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STUDYING PRESCHOOL CHILDREN’S REASONING THROUGH
EPISTEMOLOGICAL MOVE ANALYSIS

Maria Hedefalk® and Lovisa Sumpter?

'Department of Education, Uppsala University, Sweden; “Department of
Mathematics and Science Education, Stockholm University, Sweden

In this paper, we propose a theoretical tool for analysing mathematical reasoning
using Epistemological Move Analysis (EMA) in combination with a framework
focusing on arguments and the foundation of these. We also suggest the addition of
evaluative arguments when talking about different types of arguments besides
predictive and verifying arguments. The tool was applied on data of preschool
children’s mathematical reasoning. The results indicate that different types of
epistemological moves are connected to the different types of or the lack of
arguments, and will fill (or not fill) gaps that occurs in the reasoning.

INTRODUCTION

Research focusing on young children’s mathematical thinking indicates that young
children are more capable than previously has been reported when it comes to
develop and demonstrate mathematical thinking including processes such as
mathematical reasoning (Mulligan & Vergnaud, 2006; Safstrom, 2013). Recent
studies show that children can not only use different competencies in their reasoning
(Sumpter & Hedefalk, 2015) but also that other skills do not have to be developed in
beforehand (S&fstrom, 2013). However, looking at the development of mathematical
thinking, there is evidence that children do not develop these competencies without
someone providing the learning opportunity (Bobis et al, 2005). Mathematical
reasoning is such a competence (Bergqvist & Lithner, 2012). Also, it has been
indicated that if children have access to a guide, they are more likely go further in
their mathematical thinking (Bjorklund, 2008) especially if that person is asking key
questions (van Oers, 1996).

With regard to mathematical reasoning, one of the goals that Swedish preschools
should aim for is that children “develop their mathematical skill in putting forward
and following reasoning” (School Agency, 2011, p. 10). In order to so, following the
idea of learning opportunity, teachers need to be able to pick up children’s
mathematical ideas (Bergqvist & Lithner, 2012; van Oers, 1996; Shimizu, 1999).
This should happen independent of the activity is planned or informal since the key
thing of Swedish preschool education (children age 1-5) is the emphasis of play and
should not be formal schooling (School Agency, 2011). Previous research looking at
education of mathematical reasoning, although on secondary level, reports that in
Swedish teachers’ presentations, most task solutions are based on algorithms with
only rare opportunities to see aspects of creative mathematical reasoning (Bergqvist
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& Lithner, 2012). At present moment, we don’t know how such results are translated
to preschool level especially with informal settings as an important learning
opportunity. Our future aim is to study the opportunities to develop different types of
mathematical reasoning presented to children at preschool level, which would be a
similar aim to Bergqvist and Lithner (2012). However, at preschool level such
opportunities are most likely to occur in a play based education. Therefore, other
theoretical tools are needed compared to Bergqvist and Lithner (2012). This is the
aim of this paper: to propose and discuss a theoretical tool that would allow us to
perform such an analysis. The tool needs to allow us to look at the conversations,
Interactions, between teachers and children and in particular the role of the teachers
In these conversations, but at the same time focus on the mathematical reasoning and
the different types of arguments in the reasoning. Here, we will test this theoretical
tool on a subset of a data set to show different types of arguments in mathematical
reasoning and teachers’ role in these situations.

THEORETICAL BACKGROUND

We propose the parallel use of two theoretical frameworks. One framework helps us
to study mathematical reasoning, in particular the different arguments in
mathematical reasoning, that take takes place in conversations in play based
activities. In order to study the conversations and the teacher’s input, we use a
method called Epistemological Move Analysis (EMA). The starting point for this
study is, just as Bergqvist and Lithner (2012), an ecological perspective meaning that
the teachers’ choices or actions are not seen from a right/wrong dichotomy.

Mathematical reasoning

Young children’s mathematical reasoning is getting more attention in research
(Sumpter & Hedefalk, 2015), but a general problem in mathematical reasoning
research is that mathematical reasoning is used to denote a ‘higher quality’ thinking
without defining what this would encompass (Lithner, 2008). To avoid this, we use a
framework that has a clear definition of mathematical reasoning and also allow
different types of reasoning including those that are not based on deductive logic.
Reasoning is defined as the line of thought adopted to generate assertions and
conclusions when solving mathematical tasks (Lithner, 2008). This is a product and
we see it as a sequence or several sequences that starts with the tasks and ends with
an answer, where the answer could be no conclusion at all. When organizing the data,
we use the following four step structure: (1) A task situation is met (TS); (2) A
strategy choice is made (SC); (3) The strategy is implemented (SI); and, (4) A
conclusion is obtained (C). Lithner (2008) has attached two types of arguments to
two of these steps. The strategy choice can be supported with predictive arguments
and the implementation with verifying arguments. The first type of arguments aims to
answer the question ‘Why will the strategy solve the task?’. The second type aims to
answer the question ‘Why did the strategy solve the task?’. While these two types of
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arguments focus on the strategy, no arguments focus on the conclusion and the
evaluation of it: how and in what way is this an answer to the initial question?
Inspired by the argumentation research in the field of artificial intelligence, we would
like to add evaluative arguments to the different types of arguments. Evaluative
arguments serve the purpose to persuade that something is right or wrong (Carenini
& Moore, 2006). We suggest that evaluative arguments fill the void that occurs in the
conclusion step answering the question ‘How do the conclusion answer the TS?” We
argue that evaluative arguments could function as part of control (Schoenfeld, 1985)
or review (Polya, 1945) in problem solving. This is yet to be tested in this paper.

To be able to analyse the arguments, Lithner (2008) introduce the notion of
anchoring. It is important to note that anchoring does not refer to the logical value of
the argument since it allows us to talk about reasoning that is incorrect. This helps us
to look at the foundation and how it is used (Sumpter & Hedefalk, 2015). Anchoring
Is seen as the fastening of the relevant mathematical properties, or what is the
replacement of it, of the components that you are reasoning about. These components
are objects, transformations, and concepts (Lithner, 2008). Certain mathematical
properties will be surface and other intrinsic depending on the task such as when
comparing fractions, the size of the numerator and denominator is a surface property
whereas the quotient is the intrinsic property. In Lithner’s (2008) framework,
different types of reasoning can be classified. Here, we will only focus on the
different types of arguments and their foundation and connect these to the teachers’
input, the role of the teacher.

Epistemological Move Analysis (EMA)

EMA is an analytical method that aim to generates knowledge about the role the
teacher plays in children’s meaning making. The focus of the analysis is on how the
teacher directs the children’s meaning making in different ways (Lidar, Lundqvist &
Ostman, 2006; Lundqvist, Almqvist & Ostman, 2012). When the children respond,
verbally or non-verbally, to the teacher’s direction, we call it an epistemological
move. The epistemological moves from the teacher show the children both what
counts as knowledge and appropriate ways of obtaining knowledge. The following
moves have been identified in science and technology education in primary school
and secondary school (Lidar et al., 2006): confirming, reconstructing, instructional,
generative, and reorienting moves. In the confirming move, the teacher confirms that
the children are recognizing the correct phenomenon, or confirms that the children
are undertaking a valid process, by agreeing with what the children say or do. The
reconstructing move makes the children pay attention to the “facts” they have already
noticed but have not yet perceived as valid. The instructional move gives the child a
direct and concrete instruction for how to act, to discover what is worth noticing. In
the generative move, the teacher enables the children to generate explanations by
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summarizing the important facts in the context of the activity. Finally, the reorienting
move indicates that other properties may be worth investigating and encourages the
children to take another, alternative direction.

How the teaching affects the meaning making process is studied by analysis of
practical epistemologies. Practical epistemology is used as a tool for describing the
route that meaning making takes, and the meaning making processes involved. Four
concepts are used in a practical epistemology analysis, namely: encounter, stand fast,
gap and relations (Wickman & Ostman 2002). An encounter is a specific situation in
terms of what the participators interact with and here we will focus on encounters
between children and teachers. What stands fast for the participator is identified in
their actual use of words within the practice. When the participator uses a word
without hesitation or questioning, such words are said to stand fast in the particular
situation. Standing fast is a situational description of the meaning that words have in
action (Wittgenstein, 1969/1992). When the participator hesitates, when what is
happening cannot be taken for granted, there is a gap. When a gap is noticed it can,
according to Wickman and Ostman (2002), be filled through establishing relations to
what stands fast in the encounter. Then it is possible for the participators to proceed
in their meaning making again.

APPLYING THE TWO FRAMEWORKS

The data comes from a larger set that was used to study children’s collective
mathematical reasoning. For more information of how data was collected, see
Hedefalk and Sumpter (2015). Here, we have chosen a part of a longer episode,
divided into three parts, to apply the proposed theoretical model. As a first step, the
encounter and its goal is described. This is related to TS. In this encounter, Kasper
and Karolina is playing in the woods. They have found a rock that they are trying to
climb. Teacher Kristina, marked with [T], sees this and interacts with the children.
The main TS for this encounter is: what is rock’s height in relation to other objects/
people? In the next step, we identify what epistemological moves the teacher uses
with the children in the encounter and if the actions (the practical epistemology) is
changed. We also analyze the arguments using the four step structure to identify the
different types of arguments and the foundation of these. The last step is to connect
the results from the two analysis.
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Line Person Data Argument EMA
2443 Kasper: [...] Oh, this is not so easy. Oh!
Oh! Kristina, this is not so easy
because it is so slippery. [trying
to climb a rock. Successful.]
2444 Kristina | can understand that, and do Prediction: rock taller than ~ Confirming
[TI]: you know. That one, that one is  a specific person. move
pretty big. I think it is bigger
than me.
2445 Kasper: Yes. Agreeing with previous
conclusion: Rock’s height
> teacher’s height.
2446  Kristina Should we try? Initiating TS: is rock’s Instructional
[TI]: height > teacher’s height?  move
2447  Kasper: Should we measure? SC suggested. No further
arguments.
2448  Kristina Yes, let’s measure. Agree to SC. Confirming
[T]: move.

Table 1: Part 1 of TS.

In the first part of this episode, the teacher initiated the TS by first a confirming move
and then, the actual initiation, with an instructional move. When Kasper suggests a
SC with no predictive arguments, it is not challenged by the teacher but instead the
SC is confirmed. This confirming move agrees that the SC is correct and/or relevant
however do not encourage further arguments such as predictive arguments.

Line Person Data Argument EMA
2449  Karolina: It is bigger than me anyway.  SC, Sl and C: rock is taller
[walks and stands next to the than Karolina as a result
rock and looks up, using her ~ from measuring with a
own body as a measure.] Karolina as a measure unit:
Karolina’s height < rock’s
height. No further arguments
are given.
2450  Kristina Yes, it is bigger than you Agreeing to previous Confirming
[T]: anyway. conclusion: rock is taller move.
than Karolina.
2451  Kasper And me, too. Another C: no arguments
provided. Since Karolina
and Kasper are about the
same height it is plausible to
think that Kasper compares
his own height with Karolina
and the rock. Rock taller
than Kasper.
2452  Kristina Oh look! I think it is, maybe  Another SC, Sl and C:
[T]: a bit smaller than [up] to my  teacher’s height > rock’s

nose. Oh, that is big isn’t?

height. Going against
previous conclusion.

Table 2: Part 2 of TS.

In this part, there is a solution to a sub-task of the main task. There is one move from
the teacher, a confirming move, to Karolina’s conclusion. This confirming move

PME 41 — 2017
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could function as an evaluative argument: since a teacher agrees to the conclusion,
this is a correct answer to the sub-TS. In line 2452, it could have been a reorienting

move but since there is no change in practice, this move doesn’t occur.

Line Person Data Argument EMA
2453  Kasper: But you are as big. Different C:
[meaning as tall] Disagreeing with
previous statement with
a comparison: teacher
as big as rock.
Teacher’s height =
rock’s height
2454  Kristina [T]: This stone is a bit smaller C: Teacher’s height >
than me. Isn’t? rocks height.
2455  Kasper: It is bigger, a little bit C: Rock’s height >
bigger. teacher’s height.
2456  Kristina [T]: Yes, yes...no, I am a bit C: No argument
bigger. provided. Teacher’s
height > rock’s height.
[...] [The children climb the
rock and are now sitting on
the rock]
2501  Kasper: Yes, but the house is bigger Final C. New TS and C.
than the rock. Argument not provided.
House’s height > rock’s
height.
2502  Kristina [T]: Where?
2503  Kasper: The house is bigger than House’s height > rock’s
the rock. height.
2504  Kristina [T]: The house? Yes, definitely.  Agreeing to C: provides Confirming
Because the house, | can argument using move

step in [the house], right?

transitivity: Since

House > Teacher, and
Teacher > Rock,
therefore House >
Rock.

Table 3: Part 3 of TS.

In this part, there are two incidents where a gap occurs. When the teacher argues that
the rock is up to her nose, Kasper disagrees as he says that “you are as big” (line
2453). The gap occurs as the participants in the encounter show hesitation about the
size of the rock in comparison with the teacher’s body. The comment from the
teacher does not result in a change of epistemology, i.e. a move, as the children does
not change their arguments in line with the teacher’s argument. The gap is visible
again in line 2454 and line 2455. In these situations, no further arguments are given.
When Kasper says that the house is bigger than the rock (line 2501) the teacher
confirms that it is a valid statement (line 2502) but she also gives arguments for her
conclusion. Since they are related to the TS and not SC and SI, they are evaluative
arguments functioning as control. In this chain of interactions, the gap is not filled.

3-6 PME 41 — 2017



Hedefalk and Sumpter

The relations they create to what stands fast is that the rock is smaller than the house
which is the final C to the TS.

DISCUSSION

The purpose of this paper was to find a theoretical tool to study mathematical
reasoning in settings including both formal and informal learning. The choice was to
combine EMA and Lithner’s (2008) framework. EMA allowed us to identify
different moves and using the four step structure, we could see when these moves
occur but also when gaps occurs and if these gaps were filled. It is important to stress
that gaps are not seen as needed to be filled using an ecological perspective. In this
episode, an instructional move initiated the task situation which could be compared to
hatsumon, the asking of a key question (Shimizu, 1999). This main TS were
addressed by several sub-tasks initiated by the children. There were also confirming
moves connected to evaluative arguments meaning that these arguments came from
the teacher instead of the teacher initiated these types of arguments from the children.
Such a situation would have been a generative move. EMA helped us to distinguish
between these two different situations. Here, there were no arguments based on
mathematical properties but instead a repeated statement of conclusions and the gap
was not filled. If we were to use the concepts provided by Shimizu (1999), there was
no ‘polishing up’ (neriage). Compared to Bergqvist & Lithner (2012), the proposed
analysis stresses the role of the teacher but at the same time allowing a focus on
reasoning. We see this as contribution to mathematical reasoning research theories
besides the addition of evaluative arguments.
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INSCRIPTIONS THAT MEDIATE INTERACTIVE
CONSTRUCTION OF NEW MATHEMATICAL MEANING IN A
PRIMARY MATHEMATICS CLASS

Keiko Hino
Utsunomiya University

This study explores how teachers and students construct interactions to develop new
mathematical meaning. By using the lens of discursive focus by Sfard, we discuss
herein the progress of interaction in five consecutive fifth-grade lessons on
comparing fractions with unlike denominators. In particular, we examine the written
record (i.e., on the blackboard) of student thinking, which mediates the interaction.
The result shows that the interaction progresses in three critical phases in which the
students’ early focus on the calculation moves to its meaning, which is made explicCit
by the creation of new words, and then refined by further clarification. The students
produce drawings in parallel with this process, and these drawings are repeatedly
questioned and examined and serve as a springboard for new foci.

INTRODUCTION

Research is increasing on the structure of classroom discourse to support student
thinking and understanding. Researchers have now explored the conditions of high-
quality discursive practices and classroom interactions that allow students to achieve
desirable outcomes (see, e.g., Walshaw and Anthony, 2008).

Through a case study on mathematics lessons in Japan, we have examined how
student attention is focused onto new mathematical content by the interaction
between teacher and students (Funahashi and Hino, 2014). By analyzing a classroom
episode, Hino and Koizumi (2014) show a progress of interaction in terms of how a
vague student attention to a subject is questioned and how different study targets are
presented or modified. In the present paper, to investigate the relationship between
the process of focus building and the students’ development of mathematical
meaning, | look closer at the different foci that were questioned, presented, or
modified. The modification of foci is expected to provide rich information on the
features of interaction and on the roles played by the teacher.

To capture different foci developed by the students, this paper considers the written
record of student thinking, as written on the blackboard. Stigler and Hiebert (1999)
pointed out that Japanese teachers use visual aids to “provide a record of the
problems and solution methods and principles that are discussed during the lesson”
(p. 74). In the lessons analyzed in this paper, the teacher developed detailed records
of student drawings and utterances on the blackboard and used them to organize the
interactions throughout the lessons. Such records can be conceived as inscriptions in
the sense that they are signs materially embodied in a medium (Roth and McGinn,
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1998). Furthermore, “because of their material embodiment, inscriptions (in contrast
to mental representations) are publicly and directly available, so that they are
primarily social objects” (Roth and McGinn, 1998, p. 37). As social objects, |
examine the inscriptions in the lessons from the perspective of how they provide
opportunities for students to propose and discuss different foci.

Thus, this paper addresses the following research question: How does student
attention shift toward new mathematical meaning during interactions involving
student inscriptions?

THEORETICAL FRAMEWORK

Funahashi and Hino (2014) proposed a guided focusing pattern to describe the
interactive process in which new mathematical content is introduced to students. It
comprises four phases: A proposing the problem, B eliciting student ideas, C
focusing on the object of examination, and D formulating the result on the basis of
the object. In this pattern, phases C and D are especially crucial because it is in these
phases that students come to focus more explicit attention on the important ideas that
become the foundation of new mathematical knowledge. The focus of this paper is
phase C.

To capture the progression of student attention in phase C, we use Sfard’s construct
of discursive focus (Sfard, 2000). Sfard distinguishes three components of focus used
to understand the object in question. Pronounced focus is “the word used by an
interlocutor to identify the object of her attention” (p. 304). Attended focus is “what
and how we are attending—Iooking at, listening to, and so forth—when speaking” (p.
304). Finally, intended focus is the “interlocutor’s interpretation of the pronounced
and attended foci;” this component includes “the whole cluster of experiences evoked
by these other focal components as well as all the statements he or she would be able
[to] make on the entity in question, even if they have not appeared in the present
exchange” (p. 304). The three ingredients of focus are considered to indicate an
actual, context-dependent discursive occurrence. In the commognitive approach to
study learning, they are made use of articulating discursive objects and examining
changes in student discourse (Sfard, 2008; Tabach and Nachlieli, 2015).

The three targets help us explore student-attention paths and the guidance given by
the teacher. In the present paper, | further analyze the interaction with another
experienced teacher in a prolonged discussion. By looking at the inscriptions working
in the conversation, | analyze an awkward process of focus building.

RESEARCH METHOD

This study uses data from nine consecutive lessons on comparing fractions with
unlike denominators. The lessons were taught by Mr. Taka (all the names herein are
pseudonyms) in a university-affiliated primary school in Tokyo. The lessons were
conducted as part of the Learner’s Perspective Study—Primary (Fujii, 2013). The data
were collected from the lessons and from interviews with the teacher and focus
students (see Fujii, 2013, for a detailed description of the data-collection procedure).
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The objectives of these lessons were to understand that fractions can be compared if a
common unit fraction is found and to understand the methods to compare fractions by
finding a common denominator. In the interview, Mr. Taka repeatedly stressed the
idea of finding a common unit fraction and remeasuring the original fraction in terms
of the new unit fraction. Once the new unit fraction is found, one can compare
fractions and add or subtract them in the same way as whole numbers. Mr. Taka said
that these concepts are important to build up an understanding of fractions as
numbers.

Table 1 briefly describes the tasks and activities in the nine lessons. To direct the
students toward his lesson objectives, Mr. Taka addressed repeatedly the meaning
and ways of making equivalent fractions in the context of comparing fractions. The
students continued to elaborate the explanation by using figural representations.

Lesson Task and activity

1 Which is larger 2/4L, 3/4L, or 2/3L? Students explained 2/4<3/4 and 2/4<2/3.

2 For 3/4 and 2/3, a student gave a way of finding common numerator.

3 For 3/5 and 2/3, students discussed how to justify the way of finding common
numerators.

4 Which is larger, 2/5 or 3/8? Students tried to further justify the approach by
clarifying the meaning of “x3” or “+3” to make 6/15 from 2/5.

5 Discussion continued. The word unit fraction was introduced by Mr. Taka to clarify
the object of discussion.

6 Students applied the same approach to 3/8 and justified the approach to make 6/16
from 3/8.

7 Students expressed and explained 2/5 = 6/15 = 12/30 by using figural
representations.

8 Which is larger, 3/4 or 2/3? Students justified the method of finding common
denominators.

9 Which is larger, 1/2 or 1/3, and by how much? Students explained their ways and
found that the common denominator better clarifies the difference between the two
fractions.

Table 1: Brief description of tasks and activities.

The analysis was done qualitatively by catching the shift of student foci on the
construction of equivalent fractions. In so doing, I identified and categorized student
inscriptions on the blackboard and examined the ways in which new inscriptions are
produced from older ones. Some inscriptions were referred to by several students and
the teacher in their discussions. For those anchored inscriptions, | examined closely
how the focus is built and what role the teacher plays.

PROGRESS OF INTERACTION WITH INSCRIPTIONS DEVELOPED BY
STUDENTS

This section illustrates progress of interactions between teacher and students in
lessons 1 to 5 (L1-5) because these lessons are especially rich from the perspective of
building focus toward the remeasurement of a fraction. Due to space limitation, |
briefly illustrate some of the inscriptions and the interactions they mediated.
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Interaction with early inscription

Two early inscriptions were developed by the students to explain how to make an
equivalent fraction. One was proposed by Miku in L1 when they were comparing
2/4L and 2/3L. She explained why 2/4L.<2/3L by using her inscription, which was
drawn by Mr. Taka on the blackboard (Figure 1).
Miku: The least common multiple between 3 and 4 is 12. So, | divided a rectangle into
12. | connected 12 blocks. This is one block [pointing to 1/12 part, Figure
1 bottom]. [Mr. Taka wrote a block by red.] For 2/4, | divided the blocks
into 4 chunks, and 1, 2, well, | marked here [pointing to the area of 2/4 in
Figure 1 top]. [She explained 2/3 in the same way.] Then we know that
2/3 is larger by the difference of 2 blocks. [Mr. Taka drew a dotted line.]

Figure 1: Tape diagram by Miku

Miku said, “The least common multiple between 3 and 4 is 12. So, I divided a
rectangle into 12.” She first did the calculation and then expressed its results via the
tape diagram. The diagram is subordinate to the calculation in the sense that it
expresses only the result of the calculation. Miku did not discuss changing the unit
fraction, either. Therefore, at this point, her focus was likely on the numerical
calculation. Remeasuring was not yet the object of her attention. Similar observations
were made of the other early inscription.

Based on these inscriptions, Mr. Taka asked for the reasoning behind their calculation.
For example, for Miku’s explanation, he said, “Why must you make the denominators
the same?” However, the students only repeated the calculation procedure or insisted
that the tape diagram clearly showed the result.

Emergence of focus on remeasuring the fraction

In L3, the students compared the two fractions 3/5 and 2/3. After individual activity,
they presented their reasoning for claiming 3/5<2/3. Ino gave the following
procedural reasoning: “I found a common numerator. Six is the smallest number that
divides both 2 and 3, so | used 6. Since 3 was doubled and became 6, so 5 was also
doubled. [She continued her explanation.]” Mr. Taka
asked if someone could show her procedure in a
drawing. Ida gave an explanation based on circles
(Figure 2 shows part of Ida’s inscription).

Reflecting on Ida’s drawing, Mr. Taka pointed out that
the circle drawing did not explain the procedure given  Figure 2: A circle by Ida

by Ino. Ino first doubled the numerator 3 and applied

the same procedure to the denominator 5. However, Ida first divided a circle into 10
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parts (denominator) and shaded 6 of them (numerator). This question invited the
students to give further explanations. Among them, Naka showed an inscription
(Figure 3).
Naka: First is 6, so, now, here we have three equal parts, the red part is divided into
three equal parts, so we make them six equal parts. [In place of Naka, Mr.
Taka divided each of the three red parts in half (see 3-1 in Figure 3)] ...
Well, it became 6 equal parts. But | think this state (3-1) is 6/5.
Mr. Taka: Is this OK as a fraction?
Naka: No, it isn’t.
Mr. Taka: Why isn’t it OK?
A student: Because it is not divided evenly.
Naka: But this state expresses exactly that case (with lauder voice). It came to be 6/5,
but, we must do the same thing all over, doubling and tripling them, too
(referring to 5 and 3 in 3/5 and 2/3.) We draw lines for these parts, too.
[He moved his finger straight to divide each of the two unshaded parts in
half.]
Mr. Taka: [By following Naka’s instruction, he wrote 3-2 in Figure 3.]

3-2

Figure 3: Three circles by Naka
The inscription 3-1 evoked different reactions from the students. Some expressed
their dissatisfaction with the unevenly divided circle. Others understood Naka’s
intention and said, for example, “This expresses the state when only the numerator is
doubled.” Mr. Taka settled the argument by saying “This is not expressing 6/5 as it is
.... This is the figure that was made to explain how 3/5 becomes 6/10.”
Naka’s inscriptions (Figure 3) were the first that expressed an attending procedure of
remeasuring the fraction using a new unit fraction, i.e., (i) by evenly dividing the part
that represents the numerator of the original fraction such that the result becomes the
part that represents the numerator of the equivalent fraction and (ii) using the new
unit fraction to divide the remaining part. It deliberately accompanied an
inappropriate drawing of the fraction. The inscription caused some debate between
the students. Yet, it contributed to attracting student attention to the procedure of
remeasurement.
Creation of pronounced focus by student

In L4, the class compared the fractions 2/5 and 3/8. To clarify the object of the
explanation, they concentrated on 2/5 and explained their reasoning by using
drawings to show why the denominator 5 must be tripled once the numerator 2 is
tripled. Initially, the students again proposed early inscriptions in which the drawings
they developed only showed the result of the calculation. When a student asked about
the connection between the drawing and the calculation, several students attempted to
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explain how to make 6/15 from 2/5 by using an inscription similar to that shown in
Figure 3 (Figure 4 shows part of it). In refining the explanation, Naka participated in
the conversation. The transcript below details part of the interaction between Naka
and the teacher.

4-1

4-3

Figure 4: Two circles that mediated the interaction

Naka: The size of a whole (meaning 2/5) is not changing, but, the size of one numerator
Is from 1/5 to, ..., well, it was, well, 1/5 was evenly divided by 3. [Mr.
Taka shaded the part 1/5 by red. (4-1 in Figure 4)] ... well, 1/5 became
1/15...

Mr. Taka: Yes, but you are talking about this, aren’t you? [Mr. Taka drew arrows (4-2).]

Naka: 1/5, oh, one numerator ... [Mr. Taka repeated 1/5] was divided evenly by 3.

Mr. Taka: Can we call this numerator?

Naka: One numerator.

Mr. Taka: One numerator. (For the class,) Do you understand? Now you know? Do you
understand what he is talking about?

A student: It is not numerator.

Mr. Taka: It is not numerator. What he said was this, one numerator //

Naka : [Is it] moto (meaning base in Japanese)?

Mr. Taka: 1/5 became 1/15. You said moto?

Naka : Yeah, moto, ..., well, the left part, ..., the 1/5... [Mr. Taka repeated moto.]

Naka : ... I mean there are two 1/5s. Well, I think 1/5 is the moto [of 2/5] ... There are
two 1/5s ... And, for the new one ... [Mr. Taka pointed to the 6/15 (4-3 in
Figure 4)], 1/15 is the moto, ... there are six of them (meaning moto).

During the conversation, Naka created a word moto, which he brought from everyday
language, to refer to the unit fraction. From the beginning, Naka tried explaining that
the size of the unit fraction changes although the size of the fraction itself does not
change. The pronounced focus moto was created by his need to clearly convey to Mr.
Taka and his peers the distinction between “fraction as a whole (or numerator)” and
“one numerator.” In the last utterance, he narrated 2/5 and 15/6 in terms of moto.
Owing to the familiarity of its usage, the procedure of remeasurement became
clearer.

Talking about calculation in terms of new focus of remeasurement

The explanation continued in L5. Mr. Taka led the students to connect (i) the process
of remeasuring the fraction with a new unit fraction and (ii) the calculation
procedure.
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He asked the students the following questions: “This part was divided evenly by
three. What do you call this [tracing the outline of 3/15 of the circle 4-3 in Figure
41?7 The students expressed it in different ways; for example, quantity of numerator,
sector’s central angle, or arc. When one student said area, Mr. Taka repeated this
answer: “Yes, it is area or how large it is.” They ensured that the area became smaller
upon being divided by three. Mr. Taka then asked “as a result, what was multiplied
by three?”” Several students replied that the number was increased. At this point, Mr.
Taka introduced the word unit fraction, and summarized the discussion as follows:
Mr. Taka: The reason why the numerator is multiplied by three is that the unit fraction
became smaller. The size of the whole (meaning 2/5) is unchanged. But
the number of pieces increased [because] the area of one piece became
smaller.

After this, Mr. Taka asked the students why the denominator was multiplied by three.
After discussion, Koma finally gave the explanation: “Since a unit fraction was
divided by three, I think there are five [pieces that were] divided by three.”

The students had difficulty making an explicit connection between the
remeasurement of the fraction (a focus they had been building) and the procedure of
multiplying both numerator and denominator by the same number. Mr. Taka focused
the students’ attention on distinguishing between the “area” and the “number.” These
pronounced foci clarified for the students that changing moto changed both the area
and the number. Attending to these two aspects seems to enable the students to build
such a connection.

DISCUSSION

This paper illustrates the process in which the student focus shifts toward the target
that reflects the objectives of the lessons. The shifting process contains three critical
phases: First, the students’ object of attention changes from a procedure for
calculating a common numerator or denominator to the meaning of this procedure.
This major shift is enabled by Naka’s proposal of remeasuring the fraction with a
new unit fraction that accompanies an inappropriate figure of the fraction. Second, a
pronounced focus moto was proposed, which was created by Naka’s need to more
explicitly explain the concepts to his peers. Third, the new focus was connected with
and used to talk about the method of making equivalent fractions. Here additional
pronounced foci were produced, which seem to contribute to refining the students’
procedure.

The three phases are consistent with the result of our previous analysis (see, e.g.,
Hino and Koizumi, 2014). A common feature of this process is that the attended
focus is repeatedly negotiated and refined by calling for new pronounced foci. By
analyzing the inscriptions made by students during the discussions over five lessons,
this paper reveals that the process advances nonlinearly and fluctuates between newer
and older inscriptions. A salient observation is the prevalence of the students’
attention to the calculation procedure. Early inscriptions reappeared over and over.
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Nevertheless, each time one appeared in a student inscription, it was questioned or
problematized either by the teacher or by the students.

The student inscriptions provided fruitful opportunities for a disequilibrium to
emerge between the focal ingredients that were conceived as the major drive of
discursive growth (Sfard, 2000). Every student inscription reflects strongly on his or
her current understanding of fractions and of equivalent fractions. His or her intended
focus is reflected not only in the layout of elements but also in how they are
inscribed. The act of drawing on the blackboard publicizes the intended focus and
thereby invites different interpretations by other students. In this way, as social
objects, inscriptions enable an iterative and dialectical process between signs and
referents (Roth and McGinn, 1998) and serve to impel discursive practice.

Since this work deals with the first five lessons, the analysis will be continued by
considering more lessons from the point of view of focus building. Furthermore, note
that the teacher gave high priority to the student inscriptions and used them as a
crucial pedagogical device. The shift of focus was made possible by his conscious
lesson objectives and consistent support and guidance of the students toward these
objectives (Funahashi & Hino, 2014). Articulation of this aspect is a productive
future task.
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PROVING SUBGROUP’S CLOSURE UNDER INVERSES:
COMMOGNITIVE ANALYSIS OF STUDENTS’ RESPONSES

Marios loannou

Alexander College, Cyprus

Encounter with the Subgroup Test is, more often than not, the first major challenge
that undergraduate mathematics students face in their first Group Theory course.
This study focuses on students’ responses to the proof of one of the tests’ conditions,
namely closure under inverses. Analysis suggests that there have emerged
inaccuracies of two categories: the first is related to the involved mathematical
concepts per se and the other with the actual process of proof. Additionally, analysis
suggests that incomplete learning of these concepts has an unfavourable impact on
the process of proving closure under inverses. For the purposes of this study there
has been used the Commognitive Theoretical Framework.

INTRODUCTION

Subgroup Test is one of the first routines undergraduate students need to cope with in
their first engagement with Group Theory, where they need to prove the three
conditions, namely, non-emptiness, closure under operation and closure under
inverses. Often, though, this apparently simple task proves to be an arduous
endeavour, partly due to the abstract nature of Group Theory (Hazzan, 2001). In fact,
Group Theory “is the first course in which students must go beyond ‘imitative
behavior patterns’ for mimicking the solution of a large number of variations on a
small number of themes” (Dubinsky et al., 1994, p268). A typical first Group Theory
module requires a deep understanding of the abstract concepts involved, namely
group, subgroup, coset etc. In addition, the deductive way of teaching Group Theory
is unfamiliar to students and, in order to achieve mastery of the subject, it is
necessary to “think selectively about its entities, paying attention to those aspects
consistent with the context and ignoring those that are irrelevant” (Barbeau, 1995,
p140). Moreover, Gueudet (2008) suggests that many pedagogical issues emerging in
undergraduate Mathematics Education are based on the transition from secondary to
tertiary Mathematics, which can still occur in their second year. In fact, student
difficulties in Abstract Algebra may be an indication of problematic transition,
mainly due to the particular nature of this module (loannou, 2012). The aim of this
study is to investigate the undergraduate mathematics students’ responses to the
concept of subgroup, and in particular in proving closure under inverses, during their
first encounter with Group Theory. For the purposes of this study, there has been
used the Commognitive Theoretical Framework (CTF) (Sfard, 2008), due to its great
potential to investigate mathematical learning in both object level and meta-
discursive level (Presmeg, 2016).
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THEORETICAL FRAMEWORK

CTF is a coherent and rigorous theory for thinking about thinking, grounded in
classical Discourse Analysis. It involves a number of different notions such as
metaphor, thinking, communication, and cognition (Sfard, 2008). In mathematical
discourse, objects are discursive constructs and form part of the discourse.
Mathematics is an autopoietic system of discourse, namely “a system that contains
the objects of talk along with the talk itself and that grows incessantly ‘from inside’
when new objects are added one after another” (Sfard, 2008, p129). Moreover, CTF
defines discursive characteristics of mathematics as the word use, visual mediators,
narratives, and routines with their associated metarules, namely the how and the
when of the routine. In addition, it involves the various objects of mathematical
discourse such as the signifiers, realisation trees, realisations, primary objects and
discursive objects. It also involves the constructs of object-level and metalevel
rules. Thinking “is an individualized version of (interpersonal) communicating”
(Sfard, 2008, p81l). Contrary to the acquisitionist approaches, participationists’
ontological tenets propose to consider thinking as an act (not necessarily
interpersonal) of communication, rather than a step primary to communication (Nardi
etal., 2014).

Mathematical discourse involves certain objects of different categories and
characteristics. Primary object (p-object) is defined as “any perceptually accessible
entity existing independently of human discourses, and this includes the things we
can see and touch (material objects, pictures) as well as those that can only be heard
(sounds)” (Sfard, 2008, p169). Simple discursive objects (simple d-objects) “arise
in the process of proper naming (baptizing): assigning a noun or other noun-like
symbolic artefact to a specific primary object. In this process, a pair <noun or
pronoun, specific primary object> is created. The first element of the pair, the
signifier, can now be used in communication about the other object in the pair, which
counts as the signifier’s only realization. Compound discursive objects (d-objects)
arise by “according a noun or pronoun to extant objects, either discursive or
primary.” In the context of this study, subgroups are an example of compound d-
objects. The (discursive) object signified by S in a given discourse is defined as “the
realization tree of S within this discourse.” (Sfard, 2008, p166)

Sfard (2008) describes two distinct categories of learning, namely the object-level
and the metalevel learning. “Object-level learning [...] expresses itself in the
expansion of the existing discourse attained through extending a vocabulary,
constructing new routines, and producing new endorsed narratives; this learning,
therefore results in endogenous expansion of the discourse” (Sfard, 2008, p253). In
addition, “metalevel learning, which involves changes in metarules of the discourse
[...] is usually related to exogenous change in discourse. This change means that
some familiar tasks, such as, say, defining a word or identifying geometric figures,
will now be done in a different, unfamiliar way and that certain familiar words will
change their uses” (Sfard, 2008, p254).
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LITERATURE REVIEW

Research in the learning of Group Theory is relatively scarce compared to other
university mathematics fields, such as Calculus, Linear Algebra or Analysis. Even
more limited is the commognitive analysis of conceptual and learning issues (Nardi et
al., 2014). In the context of this research strand, loannou (2012) has, among other
issues, focused on the intertwined nature of object-level and metalevel learning in
Group Theory and the commaognitive conflicts that emerge.

The first reports on the learning of Group Theory appeared in the early 1990’s.
Several studies, following mostly a constructivist approach, and within the Piagetian
tradition of studying the cognitive processes, examined students’ cognitive
development and analysed the emerging difficulties in the process of learning certain
group-theoretic concepts. The construction of the newly introduced d-object of group
Is often an arduous task for novice students and causes serious difficulties in the
transition from the informal secondary education mathematics to the formalism of
undergraduate mathematics (Nardi, 2000). Students’ difficulty in the engagement
with the Group Theory concepts is partly grounded on historical and epistemological
factors: “the problems from which these concepts arose in an essential manner are not
accessible to students who are beginning to study (expected to understand) the
concepts today” (Robert and Schwarzenberger, 1991, p129). Nowadays, the
presentation of the fundamental concepts of Group Theory, namely group, subgroup,
coset, quotient group, etc. is “historically decontextualized” (Nardi, 2000, p169),
since historically the fundamental concepts of Group Theory were permutation and
symmetry. Moreover, this chasm of ontological and historical development proves to
be of significant importance in the metalevel development of the group-theoretic
discourse for novice students.

Research suggests that students’ understanding of the concepts of group proves often
primitive at the beginning, predominantly based on their conception of a set. An
important step in the development of the understanding of the concept of group is
when the student “singles out the binary operation and focuses on its function aspect”
(Dubinsky et al., 1994, p292). Students often have the tendency to consider group as
a “special set”, ignoring the role of binary operation. lannone and Nardi (2002)
suggest that this conceptualisation of group has two implications: the students’
occasional disregard for checking associativity and their neglect of the inner structure
of a group.

An often-occurring confusion amongst novice students is related to the order of the
group &' and the order of its element g. This is partly based on student inexperience,
their problematic perception of the symbolisation used and of the group operation.
The use of semantic abbreviations and symbolisation can be particularly problematic
at the beginning of their study. Nardi (2000) suggests that there are both linguistic
and conceptual interpretations of students’ difficulty with the notion of order of an
element of the group. The role of symbolisation is particularly important in the
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learning of Group Theory, and problematic conception of the symbols used probably
causes confusion in other instances.

A distinctive characteristic of university mathematics is the production of rigorous
and consistent proofs. Proof production is far from a straightforward task to analyse
and identify the difficulties students face. These difficulties have been extensively
investigated for various levels of student expertise. Weber (2001) categorises student
difficulties with proofs into two classes: the first is related to the students’ difficulty
to have an accurate and clear conception of what comprises a mathematical proof,
and the second is related to students’ difficulty to understand a mathematical
proposition or a concept and therefore systematically misuse it.

METHODOLOGY

This study is part of a larger research project, which conducted a close examination
of Year 2 mathematics students’ conceptual difficulties and the emerging learning
and communicational aspects in their first encounter with Group Theory. The module
was taught in a research-intensive mathematics department in the United Kingdom, in
the spring semester of a recent academic year.

The Abstract Algebra (Group Theory and Ring Theory) module was mandatory for
Year 2 mathematics undergraduate students, and a total of 78 students attended it.
The module was spread over 10 weeks, with 20 one-hour lectures and three cycles of
seminars in weeks 3, 6 and 10 of the semester. The role of the seminars was mainly
to support the students with their coursework. There were 4 seminar groups, and the
sessions were each facilitated by a seminar leader, a full-time faculty member of the
school, and a seminar assistant, who was a doctorate student in the mathematics
department. All members of the teaching team were pure mathematicians.

The lectures consisted largely of exposition by the lecturer, a very experienced pure
mathematician, and there was not much interaction between the lecturer and the
students. During the lecture, he wrote self-contained notes on the blackboard, while
commenting orally at the same time. Usually, he wrote on the blackboard without
looking at his handwritten notes. In the seminars, the students were supposed to
work on problem sheets, which were usually distributed to the students a week before
the seminars. The students had the opportunity to ask the seminar leaders and
assistants about anything they had a problem with and to receive help. The module
assessment was predominantly exam-based (80%). In addition, the students had to
hand in a threefold piece of coursework (20%) by the end of the semester.

The gathered data included the following: Lecture observation field notes, lecture
notes (notes of the lecturer as given on the blackboard), audio-recordings of the 20
lectures, audio-recordings of the 21 seminars, 39 student interviews (13 volunteers
who gave 3 interviews each), 15 members of staff’s interviews (5 members of staff,
namely the lecturer, two seminar leaders and two seminar assistants, who gave 3
interviews each), student coursework, markers’ comments on student coursework,
and student examination scripts. For the purposes of this study, the collected data of
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the 13 volunteers has been scrutinised. Finally, all emerging ethical issues during the
data collection and analysis, namely, issues of power, equal opportunities, right to
withdraw, procedures of complain, confidentiality, anonymity, participant consent,
sensitive issues in interviews, etc., have been addressed accordingly.

DATA ANALYSIS

Incidences of incomplete mathematical learning appeared in eight of the thirteen
(8/13) students’ attempts to prove closure under inverses. Due to limited space, there
will be presented only three characteristic examples of such incidences.

The most common inaccuracy, which occurred, was related to the proof of the
uniqueness of the inverse. For instance, in an attempt to solve the following task:
“For any nt £ M the sets {g € GL{n, K): Det({g) = 1} and {g € GL{n, ). gg” = 1.}
are subgroups of &L, ), Student A, successfully applies the routine for a set to be
a subgroup for the first set, i.e. X = {g € GL{n, K} Det{g) = 1}. Her solution
indicates complete object-level learning of the d-objects involved, successful
application of the governing metarules, as well as good connectivity across different
mathematical discourses, such as Linear Algebra. For the second set,
W =1{g e CLin &) gg' = I}, she successfully applies the routine and proves non-
emptiness and closure under operation, and for the closure under inverses she
correctly states that the inverse in this case is the transpose. Yet she has omitted to
clarify the uniqueness of inverse taken both from the right and the left as shown
below. Without this clarification the algebraic manipulations would be unjustified.

Uy

\s dhe  lruerse an € lwmenx?

For wWEW

! W' » e wnverse — %« wJ g,o‘w
i berouse ww =T, et WeFrgs o
4,_ Ay

Al
bOT (\01'\

i WD =Ty
, Sug (WTIT=w =7 WTew.
Hence Wwre W suen Bk T x D wesse
w € \W.

LOT(O' %mmw U\)TN: Ir\:‘/d—rw
If\

: 5
Thargere. W< C;L(f_\,,l‘lz\‘/

Figure 1: Part of Student A’s solution

A second incidence of incomplete mathematical learning regarding closure under
inverses appeared in the coursework of Student B. In her attempt to solve the
following task “Suppose X is a non-empty set and & =< Symi{X).Let « £X and
I =1{g € &: gia) = a} Prove that I is a subgroup of ;.”, she demonstrates a rather
complete object-level learning of the involved d-objects. In addition, she
successfully uses the condition that & £ X and { = {g € &: g{a) = a} to prove that
I is non-empty and that the closure under operation holds. Nevertheless, her attempt
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to prove that {f is closed under inverses is problematic, due to problematic
application of the governing metalevel rules. She assumed that since & * € &7, it is
given that it belongs to I as well, instead of showing it. Instead she should apply
& *in both sides of g{a) = @ and get that @ = g *(&). This suggests incomplete
metalevel learning and consequently inaccurate application of metarules, particularly
regarding the precision and rigor that mathematical reasoning in this advanced
context requires.

(losed wnder ineses. WMWM
W wmand b e

Take g lg el | Glo)=0 =, S aguls
- *‘(cQ = 0. b G hadort >

b etiod o' & H

%(3“(&\3 = qlo) =a.
o B desed  wnder inverses

Figure 2: Part of Student B’s solution

Apart from Student B’s problematic application of the governing metarules, in this
particular exercise her performance seems to be unfavourably influenced by
incomplete object-level learning, particularly at the initial stages of her attempt to
solve the task, as the following interview excerpt suggests.

Um... but I did manage to sort it out eventually — I just think — I found it hard cos — | was
going between X and & and H and A, there was just a lot of — different groups, that | was
trying to get my head round, but um, I did manage to sort that out eventually. Student B

Student B’s object-level disengagement at this initial stage is related to the
identification of the difference between the various sets and the groups, which would
allow her to apply with facility the routine for a set to be a subgroup.

Similarly, incomplete object-level learning seems to occasionally, but not necessarily,
have negative impact in the application of the governing metarules. This is obvious
in Student C’s attempt to prove closure under inverses in the following mathematical
task: “Suppose (7,1 is a group and {f, K are subgroups of &. Show that {f n K is a
subgroup of .

In Figure 3, one can detect incomplete object-level learning of the involved d-objects.
In particular, there are indications of problematic engagement with the d-object of
subgroup as such and its elements. These indications are particularly obvious in the
notation used in the narrative {ifi * M kk %), since Student C possibly does not
realise whatfith * and k& ' represent, and the circumstances under which the
operation of intersection can be used.
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Figure 3: Part of Student C’s solution

In addition to the aforementioned issues with object-level learning, there are also
indications of problematic engagement with metarules. In particular, Student C seems
not to have a clear idea of how and when his proof needs to be further developed,
indicating some difficulty with the applicability conditions of the routine, as well as
the how of the routine and the ‘course of action’. This is obvious in his attempt to
prove closure under inverses, since he does not seem to be fully aware that he has to
prove that ¢ * € ff n K if g € {1 n &. Moreover, Student C expressed his concern
about applying the particular routine and connected it with his ability to communicate
the proof in a way that was comprehensible to others.

But | — yeah, again, it might be — me not — it makes perfect sense, but I might not... make
it — it’s just like you know — I can understand it, but it’s trying to, I mean because proof is
really trying to make someone else understand it, and | say, possibly | do struggle at —
giving, you know, making someone else understand it by writing it down, but, so it’s
where | might lose some marks, but... Student C

More generally, Student C’s writing as seen in his scripts is personalised with signs
of tentativeness on many occasions. Tentative writing occurs when his mathematical
learning is incomplete. In these instances, his solutions are nonlinear and messy.

CONCLUSION

The subgroup test is the first major routine that undergraduate mathematics students
are invited to be engaged with in the context of Group Theory. This study has
focused on the student’s responses regarding the proof of closure under inverses,
adopting a participationist perspective. In agreement with other studies in the field,
there have emerged difficulties that are related to the object-level learning of the
concepts of group, subgroup and set (in agreement with lannone and Nardi, (2002);
Robert and Schwarzenberger, (1991)), as well as difficulties that are related to the
application of metarules and the level of rigor that the process of proof requires (in
agreement with Weber, (2001); Nardi (2000)). The last characteristic example of
Student C, indicates that incompleteness of object-level learning has an unfavourable
Impact on the application of metarules and the proof production overall.
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PRE-SERVICE TEACHERS’ USES OF A LEARNING
TRAJECTORY TO NOTICE STUDENTS’ FRACTIONAL
REASONING

Pere lvars, Ceneida Fernandez and Salvador Llinares
Universidad de Alicante, Spain

Learning Trajectories are seen as a tool that can help pre-service teachers (PTs)
focus on students’ mathematical thinking to make instructional decisions. The aim of
this study is to examine PTs’ use of a Learning Trajectory for fractions to notice
students’ fractional reasoning. QOur results show that the use of a Learning
Trajectory for fractions as a scaffold allowed PTs to interpret students’ fractional
reasoning. However, they interpreted students’ fractional reasoning in different
ways, differing in the professional discourse generated. Our results also suggest a
relationship between the way in which PTs interpreted students’ fractional reasoning
and the instructional decisions made. PTs who used a more detailed mathematical
discourse proposed more activities to help students progress in their fractional
reasoning.

NOTICING AND LEARNING TRAJECTORIES

Noticing what is happening in a classroom is an important skill that teachers should
acquire to actively respond to complex and challenging situations that arise in their
classrooms. Although the skill of noticing has been conceptualised from different
perspectives (Jacobs, Lamb, & Philipp, 2010; Mason, 2002; van Es, & Sherin, 2002),
we are going to focus on the conceptualisation given by Mason (2002; 2011). For
him “noticing is a movement or shift of attention” (Mason, 2011, p. 45) and he has
identified different ways in which people can attend (p.47):

Holding wholes is attending by gazing at something without particularly discerning
details.

Discerning details is picking out bits, discriminating this from that, decomposing or
subdividing and so distinguish and, hence, creating things.

Recognizing relationships is becoming aware of sameness and difference or other
relationships among the discerned details in the situation.

Perceiving properties is becoming aware of particular relationships as instances of
properties that could hold in other situations.

Reasoning on the basis of agreed properties is going beyond the assembling of things
you think you know, intuit, or induce must be true in order to use previously justified
properties as the basis for convincing yourself and others, leading to reasoning from
definitions and axioms.

3-25
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Jacobs et al. (2010) particularised Mason’s work conceptualising the skill of noticing
students’ mathematical thinking as a three interrelated skills: attending to students
strategies (discerning details), interpreting students’ mathematical thinking taking
into account the details identified before (recognising relationships) and deciding
how to respond on the basis of students’ reasoning (perceiving properties). However,
recent research has shown that the skill of deciding how to respond on the basis of
students’ mathematical thinking is the most difficult one to develop in teacher
education programs (Choy, 2013) since “the specificity of what teachers notice while
necessary, is not sufficient for improved practices” (p. 187). In other words, teachers
can be very specific about what they notice without having a teaching decision
according to what it has been noticed.

On the other hand, previous research has shown that the use of Learning Trajectories
could focus teachers’ attention on students’ mathematical thinking and that when pre-
service teachers attend to students learning progressions in a particular mathematical
domain, they are better in making decisions about next instructional steps (Wilson,
Mojica, & Confrey, 2013). In this context, students’ Learning Trajectories could help
pre-service teachers interpret students’ mathematical reasoning and respond with
appropriate instruction (Sztajn, Confrey, Wilson, & Edgington, 2012). Furthermore,
the use of Learning Trajectories could provide pre-service teachers with a
mathematical language to describe students’ mathematical thinking (Wickstrom,
Baek, Barrett, Cullen, & Tobias, 2012).

Our study is embedded in these two lines of research and analyses how pre-service
teachers’ learning of a Learning Trajectory for fractions helps them to notice
students’ fractional reasoning. Our research question is: to what extent do pre-service
teachers use a Learning Trajectory for fractions to interpret students’ fractional
reasoning and make instructional decisions on the basis of students’ reasoning?

A Learning Trajectory for fractions

A Learning Trajectory (LT) is a way of articulating the students’ conceptual progress
from informal thinking to a more sophisticated mathematical reasoning, and consists
of three components: (i) a learning goal, (ii) a hypothetical learning process and (iii)
learning activities (Simon, 1995). The learning goal of the Learning Trajectory for
fractions used in this study takes into account the Spanish Primary Education’s
curriculum: the meaning of fraction as a part-whole relation and its different
representations and, the meaning of fractions operations. The student’s learning
process takes into account how the student’s fractional reasoning develops over time
and is organised in six proficiency levels of fractional reasoning (Battista, 2012;
Steffe, 2004; Steffe, & Olive, 2009) (Figure 1). Regarding to the learning activities,
the Learning Trajectory for fractions used in this study includes activities to help
students progress to a more sophisticated level of reasoning, particularly, activities of
identifying, representing, and comparing fractions, and operations with fractions in
both, discrete and continuous contexts.
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In this study, we focus on pre-service primary teachers’ uses of the three initial
proficiency levels of the Learning Trajectory for fractions. These levels are focused
on the meaning of fraction as a part-whole and its representations: the recognition
that the parts of the whole must be congruent, the representation and identification of
fractions in continuous and discrete contexts and the identification of equivalent
fractions recognising that a part can be divided into other parts.

Meaning of fraction and its different representations Meaning of fractions operations

Level 1 Level 2 | T IR M Level 5 Level 6

*have difficulties erecognise that eidentify and *can solve simple +can operate and *can use pictures
in recognising the parts could be represent arithmetic solve arithmetic  to explain the
that the parts of  different in form fractions in problems with problems operations.
the whole must  but congruentin  discrete contexts the help ofa symbolically, »do not need a
be equal relation to the recognising that  guide or support identifying guide to

whole. the groups must «can do equivalent patterns. represent the
*identify and be equal (parts of fractions *can graphically = operations with
represent a collection). srecogcnise that the justify what they fractions
fractions in a *recognise that a partg must be do but in simple

continuous part could be congruent to situations.

context butthey  divided into other join?separate sare able to

ha_ve d_ifﬁculties parts. ~identify the interpret the

with discrete srecognise that the fraction as remainder ofa

contexts. size of a part operator “a/b of  division of

*begin to use unit decreases when /4 fractions

fractions as the number of (w0 types of

1terative units parts increase ey

reasoning

Figure 1: Learning Trajectory proficiency levels
METHOD
Participants and the task

Participants were 95 pre-service primary school teachers (PTs) enrolled in their third
year of a degree to become primary school teachers. They were enrolled in a subject
related to the teaching and learning of mathematics in primary school. In previous
courses, these PTs had participated in a subject related to Numerical Sense and in a
subject related to Geometrical Sense.

The task consists of the answers of three couples of primary school students that have
a different fractional reasoning proficiency level in an activity of identifying fractions
(Figure 2) (to see a complete version of the task, lvars, Fernandez, & Llinares, 2016).
The answer of Xavi and Victor (couple 1) shows characteristics of the level 1 since
they do not take into account that the parts of a whole must be congruent. The answer
of Joan and Tere (couple 2) reflects characteristics of the level 2 since they take into
account that the parts must be congruent in continuous contexts but they still do not
recognise that a part can be divided into other parts. This last characteristic is
evidenced when they say that Figure E is not three quarters because it is divided into
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24 equal parts and there are 18 shaded. Finally, Alvaro and Félix (couple 3) take into
account that the parts must be congruent and that a part can be divided into other
parts (they consider Figures B, D, E, and F as representations of %4).

1.  Which of the foIIowing diagrams represent %. Explain your answers.
[ I

[fﬁ J 1 @00
/ j 0@ B

% B i 0 [

Figure 2: Activity of identifying fractions (adapted from Battista, 2012)

Considering the answers of the three couples of students, pre-service teachers had to
answer the next four questions.

e  Q1- Describe the activity taking into account a learning objective: what are
the mathematical elements that a student needs to know to solve it?

e  Q2- Describe how each couple of students has solved the problem indicating
how they have used the mathematical elements involved and the difficulties
they have had with them.

e Q3- What are the characteristics of students’ reasoning (Learning
Trajectory) that can be inferred from their answers? Explain your answer.

e  Q4- How could you respond to these students? Propose a learning objective
and an activity to help students progress in their fractional reasoning.

Pre-service teachers were provided with information about the mathematical
elements of the fraction concept and the Learning Trajectory for fractions (Figure 1).
We hypothesise that these questions and the theoretical information could focus pre-
service teachers’ attention on identifying the relevant mathematical elements of
students’ answers (discerning details); on interpreting these answers (recognising
relationships between the mathematical elements and students’ reasoning) and on
deciding how to respond on the basis of students’ mathematical reasoning.

Analysis

We analysed PTs’ answers taking into account three aspects. Firstly, if they had
identified relevant elements of the fraction concept in students’ answers (discerning
details). Secondly, how pre-service teachers interpreted students’ fractional reasoning
(recognising relationships between the mathematical elements of the fraction concept
identified in the students’ answers and the different levels of students’ fractional
reasoning). Finally, how pre-service teachers made instructional decisions (using
what they have identified about students’ reasoning to propose activities that help
students progress in their fractional reasoning).
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To carry out the analysis, a subset of PTs’ answers was analysed and coded by three
researchers, independently, considering the three aspects mentioned above. Then, we
put together our analyses and compared and discussed our discrepancies until we
reached an agreement. Then, new data samples were added to review our allocation.

RESULTS

We can highlight two main results. On the one hand, pre-service teachers interpreted
students’ fractional reasoning in three different ways. On the other hand, these ways
of interpreting students’ fractional reasoning influenced the instructional decisions
made.

Different ways of interpreting students’ fractional reasoning

The analysis revealed that 90 out of the 95 PTs identified the mathematical elements
of the fraction concept in the students” answers (discerning details), that is, they used
the mathematical elements, the parts must be congruent and a part can be divided
into other parts to describe the students’ answers. Furthermore, 89 out of 90 PTs who
discerned details were able to interpret students’ fractional reasoning recognising the
relationships between the mathematical elements of the fraction concept in the
students’ answers and the different proficiency levels of students’ fractional
reasoning (Learning Trajectory). However, these PTs interpreted students’ fractional
reasoning in three different ways depending on if they were able to elaborate a more
detailed discourse using the Learning Trajectory:

Non-evidencers: These PTs interpreted students’ reasoning recognising the
relationship between the mathematical elements and the levels of the LT but did not
provided evidence from the students’ answers (23 PT). For instance, the PT 85
described Felix and Alvaro’s answer indicating (emphasis is added underlying the
mathematical elements recognised):

Couple 3 (Félix and Alvaro).These students are in level 3 of the LT because, as Tere and
Joan (the second couple of primary school students), they identified that the parts must be
congruent but, they did not have difficulties in recognising that a part can be divided into

other parts.
This PT recognised the mathematical elements in the students’ answers and

determined the level of students’ fractional reasoning but he did not provide evidence
from students’ answers to support his inference.

Adders: These PTs interpreted students’ fractional reasoning recognising the
relationship between the mathematical elements and the levels of the LT and
provided evidence from the students’ answers but adding unnecessary information (7
PT). For instance, the PT 62 wrote in relation to couple 3 answers (emphasis is added
underlying the mathematical elements not related to the activity that the PT added
unnecessarily):

Couple 3 (Félix and Alvaro). These students are in Level 3. They identified fractions in
discrete contexts recognising that the groups must be congruent because they identified F
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as %. Furthermore, they said that E was % too, so they recognised that a part can be
divided into other parts. Finally, when comparing fractions they recognised that the
wholes must be equal and they stablished the inverse relation between the number of
parts and the size of each part.

This PT provided evidence of her interpretation from the students’ answers when she
wrote “...they identified F as %" “...they said that E was % too”. However, she
added unnecessary information about the comparison of fractions that was not related
to the problem (although this information is appropriated in the level of the LT
identified).

Evidencers: These PTs interpreted students’ fractional reasoning recognising the
relationship between the mathematical elements and the levels of the LT and
provided evidence from students’ answers (59 PT). For example, the PT 49 wrote for
the couple 3:

Félix and Alvaro. These students reasoned about figures A, B, C, D in the same way that
Joan and Tere. However, in figure E, as the whole has 6 equal squares in each line and
there are 3 lines out of 4 shaded, they said that this figure represents %. And, in figure F,
they grouped the eight squares in groups of 2, obtaining 4 groups of 2 squares each.
Then, they realised that 3 groups of 2 squares are shaded. They are at level 3 because
they recognised that a part can be divided into other parts.

How the ways of interpreting influenced the instructional decisions made

The way that the PTs interpreted students’ fractional reasoning influenced their
instructional decisions. Taking into account that each PT had to propose an activity to
each couple of students (3 activities x 89 PTs), we obtained the data of Table 1. The
23 non-evidencers were able to propose only a new activity in the 19% of the cases,
the 7 adders only in the 29% of the cases, and, finally the 59 evidencers in the 38%
of the cases. These data suggest that when PTs provided details of their
interpretations from the students’ answers, they were able to propose more activities
to support the students’ progress.

From Level 1 From Level 2 From Level Total

to Level 2 to Level 3 3to Level 4
PT’s Act. % Act. % Act. % %
Non-evidencers 23 3 13% 8 35% 2 9% 19%
Adders 7 3 43% 2 29% 1 14% 29%
Evidencers 59 26 44% 38 64% 4 7%  38%
Total 89 33% 43% 10% 29%

Table 1: Instructional decisions made by PTs who recognised relationships

Table 1 also indicates that the non-evidencers and evidencers groups had more
difficulties in proposing activities to help students progress from level 1 to level 2 of
the LT than from level 2 to level 3 (non-evidencers 13% vs 35% and evidencers 44%
vs 64%). However, proposing an activity to help students progress from Level 3 to
the Level 4 is the most difficult one for PTs in all the groups.
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DISCUSSION AND CONCLUSIONS

Our results have shown that the use of a Learning Trajectory for fractions as a
scaffold by pre-service primary teachers allowed them to interpret students’ fractional
reasoning since 89 out of 95 of the PTs who participated in this study were able to
recognise relationships between the important mathematical elements involved in the
students’ answers and the different levels of the Learning Trajectory.

Nevertheless, the way in which these 89 PTs interpreted students’ fractional
reasoning was different. All of these 89 PTs recognised relationships between the
mathematical elements in the students’ answers and the proficiency levels of the
Learning Trajectory, but they differed in the professional discourse generated to
interpret students’ fractional reasoning. In fact, non-evidencers generated a less
detailed discourse without giving evidence from students’ answers, adders started to
use a more detailed discourse giving evidence from students’ answers but adding
unnecessary information and, evidencers generated a detailed discourse giving
evidence from students’ answers.

Our results also suggest a relation between the way in which PTs interpreted
students’ fractional reasoning and the instructional decisions made. PTs who used a
more detailed mathematical discourse (using students’ answers to support their
interpretations) proposed more activities to help students progress in their fractional
reasoning. Noticing details helped PTs to propose more activities taking into account
the students’ fractional reasoning. This data support the claim that the more sensitive
pre-service teachers are to noticing details in students’ answers, the more capable
they are to act responsively (Mason, 2002).

In relation to noticing, the task used appears to be a powerful tool that helped PTs
focus their attention on discerning the mathematical details of students’ answers, on
interpreting students’ reasoning and on making instructional decisions on the basis of
students’ reasoning. Furthermore, the Learning Trajectory could act as scaffold to
improve PTs’ mathematical discourse since it provides to PT’s with a specific
language to describe students’ thinking (Wickstrom et al., 2012).

Our results provide a snapshot of how pre-service teachers, through the use of a
students’ Learning Trajectory for fractions, begin to notice students’ fractional
reasoning. Further research could be focused on analysing if pre-service teachers’
noticing skill is developed when they are enrolled in a learning environment that uses
a students’ Learning Trajectory as a referent.
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WHAT DO MATHEMATICS PRE-SERVICE TEACHERS LACK
FOR MASTERING INSTRUCTIONAL DEMANDS?

Colin Jeschke, Anke M. Lindmeier, & Aiso Heinze
IPN — Leibniz Institute for Science and Mathematics Education, Kiel, Germany

In addition to subject-specific professional knowledge, research in teacher education
recently focusses on teachers’ abilities 10 master subject-specific instructional
demands. Although knowledge is seen as a prerequisite for according competences
with close relation to instructional demands, the complex relationship between
knowledge and according competences is not understood in detail. In order to
investigate this relationship, we analysed answers to video-based instructional
situations of 4 mathematics pre-service teachers. The case study illustrates that
despite of sufficient teacher knowledge and perception abilities, the ability to give
helpful feedback in instructional situations can be lacking. Our cases give
indications, what factors might further the area of research.

RESEARCH IN TEACHER COGNITION
Subject-specific knowledge

Research in teacher education brought up a variety of models for teacher
competences (e.g. Hill, Schilling, & Ball, 2004; Kunter et al., 2013). In this research,
there is a tendency of narrowing teachers’ cognition to declarative knowledge.
Especially when it comes to subject-specific knowledge, research often focusses on
teachers’ content knowledge (CK) and pedagogical content knowledge (PCK). Those
constructs have been successfully described, conceptualized, and operationalized in
many studies so far (e.g. Shulman, 1986; Kunter et al., 2013; Hill et al., 2004).
Despite some conclusive evidence that mathematics-specific knowledge is a predictor
for instructional quality and student learning (e.g. Kunter et al., 2013), recent
discussions pointed out limitations. In particular, it is questioned if standardized
measures for teacher knowledge are sufficient to predict teachers’ abilities to use this
knowledge in the classroom (e.g. Blomeke, Busse, Kaiser, Konig, & Suhl, 2016;
Knievel, Lindmeier, & Heinze, 2015). Given this issue, recent studies brought up
alternative approaches of modelling and assessing teachers’ subject-specific skills
and abilities which are beyond declarative knowledge and complement previous
research.

Subject-specific action-related competence

There are currently different approaches on expanding classical models of teacher
knowledge. For the present research, we use the model of Lindmeier (2011). In this
model, the understanding of subject-specific competences considers the variety of
typical demands that come along with teaching a subject and, in a European tradition,
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defines competence as the ability to master those demands. Consequently, the model
defines the ability to master “core teacher tasks” (Lindmeier, 2011, p. 108) of
instructional processes as action-related competence (AC) which are characterized by
spontaneous, immediate, and interactive demands (Knievel et al., 2015).

AC comes into play when teachers e.g. have to react to a conceptual misconception
displayed through a student’s statement during classroom discourse or have to give
immediate feedback to a student’s mathematical question. However, separating
action-related competence from teacher knowledge from a theoretical perspective
leads to the need to investigate how knowledge and competence relate to each other.
It can be assumed that AC covers PCK and CK as necessary components
supplemented by the ability to apply or enact this knowledge (Lindmeier, 2011).
Hence, teacher knowledge is not found sufficient to master demands of actual
teaching. With this study, we want to investigate which skills might be suited to
disentangle the complex relation between a profound knowledge and high-quality
actions.

PREREQUISITES FOR ACTION-RELATED COMPETENCE

Describing skills and abilities that are necessary for teaching on a conceptual level
has relevance not only for research in teacher education but also for teacher education
at university. There is evidence from the TEDS-M study indicating that characteristic
differences of teacher education programmes between countries result in
characteristic differences in pre-service teachers’ knowledge (Wang & Tang, 2013).
Evidence for the initial acquisition of action-related competence during teacher
education is missing so far. Understanding the conditions that lead to teacher
competence might help to improve programmes for mathematics teachers at
university. In the following, we delineate individual factors that may have an effect
on action-related competence.

As AC is conceptualized based on demands that typically occur during mathematics
instruction, a closer look at prototypical processes of teacher action in instruction
gives indications for possible influencing factors. They can be described as traits that
are necessary for three steps usually modelled for such processes (e.g. Blomeke et al.,
2016): 1) perceiving a situation in teaching and see what is essential e.g. paying
attention to a student’s production in class despite of competing attentional
distractions in the complex teaching situations, 2) interpreting and making sense of
the perceived, e.g. in order to identify a misconception, and 3) reacting adequately to
the situation, e.g. through offering an apt hint that may turn the student’s
misconception into a mathematical learning opportunity. Since the demands are
considered to be subject-specific, it can be assumed that teacher knowledge (CK and
PCK) is needed to master these demands.

Focusing on the first steps, research on professional noticing skills may be helpful to
delineate cognitive dispositions necessary at the stage of perception. For example,
mathematics teachers’ noticing has been described as the ability to attend (step 1) and
then use existing knowledge to interpret events (step 2) that are mathematics-specific
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(e.g. Sherin, Russ, & Colestock, 2011). Although noticing could therefore be useful
for investigating mathematics action-related competences, the need of subject-
specific knowledge makes it difficult to separate perception skills from knowledge
when it comes to operationalization. Another approach is followed by Miller (2011).
Teachers’ basic abilities to ‘perceive important features in a given classroom
situation’ are described as teachers’ situation awareness (SA) (p. 51). SA is seen as a
function of general cognitive abilities which allow teachers to quickly realize
simultaneous events in a situation (e.g., student 1 talks to student 2, student 3 raises
his hand, student 4 is doing something under her desk). The concept of situation
awareness therefore might be useful to describe teachers’ perception skills for
‘prototypical’ instructional situations that are, to a certain extent, independent from
subject-specific knowledge. However, neither the concept of situation awareness nor
another fundamental perception skill has recently been investigated empirically with
respect to its relation to teacher competences. Regarding the third step, skills like
decision-making were suggested as influencing factors, but research on teachers is
still emerging in this field.

To sum up, it is currently an open question on which traits other than subject-specific
knowledge mathematics teachers’ AC is based. From a theoretical perspective,
situation awareness — in instructional processes — is a subject-unspecific construct
which, together with subject-specific knowledge, contributes to AC.

RESEARCH QUESTIONS

Considering the need of research pointed out in the previous section, we considered
the following research questions: Is situation awareness (SA), in addition to
mathematics-specific knowledge (CK, PCK), influencing action-related competences
(AC) of pre-service teachers? Is there evidence for further factors contributing to
action-related competence (AC)?

METHODS

In order to investigate our research question, we administered tests for the constructs
in question to a group of mathematics pre-service teachers of Kiel University
(quantitative survey). On the basis of the test performance we then selected specific
cases in order to investigate and identify factors influencing AC.

Instruments

This section reports on the instruments used for the quantitative survey as far as
possible within the limits, as it is necessary to access the case study reported below.
Mathematics AC was measured by a video-based instrument (extension of
Lindmeier, 2011). Each of the 8 items contains a short video-vignette of a classroom
situation typical for secondary mathematics instruction. The situations focused on
problems in algebra (5 items) and calculus (3 items). Depending on the item type, the
response should be e.g. an explanation that solves a students’ mathematical question
or an adaptive feedback that helps students with a mathematical problem without
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giving the solution. Since AC is characterized by its spontaneous and immediate
demands, AC items had to be answered in a microphone with an oral statement under
time pressure. A specialized software was used for the computer based
implementation (see Lindmeier, 2011, Knievel et al., 2015 for a details on AC
operationalization).The resulting audio recordings were coded and scored by three
trained persons independently under usage of a detailed a-priori developed manual.
Partial scores were applied (score 2: adequate; score 1: partially adequate, score O:
inadequate answer). The responses were considered adequate if they comply with the
following aspects of high quality teaching (cf. Knievel et al., 2015): correctness of
content, building on students’ thinking, and clarity and appropriateness of
explanation/stimulus without giving irrelevant information. First results for interrater
reliability were acceptable with a range of k =.65—-.89 (Fleiss’ Kappa).

Items for assessing mathematics PCK and (school-related) CK have been developed
for pre-service teachers in previous studies (e.g. Loch, Lindmeier, & Heinze, 2015).
For the present study, we used their empirical results to select items and assemble the
instruments (PCK: 12; CK: 7 items). All items were in a constructed response format.
Situation awareness was conceptualized as a subject-unspecific ability of teachers to
perceive critical incidents. In particular, our conceptualization of situation awareness
focusses on classroom management issues and situations that typically occur in class
(e.g. noticeable or inappropriate student behaviour). We developed an 8-item
instrument using material of other-than mathematical instruction of a German video
study (Seidel, Prenzel, & Kobarg, 2005). For each item, a short video clip is to be
watched once. After that, a constructed-response question shows up offering (true
and false) details of the situation in the video-clip (Figure 1).

Pl

Question 1

Which student made the first call for the teacher?

A blond-haired girl of the last seat row
A dark-haired girl in the |last seat row
A boy in the first seat row

A girl with a headscarf

[7Next

Figure 1: Item for situation awareness (left: video clip; right: single-choice question).
Case selection

The survey was conducted with pre-service teachers enrolled for the mathematics
teacher programme for upper secondary level at Kiel University (Germany). For our
analysis, we selected a sample of 4 cases (3 females, mean age 25.3 years) out of 41
according to the following criteria: Person shows high scores in CK, PCK and SA,
but low scores in AC. Five participants reached the criterion for CK, PCK and SA,
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with only four of them having low AC-scores below the average. Theoretically
speaking, those four participants should have good pre-requisites for achieving high
scores in AC, but were not able to achieve expected scores. Overall, the AC data of
this sample contains 26 responses, 4 empty responses, and 2 missing due to test
abortion. Hence, analysing those responses might give evidence why knowledge and
perception skills do not suffice for the mastery of teaching demands.

RESULTS

In order to get an insight why the selected participants showed a poor performance in
AC, we reviewed the oral answers in the video-based test with the aim of describing
why these were not adequate. For that, we analysed whether answers rated as not-
adequate in the survey (score 0 and 1) can be characterized in categories that e.g.
describe problems in perceiving, interpreting or reacting to the given situation.

We found that the 26 answers can be characterized using only four categories: (1)
answers that are not useful at all, e.g. statements that do not contain an explanation
although it was expected, (2) answers that lack correctness of content, e.g.
suggestions that are mathematically wrong, (3) answers that are partially adequate but
contain supplements that are irrelevant or irritating, and (4) answers that are
considered not helpful for the students, although the students’ problem and the
problem solution is (probably) understood by the participant, e.g. explanations that
are targeted at an intellectual level far beyond the skills of the student/grade level or
hints that trigger a strategy that is likely to hinder the conversion of a situation into an
opportunity to learn. None of the 26 answers explicitly showed a misunderstanding of
the situations that might occur due to the fact that the situations had to be answered
spontaneously and under time-pressure. That gives evidence that the participants did
indeed not lack perception skills, what can be seen as validity evidence for the
measure of SA.

The deficit that occurred — by far — most often is characterized by category 4. The
participants seemed to know what the student’s problem is (which indicates sufficient
content/pedagogical content knowledge in line with the case selection criteria), but
were not able to phrase an answer that is helpful for the student:

Situation (Item 1): 6" grade, topic: total order of fractions. Three students are working
on a mathematical task. The teacher asks them, if they have
finished and what exactly their task was. The students reply that
they had to find five fractions between 3/8 and 7/8, but that they
have found only the three fractions 4/8, 5/8 and 6/8.

Participant 2: There are more fractions than just eighth. There are also half and
quarters. Maybe you can find more fractions with this hint.

In item 1, it was asked to give a helpful stimulus so that the students may find the
correct solution on their own. Participant 2 correctly focussed on different
representations of the fractions. That indicates that participant 2 understood the
mathematical problem and the problem of students’ thinking. Possibly, the participant
even knew the right strategy to solve the mathematical task herself. However, the
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participant prompted a strategy that might infer negatively with finding more
fractions as it lacks coherence with the presented situation. Therefore, this answer is
considered to be not adequate and was characterized with category 4. Overall, we
found 14 other responses that comparably lack instructional coherence.
Besides that, we found 5 statements that are partially adequate, but contain further
information that is irrelevant and not helpful or, even worse, irritating:

Situation (Item 3): 6™ grade, topic: division of fractions. Two students were asked to
present their results on the board. The first student, Simon,
multiplies 4 x 3/5 using (4x3)/5. The second student, Mailin,
divides 2 by 2/3 using (2:2)/3.

Participant 3: Mailin, we already discussed that multiplying and dividing
fractions work differently. Do you remember the reciprocal rule of
division? (...) What does division mean? What does multiplication
mean? Multiplication means that we get a part of something (...)
and dividing means that we divide something, e.g. to people. (...)
You have to turn the second fraction upside down (...). And then,
you can go on just like Simon did.

For item 3, it was asked to give a solution and an explanation for Mailin’s problem.
Participant 3 gave the correct solution and an adequate explanation using the
reciprocal rule of division. However the participant added several phrases that do not
help to solve this particular problem, in contrast, might irritate as the expressed
conceptions for multiplication and division are not fitting to the problems presented.

Participant Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8

1 4 3,4 3 3,4 4 1 4 4
2 4 3,4 4 2 1 2 4 4
3 correct 2 3 1 correct 4 4 missing
4 1 1 4 4 correct correct 2 missing

Table 1: Classification of the answers to AC items of the selected participants
(1: no useful answer, 2: lacking correctness of content, 3: irrelevant/irritating supplements,
4: feedback not helpful)

Given the characterization of all analysed answers (Table 1), some tendencies are
visible regarding the participants’ action under time pressure. Participant 1 showed
sufficient knowledge for perceiving and interpreting the situations but deficits in
providing precise and helpful teacher actions in almost every item. Participant 2 most
often showed deficits in mathematical correctness, giving evidence for lacking CK.
She additionally showed deficits in providing helpful feedback twice, although the
required knowledge seemed to be present. Participant 3 showed multiple deficits in
CK, although this case only contained a smaller number of answers that were rated
non-adequate. Participant 4 skipped two items after watching the video, which could
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indicate problems with understanding the situation (lacking SA, CK or PCK) or
missing strategies for responding to the situation (lacking PCK).

DISCUSSION AND IMPLICATIONS

The main aim of the present study was to explore factors that may contribute to pre-
service mathematics teachers’ action-related competence, i.e. teachers’ ability to react
adequately in a classroom situation under time pressure. We selected specific
participants from a quantitative survey with high knowledge (CK, PCK) and situation
awareness (SA). The results indicate that the low AC of the selected participants is
often not simply a lack of knowledge or situation awareness. More than half of the
answers did not show an adequate or helpful teacher action for the given situations,
although the participants seemed to be aware of the students’ problem and the
problem solution. Some of the remaining answers contained adequate approaches but
turned out to be only partially adequate due to irrelevant or inappropriate
supplements. Again, this gives evidence that the difficulties rather resulted from
difficulties in responding than understanding a problematic situation.

Based on these results we conclude that the pre-service teachers were able to apply
their CK, PCK and SA to understand the challenges in the classroom situations even
under time pressure. In the terms of Sherin, Russ, and Colestock (2011), the
participants noticing skills were sufficient. However, they showed a weak
performance when they had to use their CK and PCK for an adequate subsequent
teacher action. The latter might be caused by two different reasons. First, we see
(indication of category 3) that the quality of knowledge may be a factor to be
considered in more detail. Instruments in teacher knowledge usually focus on
declarative knowledge, therefore, measures of teacher knowledge may not reflect the
usability of this knowledge for specific situations. Recent research shows how PCK
can be differentiated in the types of declarative, propositional and episodic case
knowledge with expected different characteristics with respect to usability (e.g.
Kuhn, Alonzo, & Zlatkin-Troitschanskaia, 2016). Future approaches may hence seek
to assess also different qualities of PCK with more rigour. Second, we see (indication
of category 4) that despite of a good understanding of the situation, the decision-
process may lead to incoherent teacher actions. The problems in phrasing helpful
teacher actions may also partly be attributed to a lack of usable teacher knowledge.
The findings also indicate that a closer look on teacher-specific skills for decision-
making can help to explain the difficulties.

The results of this case study should be considered as only tentative as sample size,
possible selection effects regarding the overall sample as well as the design of the
study constitute limitations. To overcome these limitations, further studies will be
conducted. Consequently, we are currently gathering data of a larger sample of pre-
and in-service teachers aiming on both corroborating our findings and being able to
describe in more detail the differences between more and less competent mathematics
teachers. That knowledge could not only improve current models of teacher
competence, but also teacher education itself as it may yield starting-points for
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fostering pre-service teachers’ abilities to apply their knowledge already in an early

stage of teacher education.
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A FRAMEWORK TO EXAMINE THE MATHEMATICS IN
LESSONS OF COMPETENT MATHEMATICS TEACHERS IN
SINGAPORE

Berinderjeet KAUR  WONG Lai Fong TOH Tin Lam
National Institute of Education, Nanyang Technological University, Singapore

This paper outlines an analytical framework that was developed, to examine the
mathematics in mathematics lessons of competent teachers in Singapore secondary
schools. The framework is guided by Schoenfeld’s Teaching for Robust
Understanding (TRU) framework and also the field notes of the project — A study of
the enacted school mathematics curriculum which is presently underway in
Singapore. The framework was trialled and the indicators were suitable but may not
be comprehensive. Therefore more trials and also more codes on how the teacher
aided students in developing mathematical knowledge and student engagement with
mathematical ideas are needed. In addition student perspectives of the lesson are
also necessary to make any valid claims related to the quality of the lessons.

TEACHING OF MATHEMATICS IN SINGAPORE SCHOOLS

A few studies done so far provide us with glimpses about how teachers teach
mathematics in Singapore schools (See Kaur & Yap, 1997; Chang, Kaur, Koay &
Lee, 2001; Kaur, 2009; Hogan et al., 2013). In this paper we briefly elaborate the
findings of two studies, the CORE 2 research led by Professor Hogan (Hogan et al.,
2013) and Learner’s Perspective Study (LPS) in Singapore led by Professor Kaur
(Kaur & Low, 2009). As part of the CORE 2 research the quality of the enacted
curriculum in Secondary 3 (grade 9) mathematics lessons was assessed using criteria
and standards identified by Hattie in Visible Learning (2012). Thirty-one
mathematics teachers, sampled randomly, teaching secondary three mathematics in
Singapore participated in the study. Sequences of lessons of the teachers in the study
were video-recorded. Two main findings from the study were that: i) teachers
focused more on procedural knowledge than conceptual knowledge and engaged
students in domain-specific knowledge practice in about a third of the phases of a
typical lesson. Of the domain-specific knowledge practices, knowledge
representation was emphasized. Also, procedural learning support was evident as
teachers often helped with the “how to do” steps; ii) students were engaged in doing
performative tasks (77.3%) more often than knowledge building tasks (22.7%). A
performative task mainly entails the use of lower order thinking skills such as recall,
comprehension and application of knowledge while a knowledge building task calls
for higher order thinking skills such as synthesis, evaluation and creation of
knowledge.
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Kaur (2009) in her study of grade eight competent mathematics teachers found that
lessons were deemed good by students and teachers when they had the following
characteristics: i) whole-class demonstration (exposition) where the teacher explained
clearly the concepts and steps of procedures; made complex knowledge easily
assimilated through demonstrations, use of manipulatives, real life examples and
introduced new knowledge, ii) seatwork and out of class assignments where teacher
gave clear instructions related to mathematical activities for in class and after class
work; provided interesting activities for students to work on individually or in small
groups; provided sufficient practice tasks for preparation towards examinations, and
1) review and feedback — where teacher reviewed past knowledge, and used student
work or group presentations to give feedback to individuals or the whole class.

The findings of both Hogan et al. (2013) and Kaur (2009) indicate that there appears
to be an apparent focus on the development of skills in mathematics lessons in
Singapore schools. These findings certainly do not explain the stellar performance of
Singapore students in PISA 2012 and 2015 that required students to complete tasks
that were of the knowledge building type (OECD, 2014, 2016). As noted by Fan and
Bokhove (2014), perhaps mathematical algorithms lead to proficiency of skills
thereby stimulating thoughts about the conceptual aspects of the mathematics
explored.

At present a study of the enacted school mathematics curriculum (secondary schools)
Is underway in Singapore. It attempts to document the practices of 30 competent
mathematics teachers. The study aims to examine i) pedagogies adopted by
competent teachers when enacting the curriculum, and ii) competent teachers’ use of
instructional materials for the enactment of the curriculum. Amongst others, one of
the research questions explored is “How does the pedagogy of the teachers compare
with that of mathematically powerful classrooms advocated by Schoenfeld (2011)?”
To explore this question an appropriate analytical framework, comprising five parts,
is being developed by the researchers of the study. This paper is based on one part of
the framework which is used to examine the mathematics in the mathematics lessons
of competent teachers in the study.

MATHEMATICALLY POWERFUL CLASSROOMS

The three decades of extensive research by Schoenfeld in the US on mathematical
problem solving and mathematics instruction (2011) affirms that people’s moment to
moment decision making in teaching can be modelled as a function of their i)
resources (esp. knowledge); orientations (esp. beliefs) and goals. He advocates that
the five dimensions of mathematically powerful classrooms are: i)The mathematics
context; ii) Cognitive demand; iii)Access to mathematical content; iv)Agency,
Authority and Identity; and v)Uses of assessment. The Teaching for Robust
Understanding framework proposed by Schoenfeld, Floden, and the Algebra teaching
Study and Mathematics Assessment Project (2014) provides a tool for teacher
learning and growth, according to the five dimensions of mathematically powerful
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classrooms, with regards to student learning of mathematics. Figure 1, provides a
general top-level description of the Teaching for Robust Understanding (TRU)
framework Schoenfeld, 2016, p. 10). In our study reported in this paper, we use the
TRU framework instead to examine two dimensions, namely the mathematics and
cognitive demand, in mathematics lessons of two competent teachers in Singapore.

The Five Dimensions of Mathematically Powerful Classrooms

The Mathematics The extent to which the mathematics discussed is focussed and coherent,
and to which connections between procedures, concepts and contexts
(where appropriate) are addressed and explained.

Cognitive Demand The extent to which classroom interactions create and maintain an
environment of productive intellectual challenge conducive to students’
mathematical development.

Access to The extent to which classroom activity structures invite and support the
Mathematical active engagement of all of the students in the classroom with the core
Content mathematics being addressed by the class.

Agency, Authority, | The extent to which students have opportunities to conjecture, explain,
and Identity make mathematical arguments, and build on one another’s ideas, in ways

that contribute to their development of agency and authority resulting in
positive identities as doers of mathematics.

Formative The extent to which the teacher solicits student thinking and subsequent
Assessment instruction responds to those ideas, by building on productive beginnings or
addressing emerging misunderstandings.

Figure 1. The five dimensions of mathematically powerful classrooms
METHODOLOGY

The analytical framework we created for the dimension: The Mathematics was
guided by i) the respective prompts for teacher thought and discussion in the TRU
guide (Schoenfeld, Floden, and the Algebra Teaching Study and Mathematics
Assessment Project, 2014), and also the field notes from the project — A study of the
enacted school mathematics curriculum.

Four researchers involved in the study of the enacted school mathematics curriculum,
contributed towards the crafting of the indicators guided by the prompts from the
TRU framework. Figure 2 shows the analytical lens that was created to examine
lessons of competent mathematics teachers in Singapore for the dimension — The
Mathematics. The analytical lens crafted was used to examine the lessons of two
teachers. These teachers were “experienced and competent”, where experience is a
measure of the number of years they have taught mathematics in secondary schools
and competency is a composite measure of their students’ performance at
examinations and their performance in class in the eyes of their students. The
teachers were nominated by their respective school leaders and the research team
followed up on the nominations and interviewed the teachers. A strict requirement for
participation in the study was that the teacher had to teach the way she / he did all the
time, i.e. no special preparation was allowed. The lessons of these two teachers were
selected, as they are both lead teachers and they also taught the same topic. Teacher 1
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[T1] is a male who has taught mathematics for the last 20 years and Teacher 2 [T2] is
a female teacher who has also taught mathematics for the last 20 years. For both
teachers sequences of their lessons were recorded according to the protocol
developed for the Learner’s Perspective Study in Singapore (Kaur, 2009).

Dimension 1 — The What we looked out for in the lessons?

Mathematics

Aspect Indicators

Were the mathematical goals | Did the teacher articulate the goal/s of the lesson?

of the lesson apparent? Did the teacher articulate the goal/s of the mathematics students

worked on during the lesson?

Did the teacher articulate the goal/s of the mathematics students
were assigned to do after the lesson during out of class time?
Were important ideas in the | Did the teacher connect the important idea/s in the lesson to
lesson connected with those | what students already know?

in past and future lessons? Did the teacher relate concepts to each other — not just in a
single lesson, but also across lessons and units in past and
future?

How were math procedures | How did the teacher develop mathematical knowledge in the

in the lesson justified and class? (Telling and showing / developing concepts through

connected with important student activities / through systematic logical steps)

ideas? Did the teacher identify the important ideas behind concepts and
procedures?

Did the teacher highlight connections between skills and
concepts?

Were students engaged with | Did the teacher get the students to participate in meaningful
mathematical ideas during math learning, so that they could make sense of concepts and
lessons? ideas for themselves during lessons?

Did the teacher get the students to participate in meaningful
math learning, so that they could make sense of concepts and
ideas for themselves as part of their out of class work after
lessons?

Did the teacher engage the students in authentic performances of
important disciplinary practices (e.g., reasoning from evidence,
communicating one’s thinking, clarifying doubts, etc.)

Did the teacher invite the students to explain things, or just give
answers?

Figure 2. Analytical lens for the dimension — The Mathematics

Altogether two, the first in the sequence of lessons of the two teachers were coded.
Both teachers were teaching the same topic — Vectors and they covered the same
content during their first lesson. As part of the science curriculum, students had
knowledge of vectors as this topic had been taught to them by their Science teachers
during Physics lessons. The mathematical ability of students in the class of T1 was
slightly below average as they were from the 40" percentile of their cohort and those
in the class of T2 were from the 50" percentile of their cohort.

The coding was done in the following manner. Two researchers viewed the video-
records of the lessons. They first segmented a lesson into episodes. An episode was
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delineated by the beginning and end of an activity, for e.g. it may comprise the
teacher beginning the lesson and telling the class about the day’s lesson, or the
beginning of an activity that had a specific goal such as engaging students in recall of
past knowledge. Next they scanned one episode at a time for indicators of the
dimension and recorded its presence. The inter-rater agreement was 83%. When a
disagreement arose, the two researchers discussed their differences and arrived at
consensus, either agreeing on the presence of the indicator or dismissing it.

The following show a few of the indicators with sample excerpts from the lessons.
Were the mathematical goals of the lesson apparent?

Did the teacher articulate the goal/s of the lesson?

T2 — Episode 1: (2:50) we will see what are vectors, how do we represent vectors on a diagram,
how do we find magnitude, add/subtract vectors, and the use of vectors.

Did the teacher articulate the goal/s of the mathematics students worked on during
the lesson?

T1 — Episode 11: 20:18) I’d like to test your understanding now....(25:16) The reason why I’'m
giving you this task is ...

Did the teacher articulate the goal/s of the mathematics students were assigned to do
after the lesson during out of class time?

T2- Episode 11: 52:38) | want you to do some thinking on your own. You need to understand
what you’ve just learnt.(53:33) Why do I give you part a and part b? Are they
the same? (54:05) You will show me the answers tomorrow. And then tomorrow
we will do addition of vectors.

Were important ideas in the lesson connected with those in past and future lessons?

Did the teacher connect the important idea/s in the lesson to what students already
know?

T2-Episode 2: (05:05) How do you represent your vectors when you do Science?

Did the teacher relate concepts to each other — not just in a single lesson, but also
across lessons and units in past and future?

T1-Episode 2: 42:21) Many quantities have only magnitude... you are all familiar with that in
the primary school. When you come to secondary school, you started learning in
physics, ... These are the various quantities that you are familiar with.

How were math procedures in the lesson justified and connected with important
ideas?

How did the teacher develop mathematical knowledge in the class?

T1-Episode 7: (08:37) Now, what did you observe about these four vectors? How are
they different and how are they the same? (09:14) What other
observations did you observe? (10:08) What do you notice about OA and
0C?
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T2-Epiosde 4: (15:00) If your vector is not represented by a column vector, then how do you
find the magnitude? ... And you will use all kinds of knowledge that you have
to find length. (16:49) Look at the diagram and ask yourself, what do you know?
What are the concepts, what are the skills your already have? What can you use
to find ...

Table 1, shows the number of episodes in which the respective indicators were
present in the lessons of the two teachers.

Dimension 1 — The Mathematics Teacher 1 Teacher 2
(18 episodes) | (12 episodes)
(68 minutes) | (52 minutes)

Did the teacher articulate the goal/s of the lesson? 8 6
Did the teacher articulate the goal/s of the mathematics students (2+7+1)* (1+3+2)
worked on during the lesson?

Did the teacher articulate the goal/s of the mathematics students
were assigned to do after the lesson during out of class time?

Did the teacher connect the important idea/s in the lesson to what 5 5
students already know? (3+4) (3+7)
Did the teacher relate concepts to each other — not just in a single
lesson, but also across lessons and units in past and future?

How did the teacher develop mathematical knowledge in the class? 6 5
(Telling and showing / developing concepts through student (10+7+5) (8+5+4)
activities / through systematic logical steps)

Did the teacher identify the important ideas behind concepts and

procedures?

Did the teacher highlight connections between skills and concepts?

Did the teacher get the students to participate in meaningful math 5 7
learning, so that they could make sense of concepts and ideas for (5+1)** (7+1)

themselves during lessons?

Did the teacher get the students to participate in meaningful math
learning, so that they could make sense of concepts and ideas for
themselves as part of their out of class work after lessons?

Did the teacher engage the students in authentic performances of
important disciplinary practices (e.g., reasoning from evidence,
communicating one’s thinking, clarifying doubts, etc.)?

Did the teacher invite the students to explain things, or just give
answers?

Note: in some episodes, more than one aspect was present. Also in some episodes more than one
indicators of an aspect was present. * (?+?+?) shows the number of times the respective indicators
in an aspect were present. ** (?+?) represents the number of episodes for the first two indicators.

Table 1: Number of episodes where the respective indicators were apparent

FINDINGS AND CHALLENGES

From Table 1, it is apparent that for all the four aspects of the dimension — the
Mathematics the indicators crafted by the researchers were apparent in the episodes
of the lessons of the two teachers, though with varying density. We found the
indicators suitable but may not be comprehensive as they were only trialled with two
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lessons. Therefore they have to be trialled more extensively. In addition, we also
found that specifically for the indicators:

e How did the teacher develop mathematical knowledge in the class?

e Did the teacher engage the students in authentic performances of important
disciplinary practices (e.g., reasoning from evidence, communicating one’s
thinking, clarifying doubts, etc.)

e Did the teacher invite the students to explain things, or just give answers?
we needed sub-codes to capture the range of approaches used by the teachers. Some
of these approaches may be unique to the pedagogy of mathematics learning in
Singapore. Furthermore in trying to rate the lessons according to the rubric shown in
Figure 3 taken from Schoenfeld (2011) we felt that the level of both lessons may be
rated as high but a more fine grained rubric may be needed to differentiate between
lessons at this level for our research project.

Dimension Level

The Low Classroom activities are unfocussed or skills-oriented, lacking

Mathematics opportunities for engagement in key practices such as

How reasoning and problem solving.

accurate, Medium | Classroom activities are primarily skills-oriented, with cursory

coherent, and connections between procedures, concepts and contexts (where

well justified appropriate) and minimal attention to key practices such as

IS the reasoning and problem solving.

mathematical | High Classroom activities support meaningful connections between

content? procedures, concepts and contexts (where appropriate) and
provide opportunities for engagement in key practices such as
reasoning and problem solving.

Figure 3. Summary Rubric of Dimension 1 — The Mathematics

Also, to make any valid and rigorous claims, we feel that we have to interrogate our
data from the perspective of the students and answer the following questions which
were presented by Schoenfeld (2016) during his plenary lecture at PME 40 in Szeged.
The questions are:

Dimension 1 — The Mathematics

e  What’s the big idea in this lesson?
e How does it connect to what I already know?
Dimension 2 — Cognitive Demand

e How long am I given to think, and to make sense of things?
e  What happens when | am stuck?
e Amlinvited to explain things, or just give answers?
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THE TEACHER IDENTITY OF MATHEMATICS TEACHERS
Hyung Won Kim

University of Texas Rio Grande Valley

This study explores how mathematics teachers’ pedagogical identity develops in the
social context of their classroom interactions, and what challenges teachers perceive
in advancing their pedagogical identities. The study draws on a dialogical approach
to identity that sees the self as something that individuals develop through interaction
between their core ‘“substantial self” and context-dependent “situational selves.”
Data were collected from four in-service high school teachers. The findings shed
light on the variability of mathematics teachers’ pedagogical identity and the
processes through which they develop that pedagogical identity in the classroom
context.

INTRODUCTION

Math teachers sometimes face a disjuncture between their natural inclinations as
teachers and who they are expected to be in the classroom (Gainsburg, 2012). For
example, many credentialing programs favor reform-oriented teaching approaches
that emphasize classroom interaction. A math teacher thus educated might believe
that reform-oriented teaching is the most effective approach. But if such a teacher is
naturally introverted, she might struggle to implement student-teacher interactions.
This study seeks to understand the nature of such struggles in terms of teacher
identity.

Grootenboer and Ballantyne (2010) defined teacher identity as a teacher’s own
conception of who s/he is as a teacher, including beliefs, classroom behaviors and
learning experiences. In the context of teaching math, Grootenboer, Smith and
Lowrie (2006) held that teachers’ identities change in response to continuing
experience, continuing education and new dilemmas. Aligning with this perspective,
this study seeks to learn how mathematics teachers’ identities develop and interact
with the ways the teachers design and implement classroom activities. The
exploration of these issues will help us understand how the social setting of the
mathematics classroom, which determines classroom interaction, shapes and is
shaped by teacher identity.

Peressini et al. (2004) considered teacher identity (or professional identity) to have
both cognitive aspects — goals, values, commitments, knowledge, beliefs — and
sociocultural aspects — the ways in which teachers participate in the activities of their
professional communities and present themselves to others in the context of
professional relationships. In this study, | define the pedagogical characteristics of a
teacher as the elements that constitute both cognitive and sociocultural aspects of
teacher identity, and | refer to a math teacher’s unifying and connective concept that
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brings together these elements in the classroom context as pedagogical identity. To
understand how pedagogical identities are formed, | adopt a dialogical approach to
identity (Akkerman & Meijer, 2011), which considers the self as comprising and
balancing between a substantial self and situational selves (Nias, 1989). The
substantial self is embodied by beliefs and values shaped in one’s early years, and is
relatively impervious to change. Situational selves incorporate such beliefs and
values, but change over time and context. The study’s main research question is: how
does a math teacher’s pedagogical identity develop in the social context of her/his
classroom interactions? In particular, how do math teachers’ pedagogical experiences
prior to their teaching, such as classroom experience as a learner, inform their
pedagogical identities in the early years of their teaching career? And how do
teachers achieve balance between their substantial and situational selves in the
classroom context?

DIALOGICAL APPROACH TO IDENTITY

The notion of identity has changed over time, reflecting changing value systems
(Akkerman & Meijer, 2011). In the modern era, identity was perceived as singular
(not varied or dynamic within the individual), continuous (keeping the core identity
consistent regardless of the social context) and individual (regardless of the social
environment). In contrast, in the postmodern view of identity, it is decentered into
multiplicity in the sense that an individual has multiple identities, different ones of
which come to the fore depending on the social setting; discontinuous in the sense
that the multiple identities that emerge in different social settings are not necessarily
interrelated; and social in the sense that identity is understood in a social context.
These three characterizations of the postmodern view suggest that identity is neither
an overarching and unified framework nor a fixed, stable entity. Rather, it is viewed
as being fragmented along with the multiple social worlds that people engage in, and
as shifting with time and the context of the society of which people are a part.
Akkerman and Meijer (2011) typified teacher identity as both unitary and multiple,
both continuous and discontinuous, and both individual and social, with the two
opposing natures (unity-continuity-individuality and multiplicity-discontinuity-
sociality) taking turns in a dialogical relationship of intersubjective exchange and
temporary dominance. That is, one develops identity by engaging in a dialogical
relationship between the two. In this dialogical relationship, the self is understood
further as both the core, substantial self (unity) and the situational selves
(multiplicity) (Nias, 1989; Rodgers & Scott, 2008). Drawing upon this dialogical
approach to identity formation, this study aims to understand the dialogical nature of
teachers’ identity development. Some studies have discussed how the personal
histories of novice teachers influence their teaching in the context of the workplace
(e.g., Flores & Day, 2006). But little research has taken a dialogical approach to
understanding how teachers’ pedagogical characteristics inform their identity as
teachers.
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METHODS

Using field observations, surveys and interviews, | collected data from four in-service
math teachers at two high schools — School A and School B — in the United States.
Table 1 summarizes the participants’ pedagogical backgrounds.

Teacher  School Experience Classes observed Grade levels taught
Mr. A A 3.5 years Pre-Calculus 9-11

Mr. B A 5 years Advanced Calculus2  9-11

Ms. C B 4 years Algebra 1 9

Mr. D B 18 years (Remedial) Algebral 9-12 & lower levels

Table 1: Pedagogical background of teacher participants

Speer (2005) described teachers’ beliefs and practices as professed if stated by the
teachers, and attributed if inferred based on observations. | used field observation
believing that “attributed” practices would depict the participants’ behavioral
patterns. During observation, | took field notes in which | focused on pedagogical
habits the teachers had developed to facilitate learning, the kinds of teacher-student
interactions they allowed to occur in class, what difficulties they revealed in
managing classroom activities, how they dealt with unexpected student behavior,
how they responded to student questions and whether they showed signs of making
efforts to overcome difficulties they encountered. | conducted field observations two
to nine times for each teacher over a six-week period. Observed classes were audio-
recorded. Only the parts of the recordings deemed significant for the study were
transcribed, including participant comments that (1) revealed the teacher’s
pedagogical characteristics; for example, pedagogical beliefs, and (2) characterized
their teaching styles.

After | completed field observations, participants took a 17-item survey. The first
eight items asked about their academic background. The other items sought the
participants’ perceptions of their value systems: the factors of their pedagogical
knowledge they value most, their math teaching philosophy, how they compare their
own learning experiences as a student with the teaching they do, and whether they
experience conflicts caused by disjuncture between their personal and pedagogical
identities.

The interview inquired into the participants’ reasons for certain practices. The actual
interview questions varied to reflect the participants’ individual responses to the
survey items. The interviews took about one hour and were audio-recorded for
transcription and coding purposes. All interviews were transcribed completely, and
coded with the line-by-line and focused coding methods commonly used in grounded
theory approaches (Charmaz, 2004). Continually reading the transcripts within and
across categories, | first developed preliminary hypotheses and then picked out
valuable, overarching, emerging themes, using concept maps, by comparing and
contrasting the participants’ different pedagogical characteristics.
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RESULTS

The results largely rely on the teachers’ descriptions of what they thought contributed
to their pedagogical characteristics. | address notable pedagogical characteristics of
each teacher, and discuss them in terms of Nias’s (1989) view of the self as a balance
between the substantial self (I-position) and the situational selves (me-position).
Mr. A: Mr. A’s interview revealed an autonomous learning inclination, teaching
approaches characterized by minimally interrupting his classes and imposing few
rules, and an introverted social nature.
His autonomous learning inclination is evidenced in [A].
[A] I learned it [math] by trying different things, and seeing. ... [I was] trying, you know,
‘how do we figure this out?’ For me, it was always a puzzle. That was what math was
about. Doing things yvou didn’t know how to do given certain relationships.

As [A] implies, Mr. A’s belief that students should learn by trying different things
comes from his own inclination toward learning autonomously. [B] and [C] connect
this teaching belief to his own autonomous learning inclination.
[B] I try to teach it [autonomous learning] ... which I think actually doesn’t work very
well for teaching because I think a lot of kids aren’t trying different things.

[C] ...[autonomous learning] is only successful with some of the kids. For most of the
kids, you still have to give them the information you wanted them to know in the end. |
am not gonna say, ‘Hey, you gotta figure it out. I am not gonna help you until you figure
it out.’

[B] and [C] show Mr. A’s frustration in implementing autonomous learning. In
particular, [C] shows his compromises to meet his students’ needs, and implies that
he takes a me-position regarding his belief in autonomous learning.
Mr. A views students’ working on difficult problems as a valuable learning
experience. This is shown in his written ([D]) and verbal ([E]) responses to a survey
item, which asked about conflicts between the math teachers’ own beliefs about
what/how to teach and others’ expectations of what/how they should teach.
[D] ... I think that mostly a sense of inadequacy arises at times about how I conduct my
classroom and how well my students perform ... it is a valuable experience for kids to
work with difficult math ... sometimes I let them struggle rather than just hold their
hand.

[E] 1 would rather let kids fail than just be this constant coach. ... If I have to push a kid
every step of the way, I don’t think they are learning. They may be learning some math,
but in the end, they don’t learn how to deal with difficult things in their life’. ... If | try to
help motivate kids, but if they just continually give up, then I let them give up. ... If a kid
puts his head down for whatever reason, day in and day out, I will try to make a real
connection with them. ... But I am not gonna go every class like, ‘take your head up’>.

These claims confirm that Mr. A values “learning by discovery”: he will let his
students struggle in the hope that they will move forward in discovery-learning (EY).
However, he would rather give up on “strongly unmotivated students” if improving
their learning requires intervening in their work frequently (E?). This contrast shows

3-52 PME 41 — 2017



Kim

how he handles conflict between what he believes is ideal (having students learn by
discovery) and reality (having unmotivated students). His refusal to compromise —
balancing closer to his beliefs — shows his I-position in handling such conflicts.
Mr. B: Mr. B’s interview showed his passion for teaching, tendency to associate with
his students, and an inclination to learn math concepts by justification. His prior
learning and teaching experiences seem to have affected his pedagogical identity.
To a question asking what challenges one faces in interacting with students and how
he or she manages the challenges, Mr. B made the following two claims.
[F] I personally think these (unmotivated) kids are kids with needs that aren’t being met
... they are way higher up than a math education. You know, like, ‘where am I going to
spend the night tonight, what am I going to eat when I get home’, stuff like that. I don’t
know if high school has an answer for those [pause], those kids.

[G] ... my job is to teach kids algebra, whatever their course is, but also to teach a lot of
life skills there as well. | think they get a lot of that from me.

As [F] and [G] show, Mr. B sees the scope of his teacher role as extending beyond
teaching math. This implies that he takes a me-position to accommodate student
needs. To a question about challenges in promoting student-teacher interaction, Mr. B
responded:
[H] ... it’s not a typical room, in the sense that ‘you’ll get in there and I’ll be lecturing
and everyone will be writing down what I am saying.” They are freer to talk ... they care
about what they are doing. They are pretty directed, but there are times when you have to
talk to kids and say ‘hey, you are not really doing what you need to be doing.’

As [H] shows, Mr. B perceives student distraction as a disciplinary challenge.
Further, [I] shows Mr. B’s preference for allowing students the freedom to talk over
upholding discipline.
[I] The disciplinary thing is tough for me, um because, you walk by some classrooms and
you say, ‘Wow, look at all those kids just sitting there’, you know. I don’t think you see
that in my room. So I think it’s a weakness in some regard. But, it’s a sacrifice I’'m kind
of making. ... I know the disciplinary stuff might be there and I’'m allowing for it to be
there, but I think it’s a chance that is worth taking.

As [I] shows, he engages in self-reflection in his balancing, and is willing to
compromise on discipline to attain student learning in his classroom context,
implying that Mr. B is balancing closer to his me-nature than his I-nature.
Ms. C: Ms. C had an inclination to modify her teaching strategies, and an introverted
social nature. Further, her teaching experience appears to be the dominant factor
informing her teaching style for the first three years of her teaching career.
Her inclination to modify teaching strategies is shown in [J] and [K].
[J] I think throughout the college classes they weren’t very good about preparing you for
the real life situations. ... Every child had a different need, every year there were
different kids, a different chemistry in the classroom, a different dynamic, so | had all
these modified myself, and you know the lessons, to try to reach out to more and more
students ... I don’t think you can learn that without the experience.
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[K] Ilearned the hard way that those types of kids won’t do homework. So, I don’t assign
homework anymore. ... I used to give homework to everyone, and ...

Ms. C’s comments in [K] show a compromise in her pedagogical approach between
what she had believed her students would do to learn and what they really turned out
to do, providing evidence of her me-position. Ms. C further described the challenges
that lead to her continuous modification, as in [L].
[L] A teacher education [program] may really emphasize the set-up of lesson plans ...
but I learned every day isn’t predictable ..._some days you may have to throw your
lesson out the window and say ‘you know what? This kid had a bad day. ’'m not going to
be able to teach as much as | wanted to, the kids are rowdy’ and you have to keep
molding it. So, my belief has changed in terms of preparation. You have to be prepared to
be unprepared.

This excerpt explains how Ms. C’s beliefs differ from what teacher education
programs suggest and how she came to these beliefs. [L] implies that she takes a me-
position in adapting her teaching methods to fit her class’s nature.
[M] and [N] again show Ms. C taking a me-position, as she describes herself as an
introvert who tries to act like an extrovert to bring energy to her classes.
[M] I am shy, and self-conscious in a crowd ... but in the classroom you are the center
stage, so it kind of forces you to become an extrovert whether you are or not.

[N] I may be, um, a little too friendly. ... The atmosphere, I try to make it light and airy,
and I try to make sure the kids are joking ... I want it to be a positive experience.

[O] further shows her taking a me-position in designing her classes, as she carefully
considers the math level of the students:

[O] I would still bring my energy (to upper level classes). | would still bring the positive
attitude. ... I really want to make math fun and approachable using my personality and
students’ personalities, but I would do less side conversations and more material.

Mr. D: Mr. D had a unique one-on-one teaching approach: he sat at his desk for most

of the class, having each student come to him to teach the content individually. His

pedagogical identity originated largely from his non-academic work experience.

Mr. D’s understanding of the challenges struggling students face is shown in [P].
[P] You saw me how many times in class, where some things happened. ... they might
start yelling ... when you are a lawyer, conflict is part of the job. ... you have to be able
to communicate in a way where you can get your point across without creating conflict or
getting all emotional. ... | did represent a lot of kids in court. And | represented parents
who had their children removed by the state because they were being [inaudible] by their
parents. And any of these situations create, um, conflict at home, and negative situations
at home. So I’ve been in there and I understand what, when they leave school and go
back home, I know what they go to.

As Mr. D’s comments in [P] imply, his conflict-handling experience as a lawyer
helps him diffuse tense situations with his students. To my follow-up question, “You
have this strong idea that individual relationship with the students is an important
thing ... where do you think this idea came from?” he responded:
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[Q] I think I know where kids are from, | mean | know what they are living ... treating
someone as an individual and trying to know what makes them tick, to get them to
perform clearly is from coaching. And those were the people that influenced me the
most.

[Q] suggests Mr. D’s belief in treating students in need the way a sports coach treats
players. Further, he sees the importance of treating students in ways that work for
them. This shows Mr. D’s taking a me-position in how he deals with his students.

Further, Mr. D had a theory most math conceptualization starts to happen around 5"
grade. To my question, “In math education we talk a lot about the conceptual
understanding versus the procedural [inaudible], do you ever think of these things
when you teach?” Mr. D responded:

[R] Absolutely ... we do various types of visual type situations ... I did a lot of it with 5"
through 8™ grade, which is where your conceptualization should really be founded in the
middle schools. I did far more of that in the middle school (than the high school).

Mr. D’s view that math conceptualization happens at a certain grade band may be
attributed to either his (15 years of elementary school) teaching experience or his lack
of math content knowledge (he has taken no math courses at the college level). Such
experiences might have impacted how he balances between |- and me-positions. Mr.
D teaches high school students with practices based on pedagogical views developed
from his K-8 teaching experience. He believes that he has a good understanding of
struggling students, but he does not try to understand how his high school students
learn, implying that he balances closer to an I-position in his high school teaching.

DISCUSSION

This study shows the varying routes math teachers take to form their pedagogical
identities. Each participant had found a different balance between an I-position and a
me-position, and had distinct pedagogical beliefs and practices that had been shaped
by different factors. For example, Mr. B expanded the scope of his teacher role
beyond teaching the subject, and Ms. C, who claimed to be an introvert, acted as an
extrovert to bring energy to her classes, both showing a stronger me-nature than I-
nature. Mr. D, in contrast, seemed to take a me-position on certain issues and an I-
position on others.

The findings of this study show how math teachers’ pedagogical identities constantly
change as different factors that shape identity come into play. The study contributes
to the math education community by providing evidence that the formation of a math
teacher’s pedagogical identity impacts his or her choice of teaching approaches. By
shedding light on how math teachers develop their pedagogical identities, the study
provides an explanation for the disjuncture between what teachers do in the
classroom and the practices that are encouraged by teacher education programs
(Gainsburg, 2012). If such disjuncture are inevitable, then preservice math teachers
need to be aware (1) that they will be engaged in struggles between their beliefs, or
who they are, and what they face in reality in their early years of teaching and (2) that
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they will need to develop ways to respond to students, including incorporating
student reactions in their class design. In other words, they should be prepared to take
a me-position to reconcile their beliefs or natural inclinations to their teaching context
If necessary.

This study’s conclusions are largely based on the participants’ professed beliefs and
practices (Speer, 2005), which may lack accuracy: a teacher may not be aware or may
not be frank with a researcher regarding his or her own pedagogical identity
development. These limitations constrain the extent to which the findings can be
generalized. Larger-scale research that depends less on self-report would provide
firmer and more generalizable findings. Further research is needed to identify factors
that influence how teachers’ negotiation between their substantial and situational
selves leads to each one’s unique balance between a me-position and an I-position,
and in turn affects their teaching practices.

References

Akkerman, S., & Meijer, P. (2011). A dialogical approach to conceptualizing teacher
identity. Teaching and Teacher Education, 27(2), 308-319.

Charmaz, K. (2004). Grounded theory. In S. N. Hesse-Biber & P. Leavy (Eds.), Approaches
to qualitative research (pp. 496-521). New York: Oxford University Press.

Flores, M. A., & Day, C. (2006). Contexts which shape and reshape new teachers’
identities: A multi-perspective study. Teaching and Teacher Education, 22(2) 219-232.
Gainsburg, J. (2012). Why new mathematics teachers do or don’t use practices emphasized
in their credential program. Journal of Mathematics Teacher Education, 15, 359-379.
Grootenboer, P., & Ballantyne, J. (2010). Mathematics teachers: Negotiating professional

and discipline identities. Adelaide, Australia: MERGA.

Grootenboer, P., Smith, T., & Lowrie, T. (2006). Researching identity in mathematics
education: The lay of the land. In P. Grootenboer, R. Zevenbergen, & M. Chinnappan
(Eds.), Identities, cultures and learning spaces: Proc. of the 29" Annual Conf. of the
Mathematics Education Research Group of Australasia (Vol. 2, pp. 612-615). Adelaide,
Australia: MERGA.

Nias, J. (1989). Teaching and the self. In M. L. Holly & C. S. McLoughin (Eds.),
Perspectives on teacher professional development (pp. 155-173). London: The Falmer
Press.

Peressini, D., Borko, H., Romagnano, L., Knuth, E., & Willis, C. (2004). A conceptual
framework for learning to teach secondary mathematics: A situative perspective.
Educational Studies in Mathematics, 56(1), 67—96.

Rodgers, C., & Scott, K. (2008). The development of the personal self and professional
identity in learning to teach. In M. Cochran-Smith, S. Feiman-Nemser, D. Mclintyre, &
K. Demers (Eds.), Handbook of research on teacher education (pp. 732-755). New
York: Routledge.

Speer, N. M. (2005). Issues of methods and theory in the study of mathematics teachers’
professed and attributed beliefs. Educational Studies in Mathematics, 58(3), 361-391.

3-56 PME 41 — 2017
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This study examined elementary preservice teachers’ interaction with curriculum
resources, focusing on their recognition of affordances and limitations of the
resources in the context of lesson planning in a mathematics methods course in the
United States. Because of the prevalence of the curriculum programs with a direct
teaching model in the country, preservice teachers need to develop the capacity to
use them productively to design instruction. For this reason, the preservice teachers
in this study were asked to critique and modify lessons from such programs to make
lesson plans in the methods course. Data were gathered in this setting and analysed
to inform for better teacher preparation using curriculum resources.

INTRODUCTION

This study examined preservice teachers’ (PSTs) recognition of affordances and
limitations of curriculum resources in the context of lesson planning in a mathematics
methods course in the United States. Recognizing affordances and limitations of
resources is critical in designing instruction. For a productive enactment of
curriculum, teachers need to utilize its affordances and fill the gap in it. This study
focused on PSTs’ critiques of written lessons with a direct teaching model in terms of
the extent of student engagement with mathematical exploration and teacher support
for it. The purpose of the study was to account for PSTs’ reasoning about curriculum
resources in order to design a better methods course that helps them develop
pedagogical design capacity (PDC), i.e., “a teacher’s skill in perceiving affordances
[of resources], making decisions, and following through on plans” (Brown, 2009, p.
29). The results of the study provide implications for using curriculum resources in
teacher education.

THEORETICAL BACKGROUND

Curriculum resources in this study are defined as artefacts that mediate teachers’
instructional actions (Brown, 2009). They are static representations of content and
pedagogy, which teachers enact and make dynamic for student learning in
instruction. Prior studies examined how inservice and preservice teachers interpret
reform-based materials (Atanga, 2014; Kim & Atanga, 2014; Lloyd, 2009; Nicol &
Crespo, 2006; Son & Kim, 2015) and how teachers’ evaluation of curriculum leads to
various adaptations (Sherin & Drake, 2009). Investigating teachers’ use of curriculum
resources to design instruction, Atanga (2014), Kim (2015), and Kim and Atanga
(2014) found that some teachers did not recognize significant affordances of the
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resources they used and failed to utilize them in critical moments during instruction.
For example, whereas the written lesson includes helpful intervention suggestions for
struggling learners, the teacher, not using them, mainly repeated the same procedural
explanations to students in confusion (Kim, 2015).

Researchers argue that curriculum resources can be inherently educative for teachers
(Ball & Cohen, 1999; Davis & Krajcik, 2005) and that teacher education should
Incorporate teachers’ investigation of curriculum resources as a pathway to building
both content and pedagogical knowledge (Drake, Land, & Tyminski, 2014; Son &
Kim, 2015). In particular, Drake et al. (2014) emphasized the importance of
supporting PSTs’ learning about and from curriculum materials in elementary
mathematics methods courses and recommended principles for using curriculum
resources, such as the need for providing opportunities for PSTs to attend to
educative features in the curriculum resources. Using both curriculum resources with
a direct teaching model and those with a student-centered model, this study further
accounts for how curriculum materials can be used in teacher preparation in order to
develop PSTs’ pedagogical design capacity.

METHODS

The data of the study were collected from 19 PSTs in an elementary mathematics
methods course about two thirds of the way through the semester.

The Setting

Early on in the semester, the PSTs were introduced to a set of standards, including
the Mathematical Practices of the Common Core State Standards for Mathematics
(National Governors Association Center for Best Practices & Council of Chief State
School Officers, 2010) and Professional Standards for Teaching Mathematics
(National Council of Teachers of Mathematics, 1991), to analyse videotapes of
mathematics classrooms, such as whole group discussions and interactions between a
teacher and a student. These standards were also used to examine to what extent
written lessons provided opportunities for students to engage in mathematical
explorations. The purpose of these examinations was to help the PSTs develop a
critical thinking about curriculum resources and be prepared to use them productively
to design instruction in the future. The course included an opportunity for the PSTs to
look at one lesson with a direct teaching model and one with a student-centered
model early on in the semester. Later in the semester a more extensive opportunity
was provided to examine those two types of lessons in order to make a lesson plan
with more student exploration than direct teaching. The process in which the PSTs
were engaged in lesson planning includes two simultaneous steps. One was to
critique and modify a lesson with a direct teaching model in class; the other was to
make a lesson plan using another lesson as a project outside class in pairs. When
issues arose regarding lesson planning, however, those were discussed in class as
well. In these two simultaneous steps, the PSTs were also asked to examine lessons
with a student-centered model as comparison that had similar mathematics contents.

3-58 PME 41 — 2017



Kim and Son

The PSTs were required to use and modify lessons with a direct teaching model for
lesson planning, because of the prevalence of such curriculum programs in the United
States. The PSTs will be likely to teach in a school district in which one such
program is being used. They need to develop the capacity to use them productively in
the teacher education program.

The Procedure

The data were gathered from the two simultaneous steps (in-class and outside class)
of examining lessons with a direct teaching model in order to modify them for more
student inquiry. In class, the PSTs were asked to respond individually on paper to
some questions about a lesson on fractions and division, including the goal of the
lesson, the main task for students, useful resources included, potentially useful
resources not present, and suggestions for modification. Once the PSTs finished
responding to the prompts, they were asked to share what they noticed in the lesson
without looking at their responses on paper. The reason for this sharing was to
capture the PSTs’ overall impression of the lesson along with any critical issues of
the lesson that grabbed their attention. During this period of sharing and interaction
among the PSTs, main ideas publicized were captured in field-notes. Individual
responses on paper were gathered to examine the PSTs’ initial thoughts about
curriculum resources before collectively critiquing the lesson. In addition, the lesson
plans that PSTs completed in pairs outside the class were gathered to examine their
recognition of the critical aspects of the written lesson on fraction comparison they
modified, after having opportunities to discuss various ideas about the lessons with a
direct teaching model extensively. In the lesson plan, the PSTs were asked to
describe the extent to which the written lesson provided opportunities for students’
mathematical exploration by using some of the standards mentioned above.

The PSTs’ individual responses and lesson plans, and field-notes were coded in terms
of their recognition of affordances and limitations of the lessons they analysed. Then,
similar codes in each data source were grouped together to find a general pattern.

RESULTS

In this section, the PSTs’ recognition of the critical issues is described along with
each of the two written lessons mentioned above.

The Lesson on Fractions and Division

The lesson the PSTs were asked to critique and modify in class was on division
involving fractional parts, such as 3+4, in grade 5 (Charles et al., 2008). The lesson in
the student text has four parts: (1) Learn, (2) Check, (3) Practice, and (4) Mixed
Review and Test Prep. The first part (Learn) basically illustrates two examples of
problem and solution with diagrams divided into equal parts and regrouped to show
the answers. One of the examples is provided with a real-life context: “Anna, Tim,
Mark, and Deb are sharing 3 quesadillas. What fractional amount does each one get?”
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This example shows how to solve the problem in the section of “what you think”
along with a diagram as shown in Figure 1.

Divide each quesadilla into 4 equal parts.
Each person gets 1 piece from each quesadilla. So, each
person gets 3 pieces. This is the same as % of one quesadilla.

Figure 1: The solution of a quesadilla problem in the student text (Charles et al.,
2008)

The other example provided in the student text only includes the problem (“Find
4+6), the answer (4+6=4/6), and a diagram (four rectangles divided into six equal
parts each that are shaded in six different colours). This example is also explained in
the teacher’s guide, suggesting teachers to “Point out that each color covers 1/6 of
each bar. There are 4 bars. When the same-color squares are put together, they cover
4/6 of one bar.” Basically, the two examples illustrate the same strategy. A prompt
for discussion is followed by the two examples: “Explain why one piece from each
quesadilla in Example A [the first example] is the same as % of one quesadilla.”
Besides one sample response expected (“All pieces are the same size and each person
gets 3 pieces”), there is no further guidance for the discussion.

Although there are some suggestions for teachers regarding how to teach the lesson,
the student pages are the main resources for the lesson. The first page shows the two
examples and a discussion prompt described above. Then, the next page includes 11
division problems without any context or representation, such as 9+10 and 1+3, in the
second and third parts of the student text (i.e., Check and Practice). It is assumed that
students apply what they were shown in the “Learn” part in order to find the answers
of the practice problems in a mechanical way. In fact, suggestions for “ongoing
assessment” and “error intervention” in the teacher’s guide seem rather directive,
unilateral, and procedural than supporting students’ thinking, as shown below.

If students do not see why one piece from each quesadilla is the same as % of one
quesadilla, then have them copy the second part of the diagram, cut out the model, cut
out the pieces, and then regroup the pieces for each person.

If students reverse the numbers in the numerator and denominator, then remind them that
the number in the numerator represents the object being divided, or the dividend, and the
number in the denominator is the number they are dividing by, or the divisor. (p. 398)
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The last part of the student text (Mixed Review and Test Prep) provides three
different diagrams and students are asked to write the fraction for each diagram.
There is also one multiple-choice item on geometry. None of the problems in this part
are related to the mathematical idea of the lesson, i.e., fraction as division.

PSTs’ Recognition of Critical Issues

During the discussion of the lesson on fractions and division, the PSTs were asked to
share the first thing that they wanted to talk about the lesson without looking at their
responses to the prompts on paper. The main ideas that they discussed are shown
below in order of sharing:

e In the lesson students find the pattern and copy it to do other problems but
little understanding is promoted.

The visuals and hands-on examples are good.

Terms such as denominator and numerator should be explained.

Problems are too small and too many, which are not connected much.
Discussions on how students did the problem are needed.

Students need to solve problems on their own without a given diagram
(along with story contexts).

Besides the second and third points above, the PSTs seemed to recognize significant
limitations of the lesson. They expressed concerns about providing “the” solution
strategy to students and mechanical applications of the strategy to practice problems,
instead of having students solve problems on their own and share different strategies.

The PSTs’ individual responses on paper also indicate that they recognized critical
issues from the written lesson. Table 1 presents the limitations of the lesson the PSTs
identified (some PSTs mentioned multiple limitations). All but two PSTs identified
significant shortcomings of the lesson.

Issue PSTs (n=19)
Students” own exploration is needed rather than 12
providing the strategy with the given diagram

Clear teacher moves are needed (e.g., assistance for 3
struggling students, guidance for discussion, and teacher

guestions)

Different learning modes are needed (e.g., discussion and 3

small group)

A clear connection among the problem, the 2

representation and the answer is needed to support
student understanding.

No significant recognition of limitations 2

Table 1: PSTs’ recognition of limitations
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It seemed that the biggest issue to the PSTs was the solution strategy given from the
start. Twelve PSTs recognized that the strategy given limits students’ thinking and
their own ways of solving problems and this part must be modified in their lesson
plan. Three PSTs noticed that the guidance to teach the lesson lacked important
aspects of instruction: They looked for assistance for struggling students (rather than
those in “ongoing assessment” and ‘“‘error intervention”), guidance for group
discussion, and specific teacher questions to probe and support students’ thinking.
Two PSTs did not consider that the problem, the representation and the answer were
fully connected in the written lesson because the connection was rather superficial.

Besides those included in Table 1, some PSTs mentioned resources that they thought
were needed but not provided in the lesson, such as resources for differentiation
(eight PSTs), assessments (two), and vocabulary (two). The resources that the PSTs
mentioned as helpful include guidance for struggling students (11 PSTs), visual
representations (four), questions to support student thinking (two), and assessment
(two). Interestingly, whereas one PST mentioned that the lesson did not have
sufficient guidance for struggling students, 11 indicated that the ongoing assessment
and error intervention shown previously “give teachers an idea of common points of
confusion to look for and ways to mange the confusion.” Also, two PSTs thought that
the lesson provided questions to promote student thinking based on the discussion
prompt.

The Lesson on Fraction Comparison and PSTs’ Critiques

The lesson plans that the PSTs created were based on a fraction comparison lesson in
Grade 3. Similar to the “fractions and division” lesson above, this lesson included
moments for students’ discussion on mathematical ideas and yet the written lesson
treated them mechanically. For example, the most explicit part of the lesson for
student exploration of size of fractions was a discussion on comparing fractions with
same denominators and same numerators and unit fractions. “Is it easier for you to
compare 4 and % or 2/6 and 2/8? Why?” “What happens to the size of the pieces as
the denominator gets larger? Y2, 1/3, Y4, 1/5, 1/6, 1/7” There was no specific guidance
regarding this portion of the lesson. It seemed rather straightforward responses were
expected, based on the subsequent examples for fraction comparison and practice
problems on the next pages of the student text. Mainly, pictures (circles or rectangles)
equally partitioned already were used to determine which fraction was larger in each
pair in both examples and exercise problems. There is not much connection between
the first page (the discussion portion) and the second page (examples and practice
problems) of the student text of the lesson.

In order to modify the lesson, the PSTs were asked to critique it in terms of the extent
to which it provided opportunities for students’ engagement with two particular
Mathematical Practices of the Common Core State Standards for Mathematics: (1)
Making sense of problems and persevering in solving them and (2) Constructing
viable arguments and critiquing the reasoning of others. They were also asked to use
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two particular NCTM Professional Standards for Teaching Mathematics to critique
the lesson: (1) asking students to clarify and justify their ideas and (2) letting a
student struggle with a difficulty. Some PSTs’ critiques are as follows:

The first question asked is “Is it easier for you to compare % and % or 2/6 and 2/8?
Why?” This does prompt for a justification of why but ... I feel that the student would
need to prove why with clarification and may need to be promoted more explicitly. | feel
a class discussion on this question could allow for this to surface, but the teacher’s role
would consist of more than just these two questions [the discussion prompts above].

They are asked to simply state what happens to the size of the pieces when the
denominator increases in fractions. It could be potentially extended in a discussion
setting to have students explain or justify their reasoning.

Providing the student with a strategy from the start does not allow for the process of a
student working and thinking on their own to understand what the problem is asking and
think of a reasonable way to come to the solution. By placing the correct way to reach the
answer is skipping the step in which a student is to struggle and make sense of the
problem. This can hinder the child from developing and understanding math concepts.

All PSTs (eleven lesson plans) provided similar responses in varying degree of
description, concerned about the simplicity of discussion and mechanical approach to
the practice problems, particularly in terms of the specific standards suggested to use.

CONCLUSION AND IMPLICATIONS

The results indicate that using the curriculum resources in this methods course
supported the development of PSTs’ critical thinking about curriculum resources and
capacities to use curriculum resources productively to teach mathematics. Although
many important ideas had been addressed earlier in the course, not all PSTs noticed
some critical aspects of the written lessons before explicitly discussing them.
Moreover, they identified some superficial resources as helpful. Once they shared
what each thought about the lessons and discussed specific aspects of the written
lessons explicitly by using some focused standards, they recognized actual limitations
and affordances of the lessons more and clearly, and were able to modify them for a
deeper student thinking of the mathematics of the lessons based on their examination
of the written lesson.

This study highlights the importance of specific aspects to look for and detailed
prompts in critiquing lessons before planning a lesson. Also examining lessons of the
same mathematics content with different teaching models helped the PSTs see the
difference in the nature of students’ learning of the same content that lesson
modification can create. This preparation (along with exploration of anticipated
student thinking and struggle around the mathematics of the lesson, although not part
of the data in this study) encouraged the PSTs to design and adapt tasks that support
student exploration of mathematics and come up with useful instructional guidance
on how to enact the tasks. In addition, the simultaneous steps of critiquing and
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modifying lessons in class and outside the class further prompted the PSTs to develop
a critical thinking about curriculum resources and pedagogical design capacity.
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How does video-based professional development (PD) influence teacher practice? In
this paper we explore what teachers took back to their classrooms based on a
specified PD experience. Survey data, focus group conversations and video from PD
sessions was qualitatively analysed to triangulate data on teachers’ learning and
uptake from the PD. Teachers were classified into four different user categories --
Generative, Transformative, Incremental, or Non Users — based on how the teachers
carried their PD experiences into their mathematics classrooms. Teachers differed in
their classifications based on their mathematical understandings and contextual
influences. These classifications help us to understand how and why teachers take up
learning from PD programs in unique ways and to varying degrees.

INTRODUCTION

Video based professional development (PD) generally relies on selected clips for
teachers to collaboratively discuss and analyse. In these cases, video serves as a tool
with wide-ranging potential to guide meaningful inquiry, reflection, and learning
(Brophy, 2004). The use of video clips varies greatly depending on the PD model.
We posit that PD models fall on a continuum from adaptive to specified (Koellner &
Jacobs, 2015). Adaptive models of PD, such as video clubs (Sherin, Linsenmeier &
Van Es, 2009) and the Problem-Solving Cycle (Borko, Jacobs, Koellner &
Swackhamer, 2015), generally utilize video clips from the participating teachers’ own
classrooms. On the other hand, in specified models of PD, video clips are typically
pre-selected and come from other teachers’ classrooms. Across both models of PD,
video clips are expected to provoke inquiry and productive discussion relative to
identified learning goals - around exploring targeted content, pedagogical strategies,
and/or student thinking.

Much of the research on the uses of video clips in mathematics PD focuses on
teachers’ analysis of own classrooms or that of their colleagues. Less is known about
using strategically selected video from other teachers’ classrooms in specified PD
programs to promote teacher learning and instructional change. The research
questions guiding this paper are: What do teachers take up from specified video-
based PD and enact in their classroom? How do teachers vary in what they take up
from the same PD experience?
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THEORETICAL FRAMEWORK

Mathematics teachers come to PD workshops with varying levels of knowledge,
much like the K-12 students who come to their math classrooms. Sherin (2007)
argued that teachers’ knowledge includes their “professional vision,” which drives
their ability to notice and analyse classroom interactions. VVanEs and Sherin (2002)
defined noticing as having three components: (1) identifying the important features of
a classroom situation; (2) making connections between classroom interactions and the
broader principles of teaching and learning; and (3) using what one knows about the
context to reason about classroom events. Over the years, diverse conceptions of
noticing have emerged, but in general most discussions of mathematics teacher
noticing involve two main processes: (1) Attending to particular events in an
instructional setting, and (2) Making sense of events in an instructional setting
(Sherin, Jacobs, Philipp, 2011).

Participants in video-based PD do not necessarily make sense of the video clips or the
classroom situations they depict in the same way; rather individuals bring differing
knowledge and beliefs about teaching and learning, students, content, and curriculum
to bear on what they notice (Erickson, 2011; VanEs, 2011). Furthermore, there are
important individual differences in terms of what teachers bring to and take from
video-based mathematics PD experiences (Kazemi & Hubbard, 2008; Kersting,
Givvin, Sotelo & Stigler, 2010; Santagata & Yeh, 2014). More research is needed to
categorize these differences, and connect the use of video to both noticing and
uptake.

LTG MATERIALS VIDEOCASE DESIGN

The Learning and Teaching Geometry® (LTG) materials use videocases as the
centrepiece of the PD, which is intended to improve the teaching and learning of
mathematical similarity based on geometric transformations. Video alone is not
viewed as a sufficient learning tool by the developers of the materials; instead the
materials incorporate pre- and post-video tasks - which combined with a selected clip
comprise a videocase - thereby ensuring a holistic foundation for the representation
of authentic practice (Seago, Koellner, Jacobs, in press). The Learning and Teaching
Geometry materials engage teachers in learning about similarity, congruence, and
transformations through carefully designed and sequenced videocases that offer
access to specific and increasingly complex mathematical concepts presented within
the dynamics of classroom practice (Seago, Driscoll & Jacobs, 2010).

Video clips were selected for inclusion in the LTG materials based on the expectation
that they would support multiple access points for teachers within the PD setting.
Some clips contain challenging mathematics content, a conceptual hurdle, student
misunderstanding, and/or interesting pedagogical moves. The activity that most
commonly comes before watching a given video clip is working on the mathematical
task that is in the clip. Solving the same task as the students in the video allows the
teachers to develop an adequate understanding of the mathematical demands faced by
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the students, and helps them to better engage with the video clip. The assumption
behind this type of pre-video activity is that teachers need a period of time to become
sufficiently immersed in and familiar with the mathematics content they are about to
see, so that they can readily follow the pertinent issues that arise in the video
episodes.

Post-video viewing activities in the LTG materials include: careful unpacking of the
ideas presented in the video clip, taking into account how those ideas apply in
different mathematical contexts, discussing the pedagogical issues that were brought
up by the video clip, and reflecting on how teachers can apply their emerging insights
to make improvements in their own lessons (Jacobs, Seago & Koellner, in press).
Facilitators of the LTG materials are encouraged to promote a culture of inquiry and
reflection, supporting teachers to offer alternative and dissenting viewpoints, which at
the same time focusing on specified learning goals. Furthermore, participating
teachers are encouraged (but not required) to take any of the mathematical materials
(such as math tasks and computer applets) from the PD to their classrooms.

THE LTG EFFICACY STUDY

The data from this paper are from an efficacy study investigating the impact of the
LTG PD materials on teachers’ instruction and students’ knowledge. The LTG
Efficacy Study aims to explore the effectiveness of the LTG PD using a randomized,
experimental design. The sample is comprised of 108 mathematics teachers (serving
grades 6-12) and their students from two contexts- one in the northeast United States
and the other in the western mountain region. Approximately half of the teachers
were randomly assigned to take part in the LTG PD in the first intervention year and
half will take part in the second intervention year. The intervention consists of the
entire LTG PD program, including a one-week summer institute and four days of
academic year follow-up sessions beginning in Summer 2016. This paper looks at the
teachers assigned to the treatment group based on data from their participation after 7
of the 9 workshop days (Note: the remaining two workshops will be held in Spring
2017).

DATA COLLECTION AND ANALYSIS

The analysis for this study entailed an examination of a small portion of the entire
data corpus that included focus group interviews, a written survey by participants,
and video from PD sessions. First, we studied the focus group interview and written
survey from the participants. We took detailed notes on teachers reported use of the
LTG materials in their classrooms as well as their perspectives on how the PD
supported their learning. Lastly we used ‘episodes’ of video data. An episode
consisted of a period of time found in the PD where teachers were discussing
connections from PD content to their classroom. We then created categories of
participants based on use, and identified teachers who exemplified each category.

In the next section, we detail our findings from the analysis of survey, focus group
and video data. We describe four categories of teachers based on how they have
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taken up the PD materials in their classrooms so far, highlighting teachers who are
representative of each category using illustrative quotes and other information about
their experience of the PD.

FINDINGS

Based on qualitative data analyses conducted to date, we found that participants used
information from the LTG PD in very different ways depending on their experiences
during the PD, school context, and the mathematics courses they currently teach. We
identified four categories of teachers that highlight the different ways they report
using mathematics content and pedagogical strategies from the PD in their practice:
Generative Users, Transformative Users, Incremental Users, and Non Users.

Generative users are teachers who went beyond the scope of the LTG workshop by
using the knowledge and skills gained in the PD to generate new and innovative
instructional materials for their classrooms. Generative users reported incorporating
both their own newly developed instructional materials, along with materials and
practices taken from the LTG PD program, in order to engage their students in the
types of content and pedagogical experiences promoted by the PD. Transformative
users intentionally took what they learned about content and pedagogy from the LTG
PD into their classrooms, using many of the given materials and observed practices in
a substantive way to transform their mathematics instruction. Incremental users took
up some of the materials and/or pedagogical strategies from the PD for use in their
own classroom, but not to the degree of the transformative users. Lastly, Non Users
are participants who did not use either the LTG content-based materials or pedagogy
strategies in their classrooms. In the next section, we provide examples of each type
of user, highlighting what they noticed and took up from the PD program and how
particular elements of the PD appeared to influence their learning.

Generative User Example

Peter was classified as a generative user because he not only applied what he learned
from the LTG PD, he used that learning to create new instructional materials that
expanded on critical mathematical and instructional components of the PD. Peter was
heavily influenced by the emphasis on transformations in understanding geometric
similarity, and he noticed that his own learning was deeply impacted by opportunities
to explore technology on this topic (both through video clips and post-video
activities). Peter, a high school geometry teacher with a strong math background,
explained why he was driven to generate innovate classroom materials based on his
PD experience:

“I am someone who has very strong visual-spatial reasoning. | regularly manipulate
shapes and objects in my mind. | know that this is not something that everyone else has.
So it was very beneficial to get to see something that would allow everyone to have a
common dynamic vision of similarity. Using Geogebra applets during the workshops
inspired me to develop my own Geogebra Applets and also worksheets so my students
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can self-guide through some of our investigations. | even invested in a class set of tablets
to make sure that | can use Geogebra applets as often as possible.”

The LTG PD highlights a visual, transformations-based approach to congruence and
similarity. As part of many of the post video-viewing experiences, teachers had
opportunities to explore Geogebra applets that supported their visualization of the
dynamic relationships among similar figures. Peter was inspired by these experiences
to develop his own Geogebra applets and accompanying classroom materials that
went beyond the scope of the LTG PD materials.

Transformative User Example

Whereas Peter was particularly attentive to the impact that technology could have on
teaching and learning similarity, Nancy was very interested in the use of patty paper.
Nancy not only found herself learning important content by watching videos of
students using patty paper and then using it herself, she brought this experience to her
own classroom. However, unlike Peter, Nancy did not report generating new ways to
use patty paper that were different from those explored during the PD. Nevertheless,
Nancy described her use of patty paper as supporting a significant shift in her
students’ learning;:

“I used patty paper with transformations, which was helpful because students moved
them around and we haven’t ever done that before. This clearly helped them learn in
more conceptual ways.”

Patty paper as a tool to understand transformations-based geometry is an important
focus of the LTG PD materials, and is highlighted in several video clips. During
those clips, students use patty paper in unique mathematically appropriate ways,
which commonly influences teachers to begin exploring patty paper. Nancy, like
many other teachers, was cognizant of the learning opportunities afforded by this tool
and brought it into her classroom, closely following the examples of the videotaped
students and the mathematics tasks used during pre- and post-video activities. Nancy
is considered a transformative user because she brought critical tools from the PD
into her classroom in what appears to be a substantive and appropriate manner.

Incremental User Example

Carol, who is currently teaching Algebra Il and no geometry classes, is an example of
a typical incremental user. Although she has not brought any of the content focused
materials from the LTG PD into her classroom, she reports changes in her pedagogy
that she ascribes to her PD experience. Carol explained that she has not yet had the
opportunity to utilize her increased content knowledge due to the fact that she is not
currently assigned to teach geometry, however she has intentionally incorporated
newly learned instructional practices in her algebra classes:

“I am trying to incorporate some of the teaching methodologies that we observed in the
videos from the workshops. For instance, | am having students present and explain their
work to the others and making students defend their positions by further questioning
them when they are not clear in their responses.”
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The video clips that Carol and her colleagues viewed, discussed and analysed over
the course of the LTG PD provided a mirror to reflect on her own practice, and
consider aspects that she could improve on. In many of these clips, as Carol noticed,
students presented their ideas to their classmates in whole and small groups,
questioned each other, disagreed with each other’s methods or solutions, or defended
and clarified their mathematical arguments. These videocases helped Carol to
recognize new pedagogical possibilities, and she is striving to incorporate them into
all of her math classes regardless of the content focus.

Non User Example

Very few participants reported that they had not used any of the content materials or
pedagogical tools from the LTG PD in their classrooms. However, one high school
teacher, Barb, who fell into this category explained her non-use by describing the
school-imposed barriers she faced:

“I haven’t used anything so far. We teach 2-hour block periods of math per semester,
covering one year of material each semester. It is hard to use stuff from this PD with the
rapid pace of our math blocks. The pace is harder for me as a teacher than the students.”

Barb teaches in a high achieving school, and was concerned that the materials and
tools used in the LTG PD program will cause her to slow down her instruction too
much. Although she recognized the benefits of incorporating a transformations-based
approach, she could not see a way to incorporate anything from the PD into her own
classroom given her school’s demands to cover a large amount of information in a
short time frame.

CONCLUSIONS

The LTG PD materials, through the use of videocases, provide extensive
opportunities for teachers to notice and analyse the dynamic relationships among
content, pedagogy and student thinking. Videocases in specified PD provide an
interesting study because while they target carefully composed content and pedagogy
learning goals, individual teachers may find particular components of the videocases
to be personally meaningful and relevant to their classrooms. This phenomenon is
analogous to how students learn from a given mathematics curriculum. Although the
curriculum is likely to have a variety of identified learning goals, students actual
learning will vary widely depending upon their prior knowledge, learning styles, and
classroom contexts.

Teachers who participated in the LTG PD reported many different ways the
workshops impacted their practice, with video clips appearing to play a central role in
their learning. For instance, Peter shared, “The most significant thing about the video
clips was the ability to analyse different "levels" of student understanding. | think
understanding these different levels will help me encourage more students to share
their thinking. Understanding students’ levels of thinking would allow us as teachers
to compare between partially correct and correct responses in class discussion. It
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actually would allow us to make rubrics that are explicitly focused on students
thinking.”

Other teachers reported that seeing effective pedagogical strategies in the video clips
helped them to envision how pedagogical strategies or content may play out in their
classroom. At the same time, it is clear that the teachers learned not only from the
video clips, but from the activities that supported viewing and discussion of the clips.
The fact that teachers. As we have noted, videocases incorporate not only video clips
but pre- and post-video viewing activities. As such, videocases provide teachers with
multiple avenues to stimulate content learning and access pedagogical strategies in
ways that are aligned with teachers’ prior experiences and unique contexts.

We found that the videocases in the LTG materials anchored teachers’ noticing and
insights in various ways, around a multitude of topics. We conjecture that teachers’
unique experiences in and learning from the PD was likely due to individual
differences in their noticing skills and/or their instructional context including grade
level, courses taught, and curriculum requirements. We further hypothesize that this
combination of differential noticing and variation in instructional context contributed
to teachers’ classification as different types of users of the PD materials in their
classrooms. More research should be undertaken to explore and disentangle this
connection, such as by more carefully examining what individual teachers noticed
and discussed during the workshops and whether those workshop experiences are
correlated with their classroom use categorizations. In addition, information on
teachers’ observed classroom practices is essential to validating data on their self-
reported uptake of information from the PD.

Note

'The National Science Foundation provided support for the Learning and Teaching
Geometry Study (NSF Award #0732757) and the Learning and Teaching Geometry
Efficacy Study (NSF Award #1503399).
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HOW DO UNDERGRADUATES SQUARE-ROOT IN RAND IN C?

Igor’ Kontorovich

The University of Auckland

This study was concerned with undergraduates’ images of the square root concept
with a focus on consistencies and inconsistencies. The images were explored through
square-rooting — a mental act associated with extracting roots from different
radicands in the field of real and complex numbers, validating and sustaining the
obtained results. The data was collected with an online questionnaire from first-year
university students. A qualitative analysis of students’ reasoning revealed a variety
and complexity of students’ webs of knowledge, in which a square root was
compartmentalized into distinct domains of consistency and linked with other
concepts through schemes. The phenomena of real number bias and complex number
bias were indicated.

PRELUDE

Imagine Israela, a diligent student in her last year of Israeli school, who is studying
towards her matriculation exam in mathematics. As part of her preparations, she
decided to review various concepts and she started with roots. Israela opened Yaquel
(2004), a popular Israeli textbook, and read:

“We have already met square roots many times in the past when solving quadratic

equations. We recall that the domain of the expression Ja s all non-negative
numbers and also +/a is a non-negative number, the square of which is a” (bold in
the origin, ibid, p. 581).

The textbook’s explanation made perfect sense to Israela, she thought to herself, “\/5
is 3 only because y:ﬁ is a function and then for every x in the domain there

should be a single y in the range”. Then, she decided to recall how roots of complex
numbers are extracted. Israela went over the conversion of a number from Cartesian

(z=a+bi) to polar form (z= re'¢), De Moivre’s theorem for raising a number to a
.(9+2/rk

natural power, and the formula for extracting roots of the n-th degree: Q/Fe' ") for
k=1,2,...,n.

The formula was very confusing for Isracla, “How can it be!”, she exclaimed, “If
according to page 581, +/9=3 and 9 is real and complex, so why does +/9 =+3 on
page 5437 How did it grow another root in just forty pages?”.

After struggling some more, Israela turned to her mathematics teacher for
clarifications. The teacher flattered Isracla’s curiosity and said, “Don’t overthink it, it
IS much easier than it seems. In the matriculation exam, Question 3 is the only one
with complex numbers. So answer with two values there, in the rest of the exam give
just one root”.
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The presented anecdote is based on my conversations with secondary teachers, high-
school and university students who were well-familiar with the root concept in the
field of real and complex numbers. However, many of them struggled with making
sense of the presented inconsistency. The study reported in this paper was concerned
with undergraduates’ images of the square root concept with a special focus on their
consistencies and inconsistencies.

MOTIVATION FOR FOCUSING ON THE ROOT CONCEPT

This study is a part of a larger project on teaching and learning cross-curricular
concepts. These are threshold ideas that appear multiple times in the students’
landscape of mathematics education, when each time the ideas are reconsidered in a
new domain. A domanial shift is often accompanied by a redefinition and an
introduction of new properties, which entail a substantial change in the ways these
concepts are approached. Kontorovich (2016) showed that a root concept appears in
intermediate-school, high-school and university mathematics curricula.

An examination of various textbooks and mathematicians’ approaches revealed that
there is no consensus in regard to a conventional definition and notation of the
concept (Kontorovich, 2016). Specifically, various answers exist to the questions
whether an even root of positive numbers is single- or double-valued, whether a
verbal identifier ‘root’ and a radical sign have the same meaning, and how the
concept should be defined in the field of complex numbers. Therefore, school
teachers and university lecturers could benefit from an evidence-based picture of how
students can understand the concept and what inner logic can be behind their
thinking.

THEORETICAL BACKGROUND

The construct of concept image has been introduced by Vinner (1975) to mathematics
education to account for the total cognitive structure that a learner associates with the
concept, which includes all mental pictures, properties, and processes. For 42 years
this construct has been successfully utilized for obtaining insightful research findings
(e.g., Alcock & Simpson, 2011). For instance, it has been extensively used in
classification studies focused on how learners judge whether a stimulus is or is not an
example of a particular concept (e.g., Alcock & Simpson, 2011; Hershkowitz, 1989;
Tall & Bakar, 1992). Mathematically, the decision should be based on the critical
attributes that appear in the formal definition (Hershkowitz, 1989). Practically, it has
been found that in many cases students and teachers classify based on the critical
attributes of prototypes — special examples that incorporate features the most highly
correlated with all examples from one’s concept image (e.g., Hershkowitz, 1989).
Other studies showed that the reasoning for classification can be not example-based.
Indeed, Tall and Bakar (1992) found that for many students, candidates for a function
“should be defined for all real numbers” and their y “should equal an expression of
x”. I will use prototype conceptions to refer to a learner’s pool of ‘should-bes’ that a
stimulus needs for being accepted as a concept example.
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In the last decade, research on classification and concept images has been critiqued.
Alcock and Simpson (2011) argued that studies often assume concept consistency —
students’ classification of stimuli being driven by a single mechanism. In their study,
the researchers demonstrated that when given a list of sequences with a request to
determine whether each of them is increasing, decreasing, neither or both, the same
student could rely on a definition for some sequences and on local behaviors for other
sequences. Concept consistency became central for this study.

Another critique can be that research has been often concerned with students’ images
of a single concept (e.g., see Tall & Bakar, 1992 for a function; Alcock & Simpson,
2011 for a sequence). However, mathematics has been acknowledged for its
interconnected nature, and then an individual can hold “a connected web of
knowledge, a network in which the linking relationships are as prominent as the
discrete pieces of information” (Hiebert & Lefevre, 1986, pp. 3-4). Accordingly,
when working on a problem, a solver chooses the concepts that she or he is going to
operate with, images, definitions and prototypes included. Harel’s (2008) ways of
understanding and ways of thinking were used in this study for capturing these
choices.

Harel (2008) considers ways of understanding (WoU) and ways of thinking (WoT) in
the context of a mental act, which is a primary notion of his framework. The
researcher illustrates mathematical mental acts with proving, interpreting, connecting,
modeling, generalizing and symbolizing. WoU are defined as products of a mental act
that are observable through a person’s statements and actions. WoT refer to the
common cognitive characteristics of the WoU that emerged from repeated
observations.

RESEARCH GOALS AND ANALYTICAL FRAMEWORK

Harel (2008) maintains that an exploration of one mental act cannot be isolated from
other acts. This study is concerned with square-rooting, which consists of extracting
square roots from numbers, validating and explaining the emergence of the obtained
values. The goals of the study were to explore undergraduates’ square-rooting WoT,
and particularly students’ webs of knowledge that connect an image of a square root
with images of other mathematical concepts and ideas. The driving force behind
these goals was to explore potential changes in students’ square-rooting as a response
to variations of a field (real numbers R and complex numbers C) and a radicand
(either from R*, R~ or C\R).

The constructs of connecting schemes and domains of consistency were introduced
for capturing potential changes in students’ square-rooting. A connecting scheme is a
coherent cognitive mechanism that answers the questions of what and how
mathematical concepts were used in one’s reasoning about a mental act, square-
rooting in this case (see Dubinsky & McDonald’s, 2001 for a similar interpretation of
a scheme). One example of a connecting scheme can be found in the Prelude where

Israela relied on the concept of a function to sustain that J9 s single-valued.
Obviously, one can concentrate on the prompted concept itself and reason with the
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prototype conceptions that she or he attributes to it. Although such reasoning does not
provide data on the one’s web of knowledge, it can spotlight various aspects of a
person’s concept image.

A domain of consistency characterizes the stimuli as a response to which one’s
cognitive products share particular attributes. The notion accounts for Alcock and
Simpson’s (2011) critique by answering the questions “what stimuli prompted the
same WoU or WoT, and what stimuli were different?”. For example, Israela’s

confusion in the Prelude could be explained with a struggle to make sense of J9,
which was conceptualized as the same stimulus that can be classified either to the
domain of real or to the domain of complex numbers. However, the connecting
schemes in each domain produced different results, which contradicted the
conception of sameness.

METHOD

According to Harel (2008), an exploration of one’s WoT necessitates repeated
observations of her or his WoU. Accordingly, the data for this study was collected
with a questionnaire consisting of 12 triples of questions. The formulations of the
guestions in each triple differed only in the radicands belonging to the same
numerical set: either R*, R~ or C\R. Consider an example of a triple: “In the field of

complex numbers J-9=2/-144 =7/J-81=2". The assumption underlying this
design was that the questions in a triple probe the same domain in one’s concept
image, and then she or he is expected to demonstrate the same WoU. The responses
of the participants that did not align with the expected consistency were excluded
from the analysis. The questions involved radicands that were convenient for
manipulation to enable students to concentrate on the reasoning rather than on
computational issues. Each participant was assigned with a randomized set of
questions from different triples. Cronbach’s alpha of the questionnaire was 0.92,
which indicated a high level of internal consistency within the specific sample.
Participants were asked to complete the questionnaire via a Google form, in which
the questions were accompanied by two opposite numbers, the squares of each of
them equal the given radicand. The participants could respond with either one of the
numbers, both of them, or provide values of their own. The participants were
encouraged to provide explanations for their responses.

The questionnaire was spread in an online closed asynchronous forum in a popular
social network. The forum was intended for students enrolled in first-year
mathematics courses in a technological university in Israel. An average respondent
was 24 years old (SD=3.54) and 96% of them were studying towards a bachelor
degree in engineering. All respondents had already taken at least one course in
calculus or linear algebra, and then they were exposed to roots, real functions and
complex numbers in high-school and university. In line with Harel (2008),
participants” WoU were associated with final numerical responses and the
accompanying reasoning that they provided. WoT emerged from the content data
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analysis with pre-determined categories of connecting schemes and domains of
consistency.

FINDINGS

The findings presented in this paper emerged from 39 students who explained their
responses to the questionnaire. Overall, their square-rooting can be described with
classification of a stimulus to a particular domain of consistency in their concept
image and application of conceptions and schemes that were prototypical to the
domain. In terms of consistency, four square-rooting patterns were identified: (1) a
single domain, when students responses were consistent for all the questions (n=21);
(2) real and complex square-rooting which were field-dependent (n=7); (3/4) square-
rooting from positive / negative radicands, in which the students accounted for
whether a radicand belonged to a particular half of a real number line regardless of
the field assigned in the question (n=7/4). Some characteristics of the identified
square-rooting  WoT, including the patterns (1-4), are illustrated next. The
characteristics intertwine, and then the analysis is focused on the underlined
characteristics.

Classification according to distinct domains of consistency: Let us consider an
example of a stimulus that was classified by two students with different square-

rooting WoT. As a response to /625+0i =?, Alex wrote, “it is a complex number
because it is presented in its complex form”. For Ben, on the other hand, it was “a
positive number with two square roots”. The presented reasoning illustrates that the
students classified the stimuli according to the domains, upon which their square-
rooting depended. Indeed, Alex distinguished between real square-rooting, which was
single-valued and complex square-rooting, which produced two results. She
classified the stimulus to the latter domain based on the attribute of the “complex
form” 625+0i. Note that simplifying the radicand to 625 would have complicated the
classification because then the stimulus could have been considered in the field of
real and in the field complex numbers, the square roots in which were different for
Alex. Accordingly, preservation of the a+bi form was critical. Ben, on the other
hand, accounted for whether the radicand was ‘positive’ (and then single-valued) or
not (and then double-valued). His reasoning suggested that positivity was determined
by whether the radicand could be simplified to belong to R*. In this way,
simplification was helpful for distilling the attribute that was critical for
classification.

Coordination of prototype conceptions and connecting schemes: In their
explanations, 17 students used some variation of “a square root yields two numbers”,
nine students wrote, “there can be only one result for a square root”. The connecting
schemes that students demonstrated aligned with these conceptions. Two popular
schemes for the double-valued conception were: squaring both values to show that
the result equal the assigned radicand; and making a link with the concept of inverse,
which produced two values for an even function f(x)=x?. The popular connecting
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scheme among adherents of a single-valued conception was based on an inverse
function.
Five students explicitly addressed the importance of coordination between the

domanial conception and the applied scheme. For example, as a response to /121 in
the field of real numbers, Katie wrote, “a root is a multivalued function. It is a
worldwide convention to give a positive [square] root in real numbers”. When she

encountered /16 in the field of complex numbers, she explained, “4-4=16, —4--4=16
and a root of a complex number can be negative”. Katie’s reasoning indicates that for
her, positivity and negativity existed in both domains, but positivity was critical for
real square-rooting only; complex square-rooting, on the other hand, resulted in
positive and negative values. Accordingly, her responses were tailored to align with
the conceptions prototypical to the distinct domains in her concept image.

An unexpected explanation was proposed by Larry for real square-rooting being
single-valued and complex square-rooting being double-valued. As a response to

J16 in the field of complex numbers, he wrote: “It is accepted in reals that square
roots are positive. There is no order relation in € and then you cannot prefer 4 over —
4>, Larry’s reasoning showed that he was aware of the lack of order relation in the
field of complex numbers, which made sign-based schemes for selecting between the
root candidates invalid. Accordingly, in his comlex square-rooting he was using the
same connecting scheme without filtering one of the candidates for a root. This is an
interesting WoT in which an amendment of the scheme was justified with the same
conception; a conception which was valid in one domain and invalid in another.

Different domains of consistency — unrelated connecting schemes: In their reasoning,
five students accounted for different domains of consistency, where they square-
rooted with schemes based on different concepts and ideas. For example, in the field
of complex numbers, Ella accounted for three domains and demonstrated three
connecting schemes. In the questions with radicands belonging to R", she responded
with two values and explained that, “both equal the given number when squared”
(scheme a). When radicands from R~ were under consideration, her reasoning was
based on the theorem stating that if a complex number ai is a solution of a
polynomial with real coefficients (x*+a°=0 in this case) then the conjugate —ai is a
solution as well (scheme b). In the questions with non-real radicands, Ella converted
the radicands to the polar form re'¢ and applied De Moivre’s theorem (scheme c). As
a result, Ella’s complex square-rooting from real numbers was double-valued but

.0
square roots of non-real radicands resulted in a single /re2.
Notably, while the connecting schemes (a) and (b) that Ella applied for positive and
negative radicands were unrelated, they were compatible in the sense that each of
them could be applied in both domains and result with the same values. The third
scheme was effort-consuming and incompatible. It does not seem that Ella was
concerned about the same concept ‘behaving’ differently in different cases. Possibly,
this was because the incompatible scheme (c) that she used in the domain with non-
real radicands computed the roots, the schemes applied in two other domains
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validated the provided root candidates. In terms of Harel (2008), a computation
scheme could have fulfilled Ella’s intellectual need for certainty by ensuring that all
the roots were obtained and the need for causality by explaining the inconsistency
between the domains.

Real number bias: Square-rooting of 16 students involved two connecting schemes
based on the conception of positivity. For example, in the questions with positive
radicands (in Ben’s sense), Henry explained that an inverse function of X* is a
bijection only for x>0. Accordingly, he wrote, “a root is always positive”. When
radicands from R~ and C\R were under consideration, he chose the responses from
the upper half of the y-axis and the right half of the complex plane, correspondingly;
he explained, “we still need to choose the positive root”. Another student, Inga, relied

on the concept of an absolute value. In her explanations, she wrote ﬁ:\x\, which

was interpreted in alignment with Henry’s conception of positivity.

Henry and Inga’s reasoning illustrate how a prototype conception can be expanded
from real to non-real numbers. In R the connecting scheme of an inverse function
required x>0 (the case of x=0 was missed by Henry). In C a number is often
represented with x+iy. The students referred to {x+iy|x>0}u{iy|y>0} as
‘positive’, which made {x+iy|x<0}u{iy|y<O0} ‘negative’. Accordingly, the
conception of positivity enabled them to apply the same connecting scheme for
choosing between two complex candidates for a root.

Complex number bias: In their reasoning, ten students demonstrated awareness to
distinct domains of consistency and applied variations of the same connecting
scheme in them. For example, when extracting a square root of 121 in the field of real
numbers, Fred wrote, “I am solving the equation x*=121 which yields two solutions
according to the Fundamental Theorem of Algebra. Both of them are real and then

they both fit”. As a response to +/—36 in the field of real numbers he explained,

“x*=-36 yields complex +6i and then there are no roots”. Another student, Gloria,
associated the assigned radicands (real and complex) with vectors re'¢ on a x-y plane.
4

She extracted two square roots +re? with a variation of De Moivre’s theorem and
responded with the values that belonged to the assigned field.

Notably, both students square-rooted with concepts and methods that are valid in the
field of complex numbers. When it was necessary, they filtered the obtained results to
fit R. Such square-rooting can be interpreted as a complex number bias since C is an
algebraic field with an axiomatic system of its own which is not reducible to R.
Another bias was indicated in the field of complex numbers when three students
connected between ~/—1 and square roots of radicands belonging to R". In his
explanations, John wrote that J-1 equal i because, “this is the definition”. While his
square-rooting from positive and non-real radicands was double-valued, +/—144 , for
Instance, was approached as J144=1 and resulted in a single 12i. | interpret this

WoT as an extension of a prototype example «-1 to a new domain with a
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multiplicative conception +/ab =Javb; a conception which is valid in R but not in
C.

CONCLUDING REMARKS

I would like to conclude with remarks situating the findings of this study in university
teaching and learning. It is a reality in many countries that a curriculum condensed
with concepts is delivered through lecturer-centered instruction to students coming
from various mathematical backgrounds. Such pedagogical setting can intensify a
practice in which a lecturer interprets the errors that students make as
misunderstandings that can be ‘patched up’ with speedy reteaching (Kontorovich,
2016). This study showed that erroneous mental products can be a result of
understandings rooted in webs of knowledge compartmentalized into multiple
domains and connections with other concepts. Accordingly, an error can be not
indicative of the complexity of the concept images that students hold and advanced
mathematical processes that they carry out. Furthermore, it seems unlikely that as a
result of a speedy exposure to the mathematically correct WoU, students will
reformat their WoT and calibrate it with the one promoted by the lecturer without
further assistance. Lastly, a root is just one example of many concepts that lack a
consensual approach in the mathematical community. This situation invites a
reconsideration of such discoursive labels as ‘erroneous’ and ‘mathematically
correct” WoU and WoT.
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SECONDARY-TERTIARY TRANSITION: HOW MESSAGES
TRANSMITTED BY LECTURERS CAN INFLUENCE STUDENTS’
IDENTITIES AS MATHEMATICS LEARNERS?
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This paper explores how first year mathematics students narrate their identities as
mathematics learners during their transition to university. We focussed our interest
on the messages that the students received from their lecturers and on the ways that
these influenced their identities. The results of the study suggest that students with a
strong mathematical identity maintain it and are not influenced by strongly framed
messages. But for others, the degree of control exerted through the transmitted
messages plays an important role in reshaping students’ existing identities as they
move into university. These results have important implications for teaching and
learning policy and practice in HE and demonstrate the need to raise awareness of
the importance of incorporating student agency into the design and delivery of
mathematics education.

INTRODUCTION

The transition from school to university mathematics has been and still is a persistent
and often problematic issue in the field of mathematics education. The existent
literature recognises several factors as the root cause. These refer mainly to the
difficulties that students face due to changes in the content of mathematics taught at
university (Brandell et al., 2008), changes in the ways of thinking and
communicating mathematics (Engelbrecht, 2010), changes in the way of teaching
(Thomas & Klymchuk, 2012) and changes in the social and cultural context of the
new institution (Holmegaard et al, 2013). In this study, we employ a socio-cultural
theoretical framework to investigate how variations in the degree of power and
control of messages transmitted from lecturers influence the construction of students’
Identities as mathematics learners in transition. For this purpose, we use Bernstein’s
(2000) concepts of classification and framing, and the notion of positional identity
developed by Holland, Lachicotte, Skinner and Cain (1998). This is an approach that
to the best of our knowledge has not been employed before in transitional studies.

THEORETICAL FRAMEWORK

Classification and framing depict the underlying structures of power and control that
a message carries and here we use them to explore in what ways messages can
influence how students reshape (or affirm) their identity. Bernstein (2000) developed
his theory on educational transmissions to show how knowledge is reproduced by
controlling what can be taught, and how, by those in power. With the concepts of
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classification and framing he intended to demonstrate how transmitted knowledge is
transformed into discourse. In this study, we use these concepts to show how
messages transmitted by lecturers transform the knowledge that they possess,
regarding the learning of mathematics at university and the content of mathematics
itself, into pedagogical discourse. In the discourse that takes place during the
teaching-learning interactions the concept of classification helps us recognize the
power of the message; it sets the limits of the discourse, specifies the specialty of the
context and makes clear what meanings are going to be put together. For instance,
consider a lecturer who strongly suggests that students use induction to prove a
certain theorem. This message carries a high level of power by setting the limits of
what students can do — i.e. not following the suggestion of the expert would be
unwise. A message with strong classification carries a lot of power. With the concept
of framing we can identify the degree of the exerted control that a message conveys;
it sets the form of realisation of the discourse and shows how the meanings that the
transmitter intends to address are going to be put together. When the framing is
strong, the degree of control is also strong. In that case the control is with the
transmitter (Bernstein, 2000). Consequently, the person who transmits the message
does not leave space for the acquirer to shape her/his own thinking; the thinking of
the acquirer is regulated entirely by this strong control. Drawing on the previous
example, the lecturer might then remind students of the particular steps in a proof by
induction; the control of this message is then strong, it shows students explicitly how
they should prove the theorem and directs their thinking.

Bernstein (2000) argued that changes in the formation of identity may occur because
of variation in the distribution of power and variation in the principles of control,
through different ways of communication. In addition, we draw on the concept of
‘positional identity’ developed by Holland et al. (1998), which refers to the ways that
a person identifies their position in relation to others, mediated through the ways that
make them feel comfortable or constrained. We focus particularly on their concept of
space of authoring. Here an individual can orchestrate the social discourses and
practices which allow them to act in a particular way. In this sense a message
transmitted by the lecturer which varies in classification and framing can influence
how students participate differently in university practices (i.e. opens up or constrains
their space of authoring), hence shaping their identities as mathematics learners in
different ways while they participate in these practices (e.g. a brilliant mathematician,
a dropout, etc.). As Lerman (2000) argues the individual trajectories in the
development of a person’s identity when s/he engages in social practices are
influenced by the ways that this person functions in this specific practice. Through
the engagement in the practice an individual is attributed a different positioning. In
our context, this means that the identity that the students bring with them from school
can be reshaped through their involvement with university practices. The messages
presented in this paper are carried through these practices and contribute to the
reshaping of students’ identities by positioning students with respect to the new
practices of university.
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METHODOLOGY

The research took place in a UK research-intensive university among ten first year
honours degree mathematics students. During semester one, we observed lectures of
two compulsory modules and we employed questionnaires, focus groups and
interviews with the students in order to see what messages are transmitted and how
students interpret them. To explore students’ identities, we gathered information
about their background, the reasons behind choosing this particular degree, the ways
they approach mathematics at university and the ways they deal with the changes
(e.g. subject content, teaching practices, structure of the programme, etc.). We
conducted two individual interviews with the lecturers of the modules (Lecturer A
and Lecturer B hereafter). All the observations and interviews were audio recorded
and transcribed.

We constructed narratives from students’ interviews and focus groups to explore how
their identities mediated the interpretation of the received messages. We investigated
how these messages positioned students in relation to the practices of university,
hence affecting their existing identities. These narratives emerged from the ways that
students described themselves as mathematics learners during the passage between
the two educational settings (Bruner, 1996), and the influence that the received
messages had on them. We chose messages that were transmitted during lectures and
which we considered crucial for the learning of mathematics in the new context (e.g.
interaction among students, assessment methods, teaching practices). These were
analysed using Bernstein’s (2000) concepts of classification and framing to identify
the conveyed power and control. Then we explored how these messages positioned
students in the university setting, using Holland’s et al. (1998) concept of positional
identities, and the effect this had on their identities. We wanted to know if the same
message was received by different students and if they interpreted it differently
according to their particular identities, and what consequences this had for their
transition.

RESULTS

We now describe two of the messages that the two lecturers transmitted about
mathematical discussion and assessment methods. We present narratives of two of
the students, hereafter Lesley and Jason (pseudonyms), through which we identify the
influences that the messages had on the shaping and re-shaping of their identities. We
chose to present these two messages here because they have the same level of
classification (both strongly classified) but vary in the degree of framing (one is
weakly framed, the other one strongly), and they influence the students in very
different ways.

Message 1: Mathematical discussion among students

One of the strongly framed messages that both Jason and Lesley referred to
concerned mathematical discussion among students and was transmitted by Lecturer
A. The lecturer herself stated in the interview her intention for transmitting this
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message: “...being able to talk about the ideas, and being able to explain why you
think what you think, even if ... you are wrong, I think that’s important...” In every
lecture, she invited the students to engage in discussions mostly by giving them
mathematical tasks, included in a set of notes that she provided, or by asking them to
work on things that would come up spontaneously, such as finding a counter example
for a statement discussed at that time. In the first lecture, she invited the students
eight times to engage in a conversation, asking them “tell the person next to you...”
whether a specific statement is true or what the explanation for a particular argument
could be. She explained why it is important to do so: “At university the aim is not just
for you to ‘do’ mathematics, but to learn to communicate clearly...”. The message
she intended to transmit through this practice is explicit, carries a lot of power and
sets clear boundaries about the importance of being able to communicate
mathematics. The power carried through this message makes the students recognise
that at university they need to develop the skill and habit of communicating
mathematics clearly. It also has a high degree of control; students will learn how to
communicate clearly by engaging in the discussion with specific tasks chosen by the
lecturer.

Message 2: Assessment methods

We notice weaker framing transmitted through Lecturer’s B message regarding the
assessment of the module. As a part of the assessment for this module students need
to complete a two-piece coursework which contributes 50% to their overall module
mark. Lecturer B admitted in the interview that by employing this coursework he
wanted students to spend time working on their own (or in groups) on the material
that was covered during lectures. Although the message that he intended to transmit
with the use of the coursework is powerful - students have to work on the coursework
in order to understand the material and achieve good marks - it was not strongly
framed. During the 17 lectures we observed, Lecturer B referred to it only three
times, with the most prolonged time being in the first lecture when he provided
general information about the course: “Coursework information are on the other sheet
[sic]... issue dates, handing dates and return dates... And you will be given three
weeks to do the coursework. The first coursework is to be done individually, and the
second can be done in groups of three... It can be done individually but it’s advisable
to work in groups... Each coursework will be worth 25% of the total module.”
Jason’s narrative

Jason’s family and teachers were important influences on his decision to study
mathematics. His parents’ professional background played an important role in his
interest in mathematics: “My mom is an artist and my dad is a computer programmer
so he is obviously very mathematical... the combination of the two was very good...”
He acknowledged that two of his school mathematics teachers inspired him with their
love of mathematics: “I had two Further Maths teachers that I will always remember
and they will always be an inspiration for me. They were very strict and very old
fashioned and it is what | needed, someone straight, and they were very
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enthusiastic... I think just having two great teachers was enough for me to be inspired
to want to do this for the rest of my life... I wanted to do my best for them...”. The
differences in the content of mathematics taught at university did not trouble him; he
approached these as opportunities to challenge his mathematical knowledge: “I didn’t
mind, I wanted the challenge, I didn’t come here for a repeat of last year... | wanted
new material, [ wanted to find how stuff works with integration, differentiation...”.

He received the message that Lecturer A transmitted about mathematical discussion
and recognised the logic behind it. Nevertheless, it did not prompt him to take further
action. He explained: “I don’t speak to anyone from the course, I go there and sit on
my own and make notes. It’s quite an arrogant thing to do but I find it most useful for
me... | tend not to engage in the conversation about the answer, sometimes | am
wrong but sometimes it’s very obvious and I don’t think it worth conversation... |
hate conversations around me, they are extremely silly...”. Through his narration it is
obvious that he is not influenced by this message. Jason’s identity created during
previous years through schooling affects the ways through which he deals with the
practices taking place at university and consequently in what ways he positions
himself. He does not value any social interaction with other students, and approaches
mathematics as a challenging task that needs to be done individually. This has as a
consequence a disregard for this strongly classified and framed message.

On the contrary, the weakly framed message that Lecturer B transmitted had more
influences on Jason. Through this message he identified a challenge to deal with. He
was the only one among the students who took part in the study that interpreted the
message in this way. He is independent and more prone to agree with the messages
that promote such challenges. This contrasts with the rest of the students who, in
most cases (as we see shortly in Lesley’s case), struggled with the different structure
of assessment at university. He argued: “I like having a challenge to be set every
week and to go away to try it over. Even if I get it wrong and I get a bad mark... |
still enjoy it... The best example was Lecturer’s B question 4d, that was really good.
It was induction of power sets and it was a proof by induction and that was a real
challenge, I had to spend hours on that question try to get it right.” We notice that
Jason is influenced by the transmitted message despite its weak control, he still puts
work in and encounters it as a challenge. It is his identity as a mathematics learner
that makes him position himself as someone who enjoys and looks for challenges.
This practice makes him feel comfortable and lets him extend his mathematical
horizons. His actions are not prompted by the degree of control of the message but
from his intrinsic interest in the content of mathematics.

Lesley’s narrative

Lesley chose to study mathematics because of her personal interest in the subject: “I
came to study maths just because I really enjoy the actual 1’d say sort of methods
type [of] maths, like sort of complex but not so much proofs and I thought that’s what
university mathematics is.” She was encouraged by her school teachers to follow this
choice: “Teachers gave me advice, like my Further Maths teachers... [They said]...
basically that you can do it. Like don’t think you can’t, don’t regret it...” Eventually
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university mathematics was not as she expected it to be; her expectations were based
on “rumours” which were supported by the view that university mathematics
resembled A Level Further Mathematics: “I listened to rumours that it wasn’t going
to be that hard, like everyone said that the jump from school to 6th form is harder
than the 6th form to uni, but they lied! ...I got told that 1st year was just Further
Maths A Level, but that wasn’t true either.” The main difference that she recognised
between the two institutions, and which made her struggle, was the necessity to study
proof at university. She commented: “There is a lot more proofs and I find them quite
difficult to understand, I think that’s the main difference... maybe that’s why I am
struggling more, and missing something from the lectures...”

When Lesley talked about the strongly classified and framed message that Lecturer A
transmitted regarding the discussion among peers she showed a completely different
grasp of it compared to Jason. She recognised the discussion on mathematical
activities as a familiar practice, like the ones taking place at school, and she
acknowledged it as beneficial for students’ understanding. This specific practice used
during her schooling played an important role in the way that Lesley formed her
identity as a mathematics learner and consequently it influenced the way that she
dealt with an analogous situation at university. In the focus group she said: “School
was a lot more discussions and stuff like work with your partner and things like that
and I think some lecturers... try to make you discuss.” A few weeks later in the
interview she elaborated further: “I do find that really helpful... When you explain
something to someone else it helps you as well and is nice to hear somebody else’s
point of view... Just to hear another explanation, it can just sort of make you
remember more or in an easy way.” Although she finds the differences in the new
context troublesome she seems to be eager to take action from this strongly framed
message which resembles school practices. The practice of talking to her peers is
similar to the school practices and therefore she agrees readily with this message. In
turn, this helps her deal with the problematic situation.

The same though did not happen with the strongly classified but weakly framed
message from Lecturer B. Lesley did not anticipate such a difference in terms of
assessment between the two educational settings: “I didn’t expect it to be this much
coursework... and I am not used to it, ’cause at 6th form we had exams at the end of
the year and that was it for maths. So it is hard having something constantly in the
back of your mind and have to hand it in... It’s quite stressful but then maths at
university it was always going to be stressful...” In order to cope, Lesley admitted
that she focused more on the things that the lecturer says during lectures and tried to
find bits that would fit as possible answers in the coursework’s questions: “I feel like
I am looking for certain... things that come up in the questions and then pay like extra
attention and stuff like that, so | learn differently, in that way... Like this morning we
had a question that used words that were really similar to a question in my
coursework, so | was like, right! Extra focus on this, | do focus on quite a lot but |
was like writing my notes really good for this bit, it’s just sort of extra pressure kind
of thing.” We notice that, for Lesley, the lack of control in this message makes the
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gap seem bigger between the practices used at school and at university. She sees
mathematics as mainly procedural and positions herself as a student that needs
explicit explanations of the mathematical methods seen in lectures. The weak control
in Lecturer’s B message, where he gave freedom to the students to act independently,
made her feel undirected. She reacted to this challenge by adopting a strategical way
of approaching the coursework without grasping the intention behind the message
(i.e. make students act and think independently, encourage conceptual
understanding). During the lecture, she tried to link words that sounded relevant to
the questions in the coursework. Through this strategy she attempted to orientate
herself in specific parts of the notes in order to be efficient with the coursework. This
tactic limited her space for exploring mathematics and therefore, we suggest, shaped
her mathematical identity in a very different way to that of Jason.

DISCUSSION AND CONCLUSIONS

The practices and messages at university positioned the two students differently, and
hence shaped their developing identities in different ways. On the one hand, we have
Jason who chose to study for a degree in mathematics inspired by two enthusiastic
mathematics teachers who instilled a love of mathematics in him, ready to accept the
challenge in the new context, willing to work and conscious about the differences in
the content. On the other hand, Lesley liked mathematics and decided to study it
encouraged by her teachers that she would be able to cope with it. She held a strong
belief that the content would be like A Level Further Mathematics and she struggled
with the new elements, such as the need to study proof at university.

We notice that students’ identities are shaped differently according to the variations
in the degree of control in the transmitted messages. Jason’s identity as a
mathematics learner is affirmed by the weakly framed message regarding the
assessment method. This happens because the degree of framing here presents
individual challenges and he is more willing to take action as a consequence.
Through the narration of his identity he seemed to be self-aware about his
mathematical abilities and choices and well prepared for the changes that he found at
university. On the other hand, the message regarding mathematical discussion among
peers, made him feel constrained; and he chose not to take any action from it
because, for him, mathematics is an individual task.

Contrarily, strongly framed messages appeal to Lesley, whose mathematical identity
Is constructed on the perception that mathematics is about methods. She tries to find
similarities between the two contexts and is keen on taking actions from messages
with high degree of control because they can regulate explicitly her thinking, like the
message about mathematical conversations. This agrees to some extent with
Hernandez-Martinez’s (2016) study where students entering university were alienated
because their identities did not resonate with the new practices. Similarly, Lesley
finds the change of assessment methods uncomfortable due to the weakly framed
message that Lecturer B transmitted about coursework. The lack of control makes her
feel constrained, leaves room for independence and Lesley did not seem ready for
that yet.
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These two cases show how messages with different degrees of power and control
position students’ in different ways according to their individual identities; therefore,
it would be wrong to suggest that, for example, only strongly classified and framed
messages should be transmitted by lecturers. The implication of our analysis is that
university actors should account for the learners’ identities and agency when
designing educational practices. This confirms Pampaka’s et al. (2016) work on
current debates on the ‘what works’ agenda where the authors stress the need to
consider the learners’ agency in policy and practice in mathematics education. As we
argued elsewhere (Kouvela, Hernandez-Martinez and Croft, 2016, under review)
importance should be given to the discourses taking place in the teaching-learning
interactions during the transitional phase. Taking these into account we can explore
in what ways messages transmitted by university actors position students in relation
to the practices of the new institution and how this shapes their identities during their
transition to university.
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This paper reports from a project on the investigation of the influences of sign
language on the development of conceptualizations of mathematical ideas. Following
research in Deaf Studies, iconic aspects of an idea represented in the related sign are
considered one factor impacting the understanding of the signed concept. This paper
adopts this approach and proposes a categorization of the diverse types of iconic
references made by the students when signing about fractions, based on interviews
with deaf and hard-of-hearing students using sign language as natural everyday-
language.

INTRODUCTION AND THEORETICAL BACKGROUND

How do deaf students learn mathematics? How do they think about mathematical
ideas? And how can answering these questions help us gain more comprehensive
insights, not only about how to better respond to the specific needs of deaf students,
but also about what influences learning and conceptualisation in general? While these
questions are inspired by Healy (2015), research from the field of Deaf Studies
suggests approaches towards answering them by considering specific features of sign
language that have been found to influence the conceptualization of the signed idea.
This contribution presents part of a larger study that aims at understanding the
influence of sign language on mathematical learning and establishing sensitizing
concepts to foreground the impact of sign language in mathematical discourse.
Specifically, this current report focuses on examining how students sign about
fractions and how this might influence their understanding of fractions. Therefore,
the objective of this paper is to provide first categories to describe how students sign
in fraction talk.

Assuming that knowledge is constructed by individuals through co-construction in
social interaction, communication as it is carried out in the gestural-somatic mode of
sign language is considered to have a non-trivial impact on this learning process from
two perspectives. On the one hand, visual aspects represented in the sign might
influence ‘what is actually talked about’ and how the signed utterance may be
interpreted as a whole, similar to as it is already considered for the case of gestures
accompanying speech in learning processes of hearing children (Krause, 2016). On
the other hand, following the theory of embodied cognition we can assume that
bodily existence and the being in and experiencing the physical world impacts how
we construct meaning and what kind of meaning we construct (NUfiez, Edwards, &
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Matos, 1999, p. 53). With respect to the role of body in cognition, Wilson and Foglia
state in their embodiment thesis more specifically:
Many features of cognition are embodied in that they are deeply dependent upon
characteristics of the physical body of an agent, such that the agent's beyond-the-brain
body plays a significant causal role, or a physically constitutive role, in that agent's
cognitive processing. (Wilson & Foglia, 2016, paragraph 3)

One aspect they highlight with respect to the body’s role in cognition concerns the
“body as constraint”, which implies that
e Some forms of cognition will be easier, and will come more naturally, because of
an agent's bodily characteristics; likewise, some kinds of cognition will be
difficult or even impossible because of the body that a cognitive agent has.

e Cognitive variation is sometimes explained by an appeal to bodily variation.
(Wilson & Foglia, 2016, paragraph 3)

Therefore, the conditions for deaf students with respect to cognitive processing can
be considered being different to those of their hearing peers due to bodily variation.
Furthermore, from a socio-cultural perspective, mathematics is mediated semiotically
and the way we come in touch with mathematics — whether it is through auditive
signs or mainly through visual signs — alters the structure and the flow of how we
think mathematically (Healy, 2015, referring to Vygotsky, 1917). In accordance with
this, it is not the question if deaf students can develop mathematical skills just as their
hearing counterparts, but rather how these skills develop and how the “profound
restructuration of the intellect” (Healy, 2015, p. 299) caused by the substitution of the
bodily tool in semiotic mediation changes how the mathematical thinking and
knowledge becomes structured.

Influence of sign language on conceptualization

Research in the field of Deaf Studies points out that certain features of sign language
influence the conceptualization of the corresponding signed ideas (Grote, 2013). One
of these features concerns the iconicity of a sign, that is, the relationship between a
sign and the aspects of the idea or object that can become reflected in this sign as
evoked by some kind of similarity, e.g. to an action or object. According to Grote
(2013), the iconicity of the sign influences which ideas become marked as
distinctively linked to the concept. While in this study, only German Sign Language
(DGS) is considered, the feature of iconicity encompasses sign languages in general
(see Grote, 2013).

Sign languages are naturally growing languages and as such, they have been
acknowledged as languages only since the last century. While for many mathematical
concepts there is no common consensus about corresponding ‘mathematical signs’,
these signs often develop in the discourse in the mathematics classroom (Fernandes
& Healy, 2014). Investigating which aspects are reflected iconically in the signs used
Is thus key to getting a better understanding of how this idea becomes encountered
and which aspects become considered important to ‘stand for’ the mathematical idea.
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METHODS

This study was carried out in cooperation with a German school for special
educational needs that focuses on ‘Hearing and Communication”. Ten deaf or hard-
of-hearing students from a grade six class, were invited to participate in the
interviews. German Sign Language was the primary language of each of the students.
In the mathematics lessons, the hearing mathematics teacher used sign language as
well as spoken language. The topic focused on in the interviews — fraction numbers —
was covered in class two months earlier.

Interview methodology

One purpose of the interview is to investigate the students’ fraction talk, that is, to
find out more about how the students talk about fractions and ideas related to fraction
numbers. Therefore, two aspects become key in the methodological approach to the
interviews:

e The students have to be encouraged to talk in their natural language, that is,
they need to feel free to use sign language.

e  The interviewer themselves shall not provide signs to refer to mathematical
ideas that stand in the focus of investigation to not influence how the
students talk about these ideas.

The first issue is encountered by having the interviews carried out by a deaf assistant
that already contributes in the project by subtitling video data gathered in the
classroom (see also Krause, in press). The interviewer has neither a research nor a
specific mathematical background, which required to design an interview guideline
and introducing her thoroughly to the purpose and the aims of the interview. While
this proceeding provides good conditions for the first of the two aspects mentioned
above, it obstructed the researcher to intervene in cases where further questioning
may have helped assessing the students’ ideas of the mathematical concepts.

The second methodological aspect underlying the planning of the interviews was
encountered by a specifically geared interview design that made use of ‘term cards’
and ‘fraction cards’. In the course of the interview, cards have been presented to the
students, each labelled with a fraction term. The fraction terms given to the students
were (English translation provided in brackets): ‘Bruch’ (fraction), ‘Zahler’
(numerator), ‘Nenner’ (denominator), ‘kiirzen’ (simplifying/reducing), ‘erweitern’
(expanding), ‘Bruchrechnung’ (fractional arithmetic), and ‘Briiche vergleichen’
(comparing fractions).

The students are asked to talk about one term after the other, initiated by the
interviewer asking “lI will give you some words. How would you explain the
meaning?” (signed as “words give-to-you content meaning explain-to-me (what?)”)
after a first introduction to the interview situation. Subsequently, the interviewer asks
the students “what fits together what?”, lets them regroup the cards on the table and
asks for an explanation for the grouping they made. This slimmed down version of a
concept map is trialled to gather further insights about the aspects considered
significant for the students with respect to the mathematical ideas.
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Following this, two fraction cards are given to the students, one labelled with the
fraction -, the other one with the fraction 2. The final task consists of students
comparing these two fractions and deciding which one is bigger. The students’
explanations ought to provide a further perspective on how the students talk about
fractions in the specific context of a concrete task.

Data preparation and analysis

The video data has been subtitled by the deaf assistant using the German words
corresponding with the signs, preserving the linguistic structure of German Sign
Language as best as possible. These subtitles served as basis to identify the students’
use of the fraction terms to then reconstruct their iconic reference.

KINDS OF ICONICITY IN STUDENTS’ SIGNS FOR FRACTION TERMS

The investigation of the iconic aspects reflected in the students’ signs used in the first
part of the interview showed diverse types of iconicitiy, that is, diverse kinds of
iconic similarity as reflected in the sign. In the following, the different categories will
be presented by means of illustrative examples.

Innerlinguistic iconicity

A large amount of ‘mathematical signs’ used by the students when talking about the
fraction terms has been found to be based on signs used in everyday sign language.
That is, the sign resembles another, possibly nonmathematical, sign in handshape
and/or motion of the hand, and placing of performance of the sign. Assuming that the
iconic reference fosters a stronger link to the idea referred to in the similar sign, the
reference of the innerlinguistic iconicity and its ‘fit’” with the corresponding
mathematical idea need to be considered for the development and appropriate use of
‘mathematical signs’.

For example, the DGS-sign for ‘zéhlen’ has been used as ‘mathematical sign’ for the
term ‘Zahler’ (numerator). As nominalization of ‘zéhlen’ (counting), hence ‘the one
that counts’, the idea of ‘Zihler’ could be conceptually linked to ‘counting’ the given
number of the parts the whole is divided in, embedded in an understanding of
fractions as ‘part of a whole’ (q.g. Kieren, 1980; Lamon, 2012).

4

Fig.1: Sign used for “Zdhler” (numerator) as innerlinguistically iconic to “zdhlen”
(counting) in DGS (from two perspectives)

Another sign used for ‘Zahler’ reflected innerlinguistic iconicity to the DGS-sign for
‘Zahl’ (number). That is, the innerlinguistic iconicity to the sign for ‘number’
provides a link to a more general feature of the ‘Zahler’ — being a number — rather
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than providing a conceptual link to some idea of what the ‘Zahler’ could be
understood as within the concept of fraction.

While potentially chosen due to the similarity of the written word ‘Zahl’ to the word
‘Zahler’ —some kind of innerlinguistic iconicity in written language —the sign for
‘Zahl’ furthermore also evokes innerlinguistic iconicity to the sign for “rechnen”
(calculating). The shape of the hands matches for both signs, but the signs differ in
movement insofar as the hands move down for ‘Zahl’ while they move up and down
as opposed to each other for ‘rechnen’ (see Fig 2).

-

Fig.2: Sign used for ‘Zéhler’ (numerator; left side) as innerlinguistically iconic to
‘Zahl’ (number) in DGS. On the right side, the sign for ‘rechnen’ (calculating).

That this actually seems to influence conceptualization is revealed in a student’s
choice for grouping the terms in the second part of the interview. Being asked “what
fits together?”, she explains her choice of grouping ‘Zihler’ and ‘Bruchrechnung’
together by pointing at the card ‘Bruchrechnung’, performing the sign for ‘rechnen’,
then performing the similar sign for ‘Zahl’, placing the hand beneath the card for
‘Zéhler’ and nodding before continuing with her explanation for the rest of her
grouping.

The signs the students used for ‘Nenner’ (denominator) have been found to be similar
to each other, all providing an innerlinguistic iconicity to the sign for ‘Name’ (name)
or ‘nennen’ (naming). However, differences have been found in the features the sign
used as ‘Nenner’ shared with the one of ‘Name’/’nennen’. The signs can coincide

e by only sharing the same shape, the DGS-sign for the letter “n” in this case.
Since this is a rather general match, the link provided through innerlinguistic
iconicity is a rather weak one.

e by sharing the same shape and the same motion.

e by sharing the same shape and the same motion and by furthermore being
performed at the same place, the cheek in this case. The link provided here
between ‘“Nenner” and the idea of “Name”/”nennen” is a stronger one.

Iconic-symbolic and iconic-physical reference

Iconic-symbolic reference in this context concerns a signs’ reference “to a symbolic,
written inscription, which in turn represents a specific mathematical entity or
procedure” (Edwards, 2009, p. 138). lconic-physical reference, on the other side,
concerns the similarity to real objects or physical actions (Edwards, 2009). Although
the students’ referred in their explanations of ‘fraction’, ‘numerator’ or ‘denominator’
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often to the symbolic representation of the fraction as one of the numbers being
located above the fraction bar, the other one below, none of the signs referring to the
fraction terms where purely iconic-symbolic or iconic-physical. Nevertheless, all of
the students used a sign for ‘kiirzen’ (simplifying) that combined both (see Fig. 3).

Fig. 3: Sign used for ‘kiirzen’ (simplifying), reflecting the action of striking off in the
symbolic representation of the fraction while simplifying (above: from two
perspectives; below: subsequent movements)

The signs reflect the idea of striking off when dividing the numerator and the
denominator by the same number. It therefore refers iconically to a physical action
that is performed within the symbolic notation of the fraction. With this, it recalls an
aspects of the procedure performed when simplifying a fraction.

Iconic aspects of fraction talk in fraction comparison: an enacted iconic
approach

8 out of 10 students approached the comparison of the fractions by activating area
models of cake, chocolate or pizza pieces (Lamon, 1999). For this, they subsequently
‘placed’ respective imagined ‘wholes’ in the signing space in front of their body and
‘cut’ them into parts. This enacted iconic approach reveals an interpretation of the
fraction as ‘part of a whole’, providing a visual basis to solve the task by means
partitive division within the ‘quotient subconstruct’ (e.g. Marshall, 1993). However,
all of these eight students mixed up the roles of the dividend and the divisor and
identified the denominator as providing the number of wholes and the numerator as
giving the parts of each whole. Since all the students visit the same class this might
be explained by being prompted by some approach to fractions followed in the
lessons, but not yet being fully elaborated.

CONCLUSIONS AND DISCUSSION

In this paper, | have presented diverse ways of how signed fraction talk might feature
iconic aspects of mathematical ideas in the signs and gestures used and proposed how
these aspects might influence the way these ideas become perceived and processed.
For example, these iconic aspects might concern a certain similarity to other signs
that are already used as conventionalized with another meaning and in this sense,
bear an innerlinguistic iconicity within the specific sign language. The mathematical
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idea might then become linked to and interpreted against the background of some
association the conventionalized meaning might evoke. Also, a sign can refer to a
symbolic representation of a mathematical idea or to some sort of procedure carried
out in its context. That way, it might foster a link to this representation or procedure
by means of providing iconic-symbolic or iconic-physical reference to them.
Furthermore, explanations carried out in sign language can provide a visual basis to
the mathematical idea.

Grote points out that “assuming that epistemic processes are processes inherently
mediated by signs, the similarity that forms the relationship between icon and
referential object is constituted actively” (Grote, 2010, p. 312, translated by the
author). That is, a sign does reflect iconic aspects of a referential object, or idea; it
does so only for those who are aware of this iconic relationship. For signs referring to
mathematical ideas, the reference has to develop hand in hand with the mathematical
idea. Therefore, two intertwined processes of meaning making — of the mathematical
idea and of the corresponding sign — have to be combined. In (Krause, in press) I
describe this reconstruction of the ‘process of iconization’ to survey the gestures and
signs used by a teacher while introducing the concepts of axial symmetry and point
symmetry in an all-deaf classroom. The former becomes grounded in the activities of
folding and mirroring, the latter in the activity of rotating around a point. The
corresponding signs the teacher conventionalizes for “axial symmetry” and “point
symmetry” respectively reflect these ideas iconically, showing aspects of
innerlinguistic iconicity (mirroring) and iconic-physical references to folding and
rotating. This raises the questions, are there general ways in which certain iconic
relationships develop in processes of encountering mathematical ideas? Are these
observable in the mathematics classroom?

As has also been seen in the description of the results, students do not necessarily use
the same signs in their fraction talk. Still, there needs to be some degree of
conventionalization if they want to communicate in the mathematics classroom. How
does the use of multiple diverse signs for one mathematical idea influence the variety
of conceptual links available for a student with respect to the signed idea?

The different types of iconicity presented in the examples are by no means thought of
as exhaustive categories but rather as providing a first approach to describing the
features of signed mathematical talk, based on a specific empirical basis. Further
research needs to be done to widen the scope and uncover other categories so as to
investigate the nature of mathematical signs and related visual-gestural
representations as they develop and become established and used in the mathematics
classroom.

Making claims about what makes a mathematical sign beneficial or hindering for
learning mathematics is beyond the scope of this paper. The results presented here
moreover raise awareness of how a ‘mathematical sign’ can be more than just a mere
‘name’ for a mathematical idea and how visual aspects of sign language can
influence the shaping of mathematical thought. On the one hand, this provides an
important baseline for attempts of developing dictionaries of ‘mathematical signs’, a
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current discussion in the DGS-community. On the other hand, knowledge about the
influence of the shaping of mathematical signs provides a starting point for the
elaboration of teaching methods in the mathematics classroom of deaf and hard-of-
hearing students. In addition, research towards a more comprehensive knowledge
about how those visual-gestural representations influence learning might also shed
another perspective on how our body in general and gestures in particular might
contribute to and shape the learning of mathematics.
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In an experimental study with ninth graders (N=165), we investigated whether
presenting reading comprehension prompts would have a positive impact on
students’ enjoyment and performance in modelling. Contrary to our expectations, the
enjoyment and modelling performance of students who received reading
comprehension prompts were similar to those of the students in the control group.
Further, we found that students’ success in answering the reading comprehension
questions was positively related to their enjoyment and modelling performance.
However, after we controlled for intra-mathematical performance, the relation
between reading comprehension and modelling disappeared, whereas the relation
between reading comprehension and enjoyment remained significant. Implications
for future research are discussed.

INTRODUCTION

Reading comprehension is an essential precondition for successful modelling, and
deficits in reading comprehension can be responsible for the occurrence of errors in
solving modelling problems. Hence, it is important to ask whether presenting reading
comprehension prompts, which have been found to improve students’ reading
comprehension in different domains (Levin & Pressley, 1981; Rickards, 1976), can
also lead to better modelling performance. In the present paper, we examined whether
reading comprehension prompts would have a positive influence on students’
performance and enjoyment in solving modelling problems. Further, we investigated
whether answering the reading comprehension questions correctly would play a role.
We therefore analyzed the relation between success in answering the reading
comprehension questions and modelling performance and the relation between
reading comprehension and task enjoyment.

THEORETICAL BACKROUND AND RESEARCH QUESTIONS
The Role of Reading Comprehension in Mathematical Modelling

The core of mathematical modelling is the translation of a real-world situation into a
mathematical model. The translation process requires an adequate understanding,
structuring, and simplification of the initial real-world situation. This means that
students need to be able to build an adequate mental model of the situation before it
can be mathematized. Even the first step of “understanding the situation” in the
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modelling process can be demanding for students and is often a source of errors
(Blum, 2015; Leiss, Schukajlow, Blum, Messner, & Pekrun, 2010). This is not only
because the reading comprehension that is necessary to solve modelling problems is
cognitively demanding but also because students are used to word problems that can
be solved without the effort of building an adequate mental model of the real-world
situation (“Situation model”) through the direct application of the given numbers in a
straightforward calculation (Verschaffel, Greer, & de Corte, 2000). However, for
modelling problems, which often include superfluous or missing information, such
strategies are not sufficient and can lead to incorrect solutions (Krawitz, Schukajlow,
& Van Dooren, 2016). Because of the fact that the real-world situation is mostly
presented in written form (Verschaffel et al., 2000), it is obvious that reading
comprehension is a necessary condition for deriving a situation model from the text,
and it plays an important role in understanding and further structuring and
simplifying the written information that is presented about the real-world situation.

A first indication of a positive relation between reading comprehension and
performance in solving modelling problems comes from research on word problems.
The positive relation between the two factors was found to remain significant even
after technical reading skills were controlled for (Vilenius-Tuohimaa, Aunola, &
Nurmi, 2008). Leiss et al. (2010) demonstrated that mathematical reading
comprehension — assessed via the request to select the numerical information that was
important for solving a given modeling problem — is even more important for
modelling problems than for word problems. This study showed a significant relation
between mathematical reading comprehension and performance in solving modelling
problems (.486) and a smaller but also significant relation with performance on word
problems (.183). Also, in Leiss et al.'s (2010) study, general reading comprehension
was measured with a standardized reading test. In contrast to mathematical reading
comprehension, general reading comprehension was not correlated with performance
on the word problems or the modelling problems. This suggests that the specificity
with which reading comprehension is assessed plays an important role.

Although mathematical reading comprehension was found to be important for
modelling, we do not know much about how improvements in reading
comprehension influence modelling processes. Because posing questions that were
focused on the contents of the text was found to benefit students’ understanding in
research on reading comprehension (Levin & Pressley, 1981; Rickards, 1976), we
applied this approach to investigate how the use of reading comprehension prompts
would affect modelling performance.

Reading comprehension and enjoyment while solving modelling problems

Students’ enjoyment as they solve math problems depends on whether they assign
value to the activity of solving math problems and whether they perceive this activity
to be sufficiently controllable (Pekrun, 2006). Because the perception of control,
which is often assessed via self-efficacy, is closely related to performance, higher
performance should result in greater enjoyment. Empirical evidence for this impact
has been provided by the findings that students’ mathematical performance in grades

3-98 PME 41 — 2017



Krawitz, Schukajlow, Chang and Yang

3 and 6 has a positive impact on enjoyment in grades 6 and 9, respectively (Hannula,
Bofah, Tuohilampi, & Metsdmuuronen, 2014) and that students’ grades at the
beginning of the school year are positively related to their enjoyment during the
school year (Ahmed, van der Werf, Kuyper, & Minnaert, 2013). As reading
comprehension is an important part of modelling activities, and modelling is
positively related to enjoyment (Schukajlow & Krug, 2014), higher reading
comprehension should also result in greater enjoyment.

Further indications for the positive relation between reading comprehension and
enjoyment in modelling has come from research in other domains. Deep reading
comprehension was found to be accompanied by enjoyment (Guthrie et al., 2007). As
students’ enjoyment in solving modelling problems might refer to all modelling
activities, deeper reading comprehension should result in greater enjoyment in
modelling. Moreover, improvements in reading comprehension should also positively
affect students’ enjoyment in modelling.

However, to the best of our knowledge, we could not find research that had
investigated the relation between students’ reading comprehension and their
enjoyment while solving modelling problems.

Research Questions

These considerations led us to pose the following research questions:

1. Does the presentation of reading comprehension prompts have a positive effect
on modelling performance? Is higher reading comprehension positively related
to modelling performance?

2. Does the presentation of reading comprehension prompts lead to greater
enjoyment in solving modelling problems? Is higher reading comprehension
positively related to enjoyment?

We expected that presenting reading comprehension prompts would lead to better
modelling performance because answering the reading questions might lead to a
deeper comprehension of the real-world situation presented in the text (Levin &
Pressley, 1981) and thus to better solutions on the modelling tasks. Further, taking
into account previous research (Leiss et al., 2010), we expected a positive relation
between reading comprehension and modelling performance. Regarding the extent to
which students enjoyed solving the modelling tasks, we expected benefits of
presenting reading comprehension prompts because previous research showed that
deep text comprehension was accompanied by enjoyment (Guthrie et al., 2007).
Moreover, because of the positive impact of prior performance on enjoyment (Ahmed
et al., 2013; Hannula et al., 2014; Pekrun, 2006), we expected that students who
answered the reading comprehension prompts correctly would show greater
enjoyment when solving the modelling tasks.
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METHOD
Sample and design

Data were collected within the Taiwanese-German research program (TaiGer) on the
influence of cultural-societal factors on mathematics education. The sample involved
65 ninth graders (46 % female, mean age = 15.12 years) in seven middle-track classes
(German Realschule) at three different schools. Students in each classroom were
randomly assigned to an experimental (EG) or a control condition (CG). All students
had to take a 60-minute test that included three descriptions of real-world contexts
(here, called situation statements) and corresponding modelling problems. The test
version for the experimental condition also included reading comprehension prompts
corresponding to the situation statements.

Measures

Two of three situation statements and the related modelling tasks were adapted from
previous studies, and we developed other tasks on our own. In the following, one of
the three situation statements from the test is presented as an example (see Figure 1).

Fire Brigade
In 2004, the Munich fire brigade got a new fire engine with a turn-
ladder. Using the cage at the end of the ladder, the fire brigade
can rescue people from great heights. According to the official
rules, while rescuing people, the truck has to keep a distance of at
least 12 meters from the burning house. Technical data of fire
engine are shown in the table below.

Table 2

Technical data of fire engine

Engine model: Daimler Chrysler AG Econic
18/28 LL - Diesel

Construction year: 2004

Power: 205 kw (179 HP)

Cubic capacity: 6374 cm’

Dimensions of fire engine: Length 10 m width 2.5 m height 3.19 m

Dimensions of ladder: Length up to 30 m

Weight of unloaded truck: 15540 kg

Total weight: 18000 kg

Figure 1: Situation statement of the real-world context “Fire brigade”

The test version for the experimental condition included six reading-comprehension
prompts (two prompts for each situation statement). For the “fire brigade” context,
one of the two reading comprehension prompts was:

“What is the longest possible length of the ladder?”
The answers to the reading comprehension prompts were scored dichotomously as
right or wrong. The mean of the six answers to the reading comprehension prompts
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was used to assess reading comprehension performance. Thereby, the internal
consistency was low, as expected, since the reading comprehension prompts were
developed to address different aspects of the problem (Cronbach’s a = .518).
Students in both groups were given six modelling problems (two for each situation
statement). All of the modelling problems referred to the Pythagorean Theorem. For
the “fire brigade” context, one of the modelling problems is presented here as an
example:

“What is the maximal height from which the Munich fire brigade can rescue

people with this fire engine? Find one possible solution and briefly explain your

solution.”
The solutions to the modelling problems were coded by applying a three-step coding
scheme (from wrong = 0 to right = 2). The reliability for the six modelling problems
was acceptable (Cronbach’s a =.719).
In line with Schukajlow and Krug's (2014) study, students’ enjoyment was
operationalized in a prospective and task-specific manner. Therefore, the students
were first asked only to read the modelling problems and to use a 5-point Likert scale
ranging from 1 (not at all true) to 5 (completely true) to rate whether they would
enjoy working on the tasks (“I would enjoy solving these problems”). After
answering this question, the students solved the respective modelling problems. The
reliability of the scale was satisfactory (Cronbach’s o = .738).
Moreover, an intra-mathematical performance test on the Pythagorean Theorem was
administered (10 minutes, Cronbach’s a = .635). The intra-mathematical performance
test was used to control for students’ intra-mathematical abilities in assessing the
relation between reading comprehension and modelling performance or enjoyment,
respectively, and also to verify the comparability of the groups. A sample task is
presented in Figure 2.

1. Calculate the length of the diagonal d of a rectangle with the length of 3 cm and the width of 4 cm.
How long is the diagonal 4? 4em

[ 5cem I 6cm ] 6.5 cm [ 7cm [l 8cm
3cm

Figure 2: Sample task from the intra-mathematical performance test

We removed three of the 165 students from our analysis because they did not answer
the enjoyment questions. We included the remaining 162 students (Ngg=81;
N = 81) in our analysis. Missing values on the reading comprehension prompts and
the modelling problems were coded zero, whereas for enjoyment the mean of the
remaining items was calculated.
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RESULTS

As a preliminary result, we found that the two groups had comparable intra-
mathematical performances (EG: M =.29 (.20); CG: M =.29 (.21); t(160) = -0.048,
p =.962). This result confirmed the comparability of the groups.

To investigate whether the presentation of reading comprehension prompts had an
effect on modelling performance (research question 1), we used an independent t-test
to compare the modelling performance of the EG (M = .27, SD = .35) with that of the
CG (M=.24, SD=.33). The results showed that the groups did not differ
significantly in their modelling performance (t(160) =.609, p =.543). Thus, the
reading comprehension prompts did not have a significant effect on modelling
performance. A correlational analysis (Pearson correlation) was used to examine the
relation between students’ modelling performance and the correctness of their
answers to the reading comprehension prompts (research question 1). A low
correlation between reading comprehension and modelling performance was found
(r(79) =.198, p<.05, one-tailed). However, a much greater proportion of the
variance in modelling performance was explained by intra-mathematical performance
(r(160) = .519, p < .01, one-tailed), and the relation between reading comprehension
and modelling performance disappeared after intra-mathematical performance was
controlled for (partial correlation: r(79) =.077, p = .248, one-tailed).

Regarding students’ enjoyment (research question 2), the EG (M =2.58, SD =.97)
reported nearly the same enjoyment as the CG (M =2.59, SD = .94, t(160) =-.123
p =.902). Thus, the reading comprehension prompts did not have a significant effect
on students’ enjoyment. However, similar to the relation found in research
question 1, reading comprehension was positively related to students’ enjoyment
(r(79) = .220, p < .05, one-tailed). Moreover, this relation remained significant even
after intra-mathematical performance was controlled for (r(79) =.202, p < .05, one-
tailed).

SUMMARY AND DISCUSSION

In the present study, we investigated the effects of reading comprehension prompts
on students’ modelling performance and enjoyment. Further, we examined the
relations between students’ success in answering the reading comprehension prompts
and their modelling performance and enjoyment. Contrary to our expectations, the
results showed that presenting reading comprehension prompts did not lead to an
improvement in students” modelling performance or enjoyment. This indicates that
the positive impact that was previously found from asking questions about text
comprehension (Levin & Pressley, 1981; Rickards, 1976) could not be directly
transferred to modelling performance in the current study. Thus, simply providing
reading comprehension prompts does not seem to be sufficient for improving
modelling. It is possible that students answered the prompts superficially so that the
intended engagement with the text and the expected deeper understanding was not
fulfilled. This explanation was supported by the results of our correlational analysis,
which showed that success in answering the reading comprehension questions was
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positively related to students’ modelling performance and enjoyment, respectively.
Students who answered the reading comprehension questions successfully showed
better modelling performance and greater enjoyment of the modelling tasks. Hence, it
Is not the presentation of the reading comprehension prompts on its own but rather
students’ actual engagement with the questions that seems to be the determining
factor. The positive relation between reading comprehension and modelling
performance confirms findings from previous studies, although the correlation we
found was lower (.198 compared with .486, which was reported by Leiss et al.
(2010)). This may have occurred because the reading comprehension test in our study
focused on the construction of a situation model, whereas in Leiss et al.'s (2010)
study, the students were asked to select the information that was important for
solving the problem. Thus, in addition to general reading comprehension activities,
the students in the previous study had to idealize and structure their situation model,
and therefore were strongly engaged in modelling activities.

The positive relation between answering the reading comprehension questions
correctly and students’ modelling performance disappeared after we controlled for
intra-mathematical performance. Hence, students’ intra-mathematical performance
seems to be crucial for students’ modelling performance. However, the positive
relation between students’ reading comprehension and their enjoyment of the tasks
remained even when we controlled for intra-mathematical performance. Students
with deeper reading comprehension enjoyed solving the modelling problems more
than students with surface reading comprehension, even when the two groups of
students had comparable intra-mathematical abilities. This confirms the previous
finding that a deeper understanding is accompanied by greater enjoyment (Guthrie et
al., 2007) and moreover indicates that a deeper comprehension of the real-world
situation results in a greater enjoyment of modelling.

Finally, we want to acknowledge the following limitations of our study. The benefits
of prompting students to answer reading comprehension questions were hypothesized
because of the findings of prior studies. In the present study, we thus used the reading
comprehension prompts to enhance students’ understanding of the text as well as to
measure their reading comprehension. With this design, however, it is not possible to
examine whether the prompts led to better reading comprehension in the
experimental group compared with the control group. In addition, the modelling
problems we used were found to be very demanding for the students in terms of
constructing a mathematical model, so it is possible that this interfered with the
examination of the interplay between reading comprehension and modelling because
even students with a good understanding of the situation potentially had trouble
solving the modelling problems.
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In this paper, we present a comparative case study of two students with different
epistemological frames watching the same real analysis lectures. We show that
students with different epistemological frames can interpret the same lecture in
radically different ways. These results illustrate how different students’
interpretations of a lecture are not inherently tied to the lecture, but rather depend on
the student and that student’s perspective on mathematics. Thus, improving student
learning may depend on more than improving the quality of the lectures, but also
changing student’s beliefs and orientations about mathematics and learning.

INTRODUCTION

In recent years, several researchers have explored the relationship between students’
epistemological beliefs and their learning of advanced mathematics. In particular,
some scholars have claimed that some students struggle to learn mathematics because
they lack the epistemological beliefs to support this learning (e.g., Alcock &
Simpson, 2004, 2005; Dawkins & Weber, in press; Lew et al., 2016; Solomon, 2006).
The primary aim of this paper is to extend this research. In particular, we introduce
the notion of epistemological frames, a construct from physics education (e.g.,
Redish, 2004), and illustrate how students who hold different epistemological frames
can interpret the same advanced mathematical lecture in different ways. In particular,
using Mason’s (2002) account of/account for distinction, we give an account of two
students’ epistemological frames in an advanced mathematical setting and then use
these frames to give a fine-grained account for their different interpretations of the
same utterances by a lecturer.

THEORETICAL PERSPECTIVE AND RELATED LITERATURE

Goffman (1997) introduced the notion of frame to describe how individuals develop
expectations to help them make sense of the complex social spaces that they inhabit.
For instance, most adults in the Western world have a “restaurant frame” consisting
of expectations that are activated when they enter a restaurant. In a restaurant, an
individual likely would expect that the restaurant employees will prepare food for the
individual, the individual will be obligated to pay for this food, the menu consists of
the food items that the individual may order, and so on (Schank, 1990).

Physics educators have introduced the notion of an individual’s epistemic frame (or
e-frame) as consisting of their epistemological expectations about a pedagogical
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situation. These consist of an individual’s responses to questions such as “what do I
expect to learn?””, “how do I build new knowledge?”, and “what counts as knowledge
or an intellectual contribution in this environment?” (Redish, 2004). If a teacher and
her students approach the same pedagogical activity with different e-frames, the
students likely will not learn what their teacher intends, which Redish illustrated with
a student focused on computation while the professor’s aim was conceptual thinking.

We are not aware of any mathematics education research that has specifically used
the specific construct of e-frames to account for students’ behaviors, but many
scholars have explored the general relationship between students’ epistemological
beliefs and their concomitant cognition. For instance, students’ e-frames can be
viewed as a subset of the sociological norms of a classroom (Yackel & Cobb, 1996)
and conventional e-frames can be viewed as part of the didactical contract (Brousseau
et al., 2014). Thompson (2013) illustrated how students who have a procedural
orientation toward mathematics are likely to ignore or misinterpret the conceptual
explanations that their mathematics teachers provide.

Logical versus psychological understandings in advanced mathematics

In this paper, we distinguish between two ways in which a mathematical proposition
can be known. We say that an individual knows a proposition psychologically if the
individual has grounds for believing that proposition is true. The individual knows a
proposition logically if the individual perceives how the statement is a deductive
consequence of other propositions that are known or assumed to be true. We also
focus on a type of activity that deVilliers (1990) has coined systematization. In this
activity, mathematicians transform an existing theory—i.e., a constellation of
concepts and related statements that are accepted as true—into a unified whole.
Mathematicians do so by creating a system of axioms and definitions and then
demonstrating that commonly accepted statements are deductive consequences from
this system of axioms and definitions. As deVilliers (1990) noted, with
systematization, “the main objective is clearly not to check whether statements are
really true” (p. 21, emphasis was the author’s). In our interpretation, the purpose of
systematization is not to psychologically know, rather, the purpose is to logically
know statements (or to logically know these statements in a novel way).

METHODS
Rationale

In this paper, we report a comparative case study (Yin, 2013) in which we attempt to
illustrate how a particular phenomenon unfolds within a given context. Specifically,
we aim to illustrate how students’ e-frames influence their interpretation of a
mathematical lecture To accomplish this we interviewed two students as they
watched real analysis lectures that had previously been posted on youtube. Here, the
students can act as if they were attending an actual lecture yet the interviewer or
student could pause the video to discuss their in the moment impressions of what was
being discussed.
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Participants

Two participants, Alice and Brittany (pseudonyms), agreed to participate in this
study. Both participants were mathematics majors at a large state university in the
northeast United States. At the time of the study, both students had completed a
transition-to-proof course, were not currently enrolled in a real analysis course, but
their university considered them appropriately prepared for one.

Procedure

The lectures consisted of Professor Su, a mathematics professor at Harvey Mudd
College, beginning a real analysis course by constructing the rational numbers and
then the real numbers from the integers. Prior to conducting the study, the research
team studied the lecture and parsed the lecture into five to ten minute segments in
which coherent mathematical content was being presented.

Each participant met individually with the first author of the paper once a week for
four video-recorded clinical interviews. Interview 1 was a one-hour interview in
which the participant discussed their experience in their transition-to-proof course to
provide the interviewer with a sense of the participants’ understanding of the course
content (e.g., proofs, rationals) as well as their learning strategies and dispositions.

Interviews 2, 3, and 4 were two-hour interviews in which the research team attempted
to explore the e-frames, ways of knowing, and any associated mental schemes that
each participant used to interpret the mathematical lectures. During each interview,
the participant watched Professor Su’s lecture and was instructed to stop the video
whenever something noteworthy occurred. The interviewer would also stop the tape
to probe the participant’s thinking when the professor had stated something that the
research team had identified as important or at the end of a segment. The next
interview began with the interviewer asking that the research team had generated
after watching the previous video. The next interview then had the student watch
more of Professor Su’s lecture.

After all four interviewers were conducted, we transcribed all four interviews and
clarifying our initial hypotheses of participants’ e-frames from the prior concurrent
analysis. We then engaged in cyclic retrospective analysis, using Mason’s (2002)
account of/account for distinction, and had two main purposes: (1) we first aimed to
analyze broad characteristics of Alice and Brittany’s behavior in our interview to give
an account of the e-frames that they are using; (2) we then analyzed specific
interpretations that they gave to Professor Su’s lectures and used their e-frames to
give an account for these interpretations. To identify e-frames, for each segment of
the lecture, we summarized Alice and Brittany’s comments. We focused on what
mathematical contribution Alice and Brittany perceived was being made and, when
possible, inferred the criteria against which they were evaluating that contribution.
For each aspect of a participant’s hypothesized epistemological frame, each member
of the research team individually read the transcripts, identifying all instances that
either supported or disconfirmed that the participant held this frame. The research
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team then met to determine how well the proposed epistemological frame was
supported by the data and either kept the frame, or, as needed revised it and re-coded
or removed the aspect from the e-frames attributed to the student. The result of this
retrospective analysis was epistemological frames for Alice and Brittany that were
grounded in our data. With these hypothesized e-frames, we revisited episodes where
Alice and Brittany had different interpretations of the meaning of segments of
Professor Su’s lectures. We chose differences that we felt were representative of the
data set and engaged in interpretive analysis in which we accounted for Alice and
Brittany’s different interpretations via our posited e-frames.

DATA AND RESULTS

We first note two aspects that both Alice and Brittany appreciated, understood, and
enjoyed mathematical proof and that both exhibited an internal locus of control.

Alice’s e-frames
One needed to define a concept to be able to reason about it

At the end of Interview 1 and before watching Professor Su’s lectures, Alice was
asked what the real numbers were. Alice’s response was revealing: “That’s an
excellent question [long pause]. I don’t know the formal definition of a real number”.
This was representative of Alice’s tendency to express an epistemic need to see
concepts defined, something which she displayed throughout her four interviews. For
instance, in Interview 1, Alice was asked if the fractions 9/15 and 12/20 were “the
same thing”. She responded, “You need to assign a definition. Same thing does not
tell me anything. [...] So based on how we want to define in the same thing, they
may or may not be”. The importance that Alice assigned to concepts being defined
led her to continually seek out definitions when she was watching the lectures.

When constructing a system, you need to distinguish between what you know
through experience and what you are allowed to know within the system

As Professor Su constructed the rational numbers, Alice continually distinguished
between what she knew based on her psychological understanding of the rationals
and what was permissible to assume as the rationals were being constructed, her
logical understanding. At 14 different points, Alice stressed the need to differentiate
between the two, reminding herself and the interviewer that “we only assumed that
we have knowledge about the integers” and “we don’t know anything about what
[rational numbers] do or look like if they are not an integer”.

What were the lectures all about?

In the last interview after the conclusion of the lecture, the interviewer asked Alice
“how do you understand the rationals?”. Her response was as follows:

[I understand the rationals] on a very simplified level. [The rationals] are just
fractions of an integer, numerator and denominator, and I’ve been working
with those types of fractions all my life. [...] But on a construction level, we
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are trying to build them. It’s like I want to already know this but the attitude
that it is newly explored material which is a little ironic. It’s the attitude that
you kind of have to have.

In the first excerpt, Alice distinguishes between what she knows on a “simplified
level” (what we call knowing in a psychological sense) and at the “construction
level” (knowing in a logical sense), noting that you are trying to construct what you
already know simplistically (justifying logically what you know psychologically). In
the second excerpt, Alice expressed a similar sentiment. You are trying to discover
logically what you already knew psychologically. To Alice, the point of these
lectures was to ignore everything we knew about the rational numbers and construct a
logical foundation for the content from definitions.

Brittany’s e-frames
Brittany believed definitions were used to enhance understanding

Brittany viewed the role of definitions as to help her understand a concept. This
belief was exhibited in multiple ways. First, at six points, Brittany said that Professor
Su was presenting definitions to ensure that the class had a shared understanding of
what was being discussed. At six other points, Brittany recognized that Professor
Su’s characterization of the rational numbers as equivalence classes of ordered pairs
differed from her understanding. In each case, Brittany figured that Professor Su was
trying to enhance her understanding of the rationals by providing an alternative
perspective on the topic, saying “you’re seeing it [the rationals] in a new way”.

Brittany would use what she knew about the rationals to answer the questions
that Professor Su discussed in class

Brittany rarely expressed a distinction between what she knew from prior experience,
her psychological understanding, and what she knew from deduction from
definitions, her logical understanding. Only twice during our four interviews did
Brittany question what she was allowed to assume. At 18 other points, she invoked
facts about the rational numbers that had not been stated in the lectures to answer
questions about the rational numbers, meaning she consistently relied on her
psychological understanding of the rational numbers.

What were these lectures all about?

Brittany primarily viewed the purpose of these lectures as an extended review of the
rational numbers. When asked about the main purpose of the lectures, Brittany said,
“yeah, that [referring to the construction of the rationals], I guess, was important to
take away.” When asked what it meant to construct the rationals, Brittany responded,
“I think he was just going over properties of it—order, addition, multiplication, what
it means putting them all on the number line”. Brittany was generally frustrated
because she wanted to learn new material and did not find value in what she
perceived as an extended review, as can be illustrated in the following exchange:
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Interviewer: So what I'm hearing you say is it’s more interesting to talk about
things you don't know than things you do know, to answer some questions that
you might not really know that are interesting?

Brittany: Yeah, I think that’s like true for everything.

In general, Brittany wanted to apply her robust understanding of the rational numbers
to the content that Professor Su was discussing and was annoyed that he did not.

Differing interpretations of the lecture

At multiple points, the two students interpreted Professor Su’s lecture in different
ways. Professor Su defined addition by <(a,b)> + <(c,d)> = <(ad+bc, bd)>. When
Alice was asked what Professor Su was trying to convey, Alice responded that
providing this definition was necessary.

Alice: [Without the definition], we wouldn’t know what addition is. We want
to keep that mentality that the whole thing that we are doing is we are defining
that construction, so we need to make these rules these definitions.

Alice proposed one such criterion for evaluating a definition for addition was
verifying that the definition implied that <(a, 1)> + <(b, 1)> = <(a+b, 1)>. Recall that
Alice’s e-frames specified that new concepts required precise definitions and one
could not use their previous knowledge about the rationals in justifying claims about
the rationals. Our interpretation is that these e-frames led Alice to see the necessity of
defining addition precisely. But, while she recognized the importance of justifying
the adequacy of the definition, she also knew it would “work” based on her prior
experience with rational numbers:

Alice: The other half of me, well | know how to get to this. Do | really want to
seem like lay it all out or do we just accept this definition? Like | know why
cause it works and that’s just what I’'m told [...] I feel like a lot of this would
be considered valuable but I wouldn’t say its significant and new.

Our interpretation of this excerpt is that although Alice appreciates the need to justify
that Professor Su’s definition of addition is an adequate one (it “would be considered
valuable”), a part of her does not want to see this justified because, based on her
experience, she knows it is going to work.

When Brittany was asked about the definition, she thought the definition that
Professor Su provided was adequate, saying, “I liked the definition because it’s true. I
can totally see how he got it. | thought it was going to be that. It proves | know
what’s going on”. However, later in the interview, Brittany also complained that she
saw little value in the lecture in its entirety, saying, “it’s not that useful because I
already know what addition is, know what rational numbers are, and what fractions
are”. We had previously discussed that in Brittany’s e-frames, definitions were used
to enhance understanding and good definitions were comprehensible. Our
interpretation is that Brittany liked this definition, as it was consistent with her
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previous experience and she was able to comprehend it. However, because she
already understood what the rational numbers were, the definition was superfluous.

After defining rational addition, Dr. Su then argued that the operation was well-
defined. To illustrate what he meant by well-defined, Professor Su presented two
other candidates for addition, one of which was well-defined but useless (an
operation whose output is always <(0, 1)>) and another operation that not well-
defined (<(a, b)> + <(c, d)> = <(atc, b+d)>). Alice claimed she understood
Professor Su meant by the term well-defined, saying “we can put in different
elements of the same equivalence class, and we should still expect the same result”.
Nonetheless she objected, “when he says this definition is well-defined, the specific
definition requirements for something being well-defined was not gone over. The
term well-defined was actually not well-defined”. We suggest that Alice understood
the concept of well-defined psychologically, but without a formal definition she
could not understand the concept logically. Due to her e-frame that concepts need to
be defined precisely, she found Professor Su’s presentation inadequate.

Brittany viewed the definition favourably.

Brittany: | like the definition of well-defined. It was really clear and
understandable because well-defined is a word we use a lot. When he did the
example with the bad definition of arithmetic and then he used two equivalent
fractions and got a different answer. He was like ‘so we use two things that are
supposed to be the same’. So it worked.

We claim Brittany found Professor Su’s examples adequate to get a psychological
understanding of what the concept of well-defined meant and so she was satisfied.

DISCUSSION

We use the general finding that students’ epistemological frames can enable or
prevent students from interpreting mathematical lectures in a productive manner to
make two points. First, previous research on lectures in advanced mathematics has
generally focused on what the professor says but did not consider student’s
interpretation of what was said. Our results illustrate how students’ interpretations of
a lecture are not inherent in the lecture itself but also depend on the student doing the
interpreting. Consequently, we argue that ignoring students’ interpretations of
lectures is a significant shortcoming of most studies on lectures in advanced
mathematics. Second, our results suggest that the key to improving students’ learning
from lectures does not consist only of improving the quality of the lectures. Rather, it
IS important to attend to their epistemological frames as well, a point that Solomon
(2006) and Dawkins and Weber (in press) argue has received limited attention in the
mathematics education literature. While we showed how a student's distinction
between logical and psychological understandings led students to interpret and
evaluate the mathematical contributions of a systematization lecture differently, we
believe this is representative of the more general phenomena that e-frames influence
how lectures are interpreted and what is learned (e.g., Lew et al., 2016).
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PROBLEM SOLVING MATERIAL

Ana Kuzle
University of Potsdam

Plethora of research on problem solving undergoing since the 1970s identified
pivotal practices for problem solving instruction. Despite almost five decades of this
accumulated knowledge teachers lack practical teaching materials to systematically
foster students’ development of problem solving competence. In the context of this
reform agenda, problem solving material was developed, implemented, and evaluated
with respect to problem solving theoretical foundation. As a result contextual
principles for the development of problem solving material were derived.

INTRODUCTION

The (inter-)national educational standards (e.g., KMK, 2003; NCTM, 2000) and
mathematics educators (e.g., Bruder & Collet, 2011; Liljedahl et al., 2016;
Schoenfeld, 1985) have strongly endorsed the inclusion of problem solving in school
mathematics. Empirical studies and large-scale studies, however, portray a different
picture: Students are often unable to solve problem tasks and many teachers lack
teaching materials to systematically foster students’ problem solving competence
(Kuzle, 2016). This is not surprising as problem solving is an extremely complex
human endeavor involving much more than the simple recall of facts and concepts, or
the application of well-learned procedures (Schoenfeld, 1985).

Problem solving competence relates to cognitive (here heuristic), motivational and
volitional knowledge, skills and actions of an individual required for independent and
effective dealing with mathematical problems (Bruder & Collet, 2011). Accordingly,
students should learn approaches (heuristics) for solving mathematical problems and
how to apply them in a given situation, develop reflectivity on own actions, and
develop willingness to work hard. Consequently, problem solving instruction should
include teaching practices aligned with those goals. Concretely, theoretical
foundation guiding the problem solving instruction should base on problem solving
teaching approaches, theories of self-regulated learning and self-regulation in
problem solving, and theories of motivation (Bruder & Collet, 2011).

In this paper | report on a small part of the SymPa — implementation research project
(Systematical and material based development of problem solving competence)
focusing on research-based development of problem solving material for grade 6
students. The guiding question was: How can research-based material supporting
findings from mathematics education research on problem solving be developed in
practice? In this paper | outline the material design basis and its design before
outlining its implementation and evaluation. As a result of evaluation, | discuss
contextual principles for the development of problem solving material.
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PROBLEM SOLVING THEORETICAL FOUNDATION

There are at least seven practices for problem solving curriculum that researchers
(e.g., Kilpatrick, 1985; Liljedahl et al., 2016) have claimed to be important for
helping students grow in their problem solving ability. These are, however, isolated
practices. In the recent years Bruder and Collet (2001) developed a problem solving
teaching concept in combination with self-regulation focusing around Lompscher’s
(1975) idea of “flexibility of thought”, which has shown to improve students’
problem solving competence in higher grades of middle school (Bruder & Collet,
2011). This long-term teaching and learning concept encompasses five phases:
Intuitive familiarization: In this phase teacher serves as a role model when
introducing a problem to students. This is achieved through moderation of behaviors
typical for the problem by engaging in self-questioning pertaining to different phases
of the problem solving process. In that way the teacher guides the students.

Explicit strategy acquisition: During this phase the students get explicitly introduced
to new heuristics on the basis of a reflection from the first phase. Here the
particularities of the heuristics get discussed and are given names.

Productive practice phase: During this phase the students practice solving the
problems using new heuristics. Differentiation should be a guiding principle during
this phase, so that the students can choose at what cognitive level they want to work
and adapt the observed problem solving behaviors.

Context expansion: In this fourth “delayed” phase the students practice the use of
heuristics independent of a mathematical context aiming at more flexibility use.
Awareness of own problem solving model: Awareness of own problem solving model
can be induced by having students reflect and document their problem solving model.
This teaching model focuses on the two subcomponents of the problem solving
competence. However, problem solving competence encompasses also the ability to
work hard (Bruder & Collet, 2011; KMK, 2003), which is related to motivation.
Student motivation is a major factor for the successful problem solving. Without an
effort from the learners, there will be no successful learning. Bruder and Collet
(2011) summarize criteria for motivating tasks as follows: understandable and clear
problem, age-appropriate choice of context, and visible competence growth.
DESIGN: IMPLEMENTATION OF THEORY INTO PRACTICE

The implementation of theory into problem solving material can be seen in Figure 1,
which I elaborate on in connection to the research base used in the project.

Heuristic training: Learning approaches (heuristics) for solving mathematical
problems

In the phase of intuitive familiarization, students solve a representative problem for
the heuristic in focus (e.g., 2.2.1 Coin problem) together with the teacher, who serves
as a role model. Here the imitation of teachers’ behavior takes place through self-
questioning. The problem represents the students’ first encounter with the new
heuristic. In the phase of explicit strategy acquisition, the new heuristic gets
explicitly introduced through a short student-centered information text and a sample
problem. In the phase of productive practice, usually three problems (2.2.2-2.2.4) of
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different cognitive level are presented. This allows for differentiation, where each
student can solve as many problems as he or she can. In addition, problems from
different mathematical content areas are covered, to allow for transfer (context
expansion phase), which pertains to the fourth phase of the teaching concept. In
addition, the heuristics are interrelated, so it is important that the students
comprehend this. The last task (2.2.4) allows students to make this connection by
comparing the two heuristic techniques and reflect on the solving process. In that
manner students get to build on their problem solving model. This concept was used
throughout.

2.2[Tablel

2.2.1oinBproblemA
ProbiBvantsolbuyFakbartofthocolateffor 7@tents.BHelhasEonlyl0-,25-,FandR-cent?

coins.Anthow@nany@ifferent@vays@an®rofibbuy@he@hocolate?

. - MmmhBlchocolate ![BHowBcanBiBicombineBimy® /

2 coins,BoRhatd@@lon’t@et@ny@hange @

)

= @

Whats@Rable?f
TablestrefusefultheuristicBauxiliary®oolsBvheniryingtoBtructure,AeducelandEfocus?

theRinformationBinBproblemBtasks.BTheyBareBwellFsuitedBforBdocumenting@different?
approachesir@ifferent@ossibleBolutions,Eand@ecordzlIBossible®ases®EBEolution?

withoutdosing@rack.@

O Probi,thereflwant@oBhowyouRhat@roblemsitantbeBolvedawvith? %
2
differenttheuristic iliary@ools.@or ple,@Bolvedthere® The
"
e Agefroblem“q2.1.3)@uising@able. @
5 more than 10 15 more than 30 56-5-15=36 (older than Profi)
3 more than 12 18 more than 36 56-6-18=32 (older than Profi)
10 more than 20 30 more than 60 The sum of the ages is too high.
more than 18 27 more than 54 56-9-27=20 (it works)

2.2.2AsageDdfERable?

‘ Profi,BIEstilledon telinderstandhowfyoubhpproachedttheBproblem@inkthe?! ! /
1 example.®@ — $ -
WriteEhHetter®oProbi,AnAvhichFou@xplainthimthowdouthaveBolved@hel - =

problem@ising@®heiable.@
2.2.3ThoiceHordutfitsd
Probi@vastnvited@o®robi’s@ardeniarty.®HedsBtanding@n@ront®fthis@Bvardrobe,E@nd@

doesn’t&know@vhattheBhould@vear.[@

JIe) @nyFavorited y&ase.@
IBamBmissingBthenBonlyBaBT-shirt,FaBhat,BandBalpairfof?l

shoes.Bl

Uiii, @have@otfipossibilitiesFor@nyDutfit.?l .

a) Howinany&lifferent@ossibilities@loes®ProfithaveForthisutfit?AistRhem@|l.@
b) Howlan@®&ablefelhelpfulivhenBolvinghe@boveiroblem?a
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Explain@ProbithowdouBolved®helroblem.@BVhichBpproach@loFoubbrefer?@Vhy? .

Figure 1: A sample page from the material on the heuristic auxiliary tool of table.

With respect to heuristics, focus laid on those heuristic techniques prescribed for
grade 6 students (KMK, 2003), namely heuristic auxiliary tools (informative figure,
table), heuristic strategies (working systematically, working forwards, working
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backwards), and heuristic principles (composing and decomposing). With respect to
mathematical content, problems covered the content areas of 5" and 6" grade
mathematics (operations with natural numbers and fractions, combinatorics,
measurement pertaining to 2- and 3-dimensional figures).

A particularly high quality of self-regulated problem solving can be achieved, when
its different aspects with short occasional successive phases (before - objective,
motivation, while - introspection, willingness to work hard, after - reflection (self-
evaluation, self-reaction)) are promoted in the problem solving process (Landmann &
Schmitz, 2007; Polya, 1945/1973). For that reason, a problem solving question
catalogue was given in the form of a table at the end of the material (see Figure 2).
The students formulate questions (e.g., “What technique did I use to solve a similar
problem in the past?” “What is the problem asking for?”) independently, as the
teacher moderates the problem solving process in the phase of intuitive
familiarization. The questionnaire created in this way was intended to serve as a
reference in order for student to be able to progress independently in further phases of
the problem solving concept by means of self-regulatory questions.

before while
problem solving problem solving

Figure 2: A problem solving question catalogue.
Reflectivity on own actions
Self-regulation plays a special role during a problem solving process. Structured
reflection on the problem solving process (self-monitoring, reflection) has presented
a key variable on four different levels in the problem solving material: on the one
hand, reflection was called for in the individual tasks, for example by comparing the
heuristics with one another or by expressing preferences (see task 2.2.3b, 2.2.4). On
the other hand, at the end of each problem solving chapter, there were separate
reflection questions connected to that chapter (see Figure 3). The aim here was that
the students develop an overview and thereby reflect their own preferences by
reviewing the chapter and identifying connections between the heuristics.
Through these different levels of reflection, students are prompted to reflect on their
problem solving behavior (for example, concrete planning, application, goals,
strategies), but also reflect on their learning behaviors, identify conducive and non-
beneficial conditions, and then use them constructively for the further development of
their problem solving behavior. Through these activities and documentation of these,
the students are in the last phase of the teaching concept on problem solving
(awareness of own problem solving model).
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? 2.4 Reflection questions 1
H Which heuristic auxiliary tool(s) did you learn?

Heuristic auxiliary tools help me to

Which heuristic auxiliary tool do you find the easiest? Why?

Which heuristic auxiliary tool do you find the most difficult? Why?

Figure 3: Reflection questions at the end of first problem solving chapter.

Willingness to work hard

The problems focused on contexts that are motivating and appropriate for middle
school students. Transparent organization of the problem solving material was
Important, as it was intended for students to learn to work independently with it. For
that reason, an icon/color-concept was used (see Figure 4), which reflected different
components of the problem solving teaching concept. Through continuous connection
between the problems and reflection, individual competence growth was aimed at.

Information: Here you can find an
explanation.

: Here is a sample example given,
so that you can better understand the
explanation.

Problems: Here you can find tasks to
practice.

Reflection: Here you can reflect on what
you have learnt.

Have lots of fun!

Figure 4: Icon/color-concept used in the problem solving material.

Lastly, one other design element was used to support students willingness to work
hard, namely two figures who came in a “direct contact” with the students (see Figure
1). Probi was a figure in a shape of a question mark and offered a problem context.
Students were supposed to help Probi solve the problem, as he himself was not able
to do so. Profi represented a supporting figure in a form of an exclamation mark with
glasses. He gave hints of different nature or prompted different thinking, with the
goal of supporting and guiding the students’ problem solving process. In other words,
Profi illustrated a professional problem solver. Only two figures were used in the
problem solving material in order not to distract the students too much.

METHODOLOGY

The project was implemented in one urban school in Germany. Students of 6™ grade
were chosen to participate in the project lasting one school quarter, which is about 16
lessons (1 lesson = 45 min). Each heuristic was covered within 2 lessons. During the
lessons students worked with the material and solved the problems according to the
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teaching concept as was outlined earlier. The material got implemented 7 times and
in total 107 students participated in the project, who were randomly chosen. Data
collection took place after the implementation phase. For that purpose a student
questionnaire was developed, which entailed 5-level Likert items (1 = strongly
disagree, 5 = strongly agree) pertaining to material’s design elements (see Table 1).
The first scale entailed 3 categories of the problem solving teaching concept (intuitive
familiarization, explicit strategy acquisition, productive practice / context expansion)
with accompanying subscales. The second scale entailed 3 subscales related to
different levels of reflection (in-task reflection, chapter reflection, problem solving
catalogue). The third scale entailed 3 subscales pertaining to elements related to
students’ willingness to work hard (problem context, material transparency, figures).
Descriptive statistics was calculated for all quantitative data from the questionnaire.

Scale Sample item Cronbachs-a.
Heuristic training (20 Information text was helpful to understand 0,81
items) the new heuristic.

Reflectivity on own Problem solving question catalogue helped 0,73
actions (12 items) me solve the problems independently.

Willingness to work Profi motivated me to work harder. 0,71

hard (8 items)

Table 1: Scales and reliability of problem solving material’s design elements.
RESULTS

Here I address the project’s research question and discuss the extent to which design
elements supported the development of problem solving competence (see Table 2).

Heuristic training

Constant prompts: Material offering constant prompts guarantee gradual
familiarization. Through this process students develop a need to question their
actions, which is necessary for long-term problem solving.

Supporting strategy acquisition: Material offering several accesses to learning new
heuristics supports learners of different styles. Access through sample problem or text
information or its combination is important for reaching diverse learners.

Wide spectrum of problems with differentiated difficulty: In order for students to work
on different cognitive levels, differentiated problems must be offered. This can be
achieved by means of choice problems, open problems or problems with an
increasing cognitive demand level.

Independent work: Using problem solving catalogue that was created through
students’ own language selection allowed them a closer relationship to it. In addition,
it supported students to work independently during different phases of problem
solving concept, especially in the phase of productive practice. In the phase of
intuitive familiarization this was limited despite well-chosen representative problem.
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Scale Subscale Mean (SD) Median
Heuristic training |. phase  representative problem 3.52 (0.63) 3
problem solving catalogue 4.40 (0.67) 5
Heuristic training Il. phase  text information 3.91 (1.01) 4
sample problem 4.31 (0.48) 4
Heuristic training H1./1V. number of problems 4.04 (0.45) 4
phase increasing cognitive level of 4.20 (0.52) 4
problems
differentiated problems 4.51 (0.50) 5
problem solving catalogue 4.68 (0.54) 5
Reflectivity on own actions in-task reflection 4.23 (0.57) 4
chapter reflection 3.98 (0.27) 4
problem solving catalogue 4.35 (0.70) 4
Willingness to work hard problem context 4.50 (0.50) 5
material transparency 4.53 (0.80) 5
figures 4.73 (0.47) 5

Table 2: Mean ranking, standard deviation, and median ranking of students’
evaluation of problem solving material’s design elements.

Reflectivity on own actions

Implicit reflection: The familiarity with the figures can be used to train reflectivity.
The students help their “friends” to understand something by explaining their
approaches. Such behavior is more comprehensible than explaining one’s own action.

Explicit reflection: Constant prompts for reflection after each task or problem solving
unit guarantee gradual self-questioning. Through this process students develop a need
to question their actions, which is necessary for long-term problem solving. Problem
solving catalogue contributed to reaching this goal.

Willingness to work hard

Transparent material structure: A material structure, that reflects teaching concepts
and approaches for heuristic training, unburdens the teachers on the one hand, and
ensures the compliance with the teaching concept on the other hand. A transparent
structure focused around the entrance task, information text and sample problem, and
differentiating problems supported students’ independent work. Suitable icon/color-
concepts serve as helpful visualization.

Use of figures in motivating contexts: For the transport of problems as well as for the
provision of support, figures for the sixth graders represent a motivational moment. A
separate world with everyday problems is opened to the students. They want to help
their “friends” and recognize in the solution of a problem a benefit. The use of figures
throughout the material allows students to get familiar with the figures and by doing
so the support of the figures may be given a special value.
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CONCLUSION

In this paper | focused on the question of how research-based material supporting
findings from the research on problem solving can be developed in practice. The
material was developed through collaboration between the researcher and the school.
As a result context-related design principles for the development of problem solving
material for grade 6 students were developed. The results show that students need an
emotional incentive (here by the figures) in order to want to solve problems and to
prompt their reflective behaviors. Transparency of the material structure and problem
solving catalogue support students’ independent work. Material design
(differentiation, transparent material structure with explicit reflections) is an
important factor in the development of self-regulatory processes when problem
solving. Lastly, various design elements (text information, sample problem) allow for
explicit strategy acquisition and 3 to 4 problems seem optimal for flexibility use. To
what extent these context-related design principles apply to other contexts, can only
implementation followed by an evaluation in other schools or other grades show.
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TWO LANGUAGES - SEPARATE CONCEPTUALIZATIONS?
MULTILINGUAL STUDENTS’ PROCESSES OF COMBINING
CONCEPTUALIZATIONS OF THE PART-WHOLE CONCEPT

Taha Kuzu & Susanne Prediger
TU Dortmund University, Germany

Different languages are said to provide slightly different conceptualizations for mathe-
matical concepts, e.g. for the part-whole concept of fractions. But how do multilingual
learners make use of these different conceptualizations in their individual conceptual
pathways? This case study investigates how fourteen German-Turkish seventh graders
develop their part-whole concepts in a bilingual design experiment. The qualitative ana-
lysis shows that they use the conceptualizations across both languages and merge them
into a multi-facetted part-whole concept. These findings provide a topic-specific
empirical elucidation for the general idea of dynamic and interconnected multilingual
repertoires.

Starting points and Theoretical backgrounds
Language-related conceptualizations and research needs for multilingual learners

The observation that languages sometimes provide different structures and concep-
tualizations has fueled controversial academic discourses on the so-called linguistic
relativity hypothesis since von Humboldt and Sapir and Whorf (Lucy 1992; Gumperz
& Levinson 1996). In mathematics education, the discourse led to empirical compa-
rative studies that investigate if speakers of one language have advantages or dis-
advantages for their (habitual, not potential) mathematical thinking compared to
speakers of other languages (e.g., Miura et al. 1988; Leung 2016). These comparative
studies tend to adopt a monolingual perspective, assuming each student to be shaped
predominantly by one language. However, for multilingual students, the question is
not whether they are acquainted to one or the other conceptualization, but how the
interplay of different languages and conceptualizations shapes their learning
processes on the micro-level. This shift of research focus corresponds to the idea of
dynamic and interconnected multilingual repertoires in multilingual communication
rather than separate language proficiencies (Cummins 2000; House & Rehbein 2004;
Ladi 2006).

In this paper, we contribute to this research need by studying a case involving Ger-
man-Turkish seventh graders’ bilingual teaching and learning processes of the part--
whole concept of fractions. The research question is: How do learners in a bilingual
teaching intervention adopt and combine (possibly language-related) conceptualiza-
tions of the part-whole concept across both languages? After presenting the theore-
tical backgrounds and the methods, the qualitative analysis of 14 students shows that
they relate several conceptualizations to each other in mostly fruitful ways.

3-121
2017. In Kaur, B., Ho, W.K., Toh, T.L., & Choy, B.H. (Eds.). Proceedings of the 41* Conference of the International
Group for the Psychology of Mathematics Education, Vol. 3, pp. 121-128. Singapore: PME.



Kuzu and Prediger

Language-related nuances in conceptualizing the part-whole concept of fractions

In most countries, the part-whole concept of fractions counts as one major meaning
of fractions, besides rates and ratios (Cramer et al. 1997). However, different
languages seem to provide different nuances in the conceptualization of the part-
whole concept, connected to the reading and writing order: In Western languages,
fractions are read and written top down (3 fifths in English or 3 Finftel in German),
whereas in most Asian languages fractions are read and written bottom up (“five
parts, take two” in Mandarin (Bartolini-Bussi et al. 2014), or beste ii¢, “five-therein
three” in Turkish).

One mathematical i 3
object / _ 5 x
Three meanings ‘ Ratio ‘ Part-whole concept ) ‘ Rate ‘
in many languages 3to5 [t Yee(vel | ] 3 Euros perS kg |
Language- T: Bes-te Ug (5 therein 3) T: Beg-ten ¢ (5 thereof 3)
related nuances ; -
in conceptualization E E IE.' ] ] ] [”( yrelte 'I] lﬂm-. lamw -ED
\-/ \\ % Theoretical
analysis
Students’individval e E _rr:p_\';i;a_l__
conceptions & expressions Only in Turkish? analysis
Fig. 1: Different conceptualizations in German ( ) and Turkish (T, red)

These language-related differences seem to not be restricted to single words but to
more general habitual modes of thinking (Lucy 1996) and ways of linguistic action.
This was confirmed in the case of geometric constellations by Leung’s (2016)
analysis of how order differences can shape mathematical thinking: Leung
distinguishes the typical Asian analytic approach (first consider the whole, then the
pieces) from the Western synthetic approach (first consider the pieces, then the
whole) and shows far-reaching consequences for students’ problem solving. In the
case of fractions, the distinction of synthetic and analytic directly corresponds to the
different conceptualizations in Turkish (with its Asian influences) and German (a
Western language).

The German and English expressions “three fifths” also reveal a second nuance
called quasi-cardinal conceptualization: considering a fifth as a unit and then
counting the units (Cramer et al. 1997). The Turkish everyday language of German-
Turkish immigrant students also provides a second expression, with another
grammatical case: the ablative suffix —ten (used for movement away conditions)
instead of the locative suffix of —te (used for static position conditions). In sum,
Figure 1 shows four different nuances of conceptualizations for the part-whole
concept.

3-122 PME 41 — 2017




Kuzu and Prediger

So far, little is known how multilingual students with their access to both languages
adopt and combine these different conceptualizations.

Alternative hypotheses for students’ use of language-related conceptualizations
The idea of functional distinctions of languages for different purposes that underlies
much research on code-switching (summarized in Barwell 2009) leads to Hypothesis
H1: Multilingual students will learn all four conceptualizations and use each in the
language in which it can be expressed best. The alternative hypothesis is shaped by
the idea of dynamic and interconnected “multilingual repertoires” rather than separate
languages (Ludi 2006). On this basis, Hypothesis H2 is that students adopt the con-
ceptualizations across different languages.

Methods of the learning-process study

Research context. The research question was pursued in a learning-process study
that was part of the larger mixed-methods project MuM-Multi. The larger project
combined a randomized control trial with German-Turkish seventh graders (n = 139)
In a teaching intervention on fractions in groups of 2-5 students (Schiiler-Meyer et al.
2017) with several in-depth case studies analyzing videos and transcripts with respect
to the integration of verbal and nonverbal communication (e.g., Wagner et al. 2016).
Data corpus of the learning-process study. From the large video data corpus, we
selected about 230 minutes of video material for the learning-process study presented
here. We concentrated the analysis on seven tasks (treating the part-whole concept in
contexts of comparing fractions) done by n = 14 focus students (who were sampled
according to contrasting backgrounds in their German and Turkish language profi-
ciency and pre-test results on conceptual understanding of fractions). All students
spoke at least German and Turkish, all were educated in Germany without prior
formal experience of learning mathematics in Turkish.

Methods for qualitative data analysis. The transcripts were analyzed with respect
to students’ conceptual development across languages. For this purpose, an analytic
tool for fractions was adopted based on Vergnaud’s (1996) theorems- and concepts-
inaction. After sequencing the transcript, the individual theorems- and concepts-in-
actions were extrapolated for each sequence and then related to the language-related
socially shared conceptualizations from Figure 1, e.g., the individual theorem-in-ac-
tion <For comparing fractions, | compare the size of the pieces> (which is only ade-
quate for unit fractions) is shaped by the individual concept-in-action <fraction as
size of the pieces> rather than <fraction as part-of-whole>. In the analytic schemes
(e.g., in Figures 3 and 4), the individual conceptualizations are presented graphically
to show proximity/variation to the socially shared language-related
conceptualizations; the colors of the utterances signify the language used by students
to express them. The color codes allow the relation between language used and
language-related conceptualizations to be conveyed. Two episodes (chosen to show
the phenomena in a nutshell) are analyzed in some detail. The result of the complete
analysis is summarized in a table that reveals more global pattern with respect to
Hypotheses H1 and H2.
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EMPIRICAL RESULTS
The following two episodes show that both hypotheses can apply in the multilingual
learning processes.

Episode 1: Ilknur and the

er-Strelfen
J

[/////7/-//! ] i

I t I JerStreifen l et __—i
com ‘ L : ;
p ?men ary use of languages R R —
In Session 2, Task 3, the students are it L T ST

- . 7‘ —d
asked to draw 1/2, 2/3, 3/4, 4/5,and 5/6 in ~ ewen T o
fraction bars (see Figure 2). One of the =SS—— = 7

students, Ilknur, explains the task to her

Ger-Strelfen 1he 3 1 4 5
. T s g ¢

Fig. 2: Ilknur’s fraction bars for Task 3

partner Akasya.
Turn Original English Translation
Person (Turkish in black, German in grey) (from Turkish in red, )

90 Akasya
91 Ilknur

92 Akasya
93 Ilknur

94 Akasya

Ich versteh das nicht!
Guck, ich zeig dir! Simdik bak!

Soyle bakiyorsun. Burda ne yaziyor?
Ein Halb! [...]
O zaman bunu boyuyorsun.

Niye ama?
Weil es ein halb ist
und das auch ein Halb

Dann kann ich doch zwei Drittel hier
kann ich doch auch das hier anmalen,
wo 1st zwel Drittel hier?

Now look! [points at the 2-
element bar in the fraction bar table]
You look this way. What does it say here?
[...]
Then you have to color this one here
[colors the first piece in the 2-element bar]
But why?
[points at the fraction
on the worksheet]
[points at the first piece in the 2-element bar)
[points at the

share on the worksheet|

[looks
irritatedly at the fraction bar table)

95 Ilknur  Bis zwei Drittel'e bakacaksin you have to look [points at
end point of the second piece of the 3-element
bar]

96 Akasya Ah, zwei Drittel burda! Dann muss Ah, here!

97 Ilknur
98 Akasya

ich ja das hier alles anmalen oder
was?

Ja!

Und hier drei Viertel

[points at the end point
of the third piece in the 4-element bar)

Ilknur explains how to draw the fractions in suitable bars of the bar table (see Figure
2). She starts using an analytic, localizing perspective where the whole is only
implicit (Buni boyuyorsun, “this one here”) in #91. When her partner Akasya signals
misunderstanding, llknur changes languages and, with it, perspectives (a strategy
often found for teachers and students; see Wagner et al. 2016): Within a Turkish
phrase, Ilknur switches to German, bis zwei Drittel (until two thirds), in #95 to
express a quasi-cardinal view, counting the pieces of the bar from the left zero until
the two- thirds point in the bar.
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llknur (#91)  T: Bunu boyuyorsun
From the German preposition bis (“until”) we infer

that using the German expression really corresponds

- X

to the conceptualization in her thinking at that lknur (#95)
moment. She repeats this conceptualization in #95 ‘e bakacaksin
(bis dahin, “until here”) and later in #99 and #101. eefeell |
In #96, Akasya connects both conceptualizations by
Akasya (796) T: Ah, burda

combining the German expression zwei Drittel
(“two thirds™) with the Turkish burda (“here”) and ielfer T
das hier alles anmalen (“color all of this here”).

Fig. 3: Analysis of Episode 1

In sum, the analysis of Episode 1 (in Figure 3) shows a typical example of code-
switching in Ilknur’s complementary use of languages that supports Hypothesis H1.
Akasya’s reaction shows how combining two nuances of conceptualizations in two
languages can enhance conceptual understanding, a phenomenon that could be found
by means of deep linguistic analysis in various cases (Wagner et al. 2016).

Episode 2: Emir and the travel of conceptualizations from Turkish to German

In another group, the students work on the same Task 3, which asks them to draw
1/2, 2/3, 3/4, 4/5, and 5/6 in fraction bars (see Figure 2). Emir and Osman
immediately draw one half, and the teacher asks them in Turkish where they see the
half.

Turn Person Original English Translation
(Turkish in black, German in grey) (from Turkish in red, )
27 Emir Eh iki komplett Err, two [gestures with his pen to

refer to the complete fraction bar]
28 Teacher  Mhm.
29 Emir Bi tanesinde aliyoz. And one in it, we take.
[Students proceed with other fractions]
47 Osman Zwei Stiick anmalen. [marks two thirds in the

Zwei Drittel, drei Viertel. 3-element bar]
48 Osman Drei Stiick anmalen
49 Ismael Das gehort zu...?
50 Osman Dre1 Stiick an—warte—ja

[marks three fourths on the 4-element bar]

51 Emir Und dann vier anmalen.
53 Osman Vier Stiick? Bei bes’li gubuk? 5-element bar?
54 Emir Mhm, ja. Und bei 6er musst du fiinf

[Students finalize drawing and discuss what to write down for the question
“What can you discover? Write down your observation.”]
67 Emir Also, ich schreibe jetzt, dass unten
[...] Das zwei- das von ein Zweitel
ist eh- Einhalb ist zwei als Ganze
und du nimmst eins.

PME 41 — 2017 3-125



Kuzu and Prediger

When asked to explain how to draw one half, Emir (#27/429) T: Iki-de bir (2 therein 1)
Emir speaks in a mixed utterance, and refers to ]

the Turkish —therein expression for the analytical
conceptualization in Turkish (in #27 and #29).

Osman ( )

Again, we see an initial moment of code- swit- ALIKEE '
ching. But then, Osman adopts the typical Ger- Csman sz Tl ] P
man synthetical conceptualization: He first names

only the parts (“two pieces” in #47, “three pieces” | Emir (#54)

in #48) and completes the whole only implicitly. anums

In #53, he addresses the five-element bar as the Emir (#67)

whole explicitly (in Turkish). Emir, in contrast, ]

keeps his Turkish reading order even when spea- %

king German in #54. When asked to write down
what they saw, Emir prefers to explain in #67 the
Turkish —thereof conceptualization in German
words.

Hence, Episode 2 gives evidence for both Hypothesis H1 in the beginning and then
later for Hypothesis H2. Figure 4 summarizes the analysis and shows the travel of
conceptualizations from Turkish to German.

Fig. 4: Analysis of Episode 2

Overview on more cases and tasks:
Travel of conceptualizations through languages

Both episodes show phenomena that could also be found for the other cases of
students and tasks. Table 1 shows a summary of the analysis of five of the 14 focus
students. For each student, the sequence of uttered nuances of conceptualizations for
the part-whole concept is ordered from up to down and is in arranged in columns
according to the socially shared conceptualizations to which the utterance refers. The
transcript lines are shown in different colors for German (G) and Turkish (T) so that
shifts of nuance become visible by placement along the horizontal axis and switches
in language by changing colors along the vertical axis.

This summary illustrates that all students, not only Ilknur and Emir, start activating a
nuance of conceptualization in one language, but when they use other languages, then
also refer to the same nuance of conceptualization in the other language and in a
mixed code. This might be different in other groups. What is made visible here for a
sequence of four tasks seems to apply even more when considering several sessions
of the intervention and more nuances of conceptualization than those presented in
Figure 1.
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T: Bes-te lg¢ (5 therein 3) | T: Bes-ten i (5 thereof 3)

2 @ ) o R A A (= T

\/ “u %
Ilknur 3(GT
1(CT)
Task 3, #95 (T)
14 (GT

Akasya Sessl1, Task 7, #10 (T)

Task 2, #81 (T)

6 (GT)

Task 3, #173 (T)
Emir

Task 1, #43 (T)

Task 3, #29 (T)

Task 3, #90 (T)

Task 4, #26 (T)
Ismail

Task 2, #31 (T)

Task 3, #90 (T)

Task 4, #28 (T)
Task 4, #64 (T)

Osman

Off. (GT
Table 1: Travel of conceptualizations through the languages for five focus students

DISCUSSION

Two languages, two separate conceptualizations? By investigating the learning pro-
cesses of 14 seventh graders on their pathways towards the part-whole concept of
fractions, we found moments, such as those in Episode 1, that conform with
Hypothesis H1 in that language is used complementarily for different
conceptualizations. These complementary uses seem to enrich the multi-faceted
conceptual understanding. However, across all of the video material and transcripts
of the 14 students, we find more moments that conform to Hypothesis H2: In their
learning processes, most students activate different conceptualizations, and, in the
long run, address them across both languages. The case studies presented and the
larger analysis of the data provide evidence that the travel of conceptualizations
across languages can enrich the conceptual understanding by merging the different
conceptualizations into a multi-faceted part-whole concept.

Although these findings are still shaped by methodological limitations such as the
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limited number of focus students and the specific tasks, it is already an interesting

contribution to the idea of dynamic and intertwined multilingual repertoires which

resonates with Cummins’s (2000) and Lidi’s (2006) arguments against considering

multilingual learners as having separate language proficiencies that may work only

complementarily. The findings correspond to previous findings from the same project

that it is not the complementarity, but the connection of languages (like the

connection of different representations) that can substantially enhance students’

conceptual development (Wagner et al. 2016, Schiler-Meyer et al. 2017). The

findings motivate further studies of the connections of languages as specific

resources of multilingual.
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EXPLORING GENERATIVE MOMENTS OF INTERACTION
BETWEEN MATHEMATICS TEACHERS ON SOCIAL MEDIA

Judy Larsen and Peter Liljedahl
Simon Fraser University

Stimulating sustainable mathematics teacher collaboration can be challenging in
many commonly found professional development contexts. Despite this, an
unprompted, unfunded, unmandated, and largely unstudied mathematics teacher
community has emerged where mathematics teachers use social media to
communicate about the teaching and learning of mathematics. This paper presents an
analysis of one episode where teachers engage in a prolonged exchange about
responding to a common mathematical error. Analytical tools drawn from complexity
theory are used to explain moments of productivity. Results indicate that enough
redundancy and diversity among members is necessary to make conversations
productive. Identified sources of redundancy indicate the ‘taken-as-shared’ values of
this group.

INTRODUCTION

Teacher professional development is essential for enhancing the quality of teaching
and learning in schools (Borko, 2004). As such, various approaches to professional
development, such as lesson study (Stigler & Hiebert, 1999) and communities of
practice (Wenger, 1998), have been explored. What is known from this research, is
that the robustness of a professional development initiative is dependent on ensuring
both teachers and facilitators adopt a stance of inquiry, activities reflect and are
driven by teacher needs and interests, and community building and networking are at
the core (Lerman & Zehetmeier, 2008). This means that ongoing teacher
collaboration is indispensable. However, due to constraints around time, funding, and
facilitation, teacher professional development initiatives are commonly limited to
sparse one-time professional development workshops held in face-to-face
synchronous settings. Such workshops, due to their temporal nature, are generally
unconducive to building communities that engender ongoing professional growth.

In contrast to these centrally organized, and sometimes compulsory, professional
development initiatives, teachers from across North America are participating in
decentralized, virtual, and autonomous professional communities. One such
community involves mathematics teachers who regularly use Twitter and blog pages
to asynchronously communicate their musings and practices, and have come to be
identified as the Math Twitter Blogosphere (MTBoS) (Larsen, 2016). This
unprompted, unfunded, and unevaluated teacher community is a rich phenomenon of
interest that is largely unstudied and deserving of attention. As such, the study
presented in this paper is driven by the overarching question — what can participation
in the MTBoS occasion for mathematics teachers?
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THEORETICAL FRAMEWORK

With an aim to understand the autonomous organism of the MTBoS, this study is
guided by complexity theory (Davis & Simmt, 2003; Davis & Sumara, 2006).
Complexity theory provides the tools to describe a system of individual agents who
seem to generate emergent macro-behaviours. Complex systems don’t merely exist,
they also learn. In complexity theory, learning is expanding the space of the possible
and is primarily concerned with “ensuring conditions for the emergence of the as-yet
unimagined” (Davis & Sumara, 2006, p. 135). The goal of complexity theory is not to
identify interpersonal collectivity, as do other social theories of learning, but rather to
understand ‘collective-knowing’, where knowledge is not attributed to any one
member, but sits atop of the social network.

To this end, Davis and Simmt (2003) identify five interdependent conditions
necessary for complex emergence, that is, for a complex system to learn. These
conditions include internal diversity, redundancy, neighbour interactions,
decentralized control, and organized randomness. Davis and Sumara (2006) further
theorize these conditions into complementary pairs: specialization (tension between
diversity and redundancy), trans-level learning (neighbour interactions® enabled
through decentralized control), and enabling constraints (balancing randomness and
coherence). These conditions form the basis of the theoretical framework that
informs the overall study. For purposes of brevity, only the first pair of conditions,
diversity and redundancy, will be used in the analysis presented in this paper.

The interplay between diversity and redundancy, also referred to as the ‘zone of
creative adaptability’, is a key contributor to the ability of a system to adapt to
changing conditions. Diversity allows for novel actions and possibilities because it
refers to the diversity among the agents, while redundancy allows for stability and
coherence because it refers to the common ground among agents. Without
redundancy, agents may not be able to communicate, but without diversity, agents
may never have anything to communicate about. Therefore, both are necessary for a
system to be productive. Further, because of decentralized control, no agent is ever in
a position of final authority, and knowledge is always tentative. Holding authority
within a complex system means to have the capacity to use a prevailing discourse, or
to act within the consensual domain of the system, with the overall aim of
occasioning ‘collective-knowing’ (Davis & Sumara, 2006).

As such, this study takes interest in the possibility of ‘collective-knowing’ in the
MTBoS, and pursues the question of how diversity and redundancy can contribute to
the complex emergence of ‘collective-knowing’ in the MTBoS.

METHODS

Given that the MTBoS began developing as early as 2007 when mathematics teacher
bloggers began to incorporate the use of Twitter into their blogging practice, and that
there are over 500 self-identified MTB0oS members, many of whom post multiple
times a day, the sheer mass of data that has accumulated over the past few years
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makes the phenomenon too large to study within the confines of this paper. As such,
a very specific subset is chosen as the data set for this paper. This subset contains all
responses to a given Twitter post made by one particularly well-followed member.
This conversation reflects the breadth and depth of MTBoS because it includes both
very brief responses that do not continue conversation, and responses that initiate
further conversation, both of which are generally encountered within the MTBOoS.

Since Twitter is an ultra-personalized environment where users only see posts made
by members they subscribe to as ‘followers’, we have taken an ethnographic
approach as participant observers by immersing ourselves in the MTBoS community
and subscribing to over 500 mathematics teachers who engage in the MTBoS.
Without such an immersion, noticing and identifying the data set would be near to
impossible. In addition, Twitter offers a feature which gives updates on the most
relevant and most replied-to tweets one has missed. This feature enabled us to
identify one particular post that generated a significant number of replies from
mathematics teachers around the world. This post was made by Michael Fenton, who
has over 4000 followers, and asked about how users would respond to a student’s
mathematical error (see fig. 1).

Michael Fenton
g § A student does this. How would you
v respond? (Multiple ideas welcome!)

xX>=5x+6=2

(x=2)(x—3)=2

x—2=2 or x-—-3=2

x=4 or x=5

Figure 1: Fenton’s initial math mistake query

Fenton’s post elicited 254 replies from a total of 87 users, 52 of whom identify
themselves as mathematics teachers. Replies included explaining the error,
explaining why the error could have been made, describing a teaching approach to
help the student come to a deeper understanding about the nature of the error, and
generating activities to use with students to help mitigate this error. With an effort to
maintain the reply structure as well as the chronological order of the posts, the data
was organized into threads. Some of these threads were considered as non-continuing
replies because they were made by one user and spawned little to no discussion.
Other threads were considered as continuing because they included conversation
between at least two users and elicited more than four subsequent replies. Out of the
total 254 tweets, 84 were identified as non-continuing, 155 were identified as
continuing, and 15 were irrelevant. The 155 continuing tweets were reconstructed
into ten threads based on both chronology and logical conversation order.

With an aim of understanding the substantial variance in engagement in this
conversation and to illuminate the complex emergence and ‘collective-knowing’ of
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the MTBoS, we analysed the data using the five conditions for complex emergence,
as outlined by Davis and Simmt (2003) and further elaborated by Davis and Sumara
(2006). As mentioned, in this paper, we discuss only the aspects of diversity and
redundancy within the continuing threads in pursuit of the more specific question —
what are possible sources of internal diversity and redundancy within a series of self-
organized neighbour interactions in the MTBoS, and what complex emergence do
they contribute to?

RESULTS AND ANALYSIS

In what follows, we exemplify continuing interchanges through the presentation of
three interchanges along with an analysis of each with respect to diversity and
redundancy, and draw out key conclusions.

Example 1: Check your answers

Kathy Howe (@kdhowel) responds to Michael Fenton’s (@mjfenton) math mistake
query by explaining that she would get students to check their answers.

That's a popular error. | focus on "lots of things multiply to 2, so there are lots of

answers to that factored equation™ ... also, "Great! Do those answers check in the
original equation? Oh, they don't? Why not?" (@kdhowel, June 10, 2016, 7:15
AM)

Fenton provokes her by responding with a sample student response to her approach.

"But Mr. Fenton, | checked the first one, and it worked. | figured the second one
would work too." (@mjfenton, June 10, 2016, 7:23AM)

Howe then notes that she explains to her students what counts as a valid response.

| explain to them early on that "right for the wrong reason" is still not a correct solution.
(@kdhowel, June 10, 2016, 7:54AM)

Howe’s last comment is ignored, and the conversation does not continue further.

In example 1, some redundancy is evident in that Howe and Fenton seem to both
have familiarity with the student error and with the mathematics. They have a ‘taken-
as-shared’ understanding of a general classroom context where a teacher explains to
students what to do. They both can envision a prototypical student. This enables them
to communicate. However, there is diversity in approaches. Howe focuses on
explaining to students that they need to check their answers and that they should
know what’s ‘right’ and what’s ‘wrong’. Fenton offers a potential student response to
Howe’s request for checking answers. Fenton is not only challenging the request for
‘checking answers’, but is also illuminating that he chose to design the mistake so
that one factor works and the other doesn’t. There is an opportunity to continue
discussing the design of the task here that is not recognized by Howe. Fenton’s
responses elsewhere in the data indicate that he is interested in more than a typical
response. The diversity in intentions seems to halt the conversation, and Howe’s last
comment is ignored. This diversity can also be attributed to the different levels of
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membership in the MTBoS between Howe and Fenton. Howe is a newer member,
with less than 200 followers, while Fenton joined early on and has over 4000
followers. In this example, there seems to be too much diversity between Fenton and
Howe in terms of how they approach interpreting each other’s posts, their
pedagogical approaches, and their membership in the MTBo0S to continue
conversation.

Example 2: Looking for patterns

Avery Pickford (@woutgeo) responds to Michael Fenton’s (@mjfenton) query by
expressing she loves the mistake and offers a string of equations from which she’d
have students notice patterns.

<3 this mistake. I'd probably try to subtly slip them (x-2)(x-3)=0, (x-2)(x-3)=9, & (x-
2)(x-3) = 13 & ask them 2 look for patterns. (@woutgeo, June 10, 2016, 4:00PM)

Pickford further notes that she thinks discussion around this mistake can lead to new
approaches to finding roots.

what i love about this mistake is that i can see it naturally leading to a new
method for finding roots involving factor pairs. (@woutgeo, June 10, 2016, 4:04PM)

A few hours later, Max Ray-Riek (@maxmathforum) asks her to predict patterns that
could be noticed. He also asks if these patterns could “get kids thinking about the
new method of factoring [she] mentioned” (@maxmathforum, June 10, 2016,
6:27PM). Pickford responds with a few options.

idk. maybe 1) not the same answers (hmm) 2) 1st is easy, 2nd is medium (should have
made it =20, not 9), 3" is hard (@woutgeo, June 10, 2016, 6:17PM)

Ray-Riek agrees with Pickford that this is a useful mistake to entertain and claims
that “it stretched [his] math brain” (@maxmathforum, June 10, 2016, 6:14PM). The
conversation does not continue further.

In example 2, Pickford and Ray-Riek seem to have a fair amount of redundancy in
their pedagogical approaches, which both involve asking learners to notice patterns
among several examples chosen specifically to illuminate properties without telling.
In fact, Pickford invokes a ‘problem string’ structure, known as a practice where
“students answer related questions, the teacher models student thinking, [and]
students construct relationships and connections” (Harris, n.d., para 3). This structure
shows up elsewhere in the data, and is used by members who are relatively active in
the MTBoS. It is referred to as an instructional routine, and acts as a source of shared
language. Pickford and Ray-Riek are both familiar with this approach, and both agree
that using a ‘string’ helps students notice mathematical properties without direct
instruction. They also both entertain the idea of finding some sort of new
mathematical approach given this student scenario. Since Ray-Riek offers similar
examples as Pickford elsewhere in the data, the only source of diversity is in the
specific examples they provide, and the choices they make in ordering and selecting
numerical values with aims of illuminating various features. Pickford emphasizes the
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increasing difficulty in the examples, while Ray-Riek focuses on merely changing the
product in different ways. In this example, there seems to be too much redundancy
between Pickford and Ray-Riek to generate any further conversation because they
both agree on their approach to interpreting each other’s posts, and their pedagogical
approaches. They are both also relatively well-connected with the MTBoS and its
overarching values.

Example 3: Generating strings
Ray-Riek responded to Fenton’s post earlier that day, responding to himself several
times in a journal-like fashion.

(x-3)(x-2) = 2 still only has 2 answers ... there is only one set of factors of 2 that make
this true. Why those? Hmm ... (@maxmathforum, June 10, 2016, 7:50AM)

| think the direction I'd go is to look at solving a bunch of quadratics that = 2. They all
have different factors. Compare to = 0 (@maxmathforum, June 10, 2016, 7:56 AM)

| think I'd look at (x+8)(x+4) = 12, (x-1)(x-2) = 12, and (x-6)(x-10) = 12. Analytically we
could come up w/ different sol'ns ... (@maxmathforum, June 10, 2016, 8:22AM)

About five days later, Michael Pershan (@mpershan) replies to Ray Riek’s musings
with examples of ‘equation strings’.

How does the approach this equation string aims at compare to what you'd be aiming for?
(x—2)(x—4)=15

(A-3)(A-5)=15
(A-3)(A-5)=35

(Y =3)(¥-10)=0 (@mpershan, June 15, 2016, 5:19PM)

Ray Riek responds by saying that he’s “not thinking of it as eqn string . . . [but that]
each has solns at different factors of 2” (@maxmathforum, June 15, 2016, 7:30PM).
However, he then notes that he can see the ‘string’ Pershan is referring to.

oh now | see the string you are talking about. Is the idea here that 1) is easy and 2) is not
b/c hard to get 7*5? (@maxmathforum, June 15, 2016, 7:30PM)

oh! Now I see the whole string. X=7, A=0, A=10, Y=3 or 10 ... No, | don't think your
string gets at the same idea | had. (@maxmathforum, June 15, 2016, 7:33PM)

Pershan replies that he thought it was referring to the same idea because he’s
emphasizing multiplication in his example. However, Ray-Riek notes that although
it’s related, he wants “three problems that all = 12 but in different ways”
(@maxmathforum, June 15, 2016, 3:35AM). They continue discussing their
intentions, and both offer additional examples. Ray-Riek explains he expects that
students ignore negative and non-obvious solutions, and wants to emphasize this
through different ways of factoring. Ray-Riek then offers an alternative option that
may further elicit the type of student noticing they both expect.
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@mpershan @mjfenton | wonder about a #wodb with

Ai(x=2)(x—1) =12,

B:(x—2)(x—1)=0,

C:(x=3)(x+2) =0 What might kids notice? (@maxmathforum, June 15, 2016, 5:55AM)

Ray-Riek’s ‘which one doesn’t belong’ example attracts another member to engage
in thinking through the options and entertaining what students may notice. This
conversation includes a total of 29 tweets, and prompts Pershan to post further about
it in other threads.

In example 3, similarly as in example 2, both Ray-Riek and Pershan are active
members of the MTBoS, and exhibit redundancy around the way they interpret each
other’s posts through inquiry and their general pedagogical approach of teaching
without telling by asking students to observe patterns within a series of examples,
guiding them towards mathematical generalization. They are both familiar with the
instructional routines of ‘problem strings’ and ‘which one doesn’t belong’, both
common approaches to teaching discussed throughout the MTBO0S, and they are able
to communicate their intentions through examples of these. However, there is a slight
amount of diversity in their approaches to and representations of the mathematics and
to the instructional routines. They seem to use the redundancy to explore sources of
diversity in a productive manner that leads them to generating several examples for
use in teaching mathematics.

Overall, members who are connected to the MTBoS exhibit patterns of interaction
such as thinking like a learner, generating examples, invoking shared language, and
using instructional routines. They also indicate ‘taken-as-shared’ pedagogical
approaches of teaching without telling that involve a teacher helping students arrive
at a generalization through carefully chosen examples that will be discussed, which
follows the ‘notice and wonder’ approach commonly exhibited in MTBoS
discussions. These are all sources of redundancy in the MTBoS that allow users to
communicate meaningfully. When this redundancy is not available, as in example 1,
the conversation cannot become generative. When this redundancy is not paired with
enough diversity, as in example 2, the conversation ends with agreeance. However,
when this redundancy is paired with enough diversity, which is exposed through
communication, there is possibility for the system to generate new as-yet unimagined
tasks and approaches.

CONCLUSIONS

Engaging in the MTBoS with authority means to act within the consensual domain,
which is to share sources of redundancy unique to the MTBoS. This investigation
shows that the consensual domain of the MTBOoS includes patterns of interaction such
as thinking like a learner, generating examples, invoking shared language, and using
instructional routines, as well as being guided by pedagogical values related to
teaching without telling and guiding students towards mathematical generalization.
Without these sources of redundancy, it is difficult to communicate productively.
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However, it is also essential for there to be diversity around approaches and
representations of mathematical ideas to allow for emergence of novel ideas for
teaching and learning mathematics. Those with authority over the consensual domain
of the MTBoS have greater capacity to push new meanings, and in turn, contribute to
the complex emergence of the MTBoS.

This study indicates the potential for complex emergence in the MTBoS, and points
to sources of redundancy and diversity that can contribute to the MTBoS as an
autonomous asynchronous complex system that occasions space for generating an
ideational network of mathematical tasks, pedagogy, and beliefs about mathematical
teaching and learning. Further study should explore other cases where productivity
occurs within the MTBoS to identify conditions that contribute to this productivity.
The products of the MTBoS have great potential implications for teaching that need
to be explored given that they are quickly unfolding and are developing at every
moment.

Note

'Neighbour interactions refer to ideational interaction rather than social interaction.
However, a physical component such as oral or written expression through various
representations is often used for ideas to interact.
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INVESTIGATING PRESERVICE TEACHERS’ WRITTEN
FEEDBACK ON PROCEDURE-BASED MATHEMATICS
ASSESSMENT ITEMS

Mi Yeon Lee' and Woong Lim?
'Arizona State University, University of New Mexico

This study investigates patterns exhibited by preservice teachers (PSTs) during
feedback practice in responding to student work in a procedure-based mathematics
assessment. First, we developed an analytical framework for understanding PSTs’
written feedback. Second, we looked into how a learning module on a multimedia
platform influenced PSTs’ feedback, and identified the ways PSTs improved their
written feedback through revision. Along with an operational list of emergent
patterns in PSTs’ written feedback, our findings suggest that about two-thirds of the
PSTs showed improvement in providing written feedback after they completed the
feedback module. The implications for developing PSTs’ written feedback skills
through an emerging teacher education curriculum are discussed.

INTRODUCTION

Assessment is the process of gathering and interpreting evidence related to student
learning with the goal of improving instruction. Therefore, a teacher’s assessment
practice serves as a crucial link among learning outcomes, teaching strategies,
learning activities, and ultimately promoting a productive cycle of teaching and
learning in the classroom (Black & Wiliam, 1998; Hattie & Timperley, 2007). In
mathematics education, research has shown that effective formative assessment
strategies enable teachers to shift their aims from merely grading and fixing students'
work to increasing the understanding of student thinking and moving students
forward in their learning (Allsopp et al., 2008; Collins, 2012). In particular,
descriptive and detailed feedback from the teacher can guide students to take active
steps for improving their work (Bee & Kaur, 2014).

Well-designed assessments, among other key factors, include non-evaluative,
specific, timely, and personalized feedback related to the learning goals (Gearhart &
Saxe, 2004; Jenkins, 2010). To that end, mathematics teacher educators are beginning
to refocus their attention on training PSTs to develop skills in providing personal,
relevant, and informative written feedback for students rather than relying only on the
numbers, marks, or letter grades of summative assessments. Given the evidence in
prior research that mathematics teachers have several weaknesses with respect to
written feedback (Bee & Kaur, 2014), further research is necessary to investigate how
teacher education programs can help improve this skill. In this study, we investigated
patterns exhibited by PSTs for crafting written (i.e., detailed and descriptive)
feedback on students’ mathematical solutions in procedure-based assessment items.
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First, we developed an analytical framework for understanding PSTs> written
feedback comments. Second, we looked into how an online module designed to foster
emerging feedback skills influenced PSTs’ feedback; the module utilized the
LessonSketch platform (available at www.lessonsketch.org). Third, we identified the
ways in which PSTs improved their written feedback through revision.

LITERATURE REVIEW
Effective Feedback Practice

Studies regarding the impact of feedback indicate that feedback has the potential to
significantly impact students’ learning achievement (Callingham, 2008; Volante,
2010). As such, the teacher should provide feedback in a strategic way so as to create
opportunities for students to use this feedback. That is, the feedback students receive
should tell them what they are doing well, where they need to improve, and what they
should do next. Research has shown that students’ learning improves when they get
informative and constructive feedback on their work; feedback also must clearly
relate to the learning goals (Crisp, 2007; Gregory & Kuzmich, 2004). In addition,
feedback is more effective when it presents achievable goals with a high degree of
sensitivity to self-esteem (McFarlin & Blascovich, 1981). By contrast, the impact of
feedback on learning achievement is low when feedback is focused on praise,
rewards, or punishment (Hattie & Timperley, 2007).

Written Descriptive Feedback

Written descriptive feedback has been the primary method of teacher feedback for
writing tasks in language arts education (Goldstein, 2006), especially in the form of
evaluative comments along with a letter grade. The main factors influencing the
effect of such feedback on students’ writing activities are the nature of feedback,
which should be clear and specific with opportunity for revision based on the
feedback (Hyland, 1998).

Because students’ mathematical work largely exist as written work, the same
principle of the effectiveness of informative written feedback to improve student
learning applies in mathematics education. To date, mathematics education research
has focused on teachers’ approaches to student errors, including the value of
addressing student errors with written feedback on test papers and homework. That
IS, researchers have weighed in on the efficacy of written feedback specific to student
errors, rather than on the cognitive and affective issue of how different types of
written feedback impact student learning. Although the efficacy of written feedback
Is still under scrutiny (Sadler, 2010), the consensus is that student learning can
improve through feedback based on analysis of student work as well as clarity of
learning goals, and explication of criteria for success (Shepard, 2006). In keeping
with this trend, more research on the ways preservice teachers conceptualize written
feedback and develop feedback skills through the teacher education curriculum is
warranted.
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METHODS

Participants in this study were 42 elementary PSTs and 40 secondary PSTs at two
university-based teacher education sites in the U.S. Participants were in their junior
or senior year of teacher preparation programs. Each PST was enrolled in an
elementary or a secondary mathematics methods course.

A learning module with a series of five tasks was implemented in two sections each
of the elementary and secondary mathematics methods courses; the module was
administered towards the end of the fall semester of 2015 and again in the spring
semester of 2016. In the first task of the module PSTs read graphic frames in a comic
format which scripted a conversation between a methods professor and a preservice
teacher about feedback (see Figure 1). Then the PSTs described important attributes
of constructive written feedback on students’ mathematical work. In the second task
the PSTs reviewed the strengths and weaknesses evident in a sample student solution
to the question: What is the slope of the line defined by the equation 8x + 2y = 5?
The PSTs then  composed e i el e tr S aithors and do not necosenty rapresent "
written feedback for the student. the views of LessonSketch or the University of Michigan.

In the third task, the PSTs

compared their feedback with |70
the feedback of other PSTs on

indeed consecutive. But | want to
challenge his thinking by asking

whether the same would be true

| want to tell him 2, 3, and 4 are
for other values of x.

2x, 3x, and 4x

sure how to help her figure it

the same work (see Figure 2). In |-t

the fourth task, the PSTs ——0—- //'_;Tfée;it‘l‘}?;'iéfi,é"r&“i?
reviewed  another  scripted |you eesoack or s » anower shouid be x X
dialogue (see Figure 3) designed =

to help them reflect on — /
meaningful feedback comments. [ g [‘a’fséﬁnéliiﬁt;;“?ﬂz{;“?ES“‘ _ .

In the last task, the PSTs revised o e e e m

out though.

their initial feedback. l 1 » ‘

Figure 1: Scripted conversation about feedback

To analyze the changes between PSTs’ initial and revised feedback, we used the
inductive content analysis approach (Grbich, 2007). Initially we organized raw data
Into a spreadsheet, read the responses, and created codes. Drawing on the literature
about effective feedback practices as well as levels of feedback skills, we developed
an analytical framework. Due to the technology-based context of the feedback tasks
in our study, we revised the initial analytical framework to reflect these two
conditions: (a) the setting is technology-based (i.e., PSTs should provide written
feedback on the LessonSketch platform) and (b) PSTs provide a sample of feedback
in response to student solutions for a procedure-based mathematics assessment item.
Then we analyzed PSTs’ feedback with the revised framework (see Table 1). Finally
we interpreted the data using both quantitative and qualitative methods.
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The graphics used in this image are (c)2017, The Regents of the University of Michigan.
All opinions expressed are those of the authors and do not necessarily represent
the views of LessonSketch or the University of Michigan.

G) Eooo

Probably talk more about
steps they missed or help
them realize they were

pretty close to getting the
right answer.

| could do more with specific feedback. Not
necessarily correcting the work, but leaving
quick but informative comments so the

student could start thinking about what they
did and do it differently on another test.

My goal is nelpmg my student see where
she misunderstood, think about how to
learn from the mistakes, and get back to
me with the correct thinking.

!9

Flgure 2’“'Sample feedback Figure 3: Debrlefmg feedback task with PSTs

Level Descriptions

1A Feedback is praise (e.g., nice work; great job) or vague comments (e.g.,
better than last time) unrelated to mathematics content.

1B Feedback comprises general comments on test-taking skills (e.g., double
check your work; read instructions carefully).

2 Feedback provides correct answers or identifies student errors (e.g., you
added the denominator incorrectly; you did not simplify).

3 Feedback is given to directly remediate student errors (e.g., be sure to use
this formula; add the exponents and see what happens).

4 Feedback provides an analysis of student strengths and areas of
improvement.

5 In addition to Level 4 feedback, feedback provides opportunities (e.g.,
challenges) for new learning and encourages students to reflect on their
thinking.

N/A  Feedback is not provided.

Table 1: Revised descriptions of PSTs’ written feedback
RESULTS

For elementary PSTs, before going through the feedback module on LessonSketch,
the most common level was level 2 (36%), followed by level 3 (30%) and level 4
(17%). However, after completing the module, level 5 had the highest frequency
(33%), again followed by level 3 (26%) and 4 (17%) (Table 2). For secondary PSTs,
before the module, the majority of feedback was at level 3 (47%) followed by level 2
(24%). However, after the module, most of these PSTs demonstrated either level 3 or

level 4 (see Table 2).
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Level Elementary PSTs Secondary PSTs

Before After Before After
1A 3 (8%) 0 2 (6%) 0
1B 2 (5%) 2 (5%) 6 (18%) 3 (9%)
2 15 (36%) 7 (17%) 8 (24%) 6 (18%)
3 13 (30%) 11 (26%) 16 (47%) 16 (47%)
4 7 (17%) 7 (17%) 2 (6%) 8 (24%)
5 1 (2%) 14 (33%) 0 1 (3%)
No response 1 (2%) 1 (2%) 0 0

Table 2: Distribution of PST feedback levels before and after use of the module

Overall, more than half of the PSTs (58% of elementary PSTs and 59% of secondary
PSTs) demonstrated improvement in providing feedback after going through the
module, while 40% of PSTs remained at their pre-module levels (see Table 3). These
results showed that the module was helpful for PSTs to develop feedback skills --
most PSTs learned to go beyond praising and fixing student errors in order to
investigate student thinking.

Levels Number of elementary PSTs ~ Number of secondary PSTs
Increased 24 (58%) 20 (59%)

Did not change 16 (38%) 14 (41%)

Decreased 1 (2%) 0

N/A 1 (2%) 0

Table 3: Change in PST feedback skills

DISCUSSION

The module implemented in this study offers examples of scenario-based feedback
tasks in methods courses. The design of the tasks is such that PSTs are situated in the
classroom interacting with students on their mathematical work. Our findings suggest
that both elementary and secondary PSTs respond positively to feedback tasks in
which they are asked to craft teacher comments and review comments of peers and
have the opportunity to revise their comments. We also found several distinct
patterns of feedback between elementary PSTs and secondary PSTs. Initially most
PSTs had level 2 or 3 feedback skills, but a number of elementary PSTs were able to
demonstrate level 5 after they completed the module -- whereas the secondary PSTs’
progress was more incremental. This suggests that there may exist some barrier for
secondary PSTs to frame their written feedback as a way to promote metacognition,
or new learning, beyond the scope of the mathematical concept confined within the
mathematics item at hand. Our hunch is that secondary PSTs may perceive feedback
as an opportunity to engage in immediate content learning (i.e., levels 3 and 4) while
overlooking the role of feedback as a way to motivate students to revisit the work and
think on their own (i.e., level 5 and beyond).
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While this study generally supports a case for a curriculum in teacher education that
nurtures PSTs’ emerging feedback skills, what is particularly important is the
development of curricular materials with the following ideas in mind. First, the
curriculum should provide curricular materials that encourage PSTs to develop an
interest in the teaching skills necessary to provide feedback. Second, the curriculum
should focus on opportunities for teacher educators and PSTs to co-construct various
feedback comments with clear reference points to students’ solutions; this practice
should also be accompanied by a discussion of how these comments communicate
awareness of students’ strengths and weaknesses and how this awareness prompts
students’ further thinking and reasoning. Third, the focus of the curriculum should be
on how high quality feedback helps students to identify the next steps in their own
learning.

Traditionally, mathematics teacher educators have relied on a lecture-seminar format,
which typically involves assigning research articles followed by either round-table
discussion or having students write reflection papers. This may have been the
dominant approach to teaching feedback strategies or any instructional practice in
methods courses. Given the current disconnect between learners’ need for effective
feedback and the base knowledge of how to provide it, as well as the level of interest
in developing effective feedback skills among PSTs, we believe they need
meaningful and multiple experiences to practice crafting teacher comments on their
own, which can then serve as the basis for discussion in the methods course. Such
discussion can support a model for incorporating theoretical knowledge into the re-
construction of comments, thereby establishing a pattern of improving feedback skills
through revision. Thus we suggest a shift in the structure of teacher education toward
instructional patterns that provide PSTs with opportunities to compose teacher
comments, engage in the analysis of various teacher comments, and reflect on their
own comments through revisions. As for the specific module in our study, we caution
that some PSTs may not be receptive to the comic format of the graphic frames.
However, LessonSketch as an online multimedia platform can be useful for creating
optimal learning conditions. For example, we found such negative reactions were
ameliorated when students observed the graphics privately rather than in a whole
group setting, which was where objections to viewing comics like graphic frames
arose.

IMPLICATIONS

This research contributes to the current literature on written feedback practices in
mathematics education. In particular, this study has implications for designers of
mathematics education courses for PSTs, as well as for researchers pursuing deeper
understanding of PSTs’ written feedback skills. For example, we found that a
majority of PSTs easily advanced past levels 1 and 2 when they realized their
feedback was too general and consisted mostly of praise. This rapid advancement
suggests that the teacher education curriculum should focus on helping PSTs achieve
higher-level feedback skills. It should also focus on helping PSTs compose
appropriate feedback comments for various contexts (i.e., descriptive vs. evaluative
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vs. affective) and revise their strategies depending on how students are likely to
respond.

Our future studies will investigate whether and how procedure-based items could
restrict opportunities to provide quality feedback, and whether and how open-ended
items can better provide a meaningful space for PSTs to develop written feedback
skills. Related, we plan to refine our research to identify the type of learning in the
math methods course that directly contributes to PSTs’ development of feedback
skills by enabling them to (1) create teacher messages that motivate students to think
more deeply about mathematics and (2) to go beyond the correctness of a solution.
Ultimately, we are interested in research on creating the type of learning
opportunities in teacher education through which PSTs can develop the skills
necessary to examine student work and plan for the next steps in meeting their needs.
These learning opportunities will enable teachers to develop their written feedback
skills as an integral part of effective and affective teacher language that motivates
students to refine and extend their thinking and reasoning.
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TOOL-BASED MATHEMATICS LESSON: A CASE STUDY IN
TRANSITIONS OF ACTIVITIES IN DIDACTICAL CYCLE

Huey LEI and Allen LEUNG
Hong Kong Baptist University

Tools are made by human aiming at not only solving technical problem but also
developing high-order thinking. Teaching and learning with tools create student-
centred learning environment fostering rich interactions between students and
teachers. This paper presents a case study investigating the implementation of a tool-
based lesson in secondary level. The study explored the interactions among students,
teacher and tools used, which mainly focused on the transitions of activities
conducted in the lesson. Didactical Cycle is the main frame for analyzing the data
collected via document review, interviews, classroom observation and worksheets
completed by students. Reversible transitions in the didactical cycle frame between
various tool-based activities were found in the case.

INTRODUCTION

In traditional mathematics classrooms, teachers implement mathematics lessons in
deductive and authoritative teaching approaches while mathematics knowledge is
developed in de-contextualized approach that usually standardizing as introduction
followed by application. These approaches, including teachers’ talk, often offer
students few opportunities to construct mathematics knowledge on their own.

One role of tools played in mathematics classroom may pedagogically flip from
teacher-centred to student-centred learning approach. Mathematics task designed by
teachers which involves the use of tool is known to be tool-based task. Leung and
Bolite-Frant (2015) defined tool-based task as doing or acting on thing in order for
students to activate an interactive tool-based environment where teacher, students,
and resources mutually enrich each other in producing mathematical experiences.
Tool-based mathematics lesson is therefore viewed as a lesson including tool-based
task that conceives these interactive activities. Furthermore, different from traditional
teacher-centred approach, social interaction in the acquisition of knowledge is
encountered in the interactive activities involved in tool-based task. To conceive
interactive and collaborative mathematics experiences, the use of tools mediates the
connection between construction of mathematics knowledge of students and actions
taken by them. Thus, tools can be viewed as mediation between the generated
production of signs while the tool-based task is being accomplished and the sign
related to mathematics knowledge (Bartolini Bussi & Mariotti, 2008). The idea of
signs mentioned by Bartolini Bussi and Mariotti (2008) was inspired by Vygotsky
that involving words, drawings, gestures and the like accompanying actions produced
in learning and teaching environment.
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In tool-based lesson design and implementation, Bartolini Bussi and Mariotti (2008
and 2012) developed an iteration called didactical cycle based on semiotic mediation,
which consists of three phases of activities conducing to the construction of
mathematics in the lesson. The ultimate goal of the didactical cycle is to foster the
development of shared meanings recognizable and acceptable by teachers and
students through the active activities performed by the students in the mathematics
classroom (Mariotti, 2012). Research studies on the didactical cycle contextualized in
mathematics and science lessons focusing on the individual phases of activities were
conducted in the past (e.g. Bartolini Bussi & Mariotti, 2008; Corni, Giliberti &
Mariani, 2011; Mariotti, 2012). However, previous studies mainly focused on
individual phase only. This research study aims at exploring and analysing the
transitions of the activity phases captioned in the didactical cycle in Hong Kong
classroom context in order to compensate the analysis of the didactical cycle and
contribute to a research gap where the transitions of the activity phases are essentially
considered.

This paper presents a study aims at exploring pedagogical interaction in a school
mathematics classroom with a teacher designing mathematical task making use of
tools in Hong Kong. We explicitly investigate the tool-based mathematics lesson with
the didactical cycle, specifically analyze the transitions of activity phases which
aspires to develop a contextualized model of tool-based pedagogical interaction.

THEORETICAL FRAMEWORKS

In tool-based task design and implementation, mathematical knowledge can be
constructed via a semiotic process where two types of sign production are generated:
1) personal written or verbal signs and 2) mathematics signs (i.e. formal mathematics
knowledge) (Bartolini Bussi & Mariotti, 2008). Bartolini Bussi and Mariotti
introduced semiotic mediation to describe the interrelations among tool, mathematics,
teacher and students through sign productions. Tool as a mediator cognitively
simulates students with the features of it through interactions between students and
the tool guided by the teacher. The sign generated from tool manipulation creates
twofold cognitive functions. One function is for the students to accomplish the
mathematics task. Another function is the sign production related to the process of
interpretation of the exchanged information and the subsequent socio-semiotic
process for the communication between collaborating parties like groupmates and
teacher. However, this developmental process is not automatically activated without
teacher’s intervention (Bartolini Bussi & Mariotti, 2008). Therefore, from this
viewpoint, the role of tool is a social-semiotic mediation to produce signs that
stimulate teaching and learning in the mathematics classroom. Using tools in the
classroom enhances students’ cognitive ability to engage in the experience of
generating personal mathematics signs from the manipulations of tools on the one
hand, while on the other hand, the generated of signs helps students to conceive
mathematical ideas from it with teachers’ guidance. This dual tool-based sign
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functions intertwine in the mathematical knowledge acquisition process. The

didactical cycle consists of an iterative cycle of three q

phases (see Figure 1): o Individual

Phase 1: Activities with tools/artifacts: It is generally ~ Activities producition
. . . . with artifact .

a starting point of the didactical cycle where tools of signs

become indispensable elements for students to act on

the task. These actions or activities are usually

formed in small groups in social settings that promote

social exchange accompanied by words, sketches and Collective

gestures done by students. production of

Phase 2: Individual production of signs: It engages signs

students to undertake different semiotic activities

individually concerning mainly the written signs for ~ Figure 1: The Didactical Cycle.

the next step. The production of signs does not Adapted from (Mariotti, 2012)

require students to produce formal mathematical

language (mathematics signs), but the signs rooted in the tool and the given task,

which creates different artifact signs (e.g. tool-related production) for collective

activities and discussions followed.

Phase 3: Collective production of signs: It includes Mathematical Discussion

(Bartonlini Bussi, 1998) which is the core of semiotic process orchestrated by

teachers. The individual signs collectively produced by the students in the previous

step are shared and discussed for analyzing, commenting and elaborating. The

discussion explicitly directs students to transform the personal signs to mathematical

signs in cognitive dialectics process with the guidance of teacher. Therefore, the main

purpose of the teacher is to collect personal signs and convert them to mathematical

signs. Semiotic mediation advocates another view of constructing mathematics

knowledge by producing polysemy signs representing the tool and mathematics.

“This cycle was not rigidly fixed and was open to changes, according to the particular

conditions of activity” (Bartolini Bussi & Mariotti, 2008, p.763). According to

Bartolini Bussi and Mariotti, the didactical cycle is a theoretical framework to guide a

tool-based mathematics lesson; in addition, it allows diverse pedagogies to occur.

This study will examine the issue in a situational context in a case that originally

proposed to investigate the transitions of the phases in the didactical cycle.

RESEARCH METHOD

This research study is a naturalistic inquiry research on the formation of pedagogical
practices. It is also a part of a tool-based research project with over twenty
participating mathematics teachers from primary and secondary schools in Hong
Kong. The participants have conducted tool-based lessons which were video-
recorded. Each teacher implemented the designed tool-based lesson(s) with pre-
lesson clinical interviews and post-lesson interviews which aimed at probing
teachers’ perceptions of tool-based task design and the performance in the lessons
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respectively. For the mathematics content, diverse types of topics and grades from
primary to secondary levels were performed.

As a part of the research project, we present here a single case of a secondary
mathematics teacher teaching an elite class of secondary three students (Grade 9) and
the topic in estimation of the volume of a concrete object (a frustum-liked container).
Primary data sources were taken before, during and after the lesson. Audio record of
the pre-lesson and post-lesson interviews, video record of the implemented lesson
along with the photocopies of the worksheets of the students was gathered as the data
of the case. In addition, the interviews and implemented lesson were transcribed for
analysis.

Research Lesson

The tool-based lesson was designed and conducted by a experienced secondary
mathematics teacher. The teacher discussed the design of the task with researchers in
the project and modified it for implementation. The mathematics knowledge in the
lesson emphasized by the teacher in the interviews was the estimated process with
tools and the accuracy of estimation. In the lesson, he allowed the students to select
and bring any tools themselves. The flow of the lesson was mainly designed and
implemented in four parts, 1) introduction; 2) carrying out the estimation process; 3)
group presentations; and 4) checking the volume.

Data Analysis

In order to focus on student-tool, student-student and student-teacher interactions, a
coding scheme was devised to characterize the phases of the didactical cycle in the
implemented tool-based lesson. Three phases mentioned in the didactical cycle are
coded and named as Al, A2 and A3, according to the iterative activities. Three
complementary sub-codes (rt - Related to tool; nt - Not related to tool; o - Other)
under these three levels were used to document the classroom interactions in a more
complete manner in order to identify potential subtle forms of interactions. The
conversations and actions from the transcription were analyzed and coded to
precisely discern the phases for deeper understanding of addressing role of tool in the
activity (e.g. ‘rt’ coding refers to the conversation related to the tool involved).
Additionally, pattern analysis was focused on the transitions between the three phases
in the didactical cycle.

RESULTS

The iteration of activity phases in the cycle and notable transitions of phases are
presented for addressing critical factors that determined the phase changes. The
excerpts below are three examples extracted from the analytical transitions.

Iteration of the didactical cycle

The didactical cycle presented and theorized as a unidirectional flow of phase
changes. However, in the implemented research lesson, we have found a non-cyclic
sequential transitive flow of phases of the didactical cycle where the phases were not
strictly on a track of A1—A2—A3 pattern. The phase transitions within the
didactical cycle were interchanged among phases, therefore, reversible flows of
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phases were observed. The result showed each phase may direct to the other two
adjacent phases or stayed on its own stage. Therefore, the phases in the didactical
‘cycle’ may not be implemented as a unidirectional cyclic pattern in the observed
tool-based lesson.

Transition of A1 — A3
The students were engaged in the manipulations of tools (i.e. Al) to find slant height
of the container. During the manipulation, the teacher intervened (i.e. A3) and
questioned the group.
Excerpt 1 (10:08)
1 Ss: (A group of students is starting to plan how to measure and is trying to use rulers
to measure the slant of the container.) (Al)

2 T:. Slant will make it longer. Then the next question will be how much does it slant?
You should think about whether this measurement is accurate or not. (A3, rt)

3 S1:0h, I see. (A student from the group is jotting down the steps they have
discussed) (A3, rt)

Excerpt 1 showed the transition of pattern from Al to A3. Verbatim 1 revealed the
students worked in groups as a social setting on the task to generalize artifact signs
(Mariotti, 2012). It is gradually emerged at the beginning of the lesson that allows
students to manipulate the tools to produce personal meaning signs. In general, the
didactical cycle proposed that A2 will follow to produce signs (either in verbal or
written forms) by the manipulators. However, in verbatims 2 and 3, the teacher had
an intervention to the group by probing question about the features of the container
linked with the measurement. The guidance of teacher would be viewed as collection
and clarification of production from previous activities. Therefore, the transition of
phases from Al to A3 emerged.
In the didactical cycle, activities in A1 mainly conceive possibility for producing sign
from individual or group, i.e. A2; while A3 follow for the collection of the
production in A2. However, the translation from in excerpt 1 blurred the phase of A2.
The teacher tried to provide guideline, even though some signs were not produced by
students, to the students when the students were planning and manipulating the tools
with struggles and confusions. When the teacher discovered the students focused on
the experiment itself but did not produce any sign, he reminded them to
mathematically focus the construction of slant of the container.

Transition of A2 — Al
The students manipulated the tools individually and collaboratively in order to
produce verbal and written personal signs.

Excerpt 2 (13:32)
4 Ss: (A group of students is drawing tangents to find the centre of a circle on a paper)
(A2, rt)
5 S2: It’s ok. Let’s calculate. (A student from the group is marking down measured
values on a paper) (A2, nt)
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6 S3: (Another student from the same group is counting the radius on a grid paper)
(A1)

This episode showed an interchangeable transition between Al and A2. The group
started the experiment in a way of tracing the concrete location of centre of a circle
(the base of the container) in the paper in order to find its radius. The group produced
mathematical terms, e.g. circle, radius, touch at a point (i.e. tangent), and the students
consented that the measurement was the radius. Verbatims 4 and 5 also revealed that
the measured values were substituted in formula written by the group. After all,
instead of analyzing the calculation, verbatim 6 showed the group was using another
ways of measurement to find the radius. The students triangulated the answers
obtained from various methods.
In the didactical cycle, activities for producing signs in A2, are followed by A3 which
is the collection of the signs. On the other hand, excerpt 2 showed the group was
moving back and forth between the phases Al and A2. As said in previous paragraph,
manipulating tools in Al helps students to produce their own signs, i.e. A2 activity.
However, students may ‘return’ to repeat the same experiment or conduct another
one, i.e. Al again, instead of analyzing the production, in order to triangulate the
measurement and check the consistency of the calculation. Therefore, collection of
production of sign was not readily emerged. In addition, the first two phases (Al and
A2) were inseparable in this situation.

Transition of A3 — A2
The activity for the collection of students’ production simulated the students to justify
their productions and to modify their ways of experiments.

Excerpt 3 (36:12)

7 S4: (A student is presenting her idea to the whole class) We used two rulers, one
vertical and one horizontal. And the slant height. (A3, rt)

8 T: Can you draw a figure? What is the goal of your calculation with this figure?
(A3, nt)

9 Ss: (The presentation was stopped and the students were thinking)

10 S5: (Another student from the group is going to say something)

11 S4: Oh, I know, I know. We add two rods here to form a pyramid...(A2, rt)

In verbatim 7, a student was presenting the manipulation and measurement of what
their group had performed. The terms, i.e. artifact and/or mathematics signs, were
used by the student and shared with the whole class in order to consolidating formal
mathematical thinking. After the teacher probing a question to the group, they tried to
generate and refine the ideas in the presentation by doing an experiment shown in
verbatim 11.

Theoretically, the collective activity of signs, i.e. A3, gradually completes a ‘cycle’
and re-starts again at A1. However, the phase A3 did not end the cycle in this case.
Students were trying to produce signs/terms that convince others what experiment
had done. Therefore, the collective phase includes students’ production of signs with
the help of using tools as a representation.
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REMARKS

The theoretical framework of the didactical cycle guided us to analyze the interactive
activities in the empirical tool-based lesson. Three types of activities in the cycle
interacted with each other and transited from phase to phase. The first remark is that
the transitions of phases were not practically restricted in unidirectional pattern of
Al—A2—A3. Particularly, reversible transitions of phases were found in the
research lesson. In addition, we enact a modified didactical cycle and name it as
Didactical Interaction (see Figure 2). The word

‘interaction’ inclusively considers not only the cyclic

P H P Activities Individual
flow of phases captioned b_y the _dlda_ctlcal cycle_z,_ but i aetitact producition of
also accommodates reversible directional transitions (A1) signs (A2)
of phases hence multidirectional transitions of the Tool

phases. The second remark is that various kinds of

transitions of phases were emerged in the lessons. In

fact, teacher intervention was critical in these -

different kinds of transition. The students in the production of

lesson were inspired by the teacher’s question and signs (A3)

modified their plan of experiment when they had Figure 2: The Modified Didactical
received the feedback from the teacher. These kinds  Cycle/The Didactical Interaction
of action taken by the teacher initiated the phase change that justified the model of
the didactical cycle which some phases were being skipped, blurred and reverted in
the iteration direction. In addition, iteration analysis told us that the some phases in
the cycle were difficult to be discerned in terms of its features. For example, students’
manipulation of tools included individual instrumentation and instrumentalization
(Rabardel, 2003) which naturally produced some terms and calculation. These kinds
of productions were closely related to the activities with the tools, e.g. Al and A2,
which are inseparable. The third remark is notably placed on the role of tool in
associated with the transitions of the activities. The transitions were changed
according to the actions taken by the students and the teacher that the relevance of the
tools was considered in the analysis. For example, the teacher questioned the students
about the features of the tool that semiotic potential of the tool was critically
encountered in the conversation (See verbatim 2). Another example showed that the
students discussed on calculation which was extracted from the tool (See verbatim 5).
In short, the cyclic feature of the didactical cycle should be critically reframed
according to the implemented lesson. For example, Leung has discussed that a nested
epistemic process in tool-base activities are conducive to learning (Leung, 2011).
Therefore, further analysis will be conducted to study deeply the interrelationships
among these activity phases.

As a part of the research project, several in-depth investigations will be continued.
For examples, analysis of questioning from teachers, manipulations of tools by the
students and correctness of calculation will be further studied. Moreover, similar
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analysis on the relationship of transition will be conducted in other research lessons
conducted by other participants in the project to enrich and modified the didactical
Interactions.
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MATHEMATICIANS’ EVALUATIONS OF THE LANGUAGE OF
MATHEMATICAL PROOF WRITING IN THREE DIFFERENT
UNDERGRADAUTE PEDAGOGICAL CONTEXTS

Kristen Lew" and Juan Pablo Mejia-Ramos®
'Texas State University, Rutgers University

This proposal discusses the extent to which mathematicians agree on some of the
linguistic conventions of mathematical proof writing. Mathematicians (n=128)
responded to an online survey indicating whether proof excerpts were
unconventional in each of three undergraduate contexts: how proofs appear in
mathematics textbooks, what instructors write on the blackboard in mathematics
courses, and how students write proofs in these courses. These data point to a lack of
agreement among mathematicians on the linguistic expectations of the proofs written
by their students.

INTRODUCTION

Research has shown that undergraduate mathematics students have difficulties when
constructing (Weber, 2001), reading (Conradie & Frith, 2000), and validating (Selden
& Selden, 2003) mathematical proofs. Among several reasons for why
undergraduates struggle with constructing mathematical proofs, Moore (1994)
included students’ unfamiliarity with the language of mathematical proof writing.
However, there is a dearth of empirical and systematic research in the field of
mathematics education on the language of mathematical proof writing at the
advanced undergraduate level.

In particular, how advanced undergraduate mathematics students and mathematicians
understand and use the technical language of mathematical proof writing is largely
unknown. Lew & Mejia-Ramos (Under review) showed that the mathematicians and
undergraduate students who participated in their study did not agree on the extent to
which one should attend to English grammar, the introduction of new objects in a
proof, and the context in which a proof was constructed when considering the
exposition of said proof. While the interviews provided a clearer picture of how some
mathematicians and students perceived the language of mathematical proof writing,
the present study investigated how a larger sample of mathematicians evaluated parts
of the same proofs via an online survey. Lending a quantitative perspective on how
mathematicians understand technical mathematical language, this work further
informs researchers’ and instructors’ understanding of mathematicians’ expectations
regarding the presentation of mathematical proofs at the undergraduate level.
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RELATED LITERATURE AND THEORETICAL PERSPECTIVE

There is little systematic, empirical work on the language of mathematical proof
writing. Konior (1993) studied over 700 mathematical proofs written in academic
textbooks and monographs investigating the construction of mathematical proofs. He
identified a common structure that framed the arguments of a proof by highlighting
the plan of procedure and using cues to direct the reader through the proof. Burton
and Morgan (2000) found that the norms suggested in professional mathematical
writing guides (e.g. Gillman, 1987; Krantz, 1998) are sometimes broken by,
especially by those highly regarded in the field. Selden and Selden (2014) also
described seven features of the style in which mathematicians write proofs (e.g. not
including the statements of entire definitions within written proofs). While these
studies begin to further the understanding of professional mathematical proof writing,
research on the language of proof writing at the undergraduate level is lacking.

As referenced above, a number of mathematicians (e.g. Gillman, 1987; Krantz, 1997;
Higham, 1998) have written texts describing proper and effective use the language of
mathematics for professional purposes such as journal articles, dissertations, and
books. Meanwhile, since these guides were written based on the authors’ assumptions
and personal experiences, further work is necessary to investigate the extent to which
these expectations of advanced mathematical proof writing are shared by the general
population of mathematicians and how these conventions apply to different contexts.

Linguistic Conventions of Proof Writing in Different Contexts

As a particular type of mathematical writing, we see mathematical proof as a
particular genre of the language of mathematics. Mathematician Armand Borel
(1983) equated mathematical proofs to the genre of poetry in natural language,
emphasizing not only that the language of mathematics is distinct from the
vernacular, but also that one must be knowledgeable in the language of mathematics
in order to understand mathematical proofs. In this work, we assume that the genre of
proof is a way of using mathematical language defined by both the formal properties
and structures of language, as well as the communicative purposes of texts in
particular contexts. This view of genre is consistent with the genre theory literature
(Hyland, 2002). Our consideration of proofs in this light is in the pursuit of helping
students to understand and follow the linguistic conventions of the genre, as work has
done in other discourses (Hyon, 1996).

To study the genre of mathematical proof writing, we sought to identify and validate
the existence of linguistic conventions of proofs. We assume conventions are
rationally justifiable customs of practice to which members of that practice are
expected to conform in the manner of Jackman (1998). Thus, we take linguistic
conventions to be rationally justifiable customs of linguistic communication. Existing
literature (e.g. Gillman, 1987; Higham, 1998) has suggested some conventions of
writing proofs for professional contexts, such as correctly situating notation within a
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sentence according to proper grammar, and structuring the proof to guide a reader
through the argument.

Meanwhile, it is important to consider how the context of the proof might affect how
conventions are followed as suggested by mathematicians in Lew & Mejia-Ramos’s
(2016) study. In particular, we investigate how mathematicians believe conventions
of mathematical proof writing apply in the contexts of undergraduate textbooks, and
in two classroom contexts: the way proofs are written on the board in class, and the
ways in which proofs are written by undergraduate students. The consideration of this
variation of context allows this work to highlight important similarities and
differences in the contexts created by mathematical discourse, as Bondi (1999) had in
her study of research papers, textbooks, and newspaper articles in economic
discourse.

Researchers in higher education (Becher, 1987), linguistics (Hyland, 2004), and
composition (Bizzell, 1982; Batholomae, 1985) have highlighted that different
disciplines have characteristic discourse practices and that without knowledge of such
practices students will struggle to successfully enter the discipline. We extend this
necessity to acquire specialized literacy to undergraduate students of advanced
mathematics, who—we argue—must understand the genres and conventions of
mathematical discourse which includes the genre of mathematical proof in the
different contexts that pervade their undergraduate study. Given the fundamental role
of proof in mathematical practice (e.g. Thurston, 1994; Rav, 1999), understanding the
language of mathematics in which proofs are written is of utmost importance for
undergraduate students studying advanced mathematics.

In the present study, we investigate the conventions of mathematical proof writing
from the perspective of mathematicians — the most prevalent instructors and
examiners of undergraduate students’ proof writing. As such, the present study
investigates the following question: To what extent do mathematicians agree among
themselves on what the linguistic conventions of mathematical proof writing are in
the three contexts of textbook proofs, blackboard proofs, and student-produced
proofs? Do conventions exist for the language of undergraduate mathematical proofs?
Does the context of said proofs affect what conventions are upheld in mathematical
proof writing?

METHODS

In order to evaluate how mathematicians perceive linguistic conventions in
mathematical proofs, the survey adopted the methodology of breaching experiments
in the style of Herbst and Chazan (2003). The survey asked participants to make
evaluations regarding the language used in several partial proofs, which were based
on student work, but truncated to discourage participants from focusing on the logical
validity of the purported proof being evaluated. Four of the seven partial proofs used
in Lew & Mejia-Ramos’s (Under review) study were included in the survey.

These breaches were identified by Lew & Mejia-Ramos (2015) as common,
potentially unconventional uses of mathematical language found in student-produced
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proofs from 149 exams at the introduction to proof level. The breaches were
categorized based on suggestions from mathematical writing guides and the authors’
personal experiences with proof writing at the undergraduate level. One of the partial
proofs and potential breaches included in the survey is illustrated below. Figure 1
shows the marked partial proof exhibiting the use of the unspecified variable, z, and
the explanation for why someone might think it’s unconventional, as presented in the
survey. The explanations used in the survey are based on the mathematicians’
discussions of the same potential breaches and proofs in Lew & Mejia-Ramos (Under
review).

Each potential breach was presented on a separate page of the survey. Participants
were provided a marked partial proof and an explanation of why a colleague might
believe the corresponding proof excerpt had been written in an unconventional
manner, as shown in Figure 1. For each of the three contexts (a textbook proof, a
blackboard proof, and a student-produced proof), participants indicated if they agreed
the proof excerpt was indeed unconventional for the stated reason and to what extent
it affected the quality of the proof.

Marked partial proof exhibiting the potential breach: Explanation of the potential breach
Uses an unspecified variable
P s By R T, g O A mathematician suggested that this is
Suppese &5 oke B aid gof.  NTS: goh unconventional mathematical writing
TEY o B, Ry@)ee because the variable z should be

VyeB, JxcA sudh Mat $(2) y
let @) e qof  such At JyeB 1) @

introduced prior to its use in the proof.

Figure 1. Example potential breach and explanation presented in the survey.

Participants (128 mathematicians) were recruited from 25 of the top mathematics
departments in the United States through email solicitation through their department
secretaries, which included a link directing those choosing to participate to the
survey.

Analysis

The analysis for this study included investigating if the mathematicians answered the
various aspects of the survey differently — in particular, whether they agreed or
disagreed on which the potential breaches were unconventional in the three contexts.
Table 1 presents some of the findings from this study, indicating the proportion of the
sample that agreed that the proof excerpt was unconventional for the reason provided,
for each of the three contexts. To evaluate if the proportions of agreement indicated a
high agreement, the thresholds of a high agreement that a potential breach was
unconventional and was not unconventional were set to 75% and 25% respectively.
Chi-squared tests for equality of proportions were conducted to check for proportions
p=0.75 and p=0.25 with a level of significance of a=0.05/42 (fourteen potential
breaches in each of three categories). The results of these Chi-squared tests are
indicated with ++ and --, respectively. Proportions of agreement were categorized in
the following ways: high agreement that the use is unconventional (significantly
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different and greater than 75%), high agreement that the use is not unconventional
(significantly different and less than 25%), or not shown to have high agreement.

RESULTS

Survey results suggest a lack of agreement amongst mathematicians whether the
potential breaches are unconventional of mathematical proof writing for the reasons
provided. Table 1 shows that fewer than half of all judgments made vyielded
agreement percentages significantly different and above 75% or significantly
different and below 25%. However, in textbook proofs, responses also showed more
internal agreement.

Do mathematicians agree the potential breaches are unconventional uses of mathematical language for the reason provided? (% Agree)

Proof Potential Breach of Mathematical Language Textbook Context Blackboard Context  Student Context
Uses non-statement 100% 100% 98%

1 Uses an unspecified variable 59% 34% 37%
Includes statements of definitions 41% 18% 12% ~°
Lacks punctuation and capitalization 95% ** 34% 50%
Uses formal propositional language 88% 74% 66%

5 Uses unclear referent 93% " 67% 70%
Overuses variable names 98% 95% ** 93% "
Mixes mathematical notation and text 88% 28% 45%
Fails to make the proof structure explicit 70% 29% 28%

3 Uses mathematical symbols or notation as an incorrect part of speech 72% 19% 24%
Uses informal language 77% 45% 48%
Fails to state assumptions of hypotheses 64% 34% 40%

4 Uses an unspecified variable with an existential quantifier 85% ** 55% 54%
Lacks verbal connectives 97% 52% 72%

++ Significantly different and greater than 75% of the sample, -- Significantly different and less than 25% of the sample (a=0.05/42)

Table 1: Mathematicians’ responses indicating if they agree that the proof excerpt

was unconventional for the reason provided in each context.
Figure 2 shows the percentage of participants who agreed the potential breaches were
unconventional in each of the three contexts. Lines connect the agreement
percentages for evaluations in the same context and the shaded sections indicate the
percentages significantly different and greater than 75% or significantly different and
less than 25%. This section of the proposal discusses the types of potential breaches
for which participants’ responses showed high agreement and provides a post hoc
analysis of the potential breaches for which the samples’ responses did not show high
agreement.

Uses non-statement -

Overuses variable names-

Lacks punctuation and capitalization-

A ‘ . £ S
5 Mixes mathematical notation and text- = 5
§ Lacks verbal connectives- ‘% G
E Uses formal propositional language- :: g
= S 2 Proof Context
= ) Uses unclear referent- ; = ® Texthbook Proofs
8 Usesan unspcullc(_l \';mflblc wnh_ an g g A Blackboard Proofs
£ : existential quantifier = g B Student Proofs
= Uses informal language- B ES
& Fails to make the proof structure explicit- % ‘é
2 Uses mathematical symbols or notation | = 2
;“ as an incorrect part of speech ;—: ?ﬁ

Fails to state assumptions of hypotheses- 5

Uses an unspecified variable-
Includes statements of definitions- A
0 25 50 75 100
Agreement Percentage of Mathematicians

Figure 2: Mathematicians’ agreement percentage for each potential breach by context
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Potential breaches for which the participants’ responses showed high agreement

Based on Figure 2, the mathematicians’ responses showed high agreement that eight
of the fourteen potential breaches were unconventional in the context of a textbook
proof for the reasons presented. Moreover, for the proof excerpts exhibiting the use
of non-statements and the overuse of variable names there is high agreement among
mathematicians that these potential breaches are unconventional in all three contexts.
These findings provide further evidence that these eight potential breaches of the
conventions of mathematical language are indeed unconventional in the context of
textbook proofs for the reasons provided. The proof excerpts that overused variable
names or used non-statements were also indicated to be unconventional in the two
classroom contexts by the mathematicians.

Finally, Figure 2 also shows the percent of mathematicians that agreed the inclusion
of statements of definitions in a student-produced proof was unconventional is
significantly different from and less than 25%. That is, there is a high agreement
among the mathematicians that a proof excerpt including the statement of definitions
Is not unconventional in a student-produced proof. Moreover, fewer than 42% of
mathematicians agreed the inclusion of statements of definitions was unconventional
in any of the three contexts considered. We note this is in contrast to claims that
mathematicians do not include statements of entire definitions within written proofs
(Selden & Selden, 2014). While the scope of the present study focuses on proofs at
the undergraduate level, we note two of the contexts considered are written by
mathematicians (textbook proofs and blackboard proofs). Thus, it may not be that the
features of proof writing described by Selden and Selden (2014) extend to different
contexts of proofs written by mathematicians or proofs written by students.

When the samples’ responses did not show high agreement

For 29 of the 42 judgments made by the mathematicians, agreement percentages did
not cross the thresholds for high agreement. Figure 2 further shows that for five of the
potential breaches, mathematicians’ responses did not show high agreement in any of
the contexts. When we restrict analysis to only classroom contexts (blackboard proofs
and student-produced proofs), eleven of the fourteen types of potential breaches the
results did not show high agreement. Finally, Figure 2 highlights that a number of
these agreement percentages are close to 50%. In particular, eight of the 42
agreement percentages were between 40% and 60%, including two judgments in the
textbook context. These findings suggest that beyond failing to give confirmation that
many of these potential breaches are indeed breaches of linguistic conventions in
proof writing, that the disagreement among mathematicians may be higher in
classroom contexts, and that for some types of potential breaches the disagreement
amongst mathematicians may be particularly extreme, even in the context of textbook
proofs.

Moreover, it is clear that a larger percent of the mathematicians agreed that a
potential breach was unconventional in the textbook context than when the same
potential breach was assessed in either of the other contexts. In fact, Figure 2
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suggests for some of the potential breaches, the fewer mathematicians that agreed a
proof excerpt was unconventional proof writing in the textbook context, the fewer
that perceived the same excerpt was unconventional in the classroom contexts.

CONCLUSION

The findings of this report highlight the existence of some potential breaches of
mathematical language that mathematicians widely agree are unconventional in the
context of textbook proofs. Specifically, mathematicians in our study widely agreed
that including incomplete statements, overusing variable names for different
mathematical objects, lacking proper punctuation and capitalization, carelessly
mixing mathematical notation and text, failing to use connectives to bridge steps,
using formal propositional language, using pronouns with unclear referents, and
using an unspecified variable are all unconventional usage of mathematical language
in textbook proofs. Moreover, mathematicians widely agreed on the specific rational
justifications for why the proof excerpts breached linguistic conventions or
mathematical proof writing on that context. On the other hand, mathematicians also
widely agreed that one of the potential breaches studied (including full statements of
definitions within proofs) was not unconventional in the context of student-produced
proofs for the reasons provided, which suggests that Selden and Selden’s (2014)
claim that mathematicians do not include definitions in their proofs may not extend to
other contexts and to mathematicians’ expectation of how students write proofs.
Meanwhile this report gives insight on how these mathematicians’ evaluations
differed of the language of mathematical proof writing at the introduction to proof
level in the classroom contexts. In particular, the results suggest that mathematicians’
linguistic expectations of student-produced proof are unclear. In the student context,
the mathematicians’ responses did not indicate high agreement for twelve of the
fourteen types of potential breaches, which may indicate the possibility that
mathematicians do not have a shared understanding or expectation of how students
should write proofs.

If it is indeed the case that there is not a consensus among mathematicians of how
their students in introduction to proof courses should write their proofs, then how are
instructors of these courses presenting proof writing to their students? Discussions
amongst mathematicians, especially those who teach introduction to proof courses,
concerning their expectations for language use in the writing of proofs by their
students would be a useful step towards a shared understanding of linguistic
conventions of proof writing in the context of student-produced proofs. Further
research is necessary to understand these varied expectations amongst
mathematicians and how to address students’ confusion when it comes to their
professors’ expectations Of their proof writing. In turn, better understanding of
mathematicians’ expectations of their students’ writing could enable the creation of
interventions and curriculum to help undergraduate students in the transition to
abstract and advanced mathematics courses.
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CREATIVE PROCESS VS. CREATIVE PRODUCT: CHALLENGES
WITH MEASURING CREATIVITY

Peter Liljedahl' and Benjamin Rott
'Simon Fraser University, University of Duisburg-Essen, Germany

In this article, we look closely at the relationship between the creative process and
creative products. Using a combination of theoretical and empirical analysis we call
into question the validity of measuring creativity by examining products — using
products as a proxy for processes.

INTRODUCTION

At PME 40 there were 21 papers presented (2 plenary activities, 10 research reports,
6 oral communications, and 3 poster presentations) on the topic of creativity. Seven
of those articles (1 PL, 3 RR, and 3 OC) describe instruments that, in one way or
another, for one purpose or another, measure creativity. In the case of Leu, Luo, and
Lo (2016), for example, the intent of the RR was to measure creativity for the
purpose of comparing mean scores of groups from different countries. Gilat and Amit
(2016), on the other hand, measured creativity before and after an intervention to
compare learning gains from a control and an experimental group.

Regardless of the intent or the means by which creativity was measured, the
aforementioned research is predicated on an assumption that creative products are
indicators for an a priori creative process. In this paper we look more closely at this
assumption.

CREATIVITY
Torrance (1966) defined creativity as

a process of becoming sensitive to problems, deficiencies, gaps in knowledge, missing
elements, disharmonies, and so on; identifying the difficulty; searching for solutions,
making guesses, or formulating hypotheses about the deficiencies: testing and retesting
these hypotheses and possibly modifying and retesting them; and finally communicating
the results. (Torrance, 1966, p. 6)

In his pursuit to understand this process, and building on Guilford’s theory (1967),
Torrance (1974, 1966) designed a test to measure a person's creative thinking through
the proxies of fluency, flexibility, originality, and elaboration. The Torrance Test of
Creative Thinking (TTCT) is based on Guilford’s Alternative Uses Task (e.g., name
all uses for a brick) and adds several test formats such as the Ask and Guess Test in
which participants are requested to ask questions to given drawings. Other parts of
the TTCT include non-verbal assignments such as the Picture Completion Test which
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consists of the completion of incomplete figures. The results on each of these items is
scored independently and compiled to produce a measure of creativity. But there is a
question as to whether these metrics, these measures of products, “capture the
essence of creativity” (Leikin & Pitta-Pantazi, 2013, p. 160). It is exactly this
question we are interested in pursuing in this paper. More specifically, we are
interested in the relationship between the originality of a solution and the creativity of
the process that spawned it.

To get at the answer to this question, however, we need to first understand more
clearly the relationship between creative process and creative products.

Creative Process

In 1902, long before Torrance came up with his test for creative thinking, the first
half of what eventually came to be a 30 question survey was published in the pages of
L’Enseignement Mathématique, the journal of the French Mathematical Society.
Edouard Claparéde and Théodore Flournoy, two Swiss psychologists, who were
deeply interested in the creative process, authored the survey. During this same
period Henri Poincaré (1854-1912), one of the most noteworthy mathematicians of
the time, had already laid much of the groundwork for his own pursuit of this same
topic and in 1908 gave a presentation to the French Psychological Society in Paris
entitled L'Invention mathématique—often mistranslated to Mathematical Creativity
(c.f. Poincaré, 1952). Inspired by this work, Jacques Hadamard (1865-1963), a
contemporary and a friend of Poincaré’s, began his own empirical investigation into
the creative process. Hadamard retooled the survey and gave it to friends of his for
consideration—mathematicians and scientists such as Henri Poincaré and Albert
Einstein, whose prominence were beyond reproach. In 1943, Hadamard gave a series
of lectures on mathematical invention at the Ecole Libre des Hautes Etudes in New
York City. These talks were subsequently published as The Psychology of Invention*
in the Mathematical Field (Hadamard, 1945).

Hadamard’s treatment of the subject of invention at the crossroads of mathematics
and psychology is an extensive exploration and extended argument for the existence
of unconscious mental processes. To summarize, Hadamard took the ideas that
Poincaré had posed and, borrowing a conceptual framework for the characterization
of the creative process from the Gestaltists of the time (Wallas, 1926), turned them
Into a stage theory consisting of four separate stages stretched out over time. These
stages are initiation, incubation, illumination, and verification (Hadamard, 1945). The
first of these stages, the initiation phase, consists of deliberate and conscious work.
This constitutes a person’s voluntary, and seemingly fruitless, engagement with a
problem. Following the initiation stage the solver, unable to come to a solution stops
working on the problem at a conscious level and begins to work on it at an
unconscious level (Hadamard, 1945; Poincare, 1952). This phase is referred to as the
incubation stage of the inventive process, can last for any period of time from
minutes to weeks, and is inextricably linked to the conscious and intentional effort
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that precedes it. After the period of incubation, a rapid coming to mind of a solution,
referred to as illumination, may occur. After illumination the correctness of the
emergent idea is evaluated during the fourth and final stage, verification. In the end,
the verification step may show that the solution revealed in the moment of
illumination is, in fact, incorrect. For Hadamard (1945) such failures were as much a
part of the creative process as the successes and that the creative process is not
judged based on the correctness of the solution.

The creative process, extended over time and being punctuated by the sudden
appearance of a solution, has traditionally been researched through the a posteriori
self-reports of this private and subjective experience (Hadamard, 1945; Liljedanl,
2013; Poincaré, 1952). More recently, however, Liljedahl (2013) has argued, and
used the fact, that illumination is largely an affective experience which results in an
observable emotive response.

Creative Product

Especially in its beginnings, research on creativity focused on self-reports of
exceptionally talented individuals as well as analyses of their works (e.g., literary,
musical compositions, or scientific discoveries) (cf. Silver, 1997). This lead to the so-
called genius view of creativity which is often associated with exceptional knowledge
or products that change our perception of the world (Sriraman et al., 2014).

Since then, research has turned away from the assumption that only geniuses can be
creative and researchers have focused their attention to ordinary or everyday
creativity (ibid.; Pehkonen, 1997).

For a professional artist, some new, ground-breaking technique, product, or process that
changes his or her field in some significant way would be creative, but for a mathematics
student in lower secondary school, an unusual solution to a problem could be creative
(Sriraman et al., 2014, 110).

And, for the sake of objectivity, researchers shifted their attention away from the self-
reporting of the creative process and towards the evaluation of products. Within this
new paradigm, a solution to a mathematics problem is determined to be creative if it
is deemed to be original with respect to the rest of the solutions produced within a
cohort of participants. As such, quantitative studies looking at creativity through the
lens of solutions will, along with other metrics, calculate frequencies of occurrences
for each solution found within a cohort of students.

CREATIVE PROCESS VS. CREATIVE PRODUCT

The question of whether creative products can stand as proxies for the creative
process, then, can only be answered if it can be shown that there is a one-to-one
correspondence between the creative process and the originality of a solution. More
specifically, we would need to show that, in every problem solving situation

1. a student goes through a creative problem solving process and produces a
creative solution, or
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2. a student goes through a routine problem solving process and produces a
routine solution.

Further, we would need to show that there exist no problem solving situations in
which

3. a student goes through a creative problem solving process but either does
not solve the problem, or produces a routine solution, or

4. a student goes through a routine problem solving process, yet produces a
solution that is deemed to be creative.

These four scenarios can be summarized into a 2x2 grid (see fig. 1) where creative
VS. routine process is on one axis and creative vs. routine product is on the other axis.

PROCESS
creative routine

[

5 .

S creative 1 4

[a)

o .

- routine 3 2

Figure 1: The four scenarios represented on 2x2 grid.

Data reflecting scenario 1 and 2 would show that creative products are indicators of a
creative process while scenarios 3 and 4 would show the opposite. In what follows
we look at student problem solving data through the lens of the aforementioned four
scenarios.

METHODOLOGY

Data for this study comes from student work on the triangle problem (see fig. 2), one
of three multiple solution tasks (MST's) from a German project on mathematical
giftedness in upper secondary school (MBF,). This project looked at gifted and non-
gifted students with a focus on traits that help to identify mathematical giftedness in
upper secondary students.

Consider triangle ABC. Points P and Q, and S and C
R, divides side AB and AC into three equal parts.

What is the area of the quadrilateral PQRS with
respect to the area of triangle ABC?

Find as many different ways to solve this A
problem as possible.

Figure 2: The triangle problem
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Twenty students from grades 11 and 12 (age 16 — 18) participated voluntarily in this
project, coming to the university every second week to work on non-routine
problems. These students chose to participate in this project mostly because of their
great interest in mathematics with many having shown great achievement in their
regular mathematics classes.

The students had 30 minutes to work on each of three MST's. After each task was
completed, the students participated in a group discussion in which the students
presented their findings and reflected on their processes. The data for this project,
then, are the solutions to the three MST's as well as video recordings of the students
working on the MST's and the group discussions.

These data were analysed from two different perspectives — process and product.
That is, the video recordings of the students solving the MST's were analysed for
evidence of creative process, mostly through attention to affective responses that
could signal an illumination having occurred. The group discussions were also
analysed for self-reported utterances of a creative experience.

From the other perspective, the creativity of student solutions to the MST's were
analysed collaboratively by a team of researchers. More specifically, the creativity of
a solution was determined by its originality compared to all solutions to the same
MST produced by all participants. The creativity of a specific participant was
determined through the aggregation of all of their individual solution creativity
scores. For the purposes of this paper the relevant results have been translated from
German to English.

RESULTS

In what follows we present four cases from the data. Each of these cases corresponds
with one of the four aforementioned scenarios.

Scenario 1: Creative process & creative product

Kirsten (fig. 3, upper left) was the only student in the group that solved the triangle
problem by clearly stating the similarity of the three triangles in one of her solutions.
Because of the uniqueness of this argumentation, this solution was deemed to be
original and, thus creative.

The video of her problem solving process shows clearly that she initially did not
know how to address this problem. Her work was anything but routine as she
alternated the use of a variety of heuristics with getting stuck. After a time, however,
she suddenly had the solution. Taken as a whole, her process was also deemed to be
creative.
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Figure 3: Four solutions to the triangle problem sorted by the grid from fig. 1

Scenario 2: Routine process & routine product

Patrick (fig. 3, lower right) solved the problem by dividing the triangle ABC into
smaller triangles and parallelograms. This allowed him to compare the area of PQRS
to that of ABC. This solution was very common within the presented cohort and,
therefore, not rated as original.

Patrick's process related to this solution was identified as not being creative because
he came to the solution very quickly and because, in the discussion phase, he
admitted that this kind of geometrical problem was very familiar to him.

Scenario 3: Creative process & routine product

Lilly (fig. 3, lower left) solved the triangle problem by rotating the triangle ABC
around the midpoint of AC, creating a parallelogram in the process. The middle
segment of this parallelogram is one third of the whole parallelogram. Therefore,
Lilly reasoned that the area of PQRS must be one third of the area of ABC. Not only
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Is this solution incorrect, but it is not even original in that a lot of students produced
the exact same solution.

Her videotaped process, however, shows that she struggled for a long time with this
problem. She drew two completely different sketches, then stopped writing for
several minutes. Suddenly she started writing again, producing the solution
involving the point of reflection. Therefore, the process that led to her incorrect
solution was judged to have been creative.

Scenario 4: Routine process & creative product

Steven (fig. 3, upper right) used linear algebra (defining vectors, calculating areas) in
his approach to the triangle problem. No other student used linear algebra while
working on this problem so his solution was deemed to be original and, as such,
creative.

His process, however, reveals that for Steven, this approach was not creative. At the
time the problem was posed to him, he was taught linear algebra at school and in the
group discussion, he stated that solving this kind of problem was a routine task for
him.

DISCUSSION

There is no doubt that there some problem solving processes are creative and that
some are routine. Likewise, there is no doubt that there are original solutions and that
there are routine solutions. The question we asked in this paper is whether creative
processes can always be attributed to original solutions. That is, can an original
solution “capture the essence of creativity” (Leikin and Pitta-Pantazi, 2013, p. 160)?

The case of Kirsten clearly shows that this can be the case. Kristen's original solution
was the product of a creative process. Further, Patrick's routine solution was the
product of a routine process. However, the cases of Lilly and Steven show the
opposite relationship. The case of Lilly shows that the creative process does not
necessarily produce correct and unique solutions. And the case of Steven shows that
unique solutions can be the product of routine processes.

Taken together, it is clear that the originality of a solution is not a reliable indicator of
the creativity of a solution that produced it. Where then does this leave the research
has relied on, at least in part, the scoring of originality as an indicator of student
creativity?

The results of the research presented here only argues that originality is not a good
indicator of creative process. We say nothing about the inherent value in scoring,
measuring, or ranking student solutions to MST's. Within this context, the
methodologies used are, no doubt, effective instruments for categorizing, ranking,
and quantifying the relative creativity of these solutions. Our research simply shows
that these metrics cannot be used to reliably say something about the a priori creative
process.
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Note

'Within the context of creativity research the terms creativity, discovery, and
invention are often used interchangeably.
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PATTERNS OF LANGUAGE USE IN TWO MODES OF WRITING
MATHEMATICAL SOLUTIONS
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The study examined prospective middle school mathematics teachers’ use of written
symbolic and narrative language in presenting mathematical solutions. Results
indicate that there exist different patterns in the use of language between these two
modes of writing. The narrative solutions provided more logical connectors than the
solutions featuring only symbols. The two types of solutions were different in regard
to the sequence of procedures used in problem solving. Furthermore, those who
demonstrated more formal language, such as rich mathematical vocabulary, complex
sentences, or high adherence to standard syntax in mathematics, were not necessarily
more successful in problem solving than those who used less formal language.

INTRODUCTION

Academic language (AL) generally refers to the language of schooling to acquire new
or deeper understanding of the content and to facilitate communication within the
practice of formal disciplines (Schleppegrell, 2004; Sfard, 2000). For example, the
learning of mathematics is considered to be the appropriate context for the
development of mathematical AL. Considering the critical role of teachers in
students’ acquisition of AL, it is essential to assess prospective teachers’ (PTs’)
current use of AL as well as to create activities that promote PTs’ use of AL. To do
s0, teacher educators must understand how PTs process and use AL in mathematics
and the degree to which it facilitates learning. However, research regarding the ways
in which PTs use academic language, especially in writing to solve, reflect upon,
describe, or explain their own mathematical reasoning, is limited.

The study provides analysis of the baseline data regarding the ways PTs process and
use AL to express their mathematical thinking. Specifically, it examined the
following research question: When given an identical set of mathematical problems
to solve and write mathematical solutions, to what extent do PTs demonstrate the use
of AL in two different modes of writing (i.e., symbolic and narrative writing)?
THEORETICAL PERSPECTIVES

Academic language

The notion of AL is fraught with ambiguities in terms of its elements, structure, role,
and value in the learning process (Bailey et al., 2007). However, communicative
approaches in mathematics education (Morgan, Craig, Schuette, & Wagner, 2014)
might characterize AL sufficiently for teacher educators to approach it pedagogically,
without the limitations imposed by register and similar specialized uses of language.
This study proposes a working definition of academic language and its qualifier:
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Language is academic when there is optimal semantic correspondence between the
message sent by the teacher and the message received by the learner. Negotiation of
meaning between teacher and learner is fundamental to the process and goal of
effective communication within an instructional setting. Pedagogically, therefore, the
goal of AL is effective communication regardless of the requirements and nuances of
a specific register or whatever set of linguistic criteria one wishes to designate as
necessary for students to learn.

Symbolization and narrative writing in school mathematics

Students study mathematical texts and participate in dialogic interactions with peers
about mathematics (Chapman, 1993). In mathematical texts, symbolization—
including numbers, operations, various syntax or conventional grammar of
relationships—is proposed and strictly enforced; mathematicians learn to use this
symbolic language to represent their ideas (Morgan, 1996). The AL of mathematics
may not be part of students’ colloquial language as it includes specialized ways of
using words and symbols (i.e., the mathematics register) with certain syntactic
preferences; this is especially true for written mathematics. Mathematical texts can be
characterized as rhetorical, narrative, or argumentative (Dietiker, 2013), and the
arguments in these texts are made in words and sentences; therefore, the use of
language is evident. The language demands in mathematical texts include various
rhetorical structure patterns more formal than the structures in colloquial language.
The school mathematics register is most readily identifiable through highly
specialized vocabulary. This vocabulary includes terms with definitions that are
specific to mathematics, such as: parallelogram, polygon, trigonometry, or quadratic
equation. Some of these terms, like line or factor, are used extensively in general
language but have precise, math-specific meaning (Thompson & Rubenstein, 2000).
The grapheme system

Narrative skills relate to an ability to tell stories with literary precision and clarity
with regard to organization and semantics (Conle, 2000). In order to differentiate
writing systems in our study, we used the graphemic system to refer to the total
writing system, inclusive of mathematics symbolization. A variable is a symbol
representing an object in mathematics; so variable is the differentiating feature for
writing consisting of symbols. In narrative form, a word (lexical) is the differentiating
feature. Thus, for our theoretical and coding purposes, we used Variable Graphemic
Symbol Set for mathematics (VGS) to refer to the mode of writing solutions in which
the participants used symbols only. We used Lexical Graphemic Symbol Set for
narrative (LGS) to refer to the mode of writing solutions in which the participants
used words and sentences in addition to symbols and diagrams. We acknowledge that
all language systems are symbolic and that the use of symbol to refer specifically to
mathematics is a convention.
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METHODS

Ten middle school PTs from a large state university in the southern United States
participated in the study in the spring of 2014. The notion of academic language was
previously addressed to varying degrees in the teacher education programs from
which participants were drawn. Our data included the participants’ written responses
to five tasks in VGS and LGS respectively.

Each task had two parts in response to the same math item. Part | (VGS) asked to
solve a problem using only symbols. Part Il (LGS) asked to provide a solution using
various forms of language. Each part took up to 25 minutes, and about an hour of
break was given between Parts | and Il. Considering that participants are middle
school PTs, five intermediate algebra problems were posed (see Table 1).

1. Find the equation of the line in slope-intercept form, which passes through the points (-2, 7) and
(3, -8).
2. The sum of three consecutive integers is 108. What are the three integers?

3. Solve the inequality and then graph its solution: x* — 6 > 3

4. Find the distance between two points, A(1, 3) and B(5, 9). Be sure to use the Pythagorean
theorem in your solution.

5. Find the value of V50 + /17 to the nearest tenth. (Please do not use a calculator.)

Table 1: List of algebra problems used in the study

The analysis focused on the patterns of language use and processes evident in the
data (see Table 2). Use of VGS forms indicated the frequency of formulas to guide
calculations and LGS forms to represent concepts. Use of logical connectors included
symbols (e.g., arrows or numerals to indicate sequence). Linking words were
analyzed to determine whether the narrative provided a logical argument with
appropriate points of connection. Calculations included frequency of mathematical
work exclusively for operational computations. Syntax errors included frequency of
forms that were not preferred or acceptable. Correctness indicated whether the
particular participant’s solution was correct or incorrect. Syntactic complexity was
rated by counting syntactic compound sentences versus complex sentences and by
determining whether the overall writing style was basic or complex. VVocabulary use
was analyzed by counting specialized terms and technical terms.

Modes Elements of Analysis

VGS Use of forms and diagrams; Use of logical connector;
Calculations; Syntax errors; Correctness of solution

LGS Use of specialized and technical mathematical terms; Use

of forms and diagrams; Calculations; Syntax errors;
Correctness of solution; Use of logical connector; Key
characteristics of the solution; Audience and Subject;
Complexity level

Table 2: Elements of AL in the analysis of written mathematical solutions

PME 41 — 2017 3-171



Lim, Jiang, DeVillar and Lee

RESULTS
Patterns of using mathematics symbols

First, an obvious finding was that most solutions in LGS did not include as many
math symbols as those in VGS. The symbols used by PTs were limited to those that
referenced algebraic variables as part of calculations rather than as forms or notations
relating to concepts and reasoning. Figure 1 illustrates the use of symbols in the
computational process of solving for b with the equation y = -3x + b where (x, y) = (-
2, 7) and the process for validating the solution b = 1 by using a point (3, -8) on the
line, y = -3x + b where b = 1. An example of symbols that can represent a translation
of a geometric figure from a right triangle in the coordinate plane to a right triangle as
a rigid object with the measures of each leg was indicated. Other idiosyncratic

symbols include , >, o, @, W, # *, J, 1, v, and x.

Figure 1: Use of symbols in the computational process vs. the illustration of objects

Less obvious, but evident, was the pattern of symbolic forms in solutions. Table 3
shows the frequency of symbols used in each solution of LGS. The variance indicates
within-participant variability. For example, the participant, Pan (Var = 5.3) was less
consistent in the use of symbols than the participant Ladybug (Var = 1.0). It is
worthwhile to note that Ladybug, with low variance (i.e., consistent), also used the
largest number of symbols in the group. So it is convincing that Ladybug can use
multiple symbols consistently. To the contrary, Pan has the highest variance and a
low number of symbol uses. While both Ladybug and Pan have a similar number of
symbols for items 1, 2 and 4, Pan provided no symbols for items 3 and 5, which
contributed to the high variance and the low mean value. The mean score is the
average value of the frequency across all items. Most participants used about 2 — 3
symbols in each solution. However, it is obvious that overall the participants used
very few symbols for items 3 (M= 1.9) and 5 (M= 0.8). Item 1 generated the highest
use of symbols.
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ID [tem 1 Item 2 Item 3 Item 4 Item 5 Variance Mean
Debby 5 3 1 2 0 3.7 2.2
Ladybug 5 3 3 5 4 1.0 4
Bear 5 3 1 5 0 52 28
CREW 5 3 4 2 0 37 28
Carmen 5 3 1 4 0 43 2.6
Spaghetti 5 3 3 0 3 3.2 2.8
Gatorade 2 3 1 4 0 2.5 2
Turtle 5 3 4 0 1 43 26
Pan 5 3 0 4 0 53 24
Jersey 5 3 1 2 0 3.7 2.2
Mean 4.7 3.0 19 2.8 0.8

Table 3: Frequency of symbols used in each solution of LGS

Second, a clear pattern of symbol uses emerged: one use for concept and the other
use for procedure-based computations. In our analysis we asked two university-based
mathematicians to review the math items and decide, by consensus, the number of
key symbols that should be present in VGS solutions in order to represent concept
and calculations respectively. We used this predetermined level to indicate excessive

use of symbols by (+) and deficit use of symbols by (-) (see Table 4).

Item 1 Item 2 Item 3 Item 4 Item 5
1D Con Cal Con Cal Con Cal Con Cal Con Cal
Debby -2 +4 -2 +4 -5 +4 -5 +4 3 2
Ladybug -2 +4 -2 +4 -4 +4 -4 +4 -1 +2
Bear -1 +4 2 +4 -5 +4 -3 +4 -3 0
CREW 2 +4 -1 +4 -2 -2 -5 +4 -3 0
Carmen -2 +4 -2 +4 -5 +4 -5 +4 -3 0
Spaghettt -3 +2 -3 +4 -3 +4 na na 3 -2
Gatorade -3 +4 -2 +4 -5 +4 -5 +4 -3 +4
Turtle 2 +4 2 +4 3 +4 -6 ) ) 0
Pan -2 +4 -3 +4 -4 +4 -4 +4 -3 -2
Jersey -1 +4 -2 +4 -5 +4 -6 +4 -3 +2
Mean 2.0 +3.8 2.1 +4 4.1 +3.4 4.8 +33 27 +0.2

Table 4: The indication of economical use of symbols in VGS in two ways
(Con = Concept; Cal = Calculation)

For example, the participant Debby needed 2 more symbols to represent key concepts
related to item 1 but used 4 excessive symbols to indicate calculations associated
with the solution to item 1. Table 4 shows that participants overall did not use a
sufficient number of symbols to represent the concepts but instead used too many
symbols and variables for trivial calculations and procedures. Taking the two broad
patterns together it was determined that the participants used symbols to show
calculations more than to represent mathematical ideas. It is also found that the LGS
solutions showed a large reduction in the number of symbols.
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Patterns of narrative language

There were participants whose narrative language helped in clarifying or correcting
both solutions and errors in VGS. In these cases narrative solutions helped identify
misunderstandings, and the logical connectors in LGS helped the writer to discover
missing steps in VGS. For example, the following narrative (see Figure 2) was
written in response to item 2 in which the participant was asked to write a general
form of consecutive integers, n, (n+1), (n+2) by first defining n, and then writing the
forms for the next two consecutive numbers. This process was not evident in the
participant’s VGS response, which resulted in the incorrect solution.

The pattern related to the use of academic
language, chiefly rich vocabulary (i.e.,
specialized and technical math terms) and | v (t Avwo (ol Ve W
syntax in LGS, did not necessarily result | v (0o WEeme T nl e Bt
in more successful solutions. We counted | "1 fre e
the frequency of vocabulary in each |
solution of LGS and found that higher
variance (inconsistency) occurred in the
participants who demonstrated higher
average vocabulary counts than among

ey

Figure 2: A sample narrative solution
which helped identify misunderstandings

those who averaged 3.6 to 8.4 words. For example consider the cases of Ladybug,
who used the largest number of vocabulary (8.4 words), and Debby who used only
3.6 words per item. Although Ladybug (Var = 10.8) is not as consistent in using
vocabulary as Debby (Var = 6.3), it is clear that Ladybug always used more
vocabulary than Debby regardless of the items.

The syntax errors in VGS were little related to the correctness of the solutions. There
were many correct solutions that contained syntax errors. We also examined the level
of syntactic complexity in narratives. There existed a very low variance across the
participants (the level ranges from 1.5 to 4.2), indicating that most participants
remained consistent towards the use of narratives with syntactic sophistication. For
example, Ladybug and Jersey both demonstrated high syntactic complexity, which
corresponds to their use of vocabulary as well. However, Ladybug was a top
performer in symbols, but Jersey lagged behind because he struggled with items 3, 4,
and 5. As illustrated by these cases, there existed little evidence to indicate any
correlation between the use of symbols and the use of narratives.

Patterns of interrelation between VGS and LGS

The solutions in VGS were not necessarily sequenced the same way as those in LGS.
The narrative solutions displayed more logical connectors with linking words than
did symbolic solutions. Evidence of logical connectors in the VGS included arrows
and numerals. Five solutions out of 50 in VGS used ‘arrows’ or ‘numbers’ to indicate
sequence, but 32 solutions in LGS used linking words; one solution used numbers to
indicate the sequence of thinking. Although procedural description was a primary
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pattern of LGS, the solutions in LGS were conceptual or procedural depending on the
question. It was not rare that the same participant wrote a procedural narrative for a
problem, then wrote a conceptual narrative for another one.

There were six cases where the solutions in VGS were not congruous with the
solutions in LGS. Among these cases, the symbolic solution helped identify
notational mistakes and the narrative solution helped identify conceptual
misunderstanding. For example, the first image below indicates a mistake of using
“and” in writing the solution set. More formally, the solution should be {X| x <-3 u X
> 3}, the “and” should have been the disjunction, “or”. This suggests that either the
participant was not attentive to the language of sets or did not process the solutions as
elements of the set for all x where x> — 6 > 3. In the second figure, the participant
proposed a quadratic function, y = x* — 6 with (0, -6) as the y-intercept, and stated that
the parabola across the x-axis at x = -3 and x = 3. This implies that the participant
may not understand that the critical numbers (i.e., boundary values) for the inequality
x* —a > b, where a and b are real numbers, are equivalent to the zeros of the
quadratic functiony =x*—a—b.
Fitno pich of e A
e, an awrow 8 dranon Fronm 2 dothe Lot Jos

Fron 3 tothe vioht 4o i

graphed USing 'a«s w\-ﬁorgnw:)w:> i;_““ M%
P it it a guadvakic. The Pzl
X273 and X=3 4l exlond dows
Soidy How fveq ch
P X015 beco

Figure 3: The symbolic solution with notational mistake and the narrative solution
with conceptual misunderstanding

IMPLICATIONS

Research seeking to identify the process and nature of mathematical learning with
regard to the importance of math symbols, narrative language, and how the two are
perceived in future teaching of mathematics is necessary. For example, the case in
which narrative solutions helped identify misunderstandings, and the logical
connectors in LGS helped discover missing steps in VGS indicates the importance of
narrative language and its potential to guide the learner by using the language to
facilitate logical thinking and argument. Some participants recognized the role of
language in the teaching of mathematics by using narratives to “teach students correct
procedures,” and “language use allows teachers to see student’s conceptual
understanding.”

This supports the view that writing narratives in mathematics can ameliorate the
tendency of relying solely, or even predominantly, on calculations or procedures and
can create opportunities for productive discourses. Future research should seek to
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determine, to a greater degree of precision, how language facilitates the
understanding, expression, and transmission of mathematical content understanding.
If we understand how VGS and LGS relate to each other, particularly in terms of
capitalizing upon their respective instructional and learning strengths, then we will be
able to enhance, and perhaps refine, how PTs learn mathematics in order to better
support their students’ learning needs and improve their instructional skills.

These teachers need their students to have meaningful engagement with activities that
complement subject-matter instruction while also developing English language
proficiency. Ideally AL aspects of language proficiency would be sought; however,
the goal should be substantive movement towards academic achievement. In this way
the probability of successfully completing the schooling cycle is improved, as is
preparation for college and beyond.

References

Bailey, A. L., Butler, F. A., Stevens, R., & Lord, C. (2007). Further specifying the language
demands of school. In A. L. Bailey (Ed.), The language demands of school: Putting
academic language to the test (pp. 103-156). New Haven, CT: Yale University Press.

Chapman, A. (1993). Language and learning in school mathematics: A social semiotic
perspective. Issues in Educational Research, 3(1), 35-46.

Conle, C. (2000). Narrative inquiry: Research tool and medium for professional
development, European Journal of Teacher Education, 23(1), 49-63.

Dietiker, L. (2013). Mathematical texts as narrative: Rethinking curriculum. For the
Learning of Mathematics, 33(3), 14 — 19.

Morgan, C., Craig, T., Schuette, M., & Wagner, D. (2014). ZDM Mathematics Education,
46, 843 — 853. DOI 10.1007/s11858-014-0624-9

Morgan, C. (1996). The language of mathematics: Towards a critical analysis of
mathematics texts. For the Learning of Mathematics, 16(3), 2-10.

Schleppegrell, M. (2004). The language of schooling: A functional linguistics perspective.
Mahwah, NJ: Lawrence Erlbaum.

Sfard, A. (2000). On reform movement and the limits of mathematical discourse.
Mathematical Thinking and Learning, 2(3), 157-189.

Thompson, D., & Rubenstein, R. (2000). Learning mathematics vocabulary: Potential
pitfalls and instructional strategies. Mathematics Teacher, 93(7), 568-574.

3-176 PME 41 — 2017



WHICH MATHEMATICS CLASSROOM DO YOU LIKE BEST?
COMPARING THE CONCEPTIONS OF MATHEMATICS
CLASSROOM TEACHING HELD BY FIFTH-GRADERS, PRE-
SERVICE TEACHERS, AND IN-SERVICE TEACHERS
Yung-Chi Lin
National Tsing Hua University, Taiwan

A follow-up to Lin and Ho (2015, 2016), this study compares the conceptions of
mathematics classroom teaching held by students and two groups of teachers. The
participants comprised 53 fifth graders, 59 pre-service teachers and 38 in-service
teachers, all of whom were asked to rank six selected drawings of mathematics
classroom teaching based on their preferences. In addition, the student group was
asked to describe their feelings about mathematics teaching in the drawings while the
two teacher groups were asked to predict the students’ rankings. Overall, students’
and teachers’ preferences were fairly similar, with both preferring reform-based
teaching over traditional methods. However, all groups of participants expressed a
high affinity for traditional teaching if it was characterized by extensive student-
teacher interactions. Pre-service teachers’ preferences were more closely correlated
to those of students than in-service teachers’ preferences were.

INTRODUCTION

This study extends our previous work that used a drawing-based method to
investigate teachers’ conceptions about mathematics classroom teaching, along with
students’ reactions to a selection of six drawings based on sketches made by teachers
(Lin & Ho, 2015, 2016). For the present research, we recruited pre-service and in-
service teachers and asked them to rank the same teacher drawings that were used in
our previous studies, and to predict how fifth-grade students would rank them. Then,
the teachers’ ranking results from this study and the students’ results from our earlier
study were compared.

The drawing method has been used for more than two decades, and is especially
popular for research in the social science (e.g., psychology, education) (Lee &
Zeppelin, 2014; Mitchell, Theron, Stuart, Smith, & Campbell, 2011). It has generally
been recognized as a way of accurately capturing teacher conceptions or beliefs about
mathematics classroom teaching, the implicit or unconscious nature of which can be
difficult to access via traditional methods such as Likert scales or interviews; this is
because a drawing usually shows a person’s whole picture of something, including
aspects s/he is not fully conscious of (Mitchell et al., 2011). Moreover, researchers
have confirmed that using a drawing method can help obtain information such as
attitude, emotion or identity that may strongly influence teachers’ conceptions or
beliefs about mathematics classroom teaching. An argument can even be made that
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teachers’ conceptions or beliefs will not be well understood if the drawing method is
not utilized (Lee & Zeppelin, 2014).

This study extends the drawing method through the use of ranking and the prediction
of ranking by others. A single drawing of classroom teaching may reflect one’s whole
picture about mathematics teaching in the classroom. As such, ranking classroom
teaching drawings could help us understand how students and teachers think about
these drawings (different types of teaching) and their preference to these drawings
may reveal their conceptions of good mathematics teaching in the classroom.
Drawings used in this study could help us to investigate the relationships between the
differing conceptions held by students and teachers both more efficiently and more
broadly (e.g., collect feeling data by asking participants’ emotion about a drawing).
To the extent that we accept conceptions and beliefs as the core of teacher change
(Philipp, 2007), this will eventually benefit teacher educators responsible for
mathematics pre-service teacher training and in-service teacher professional
development.

METHOD

We adopted a survey method that used questionnaires to collect the participants’
opinions about teacher-generated drawings of mathematics teaching.

Participants

Student group

This part of the sample consisted of 53 fifth-grade students (28 male, 25 female) from
two classes at a school in Taiwan (also see in Lin & Ho, 2016).

Pre-service teacher group

We recruited 59 pre-service elementary teachers (12 male, 47 female) from a public
university in the north of Taiwan that specializes in teacher training. Three of them
were master’s students majoring in Taiwanese language teaching, and the other 56
were undergraduates. Among these 56, only four were majoring in scientific subjects,
as compared to 43 in education and nine in other social-science subjects.

In-service teacher group

This group consisted of 38 in-service elementary teachers (4 male, 34 female), of
whom 23 had bachelor’s degrees; of these 23, 13 were pursuing master’s degrees in
mathematics education. The other 15 in-service teachers already held master’s
degrees. The group’s mathematics teaching experience ranged from four to 30 years,
with the average being 9.4 years. More than two-thirds of the in-service group (n=26)
reported using a mixture of teacher-centered and student-centered approaches when
teaching elementary mathematics. Eight others favored a more teacher-centered
approach, and two implemented a more student-centered one. The majority (n=21;
55%) of the in-service teachers taught at urban elementary schools in the north of
Taiwan, while the remainder were employed in suburban schools (n=8; 21%) or rural
ones (n=9; 24%) were employed at suburban schools and rural schools, respectively.
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Student Questionnaire

In order to create our student questionnaire (SQ), six distinctive drawings of
mathematics classrooms were selected from among 32 such drawings that had been
created by a separate group of pre-service teachers in our earlier study (Lin & Ho,
2015). Each drawing represents a specific type of mathematics teaching, ranging
from very traditional (Math Test; hereafter, MT) to reform-based teaching (Play a
Math Game, MG); all are shown in Figure 1.

The MT drawing shows a teacher watching a mathematics test in the classroom,
which may imply the conception that teaching mathematics is centered on testing.
The drawing Walk Around (WA) also depicts a teacher-centered approach, but with
some teacher-student interactions, and notably, the teacher seems very happy in her
role. The drawing Mini-whiteboard (MW) shows a mixed teaching approach: a
teacher is lecturing, but students have chance to write down their own thinking and to
discuss it with their peers. Interactive Whiteboard (IW) relates to the use of the titular
technology in a lecture-based instructional setting, and Group Work (GW) represents
a typical reform-based teaching style in which the teacher and students work together
on a hands-on activity. Lastly, MG shows an ideal form of teaching, with the teacher
and students playing a mathematics game together.

In order to reduce bias, these selected drawings were re-drawn by a skillful cartoonist
in a uniform style. For example, the teachers and students look similar across all six
drawings. In the SQ, all students were asked about (1) how much they liked each
drawing (five-point Likert scale), (2) their reasons for these preferences, (3) their
feelings about each of the drawings, and (4) their reasons for these feelings. Lastly,
(5) they were asked to rank all six drawings according to how much they liked them.
The SQ is more fully described in Lin and Ho (2016).

Teacher Questionnaire

Our teacher questionnaire (TQ) was revised from the SQ used in Lin and Ho (2016).
In the TQ, the respondents were firstly told that they would see the six selected
drawings of mathematics classroom teaching, based on sketches made by pre-service
teachers in our earlier study (Lin & Ho, 2015). Then, each drawing was shown to
each teacher participant on a separate page, along with annotations that described
what the teacher and students were doing. It is noted that these annotations were
written by the pre-service teachers in Lin and Ho (2015) who made the drawings.
Next, the respondents were asked to rank all six drawings from “Like most” to “Like
least” based on their personal preferences, and then rank them again based on their
prediction of fifth-grade students’ preferences. They were also asked to write down
their reasons for both their own preferences and their predictions of student
preferences.

Data Analysis

Respondents’ rankings — including student preferences, teacher preferences and
teacher predictions — were scored from 1 (“Like least”) to 6 (“Like most”), and the
reasons given for ranking choices were carefully and repeatedly reviewed by the
research team for their underlying logic/arguments.
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The mean scores and also the total number of positive and negative feelings were
calculated using SPSS 22.0. Additionally, Kendall’s tau (t) was employed to analyze
the relationships between the differing conceptions of mathematics classroom
teaching held by students, pre-service teachers and in-service teachers, also within
SPSS 22.0.
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Figure 1: The six selected drawings, ranging from very traditional: watch a math test
(MT) to very reform-based: play a math game (MG)

RESULTS

Table 1 shows ranking orders for the six drawings by (1) the fifth-graders’ mean
preference scores, (2) their mean ranking scores, (3) their numbers of positive vs.
negative feelings, (4) the in- and pre-service teachers’ mean self-ranking scores, and
(5) the mean teacher-prediction scores for student rankings.

Overall, the results across all scales and groups were somewhat similar. As we might
expect, MT was the least liked drawing among all three groups and across all scales,
consistently receiving the lowest scores (all rank 6 in Table 1). Moreover, all the in-
service teachers identically predicted that drawing MT would be least liked by
students (Mean rank scores=1, SD=0). GW and MG were the two drawings liked the
most by all three groups, but the students favored MG, whereas both teacher groups
preferred GW. Nevertheless, both in- and pre-service teachers successfully predicted
the student rankings that would be assigned to drawings MG and GW (MG: Student
Rank=In-service Pred=pre-service Pred=1; GW: Student Rank=In-service Pred=Pre-
service Pred=2).
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Students (n=53) In-service (N=38) Pre-service (n=59)
ID Pref. Rank N+ N- Self. Pred. Self. Pred.
MT 6 6 6 6 6 6 6 6
WA 2 3 45 4 3
MW 5 5 45 5 4 4 5 4
W 4 4 3 3 5 3 4 3
GW 3 2 2 2 1 2 1 2
MG 1 1 1 1 2 1 2 1

Note. Pref=student preference (5-point Likert scale); Rank=student ranking; N+= number of
positive feelings (interested + happy + innovative + others); N-= number of negative feelings
(bored + scared + worried + others); Self.=teacher self-ranking; Pred.=prediction of student ranking

Table 1: Rank orders of the six drawings by different scales and groups

For the remaining three drawings (WA, MW, and IW), the results across different
scales and groups exhibited more variation. WA garnered an overall rank-3 position
across different groups (Student Rank=In-service Self.=Pre-service Self.=3), but the
mean ranking scores varied across other scales (Student Pref.=2; N+, N-= 4; In-
service Pred.=Pre-service Pred.=5). Drawings IW and MV likewise attained overall
rank-4 and rank-5 positions, but again based on varying results across different scales
and groups (e.g., IW: Students Rank=4, In-service Self.=5; MW: In-service self.=4,
Pre-service Self.=5). As such, the results pertaining to drawings WA, IW, and MT
were of greater interest than those of the other three drawings, and are therefore
further discussed below.

Drawing WA. Among both in- and pre-service teachers, there was a marked
difference between the teachers’ own preference for drawing WA (both Rank 3) and
their prediction of students’ preference for it (both Rank 5). However, the students’
actual ranking of this drawing (Rank=3) was much closer to the teachers’ ranking of
it, while the students’ mean preference score for it were even higher (Rank=2). The
in- and pre-service teachers reported liking drawing WA because it was a typical
mathematics classroom setting (the way they usually do every day) and the activity it
depicted made it easy to convey concepts. However, due to drawing WA depicting a
teacher-centered approach, teachers tended to believe that students would not like it
as much they did. As one in-service teacher (In-Teacher 01) explained:

“This is a common teaching strategy used in the classroom. Teachers are able to
demonstrate concepts and check the correctness of students’ thinking at the same
time. Maintaining control of their classrooms all the time. [But regarding the
prediction]: Would it be better if [teachers] could provide a slightly different
teaching approach for students’ learning? ” (Self=1st, Pred=3rd)

This was echoed by a pre-service teacher (Pre-Teacher 03), who said:
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“This teaching approach could better help students build foundations of concepts.
[But regarding the prediction]: Students prefer more activities, instead of listening
all the time.” (Self=3rd, Pred=5th)

However, many students said they liked WA because it reflected the caring
relationships they expected to have with their teachers:

Student 03: “/Walking around] can let the teacher and students interact more
closely, and the teacher can actually supervise student learning.” (Pref=4 of 5 point,
Rank=1st)

Student 35: “/I]f some students are afraid of asking questions, they have a chance to
ask the teacher when she walks nearby.” (Pref=4 of 5 point, Rank=4th)

Drawing IW. Technology is not frequently used in Taiwanese mathematics
classrooms. Therefore, we had no strong sense of how students or teachers would
respond to this depiction of an innovative classroom technology. As can be seen from
Table 1, none of our three respondent groups seemed to like it very much (Student
Rank=4, In-service Self=5, Pre-service Self=4). Nevertheless, both teacher groups
predicted that students would like it better than teachers did (Pred=3>4). In their
written responses, some students said they did not like IW because they were
uncomfortable about being seated in a circle, or that they did not think using an
interactive whiteboard would make any difference: “If we are seated in a circle,
students who sit at the sides or at the back cannot see the board. It reduces our
learning efficiency”, as Student 7-03 put it.

Drawing MT. Even though Drawing MT received the lowest overall rank (Table 1),
some students (n=9) still expressed a preference for taking examinations. For
example, Student 1-10 reported, “it can help us know how much we have learned.”
However, more than half of the students who said they liked MT (n=5) associated it
with a negative feeling — “worried” — and only one student gave MT both a high
preference score and a positive feeling (the remaining three expressing neutral
feelings). The student who responded the most positively (Student 1-10) wrote:
“Sometimes, You can pretend it is playing a game.”

The great majority of the teacher participants (In-service: n=35/38, Pre-service:
n=54/59) gave drawing MT low ranks (Rank 5 or 6). However, two in-service and
two pre-service teachers have it high ranks (Rank 1 or 2). One in-service teacher
(Teacher 07) said she preferred it because “teachers can take a rest when watching
an exam”. Both teacher groups were able to successfully predict the ranking that
students would assign to drawing MT (Pred=Student Rank=6).

Table 2 shows the Kendall’s tau correlation coefficients across our different scales
and groups. Overall, the correlation coefficients among the student-, in-service and
pre-service groups were somewhat positive. Notably, the in-service and pre-service
teachers’ predictions of student rankings were exactly the same (=1, p<.01), and
both sets of teachers’ predictions significantly correlated to the student group’s
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ranking and feelings either strongly or very strongly (tsrank=.733, p<.05; tsn+=.966,
p<.01; t5\.=.867, p<.05). However, the teachers’ predictions did not have a
significant correlation with student preferences (tsprer=.600, p>.05).

If we compare the in-service and pre-service teachers’ self-rankings shown in Table
2, it is noteworthy that the pre-service group’s self-rankings were more correlated to
students’ rankings than the in-service teachers’ self-rankings were. The correlation
coefficient between pre-service teachers’ and students’ rankings was 1=.867 (p<.01),
as compared to 1=.733 (p<.05) for in-Service teachers. In addition, pre-service
teachers’ self-rankings were significantly correlated to the rank of students’ mean
preference scores (1=.733, p<.01) whereas pre-service teachers’ self-rankings were
not (1=.600, p>.05). More importantly, the pre-service teachers’ self-rankings seemed
to work better as predictors of student rankings than their predictions of student

rankings did (Tereself-srank™=-867 > Tprepred-srank=-733, Tpreself-spref=- 733 (P<.05) > Tprepred-
srank=-600 (p>.05)).

SPref  SRank SN+ SN- InSelf InPred PreSelf PrePred

SPref -

SRank .867* -

SN+ .690 .828* --

SN- 733*  .867*  .966** -

InSelf .600 .133* 552 .600 --

InPred .600 733*  .966** .867*  .467 --
PreSelf .733* .867* .690 133* .867* .600 --
PrePred .600 733*  .966** .867* 467  1.00** .600 --

Note. “S”=students; “In”= in-service teachers; “Pre”=pre-service teachers
Table 2: Kendall’s tau correlation coefficients across different scales and groups.

CONCLUSION

The results of this study indicate that the conceptions of mathematics teaching held
by Taiwanese fifth graders, pre-service teachers and in-service teachers are
reasonably consistent. In particular, both groups of teachers’ predictions of students’
ranking results were exactly the same. This result is somewhat inconsistent with
Murphy, Delli, and Edwards (2004) which shows beliefs about good teaching
between elementary students, pre-service teachers and in-service teachers were
somewhat different. In addition, to our surprise, pre-service teachers’ self-rankings
were even more closely correlated to students’ preferences, rankings, and feelings.
Such results contradict previous studies’ findings that experienced teachers know
students better than inexperienced teachers do (Herbst & Kosko, 2014). Conceivably,
though pre-service teachers have not developed solid knowledge of students in
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teaching mathematics, they may nevertheless have a level of rapport with students
due to their age and their own current roles as students.

Our results also indicated that, although both teacher groups and the student group
tended to prefer reform-based teaching (e.g., MG), drawing WA appealed to all three
of them. This may imply that traditional teaching is not totally disliked by students.
Provided that it contains appropriate student-teacher interactions, students will still
like it. More importantly, this drawing helped us identify a misconception among
teachers that students did not like this kind of traditional teaching as much as they
themselves did.

In short, the results across the three scales that we used — preference, rank and feeling
— were mostly highly correlated, but not exactly the same; and we also found that the
student positive-feeling was more correlated to teachers’ predictions than the other
two scales were. However, it remains unclear which scale best reveals students’ own
conceptions, and we recommend that future studies further explore this issue.
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PRE-SERVICE TEACHERS’ REFLECTIONS OF THE
SUMMARISE PHASE OF A LESSON STUDY

Sharyn Livy, Ann Downton and Eisuke Saito

Monash University

There is growing consensus that we need to improve the quality of pre-service
teacher education. This paper reports on pre-service teachers’ observations and
reflections of the ‘summarise phase’ of a lesson study in which Year 5 and 6 students
engaged with a challenging mathematical task. The findings suggest that the lesson
study assisted pre-service teachers to challenge their preconceived notions of the
teachers’ role within a lesson to support learners, and to identify critical aspects
within the ‘summarise phase’ of a lesson that demonstrated effective pedagogy. Such
an experience may equip them to better understand student learning and current
pedagogical practices for teaching primary mathematics.

INTRODUCTION

Recently within Australia there has been an increased focused on how best to
improve teacher education. The Teacher Education Ministerial Advisory Group
(2014) recommended that teacher education should be integrated with practice in
schools as part of pre-service teachers’ professional learning. This view concurs with
those of earlier scholars who argued that teachers learn best when activities are
conducted in a school context (Darling-Hammond, 1998). Given that, recent scholars
(Saito & Yeo, 2017), suggest that purposeful learning experiences for primary pre-
service teachers might include lesson study. Such a study provides participants with
opportunities to develop understanding of how students learning and current
pedagogical practices including how to guide productive discussion.

The primary pre-service teachers, reported here, had an opportunity to experience a
lesson study as part of their course. The purpose of the study was to link theory and
practice in relation to the lesson sequence and use of a challenging mathematical task.
The emphasise within the lesson structure used in this study focused on students’
learning from each other during the discussion or the ‘summarise phase’ (Sullivan et
al., 2015) of the lesson. It is the pre-service teachers’ observations and reflections of
the ‘summarise phase’ of the lesson study that is reported in this paper. The following
research question guided our research.

What are the critical aspects of the ‘summarise phase’ that pre-service teachers
report on during a lesson study?

REVIEW OF LITERATURE
Challenging student thinking

Students should be provided with rigorous experiences when learning mathematics
and encouraged to rely on their knowledge in different contexts including unfamiliar
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situations (Sullivan et al., 2013). The teacher plays an important role when planning
these experiences which require students to take responsibility for their own learning.
For instance, the teacher might minimise the lesson introduction to enable students to
first attempt the task by themselves and engage in productive struggle (Livy, Holmes,
Ingram, Linsell, & Sullivan, 2016).

Whole class discussion is integral to effective teaching and learning as it provides an
opportunity for students to clarify their understanding, justify their thinking, consider
different solution strategies, and provides teachers with insights into student thinking
(Anthony & Walshaw, 2009). A teacher’s role in discussion is to listen, hold back
from telling, invite different students to contribute, and encourage students to
construct and evaluate their own and others’ mathematical ideas (McDonough &
Clarke, 2003). To orchestrate such discussions requires skill, and Smith and Stein
(2011) argue that novices require a set of practices to use to facilitate productive
mathematics discussion. They advocate the following five practices: anticipating,
monitoring, selecting, sequencing and connecting. Sequencing and connecting
practices are included within a ‘summarise phase’ (Sullivan et al., 2015) where the
lesson is paused, and selected students discuss and model their response, and share
their thinking and strategies. Experiences such as this extend the understanding for
other class members (Smith & Stein, 2011)

Perceptions of learning and teaching

Lesson study is an approach of professional development and generally speaking the
participants — (1) collaboratively plan the study, (2) implement the study lesson, (3)
discuss the lesson, (4) revise the lesson plan (optional) and (6) share thoughts about
the lesson (Fernandez & Yoshida, 2004). Pre-service teachers participating in lesson
study have an opportunity to revisit their judgements about students’ abilities and
teacher expectations, strengthen their subject knowledge, and extend their
understanding of the complexities of teaching by reflecting together in a mutually
supportive climate (Cajkeler & Wood, 2016). Cluphf, Lux, and Scott (2012) agree
that by collaborating with professional teachers, pre-service teachers can reduce their
initial anxiety by applying what they learnt in their teacher education programme to
the real classroom contexts. A recent study highlighted that pre-service teachers and
their mentors learnt together whilst focusing on the improvement of teaching (Cajkler
& Wood, 2016). We adopted a lesson study approach for our study as it provided a
structure for the pre-service teachers’ observations, and post lesson reflection and
discussion.

METHODOLOGY

The data reported in this paper were collected during 20 pre-service teachers’ course
experience that included a lesson study and observation of a Year 5 and 6 (N=23)
lesson related to geometric reasoning. The first author taught a lesson asking the
students to solve a mathematical task related to geometric reasoning and in particular
the size of angles within pattern blocks (Figure 1). The pre-service teachers and the
second author observed the lesson, taking field notes.
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In a circle there are 360 degrees. Work out the
exact size of as many of the angles in this shape
as you can. Explain how you worked them out.

Figure 1. Working out the size of angles.
The approach chosen for the study was a lesson study including pre- and post-testing
(of students), implementing and observing the research lesson, evaluating the
research lesson, and reporting (Saito & Yeo, 2017). The process of lesson study in
this case, was designed to support and extend pre-service teachers’ pedagogical
knowledge for teaching geometry. The lesson included three phases, launch, explore,
summarise. In the ‘launch phase’ students are expected to attempt the task without
help from the teacher or their peers. During the ‘explore phase’ the teacher monitors
and selects students to present in the ‘summarise phase’, and provides prompts for
students requiring help or extension. In the ‘summarise phase’ the teacher stops the
lesson and selected students share their responses to the task. This phase can occur
more than once during the lesson (Sullivan et al., 2015). After the lesson the pre-
service teachers met with the classroom teacher and first two authors to discuss and
reflect on their experience.
Data collection and analysis
Qualitative data collected from the pre-service teachers included their reflections of
the research lesson and written assignments reporting on their experiences and
observation of one student. This paper reports on the results from the analysis of the
pre-service teachers’ assignments relating to the ‘summarise phase’ of the lesson. The
data from the assignments were collated to identify descriptions categorised
according to themes that emerged from the analysis (Miles, Huberman & Saldana,
2014). The first two authors checked each other’s coding for consistency and
identified a total of 12 categories. These categories and their descriptors are presented
in Table 1. While it could be argued that all of these categories relate to pedagogical
practices, the purpose of this paper is to identify the particular aspects pre-service
teachers noticed or attended to when observing an experienced teacher in a
mathematics lesson.

Category Descriptor

Timing Spacing of student sharing during each ‘summarise phase’

Nature of the task Describing aspects of the task such as challenge, open-ended

Choice of teacher questioning Strategic questions used to probe or challenge student thinking or
orchestrate student led discussion

Selection of students Teacher strategically chose students to share their thinking

Scaffolding student learning Experiences that enhance student learning and understanding (e.g.,

use of enabling and extending prompts, questioning, wait time)
Awareness of how children learn Pre-service teachers’ discussion of how children learn mathematics

Challenging student thinking Students present different strategies to their peers, and peers
challenging strategies used
Learning how to teach Pre-service teachers’ discussion of the pedagogies the teacher used
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to orchestrate the ‘summarise phase’ during the lesson
Minimal teacher instruction or Teacher held back from assisting students to allow them to

assistance experience ‘productive struggle’ and refrained from summarising
student learning and thinking

Students learning from others Student recording and sharing their thinking provided a springboard
for other students to explore alternative pathways

Strategies students use Noticing the range of strategies students used

Positive disposition The teacher valuing all students’ contributions including incorrect
answers

Table 1: Categorisation of critical aspects of the ‘summarise phase’
RESULTS AND DISCUSSION

From the analysis of the 20 pre-service teachers’ assignments it was evident that they
all reported on at least one category of the critical aspects of the ‘summarise phase’
of the lesson. The frequency of use of each category is presented in Table 2. The
most common category was students learning from each other (15) followed by how
children learn, and student disposition (13), scaffolding student learning (12), then
timing, learning how to teach, and strategies students use (11). The fact that so many
pre-service teachers reported on these aspects highlights the benefit of engaging them
in a lesson study. The fact that so many comments related to how children learn
mathematics is reflected of their learning experience provided during tutorials and
their academic reading, hence important when developing their knowledge for
primary mathematics teaching. A key feature of the lesson was that student
misconceptions or errors were discussed as part of the learning and students had an
opportunity to assist with identifying the correct solution or error (Alice, Rose and
Erin). The three least common categories were selection of students, challenging
student thinking, and minimal teacher instruction or assistance (4). A possible reason
for the pre-service teachers’ lack of attention to these categories was due to the fact
that the lesson approach that they observed was not typical of their education
program (practicum experiences) or their own schooling.

Category Frequency of use
Timing 11
Nature of the task 8
Choice of teacher questioning 7
Selection of students 4
Scaffolding student learning 12
Awareness of how children learn 13
Challenging student thinking 4
Learning how to teach 11
Minimal teacher instruction or assistance 4
Students learning from others 15
Strategies students use 11
Positive disposition 13

Table 2: Frequency of pre-service teachers’ (n=20) reporting on aspects of the
‘summarise phase’ of the lesson
Having seen the distribution of pre-service teachers’ insights, providing examples of
these in Table 3 indicates the range of perspective on each category and the nature of
their noticing. For instance, some pre-service teachers commented on how particular
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aspects impacted on the students’ learning (scaffolding learning, and learning from
others) while others related to their own learning (Kylie, Dora, Lily). Some overlap
between the categories is evident, for example, Carla’s comment on timing related to
learning how to teach in this way. Dora’s reflections were insightful as she was
particularly sceptical before the lesson about the structure and how students would be
supported in their learning. Limited space within this paper precludes us from
reporting on all the pre-service teachers’ insights.

Category Evidence extracted from pre-service teachers’ assignments
Timing Every ten minutes there was sharing after the independent learning time... providing a
chance to hear other solutions and work out whether their way of thinking was getting
them to the right answer. (Casey)
The working time between each student presenter gave students a chance to think about
their answers and apply their knowledge or strategy they learnt from their peers. (Naomi)
Nature of Challenging tasks encourage students to connect ideas and apply to another context.
the task (Sally)
Providing a challenging task allowed students to learn outside their comfort zone and
approach tasks with new strategies. (Libby)
Throughout this experience, | learnt about the benefits of offering students challenging
tasks and a lot about myself as a mathematical learner. (Kylie)
Choice of Each prompt is targeted and should be well planned and thought out ... | was able to see
teacher that this approach could work despite my reservations. (Dora)
questioning  The teacher probed Imogen’s thinking to merely try to help her to justify her answer and
understand her way of thinking. (Alice)
Selection of  These summaries were ordered in a particular way to provide the most benefit to the
students students. Starting with the easier shapes... then moving onto the harder ones was an
effective strategy to help students who may be struggling with the task and to help them
gain a greater understanding. (Rose)
When selecting students to share it is important that teachers select some who have
incorporated common strategies, and some that lead to incorrect answers. (Alice)
Scaffolding  The summary phases promoted the sharing of worthwhile ideas, which then facilitated the
student learning of those in the class who may have been struggling or needed a prompt. (Maria)
learning Following the [second] summary Hazel realized she had the wrong angles for her
triangles and corrected her mistake, then following on from this she applied this
knowledge to the rest of the triangles in the hexagon. (Rose).
The summary stage was especially helpful in reassuring Penny was on the right track
when she saw that other students had found the same angles as her in the red hexagon.
(Erin)
The emphasis on peer discussion allowed students who were both struggling and who
were confident in their own working out to see other students’ way of thinking and ways
of understanding different procedures of discovering an answer. (Megan)
Awareness  Leaning by exploring different strategies. (James)
of _hOW By highlighting common misconceptions, the teacher positions the students to be
children corrected and learn from other students rather than merely being told they have answered
learn incorrectly. (Alice)
Challenging  The lesson highlighted to me that students require a specific level of challenge, and that
student students’ benefit immensely from this type of challenge... (Eva)
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thinking It also helped to make learning more concrete for those selected to share as they were
challenged to express their knowledge in words that their peers would understand.
(Maria)

Learning Having the opportunity to see the summary phase in action allowed me to see the benefits

how to teach to student learning. (Dora)

It was interesting to watch the class have a go on their own and then share different
solutions roughly every ten minutes. Teaching the class in this way gave students
independent learning time while at the same time, gave them a chance to hear others’
solutions and whether their way of thinking was getting them to the answer. (Carla)

Minimal The students were able to work on their own through the challenging task with minimal
teacher instruction and minimal assistance from teachers and pre-service teachers. (Cassie)

instruction  Noticing how little talking the teacher does during the lesson was powerful. (Dora)

or assistance Providing a problem-solving question allows students to delve into their own knowledge
without listening to a teacher tell them how it should be completed. (Libby)

Students Highlights the influence of peer-oriented learning has on student potential. (Erin)

learning It was an interesting way to see students use their prior knowledge and ideas from their
from others  fellow classmates to progress through the learning tasks as students had little or no help
from their teacher. (Anne)

From the class discussion, Maisie learnt how to work on some of the shapes she was
struggling with and she also applied the new learning she learnt from others. (Carla)

The emphasis on peer discussion allowed students who were both struggling and who
were confident in their own working out to see other students’ way of thinking and ways
of understanding different procedures of discovering an answer. (Megan)

Even if a student already knew how to solve the problem their knowledge was expanded
as they were exposed to and considered other approaches. (Maria)

Strategies When students had to explain their strategies, convince others of their answers, students
students use  collaborated together to try and help each other to explain their working out. (Naomi)

Within the lesson | became familiar with various methods students used when answering
a particular learning task. The summary phase highlighted the student thinking which was
an aspect of the lesson | found most stimulating, these students managed to use existing
knowledge on division, the angles of an equilateral triangle equaling 180 degrees as well
as a straight line. (Lily)

Positive The teacher did not let on that a solution was wrong but asked the class if anyone could
disposition  help out... by doing so this showed the students that all mathematical thinking is valued.
(Dora)

Creating an engaging classroom can allow students to feel engaged in their work and
allow them to achieve more. (Libby)

The findings from the lesson demonstrated that a challenging task and effective peer
learning can influence a student’s ability to be persistent and successful when exposed to
an unfamiliar task. (Rhonda)

Table 3: Categorisation of critical aspects identified by pre-service teachers

The pre-service teachers’ reflection within each category demonstrates the breadth
and depth of the value of this experience. Two key aspects that many pre-service
teachers noticed were the conscious spacing of timing of students’ independent
working time on task and sharing of student discussion, and how the teacher
sequenced the student learning by pausing the lesson at regular intervals as part of the
‘summarise phase’. Not only did the lesson study link theory to practice, it enabled
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them to see the specific skills required by the teacher to facilitate a productive
mathematics discussion and how to enact the five practices (Smith & Stein, 2011).
Their reflections also indicated the power of the ‘summarise phase’ to scaffold
student learning and for students to learn from their peers in a supportive learning
environment (Anthony & Walshaw, 2009; McDonough & Clarke, 2003), and the
Impact this had on their pedagogical content knowledge (Cajkler & Wood, 2016).

An overall reflection by Alice highlighted the nature of the task and pre-service
teachers learning how to teach.

Throughout the process of observing this lesson and later analysing the student’s
achievement and responses, I learnt that the discussion during the ‘summarise phase’ of a
lesson has more instructional benefit than any other stage of the lesson. For this to occur,
teachers must select worthwhile tasks in order to promote worthwhile discussion.

CONCLUDING REMARKS

Critical aspects of the pre-services teachers’ responses highlighted that engaging in
this experience helped to dispel some of their preconceived notions of how student
learn mathematics and the teacher’s role within a lesson to support learning. Learning
experiences during tutorials can assist pre-service teachers to develop their
knowledge of how to teach mathematics, how children learn, and suggestions for
differentiating learning. However, the opportunity to observe a lesson, interact with
students enabled the pre-service teachers to identify critical aspects of the ‘summaries
phase’ and realise the importance of minimal teacher talk or assistance and consider
how they might implement these strategies within their future teaching. These results
highlight the many opportunities for pre-service teachers to extend their knowledge
for teaching by observing a lesson study and provided an example of one way to
possibly improve teacher education.
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DECODING MAP ITEMS THROUGH SPATIAL ORIENTATION:
PERFORMANCE DIFFERENCES ACROSS GRADE AND
GENDER

Tracy Logan',  Tom Lowrie’,  Ajay Ramful®
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This investigation examines the spatial orientation performance of a nationally-
representative cohort of secondary school students drawn from national mathematics
assessment data. This investigation analyses the changes in performance on spatial
orientation tasks (maps) of Grade 7 (ages 12-13) and Grade 9 (ages 14-15) cohorts
across two time periods. Although spatial orientation performance increased
significantly from Grade 7 to Grade 9, effect sizes were relatively small. Males
outperformed females on both items, with performance differences increasing from
Grade 7 to Grade 9. Both males and females had difficulties re-orientating
themselves within the map, especially when the question had multiple changes in
orientation.

INTRODUCTION

There is a strong nexus between mathematics outcomes and assessment, with similar
links between assessment, learning and instruction. In Australia the national
assessment platform is the National Assessment Program —Literacy and Numeracy
(NAPLAN). This assessment covers mathematics content and numeracy elements
from the national curriculum and is conducted annually across Grades 3, 5, 7, and 9.
One feature of the NAPLAN is the use of spatial items, that is, items that require
spatial thinking and require minimal, if any, number computation. These items are
directly associated with the using spatial reasoning element of Numeracy embedded
throughout the Australian curriculum. Spatial reasoning has been identified as an
important aspect of mathematical understanding (Lowrie, Logan & Ramful, 2016;
Sinclair & Bruce, 2014) and studies suggest strong associations between spatial
reasoning and success in Science, Technology, Engineering and Mathematics
(STEM) disciplines (Wai, Lubinski, & Benbow, 2009; Uttal & Cohen, 2012). Hence,
items that assess spatial reasoning provide insight into a somewhat silent aspect of
many curricula, but one that may have important implications as students’ progress
through the schooling years.

Another feature of the NAPLAN is the repetition of items across grade levels within
any given yearly test. For example, the same item may appear in the Grade 3 and
Grade 5 assessment. This is undertaken to ensure consistency and validity across
grade levels. This paper reports on two such spatial items that appeared across Grade
7 and Grade 9 assessments. These spatial items were map questions, where the
students were required to navigate and orientate themselves within the question
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space. This study investigated the difference in performance between the two grade
levels and considers gender differences with respect to performance and multiple-
choice responses on the two map items.

UNDERSTANDING AND INTERPRETING MAPS

Maps provide a relatively authentic context for learning mathematics and assessing
spatial knowledge, with the ability to interpret or decode maps requiring students to
analyse locations (through position and placement) and attributes (what is actually
represented); and understand that the map representation is presented within some
form of scale (Wiegand, 2006). However, students do not always find their
interpretation straightforward. For example, Diezmann and Lowrie (2008) reported
that 10- to 13-year-olds experienced difficulty with some of the vocabulary presented
in maps; students were distracted by different foci on the map; and information
critical to understanding was often overlooked. Other difficulties identified in Liben’s
(2008) research relate to children misinterpreting the representation of symbols and
confusion over perspectives and angles used to represent different maps (for example,
elevation view and birds-eye view). As a consequence, decoding and understanding a
map require knowledge of map attributes. Wiegand (2006) identified a framework
with three levels of sophistication involved in map interpretation. This framework
was used to interpret the data. The first stage involves extracting information from a
map and generally reading symbols, texts and attributes. The second analysis stage,
involves ordering and sequencing information, recognising perspective and
wayfinding. Finally, interpretation requires higher levels of problem solving and
decision making involving the application of information, such as multiple
navigational cues and scale. In addition, proficiency with map tasks requires
perceptual and cognitive processing associated with visualization and spatial
orientation ability respectively.

Spatial orientation and gender differences

Spatial orientation relates to the self-to-object representational system (Kozhevnikov
& Hegarty, 2001) which is seen as establishing “spatial relations in body-centered
coordinates, using the body axes of front-back, right-left, and up-down” (McNamara,
2003, p. 181). Generally, spatial orientation is associated with navigation, wayfinding
and perspective taking. Previous research has examined the differences between
males and females on spatial orientation tasks, with males generally outperforming
females (Bosco, Longoni, & Vecchi, 2004). However, Wolbers and Hegarty (2010)
highlighted that much of the research manifests from the different strategies and
approaches used to navigate and wayfind by males and females. Lawton and Kallai
(2002) found that females preferred route-based information strategies, for example,
receiving directions that explained the number of streets to pass before turning. By
contrast, males preferred orientation-based information strategies such as keeping in
mind the direction from which they came and keeping track of the relationship
between where they were and the next place to change direction. Other studies have
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indicated that females prefer using landmarks and known routes, focusing on more
environmental signs in order to stay orientated. However, males prefer to use cardinal
directions and Euclidean information and are more likely to utilise geometry-based
thinking to remain oriented within an environment (e.g., Bosco, Longoni, & Vecchi,
2004; Coluccia & Louse, 2004; Lin et al., 2012; Saucier et al., 2002).

This body of research highlights the need to consider performance differences (or
otherwise) with respect to gender, but also the strategies employed to solve these
spatially-demanding tasks.

DESIGN AND METHODS

This study utilised a secondary data analysis design, from a large nationally-
represented data set. The data are drawn from the Numeracy assessment of the
NAPLAN provided by the Australian Curriculum, Assessment and Reporting
Authority (ACARA). Within this paper three research questions are explored:

e Are there performance differences between students from Grade 7 and
Grade 9 on the same spatial orientation items?

e Are there performance differences between males and females on the same
Map items across grade levels?

e What difficulties do males and females experience on Map items across
grade levels?

The Spatial Orientation Map Items

The two items chosen for this paper were typical map items found across the
NAPLAN and required students to contend with multiple changes in orientation (see
Appendix for items). The Plum Road item was selected from the 2010 NAPLAN and
the Park Map was selected from the 2013 NAPLAN. Both items were repeated in the
Grade 7 and Grade 9 assessment of the respective years, and were of varying
difficulty based on reported means (see Queensland Studies Authority, n.d.).

Participants

The number of participants for each item across the two grade levels was as follows:
Plum Road Grade 7 = 20,441 (Female = 9,954) and Grade 9 = 29,369 (Female =
14,073); and Park Map Grade 7 = 18,947 (Female = 9,772) and Grade 9 = 29,552
(Female = 15,128). The average ages of students taking the NAPLAN were: 2010
Grade 7 = 12 years, 6 months and Grade 9 = 14 years, 5 months; and 2013 Grade 7 =
12 years, 6 months and Grade 9 = 14 years, 6 months.

RESULTS

The first two research questions were investigated through two, 2-way analysis of
variance (ANOVAs) to determine whether there were statistically significant
differences between Grade and Gender on the two items, namely; Plum Road item
and Park Map item. The first ANOVA revealed statistically significant differences
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for the Plum Road item across Grade [F(1,49806=595.9, p <.000] and Gender
[F(1,49806=151.2, p<.000]. The second ANOVA revealed statistically significant
differences for the Park Map item across Grade [F(1,48495=472.9, p<.000] and
Gender [F(1,48495=155.6, p<.000]. For the Park Map item, there was also a
significant interaction between Grade and Gender [F(1,48495=10.8, p<.001]. Table 1
presents the mean and standard deviation for grade and gender across the two items.

Year 7 Year 9
Item Male Female Total Male Female Total
PlumRoad .60(.49) .55(.50) .57(49) .71(.50) .65(.48) .68 (.47)
Park Map 40 (49) .36(48) .38(.49) .52(.50) .45(.50) .48 (.50)

Table 1: Mean (and Standard Deviation) for the Two Map Items by Grade and
Gender.

Post-hoc analysis revealed that the Grade 9 students outperformed the Grade 7
students on both items. While this may be expected, effect sizes of d = 0.23 for Plum
Road and d = 0.20 for Park Map highlight relatively low performance differences
across two years of schooling.

With respect to Gender, males outperformed females on both items, at both Grades.
For the Park Map item, the significant interaction highlights that the males’
improvement was greater than the females in Grade 9 (see Figure 1). In order to
better understand such effects, the multiple choice responses of students were
collated to establish the difficulties encountered during the assessment.

Park Map Interaction

0.55

0.5 P
0.45 /
0.4 l

0.35 Female

e \ale

0.3

0.25

0.2 T
Year7 Year9

Figure 1: The Park Map interaction effect for Grade and Gender.

The third research question was investigated through descriptive analysis of the
multiple choice responses. Often, the multiple choice responses of students reveal
insights into their thinking about certain tasks and through analysing these data, it is
possible to highlight some of the difficulties encountered by students as they solved
the questions. Table 2 presents the percentages of the multiple choice responses for
the two map tasks, organised by grade and gender.

For the Plum Road item (correct response “D”), the main incorrect response was “A
— north-east”. It appears that students who chose “north-east” were unable to apply
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the second aspect of directional information, where they needed to provide the
direction after the car turned right. Noteworthy, in both grades, more females chose
this option. The fact that the item does not show a compass or have North orientated
toward the top of the page may have caused difficulties for students as the prototype
direction for North on maps is toward the top of the page.

Plum Road Park Map
Year 7 Year 9 Year 7 Year 9
Male Female Male Female Male Female Male Female
Option % % % % % % % %
A 20 25 13 18 15 12 13 10
B 9 9 7 7 26 29 18 23
C 10 12 9 10 18 22 17 22
D 60 54 70 65 40 36 52 44

Note: due to a small percentage of missing data and rounding, totals may not equal 100%

Table 2: Percentage of Multiple Choice Responses to the Two Map Items by Grade
and Gender.

For the Park Map item, in Grade 7, “B” was the main incorrect response, however, by
Grade 9 the distribution of incorrect responses spread across “B” and “C”. Those
students who chose location “B” on the map seemed to have started at either the top
or bottom gate on the map and have not applied the first navigational cue that he
walked south-cast along the path. Whereas, those who chose “C” seemed to have
entered the park through the correct gate, but turned left instead of right. This
highlights that they weren’t able to re-orientate themselves in space or to visualise
movement from a different perspective. An interesting finding for response “C” is
that the relatively high proportion of females choosing this option did not differ from
Grade 7 to 9, suggesting that the females tended to interpret the first required
movement correctly but they struggled with the subsequent directional change.

DISCUSSION AND CONCLUSIONS

Our study examined the performance differences of Grade 7 and Grade 9 cohorts on
two spatially-demanding mathematics items. Although the Grade 9 cohorts were
more successful in solving both map items, performance differences were not large
given the additional two years of schooling the older students had. In fact, the effect
sizes between Grade on the two tasks were less than one quarter of a standard
deviation. Given the fact that the administration of a test is likely to produce an effect
size of d = 0.3 and Hattie (2008) suggested that one year of educational improvement
equates to an effect size of approximately d = 0.4, it was anticipated that the Grade 9
performance would have been much greater. Each cohort (by grade level) found the
Park Map item to be much more difficult to solve than the Plum Road item. For both
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tasks, the students were required to make orientations decisions 135° from North
orientation. Thus, the initial spatial orientation processing demands were similar. In
fact, three aspects of Wiegand’s (2006) decoding requirements were similar—that is
the map’s perspective, the need to wayfind within similar context (i.e., a road), and
the fact that the map represented space. We maintain that the increased cognitive
demands associated with the use of scale, and the more challenging use of symbols
and texts, raised the item complexity. The relatively low performance increase across
Grade 7 and Grade 9 cohorts suggest that insufficient attention may be afforded to
these important perceptual elements. As Diezmann and Lowrie (2008) indicated,
explicit teaching of the various information graphics embedded in mathematics tasks
IS required, since there are low performance associations across maps and graphs.
There were significant performance differences in relation to gender, across both
tasks and grade levels. These results support sustained research findings that identify
performance differences in favour of males on spatial orientation items (Wolbers &
Hegarty, 2010). In fact, the Grade 7 male cohort’s performances were similar to that
of Grade 9 female cohort’s, on both the Park Map and Plum Road items.

The difficulties faced by students as they were asked to orientate and re-orientate
themselves within the map where relatively similar across grade and gender. The
uncertainty of the starting point on the Park Map was evidenced by the higher
percentages across the three incorrect options. For both items, the requirement for
one or more re-orientations within the map proved a barrier to many students,
especially the females. Such spatial reasoning relates to the self-to-object
representational system (Kozhevnikov & Hegarty, 2001) in which movement or
orientation is considered relative to the position of oneself.

IMPLICATIONS

The two implications drawn from the study are associated with the relationship
between assessment, learning and instruction, namely: (1) the need to provide explicit
pedagogical attention to spatial orientation in the school mathematics curriculum; and
(2) increased support for females’ spatial development. Evidence from this
investigation indicates that instruction in mathematics needs to provide opportunities
for students to become proficient in interpreting (and creating) map questions that
require spatial orientations, especially multiple orientation processing. Since the
performance differences between males and females increased over time (especially
with the more difficult Park Map item), more instructional attention needs to be given
to analysing and interpreting maps. These two higher levels of Weigand’s (2006)
framework go beyond the less sophisticated reading and extracting aspects of map
content presented in school curricula. These distinct differences need to be addressed,
especially in an age where spatial reasoning is becoming increasingly important to
life aspirations. Given spatial reasoning is closely associated with success in STEM
professions (Uttal & Cohen, 2012), and women are much less likely to transition into
these profession, school instructional practices need to attribute more attention to
these spatial dimensions of intelligence.
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APPENDIX

A car is travelling north-east along Don Road.
The car is about to turn right into Plum Road.

Don Rd

In which direction will the car be travelling Plum Rd
after it turns right?

O  north-east a
O  south-west
O  north-west
C south-east
The Plum Road item
© Australian Curriculum, Assessment and Reporting Authority 2010
This is a map of a park.
Gate
North
Lake T
Gate
B 10 metres
2 c
Gate

D
Gate [C

Josh entered the park through on of the gates.
He then walked south-east along a path.

After 90 metres he turned right.

He then walked another 30 metres and stopped.

Which point on the map shows where Josh stopped?

A B (&, D
O O O O
The Park Map item

© Australian Curriculum, Assessment and Reporting Authority 2013
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THE INFLUENCE OF STUDENTS’ SPATIAL REASONING ON
MATHEMATICS PERFORMANCE ACROSS DIFFERENT TEST
MODE FORMATS

Tom Lowrie and Tracy Logan
University of Canberra

This study compared the performance of students who solved mathematics tasks in
either a traditional pencil-and-paper test (PPT) format or computer-based test (CBT)
format. Specifically, this study examined the effect students’ spatial reasoning had on
their performance across the respective test formats. The results of the study revealed
(1) no performance differences across the two test formats; however, there were (2)
significant performance differences in the favour of students with higher spatial
reasoning; and (3) there was an interaction effect between test format and students’
level of spatial reasoning. The students with lower levels of spatial reasoning
performed better in the CBT format, while the high spatial ability cohort performed
best in the PPT format.

INTRODUCTION

The utility and function of spatial skills seem increasingly important in our
technology-rich societies—from navigation via global positing systems to health
diagnosis from medical imaging. Unsurprisingly, the notion of “learning to think
spatially” has been embedded in most school curricula for the past ten years (Downs,
& DeSouza, 2006). During the same time period, there has been a dramatic shift in
how mathematics is assessed, both in terms of task representation and the medium in
which the tasks are presented. Mathematics tasks used to assess students’
performance are much more likely to contain graphical information. For example, in
countries such as Singapore and Australia, graphics-based tasks have replaced more
traditional word problems in national assessments. Australia’s National Assessment
Plan: Literacy and Numeracy (NAPLAN) consists of approximately 70% graphics
tasks while Singapore’s Primary School Leaving Examination (PSLE) constitutes
41% of items that are graphics based (Lowrie & Logan, 2015). To some degree, the
focus on graphics-rich tasks has evolved from advances in technology, with
mathematics assessment reflecting applications of mathematics concepts. These
graphics-rich tasks contain more spatial features and require decoding of information
associated with rotations, translations, location and arrangement. As testing agencies
move toward digitally- and adaptive-based testing, how students encode and decode
mathematics information is likely to change. For example, the Programme for
International Student Assessment (PISA) has been gradually introducing digital-
based testing since the first optional electronic module in 2006 and has included
innovative item formats since 2015.
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BACKGROUND
Decoding and encoding mathematics tasks

According to Brizuela and Gravel (2013), representations refer to products and
processes that we create or interpret in order to “capture, understand, and translate an
idea, an event, or a phenomenon” (p. 1). Representations can either be decoded or
encoded. Decoding takes place when the problem solver is required to interpret the
symbol systems, graphics and text embedded within a task—the process involves
interpreting information they have not constructed. The information includes specific
conventions that need to be interpreted (Roth, 2002). In the current investigation,
participants are required to decode information from both traditional word-based
tasks and more graphics-rich geometry tasks. By contrast, encoding involves
constructing “one’s own” representations, which are usually developed from specific
heuristics or personal (and sometimes idiosyncratic) constructions. Encoded
representations can be produced “in the mind’s eye” (Smith & Kosslyn, 2013), or
externally through some physical or concrete approach. Elsewhere, (Lowrie, Logan
& Ramful, 2016) we have found that students are more likely to externally encode
mathematics tasks when the mode of delivery is PPT, including drawing pictures and
diagrams to process information. By contrast, students are more likely to solve
problems by internally encoding (using visualisation) or using mental computations
ina CBT mode.

Spatial reasoning and mathematics performance

A number of studies have demonstrated the strong association between mathematics
performance and spatial reasoning. Students who perform well on spatial tasks
typically perform better on mathematics tasks (Holmes, Adams, & Hamilton, 2008;
Rasmussen & Bisanz, 2005). Mathematics concepts are spatial in nature, since
students need to be able to imagine and visualize information (Battista, Wheatley, &
Talsma, 1982). In fact, spatial visualization ability predicts talent in mathematics
(Wei, Yuan, Chen, & Zhou, 2012).

The relationship between spatial and mathematics ability is evident from the early
years of school (Kurdek & Sinclair, 2001) and are still prevalent with college
graduates (Wai, Lubinski, & Benbow, 2009). These relationships seem most
plausible when students encounter geometric mathematics tasks (Battista, 1990) since
the transformation of 2-D and 3-D objects require spatial reasoning. Nevertheless,
moderate relationships between spatial ability and traditional word problems exist
(Hegarty & Kozhevnikov, 1999), even though the mental or physical manipulation of
objects is not required. More recently, Mix et al. (2016) found that mental rotation
best predicted mathematics performance in younger students, while spatial
visualization was the best predictor of performance by Grade 6 (especially place
value, word problems and algebra concepts). These associations, across both
geometry and traditional word-based mathematics tasks, have been confirmed even
when expertise is accounted for (Sella, Sader, Lolliot & Kadosh, 2016).
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DESIGN AND METHODS
The research questions of the study were:

e Does Mode of Delivery (PPT or CBT) effect student performance on
mathematics assessment tasks? and
e Is spatial ability an influential factor in student performance on mathematics
tasks and Mode of Delivery?
Participants

The participants (N = 162; 81 Male, 81 Female) comprised Grade 6 students (Mean
Age = 11 years, 4 months) from four Australian primary schools. One hundred and
six students completed the mathematics test on iPads (67% male) and 56 completed
the test on paper (33% male). Males were represented in the low, mid- and high
spatial groups at rates of 27%, 35% and 38% respectively.

The instrument and administration

The participants in the study completed a 45-item Spatial Reasoning Instrument
(SRI), which comprised an equal number of mental rotation, spatial orientation and
visualisation items (see Ramful, Lowrie & Logan, 2016). The students also
completed a Mathematics Test (MT)—a 12-item instrument used to determine
students’ performance across mathematics tasks. It consisted of five number and
seven geometry and measurement items. The tasks were drawn from the Australian
standard test for grade 5 students (NAPLAN) and reflected the format of the
assessment with 75% of items containing a graphic relevant to the task.

Two members of the research team attended the participating schools during their
morning classes. The two Instruments were administered to whole (intact) classes to
minimise disruption to both the school and the students’ daily classroom routine. The
classroom teachers and the research staff administered the activity.

Data coding

The participants were scored according to the number of tasks they answered
correctly. Hence, the highest possible score for the SRI was 45 and MT was 12.
Students were classified as low, middle or high spatial ability based on their scores
on the Spatial Reasoning Instrument. Range and sample size for each group are
presented in Table 1.

Spatial Reasoning Category Range N (%)

Low-spatial Reasoning 5-20 56 (30%)
Mid-spatial Reasoning 21-27 68 (37%)
High-spatial Reasoning 28-42 61 (33%)

Table 1: Distribution of students in low, mid and high spatial groups
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RESULTS AND DISCUSSION

A factorial Analysis of Variance (ANOVA) was conducted to examine the two
research questions; with scores on the mathematics test as the dependent variable and
spatial reasoning ability (low, mid, high) and mode of delivery (PPT or CBT) as
factors. There was no main effect for test presentation (Mode of Delivery) on
mathematics test scores, F(1, 161) = .92, p = .34. Although these results are
consistent with a comprehensive meta-analysis conducted by Wang et al., (2008),
they are in contrast to studies conducted with students of this age group (ie., primary
school students). In a study with over 800 Singaporean students, Lowrie and Logan
(2015) found that student performance was significantly higher in a CBT (iPad) mode
than a PPT mode. In the current study, it is worth noting that this cohort of Australian
students was not as mathematically able as the Singaporean cohort.

A main effect for spatial ability level on mathematics test performance was found,
F(2, 161) = 52.67, p < .001, d = 1.55, with high spatial students performing better on
the mathematics test than medium and low spatial ability students, and mid-spatial
students performing better than low spatial students. Means are presented in Figure 1.
To some degree, these results are unsurprising since there is a substantial body of
literature that that shows strong positive correlations between spatial reasoning ability
and mathematics performance (Mix et al., 2016). Noteworthy is the magnitude of the
differences (effect size = 1.55), indicating the large differences in student
performance across the low, mid and high categorisations of spatial reasoning.

There was also significant interaction effect between mode of delivery and spatial
reasoning rank, F(2, 161) = 3.52, p =.03, d = .32.

P
1 iPad
i

Mathematics Test Score
(=] = N w = (9] [#)] ~J co w0

Low Middle High
Level of spatial ability (as measured by SRI)

Figure 3: Means on MT by testing mode and spatial ability (bars denote standard
error)

Students within the low- and middle-ranked spatial reasoning group scored higher on
the mathematics test when it was delivered in a CBT (iPad) format, whereas the high
spatial reasoning cohort performed better in the PPT format (as represented in Figure
1). This result was unexpected—since we envisaged that the increased demands of
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processing information in the digital form would impact on performance. Moreover,
students are less likely to use “working-out paper” on mobile devices, which result in
higher visualisation demands (Lowrie & Logan, 2015).

Further analyses addressed the interaction effect of test mode and spatial ability on
the two mathematics streams incorporated into the test, namely geometry and
measurement items. An interaction effect was found for the number items, F(2, 161)
=5.13, p =.007, d = .44, but not for the geometry and measurement items, F(2, 161)
= .94, p = .39. Means and standard errors for both sets of items are presented in Table
2.

Graphic representations of the five number items are displayed in Appendix A. Three
of the five number items (namely, Q.1; Q.4; and Q.5) highlight interactions between
spatial reason rank and mode of delivery. In each instance, the high-ranked spatial
students’ performance on the PPT mode increased, and the mid-ranked spatial
student’s performance decreased.

Low spatial Mid-spatial High spatial

Mode of Delivery

M (S.E.) M (S.E.) M (S.E.)
Geometry (7 items)
iPad 1.77 (.22) 2.94 (23) 4.03(.21)
Paper and pencil 1.40 (.34) 2.26 (.25)  4.07 (.35)
Number (5 items)
iPad 1.15 (.15) 1.94 (116) 2.31(.14)
Paper and pencil 1.20 (.23) 1.41 (.117)  2.93 (.24)

Table 2: Descriptive statistics for mathematics assessment items
CONCLUSION

The two major findings of the study are associated with (1) the influence of spatial
reasoning on students’ mathematics performance and (2) differences in students’
performance in relation to mode of delivery, especially for number-concept items.

There were no performance differences in students’ mathematics scores across mode
of delivery. Although these results are inconclusive across the literature base, such
findings support the large meta-analysis undertaken be Wang et al., (2008). There
were substantial differences between student performances when the cohort was
categorised according to spatial reasoning performance. There were significant
differences between high-performing and mid-performing students, and between
mid-performing and low-performing students. These results are consistent with a
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burgeoning literature base (including recent studies of Mix et al., 2016; Sella et al.,
2016; Wei et al., 2012).

The second finding of the study highlighted an interaction effect between spatial
reasoning and mode of delivery. To our knowledge, this is the first time such results
have been reported in the literature. Students are more likely to use encoding
strategies and heuristics in a PPT form than a CBT mode of delivery. By contrast, a
CBT mode tends to encourage students to utilise visualisation strategies and mental
imagery processes (Threlfall, Pool, Homer & Swinnerton, 2007). In addition,
students are less likely to encode representations from a CBT mode, since the
transition to another format presents different challenges in terms of re-representing
information that needs to be decoded (Lowrie & Logan, 2015; Yahya & Hershkowitz,
2013). The multiple representations provide additional cognitive demands.
Consequently, we hypothesised that students with lower levels of spatial reasoning
would tend to be more successful in the PPT form, since they could draw on
diagrams, encode information on the test booklet itself and generally monitor their
thinking from one point of reference (Logan, 2015). Research suggests that
interactions with technology in problem solving can take different forms (Jacinto &
Carreira, 2013). It is important for future work to examine the different strategies
employed when using CBT to ensure low spatial students are not disadvantaged by
technology-based assessment.
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Appendix A
(All items: © Australian Curriculum, Assessment and Reporting Authority. Used with permission).
[Q.1] A baker made a total of 175 rolls on the 10
weekend. 0.8
o6 high
She made 15 more rolls on Saturday than on 0'4 ——mid
Sunday. ' low
0.2
—-_—-__':-—-z
How many rolls were made on Sunday? 0.0
paper
[Q.2] Ben has 2 identical pizzas. 1.0
He cuts one pizza equally into 4 large slices. 08 high
He then cuts the other pizza equally into 8 0.6 _g
small slices. 04 ——mid
A large slice weighs 32 grams more than a o0 low
small slice. '
0.0 1
What is the mass of one whole pizza? paper
[Q.3] The spinner is used in a board game.
1.0
QF’ -
0.8
0.6 high
dA» 0.4 ——mid
low
Sanjay spins the arrow. 0.2
On which number is the arrow most likely 0.0 .
to stop? paper
[Q.4] Lucy made 4 tree designs using sticks.
There is a pattern in the way the trees grow. 1.0
0.8
0.6 high
Y 0.4 \ ——mid
. "‘n“. |
ree ree ree ree ow
'1|' sticl1( t;r stick25 7Tslicis gsticis 0.2
. ) 0.0 .
Lucy continued the pattern in the same way. paper
How many sticks will Tree 5 have?
[Q.5] The sum of the opposite faces of a 1.0
standard six-sided dice is always 7. 0.8
. high
Hannah rolls three dice. 0.6 '_gd
1Tl
The sum of the top faces is 11. o4 low
What is the sum of the three opposite 0.2
_—
faces? 0.0 _
paper
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MATHEMATICAL KNOWLEDGE AS MEMORIES OF
MATHEMATICS

Wes MaciejewsKi

San José State University, United States of America

| propose that an understanding of a mathematical concept is comprised of both a
conceptual understanding of, and recollections of working with that concept. That is,
a mathematical concept may not be immediately distilled in its abstract form from
lived experience, didactical or otherwise, and this milleu is brought along in
subsequent recollections of the concept. In an effort to balance pedagogical
recommendations for increased conceptual teaching/understanding, | propose that
memories of encountering a mathematical concept improve its utility in novel
problem situations. | support this claim by drawing on the literature on episodic
future thinking and on our developing understanding of how users of mathematics
perform in authentic mathematical situations.

INTRODUCTION

Students receive a constant stream of experiences when learning mathematics — both
external and mental, and taking the forms of sensory, cognitive, social, and otherwise
— this stream of experience is interpreted and coloured by the student's current
knowledge of and dispositions towards mathematics. From this they distil off
mathematical knowledge. How exactly this process of mathematical knowledge
formation takes place has long been a central subject of the cognitive psychology of
mathematics learning. This article argues that mathematics education literature
written from a cognitive psychology perspective has maintained too narrow a focus
on the mathematical content of mathematics learning and ought to consider a
student's broader remembered experience.

A discussion of the role of memory in mathematics learning is noticeably lacking in
contemporary research despite advancements in memory research in psychology over
the last two decades. This is not a new observation, having been identified in the
mathematics education literature three decades ago (Byers & Erlwanger, 1985). This
may be due in part to a conflation of memory and memorizing. | take the stand that,
from a cognitive perspective, knowledge is a part of memory. Therefore, any serious
discussion of the cognitive psychology of mathematical knowledge acquisition and
development must consider the role of memory. My focus here is on the
mathematical knowledge constucted in the mind of an individual. What led to this
constructed knowledge, whether social interaction, bodily movements, individual
reflection, or other situations, is not explicitly considered. | emphasise, however, that
these modes of knowledge construction are not entirely disregarded; as will become
clear, they form the substance of episodic memories.
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The main impetus of this work is to gain insight into how a mathematics learner
forms their idiosyncratic, personal understanding of mathematical concepts. That is, |
am concerned with understanding the development of a student's concept image of a
mathematical concept. Tall and Vinner define concept image as “the total cognitive
structure associated with a mathematical concept” (Tall & Vinner, 1981). This is a
powerful defintion, but has not realised its potential in the literature. | argue, and
substantiate with examples in the Results section, that personal memories — so called
episodic memories — of learning or working with the concept comprise a portion of
this cognitive structure, especially during the initial stages of concept image
formation. As such, these memories ought to receive greater attention in the
mathematics education research literature. In the conclusion of this paper | conjecture
that episodic memories associated with a student’s concept image are what may
facilitate the utilization of the concept in novel situations. This conjecture meshes
well with the current understanding of the role of episodic memories in planning for
general, to-be-experienced events found in the psychology literature.

Episodic and Semantic Memory

The human memory system has been described by a number of qualitative models,
the one used here — attibuted to Tulving (1983), having built on earlier work — has
come to be widely accepted in the psychology community. In this model there is first
a distinction between short- and long-term memory. Short-term memory — also often
called working memory — lasts only less than a minute and is a key resource when
interpreting a current experience. Long-term memory is partitioned into implicit, or
procedural, and explicit, or declarative, memory systems. Implicit memory is the
memory of rote tasks, those that are completed without conscious thought, such as
walking, riding a bicycle, or teaching calculus. Declarative memories are those that
can be explicitly recalled and stated. A further refinement of declarative memory into
two qualitatively, and perhaps neurologically, different memory systems was
proposed by Tulving (1983). Semantic memories are those that are not fixed to a
particular individual's experience and can be known by anyone. That is, semantic
memories are memories of shared, socially-available knowledge. Episodic memories
are held by an individual and pertain to an event experienced by that individual. They
are highly idiosyncratic, contain perceptual and temporal information, and can only
be known by the individual. A memory of learning to ride a bicycle, for example, is
episodic. Even though riding a bicycle is a fairly universal activity, each individual
forms their own unique episodic memories of learning to do so. The analogy with
constructs in the mathematics education literature is clear: episodic memories of a
mathematical concept are a part of a student’s concept image of the underlying
concept.

The purpose of this paper is to present evidence that students experience personal
memories of mathematics when recalling mathematical concepts. These memories
were often voiced freely, without prompting, by the student participants in this study,
suggesting that the memories form a strong component of the students’ concept
Images. These personal memories, | argue, are valuable; in the wider field of the

3-210 PME 41 — 2017



Maciejewski

psychology of memory, episdoic memories are known to improve problem-solving
ability (Taylor, et al., 1998; Schacter, 2012). Further, episodic memories may prove
valuable to education theoreticians, insofar as they often reveal discrete moments in
time in which a student’s knowledge evolves.

METHODS

Student volunteers were recruited from two first-year mathematics courses, covering
linear algebra and calculus, at a major, research-intensive New Zealand university. In
total, 11 students volunteered; 9 from the general stream of the course, intended for
science and business students, and 2 from the advanced stream for mathematics and
science honours degree students.

Students were interviewed individually in two sessions. The results from the second
set of interviews are reported in companion articles (Maciejewski & Barton, 2016;
Maciejewski, Roberts, & Addis, 2016). In the first set of interviews, which forms the
set of data used in the current study, each student was presented with a list of topics
from their mathematics course and asked to rank them according to their own,
personal familiarity with each; 1 for least familiar and 10 for most. The intention with
the personal ranking of the topics was to have an increased diversity of episodic
recollections. The researcher proceeded to ask the following set of questions for the
topics ranked 1, 5, and 10.

For each topic, general questions about thoughts experienced by the participant when
thinking about the given topic were asked first: “Describe the contents of your
thoughts when thinking about [topic X] in as much detail as possible. Importantly, we
are not looking for mathematical accuracy at this stage, we’d just like you to describe
everything that comes to mind when you think about that topic. This may or may not
include 1) mental imagery, 2) conceptual knowledge, and 3) personal memories.”
More specific questions followed: “Can you describe how you came to understand
(topic x) as you do now? Do you recall when you first encountered this topic? When
was that? Can you describe that in detail? Do you understand this topic differently
now than when you first encountered it? What led to this change? (If specific events
are mentioned: Can you describe this event in detail?) Did these experiences come to
mind in the first part of this study (even if you didn’t talk about it)?”

Each of the interviews were recorded and subsequently transcribed. The
transcriptions were analyzed from a phenomenographical perspective: a qualitative,
interpretive  methodology that seeks to understand individuals' idiosyncratic
experiences of a common reality (Marton, 1986). The intention is to describe and
categorize the range participants' experiences with, critically, equal weight given to
each experience; no effort is made to identify which are the most prominent. In this
way phenomenography is a powerful method for empirically uncovering possible
lived experience.

The particular phenomenographical analysis is as follows. Student utterances were
first categorized roughly as episodic, semantic, and other. Semantic utterances were
those that contained “factual” information from an experience and no specific
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reference to the personal nature of the lived experience; semantic memories are
abstract in the sense of not being tied to a particular experienced event. Semantic
memories, and their associated utterances, are not the focus of this study and will
fenceforth not be considered.
Episodic utterances were those that contained particular details specific to a lived
experience. Explicit mention is made of some context of the experience. For
example:
Interviewer: When you think about these methods, do you have any images that
come to mind?

Participant [104]: Well, the image that comes to mind from that is the page in the
course book and just the way the lecturer ... just explains it ... I can see the page and
the way she laid it out and the method, how she goes step-by-step to solve it.

The participant recalls a specific instance of learning a mathematical method while
sitting in class. They recall the lecturer talking and refering to the page in the
textbook which, though not mentioned here, is displayed on a projector for the class.
Utterances classed as “other” were those that did not fit into either of the other two
categories and often included clarifying statements, or comments unrelated to the
questions.

The next stage of the analysis involved creating a categorization of the episodic
utterances following phenomenographical methods (Marton, 1986). First, the
collection of episodic utterances were read through and broad categories were
formed. These are temporal — referencing the, at least relative, time an event
occurred; physical — concerning the interaction of the participant and their
environment; and emotional — the participant's recalled emotions during the
experience. These three cateogories, though originating organically from the data,
agree well with Tulving's description of episodic memories (Tulving, 1983).

Having formed these categories, each utterance was grouped into the category it best
fit. Often an utterance contained elements of more than one category and was
therefore duplicated in the corresponding categories. The categorisation part of the
analysis was halted at this stage; further analysis appeared to lead to too fine
categories which resisted succinct descriptors.

The subcategories were summarized by the researcher and combed for representative
utterances. These are presented in the next section.

RESULTS

| present my analysis of the interview data according to the three identified categories
— temporal, physical, and emotional — and present the corresponding subcategories.
In each of the following subsections, | weigh the category topic against the students'
self-reported familiarity of the mathematical topics. This allows for a richer analysis
and informs conjectures about the role of memory in conceptual development we
make in the subsequent section.

First, | comment on the prominence of these memories. All participants recalled
episodic memories associated with at least one of the concepts. These recollections,
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notably the emotional recollections, were often offered by the participants without
prompting. | take this as an indicator of how pervasive episodic memories are in
students’ mathematical conceptions.

Temporal Aspects
There were two types of responses in this category: 1) first encounter with the
concept, 2) subsequent use of the concept. Participants generally recalled their first
encounters with each concept. However, the vividness of these recollections varied
with the participants' stated level of understanding. Less understood concepts tended
to be associated with more vivid memories of a first encounter.
I: Do you recall when you first encountered [least well understood concept]?
S106: Yep. Because [the instructor’s] accent just made it sound so cool, so, ya I do
remember doing it and using matrices to solve something for it. But | don't remember
what to do with it or anything.
More well-understood topics were associated with less vivid first-encounter
memories.
I: Do you remember when you first encountered [most well understood concept]?
S106: | don't think so, actually ... | have a vague recollection of when | was supposed
to have learned it.
Perhaps not surprisingly, more memories of subsequent work with the concept arose
when the participants discussed more well-understood concepts. Of course, this may
be because more well-understood concepts have been used more and so the
participants have had greater opportunity to form memories of these concepts. This
does not seem to be the case, however. Participants often mentioned using less
understood concepts while solving problems, but these recollections were of “going
through the motions” with the concept.
S105: ...I came across a question in the assignment concerning Taylor Series, | had to
answer it, so | kinda looked in the course book, I looked on the internet, asked my
friend how to do it. He said it's kinda complicated so | looked on the internet and
compared the answer, tried using one method to see if | got the answer...tried using
another...just repeat that until | got the correct answer...l don't really like it, so after |
answered that question, | sort of avoided Taylor Series.

Physical Aspects

Participants mentioned only a small number of physical aspects. Therefore, | present

them here without grouping them further into larger categories. These are:

1) sitting in class:
I: But what comes to mind when you think about [the concept]?
S110: Our lecturer talking about it and me kinda not listening ... it was a Friday
morning, which isn’t so conducive to learning. Um, and she was kinda talking about
it and I wasn’t listening ‘cause they kept relating it to real life and I can’t be bothered
about real life ... It’s the last part of linear algebra as well and the test was coming
up and I ignored it.
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2) reading a book:
S104: | kinda associate these concepts more with the page in the textbook...l
remember pictures. And like, certain bits of the course book that | thought were more
important. So, | can visually remember how the things look on the page.

3) attending a tutorial:
S102: | remember ... I was in the tutor room and one of the maths tutors actually
thought | was stupid for asking such silly questions. And he came over and he
actually explained step by step what he was doing for a couple of things, and he
showed me a couple of little tricks ... it clicked and then I could do those at least,
and then it was just a case of applying that to everything else.

4) working with friends:
I: Can you think of what led to that change of understanding for you?
S100: When | was doing the Taylor Series with my friend ... she was helping me ...
she had written a different number for the denominator, and I didn’t understand why
because from the example it seemed like what | was doing was correct, but then she
explained to me that she was using factorial and | was ‘timesing’ the number, so that
obviously made a difference.

and, 5) revising/reviewing/studying for an exam:
I: Do you recall specific events that led to this change in understanding?
S105: | think the assignment that we had and the test. ‘cause | remember cramming
for the test, 'cause | didn't understand, like, Taylor Series, really. | wasn't quite sure
of them, so, studying for the test with friends and going over practice questions and
searching examples online again.

Emotional Aspects

Though participants were not specificially asked about emotions they experienced

when learning mathematics, all mentioned emotions in connection with at least one

mathematical concept. These covered a wide range. Less understood concepts were

associated with less favourable emotions, such as anxiety, trepidation, confusion.
S101: It was just, like, pretty overwhelming...l really was not looking forward to
learning something new.

Perhaps not surprisingly, more well-understood concepts had more favourable

associated emotions: familiarity, enjoyment, happiness, and confidence, for example.
S101: [I learned this concept on my own] because | was just bored...and | just was
reading it and | kind of got it...and it felt...because, like, once you know how to do it,
it becomes really easy, and it comes with practice, so yeah...l have an image of just
sitting in class feeling pretty smug because | had already know how to do it...so yeah,
it was a lot more pleasant than [the least understood concept]

DISCUSSION

The development of a student's mathematical knowledge may proceed episodically or
semantically, or both. | propose that an exclusive accumulation of either one is
necessarily undesirable. This is certainly the case for episodic memories; indeed,
much of the research in mathematics education in the last half-century cautions
against the accumulation of context-bound knowledge. Given that the same literature
encourages the growth of context-transcending knowledge, it may seem an odd
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suggestion that students should not focus on acquiring semantic memories
exclusively. | highlight a contemporary result from the psychology literature that may
substantiate this claim, while being mindful of the need for further investigation in
mathematics learning.

Contemporary reseach on the psychology of planning for to-be-experienced events
indicates the humans often mentally simulate how an event might unfold and, in so
doing, create episodic memories of the event before it takes place. This episodic
future thinking (Atance & O’Neill, 2001) can facilitate planning and improve
outcomes in general problem solving domains (Taylor, et al., 1998; Schacter, 2012).
The key observation is that episodic future thinking relies on the same neurological
regions and processes as are utilised in recalling episodic memories. Therefore,
effective planning for to-be-experienced events is closely related, and influenced by,
recollecting past events. Given the emphasis placed by some authors (Pdlya, 1945;
Schoenfeld, 1985) on planning in mathematical situations, it appears a worthwhile
endeavour to investigate episodic future thinking in mathematical situations, its effect
on planning, and how such future thinking is affected by episodic memories of
mathematics.

Not much is known about episodic future thinking in specialized, context-specific
domains, such as mathematics. There is emerging evidence that both mathematicians
(Maciejewski & Barton, 2016) and mathematics students (Maciejewski, Roberts, &
Addis, 2016) engage in episodic future thinking when solving mathematics problems.
This is, of course, not the exclusive way of solving mathematics problems; some
problems may invoke automaticity or an existing problem schema, or nothing at all
(Maciejewski & Barton, 2016). What is needed is a better understanding of how a
problem might relate to its solver and of which types of these relationships are likely
to promote episodic future thinking. I conjecture that it is for those problem situations
that are not too familiar to invoke a schema yet are familiar enough that progress can
be made. This conjecture fits well with the literature on general problem solving
behaviour, and further research in the context of mathematics is highly desirable.

One further point to be made is that episodic memories could act as signposts for the
educational researcher. They signal discrete moments, locating the genesis of an idea
or the punctuated evolution of understanding. Treating these memories as such may
aid in deepening theoretical models of knowledge development.

CONCLUSION

This paper presents observations that personal experiences of mathematics pervade
students’ thoughts when recalling mathematical concepts. These episodic memories
are a part of a student’s understanding of the concept and present challenges and
opportunities to educators. On the one hand, an exclusive reliance on episodic
memories of using a concept could result in too-rigid knowledge without wide
applicability. On the other, a diversity of rich episodic memories of mathematics may
facilitate more effective planning in mathematical situations for a student. It is not
clear to what extent educators ought to promote the formation of students’ episodic
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memories of mathematics nor is it clear how best to do this. What is clear, however,
Is that students will continue to form episodic memories of mathematics whether or
not they are attended to by educators. It is up to educational researchers to further
investigate students’ episodic memories of mathematics and ways in which they may
be harnessed to aid students in reaching their potential.
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CONFIDENCE AND COMPREHENSION BUILDING PROCESSES
REGARDING MATHEMATICAL CONTENT

Benjamin Martinez Navarro, Mirela Rigo Lemini

Centro de Investigacién y de Estudios Avanzados del IPN

The authors contend, following from Damasio and Grounded Theory, that the
convincement and comprehension experienced by a student (through distance
interaction with her tutor) occur around a process that results from the confluence of
sub-processes, where the student’s states are a consequence of her actions -in which
she mobilizes content (of linear equations) based on certain forms of sustentation-,
actions that are in turn explained on the basis of previous confidence and
comprehension, added to other tutor conditions.

BACKGROUND AND RESEARCH QUESTION

Several lines of research have highlighted the weight of convincement and security
regarding mathematical facts that classroom agents experience during learning
processes. Krummehuer (1995) for instance, highlighted convincement associated
with argument backings, which he analyzed on the basis of the Toulmin Model. The
omission of Modal Qualifiers Q is salient in his application, as Inglis, Mejia-Ramos
& Simpson (2007) pointed out. The latter authors hold that one of the goals of
instruction should be to develop the ability of students to “adequately” equate types
of warrants with modal qualifiers Q (p.3). From that vantage point, in a detailed
analysis of the confidence states of students, Foster (2016) suggests that students
‘well calibrated’ in a topic trust their correct answers and doubt their incorrect
answers. In contrast, this paper, which follows some ideas of Damasio and takes
direction from Grounded Theory, is interested not only in describing, but in
explaining how the states of confidence, presumption or doubt regarding the
mathematical content that a student experiences with her tutor are built.
THEORETICAL FRAMEWORK

In this study a functional analysis of the arguments proposed by a student is
performed, using the guidance of the Toulmin Model (1984). In that model, an
argument is composed of a Claim (C), data (D) supporting the claim, warrants (W)
that bridge the logical gap between the data and the conclusion, a backing (B) that
includes a general framework on which the argument is based, and the modal
qualifiers (Q).  Two components of B are identified in this work. First, one
consisting of the resources upon which the argument is grounded; those having the
characteristics of “invariant organizations of behavior” are referred to as “epistemic
states” of sustentation by Rigo (2013). According to the latter author, while some
grounds are rooted around mathematical reasons, such as instantiations of general
rules, others are articulated based on extra-mathematical reasons, such as operational
schemes that are activated when a rule is introduced without justification. Another
component of B refers to mathematical content that is mobilized in the argument and
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In said epistemic states. The fragments chosen for this paper deal with solving linear
equations, so in this paper one can distinguish content related to the transposition of
terms and the properties of equality. The 3UV Model (Ursini, Escarefio, Montes &
Trigueros, 2005) is taken as the mathematically accepted version for solving
equations in this paper. According to said model, two of the aspects that must be
fulfilled when solving linear equations are: interpreting the symbolic variable that
appears in an equation as a representation of specific values (1) and determining the
unknown amount that appears in equations or problems, by performing algebraic or
arithmetic operations or both (14). Comprehension is evaluated according to the
above (Fig. 1) taking the mathematical standards of content, epistemic schemes and
logical connections as reference.

C1 Content (B) The content corresponds to the accepted mathematical meaning
(specifically, with aspects 11 and 14 and the properties of transposition
and equality).

C2 Epistemic Schemes Mathematical-type schemes are mobilized (e.g. generalized induction

(B) from specific instances).
C3 Logical Connections = Warrants are conclusive (the allow for the steps to be made from the
(W) data to the conclusion).

Figure 1: Theoretical-methodological Instrument for Distinguishing Comprehension

Rigo & Martinez (in press) suggest that, associated with the epistemic schemes, as
well as with the mathematical content mobilized within them, students experience
states of confidence, presumption or doubt, which Rigo (2013) calls “epistemic states
of convincement” (esc). Toulmin et al (1984) introduce Modal Qualifiers Q in the
functional analysis, and said qualifiers correspond precisely here to the esc.
Following the view of Damasio (2010), Rigo & Martinez suggest that the esc are
certain types of emotions and feelings. Damasio holds that emotions are a complex
set of chemical and neural responses forming a distinctive pattern. These responses
are produced by the brain when it detects an emotionally competent stimulus, that is,
an object or event which presence, real or as a mental remembrance, triggers the
emotion. Rigo and Martinez suggest that beliefs and epistemic schemes act as stimuli
that activate the esc. For Damasio, emotions and feelings are changing phenomena
that act as links triggering chain reactions, where one thing leads to another. Just as
with esc, which are temporary and lead to new beliefs and epistemic schemes that
operate as stimuli that could in turn modify the initial states, leading to a process of
continuous transformation. The esc, in terms of emotion and feelings, are expressed
more or less firmly through patterns of behavior and bodily expression, some of
which are used here as criteria for identifying esc (see Figure 2).
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Elements of The person uses emphasizer language that may reveal a higher degree of

Speech commitment to the truth of what he says. For instance, when the person uses
the indicative form of verbs (e.g. “is”).

Action The subject’s actions are consistent with his speech.

Determination = The person is determined and spontaneously manifests adherence to the truth
of a mathematical sentence.

Interest The participations of a person intervening with interest regarding a specific
mathematical fact in a virtual forum are: systematic (i.e., the subject answers
all questions addressed to him with the greatest detail possible), informative
(his assertions, procedures and/or results are sufficiently informative), clear
and precise.

Consistency In his various interventions, the person shows consistency.

Figure 2: Theoretical-methodological Instrument for Distinguishing confidence
METHOD

The research was undertaken on a distance program which objective was to
strengthen the training of tutors instructing adults in algebra. The data used in the
study was recorded in the Moodle platform for subsequent analysis, and is part of the
interactions between a tutor (Author 1) and his students (Laura, specifically). The
description and, especially, the explanation of the process of building epistemic states
turns to the methodology of Grounded Theory (Corbin & Strauss, 2015), particularly
in terms of the axial analysis and the process-based analysis. Axial analysis allows for
a complex action to be deployed in categories related to conditions (reasons upon
which the subject bases her actions-interactions, and that may be differentiated as
those inherent to the subject, i.e. micro conditions, and those beyond the subject i.e.
macro conditions); actions-interactions (people’s responses to events or problematic
situations) and consequences (anticipated or real results of the action-interaction).
The process analysis is understood as the changes that take place in the action-
interaction taken as the response to changes in the conditions. The set of conditions,
actions-interactions and consequences are considered sub-processes (of a general
iterated process), which consequences may act as conditions of a new sub-process,
which combined with others lead to new actions, and so on and so forth.

ANALYSIS OF RESULTS PART ONE: SUB-PROCESSES

Following Damasio and the Grounded Theory, the process of building the esc is
thought to be composed of a series of sub-processes in which we may identify: A set
of actions-interactions performed by the student, described in the steps Pn (v. 12
Column Fig. below); the interest here is to contrast the additive-related steps with the
division-related steps. Said actions-interactions are examined (v. 22  Column
Figures) under the scope of Toulmin’s functional analysis; the epistemic schemes (S)
activated by the student in her participation stand out in B, as do the contents (C),
while the W refer to logical connections (L) on which Laura bases her solutions. In
keeping with the Theoretical Framework, Laura's comprehension and esc are
consequences generated during and that stem from her actions.
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First Sub-process: First Participation of Laura and the Tutor
The interaction began with the tutor stating the following:
We have certainly solved an equation, but have we reflected on ﬂ
its meaning and usefulness? ... Let’s do the following. If a can Eﬂﬂ-
yellow container weighs 2 kg; a can green container weighs 4kg; l
a purple box weighs 1 kg. a) Is the scale balanced? b) What
would make the scale imbalanced? c) If it were imbalanced, how
could we restore the balance?
d) Using the above, how would you explain the process for finding out the weight of the green
sphere to a learner?
Here, the tutor highlighted the properties of equality. However, in the first
participation (v. Fig. 3) Laura discarded the suggestion and followed her own

strategy:

Laura’s Participation Functional Analysis E.S. and
Comprehension

P1: 9= 7+x; P1: Operational
a) we perform the famous “solving”, | 9=T+x x=9-7 | comprehension
b) if 7 is being added, it moves over W: | L:If 7 is being added we move it over by and Confidence
subtracting, and we get: subtracting
c) x=9-7; B: | C: Isolating (transposing)
P2 x=2 S: Operational and Explicitation Scheme

Figure 3: Analysis of Laura's first participation.

In P1 (Fig. 3), Laura conclusively (C3) converted an initial equation to an equivalent
one by transposing terms (as per I1 and 14, C1), which she introduced without
justification, thus activating operational-type epistemic schemes (C2). Moreover, the
presence of an action scheme is salient (as we shall see, it acts as an epistemic
scheme of sustentation); we will refer to it as an explicitation scheme, and it is of an
extra-mathematical type; it entails making general properties involved in solving a
task explicit by using natural language (v. P1a), using natural language to explain
how these general properties apply to specific cases (v. P1b) and making the
mathematical properties involved explicit by using mathematical language (v. P1c).
It follows from the above that Laura reached an operational-type level of
comprehension here (one in which the content and logical structure are consistent,
but are based on operational schemes). Additionally, Laura showed confidence in the
content, given the following: she used her conclusion in the following step of the
resolution; she avoided use of mitigators when stating her plan; she showed
determination in using a different strategy from the one suggested by her tutor; and
she demonstrated interest in explaining it. The 2nd sub-process will show how this
confidence and comprehension serve, together with the intervention of the tutor, as
conditions for the subsequent actions.

Second Sub-process: Second Participation of Laura and the Tutor

Faced with Laura's response, the tutor stated the following in an effort to activate

within Laura mathematical epistemic schemes in her solution of equations:
Once the equation is stated we often “transpose terms”, but why does it work? To find out ...
Click the link and assemble the equation on the scale. Describe each step of your solution. For
example: -2x-4=4x-4; To isolate x | do the following: T1. I add 4 on both sides. We now have -
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2x=4x; T2. | add 2x to both sides. Then we have: 0=6x; T3.- | divide both sides by 6. We get:
0=x. the solution is O!!!

Figure 4 shows Laura’s response to the Tutor’s participation.

Laura’s Participation Functional Analysis E.S. and
Comprehension
P1: Pl1: Gestating
a) Equality Property: adding some number to | [ -3x=x+8 —_—r 3x+6=x+8+6 | confidence and
both sides of an equality. W: | L: When we add +6 comprehension in
-3x=x+8 B: | C: Property of equality not directed addition, and
b) when we add +6 towards solving equations doubt and lack of
¢) -3x+6= x+8+6; S: Explicitation and Mathematical comprehension in
2 Scheme. .. p
P2:3x = 14x division.
P3: when we subtract -3x 3x-3x= 14x-3x;
P4:x=11x
P5:x/11=11x/11; P5:
P6:0~x x=11x —_— x/11=11x/11
So x=0!!! W: | L: When we divide by 11
P7: 1 found that addition and subtraction in the B: | C: Property of equality directed
equality property always apply, however, there towards solving equations
are cases in which multiplication and division S: Explicitation and Mathematical
) Scheme.
don’t apply.

Figure 4: Analysis of Laura’s second participation.

The presence of the explicitation epistemic scheme stands out anew (v. Pla-Plc),
which Laura using it again to suggest an induction (mathematical scheme) or
generalization of the additive property (V.P1a), that the tutor only mentioned in a
specific instance (v. T1), and that further served for her as a guide to understand the
new content the tutor introduced, which by the way acted as a macro condition. In
this step P1, the student obtained equivalent equations (content consistent with 14,
C1) conclusively (C3), but did not reduce them (inconsistent with 11, C1); this shows
some degree of comprehension of the additive case of the property of equality
(derived from the activation of mathematical and extra-mathematical epistemic
schemes), but a lack of comprehension regarding its use in solving equations. In step
P5 -related to the content associated with the property of dividing both sides by some
number- the student once again turned to the explicitation scheme, although she only
used it to state the property at stake in mathematical language, for which the tutor
incidentally only described one way of using. Unlike in step P1, she justified step P5
with a property of equality that in addition to allowing her to obtain equivalent
equations (content consistent with 14), it also enabled her to reduce the equation
(consistent with 11). Here Laura shows comprehension of the division case of the
equality property and comprehension of its application in solving equations. In terms
of her epistemic states, the student showed greater confidence regarding the
properties of equality in terms of addition and subtraction in her comment of step 7,
which in her words “apply to all equations”, but less confidence in the multiplicative
properties of equality (in addition to a lack of understanding of the topic), which -the
student says- “don’t always apply”. Future participations will show how her
confidence regarding the additive properties of equality increases throughout the
episode alongside increased comprehension, while doubts regarding the properties
associated with division gain depth in parallel to her lack of comprehension.
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Third Sub-process: Third Participation of Laura and the Tutor

In their third participation, the tutor asked the following questions:
Hello Laura. Very well! You are talking about the properties of equality.; 1.- What are the
properties of equality and what do they do for us?; 2.- Could you share with us what each of the
properties of equality that you mention in your participation refer to?

Figure 5 shows Laura’s responses.

Laura’s Participation Functional Analysis E.S. and
Comprehension

P1: Does not apply. Consolidation of

a) The properties of equality are addition, subtraction, multiplication confidence and

and/or division by a number on both sides of the equation, and they help comprehension in the

us solve for a variable or an unknown quantity on one or both sides of addition property,

the equation. and maintains doubt

P2: P2: and lack of

a) I insist that the property of equality is to add and/or subtract a number | [ 7+8= 12+7+8= comprehension of the

to both sides of the equation, here is an example from the Advanced || 10+5 _|9 10+5+12 division property.

Operations book, page 120 W: | L: when we add 12

T+8=10+5 B: | C: Property of equality

b) when we add 12 to both sides we have: not directed towards

c)12+7+8=10+5+12;27=27 solving equations

P3: LH Exp11c1lat10n and

b) and if we subtract we have: Suthorty

c)7+8-12=10+5-12;3=3

that’s how they are applied.

Figure 5: Analysis of Laura's third participation.
In P1, Laura included division-related contents, to which she had associated doubt
and lack of comprehension in her previous participation. In this third participation,
she maintained those states, which can be seen by her brief description and lack of
action regarding the content. In contrast, for the properties of equality referring to
addition and subtraction (v, P2), with which she associated confidence in her
previous participation, the student activated her explicitation scheme. For the addition
property, she attached a scheme by authority to that explicitation scheme, by copying
an example from a book. She then transferred that knowledge to the subtraction case,
where she made her own example (with content C1 and structure C3 consistent).
With these actions, Laura consolidated her confidence (revealed by her use of the
emphasizer “I insist”) and her comprehension of the properties of equality for
addition and subtraction.
Fourth Sub-process: Fourth Participation of Laura and the Tutor
In this new intervention, the tutor asked the student to use the properties of equality
to solve: -9x+4=12x-15. Fig. 6 analyzes Laura’s response.

Laura’s Participation Functional Analysis Epistemic State

P1: 9x+4=12x-15 P1: Increase in

9x+4-4=12x-15-4 Cos — OxH4-4-12x-154 ‘ confidence and

P2:9x=12x-19 12x-15 comprehension in the

P3:0x+3x=12x+3x-19 W: | L: When we addition property,
subtract 4

P4: 6x=15x-19 B: | C: Properyy of and doubt a1:}d lack of

P5: 15x-6x=-19 equality directed comprehension of the

T TP ;‘::g_‘lsni"l"mg division property.

P7: If | want them to become positive I must multiply S: Explicitation and

by -1. Repetition.

P8: Wow! I did this one several times and always got

the same answer, so I’'m sure of my work.

Figure 6: Analysis of Laura's fourth participation.
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Two matters are salient in this participation. For the additive case of the equality
properties, about which Laura showed confidence in previous interventions,
activation of the explicitation scheme is noteworthy, in mathematical language to
obtain equivalent equations (as per 14, C1) and the value of the variable (as per I1,
C1, which she only does for the independent term). In this sub-process, Laura
showed confidence and increased comprehension, transferring additive properties to
the context of solving equations. Possibly in order to increase her confidence, the
student turned to the epistemic scheme of repetition; she recognizes that this scheme
acted as a source of confidence in the result obtained when she states “I did it several
times ... so I’'m sure of my work™ (P8). In contrast, of note is the fact that Laura
performs increasingly fewer actions related to the properties of equality that refer to
division, thus showing (as in previous cases) her doubt and lack of comprehension
regarding that property.

Laura’s Fifth Participation: Explicitation of Epistemic States

The comprehension and confidence in the additive properties of equality, which
Laura consolidated in her fourth intervention, and her doubt and lack of
comprehension regarding division also in said participation and of which she became
aware to a certain extent, both served as conditions for her to finally make those

states explicit in her fifth participation:
[In the fourth participation] ... I was ... doubtful, as despite using several properties of equality
(addition, subtraction, multiplication) I always got the same result, and that’s why I’m sure of
my work. | also kept thinking about whether | failed to apply another equality, do you think |
did? Classmates, can you help us?

ANALYSIS OF RESULTS PART TWO: GENERAL PROCESS

Fig. 7 illustrates the configuration process for epistemic states that, imbricated in the
evolution of comprehension, are broken down into iterated sub-processes. The
consequences that stem from them (epistemic states and the student’s
comprehension) together with the conditions of the tutor act as new conditions that
lead to actions-interactions of the student, in turn deriving into certain states of
convincement and comprehension, reinforcing the former, maintaining or mitigating
them. In this process, confidence in and comprehension of an addition topic coexist
with doubt and lack of comprehension in division.

FINAL CONSIDERATIONS A NOTE ON DIDACTICS

Epistemic states make up a sophisticated caneva, which components constantly speak
to each other so as to configure themselves one step at a time. This process is
relevant to learning. According to Damasio and the research presented, stimuli that
produce confidence or doubt are never definitive. That is to say, the connections
between beliefs and grounds, on the one hand, and epistemic states, on the other, are
not fixed. The connections are re-trainable and can be re-defined under certain
conditions. One possible re-training strategy for epistemic states could consist of
subjecting a student to continuous experiences, accompanied by the teacher and
opportune guidance, so the student becomes aware of the confidence gained by
mathematical assertions and the epistemic states that support them, and of the
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confidence that rules of inference activate in him, by reinforcing or re-directing his
connections. Indeed, awareness of her epistemic states and the comprehension gained
in her fifth participation were possibly the result of Laura’s constant activation of her
explicitation scheme, fostered deliberately by her tutor, which enabled her at that
point to ask for help suited to her learning needs.

Second Participation of Laura and the Tutor

First Participation of Laura Third Participation of Laura and the Tutor Fourth Participation of Laura and the Tutor

and the Tutor

Initial Conditi

Initial Conditi

Initial Condition:

Initial Conditions

Participation of the Tutor:

Promotes the properties of
equality

[\ Participation of the student

Epistemic states and
comprehension of the student
in her first participation

Participation of the Tutor

Content: properties of equality
directed towards solving
equations
Schemes: Mathematical and
Explicitation about how to

apply properties 1

\ Participation of the student

Epistemic states and
comprehension of the student
in her second participation

Participation of the
Tutor
Requests a definition of
the properties of
equality, inquires about
their use and requests
an application in

solving equations. |

A
FI ¥ Participation of the
student

Epistemic states and
comprehension of the
student in her third
participation

Participation of the
Tutor

Request that equations
be solved using the
properties of equality

Action of the student Action of the student Action of the student Action of the student V
Properties of equality Praperties of equality (division) Properties of equality Properties of equality Properties of equality | Properties of equality
(addition) (addition) (division) (addition) (division)
Contents: Tr ion of - - - - -
Lerms Contents: Properties of Contents: Properties of equality Action of the student Action of the student Action of the student Action of the student
» N i i i T8 i i h i . erti i
Lo i, Conctw| | vy g | oo vy | [ | comenspopiesct | st vyt | [ Content poertsof | Sup et 0 the
: i ) ) h ¢ h ! equality directe ivision erty.
Sch‘?ﬂ.wsi Opleramonal and Logical Structure: Conclusive Logical Structure: solving equations does not apply it. q § Y . property.
Explicitation in Natural and . . ) h . towards solving
Mathematical Language Schefnles. Matlhemaucal and Conclusive ) Logical Str\{cmre‘ equations
Explicitation in Natural and Schemes: Mathematical and Conclusive s "
Mathematical Language Explicitation in Natural and Schemes: Mathematical, "mcmf‘“
Mathematical Language Explicitation in Natural and Cancluswcl i
Mathematical Language, \v Schemes: Repetition ¢
w v Authority of the book. and Explicitation in
Mathematical
Language
Consequence Consequence Consequence Consequence
Confidence and Operational Properties of equality Properties of equality (division) Properties of equality Properties of equality Properties of equality | Properties of equality
Comprehension (addition) {addition) (division) Iditi (division)

Increased confidence Increased doubt and
and comprehension in
the additive property
directed towards

solving equations.

Consolidation of confidence Maintains doubt and
and comprehension in the
additive properties not
directed towards solving

equations.

First, confidence and
comprehension regarding
division, but in a second
instance doubt and lack of
begin to gestate.

Confidence and comprehension
of the addition property but
lack of comprehension
regarding its use in solving

lack of comprehension
of the division property.

lack of comprehension

of the division property
directed towards
solving equations.

Figure 7: Process of Epistemic States and Comprehension
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STUDENTS’ RELATING OF INTEGRALS OF FUNCTIONS OF
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Action-Process-Object-Schema Theory (APOS) is used to study students’ geometric
understanding of partition of a rectangular domain and corresponding Riemann sum
of an integral of a function of two variables. In this paper we mainly consider the
most basic case of a partition, that consisting of a single rectangle (the domain
itself). Semi-structured interviews were conducted with ten students who had just
finished taking a traditional course in multivariable calculus. Results show that these
students had many difficulties with even the most basic mental constructions needed
to relate Riemann sum and double integral. This is an important observation since
some of these mental constructions are commonly assumed to be obvious to students.

INTRODUCTION

There is not much research in the mathematics education literature dealing with the
integral multivariable calculus. In one of the few papers we know about, McGee and
Martinez-Planell (2014) report on the positive effect on student learning of
consistently using a specific semiotic chain to guide instruction of integration of
functions of two and three variables. This semiotic chain stressed the importance of
conversion processes relating geometric and numeric representations, and also
stressed the role of treatments relating different symbolic representations: finite
extended sum, sum in sigma notation, the limit of that sum, and the double integral in
standard notation. While the case of the multivariable integral calculus has been
much neglected in the literature, the teaching and learning of integrals of functions of
one variable has received considerably more attention. In particular, we base some
ideas of our work on that of Sealy (2014) who proposed a framework for student
understanding of Riemann sums and definite integrals consisting of an Orientation
Pre-layer, and four other layers: Product, Summation, Limit, and Function. She found
that the Orientation Pre-layer, in which students attend to the individual meaning of
f(x) and Ax, and the Product Layer, in which the product f(x)Ax is given meaning,
played a key role in allowing student understanding. This is an important observation
given the apparent simplicity of the operations involved in forming such a product. In
this article we build on the work of McGee et al. (2014) by stressing the importance
of relating geometric, numeric, and contextual representations, as well as by initiating
a detailed theoretical study that attempts to explore from the perspective of APOS
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Theory the reasons, in terms of mental constructions, for students’ improved
performance in the semiotic chain mediated instructional approach used by McGee et
al (2014). We also base part of our work on Sealy’s (2014) observations, which are
now interpreted in terms of integrals of functions of two variables. Consistent with
her underscoring the importance of the Orientation Pre-later and Product Layer, we
restrict our attention on this article to what would be the equivalent ideas of attending
to the individual meaning of f(x,y), Ax, Ay and giving meaning to the product

f(x,y)AxAy relative to the corresponding double integral of f.

THEORETICAL FRAMEWORK

We use APOS Theory (Arnon, et al, 2014). In APOS, an Action is a transformation
of a mathematical object that is perceived as external. It may be the rigid application
of an explicit algorithm or of a memorized fact or procedure. The Action is external
in the sense that it is relatively unconnected from other mathematical knowledge so
that the individual will not be able to justify it. Repetition and reflection may allow
an Action to be interiorized into a Process, where the Action is now perceived as
internal, so that it may be imagined and reflected upon without having to explicitly
perform the Action. The Process is perceived as internal in the sense that it has
meaningful connections to other mathematical knowledge so that the individual will
be able to justify it. When an individual feels the need to apply Actions on a Process
and is able to apply or imagine applying such Actions, then one says the Process has
been encapsulated into an Object. A Schema is a coherent collection of Actions,
Processes, Objects, and other previously constructed schema related to a specific
mathematical notion. In this article we focus on the interiorization of Actions into
Processes and do not directly consider the mental constructions involved in
constructing an Object conception or Schema development.

When applying APOS it is necessary to use a genetic decomposition (GD). This is a
conjecture of mental constructions students may do in order to understand a specific
mathematical topic. The GD is based on the mathematics itself, teaching experience,
and any previous data or research study. A GD is not meant to be unique. It is used to
analyse students’ mental constructions when solving mathematical problems on the
specific topic of interest. This potentially results in refinements to the GD to improve
its capacity to predict student behaviour and guide instruction. In the following
paragraphs we include the portion of the GD which was tested in this study with
student interviews.

Recognition of rectangle and function

Actions are performed on a given function in any representation with domain
restricted to a rectangle, to produce the geometric representation of the restricted
domain either as a subset of the Cartesian plane or as a subset of 3D space
(identifying (x,y) with (x,y,0)). Actions are performed on the same function to obtain
values of the function on the given domain and to represent them in the 3D space.
These actions are interiorized into a Process to represent the graph of the function
over the given rectangle together with the rectangle so that the student can imagine
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the relation between function and rectangle as a graph in space over a rectangle in the
xy plane.
Forming one term of a Riemann sum

Actions of evaluating the given function of two variables at a specific point of a
given sub-rectangle of its domain, multiplying it by the length and width of the
rectangle to obtain a product f(a,b)AxAy are done. These actions are interiorized into
a Process which can be coordinated with conversion Processes between different
representations of function, rectangle, and given point. The resulting Process allow
representing the product in space as a rectangular prism and also recognizes the units
of this product when necessary.

Recognition of underestimate, overestimate, and exact value

Given a continuous function in different representations defined on a rectangle, with
the function simple enough so that its maximum and minimum values on the
rectangle may be quickly recognized without doing any explicit computation, the
Actions of obtaining an overestimate and an underestimate of the product f(a,b)AxAy

are done. These Actions are interiorized into a Process when these estimations are
calculated for the same function on different rectangles or for different functions in
different rectangles. Actions are performed to change the chosen point in order to
construct a rectangular prism that better approximates a given exact value of the
volume between surface and rectangle. These Actions are interiorized into the
Process that makes it possible to recognize that for a continuous function defined on a
rectangle, there is a point somewhere on the rectangle that will produce the exact
value of volume between surface and rectangle or of the quantity being computed.
Forming a partition and computing a value in each sub-rectangle of the
partition

Given two small specific positive integers (not in symbolic form, but actual
numbers), n and m, the Action of subdividing given intervals [a,b] and [c,d] into
subintervals of equal length Ax=(b—a)/n and Ay=(d-c)/m both numerically and
geometrically in order to obtain a subdivision of the rectangle [a,b]x[c,d]. These
Actions are interiorized into a Process of subdivision of rectangles so that the student
can imagine how for any given positive integers, n and m, the respective subdivisions
of [a,b] and [c,d] give rise to a subdivision of the rectangle [a,b]x[c,d] without
having to explicitly do so for any other specific values of n and m. The Action of
choosing a prescribed point (x,y;) on each sub-rectangle of the given partition and

producing the products f(x,y;)AxAyis repeated for different points and the result is

interpreted numerically (as a collection of numbers) and geometrically (as a set of
rectangular figures in space), and verbally (interpreting the products in terms of its
units). These Actions are interiorized into a Process that enables imagining forming
such products for the collection of sub-rectangles of any given partitioned rectangle.
At this point the student might not think of adding the products over all rectangles in
the partition.

PME 41 - 2017 3-227



Martinez-Planell and Trigueros

METHOD

The above portion of the GD for integral of functions of two variables was used to
prepare an interview instrument to test it. The instrument was used in semi-structured
interviews with 10 students taking a multivariable calculus course in a public
university in Puerto Rico. The interviews took place in the last week of a semester
course. The students were chosen by their professor so that 4 were over average, 3
average, and 3 under average, as defined by the course average grade they had before
presenting the final exam. The professor had more than 25 years of experience, and
had taught the course repeatedly over the years. The course was “traditional” in the
sense that most of the classroom time was dedicated to lecturing, and the textbook
(Stewart, 2012) and syllabus were followed very closely. In particular, since the
professor was not one of the researchers of this article, no classroom or homework
activity was explicitly guided by the GD. Thus APOS is used in this paper to describe
the mental constructions demonstrated by a group of students who completed a
traditional lecture/recitation course, as discussed in Arnon et al. (2014, p. 106).

The interviews lasted an average of 46 minutes. They were recorded, transcribed,
individually analysed by the researchers, and differences were negotiated. Each
interview problem was also graded on a 0 to 2 scale.

The interview problems are summarized below.

(1a) The following is the complete graph of function z=f(x,y). Represent the
domain of f in the figure [See Figure 1; the graph appeared in all parts of problem 1,
except 1b]. (1b) Let g(x,y)=x*+y be a function with domain restricted to 0<x<?2

and 1<y<2. Represent the domain of the function in three-dimensional space. (1c)
The above functions f and g are the same. If Ax=2 and Ay =1, what is the numerical
value of f(0,1AxAy and what does it represent geometrically? (1d) Let Ax=2 and
Ay =1. How does f(0,1)AxAy compare with J) T, y)dA? [No numerical computations

D

are needed in parts d, e, f, and g] (1e) How does f(2,2)AxAy compare with
J) T, y)dA? (1f) Is there any point (a,b) in the domain D of f such that f(a,b)AxAy is

D

equal to || f(x,y)dA? (1g) Let ax=2 and Ay=1/2. Consider the Riemann sum f

D

(0,D)AxAy + f (0,1.5)AxAy + f (1,1)AxAy + f (1,1.5)AxAy of the integral J) f(x, y)dA.

What does the Riemann sum represent geometrically and how does its value compare
to that of J) T, y)dA?

D
(2) Let p be a function defined on a region D of the plane. Suppose that D models a
thin plate whose surface has a contaminant. If x and y are measured in centimetres
and p(x,y) is the density of the contaminant in units of mg/cm? what does a term of

the form p(0,1)AxAy in a Riemann sum represent and what does | p(x, y)dA represent?
D
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RESULTS

Students showing an action conception

APQOS states that the overall tendency of students when dealing with different
problem situations involving a specific concept, will be different, depending on
whether the student thinks of the concept as an Action, a Process, or an Object. Nine
of the ten interviewed students showed an Action conception of Riemann sum and
double integral over a rectangle. We include below excerpts showing one
representative student’s responses and how his difficulties can be explained in terms
of the lack of interiorization of some of the Processes conjectured in the preliminary
GD. In this short article we are constrained to showing a few sample transcripts of
one specific student, without examining the other students’ overall tendency and
specific difficulties. The reader should keep in mind that all students showing
behaviour consistent with an Action conception did so in multiple instances, and that
each of the difficulties exemplified below were shared by several students.

As observed in Martinez-Planell and Trigueros (2012), students tend to have
difficulty understanding the notion of domain of functions of two variables, and
particularly, restricted domains. This was observed with Luis and 8 of the 10
interviewed students.

Interviewer: (in 1a) so you used set notation [correctly] to tell me what is the domain.
Could you represent it as part of the figure? [See Figure 1]

Luis: I can tell you what the domain is but if I don’t have a function I don’t think I can
tell you the exact point where each of the points in the graph is. | can tell
you that in x2 and y1 it will be this point here [darkening (2,1, f(2,1)) in
Figure 1], and in x0 and y1 it will be this point here [darkening (0,1,
f(0,2))].

Interviewer: So, is the graph part of the domain?

Luis: No, the domain is obtained from the graph. I can obtain the domain having the
function but to do so | have to define the function.

Interviewer: Is there any way to represent that set of ordered pairs you gave me as part
of that figure?

Luis: Well, having these two limits the only thing | can tell you is that the function is
enclosed by these two limits [referring to 0<x<2 and 1<y<2] but I
can’t tell you which is the function because if I’'m going to graph these
two domains I’d be left with a rectangle and the function is inside this
rectangle, so it would be... [See Figure 2]. The only thing this tells me is
that it is enclosed by all this and I’'m only talking about the xy plane, I’d
be missing z, that is, with x,y | can get z.

Interviewer: So the domain, is it only x and y or may it also include z?

Luis: The domain may include the z.

In the above excerpt, Luis gives evidence of not having interiorized a Process to
recognize the relationship between domain rectangle and function. He seems to be
aware that the domain is formally a set of ordered pairs but also seems to believe that
each ordered pair (x,y) in the domain is represented in three-dimensional space by its
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corresponding point on the graph rather than by (x,y,0). As could be expected, he
went on to show difficulty representing terms of a Riemann sum and partitions
graphically.

Figure for Problem la and Luis’ drawing Luis’ drawing for problem la

Figure 1: Luis’ work and drawings for Problem 1a

Interviewer: does the product f(0,1)AxAy represent some geometric entity?

Luis: I think of AxAy as an area, as the area at that point.

Interviewer: And f(0,1), how do you think of it geometrically?

Luis: | see it as a z... as see it as the height in that function... at that same point, what is
the height of that function...

Interviewer: So you just referred to AxAy as an area and to f(0,1) as a height, then
when one multiplies area times height...

Luis: That is what I don’t know

The above excerpt exemplifies that a student might know the meaning of the
individual components of f(0,1)AxAy but might not be able to do the Action of
putting them together to form one term of a Riemann sum and to interpret it as the
volume of a rectangular prism, as conjectured in the genetic decomposition. So in
problems 1d, 1e, 1f he could not do the necessary Process to relate the given term to
an underestimate, overestimate or exact value of the integral, another of the Processes
contemplated in the GD. Luis went on to state that the double integral represented the
surface area, and then latter on to argue that it represented the volume of the surface
itself. He was also unable to make sense of the four-term Riemann sum in problem 1g
nor relate it to the integral. In problem 2, where the function was given as a rate, Luis
also showed not to have interiorized the Process involved in forming a term of the
Riemann sum. When analysing the units of p(0,1)AxAy he stated:

Luis: ... it will end up in milligrams since | have cm?... which is Ax times Ay ... | have
the function... density of the contaminant in units milligrams per cm?...
this will give me a constant in milligrams.

Interviewer: ... What does the double integral of p(x, y)dA represent?

Luis: It would be the total density of the figure.

Interviewer: What units would you get from computing the double integral?

Luis: What it measures is volume.

It can be observed that Luis responds according to memorized scripts, consistent with
an Action conception. He did not relate Riemann sum to the integral.
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Some of the nine students who were able only to perform Actions considered f(0,1)
as “a point” but would not relate it to a length of a line segment. Some thought of it
as the thickness of the surface and argued that the double integral would compute the
volume of the surface itself. Some of these students did not show flexibility in the use
of variables and still thought of Ax and Ay as related to a rate of change, derivative
or slope. Even when shown the geometric meaning of f(0,1)AxAy with a drawing of a
rectangular prism in space most still had difficulty making sense of the partition and
different terms of the Riemann sum in problem 1g. These results evidence the
Importance of constructing the Processes conjectured in the GD so that students can
overcome these difficulties.

Students showing a process conception

Only one of the ten interviewed students, Fermin, showed behaviour consistent with a
Process conception of Riemann sum and its relation to the integral of a function of
two variables over a rectangle. In problems 1a and 1b he gave evidence of having
constructed a Process to imagine function, rectangle and their relation (See Figure 2).
In problem 1c he also gave evidence of doing a Process to put together the terms
f(0,1), Ax, Ay and interpret the resulting product as the volume of a box (See Figure

2).

Drawing for Problem 1a Drawing for problem 1c Drawing for problem 1g

Figure 2: Fermin’s work and drawings for Problems 1a, 1c, and 1g

In problems 1d, 1e, and 1f he was able to argue the cases when he obtained an
underestimate, an overestimate, and, with some help, the exact value. Also, in
problem 1g he gave evidence of understanding the corresponding partition and the
relation between the Riemann sum and the double integral.
Fermin: ... the change in y is 1/2 the change in x is 1. Let me draw region D on the xy
plane, and one took as sample points, (0,1) which would be here, (0,1.5)...
[He draws two of the boxes; See Figure 2] one would then take the four
cubes under the function. How does this value compare? It would be a
more approximate value... to the value of the double integral of f(x,y)... it
would be a smaller value.

DISCUSSION AND SUMMARY

Although one would think that recognizing the relationship between a rectangle, the
sample point, and the function in a partition corresponding to a Riemann sum of a
double integral of a function of two variables, putting these quantities together in a
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product, and representing that product as the volume of a corresponding box in three-
dimensional space, is a simple idea, readily understood by most students, that seems
not to be the case. This stresses the fact that these mental constructions must appear
in the GD of integrals of functions of two variables and should be considered in
instruction. Indeed, the interviews were scored and of the possible 20 points that
could be obtained, the best performing student, Fermin, obtained a score of 17; the
next best performing students obtained scores of 7.5, 7, and 6.5 respectively. The
average for the remaining six students was 1.6 out of 20 possible points. Only one
student showed behaviour consistent with a Process conception and the nine other
students gave evidence of Dbeing limited to an Action conception, applying
memorized facts, not being able to imagine Actions without explicit computation,
rigidly applying algorithms, and not relating symbolic and geometric representations.
For the most part, these students did not recognize the geometric interpretation of a
Riemann sum, the units and the meaning of a Riemann sum when the function is
given as a rate, or its relation with the corresponding double integral. Students also
showed not to have constructed Processes for recognizing underestimates,
overestimates, and the possibility of choosing a sample point to obtain the exact value
of a double integral over a rectangle. Also, most students did not manage to discuss
the partition in problem 1g. Hence this demonstrated that all portions of the GD are
needed in the construction of the integral of two variable functions. The case of
Fermin suggests that it is possible to construct a Process conception of Riemann sums
and their relation to a double integral in a traditional classroom. However, this
study’s results also suggest that the traditional mode of instruction may play an
important role in limiting the possibility of students’ understanding. An investigation
of this aspect is left for future studies.
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In this paper we explore the ways in which mathematicians talk about explanation in
their research papers. We analyze the use of the words explain/explanation (and
various related words) in a large corpus of text containing research papers in both
mathematics and physical sciences. We found that mathematicians do not frequently
use this family of words and that their use is considerably more prevalent in physics
papers than in mathematics papers. In particular, we found that physicists talk about
explaining why disproportionately more often than mathematicians. We discuss some
possible accounts for these differences.

INTRODUCTION

The notion of explanation in mathematics has received a lot of attention in both
mathematics education and the philosophy of mathematics. In mathematics
education, scholars have been particularly interested in proofs that explain
mathematical theorems (i.e. proofs that provide an insight into why a mathematical
claim is true) and their role in the mathematics classroom (e.g. Hanna, 1990).
Philosophers of mathematics have discussed at length possible equivalents for
mathematics of existing philosophical theories of scientific explanation (e.g. Steiner,
1978). Some of these discussions bring to bear the extent to which explanation is
relevant to the actual practice of mathematicians and often cite individual
mathematicians’ views on mathematical explanation (more often than not that
mathematician seems to be Henri Poincaré, Paul Halmos, or William Thurston). In
this report we explore the extent to which mathematicians talk about explanation in
their research papers, and the ways in which they do so.

LITERATURE REVIEW

In an influential paper in mathematics education, de Villiers (1990) argued that proof
serves several different roles in mathematics, that proof is not only used in
mathematics as a way to verify results, to provide conviction of the truth of those
results (see also Bell, 1976). One of those other functions of proof was to explain
mathematical results, to provide an insight or understanding into why these results
were true, as opposed to just evidence in support of that result. Hanna (1990) made a
similar distinction in the context of the teaching and learning of mathematics,
discussing the idea that certain proofs fulfilled this explanatory function better than
others, to the point that among the set of all proofs one could identify proofs that
explain why a theorem is true, while others simply demonstrate that a theorem is true.
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Mathematics educators have generally suggested that in the mathematics classroom,
mathematical explanation should be an important, if not the primary role of proof (de
Villiers, 1990; Hanna, 1990; Hersh, 1993).

This distinction between proofs that explain and proofs that demonstrate has a longer
history in the philosophy of mathematics. Steiner (1978) put forward a model of
mathematical explanation, arguing that a mathematical proof could be better defined
in terms of what he called a characterizing property of a concept in the theorem, as
opposed to other alternative defining characteristics such as the abstractness or the
generality of the proof. Steiner’s top-down approach to modeling mathematical
explanation by providing a general definition of explanatory proof (and thus creating
an absolute distinction between explanatory and non-explanatory proofs) has been
criticized by other philosophers of mathematics. In particular, Hafner and Mancosu
(2005) argued that ascribing explanatoriness to specific proofs should be done based
on practicing mathematicians’ evaluations, not philosophers’ own intuitions (such as
Steiner’s). The extent to which practicing mathematicians not only agree with
philosophers’ characterization of mathematical explanation, but simply talk about
explanation in their practice plays an important role in the general argument for the
existence of explanation in mathematics (which not all philosophers believe). As
such, it is not uncommon for a discussion of mathematical explanation to mention
how much mathematicians talk about it. For example, Steiner claimed that
“mathematicians routinely distinguish proofs that merely demonstrate from proofs
which explain” (p.135), and Hafner and Mancosu (2005) supported their claim that
mathematicians seek and value explanation in mathematics by presenting several
examples of what they called “explanatory” talk in mathematical practice: passages
of research mathematics papers in which the authors explicitly discuss the role of
explanation in their own work. However, we do not currently have empirical
evidence, other than these small selections of introspective accounts, about the extent
to which talk about mathematical explanation is part of mathematical discourse. We
believe one of the reasons this has not been studied at a larger scale may be
methodological: a researcher would have to be able to process and analyze a large
number of mathematical research papers or conversations among mathematicians.

One method of studying mathematical discourse at such a scale is to use the
techniques of corpus linguistics, a branch of linguistics that statistically investigates
large collections of naturally occurring text, known as corpora. Methods developed
by corpus linguists can be used to investigate many different types of linguistic
questions. Here, we report a study that employs some of these techniques to address
the following questions: to what extent do mathematicians discuss explanation in
their research papers, how does it compare to the extent to which they discuss other
important related notions (such as showing or proving given mathematical results),
and how does it compare to discussions about explanation in other types of scientific
discourse?
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THEORETICAL PERSPECTIVE

Discussions about mathematical explanation tend to differentiate between
explanations of other mathematics (i.e. mathematics X explains mathematics Y, or X
Is an explanatory proof of theorem Y), and explanations of physical phenomena (i.e.
mathematics X explains physical phenomenon Y). Colyvan (2011) refers to these two
types of explanation as intra-mathematical and extra-mathematical, respectively.
Here we focus on intra-mathematical explanations.

Hafner and Mancosu (2005) further differentiated between two uses of intra-
mathematical explanations: those that are “instructions” on how to master the tools of
the trade (as in explaining how to employ a certain mathematical technique), and
those that “call for an account of the mathematical facts themselves, the reason why”
(p. 217). While Hafner and Mancosu considered the latter to be a “deeper” use of
mathematical explanation, which is also the focus of the larger philosophical
discussion around explanatory proofs, others have emphasized the importance of the
former type of explanation in mathematical practice. For instance, Rav (1999)
insisted that one of the main reasons mathematicians read proofs is because of all the
mathematical know-how embedded in them, emphasizing the mathematical
methodologies and problem solving strategies/techniques contained in proofs.
According to Rav, “proofs are for the mathematician what experimental procedures
are for the experimental scientist: in studying them one learns of new ideas, new
concepts, new strategies—devices which can be assimilated for one's own research
and be further developed.” (p. 20) Indeed, there is empirical evidence (from both
small scale interview studies and large scale surveys) that mathematicians maintain
that one of the main reasons they read proofs is to gain insights into how they can
solve problems that they are working on (Weber & Mejia-Ramos, 2011, Mejia-
Ramos & Weber, 2014).

An interesting question related to the specific ways in which mathematicians talk
about explanation in their papers, relates to these two types of “explanatory” talk: to
what extent do mathematicians discuss explanations of why a certain mathematical
statement is true, compared to their talk about explanations of how to do something
in mathematics?

METHODS

One of the main ways in which mathematicians around the world communicate about
mathematics is through research papers stored in the ArXiv. The ArXiv is an online
repository of electronic preprints of scientific papers in the fields of mathematics,
physics, astronomy, computer science, quantitative biology, quantitative finance, and
statistics. These papers constitute a large corpus of scientific text that can be used to
analyze mathematical discourse.

We downloaded the bulk source files (mostly TeX/LaTeX) and converted the source
code to plain text, which we could then analyze using standard software packages for
corpus analysis. We then sorted these articles based on their subject classification
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(Alcock et al., 2017, discussed the details about the processing of these source files).
All analyses reported here are based on a proper subset of this corpus, containing all
mathematics and physics articles (based on their primary subject classification)
uploaded in the first four months of 2009. This left us with 5087 mathematics papers
(30,892,695 words) and 11787 physics papers (58,859,660 words).

RESULTS

Frequency of explicit “explanatory” talk in mathematics papers

Table 1 shows the frequencies of all words linguistically related to the word explain
(henceforth explain-words) in our corpus of 5087 mathematics and 11787 physics
papers. Explain-words showed up 4871 times in the set of mathematics papers, or
approximately once every 1.04 papers. While this certainly provides an existence
proof of explicit “explanatory” talk in this corpus, it is not very surprising (it would
very rare if no word based on the word explain showed up in these many
mathematics papers). In comparison, explain-words showed up 21305 times in the set
of physics papers, approximately once every 0.55 papers, or about twice as often as
they showed up in the mathematics papers. In order to get a sense of the extent to
which these frequencies were high or low in this type of mathematical discourse, we
compared them against the frequencies of words related to other important
mathematical activities.

Explain-word Mathematics Physics
explain 1827 7768
explained 1690 6513
explanation 498 3564
explains 484 1601
explaining 175 914
explanations 119 675
explanatory 51 62
unexplained 22 177
unexplainable 4 8
explainable 1 23
Total 4871 21305

Table 1: Frequency of words related to explaining appearing in the mathematics and
physics papers

Table 2 presents the frequencies of words linguistically related to the notions of
showing, solving, and proving, which were chosen based on their relevance in
mathematical explanation. Measured against these other frequencies, mathematicians
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used explain-words rather infrequently. Indeed, mathematicians used explain-words
in their papers approximately 11 times less frequently than show-words or solve-
words and nearly 23 times less often than prove-words.

Show-word Frequency Solve-word  Frequency  Prove-word Frequency
show 31691 solution 25845 proof 56452
shows 12890 solutions 15956 prove 29481
shown 10235 solve 2204 proved 12842
showed 2414 solving 1717 proves 4160
showing 2129 solvable 1618 proofs 3892
Total 59359 solved 1342 proving 2661
solves 1071 proven 1902
solvability 429 provable 159
solver 145 reprove 58
unsolved 95 disprove 43
solvers 56 provability 29
nonsolvable 39 reproved 29
unsolvable 32 disproved 17
cosolvable 29 unprovable 13
equisolvable 18 unproven 12
unsolvability 12 reproving 11
Total 50608 disproving 10
reproves 10
prover 7
unproved 7
subproof 5
disproof 4
Total 111804

Table 2: Frequencies of words related to showing, solving, and proving appearing

in the mathematics papers

Finally, the search for explain-words may be thought of as requiring an extremely
explicit discussion of explanation, one that would leave unnoticed a significant
amount of the “explanatory” talk in these papers. Hafner and Mancosu (2005)
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offered a list of eight expressions that they had found to be commonly used in the
mathematics and philosophy of mathematics literature to describe the search for
explanations. Table 3 lists these expressions along with the specific concordance
search we made to investigate their prevalence in both the mathematics and physics
papers. We note that the total number of occurrences of these expressions is only
about 10% of the total amount of explain-words in each set of papers (with
disproportionately more occurrences of these expressions in the physics papers than
the mathematics ones) and thus this analysis does not affect the finding made by only
investigating the appearance of explain-words.

Alternative expression Concordance search Mathematics Physics

"the deep reasons” deep* reason* 5 16

;22;]222 rstanding of the understand* the essence 0 5

"a better understanding" better understand* 161 767

"a satisfying reason" satisfy* reason 0 0

"the reason why" reason* why 312 924

"the true reason” true reason 3 1

"an account of the fact" an account of the fact 0 0

"the causes of" cause* of 16 609
Total 497 2322

Table 3: Frequencies of alternative expressions of related to “explanatory” talk
Explaining why vs. explaining how

In order to investigate mathematicians’ discussion of explanations of why a certain
mathematical statement is true (Hafner and Mancosu’s “deep” explanation), in
comparison to their talk about explanations of how to do something in mathematics
(related to Rav’s notion of mathematical know-how), we created a concordance of
the corpus of papers and identified every instance an explain-word had been
immediately followed by the words why or how (e.g. unexplained why, explanation
how). We did this by searching the concordance for *expla* why and *expla* how,
and checking that all results were indeed uses of explain-words. We then repeated the
process with the corpus of physics papers. Table 4 shows there is a clear difference in
the ways that explain-words are used in the mathematics and the physics papers.

We note that when taken together the total of *expla*-why and *expla*-how
expressions were roughly as common in math papers as they were in physics papers,
with approximately one of these expressions showing up every 7-9 papers in the
corresponding set, and also a relatively small subset of the wider use of explain-
words (roughly 14% and 6% of explain-word usage in mathematics and physics,
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respectively). However, the distribution of these two different types of expressions in
the two sets of papers was significantly different (Fisher’s exact test, p < .001), with
mathematicians using nearly twice as many *expla*-how expressions than *expla*-
why expressions, and physicists on the other hand using a little under three times as
many *expla*-why expressions than *expla*-how expressions.

Mathematics Physics

*expla* why 247 952
*expla* how 458 353
Total 705 1305

Table 4: Frequencies of explain-words immediately followed by the words why or
how in the mathematics and physics research papers

DISCUSSION

Our analysis of “explanatory” talk in a large sample of mathematics papers does not
offer support for a claim often made in the philosophy of mathematics: that this type
of talk is prevalent in mathematical discourse. When compared to explicit discussion
of other related mathematical practices (showing results, solving problems, and
proving theorems), mathematicians do not seem to discuss explanation nearly as
much. Furthermore, when compared to another scientific discourse, we found that
mathematical discourse contains only a fraction of “explanatory” talk as research
papers in physics. Indeed, we believe these findings suggest that the prevalence of
“explanatory” talk in mathematical discourse has been widely exaggerated.

Furthermore, by analyzing the frequency with which variations of the expressions
explain why and explain how occur in mathematics and physics research papers, we
found that, to the extent to which they engage in “explanatory” talk, mathematicians
seem to be much more interested in discussing explanations of how to do something
in mathematics, than in explanations of why things are the way they are in
mathematics. In physics we found the situation to be the opposite. This is particularly
interesting given mathematics educators’ and philosophers’ of mathematics
preoccupation with the type of intra-mathematical explanations of the form X
explains why Y (where X and Y are mathematical assertions), and particularly with
the notion of explanatory proofs (in which proof X explains why theorem Y is true).
This focus may have been inherited from the more traditional study of the notion of
scientific explanation, which is not only naturally concerned with this type of
explanations (the desire to explain the real world is full of why-questions), but
according to our findings may also be more commonly discussed in scientific
discourse in terms of answers to why-questions. However, our findings suggest that
this focus may also be misguided for those interested in studying the notion of
mathematical explanation as it more commonly occurs in the discourse of
professional mathematicians. Indeed, as suggested by Rav (1999), it seems that when
it comes to proofs and explanations, mathematicians are primarily interested in
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learning how to solve other problems, possibly over learning the reasons why some
mathematical results hold true.

Now, one must be careful about several inferential jumps made in this kind of
analysis. First, while the ArXiv may well be the largest, most widely used repository
of this type of preprints and postprints in the world, we have analyzed a very specific
type of mathematical discourse, leaving open the possibility that studies of
mathematical discourse in others settings (conversational or other digital
communications) could lead to contrasting findings. Second, we have analyzed these
research papers for a limited type of “explanatory” talk, one required to contain
explain-words or a limited number of alternative, related expressions. While this was
an obvious place to start to investigate “explanatory” talk in mathematical discourse,
it is certainly possible that the analysis of other expressions related to mathematical
explanation may skew our results. These limitations of the present study indicate
clear avenues for future empirical research on mathematical explanation.
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Different communities, speaking different languages, employ different naming
systems to describe the phenomena of the mathematics classroom. The International
Lexicon Project has documented the lexicons of middle school teachers of
mathematics in nine countries. This paper reports on aspects of the naming systems
in use by Australian and U.S. middle school mathematics teachers. Members of the
research community and groups of practitioners in both countries participated in the
process of negotiating their own lexicons, whilst the education community at large
assisted in the validation of that lexicon. Despite cultural similarities, the
professional language available to mathematics teachers in Australia and America is
different in content and in structure, with implications for comparative research.

INTRODUCTION

The research outlined in this paper is being undertaken as part of a larger
international project. The International Lexicon Project has initiated cross-cultural
dialogue to identify pedagogical terms from selected educational communities and
use these as analytical tools to categorise, interrogate and enrich classroom practice,
classroom research, and educational theorising. This project seeks to identify and
compare the naming systems employed in teaching communities in Australia, Chile,
China, the Czech Republic, Finland, France, Germany, Japan and the USA.
Documenting these lexicons, “the vocabulary of a person, language, or branch of
knowledge” (Stevenson, 2015), will allow for the expansion of the variety of
constructs available for the purpose of theorising about classroom practice, and for
identifying the characteristics of accomplished practice. In this paper, we focus on the
lexicons of the only two English-speaking teaching communities in the project.

Lortie (1975), in his social portrait of the ‘Schoolteacher’ reported a lack of
‘technical language’ in teaching. Lampert (2000) agreed that “no professional
language for describing and analysing practice has developed in the United States”
(p. 90). More recently, Grossman and her colleagues (2009) also concurred that the
teaching profession’s ‘grammar of practice” was under-developed. Certainly, Connell
(2009) has noted that a lively occupational culture in teaching which includes “the
informal processes by which practical know-how is passed to new teachers in on-the-
job learning” is not always present. We suggest that the promotion of such a culture
would be dependent on a suitable professional language by which the teaching
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community might discuss its practice. Lampert (2000) concluded that the lack of
opportunities for American teachers to work collaboratively with peers on the
problems of practice result in “a language of practice [that] remains flat or
nonexistent” (p. 90). This is in contrast with a well-articulated structure in China and
strong traditions in Japan of educators and teachers discussing research lessons
(Lampert, 2000).

Of interest also is the recent focus on noticing as a key component of teacher
expertise (e.g., Sherin, Jacobs & Philipp, 2011). The idea here is that because of the
complexity of instruction, teachers cannot notice everything with equal weight, and
instead must choose from among this complexity where to focus their attention. What
we notice is, of course, constrained by our knowledge and experience and, we argue,
by what we can name. The Sapir-Whorf hypothesis suggests that our lived experience
is mediated significantly by our capacity to name and categorise our world.

We see and hear . . . very largely as we do because the language habits of our community
predispose certain choices of interpretation (Sapir, 1949, p. 162).

Our interactions with classroom settings, whether as learners, teachers, or
researchers, are mediated by our capacity to name what we see and experience. If the
Australian (or American) teacher’s conception of the mathematics classroom is
constructed around activities that they can name, then it may follow that they are
unlikely to engage in activities that they cannot name. Marton and Tsui (2004)
suggest that categories not only express the social structure but also create the need
for people to conform to the behaviour associated with these categories (p. 28). Thus
teachers’ activity in the classroom is channelled by those practices they are able to
name, obliging their behaviour to correspond to this normative construction of
practice. Comparison of the lexicons of Australian and American middle school
mathematics teachers indicates the variation possible within two teaching
communities speaking the same language but with different pedagogical traditions.

THE RESEARCH DESIGN
Protocols and approaches common to both Australian and American settings

Compiling the national lexicons from each country involved the assembly of local
terms used to identify classroom practices reflecting the well-established pedagogical
traditions by which each of the participating communities describe the activities of
the mathematical classroom. These terms were supplemented with the clearest
possible operational definitions (a description with examples and non-examples)
describing both the form and function of each named term.

The composition of the local research team in each country was stipulated to include
the team leader (senior researcher), junior researchers and at least two experienced
teacher practitioners, with strong preference given to mathematics teachers of grades
seven to nine who were currently teaching.

Each of the nine country teams contributed video material, time-stamped transcripts
and classroom supporting material for one lesson of mathematics at year eight. These
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nine lessons were re-packaged as “three-ups” (see Figure 1) and each local research
team was given access to the entire stimulus package of nine lessons.
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Figure 1. The video “three-up” (three camera angles with time-code and subtitles)

The lesson videos presented in their combination a variety of instructional
approaches in classroom settings both familiar and unfamiliar to the research team
members in each country. Each team used a standardised recording template to
record anything in the lesson for which they had a name. The initial prompt used for
stimulating thought about the video was, “What do you see that you can name?” This
very general prompt and approach was crafted so that restrictions were not placed on
what could be named. The use of the video material was to stimulate thinking about
possible lexical terms. Importantly, it was not necessary that every term refer to
something occurring in one of the videos. Terms that came to mind during the
viewing that were not present in the video material were also recorded. The
fundamental criterion for the inclusion of a term in the lexicon was that it was
familiar to at least two-thirds of middle school mathematics teachers in that country.

Detailing local protocols and approaches: Australia

The Australian national team consisted of four university researchers and three
practising teachers. They all viewed the video of the Australian lesson, however, the
remaining eight video-recorded lessons were assigned to team members using a
matrix structure ensuring at least one experienced teacher viewed each lesson and
each lesson was viewed by a minimum of four team members.

The Australian team met regularly to share terms or phrases that were felt to be
possible candidates for inclusion in the Australian Lexicon. Team consensus was
required for the inclusion of a term in the lexicon and, in problematic cases, authority
was accorded primarily to classroom experience and the team member’s capacity to
argue that the term was in current use by teachers. The essential point was to record
single words or short phrases that are consistently and widely used within the
mathematics teaching community.

An important matter for the Australian team was distinguishing the language of the
discipline  (mathematics) from the language of practice (mathematics
teaching/learning). On occasion, a purely mathematical term would be considered for
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inclusion; these opportunities allowed us to reaffirm that the aim of the Lexicon
project was to identify terms and short phrases that relate specifically to classroom
phenomena, not those that describe solely mathematical activity (without implied
reference to the mathematics classroom). An example of this is the familiar activity
of Graphing a Linear Equation. We can identify and name this activity in the videos,
it is clearly recognisable, however, the activity is not being named as a specifically
classroom practice such as “Worked Example’ or ‘Explaining’ and, therefore, would
not be included in the Australian Lexicon.

While identifying terms for inclusion in the lexicon thought was given to the possible
structure or format that would best communicate the content of the lexicon. A
university class of practicing teachers was invited to assist in the grouping of lexical
items into categories of their own choosing. As a result the items in the Australian
lexicon have been organized in five categories. The five categories include those that
were identical across different working groups (Administration, Assessment,
Classroom Management) and two additional ones that captured the spirit of the
teachers’ suggestions (Learning Strategy, Teaching Strategy).

Detailing local protocols and approaches: USA

The U.S. national team initially consisted of two university researchers and two
practising teachers, with an additional researcher and teacher joining later. The first
four members all viewed and discussed the U.S. lesson, and then teams of one
researcher and one experienced teacher watched each of the remaining eight lessons.

As with the Australian team, the U.S. team met regularly to discuss terms and phrases
that arose through viewing the videos and that might be included in the U.S. lexicon.
The first draft of the lexicon included all terms that the four initial team members
agreed were in current use by middle school mathematics teachers, as well as terms
that the participating teachers highlighted as very familiar within their teaching
communities. Additional teachers and researchers were also consulted to propose
new terms, in case the list generated from the video viewing and associate discussion
was incomplete. A total of 157 terms were identified as candidates for inclusion.

Subsequently, through focus groups with teachers at three different schools in a large
midwestern city and a survey taken by more than 250 teachers around the United
States, we solicited feedback on the lexicon as it then existed. Drawing on ratings of
familiarity from teachers around the U.S., we developed a final national lexicon that
includes 100 terms. Some details of the lexicon will be discussed in the section
below.

Two key challenges arose in the process of developing a U.S. lexicon. First, teaching
contexts differ widely across different states, districts, and schools in the U.S. Thus, it
was especially important for us to seek input on our lexicon from teachers in a range
of geographic locations and school types (public/private, rural/urban/suburban, etc.).
Although we did receive survey responses from teachers in a variety of different
contexts, we acknowledge that many contexts are underrepresented in our sample,
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and new terms would likely emerge with feedback from an even broader set of
teachers. A second challenge concerned the difference in familiarity of terms among
even experienced teachers in the greater Chicago area. For example, some terms were
very familiar to teachers in one district, while teachers in another district were
unfamiliar with those same terms. Although levels of familiarity sometimes differed
considerably, we strived for consensus whenever possible, and our final lexicon
represents terms that were familiar to at least 75% of participating teachers.

THE LEXICONS

For the purposes of the project, specification of the lexical terms required the
combination of the following elements: 1) a description, ii) examples, and iii) non-

examples (see Table 1).

Any activity undertaken
by the teacher or a

For example:
» The teacher administers a test.

Assessment student(s) with the * The teacher observes students while they work,
(from Australian primary purpose of making notes on each student's progress.
Lexicon) generating information Non-example:
about student learning * Assigning homework, unless the teacher explicitly
or achievement. indicates that the purpose is assessment.
For example:
- : * A student solves ten consecutive tasks all involving
The activity of repeating o )
L the addition of fractions.
Practising a procedure for the * A student works through the problems on past exam
(from Australian purpose of improving
Lexicon) efficiency or accuracy in Papers. .
its use. Non-example:
* A student attempts to make use of the property of
similar triangles in a real-world context for the first time.
For example:
» Two short problems are written on the board for
Brief activity used at the  students to begin working on when class begins.
Warm-Up beginning of class, often < At the start of class, students are asked to identify

(from U.S. Lexicon)

for review or entry into a
new topic.

whether they agree or disagree with three mathematical
statements.

Non-example:

* At the start of class, students review the homework.

Worked Example
(from U.S. Lexicon)

Step-by-step
demonstration of how to
solve a problem. Often
provided by teacher to
students as a model.

For example:

* The teacher solves a problem out loud at the board
while students follow along. The teacher explains each
step as she completes the problem.

* The teacher shares a completed solution to a problem
with the class, discussing each step in the solution with
the class.

Non-example:

« Students use an answer key to check a solution to a
problem.

Table 1: A selection of lexical terms developed for the Australian and U.S. Lexicons

The Australian National Lexicon consists of 63 terms that are familiar and in
widespread use (e.g., Assigning Homework, Rephrasing, Worked Example). The
lexical items have been organized in five categories as follows: Administration (8
terms); Assessment (11 terms); Classroom Management (6 terms), Learning
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Strategies (27 terms) and Teaching Strategies (50 terms). A lexical item appeared in
more than one category if the Australian team decided on the basis of teacher advice
that there was a strong association with each category.

The U.S. Lexicon consists of 100 terms that are widely familiar in the United States
(e.g., Going Over Homework, Classroom Environment, Worked Example). The
lexical items have preliminarily been organized into eight categories as follows:
Administrative Practices (9 terms); Classroom Climate (14 terms); Forms of
Participation (7 terms), General Classroom Practices (18 terms); Math Practices (21
terms); Tasks and Activities (11 terms); Teacher Assessment (10 terms); and Teacher
Tools/Approaches (12 terms). Currently, a lexical item appears in more than one
category if it has multiple definitions. Moving forward, we will seek further input
from teachers to validate this categorisation scheme.

One feature of the Australian Lexicon is that none of the 63 terms identifies a
practice unique to the mathematics classroom. The terms all refer to general
pedagogical practices. Also worthy of note is the prevalence of ‘gerunds’ (a verb
form that also functions as a noun; “teaching” and “learning” are relevant examples)
in the Australian National Lexicon. The generic character of the Australian Lexicon
content suggests that the lexicon might also be applicable to other school settings
besides the mathematics classroom.

In a preliminary validation exercise over two-thirds of 83 respondents described the
terms in the Australian lexicon as “familiar” or “very familiar.” By this criterion, all
of the 63 terms were validated for inclusion in the national Australian Lexicon. When
guestioned about the use of these terms in conversations with colleagues, however,
responses spanned the full five-point scale from ‘Used extremely of