatial-

geometrical characteristics.  An interpretative-based analysis of students’ spatial 

language was used for identifying strategies employed by students in their spatial 

discourse. Findings shows that students use a wide spectrum of strategies for solving 

the spatial-verbal tasks, which will be categorized by using Barrat’s (1953) spatial 

ability strategy groups. 

 
BACKGROUND OF STUDY  
The domain of spatial ability has been intensively researched both in psychology and 

in mathematics education. Most studies about spatial ability have either focussed on 

describing a suitable model consisting of abilities which are relevant for spatial 

ability (e.g. Thurstone, 1950; Pinkernell, 2003) or tend to emphasize the assessment 

of student’s spatial ability using pencil-and-paper tests (e.g. Linn & Petersen 1985; 

Büchter, 2011). However, few researchers have addressed the issue of understanding 

spatial thinking by considering students spatial discourse and how students solve 

spatial tasks verbally.  The aim of this study is to investigate how students verbalize 

their spatial thinking, which should be done by focussing on the development of 

strategies in their spatial discourse. An analysis of spatial language in solving spatial-

verbal tasks should induce results regarding the following questions:  

1. Which strategies do students use to describe spatial objects in spatial-verbal 

tasks?  

2. To what extent can the identified strategies be categorized using Barrat’s 

(1953) established strategy groups in spatial ability research? 

THEORETICAL CONSIDERATIONS  
Metaphors in mathematics educational research 
Mathematics and mathematical discourse is based on the use of metaphors (cf. Pimm, 

1981), which can be defined as words or phrases which serve as a support for 

understanding abstract ideas by referring to more concrete objects or experiences (cf. 

Lakoff & Núñez, 2000). From a mathematics education perspective, metaphors are 
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projections from source domains to target domains, in which the source’s properties 

and characteristics are assigned to the target (cf. Lakoff & Núñez, 2000; Font et al., 

2010). Lakoff & Núñez (2000) differentiate between two types of conceptual 

metaphors: grounding and linking metaphors. Grounding metaphors are metaphors 

which project a source outside the fields of mathematics to a target within 

mathematics, e.g. ‘classes are containers’. In contrast, both source and target in 

linking metaphors originate within mathematics (cf. Lakoff & Núñez, 2000; Font et 

al., 2010). Hence, the varieties of languages present in mathematics classroom – 

primarily everyday or mathematics language – play an important role in 

differentiating between grounding or linking metaphors in mathematics education.    

Spatial ability and spatial language 
The notion of spatial ability has been a research object in psychology and in 

mathematics education for the last decades. As one of the eight different 

intelligences, spatial ability concerns the ability to solve spatial tasks in navigation, to 

visualize objects in different angles and to recognize space and other spatial 

characteristics (cf. Gardner, 2006). Mathematics educator Pinkernell (2003) describes 

spatial knowledge as the ability to act on spatial objects in space both mentally and in 

real terms, to recognize, understand, and describe spatial objects by referring to their 

geometrical properties, and to interpret and construct different forms of 

representation of spatial-visual objects (verbal, pictorial and action-based). 

Solving spatial tasks requires students to develop and use strategies, which are 

approaches used to accomplish the tasks’ goals and are flexible by allowing several 

ways to reach the underlying goals (cf. Fülöp, 2015). Two well-known strategy 

groups for solving spatial tasks – holistic and analytic strategies – have been 

introduced by Barratt (1953). Holistic strategies denote students’ mental 

transformation and manipulation of spatial objects for solving spatial tasks. In 

contrast, learners using analytic strategies focus more on details of spatial objects in 

spatial tasks (cf. Barratt, 1953).   

The notion of spatial language is important when considering spatial-verbal tasks. 

Spatial language refers to a variety of language used to speak about spatial objects, 

their spatial position and spatial relations between two or more objects. Levinson 

(1996) indicates the importance of analysing spatial language to understand the 

underlying spatial concepts. In particular, Coventry, Tenbrink & Bateman (2009) 

emphasize the importance of developing spatial language in a dialogue, because the 

interaction in a dialogue gives learners the opportunity to participate more actively 

and creates a less artificial setting.  

 

METHODOLOGY  
Research method   
Based on the interplay between language and spatial ability introduced in the 

theoretical background, an adequate research method is needed to create and develop 

effective spatial discourse between learners. Spatial discourse should be developed in 

a dialogue between learners and hence enable an analysis of students’ spoken spatial 
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language about spatial objects. The reconstruction method was chosen as a research 

method since it fulfils the above mentioned criteria. The reconstruction method is a 

data collection method in which two learners seated in a back-to-back position 

communicate with each other to solve a particular task together. Tasks implemented 

in the reconstruction method are characterized by their dismantling in a series of 

steps and two different roles – describer and builder roles – assigned to the 

participating learners by the researcher or teacher. The describer instructs the builder 

what to do and the builder performs and interprets the instructions, mostly by using 

the provided hands-on manipulatives. The name for this research method derives not 

only from the real reconstruction by using the hands-on manipulatives, but also from 

the opportunity for the researchers to reconstruct the (re-)constructed knowledge (in 

the case of this present study, spatial and heuristic knowledge) among the learners 

participating in the reconstruction methods. Due to the embedding of the task in the 

research method itself, the design and instructions of the spatial task will be 

introduced in the next section for a deeper understanding of the research method.   

Design of spatial task   
The task implemented in the reconstruction method involved two students – describer 

and builder – working together to describe and reconstruct a spatial object.  During 

the task, the researcher gave the following instruction to the learners:  

“In this experiment you [the describer] will be given an object made up of these 

building blocks, which can be put together. You must give him/her [the builder] 

instructions on how to build this object, so that he/she [the builder] can reconstruct 

the same object. The colour of the building blocks is not important and whilst you 

[the describer] are describing you can also touch and move the object as you like, 

but the object structure has to remain unchanged. At the end, the objects’ structure 

must be identical.” 

Such a spatial task requires an adequate spatial object which can be described by the 

describer so that the builder can rebuild the spatial objects using the provided 

building cubes according to the giver’s instructions. The structure of the spatial 

object in the spatial task was intended to activate student’s spatial and geometrical 

knowledge and allow different use of strategies during its description. The following 

criteria were considered for the spatial objects illustrated in Figure 1 and Figure 2: 

three-dimensionality (students are required to describe along the three dimensions), 

break-down (students can break down the object in different ways), and spatial 

relations (orthogonal spatial relation between different parts of the object). 

                                         

Figure 1: The structure of the spatial object A 
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Figure 2: The structure of the spatial object B  

Implementation and data analysis 
By using a theoretical sampling considering different influencing factors when 

solving spatial-verbal tasks (i.e. students’ language proficiency, spatial ability and 

gender), sixteen fifth graders from German secondary schools were chosen to 

describe the spatial objects (see Figure 1, 2) to another receiver in the reconstruction 

method consecutively.  Both describer and builder were seated in a back-to-back 

position and were given the above task instructions to solve the spatial task in a 

dialogue during the whole task solving process.  The participants were filmed and 

their discourse was transcribed. Considering an interpretative-heurmeneutic 

qualitative approach (cf. Jungwirth, 2003), the describers’ utterances in the collected 

data were analysed for strategy use regarding the first research question and the 

underlying theoretical assumptions in this present study.    

Results   
Spatial metaphors strategy 
An important strategy for describing spatial objects in the spatial-verbal tasks is 

spatial metaphors. Spatial metaphors are metaphors which transfer properties from 

concrete objects or other experiences to spatial objects in spatial construction (cf. 

Mizzi, 2017). An example of two spatial metaphors, ‘staircase’ and ‘walking 

up/down’, for describing spatial object A’s structure and position in space 

respectively, is illustrated in Table 1.  

 

Source Target Transcript 

Staircase 

/ 

Ability of walking 

up and down on the 

spatial object 

Spatial 

object A 

“And now do three steps at the other 

staircase which you have done. Place it in a 

way in front of you as if you would walk up 

(…) and now take the other stairs which you 

have done now, and set it in the most front 

(…) in a way as if you would walk up at the 

front and then go down again the other 

staircase.” 

Table 1: Examples of spatial metaphors “staircase” and “walking up/down” in a 

student’s spatial discourse 
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Further examples of spatial metaphors and a model about the different dimensions of 

spatial metaphors – the linguistic, the spatial and the conception dimensions – can be 

found in Mizzi (2017). 

Object break-down and assembling strategies 
The strategy of object break-down denotes the students’ mental break-down of spatial 

objects in internal parts (generally consisting of more than one cube) in order to 

reduce the complexity of its structure and facilitate the spatial description. The way 

of how the object has been broken down can be investigated by an analysis of spatial 

language, whereby learners assign particular names to internal parts based on the 

particular spatial characteristics of the underlying part. Consider for instance, the 

following transcript in which Student A uses a letter-based metaphor ‘H’ for the 

break-down of spatial object B in two internal parts, which are visualized in Figure 3:     

 

 

 

 

Figure 3: Student A’s ntended break-down of spatial object B 

 

 

Student A: “It has five cubes at the right and left. And it has          two times cube, 

well two cubes are next to each other. (…). It is quite a fat H. Well, there are two 

Hs”. 

(…) 

Student A: “So two Hs, they look exactly the same, and then just do them together, so 

that they are exactly on each other, not next to each other, but on each other (…)”. 

 

A further strategy, assembling strategy, is a strategy which denotes the assembling of 

internal parts in which the spatial object has been broken into in the underlying 

spatial discourse. An example of assembling strategy is illustrated in the second turn 

in the above transcript excerpt from Student A’s spatial discourse. Whereas 

assembling strategy requires the prior use of the break-down strategy, assembling 

strategy is not always used by students after the mental breakdown of the object in 

spatial discourse, and hence it should be regarded as a strategy on its own.     

Rotation strategy 
Rotation strategy is a strategy which denotes the rotation of an object or its internal 

part around one of the three axes (vertical, horizontal, and frontal) embedded in the 

describers’ spatial discourse. The intention of this strategy use is the change of spatial 

position of a spatial object, as the following transcript excerpt from Student B’s 

description of spatial object A illustrates: 
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Student B: “Then at the top uhm start left there too, then three stones. (…) 

Then uh at the top again and then two stones. Then turn it around so that you, 

so that it looks away from you, the staircase. Then you build three rows (…) at 

the bottom left.” 

 

Figure 4: Visualization of Student B’s intended actions upon use of rotation strategies 

In the above transcript excerpt, Student B describes how an internal part of the object 

must be built (illustrated on the left part of Figure 4). Then he instructs the builder to 

turn it around, the degree of rotation is emphasized by the utterance, “so that it looks 

away from you [builder]”.  

Controlling strategies 
Two types of controlling strategies have been identified in students’ spatial 

construction – cubes controlling and structure controlling strategies – which were 

used in order to self-regulate and control the description process in spatial discourse. 

Both controlling strategies were characterized by the requirement for an elaborate 

feedback about the reconstructed object from the builder in the reconstruction 

method. The cubes controlling strategy was used to control whether the reconstructed 

part or object has been built as intended by reducing the spatial object to its number 

of cubes. An example of cubes controlling strategy use is illustrated in the following 

transcript excerpt of Student B (continuation of the excerpt in the previous section on 

rotation strategy) and Student C (the builder student): 

Student C: “When I turn it away, there is only the fifth row, well the row…”. 

Student B: “How many stones have you built already?” (Student B counts 

silently) 

 Student C: “Uh fourteen”. 

 Student B: “That’s correct”. 

Another controlling strategy for monitoring the descriptive process in the spatial task 

is structure controlling strategy. This strategy denotes the describer’s demand to the 

builder to describe the structure of the reconstructed object. An example of 

controlling strategy is illustrated in the following transcript excerpt, wherein Student 

D is describing spatial object A to the builder, Student E. 

 Student D: “Okay. How does it look like?” 

Student E: “(…) It looks almost like, no idea. Wait! (…) Well now I have a 

ladder, where there is a huge staircase”. 

 Student D: “Okay”. 

In comparison to the cube controlling strategy, the use of structure controlling 

strategy demands a more detailed description, which can consist of a spatial metaphor 
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(as in the case of Student D and Student E’s discourse excerpt above), rather than 

merely the number of cubes.   

Discussion 
In the above section, a range of strategies used by students describing spatial objects 

in the reconstruction methods has been described. Although Barrat’s (1953) strategy 

groups for spatial tasks are not sufficient to represent the diversity of the identified 

strategies, they can be adequate for categorizing the identified strategies into analytic 

or holistic. In the strategy of spatial metaphors, describers emphasize particular 

spatial characteristics or properties of spatial objects, which would rather allocate it 

to the analytic strategy group. The strategies of object-breakdown and assembling can 

be assigned to the group of holistic strategies, because describers are required to 

mentally break-down and assemble the object or its internal parts in their spatial 

discourse. Similarly, rotating strategy is also of a holistic nature, because internal 

parts of the objects or the whole objects themselves are being transformed and 

manipulated in discourse. In contrast, both controlling strategies – cubes controlling 

and structure controlling – can be regarded as analytic strategies because they focus 

more on feature or property comparison between two spatial objects – the original 

and the reconstructed object – by referring to the number of cubes used or the 

structure of the spatial object respectively.      

CONCLUDING REMARKS 
This empirical study has described how students solve spatial-verbal tasks in which 

students are required to describe how to (re-)construct spatial objects using hands-on 

manipulatives. The identified strategies include spatial metaphors, object-breakdown, 

assembling, rotating strategy, cube controlling, and structure controlling strategies. 

As it was pointed out in the discussion of the results, previous established strategy 

groups for spatial tasks can be useful for classifying the identified strategies, but do 

not necessarily replace the categories identified in this present study. Hence, this 

study suggests that students employ diverse strategies in their spatial discourse for 

solving spatial tasks, which were identified by an analysis of student language. Thus 

this study highlights the importance of analysis of students’ spoken spatial language 

for understanding how students solve spatial tasks and their underlying spatial 

thinking. Further questions which these findings raise include whether the use of such 

strategies differ among students with different mathematics performance and to 

which extent an analysis of students’ spatial language can play a role in assessing 

students’ spatial ability.   
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LEARNING AS A PROCESS OF STRUCTURING ATTENTION IN 
THE FIELD OF MEANING  

Sung-Jae Moon and Kyeong-Hwa Lee 

Seoul National University 

 

The purpose of this study is to capture and explain the roles that signs and attention 

play in the fraction learning process, through a previous study that employs 

Deleuze's perspective on sign and the role of attention. From this case study of 

elementary school students, we found that signs are a prerequisite for learning and 

that learning takes place as different forms of attention shifts. The various types of 

semiotic resources used by teachers and students have been found to play an 

important role in coordinating collective attention between teachers and students. 

INTRODUCTION AND THEORETICAL BACKGROUND 
Over the past 30 years, the importance of semiotic approaches in mathematics 

education has been emphasised (Presmeg et al., 2016). Studies attempting to 

elucidate the relationship between the subject and meaning through discussions of 

signs point out that a significant part of the meaning-making process using signs is 

implicit, embodied, and passive (de Freitas & Sinclair, 2012; Seeger, 2011; Thom & 

Roth, 2011).  

In this context, de Freitas & Sinclair (2012, 2013) argue that agency in mathematical 

cognitive processes should be distributed to the materials, analysing the process in 

which mathematical meaning appeared in front of the learning subject from a new 

point of view. The fact that the process by which subjects encounter mathematical 

meanings is largely embodied, implicit, and passive leads to the assertion that 

mathematical meaning presented in front of the subject is highly ambiguous. As 

Merleau-Ponty (2002) noted, meaning is ambiguous, and there is always a dimension 

of meaning that is not explicitly revealed with regard to the subject.  

As noted above, many researchers have presented insight through a semiotic 

approach. However, it is difficult to find a study analysing the process of learning by 

paying attention to the phenomenon of a sign itself unfolding a field of ambiguous 

meaning in front of a learning subject. 

According to Deleuze, the subject of learning is located in a field of ambiguous 

meanings which signs forcibly unfold when encountering signs (Deleuze, 1994). The 

field of meaning is a field of ambiguous meaning mixed with all types of meanings. 

The process of manifesting a field of ambiguous problems in front of a subject is a 

passive and involuntary process (Deleuze, 1994); within the space of the virtual that 

signs permits and lead to, human beings can begin to act on their attention toward 

meaning. Deleuze (1994) defines learning as a process of encountering signs. Human 
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beings encounter various signs, forming new assemblages with signs constantly (de 

Freitas & Sinclair, 2014). 

If learning is regarded as a process by which the subject of learning becomes the 

subject of mathematical meaning, Deleuze's perspective on signs can be regarded as a 

prerequisite for teaching-learning. However, in order for learning to be successful, it 

is necessary to clarify ambiguous meanings. Thus, how is it possible to clarify 

meaning clearly in a field of ambiguous meanings? In this paper, it is argued that a 

shift of attention is required to clarify ambiguous meanings. 

Several prior studies have emphasised the role of attention in mathematics learning. 

Radford (2009) referred to the semiotic node as a space in which complex 

adjustments of various signs and sensory modalities take place. In the semiotic node, 

the attention of the learning subject continues to change, and through the dialectical 

process of such a change of state, the students come up with a mathematical concept 

(Presmeg et al., 2016). 

Seeger (2011) points out that the ability of the mind has been overemphasised in 

mathematics education, emphasising the implicit dimension of knowledge and the 

importance of pre-logical sense. In this context, he emphasised the need to study the 

role of attention in mathematics education research and the possibility of its 

education. 

Acoording to Watson & Mason (2005), mathematics learning is a process of 

recognising the mathematical structure as the attention of learners is structured. In 

particular, Mason (2004) distinguished five types of attention, insisting that 

mathematical learning is achieved as the five types of attention constantly shift.  

The five types of attention and the relationship between attention and learning 

presented by Mason have strong power to explain mathematical learning. However, 

the attention to which they refer is limited to personal attention. As noted by Radford 

& Roth (2011) and Towers & Martin (2015), human cognition is a collective 

emergence during interaction with the other. Ultimately, they do not posit collective 

attention. 

They also failed to capture the function of ambiguous attention directed at the 

ambiguous field of meaning unfolded by signs. For a full understanding of the 

teaching-learning phenomenon, it is necessary to discuss the function of attention 

directed toward the field where the meanings are not clearly revealed and the 

meanings are mixed. Here, we can refer to Zagorianakos & Shvarts (2015) in a study 

which emphasises the role of operative intentionality in the learning process. 

Operative intentionality refers to intentionality that always operates as passive on a 

fundamental level before active intentionality works (Merleau-Ponty, 2002). It should 

be noted that operative intentionality does not belong to the realm of explicit 

attention but can be seen as an act of attention that is always pre-logically operating 

on an implicit level. 
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Through the above discussion, we can categorise attention as follows. 

 

 Personal attention Collective attention 

Explicit attention EP EC 

Operative 

attention 

OP OC 

Table 1:  Categorization of attention 

Mason (2004) states that learning is a process by which the five types of attention are 

structured, but actual learning must be viewed as a complex process that takes place 

as the EP, EC, OP, and OC types of attention are continually transformed. 

Of course, the process of shifting attention cannot occur unless it is on a field of 

meaning forced by signs. Watson & Mason (2005) note that learners' attention can 

move naturally, but as Radford (2010) points out, students’ attention is not easily 

transformed into a socio-cultural mathematical structure. A student's attention will 

not move smoothly unless the subject of the learning is uncomfortable because a field 

of vague meaning is unfolded in front of the student.  

Based on the discussion thus far, this article defines the teaching-learning process as 

follows. 

First, by signs, the field of ambiguous meaning is forcibly unfolded in front of the 

teacher and student. 

Second, through the joint action of the teacher and the student, the attention of the 

learner is structured. As the student’s EP, EC, OP, and OC types of attention are 

transformed during this process, ambiguous mathematical meaning gradually 

becomes clearer. 

METHODOLOGY 
In this paper, a case study is attempted using data from a classroom situation 

collected in 2016. Participating students were their third year in elementary school in 

Korea, and they were already familiar with fractions in their regular classes.  

This class was conducted for 40 minutes and aimed at confirming the students' 

understanding of fractions and clarifying the meaning of fractions. In this study, the 

students were asked to perform an activity that required them to perceive a fraction as 

a “whole-part” and “equal part” through a specially designed task. This task is a 

modified version of the task designed by Deborah Ball, Laurie Sleep and Meghan 

Shaughnessy and used as part of the University of Michigan Elementary Mathematics 

Laboratory project. 

The following tasks are presented to students. 



Moon and Lee 

________________________________________________________________________________________________________________________

3-276    PME 41 – 2017 

1. Observe the following figure. What is the fraction of the painted part in the large 

rectangle? Find as many answers as possible and explain why your arguments are 

correct. 

 

2. Observe the following figure. What is the fraction of the painted part in the large 

rectangle? Find as many answers as possible and explain why your arguments are 

correct. 

 

As noted above, in order to capture the student's learning process fully, it is necessary 

to capture how operative and collective attention occurs, as well as explicit and 

personal attention. In this study, we focus not only on personal attention, but also on 

the collective attention which appears when the act of utilising the semiotic resources 

of the subject creates an irreducible relationship with the use of the semiotic 

resources of others. We also want fully to understand the learning process, paying 

attention to the effects of operative attention on students' judgment processes.  

To do this, a data analysis is conducted on the one hand by identifying how the 

attention types of learners are collectively coordinated through the use of semiotic 

resources such as gazes, gestures, and utterances and on the other hand by identifying 

how operative attention affects subject's judgment.  

Three camcorders and two recorders recorded the responses of the teachers and the 

students. We will analyse the various types of data obtained through triangulation. 

RESULTS 
When encountering problem 1, ST5 answered, "One-third and no other answers." 

This means that problem 1 failed function as a sign. In order for students to pay 

attention to the meaning of equal parts and the whole-part, the ambiguous meaning of 

the fraction must be unfolded in front of the learning subject. 
The following depicts the situation of the class after the students encountered  

problem 2. 

ST3: Is it not a typographical error? Is this fraction possible? 

ST2: We are not learning this fraction in the third grade.  

ST4: Typographical error. The problem is strange. Error.  
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ST3: Is this one third?  

ST1: I wrote it. Hey. I wrote it. It’s one fourth or it’s one third. I do not know why. 

This means that problem 2 breaks the stable state of the students and succeeds in 

putting the field of ambiguous meanings in front of them. One-third is the answer 

given by the students because they pay attention to the number of rectangles, and  

one-fourth is the answer because the students pay attention to equal parts. At this 

point in the process of the formation of the students' judgment, the EP for the number 

and the OP for the equal parts are operating at the same time. 

 

 

Figure 1: ST2’s gesture   

 

Figure 2:  The researcher emphasises the 

rectangle 

 

Figure 3:  ST2 pointing to the picture on the blackboard and ST3 focusing on it 

As shown in Figures 1, 2 and 3, collective attention is taking place between the 

teachers and the students, and the student's attention is shifted by the teacher's 

actions. In this process, the various types of semiotic resources that teachers and 

students use are successful in transforming the students' attention.  

ST5 (Focusing on the teacher’s gesture): But what is on top is one third of the equally 

divided, and that below is not equally divided. 

Acoording to the actions of the researcher and the teacher, the attention of ST5 could 

move to equal parts. 

After students' collective attention to equal parts had formed, ST1 suddenly referred 

to a mixed fraction. The second picture on the chalkboard was highlighted by the 

researcher as a rectangle with different colours. It is likely that ST1 would pay 
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attention to the highlighted rectangle, judging the rectangle as 1 and the rest as a half. 

In order to view a given picture as a one and a half, students must be able to interpret 

the large rectangle mentioned in the problem as a rectangle rather than an entire 

square. Here, students direct collective and operative attention to the whole. 

In the teaching-learning situation thus far, the students gradually became able to pay 

attention to numbers, equal parts, and the whole. Considering that we need to pay 

attention to the meaning of the whole and equal parts in order to understand the 

meaning of the fraction, we can judge that the process of teaching-learning is 

succeeding. In subsequent discussions, the students demonstrated that they were 

structuring attention and recognizing the meaning of fractions through semiotic 

resources. 

 

Figure 3: ST1’s attention on the picture 

on the blackboard   

 

Figure 4:  The shape of the figure to 

which ST1 paid attention  

 

Figure 5:  The teacher showing the whole and the half through a gesture 

 

ST3: Why do you think this, this, this is not one and a half? 

ST5: The fraction refers to part (making a gesture that divides the square into two 

rectangles) of the whole (which draws a large square), but this (a gesture that 

draws two rectangles) is not the whole thing. This (a gesture representing two 

rectangles) is one half. 
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Figure 6:  Figure drawn by ST5 denying a mixed fractions 

At this point, ST5 pays explicit attention to the equal parts, the whole, and to the 

relationship between the whole and the parts. ST5 explains his claim to ST3 and 

succeeds in intentionally structuring his attention using words and gestures. Learning 

about fractions has been accomplished.  

DISCUSSION AND CONCLUSION 
In the semiotic approach, the mechanism of the teaching-learning process 

surrounding the subject, the teacher, and the meaning depends on how the concept is 

conceptualised. In this paper, I introduced Delueze’s concept of signs and the notion 

of collective attention. The semiotic approach using these proved to be a great help in 

understanding complex teaching-learning phenomenon.  

From the results of this study, the following suggestions can be put forth. 

First, for successful learning, a sign must be presented that will disrupt the student's 

stable state and lead the student to a field of ambiguous meaning. That is, signs must 

be considered as a prerequisite for learning. In particular, it is more effective if an 

ambiguous question is added that prevents the student's attention from being fixed. 

Second, as can be seen from the situation in which meaning of the mixed fraction is 

actualised, in the class situation, meaning comes in front of the teacher and the 

students accidentally through contact with the materials. That is, learning is 

characterised by contingency. In this sense, learning can be regarded as essentially a 

creative process (de Freitas & Sinclair, 2014). 

Third, the teacher must constantly identify where the student's attention is headed. In 

particular, students can use multimodal semiotic resources such as gestures, 

diagrams, and tone, termed by Arzarello (2006) semiotic bundles, to indicate where 

their attention is heading. The teacher must continue to identify the students’ 

attention while remaining sensitive to this. 
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THE ENACTMENT OF A FLIPPED CLASSROOM APPROACH IN 
A SENIOR SECONDARY MATHEMATICS CLASS AND ITS 

IMPACT ON STUDENT ENGAGEMENT 
Tracey Muir 

University of Tasmania 

Once considered the domain of higher education, the flipped classroom is 

increasingly being implemented in secondary school settings. Although enactments of 

the approach vary, it typically involves the use of digital technologies to shift direct 

instruction to the home environment, providing for more targeted in-class teaching. 

This paper describes how a flipped classroom approach was enacted in a senior 

secondary mathematics classroom and reports on the students’ and teacher’s 

perceptions of the impact of the approach in terms of students’ engagement with 

mathematics. It adds to the limited research in this area through providing an 

account of how flipping the classroom works in practice and its potential for 

engaging students in mathematics. 

BACKGROUND 
According to Bergmann and Sams (2012), there is no such thing as the flipped 

classroom, but the basic concept is “what is traditionally done in class is now done at 

home, and that which is traditionally done as homework is now completed in class” 

(p. 36). Bergmann and Sams (2012), who have been credited with pioneering the 

approach, advocate that there is no single way to flip a classroom, no specific 

methodology to be replicated or checklist to follow; hence the importance of 

providing descriptions of cases such as the one documented in this paper. Proponents 

of the approach note benefits such as differentiated teaching for a range of student 

abilities, increased student-teacher interaction, self-pacing and greater student 

engagement. The potential for the approach to engage students is an important 

consideration as student disengagement in mathematics is of ongoing concern (e.g., 

Skilling, Bobis, & Martin, 2015). The autonomous nature of the flipped classroom 

approach suggests that it may influence students’ motivation to engage in 

mathematics, as autonomy, along with competence, and relatedness, has been linked 

with increasing extrinsic and intrinsic motivation (Abeysekera & Dawson, 2015). The 

study discussed in this paper investigates those links through specifically addressing 

the following research questions: What is the nature of a flipped classroom approach 

enacted within a senior mathematics classroom? What are the students’ and teacher’s 

perceptions of the impact of this approach on their engagement with mathematics?   

REVIEW OF THE LITERATURE 
The terms ‘flipped classroom’, ‘inverted classroom’ and ‘flipped learning’ appear to 

be used interchangeably in the literature, but a flipped classroom does not necessarily 

mean flipped learning, which is defined as:  
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 … a pedagogical approach in which direct instruction moves from the group learning 

space to the individual learning space, and the resulting group space is transformed into a 

dynamic, interactive learning environment where the educator guides students as they 

apply concepts and engage creatively in the subject matter. 

                                                           (Flipped Learning Network (FLN), 2014, para. 1) 

 

There are different interpretations of the approach and associated variations in 

implementation strategies, with flipped learning and mastery of topics being the 

ultimate goal. According to Bergmann, Overmyer, and Wilie (2013), flipped learning 

is characterized as a: means to increase interaction and personalized contact time 

between students and teachers; space where students take responsibility for their own 

learning; classroom where students who are absent do not get left behind; class 

content is permanently archived for review or remediation; class where all students 

are engaged in their learning; place where students can receive a personalized 

education. Straw, Quinlan, Harland and Walker (2015), who explored how flipped 

learning could be delivered in UK classrooms, identified the following features that 

distinguished flipped learning from more traditional approaches: Homework time is 

typically used to deliver new content to prepare students for lessons, as opposed to 

being used for consolidation and revision; greater use is made of online learning such 

as videos, presentations and exercises than offline learning such as textbooks and 

worksheets; teachers spend more time in lessons coaching and facilitating learning 

and less time providing whole class instruction and demonstration. While the ultimate 

aim of flipped learning may be for students to achieve mastery of topics that are 

“individually based and student paced” (Guskey & Gates, 1986, p. 74), Bergmann 

and Sams (2013) acknowledge that teachers may adopt flipped learning principles to 

varying degrees, without necessarily achieving full mastery.   

Enacting the flipped classroom 
A variety of enactments of the flipped classroom are represented in empirical studies. 

The most prevalent appears to  be the model typically used in tertiary settings 

whereby lectures and instructional videos are prepared and recorded by teachers for 

their students to access at home, and class time is spent on more practical tasks with 

the students essentially working at the same pace (e.g., Clarke, 2015; Strayer, 2012). 

Other studies document enactments whereby teachers access online resources, such 

as Khan Academy, and make those available for students to view prior to attending 

class (Straw, et al., 2015). A limited number of studies have documented enactments 

of varying degrees of mastery (e.g., Muir, 2016). Common findings from the studies 

indicate positive impacts upon teaching and learning practices and students’ 

engagement, learning and skills. Straw et al. (2015), for example, found that the 

approach provided more time for practicing and applying knowledge and skills, 

questioning and higher level discussions, individualised support and increased 

understanding of students’ learning styles. They also reported that students showed 

increases in engagement in learning, knowledge and understanding, Fulton (2012) 

reported that students in a secondary school context enjoyed working at their own 
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pace, appreciated being able to review material by replaying videos, and completing 

more challenging problems in class rather than at home. In a study conducted in 

senior secondary mathematics classes, Muir (2016) found that in contrast with 

traditional teaching practices experienced in the past, students found the video  

tutorials prepared by their teachers to be relevant, engaged their attention, provided 

for greater autonomy over their learning and enabled them to attain their goal of 

mastery over their learning.  

THEORETICAL FRAMEWORKS 
The study discussed in this paper uses the Four Pillars of FLIP framework (Flipped 

Learning Network (FLN), 2014), to interpret the enactment of the flipped classroom 

approach as it occurred in a selected senior mathematics class. The framework 

identifies and describes key features necessary for learning to occur in a flipped 

classroom: flexible environment; a shift in the learning culture; intentional content; 

and professional educators. These features are enacted for example, when teachers 

create flexible learning environments, prioritise concepts used in direct instruction, 

differentiate content to make it accessible and relevant, and make themselves 

available to students as required (FLN, 2014). In order to investigate the impact of 

the flipped classroom on the teaching and learning of mathematics with the selected 

class, self-determination theory (SDT) (Deci & Ryan, 2008) was used to investigate 

whether or not students’ needs of competence, autonomy and relatedness were being 

met.  According to Deci and Ryan (2008), intrinsic motivation (a natural inclination 

toward assimilation, mastery, spontaneous interest, and exploration), is catalyzed 

when conditions such as competence, autonomy and relatedness are present. 

Motivation is considered to underpin engagement, with both playing a large part in 

influencing students’ drive to participate and learn at school (Martin, 2007).  

METHODOLOGY 
The study employed a mixed-methods approach (Creswell, 2003) whereby sequential 

methods were used to inform the collection of qualitative data. An exploratory case 

study methodology was selected in order to bring new understandings to the fore 

(O’Leary, 2010) with data sources including an online survey, interviews and 

classroom observations. The survey contained 24 questions consisting of responses to 

Likert-scale items about the use of online resources and seven open-ended questions. 

The items were adapted from an existing instrument designed to investigate students’ 

self-initiated use of video tutorials including logistical and attitudinal aspects (see 

Muir & Chick, 2014). Semi-structured interviews were designed to allow the 

researcher to probe more deeply into students’ experiences of the flipped classroom 

approach as reported through the survey and were conducted with focus groups. The 

teacher interview schedule was designed to elicit information about the enactment of 

the approach and its impact upon the teaching and learning of mathematics. 

Classroom observations were used to triangulate the data collected from the surveys 

and interviews and to answer the first research question.  
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The participants were 15 Grade 12 students (aged approximately 17 years) who 

completed the survey (5 male and 10 female) and their Grade 12 mathematics 

teacher, Ms Brown
1
. Eight students participated in focus group interviews which 

were audio-taped and conducted after survey completion and classroom observations.  

The study was conducted in a large independent metropolitan school with a 

‘Mathematics Methods’ class. Mathematics Methods is a senior secondary pre-

tertiary course which covers topics such as functions, calculus and statistics and is 

externally examined. This was the fifth year that Ms Brown had taught the course and 

her first year with producing her own videos (she had used Khan Academy videos in 

the past). Quantitative data from the survey were analysed using descriptive statistics 

expressed in percentages for the Likert scale items. Qualitative data from the surveys 

and interviews were transcribed and analysed using reflexive iteration (Srivastava, 

2009) whereby each sentence in the transcripts was coded, initially through emerging 

themes. The transcripts were then re-analysed and instances of the components 

related to the Four Pillars Framework and SDT were identified. This process limited 

researcher bias in that the researcher was open to the possibility of other themes 

emerging and not restricted to narrowing the data to pre-determined themes.  

RESULTS 
The flipped classroom in practice 
Lesson observations showed that Ms Brown’s enactment of the flipped classroom 

involved an expectation that her students had watched her pre-prepared video tutorial 

prior coming to class, with the majority of class time spent on completing exercises 

in the prescribed textbook. The two lessons observed for the purpose of this paper 

involved the students solving simultaneous equations using matrices. Figure 1 shows 

an example from the textbook that students were expected to solve. 

                          

Figure 1: Finding the determinant of a matrix (Jones, Evans & Lipson, 2012, p. 726) 

Each lesson began with an eight minute ‘warm-up’ where students worked 

individually from their textbooks. Ms Brown then facilitated students’ oral responses 

to the problems, then briefly revised some of the content from the video tutorial that 

most students indicated they had watched. The remainder of the lesson 

(approximately 40 minutes) was spent on working through allocated questions in the 

textbook, with Ms Brown individually assisting students who required assistance. 

Students indicated in the interviews following the lessons that that was typically what 

happened in their mathematics classes. 

At the time of the study Ms Brown had recorded approximately 20 video tutorials, all 

based upon topics in the textbook and all lasting for about an hour in duration. In her 

interview, Ms Brown said that she preferred to create a video for each topic and then 

direct students to watch different parts of it, rather than break it up into shorter 



Muir  

________________________________________________________________________________________________________________________ 

PME 41 – 2017   3-285 

videos. She used Powerpoint with an OfficeMix add on to record her videos, which 

students accessed through an emailed link. This was provided to students at least 

three days prior to class. Student survey data showed that 100% of students agreed 

that the tutorials helped them to understand a concept and that the tutorials were 

helpful. Just over half (54%) of students indicated that the tutorials were of the right 

length, with only 38% indicating that they watched all of the tutorials from beginning 

to end. Interestingly, 77% indicated that they found the tutorials boring, yet 85% of 

students indicated that they accessed all or most of the video tutorials that were made 

available. Student interview data provided an insight into how the students accessed 

the video tutorials at home: 
I watch it all, but then if she says something I don’t understand, I might go back and 

watch it all again. [Anna] 

She sends [emails] us sheets and questions – like summary pages of the chapters and 

that’s what she goes through on the video so I’ll have them with me and be writing down 

what she said … and if you don’t get it, you can ask her questions [later]. [Helen] 

Students were also asked in the interviews how their classes were different this year 

as compared to previous classes which were not flipped. The following is illustrative 

of the comments received:  

We didn’t do questions like this, not all the time, like we used to sit and listen, but now 

she’s doing more questions in class so that gives you more time with her one on one if 

you have questions, whereas I can remember some other topics, we would just sit and 

listen, and … we wouldn’t do as many questions like we were doing today.                           

[Hayley] 

It’s better having the video and watching it at home and being able to come and ask the 

teacher if I am still unclear about how to do something or a particular concept … I think 

it’s better than last year where we would go through the book and rather than have 

lengthy explanation in class, it’s better to have an idea before you get to class.                      

[Anna] 

Students also identified that the prepared video tutorials were a good source of 

information, but viewed them as complementary, rather than a replacement, for either 

the teacher or the textbook, as the following responses indicate: 

You can access it easier than a teacher in a class with other students, as well as it being 

specific to the question you need.                                           [open-ended response, 

survey] 

If you don’t understand the book, watching another person explain the concept can help 

you gain a better grasp of the ideas and skills.                        [open-ended response, 

survey] 

For me, if the teacher said, watch this video as compared to doing 20 questions in the text 

book, I would do the video – it’s more appealing,                                     [Anna, 

interview] 
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Motivating factors  
Data collected from surveys and interviews provided evidence that students’ 

motivational needs for competence, autonomy and relatedness were addressed 

through this approach. In addition, another strong theme, relevance, emerged as 

being influential in students’ motivation to access the video tutorials.  

In terms of meeting students’ need for competence, 92% of students agreed that they 

performed well in class tests because they watched the tutorials, while there was 

100% agreement that the tutorials helped them understand the work undertaken in 

class. Qualitative comments which referred to this aspect included the following: 
Sometimes they [videos] explain it differently so that I may understand better. [open-

ended response, survey] 

If I don’t understand the concepts I can go back afterwards and revisit so it’s like Ms 

Brown teaching me again.                                                                           [Anna, 

interview] 

Students also recognized that competence varied between individuals, alluding to the 

individualized nature of the approach, which was also noted by Straw et al. (2015). 

Brittany, for example, in her interview noted that: 
Sometimes with a whole class of say 20, if everyone has a question, then the whole class 

time is taken up with question time … but in the video, lots of questions are answered 

there and even if people do have questions, instead of about 18, there’s maybe 2 or 3, so 

you’ve got much more time and much more availability to talk to Ms Brown separately. 

Comments related to autonomy often included reference to self-pacing, accessibility 

and convenience. Open-ended responses in the survey, for example, included “You 

can access the videos and information from anywhere”,  “You can work at your own 

pace without being pushed ahead or slowed down …” and “They are a great way to  

get a head start on the next lesson”.  In her interview, Helen stated that “You can 

always go back and view them, not like last year when you had to continuously ask 

for help”.  

Students varied in their perceptions as to whether or not it was important that the 

videos were prepared by Ms Brown. Helen, for example, stated that: 
I think the way Ms Brown does it, she does it the easiest way possible so that we can 

remember it and do it by ourselves … I feel like Ms Brown does it better than a lot of 

other teachers would … 

Abigail and Hayley agreed, with Abigail stating that: 

You understand it better when it’s someone you know … and they can explain it again in 

a similar way in class if they have to.  

As was found in other studies (e.g., Muir, 2016), having a sense of relatedness with 

the teacher was a strong motivator in its own right. The following comment from 

Anna was illustrative of students’ appreciation of the work involved with the creation 

of the videos: 
You can tell she’s really put in the effort so you know it’s an easy task in return to her … 

so it’s no work just to watch it. 
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Anna, however, also felt that: 

I don’t think it’s really important who does it – whether one teacher does the video or the 

entire maths faculty … but what’s good about a teacher from school doing it as opposed 

to Khan Academy is that they know what the curriculum is and know what’s important to 

focus on … The few times I did that [looked up on Google] it was extremely lengthy and 

only a few relevant points so it is easier having Ms Brown give us the videos – it’s a lot 

more concise and relevant to what we want. 

The above comment indicates that relevance is a key motivating factor; this was also 

endorsed by Brittany who stated that accessing other online resources were “not very 

helpful … the language used was a bit formal and not very easy to understand”.  

DISCUSSION AND CONCLUSION 
The results indicate that students in Ms Brown’s class were engaging with the flipped 

classroom approach and that her enactment included some of the features associated 

with flipped learning as identified by the FLN (2014). While classroom observations 

showed that the lessons were largely dominated by students’ completion of textbook 

problems, there was little whole class demonstration by the teacher which was 

experienced by these students in the past. While a flexible environment, in terms of 

spaces and time frames, was not a key feature in this context, Ms Brown did 

demonstrate that she was intentional about the content she would present to students 

via the video tutorials and how that would be supplemented with the textbook 

exercises. Consistent with flipped learning features, Ms Brown determined what 

needed to be taught and which materials students should explore on their own (FLN, 

2014). She also made herself available to all students for individual, small group, and 

class feedback in real time as required (FLN, 2014). Students perceived their 

experiences of this approach positively, with the results indicating that it met their 

needs for competence, autonomy, relatedness (Deci & Ryan, 2008), and relevance.  

The study has implications for mathematics teachers who may find this approach 

beneficial in terms of providing students with increased autonomy over their learning, 

leading to achieving competence with a subject that can be challenging and 

inaccessible for many.   

Note 
1
pseudonyms used for teacher, school and students throughout 
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This paper investigates the importance of self-efficacy in learning tertiary 

mathematics using quantitative measures. In line with Bandura’s (1997) theoretical 

framework of self-efficacy, multiple regression data show that metacognitive self-

efficacy (Self-belief in using cognitive, motivational, selection processes and Self-

belief for self-regulated learning) are key predictors of success in learning 

mathematics. Further results reveal a positive correlation between self-efficacy in 

problem-solving and mathematics results. Therefore, an important point for tertiary 

practitioners to consider is to introduce these ways of developing self-efficacy in 

mathematics curriculum and student support in accord with the theory of self-

efficacy. 

OVERVIEW 
This paper is influenced by an extensive study in New Zealand led by Mike Thomas, 

which reported that several practitioners perceived that first-year tertiary students 

lacked confidence in learning (Thomas et al., 2010). A pertinent result was that the 

high-achieving tertiary students felt that their level of confidence in mathematics was 

lower at tertiary level than in their secondary education, which indirectly lowered 

their level of preparedness in learning mathematics. Following their research, this 

paper will investigate the self-efficacy levels of first-year mathematics students in a 

New Zealand (NZ) tertiary institution. Our research questions are 1) What is the 

nature of self-efficacy? 2) In what way does self-efficacy predict success in learning 

mathematics? 

THEORETICAL BACKGROUND 
Self-efficacy is concerned with human enablement rather than personal judgement of 

one’s ability (Bandura, 1997). People with high self-efficacy tend to make an effort 

and overcome difficulties because they are driven by personal affirmation which 

draws on one’s self-knowledge (based on prior mastery experiences) and adapt their 

knowledge and skills to successfully accomplish future tasks. This sense of efficacy 

increases one’s determination to succeed as well as promotes  the use of self-

regulation strategies for planning and organizing instructional activities, utilising 

resources, adjusting one’s own motivation. It has been observed that having a strong 

belief in using self-regulation strategies determines academic success. Students are 

agents of their own learning so when they develop self-belief in using these 

strategies, they become more self-regulated learners. Mulat and Arcavi (2009) have 
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reported that university mathematics students attributed their success to using self-

regulation strategies such as, studying without distraction, completing homework, 

seeking peer and teacher support, paying attention in class, preparing well for 

examinations, persistence in solving challenging tasks, and making concerted effort 

on school tasks. Their results suggest that using self-regulated strategies reflect the 

students’ metacognitive belief in learning which in turn, translates their will to 

achieve into learning processes and effort to produce positive outcomes.  

In mathematics education research,  Cretchley (2008) stated that to advance affect 

research, it is important to clarify the terms based on Bandura’s theoretical 

framework since past researchers tend to generalise its concepts rather than assessing 

it within specific contexts of learning, which tends to result in misconceptions in self-

efficacy research. Therefore, this study conceptualises the nature of self-efficacy in 

mathematics education. In his theory, Bandura (1997) states that self-efficacy beliefs 

produce learning outcomes through cognitive, motivational and selection processes. 

First, cognitive processes are described as thinking processes which involve the 

acquisition, organization and use of information. These processes underpin purposive 

learning behaviour, which is a function of self-appraisal of capabilities, resides in 

forethought and in the self-regulation mechanisms by which forethought is translated 

into incentives and guides for purposive actions. The stronger the self-efficacy, the 

higher the goals individuals set themselves to attain performances. People with high 

self-efficacy mediate through cognitive processes by visualising success, which in 

turn provide cognitive support and guides for attainment. Secondly, self-efficacy 

plays a key role in the self-regulation of motivation via motivational processes. These 

include causal attributions, outcome expectancies, and cognized goals. In causal 

attributions, Bandura (1997) states that people with high self-efficacy attribute poor 

outcomes to lack of effort whereas those with low self-efficacy attribute failure to 

low ability. Next, in outcome expectancies, people expect their behaviour and actions 

to bring about valued outcomes so people with high self-efficacy are more likely to 

persevere and attain successful outcomes because their goal setting is governed by 

the cognitive processes of motivation. Thirdly, in selection processes, individuals are 

partly the product of their environment because they choose the social and physical 

environment and types of activities that they judge themselves to be capable of 

handling. In a nurturing learning environment, people are predisposed to achieving 

their goals and make deliberate choices to manage challenging activities in these 

situations. Therefore, based on the abovementioned processes in self-efficacy, this 

study aims to conceptualise these metacognitive forms of self-efficacy and examine 

their relationships with outcomes of learning mathematics.  

Empirical studies have revealed a positive relationship between strong self-efficacy 

in solving mathematics problems and high mathematics performance but some 

researchers suggested that there was a need to examine their bi-directional 

relationships and factors of learning. In an international study, Williams and 

Williams (2010) argued that causal relationships between self-efficacy and 
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mathematics performances have been difficult to prove as researchers were forced to 

assume one position or other when they used recursive statistical models to estimate 

the model. To illustrate this point, they have modelled the concept of reciprocal 

determinism, which refers to the psychological functioning involving behavioural, 

cognitive and environmental elements (Bandura, 1986) using structural equation 

modelling to report  bi-reciprocal relationships between cognitive form of self-

efficacy and achievement of secondary mathematics students in twenty-four out of 

thirty-three nations.  

Other researchers have shown that self-efficacy predicts success in mathematics 

performance (Hailikari, Nevgi, & Komulainen, 2007; Hall & Ponton, 2005; Marcou 

& Philippou, 2005; Pajares & Kranzler, 1995; Pajares & Miller, 1994; Skaalvik & 

Skaavik, 2011; Stevens, Olivarez, Lan, & Tallent-Runnels, 2010). Marcou and 

Philippou (2005) reported that motivational beliefs as a function of self-efficacy 

correlated with problem-solving performances of fifth and sixth graders. In line with 

the social cognitive theory of self-efficacy (Bandura, 1997), Marat (2005) 

investigated determinants of self-efficacy with secondary mathematics students. 

Their discriminant analysis showed a positive correlation between high achievers in 

mathematics and high scores in self-efficacy in solving algebra problems, belief for 

self-regulated learning, selection and motivation strategies. A study of middle and 

high school mathematics students have found that self-efficacy was a better predictor 

of mathematics achievement than prior achievement (Skaalvik & Skaavik, 2011). 

This result was also evident for tertiary students of calculus in study by Hall and 

Ponton (2005) wherein it was found that university calculus students who reported 

high self-efficacy gained better results than other remedial students who also had low 

prior experience. To take another case in point, the path model data showed that there 

was a positive relationship between mathematical achievement and self-efficacy in 

problem-solving of ninth-grade and tenth-grade mathematics Caucasian students 

(Stevens et al., 2010). By comparison, Hispanic students scored poorly in 

mathematics and their confidence level, which suggests that some students succeeded 

in mathematics due to their high abilities and confidence. Pajares and Kranzler 

(1995) have concluded that students had high self-efficacy because they exhibited 

more effort and perseverance in challenging problem-solving situations. The 

abovementioned studies suggest that investigations of the way self-efficacy affects 

mathematical performance (at tertiary level) have been limited. Hence, more research 

is warranted to understand the psychological functions of self-efficacy in learning 

mathematics, particularly in tertiary education.  

Literature suggests that positive self-efficacy breeds success whereas negative self-

efficacy spawns failure in learning mathematics. Conversely, past successes increase 

self-efficacy levels and past failure diminishes it. In reality, this phenomenon might 

reflect a misconception of tertiary mathematics students. On one hand, lecturers 

might perceive first-year mathematics students to be confident. On the other hand, for 

many under-prepared students, the reverse is true. While lecturers focus on teaching 
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mathematical concepts in class, such students become disenfranchised with the lack 

of opportunities to increase self-efficacy and possibly experience failure in learning 

mathematics. Nevertheless, some university studies have investigated the 

development of self-efficacy. Parsons, Croft, and Harrison (2011) interviewed seven 

engineering mathematics students at the Harper Adams University College, who 

reported that the provision of student support has somewhat helped students to 

develop their cognitive processes. Hence, the confident students set high goals of 

mastering all the topics whereas the less confident students avoided doing the 

difficult mathematics. They also developed a low self-belief in using motivational 

processes as they were less motivated to work hard and tried to avoid difficult 

mathematics questions, which lowered their self-confidence and made them choose 

alternative questions in the examinations. Further results showed that selection 

processes were reflected by their deliberate choices to study mathematics. More 

positive results were reported by Falco, Summers, and Bauman (2010). Their study 

skills programme was effective because their students developed greater self-

efficacy, self-regulated learning, interest and engagement in learning mathematics 

and achieved better achievement scores. Therefore, although these studies were 

carried out in specific educational settings, these findings are likely to have important 

consequences for the broader domain of affect in mathematics education because 

understanding the role of self-efficacy sheds new light on its applications in learning 

mathematics.  

METHOD 
For this study, the participants were 166 tertiary students enrolled in the Business and 

Engineering programmes in a NZ tertiary institution. With ethics approval and 

participants’ consent, their final assessment results were collected and linked to their 

survey responses. Originally designed by Marat (2005), the Refined Self-efficacy 

Scale was appropriate because it accords with the Motivated Strategies and Learning 

Questionnaire (Pintrich, Smith, Garcia, & McKeachie, 1991) and the social cognitive 

theory (Bandura, 1997). This survey consists of five-point Likert type scales which 

has Cronbach’s alpha ranging between 0.76 and 0.91. The sub-scales included 

cognitive self-efficacy: Self-efficacy in solving numerical and measurement problems 

(SEI), geometry (SEII), algebra (SEIII), statistics (SEIV), Self-efficacy in using 

mathematical processes (SEV) and metacognitive self-efficacy: Self-belief in 

motivational, cognitive, selection strategies, Self-belief for self-regulated learning 

(SEVI). At the end of the scale, students had to assess how well they were doing of 

the course using a 9 -point numeric scale (1 as ‘Very Badly’; 5 as ‘about average’; 9 

as ‘Very well’).  

FINDINGS 
Of the 166 students, 67 students (40%) completed the Refined Self-efficacy Scale 

(Marat, 2005). The majority of the participants were young (17-25 years old) and 

male (55.3%). Of those who had passed mathematics examination (79%), the same 

proportion of participants scored either A or C grades (31%).  Considering each 
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subscale SEI-VIII, we found that the participants had the highest scores for SEI 

(3.87), Following the aforementioned sub-scales, the overall average of cognitive 

self-efficacy level (SE I –V) was 3.47 and metacognitive self-efficacy level (SE VI) 

was 3.55. 

Self-efficacy in mathematics and grades  

The statistical software IBM SPSS Statistics 21 was used to analyse the quantitative 

results. Correlational analyses showed a direct correlation between self-efficacy in 

mathematics and grades at 0.01 and 0.05 significance levels. Based on Dancey and 

Reidy (2004)’s categorisation of the strength of correlation, strong correlations range 

from R = 0.7 to 0.9, moderate to be 0.4 to 0.6, weak as ranging from 0.1 to 0.3. In 

this study, mathematics examination results are a proxy of mathematical performance 

since the summative work constitutes 50% course weighting and is a uniform 

yardstick for assessing students’ performance. Table 1 shows that the main findings 

were SEVI correlated more strongly with the expected grades (R=0.64, p=0.000) than 

the actual grades (R=0.30, p=0.018). In terms of mathematics self-efficacy, there 

were moderate but significant correlations between SEI (R=0.44, p=0.001) and SEII 

(R=0.35, p=0.035) with the expected grades whereas there were weaker correlations 

between SEIII (R=0.28, p=0.028) and SEIV (R=0.29, p=0.018) with the actual 

performances. Their expected results were correlated strongly with the actual grades 

(R=0.55, p=0.000).  

 Exam marks Expected grades SEI SEII SEIII SEIV SEV SEVI 

Exam marks 1        

Expected 

grades 

.55
**

 1       

SEI .10 .44
**

 1      

SEII .35
**

 .35
*
 .19 1     

SEIII .28
*
 .22 .14 .58

**
 1    

SEIV .29
*
 .23 .000 .52

**
 .52

**
 1   

SEV .079 .030 -.079 .28
*
 .45

**
 .57

**
 1  

SEVI .30
*
 .64

**
 .30 .53

**
 .46

**
 .41

**
 .38

**
 1 

p<**0.05, p<**0.01 

Table 1 Pearson Correlations (n=55) 

Predictors of student performance  
There were six predictors of success, we used to understand the concept of self-

efficacy and how this affects the results of students. According to Nardi (2006), 

“regression analysis does not tell [us] about one particular respondent, since the 

statistics are based on aggregated data. ….Mostly what [we] do with regression is to 
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construct a profile of characteristics related to the dependent variable from past data 

and use that to explain what already exists or to predict subsequent outcomes” 

(p.208). In order to establish a profile of successful students, we set up the 

independent variables self-efficacy (SE I to SEVI) and examination scores as a 

dependent variable and chose the linear regression model which assumes that the 

error term has a normal distribution with a mean of 0, the variance of the error term is 

constant across cases and independent of the variables in the model. When 

conducting the regression analyses, we tested if the linearity, normality and data 

independence assumptions of the dependent variables were satisfied. This method of 

analyses produced a model summary, which shows 32.7% of the variation in results 

is a result of the factors. We found that the low p value (p=0.040) in the analysis of 

variance table (F=2.715), suggests that the model is a better fit than using the mean of 

the sub-scales and that self-efficacy in using cognitive, motivation and selection 

strategies, self-regulated learning are significant predictors of the model (Beta=0.482, 

t=2.335, p=0.027).  

DISCUSSION AND IMPLICATION 
In response to the initial research question, some noteworthy results were positive 

correlations between the cognitive (Self-efficacy in solving mathematical problems), 

metacognitive self-efficacy (Self-belief in using cognitive, motivation and resource 

management strategies, Self-efficacy for self-regulated learning) and performance as 

measured by grades. Associated with this predictor was the finding that there was a 

positive correlation between expected marks and examination marks. This aligns with 

the theory that greater self-efficacy raises one’s expectation to achieve high marks, 

which in turn, projects the actual performances. The correlation data somewhat 

matched past literature (Hailikari et al., 2007; Hall & Ponton, 2005; Marcou & 

Philippou, 2005; Pajares & Kranzler, 1995; Pajares & Miller, 1994; Parsons et al., 

2011; Skaalvik & Skaavik, 2011; Stevens et al., 2010), suggesting that self-efficacy is 

not only about having a strong belief in problem-solving but a disposition to develop 

cognitive and metacognitive processes in learning. According to Bandura (1997), 

high performance in a particular task promotes self-efficacy, which in turn, 

emboldens individuals to work harder and develop further skills necessary for 

attainment in future tasks. Bandura further explains that in skill development 

“efficacy beliefs contribute to the acquisition of knowledge and development of sub-

skills, as well as drawing upon them in the construction of new behaviour patterns” 

(Bandura, 1997, p. 61). The point is that having an expectation of positive outcomes 

and cognitive self-efficacy, alone are not sufficient, other functions of self-efficacy 

need to work in concert with it so that successful students gain mastery of 

mathematics skills. 

To investigate the next research question, a significant linear regression finding was 

that the most appropriate predictor of successful performance in mathematics was 

self-efficacy in using cognitive, motivation, selection strategies and belief for self-

regulated learning. Consistent with past research (Marcou & Philippou, 2005; Mulat 
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& Arcavi, 2009), this result suggests that success in learning mathematics is 

determined by metacognitive dimensions of self-efficacy. In line with Bandura’s 

notion of self-efficacy, by forming selection, cognitive and motivational processes, 

students could manage their learning by taking ownership of their own learning 

through self-regulated learning behaviour, goal setting, expenditure of effort and 

intrinsic motivation. Evidence of under-prepared tertiary mathematics students in 

Thomas et al’s (2010) study further confirms the role of self-efficacy in the teaching 

and learning environment. Therefore, enhancing student learning is about 

overcoming low self-belief in learning as well as forming motivational, cognitive, 

selection and self-regulatory strategies in learning.  

These findings raise another question: How could educators increase their chance of 

achieving success in learning? Given greater political impetus to improve student 

achievement, practitioners should seriously consider the influence of self-efficacy on 

their learning. Ultimately, the value of such programmes could outweigh the high 

cost of failure borne by students and staff. Teaching faculties could incorporate both 

metacognitive and cognitive forms of self-efficacy in their curriculum, which were 

shown to be somewhat effective in previous studies (Falco et al., 2010; Parsons et al., 

2011). In order to produce desired outcomes in affect development, tertiary 

institutions could offer more incentives for developing self-efficacy in mathematics 

programmes in order to raise mathematical achievement.  

CONCLUSION 
Our study findings show that self-efficacy enhances mathematics results. This tends 

to shift the onus of learning onto tertiary students who may receive appropriate 

support for learning mathematics. With improved self-efficacy, these students tend to 

succeed in learning mathematics, which can serve as a gatekeeper in engineering and 

business programmes. Although the correlation data did not show causal 

relationships, we found that cognitive and metacognitive self-efficacy were positively 

correlated with performance and the most appropriate predictor of success was 

metacognitive self-efficacy. In this respect, our results suggest that as a result of 

lower self-efficacy, first-year students may be at-risk of failing mathematics. 

However, if students develop their metacognitive and cognitive forms of self-

efficacy, their chances of achievement will increase. Therefore, an important point 

for practitioners to consider is to introduce new ways of developing self-efficacy in 

mathematics curriculum and student support in accord with the theory of self-

efficacy.  
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TEACHING MATHEMATICS FOR JUSTICE: PEDAGOGIES OF 
DISCOMFORT, CONTRADICTIONS AND DIALOGUE  

Cynthia Nicol, Leicha A. Bragg, Vanessa Radzimki, Tiantian He, and Kwesi Yaro 

University of British Columbia, Canada, Deakin University, Australia 

 

This paper explores learning to teach mathematics for social justice (MfSJ). As 

practicing teachers, graduate students and teacher educators the five authors with 

three colleagues from five countries came together to dialogue on possibilities and 

challenges of teaching MfSJ. Social justice projects were designed and some 

implemented in mathematics classrooms. Transcripts of each dialogue meeting 

inspired questions for the next. Results indicate contexts for teaching MfSJ were 

inspired by perceived curiosities of students and personal interests of instructors on 

local and global issues. Challenges were analyzed in terms of contradictions and 

expressed discomfort. The study highlights complexities of learning to teach MfSJ 

and offers pedagogies of dialogue and discomfort toward continued learning. 

INTRODUCTION 
There is no shortage of global issues requiring attention: more than 65 million people 

world-wide are displaced (UNHCR, 2016); 9 of the 10 warmest years on record have 

occurred since 2000 (NASA, 2017); global average sea level has risen 178 mm over 

the past 100 years (NASA, 2017); 1 person in 10 worldwide lacks access to safe 

drinking water (WHO, 2015). Addressing such complex global issues requires 

analysis and discussion with various stakeholders (e.g. students, teachers, 

communities, experts) across multiple perspectives (e.g., political, social, economic, 

and cultural) and fields (e.g., sciences, humanities, and arts). Preparing students and 

teachers to engage mathematically in understanding and responding to such complex 

issues, including concerns of diversity and equity, is a goal of teaching mathematics 

for social justice (Gutstein, 2012; Kumashiro, 2015; Wager & Stinson, 2012) and 

critical mathematics education (Skovsmose, 1994, 2016). There is limited but 

increasing research on conceptualizing a critical approach to mathematics education 

at elementary and secondary school levels (Gutstein, 2012; Skovsmose, 1994) and 

teacher education (McLeman & Piert, 2013). Our research adds to this growing field 

by analyzing the issues and challenges of a critical approach to mathematics 

education for justice through our own dialogue circle (Freire, 1970/2000) of 

mathematics teacher educators, graduate students and practicing teachers. Our 

inquiry draws upon our own experiences as relatively new social justice mathematics 

educators asking: What justice issues are identified as possible in mathematics 

education across international contexts? What are the challenges across different 

perspectives?  
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RELATED LITERATURE 
Decades ago Frankenstein (1987) in the United States and Skovsmose (1994) in 

Denmark independently developed the idea of critical mathematics education to 

challenge the neutral, acultural view of mathematics and examine the relationships of 

mathematics to social, political and cultural contexts in which mathematics is used. 

Frankenstein (1987) drew upon Freire’s (1970/2000) ideas of liberating education to 

develop pedagogical approaches for teaching adults mathematics by using statistical 

data to help “students to reconsider their previously ‘taken-for-granted’ beliefs [and] 

deepen and increase the range of questions they ask about the world” (1987, p. 197) 

thereby engaging students in critical questioning of mathematics and their social 

reality. 

Gutstein (2006, 2012), extended Freire’s ideas of literacy development to 

mathematics education by helping students learn to read mathematics (to do 

mathematics), learn to read the world mathematically (to understand how 

mathematics is used for social and political decision making) and learn to write the 

world with mathematics (to change the world with mathematics). An example 

Gutstein (2012) offers is the Boundaries Project developed from an immediate and 

tense community issue that directly affected his students: redrawing the enrolment 

boundaries between two community schools. Students were asked to discuss and 

research “a fair solution for both communities” by (Gutstein, 2012, p. 304). They 

examined school attendance data, calculated acceptance probabilities, and engaged in 

discussions about immigration issues and movement. Gutstein (2012) found students 

engaged and motivated, with opportunities to “examine their lived experiences, 

deepen their sociopolitical awareness, and learn mathematics” (p. 306). Similarly, 

Skovsmose (1994, 2016) proposes a critical mathematics education–one that allows 

any group of students with any type of mathematics “to address critically any form of 

reading and writing with mathematics” (2016, p. 6). Skovesmose offers the idea of 

mathemacy as a tool allowing students to participate in understanding and 

transforming society. Characterizing mathematics as a language Skovsmose (1994) 

points to how a “grammar influences the possibilities available for what we can 

express and the purposes for which we can use our language” (p. 3). In this way 

Skovsmose draws attention to what he calls the formatting power of mathematics. 

There are few studies documenting learning to teach mathematics for social justice by 

teacher candidates, practicing teachers, and teacher educators. An exception is 

Bartell’s (2013) case study of eight secondary mathematics teachers as members of a 

graduate level course on learning to engage with ideas of teaching MfSJ. Bartell 

reported teachers experiencing tension in negotiating the dual goals of mathematics 

and social justice, sometimes losing the complexity of the issue or separating the 

goals leading students to “express existing socially produced misconceptions rather 

than interpreting, resisting, or rewriting them” (Bartell, 2013, p. 158).  
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This review of related literature highlights a body of work that has helped 

conceptualize what might be involved in teaching mathematics for social justice. Yet 

we know little about what is involved in learning to teach for social justice. Our study 

addresses this gap exploring our own developing understandings of social justice, the 

possible contextual issues for exploring math and social justice, and the perceived 

challenges involved in teaching math for social justice.  

THEORETICAL FRAMEWORKS 
We are inspired by the work of Freire, Gutstein, Frankenstein and Skovsmose and 

their views of moving students to engage in a critical mathematics education. This 

involves, as Freire (1970/2000) argues, a problem-posing education–a humanist 

liberating education that has students “develop their power to perceive critically the 

way they exist in the world with which and in which they find themselves” (p. 83).  

Gutstein (2006) offers a framework distinguishing three types of knowledges used to 

design and make sense of teaching mathematics for social justice. Community 

knowledge refers “to what people already know and bring to school with them” (p. 

300). Critical knowledge “is knowledge about the socio-political conditions of one’s 

immediate and broader existence” (p. 301) while classical knowledge “refers to 

formal, in-school abstract knowledge” (p. 302) making up what is often referred to as 

school mathematics. Although the relationships among these types of knowledges 

requires further problematizing it provides ways of imagining and critiquing contexts 

for mathematics problems connected to students’ lives, of societal relevance, and 

with opportunities to investigate social realities.  

Vithal (2012) explores connections between mathematics education, democracy and 

development and suggests a pedagogy of conflict and dialogue that has contradictory 

themes of freedom and structure; democracy and authority; mathematics and context; 

equity and differentiation; and potentiality and actuality. Vithal suggests “both 

conflict and dialogue are needed in a pedagogy that attends to issues of democracy 

and development from a critical perspective” (p. 8). We use Vithal’s (2012) 

framework to examine the challenges of learning to teach social justice mathematics 

education. 

Finally, we draw upon Zembylas’ (2015) “pedagogy of discomfort” to examine the 

perceived risk and challenges of engaging in social justice mathematics education. 

Zembylas considers the tensions of a pedagogy of discomfort and ways of countering 

possible ethical violence that could arise. A pedagogy of discomfort can be described 

as “the feeling of uneasiness as a result of the process of teaching and learning 

from/with others” (Zembylas, 2015, p. 170). We use pedagogical discomfort as a way 

to theorize the multitude of emotions involved in a critical pedagogy of mathematics 

education.  

With these frameworks we examine our own experiences as beginning social justice 

educators with a goal to contribute to Gutstein’s (2012) call that “there is much work 

to do in theorizing and practicing social justice mathematics” (p. 300). 
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RESEARCH METHODS 
We form a group of participatory researchers interested in social justice mathematics 

education. We are a team of eight with five of us coming together to write this paper. 

We perform overlapping identities as masters graduate students – practicing teachers 

(NC, DG and TH), doctoral students – researchers – instructors (KY, SB, and VR), 

and teacher educators – academic researchers (LB and CN). Our cultural/country 

backgrounds are diverse and include: Australia, Canada, China, Ghana, and the 

United States. As a group our interest in a critical mathematics education began in 

2015-2016 with many of us enrolled in a course (taught by CN) focused on bringing 

math, community and culture together.  

Following the course we met as a group to dialogue about our developing ideas of 

teaching mathematics for social justice. We structured these meetings in similar 

fashion to Freire’s (1970/2000) dialogue circles where we engaged in open 

communication, critiquing our ideas and assumptions. Over a period of 15 weeks we 

met 11 times with each meeting being between 1 hour and 3 hours in length. We 

created a secure password-protected website where we collected and offered texts to 

extend our thinking about social justice. We audio recorded all dialogue circle 

meetings. For some meetings we met via a web-based instant messaging program 

(WhatsApp) to accommodate our diverse geographic locations of Australia, Canada 

and Ghana. We transcribed all meetings and exported text versions of our WhatsApp 

conversations. Transcripts from one meeting inspired questions and issues for the 

next meeting. We explored ideas such as what teaching social justice mathematics 

might look like, how to prepare school and university level mathematics students as 

well as ourselves as teacher educators to engage in a critical mathematics education, 

and given our diverse cultural backgrounds and life experiences what might count as 

contexts for generative themes of interest to our students and their communities as 

well as our own curiosities.  

For this paper we analyzed transcripts in response to our inquiry questions: 1) 

possible contexts for engaging in issues of social justice with each other and our 

students across our international backgrounds; and 2) our perceived challenges of 

offering a critical mathematics education. Our dialogues provided opportunities for 

both data collection and analysis with the movement of our ideas, assumptions and 

responses/re-actions to each other’s thoughts as more recursive than linear.  

RESULTS 
Resources for social justice problems 
Analyzing transcripts of our dialogues we found questions around possible issues or 

contexts for teaching social justice mathematics permeated our conversations. Some 

of us had opportunities to design, implement, and reflect on problems created for 

teaching social justice mathematics, while others were in positions of imagining and 

exploring pedagogical possibilities. One group member, for example, developed and 

implemented four lessons connecting high school social studies and mathematics 
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education. One of these four lessons involved Grade 9 students examining graphs and 

statistics to make connections between the events leading to the French Revolution 

and the 2011 Occupy Movement. What is interesting about this example is the 

teacher’s intent of making the mathematics in a social studies lesson more explicit 

and worthy of examination. In this case, we could say that the community knowledge 

the teacher drew upon was the students’ experiences in social studies as well as their 

interest in mass protests. Although we generally found it challenging to consider 

problems that brought mathematics and social justice issues together, each of us drew 

upon our individual strengths, curiosities, local experiences and cultural backgrounds 

to consider problems we thought would engage our students. 

Group member, VR, developed a context for her calculus university students that 

focused on housing affordability. Vancouver, Canada has one of the most 

unaffordable housing markets in the world making it difficult for many, including 

university students, to find reasonable accommodation. The problem involves 

students using mathematics to understand the issue and using related rates to examine 

what continues to make it an issue. Another problem developed by TH began with an 

investigation of air quality in China. We considered how this issue could be made 

real for students both locally and globally. LB suggested beginning with an image she 

found of school children in China sitting outside at desks, in thick smog, wearing 

protective facemasks. Such an image could provoke questions around the role of 

mathematics in understanding air quality along with who ‘owns’ the problem of poor 

air quality, locally and globally. Other contexts for problems created included: 

democracy, under-representation and electoral voting in Ghana and Canada; air 

quality, pollution and environmental sustainability in China and Canada; and, the 

manipulation of mathematics in framing news in the Australian media. 

We recognized our resources were limited by our own expertise and confidence in 

unpacking justice issues with mathematics. Nonetheless, although each of these 

problems was developed from experience and issues found in local contexts we were 

able to make connections across contexts, moving between local and global spaces. 

Contradictions, discomfort and risk 
Contradiction, discomfort and risk were threaded throughout our dialogues across 

three spectrums: mathematics, social justice, and pedagogy. The issue of 

mathematical expertise was raised and offered as a possible source of discomfort for 

some teachers as seen in the remarks made by this group member: 

I think a lot of the people teaching social justice may not have high levels of knowledge 

or comfort in math, and therefore they kind of choose not to approach it from that lens. 

(Group member NC) 

Others voiced concern in risking professional status. We were a group of experienced 

teachers; three of us received recognition for their mathematics teaching through 

being nominated or receiving awards. Yet, as one member stated, “I feel like I’m a 

new teacher again reliving all the emotion that goes with the uncertainty” (LB). Two 
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of us have graduate degrees in mathematics and noticed contradictions in expertise 

that could impact teaching. For example, VR claimed, “I feel I don’t know enough 

about social justice to lead my students in a meaningful direction in the same way I 

know I can do with mathematics.” This comment speaks to a concern of the group: it 

was more comfortable engaging in a problem-posing curriculum based on school 

mathematics (classical knowledge) than one that also included social justice issues 

(critical knowledge). The mathematical and pedagogical terrains were more familiar 

and therefore comfortable to some of us than the critical social terrain. Yet, there was 

also encouragement and hope in our dialogue on the positive aspects arising in 

risking such discomfort, freeing oneself from traditional classroom structures, and 

being “open to the curiosity, to the not knowing” (CN). Nonetheless we recognized 

some students and their parents might be uncomfortable with a mathematics 

curriculum inclusive of social justice issues. In addition engagement with some 

contexts/problems/issues can stir hopelessness when problems are large and ways of 

responding seem out of reach as seen in our air quality problem. Discomfort could be 

and was experienced at multiple levels. 

As a group we also wondered about the place of social justice in/for mathematics at 

all levels. This is seen as one group member, a university-level mathematics 

instructor, questioned the limits of teaching all mathematics with social justice:  

Perhaps Real Analysis II is not going to be the place for social justice in math but I also 

don't want to totally discount any location [for teaching MfSJ]. (Group member SB) 

This comment points to the uncertainty but also willingness of staying open to 

possibilities of bringing mathematics and social justice together. Our dialogue raised 

the importance of recognizing risk, uncertainty and emotions related to experienced 

teachers teaching in unfamiliar terrain. 

Mathematics education as a social justice pedagogy 
The nature of teaching MfSJ was a re-visiting topic for discussion during our 

dialogue sessions. A question we grappled with was, “How might MfSJ be a 

pedagogy?” One idea offered by CN suggests a pedagogy of MfSJ could also involve 

attending to respectful relationships within the class, such as students’ relationships 

with each other where “creating a just(ice) classroom environment makes it possible 

to engage in difficult mathematics with others, to learn together and make mistakes 

together, to fail together.” Our dialoguing around MfSJ as pedagogy deeply moved 

some members’ thinking about the nature and opportunities of MfSJ. For example, 

LB is aware of her changing understanding of MfSJ with her comment: “I feel earlier 

I was still considering it as a topic to be taught rather than a way in which we teach.” 

Considering MfSJ as pedagogy arose in response to a concern raised by TH that for 

some educators and cultures bringing political/social justice issues into the classroom 

is discouraged. We challenged each to consider, as VR notes, how MfSJ could be a 

place “to develop a democratic classroom, where we work toward opportunities for 

all students to engage in mathematics.” Teaching MfSJ thus became both issue-based 
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and pedagogically-based for the group. Our emergent understanding of MfSJ as a 

pedagogy is one way in which our experiences in working toward building 

democratic classrooms could be enacted.  

DISCUSSION 
Our study focused on developing ideas of experienced mathematics teachers and 

teacher educators dialoguing on the nature and complexities of teaching MfSJ. We 

drew upon varied resources for creating contexts to explore mathematics and social 

justice. None of us began with Gutstein’s definition of classical mathematical 

knowledge to develop a problem. Instead, each of us began with current political 

issues generated from our own interests, curiosities and local contexts as well as our 

understandings of our students’ interests and community knowledge. It was 

recognized for some that limited mathematical knowledge prevented engaging in 

teaching MfSJ, for others it was limited critical or social justice knowledge. 

Results indicate a willingness and ability to create contexts for exploring 

mathematics and social justice yet also point to conflicts. Using Vithal (2012), we 

noticed conflicting themes of: 1) mathematics and context in the ways in which one 

may be privileged over the other; 2) democracy and authority in our perceived and 

actual cultural contexts for pursing teaching MfSJ; 3) potentiality and actuality in our 

understandings of our expertise in being critical mathematics educators; and 4) 

freedom and structure in recognition of the uncertainty and messiness of teaching 

MfSJ.  

Our results also speak to the emotional aspect of teaching for social justice. Each of 

us expressed contradictions, discomfort, and risk in teaching MfSJ. This suggests the 

need to attend to such discomforting feelings and we are drawn to Zembylas’ (2012) 

‘pedagogy of discomfort’ as a way to acknowledge the discomfort for students, 

parents, teachers and communities in teaching and learning MfSJ. We argue, as does 

Zemblyas, that if a goal of social justice education is to become more critical, to 

challenge and stir-up unsettled beliefs, then “some discomfort is not only unavoidable 

but may also be necessary” (p. 164). How do we prepare ourselves and our students 

for a pedagogy of discomfort when teaching MfSJ? 

We found dialogue as method offered us a space to engage with this discomfort and 

conflict. It offered a space to listen to new ideas, challenge our own assumptions, 

think out loud together, and imagine new possibilities. Yet dialoguing is difficult 

work. We were challenged to be sure that all voices were heard conceptually across 

our different teaching contexts and perspectives, as well as culturally and 

geographically across international contexts. We were not always successful but 

recognize that dialoguing itself involves a pedagogy of discomfort, requiring on-

going efforts to support an open and critical stance in relation to each other. 

Our study contributes to the call for further studies exploring learning to teach MfSJ. 

Conflict and contradiction, lead to pedagogies of discomfort, but addressed through 

dialogue provide opportunities for possibilities of hope for change.  
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ARE WE PLAYING CHINESE WHISPERS?  
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In this paper, using gender as the topic in focus, we argue that transferring items and 

surveys from one cultural context to another might be highly problematic. For 

instance, in the Nordic context, gender issues are addressed in teacher education that 

reflects how equity is viewed on a societal and political level. Consequently, research 

on teacher students’ gendered beliefs should acknowledge and take into 

consideration their knowledge of gender equity during item development. Rather than 

being translated and adapted, items should be re-constructed and embedded in the 

context in which they are to be used in order to achieve a valid, reliable instrument. 

In addition, how gender equity is expressed develops over time, which differs in 

different cultural contexts. Consequently, time is also a factor to consider.  

INTRODUCTION 
Both Norway and Sweden have interesting gender patterns regarding mathematics 

education. In both countries, girls either outperform or perform equally to boys in 

mathematics, this including upper secondary school. However, in higher education, 

more men than women opt for mathematically intense programmes, which is a sign 

of more traditional gender roles (OECD, 2015). Mathematics teacher education, as 

part of the educational system, also has strong gender patterns in recruitment, with an 

overrepresentation of female students in kindergarten and primary teacher education 

programmes (UKÄ, 2016). The result is a segregated workforce (Johnson & Muse, 

2016; UKÄ, 2016) and this in two countries with strong traditions regarding equity 

and equality in both society and education (Imsen, Blossing, & Moos, 2016). 

Previous research suggests that teachers are one of the main contributors to students’ 

views on mathematics and other STEM subjects and to their active choice to pursue 

these subjects in further education (Regan & DeWitt, 2015). Hence, the gender 

imbalance in the teaching profession might contribute to the gender imbalance in 

higher education in Norway and Sweden.  

Hence, the gender imbalance in the teaching profession might contribute to the 

gender imbalance in higher education in Norway and Sweden. Researchers have 

identified a need to understand gender perspectives in mathematics education from a 

Nordic perspective (Imsen et al., 2016). Therefore, exploring the views of 

mathematics teacher students’ about gender and mathematics could be key to 

understanding some of the driving factors of the observed gender patterns. Still, when 

attempting to reproduce a study by Leder and Forgasz (2010) that has been tested in 

other countries and on teacher students (Gómez-Chacón, Leder, & Forgasz, 2014), 

we failed. 
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After the instrument was adapted and carefully translated into Norwegian and 

Swedish, the questionnaire was piloted in two Norwegian universities. During 

piloting, it became apparent that Norwegian student teachers were reacting negatively 

to some survey items. Although, judging by their response patterns, they found the 

topic of the survey relevant to some extent, a typical written comment was ‘We are 

living in a modern world, why do you ask these questions in this way?’. In the words 

of Andrews and Diego-Mantecón (2015), we realised that we were playing a 

variation of the game ‘Chinese whispers’, despite adhering to existing good practices 

for questionnaire translation and adaptation (e.g. Osborn, 2004; Schraw & Olafson, 

2015). Beliefs differ considerably from one cultural context to another, making 

comparative research challenging (Andrews & Diego-Mantecón, 2015; Tuohilampi et 

al., 2015). However, to better understand how educational beliefs differ culturally 

valid and reliable research instruments must be developed that legitimise both the act 

of comparison and the categories used (Clarke, 2013).  

The purpose of this research report is to discuss criteria and best practices in 

developing culturally valid questionnaires that enable investigation of student 

teachers’ gendered beliefs about mathematics and mathematics education in more 

than one educational context. 

CULTURE, GENDER AND THE NORDIC MODEL  
Previous research has identified several issues regarding cross-cultural studies in 

mathematics education (Andrews & Diego-Mantecón, 2015; Clarke, 2013). A major 

issue is how to define culture. One solution, although somewhat narrow, is to view 

cultures as national contexts (e.g. Andrews and Diego-Mantecón, 2015). A more 

general approach can be found in Clarke (2013), who discusses the cultural validity 

of cross-cultural comparisons in mathematics education. Although not distinguishing 

the various levels of how a culture can be operationalised, his definition enables a 

view of culture as functioning as a lens that is not restrained to national borders. 

Here, we follow Clarke’s (2013) definition. Furthermore, we argue that within a 

national context, several particular cultural, that is, sub-cultural, practices and 

identities exist that must be taken into account when conducting cross-cultural 

research.  

The Nordic education model can serve as an example of a specific cross-cultural 

context, spanning several countries, including Norway and Sweden. It has been 

identified with attributes shared by the various countries regarding equal access to 

education, including no segregation by abilities, social class or gender (Imsen et al., 

2016). Here, we focus on the latter aspect, in which gender refers to ‘feminine and 

masculine, characteristic and culture dependent traits attributed by society to men and 

women’ (Wedege, 2007, p. 252). A main trait of the Nordic education model is the 

over-arching perspective regarding gender equity and equality: both Norway and 

Sweden have implemented national laws and policies securing equal rights in terms 

of education (Hedlin, 2013; Imsen et al., 2016). This Nordic perspective has 
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traditionally been reflected in the national curricula: for instance, in Sweden it was 

clearly stated in 1962 that education in all subjects should be given to every child as a 

legal right, based on the ideas of equity and equality (Imsen et al., 2016). While equal 

rights are explicit in policy documents, students and teachers at various levels express 

gendered views about mathematics and mathematics education (OECD, 2013; 

Sumpter, 2012; Sumpter, 2016). At the same time, many teachers (in Sweden) 

believe that gender issues are not relevant to their teaching, indicating that the 

‘gender problem’ is solved (Gannerud, 2009). This illustrates a tension among 

various driving factors: on one hand the observed structural gender and symbolism at 

the individual and group levels, and on the other hand the constituted societal and 

political views. 

WHERE WE WENT WRONG – THE PILOT STUDY 
This study started out with the intention to replicate the study by Leder and Forgasz 

(2010) utilizing a tool previously applied in other studies involving various kinds of 

samples and cultures (e.g. Forgasz et al., 2014; Gómez-Chacón et al., 2014). As a 

first step, the survey was translated from English into Norwegian and Swedish 

individually by the two authors of this paper. To validate the translation, both 

translations were compared and back-translated, following the procedures presented 

in Andrews and Diego-Mantecón (2015). In addition, between-language comparisons 

were conducted. Prior to translation, some adaptions were made. For instance, as the 

target population was prospective teachers, background questions aimed at 

identifying teacher-education programme and year of study were added. We also 

added a question about whom the respondents believed to be best suited to teach 

mathematics, a female or a male teacher. The question, ‘Should students study 

mathematics when it is no longer compulsory’ was removed, as this is not relevant in 

a Norwegian and Swedish contexts, in which mathematics is compulsory and all 

students must take mathematics courses in upper secondary school. In addition, some 

items were carefully adapted to better conform to Norwegian and Swedish ways of 

expression. For example, the question ‘Who are more suited to being scientists, boys 

or girls?’ was changed to ‘Who are more suited to work in professions in which you 

apply mathematics, e.g. engineer and chemist?’. A third person with knowledge of 

the three languages was responsible for digitizing the questionnaire, comparing the 

three versions and performing external validation.  

Next, students in two Norwegian universities were invited to participate in the pilot 

study, in accordance with good practice for questionnaire development  

(Andrews & Diego-Mantecón, 2015; Schraw & Olafson, 2015). The responses 

indicated that some questionnaire items were culturally skewed, including the item 

‘Who is better at mathematics, boys or girls?’. The majority of students (56%) stated 

that boys and girls are equally good, and 28% stated that boys are better. However, 

comments indicated that some students experienced a dilemma when replying to this 

item. One male student commented: 
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When we speak about ‘good at mathematics’ I am thinking that you think of this related 

to school outcomes (not the ability to assimilate knowledge and problem solving skills). 

And then, I believe that previously boys have been more interested in mathematics and 

science programs in higher education, but that now more and more girls study 

mathematics. And I believe that if someone works with something (for instance 

mathematics) they can be really good at it.  

Based on this and other comments, including expressions that the survey questions 

were inappropriate because we are ‘living in a modern world’, we suspected that the 

students in the pilot study were experiencing the tensions between a local culture and 

the constituted national context of gender. Simply put, we were asking the wrong 

questions if we wanted to study prospective teachers’ views about gender and 

mathematics education. Furthermore, the survey did not allow the participants to 

demonstrate knowledge of how gender can be viewed in various cultural contexts, 

both within and between different groups. Hence, to continue the work of adapting 

the survey, we needed to address various cross-cultural research criteria. 

WHAT IS MISSING? CULTURALLY AWARE CRITERIA  
The steps for adapting questionnaires presented by Andrews and Diego-Mantecón 

(2015) involve the following four principles taken from Osborn (2004): conceptual 

equivalence, measurement equivalence, linguistic equivalence and sampling. 

Measurement equivalence and sampling apply only to the measurement phase and 

therefore are not instrumental to addressing the cultural aspects of questionnaire 

development. Consequently, these principles will not be discussed further. Linguistic 

equivalence can be achieved through good translation practices (Andrews & Diego-

Mantecón, 2015), hence leaving us with the challenge of constructing conceptual 

equivalence. The goal of conceptual equivalence is to ‘provide conceptual definitions 

that have equivalent, though not necessarily identical meaning in various cultures’ 

(Osborn, 2004, p. 269). However, Osborn (2004) does not discuss what it means to 

be equivalent while not identical, or how researchers can achieve conceptual 

equivalence other than by using an inside/outside perspective as part of the 

development. A potential inference is that what is missing is a more nuanced 

understanding of what cultural awareness could constitute. Therefore, we turned to 

Clarke (2013), who uses seven dilemmas when discussing how international 

comparative research using questionnaires might be undertaken: (1) cultural-

specificity of cross-cultural codes; (2) inclusive vs distinctive; (3) evaluative criteria; 

(4) form vs function; (5) linguistic preclusion; (6) omission; and, (7) disconnection. 

These dilemmas might be used to develop the needed culturally aware criteria. In this 

discussion, we will focus on six of these dilemmas. Form vs function mainly 

concerns classroom or teaching activities that could be interpreted as having the same 

form but different functions. As our study does not focus on activities, this dilemma 

is less relevant than the others are. 

When creating questionnaires, something inevitably will be omitted. This is the sixth 

of Clarke’s (2013) dilemmas: when research is unable to capture everything that is or 
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needs to be observed. When we asked prospective teachers about their gendered 

views, their written comments suggested that we had indeed omitted changes in the 

construct that have taken place in society over time. Item 6 from the original study 

illustrates this dilemma. The item addressed the question of whether girls or boys are 

better at mathematics. To elicit more information about the students’ beliefs, this item 

was accompanied by a follow-up question: ‘Has this changed over time?’. Previous 

research has concluded that gender is indeed a construct that has been changed over 

time (Hedlin, 2013; Imsen et al., 2016). Student responses to this and other follow-up 

question indicated that some students acknowledged that changes have taken place 

and some found the very question(s) outdated. From the students’ comments, we 

concluded that not only did we need to formulate items differently, but also that 

follow-up questions needed to be added to several more questions in future versions 

of the questionnaire. This, for instance, could enable us to distinguish between groups 

who believe that gender differences have never existed and those who think that there 

has been development (c.f. Sumpter, 2016). Besides allowing us to distinguish 

between these subgroups, we might also be able to generate nuances in views with 

time as a factor.  

Clarke’s (2013) fifth dilemma, linguistic preclusion, is addressed somewhat by 

Osborn’s (2004) linguistic equivalence and also is closely linked to Clarke’s first two 

dilemmas, cultural-specificity of cross-cultural codes and inclusive vs distinctive. In 

Norwegian, ‘kjønn’ is used to illustrate gender, while in Sweden, separate concepts 

exist to distinguish gender and sex (genus and kön). In the questionnaire, all three 

terms are omitted, and ‘boys’ and ‘girls’ and ‘male’ and ‘female’ are used 

consistently to address Clarke’s evaluative criteria and the linguistic preclusion 

criteria. In Norwegian and Swedish, the chosen terms, ‘boys’ and ‘girls’, can hold all 

necessary meanings/interpretations. As stated above, this is related to the first of 

Clarke’s (2013) dilemmas, cultural-specificity of cross-cultural codes. When 

applying concepts across cultures, awareness of potentially different connotations is 

crucial. Our experiences with the first version of Item 6, asking whether girls or boys 

are better at mathematics, illustrates this: the question was relevant in previous cross-

cultural studies (Forgasz, Leder, & Tan, 2014; Gómez-Chacón, Leder, & Forgasz, 

2014), and possibly to some of the participants in our pilot, judging by the response 

patterns observed. Still, to others, this question represented an ambiguity that 

positioned them between the culture of the Nordic model and the observed gender 

patterns regarding school outcomes and recruitment into higher education, as 

theorised in the Introduction. This ambiguity applies to the second dilemma, 

inclusiveness vs distinctiveness, as well. Sacrificing distinctive (cultural) details 

results in questionnaire items that respondents regard as too open and/or too general. 

Hence, we suggest that providing a contextual frame could resolve this issue for our 

survey, since this frame could address the tension between the Nordic model and 

observed practices. Therefore, our solution is that instead of a series of independent, 

multiple-choice questions as used in Leder and Forgasz (2010), a series of items 



Nortvedt and Sumpter 

________________________________________________________________________________________________________________________

3-310    PME 41 – 2017 

linked to the same contextual frame could allow respondents a culturally acceptable 

interpretation span (see Figure 1). 

 

Figure 1. Item 1 of the revised questionnaire. 

In addition, different cultures value different concepts differently. This most likely 

also applies to various groups within each culture and, hence, in the present study, it 

could be addressed by reformulating the original item into the form in Figure 1. This 

reformulation enables us to address various interpretations of the topic addressed and 

at the same time allow students participating in the study to show by their responses 

their interpretations of the views of the groups listed. In addition, students could be 

given a follow-up question that might ask them to reflect on changes over time for 

one or more of the listed groups.  

Regarding the seventh and last dilemma, which is misrepresentation through 

disconnection, any survey targeting individuals’ beliefs or views will be disconnected 

from the context being asked about (c.f. Tuohilampi et al., 2015). Although not a 

perfect remedy, providing a short introduction that aims to provide a cultural context 

might address this dilemma to some extent.  

CONCLUDING REMARKS, INCLUDING IMPLICATIONS  
Our failure to reproduce research undertaken in other cultures brought the issue of 

cultural validity to the surface. Through our discussions, we have sought to elaborate 

on this issue from various perspectives. Many of the established good practices 

cannot alone provide the awareness necessary when conducting cross-cultural 

research, at least when we speak about phenomena that are socially constructed and 

culturally/context conditional, as is gender. To avoid accidentally playing ‘Chinese 
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whispers’, besides focusing on content and construct validity, we also need to 

consider a cultural validity in which culture encompasses more than just national 

borders (c.f. Andrews & Diego-Mantecón, 2015). We argue that within a national 

culture, several ‘cultures’ exist, and it is necessary to shape questionnaires in such a 

way that participants can interpret the construct in similar ways, as much as that is 

possible. Our solution is (1) to provide framing that explains the cultural setting in 

which the questions are posed to enable interaction with the items and (2) to offer 

multi-dimensional choices that allow flexibility in the responses. Another possible 

implication is that our solution for constructing questionnaires in cross-cultural 

research is applicable not only to beliefs about gender but also to other beliefs or 

other affect research focusing on individuals’ conceptions. We make this inference in 

reference to the conclusions of Tuohilampi et al. (2015), who argue that you must 

understand the construct in focus from the specific contexts and ‘that theoretical 

affective models should be considered with respect to a given culture’ (Tuohilampi et 

al., 2015, p. 1644). Based on our failed attempt, we could not agree less.  
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AN EXPLORATION INTO TEACHERS’ TAKE UP OF 
PROFESSIONAL DEVELOPMENT TEACHING RESOURCES 

Forster D Ntow and Jill Adler 

University of the Witwatersrand, SA 

 

There are indications of a complex relationship between opportunities to learn in PD 

contexts, teachers’ experiences of these, and what they ultimately do in their 

classrooms. Adler (2002) argues that take up from PD is personal and contextual and 

thus inevitably uneven across teachers who participate in the same programme. This 

paper contributes to our understanding of the uneven nature of teachers’ take up of 

PD teaching. In particular, our study of teachers’ take-up of PD teaching resources 

offered in a programme in South Africa, suggests that a key element of uneven take 

up is “control”, where control is evidently both personal and contextual, and 

important. 

INTRODUCTION 
Teacher learning, according to Adler (2002), involves a process of “take up” 

elaborating that “teachers take up aspects of the programme, and different teachers do 

this in different ways” (p.9). The implication of such conceptualization of teacher 

learning is that while all teachers who participate in PD are likely to learn something, 

they are likely to learn differently or enact what is learned differently depending on 

their personal preferences and contextual enablements and constraints (Adler, 2002; 

Gresalfi & Cobb, 2011). Furthermore, such a conceptualization allows for individual 

agency despite contextual issues that might hinder the implementation of what 

teachers learn in PD contexts. As such, instead of organizers of PD seeking to ‘fix’ 

participating teachers, the notion of teacher learning as take up enables us to explore 

what opportunities to learn are offered (Horn & Kane, 2015), how they interpret their 

learning, and why there are variations in their enactment of PD teaching resources. 

This move enables us to highlight teachers’ agency in relation to what they have 

learned (or not) “rather than trying to determine whether or not teachers have 

changed in directions intended” (Adler, 2002; p.9). Rather than viewing the lack of 

fidelity in teachers’ enactment of what they learn in PD contexts as evidence of 

failure, Adler (2002) argues that teachers’ learning and implementation of what they 

learn in PD contexts is a long-term journey with different things being learned at 

different points, a phenomenon confirmed in our current research. In a longitudinal 

video study (2012-2013) of a cohort of teachers who participated in a mathematics 

PD programme known as the Wits Mathematics Connect Secondary (WMCS) project 

in South Africa (SA), Adler & Ronda (in preparation) show that although there were 

general improvements in what they refer to as teachers’ mathematical discourse in 

instruction (MDI – elaborated further below) , the nature of improvement was uneven 
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despite the PD programme building on mathematics instructional practices that 

teachers were already engaged in on regular basis (McDonald, Kazemi, & Kavanagh, 

2013). This leads to a simple question, why?  

This paper contributes to our understanding of the uneven nature of teachers’ take up 

of PD resources from their participate in particular PD programmes, and as such 

responds to Sztajn, Borko, and Smith’s (2017) claim that “… a gap exists between 

what is known about PD and what teachers actually experience in PD programs” 

(p.1). We sought to investigate the question: what accounts for the uneven nature of 

participating teachers’ take up of WMCS teaching resources? Specifically, why are 

some opportunities to learn easily taken up while other aspects appear to be 

challenging? In doing so, we will build the argument that while motivation (Gresalfi 

& Cobb, 2011) and context (Adler, 2002) are crucial in understanding the variability 

in teachers’ take up of PD ideas and practices, another important element which 

mediates these two factors is the issue of control. 

BACKGROUND OF WMCS PROJECT  
Concern about quality of instruction and professional competencies of teachers 

teaching in schools serving the poor or marginalized students groups is not unique to 

SA  (cf. Meaney, Trinick, & Fairhall, 2013). There is concern worldwide to address 

this situation, as it is now well known that for such students, access to the specialized 

mathematics knowledge is through what and how they are taught, and so through 

their teachers (Adler & Venkat, 2014). Redressing this issue however, requires that 

teachers who teach in these schools are equipped to teach effectively. It is for this 

reason that our concern was to explore in-depth how a group of secondary school 

teachers who participated in the WMCS PD in 2016 took up the teaching resources 

offered them, and in ways that would enable us to explain the inevitable unevenness 

of their take up, and so inform PD practice.  

WMCS focuses on teachers teaching in schools in low-income communities where 

students’ performances lag behind their colleagues in more affluent schools (Heyd-

Metzuyanim & Graven, 2016). The WMCS project, in response to concerns about the 

insufficiency of content knowledge and quality of instruction of SA teachers, 

particularly in Grades 8 and 9 in the secondary school, offers a PD programme which 

is focused on deepening and /or revisiting participating teachers’ mathematical 

knowledge for teaching. The content of the PD is structured in such a way that 75% 

of contact hours is focused on content in the secondary school curriculum (mostly 

grades 9-11) with the remaining 25% devoted to the how of teaching. The rationale 

for this is that the opportunities for teachers to revisit and/or learn new content, 

depending on the grade individuals teach, will enable them to build on, deepen, and 

extend their “existing knowledge of the mathematics at hand” (Pournara, Hodgen, 

Adler, & Pillay, 2015, p.3).   

Another unique component of the WMCS project is the development of a 

mathematics teaching framework (MTF) which serves as a mediational and cultural 

tool. The MTF is an adaptation of the MDI framework which is research informed 

and offers opportunities for teachers to reflect on “…the complexity of teaching 
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mathematics…” in ways that are respectful of their everyday practices and also 

responsive to their contextual challenges (Adler & Ronda, 2015, p.238). The MTF 

has four interrelated components, namely; the object of learning, exemplification, 

explanatory communication and learner participation (see Adler & Ronda, ibid for 

extended discussion on the framework) that work together to create a potentially 

coherent and connected lesson. The MTF, therefore, mediates the how of teaching 

mathematics in WMCS, functioning as a tool to guide the work of teachers so that 

their students have access to specialized mathematics knowledge. 

PARTICIPANTS AND DATA COLLECTION 
Participants in WMCS were predominantly Grade 8 and 9 mathematics teachers 

teaching in one province in SA in 2016. All teachers (48) responded to an initial 

survey that elicited (amongst other questions) their motivation for joining WMCS. 

Two distinct projected identities emerged from the authors’ interpretations of 

individual teachers’ responses to the pre-survey: Type 1: A learner identity where 

teachers’ motivations centred on how to support their students’ learning. For Type 2, 

teachers’ motivations for joining WMCS connoted a perceived lack of content 

knowledge and expertise to teach effectively. Following the analyses of the pre-

survey five teachers teaching in grade 9 were selected using maximum variation 

sampling technique. This technique allowed for a selection of teachers representing a 

broad spectrum of characteristics such as their content knowledge and motivation for 

joining WMCS, and so from Types 1 and 2.  

Each of the five sampled teachers was then interviewed individually using a semi-

structured interview guide. The purpose of the interviews was to elicit from teachers 

their interpretations of WMCS ideas and practices. Additionally, in response to 

Sztajn et al.'s (2017) call to explore the personal experiences of teachers who take 

part in PDs, the sampled teachers responded to questions addressing WMCS 

resources (MTF) that they have found easiest or challenging to enact in their 

classrooms. While two consecutive lessons on grade 9 functions taught by each of the 

teachers was videotaped and analysed as part of the larger study, for this paper, we 

focus on the self-reported data (interviews). In doing so, and following our 

conceptualisation of take up outlined above, our intention is not to evaluate how well 

teachers interpreted (and enacted) the teaching resources offered but to gain insight 

into their take up - how they interpreted the resources offered and what they said was 

easier or challenging to enact in their classrooms. 

DATA ANALYSIS PROCEDURE 
The interview data was transcribed and then analysed both inductively (open coding) 

and deductively (as suggested by the interview guide), (Hatch, 2002). This involved a 

focus on the five teachers’ take up of WMCS ideas about mathematics (specifically 

opportunities to learn more about functions), and their interpretations of what it 

meant to teach (functions) effectively and aspects of the MTF that they found easiest 

or challenging to enact in their classrooms. Table 1 below illustrates our coding 

procedure. 
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Code Excerpt from interview # sources 

Opportunity to learn 

about teaching. Being 

a reflective teacher 

(before WMCS) I was just giving them – not 

mixing the questions. Maybe when I’m 

giving them the questions, if there are 

questions in the text book, I (will) say "Do 

number one to five". (Ms. V). 

4 

Opportunity to learn 

how to teach_being a 

reflective teacher 

I wanted to them to know that we have four 

different types of tools to represent just one 

thing. So I needed them to get that, that you 

can actually move from a flow chart or a flow 

diagram to finding a rule of that, to having a 

table, an equation. (Ms. B) 

4 

Aspects of MTF 

easiest to implement_ 

Exemplification 

To implement. I would say the 

exemplification because I can do that on my 

own, there's no one else but me - Like I'm in 

control of that. (Ms. P) 

4 

Aspects of MTF 

challenging to 

implement_ 

Explanatory 

communication 

I would say maybe again…explanatory 

communication…So usually what we say and 

how we explain it, sometimes I think the 

issue of language is also a bit of a problem. 

They are not all conversant with English. 

(Ms. E) 

3 

Table 1. Excerpts of codes and coding procedure of individual interviews 

FINDINGS 
All teachers, irrespective of whether their motivation for joining WMCS was content-

related or pedagogical, appreciated the opportunities to revisit or deepen their content 

knowledge (Pournara et al., 2015). Space limitations lead us, however, to focus our 

discussion here on findings related to: 1) Teachers’ interpretations of the 

opportunities to learn the how of teaching and 2) aspects of the MTF that teachers 

found either easiest or challenging to enact in the classroom. While all teachers found 

opportunities to learn the how of teaching (as structured and mediated by the MTF) 

valuable, we found that what was possible to enact easily or appeared challenging to 

them was a function of how much “work” the sampled teachers had to do.  

TEACHERS’ INTERPRETATIONS OF HOW TO TEACH 
Considering the widespread underperformance of students in their schools, the need 

for a change in practice serves as common thread in responses by teachers. This is 

exemplified in the following comment by Ms. E:  

… mainly being the level of performance that we are having at the school, it 

tells us maybe that we need some change anyway. We need to do some 

introspection and change maybe our way of teaching…. 
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Ms. M commented on her experiences of learning about how to teach - that “it 

changes one's life”. When asked to explain what she meant by this comment, she 

said: 

In the classroom you find like every day you want to give learners something. 

You find like you don't get frustrated to go to class. There's something new 

that you want to share with the learners because at least now things are easy.  

 

She expressed excitement about participating in the WMCS sessions indicating that 

she looked “forward [for] every day” wondering “what is it that [I'm] going to learn 

today…It's like wow; it's another day for something new.”  

 

The sense of liberation from what appeared to be drudgery was echoed by Ms. E: 

I think the programme helped me to think more about what I'm doing and 

saying in class; unlike just going there and saying: now I've done my job. What 

is it about the job that we have fulfilled, we have done? It makes me to think 

deeper about what you are doing, what questions you are asking, how are the 

learners doing? I'm now paying attention as to how they will be reacting to 

whatever that I've been doing. 

 

In summary, through participation in WMCS, teaching became something more than 

a chore to be performed by these teachers. All five sampled teachers were excited 

about the opportunities to learn made available to them (Horn & Kane, 2015) in 

WMCS.  

Yet, with regard MTF, and as we go on to discuss below, take-up was uneven across 

the elements of the framework. Of specific interest is what emerged from those that 

tried to be more inclusive of learners. Their expressed difficulties appeared to a 

function of the amount of “control” they had over a learned instructional practice.  

ASPECTS OF MTF THAT TEACHERS FOUND EASIEST OR 
CHALLENGING TO ENACT IN THEIR CLASSROOMS  

Through our analyses of their interview responses, the issue of unevenness reported 

by Adler & Ronda (forthcoming) is a matter of 1) how routine an instructional 

practice is to a particular teachers; e.g. Ms. V, talks about choosing examples (a 

component of the MTF related to exemplification) as “easier” to implement, “because 

you are always giving them examples” and 2) the amount of “control” that the 

teachers felt they had related to a particular practice.  

All sampled teachers were asked to indicate aspects of the MTF that they found 

easiest to implement. In choosing the lesson goal (in addition to two other 

components) as the easiest to implement, Ms. M commented:  

…normally they get so easy because ever since when I go to teach, I tell them 

that today we are going to learn about this. At the end of the lesson, you must 

do [this]". This one I can't go without because I'll not know what I will be 

teaching them, you know.  
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Ms. B therefore appeared to find this component easier to implement due to 

familiarity or a routine. This idea is further exemplified in a response by Ms. V who 

also stated that exemplification was “easier” for her: “because always you are always 

giving them examples”. The comments by the two participants highlight how relating 

PD to what teachers do on a daily basis (McDonald et al., 2013) and strengthening 

them rather than a wholesale repudiation of everything they do has promise in 

crossing PD boundaries into the classroom context.  However, all classroom 

interactions require some form of interaction and learner involvement and, enacting 

the components of the MTF related to learner participation and explanatory 

communication appeared challenging to most teachers.  

Ms. P, Ms. B, and Ms. E talked either implicitly or explicitly about issues of control 

relative to enactment of particular components of the MTF. The following comment 

by Ms. P typifies how the issue of control can lead to an uneven enactment of WMCS 

teaching resources, especially as teachers sought to teach in ways that were more 

participatory which was implicitly promoted in the PD. After commenting that 

exemplification is the easiest for her to enact “because [I] can do that on my own, 

there's no one else but me, like I'm in control of that”, she identified explanatory 

communication as quite challenging for her. She explained:  

Like sometimes what they say I may not understand or even like a language 

barrier. Sometimes if I want to say something, they don't understand the 

language I'm using but in my head it sounds beautiful. Like I know I'm 

explaining it beautifully but they don't get that so that for me is very difficult, 

to be honest.  

This excerpt highlights how classroom context leads to challenges in Ms. P’s 

enactment of what she learned because of cultural disconnect (teaching in a 

multicultural classroom). She contrasts her lack of control when it comes to 

explanatory communication with exemplification which is easiest for her to enact: “... 

exemplification because I can do that on my own, there's no one else but me - Like 

I'm in control of that”. Ms. B also addresses the issue of her lack of “control” during 

the instructional process: “…What they say is important because that informs you on 

[sic] what they understand. So if they can't say anything, then it's a problem…..”  

Her comment indicates that not all instructional practices are wholly dependent on 

the teacher. This is more profound in the SA contexts where there is a pervasive 

classroom culture of students verbalizing little beyond chorused responses (Heyd-

Metzuyanim & Graven, 2016).  

In contrast, Ms. B introduces another element of control indicating that:  

Before we start with the lesson we've got games or whatever, the quizzes, you 

know, just to get our mind going…If we can have that in schools where you 

start with a little game, it would be nice but it's not because they (subject 

advisors) are looking at when you are finishing the ATP. 
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She raises issues of accountability (contractual obligations), (Gresalfi & Cobb, 2011) 

and introducing new practices. As a teacher who is being monitored in terms of 

coverage, Ms. B did not perceive herself to have control over what to teach which 

influenced her take up of WMCS teaching resources. 

In summary, the more control teachers reported having (e.g. Ms. P and Ms. B) the 

easier it was for them to enact the MTF component. In contrast, the less control 

teachers perceived to have the more challenging they found that component to be 

(e.g. learner participation as challenging because of unpredictability of students and a 

SA culture of silence on the part of students and explanatory communication – 

multilingual classrooms). 

CONCLUSION 
In this paper we have attempted to show that what was possible to take up (enact 

easily or not) was dependent on what the sampled teachers felt they had control over, 

both personally and contextually. While they all expressed having agency to act in 

new ways, the amount of control they perceived themselves to have served as a 

mediator between what they learned and what they were actually able to do in their 

classrooms. We thus suggest that take up of PD teaching resources is related to 

teachers’ feeling in control of what to do, how to do it, in short, being able to manage 

the teaching-learning process. Where teachers have control (e.g. of selection and 

sequencing of examples) they perceived this as easier to enact. In contrast, they were 

challenged when they perceived themselves having little control (e.g. over 

communication cultures or accountability processes). We offer this perspective on 

teachers’ “work”, and deliberately adopt the word “control” as explicitly used by one 

of the teachers. Learning to interrupt dominant cultures, and challenging 

accountability processes is not trivial. We suggest that recognition of teachers’ 

managing (being in control of) their practice is important for all PD. We do this in 

full awareness of the negative associations of ‘control’ positing that more work is 

needed to understand how concerns with control mediate teachers’ practice.  

 
Acknowledgement 
This work is based on the research supported by the South African Chairs Initiative 

of the Department of Science and Technology, and National Research Foundation of 

SA(grant no. 71218). Any opinion, finding and conclusion or recommendation 

expressed in this material is that of the authors and the NRFoundation does not accept 

any liability in this regard.  
References 
Adler, J. (2002) Global and local challenges of teacher development. In Adler, J. & Reed, Y 

(Eds.) Challenges of teacher development: An investigation of take-up in South Africa. 

Van Schaik: Pretoria. Chapter 1, pp. 1-16 

Adler, J., & Ronda, E. (2015). A framework for describing mathematics discourse in 

instruction and interpreting differences in teaching. African Journal of Research in 

Mathematics, Science and Technology Education, 1–18.  



Ntow and Adler 

________________________________________________________________________________________________________________________

3-320    PME 41 – 2017 

Adler, J., & Venkat, H. (2014). Teachers ’ mathematical discourse in instruction: Focus on 

examples and explanations. in XXXXX, 132–146. 

Gresalfi, M. S., & Cobb, P. (2011). Negotiating identities for mathematics teaching in the 

context of professional development. Journal for Research in Mathematics Education, 

42(3), 270–304. 

Hatch, J. A. (2002). Doing qualitative research in educational settings. Albany, New York: 

State University of New York Press. 

Heyd-Metzuyanim, E., & Graven, M. (2016). Between people-pleasing and mathematizing: 

South African learners’ struggle for numeracy. Educational Studies in Mathematics, 

91(3), 349-373. 

Horn, I. S., & Kane, B. D. (2015). Opportunities for professional learning in mathematics 

teacher workgroup conversations: Relationships to instructional expertise. Journal of the 

Learning Sciences, 24, 373-418.  

McDonald, M., Kazemi, E., & Kavanagh, S. S. (2013). Core practices and pedagogies of 

teacher education: A call for a common language and collective activity. Journal of 

Teacher Education, 64(5), 378–386.  

Meaney, T., Trinick, T., & Fairhall, U. (2013). One size does not fit all: Achieving equity in 

Māori mathematics classrooms. Journal for Research in Mathematics Education, 44(1), 

235–263.  

Pournara, C., Hodgen, J., Adler, J., & Pillay, V. (2015). Can improving teachers’ knowledge 

of mathematics lead to gains in learners’ attainment in Mathematics ? South African 

Journal of Education, 35(3), 1–10.  

Paola Sztajn, Hilda Borko, Thomas Smith (2017). Research on mathematics professional 

development. In Cai, J. First compendium for research in mathematics education.  

Reston, VA: National Council of Teachers of Mathematics. 



 

_______________________________________________________________________________________________________________________

3-321 
2017. In Kaur, B., Ho, W.K., Toh, T.L., & Choy, B.H. (Eds.). Proceedings of the 41

st
 Conference of the International 

Group for the Psychology of Mathematics Education, Vol. 3, pp. 321-328. Singapore: PME. 

DIMINISHING EPISTEMIC AUTHORITY: A LEVER FOR 
MATHEMATICS TEACHERS’ PROFESSIONAL DEVELOPMENT 

Liora Nutov 

Gordon Academic College of Education, Technion, Israel Institute of Technology 
 

Professional development is a process that contributes to the improvement of both the 

individual teacher, and the educational system as a whole. This paper describes 

professional development of 17 primary school mathematics teachers that 

collaborated with their students in an inquiry of an unfamiliar mathematical topic. 

The results indicated that a teacher, who is carrying out a teacher-students 

collaborative inquiry on an unfamiliar mathematical topic, might diminish his 

epistemic authority and subsequently leverage his professional development and 

change his relationships with the students.  

INTRODUCTION 
Teachers’ beliefs, attitudes and philosophy are closely linked to their practices and 

teaching approaches. For that reason, an acquaintance with teachers’ worldview is 

necessary for designing frameworks aimed at supporting their professional 

development [abbr. PD], which in turn might enhance educational processes (OECD, 

2009). Current approaches to teaching, suggest that teachers should no longer be the 

exclusive source of knowledge of their students, but rather be initiators and 

facilitators of learning situations in which they themselves take an active part 

(Swann, 2012). 

In contradiction to this approach mathematics teachers perceive themselves as a 

primer source of knowledge for their students more than teachers of other subjects 

such as biology, history or literature do (Raviv, Bar-Tal, Raviv, Biran, & Sela, 2003). 

A previous study that served as basis for this research has shown that among other 

things, mathematics’ teachers recognized epistemic authority as central to their role 

perception (Nutov & Shriki, 2016). Following these results, the current research aims 

to examine in-depth the perceived role of mathematics’ teachers of their epistemic 

authority and its place in PD process.  

LITERATURE REVIEW 
The search for appropriate ways of preparing students for life in the 21st century has 

led many educators to position the inquiry approach to teaching and learning as a top 

priority to ensure understanding while gaining knowledge. This teaching and learning 

approach is acquiring more and more followers in the mathematical educational 

community. The inquiry learning approach encourages learners to be involved in a 

learning environment that allows them to gather information, explain it, and answer 

open-ended questions while making use of collected evidence (Bell, Urhahne, 
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Schanze & Ploetzner, 2010). Usually when teachers or students are engaged in 

mathematical inquiry, they are well aware of the fact that the phenomenon or the 

features, which they found, are not real “findings”, and the world of mathematics 

already knows them well (Shriki, 2010). Nevertheless, the teachers’ role in the 

inquiry process is challenging, and includes choosing the subject of the inquiry, 

teaching the students the skills needed to carry it out and guiding them through the 

process. The teachers’ role becomes even more complex when the mathematical topic 

of the inquiry is unfamiliar to the teachers. This might undermine teachers’ epistemic 

authority that is a source of determinative influence on the formation of individuals’ 

knowledge (Raviv, Bar-Tal, Raviv, Biran, & Sela, 2003).  

Raviv et al. (2003) examined perceptions of teachers and 7th and 10th graders, 

regarding the teachers’ epistemic authority. It turned out that teachers were inclined 

to perceive themselves as being more of an epistemic authority than their students 

considered them and that teachers believed that students perceived them as being 

more of an epistemic authority than the students actually did. These gaps were 

prominent mainly in the case of mathematics teachers who participated in the study 

(compared to history, biology and literature teachers). Among others, the researchers 

attributed this gaps to the higher self-efficacy and self-perception expressed by the 

mathematics teachers and to their perception of mathematics:  

Teachers of mathematics perceived themselves to be more of an epistemic 

authority to their students in the disciplinary knowledge domain than teachers 

of other subject matters. This indicates that mathematics teachers perceive 

their discipline differently than do other teachers and, because of the status of 

their discipline as an exact science, they perceive themselves to be 

knowledgeable experts (p. 37). 

Based on the belief that teachers’ personal experience in authentic mathematical 

inquiry can gain deep personal insights, reduce apprehension and promote similar 

experiences in the classroom, we designed a PD process in which teachers executed a 

collaborative inquiry with their students on an unfamiliar mathematical topic – fractal 

geometry. The research results, among others, indicated that teachers are stressed if 

their epistemic authority diminishes (Nutov & Shriki, 2016). Thus, the current 

research aimed to examine in-depth the role that mathematics’ teachers attribute to 

their epistemic authority and its place in PD process. 

RESEARCH METHOD 
Since we were unable to find a theory that deals with processes related to 

collaboration of teachers and students in the inquiry of fractal geometry, the study 

was exploratory and used grounded theory qualitative research methodology. This 

methodology is suitable in order to examine phenomena and processes as reflected in 

the eyes of the participants, with the aim to construct an initial grounded theory 

(Strauss & Corbin, 1998). 
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The study was carried out in the framework of a two M.Ed. courses that was intended 

for mathematics teachers. Since action research is considered a major tool for 

empowering teachers, the goal of the course was to support mathematics teachers’ 

professional growth through this method (Mcniff & Whitehead, 2016). During their 

experience, the teachers were instructed to reflect on their beliefs and roles, as 

changes in these beleifs may serve as an indicator of professional growth (Korthagen, 

2004). As part of their action research, the participants explorerd the collaborative 

inquiery of fractal geometry that was conducted together with their students. 

Moreover, the teachers exprienced an unfamiliar pedagogical approach and a 

mathematical topic they were unacquainted with (Nutov & Shriki, 2016).    

Both courses were composed of primary school mathematics teachers (12 and 5 

participants, respectively). On average, the teachers had 11.5 years of teaching 

experience (SD=4.7). 

To strengthen the credibility of the findings we used a triangulation of data (Lincoln 

& Guba, 1985), and employed four research tools: (1) A preliminary questionnaire 

aimed at identifying the participants’ initial perceptions regarding their role as 

mathematics teachers and their mathematical knowledge of school curriculum topics; 

(2) Transcripts of recorded class discussions that were held during the course 

sessions; (3) Teachers’ journals entries, in which they described reflectively and 

criticaly their various experiences; (4) Teachers’ seminar paper that described the 

action research they carried out in their classes.  

To identify the main categories and sub-categories, the findings were analysed 

through a process of open and axial coding (Corbin & Strauss &, 2008).  

RESULTS  
The grounded theory, which was constructed in the research, suggested that, teachers 

who are carrying out a teacher-students collaborative inquiry on an unfamiliar 

mathematical topic, may reduce their epistemic authority and consequently leverage 

their PD and change their relationships with the students.  

Due to space limitations, only partial results are presented here in order to portray a 

general change that the participants had undergone and summarize it as a 3-phase 

model (see Figure 1). The excerpts below are taken from the teachers’ reflective 

journals and the seminar papers. 
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Figure 1: 3-phase model 

Clarifying existing perceptions and diminishing epistemic authority: The 

importance that teachers attributed to their epistemic authority was encapsulated in 

statements such as: "Know it all" or "to have 100% knowledge of the subject". 

Namely, the teachers believed that they must thoroughly know the subject that they 

teach and that they must be able to answer immediately any questions the students 

ask: "I used to believe that I posses all the knowledge I need and I'm not used to 

discovering that there are things that I don’t know and that there are questions I 

can’t answer". This perception was rooted so deeply in the teachers’ hearts, that the 

proposal to do inquiry with students on an unfamiliar mathematical topic provoked 

feelings of fear, frustration, discomfort and resistance: 

The most difficult stage was the proposition "to take a problem that you do 

not know what the answer is, and find it together with the students". At this 

point, I felt that maybe I was in the wrong place. How can I teach the 

students, when I don’t have a 100% of knowledge of the subject? 

The teachers feared that diminishing their epistemic authority will prevent them from 

supporting the needs of their students and as a result, their students will be 

intimidated by mathematics:  

I was worried that my lack of knowledge will lead my students to lose 

confidence because they will feel that they lack the professional guidance for 

dealing with the issue... and because of this frustration, students will feel 

more threatened by mathematics.  

An additional threat to teachers’ epistemic authority came from an unexpected place 

– the teachers’ mathematical knowledge. The questions that addressed mathematical 

concepts in the pre-questionnaire revealed a gap between the knowledge the teachers 

thought that they possess and their real knowledge:  

It all started from the questionnaire the professor gave us. The questions 

dealt with geometry and made me think about the answers for quite some 



Nutov 

________________________________________________________________________________________________________________________ 

PME 41 – 2017   3-325 

time. It made me realize that there are some definitions that I do not know 

perfectly. I felt stressed.  

The stress that teachers reported had multiple sources: The discovered gap between 

the knowledge that they thought they have and their actual knowledge, the 

collaborative inquiry with the students on an unfamiliar to them topic, the fear of 

harming the students, and damaging their professional image in their own eyes and in 

the eyes of the students. This stress also demonstrates the importance that teachers 

attribute to their epistemic authority and the fear of diminishing it. However, the 

threats on teachers’ epistemic authority promoted their PD at least in two ways: They 

became more aware of their students learning experiences and they learned 

mathematical topic, fractal geometry, in a new way – inquiry: 

It made me think about how students who are exposed to new concepts every 

day and even few times a day deal with this explosion of new ideas. What is 

the difference between the strongest students and the students who struggle 

with mathematics: How do they cope with new and completely different 

topics? Even though I consider myself as a sensitive person, this experience 

refined my sensitivity of the learning experiences of my students. 

It was the first time I realized I can explore mathematical phenomena by 

myself… it strengthened my self-efficacy and my confidence as a teacher of 

mathematics.   

Doing the inquiry: During the collaborative inquiry on fractal geometry, the 

teachers’ epistemic authority was diminished and it set a stage for a creation of a new 

balance of power in the classroom. On the one hand, when the teachers were more 

"vulnerable" it allowed them to be more attentive to their students. On the other hand, 

the students were empowered and this new status encouraged them to express their 

opinions on various topics and discover abilities that they did not present in the 

regular learning setting. In this new setting, the students supported their teachers to 

go through the collaborative inquiry and experienced independent learning:  

When I told the students that we will learn together a new topic, they 

immediately said that they have no problem with that, even if I don’t have all 

the answers to all the questions. It was very reassuring for me, especially 

when Noam said: I have a smart teacher, even if she doesn’t know all the 

answers to all the questions.  

During the inquiry, students discovered things about themselves, learned 

about their abilities, and competences as learners. At the end of the process, I 

heard them saying: "I can do much more than I thought I can"; "I can reach 

the sky"; "I am clever ". The focus was on the students, they came up with 

ideas, tried them and suggested generalization. I just guided them. When the 

spotlight was on them, not me, they could perceive themselves as autonomous 

learners. 
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Actually, students’ feedback has become a tool for teachers’ PD. Teachers’ 

professional image improved in their own eyes and in the eyes of their students, they 

have adapted professional flexibility and strengthened their faith in the abilities of 

students: 

Immediately, at the first lesson, I was not at the centre and I did not knew all 

the answers to all the questions. However, I felt that my professional image in 

the eyes of the students has improved. They cooperated with me, trusted my 

leadership, and I felt that they were satisfied and more engaged in learning.  

Changing and developing perceptions: The reflections written by the teachers 

about the collaborative inquiry with their students indicated that action research 

deepened insights about the processes associated with it, and in particular focused 

their attention on the change of the perception about their role as mathematics 

teachers: From teaching to guiding the learning process. This change is reflected in at 

least four respects: (1) From the teacher who “knows it all” to "the teacher does not 

have to know the answer for every question”; (2) from “teacher-centred learning” to 

"students as equal partners in the learning process"; (3) from “the students learn from 

the teacher" to “students’ feedback as professional development tool for teachers"; 

(4) students have more capabilities than initially believed by the teachers.  

All components of the action research created the conditions for these changes, made 

it most possible for teachers to examine them and to recognize the importance of 

carrying out an action research:  

The teacher and students learn a new subject together. The teacher does not 

know all the answers to all the questions, so he is looks for answers to 

questions together with the students. The teacher changes his role and his 

place in the classroom, from speaker to listener, from information presenter 

to a partner in knowledge gaining, from the centre of the attention to a 

member of a group.   

The action research enabled the teachers to examine thoroughly their didactical 

approaches, and to find a gap between their beliefs and their actions:  

I have to learn to release control, lecturing less, and more student guidance. I 

have to teach them how to construct new knowledge, based on their existing 

knowledge, to help them to take responsibility for their own learning, to 

encourage them share ideas, to have discussions, and to understand the 

meaning of a learning community.  

This approach, creating knowledge rather than distributing it, may on the one hand 

diminish teachers’ epistemic authority (Amit & Fried, 2005; Raviv et al., 2003). 

However, on the other hand, it sets stage for students to express their mathematical 

ideas more freely and for the teachers to realize their students’ capabilities. Both the 

teachers and the students become engaged in a significant teaching-learning process. 
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I realized that when I teach topics I know well, I don’t really listen to what 

students have to say, and I often push them towards the answer I want them to 

give me. 

Only from this place of knowing almost nothing about the topic I was 

teaching, I was able to listen to my students, learn about the way they think, 

and admire them for being so smart. 

DISCUSSION AND CONCLUSIONS 
Teaching mathematics is a complex task that requires expertise from the teacher in 

content knowledge and in various pedagogical approaches, as well as to be in a 

perpetual search for the optimal conditions for student learning. The analysis of the 

research data indicated that the mathematics teachers have real difficulty to diminish 

their epistemic authority, but if they are willing to do so, there may be a change in the 

balance of power in the classroom, which brings to teachers and students proximity. 

Due to this change, it seems that teachers developed professionally in terms of their 

role perception (from a teacher to a guide of the learning process), personal 

characteristics (giving up the need to be at the centre of attention, being part of a 

group), and their relationships with students.  

As mentioned above, due to changes in the balance of power in the classroom, the 

students had more space to express their mathematical ideas, and as a result, the 

students developed as mathematics learners. They could propose their help to the 

teachers when they did not understand and they even gave their teachers meaningful 

feedback for their PD.  

The change in teachers’ perceptions which is based on the learning experience they 

had (Brown & McNamara, 2011), adheres to the requirements from students and 

teachers in the 21st century. In other words, the teachers and the students experience 

can be summarized as learning with the experts, rather learning from experts, as 

Stefan Heppell, one of the leading scholars in education predicted. Therefore, if we 

want to change the teaching of mathematics in schools, and adapt it to the needs of 

learners in the 21st century, we need teachers to have more learning experiences 

similar to those they would design for their students.     
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THE SPREAD OF MATHEMATICAL IDEAS IN 
ARGUMENTATIVE CLASSROOM DISCUSSIONS:  

OVERT AND COVERT PARTICIPATION 
 

Ofra Ofri and Michal Tabach 

Tel Aviv University, Israel 

 

Argumentative discussion in the classroom is beneficial for learning mathematics. 

The goal of the current study is to characterize the spread of mathematical 

knowledge about the subject of quadratic functions in a whole class discussion 

among ninth graders. To accomplish this goal, we used the Documenting Collective 

Activities (DCA) methodology. The data collection method was unique. We recorded 

the activities of pairs of students while at the same time recording the whole class 

discussion. We found that knowledge was spread in two parallel layers: Students 

participated in an overt layer, spreading ideas in the public discussion. At the same 

time, they also spread ideas privately with their peers in a covert layer. Moreover, 

incorrect mathematical ideas were spread via the same mechanism.  

INTRODUCTION 
Mathematical ideas are learned and understood in an argumentative environment as a 

result of collaboration between teacher and students. Hence, the following question 

arises: How do mathematical ideas spread in the classroom as part of teacher-student 

collaboration (Saxe et al., 2009)? This paper is part of a broader study that monitored 

students in a ninth grade mathematics classroom as they studied quadratic functions 

during 20 lessons in a variety of learning environments: in a whole class discussion 

(WCD), in pairs, and in pairs in a computerized environment. The self-explanatory 

term WCD refers to everything the teacher and the students openly express during the 

plenary discussion. The goal of the study is to characterize the spread of 

mathematical knowledge about quadratic functions during a whole class discussion. 

THEORETICAL FRAMEWORK 
Mathematical Knowledge Spread in the Classroom  

The process of knowledge construction has been studied based upon different 

theories (Cobb et al., 2001; Rasmussen & Stephan, 2008; Saxe et al., 2009; Tabach, 

Hershkowitz, Rasmussen, & Dreyfus, 2014(. Researchers have raised questions 

regarding how knowledge is constructed in the classroom community, how it is 

shifted between individual students and the collective, and vice versa. 

Cobb et al. (2001) describe a methodology for analyzing the collective learning of a 

classroom community based on the development of sociomathematical norms relative 

to two perspectives. The first, the social perspective, emphasizes the normative ways 
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of reasoning that are taken-as-shared in the classroom community. The second, the 

psychological perspective, emphasizes the diverse ways in which students participate 

in the classroom community during these activities. Saxe et al. (2009) proposed 

another theoretical and methodological approach that involves analyzing shifts of 

constructed knowledge in the classroom through the interaction between a student's 

individual activity and the collective activities. Saxe referred to this as the dynamic 

travel of ideas between the student and the whole class community. 

Documenting Collective Activity framework 

Rasmussen and Stephan (2008) developed a methodological approach to document 

collective activity (DCA) that focuses on how mathematical ideas or ways of 

reasoning become normative in the whole class discussion. The term become 

normative indicates the existence of empirical evidence that an idea or a way of 

reasoning functions-as-if-shared. The term as-if-shared is used rather than shared to 

denote variation in the ways by which different individuals perceive mathematical 

ideas. DCA methodology uses Toulmin's model of argumentation (1969) as an 

empirical tool.  

According to DCA methodology, the following three criteria are used to determine 

when an idea or a way of reasoning, such as an algorithm or a mathematical 

argument, functions-as-if-shared: (1) when the backing and/or warrants for a 

particular claim are initially present but then drop off; (2) when any part of an 

argument (data, warrant, claim, or backing) shifts position within subsequent 

arguments; and (3) when a particular idea is repeatedly used either as data or as 

warrant for different claims across multiple days (Cole et al., 2012). The DCA 

methodology can be implemented only for an argumentative class discussion in 

which students make claims, provide data to support their claims, and if needed 

provide warrants to support the linkage between data and claim. In case of rebuttals, 

students can add backing to support their warrants or to add qualifiers to a claim.  

Tabach et al. (2014) examined knowledge shifts in the classroom and suggested 

several definitions: (a) A knowledge agent is the first member of the classroom 

community who, according to the researchers' observations, expresses a new idea that 

was not previously expressed and that at least one additional member adopts. (b) A 

follower is a member of the classroom community who appropriates the knowledge 

agent's idea by repeating it, elaborating on it or objecting to it (Hershkowitz, Tabach 

& Dreyfus, 2016). (c) Knowledge shift is the way by which ideas spread in the 

mathematical classroom. A shift of mathematical ideas can take place between the 

knowledge agent and his followers, within the whole class, within a group, between 

groups or from a group to the whole class (uploading), or from the whole class to one 

or more groups (downloading). In this paper, we seek to answer the following 

question: What characterizes the spread of mathematical ideas within an 

argumentative discussion that takes place in a whole class setting? 
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METHODOLOGY 
Participants and tools  
The study monitored one class of 30 ninth-grade students studying in a high-level 

mathematics track. The researchers observed an entire 20-lesson learning unit on 

quadratic functions and documented it in various ways: through video recordings of 

the WCDs; by recording the work of two pairs during group work; through 

simultaneous recordings of the voices and handwriting of two pairs of students (who 

used Livescribe pens) while they worked as a group and participated in the WCDs.  

Data analysis 
In this study, we analyzed the first nine lessons in the sequence. As we had several 

simultaneously recorded data sources, we first transcribed the WCD and numbered 

all the utterances in a table beginning with one. Next, we transcribed each of the pairs 

and numbered the utterances in separate lists, each starting from one. Finally, we 

synchronized the three lists by merging the utterances of each of the students in the 

two pairs into additional columns in the WCD utterances table while keeping track of 

their timing. We were able to synchronize the pairs' utterances with those of the 

WCD because their microphones also picked up the WCD.  

We analyzed the argumentative discussions in the WCDs based on the three criteria 

of the DCA methodology. The analysis yielded a list of the arguments raised in the 

WCDs (argumentation log). Each claim was analyzed at the micro level and the 

arguments were then mapped to show the macro level relationships among them. We 

analyzed the students' roles in the spread of mathematical knowledge in the WCDs 

both as knowledge agents and as followers (Hershkowitz, Tabach & Dreyfus, 2016). 

We then used the data from the pairs to expand our DCA analysis, paying particular 

attention to the students' participation in the WCDs as knowledge agents and as 

followers. 

FINDINGS 
In this section, we report two main findings from three successive arguments from 

the second lesson. The first example in argument 2.4 describes the spread of 

mathematical ideas between private participation and the WCD. The second example, 

arguments 2.5 and 2.6, illustrates the spread of mathematical ideas in the WCD. 

Spread of mathematical ideas between private participation and the WCD  
While analyzing the spread of mathematical ideas in the WCD, we uncovered 

"private" processes that take place in parallel to the WCDs and learned the roles of 

the participants in these parallel private channels. We found that the "private" 

activities were actually part of the argumentative discussion of the students who 

participated in them, although they were covert for most of the community. The 

excerpt from the WCD in Figure 1 documents the utterances made as part of the 

WCD during argument 2.4 (gray background, numbered 3xx) and those made in 
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private by the two pairs (white background, numbered 1xx). The two pairs sat close 

to each other during the WCD. 

 

Figure 1: Argument 2.4, students characterizing an extremum point of y=x
2
-5 

As Figure 1 shows, Barak [117] privately agrees with Gadi's claim in the WCD 

([368], [116]) and disagrees with the students' objections [370] claiming that Gadi is 

wrong. The teacher [371] encourages the students to explain and support their claim. 

Barak is still convinced that the students are wrong, but expresses this privately 

[118]. In utterance [101], Roni overhears Barak and responds to him in private that 

Gadi's claim is wrong. Then Tamir [372] openly responds to Gadi in the WCD, 

offering another claim and a backing. Nathanel [373] supports Tamir's claim and 

backing, after which Barak [374] changes his mind and openly adds his affirmation in 

the WCD. Barak, who initially agreed with Gadi, has "downloaded" ideas from the 

WCD into a private discussion, and after reaching a conclusion, "uploaded" it to the 

WCD. 
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Spread of mathematical ideas in WCD  
The analysis of the WCD regarding the next two arguments, uncovered additional 

characteristics about how mathematical knowledge spreads in the classroom. 

We first present part of the discussion in argument 2.5 regarding the domain in which 

the function is positive. In the following excerpt from the relevant DCA analysis, we 

shade parts of students' remarks and mark them according to Toulmin's model (1969) 

as data [D], claim [C], warrant [W], backing [B], rebuttal [R] or qualifier [Q].  

The initial data for this argument is the same function (y=x
2
-5) and its graphic 

representation, as displayed in argument 2.4.  

414 Teacher: … a function is positive, means that the Y is positive. Now I ask. 

Look at this graph. For which values of X is Y positive? 

415 Yoram: X is smaller than -2 and x is bigger than 2 [C2.5] 

The teacher asks Yoram to repeat his answer. He does. Then she asks the students to 

refer to it. 

421 Yoel: Yes, because it is not -2 [R2.5], [C] 

422 Teacher: What then? 

423 Yoel: Because it has to go from the moment it is equal, this is x. The 

function will be positive once x is smaller than minus root 5 or 

bigger than root 5 [R2.5], [D] 

The discussion continues. The teacher marked the 

point (2,-1) to demonstrate that it is not at the limit 

of the requested domain. Then she marked the X 

values ( 5 , 5 ) at the points where the graph 

intersected with the X-axis (Figure 2). To conclude 

this part of the discussion, the teacher wrote the 

correct definition of the requested domain on the 

whiteboard: 5x  or 5x . 

 

Figure 2: Graph for end of 

argument 2.5 

Note that Yoram made an erroneous claim [415], which was rebutted by Yoel [421], 

who gave the correct answer [423], data. This section of the WCD ends when the 

teacher writes the correct domain for X on the whiteboard. 

The discussion then continued to argument 2.6 regarding the domain for which the 

function is negative. The initial data for this argument is the same function (y=x
2
-5) 

and its graphic representation as displayed for argument 2.5. 

530 Teacher: … when is the function negative? Let's first look at the graph. 

Where is the function negative? For what domain of X is Y 

negative? 
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531 Shiran: When x is smaller than 2 and bigger than -2 [C2.6] 

The teacher asks Shiran to mark the part of the graph for which Y<0. Shiran marks 

this correctly on the whiteboard by coloring the graph line where the function is 

negative in green. Then the teacher discusses it with the students.  

566 Teacher: So now you tell me, what can you say about the X values in the 

green area here (pointing with her hand) 

567 Mati: They are bigger than -2 and smaller than 2 [C2.6] 

568 Teacher: Does anyone want to comment on what Mati said? He said that they 

are bigger than -2 and smaller than 2. 

569 Gadi: … he is right (referring to Mati) [B2.6] 

570 Teacher: Is he right? Why is he right? 

571 Eran: Are you sure? (Mocks Gadi’s answer)  

572 Roni: It’s not correct [R2.6] 

573 Yoel: He is correct, but it’s only one specific part [Q2.6], [C] 

574 Teacher: Yoram whispered something to me. Yoram, what did you say? 

575 Yoram: – wrong” (he was not heard well) [R2.6] 

576 Teacher: He said he repeated the mistake (referring to Yoram [575]) 

577 Yoel: Teacher, can we be more precise? Teacher! 

578 Teacher: Who said he wanted to be more precise? Precision of what? 

579 Yoel: The domain he gave is correct but it is not the entire range [Q2.6], 

[C] 

580 Teacher: OK. What do you mean? 

581 Yoel: It is true that if it is smaller than 2 it will be negative, but there are 

more numbers between 2 and Root 5 [Q2.6], [D] 

In argument 2.6, we can see that Shiran [531] and Mati [567], with backing from 

Gadi [569], used the incorrect claim made by Yoram [415] in argument 2.5 as data, in 

spite of the correct data presented at the end of the discussion on argument 2.5. Here 

we see a position shift, from an incorrect claim made in argument 2.5 to data used in 

argument 2.6. According to the second DCA criterion, the incorrect claim functioned 

as-if-shared. This also represents a shift in knowledge regarding the X values (-2, 2), 

from Yoram as agent to Shiran, Mati and Gadi as his followers. In this argument, 

Yoram [575] rebutted by reverting to the X values, contrary to his claim in argument 

2.5. Yoel [579] qualified this and then specified it [581] with the data.  

DISCUSSION 
At the outset of this paper, we asked: What characterizes the spread of mathematical 

ideas within an argumentative discussion that takes place in a whole class setting? 
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Our findings reveal two possible characteristics regarding the spread of mathematical 

ideas, adding to the existing literature in mathematics education.  

The first characteristic is that in an argumentative classroom discussion, 

mathematical ideas spread in two layers simultaneously. Analysis of the students' 

utterances and their timing revealed that the learning processes occurred in two 

layers: an overt layer constituting the public discussion led by the teacher, and a 

covert layer in which the students' private discussions occurred in parallel. Figure 3 

illustrates this idea. 

 

Figure 3: Overt and covert layers in the WCD and their interrelations 

Our data collection method is unique in that it included recording of private activities 

in parallel to the public activities taking place during the WCD. We identified 

knowledge agents and followers that are overt or covert. Both helped generate 

arguments and thus contributed to the learning progression. Therefore, we can say 

that the WCDs provide a different learning experience for each student that includes 

the overt WCDs as well as the covert discussions and activities in the student's 

immediate surroundings.  

Many studies have analyzed the teacher-student interaction in WCDs as a single 

setting in the classroom and have focused on its public aspect. A few studies (Koole, 

2007; Rob & Jenefer, 2013), especially in the field of language teaching, have 

focused on students’ private discussions and activities that take place parallel to the 

WCD and in which the teacher does not take part. These studies mainly investigated 

the behavioral, social and emotional aspects of these parallel activities and not so 

much the cognitive aspects. The importance of the current study is that it shows that 

mathematical arguments do not develop exclusively in the public layer of the WCDs, 

but rather in both the public and the private layers. 

The private discussions are beneficial to the class and sometimes even critical for 

learning. It is important to note that the class does not have only one teacher-student 

interaction. Rather, several private interactions occur in parallel to the main 

interaction led by the teacher. One example of a parallel activity is that of a student 

who does not feel comfortable speaking in the WCD but rather prefers to clarify a 

matter related to the WCD with a friend (Koole, 2007). Understanding the processes 

taking place in parallel to the WCDs can help improve the practices of the classroom 

teacher. 
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We also found evidence that mathematical knowledge that functions-as-if-shared in 

the WCD can be incorrect. This means that an erroneous argument can spread in 

class via the same mechanism as a correct one.  

On a theoretical level, this study expands the concepts involved in the spread of 

mathematical knowledge and offers a more detailed description of the participants in 

the WCD. On a practical level, the study contributes to developing teachers' 

awareness of the role of the private processes taking place in parallel to the public 

WCD, for learning. 
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VARIATION AND ALGEBRA 
Constanta Olteanu and Lucian Olteanu 

Linnaeus University, Institution of mathematics 

 

The aim of this article is to contribute to understanding the relationship between 

teaching and learning algebra at school in order to identify how schools can be 

supported to improve students’ learning outcomes. The students’ tests and 

examinations of their mathematical work and the teachers’ lessons plan and reports 

on the lessons’ instructions were the base data for this article. The analysis indicated 

that, if the teachers base their instructions on the critical aspects identified in 

students’ learning and open up patterns of variation in these aspects, they seem to 

facilitate students’ learning. The findings suggest that helping teachers develop an 

understanding of the students’ critical aspects can be a productive basis for helping 

them to make fundamental changes to their instructions and to improve their 

mathematical communication in the classroom. 

INTRODUCTION 
In recent decades, there has been a surge of interest in how students understand In 

recent decades, there has been a surge of interest in how students understand algebra 

and, in particular, how they reason about algebra (e.g. Carraher, Martinez & 

Schliemann, 2008). This renewed interest stems from an increasing awareness that 

algebra has not only become the general language of science, but also the epitome of 

symbolic thinking, a language of effective communication, and the language of 

generalisation (Radford, 2008; Olteanu, 2014). Despite this, the results for Swedish 

students in TIMSS (Trends in International Mathematics and Science Study) 2007 

and in TIMSS 2011 indicated that, for example, only 5% (TIMSS, 2011) of the 

students had developed procedures to solve the task ‘Simplify the expression 
3x

8
+
x

4
+
x

2
’ and only 16% of the students understood the structure in the formula 

P =
3kl

5
 and could thereafter calculate the value of P when k = 7 and l = 10. 

Because of the importance and the power of algebra, all students should have 

opportunities to learn it and to express themselves through it. Despite the extensive 

research done on algebra (e.g. Demby, 1997), there are many reasons to gain further 

understanding of how teachers and students experience the mathematical content 

related to the intended curriculum. This article is based on current curriculum in 

Sweden, and its focus is on examining students’ simplification of rational expressions 

with an emphasis on the relationship between the content treated in the classroom and 

students’ learning of this subject matter. The focus is also on understanding the 

aspects the teacher focuses on in the classroom and the aspects that the students 
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discern. A close examination of this relationship may help provide a better 

understanding of ways to improve teachers’ teaching practice in order to advance 

student learning. The research question in this article is: What actually happens inside 

the classroom when variation theory approach is used? 

REVIEWING THE LITERATURE 
Two trends can be distinguished in previous research on student learning of algebra. 

One trend, which is found in current mathematics education research, suggests that 

technologies have the potential to help learners make connections with and between 

mathematical concepts and to enrich learners’ mathematical thinking. The other 

trend, which is found in early mathematics education research (more than three 

decades of research), recognised that students have difficulty when they try to 

manipulate (simplify) rational expressions (e.g. Davis, Jockusch & McKnight, 1978; 

Demby, 1997). These difficulties are still evident today for Swedish students (e.g. 

TIMSS 2007, 2011). That early research made some important findings on what 

contributed to these difficulties. These included the visual cues present in algebraic 

structures; cancellation error; seeing an algebraic expression as a process or a 

sequence of instructions; the proceptual divide; the difference between procedural 

and static interpretations; and the process-product dilemma (Demby, 1997; 

Freudenthal, 1983; Gray & Tall, 1992; Kieran, 1992; Sfard & Linchevski, 1994). 

To overcome the difficulties presented above, the researchers suggested solutions that 

included the following: making explicit algebraic thinking inherent in arithmetic in 

children’s earlier learning (e.g. Warren & Cooper, 2006); explicit teaching of nuances 

and processes of algebra in an algebraic and symbolic setting (e.g. Stacey & Chick, 

2004), especially in transformational activities (Kieran & Yerushalmy, 2004; Stacey 

& Chick, 2004); using multiple representations, including the use of technology 

(Kieran & Yerushalmy, 2004); and recognising the importance of embedding algebra 

into contextual themes (e.g. Stacey & Chick, 2004).  

The research reported in this article took a different approach, which was grounded in 

teaching and learning mathematics through using variation (e.g. Marton, 2015).  

THEORETICAL FRAMEWORK 
What the teachers focus on and what the students discern in mathematical 

communication are aspects of the object of learning. The central idea in variation 

theory is that in order to discern certain aspects of the object of learning, a person 

needs to experience variation corresponding to them (e.g. Marton, 2015). The aspects 

of the object of learning can be the whole, the parts that form the whole, the relation 

between the parts, the transformation between the parts, and the part–whole relation 

for a mathematical concept or between different concepts (Olteanu, 2016; Olteanu & 

Olteanu, 2013). For example, to simplify the rational expression 
x

x

2

2

, it is necessary to 

perceive 2x  as xx   and 2x as x2 . In addition, it is necessary for the students to 

experience that anything divided by itself is just ‘1’. Olteanu (2014) states that 
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communication is a collectively performed patterned activity in which an aspect that 

is critical for one or more students (A) is focused on by action of the teacher or other 

students (B) so that A discerns the aspects focused on by B.  

A verbatim presentation of Olteanu (2014, 2016) works is reproduced in this 

paragraph. When communication succeeds, thought content (critical aspect) is shared 

between speakers and addressee(s) in [a] joint activity and there is shared 

understanding. Critical aspects are those [features] necessary to understand the 

content worked out in the classroom in order to develop the ability to communicate 

the content in algebra and mathematics more generally (Olteanu, 2016). ‘Critical’ 

here refers to a critical difference in the learners’ ways of grasping and becoming 

acquainted with the object of learning (Olteanu, 2014). Critical also refers to 

subjective positioning of the participant vis-à-vis the object of knowledge. The 

critical aspects are divided into the intended critical aspects (ICAs) – the aspects of 

the content that teachers intend to present in the classroom; the enacted critical 

aspects (ECAs) – the aspects of the content that teachers focus on, and the lived 

critical aspects (LCAs) – the aspects that the students distinguish (Olteanu, 2014). 

Meaningful interaction among the ICA, ECA, and LCA shows whether the 

communication has been effective (Olteanu, 2016; Olteanu & Olteanu, 2013).  

Marton (2015) argued that in order to discern different aspects of the object of 

learning, students must experience variation in these aspects. When these aspects are 

not discerned, they become LCAs and are what students’ experience as critical 

aspects in their learning (Olteanu, 2016). For example, if teachers assume that the 

expression 
3

53 x
 would not prompt students to recall the cancellation property 

(ICAs), they would not focus on this aspect in teaching. If students incorrectly cancel 

3, that is an LCA for them.  

The patterns of variations which can facilitate students’ discernment of critical 

features or aspects of the object of learning are the following: (1) contrast (C), which 

means that to discern a quality X, a mutually exclusive quality non-X needs to be 

experienced simultaneously; (2) separation (S), which means that in order to discern 

a dimension of variation that can take on different values, the other dimensions of 

variation need to be kept invariant or varied at a different rate; (3) generalisation (G), 

which means that to discern a certain value, X1, in one dimension of variation X from 

other values in other dimensions of the variation, X1 needs to remain invariant while 

the other dimensions vary; (4) fusion (F), which means experiencing the two 

dimensions of variation simultaneously; and similarity (SI), which is the property of 

two or more expressions with the same meaning (e.g. Marton, 2015; Olteanu, 2016).  

METHODOLOGY 
In this paper, we discuss the results of students’ learning and the teaching of rational 

expressions in an upper secondary school. The research approach used was 

educational design, which is characterised as being pragmatic, rooted in praxis, 

interventionistic, iterative, collaborative, flexible in design, and theory oriented. 
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Educational design research involves understanding the link between teaching and 

learning through cycles of intervention, with a view to improving the next 

intervention (e.g. McKenney & Reeves, 2012; Plomp & Nieveen, 2009). The aim is 

to produce useful and sustainable results for regular use in a school.  

Over a three-year period, two teachers (here called Thomas and Patrik) and 65 

students (23 in Phase I, 18 in Phase II, and 24 in Phase III) in the Swedish Natural 

Science Programme participated in the study. The analysis was grounded in 30 

exercises and 12 written reports. The data was collected in 11 steps. The teachers 

examined the course module and curriculum to identify the intended object of 

learning (Step 1). The teachers identified the enacted object of learning (Step 2). The 

researchers explained various concepts used in the variation theory to the teachers 

and the teachers put those concepts into practice (Steps 3 and 4). The teachers 

worked to identify ICAs (Step 5). The teachers conducted tests and interviews with 

the students to identify LCAs (Steps 6 and 7). The researchers explained the key 

concept of the theory of variation again (Step 8). The teachers implemented six 

lessons (Step 9). After each lesson, the teachers wrote a detailed report on the 

following: (a) general information (school, class/group, teacher, moment, object of 

learning, type of lesson); (b) general purpose; (c) specific purpose (content, 

emotional view, psychomotor view); (d) prerequisites (technical aids, materials); and 

(e) lesson implementation according to teaching method (with a focus on the open 

dimensions of variation) and activities with students (Step 10). The teachers 

conducted different tests with the students (Step 11). 

The initial analysis entailed coding students’ responses for the types of aspects 

discerned and the teachers’ reports for the types of aspects focused on. In the Phase I, 

the teachers had worked together to identify the ICAs and the intended object of 

learning, based on these ICAs. Their work was analysed based on the following 

questions: What aspects did the students discern when simplifying rational 

expressions? What patterns of variation could be opened up in the aspects that the 

students did not discern?  

RESULTS 
The initial analysis identified six categories of the object of learning (Table 1).  

At the beginning of the project (Phase I), the teachers, to a great extent, had assumed 

that students did not discern rational expressions as a whole (W), the relation parts-

whole (PW) and the relation between different wholes (RDW). In addition, they did 

not consider that students needed to have a better understanding of the constituting 

parts (P), of the relation between those parts (RP), and of how to relate the parts to 

each other in a different way (RPD). The teachers assumed, for example, that 

students could discern the difference between terms and factors and so the students 

would only cancel common numerical or algebraically factors in the simplification of 

a rational expression. Consequently, the teachers intended to focus on the aspects in 

categories W, PW and RDW and focus less or not at all on categories P, RP and 
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RPD. In addition, in their notes, they occasionally or rarely mentioned using patterns 

of variation in these aspects.  

 

Table 1. Categorisation of aspects and examples of non-discerned aspects 

Categories Rational expression 
What has to be done 

to discern 

Examples of non- 

discerned aspects 

whole (W) 

94

9124
2

2





x

xx

 

to discern/focus on 

the relation between 

the numerator and 

denominator  

112
94

9124
2

2





x

x

xx  

parts (P) 4x
2 

– 12x + 9 and 

4x
2
 – 9  

to discern/focus on 

the composition of 

nominator and 

denominator 

5)(5

22 ba

ba

ba 




  

relations 

between the 

parts (RP) 
94

9124
2

2




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In Phase I, only a few students discerned the aspects that teachers expected them to. 

In this phase, one or more students had aspects that were critical (P, RP and RPD) for 

them, but they did not have an opportunity to discern them because the teacher and 
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other students did not focus on them. As a consequence, those students could not 

work out the meaning of the whole because they had no understanding of how the 

meaning of the whole is determined by the meanings of the parts and by the mode of 

composition of the constituting parts.  

In Phases II and III, the students improved their ability to discern different aspects of 

a rational expression. An explanation for this phenomenon is that in Phase II, the 

teachers focused on LCAs by using different patterns of variation. In six consecutive 

lessons, Thomas focused on several aspects and opened up dimensions of variation 

by separation (S), contrast (C), generalisation (G) and fusion (F). Thomas used 

several tasks in which the nominator varied and the denominator was kept invariant 

or vice versa. Some examples of what was taught and how critical aspects were 

taught using patterns of variation were: 

 the difference between a fraction with a unitary numerator and a non-fraction 

(e.g. 
x

1
 and x) (C); 

 the difference between factorising a polynomial and solving an equation (e.g. 

2x +12 and 2x + 12 = 0) (C); 

 the difference between terms and factors (e.g. 2 + x and 2x) (C); 

 specifying multiple times that only factors and not terms can be cancelled (S, 

G); 

 identifying the common factor in the nominator and denominator (S, G, SI);  

 specifying that common factors can be simplified by any common numerical or 

variable factors (e.g. 
x

x

x

x

2

)6(2

2

122 



) (C, S, G, F, SI); 

 using parentheses around the nominator and denominator to highlight the 

whole (C, S, G, F, SI); 

 simplifying fractions with polynomials in the numerator and denominator by 

factorising both and renaming them using the lowest terms (e.g. 

)7(2

)6(2

142

122










x

x

x

x
) (C, S, G, F, SI); 

 identifying and factorising the difference of two perfect squares (S, G, F).  

In addition, Thomas kept asking the following questions and kept them invariant in 

the communication in the classroom: What does factorising look like for a 

polynomial expression? How do we know when we are finished factorising? What is 

the process we use to cancel? What does cancelling look like? When do we know we 

are finished cancelling? All these questions have the same meaning, thus Thomas 

opened up a dimension of variation by similarity. 

The design used in Phase III was the same as that in Phase II. The differences were 

that Patrik taught in another class that had gone the same process as in Patrick’s class. 

In addition to focusing on the aspects that Thomas had in his class (Phase II), Patrik 

focused on finding the values of a variable for which an algebraic fraction was 

undefined as well as on the difference and connection between roots of a quadratic 
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equation and factors of a quadratic expression. In addition, the beginning of each new 

lesson, Patrik repeated the content discussed in previous lessons at. 

The enacted object of learning in Thomas and Patrik’s classes enabled students to 

discern the process of factorising polynomials and to simplify algebraic expressions 

written as fractions. In addition, the students had the opportunity to experience the 

following: the term ‘cancelling’; that factorising is the reverse of the distributive 

property; the expressions ‘factor’ and ‘cancel’, when working with algebraic 

expressions written as fractions; the use of factorising and cancelling and the rules of 

fraction operations to simplify algebraic fraction expressions. In addition, students in 

Patrik’s class could discern that ‘undefined’ means that the denominator of a fraction 

is zero. This led to a reduction in students' critical aspects in all categories. An 

explanation for this is that an aspect that was critical for one or more students was 

focused on by an action of the teacher or by other students, by using several patterns 

of variation. The shared understanding increased during the project (from Phase I to 

Phase III) and the result was reflected in a reduction in critical aspects in students’ 

learning in all categories, especially in categories P, RP, RPD and PW (more than a 

50% reduction). It can be concluded that in Phase III, there was a further reduction in 

the students' critical aspects, and an explanation for this may be the systematic 

repetition done in Patrik’s class. 

DISCUSSION 
In this study, one of the primary factors demonstrated in order to encourage teachers 

to use the research findings in the field of mathematics education was the 

identification of critical aspects in students’ learning and the use patterns of variation. 

The learning theory of variation serves as a useful theoretical framework for teachers 

in planning and structuring their lessons. It guides teachers to decide what aspects to 

focus on, what aspects to vary simultaneously, and what aspects to let remain 

invariant. Furthermore, it guides teachers in how to consciously design patterns of 

variation to bring about the desired learning outcomes.  

One of the LCAs identified in this study was discerning the difference between terms 

and factors. The students found it especially hard to discern the aspects that appear in 

the following: the relations between the parts (RP), the transformations between the 

parts (RPD), and the relation between the parts and the whole (PW). By reflecting on 

these general categories, the teachers formed a complete learning object, in the sense 

that they were able to take up almost all of the critical aspects of the students’ 

learning and open up dimensions of variation by contrast, separation, generalisation, 

fusion, and similarity in those aspects. This resulted in an essential improvement in 

students’ learning and successful communication in the classroom. Classroom 

instructions that are based mainly on a theoretic variation approach have a positive 

impact on students’ learning of factorising rational expressions. What teachers 

learned about teaching was explicit and analytical rather than intuitive and imitative.  
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THE INFLUENCE OF TEACHER PERCEPTIONS AND 
TEACHING APPROACHES ON SENIOR SECONDARY 

MATHEMATICS STUDENTS’ USE OF CAS CALCULATORS 
Claudia Orellana and Tasos Barkatsas  

RMIT University, Australia 

 

The focus of this paper is to examine the extent to which teacher perceptions and 

approaches to CAS calculator use influence whether students utilise this technology 

in senior secondary mathematics. Using an embedded multiple case study approach, 

data were collected from two Year 11 and two Year 12 mathematics classes and their 

respective teachers. While the results presented highlight the key role of the teacher 

in fostering a CAS environment, other contextual factors also need to be taken into 

consideration. 

INTRODUCTION 
Within the past few decades, researchers in the field of mathematics education have 

recognised the potential for information and communications technology (ICT) to 

transform the teaching and learning of mathematics (Goos, Galbraith, Renshaw, & 

Geiger, 2000). The effective use of ICT has also been seen as a key capability within 

the Australian curriculum and is incorporated across all learning areas, including 

mathematics (Australian Curriculum, Assessment and Reporting Authority, 2015). 

However, while the use of technology has presented many advantages, “the vision of 

using information and communication technology (ICT) to transform the teaching 

and learning process ... [has been] far from becoming a reality” (Rodríguez, 

Nussbaum, & Dombrovskaia, 2012, p. 81), with concern that ICT integration in 

school mathematics has fallen behind the promising expectations of previous decades 

(Drijvers, Doorman, Boon, Reed, & Gravemeijer, 2010). 

Computer Algebra System (CAS) devices are an example of one such technology that 

have faced various obstacles in its integration within the school mathematics domain. 

“In spite of the long history of work with CAS in educational settings, the impact of 

technology on school mathematics has to date been marginal, and the incorporation 

of CAS in classrooms has been even slower” (Heid, Thomas, & Zbiek, 2012, p. 599). 

Student attitudes, time restrictions, and the technical skill required to operate CAS 

technology are just some of the factors that have made CAS integration within school 

mathematics difficult to achieve successfully (Barkatsas, Kasimatis, & Gialamas, 

2009; Drijvers, 2002; Schmidt, 2010).  

Goos et al. (2000) also noted that the role of the teacher was crucial in developing a 

technology-rich learning environment. However, as highlighted in a study by Teo 

(2011) involving Singaporean teachers, “perceived usefulness, attitudes towards use, 
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and facilitating conditions [all] have direct influences on behavioural intention to use 

technology” (p. 2437). With CAS calculators forming an integral part of the 

Victorian senior secondary mathematics curriculum in Australia, and the significant 

role a teacher may play in their successful integration, the main focus of this paper 

will be to report on how teacher perceptions and approaches regarding CAS 

calculator use may influence students’ utilisation of CAS technology in mathematics. 

THEORETICAL FRAMEWORKS  
Within this study, two theoretical frameworks were used to investigate and describe 

teachers’ use of CAS-based systems within the mathematics education domain. These 

frameworks are summarised briefly below.  

Technological Pedagogical Content Knowledge (TPCK) 
Mishra and Koehler (2006) introduced the theoretical framework Technological 

Pedagogical Content Knowledge (TPCK) to describe the relationship between 

teaching and technology. In order to successfully integrate technology as part of 

teaching practice, teachers need to have three essential forms of knowledge: 

Technology Knowledge (knowledge of how to use technology), Pedagogical 

Knowledge (knowledge of teaching practice) and Content Knowledge (knowledge of 

the subject matter). The interaction between each of these three forms of knowledge 

is crucial to the development of a teachers’ TPCK. As summarised by Koehler, 

Mishra and Yahya (2007): “at the heart of TPCK is the dynamic transactional 

relationship between content, pedagogy and technology. Good teaching with 

technology requires understanding the mutually reinforcing relationships between all 

three elements” (p. 741). 

MSPE Framework 
In their three-year longitudinal study, Goos et al. (2000) identified four metaphors to 

describe the interaction between teachers and technology (the MSPE Framework). 

Technology plays the role of Master if a teachers’ implementation of technology is 

limited by their technological knowledge and skills. Technology plays the role of 

Servant when its only purpose is to support preferred teaching practices (e.g., using a 

calculator solely for its speed and efficiency to replace pen and paper techniques). 

Technology is used as a Partner when it aids in the implementation of a teaching 

practice that gives students more control over their learning, such as sharing or 

mediating mathematical discussions. Finally, technology is used as an Extension of 

self when its “powerful and creative use ... forms as natural a part of a teacher’s 

repertoire as do fundamental pedagogical and mathematical skills” (Goos et al., 2000, 

p. 308). 

METHODOLOGY 
The findings presented within this paper form part of a larger mixed methods study 

which utilised a quantitative phase followed by a qualitative phase. The population 

investigated for this study were Year 11 and Year 12 mathematics students and their 
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teachers. Local schools in the region of Melbourne, Victoria, Australia were invited 

to participate via a letter explaining the nature and intention of the research. Within 

the time frame allocated, six schools agreed to participate in the study and the 

findings of the quantitative phase involving a questionnaire can be found in a prior 

paper (Orellana & Barkatsas, 2015). 

The participants for the qualitative phase, presented in this paper, came from two of 

the initial six schools who participated in the quantitative phase of the study. Findings 

from the quantitative phase aided in the selection of participants through examination 

of key differences between schools on variables such as technology confidence, years 

of CAS experience and attitudes towards using CAS calculators in mathematics. 

Within each participating school, one Year 11 and one Year 12 mathematics class 

(taught by the same teacher) were selected with the aid of the school’s mathematics 

coordinator.  

An embedded multiple case study approach was used for data collection 

incorporating classroom observations and interviews with students and teachers. 

Observations were non-participant and overt while also adopting a semi-structural 

approach to allow for greater flexibility and responsiveness to naturally occurring 

events (Flick, 2006). Interviews with participants also allowed for greater flexibility 

by being semi-structured and one-on-one, without diverging too far from the research 

aims (Berg, 1995). For the interview process, students were selected with the aid of 

the classroom teacher and restricted to those with parental consent. In total, 20 

students were interviewed along with the two respective teachers from each school 

(henceforth labelled Teacher A and Teacher B). 

The collected data were initially analysed using a preliminary exploratory analysis in 

order to obtain a general sense of the data (Creswell, 2005). Once complete, the data 

were analysed using a thematic analysis procedure as outlined in Braun and Clarke 

(2006) in order to identify key patterns or themes within the observational fieldnotes 

and interview transcripts. While the larger study, of which this qualitative phase 

forms a part, focuses on both teachers’ and students’ use of CAS technology, this 

paper will report on the findings with respect to Teacher A and Teacher B. 

RESULTS  
Teacher A 
Teacher A was a female, secondary mathematics teacher who had been teaching in 

schools for over 30 years. Teaching students from Years 9 to 12, she was introduced 

to the CAS calculator between the years 2006-2007, when the CAS became a 

compulsory element of the Victorian Certificate of Education (VCE – the final two 

years of secondary schooling) study design. Having had no prior experience with this 

technology, initially her use of CAS was limited due to the fact that she was not 

involved in teaching VCE mathematics: “Back then [I] didn’t use it as much as what 

I do now because I wasn’t involved in [years] 11 and 12”. However, with 

professional development and support from her colleagues, along with self-teaching, 
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Teacher A became proficient with CAS and used it more frequently in her teaching 

practice. 

With respect to her views on CAS calculators in mathematics, Teacher A is fairly 

positive about using this technology and believes it has aided her students’ 

achievement as well as providing a means to explore mathematical concepts. 

However, she has also encountered various obstacles along the way, such as trouble 

resolving complex technological errors, over-reliance on CAS by students, and 

changing students’ mindsets “to get them to realise that they don’t have to do 

everything by hand”. The approach adopted by Teacher A when teaching with the 

CAS calculator involved a more student-centred approach by using open-ended 

questions to get students thinking about the mathematics being taught. The calculator 

was used as a means to ‘explore’ mathematics and to aid in the development of 

conceptual understanding.  

The Year 11 and Year 12 classes taught by Teacher A were Mathematical Methods 

(CAS) classes, a subject focused on calculus, algebra, functions, and probability. 

Students were first introduced to the CAS calculator in Year 9 and were expected to 

bring this technology to every class. From the observational data, and from student 

interviews, it was found that students in both classes encountered difficulties with the 

CAS calculator including syntax errors, problems with settings, and interpreting 

output. Students in the Year 11 classroom also struggled to understand when CAS 

calculator use would be more efficient than by hand methods, which may also be why 

the latter techniques were preferred by students regardless of whether the task was 

considered technology-rich or technology-free. In contrast, the Year 12 classroom 

used the CAS calculator more frequently. However, at times, students were too 

reliant on the technology, using it for questions that would have been faster by hand. 

Teacher B 
Teacher B was also a female, secondary mathematics teacher with over 30 years of 

teaching experience. Teacher B focused exclusively on VCE mathematics, teaching 

only Year 11 and Year 12. With no experience using the CAS calculator prior to its 

implementation, she learned to use the CAS through guest speakers and practising in 

her own time with the instruction manual. She uses CAS everyday as part of her 

teaching practice and incorporates it into every mathematics class. 

Teacher B displayed a very positive attitude towards using CAS calculators in 

mathematics and was enthusiastic about learning as much as she could about this 

technology. She did not encounter many difficulties with the CAS and many students 

turned to her when they experienced any problems with hardware or software: “I fix 

the calculators for them”. Teacher B believed that her students benefited greatly as a 

result of having CAS technology available, particularly lower achieving students, 

with improved student results, attitudes, and confidence. However, while she noted 

that the CAS calculator could help lower achieving students “pass exams”, she also 

acknowledged that it may not necessarily improve their mathematical understanding: 
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For those students who do not really know the value of the numbers, actually it’s 

just useless for them ... I would say the calculator actually is spoiling them ... they 

don’t understand how ... they get the answer because the calculator don’t show 

them step by step. 

With respect to her teaching style, Teacher B’s approach focused on the development 

of conceptual knowledge before introducing CAS as an efficient way of obtaining 

solutions. However, depending on the level of achievement of her students, she has 

also introduced the CAS calculator as soon as possible for students who appeared to 

be struggling with mathematics. Unlike Teacher A, CAS was not used as a means to 

investigate mathematical constructs, but rather as a faster, alternative means of 

solving mathematical problems. 

The Year 11 and Year 12 classes taught by Teacher B were General Mathematics and 

Further Mathematics classes respectively. These subjects place more emphasis on 

topics such as geometry, data analysis, and business related mathematics rather than 

calculus or algebra. Students were first introduced to the CAS calculator in Year 11 

and were expected to bring this technology to every class.  From the observational 

data, and from student interviews, it was found that students in the Year 11 class 

displayed moderate CAS calculator use. Some students used the CAS frequently, 

others preferred by hand methods, and others did not know how to use it. However, 

students were more inclined to use the CAS when they were shown how efficient it 

was. Additionally, students in the Year 11 class experienced difficulties knowing 

how and when to use the CAS calculator, requiring a lot of teacher support and 

guidance. In contrast, the students in the Year 12 classroom used CAS frequently to 

complete mathematical work, making seamless transitions between by hand and CAS 

techniques. CAS use came naturally to these Year 12 students as they understood 

both how and when to use this technology.  

DISCUSSION AND CONCLUSIONS 
From the results presented above, it was evident that both teachers had various 

characteristics in common, such as their years of mathematics teaching experience 

and their lack of familiarity with the CAS when it was first introduced. However, one 

difference between the two teachers was their experience with VCE level 

mathematics. Whereas Teacher B had more familiarity with Year 11 and 12 (teaching 

only these year levels), Teacher A had only recently become involved with VCE 

mathematics and thus had not used the CAS calculator as frequently when it was 

initially introduced. Thus, it could be argued that Teacher B had a greater 

understanding of how to use the CAS calculator as part of VCE mathematics teaching 

(TPCK) with more years of experience in this regard. Her high level of CAS 

knowledge (the ‘T’ of TPCK) also allowed her to solve a majority of her students’ 

problems when they arose in class, whether they were technical in nature or due to 

incorrect notation. 
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Although less experienced with VCE mathematics, Teacher A was confident in her 

mathematics teaching knowledge (PCK) to take a more constructive and open-ended 

approach with technology, using the CAS calculator to explore mathematical 

concepts in whole class discussions. This type of instruction also reflected her belief 

that one of the many advantages of CAS lie in its capacity to allow students to see 

patterns and to think about mathematical constructs. Using the metaphors developed 

by Goos et al. (2000), Teacher A could be described as working with the CAS as a 

partner using this technology “creatively in an endeavour to increase the power 

students collectively exercise over their learning” (p. 307). For example, when 

introducing students to the inverse function, Teacher A asked students to take out 

their CAS calculator and input three functions: f1(x) = f(x), f2(x) = g(x) (the inverse), 

and f3(x) = x. She then prompted a discussion with students, asking questions such as 

“What do you see?” to allow them to discover what the inverse represents. These 

types of discussions took up a large portion of Teacher A’s classes. 

In contrast, Teacher B used a more traditional and structured mode of instruction, 

explaining concepts on the board before moving onto CAS-based examples and 

questions. CAS, in this context, was used as an efficient and alternative way to solve 

mathematical problems (as a servant), encouraged as a means to save time in 

examinations rather than changing the nature of classroom activities (Goos et al., 

2000). For example, when introducing the topic of graphs and relations, Teacher B 

briefly went through the key points and definitions before moving into an example 

where CAS could be used, outlining step-by-step instructions on the board: “Menu → 

Stat → Stat calc→ 2 → x list x, y list y → select y = a + bx or y = mx + c ”. Teacher 

B announced to students that if they had forgotten how to find the equation of a 

straight line given two points, then the CAS was a “useful” way to obtain a solution. 

Explanations and discussions did not take up as much of the lesson as those of 

Teacher A, and the main focus was to complete set questions from the textbook or 

from provided worksheets. Thus, while there was a preference for students to develop 

conceptual understanding prior to learning CAS procedures, there was also an 

emphasis on performance and procedural knowledge. This may be why lower 

achieving students in her classes were, at times, introduced to CAS-based procedures 

earlier than their peers, despite Teacher B preferring the development of conceptual 

understanding prior to this. 

Analysis of the classroom results revealed various differences between Teacher A’s 

and Teacher B’s participating classes. While in Year 11 the results were quite similar 

for both classes, students in Teacher B’s classes appeared to use the CAS more 

frequently and efficiently than students in Teacher A’s classes. In particular, Teacher 

B’s Year 12 class encountered fewer difficulties when working with the CAS 

calculator and had higher levels of CAS knowledge, knowing both when and how to 

use this technology. Having endeavoured to learn as much as she could about the 

calculator, Teacher B’s familiarity and confidence with the CAS appeared to have 

positively influenced her students. Even though students had fewer years of CAS 
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experience compared to students in Teacher A’s classes, students in Teacher B’s 

classes were able to quickly overcome any CAS-related issues with the aid of their 

teacher, and appeared to be developing greater confidence with this technology, 

consequentially influencing their use of CAS in the classroom. 

In comparison, students in Teacher A’s classroom displayed a lack of CAS 

knowledge, encountering more difficulties when using the CAS calculator. Common 

errors included issues with syntax and settings, which were also evident in Year 12, 

although to a lesser extent. Knowing when to use the CAS was also an area students 

struggled to understand. For example, not using CAS for technology-rich questions, 

or using CAS to solve V(t) = 0 for V(t) = 10
3 

(90 – t)
3
. Teacher A’s approach to 

addressing these difficulties reflected her teaching style. If students encountered 

errors, Teacher A preferred to use prompts to help students discover where they went 

wrong rather than provide them an answer. She would also use discussions to find out 

the different solutions that students had to solving a mathematical problem with the 

CAS calculator rather than giving them step-by-step instructions: “How can I use my 

calculator to get the rule for the inverse function?” Thus, the results, in a sense, have 

been counterintuitive as this approach has been suggested in prior research by 

Drijvers (2002), who proposed using CAS obstacles as opportunities for learning: 

Instead of trying to ignore the obstacles encountered, I suggest to make them the subject 

of classroom discussion ... such an approach turns the obstacles of computer algebra use 

into opportunities for learning, and enriches mathematical discourse in the classroom. (p. 

228) 

In summary, the results presented in this paper showed that the participating teachers 

in this study found the CAS calculator to be useful for different reasons and have 

incorporated this technology into their teaching based on these beliefs. However, it is 

difficult to determine the extent to which the teachers’ perceptions and teaching 

approaches in this study influenced students’ use of CAS calculators considering the 

potential contextual factors involved (e.g., mathematics subject) and the limited 

sample size. Further research is needed to compare and contrast the views of teachers 

and students with respect to CAS technologies to determine how they may potentially 

influence each other.  
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PRINCIPLES IN DESIGNING TECHNOLOGY-INTEGRATED 
GEOMETRY TASKS FOR TEACHING TEACHERS  

Tikva Ovadiya and Ruti Segal 

Oranim Academic College of Education, Israel  

 

When technology is used as a teaching tool without adapting it to human cognition, 

the learning becomes focused on the tool rather than on the learner. Hence, the 

current research seeks to examine the advantages of technological tools in designing 

research tasks in geometry for teaching teachers, taking into consideration that even 

teachers have different learning attributes. Adapting geometry tasks to variations 

between teachers is an art that can be learned from research literature on task design 

and on designing multimedia tasks using technological tools in the context of human 

cognition. The current study adapted design principles from the research literature to 

design geometry research tasks for teaching teachers. 

THEORETICAL BACKGROUND 
This section outlines the theoretical concepts for constructing research tasks so as to 

create a distinct framework for designing geometry tasks to be solved using 

technological tools. Such a framework can be implemented for teaching teachers. The 

concepts are presented in the following contexts: the advantages of dynamic 

computerized tools for solving geometry problems; theories of constructing 

mathematical tasks; theories of constructing tasks using technological tools while 

taking the learner's cognitive structure into consideration. 

Integrating Dynamic Geometry Software (DGS) 
Research in education constantly seeks methods to improve the quality of teaching. 

One issue often focused upon is the integration of technology. Dynamic geometry 

software (DGS) is a technological tool that allows mathematical equations to be 

represented and mathematical objects to be constructed so as to provide constant 

feedback to the user (Alakoc, 2003; Martinovic & Manizade, 2013). DGS allows 

users to create and then manipulate constructions and properties. DGS provides 

students with different opportunities to engage with geometric objects and their 

measures and has the potential to help them develop a deeper understanding of 

properties and theorems (Leung, 2008). Dragging in DGS is one of the pedagogical 

values of a dynamic geometry environment. Such an environment enables users to 

express their geometrical thoughts in visual-dynamic ways that can help them 

construct abstract knowledge. While dragging different points and objects, users can 

identify properties and relations between them, while generating a multitude of 

specific examples and hypotheses (NCTM, 2010). 
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Constructing Mathematical Tasks for Teaching 
The current study describes an experiment in which geometric tasks that integrated a 

technological tool were designed for mathematics teachers. Construction of the tasks 

was based on the theories of three researchers regarding the design of mathematical 

tasks. Zaslavsky (2008) proposed several ideas for intelligent construction of 

mathematical tasks for teachers. Chen, Kalyuga, & Sweller (2016) referred to the 

architectural structure of human cognition and Mayer (2014) advocated integrating 

multimedia into learning. We discuss each of these theories in brief and use them to 

construct the conceptual language for this research study.  

The first theory (Zaslavsky, 2008) outlines themes that characterize the criteria for 

designing mathematical tasks to promote teachers' learning processes, as follows. 

Developing adaptability: Teachers must consider making changes in questions and 

tasks, looking for new teaching approaches, adapting existing sources, and planning 

and exercising flexibility in teaching and learning.  Fostering awareness to 
similarities and differences: Teaching includes identifying what is different and 

what is similar among mathematical objects, classifying objects according to criteria 

and identifying relations between objects. Coping with conflicts, dilemmas and 
problem situations: Teachers must become problem solvers in the broadest sense of 

the term by enhancing their students' abilities to solve mathematical problems and 

cope with cognitive barriers and conflicts. Selecting and using (appropriate) tools 
and resources for teaching: In constructing mathematical tasks teachers must select 

and use appropriate tools and resources, such as professional literature, literature 

from other fields linking the task to everyday life and technology integration. 

Identifying and overcoming barriers to students' learning: Task construction 

must take the students' learning barriers into consideration and must give all students 

the opportunity to cope with these barriers. Learning barriers can include difficulty 

with various representations, missing prior knowledge, personal limitations and more. 

Technological Multimedia Theory and Motivation Adapted to Cognitive Load 
According to the second theory known as the cognitive load theory (Sweller, 2015), 

teaching should take the architectural structure of the human cognitive system into 

consideration. Human cognition resembles the concept of natural selection in that the 

strongest knowledge will always survive (be preserved) over the long term. The 

theory can be described using five principles: Database principle: In order to operate 

in a complex environment, natural information processing systems must store a large 

amount of information. In human intelligence, long-term memory serves as this 

storage space. Borrowing and identification principle: Information is stored by 

borrowing information from other sources of information in the learning environment 

and by identifying old knowledge and relating it to new knowledge. Randomness 
and creativity principle: When learners cannot borrow information from the 

environment, they create it. Limited change principle: Working memory is capable 

of containing a limited amount of information. Working memory makes sure that 
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small changes take place while outside information is being processed. Connectivity 
principle: Working memory has no limitations when communicating with long-term 

memory, as manifested in organizing and retrieving large amounts of information. 

The third theory (Mayer, 2014) discusses the relationship between multimedia, 

motivation and learning to solve problems. This theory calls for analyzing 

multimedia integration using three types of skills and abilities: cognitive skills, 

including learning, dismantling, assembling and organizing knowledge in order to 

process it; metacognitive skills, including the learner's personal strategies for solving 

mathematical or other problems; and motivational skills, including the learner's level 

of interest and self-direction as manifested in learning while solving problems. 

According to Mayer (2009), we must distinguish three ways that learners process 

information while learning: The first is superfluous external processing deriving from 

faulty teaching design. The second is essential processing based on translating and 

analyzing mental representations resulting from complex content analysis. The third 

is generative processing whose goal is to create a feeling for the material. According 

to Mayer's approach, designing tasks using technological tools uses three basic 

principles: "less is more"—using a design that reduces superfluous processing to a 

minimum while facilitating essential processing; "more is more"—using design 

principles that motivate learners toward generic processing; and "focused more is 

more"—using design principles that motivate learners to cope with generative 

processing while at the same time focusing on reducing superfluous processing. 

In this research, we combine the theories of Zaslavsky, Sweller and Mayer to create 

and design geometry tasks that use a technological tool for teaching teachers. 

RESEARCH METHOD 
The objective of the current research is to define principles for designing geometry 

tasks that integrate technological tools for the purpose of teaching teachers. 

Research Population 
The research participants included two groups of mathematics teachers studying in a 

master's degree program in teaching mathematics at a college of education. Each 

group comprised 12 participants. The participants were enrolled in a course in which 

they learned to solve geometry problems using technological tools. 

Research Questions 
1. What characteristics mark teachers' learning as they solve research problems in 

geometry designed according to the theoretical principles of task design? 

2. What are the principles for designing research tasks in geometry for teachers that 

integrate work with a technological tool? 

Research Instruments 
The research instruments included research tasks in geometry designed to be solved 

by using technological tools as well as lessons that focused on solving research tasks 
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using technological tools, solving problems using formal deductive proofs and 

discussions on teachers' learning processes. In addition, the researchers collected data 

in a reflective journal, including documenting and analyzing the stages task design 

prior to the lessons, teaching the tasks, and analyzing the results. Following is an 

example of an investigative task in geometry designed for the experiment. 

What types of quadrangles do you get from connecting the midpoints of the 
sides of a quadrangle? The task was presented differently in the two groups of 

teachers. One group was given a table listing different types of external quadrangles, 

such as any quadrangle, a parallelogram, a rectangle, a rhombus, a deltoid, a square, a 

trapezoid and an equilateral trapezoid and asked to research the task for each of the 

quadrangles. The other group worked on investigating individual cases. An individual 

case refers to a focused task such as the following: When do you get a rectangle 
inscribed inside a quadrangle after connecting the midpoints of the quadrangle's 
sides? 
Solving the task when the external quadrangle is any general quadrangle is based on 

drawing the diagonals of the external quadrangle and using the theorem about the 

midsections of a triangle. Investigation for specific external quadrangles is based on 

the mutual state of the diagonals and on their lengths. That is, if the diagonals of the 

external shape are equal, the result is a rhombus; if they are perpendicular, the result 

is a rectangle; if they are both equal and perpendicular, the result is a square; and so 

on. This graduated presentation of the task was designed according to the principles 

of task design so as to enable each teacher to investigate at his or her own pace and 

according to the way each chose to cope with the task. In addition, the design 

facilitated investigation while examining the similarities and differences between the 

inner and the outer shapes. 

Work on the solutions was flexible in that teachers interested in solving the problem 

using formal deductive reasoning before attempting to use the technological tool. 

Designing the tasks for the teachers was influenced by the theories outlined in the 

research literature, which focused on designing tasks for teachers and designing tasks 

using technological tools while taking human cognition into consideration. 

DATA ANALYSIS 
For purposes of analysis, we divided the data into two types: data representing the 

designed tasks and data referring to the process of learning from these designed tasks. 

We observed both data groups in view of the above theories. We constructed the 

tasks according to principles from the research literature. Nevertheless, after we used 

these principles we again analyzed the designed tasks and re-examined their 

components in accordance with the theoretical principles we chose as the analysis 

framework. To illustrate this, we describe our analysis of the following designed task: 

When do you get a rectangle inscribed inside a quadrangle after connecting the 
midpoints of the quadrangle's sides?  
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The teachers coped differently according to their levels of geometric content 

knowledge. Thus, in accordance with Zaslavsky's design principle for matching task 

to learners, we adapted the task to the learners, some of whom knew how to draw a 

quadrangle using the technological tool and others did not. Those who knew how to 

use the tool solved the problem directly according to the quadrangle's attributes. 

Those in the second group used geometric construction to solve the problem and 

while doing so learned the critical attributes of the shape. 

Retrospective analysis of the design indicates that the teachers who chose to solve the 

task according to the focused formulation can be divided into two groups. During the 

construction one group stressed the quadrangle's attributes, while the other focused 

on the critical attributes of the technological tool and of rectangular polygons. 

In accordance with Mayer's theory, before the teaching task design considerations 

were based on the "less is more" principle on the assumption that focusing on one 

polygon would increase in-depth learning. Retrospective analysis indicates that both 

groups—those who already knew how to construct a quadrangle and those who 

learned during the lesson—increased their in-depth learning regarding the case of the 

inner quadrangle. From the individual case they managed to derive additional benefit 

and draw further conclusions regarding other polygons, even those they had not built. 

According to Sweller's cognitive principle of borrowing and identification, design 

considerations prior to the teaching focused on task design that called for "borrowing 

and identifying" prior knowledge and the ability to create new knowledge. The task 

directed the learners to two geometric shapes—square and rectangle. These two 

shapes were constructed using the technological tools by borrowing and identifying 

the critical features of each of the shapes. The technological tool enabled the learners 

to represent their prior knowledge by means of trial and error, and by making 

conjectures they were able to construct new knowledge of their own creation.  

The data point to two different aspects. The first reveals the behavior of the student 

teachers during problem solving. The second reveals their opinions and ideas 

regarding the advantages of designing a research task in geometry to be solved by 

technological tools in the context of their own learning experience. 

FINDINGS 
This section focuses on answering the two research questions. The first question 

refers to the characteristics of teachers' learning, including evidence found in the 

lesson documentation. We provide several examples of evidence from the teachers' 

reflective documentation, the researchers' research journals and the lesson 

documentation. We analyze how the teachers coped with the task based on the three 

outlined theories. 
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Examples of Teachers' Learning Events According to the Principles of 
Zaslavsky 
The teachers' learning events seem to imply Zaslavsky's themes. The task presented 

to the teachers was based on selecting and using (appropriate) teaching tools and 

resources. We chose to present the task in combination with the technology, among 

other reasons because we assumed that the teachers' geometric knowledge was not 

sufficiently established to solve the problem using deductive proofs and that the 

technological tools could serve as an additional aid in coping with the task. Indeed, 

the teachers reported that the technological tool contributed to their research. "This 

tool helped me very much in my investigation. … I saw which internal quadrangles 

were generated, and by moving the vertices and the sides I checked whether I always 

got the same quadrangle." "Looking for an assumption using the technological tool 

saved us a great deal of time." "The technological tool always results in success." 

The task was developed and adapted to the environment of teaching teachers 

(developing adaptability). In addition to being challenging, the task solution was 

based on geometric knowledge that some of the teachers had to refresh as they went 

along. All reported that the task was relevant to them in renewing their geometric 

knowledge and in expanding their pedagogic knowledge: I became convinced that 

group research using the technological tool contributes much more to learning than 

frontal teaching." 

The task fostered the teachers' awareness of similarities and differences. The 

investigative process, which included different quadrangles and generalizations 

regarding the resulting inner quadrangle, helped teachers identify similarities and 

differences between the quadrangles. For example, all the resulting inner quadrangles 

were parallelograms, while certain outer quadrangles yielded an inner square or 

rectangle or rhombus. "Organizing the data in a table helped me work systematically 

so I could identify what happened in each case relative to prior cases." 

Examples of Teachers' Learning Events According to Sweller and Mayer 
According to the multimedia principle, people learn better from words and pictures 

than from words alone. When the teachers were asked to research the task for 

different quadrangles, the technological tool provided them a variety of relevant 

examples to help formulate a conjecture regarding what inner quadrangle they would 

get. The teachers reported that the technological tool helped them understand the task 

better visually. "There is nothing like seeing the geometric shapes with your own 

eyes and 'playing' with them. That is the power of the technological tool, which is 

superior to any lesson taught and demonstrated by the teacher." "The technological 

tool helped me see the shapes in different positions and that is very important to the 

research." 

According to collaboration principle, people learn better through collaborative 

activities. For example, the collaboration between the teachers created a "safety net" 

of mutual inspiration and shared knowledge that that helped them feel more 



Ovadiya and Segal 

________________________________________________________________________________________________________________________ 

PME 41 – 2017   3-359 

confident. "I always knew there was someone who could help." "Each of us has 

strong points and weak points, and collaboration helps us share information and 

overcome difficulties, as in how to construct different quadrangles using the 

technological tool."  

According to the prior knowledge principle, the teachers constructed mediating 

questions that connected the new knowledge from the task to prior knowledge. In the 

current research, the task was formulated so that each teacher could begin the 

research based on prior knowledge. "The task refreshed my mathematical knowledge 

by learning with colleagues and by using the technology." 

What are the principles for designing research tasks in geometry for teachers working 

with a technological tool? In connecting the three theories, we found that Zaslavsky's 

five themes for task design support the cognitive load learning theory and the 

multimedia theory as follows: 

Developing adaptability:  Zaslavsky states that teachers must consider changing 

tasks and planning teaching to suit all types of learning teachers. By combining this 

with the principle of cognitive load learning, we can design a task that includes 

multimedia according to Mayer's principle of "more is less": fewer words, fewer 

pictures, focused on the main geometric concepts the teachers need to learn from the 

task. 

Fostering awareness to similarities and differences: Zaslavsky's design principle 

joins with Sweller's teaching principle that teachers should design tasks that 

challenge learners to identify new knowledge based on prior knowledge and 

encourage them to ask questions regarding similarities and differences between the 

current case and cases studied in the past. Sweller ties this concept to the structure of 

human cognition, claiming that the human brain learns while mapping similarities 

and differences. In the tasks designed for the current research, the teacher learners 

naturally mapped the similarities and differences between the tasks because the tasks 

were designed and worded in a similar manner and only one or two components were 

changed.  

Coping with conflicts, dilemmas and problem situations: According to Zaslavsky, 

problems should be designed to elicit dilemmas and conflicts. This principle can be 

combined with Mayer's principle of cognitive load in learning through multimedia 

design, for example by implementing the "less is more" principle. In the current study 

the learners had two learning barriers: Some were unable to construct geometric 

shapes. In addition, some were not sufficiently proficient in constructing deductive 

geometric proofs. In the current study, the task was broken down into sub-tasks to 

help learners focus on drawing a particular case while discussing the relations 

between the features of a family of quadrangles in the context of the given problem. 

In summary, we were able to identify two central characteristics of how teachers 

learn while solving the research tasks. The first relates to the teachers' knowledge. 

The teachers renewed, expanded and enhanced their geometric content knowledge 
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and their pedagogic knowledge in a relatively short period of time. The lesson 

documentation shows that while solving the investigative task using the technological 

tool, each teacher remembered geometric knowledge on different levels, ranging 

from remembering relevant geometric theorems to remembering how to write 

deductive proofs. The second attribute was manifested in the teachers' collaborative 

work in the two research groups without their having specifically asked to work 

collaboratively. The collaborative research work together with the use of technology 

served as a catalyst for expanding and enhancing their geometric content knowledge 

and their pedagogic knowledge in the context of teaching geometry. 

CONCLUSION 
The current study attempted to construct a framework recommending principles for 

designing research tasks in geometry for teaching teachers. Based on Zaslavsky's five 

themes and the theories of Sweller and Mayer, the study suggested an integrated 

framework of principles that teacher educators should adopt when designing research 

tasks in geometry for teachers in a technological environment.  

This research was supported by Oranim Academic College of Education. 
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