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PREFACE

We are pleased to welcome you to PME 44. PME is one of the most important international
conferences in mathematics education and draws educators, researchers, and mathematicians
from all over the world. The PME 44 Virtual Conference is hosted by Khon Kaen University
and technically assisted by Technion Israel Institute of Technology. The COVID-19
pandemic made massive changes in countries’ economic, political, transport, communication,
and education environment including the 44™ PME Conference which was postponed from
2020. The PME International Committee / Board of Trustees decided against an on-site
conference in 2021, in accordance with the Thailand team of PME 44 will therefore go
completely online, hosted by the Technion - Israel Institute of Technology, Israel, and takes
place by July 19-22, 2021. A national presentation of PME-related activities in Thailand is
part of the conference program.

This is the first time such a conference is being held in Thailand together with CLMV
(Cambodia, Laos, Myanmar, Vietnam) countries, where mathematics education is
underrepresented in the community. Hence, this conference will provide chances to facilitate
the activities and network associated with mathematics education in the region. Besides, we
all know this pandemic has made significant impacts on every aspect of life and provides
challenges for society, but the research production should not be stopped, and these studies
needed an avenue for public presentation. In this line of reasoning, we have hosted the
IGPME annual meetings for the consecutive year, July 21 to 22, 2020, and 19 to 22 July
2021, respectively by halting “on-site” activities and shift to a new paradigm that is fully
online. Therefore, we would like to thank you for your support and opportunity were given to
us twice.

“Mathematics Education in the 4" Industrial Revolution: Thinking Skills for the Future” has
been chosen as the theme of the conference, which is very timely for this era. The theme
offers opportunities to reflect on the importance of thinking skills using Al and Big Data as
promoted by APEC to accelerate our movement for regional reform in education under the 4"
industrial revolution. Computational Thinking and Statistical Thinking skills are the two
essential competencies for Digital Society. For example, Computational Thinking is related
to using Al and coding while Statistical Thinking is related to using Big Data. Therefore,
Computational Thinking is mostly associated with computer science, and Statistical Thinking
is mostly associated with statistics and probability on academic subjects. However, the way
of thinking is not limited to be used in specific academic subjects such as informatics at the
senior secondary school level but used in daily life.

For the PME 44 Thailand 2021, we have 661 participants from 55 different countries. We are
particularly proud of broadening the base of participation in mathematics education research
across the globe. The papers in the four proceedings are organized according to the type of
presentation. Volume 1 contains the presentation of our Plenary Lectures, Plenary Panel,
Working Group, the Seminar, National Presentation, the Oral Communication presentations,
the Poster Presentations, the Colloguium. Volume 2 contains the Research Reports (A-G).
Volume 3 contains Research Reports (H-R), and Volume 4 contains Research Reports (S-Z).

The organization of PME 44 is a collaborative effort involving staff of Center for Research in
Mathematics Education (CRME), Centre of Excellence in Mathematics (CEM), Thailand

PME 44 - 2021



Society of Mathematics Education (TSMEd), Institute for Research and Development in
Teaching Profession (IRDTP) for ASEAN Khon Kaen University, The Educational
Foundation for Development of Thinking Skills (EDTS) and The Institute for the Promotion
of Teaching Science and Technology (IPST). Moreover, all the members of the Local
Organizing Committee are also supported by the International Program Committee. |
acknowledge the support of all involved in making the conference possible. I thank each and
every one of them for their efforts. Finally, |1 thank PME 44 nparticipants for their
contributions to this conference.

Thank you

Best regards

Associate Professor Dr. Maitree Inprasitha
PME 44 the Year 2021
Conference Chair
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SECONDARY MATHEMATICS TEACHERS USE OF
FACEBOOK FOR PROFESSIONAL LEARNING

Judy Anderson! and Blanca Swanson?!

The University of Sydney, Australia

Professional learning is critical for mathematics teachers to support reflective
practice, and to learn about new ideas, resources and pedagogies. Online
communities provide opportunities for teachers to engage with other
practitioners, but to what extent do these sites enable shared understandings,
mutual engagement, and the development of shared meaning-making
resources? Little is known about how secondary mathematics teachers interact
with online groups, and how such groups function for members of different
levels of engagement. This study used an audit, questionnaire and interviews to
explore levels of teacher engagement and to investigate the potential for the
development of an online community of practice.

INTRODUCTION

Innovative reforms in practice, such as using inquiry-based pedagogies and
alternative assessment approaches are less evident in secondary mathematics
classrooms, particularly if teachers teach the way they were taught (Goos &
Bennison, 2008). Changing practice is complex. Strategies such as policies
which mandate new approaches to assessment have been used to change
practice (Barnes, Clarke, & Stephens, 2000) although not always successfully
nor sustainably. More successful reform programs employ high quality
professional learning (Darling-Hammond, Hyler, Gardner, & Espinoza, 2017),
frequently aiming to develop teacher ownership through shared understandings,
mutual engagement and the collaborative development of resources.

Traditionally, teacher professional development involved attending courses,
seminars and conferences (Lantz-Andersson, Lundin, & Selwyn, 2018), but
there has been increased recognition of other opportunities for teacher
professional learning, including through communities of practice, which allow
for dynamic, collaborative and participant-driven learning (Goos & Bennison,
2008). Professional learning communities encourage teachers to ask questions
focused on their practice, which facilitates growth in teachers’ professional
identities. Regardless of geographical location and potential isolation, social
media sites provide new opportunities for teachers to share experiences and
resources, and to create, develop and incorporate innovative pedagogies into
their teaching practice. It is therefore worth investigating how an established
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Anderson & Swanson

social media site such as Facebook could serve as a space for professional
learning, potentially leading to an online community of practice.

This project investigated an existing Facebook group used by secondary
mathematics teachers in one Australian state. The recent implementation of a
new mathematics syllabus, including requirements for alternative, inquiry-based
high-stakes assessment tasks for the final two years of schooling, positioned the
group in a key period of implementation of new classroom practices. The
project thus aimed to investigate the question: To what extent can an established
Facebook group become a community of practice for secondary mathematics
teacher members of the group?

LITERATURE REVIEW

The “community of practice” framework (Lave & Wenger, 1991, p. 10) is used
to describe a group of professionals who use their social ties and common
objectives to improve their practice, by building a body of related resources and
knowledge (Goos & Bennison, 2008; Lantz-Andersson et al., 2018). The
process of learning in such a community is inherently social; it is achieved
through observation and participation within the community. Wenger (1998)
described three key features of a community of practice: the formation of a joint
enterprise held by the group; the practice of mutual engagement from members;
and the creation of a shared repertoire of meaning-making resources. Wenger,
McDermott, and Snyder (2002) noted there are three typical levels of
participation in a community of practice: core members, who regularly initiate
group interactions and energise the community; active members, who regularly
participate in group interactions; and legitimate peripheral participants, who
learn through observation of the interactions between core and active members.
The legitimate peripheral participants have the potential to become core or more
active members since through apprenticeship, they transition from novice to
expert.

The rise of the Internet and its enhanced capacity to maintain stable
infrastructure without external financial patronage, has provided new
possibilities for teacher networking and collaboration. Consequently, there has
been a multitude of initiatives designed to utilise online sites for professional
learning, resource sharing and forming communities (e.g., Lantz-Andersson et
al., 2018). Researchers have focused on Facebook groups as an opportunity for
teacher professional learning (Rutherford, 2010), a means to promote teacher
inquiry, collaboration, and adoption of innovative pedagogies (Goodyear,
Casey, & Kirk, 2014), and as an “extended staff room” (Lantz-Andersson,
Peterson, Hillman, Lundin, & Rensfeldt, 2017, p. 54). However, these studies
have not addressed how Facebook groups can function independently as a
community of practice, or to what extent participants’ contributions within the
group might impact classroom practice. While online communities appear to

2-2 PME 44 -2021
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promote the resource and idea sharing that forms the development of innovative
practice, how effective are they in promoting mutual participation and a shared
teacher identity?

In addition, there is little information about how peripheral participants engage
with online communities, as they often leave no digital trace of their presence.
This limitation was recognised by Rutherford (2010), who concluded “there is
no way of knowing if the knowledge of these ‘lurkers’ was affected by simply
reading the posts of the active group members” (p. 68). Lantz-Andersson et al.
(2017) argued that peripheral participants might view Facebook groups as
networks rather than communities of practice, yet they suggested meaningful
forms of passive engagement could still exist within the group. Also, there is
limited research about how mathematics teachers engage in online communities,
despite their potential to model the planning and pedagogy needed to bring new
ideas and practices into the classroom (Goos & Bennison, 2008), hence the need
for this study.

METHODOLOGY

A case study of teachers’ participation in the Mathematical Association of New
South Wales (MANSW) Facebook group, a closed group with over 2000
members was conducted by the authors. Previous research on Facebook as an
online teacher community has used a range of data collection methods such as
participant interviews and collecting archival documents (Kelly & Antonio,
2016), surveys, online participant observations (Goodyear et al., 2014), and
audits (Lantz-Andersson et al., 2017). Since the project aimed to investigate
how a specialised Facebook group might support secondary mathematics
teachers as a community of practice, the combination of an audit, questionnaire
and interviews was chosen to explore the context. However, due to space
constraints, this paper only presents data from the audit and questionnaire.

The audit of the group was conducted, focusing on the posts, comments and
reactions within a one-year period. Facebook’s Group Insights tool was used to
find the total number of posts, comments, reactions and members who viewed
posts per day, as well as information on member demographics. Since the tool
did not record which members posted to the group, one month was examined
manually to record the frequency with which members posted to the group. A
small sample of posts were then analysed with a process of open coding,
resulting in the formation of 12 descriptive categories of post types. All posts
within the one-year timeframe were then coded into these categories (see Table
1). The audit recorded the number of peripheral participants in the group, in
comparison to previous studies that lacked such data (Lantz-Andersson et al.,
2017).

After the audit, an anonymous questionnaire was posted to the discussion page
of the group, seeking information about the underlying motivations of members

PME 44 -2021 2-3
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to participate in the group, as well as their perceptions about how their
engagement impacted practice. The questionnaire was brief, asking respondents
to identify: their reasons for visiting the group from a list of possible responses
derived from the categories developed in the audit; how often they visited the
group; whether they had seen any ideas or resources in the group that they
would be interested in using in the classroom; whether they had used any ideas
or resources from the group in the classroom; how long they had been teaching
mathematics; and how often they commented or posted to the site. In
comparison to the audit, surveying participants enabled a greater understanding
of members’ different levels of engagement.

For expedience, in contrast to Wenger et al (2002) definitions of core, active
and peripheral members as representing experts or novices, we chose to initially
classify members according to their engagement with the Facebook page
through posting comments or reacting to the posts of others. This categorisation
was further explored in the questionnaires and interviews suggesting that some
experienced and potentially ‘expert’ teachers were peripheral participants. We
argue that the focus of the study was to ascertain engagement and the potential
for the development of a community of practice regardless of the level of
expertise of participants.

RESULTS AND DISCUSSION

During the audit, posts were categorised into twelve purposes for engagement
with the Facebook group (Table 1). The audit also provided evidence of the
three levels of member involvement; over the year, there was an average of five
posts, 45 comments and 108 reactions submitted to the group each day, showing
the widening impact of core and active members. However, there was also an
average of 1200 members each day who viewed posts, with approximately 13%
of members who saw posts actively responding to them on a given day, and the
remaining 87% of these members were considered peripheral participants. It is
therefore crucial to consider how these peripheral users engaged with the group,
as they appeared to comprise such a high proportion of members.

Category Number of % Total
Posts
Sharing a link for discussion 327 18%
Sharing a link for humour 231 13%
Sharing resources/teaching ideas 230 13%
Asking for opinions on teaching 198 11%
Sharing experience or awards 173 9%
Asking for resources/ideas 141 8%
Asking questions about syllabus 135 7%
MANSW admin/conference information 131 7%
Offering/asking for employment 114 6%
Asking for solutions to a mathematics question 80 4%

2.4 PME 44 -2021



Anderson & Swanson

Asking for assessment ideas/advice 51 3%
Other 16 1%
Total 1827 100%

Table 1. Categories of discussion posts over a one year period

The 120 questionnaire responses were collated and analysed to determine each
respondents level of engagement. The levels of engagement were defined as:
core members as those who regularly started discussions, commented on posts,
and energised the community (11, 9%); active members as those who often
commented or reacted to posts and occasionally started discussions (53, 44%);
and peripheral participants as those who mainly read posts without actively
replying (56, 47%). It is not surprising that more core and active members
(53%) responded to the questionnaire than peripheral members (47%) given
their more active engagement with the Facebook group. To investigate the
extent to which the group supports mathematics teachers as a community of
practice, the remaining data are presented under the three features of joint
enterprise, mutual engagement, and a shared repertoire of resources. In each of
the sections, attention is given to members of varying levels of engagement.

Joint Enterprise

Wenger (1998) describes the joint enterprise of a community as the purpose of a
group as continually redefined and acted upon by its members. While the
MANSW  Facebook group (ttps://www.facebook.com/MathsNSW/) was
developed for the exchange of information and ideas between members, it is
Important to consider how the group was used by its members. Within a one-
year period, the 1827 posts submitted to the main discussion page of the group
were analysed to determine the most common ways the site was used. From the
12 categories identified in Table 1, categories were grouped to provide the main
uses presented here.

First, the group functioned as a place for intentional professional discussion.
While discussions also arose in the comments of other posts, 29% of posts were
intentionally aimed at either informing or starting discussions, by sharing an
article related to teaching or asking for members’ opinions on specific aspects
of pedagogy. For example, the following post asked for opinions on a
screenshot from one of the new syllabus documents, resulting in 32 comments
and 66 reactions. The phrase “brains trust” was commonly used in such posts to
the discussion group, evidencing a culture of collaborative discussion.

Brains trust, Asymptotes have been discussed here a few times. What do we think
of this definition, from the Glossary attached to the new syllabus?

Second, the group acted as a space for individual teachers to seek specific help
from a larger body of mathematics teachers — 22% of posts asked for resources,
assessment advice, and clarifications about the syllabus, or solutions to specific
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mathematics questions. The following post had 35 comments and 18 reactions,
including teachers offering to share a Google Drive of resources.

I'm trying to come up with an alternative assessment task for my Year 12 Ext 1
class. Any ideas? I'm struggling!

Third, the group functioned as a social space for mathematics teachers, with
22% of posts used to share mathematics memes or jokes, personal experiences
and pictures of conferences, or to celebrate members who had won awards.
Fourth, the group was a place for individuals to offer resources or ideas to the
community, as seen in 13% of posts. The group was also used by the MANSW
executive to share information about conferences or administration (7% of
posts) or for people to ask or offer employment (6% of posts). These posts
generally had fewer interactions from other group members.

Each of these categories can be broadly considered to support the stated purpose
of exchanging ideas and information in the group. However, members who
posted directly to the group have expanded upon the set purpose to collectively
start professional discussions, support teachers in need and share among other
practitioners: essentially, to engage in collective professional learning. There
was also a strong emphasis on posting for the benefit of the wider collective,
rather than the group functioning simply as a get-help site for individual
questions.

To gain further information about the use of the group from members who did
not post directly to the discussion page, the questionnaire asked participants
why they visited the site. From the 120 questionnaires, many provided more
than one response but the most common selected categories were “to stay
connected to other mathematics teachers” (83%), “to find resources” (79%), and
“to ask a question about the syllabus™ (47%). It is worth noting the passive
nature of the two most common responses, which indicates many members visit
the page regularly to benefit from reading existing posts.

Considering the responses of the peripheral members in more detail, there was a
greater difference between the top two categories and the rest of the responses,
as can be expected considering their observatory habits. Other differences for
peripheral members indicated the top category was to “find resources/ideas”
rather than “stay connected”. Ultimately, data from the audit and questionnaires
reflected a common purpose of member participation with the group: to connect
with like-minded practitioners for community and professional learning. The
joint enterprise was thus evidenced among members of all levels of
participation, despite their varying levels of engagement.

Mutual engagement from members

Relationships of mutual engagement are a key component to understanding how
a network of people is united into a single social entity: in essence, how the
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group functions as a community. In the MANSW Facebook group, engagement
was expressed primarily through the main discussion page as users reacted to,
and commented on, others’ posts. Throughout the year, there was an average of
eight comments and 20 reactions per post, which demonstrates a high level of
community engagement. The nature of the Facebook group as a digital space
also enabled mutual participation between members of different geographical
backgrounds, although a clear majority (67%) of the members originated from
the Sydney metropolitan area.

However, it should be acknowledged that many members of the group do not
participate in mutual engagement to the same extent as the small group of core
and active members. To obtain the frequency of members posting to the
discussion page, March 2019 was chosen for detailed analysis because it was
early in a new school year when a new syllabus was being implemented for the
first time. In this month, there were 200 posts, 2429 comments and 4709
reactions submitted to the group. Each day, there was an average of seven posts,
78 comments and 152 reactions submitted, with 1485 members viewing posts at
some point in the day. The posts submitted to the discussion page originated
from 115 different members of the group, with 81 members only posting once
in the month. This suggests that most members do not engage by actively
posting to the group, and that even members who do post to the group do so
infrequently. Yet, it would be unwise to underestimate the engagement of
peripheral members. In a community of practice, all members, including
peripheral participants, learn through watching the interactions between active
and core members (Wenger et al., 2002). Indeed, online sites provide a powerful
space for people to view these discussions, which are digitally preserved and
visible to all members despite location or time.

The important practice of observation was exercised frequently by most
members of the group, as evidenced by the questionnaire. Ninety-three percent
of those surveyed checked the group multiple times a week, with 58% of
respondents checking the group at least once a day. Facebook’s Group Insights
corresponded with the data, showing that for any given day, an average of 58%
of the total members were viewing the group. Furthermore, frequent observation
was common across members from all levels of engagement. In particular, 86%
of peripheral members checked the group multiple times per week, with 46%
viewing the page at least once a day. Notably, Wenger et al. (2002) argued if
observation is frequent, peripheral members are not as passive as they appear,
despite limited records of engagement. They explained, “like people sitting at a
café watching the activity on the street, [peripheral members] gain their own
insights from the discussion and put them to good use” (p. 56).
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Shared repertoire of meaning-making resources

Sharing resources was a key function of the MANSW Facebook group; it was
the third highest category (13%) of posts observed in the audit. The frequency
of this category is especially notable when considering the comparative effort of
each category of posts. Sharing links to Facebook is relatively easy; in contrast,
resource sharing requires members to find or create a resource and take the
Initiative to share it, unprompted, with the group. An additional 11% of posts
were submitted to ask for resources or ideas, which had a high level of response
in comments by other members of the group. Furthermore, 79% of
questionnaire respondents nominated “finding resources,” as the main reason
for visiting the site. Evidently, the repertoire of meaning-making resources
created by the group is important to core, active and peripheral members.

It is important to recognise that the resources created by a community of
practice do not only consist of actual lesson plans or pedagogical ideas, but also
the shared competencies and knowledge collectively produced by the group
(Wenger, 1998). Shared competencies in the MANSW Facebook group, were
evidenced through teachers contributing to knowledge on interpreting syllabus
documents, marking solutions to mathematics questions, and textbook selection.
Thus, the professional discussions held by the group, particularly to develop
collective interpretations of the syllabus, should also be considered as part of
the created shared repertoire.

CONCLUDING REMARKS

The qualities of a community of practice (Lave & Wenger, 1991): joint
enterprise, mutual engagement between members, and the creation of a shared
repertoire of meaning making resources, were all evidenced within the
interactions of the MANSW Facebook group. However, in considering how the
group supports mathematics teachers as a community of practice, there must
also be an acknowledgement of the fundamental ongoing processes of
observation and learning within the group that leave little digital trace. The
project found evidence to confirm significant professional learning among
peripheral members of the group, demonstrating that online communities should
be considered as a powerful form of professional learning across members from
all levels of engagement. It should be acknowledged that the project examined
a single case study of a closed Facebook group for mathematics teachers in
NSW, over the course of one year. Data from the interviews and questionnaire
were also reliant on participant self-reporting, which may be affected by
unconscious bias or deliberate self-censoring. However, its findings are relevant
in recognising that social media sites can lead to an online community of
practice.
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Beliefs that teachers hold about mathematics teaching and learning are the
most investigated domain in affect-related research. These beliefs can be
contradictory and thus lead to dilemmas that play a crucial role in shaping how
a teacher changes her practice. In this paper, we give an account of how such
contradictions have been addressed in literature and then propose a worldview
lens to analyse the dilemmas of four teachers enrolled in Professional
Development (PD) programs.

INTRODUCTION: BELIEFS AND PRACTICE

Beliefs are propositions about a certain topic that are regarded as true (Philipp,
2007), and tend to form clusters as they “come always in sets or groups, never
in complete independence of one another” (Green, 1971, p. 41). According to
Green (1971), belief clusters are coherent families of beliefs across multiple
contexts. Thus, beliefs have a systemic nature. Affect-related research has
provided evidence that beliefs have observable behavioural consequences (e.g.,
Di Martino & Zan, 2011), and a change in a teacher’s beliefs is likely to result
in a change in their practice (Leder, Pehkonen & Torner, 2002), suggesting a
dialectical relationship between change and beliefs in that one influences the
other (Buehl & Beck, 2015). One of the challenges with this, however, is that
such a dialectic relationship can lead towards the emergence of tensions
between belief clusters. In this paper we are interested in looking closely at such
tensions, to better illuminate the role of beliefs in shaping teachers’ behaviour.

THEORETICAL FRAMEWORK

The systemic nature of teachers’ beliefs can be understood in terms of “world
views” (Grigutsch, Raatz & Taorner, 1998), or epistemological beliefs about
mathematics (Hofer & Pintrich, 1997), including its teaching and learning.
According to Grigutsch et al. (1998), it is possible to outline four different
world views (see also Liljedahl, Rolka & Roesken, 2007): a process-oriented
view that represents mathematics as a creative activity consisting of problem
solving using different and individual ways; an application-oriented view that
2-10
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represents the utility of mathematics for real world problems as the main aspect
of the nature of mathematics; a formalist view that represents mathematics as
characterised by a strongly logical and formal structure; a schema-oriented view
that represents mathematics as a set of calculation rules and procedures to apply
for routine tasks. Even from the sketchily description, we can notice how world
views are strongly linked to practice.

Each teacher’s beliefs, thus, belongs to (at least) one world view (Erens &
Eichler, 2019), as teachers’ beliefs are organised in systems of beliefs (Fives &
Buehl, 2012; Green, 1971; Philipp, 2007). One aspect of a belief system
relevant for our research is that beliefs are organized in clusters that are not
necessarily logically connected. The fact that beliefs can be contradictory (Fives
& Buehl, 2012) allows the possibility for teachers to hold beliefs that belong to
different clusters. Skott (2015) suggests, however, to interpret possible
contradictions in teachers’ belief systems not merely as incoherence, but rather
to consider the different contexts in which beliefs are evoked. As “beliefs are
expected to significantly influence the ways in which teachers interpret and
engage with the problems of practice” (Skott, 2015, p. 19), they cannot be
exhaustively described by one cluster of central beliefs. Given the complexity of
teaching and the variety of stakeholders (e.g., students, parents, colleagues, the
Ministry of Education), teachers usually show a coexistence of more than one
cluster of beliefs (Erens & Eichler, 2019).

These considerations shed light on two intertwined features of teachers’ beliefs:
they are subjective in nature and individually held, but at the same time they are
(or can be) socially and contextually shaped. The context plays a crucial role in
evoking beliefs, for example a teacher, talking with a colleague (context 1),
might show some beliefs that are different from, or even in conflict with, the
ones she enacts in class (context 2) (e.g., Fives & Buehl, 2012). Our research
hypothesis is that, even in the same context, contrasting beliefs may emerge.
Namely, beyond Skott’s (2015) findings, we aim at exploring the existence of
beliefs that emerge in the same contexts but are in conflict with each other,
almost like anti-clusters, and this reverberates in a teacher’s practice, as change
In a teacher’s practice can be understood as an attempt to balance contrasting
world views held by different stakeholders (Andra, Rouleau, Liljedahl & Di
Martino, 2019). In order to frame this, we refer to research on teachers’
tensions.

Lampert (1985) understood tensions as problems to be managed, rather than
solved, characterising teachers as “dilemma managers”, who find ways to cope
with conflict between equally undesirable (or desirable but incompatible)
options without necessarily coming to a resolution. For Lampert (1985), the
ongoing internal struggles presented by the tensions arise from and contribute to
the developing identity of the teacher, and as such they have value in
themselves. For Chapman and Heater (2010), “Meaningful change can occur
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when the process is initiated and rooted in the teacher’s experience based on a
tension in self and/or practice that is personal and real to him or her” (p. 456).
We further suggest that tension research applied to beliefs can offer a new
insight into the frustrations and needs of the classroom and the changes that
result. Furthermore, recognition of the tension inherent in teaching can help us
as researchers in better understanding those apparently inconsistent behaviors
we observe, and what might be construed as minimal or no change could be
recast as a rational decision that weighed the practicality of the change against
its potential consequences (Andra et al., 2019). Our aim with the research
presented here is to understand the tension(s) between different world views.
Tensions may emerge when teacher beliefs are challenged, for example during
PD. Our research questions are as follows: When does a tension between world
views emerge? How does a teacher cope with tensions? How does a tension
reverberate in a teacher’s practice?

METHODOLOGY

The participants for this study come from a set of more than 200 teachers who
participated in PD sessions led by one of the authors in 2016. Of them, 26
volunteered to be interviewed at the end of the sessions. The relatively limited
number of interviewees is due to the fact that researchers aimed at conducting
extended interviews, which were semi-structured, lasted 30 to 60 minutes, were
audio-recorded, and then fully transcribed. The structure of the interview aimed
at letting beliefs emerge through the narrative rather than by direct questioning.
For example, we invited the teachers to describe their school, the relationship
with their colleagues, and with parents. Preliminary analysis of each of these 26
transcripts revealed that 19 expressed beliefs belonging to different clusters. To
note, this confirmed Fives & Buehl’s (2012) study that teachers often hold
beliefs that can be contradictory. Further analysis revealed that the ways in
which the teachers coped with this fell into one of four categories - (i) ignoring
the conflict, (ii) internal struggling, (iii) balancing two worldviews, (iv)
resolving the conflict. In what follows we present a deeper analysis of four
prototypical cases, one selected from each of the aforementioned categories.
Teachers’ fictitious names are, respectively: Vicky for case (i), Julia for (ii),
Ron for (iii) and Mary for (iv).

In analysing the verbatim transcribed interviews, we used a qualitative coding
method (Mayring, 2015), based on Erens and Eichler’s (2019) four deductive
categories described in their coding manual. Examples of statements coded as
application-oriented view are: “mathematics helps to solve tasks and problems
that originate from daily life”, “the ideas of mathematics are of general and
fundamental use to society”, and “a sound knowledge of mathematics is very
important for students in their whole life”. Examples of statements coded as
formalist view are: “logical strictness and precision are very essential aspects in
mathematics”, “mathematics is a logically coherent edifice free of contradiction
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consisting of precisely defined terms and statements which can be
unequivocally be proven”, and “in mathematics students must use mathematical
terms correctly”. Examples of statements coded as process-oriented view are:
“there is usually more than one way to solve a task or problem in mathematics”,
“in order to comprehend and understand mathematics, one needs to create or
(re-)discover new ideas”, and “everyone is able to (re)invent or to comprehend
the central ideas of mathematics”. Examples of statements coded as schema-
oriented view are: “Mathematics consists of memorising, recalling and applying
procedures”, “doing mathematics demands a lot of practice in adherence and
applying to calculation rules and routines”, “nearly any mathematical problem
can be solved by the direct application of familiar rules, formulas and
procedures”, and “to solve a mathematics task, there is mostly a unique way of
solution which needs to be found”. These examples are taken from Erens and
Eichler’s research. Each teacher’s statement has been assigned a world view by
one of the authors, and the other authors independently agreed or disagreed. In
case of disagreement, discussion among the authors took place, until consensus
has been reached.

RESULTS AND ANALYSIS

As teachers talk about (aspects of) their practice in their interviews, we analyse
the tensions between worldviews that emerged. For Vicky and Julia, tensions
emerge between two coexisting views, whilst for Ron and Mary the tension is
provoked by an external agent. Julia and Mary significantly change their
practice, Ron introduces a new practice but still employs the ‘old’ one, and
Vicky does not show change.

Vicky: When asked to talk about her teaching method, Vicky commented that
she does not “have a specific one: it is different for each class, because each one
is different. [...] | propose problem-based group activities, where math and
physics are applied to everyday life”. An application-oriented view emerges
from Vicky’s words, as mathematics helps to solve problems originating from
daily life (see examples of codes). Vicky, then, referred to one of her classes:

The characteristic of this class is that the traditional lessons annoy them, hence |
started to propose group activities dedicated to the study of physical phenomena
applied to real situations. The result has been excellent: the students have
developed a high sense of critique and above all they have cooperated together for
solving the given problems. Every activity has been welcomed with absolute
enthusiasm.

In the last excerpt, a process-oriented view, which values solving problems in a
creative way, emerges in one of Vicky’s classes. When talking about her
teaching, and referring to her specific classes, two different views of
mathematics emerge for Vicky, but there seems to be no tension lived by the
teacher. It is as if they can coexist. Overall, Vicky’s teaching orientation could
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be interpreted as being a means to an end to achieve application and process-
oriented views. These two belief clusters coexist and the reason why Vicky does
not live a conflict may reside in a lack of awareness about their differences, or
more likely in a worldview that tries to accommodate these differences.
Moreover, Vicky’s teaching practice is a blending of problem-based activities
originating from everyday life and solved in creative ways. Her reference to a
specific class suggests that, in other classes, she may opt for a mostly
application-oriented view, as she declares that she adopts different methods in
different classes.

Julia: A completely different picture emerges from Julia’s words. In her
interview, she does not refer to a specific class or situation, but she makes a
general statement about an uncomfortable internal struggle:

| really struggle when | see a student struggling to try and figure out a problem. |
have a really hard time not giving them the answer as an example, and then letting
them go from there, it's very — yeah. | really struggle with watching them
struggle, | guess.

This excerpt can be interpreted in terms of a tension between a process-oriented
view (struggling with new ideas, finding one’s own path to solve a problem),
and a schema view, according to which nearly any mathematical problem can
be solved by the direct application of familiar rules, formulas and procedures
and as such it may encourage a teacher to give the students the answer. Julia is
well aware of the conflict. Like Vicky, she does not mention any external force
that pushes her to act in a way that contrasts with her beliefs (e.g., she does not
mention any PD session she attended, where she was faced with either
alternative of teaching): rather, the two views, which are specific to the role of
the teacher in problem solving, coexist in her belief system and the dilemma can
be read mainly as her own, subjective elaboration. We can further see that, in
her practice, Julia opts for the process-oriented view, as she tells us that she
does not intervene.

Ron: After having attended a PD session, Ron referred back to his first
experiences of teaching: “When you're a young teacher, you love having all the
lessons and your notes set and all that and all this is great, got it all set.” Ron
seemed, from this quote, to adopt a formalist view, according to which
mathematics is a logically coherent edifice consisting of precisely defined terms
and statements. A formalist view blends with a schema-oriented one, as Ron
further acknowledged that students like taking notes. However, also a non-
formalist and non-schema view emerges, as he added: “I was getting tired of
giving notes, giving lessons and just having them sit there and do it and observe.
Because my thinking was they can get these notes anywhere”. These words
suggest that Ron came to PD with an emerging tension, seeking for a way to
sort it out. In fact, Ron recognised that, “once you've been doing that for a short
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while, you just, you realise it's kind of limiting”. Ron’s belief system was in
motion, and the timing of the interview allowed us to capture this. A new view
of mathematics was emerging:

Getting the students to do the work in class so that you know, even if they only
get one or two problems, they really got it. And just so that, if they have to come
in and think. I mean, | have to come in and think too because | don't really have to
think if there's a [conventional] lesson. In a conventional lesson, | already know
what to say and do.

A process-oriented view, according to which in order to understand
mathematics one needs to create or re-discover new ideas, started to take form
In Ron’s orientations, and was valued. In Ron’s words, not only the students
have to “come in and think™ during problem solving, but also the teacher has to
do the same, whilst he does not “really have to think if there is a [conventional]
lesson”. However, Ron has not abandoned his previous, schema-oriented view
as he mentioned:

A few of them [the students] would say to me that they like notes and so
sometimes | would say, okay let's do that and then | would always tell them, see
why | don't do this anymore. Some students said to me they liked the mini-lesson
before, which is fair enough. But sometimes it's the questions that get you
thinking in the first place, so I think it's fair enough to balance.

Ron uses the verb “to balance” to represent his way of living with the tension
that is provoked by some of his students’ preference for notes and formalism,
which contrasts with his love for more engagement and thinking. Here, an
important feature of tension emerges, that is: tensions are dilemmas that often
cannot be resolved. In Ron’s practice, this results in a mixture of teaching
methods: sometimes students are exposed to ‘mini-lessons’ and take notes,
while other times they ‘come in and think’. As for Vicky, coexistence of
different views mirrors the one of different practices.

Mary: Mary had been accustomed to strictly adhering to grade 1 curriculum in
grade 1, and grade 2 in grade 2, without mixing up the content (a schema-
oriented view). Participating in a PD session created a tension that caused her to
change her mind. She acknowledged a change from before the PD, when she
had a schema-oriented view of curriculum, to the present, as she now had a
process-oriented view of mathematics, which involves a shift of attention to
problem-based mathematical activities in her lessons, rather than being too
much concerned about the constraints of curriculum. In Mary’s words, the
tension between these two views seems to be resolved:

It just freed up boundaries, | would say, like this is a grade one, this is grade two.
You don’t teach grade two in grade one. (laughs) It's just now that we're doing
problem-solving activities it just naturally comes out and students that are ready
will do it and students that are not ready just won’t. The students can only learn at
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their own pace or at their own development level and I’m okay with that. Before, |
used to worry but now, it’s just, — Okay.

The tension, currently resolved, initiated a change in Mary’s practice and in
certain belief clusters. Unlike Ron, for Mary there was not an external force
prompting her to compromise, at least to a certain extent, between two
worldviews, she abandoned the ‘old’ one and tension resolved. Differently from
Vicky, Mary was aware of the conflict: she contrasted the two views explicitly
In her account. Similarly to Julia, Mary makes a choice (her practice originating
from that choice), but unlike Julia, Mary does not live uncomfortably with a
struggle beyond her actions.

DISCUSSION AND CONCLUSIONS

The four prototypical cases allow us to exemplify some important features of
tensions among belief clusters, and to attempt an answer to our research
questions. Tension emerges when the teacher sees the conflict between different
views, but is unable to resolve it. Teachers can live an internal struggle, or try to
balance. There is no tension when the teacher ignores, or resolves, it. Tensions
can be occasioned by PD, or emerge as the teacher encounters her classes and
reflects upon her practice. An interesting case is Ron, who started to live a
tension before PD and PD showed a way to (partly) solve it. For Mary, PD
provoked a tension as it introduced a new worldview. Whilst Mary’s case show
that ‘old” worldviews can be abandoned and the tensions can be resolved,
resulting in a significant change in practice, Ron’s case show that ‘old’ and
‘new’ views can find a way to coexist in a teacher’s practice, as Ron’s practice
IS a compromise between ‘come and think” and ‘take notes’, since the schema-
view has not been completely abandoned. We remark that, without a tension
lens, Ron’s choice would have been interpreted in a different way, namely as
beliefs’ resistance to change. For Mary’s, Julia’s and Ron’s cases, we can say
that we see a change in their practice, but we can also see the struggle behind it.
For Vicky, we see no change and she blends different world views in her
practice. In order to enrich the discussion, we summarise our results in Table 1,
where we further distinguish between existence of external forces and ‘pure’
internal conflicts.

Table 1: Ways of dealing with beliefs belonging to contrasting world views

Internal contradiction External force(s)
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There is
tension

...when the teacher values ideas,
practices, behaviour that belong to
different belief clusters and she is
aware that they are in conflict (e.qg.,
Julia).

For Julia, there is change.

...when someone has different beliefs,
and the teacher values the point of view
of these people, she cares to have a good
relationship with them and she sees the
conflict (e.g., Ron).

For Ron, there is partial change.

There is
no
tension

...when the teacher lives with ideas,
practices, behaviour that do belong
to contrasting belief clusters, but this
Is not a problem for her (e.g., Vicky).

...when new experiences provoke a
teacher change and tension between the
old and the new is resolved (e.g., Mary).
For Mary, there is change (resolving

For Vicky, there is no change. tension in favour of the new one).

Focusing on external forces, we notice a dual nature of world views: on one
hand, they are subjective and internal to an individual person. They may conflict
with external sources but are - in terms of cognition - cognitive traits (Erens &
Eichler, 2019). On the other hand, however, if we consider the case of Ron, the
formalist view which is tied to taking notes is also shared by Ron’s students,
and valued both by the teacher and the students. This view belongs to the
teacher’s beliefs system and to the ‘external” source. Also, the process-oriented
view, which resulted in breaking the boundaries among grade-specific curricula
for Mary, was shared by the PD facilitator. This suggests that a teacher’s world
views can be altered by tension from external forces. Our data, thus, do not
allow us to discard the central role of the social context not only in mirroring a
person’s belief system, but most importantly in dealing with contrasting world
views and resolving (or balancing) the tension. This poses a question which
deserves further investigation: Does an external force provoke a tension only if
teachers hold the same view as the external force? Our preliminary results
suggest the answer to this might be ‘yes’. A follow up study will confirm this
and it will reveal the incidence of each prototype in a much larger sample of
teachers.
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We focus on the role of signs in the process of constructing proofs by
mathematical induction of high-achieving post-graduate students. Using a
multimodal semiotic perspective, speech, written inscription (symbols,
drawings, etc.), and gestures are analysed, and two particular categories of
signs are identified and observed: linking signs and iteration signs. We analyse
what these signs reveal and how the students use them to formulate a conjecture
and to structure the proof by mathematical induction.

INTRODUCTION

The analysis of signs offers an interesting access to mathematical thinking and
has promoted the discovery of interesting processes with important didactical
implications. In the last decades the semiotic analysis has been integrated by the
study of gesture that has enriched research in different areas of mathematics
education and, recently, the studies on argumentation and proof (see, for
example, Edwards, 2010; Arzarello and Sabena, 2014; Krause, 2015; Sabena
2018). In particular, Arzarello and Sabena show that gestures can contribute
“not only to the semantic content of mathematical ideas, but also to the logical
structure that organizes them in mathematical arguments” (Arzarello & Sabena,
2014, p. 76). Along the same line, Krause (2015) analyses the gestures produced
during an activity involving reasoning by induction by grade 10 students who
had not studied mathematical induction at school and states that gestures “give
visual access to the structure of a reasoning action” (Krause, 2015, p. 1432).

The study presented in this paper is part of a wider research on proving by
mathematical induction of post-graduate, undergraduate and secondary students.
In particular, in this paper, we focus on signs in post-graduate students’
processes involved in the generation of a conjecture and of proof by induction.

THEORETICAL FRAMEWORK

In a multimodal perspective, we consider that thinking and learning processes
involve simultaneously different kinds of signs (mathematical symbols,
diagrams, sketches, language, gestures, etc.). Arzarello (2006) considers these
different kinds of signs as an inseparable unit and defines a semiotic bundle as a
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dynamic structure consisting of different semiotic sets and relationships among
them. Two main types of analysis are carried out on a semiotic bundle: a
synchronic analysis of relationships between different kinds of signs activated
simultaneously and a diachronic analysis of evolutions of signs activated over
the time.

In this paper, we analyse the semiotic bundle made of three semiotic sets -
speech, written inscriptions (symbols, drawings, etc.) and gestures - in the
production of a conjecture and of a proof by mathematical induction. The
analysis of complex units of signs has enabled the identification of new
Interesting processes in argumentation and proof. In particular, Sabena (2018, p.
554) provides empirical evidence that “gestures may contribute to carrying out
argumentations that depart from empirical stances and shift to a hypothetical
plane in which generality is addressed”. Sabena, Radford and Bardini (2005)
observe that a deictic gesture used by a grade 9 student to point at a figure on
the sheet becomes a gesture in the air and identify a crucial role of a progressive
detachment of gestures from a sheet in generalization processes. Similarly,
Krause (2016) proposes a classification of gestures in three levels (concrete,
potential, and general) according to their detachment from a concrete
inscription. Gestures of level 1 refers concretely “to something actually
represented in a fixed diagram” (e.g. pointing to the sheet). Gestures of level 2
potentially “depict new entities in an established diagram” but they need to be
considered as embedded in it (e.g. gesture of rotating a figure). Gestures of level
3 are general gestures performed in the gesture space. They are detached from a
concrete level and their interpretation is general, i.e. not dependent on a
“present referential frame” (Krause, 2016, p. 138).

In our study, we also refer to the classic distinction of gestures into iconic,
metaphoric, deictic and beats (McNeil, 1992). We will use these classifications
and synchronic and diachronic analyses to investigate processes of construction
of a proof by induction.

Linking and Iteration Signs in Mathematical Induction

A proof by mathematical induction of a proposition ¥neN, P(n) consists in a
proof of the base case P(0) and of the inductive step VneN, P(n)—P(n+1).
Referring to the theory of natural numbers and to the logic theory, we know that
the validity of the base case and of the inductive step guarantees that P(n) holds
for all natural numbers. Usually, a non-formal explanation is that from the
propositions P(0) and P(0)—P(1) it follows P(1) by modus ponens; from P(1)
and P(1)—P(2) it follows P(2), and so on. In other words, this process can be
iterated to cover all the natural numbers. In this paper we aim to investigate
signs that reveal and support the construction of the inductive step and the
iteration in the generation processes of a conjecture and of proof. Constructing
the inductive step requires the consideration of two cases (P(n) and P(n+1)) and
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their relationships. The iteration requires the consideration of the possibility to
repeat the inductive step. Thus, in particular, we look for and analyse:

e signs produced or used to refer to two or more entities (objects,
mathematical objects, problems, situations, etc.) and to their
relationships, where these entities are seen in connection with two
consecutive natural numbers. For these we use the term linking signs;

e signs that refer to iteration, or that are composed by a repetition (in
time or in space) of linking signs, or that refer to a repetition of them.
For these we use the term iteration signs.

Examples of linking signs can be found in usual algebraic manipulations. For
Instance, in the construction of the proof of the formula for the sum of the first n
consecutive natural numbers it is common to use the sign (1+2+...+n)+(n+1).
This sign links the case n with the case n+1 and prepares the proof of the
inductive step. Some examples of the iteration signs are the verbal “and so on”,
or the image of falling dominoes.

In this study, our goal is to look for the presence of linking and iteration signs,
and to investigate what they reveal, in the process of generating a conjecture
and a proof by induction, and considering not only mathematical symbols but a
wider variety of signs, as speech, written inscriptions, and gestures.

METHODOLOGY

This is a qualitative study based on interviews in which students were asked to
solve 4 problems and then to speak about mathematical induction. Data consist
of audio, video recordings, and of written inscriptions produced by the students.
The subjects were 1 high-achieving post-graduate student in the Master’s course
in Mathematics and 4 doctoral students in Mathematics. They were interviewed
individually by the second author of this paper, for approximately 70 minutes
each. They were neither aware of our interest about their written inscriptions
and gestures nor of our focus on proof by mathematical induction. In this paper
we will refer to the following problem:

“Consider a 2"x2" chessboard. What is the maximum number of squares which
can be tiled with L-shaped pieces composed of 3 squares each?”

The solution is that it is possible to tile the entire 2"x2" chessboard except for
one square, for any natural number n. This can be proved by mathematical
induction on n.

CASE ANALYSIS

Giuditta is a post-graduate student in the Master’s course in Mathematics. In the
first 10 minutes of the interview she produces some drawings and recognises
that for reasons of divisibility it is not possible to completely tile any
chessboards. By minute 10:00 she has sketched an 8x8 chessboard (n=3) and
determined a tessellation which covers every square except one. The
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interviewer then asks her if this property is also valid in other cases, for
example in the case 16x16. In the transcript, Giu stands for Giuditta and with
italics we describe gestures in the moments when they occur.

1 Giu: 16 by 16 (with her left middle finger and the tip of the pen in the

right hand she points to two vertices of the 8x8 chessboard drawing,
Fig. 1a).

2  Giu:  but, then | have another three (she keeps her left middle finger on
the vertex, and with the pen in the right hand she indicates
respectively to the right, upper right, and above the drawing of the
8x8 chesshoard, Fig. 1b,c,d) of these (she points with the pen to the
drawing of the 8x8 chessboard) squares here (she moves the tip of
the pen along the perimeter of three imaginary squares in the three
places she has indicated before, Fig. 2).

The synchronic analysis of the bundle produced in line 1 reveals an interesting
element. In this moment, on the sheet there is the drawing of the 8x8 chessboard
and no other written inscriptions referring to a 16x16 chessboard. Giuditta says
“16 by 16” and at the same time points to two vertices of the drawing of the 8x8
chessboard (fig. 1a). She refers to something through her speech and to
something else through her gesture: this is a case of speech-gesture mismatch
and Goldin-Meadow (2003) highlights the cognitive potential of a mismatch in
the representation of a new idea. In this case, pointing at the drawings of the
8x8 chessboard is co-timed to saying “16 by 16”. The bundle and the mismatch
offer Giuditta the possibility to represent simultaneously two different
chessboards (8x8 and 16x16).

—

Figure 1: Gestures in line 2.

The diachronic analysis allows us to look at the evolution of signs. In line 2,
Giuditta produces signs connecting the chessboards. She keeps the left hand still
on the drawing of the 8x8 chessboard (deictic gesture of level 1) and with the
right hand she points to three places on the sheet (fig. 1b,c,d). Then she moves
the tip of the pen along the sides of three imaginary squares in the three places
she has just indicated. In summary, four 8x8 chessboards are represented: one
by a written inscription, and three by speech and gesture (fig 1 and 2). These
gestures represent something new into the inscription and are therefore gestures
of level 2. The bundle speech-inscription-gesture represents a 16x16 chessboard
composed by four 8x8 chessboards and, as a unit, can be considered a linking
sign referring to the two chessboards and to their relationships. This linking
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sign, at this point, allows Giuditta to access the connections between the
tessellation problem in the case n=3 (8x8) and in the case n=4 (16x16):
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Fig. 2: Pointing with the left hand to the drawing of a 8x8 chessboard, Giuditta
follows with a pen (without marking) the perimeter of 3 squares.

3 Giu:  And then there would be left out one, one, one and one (she points

to the drawing of the 8x8 chessboard on the sheet and to the other

three she has in mind) [omissis]. And so | would think to put three

of them together, somehow. And then, there would always be one
left out?

Giuditta conjectures that the 16x16 chessboard can be tiled except for one small
square (a square 1x1) and imagines doing it by using the tessellation of the four
8x8 chessboards. In each of them, one small square would be left out, thus 4
squares in total, but three of them can be covered with an L-shape tile.
Therefore, also the 16x16 chessboard would be tiled except for one little square.
Her linking sign has a crucial role in the conjecture generation. In particular it
enables Giuditta to anticipate the fact that the 16x16 chessboard can be tiled
using the tessellation of the smaller one “somehow” (she doesn’t know in which
way and the conjecture is expressed as a question). At this point, Giuditta
focuses on verifying her conjecture for n=1, n=2 and then for n=0. Differently
from her reasoning in line 3, these cases are each tiled independently, without
connections between them. Then she claims to be convinced of the truth of her
conjecture. In argumentation process, new signs enrich the bundle:

4  Giu:  So, what | was thinking (the drawing of the 4x4 chessboard, Fig.3a,
is extended into a new drawing, Fig. 3b) was that to come, to move
forward from n=1 (she makes an arc-shaped gesture in the air from
left to right, Fig.3c,d) to n=2 (with her left middle finger she points
to a drawing of a 2x2 chessboard) practically (with the right hand
she points specifically to three squares of the drawing of the 2x2
chessboard, see arrows in Fig. 3e) | have to put another three

identical little squares (she draws two lines on the drawing in Fig.
3b obtaining the drawing of Fig. 3f).
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Figure 3: Gestures and written inscriptions in line 4 (a,b,c,d,e) and in line 5 (g).
Fig. 3e indicates where Giuditta points to on the sheet.

In this excerpt, Giuditta produces three linking signs that become the object of
her exploration. The first is the drawing of a big square (fig. 3b) as extension of
the drawing of the chessboard 4x4 (already on the sheet, fig. 3a). The second is
the gesture in the air from left to right (fig. 3c,d). The third is the bundle
composed by the deictic gesture with her left middle finger pointing to the
drawing of the 2x2 chessboard and the gesture made by the right hand referring
to the action of adding three small 1x1 squares to build a 2x2 chessboard up
from a single square. The gesture from left to right is iconic and refers to a path,
but can also be interpreted as a metaphoric gesture of level 3. This gesture is
detached from a concrete inscription and it is co-timed to the verbal “to move
forward from n=1 to n=2". This gesture appears here for the first time and does
not refer to any drawings, any chessboards or tessellations. With this, Giuditta
doesn’t refer to the specific aspects of the relationship between a smaller
chessboard and a bigger one, neither to the relationship between tessellations.
Rather, the gesture represents metaphorically the transition between two cases,
I.e. the inductive step. The structure of the argumentation is thus emerging. The
analysis of the bundle shows the genesis of linking signs with different levels of
generality and in reference to different cases: the verbal “from n=1 to n=2"; the
written inscription linking the drawings of the 4x4 and the 8x8 chessboards
(from n=2 to n=3, see fig. 3a,b,f); the gesture (level 2) linking the drawing of
the 2x2 and 1x1 chessboards (from n=1 to n=2, see fig. 3e) and the metaphorical
gesture (level 3, see fig. 3c,d). Giuditta is progressively shifting her focus from
the tessellation of some specific chessboards to the links between these
tessellations. Now, the produced linking signs allow her to establish the
inductive relationship. In fact, at this point Giuditta shows how she could
tessellate the 8x8 chessboard (except for one square) using a tessellation of the
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4x4 chessboard and placing a tile in the central part of the chessboard (fig. 3g).
After a few minutes, she concludes:

5 Giu:  And this, I can do it in general (after a circular gesture around the
drawing of a 4x4 chessboard, with the right hand she makes a spiral
movement that widens as the right hand rises and concludes with
spreading both the hands, Fig.4a,b,c,d,e and Fig. 4f for a summary).
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Figure 4: Gesture in line 5. The fig. 4f summarises the whole movement.

Giuditta does not write anything and she uses very few words: “and this, I can
do it in general”. However, her gesture reveals the structure of argumentation
and give us access to her reasoning. The gesture is articulated in four
components.

The first component is the same gesture she has produced several times since
line 1 when she linked the 8x8 and the 16x16 chessboards; now this gesture
represents the action of constructing the 8x8 chessboard using the 4x4
chessboards.

The second component consists of contracting the previous gesture and moving
away her right hand from the sheet in two directions: upwards and outwards.
The upward direction takes the gesture from level 2 to level 3. It is the first time
that Giuditta produces this gesture in the air. The shift through levels and her
words indicate the generality of the actions of tessellation. Moreover, the
gesture grows wider away from her body to indicate the construction of bigger
chessboards (in mathematical terms, n is increasing). Until now, the left hand
has remained still with a finger of the drawing of the 4x4 chessboards (which
could represent the starting point of the recurrence; in fact she has already
directly verified the cases of the smaller chessboards).

The third component consists in moving the right hand to the right - making the
metaphoric gesture of a link, as seen in figure 3c,d - and moving the left hand to
the left: the link between the chessboards of different sizes, represented before
by an iconic gesture, here becomes an inductive step represented by a
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metaphoric gesture. These first three components, consisting of a sequence of
different linking signs, constitute a unique iteration sign, which in its complete
form is a gesture of level 2-3: it starts on the sheet, in which the base of the
induction is represented, and rapidly moves away from the sheet becoming a
gesture of the level of the general (level 3).

Finally, the fourth component consists in keeping her hands still in the air, as if
they contain the space in which the iteration gesture took place. This space, to
use an expression of McNeil (1992, p. 173) when describing an iconic gesture
that indicates a point in space, is not empty but “full of conceptual
significance”. In our case, this space is the location that contains the
argumentation and its logical structure.

CONCLUDING REMARKS

The multimodal perspective and the notion of semiotic bundle (Arzarello, 2006)
has allowed us to identify and to analyse linking and iterative signs, and to
observe and study the genesis of a proof by mathematical induction. Our
analysis confirms the results presented in other studies (Arzarello & Sabena,
2014; Krause, 2015; Sabena, 2018) regarding the role of gestures in providing a
logical structure to argumentation.

In the first excerpt, the speech-gesture mismatch (synchronic analysis) shows
that the subject focuses simultaneously on two cases (8x8 and 16x16
chessboards). The bundle evolves and new signs are produced (diachronic
analysis) to connect the two objects. The bundle is composed by different kinds
of signs with mutual relationships. Only when we consider the bundle as a unit,
we can see the linking sign representing a 16x16 chessboard as composed by
8x8 chessboards. This and other signs lead the subject to establish the
connection between the problem of tessellating a chessboard and the same
problem on a bigger chessboard, and then to construct the inductive step.

During the production of the argumentation, a repetition of linking signs
produces an iterative sign and the complete detachment of the gesture from the
sheet shows the transition to the general (Krause, 2016). The gesture contracts
progressively, from iconic (referring to the extension of a chessboard into a
bigger one) to metaphoric (referring to the inductive step), from level 2 (level of
concrete) to level 3 (level of general). The iterative sign reveals that Giuditta
constructs the entire recurrence even if it is not formally necessary (having
proved the base case and the inductive step). The still hands at the end show the
transition of argumentation from process to object.

The contraction of linking signs reveals a change of the focus. For Radford,
“contraction is the mechanism for reducing attention to those aspects that
appear to be relevant [...] We need to forget to be able to focus” (Radford,
2008, p. 94). The contraction of Giuditta’s gesture shows that she “forgets” the
tessellation and focuses on the relationships between tessellations. Following
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Radford (2003), the contraction of linking signs is a process of objectification of
the inductive step.

Moreover, the repetition of linking signs is an example of catchment. According
to McNeill (2005), a catchment is due to the recurrence of consistent
visuospatial imagery in the speaker’s thinking, and indicates and provides the
discourse cohesion. Arzarello and Sabena (2014) show that catchments
contribute to support the students in structuring a mathematical argumentation.
Our analysis seems to confirm their results.

Finally, further research is necessary to identify linking signs in symbolic
manipulation and to study the evolution of linking signs within the bundle from
the proving process to the written proof.
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Family background predicts success in mathematics education in many
countries — and particularly in Germany. Mathematical modelling with its
authentic and realistic contents may be of importance for inequality research.
Based on the German National Assessment Study, correlation comparisons,
variance and regression analyses indicated that socio-economic status,
migration background, and language use are more strongly related to
mathematical achievement (excluding modelling) than to modelling
achievement. Mathematical modelling might, therefore, contain facets which
contribute to the reduction of social disparities.

INTRODUCTION

Family background determines educational success. Studies have repeatedly
shown a connection between students’ migration background, language use and
socio-economic status (SES) on the one side and their achievement in
mathematics on the other (e.g., OECD, 2013). This issue is of importance to the
German education system. While on OECD average social disparities in
mathematics sank over the last years, in Germany they rose again (OECD,
2013; 2019). Thus, Germany has a relatively low level of educational equity
about mathematics. The German National Assessment Study — conducted by the
Institute for Educational Quality Improvement (IQB) — identified a learning
disadvantage in mathematics of almost three years for students from families
with lower SES (Pant, Stanat, Schroeders, Roppelt, Siegle & Péhimann, 2013).
Mathematics education should, hence, create conditions and provide learning
opportunities that reduce social disparities. German educational standards
describe mathematics education in which mathematical knowledge is applied
functionally and flexibly in context-related situations. Therefore, in addition to
content, general mathematical competencies are central to mathematics
education in Germany (KMK, 2003). Mathematical modelling is one of those
competencies. It includes solving realistic and authentic problems (Maal,
2010) and thereby differs from dressed-up tasks with extra-mathematical
contents.
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However, empirical research does not come to consistent conclusions regarding
background-related barriers and strategies in modelling processes. On the one
hand, Cooper and Dunne (2000), amongst others, pointed out that lower SES
students overemphasize everyday experiences while processing tasks with real-
world content.

According to them, the SES is more important for realistic tasks than for purely
mathematical tasks. On the other hand, Schuchart, Buch and Piel (2015) showed
that the item context was not systematically related to the response rate of lower
and higher SES students. The present study approaches this issue quantitatively
by analyzing and comparing the effects of different family background factors
on the response rates of modelling and non-modelling tasks.

THEORETICAL FRAMEWORK

For quite some time, research has been addressing the mechanisms through
which family background is related to student’s education outcomes. From a
sociological perspective, according to Bourdieu's habitus theory (1984),
individuals find themselves in a social space which limits their scope of action.
This scope forms the way individuals think and act and it constitutes the
foundation on which social inequality is built. It is passed on through
socialization and by this, certain behaviors and values are being internalized.
Empirical studies identified many factors that produce social disparities and
then contribute to its consolidation and reproduction. Students from families
with higher SES on average “benefit from a wider range of financial [...],
cultural [...] and social [...] resources that make it easier [...] to succeed in
school” (OECD, 2016, p. 206). Regarding family communication, higher SES
parents place higher value on reasoning and discussing, whereas lower SES
parents focus more on conformity (Heath, 1983). By different socialization,
higher SES parents are comparatively better able to prepare children for
educational requirements (Schuchart et al., 2015) and pass on their social
advantages to their children. Besides, teachers tend to educate lower SES
students’ mechanical behaviors or give them routine instructions (‘Do it this
way’), while they tend to teach students with higher SES to think (Anyon,
1981). Further, teachers might underestimate the mathematical capacity of
lower SES students, if they attribute students’ problems to their cognitive ability
and not to their background (Schuchart et al., 2015). Also, teachers may
communicate differently with students of different social classes, since lower
SES students are often less well equipped to interact with teachers and
institutions (Calarco, 2011). This is accompanied by the tendency that higher
SES students request and hence receive more help from teachers. They can use
their working time more efficient (ibid.) and thereby create their own
advantages. In this way, students, parents, and teachers contribute to the
consolidation and reproduction of social disparities. Thus, it is hardly surprising
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that PISA refers to socio-economic heterogeneity as being a challenge for
teachers and education systems (OECD, 2016).

Mathematical Modelling

The German educational standards comprise six general competencies which
students are expected to develop in secondary level: (i) Arguing; (ii) problem-
solving; (iii) modelling; (iv) using descriptions; (v) dealing with symbolic,
formal and technical elements, and (vi) communicating (KMK, 2003).
Regarding mathematical modelling, students are supposed to translate the
respective situation into mathematical terms, structures, and relations, to work
within the mathematical model, to interpret and to check results with respect to
the corresponding situation (ibid.). While modelling tasks in general contain
solving realistic problems, they might differ in terms of authenticity, realism,
involved modelling activities, level of openness, etc. (Maal3, 2010). An example
for a modelling task that could occur similarly in the test described below is
given by Figure 1.

In the picture you can see the
historical city hall of Muenster.

How high is the city hall
approximately?

Write down your assumptions
and your approach.

Figure 1: Modelling problem “city hall”

The illustrated historical building really exists and estimating sizes by using
reference values are part of everyday life. The mentioned problem is thus
authentic and realistic. It is open since the students are free in choosing the
object of comparison, for example, the man with the white shirt. The task
involves modelling activities, including making assumptions about the average
size of a person and interpreting the mathematical results in a meaningful way.
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Therefore, there is not a single solution, but rather an interval of results that can
be evaluated as correct. This ensures the comparability and evaluability of
students’ results.

DESIGN AND METHOD
The following research question derives from the current state of research:

e Is mathematical achievement in modelling and non-modelling
differently connected to students’ family background?
This study is based on data from the German National Assessment Study 2012,
which was conducted by the 1QB. In total, a representative sample of 24731
ninth-grade students across Germany participated in the mathematical part of
this standards-based assessment (Pant et al., 2013). We compared students’
achievement in mathematical modelling with their achievement in other
mathematical competencies. We predicted achievement by students’ SES. As
SES is often related to migration background, language proficiency and
language use (OECD, 2016; 2019), which in turn may affect mathematical
achievement, we used these variables as additional predictors.

The test booklets were assembled under a multi-matrix design, so that each
student worked on 24 to 60 out of 349 items. Based on specified evaluation
criteria for each item, student solutions were coded dichotomously as ‘correct’
or ‘incorrect’. A global score for mathematical competency — including all items
— was estimated for every participant on a one-dimensional dichotomous Rasch
Model (Warm, 1989). The estimation results in a metrical measure namely the
Weighted Likelihood Estimate (WLE). For the present study, we further
estimated person parameters (WLE) using the same statistical model for the
achievement in modelling and the mathematical achievement excluding
modelling. We will refer to them as modelling achievement and non-modelling
achievement. The estimates are based on two nonoverlapping subgroups of
items: Items targeting modelling according to the German educational standards
and items targeting other mathematical competencies. The first subgroup
contains 41 out of the 349 items.

Students’ family background was assessed using student questionnaires. In this
study, we used the HISEI (Highest International Socio-Economic Index of
Occupational Status of both parents) to measure families’ SES. It is determined
by the professions of the parents and takes income and educational level into
account. By means of the HISEI, it is possible to capture the SES of occupations
by putting them on a one-dimensional hierarchical scale from 10 (e.g., kitchen
helper) up to 89 (e.g., medical doctor), with a higher HISEI indicating higher
SES (Ganzeboom, de Graaf & Treiman, 1992). Students’ migration background
was operationalized ordinally via the countries of birth of the parents. For the
language use, students were asked how frequently they speak German at home
(see Table 1). Though, the data on family background has missing values, since

2- 32 PME 44 -2021



Ay, Mahler, & Greefrath

In some German states it was optional for students to fill out the questionnaire.
Further, part of the sample (n = 14 793) completed a C-Test to measure their
language proficiency in German (Robitzsch, Karius & Neumann, 2008).

Variable Operationalization Distribution

SES HISEI € {10, ...,89} M = 51.40
(n =17810) SD = 20.47
Migration Both parents were born in Germany 14710 (76%)
background One parent was born in another country 1780 (10%)
(n = 18663) Both parents were born in another country 2713 (15%)
Language use Mostly/ only speaking German at home 14025 (81%)

(n=17276) Sometimes speaking another language at home 3251 (19%)
Or never speaking German at home

Table 1: Background variables

To answer the research question, we conducted linear regressions and single-
factor variance analysis (ANOVAs), measured and compared the percentage of
explained variation by means of n? and R? (Cohen, 1988). In order to do so, we
compared dependent correlations with one common index (i.e., the correlation
coefficients are calculated from a single sample and the correlations are
overlapping with one common variable) according to Hittner, May and Silver
(2003). They indicated that Type | error depends not only on sample size and
population distribution, but also on the intercorrelation (between modelling and
non-modelling achievement) r; and the discrepancy between predictor-criterion
correlations r; and r, (see Figure 2).

RESULTS
Table 2 summarizes the results of the ANOVASs and linear regressions.

Dependent  Independent  Method Explained df F Signifi-
variable variable variation cance
Modelling  SES Linear R?= .06 1 1045.66 p<.001
achievement regression
Migration ANOVA n?=.02 2 190.60 p<.001
background
Language use ANOVA n?= .03 2 22463 p<.001
Non- SES Linear R?= .12 1 2355.77 p <.001
modelling regression
achievement Migration ANOVA n*= .04 2 389.55 p<.001
background

Language use ANOVA n?=.05 2 47476 p <.001

Table 2: Explained variation in modelling and non-modelling achievement by
family background
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It appears that all family background variables can explain variation in
modelling and non-modelling achievement. Also, all background variables have
a higher effect on non-modelling achievement than on modelling achievement.

e
[Common Index] )

T =.25'” f\ FK 5] =.34”’
Y o .
[ -~
<:> (non—modelling}

s =65 achievement

[Intércorrelation]

modelling
achievement
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Figure 2: Comparison of the correlation between SES and modelling
achievement with the correlation between SES and non-modelling achievement

Figure 2 shows the results of comparing the correlation coefficients. Analysis,
based on Hittner’s et al. (2003) correlation comparison yielded that the
correlations r; and r, vary significantly from each other (n = 15711, z =
14.8, p < .001). The magnitude of the intercorrelation (IC) is high (r; >
.6) and the effect size is .09. With a power of 1 — f = 1, a statistically verified
small correlation difference can be assumed. The same applies for migration
background and language use with an effect size of .04 for both variables (n =
16446, z=6.7, p<.001, 1 —R =1, IC >.6; n=15138, z=6.3, p <
001, 1 -1 =1, IC > .6). Repeating the analysis controlling for language use,
migration background and language proficiency still yields a significant
difference in partial correlations between SES and the two mathematical
achievement variables with a small effect size of .09 (n =7384, z=7.7, p <
001, 1 =8 =1, IC >.5). Further analysis show that this difference cannot be
explained by the fact that modelling tasks are, on average, more likely to
contain extra-mathematical content. In fact, in our data SES correlates more
closely with the response rates of tasks with extra-mathematical content
compared to purely mathematical tasks (n = 17 810, z = 2.3, p < .05, 1 —
3=.75, IC >.7).

DISCUSSION AND CONCLUSION

The current study shows that SES, migration background and language use are
more strongly related to mathematical achievement (excluding modelling) than
to modelling achievement. However, only for SES the correlation comparisons
reveal an important, albeit small, difference. In addition, even when controlling
for migration background, language use and language proficiency, SES is less
closely correlated with modelling achievement. SES appears to be less
important for modelling tasks than for non-modelling tasks. Considering that
modelling tasks are on average more realistic than non-modelling tasks, one
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could expect that SES is also less important for tasks with extra-mathematical
content than for purely mathematical tasks. Though, in our data SES seems to
be more important for tasks with extra-mathematical content than for purely
mathematical tasks (see also Cooper & Dunne, 2000). Therefore, in our data the
difference between r; and r, from Figure 2 cannot be explained by more
realistic nature of modelling tasks. In conclusion, SES appears to be less
relevant for modelling tasks, even though they contain realistic content.

At this point it remains uncertain which characteristics of the tasks cause these
correlation differences and must be explored in further investigations.
Moreover, even though SES is less closely correlated to modelling achievement
than to non-modelling achievement, it is still important for the explanation of
variation in modelling achievement. Methodologically, it must be mentioned
that the contents of the extra-mathematical and the purely mathematical tasks
differed from each other (in our study as well as in Cooper and Dunne’s study).
Further, considering the limitations of our study regarding the teaching of
mathematics, the results should be interpreted with caution, since performance
tests only provide very limited implications for mathematics teaching.
Furthermore, our sample is representative only for ninth-grade students.

In sum, our study indicates that mathematical modelling contains aspects which
may contribute to the reduction of social disparities in mathematics education.
Since modelling plays a more underrepresented role in classroom practice than
it would be desirable (Blum & Borromeo Ferri, 2009), these results may
strengthen the importance of modelling in mathematics education. Future
quantitative and qualitative studies should analyze these aspects in more detail,
especially within the scope of classroom practice. This study does not aim to
place mathematical modelling above other competencies. Rather, it should
encourage to confront students from all social backgrounds with authentic and
realistic mathematical problems. With a view to the empirical findings
mentioned at the beginning, especially lower SES students might profit from
mathematical modelling.
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EXPLORING TEACHERS’ ENVISIONING OF CLASSROOM
ARGUMENTATION

Michal Ayalon! and Samaher Namat
tUniversity of Haifa, Israel

This study explores how secondary mathematics teachers envision potential
argumentation situations in the classroom. The data were collected by means of
individual semi-structured interviews conducted with 31 secondary mathematics
teachers. The participants were asked to express their views on argumentation
for teaching mathematics, provide examples of argumentation as manifested in
their own teaching, and formulate a script for the hypothetical implementation
of a mathematical task in the classroom with the goal of engaging students in
argumentative activity. Analysis of the teachers' responses yielded categories
related to: (1) task characteristics, (2) teaching strategies, and (3) students’
characteristics. From a cross-analysis of the teachers' statements, certain
categories appeared more frequently than others. The findings are interpreted
in light of theory and practice.

INTRODUCTION

In the last several decades, there has been a growing appreciation for the
incorporation of argumentation in the mathematics classroom (Krummheuer,
2007; Yackel & Hanna, 2003). Firstly, argumentation is a valued mathematical
practice whereby mathematicians socially construct knowledge through
generating and evaluating alternative arguments. Secondly, existing literature
suggests that participation in argumentation requires students to explore,
confront, and evaluate alternative positions, voice support or objections, and
justify different ideas and hypotheses, all of which promote meaningful
understanding and deep thinking (Asterhan & Schwarz, 2016; Staples &
Newton, 2016). Recent reform documents, in various subject domains
worldwide, highlight argumentation as an important goal for students (e.g.,
Israel Ministry of Education, 2013). Nevertheless, argumentation in the
mathematics classroom is not yet a commonplace practice (Bieda, 2010).

Research exists on many aspects of argumentation as it pertains to learning
mathematics (e.g., Mueller et al., 2014; Staples & Newton, 2016; Yackel &
Cobb, 1996); yet little work has focused specifically on teachers' understanding
of argumentation (Ayalon & Even, 2016, Mueller et al., 2014). Considering that such

an understanding impacts the way in which argumentation practices are
implemented in the classroom (Conner et al., 2014), we deemed it important to
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make it the focus of investigation. Hence, this study addresses the topic by
exploring secondary teachers’ views on argumentation. We asked teachers to
provide examples of argumentation as manifested in their own teaching and to
write a script for the hypothetical implementation of a mathematical task that
would engage students in argumentation. Analysis of their responses yielded
several dimensions of teachers’ attention to potential classroom situations of
argumentation, and these provide a lens through which we may learn about
teachers' grasp of argumentation.

THEORETICAL BACKGROUND

A commonly accepted definition of argumentation is that of van Eemeren and
Grootendorst (2004) who maintain that argumentation is “a verbal, social, and
rational activity aimed at convincing a reasonable critic of the acceptability of a
standpoint by putting forward a constellation of propositions justifying or
refuting the proposition expressed in the standpoint” (p. 1). According to this
definition, argumentation involves generating claims, providing evidence to
support the claims, and evaluating evidence to assess their validity. This
definition also posits argumentation in a social space, and, if incorporated into
classroom discourse, it affords a venue for the articulation and critical
evaluation of alternative ideas, eventually supporting collaborative knowledge
construction (Asterhan & Schwarz, 2016). This definition forms the foundation
in the literature for common descriptions of argumentation that are ‘fruitful’ for
learning.

According to this definition, the present paper considers argumentation as
having two important aspects — structural and dialogic (McNeill & Pimentel,
2010). The structural aspect of argumentation focuses on the feature of
discourse whereby a claim, which can be presented as an idea, conclusion,
hypothesis, solution etc., is supported by an appropriate justification. While
mathematicians support claims using diverse justification types, specific types,
such as deductive justifications, are valued in the mathematics discipline over
others. In the mathematics classroom, the appropriateness of justifications is
attained by negotiating socio-mathematical norms (Yackel & Cobb, 1996). The
dialogic aspect regards argumentation as the interactions between individuals
when they attempt to generate and critique each other’s ideas. In mathematics
classrooms, this is indicated by students listening to each other, building on
each other's ideas, and critiquing ideas as the community moves toward
consensus.

In this study, we explore secondary mathematics teachers' envisioning of
potential classroom argumentation situations in both the structural and dialogic
aspects of argumentation. We assume that teachers' attention to both of these
aspects could help them better incorporate argumentation into their classroom
instruction (McNeill & Pimentel, 2010). In mathematics education, research has
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focused on teachers' attention as a topic for both investigation and development,
upon the premise that it shapes teachers' actions and practices (Mason, 2015).
For those researchers who focus on teachers' noticing (e.g., Jacobs, Lamb, &
Philipp, 2010), attention is considered a fundamental skill. One important issue
discussed in the research literature relates to how professionals attend to
noteworthy aspects of complex situations: “We are interested in the extent to
which teachers attend to a particular aspect of instructional situations” (Jacobs
et al., 2010, p. 172). Research has shown that attention can be narrowly focused
on one aspect of a situation at the expense of others, or, alternatively, it may be
broad in processing a wide variety of details and aspects of the situation
(Mason, 2015). Therefore, investigating what teachers attend to when
envisioning potential classroom argumentation situations is important and can
serve as an avenue for teacher educators to devise appropriate support, direction
and guidance.

Mathematics teaching that encourages argumentation provides students with
ample opportunities to take an active role in both structural and dialogic aspects;
I.e., to construct arguments, share their ideas, consider others' ideas, and
critically evaluate their validity, while adhering to normative aspects of
mathematical discourse that are specific to the students’ mathematical activity
(Yackel & Cobb, 1996). Various factors associated with teaching generate
opportunities for students to participate in argumentation. For example, teaching
for argumentation is fundamentally associated with implementing appropriate
tasks (e.g., Ayalon & Hershkowitz, 2018). In particular, open-ended tasks that
invite multiple strategies for solutions are perceived as enhancing opportunities
for argumentation (Mueller et al., 2014). In addition, teaching for argumentation
is intrinsically linked with the teacher's actions, such as encouraging students'’
participation and thoughtful questions (e.g., Ayalon & Even, 2016). Moreover,
teaching for argumentation requires teachers' sensitivity to their students'
cognitive factors, such as prior knowledge, common ways of thinking, and
argumentation skills, as well as to their students' affective characteristics, such
as self-confidence, interest, and enjoyment (Knuth & Sutherland, 2004).

While recognizing that the three dimensions of task characteristics, teaching
strategies, and student characteristics are only a subset of factors contributing to
classroom argumentation, we view them as important initial steps for the
successful integration of argumentation into classroom practice. These
dimensions are naturally inter-related; however, focusing on each one
individually allows us to discern each one and learn about its place in teachers'
envisioning of class argumentation. Taking into account the two aspects of
argumentation (structural and dialogic) across the three dimensions of
argumentation (task characteristics, teaching strategies, and student
characteristics), this study addresses the research question: To what do
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secondary mathematics teachers attend when asked to envision argumentation
in their classroom?

METHODOLOGY
Research participants

Thirty-one secondary mathematics teachers participated in this study. All of
them had five years or more of teaching experience. The decision to focus on
secondary-school teachers derived from the emphasis placed on argumentation
in the curriculum of this student population in Israel (Ministry of Education,
2013).

Data collection

The data used for this study consisted of individual, semi-structured interviews
of approximately 90 minutes that comprised two main parts. The first part
involved questions about the place of argumentation in teaching mathematics
and whether and how the research participants practice argumentation in their
respective classrooms. The teachers were encouraged to explain their responses
in detail and provide examples from their own teaching. In the second part, they
were asked to select a mathematical task which, in their view, encourages
argumentation, and to write a script for its hypothetical implementation,
including the context of the teaching situation and the discourse among the
participants while working on the task. Follow-up questions included: (1) What
were you considering when writing the script, in terms of engaging students in
argumentation? (2) In what ways do you find that ‘your manner of teaching’
within the script provides opportunities for students to engage in
argumentation? (3) In your script, what factors contribute to shaping the
argumentation? (4) What difficulties or inhibitors are you taking into
consideration here? How do you deal with them?

Data analysis

The aim of the data analysis was to ascertain what secondary mathematics
teachers attend to when asked to envision argumentation in their classroom. We
used the teachers' responses as the main source of our systematic analysis. The
teachers' written scripts served as a resource for us to better understand and
interpret their discourse. First, we employed the three predominant dimensions
found in the literature to in creating opportunities for class argumentation — task
characteristics (TC); teaching strategies for argumentation (TS); and students’
characteristics (SC) — as lenses through which we analyzed the teachers'
statements. at the same time, we remained open to other dimensions emerging
as well, although this ultimately did not happen. We then distinguished between
statements in which the teachers' focal attentiveness was directed toward
structural aspects of argumentation (i.e., responses pertaining to elements of
arguments such as claims and justifications and what counts as an appropriate
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justification) and those in which their focal attentiveness was devoted to
dialogic aspects of argumentation (i.e., responses associated with students'
Interactions when generating and critiquing arguments). We then used inductive
content analysis to devise sub-categories for each of the six categories
(structural and dialogic across TC, TS, and SC). We iteratively checked
categorizations against the whole data set. Since the analytical process was
comparative, it required repeated analysis of the whole data set. Based on an in-
depth discussion of the emerging categories, we reached a final consensus. We
ultimately obtained 13 sub-categories, to be discussed in the upcoming findings
section. Subsequently, we used these codes to re-analyze the transcripts of the
interviews with the 31 secondary mathematics teachers for characterizing each
teacher's envisioning of potential argumentation situations in the classroom. The
analysis focused on classifying each response according to the previously
received categories and sub-categories.

FINDINGS AND DISCUSSION

Table 1 presents the categories identified in the teachers' responses?. For each
dimension, we present categories that were found to focus on structural aspects
(S) of argumentation and categories found to focus on dialogic aspects (D) of
argumentation. Note that ‘T’ stands for a teacher. The third column presents the
number of teachers found to attend to each category according to their
interviews.

Table 1: Categories of teachers' envisioning of potential classroom
argumentation situations

Category Examples from the teachers' responses #Teachers
(n=31)
Task characteristics (TC)
TC1. (S) Inviting the | asked the students to justify the claim n3 — n is divided by 6 5
use of specific for each natural n. My goal in choosing this task was to expose
mathematical the students to different kinds of arguments while distinguishing
justifications between their merits: an algebraic solution, which is valued;

and other approaches, such as substitution of numbers into the
expression, which are not.... (T13)

TC2. (D) Affording | give the students multiple-solution tasks to encourage their 26
various solutions as  participation.... Such tasks afford fruitful argumentation, with
enabling students' different points of views, allowing for disagreements among
participation students which they will need to resolve. (T24)

Teaching strategies (TS)

11n the presentation we will elaborate the discussion on the categories and examples.
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TS1. (S) Encouraging | would use various scaffolding strategies that serve to generate 26
and scaffolding justifications for their solutions. For example, as | wrote in my
justifications script, by providing real matches [from a matchbook] to help

students develop a sense of the situation.... or by encouraging a

student to use a table of values to support his efforts to justify

his generalization. (T1)
TS2. (S) Promoting In my script, in response to this student's argument, I, as the 9
adherence to standard teacher, emphasized: "[That's] a very good argument. We have
disciplinary criteria here a counterexample for the claim that the number of matches
for determining the is the number of wagons multiplied by four. This is a
truth of a claim mathematical method to show that the claim is incorrect.” (T1)
TS3. (D) | prompt students to collaborate on developing their arguments. 26
Encouraging students  For example, when a student suggests a solution, | ask the other
to collaborate on students questions, for example: Who would like to explain the
constructing other student’s idea? How can you build upon this idea? And
arguments when a student responds, I commend him for collaborating.

(T28)
TS4. (D) Prompting [ encourage my students to critically evaluate each other’s 24
students to critically  arguments... I do that by asking them questions like: Do you
evaluate each other's  agree or disagree? What do you think about it? (T8)
arguments and search
for alternative ideas
TS5. (D) During the activity, | wrote on the board all the arguments that 11
Encouraging attempts the students raised... and discussed with them which are correct
to reach a consensus  and which are incorrect... It is very important to me that all

students will be convinced and then reach a consensus as to

which arguments are correct and which are incorrect, and why.

(T19)
TS6. (D) Establishing 1 explain to my students that there should be mutual respect 7
a climate of mutual within the classroom; they should listen to each other
respect respectfully, not disparage the other's opinion, and

acknowledge that different people have different points of

view... I praise students who critique others respectfully or

receive others' critiques in a polite and open-minded way. (T16)

Student characteristics (SC)

SC1. (S) Students' In the script, |1 took into account familiar ways in which 8
strengths and students’ thinking about forming and justifying generalizations
challenges in might be incorrect, such as employing empirical methods or
justifying and using invalid proportional reasoning.... Here, in my script, 1
refuting tried to deal with these tendencies by challenging the students

with dilemma. (T1)
SC2. (D) Students' Some students may know and understand the correct answer 7
skills of but are unable to articulate and present it in class, which makes
communicating it difficult for others to evaluate it and thus impedes having a
arguments productive discussion. (T15)
SC3. (D) Students' ...If students are asked to evaluate their peer's answers, they 6
skills of critiquing usually do so by saying ‘right’ or ‘wrong’, without discussing
each other’s ideas the weaknesses or strengths and how to correct the mistakes if

any are found. (T17)
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SC4. (D) Students' Sometimes only a few students participate. This is because some 13

sense of confidence students, especially the weaker ones, suffer from a lack of self-
confidence which causes them to be awkward about expressing
themselves and reluctant to give critical feedback to their peers.

(T9)
SC5. (D) Students' For my students, it is more interesting and challenging to work 8
interest and together on a task, try to convince their peers about their
enjoyment solutions' correctness, and critique each other's ideas, rather

than to be assessed solely by the teacher. (T31)

As seen in Table 1, whereas some categories were attended to by a large
number of teachers, some were scarcely mentioned. In terms of dialogic aspects
of argumentation, analysis of the teachers' responses revealed that, in their
envisioning of potential classroom argumentation situations, the majority (26
out of 31), attended primarily to choosing mathematical tasks that invite
multiple solutions as a means for students to discuss differences in viewpoint
and critique ideas (TC2). Most teachers also attended to teaching strategies that
encourage students to collaborate on constructing and critiquing arguments
(TS3 & TS4, 26 and 24 teachers, respectively), and, to a lesser degree,
encourage students to reach a consensus (TS5, 11 teachers). Still only a few
teachers expressed sensitivity to student characteristics that enable or inhibit
participation in argumentation, and those that did referred mainly to students'
difficulties in communicating their ideas in a comprehensive and coherent way
(SC2, 7 teachers). A relatively small number of teachers attended to affective
factors such as students' lack of self-confidence or to students' interest and
enjoyment when participating in argumentation (SC4 & SC5, 13 and 8 teachers,
respectively). In terms of structural aspects of argumentation, the analysis of
the teachers' responses revealed that most teachers (26 out of 31), in their
envisioning of potential classroom argumentation situations, attended to
teaching strategies that encourage and support students in their struggle to build
justifications for their claims (TS1). Only a few teachers mentioned in-class
teaching strategies which promote adherence to standard disciplinary criteria for
evaluating the quality of arguments and which cultivate students' sensitivity to
what constitutes acceptable mathematical arguments in the classroom (TS2, 9
teachers). In addition, few teachers referred to students' tendencies and possible
difficulties when generating specific kinds of mathematical justifications, such
as the tendency to use empirically based justifications, or the challenge in
generating deductively-based arguments (SC1, 8 teachers).

Overall, in the teachers' envisioning of argumentation in their classrooms, we
see much attention to social interactions that attempt to generate new ideas and
those involving the critiquing of each other’s ideas and solutions. To a much
lesser degree, we see teachers' attention to the specific normative aspects of
mathematical argumentation and to students' characteristics in relation to their
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engagement in argumentation. Research has indicated the importance of
instructional practices that integrate both the dialogic and structural aspects of
argumentation which are mathematically specific (Nathan & Knuth, 2003).
Research has also suggested that teachers who are likely to support student
participation in argumentation but do not emphasize distinctions between
acceptable and unacceptable mathematical justifications, may limit students’
opportunities to develop an understanding of what constitutes accepted
mathematical justifications and thus act more autonomously when engaging in
mathematics (Ibid., 2003). In the teachers' interviews included in our study, we
found wide mention of providing students with opportunities to participate in
co-constructing and critiquing arguments. At the same time, we witnessed rather
limited attention to facilitating students' participation in classroom
argumentation grounded in normative aspects of mathematical argumentation.
Our study suggests, therefore, that the teachers’ envisioning of argumentation in
the mathematics classroom was partial, at least as far as can be inferred from
their interviews. Hence, there is more to learn about teachers' understanding of
argumentation.

CONCLUSION

While the interviews used in this study provided a snapshot of teachers' views at
a particular point in time, research suggests that attention can be cultivated over
time (Mason, 2015; Paparistodemou et al., 2014). Findings of the current study
can serve as a foundation and a resource for enhancing teachers' attention to
argumentation. The range of dimensions identified in this study can serve as an
analytic platform for planning and facilitating professional development
activities to promote teachers' awareness of, and enthusiasm for, argumentation.
Examples of teachers' responses compiled in this study can serve as sources for
other teachers to analyze, compare, and reflect on, so as to construct a broad
range of ‘attention to argumentation’ aspects. The fact that some of the teachers
participating in this study perceived both the structural and the dialogic aspects
across the three dimensions as an integral part of enhancing the argumentation
processes in the classroom, is encouraging. It is evident from our findings that
teachers are at least partially open to adopting a new mindset with respect to the
teaching of argumentation in the classroom.
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METACOGNITIVE BEHAVIOUR IN PROBLEM POSING -
A CASE STUDY
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This investigation aims at developing a framework for identifying metacognitive
behaviour in problem-posing processes and illustrating the potential of such a
framework for assessing the quality of problem posing. For this purpose, 36
task-based interviews were conducted with pairs of student teachers. On these,
an inductive category development has been carried out to identify problem-
posing-specific metacognitive behaviour of planning, monitoring, and
evaluating. Subsequently, the identified metacognitive behaviours were applied
to a selected transcript fragment.

INTRODUCTION

At least since Flavell’s 1979 seminal work, metacognition has been a central
construct of research in psychology and mathematics education (Schneider &
Artelt, 2010). In particular, research on problem solving has benefited from the
consideration of metacognitive behaviour (e.g., Schoenfeld, 1987). Surprisingly,
for the field of problem posing, a systematic literature review in high-ranked
journals on mathematics education revealed that nearly no study explicitly
considered metacognitive behaviour (Baumanns & Rott, 2021). Yet we are
convinced that considering and analysing problem-posing-specific
metacognitive behaviour may be a pivotal enrichment to the field. On the basis
of this desideratum, we aim at (1) developing a framework for identifying
metacognitive behaviour in problem-posing processes and (2) illustrating the
potential of such a framework for assessing the quality of problem posing.

THEORETICAL BACKGROUND
Problem posing

The numerous definitions of problem posing conceptualise mostly equivalent
activities. Silver (1994) defines problem posing as generation of new and
reformulation of given problems which occurs before, during, or after problem
solving. Stoyanova and Ellerton (1996) refer to problem posing as the “process
by which, on the basis of mathematical experience, students construct personal
interpretations of concrete situations and formulate them as meaningful
mathematical problems” (p. 218).
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Based on the categories by Stoyanova and Ellerton (1996), we distinguish
between unstructured and structured problem-posing situations depending on
the degree of given information (Baumanns & Rott, 2021). Unstructured
situations are characterised by a given naturalistic or constructed situation in
which tasks can be posed without or with less restrictions. Asking to pose many
problems to a given geometric configuration would be, for example, an
unstructured situation. In structured situations, people are asked to pose further
problems based on a specific problem, for example by varying its conditions. As
structured situations are used in this study, an example is shown in the section
Methods.

Metacognition

According to Flavell (1979, p. 906), metacognition describes “knowledge and
cognition about cognitive phenomena”, which roughly means thinking about
thinking. Based on this understanding, two facets of metacognition are
identified: (1) knowledge of cognition and (2) regulation of cognition. In this
paper, regulative activities are investigated, therefore facet (2) will be focused.

Regulation of cognition refers to procedural knowledge with regard to processes
that coordinate cognition, including planning, monitoring, and evaluation
(Schraw & Moshman, 1995). Planning refers to the identification and selection
of appropriate strategies or resources concerning the current endeavour.
Monitoring refers to the attention and awareness of the comprehension
concerning the current endeavour. Evaluating refers to the assessment of the
processes and products of one’s learning. Cohors-Fresenborg and Kaune (2007)
provide a category system for classifying teachers’ and students’ metacognitive
(i.e. planning, monitoring, and evaluating) and discursive activities in class
discussions. This approach is used in this study.

Research on metacognition in problem posing

In  mathematics education research, metacognition is considered most
prominently in problem-solving research which had an immense impact on this
field (e.g., Schoenfeld, 1987). However, research on metacognitive behaviour in
problem posing remains largely unresearched to date. Some studies contain few
aspects of metacognition and self-regulation (Pelczer & Gamboa, 2009;
Kontorovich et al., 2012), metacognition is rarely explicitly addressed, though.
Yet, for example, Voica et al. (2020) mention that they found metacognitive
behaviour in their study with students as they were able to analyse and reflect
on their own posed problems and thinking processes.

RESEARCH QUESTIONS

The lack of conceptual and empirical insight into metacognitive behaviour in
problem posing constitutes a desideratum from which the following research
questions emerge:

2. 48 PME 44 -2021



Baumanns & Rott

(1) Which problem-posing-specific metacognitive behaviour (i.e. planning,
monitoring, and evaluating) can be identified in students’ problem-posing
processes?

(2)To what extent can different degrees of problem-posing-specific
metacognitive behaviour be empirically assessed?

METHODS
Research design for data collection

For this study, 32 task-based interviews were conducted, each with two pre-
service primary and secondary mathematics teachers, working in pairs on one of
two structured problem-posing situations (A. Nim game; B. Number pyramid).
Situation A, the Nim game, reads: “There are 20 stones on the table. Two
players A and B may alternately remove one or two stones from the table.
Whoever makes the last move wins. Can player A, who starts, win safely?
Based on this task, pose as many mathematical tasks as possible.” In total, 15
processes of situation A and 17 processes of situation B that range from 9 to 25
minutes with an average length of 14.5 min have been recorded. The processes
ended when no ideas for further problems emerged from the participants. 7h
46min of video material was recorded and analysed.

Data analysis — Assessment of metacognitive behaviour

To answer research question (1), we conducted a qualitative content analysis
(Mayring, 2000). There are three main categories of the metacognitive
behaviour, planning, monitoring, and evaluating, which stem from theoretical
considerations on regulation of cognition presented above, especially Cohors-
Fresenborg and Kaune (2007). Although their framework is developed for
analysing classroom interaction, it has been used successfully in paired
problem-solving processes (Rott, 2014). Problem-posing-specific sub-categories
were obtained through an inductive category development, with the goal of
identifying the activities of planning, monitoring, and evaluating within the 32
recorded problem-posing processes.

For research question (2), we analysed in detail several transcripts using the
developed framework. The analysis of a selected process fragment is discussed
in the results. In this transcript, the participants’ statements are reproduced
verbatim. For the analysis, the transcripts were first read iteratively in order for
us to obtain a rough understanding of the text and to be able to better integrate
finer sections of the text into the overall context of the text. The codes
developed in research question (1) are then applied to the transcript. The quality
of the coding was ensured through consensual validation in team discussions.
The coding of metacognitive behaviour of , monitoring and

are color-coded in , red and the style of Cohors-Fresenborg and
Kaune (2007).
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RESULTS
Identification of metacognitive behaviour in problem posing

In Table 1, the observed problem-posing-specific metacognitive behaviours of
planning, monitoring, and evaluating are summarized. In the following, the
behaviours are commented and discussed.

Planning. Four different behaviours of planning have been identified in the
students’ processes. Code P1 denotes the focus on a starting point for problem
posing from which new problems can be posed. This can be, for example, a
certain condition, a certain context or even a certain solution structure of the
given initial problem. The behaviour in P2 has been frequently observed and is
reminiscent of the well-known “What-if-not”-strategy (Brown & Walter, 2005),
in which a similar activity is suggested before the actual problem posing.
Reflecting necessary knowledge (P3) was observed quite rarely. Nevertheless,
participants have partly considered what knowledge they or the potential solvers
of a posed problem need to have in order to be able to solve it. In some cases, a
general procedure for the upcoming problem-posing process was also named by
the participants, e.g. first vary the initial task in multiple ways, then solving the
varied tasks (P4).

Monitoring. M1 characterises that metacognitive behaviour in which
participants control the problem-posing process. Controlling the notation or
representation of the posed problems (M2) refers to figures drawn to illustrate a
problem, to the formulation of the specific question so that it becomes
understandable and precise, or similar behaviours. We frequently observed that
participants made a modification to the initial problem and analysed the
consequences of this modification on the newly created problem (M3), for
example for the solution structure or its difficulty. The code M4 was set when
participants analysed the mathematical structure of the given situation in order
to get to a new problem or analysed the structure of a posed problem in order to
be able the characterise it, for example with regard to its solvability or
appropriateness.

Planning
P1 Focus on a starting point Controlling Assessing and
of the problem-posing the general procedure reflecting
situation to generate new for problem posing on the characteristics
problems of the posed problems
P2 Capturing the conditions Controlling the Reflect on
and identifying the notation or modifications of the
restrictions of the given representation of the posed problems
problem-posing situation posed problems
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P3 Reflect necessary Assessing
knowledge consequences for the
problem’s structure
through the modified
or new constructed
conditions
P4 Express general Mathematical
procedure for problem activities related to a
posing posed problem

Table 1: Regulative processes in problem posing

Evaluating. Assessing and reflecting on the characteristics of a posed problem
(E1) was a common behaviour of the participants. They often evaluated whether
their problem is interesting, solvable, or appropriate for a specific target group.
This behaviour was also mentioned in previous studies on the process of
problem posing (Pelczer & Gamboa, 2009; Kontorovich et al., 2012). A
reflection on modifications of the posed problems (E2) was frequently observed
when the posed problem lacks a specific characteristic, for example it is too
easy or too difficult, it is not very interesting, or it is too similar to the initial
problem.

The case of Tino & Ulrich

In this section, we show the analysis of a process fragment by the students Tino
and Ulrich, focussing on the metacognitive behaviours that have been
developed in the previous section. The transcript starts at 19m 49s of their 33m
21s problem-posing process of the Nim game. Beforehand, they already posed,
solved, and analysed several new variations of the Nim game such as: What if
there are 21 stones on the table in the beginning? What if you could remove 1,
2, or 3 stones from the table? In the following fragment, they pose the problem
that you are only allowed to remove 2 or 3 stones from the table.

1. U:

2. T: | What about the variation with number of stones is also a
victory factor?

3. U: | Oh yes, we can do that too...

4. T: | At least we can notice for a moment, right?

5. U: | ... But | would like to do that later, | would like to save that M1
for a little, so this is definitely also a variation.
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In turn 1, Ulrich poses a new variation, in which only 2 or 3 pieces may be
removed from the table. This new starting point is derived from a previous task
(1 to 3 pieces may be removed). Since Ulrich sets a new focus for the upcoming
problem-posing activity, this statement is coded as planning (P1). After Tino
has thrown in what happened to one of the previous ideas, Ulrich directs the
general procedure in turn 5 and thinks that this task can be dealt with later and
that the task posed in turn 1 should be discussed in greater depth. Ulrich
intervenes in the process and tries to guide it in a structuring way. Therefore,
this statement is coded as monitoring (M1).

10. | T: | (referring back to the problem posed in Turn 1) So you can’t| M2
just remove one tile, right? (writes down) Okay.

11. | U: | Here is a scenario; at 4 nobody wins (5 sec).

12. | U: | When | take 3.

13. | U: | Yes. This is a new game. M3 &
. There are situations where nobody wins. Yeah, it’s like
at the game...
14. | T: | Tic-tac-toe... M1

17. | U: | Yes, I can’t remember exactly.

18. | T:

In turn 10, Tino tries to find a formulation for the problem that was posed in
turn 1. He writes down this task as a negation that one may not just remove one
stone from the table. His thinking about the formulation of the question
represents a control of the notation or representation of the problem and is
therefore coded as monitoring (M2). Ulrich says that this change results in a
“new game”. This assessment of the consequences that their variation has for
the Nim game was coded as monitoring (M3). Ulrich states that he likes the
consequences that follow from their variation since they are different from the
initial task. Therefore, this is coded as evaluation (=1). In turn 18, Tino agrees
with Ulrich’s positive evaluation of the game.

20. | T:

21. | U:

24. | T: | Because then you practically keep it up, right? The winning| M3
strategy.

25. | U:
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26. | T:

27. | U: | Yes, that’s true. &
. But let’s move on to the next step. ... M1

38. |T:

Tino interjects in turn 20 whether they should modify the new game due to this
situation. Ulrich argues not to make this change. In both statements, the
participants consider to modify the posed problem so that the game has a
definite winner (-~). Tino states in turn 24 that this change would restore the
original winning strategy of the initial task. By that, he assesses the
consequences of his slight modification and compares it to the initial task.
Therefore, this statement is coded as monitoring (M3). Ulrich does not seem to
like this change, perhaps because it would bring him too close to the initial task.
In turn 13, he seemed to like this new element very much. This statement is
coded as evaluation (=1). Tino reflects in turn 26 that one could modify the
game with his suggestion in order to maintain the original winning strategy of
the initial task. This is a reflection on their modification and, thus, is coded as
evaluation (=~). Ulrich initially agrees with Tino’s previous assessment (--).
Then, he focuses on a solution strategy of the modified game again and thinks
about the situation in which five stones lie on the table. With his statement, he is
controlling the process which is why this statement is coded as monitoring
(M1).

DISCUSSION AND CONCLUSION

The present study examined metacognitive behaviour, which has so far been
widely disregarded in problem-posing research. Analyses of 32 problem-posing
processes of student teachers were conducted to identify regulative behaviours,
sorted into planning, monitoring, and evaluating. The results of this exploratory
investigation are discussed in the following with regard to research questions
(1) and (2):

(1) Table 1, summarises observed behaviours that are predominantly
metacognitive. Some of these behaviours may be considered as cognitive. Yet,
it should be noted that being able to intentionally use these kinds of cognitive
behaviour is a sign for metacognitive abilities. For example, searching for a
solution can be seen as cognitive behaviour, but considering the solution in
order to get a better idea whether the posed problem is, for example, solvable or
appropriate for a specific target group can be seen as metacognitive behaviour.
Moreover, not all codes within the main categories of planning, monitoring, and
evaluating are separable from each other. However, a clear separation between
these main categories should be recognizable. It should be emphasised that even
iIf the named behaviours are labelled as metacognitive, they should not be
considered without cognitive behaviour.
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(2) Tino and Ulrich show several and dense acts of metacognitive behaviour in
their problem-posing process. In the analysed fragment (duration 3:12 min), 19
activities were coded as metacognitive, i.e. one code every 10 seconds. This
value should not be interpreted as a fixed value for metacognitive behaviour.
However, it allows to identify a tendency for quantity of metacognitive
behaviour. In other fragments that have been analysed in this study, this value
was strikingly lower. Coding using the developed categories is intended to
support this assessment.

The framework developed in this study provides numerous opportunities for
follow-up research. With a larger sample, maybe additional problem-posing-
specific metacognitive behaviours can be identified. As in research on problem
solving, a comparison between metacognitive behaviours of experts and novices
could reveal metacognitive behaviour related to successful problem posing. This
study uses structured problem-posing situations. Future studies could
investigate whether there are different metacognitive behaviours in unstructured
situations. Often, the ability to pose problems is measured by analysing the
products of a problem-posing process (cf. Van Harpen & Sriraman, 2013). The
analysis of metacognitive behaviour could be used to assess the ability to pose
problems on a process-oriented level. Neglected in this study was the
metacognitive facet knowledge of cognition. The importance of this facet of
metacognition could also be the focus of future studies. In addition, the
interaction and discourse of the participants in the transcript fragment also plays
a central role in the quality of problem-posing processes. Future considerations
could look more closely at this interaction as an additional aspect of (negative)
discursivity similar to Cohors-Fresenborg and Kaune (2007). Overall, we
believe that the so far largely neglected perspective of metacognitive behaviour
can be a significant enrichment for problem-posing research in the future.
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Reasoning about covarying quantities in terms of both a fixed measurement unit
and a measurement unit that varies in size is an overlooked but potentially
valuable way to help learners make sense of a range topics that past research
has demonstrated pose perennial challenges. We identify several such topics
including developing and explaining linear equations, making sense of slope
and average rate of change, interpreting geometric similarity and trigonometric
ratios, and understanding the relationship between empirical and theoretical
probability. We explain how a specific way of conceptualizing proportional
relationships—the variable-parts perspective—relies on reasoning with both a
fixed measurement unit and a measurement unit that varies in size, and make
the case this perspective can be a foundational and productive way of reasoning
about a critical swathe of school mathematics.

INTRODUCTION

A well-known concern in mathematics education is disjointed, incoherent
treatments of topics that rely on isolated, single-purpose tools. Another concern
is that many important topics are difficult for students and teachers, including
linear relationships, rates of change, trigonometry, and the law of large numbers
(e.g., see Cai, 2017). One possibility is that there are foundational ideas that
students need to work productively across a variety of topics, but that these
ideas have either not been emphasized or their importance has not been
discovered in mathematics education. Also, when the same idea can be used
repeatedly, across many topics, students may see how prior experiences can
help them reason about new situations.

In this theoretical essay we propose that a specific way of conceptualizing
proportional relationships—the variable-parts perspective (Beckmann & lzsak,
2015)—may be valuable, in part, because it includes an idea that is needed in
many contexts: the idea of using both a fixed unit of measurement and a unit of
measurement that varies in size to measure and describe covarying quantities.
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USING VARIABLE PARTS TO GENERATE AND EXPLAIN
EQUATIONS

Research has shown that the variable-parts perspective provides one specific
way to conceive of how quantities can vary together, yet be in a constant linear
(or proportional) relationship (Beckmann & lzsak, 2015). It is part of a
coherent, connected landscape of multiplicative ideas at the core of a large
swathe of important mathematics (I1zsék & Beckmann, 2019).

To illustrate the variable-parts perspective, Figures 1a and 1b show 4 parts of
red paint covarying with 3 parts of blue paint. Initially, each of the 7 parts is 1
Litre. Then the parts are allowed to vary in such a way that the 7 parts remain
the same size as each other, but that size can be any number of Litres. If we
view 1 part as a unit of measurement that varies in size, then we can interpret
the quantities of paint as simultaneously fixed and varying. Measured in parts,
the red paint is fixed at 4 parts and the blue paint is fixed at 3 parts. Yet
measured in Litres, the numbers of Litres of red and blue paint vary. When
mixed, the paint would always make the same fixed hue of purple, but in larger
or smaller amounts, depending on how many Litres make 1 part.

We can use the above perspective on the red and blue paint to develop an
equation. Let the red paint consist of X Litres and let the blue paint be Y Litres.
Then because Y is always 3 parts and X is always 4 parts, Y must always be % of
X, and therefore the equation Y = %4 X describes how the covarying quantities of
paint are related.

If we rotate the 3 parts blue, as in Figures 1c and 1d, we can see the line through
(0O, 0 and (4, 3) from a \variable-parts perspective (see
www.geogebra.org/m/fe9g378s for these and other dynamic Geogebra
sketches). The forgoing reasoning also explains why the line has equation Y = %
X.
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Figure 1: Covarying quantities of red and blue paint from a variable-parts
perspective. (a, ¢) 1 liter per part. (b, d) 2 liters per part.

The variable-parts perspective is different from another “multiple-batches” way
to conceive of the red and blue paint. For example, we might think of 20 Litres
of red paint and 15 Litres of blue paint as composed of 5 batches, each
consisting of 4 Litres red paint and 3 Litres blue paint. From this multiple-
batches viewpoint, as we vary the numbers of Litres of red and blue paint, we
imagine a fixed batch, consisting of 4 Litres red paint and 3 Litres blue paint,
and we imagine varying the number of batches that we consider. But there is no
unit of measurement that varies in size, and we do not describe the overall
quantities of paint as fixed. In a coordinate plane, from this multiple-batches
perspective we might view quantities of red and blue paint as obtained by
repeatedly going over 4 Litres and up 3 Litres, or over 1 Litre and up % Litres.

Past research has shown that middle grades students as well as future teachers
often have difficulty justifying linear relationships (e.g., Rivera & Becker, 2007,
Stephens, Ellis, Blanton, & Brizuela, 2017). Students and teachers have more
success when they use visual strategies with figural patterns, but figural patterns
are discrete and do not offer the opportunity to reason about a continuous
context. Above, we showed one way to generate and justify linear equations in
two variables by reasoning about how quantities are related in a continuous
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context viewed from a variable-parts perspective. Beckmann and Kulow (2017)
showed that future middle grades teachers enrolled in a mathematics course
were able to use the variable-parts perspective to reason about covarying
quantities and to generate and justify linear equations in two variables,
including equations in non-standard forms. Thus, a variable-parts perspective
might also be promising for helping middle grades students to reason
guantitatively to generate and justify linear equations.

USING VARIABLE PARTS TO INTERPRET RATE OF CHANGE

Research has shown that the concepts of slope and rate of change are difficult
for students and teachers. For example, in Lobato, Ellis, and Munoz’s (2003)
study, middle grades students interpreted m in y = b + mx as a difference rather
than a ratio. In a study of secondary teachers’ meanings for measure, slope, and
rate of change, Byerly and Thompson (2017) found that the majority of teachers
interpreted a slope of 3.04 as meaning that for every change of 1 in X, there is a
change of 3.04 in y, or as moving to the right 1 space and up 3.04 on a graph.
When these teachers were asked how to interpret 3.04 if x changes by
something other than 1, only 8% conveyed a multiplicative meaning for 3.04,
such as x can change by any amount and y will change by 3.04 times the change
in x.

The variable-parts perspective offers a way to view (average) rates of change
and slope as the result of a measurement and therefore multiplicatively. In the
example of Figure 1 discussed previously, the rate of change or slope, %, is the
constant measure of Y Litres (3 parts) in terms of X Litres (4 parts); it is how
much of X it takes to make Y exactly. This interprets the rate of change or slope
multiplicatively, as how many times one needs to take one quantity to produce
another, and is not limited to the case where the change in X is 1 unit,

More generally, the idea of using a unit of measurement that varies in size could
be important for interpreting instantaneous rates of change in calculus. With a
variable-parts perspective, we can interpret the average rate of change of a
function in a way that makes sense even when both AX (the change in X) and AY
(the change in Y) shrink toward 0. The average rate of change of a function over
an interval is given by a difference quotient, namely AY divided by AX. To
interpret this difference quotient as a measure, we can view AX as a
measurement unit that varies in size, and we can use it to measure AY. The
resulting measure—how many (or how much) of AX it takes to make AY
exactly—is the value of the difference quotient AY/AX. See Figure 3. For a
differentiable function, as AX shrinks toward O (keeping the left end point of the
intervals fixed, say), these measures are approximately constant, and approach
the value of the derivative at the left end point.
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Figure 3: Average rate of change as the measure of AY by AX as AX shrinks
toward O.

A variable-parts perspective might build on approaches students have been
found to use in past research. In a study of students’ quantitative reasoning
about covarying quantities, Johnson (2015) asked students to reason about how
the height of liquid in a bottle varied with the liquid’s volume. Even though
height and volume are not the same kind of quantity and not measured in the
same units, all three students compared changes in height with changes in
volume. Johnson found that making such comparisons can be useful for
interpreting covariation, but it does not foster attention to variation in the
intensity of change. We propose that a productive next step for the students in
Johnson’s study might be to measure changes in the dependent variable by
changes in the independent variable, given that they had just compared such
changes. Such a next step would put students on a path to interpreting average
and instantaneous rates of change as we described in the previous paragraph.

USING VARIABLE PARTS IN GEOMETRY AND TRIGONOMETRY

To see how the variable-parts perspective is useful for situations of geometric
similarity, including trigonometry, consider dilations of 2-dimensional
Euclidean space equipped with Cartesian coordinates. We may think of
dilations that are centred at the origin in terms of two systems of coordinates on
the same axes: one in which 1 unit of distance is fixed at 1 cm (say) and another
set of coordinates in which 1 unit of distance—1 part—varies in size and
consists of x cm, where x is the scale factor of the dilation. Given any point in
the plane, its coordinates can be expressed in centimetres or in parts. For
example, Figure 4 shows the effect of applying a dilation with scale factor 2.
The light (grey) grid lines remain 1 cm apart and the heavy (red) grid lines
remain 1 part apart even though 1 part changes from (a) 1 cm to (b) 2 cm.
Expressed in terms of parts, the coordinates of the apex of the triangle are
always (4, 3) even though the apex’s coordinates expressed in centimetres vary
as the scale factor of the dilation varies.
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Figure 4: Heavy (red) grid lines are 1 part apart where 1 part is (a) 1 cm (b) 2
cm.

This variable-parts perspective highlights that the side lengths of a triangle
remain in the same ratio even as the triangle is dilated. For example, in Figure 4
the height of the triangle, h, is always 3/4 its width, w, and therefore h/w is
always 3/4 and is independent of the dilation that is applied to the triangle. The
constancy of ratios of side lengths of right triangles is necessary and implicit in
trigonometry.

To apply the variable-parts perspective to trigonometry, consider a right triangle
inscribed in a circle of radius 1 part, which is r cm (say), where r is the scale
factor of a dilation centred on the centre of the circle. With this view, the radian
measure of an angle is the measure in terms of parts—i.e., in terms of the
radius—of the arc subtended by the angle on the circle. The variable-parts
perspective highlights that the radian measure of an angle does not depend on
the size of the circle and that it is always how many or how much of the radius
it takes to make the subtended arc.

A variable-parts perspective fits with the successful approach Moore (2013,
2014) took in his teaching experiments on angles and trigonometric functions.
In particular, Moore’s teaching experiments seem to have fostered the idea of
measurement with respect to both a fixed unit and a variable unit (the radius).
For example, Zac interpreted an arc length of 0.61 as 61% of a radius and
explained that it is always the same percentage for each different circle. Zac was
also able to interpret the sine and cosine as percentages of a circle’s radius,
regardless of the circle’s size.

USING VARIABLE PARTS FOR THE LAW OF LARGE NUMBERS

In their review of the teaching and learning of probability and statistics,
Langrall, Makar, Nilsson, and Shaughnessy (2017) noted that there has been
particular interest in informal inference and a strong consensus that “informal
inference includes (1) making claims or predictions beyond the given data while
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(2) using the data as evidence for any claims that are made and (3)
acknowledging that there is uncertainty in any claims or predictions” (p. 516).
In reviewing misconceptions of statistical inference, Castro Sotos, Vanhoof,
Van den Noorgate, and Onghena (2007) found a number of empirical studies
that documented misconceptions regarding the idea behind the law of large
numbers. According to Castro Sotos et al., students’ difficulties may have their
source in the misconception known as “the law of small numbers,” in which
even small samples are assumed to be highly similar to the population from
which they are drawn (Tversky & Kahneman, 1971). Tversky and Kahneman
noted that in sequential games of chance “subjects act as if every segment of the
random sequence must reflect the true proportion: if the sequence has strayed
from the population proportion, a corrective bias in the other direction is
expected. This has been called the gambler’s fallacy” (p. 106). Castro Sotos et
al. called for further research to identify sources and possible solutions for
misconceptions.

In situations of random processes, such as spinning a spinner, there are different
ways students might informally conceptualize the law of large numbers.
Consider a spinner that has 5 sectors of the same size, 3 purple and 2 blue (see
Figure 6), and assume that every time one spins the spinner, each sector is
equally likely to be landed on. One way to interpret the theoretical probability
of landing on purple, 3/5, is “we expect 3 out of every 5 spins to land on
purple.” With this interpretation, one might interpret the law of large numbers in
terms of multiple “batches” (sets) of 5 spins, expecting that in every such batch,
3 should land on purple, and that when batches deviate from this expectation,
subsequent batches will adjust to compensate. Such a view seems similar to the
“law of small numbers” ideas described by Tversky and Kahneman (1971).
Although it seems reasonable to some extent for students to use ideas like “3 out
of every 5 spins should be purple,” it also seems that this way of thinking could
reinforce the “law of small numbers” and the gambler’s fallacy.

The variable-parts perspective provides a different way to think about the law of
large numbers. In the context of the spinner discussed above, imagine spinning
the spinner over and over, and think of measuring sets of spins in two ways: in
terms of the fixed unit “1 spin” and in terms of the unit “all the spins so far,”
which varies in size. (Alternatively, one could use “the spins that have landed in
Sector 1 so far.”) One can then think of measuring various sets of spins, such as
the spins that have landed in purple so far. If we measure the spins that landed
in purple by the unit “1 spin,” the result is @ number of spins. If we measure the
spins that landed in purple by “all the spins so far,” the result is some fraction or
percentage—the empirical probability. Because the spinner is equally likely to
land in each sector, we expect approximately 1/5 of the spins to land in each
sector, and so we expect approximately 3/5 of the spins to land in purple. As
more and more spins are performed, we should expect the spins to become more
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and more evenly distributed across the 5 sectors (see Figure 6). So when we
measure the spins that landed in purple by the unit “all the spins so far,” we
should expect the measure to be approximately 3/5, with a better and better
approximation as there are more and more spins. This is a way for students to
see why we should expect the empirical probability to approximate the
theoretical probability more and more closely as the number of spins increase.
We propose that such an interpretation of the law of large numbers provides a
more accurate image and a better foundation for informal inference than a “3
out of every 5 spins” idea.

Percentages of spins landing in each sector on 10 total spins

0% 10% 0% 50% 40%

Percentages of spins landing in each sector on 100 total spins

A spinner with 21% 23% 12% 21% 23%
3 purple sectors and
2 blue sectors

Percentages of spins landing in each sector on 1000 total spins

20.1% 218% 18.6%  20.6%  18.9%

Figure 6: A spinner and percentages of spins landing in each sector on 10, 100,
and 1000 spins.

In a study of future middle grades teachers who were enrolled in a mathematics
course that taught the variable-parts perspective, Stevenson, Beckmann,
Johnson, and Kang (2018) found that all 4 participants were able to reason
about spinners using a variable-parts perspective, even though probability had
not yet been discussed in the course. Three of the future teachers also used an
interpretation like “3 out of every 5 times.” Two of them got stuck when using
such an interpretation, but then made progress when they shifted to focusing on
spins landing in parts (sectors) of the spinner and used variable-parts reasoning.
Although further study is needed, these results suggest that a variable-parts
perspective could be both accessible and useful for reasoning in probability and
statistics.
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In the present study, we tested the hypotheses that: a) there are individual
differences in secondary students’ conceptual and procedural fraction
knowledge, and b) these differences are predicted by students’ approach (deep
vs. surface) to mathematics learning. We used two instruments developed and
evaluated for the purposes of the study which were administered to 463 students
at seventh and ninth grade. We found four clusters of students corresponding to
different ways of combining conceptual and procedural knowledge of fractions.
Students’ approach to mathematics learning predicted membership to some, but
not all clusters.

THEORETICAL BACKROUND

Procedural knowledge is commonly defined as the knowledge of algorithmic
procedures, whereas conceptual knowledge as the knowledge of concepts and
principles pertaining to a certain domain (Rittle-Johnson & Schneider, 2015).
This distinction has been criticized (e.g., Star & Stylianides, 2013), a main issue
of concern being whether it is possible for the two types of knowledge be
separated, given that they are typically found to be highly correlated.
Nevertheless, there are indications that the two types of knowledge can be
separated both theoretically and empirically (Lenz & Wittman, 2021), and this
distinction remains useful in the area of research on mathematics learning
(Vamvakoussi, Bempeni, Poulopoulou, & Tsiplaki, 2019).

Assuming that conceptual and procedural knowledge are distinct types of
knowledge, the order of acquisition and their relation have long been an issue of
interest. The currently predominant theory, namely the iterative model (Rittle-
Johnson, Siegler, & Alibali, 2001), came to bridge the gap between two
different accounts according to which one type of knowledge precedes the other
(procedures-first and concept-first theories). The iterative model assumes that
either type of knowledge can trigger the learning process, depending on the
child’s prior experience with the domain in question; and that, from then on, the
links between the two types of knowledge are bi-directional and continuous,

with increases in one kind of knowledge leading to gains in the other type of
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knowledge. The iterative model explains many empirical findings, notably the
well-established one that the two types of knowledge are positively correlated.
However, such correlations found at group level do not accurately depict what
happens at the individual level (Vamvakoussi, et al., 2019). Indeed, there is
evidence that there are individual differences in the ways students combine the
two types of knowledge. Hallett and colleagues (2010; 2012) investigated such
individual differences in the area of fraction learning and identified different
groups of students (Grades 5-8) with the one type of knowledge, conceptual or
procedural, to be more developed than expected, given the other type. Similar
individual differences in fraction knowledge have been found for older students,
namely 9" graders (Bempeni, Poulopoulou, Tsiplaki, & Vamvakoussi, 2018;
Lenz & Wittman, 2021), and they may be even extreme (Bempeni &
Vamvakoussi, 2015).

With the aim of explaining how these individual differences regarding
knowledge in the domain of fractions, or other domains, arise, several
hypotheses have been tested looking at various factors such as the amount of the
prior knowledge in a domain (Schneider, Rittle-Johnson, & Star, 2011);
differences in cognitive profiles, measured as general conceptual and procedural
ability (Gilmore & Bryant, 2006; Hallett et al., 2012) or general cognitive
abilities (Lenz & Wittman, 2021); and differences in educational experiences,
measured as attendance in different schools or as school grade (Canobi, 2004;
Hallett et al., 2012). No or limited support for these hypotheses has been found.

We have formulated the hypothesis that a possible source of individual
differences in conceptual and procedural fraction knowledge is the individual’s
approach to mathematics learning. In the literature there is an overarching
distinction between the deep approach to learning, associated with the
individual’s intention to understand; and the surface approach, associated with
the individual’s intention to reproduce. There are several ways of characterizing
each approach, mainly adapted to tertiary education (Entwistle & McCune,
2004). In a qualitative study (Bempeni & Vamvakoussi, 2015) we adopted a
model developed by Stathopoulou and Vosniadou (2007) and tested with
secondary students. This model differentiates between the deep and the surface
approach to learning along three axes, namely goals (personal making of
meaning vs. performance goals); study strategies (e.g., searching for
connections vs rote learning); and awareness of understanding (high vs. low).
We interviewed in depth three 9" graders (A, B, C) who differed with respect to
their fraction knowledge: A had strong conceptual as well as procedural
knowledge; B had strong conceptual, but extremely weak procedural
knowledge; and C had strong procedural, but extremely weak conceptual
knowledge. We found indicators of the deep approach to mathematics learning
for A and B, and indicators of the surface approach for C. We also traced
differences among the students with respect to particular aspects of motivation
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(e.g., enjoying vs. avoiding intellectual challenges in mathematics). In a second
qualitative study, we further investigated the features of the deep approach to
mathematics learning by studying exceptionally competent students in
mathematics (Bempeni, Kaldrimidou, & VVamvakoussi, 2016).

These two qualitative studies, informant the development of an instrument
assessing secondary students’ approach to mathematics learning (deep vs.
surface) along four axes, namely goals, study strategies, motivation, and self-
regulatory behaviors (e.g., monitoring of understanding, regulation of study
habits).

In the present study, we examined the hypotheses that there are individual
differences in conceptual and procedural knowledge of fractions (hereafter,
CKn and PKn) that become less salient but remain present up to Grade 9; and
that these differences are predicted by students’ approach to mathematics
learning (surface vs. deep).

METHOD
Participants

The study had two phases. The participants in the first phase were 510 students
at Grades 7 and 9, of whom 463 participated also in the second phase (262 ninth
graders and 201 seventh graders). The participants came from seven Greek
secondary schools.

Materials

Students’ CKn and PKn was measured by an instrument that has been evaluated
in a previous study with respect to reliability and validity (Bempeni et al.,
2018). The instrument comprised 12 procedural tasks (e.g.: fraction operations,
simplification of a complex fraction) and 14 conceptual tasks such as fraction
representation, comparison, estimating the outcome of fraction operations (see
Bempeni et al., 2018; Vamvakoussi et al., 2019 for a more detailed description
of the instrument).

The new instrument assessing student’s approach to mathematics learning
comprised of 28 statements and 6 scenarios in which two hypothetical students
presented two different views on an issue. Half of the statements were
consistent with the deep approach to learning, and the other half with the
superficial approach to learning. The students were asked to express the degree
of their accordance in a scale of 1-4 (1=Totally Disagree, 2=Disagree, 3=Agree,
4=Totally Agree). The neutral choice “Neither Agree or Disagree” was not
included because it has been proved problematic in similar studies (e.g.:
Entwistle et al., 2015). Examples of such statements were the following: “It’s a
waste of time to study for something that is not required for the exams”, “If I do
not remember the particular strategy to solve a problem, it is meaningless to try
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to solve it”, “l prefer to solve new problems, than practicing with the ones |
already know how to solve .

Procedure

The students had fifty minutes to complete the first questionnaire with the
fraction tasks, which was enough for them. The questionnaire for the approach
to mathematics studying and learning was administered three weeks later. No
time limit was imposed, but the students needed at about half hour to complete
it.

DATA ANALYSIS — RESULTS

1%t Phase of the study

The data of the first phase of the study were classified using the proposed
hierarchical method of cluster analysis, and taking as variables the standardized
residuals in the two types of tasks (Bempeni et al., 2018; Hallett et al., 2010,
2012). By following this method, we examined the relative difference between
the two variables. Using a series of evaluation measures in R programming
language (R project for statistical computing), we determined that the optimal
number of clusters was 4.

In Figure 1, we present the average performance in conceptual and procedural
knowledge by cluster. In a little more detail, the first cluster (“Stronger than
expected in CKn and PKn”, N=163, 32%, 10% 7" Grade) performed better than
expected in both types of tasks. The second cluster performed better than
expected in procedural tasks based on their CKn (“Stronger than expected in
PKn”, N=207, 40.6%, 28.6% 7th Grade). The third cluster performed better
than expected in conceptual tasks based on their PKn (“Stronger than expected
in CKn”, N=75, 14.7%, 6.9% 7th Grade). Finally, the fourth cluster (“Weaker
than expected in CKn and PKn”, N=65, 12.7%, 8.4% 7" Grade), comprised of
students with low performance in both measures. It is worth noting that despite
the fact that the overall score of the cluster “Stronger than expected in PKn”
was higher than the one of the cluster “Stronger than expected in CKn”, the
CKn score was comparatively lower. Moreover, the average performance in
PKn and CKn was better at 9" grade (69.5% and 49.2% respectively) than at 7%
grade (66.9% and 32.8%).
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Figure 1: Average performance in CKn and PKn by cluster
2"d Phase of the study

In the second questionnaire, for the items consistent with the deep approach to
learning, each choice (1-4) was taken to reflect the degree (low to high) of
consistency of the response with the deep approach to learning. For the items
consistent with the surface approach to learning the scores were ranked in the
inverse order. The total score (hereafter, LA score) was calculated as the sum of
the scores of all the items. For the analysis of the data, we used R programming
language.

For the evaluation of the second questionnaire, we conducted a small pilot
study. The participants of the pilot study were 120 seventh and ninth graders. In
order to assess the internal consistency of the instrument, we calculated
Cronbach’s alpha. The value of Cronbach’s alpha for two of the items had
negative correlation with the scale, and as a result, these questions were
excluded from our instrument. Finally, the value of Cronbach’s alpha for the
scale was 0=0.821. We also assessed the external consistency of the instrument
over a period of 15 days with a test-retest method. Forty-one students completed
the questionnaire for a second time. We calculated the value of intra-class
correlation coefficient for each item separately. Five of the items displayed
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intra-class correlation below 0.4 and thus we decided to exclude them from the
final version of the instrument.

Clusters N Mean SD Median Range

1 Stronger than expected 158 2.987 0.414 3.037 (1.852-3.704)
in CKn and PKn

2 Stronger than expected 194 2.830 0.397 2923 (1.630 - 3.593)
in PKn

3 Stronger than expected 52 2.636 0.275 2.633 (2.222 - 3.370)
in CKn

4 Weaker than expected 59 2593 0.367 2.630 (1.481-3.481)
in CKn and PKn

Table 1: Mean LA score by cluster

The test of independence showed that there is a statistically significant
correlation between cluster and approach to mathematics studying and learning
(x?=60.396, df=3, p-value<0.0001). As illustrated in the Table 1, the cluster
“Stronger than expected in CKn and PKn ” had the highest score with respect to
the approach to mathematics learning, followed by the group “Stronger than
expected in PKn”. The group “Weaker than expected in CKn and PKn " had the
lowest score.

In order to test the hypothesis that learning approach and school grade are
predictors of the level of students’ CKn and PKn, we conducted multinomial
logistic regression (Table 2). The results showed that both learning approach
and grade can predict cluster membership. With the cluster “Weaker than
expected in CKn and PKn” as base level, for every unit that the individual® s
LA score increases, it was 21.98 more likely for the student to belong to the
cluster “Stronger than expected in CKn and PKn” and 4.77 more likely to
belong to the cluster “Stronger than expected in PKn”. Using the same base
level, a ninth grader is 8.35 more likely to belong to the group “Stronger than
expected in CKn and PKn” than to the group “Weaker than expected in CKn
and PKn”.

Predictor Weaker than expected in B OR=exp(B) p-value
CKn and PKn

Vs.

Score in mathematics Stronger than expected in  3.09 21.98 0.000
learning approach CKn and PKn

Stronger than expected in  1.56 477 0.000
PKn
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Stronger than expected in  0.42 1.53 0.390
CKn
o Grade Stronger than expected in  2.12 8.35 0.000
CKn and PKn
Stronger than expected in  0.18 1.19 0.606
PKn
Stronger than expected in  0.52 1.69 0.206
CKn

Table 2: Predictive factor testing
CONCLUSIONS - DISCUSSION

The results of our study confirm the hypothesis that there are individual
differences in the way students combine CKn and PKn for fractions (Hallett et
al., 2010; 2012). Although older students were more likely to have strong CKn
as well as PKn, a considerable percentage of 9" graders belonged to the clusters
“Stronger than expected in PKn” and “Stronger than expected in CKn”,
indicating that individual differences remain present up to Grade 9. It is worth
noting that the greater part of our sample was found in the group “Stronger than
expected in PKn”, indicating that instruction favours mainly the development of
PKn (see also Canobi, 2004).

In our attempt to detect the possible factors that are responsible for individual
differences in CKn and PKn, we tested the hypothesis that the approach to
mathematics learning predicts such individual differences. The LA score
predicted the membership in the clusters “Stronger than expected in CKn and
PKn” and “Stronger than expected in PKn”. This result only partially supports
our hypothesis, due to the fact that the probability for a student to belong to the
cluster “Stronger than expected in CKn” cannot be predicted; moreover, the
mean LA score for this cluster was the second lowest one, lower than the mean
LA score of the “Stronger than expected in PKn” cluster. A possible
explanation is, that as a result of using residualized scores in the cluster analysis
(Hallett et al., 2010, 2012; Bempeni et al., 2018), the “Stronger than expected
in CKn” cluster includes students with relatively stronger CKn given their PKn,
but not necessarily in absolute terms; and similarly, for students in the
“Stronger than expected in PKn” cluster. A different method for clustering the
students, differentiating between the low from the high performing students
could be a viable solution (see Lenz & Wittman, 2021, for such a method).

Whilst the development of the two types of knowledge is not assumed to be
symmetrical at any given moment (Rittle-Johnson & Schneider, 2015), our
results put a challenge to the iterative model. More specifically, given the age
and educational experience of the participants, we would expect a more
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balanced development of the two types of knowledge which is not the case in
our study.

The learning approach to mathematics deserves to be further investigated as a
source of individual differences in CKn and PKn. The instrument that we
developed is a contribution of some significance per se, since, to the best of our
knowledge, there is no similar instrument targeting secondary students. An
enrichment and refinement of our instrument, in view of the fact that several
items had to be excluded from its final version following its evaluation, is
worth-considering.
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GROWTH IN GEOMETRIC JOINT ROUTINES DURING
MIDDLE-SCHOOL PEER INTERACTION
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In this paper, we draw on the commognitive framework to explore types of
mathematical growth during middle-school geometry peer interaction.
Comparing students’ routines when working apart with their joint routines
when working together, we identified four types of mathematical growth. Three
types were object-level growth: applicability, refinement, and flexibility. One
type was a meta-level growth consisting of a shift from a configural/visual
procedure to a deductive one. Our study pinpoints the types of mathematical
learning that can be achieved during peer interaction and shows the ways in
which they can occur. Specifically, the study shows how different types of
growth can be achieved by students building on their partner’s procedure in
different ways.

RATIONALE

Learning through peer interaction has come to be highly regarded not only as an
Important 21st century skill, but also as a means to improve learning (Kuhn
2015). Studies have shown that under certain interactional conditions, such as
readiness of peers to listen to each other, problem-solving in pairs or small
groups can be more conducive to students’ learning than solving a problem
alone (e.g., Schwarz and Linchevski 2007). Other studies have examined the
types of learning that can occur in peer interactions. Phelps and Damon (1989),
for example, have found that peer interactions are more effective for conceptual
learning and reasoning than for rote kinds of learning. Pai and colleagues (2015)
showed, through the examination of pre/post-tests, that peer interaction is
conducive to learners’ ability to apply or adapt prior knowledge to a novel
situation. Although we learn from these studies about learning in peer
interaction, we still know very little about the processes of mathematical
learning that take place in these interactions and about how these different types
of learning occur. In this study, our goal is to better understand how peer
interaction promotes different types of growth in students' mathematical
procedures used to solve a certain problem.

THEORETICAL FRAMEWROK

The theoretical framework which we use to pursue our goal is commognition
(Sfard 2008). Commogpnition is a sociocultural discursive framework which has
been productive in studying processes of peer interactions (Chan and Sfard
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2020; Sfard and Kieran 2001) as well as processes of mathematical learning
(Lavie and Sfard 2019; e.g. Lavie, Steiner, and Sfard 2019). The commognitive
framework conceptualizes learning as a process of routinization of students’
actions (Lavie et al. 2019). Routines - repetitive patterns of actions — are thus
the commognitive basic unit for analyzing learning. A routine is a task-
procedure pair; it is defined as “the task, as seen by the performer, together with
the procedure she executed to perform the task™ (Lavie et al. 2019:161).

By studying mathematical routines, commognitive studies have been able to
track learning over time and identify different types of growth in learners'
routines (Lavie and Sfard 2019; Lavie et al. 2019). Flexibility is one such type
of growth. A routine grows in its flexibility when another procedure is used in
response to the same task. For example, Lavie and Sfard (2019) showed a
growth in a young child’s routine for the task "where is there more?" when in
addition to the initial procedure of visually estimating two piles of cubes, the
child used another procedure of aligning these cubes. The child’s routine thus
grew in flexibility to offer two alternative procedures for accomplishing the
task. Applicability is another type of growth. Growth in applicability is detected
when after applying a certain procedure to a certain task, a learner applies the
same procedure to a new unfamiliar task.

Much of the growth in children's mathematical routines happens at the object
level. As they become familiar with certain procedures (e.g., adding, dividing)
and certain objects (e.g., natural numbers), learners gradually apply the familiar
procedures to different tasks, producing an increasing number of narratives
about these objects. This growth constitutes object-level learning. Yet from time
to time, as students gradually get introduced to more sophisticated mathematical
discourses, a meta-level change is needed (Sfard 2007). Such a meta-level
change can happen when rules for substantiating mathematical narratives
change, or when new objects are introduced. For example, when students get
introduced to rational numbers, the familiar arithmetic rules that had so far been
successfully applied to natural numbers no longer apply.

In this study, we wish to examine processes of peer interaction in junctures that
afford object-level as well as meta-level learning. We pursue this goal by
focusing on middle-school geometry, since a particularly critical transition is
required from students in those years — the meta-level shift to deductive
geometric procedures (Duval 1998). In this transition, students who are used to
performing visual-configural procedures for substantiating claims about
geometric objects (such as showing congruence by placing one triangle on top
of the other) are required to shift to using new deductive procedures based on
given data and geometric theorems (such as congruence theorems).

For examining mathematical learning in peer interaction, we add to our
commognitive conceptual toolset the concept of a joint routine which we define
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as the collection of procedures used by a group (or pair) of people working
together on the same task. Based on this theoretical framework, we ask: in what
ways did students’ geometric joint routines grow during middle-school
geometric peer interaction?

METHODOLOGY

The participants of our study were 10 middle-school students, six 8" graders
(13-year-old) and four 9™ graders (14-year-old), who took part in in a one-hour
geometric activity facilitated by the first author. The design of the activity was
based on videotaped lessons of the VIDEO-LM project (Karsenty and Arcavi
2017) in which a geometric problem called The three squares was presented.
The students in these lessons were asked to compare areas in three drawings.
The canonical (correct) answer is that all areas are equal. Our design included:
(1) a presentation of the geometric problem; (2) an individual session in which
students worked on a worksheet (see Figure 1); (3) a dyadic session in which
they worked on the same worksheet. Colored, half-transparent plastic shapes of
a square and a triangle were given to the students as supporting tangible
mediators.

1. In each drawing, colour the shared area of the square and
triangle

2. Line up the drawings according to the size of their shared area
(from the smallest to the largest)

3. Circle the correct answer in each of the following claims and explain it:

a. The shared area in drawing I is (smaller than /larger than/equal to/impossible to know)
the shared area in drawing II

b. The shared area in drawing II is (smaller than /larger than/equal to/impossible to know)
the shared area in drawing III

c. The shared area in drawing III is (smaller than /larger than/equal to/impossible to know)
the shared area in drawing I

Figure 1. The worksheet

Data collected included students’ 10 individual worksheets and 5 dyadic
worksheets as well as footage from different cameras of both individual and
dyadic sessions. Individual and dyadic sessions were fully transcribed
(including non-verbal communication) and analyzed using footage from
different cameras. Overall, 1530 transcription lines of verbal and non-verbal
communication were analyzed.

Data analysis included the following steps: (a) analyzing students’ visual
mediators by adding to each line in the transcript a graphic representation of
what they did, looked at and pointed to in the worksheet; (b) identifying
students’ procedures for the task of comparing areas when working alone, by
examining students’ written answers in individual worksheet as well as the
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footage from their individual session and their communication at the beginning
of dyadic session (c) tracking developments in dyads’ joint routine for the task
of comparing areas when working together, by analyzing their communication
during dyadic session as well as their dyadic worksheet; (d) deductively and
inductively identifying types of joint routine growth.

FINDINGS

Individually, the ten students used four main procedures for the task of
comparing areas. These were: (1) the “Supplement procedure” — cutting and
“moving” parts in order to supplement similar-looking shared areas; (2) the
“Ratio procedure” —visually estimating the ratio of the shared area from the
whole square; (3) the “Formula procedure” — visually estimating the relation
between heights and bases of the shared areas and then applying to it an area
formula (such as base*height/2); and (4) the “Given procedure” — examining the
givens (or lack thereof) to assess if enough information is provided.

During the start of the dyadic session, the students within each dyad (dyad 1 to
5) compared their solutions with the solutions of their dyadic partners and tried
to reach an agreement. Some of them used different procedures in their
individual routines for comparing the shared areas.

Examining students’ joint routines during dyadic session, we found four ways in
which growth in these routines occurred. Three of these ways were object-level.
In other words, the growth did not include a change in meta-rules. These
categories of growth were: (1) applicability; (2) refinement; and (3) flexibility.
Two of these growth patterns — applicability and flexibility — have been known
from previous studies (Lavie and Sfard 2019; Lavie et al. 2019). Refinement is
a new bottom-up category that we used to describe growth which included the
refinement of specific steps in a procedure previously used by one of the
students. The fourth type of growth was a meta-level shift to deductive
procedures. Table 1 presents these types of growth, their description, and
examples.

# Type Description Example

1 Applicability  Extending The Supplement procedure, initially
(Object-level  application of an applied by one of the students only in
growth) initial procedure relation to the comparison between

to another task  shared areas | and I, was applied in
dyadic sessions also to the comparison
between shared areas | and I11.

2 Refinement Refining steps In the Ratio procedure, the step of
(Object-level  of an initial visually estimating the ratio of the
growth) procedure shared area from the whole square was

refined into two separate steps: (a)
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visually estimating how many times the
shared areas can fit into the square; (b)
deducing the ratio of the shared area
from the whole square.

3 Flexibility Forming anew A new rotational procedure was formed
(Object-level ~ procedure based based on the Ratio procedure. Both
growth) on an initial procedures, the original and the newly

procedure (same developed, relied on the same meta-rule
meta-rules) of visual estimation.

4 Meta-level Forming anew A new deductive congruence procedure
growth procedure based was formed based on the Supplement

on an initial procedure. The newly formed procedure

procedure (more relied on a more developed meta-rule

developed meta- (visual estimation is insufficient;

rules) justifications should be based on
theorems and givens).

Table 1: Types of growth in joint routines during dyadic session

In what follows, we illustrate two of these types of growth — applicability and
meta-level. We do so by focusing on the development of the most commonly
used procedure — the Supplement procedure — through the case of dyad 1 (8"
graders Noa and Eyal) and dyad 4 (9" graders Tamara and Orna).

Example of growth in applicability during dyad 1’s session

Analyzing Noa and Eyal’s initial processes in individual session, we found that
Eyal only used the Ratio procedure, while Noa only used the Supplement
procedure. Noa’s use of the Supplement procedure was limited to the
comparison between shared area | and Il. Although they used different
procedures to compare between shared areas | and I, they endorsed the same
narrative, namely, that shared area | and shared area Il are equal. Here is how
Noa explained her procedure to Eyal at the start of their dyadic session:

Legend: (implied words); [parallel speech]; right column: representations of
visual mediators.

36 Noa Look, these (shared areas | and Il) are [ " |

definitely equal 'cause... 'cause if you cut é\

b}

this, say, in half... here (draws line a), so
what we have here (points to triangle b)
you can move here (c), so we get a triangle
(like shared area Il) (in the picture to the
right, Noa uses the plastic shapes to
demonstrate more tangibly her procedure)
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37 Eyal How did you think about that?? '

From her written answer in her individual worksheet as well as from her
explanation in this excerpt, we deducted that Noa’s procedure for comparing
shared areas | and Il included: (1) identifying the geometric shapes of the shared
areas. This is evident in her reference to shared area I as “square” and to shared
area II as “triangle”; (2) cutting the shape (line (a) cuts the square) of one area
(area 1) into sub-shapes (two triangles); (3) moving a sub-shape (triangle b) to
another place (c) in the same drawing (1) so that it supplements a shape
(triangle) similar to the other area (area I1); (4) determining the relation between
the shared areas (I and Il) according to a visual comparison between the newly
formed area (formed triangle in drawing 1) and the other area (triangle in
drawing Il). The same procedure, with slight variations, recurred several times
in students’ answers, and was named the Supplement procedure.

Eyal’s reaction to Noa’s Supplement procedure, communicates not only that the
procedure was new to him, but that he was surprised by and appreciated Noa’s
“thinking” (37). Following his reaction Noa suggested that they write her
explanation in their shared worksheet. Eyal then said:

47 Eyal Yes, wait a second, you can cut also here (a), see? From here (a) and then
put it here (b), We get this (c)

48 Noa Why?

49 Eyal To cut this, you can... 4 L_/E?
i a bi c

50 Noa [No but listen]

51 Eyal [take here this] small piece (a)

52 Noa [Aha]

53 Eyal [and then you] put it (a) here
(b)
54 Noa Butit’s not enough for... [ahh right, o.k., you’re right]

Here, Eyal applied Noa’s Supplement procedure to the task of comparing
between shared areas Il and I1l. He suggested cutting the shape of one area into
sub-shapes and moving a sub-shape to another place so that it supplements a
similar looking shape. Therefore, Eyal did not only adopt Noa’s Supplement
procedure (starting his suggestion with “yes”), but also built upon it to suggest a
new application (comparison between Il and Il) to the same procedure, an
application which was not previously used by Noa. His words in line 47
communicate that he found (“wait a second”) a new way of applying the same
procedure (“also”, “see?”’). Therefore, Noa and Eyal’s joint routine for
comparing areas grew in applicability: from only applying the Supplement
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procedure to the task of comparing areas | and Il at the start of dyadic session
(Noa’s individual routine) to applying it also to the task of comparing between
areas Il and III (Noa and Eyal’s joint routine).

Example of meta-level growth during dyad 4’s session

Meta-level growth was found only in the interaction of Tamara and Orna, a pair
of relatively high achieving 9" graders. This did not come as a complete
surprise since only two interactions (Orna and Tamara’s and one more dyadic
interaction) were of 9" grade dyads; the other three were of 8" grade dyads,
who were at the very initial stages of exposure to deductive geometric
procedures. Both Tamara and Orna started out with configurally-based
procedures. Orna used the Ratio procedure, while Tamara used the Supplement
procedure. Toward the end of the pair’s session, a meta-level growth in the dyad
joint routine occurred when the girls discussed why shared area | and Ill are
equal. The following exchange begins with Tamara suggesting using the
Supplement procedure for comparing areas | and Ill:

132 Tamara ... you need to say that, like you

move this part (a) to here (b) and N | //\\ ’_

then like [it will form a square]

133 Orna [I have an idea], if we, like, show congruence (between) this (a) and
that (b), then... (given the context of previous utterances we interpret
this as meaning: by showing that these triangles are congruent, we can
show that their areas are “the same”)

141 Orna No, No look, you need to say that this (a) is like (meaning congruent
to) this (b) in order for it to be ok to move the...

In line 132 Tamara suggested her Supplement procedure: to move part (a) so
that it covers part (b) and forms a square similar to the shared area in drawing I.
In response to Tamara’s suggestion, Orna proposed that they use congruence
theorems to substantiate that the areas of the triangles (a and b) are the same (“I
have an idea, if we, like, show congruence” [133]). In line 141, Orna further
explained that in order to claim that triangle (a) can be moved on top of the
triangle (b) in a way that exactly covers it, they need to show that they are
congruent (“you need to say... in order for...”). In other words, she did not
agree (“no, no...”) with the meta-rule of the Supplement procedure that visual
estimation is enough. Rather, she drew on the Supplement procedure to suggest
a new deductive congruence procedure. The newly formed procedure relied on a
more developed meta-rule (visual estimation is insufficient; justifications should
be based on givens and theorems). By that, Tamara and Orna’s joint routine for
comparing areas underwent a meta-level shift.
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DISCUSSION

Our goal in this study was to explore types of mathematical growth in peer
interaction. Specifically, we examined developments in students’ joint routines
around a geometric problem that invited movement from purely
configural/visual procedures to deductive ones. We found four ways in which
students' routines grew during interaction. Three of these were object-level
learning — applicability, refinement, and flexibility — while the fourth was a
meta-level learning that included a shift from configural to deductive meta-
rules. Our study contributes to commognitive research by extending the
application of the study of routine growth (Lavie et al. 2019) from individuals’
learning to peer learning. In addition, it adds on previous research on peer
learning (Kuhn 2015) by pinpointing the types of mathematical learning that
can be achieved during peer interaction, and showing the ways in which they
can occur. Specifically, the study shows how different types of growth can be
achieved in routines by students building on their partner’s procedure in
different ways.

The conclusions from this study are limited by the relatively small scope of
cases, a regular limitation in studies that take such a micro-analytical look at
students' discourse. Thus, future studies are needed to determine the relative
frequencies of different types of joint routine growth in peer interaction. In
addition, it is yet to be examined how much of what is developed jointly during
students' interaction is later individualized by the participating students.
Nevertheless, we believe that through our detailed theoretically anchored report,
we are making progress in understanding the precise mechanisms of
mathematical learning during peer interaction. A better understanding of these
mechanisms of peer learning can aid educators in preparing, designing, and
facilitating collaborative activities in the mathematics classroom.
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Over the last decades, there has been an on-going international reform for
school mathematics, which has, not surprisingly, been difficult to implement.
This study focuses on teachers’ interpretation of formal written curriculum
documents, especially whether their interpretations align with how a concept
(the concept of problem) is conveyed in the documents (in Sweden). The results
show that the formal written documents are vague, but that it to some extent
conveys the concept of problem as “a task for which the solution method is not
known in advance to the solver.” The interviews show that about 53 % of the
teachers interpreted problem as “any task,” and that teachers’ interpretations
therefore are not aligned with how the concept is (albeit vaguely) conveyed in
the documents.

INTRODUCTION

During the last 25 years, the descriptions of school mathematics have gradually
changed all over the world. The main message of this reform is to complement
content goals (such as algebra) with competency goals (such as problem
solving) and this idea can be found in many international reform frameworks
(e.g., NCTM, 2000; Niss & Jensen, 2002). In many countries the formal written
(national) curriculum documents now use these kinds of competency goals to
formulate goals for student learning in mathematics (e.g., in Singapore, SME,
2012). Many researchers argue that in the heart of doing mathematics you find
problem solving (e.g., Schoenfeld, 1992) and problem solving is sometimes
considered as the most important part of the reform. There is a lot of research on
the implementation of educational reforms, for example, in Norway (e.g.,
Gundem, Karseth, & Sivesind, 2003), and in North America (e.g., Fullan,
2001). One main result is that educational reforms most often do not give the
desired effect in schools (Hopmann, 2003) even when the teachers themselves
believe that their teaching reflects the new ideas (e.g., Stein, Remillard, &
Smith, 2007, p. 344). It is therefore important to understand how the different
parts of the curriculum chain are connected. The purpose of this study is to
deepen the understanding of the connection between written and intended
curriculum in mathematics. The study will compare how a central standards-
based reform concept is conveyed in the Swedish formal written curriculum (the
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policy documents) with how it is interpreted by Swedish teachers’, that is, the
intended curriculum. In particular, we focus on the concept of problem and on
Sweden, as one of the countries that has been part of the standards-based
reform.

CURRICULUM CHANGE

The word curriculum has many different meanings in research. In this article we
use a framework suggested by Stein et al. (2007), including the written (the
printed page), the intended (as planned by the teachers), and the enacted (actual
Implementation in the classroom) curriculum. Research has shown many
possible reasons that a reform does not result in change in teacher practice, that
IS, that change in the written curriculum does not result in change in the enacted.
One possible reason is that the reform message is not clearly conveyed to the
teachers (Fullan, 2001). Another is that the teachers are not supported enough to
carry out the change (Fullan, 2001). Different parts of the chain between written
curriculum and student learning have been studied extensively (see e.g., Stein et
al., 2007), but in comparison there is not much research on teachers’
interpretation of the formal written curriculum.

DEFINITIONS OF PROBLEM AND PROBLEM SOLVING

Problem solving has had an important role in many areas of research, for
example, in cognitive psychology as the “paradigm for the higher cognitive
processes” (Kintsch, 1998, p. 2). There are, however, many possible different
definitions of problem and problem solving, and this has often been discussed
(see e.g., Schoenfeld, 1992; Xenofontos & Andrews, 2014). In the words of
Stigler and Hiebert (2004), “the word ‘problem’ clearly means different things
to different people” (p. 13).

A traditional definition of the concept of problem is that it is any task including
both routine and non-routine tasks (Schoenfeld, 1992, p. 337). This definition is
in line with definitions presented in both English and Swedish dictionaries.
Within mathematics education research, this traditional definition is often
questioned: “In education it is important to distinguish a problem from a simple
guestion to which the answer is known without any need for reflection” (Borba,
1990, p. 39).

Another definition that is more common today is to see a mathematical problem
as a task for which the solution method is not known in advance for the solver
(see e.g., Blum & Niss, 1991). In addition, this is a common definition in
standards-based reform, which is central to this study (e.g., NCTM, 2000).
Lester (2013) summarizes that although there have been many different research
areas that have focused on problem solving, in general, “they all agree that a
problem is a task for which an individual does not know (immediately) what to
do to get an answer” (p. 247).
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Another suggested definition of problem is word task, that is, a task with verbal
text describing a situation or a context (see e.g., Borasi, 1986). A real-world
task, that is a task with a real-world context or an applied task (se e.g., Chen,
1996) is also a suggested definition. In conclusion, even though most
researchers presently define problem in line with a task for which the solution
method is not known in advance for the solver there are many different
definitions of and opinions regarding what a problem is.

TEACHERS’ INTERPRETATIONS OF THE CONCEPT OF PROBLEM

That many mathematics education researchers use the same definition of what a
problem is, does not necessarily imply that teachers would agree. Few studies
focus on how teachers actually define what a problem or what problem solving
Is (Xenofontos & Andrews, 2014). Grouws, Good, and Dougherty (1990)
interviewed 24 teachers and summarized their conceptions of problem solving
into four categories: solving word problems (6 teachers), solving real-world
problems (3 teachers), solving problems (10 teachers) and solving thinking
problems (6 teachers). The third category is described as following a “step-by-
step adherence to predetermined guidelines” and “involved computations or
setting up equations” (p. 137), which we interpret as including any task and,
perhaps in particular, routine tasks. Another study examined a representative
random sample of 63 Finnish third grade elementary teachers’ conceptions
about mathematical problem and problem solving (Naveri, Pehkonen, Hannula,
Laine, & Heinild, 2011). On the multiple-choice question, “What is a problem?”
most of the teachers (70 %) answered that it primarily is a word task. For a
smaller group of teachers (24 %) “problem is a task for which the solution is not
known” (p. 5). In conclusion, teachers’ definitions of the concept of problem
varies, and also vary between cultures, but are generally not in line with the
most common definition within mathematics education research.

PURPOSE AND RESEARCH QUESTIONS

The purpose of this study is to deepen the understanding of the connection
between written and intended curriculum in mathematics. The study will
therefore compare how the concept of problem is conveyed in the Swedish
formal written curriculum (the policy documents) with how it is interpreted by
Swedish teachers. The research questions are:

1. What meaning of the concept of problem is conveyed in the Swedish
formal written curriculum in mathematics?

2. How do Swedish mathematics teachers interpret the concept of problem
when it is used in the formal written curriculum in mathematics?

METHOD

The method consists of an analysis of the written Swedish formal written
curriculum, in relation to research question 1, and another analysis of teachers’
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interpretations of curriculum documents, in relation to research question 2, as
described below.

Categories for Analysis

The analyses use four categories of possible definitions of the concept of
problem, chosen since they represent the four most common definitions within
mathematics education research, as presented in the Background. The categories
are:

1. any task (including routine tasks)

2. tasks for which the solution method is not known in advance to the solver
(i.e., non-routine tasks)

3. real-world tasks, that is, tasks set in a context or applied tasks

4. word tasks, that is, tasks with verbal text describing a situation or a
context

All these definitions make sense in a mathematics. However, note that the
categories are not disjoint, since categories 2-4 are subsets of category 1.

Data Collection and Analysis of the Formal Written Curriculum

To answer the first research question, the Swedish formal written curriculum for
mathematics in primary and lower secondary school and for upper secondary
school valid at the time of the interviews (Utbildningsdepartementet, 1994) are
examined. For upper secondary school, we analyze one text describing
mathematics in general, common to all courses, and the text describing course
A, since it is the only compulsory course for all students. We also include the
official Commentary documents written by experts engaged in the writing of the
formal written curriculum for mathematics for primary and lower secondary
school (Emanuelsson & Johansson, 1997). There were no other official
documents explicitly concerning mathematics valid at this time.

The formal written curriculum is searched for all instances where the word
problem is used. The search includes the word problem, as well as any
compound word including the word problem, such as problem solving (Sw.
problemldsning). All instances are then analyzed in two steps. First, and most
importantly, by examining each instance in search for definitions, explanations,
and examples. Second, by examining whether the wording in the instances are
in line with one or more of the definitions of problem (1-4) or if any instance
has a wording that conflicts with any of these.

Data Collection and Analysis of Teachers’ Interpretations

This part of the data collection was carried out within a larger project (see
Boesen et al.,, 2014) in which almost 200 teachers were observed and
interviewed. The selection of schools was “based on stratified random sampling
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and was carried out by the Swedish Schools Inspectorate” (Boesen et al., 2014,
p. 77). The data in this particular study consists of answers to one specific
interview question from 126 upper secondary mathematics teachers and 61
primary and lower secondary school teachers, in total 187 teachers. During the
interviews the teachers were presented quotes from the formal written
curriculum and one quote included the word “problem”. The quote presented to
the upper secondary school teachers was: “Pupils use appropriate mathematical
concepts, methods, models and procedures to formulate and solve different
types of problems”. The quote shown to the primary and lower secondary
school teachers was similar. The teachers were then asked: “How do you
interpret the word problem?”

The analysis was carried out in three steps. First, the researchers separately
analyzed the answers from the upper secondary school teachers (126 answers)
using the categories presented above. The researchers made the same
categorization for 103 of these, which indicates a reasonable inter-rater
reliability. Second, the researchers discussed the 23 answers for which they did
not initially agree, which resulted in more detailed instructions regarding how to
interpret the categories. Third, the remaining 61 answers) were analyzed by the
second researcher.

RESULTS
The Concept of Problem in the Written Curriculum

The first research question is: What meaning of the concept of problem is
conveyed in the Swedish formal written curriculum in mathematics? In the
documents for primary and lower secondary school) the word problem is used
21 times as it is or in compound words. In the documents for upper secondary
school, it is used 25 times.

First, and most importantly, examining the 46 instances, our main result is that
there is no definitions, explanations, or examples of what a problem or problem
solving is.

Second, that 37 of the 46 instances are compatible with all the definitions used
in the analysis (1-4). Typical examples are instances saying that a problem can
be solved, understood, developed, formulated, and that different methods can be
used to solve problems, and all these are reasonable regardless of definition
used. The other nine instances have wordings that are to some extent in conflict
with one or more of the definitions. For example, the wording “mathematical
problem solving is a creative activity” is in conflict with the definitions that
include routine tasks. In summary, the concepts are undefined and used in a
vague or even contradictory way. This is also the case for most other concepts
in the Swedish formal written curriculum (Bergqvist & Bergqvist, 2017).
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In the Commentary, the development of problem solving is described as a
central purpose of all mathematics education (Emanuelsson & Johansson,
1997). The word problem is not explicitly defined but is used under the headline
Problem solving: “Sometimes it is not even a genuine problem since the needed
calculation method is given through the context or the chapter heading...”
(Authors’ own translation. Emanuelsson & Johansson, 1997, p. 18). For a
genuine problem “the needed calculation method” is not “given through the
context or the chapter heading”, which indicates that a “genuine problem” is of
type 2, tasks for which the solution method is not known in advance to the
solver. Our conclusion is that in the Commentary a problem is conveyed as
category 2, but that the wording is vague.

The answer to research question one is that the conveyed meaning of the
concept of problem in these documents is unclear. The concept is not defined,
explained, or exemplified in any text, but it is to some extent conveyed as being
of type 2, tasks for which the solution method is not known in advance to the
solver (or non-routine tasks).

Teachers’ Interpretations of the Concept of Problem

We present 187 teachers’ interpretation of the word problem in the written
curriculum. Four categories (1-4) of possible interpretations were predefined
and 151 of the 187 teachers gave answers that could be placed within these
categories (see Table 1).

Interpretation of Primary and Upper secondary  All teachers
problem lower secondary  teachers (126) (187)
teachers (61)
1. Any task 49% (30) 55% (69) 53% (99)
2. Task for which the 10% (6) 15% (19) 13% (25)

solution method is not
known in advance

3. Real-world task 3% (2) 8% (10) 6% (12)
4. Word task 10% (6) 7% (9) 8% (15)
5. Other 28% (17) 15% (19) 19% (36)

Table 1: Percentage (number) of teachers making interpretations of
the concept of problem in line with each of the predefined categories.

The most common answer was that a problem is any task (99 teachers). This
was expressed in a few different ways, but the most common answer (given by
61 teachers) was “uppgift”, which is Swedish for “task.” Other answers
categorized as any task were “something to be solved” and “everything is a pro-
blem.” In category 2, 18 of the 25 teachers used expressions close to the
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definition in this study, like “unfamiliar tasks™, “when you don’t know how to
solve it,” and “when you can’t see the answer.” The remaining 7 used
expressions that were not as close to the definition, for example, “many
solutions”, but we chose to include them to avoid underestimating the category
that is most common among researchers. Twelve teachers used expressions that
were categorized as real-world tasks. In this category, statements like
“applications”, and “real life tasks” were placed. Fifteen teachers said that a
problem is a word task. They all used either the expression “text task™ (Sw.
textuppgift) or the expression “reading task” (Sw. lastal or lasuppgift). The
expressions put in category 5, other, were of different types, for example,
“problems are mathematical problems”, and “it can be on different levels,
different for different students.” In general, these answers were hard to interpret.
Three teachers in this group answered: “I don’t know what a problem is.”

The answer to research question two is that there is a large variation in how
Swedish mathematics teachers interpret the concept of problem, but that more
than half of the teachers interpret it as any task.

DISCUSSION

The purpose of this study is to deepen the understanding of the connection
between written and intended curriculum in mathematics, and the study has a
particular focus on the concept of problem. The results show that the formal
written documents and the Commentary are vague, but that they to some extent
convey that a problem is a task for which the solution method is not known in
advance to the solver. The interviews show that about 53% of the teachers
interpreted problem as any task, and that the rest of the teachers interpreted it in
many different ways. The teachers’ interpretations are therefore not aligned
with how the concept is (vaguely) conveyed in the documents.

In the formal written curriculum, problem is a very central concept, and it is
implied that a significant part of the students’ work in mathematics should be
devoted to solving problems. Different interpretations of the word problem
could therefore lead to very different teaching practices. One example is that
Swedish students spend a large part of their time (two thirds of the lessons)
during mathematics classes working with the textbook (Boesen et al., 2014).
Interpreting problem as any task means that the students already spend two-
thirds of their time on problem solving. A teacher interpreting problem as a task
for which the solution method is not known in advance to the solver, would have
to examine the textbook tasks and probably add different kinds of tasks from
other sources in order to ensure that their classroom practice meets the goals of
the written curriculum. In this case, different interpretations of the written
curriculum would result in large variation regarding both the intended and the
enacted curriculum. Under these circumstances, the formal written curriculum
cannot be said to clearly guide the teachers’ practice, a situation in line with
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previous research (e.g., Hill, 2001). In this study we asked teacher to explain
what a problem is, but not what problem solving is. Initially it was assumed that
problem solving would be considered to be the same thing as solving problems.
However, three teachers suggested that problems to be solved during problem
solving are of a different kind than problems in general.
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MATERIAL ABILS AN IMPULSE
FOR MATHEMATICAL ACTIVITIES IN PRIMARY SCHOOL
— A SEMIOTIC PERSPECTIVE ON A GEOMETRIC
EXAMPLE

Lara Billion and Rose Vogel
Goethe University of Frankfurt, Germany

In this paper, a semiotic perspective on mathematics learning is taken, focusing
on diagrammatic work and thus on diagrammaticity. With this theoretical
approach, action on diagrams, which include designing, manipulation and
experimenting with diagrams on paper, on the computer screen or with physical
material, are examined in more detail. It is assumed that the actions on
diagrams show the mathematical interpretation of actors, which can be used to
draw conclusions about their mathematical awareness. With the help of Vogel’s
(2017) adaptation of the context analysis according to Mayring (2014),
mathematical interpretation processes from young learners are reconstructed
using a geometric example of actions on physical material.

INTRODUCTION

The semiotic perspective on mathematical learning makes it possible to focus
more strongly on materialised actions and to use these as a starting point for the
identification of the learners’ mathematical interpretation processes and thus to
make them accessible for research in mathematics education. The material

arrangement — often initiated by the formulated work task and the
materialisations given therein (on paper, on the screen or in form of physical
material) — is interpreted as a mathematical diagram and represents the

beginning of diagrammatic work. In diagrammatic work, diagrams are
interpreted mathematically, and rule-guided actions are performed in the
diagrams. The implicit or explicit interpretation of diagram rules depends,
among other things, on the selected material and problem arrangement. Which
possibilities of reconstruction open up for research into mathematical
interpretation processes and thus mathematical learning through this semiotic
perspective will be presented in the following using a geometric example from
primary school.

THEORETICAL FRAMEWORK

Mathematical Learning from Semiotic Perspective

From a semiotic point of view, learning of mathematics is seen as a perceptible
action. These actions include dealing with diagrams, manipulating and

2- 93
2021. In Inprasitha, M., Changsri, N., Boonsena (Eds.). Proceedings of the 44th Conference of the
International Group for the Psychology of Mathematics Education, Vol. 2, pp. 93-101. Khon Kaen,
Thailand: PME.



Billion & Vogel

experimenting with diagrams as well as inventing new diagrams (Dorfler, 2006)
“A Diagram is a representamen which is predominantly an icon of relations and
is aided to be so by conventions.” (CP 4.418). The relations and conventions of
a diagram become clear through the interplay of different inscriptions.
Inscriptions can be signs on paper, illustrations on screen or consist of tactile
material (Gravemeijer, 2002). In order to do mathematics with diagrams, the
implicit and partly conventionalised rules in which the relation of the diagram
are expressed must be interpreted by the learners. Only by this interpretation
rules become usable for manipulations and the learners can experiment with the
diagram. Through a rule-guided transforming of the diagram, a learning space is
opened up for the learners, in which the learners can apply existing
mathematical knowledge but also can gain new mathematical knowledge, and
thus mathematical learning takes place. These insights include, for example, the
determination of characteristics, the discovery of previously unknown
relationships or the calculation of a result. Learning mathematics can thus be
seen as interpreting and acting with diagrams (Dorfler, 2006).

Semiotic Perspective on Actions on the Material

The semiotic perspective on mathematical learning, especially the
diagrammaticity described above (Dorfler, 2006), is another way to grasp
actions on materials theoretically. The widespread view of material in
mathematics teaching is that it is used to construct mental images (Lorenz,
1993; Dorfler, 1991). The material is usually assigned the function of
representation. These representations of mathematical objects, which are
concretely available through the materialisation, can be used for actions.
Materialisations from a semiotic perspective do not stand for a mathematical
object but allow to make mathematical experiences through manipulations and
their interpretations. “[...] the number line does not represent Z in an objective
manner. However, the number line can be used to think ‘about’ whole numbers
and their operations and relations.” (Dorfler, 2000, p. 103)

Therefore, in this paper actions are to be understood as what learners do in order
to design diagrams (on paper, on the screen or in form of physical material), to
manipulate them according to certain rules (also conventionally shaped) and to
experiment with them. The central assumption for this paper is that actions on
diagrams show the mathematical interpretation of the actors, from which their
mathematical knowledge and mathematical cognitive processes can be deduced
(Dorfler, 2000). Thus, the actions are the starting point for the reconstruction of
the mathematical interpretations of the diagrams of the learners. Through
actions, further inscriptions can be designed as part of the diagram on which the
learners perform further actions and which they can take into interaction with
other learners. Thus, the action itself is temporary, and the resulting inscription
(manifestations on the material) can be interpreted as a diagram and

2-94 PME 44 -2021



Billion & Vogel

manipulated by the learners. In this way, further actions emerge from actions,
which can lead to mathematical awareness (Ddérfler, 2000).

RESEARCH DESIGN AND GOALS
The Study “MatheMat — Mathematical Learning with Materials”

The study “MatheMat — Mathematical Learning with Materials” focuses on
primary school children’s actions on various material (digital and physical)
(Billion, 2018). In four learning situations, primary school children deal with
the representation of data, and in another four learning situations they deal with
geometric quantities (e.g. volume and surface). Each learning situation is
realised on the one hand with physical material and on the other hand with
digital material. In total, 32 children (16 child pairs) from third and fourth grade
participate in the study. Each child pair works on one geometric and one
statistical problem, working once with digital and once with physical material.
The processing time of one problem is about 45 minutes. The processing of the
primary school children was recorded with two video cameras. One camera
records the long shot, and the second camera focuses on the actions on the
material. Specially selected video sequences from the learning situations are
transcribed in order to be able to analyse them qualitatively. For this paper, the
geometric learning situation “Relationship between surface and volume of
similar cubes”, which is realised with physical material, is selected.

Learning Situation “Relationship Between Surface and Volume of Similar
Cubes”

As in all learning situations, prompts are available to the fourth-graders.
Prompts are challenges or short questions that activate learners’ mathematical
concepts and knowledge, induce the execution of processes and stimulate
cognitive and metacognitive strategies (Bannert, 2009). The learning situation
starts with the same prompt for all learners. This prompt intended to stimulate
with a question to produce similar cubes using an edge model. In this way, the
concept of similar cubes can be clarified at the beginning.

In order to structure this first approach, at the beginning the learners are asked
to consider a similar but larger cube and then to build it. In this way, learners
intuitively but also systematically generating rules for the construction of
similar cubes. Plastic sticks of different lengths are available to the learners to
build the edge model, which they can plug together with corner connectors.
Furthermore, in the arranged learning environment (see Fig. 1) they can use a
wooden cube, which is introduced as a unit cube, and a flat square grid with the
grid size of one side area of the unit cube. After processing the start prompt,
further prompts are available to the learners. The order of processing is
determined by the children.
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Figure 1: Prompts and the material arrangement from the selected learning

situation

The prompts are written on paper cards
that are spread out on the table in front of
the learners. Each prompt contains the
same information text, which clarifies

Volume - Prompt*

A cube with edge length 1 is called a unit cube. The cube with
edge length 1 fits into the unit cube once. The volume of the
unit cube is therefore 1 unit cube. The unit cube has 6 side

areas. Each side area of this cube is a unit square. If all side
areas of the cube are put together, you get an area of 6 unit

squares. This area is called the surface.

basic concepts, a work assignment usually
in the form of a question and a request for
the children to reflect on their learning

How does the number of unit cubes change when the edge
length of the cube increases and the cube still looks like a cube?
Fill out the table:

process or to note down results. The ||“*"™ Namber of i cubes
learners can flexibly decide which prompt . 1
they want to work on. If they do not || unsecube)

understand the question of the prompt, | % 9™?

they can put it in the back and work on
another prompt first. Using the prompts,
learners are asked to check how many
unit cubes fit into and how many unit
squares fit on all sides of the edge models

Edge length 3

Edge length 4

Edge length 5

Edge length 6

What do you notice?

*Prompt means request

of similar cubes and what patterns can be
discovered.

Figure 2: Prompt with which the children work in the transcribed scene

To determine this, learners can use the square grid and the unit cubes, indicating
the volume and surface in unit cubes or squares. The learners have the
instruction to record their observations, findings and results either verbally or in
writing e.g. in the form of a table.

DATA ANALYSIS

For the analysis of the data, selected sections of the video material are
transcribed. For this purpose, those places in the data material are selected
where the child pairs working with digital or physical material use at the same
place in the order of processing (e.g. the third place) the same prompt. In the
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transcripts, all action on the material and gestures of the children are reproduced
in detail.

On the basis of the theoretical explanations, the following research question will
be pursued in this paper: Which mathematical interpretations of the learners can
be reconstructed on the basis of their actions on physical material during their
processing of the learning situation “Relationship between surface and volume
of similar cubes”?

Methodological Approach — Analysis of the Mathematical Interpretation

The basis of the qualitative reconstruction of the learners’ mathematical
interpretations of the diagrams and their actions on them is the adaption of the
context analysis (explication) according to Mayring (2014) for mathematical
learning processes made by Vogel (2017). Here, the explication of a linguistic
expression is transferred to the reconstruction of mathematical concepts. This
adaption (Vogel, 2017, pp. 68-69) is specified for the reconstruction of
learners’ interpretations as follows.

Step 1 — Determination of evaluation unit: As a starting point for the context
analysis, a transcript passage is selected in which a mathematical
(diagrammatic) action is described that is significant in the situation and that
matches the research question and in this case is interesting for the
reconstruction of the learner’s individual interpretations.

Step 2 — Explication 1 — mathematically and diagrammatically intended
actions of the evaluation unit: (E1.1) Determining mathematically and
diagrammatically intended actions by prompts and chosen material based on
mathematical contents. (E1.2) Analysis of the transcription passage with regard
to the shown actions and the interpretation of the actor expressed therein by
contrasting them with the intended action. (E1.3) Compilation of the previous
findings.

Step 3 — Explication 2 — narrow context analysis: (E2.1) All actions which are
directly related to the transcript passage to be explained are compiled. (E2.2)
Pursuing actions are searched in the transcript, which provide further
dissociations for the actor’s interpretations. (E2.3) These transcript passages are
the starting point for in-depth analyses. The description of the mathematically
intended actions from Explication 1 as a frame of reference may need to be
extended at this point.

Step 4 — Explication 3 — broad context analysis: Further explanatory material
of the transcript is compiled, such as non-transcribed sections of the
videographed learning situation. These will be used for a more in-depth
continuation of the reconstruction.
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Step 5 — Conclusion: Now, the reconstructed aspects of the mathematical
interpretations of the selected actor during the different phases of the analysis
are described in summary.

The following context analysis of the learning situation “Relationship between
surface and volume of similar cubes” cannot be shown completely due to lack
of space. Therefore, the broad context analysis (step 4) is not explicitly shown
here. Selected results from this analysis are integrated into the conclusion (step
5).

Analysis of the Individual Interpretation of a Child

A transcript (scenes 01 to 29) of the editing of the prompt “volume table” by
two fourth-graders is created (see Fig. 2), in which the learners are to determine
the volume of similar cubes. The learners have already determined the volume
of cubes with edge length two and three (scenes 05 to 07). The selected passage
of the transcribed dialogue of the child couple (scene 15, 33:17 min) reflects
exactly the actions of Mia to be explained in this analysis.

1 Mia:  Nono no no stop stop

2 Mia places the plastic stick with length 4 back on the square grid
perpendicular to the edge of the table.

3 She still touches the stick with the index finger and thumb of her left
hand.

4 She removes her fingers from the stick.

5 She takes three more sticks with length 4, lying between the green
and red sticks, between thumb and index finger of the left hand.

6 She places the first stick from her hand perpendicularly at the back
end of the already lying stick as seen from the girl.

7 She places the second stick from her left hand again perpendicularly
at the end of the stick she just placed.

8 She places the last stick from her hand perpendicularly on the first

stick lying on the square grid and the last stick placed on it.

Step 1: In this scene, Mia places a square of sticks with length 4 on the square
grid. In the further analysis, we will focus on Mia.

Step 2 — Explication 1: (E1.1) In the learning situation, edge models of similar
cubes are considered. The focus of the selected prompt (see Fig. 2) is
determining the number of unit cubes (volume determination) that fit into
similar cubes of different sizes. A suitable action for processing would be the
construction of edge models for cubes of different sizes. By positioning the
edge model on the square grid and using the unit cube, the volume can be
determined. For example, the squares on the square grid can give orientation
how often the unit cube fits into a row, a plane and finally into the complete
edge model. To build an edge model of a cube, sticks of equal length must be
selected for the twelve edges. In perpendicular prisms, the three edges that meet
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In a corner are aligned at right angles to each other. The so-called spatial tripod
(Mdller, 2004, p. 30), which stands for the three-dimensional coordinate system,
Is materialised in the form of a plastic corner connector. The edge lengths can
be measured using the unit cube or the square grid. It is also possible to
determine whether the different sticks are of the same length by placing them
next to each other. (E1.2) By selecting sticks of the same length, it becomes
clear that Mia considers that edges of equal length are necessary to make a
cube. In total, Mia selects four sticks of equal length, which she places on the
square grid. She places the sticks on the square grid so that the ends of the sticks
meet at a 90° angle. It can be assumed that due to the square grid and the
available corner connections, Mia can interpret the conventionalised
materialisation of a right angle in the plane and in space and use it for the
construction of cube edge models. It is not clear at this point whether she uses
the square as the basic side area for the edge model or whether she just does not
extend what is lying. (E1.3) In the actions from this transcript, it becomes clear
that she deliberately selects sticks of the same length and places them on the
square grid in such a way that they are at right angles to each other, which
becomes clear in the square grid. It can be assumed that Mia has interpreted the
convention of sticks of equal length and the observance of right angles for the
construction of a square and uses it in her actions.

Step 3 — Explication 2 — narrow context analysis (Analysis in sections): In
scene 20, Mia grabs four sticks of length 5, and in the following scene, she
places these four sticks on the square grid at right angles to each other, creating
a square. At this point, it is still not clear if she will extend the square further. In
scene 22, Mia taps the square grid five times with her stretched finger, moving
her finger to the right after each tap. Then, she taps the square grid five times
again and moves her finger down after each tap. Meanwhile, she counts from
one to five twice. In comparison to the intended actions, it becomes clear that
Mia does not use the unit cube to determine the area or volume but works with
the square grid. In the following scene, Mia expresses the calculation five times
five is twenty-five and then twenty-five times five. Already in the narrow
content analysis, it becomes apparent that Mia recognises rules in the material
arrangement, uses them to work on the mathematical problem and transfers her
two-dimensional actions to the space.

Step 5 — Conclusion: It can be seen in Mia’s actions that she uses the available
material (sticks, corner connections, unit cubes and square grids)
diagrammatically. The implicit rules and conventions for building cubes of
different sizes as a basis of determining the volume are used by Mia to process
the problem. Including the broad context analysis (see Fig. 1, left picture), it is
noticeable that she reduces her actions in the course of the situation and still can
make the same interpretations. No longer does she have to build a cube, nor
does she move the unit cube in the built edge models, but she can infer the
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volume of the cube from the base area using the internalised rules and
conventions.

DISCUSSION

Based on the actions, Mia’s individual interpretations of the diagrams and the
interpretations of the actions on the diagrams can be reconstructed. By using
different rules, such as the necessity of equal edge length for the representation
of a cube, it becomes clear that Mia recognises this rule and uses it for
processing the problem. Working on the problem, this diagrammatic work has
to be applied several times and is incorporated into the work with other
diagrams, e.g. determining the volume or filling in the table (see Fig. 2). It is
noticeable that the actions decrease with the internalisation of the
conventionalised set of rules. Thus, in the broad context analysis it becomes
clear that Mia initially executes the actions, such as building an edge model,
completely (see Fig. 1, left picture). Later, she only lays the base area of the
cube and extrapolates from this area to the volume. For this purpose, further
analyses will be carried out to see whether the actions and thus the
interpretation of the diagram for the same problem situation, but with digital
material, differ from the interpretations reconstructed here.
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The aim of this paper is to analyse a symmetry and art workshop from a STEAM
perspective. The theoretical framework of the Meta-Didactical Transposition is
taken as a reference. The sample consists of seven Primary School teachers. A
qualitative methodology is followed that is developed in four phases: learning,
planning, implementation and reflection. The results show that the teachers are
not flexible in dealing with the different conceptions of symmetry and the
creative aspect of the workshop. In general, there is a positive attitude towards
the interdisciplinary character of the workshop, despite the fact that they were
not able to connect both disciplines in a balanced way.

INTRODUCTION

Recently, the ‘A’ of art has been included in the acronym STEM (Science,
Technology, Engineering, Mathematics). The main goal of STEAM education is
to make the students grasp the connections between different pieces of
knowledge incorporating an artistic vision into the activities from a creative and
emotional point of view (Henricksen, 2014; Yakman & Lee, 2012).

In particular, what is the relationship between Visual Arts Education and
Mathematics? One reason for asking this question is that “on the one hand,
mathematics is art, and on the other hand, working in art has a mathematical
basis” (Hickman and Huckstep, 2003, p.1). Mathematics and art are two
disciplines that have a close relationship since immemorial times. In order to
motivate students to study mathematics, the connections between art and
mathematics, in particular geometry, have been exploited in many works in
mathematics education (Fenyvesi, K. & Lahdesmhéki, T., 2017; Lavizca, Z. et.
al., 2018; Portaankorva-Koivisto, P. & Havinga, M., 2019) showing them that
these have been used for aesthetic reasons in the history and modern art.

Recently, the recommendations for including the arts and creativity in the
teaching of mathematics significantly increased all over the world along with
demands to move from paradigms of teaching concepts and methods in a purely
disciplinary way to an interdisciplinary and integrated education that shows
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connections, is based on complex problems and promotes critical and creative
thinking (Council of the European Union, 2018). These recommendations come,
in general, from outside the school. In particular, from EU and other
transnational institutions and from labour market. That recommendations oblige
the curriculum developer who wants to meet such promising but ambitious
goals to take the issue of teacher training education seriously. Indeed, in order
to make this new approach become a structural innovation in schools, a change
of perspective would be necessary, first of all in teacher education: the teachers
need to be prepared to carry out properly the classroom activities, becoming
aware of their non-renounceable features and pursuing their goals with their
more traditional ones in the complexity of the real classrooms.

In this paper a STEAM training workshop for Primary School teachers is
analysed, emphasizing the disciplines of mathematics and art. The aims are to
attend how the teachers react to the activities proposed and how they implement
them in the classroom. Moreover, the process of personal transformation of the
proposal made by some teachers is observed.

RESEARCH FRAMEWORK

The framework of the Meta-Didactical Transposition (MDT) (Aldon et al.,
2013; Chevallard, 1999) is considered as a main reference. In particular, in this
paper, the construct of praxeology is used. “The praxis or ‘to know how’
includes different kinds of problems to be studied as well as techniques
available to solve them; and the logos or ‘knowledge’ includes the discourses
that describe, explain and justify the techniques used and even produce new
techniques” (Garcia et al, 2006, p.226). Within the MDT approach, the praxis is
didactical and the logos not only concerns the knowledge of the discipline, but
also of didactical and pedagogical research results. On one hand, in a teacher
training activity, researchers’ and teachers’ praxeologies meet each other and
members of two communities of practice have to find a common ground in
order to allow the teachers to appropriate of the researchers’ proposals and
effectively modify their praxeologies.

The transition from individual to shared praxologies is very delicate and
requires the action of a ‘broker’, a subject that is a hybrid between the two
communities who acts as a hinge between the two fields, the school itself and
the academic. The broker has the difficult role of creating new connections and
encouraging creations of meaning and learning (Rasmussen et al., 2009).

To analyse the teachers’ choices, when they plan and implement the activities of
the symmetry-art workshop, the goal-oriented decision-making theory by
Schoenfeld (2010) is relied on. This framework deals in particular with choices
of the teachers in real-time. As Schoenfeld (2010) stated clearly, when the
teachers move from the design to the implementation, something that changes
even completely the goals of the designed activities often happens. Indeed, they
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are only partially aware of their resources, goals and orientations, and these
might remain invisible in the design phases, but appear clearly in the way they
react to students’ questions or unexpected happenings. Tensions appear between
the planned and the implicit goals and orientations (Liljedal et al., 2015) and
oblige the teachers to make real-time decisions according to their priorities. This
point is crucial: a deep innovation requires the teachers to become aware of
their knowledge and assumptions and seriously reconsider in a conscious way
their goals and priorities.

RESEARCH METHODOLOGY

The training symmetry-art workshop was designed for Primary School teachers
and was carried out in two Italian cities. In this paper, a sample of seven
Primary School teachers is analysed. The objective is to answer the follow
research question: what is the general impact of the symmetry-art workshop on
the teacher’s design and implementation in their classrooms?

The research methodology is qualitative and from a STEAM perspective
involves working the two disciplines together in a balanced way, both in terms
of concepts procedures and procedures and attitudes. It was organized in four
phases that are described below: (i) learning; (ii) planning; (iii) implementation;
(iv) reflection.

(i) Learning phase. In this phase, the researchers present the STEAM
methodology. Then, the teachers carry out the different workshops by
interacting with the researchers. In accordance with the MDT, a PhD student
graduate in Primary Education Sciences took on the role of broker, mediating
the delicate passage of the interweaving of the praxeologies of the teachers with
those ones of the researchers.

(ii). Planning phase. The objective is that teachers develop this proposal to the
classroom, after a careful co-design shared between teachers and researchers.
To this end, they should decide which tasks they are going to implement,
whether and how they want to modify them, in which order, the time they are
going to use for each task, the links with their curricular teaching plan and the
methodology they are going to carry out (group or individual work, classroom
discussions and the educational environment where the students would do the
activities).

(iii). Implementation phase. In this phase, the teachers implement the
symmetry-art workshop tasks as they have designed them in the previous phase.
The aim of the research is to compare the decisions taken in the planning phase
and the teachers’ actual praxeologies in the classroom.

(iv). Reflection phase. Here, both researchers and teachers reflect on the entire
instructional process. In this way, following the theoretical framework,
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researchers’ praxeologies should change interacting with the teachers to make
the proposal more suitable from the cognitive and institutional points of view.

To collect the data the following instruments were used. In the planning phase,
individual and group interviews with teachers were recorded. In addition, they
were given a grid to fill in different sections regarding the organization of the
tasks. In the implementation phase, video recordings were made of the
observations of teachers and students in the classroom. Moreover, an
observation tool was also designed which comprehends thirteen items. Within
these items, special attention was given to those that refer to, among others, the
good use of mathematical vocabulary, the mastery of the artistic techniques and
the methodology carried out in class.

The tasks that were carried out in the STEAM training workshop are described
below.

Description of the Tasks

Training Symmetry-Art workshop is made up of four tasks to carry out in two
sessions of two hours. The tasks of this workshop are aimed at Primary School
students (six to twelve years old). In mathematics education, the difficulties in
the learning of this topic have been investigated in many studies (Bulf, 2011,
Chesnais, A. & Munier, V., 2013, Bohorquez et. al., 2009), and it has been
shown to be more complex as it might seem. These difficulties might affect the
teachers’ resources, both on the side of disciplinary knowledge and of the
anticipation of students’ difficulties. Within this proposal, a balance is sought
between the two subjects of mathematics and art. Following a STEAM
perspective, the objective is to work these two subjects in an equal way, that is,
these tasks form a cycle starting from art (task 1) and coming back to art (task
4), with a renewed conceptualization of the everyday conception of symmetry
(Chesnais, 2012) triggered by the artistic work and supported by research-based
mathematical tasks (2 and 3).

Task 1: Artistic folding paper

This activity is designed with the intent to create a symmetrical artwork from
the blank paper and without mentioning the concept of symmetry. The aim is to
bring students closer to the study of symmetry and its elements, starting from
the original artistic creation of each of them through the manipulation of
different resources, in this case, thread, tempera and sheets. The contents that
are worked on in this task are the concept of symmetry, the axis of symmetry,
the types of lines, the equidistance, the concept of shape and dimension, the
horizontal and vertical meaning, the manual work and the use of colour and its
possible mixtures.

Task 2: TEPs.
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Following to D’Amore and Maier (2003), the objective is, for each student, to
create a TEP (Textual Eigen Production), which is an autonomous textual
production, in this case, of the concept of symmetry and its characteristics based
on the artistic work and the discussion carried out in the previous task. The
contents worked on here are the use of the mathematical vocabulary to elaborate
the definition, the written expression and, again, the concept of symmetry with
some of its elements as the axis of symmetry, the equidistance of each point to
that axis and the concept of form and dimension.

Task 3: Schematization

This task consists of drawing, on the grid sheet, the figure that the students
made in the task 1. The aim is to make them work on symmetry and its
characteristics through the elaboration of a scheme with drawing instruments as
the rule or the compass. The students also work on the reproduction of a figure
to scale, since at the moment of drawing the figure in a schematic way, they are
transferring the figure to the grid sheet, taking the little square as a unit.

Task 4: Symmetrical figures with coloured threads

The last task is designed to finish the proposal with an artistic activity that
gathers everything learned in the previous tasks. The activity consists of
recreating, with coloured threads and pins, the figure made in task 1, and then
outlined in the task 3. By stretching the threads and tightening them, the
students create another artistic work in a different format in which the main
theme is symmetry.

RESULTS AND DISCUSSION

The results are presented according to the aims set, derived from the research
question presented in the previous section: to observe how the teachers react to
the activities proposed in the symmetry-art workshop and how they implement
them in the classroom.

Teachers Reactions

In terms of STEAM methodology, the teachers initially stated that they dealt
with mathematics and art topics always separated. Although they had already
dealt with the topics proposed in their classes, they did not realize that they
could make an interdisciplinary lesson by drawing inspiration from artistic
creations to get to the formalization of mathematical concepts. Moreover, it
could be observed that the reactions of some teachers consisted on not
considering the STEAM activities truly mathematical didactical activities, since
the contents and the kind of tasks were different from the text-books exercises,
that are their institutional reference. Some teachers perceived these activities as
extracurricular motivation, since they emphasize their artistic character and
gave importance only to the aesthetic aspect, that is, they did not consider them
‘mathematical’ (learning phase).
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For most of the teachers, the tasks seemed to be not so far from their usual
practice and the mathematical contents and artistic skills were considered easy.
However, some of them did not feel confident to carry out the activities in the
classroom observed by researchers and, in many cases, they had some
difficulties to pursue the planned goals in the implementations. For example, a
teacher somewhat insecure, asked “how I should start the lesson? Are we going
to carry out the activity together?”” (planning phase).

In the implementation phase, two of the seven teachers said “Do we have to
carry out the lesson? But we can’t do it, we don’t know how to do it”, revealing
to be unsure at the beginning of the class. Another teacher renounced to lead the
activity and asked the researchers to do it. Part of the problem could be due to
the presence of the researchers in the classroom or to the insecurity of applying
the STEAM methodology.

Implementation in the Classroom

Of the seven teachers who planned to carry out the art and symmetry workshop
in the classroom, six did so. Of those six, four implemented it autonomously
while the other two needed further assistance from the researchers. Although the
planning phase allowed them to modify and adapt the proposal to their
classroom and students, only one of the teachers changed the order of the tasks
and dedicated more time to the discussion that is carried out in task 1.

Paying attention to the mathematical aspect of the workshop, several facts are
considered important. When the students commented on their TEPs for the rest
of the class (task 2), the teachers corrected those who talked about important
aspects of symmetry such as distance to the symmetry axis, because they
identify the term symmetry only with the definition they know, which is the
same one that appears in the textbook. Therefore, their goals were far from ours
and were influenced by the textbook definition in a negative way for the
students' mathematical processes.

For some teachers there is a total identification between the concept of
symmetry and the fact that half of a figure could be superposed to its other half
folding a piece of paper containing the picture; the paper folding activity helped
them to feel comfortable but in some cases the symmetry-art workshop was not
effective in enriching their concepts moving from the everyday to the
mathematical concept. In some cases, the teachers did not take care properly of
the students’ spontaneous mathematical processes and interrupted the students
who were carrying out their own reasonings in terms of symmetry. For instance,
many students interpreted correctly the request of explaining with their words
how to draw a ‘symmetric figure’ that is, a figure admitting (at least) one axis of
symmetry while their teacher expected the students to use formal words and
define the symmetry in the way the teacher had suggested and started limiting
them without helping them in their developmental zone. This may be due to
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teachers’ lack of flexibility in conducting a group discussion with students on
the concept of the symmetry (ibid., 2012). On the other hand, in many cases the
teachers declared that their insecurities were due to unexpected difficulties with
the mathematical contents, and emerged when the students were working and
proposing their ideas in a manner that was different than the usual (reflection
phase).

Focusing on the artistic part, it should be pointed out that it was the main aspect
that motivates the teachers to implement the mathematics and art workshop.
However, initially, most of them limited the creativity of the students, especially
in task 1. This limitation could be due to the fact that the teachers showed a
perfectionist attitude when they performed the workshop by themselves
(learning phase) and wanted their students to obtain similar results to theirs,
imposing some criteria like the colours they should use or indicating that the
artwork should be ‘beautiful” and ‘well done’ (implementation phase). Between
these two phases, it could be seen that teachers’ praxeologies (Schoelfeld, 2010)
changed, since they were forced to make decisions just in time. For example,
because of the motivation students to do this workshop, many of the teachers
spent more time experimenting with more colours and creating more artworks.
In addition, some of them left the students total freedom when performing the
schematization (task 3) allowing them to use different colours and shapes.

CONCLUSIONS

Taking into account one of the aims of this paper, it could be observed that
teachers’ reactions to the proposed STEAM workshop were positive. In the
reflection phase, all teachers valued the importance of proposing activities with
an interdisciplinary character. Adding the planning phase was intended to give
teachers flexibility and creativity in implementing the workshop in their
classrooms. However, the changes that were observed were very specific and
only one of the seven teachers modified the tasks by adapting them to her
classroom context. In this case, the intersection between the teacher's and the
researcher's praxeologies was obviously no longer empty.

On the other hand, the tasks of the workshop have an intrinsic complexity that
makes students act in unpredictable ways. Although many of the teachers stated
that the schematization (task 3), specifically, was very difficult, the students
performed it very effectively obtaining great results. In some cases, however,
teachers were not flexible to adapt the activities to just-in-time happenings.

The fact that more than one teacher has declared that they want to continue
experimenting with mathematics and art workshops means that some practices
have changed and that the symmetry-art workshop has been successful. It is
therefore desirable that a dynamic process of professional evolution has been
triggered in which some components external to the teachers praxeologies, such
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as the use of interdisciplinary teaching through appropriate tasks, become
internal as an effect of the process of meta-didactic transposition. The meta-
didactic transposition, in our case, has its strength in the use of innovative tasks
and the adoption of interdisciplinary teaching. Therefore, we propose to
continue carrying out workshops and to focus on the relationship between
mathematics and art encouraging a balance between these two disciplines.
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“WHY DON’T YOU MAKE A DRAWING?” MOTIVATION
AND STRATEGY USE IN MATHEMATICAL MODELLING

Judith Blomberg?, Stanislaw Schukajlow?, Johanna Rellensmann?

tUniversity of Miinster, Germany

Motivation is important for students’ learning and strategy use. However, we do
not know much about the relations between motivation and the use of strategies
such as the drawing strategy. In this study, we assessed the mathematical and
strategy-based motivation of 194 ninth- and tenth-grade students using
expectancy-value questionnaires. Further, we measured the spontaneous use of
drawings for solving geometric modelling problems. We found a positive
relation between mathematical and strategy-based expectations of success as
well as between mathematical and strategy-based attainment value.
Furthermore, mathematical and strategy-based motivation differed in their
relation to the use of drawings. These results indicate the importance of both
mathematical and strategy-based motivation for strategy use and modelling.

INTRODUCTION

Mathematics as an applied science is part of many other disciplines, such as the
natural sciences, computer science, and the social sciences. An application-
based view of mathematics is reflected in mathematical modelling.
Mathematical modelling involves the use of mathematics to solve real-world
problems (Niss, Blum, & Galbraith, 2007). Because of the importance of
applications for life and work, countries around the world recommend that
mathematical modelling be promoted in mathematics education, and it is
included in the mathematics curriculum of different countries. However, prior
research has repeatedly demonstrated that students have trouble solving
modelling problems (Niss et al., 2007). The use of strategies such as self-
generated drawing is considered to have a beneficial effect in overcoming the
difficulties involved in solving modelling problems (Galbraith & Stillman,
2006; Hembree, 1992). Positive effects of drawings have been shown for
students who made drawings spontaneously. However, why do learners rarely
make drawings spontaneously? One possible factor that influences the
spontaneous use of drawings is motivation. In the present research, we targeted
mathematics and the drawing strategy as the objects of motivation because
mathematical and strategy-based motivation might both be important for the
spontaneous use of drawings. In this paper, we aimed to examine the relation
between mathematical and strategy-related motivation and their importance for
the spontaneous use of drawings in mathematical modelling.
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THEORETICAL BACKGROUND
Self-generated Drawings in Mathematical Modelling

By making a self-generated drawing for a mathematical modelling task, the
learner visualizes a problem described in the task by representing the objects
and their relations to each other in an iconic way. By applying the strategy of
making a drawing, we understand both the drawing process and the drawing as
a product (Rellensmann, Schukajlow, & Leopold, 2017). As a strategy for
learning and problem-solving, making drawings can support various activities in
mathematical modelling such as constructing a mental model of the text,
discovering errors in the mental model, structuring and simplifying the given
situation and constructing a real model, mathematizing the real model, or
validating the mathematical result.

Spontaneously making a drawing for a given mathematical word problem has
already been shown to be a potentially performance-enhancing strategy for
learners (Hembree, 1992; Uesaka et al., 2007). This strategy was found to be
more helpful than improving mathematical vocabulary, verbalizing important
concepts, or applying other strategies (Hembree, 1992). Thus, making a drawing
might also be helpful for solving geometrical modelling problems. Despite the
expected positive effects of generating a drawing in mathematical modelling
derived from the analysis of modelling activities such as mathematizing,
students rarely use this strategy spontaneously. One reason for this result might
be students’ motivation. For example, in Pressley's (1986) model of a Good
Strategy User, motivational beliefs are suggested to predict the spontaneous use
of strategies. Pressley further suggested that if students are motivated to use a
strategy, they will use it more often.

Expectancy-value Theory of Motivation

In a broader definition, Middleton and Photini (1999) specified motivation as a
reason for human behavior in a specific manner and in each situation. At the
core of many theories of motivation are expectancy-value models such as the
one by Eccles and Wigfield (1995). These models propose that performance-
related decisions (e.g., using a specific strategy) are essentially influenced by
two subjective beliefs: expectations of success (ES) and the value attached to
the different options that are available. In research, expectations of success have
often been estimated via self-concept or via general self-efficacy, which have
repeatedly been found to be closely connected to each other (see the overview
by Marsh et al., 2019). The value component includes three sub-components:
the interest and enjoyment gained from the task (Intrinsic Value, IV), the
personal importance of being able to do it well (Attainment Value, AV), and the
perceived utility from solving it (Utility Value, UV). Similar to other affective
constructs, motivation can target different objects (Schukajlow, Rakoczy, &
Pekrun, 2017). The objects of motivation can be learning in general, a specific

2- 112 PME 44 -2021



Blomberg, Schukajlow & Rellensmann

topic, or even a specific problem. The present research involves mathematical
motivation because the object of motivation is mathematics. Motivation that
targets a specific strategy or its characteristics as its objects can be called
strategy-based motivation. In the present research, we assessed strategy-based
motivation by using the drawing strategy because of the importance of this
strategy for problem-solving (Hembree, 1992).

Prior research hypothesized a positive relation between expectations of success
that targeted different objects in one domain such as mathematics. The reason
for this positive relation is that problem-solving activities within mathematics
require related abilities and skills. Furthermore, students acquire different
abilities and skills in mathematics in parallel in their mathematics lessons or in
mathematical activities that they participate outside of school. These
considerations were confirmed empirically by Marsh et al. (2019), who
demonstrated a positive relation between mathematical expectations of success
(that were asked about by referring to mathematics in general) and to specific
mathematical problems as objects of motivation. Likewise, a positive relation
can be expected between values within the same domain such as mathematics.
The expectation that values for different objects in mathematics can be related
has been supported by empirical results. For example, the utility value of
modelling problems was found to be positively related to the utility value of
intra-mathematical problems (Krawitz & Schukajlow, 2018). However, prior
empirical results should be interpreted with caution because the differences in
the objects of motivation are essential for the relations between the constructs.
The relation between mathematical and strategy-based motivation is still an
open question.

Motivation and Strategy Use

Many studies have demonstrated the positive effects of expectations of success
and value on the use of cognitive and meta-cognitive learning strategies. For
example, Virtanen, Nevgi, and Niemi (2013) showed that university students
who reported high expectations of success and high intrinsic value were also
more likely to report that they organize the learning content in their discipline.
Focusing on the relation between mathematical motivation and self-reported
learning strategies in mathematics, Berger and Karabenick (2011) found that
both expectations of success and value predicted elaboration and metacognitive
strategies. However, in these studies, researchers used self-reports to assess the
strategies, and the validity of assessing strategies via self-reports has often been
criticized in the past. Because of research on the relation between mathematical
motivation and self-reported strategies, we suggest a positive relation between
mathematical motivation and the use of the drawing strategy.

Moreover, we found only a few studies that analyzed the relation between
motivation and the spontaneous use of the drawing strategy. A case study of an
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eighth-grade girl who did not use a drawing strategy spontaneously at first but
used it successfully after being instructed to do so suggests that spontaneous
strategy use depends on the perceived efficiency of the strategy and thus also on
motivation (Ichikawa, 1993; Uesaka, Manalo, & Ichikawa, 2007). Furthermore,
Uesaka et al. (2007) demonstrated that the benefits attributed to learner-
generated drawings reported by students were significantly related to the use of
drawings. These findings indicate that strategy-based motivation might be
Important for the spontaneous use of drawings.

RESEARCH QUESTIONS AND HYPOTHESIS

Based on theoretical considerations, we conclude that the spontaneous use of a
drawing strategy is related to motivational factors. However, there is a research
gap regarding the relation between mathematical and strategy-based motivation
as well as to the relation between motivational factors and the use of the
drawing strategy. Moreover, we did not find any research that investigated the
relation between motivation and making a drawing to solve modelling
problems. Therefore, we addressed the following questions in this study:

(1) How are the mathematical motivational constructs (ES, 1V, AV, UV
MATH) related to the corresponding strategy-related constructs (ES, IV, AV,
UV DRAW)?

We expected a positive relation between mathematical and strategy-based
expectations of success because the development of the strategic skills involved
in making drawings takes place within mathematical learning. We also expected
positive relations between the different values of the mathematical and strategy-
based constructs. However, as the relations between motivational constructs
strongly depend on how close the objects of motivation are to each other, and
only a little research has been conducted on strategy-based motivation, these
expectations were based mostly on theoretical considerations.

(2) How are mathematical and strategy-based motivational constructs (ES, 1V,
AV, UV) related to the spontaneous use of the drawing strategy while students
solve modelling problems?

Based on the expectancy-value theory, we expected both mathematical and
strategy-based motivation to be important for the spontaneous use of drawings.
An empirical indication for the positive relation between mathematical
motivation and the use of the drawing strategy comes from research on self-
reported strategies. One case study and one cross-sectional study carried out
with school students on the use of the drawing strategy supported the
expectation that students’ strategy-based motivation might be related to
spontaneous strategy use.
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METHOD
Participants and Research Design

Two hundred twenty German ninth- and tenth graders (49.5% female, M =
14.93 years) of 10 comprehensive classes participated in the study. At the first
occasion, the students answered a questionnaire about motivational constructs.
After two weeks, they were asked to solve eight geometric modelling tasks. The
analysis of students’ solutions allowed us to assess their spontaneous use of the
drawing strategy. Some students could not participate on both occasions for
various reasons. In sum, 194 students participated on both occasions and were
included in our analysis.

Measures

The 22-item survey was applied to assess mathematical motivation (MATH, 10
items) and strategy-based motivation with respect to the use of drawings
(DRAW, 12 items). Students rated each statement on a 5-point scale (1 = "not
true at all" to 5 = "completely true™).

Mathematical motivation scale. The mathematical motivational items were
adapted in accordance with Eccles and Wigfield (1995). Expectations of success
(ES MATH) were assessed with three items (e.g., “I am very good at
mathematics”). The three components of value are intrinsic value (IV MATH; 2
items; e.g., "In general, | find working on mathematics assignments very
interesting"), attainment value (AV MATH; 3 items; e.g., "It is very important
to me to be able to solve mathematical problems very well™), and utility value
(UV MATH; 3 items; e.g., "Mathematics in school is very useful for my
professional future after graduation™). The reliabilities of the subscales were
mostly good to satisfactory (.55 < a < .89). The confirmatory factor analysis
revealed that the model with four factors fit the data adequately (y2/df= 1.72,
SRMR = .04, RMSEA = .06, CFI =.97).

Strategy-based motivation scale. The strategy-based motivation scale with
respect to the use of the drawing strategy was assessed with four subscales:
expectations of success (ES DRAW; 3 items; e.g., “I believe I can make very
good drawings for any word problem”), intrinsic value (IV DRAW; 3 items;
e.g., "l like to make a drawing for a difficult word problem"), attainment value
(AV DRAW; 2 items; e.g., "It is important to me to be able to make a drawing
for a difficult word problem™), and utility value (UV DRAW, 4 items; e.g.,
"Making drawings is important to me because it helps me solve difficult word
problems™). The reliabilities of the subscales were mostly good to satisfactory
(.58 < a < .86). Confirmatory factor analyses showed acceptable values for the
model (y2/df=3.27, SRMR = .04, RMSEA = .07, CFIl = .95).

Use of drawings. The use of drawings was measured dichotomously for each of
eight modelling tasks that could be solved by applying the Pythagorean
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Theorem. A code of 0 was assigned to solutions without a drawing and a code
of 1 to solutions with a drawing. The measurement showed good reliability
(Cronbach's a. = .866).

RESULTS

Relations of mathematical and strategy-based motivation. As expected, the
analysis of the correlations between mathematical and strategy-based
motivation (Table 1) showed moderate positive correlations between ES MATH
and ES DRAW as well as between AV MATH and AV DRAW. These results
indicate that students who have high expectations of success and ascribe a high
attainment value to mathematics are confident that they can use a drawing
strategy to solve problems and feel that this strategy is personally important to
them. However, we did not find a positive relation between intrinsic value or
utility value for mathematical and strategy-based motivation. For example,
students who ascribed a higher utility value to mathematics did not differ in
their estimation of the utility value of the drawing strategy.

MATH
ES 1V AV uv
ES 289%* 255%* 377** 234%*
D|Iv -.041 010 233%* 087
E C .007 104 351%* 117
Wi u
v -.018 .010 278%* 038

Note. ** p < .01, p two-tailed. MATH: mathematical motivation, DRAW: strategy-based
motivation, ES: expectancy of success, 1V: intrinsic value, AV: attainment value, UV: utility
value. Correlations between the same constructs in different domains are presented in grey.

Table 1: Correlations between mathematical and strategy-based motivational
constructs

Motivation and the use of drawings. Our analysis of the relation between
mathematical motivation and the use of drawings confirmed our expectation for
IV MATH (Table 2). Students who attributed high intrinsic value to
mathematics used the drawing strategy to solve modelling problems more often.
Mathematical expectations of success, attainment value, or utility value in
mathematics were not related to the use of drawings. The analysis of the relation
between strategy-based motivation and the use of drawings while modelling
revealed a more consistent picture and confirmed our expectations. We found
positive correlations for all strategy-based sub-constructs IV DRAW, AV
DRAW, UV DRAW, and ES DRAW with the use of drawings. These results
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indicate the importance of strategy-based motivation for the spontaneous use of
the drawing strategy. Students who have high expectations of success for the
use of drawings and who ascribe high intrinsic, attainment, and utility value to
the drawing strategy more often used this strategy spontaneously.

MATH DRAW
EX IV AV UV EX v AV UV
.180 164 .212*
USE r 047 * .088 .098 * * 0 .138* .172*

Note. ?p <.10, * p <.05, ** p <.01, ** p <.001. p: two-tailed. MATH: mathematical
motivation, DRAW: strategy-based motivation, EX: expectancy, IV: intrinsic value,
AV: attainment value, UV: utility value, USE: spontaneous use of drawings.

Table 2: Correlations between mathematical and strategy-based motivational
constructs and the spontaneous use of drawings

DISCUSSION

Based on expectancy value theory (Wigfield & Eccles, 2000), we investigated
the relation between mathematical and strategy-based motivation and the
importance of motivation for the use of drawings while solving modelling
problems. As expected, the analysis of the relation between mathematical
motivation and the strategy-based motivation to make drawings showed that
mathematical and strategy-based expectations of success were positively
related. However, the relation was weak. One reason for this result may be the
cognitive structure of the activities: Although the making of drawings as a
visual strategy is part of the mathematical curriculum, formal symbolic
procedures usually predominate in students’ learning in mathematics. Another
reason may be the different categories of focused objects (the domain of
mathematics vs. the strategy of drawing). As mathematics is a more general
object and the drawing strategy is a more specific object, this difference might
have an impact on the strength of the relation between the constructs (Marsh et
al., 2019). The relation between the personal importance of being good at
mathematics (AV MATH) and the personal importance of making good
drawings (AV DRAW) was moderate in size. This result revealed that the
personal importance of mathematics is closely related to the personal
importance of making a drawing to solve mathematical problems. By contrast,
the intrinsic and utility values of one object were not related to the values of
other. The perceived utility of drawings for solving problems did not depend on
whether mathematics was considered useful or not.

The strategy- and mathematics-based motivational constructs differed in their
relations with the spontaneous use of drawings during mathematical modelling.
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Whereas only the intrinsic value of mathematical motivation was correlated
with the use of drawings, all four strategy-based motivational constructs were
positively related to the use of the drawing strategy. We suggest that future
studies conduct deeper investigations of the relation between mathematical and
strategy-based motivation on the one hand and the use of drawings and
performance on the other hand. One interesting research question might be
whether mathematical motivation has an indirect effect on the use of strategies
and performance via strategy-based motivation. In line with results from
learning strategy research (Berger & Karabenick, 2011; Virtanen et al., 2013),
intrinsic value with respect to mathematics was found to be related to
spontaneous strategy use. In addition, as suggested by expectancy-value theory,
we found a positive relation between strategy-based expectations of success and
the use of drawings in our research. Positive relations between strategy-based
values and the use of strategies indicated the importance of values for students’
strategy use. Thus, our results confirmed the validity of expectancy-value theory
for strategy use.

The results revealed intrapersonal differences when comparing mathematical
motivation and strategy-based motivation with respect to making a drawing in
mathematical modelling and in problem-solving. Effects of strategy-based
motivation on learning outcomes should be addressed more often in future
research Dbecause it can explain why some students make drawings
spontaneously and others do not. Research on strategy-based motivation can be
applied not only for the use of the drawing strategy but also to other strategies.
Finally, for the practice of teaching, it is important to investigate which teaching
interventions improve strategy-based motivation and students’ strategic and
achievement-related learning outcomes.
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WHEN TEACHER-STUDENT DISCOURSE REACH
IMPASSE: THE ROLE OF COMPUTER GAME AND

ATTENTIVE PEER
Orit Broza* and Yifat Ben-David Kolikant
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Researchers traced the learning processes of 26 low-achieving students
studying subtraction of decimal numbers, as they worked in small groups within
a rich learning environment involving a computerized game, play money, peer
interactions and teacher mediation. Data sources were videotaped sessions,
worksheets, observations, and pre- and post-program teacher evaluations.
Results indicate that low achieving students can build new significant
knowledge, to participate in a reflective mathematical discourse, and benefit
from it. Yet, the setting of computer games with an attentive peer served a fertile
platform for strategies to emerge and consolidate.

INTRODUCTION AND THEORETICAL FRAMEWORK

Applying mathematics into real life is considered as an essential component for
professional life (OECD, 2016). This might be the reason for mathematics
educators to actively engage students with mathematical knowledge building,
based on meaning, and avoid routine procedural learning. Insignificant learning
base on drill and memorization, especially in early years, might lead to under-
achievement among students who do not have any identified disability. This
phenomenon is reflected in PISA findings which show that around 20% of
OECD students with normal cognitive skills do not reach a minimum level of
basic skills in mathematics (OECD, 2016).

Trying to explain these students’ poor performance, the literature focuses on
cognitive deficits and on behavioral manifestations of their failure (e.g.
participation patterns). Low achieving students (LASs) find it difficult to
retrieve basic mathematic facts (and knowledge) from their memory (Gray,
1991). Craik (2002) referred to this difficulty as ‘'fragile memory': a product of
superficial data processing in the brain. Other explanations points on affective
reasons such as frustration, anxiety, and passivity (Ramirez, Gunderson, Levine,
& Beilock, 2013).

Although the population of low-achieving students is heterogenic, some
cognitive difficulties and behavioral characteristics are common. For example,
such students find it difficult to retrieve basic mathematic facts from their
memory (Geary, 2004) and to use effective computation strategies based on
meta-cognitive skills (Goldman, 1989). They are sensitive to the learning
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context (e.g., written and oral arithmetic practices or every day and formal
mathematics), and find it much harder than other students to solve simple and
complex addition and subtraction problems (Linchevski & Teubal, 1993). These
difficulties may lead them to use less sophisticated strategies, and thus commit
more errors. As they repeatedly experience failure and cannot keep up with the
class, their motivation and self-esteem decrease. Therefore, they might have a
weak sense of internal responsibility, be passive and/or rely on external
authority (Geary, 2004; Linchevski & Tuval, 1993; Haylock, 1991).

Adding to that, teachers do not always take into account socio-emotional
aspects of LAS, neither going beyond the cognitive and subject matter aspects,
and look into socio-emotional aspects of the teacher-student interaction that
could affect learning (Broza & Ben-David Kolikant, 2015). Instead of
increasing LAS ability to build on past successes, and fostering a sense of
internal responsibility for their advancement, some teachers typically conclude
that the most effective way of promoting mathematical performance in low-
achieving students is to ‘drill and kill’ (Anderson, Reder, & Simon, 2000), that
is to focus more on the mathematical algorithms than on the mathematical
meaning.

Digital game-based learning is considered as an effective means to overcome
negative implications of learning mathematics. They are fun, meaningful and
inspiring by their nature, thus, they allow disengaged students to gain interest
for mathematics, enhance motivation to perform difficult tasks and maintain
effort, and help children to overcome anxiety (OECD, 2016). Digital game-
based learning theories (Squire, 2008; Gee, 2003), emphasize the potential of
games to engage and motivate students in becoming active rather than passive,
by enabling experiments and explorations without fear of failing in front of the
entire class. Through active participation in a meaningful and authentic learning
environment, mathematical strategies can develop naturally, as the concrete
context is served as a cognitive scaffolding (Wood, Bruner, & Ross,
1976).Therefore, the use of games for teaching may thus be particularly
beneficial for low-achieving students.

The current research examines learning processes of LAS who Ilearn
mathematics with a digital game and a teacher who was trained to attune her
support to LAS cognitive and emotional needs. The learning environment was
designed according to three theoretical lines: (a) ‘Learning in Context’ in which
mathematical concepts and procedures are presented in a context relevant to a
child’s day-to-day life (Gravenmeijer, 2004); (b) game-based learning (Gee,
2003; Squire, 2008), and (c¢) ‘Accountable talk’, which focuses on the role of
the teacher to create a safe and constructive space for building new knowledge
by establishing norms and provide opportunities to talk mathematics, as well as
share thoughts and ideas with group members (Chapin, O'Connor & Anderson,
2009).
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Researchers aimed at engaging students in significant learning by transforming
their social and socio-mathematical norms (Cobb, 2004) from passive to active,
from isolated to social collaboration, from impulsive to thoughtful. Group
discussions were focused on reporting student' mathematical strategies (built by
tools and teachers' scaffoldings), and establishing shared norms (e.g., examining
students' strategies by approval and disapproval, and optimizing ineffective
strategies).

Researchers were aware of LAS's tendency to impulsivity; thus, students were
asked to learn in dyads, in front of a computer. Researchers hypothesized that
the collaborative setting will trigger two types of interactions: Computer-student
and student-student; and that peers will explain their calculations to each other,
and question other’s action, bringing about reflective and thoughtful interactions
(Dillenbourg & Ficher, 2007).

In a previous work (Broza & Ben-David Kolikant, 2015), researchers
endeavored to characterize the meaningful and complex learning processes
among LAS in a rich supporting environment in general and at the different
levels of progress. In the following section researchers present the importance
of the presence of computer game in the environment with peers’ discussions
for progression.

METHODOLOGY

A total of 26 low-achieving fifth grade students took part in the above-
mentioned extracurricular program, for one weekly hour, for the duration of
eight weeks in tow iterations. They studied subtraction with decimal fractions
prior to the topic being studied in their parent mathematics classes, learning in
small groups (up to four students), with a teacher trained by the researchers. The
instruction framework emphasized a delicate transition from the realistic
environment to formal mathematics. For this reason, for example, in the first
four lessons, subtraction was presented only through monetary simulations and
problems, with no formal exercises. From the fifth lesson onward, the formal
representation of operations was interwoven into the learning situations, while
maintaining the focus on authentic contexts.

When playing the learning environment's “ice-cream shop" game
(http://kids.gov.il/money_he/glideriya.html), the students acted as sellers: They
received orders, prepared ice-cream, and then calculated and gave change. In
addition, students were asked to work in supplementary online study units,
which concerned the transition between money and formal representations, as
well as change calculations. Students also enacted game-like situations with
mock Israeli money (shekels and agorot).

While students engaged in computerized activities, the teacher stayed in the
background, observing their work and difficulties, taking notes for the following
discussion, and intervening when needed. Much of class time was devoted to
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pair and group discussions. The teacher's interventions did not include direct
corrections of students' strategies, but rather meta-scaffolding questions that
encouraged the students to use the tools in the environment to build their own
strategies.

Our primary data source was the transcripts of eight videotaped, 45-minute-long
learning sessions, accompanied by eight screen captured computer sessions
video screenshots (about 20 minutes each). Other tools included pre-program
student interviews focusing on mental computation strategies, observation of the
parent mathematics classes, student evaluations filled in by their parent
mathematics class teachers' pre-and post-program, and individual worksheets
each student filled in during the extracurricular lessons. According to a design-
based research, data were collected in two iterations: Pilot study and main
iteration. The transcripts were coded twice by two researchers. Using micro
genetic approach (Siegler, 2006) researchers analyzed their knowledge building
trial by trial. Utterances were segmented into episodes, so that each episode
began with the presentation of a new task (Broza & Ben-David Kolikant, 2010).
Each episode was classified according to the problem it deals with, and
examined: (i) who participated in it; (ii) the tools that were involved; (iii) the
knowledge pieces that emerged, and (iv) the difficulties that arose, including
whether they were solved, and if so how and by whom.

After identifying the episodes in which constructing occurred, researchers
searched for historical evidence, i.e. indications in previous episodes, that could
hint about the specific ways this new piece of knowledge could have been
constructed. This integrative analysis enabled to focus on the developmental
changes in the student's thinking and behavior chronologically, as well as to
examine it with respect to the literature of LASs.

RESULTS

Eighty two percent of the students in the main iteration significantly changed
their discourse participation, and actively built their own strategies to solve
mathematical problems and exercises. The learning process was complex or
inconsistent with regressions and progressions alternately due to LAS fragile
memory. Therefore, the teacher found it difficult to calibrate her support in
accordance with students' prior experiences. However, despite the difficulties,
55 percent of the students in the main iteration exhibited stability in their
knowledge during at least three continuous lessons. Additional 27 percent of the
students exhibited short progressions with localized consolidations (within a
specific lesson and not between lessons).

Students’ Behavior While Playing the Game

As researchers hypothesized, the computerized environment, encouraged the
students to be active as well as engaged in their task. During the play,
researchers observed that the students were very focused on the task in hand. In
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fact, students continued working (or playing) after the class had ended. The
students reported in the interviews and ad hoc conversations that “it was
fun...not a regular class”, “playing with the computer provides a sense of fun,
[vs.] a blackboard, where you just sit and solve exercises”. Each student solved
many subtraction exercises, manifested by the need to give change to customers
in the shop. Students usually worked in turns: The one on the keyboard gave
ice-cream, calculated the price, the change, and returned change.

Failures in this context did not discourage them. On the contrary, this is when
researchers observed mathematical discussions with their peers and with the
teacher. Usually, when they received a response from a “customer” indicating
that the change they gave was incorrect, they paused to think and sometimes
they turned to their peers and verbalized their solution process. Sometimes this
verbalization occurred after their peers asked them how they had worked. The
discussion often helped them to correct themselves. This behavior was
dramatically different from the observed (and reported) passivity (or
impulsivity) in the regular classes. Moreover, in this context, the students
generally welcomed the teachers’ intervention and cooperated with them.
Hence, the computer and the peers often generated a synergetic effect on the
students.

The next two examples (to be reported at the conference) illustrates knowledge
building next to the computer when the teacher find it hard to build on previous
experiences due to the fragility of the knowledge. In both cases the successions
of success were in lesson or between two lessons in front of the computer and at
the next writing task. In both cases the strategy was not consolidated in the long
term.

Li 's Example

In Lesson 3, Li was able to easily use borrowing to subtract decimals with
halves from integers, yet in Lesson 4, she found it difficult to extend this to
subtrahends with different decimals (e.g., 7.70). It took the teacher several
attempts to identify the problem. Then, rather than explicitly teaching the
procedure, the teacher elected to create opportunities for Li to build her own
knowledge and made many attempts to support her in this process. Amongst her
attempts were her suggestions and guidance to use play money, the verification
procedure, the conversion procedure, and the linking of subtraction exercise in
the task to the monetary terms of the problem story (the price, the change). Her
suggestions were reasonable, given that Li previously experienced success with
these activities and procedures. However, Li was apparently unable to
remember or apply this past knowledge to the situation at hand.

It was only in the next lesson that Li was able to construct a conversion strategy.
It was in the subsequent computer session when Li managed to solve a
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succession of tasks as demonstrated in her explanation to her peer. The task was
20-12.20 =

1

2
3

Li:

Nina:
Li;

20 minus 10 equals 10...minus two equals] eight. Look, seven [NIS]
and 20 agorot, right? [Gets feedback from the computer that the
answer is correct].

Ah!! I gotit, I got it...
Understood?

In another task 20-15.50 = Li explains to her peer: "First do not pay attention to
this [Agorot], look at the integers. Then do 20 minus 10 is 10, minus five is five.
And five minus fifty [agorot]. And then you continue with the agorot..." after
they got a positive feedback from the computer Li added to her peer: "You see,
you are learning!".

Li could even apply her strategy to written individual tasks (as shown in Figure

1).

Yar's Example

20-15.20 = W, & /

so-:s.m-a"’%" /

20-130=427 10/

”.M :&l” <

Figure 1: Li's writing performance

The following excerpt is from the fifth lesson, solving the exercise 20-7.70.
After the teacher collected all the answers, she saw that Yar got a wrong
answer, 13.30, and turned to him for an explanation:

59
60
61
62
63
64
65
66
67

68

Yar:

Teacher:

Yar:

Teacher:

Yar:

Teacher:

Yar:

Teacher:

Yar:

Teacher:

It can be done vertically. 20 minus 7.70

How shall I write it? | really do not know...

As if 20...[pause]

20, yes...[writing on the board]

Minus

Vertical minus?

Now, you should do...[thinking]

Come [to the board], tell me exactly where [to write 7.70]?

[goes to the board] eh, here [points right under the 0 of the 20]
here...no, no...it is impossible.

Impossible...

Yar thought that a vertical-solving procedure might help. However, it was the
first time he wrote decimal numbers vertically, and he was unsure where to put
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the decimal point. The teacher let him struggle with writing, repeating his
conclusion, “impossible” (Line 68).

The next lesson opened with a computer session. For the first six of the ten
exercises presented on the computer, Yar quickly typed a response in what
seemed like a trial-and-error fashion, responding to "customer" feedback from
the computer and correcting, as necessary. Then he was observed "just
thinking". The exercise at hand was 20-12.80. He solved it, got positive
feedback from the computer, and explained to his peer, Ron: “[20 minus 12
equals] 8, [changes one shekel to 100 agorot on the computer] 7 and 20 agorot™.
Namely, he subtracted the integers, then subtracted one more integer and added
the right amount of agorot. He solved the remaining three exercises in this
computer session straightforwardly, employing the same strategy.

Apparently, the computer immediate feedback (and probably its non-judgmental
nature) and the presence of a peer, to whom Yar verbalized the strategy he has
just constructed, not only helped him construct a strategy.

In the next written individual task, Yar also succeeded:

Figure 2: Yar's writing performance
DISCUSSIONS AND CONCLUSSIONS

Both examples illustrate knowledge building next to the computer when the
teacher find it hard to build on previous experiences due to the fragility of the
knowledge. In both cases the successions of success were in lesson or between
two lessons in front of the computer and at the next writing task. Probably, the
experience while playing and explaining to attentive peer strengthen their
fragile memory in the short term. Although the computer changes their learning
experience, the strategies were not consolidated in the long term.

This complex picture is perhaps a result of the tension between LASS’ active
engagement in mathematics and their weaknesses. It is no surprise that teachers
frequently conclude that LASs fail to acquire mathematical thinking and
therefore minimize situations that require such thinking (Metz, 1978). Still the
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change in their capacities and behavior points on potential of the environment.
A longer research might conduct to observe longer-time stability.
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THE INFLUENCE OF ANALYTIC MODEL ON CRITICAL
REFLECTIVE THOUGHT OF PRE-SERVICE
MATHEMATICS TEACHERS FOR ELEMENTARY SCHOOL

Orit Broza and Ariel Lifshit
Levinsky College of Education, Israel

A total of 23 mathematics pre-service teachers learning process was examined
as a result of using an analytic model designed for discourse protocols'
analysis. The model contains three lenses to analyze discourse: (i) Examines the
pre-service teachers' dominance in discourse; (ii) maps the types of questions,
and (3) focuses on learners’ reactions and comprehension performance. Results
revealed that an active and dynamic process occurred, modifying teacher
practice, and developing critical reflective thinking among pre-service teachers.
The change occurred in two “ripples of influence”: (1) Improving discourse to
one promoting learning by demonstrating hypothetical scenarios and (ii)
perception of the role of teachers and class management.

INTRODUCTION AND THEORETICAL FRAMEWORK

One of the challenges in teaching mathematics in general and teacher education
is the existence of meaningful discourse that will lead to generalization and
justification processes. Data collected in the past two years in the framework of
work practicum lessons in a college of education demonstrate a difficulty
among pre-service teachers to establish meaningful developing mathematical
discourse for the purpose of constructing mathematical knowledge. Existing
discourse is generally characterized by closed questions (e.g. IRF) and
consequently, answers that do not lead to generalizations or justifications.

Michaels, O’Connor, and Resnick (2007) used the term “accountable talk” (to
express the desired classroom mathematics discourse and the importance of
teachers as leading the discourse. This approach was meant to involve pupils
and create discourse situations whereby participants listened to one another,
built ideas on one another’s and asked questions to clarify or broaden any
opinion. The participants create links between statements voiced in the
discourse and provide reasons and justifications when disagreements arise. The
teacher's role is to encourage conversation with questions such as: “Has anyone
got anything to add?” or “Can someone say what he (a colleague) said in other
words?”, to request clarifications and explanations for what was said, to give
time to think, to encourage learners who do not participate by asking to hear
their opinion and to encourage agreements or disagreements about a common
idea that arose in the group.
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In recent decades, attempts have been made to characterize and define the
concept justifications. Research literature deals mainly with high school. For
example, Harel and Sowder (2007) defined justifications as a process carried
out by a learner so as remove any doubt about a given hypothesis, a process
made up of two secondary processes: Persuasion and becoming convinced. In
‘persuasion’ a learner removes the doubts of others. In ‘becoming convinced’ a
learner (with the help of others) removes his own doubts. In elementary schools
today, referring to justification as a process is very common to help processes of
structuring knowledge and promoting meaningful learning. The expectation is
for justification to occur within the framework of tools learners have and in
accordance with their developmental stages, in other words, employing
explanations for how something is solved, using supporting examples, using
non-examples to refute arguments, employing definitions, rules and law and not
complicated processes of proof.

Employing reflection in teacher education promotes teachers’ abilities to learn
from experience, initiate changes and be more aware of their understandings
(Fox et al., 2011; Shulman & Shulman, 2004). Many studies have employed
joint video observations to analyze teacher-learners interaction or transcripts of
teachers’ lessons to characterize diverse teaching styles, examine congruence
between content and executing lesson aims or in order to understand unrealized
teaching opportunities (Santagata & Yeh, 2013; Spitzer et al.,, 2011). A
reflective process that combines in-depth research analysis contributes to
understand processes of situational understanding (Korthagen, 2010). Hence,
work experiences become not only a place to practice these teaching skills but a
field in which to examine theory. Furthermore, reflective writing improves self-
regulation, cognitive and meta-cognitive qualifications as well as motivation.

The aim of this research is to examine the learning that occurred among pre-
service teachers who employed a reflective model developed especially for the
practicum research course. The assumption is that analytical analysis will
develop pre-service teachers' awareness of the way in which they conduct
discourse, will reflect barriers in developing discourse, will lead to the
development of optimal scenarios for situations that were not exploited, to
finding possible leverage to improve discourse during research lessons and at
the end of the day improve mathematical discourse in work experience classes.

The Model

Researchers constructed an analytical model containing three different lenses
for analyzing discourse protocols focusing on diverse episodes of the discourse
conducted in a lesson, examining the types of pre-service teachers' questions
and answers in the discourse, and the connection between these and their
learners’ comprehension performance. The work stages of the model were as
follows:
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Stage A: Mark and quantify only pre-service teachers’ expression in a discourse
protocol and the frequency of these expressions in various episodes. Using this
lens, the dominance of pre-service teachers in the discourse was examined (for
example, IRF).

Stage B: Map the types of pre-service teachers' questions and answers in
discourse: Closed, procedural, open, challenging questions or high thinking
order questions that awaken thought and investigation (Bozo-Schwartz, 2011).
Learning promoting feedback was defined as prolonging conversation through
clarification questions, challenging learners to discuss with and explain to one
another, repeating what learners say, linking learners’ ideas in a discussion of
mistakes (Bozo-Schwartz, 2011; Chapin, O’Connor & Anderson, 2009).

Stage C: Code learners comprehension performance in the discourse: providing
an explanation, bringing examples, application, generalization, or justification
(Perkins, 1998).

METHODOLOGY

The research was conducted within the framework of a “practicum research”,
which is an integral part of the 23 pre-service teachers' practical experience in
schools in the second and the third year of their studies. The course is annual
and addresses improving the quality of teaching and self-examination of
teaching/learning processes using questions regarding adapted teaching in
general and in the field of mathematics. The researchers served as pedagogical
instructors for the research group.

Research tools included 46 transcripts of complete lessons analyzed according
to the three lenses of the model (23 from each semester), 46 lesson plans and 23
complete reflections on the research process.

Thematic qualitative analysis was carried out on the research work results and
complete reflections of each pre-service teacher, a total of 23 pieces of work.
The works were coded twice by two researchers, each separately, and there was
a 95% match. The following aspects were analyzed: (a) Examining coding of
types of questions asked by pre-service teachers at two points in time; (b)
examining coding of learners comprehension function at two point in time; (c)
discussion of link between type of question pre-service teachers asked, learners
reactions, and their comprehension performance; (d) pre-service teachers’
explanations and interpretations of the change occurring, if at all, and (e) pre-
service teachers’ ability to develop hypothetical scenarios at times when they
were not satisfied with discourse progress.

RESULTS

An analysis of finding and comprehensive reflections pointed to a proactive
process-taking place that led to a change in views of teaching/learning processes
over and above the fundamental hypotheses of the model that sought to improve
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the quality of discourse. In fact, two “ripples of influence” were created: The
one at the level of awareness of classroom discourse, the role of a teacher as a
mediator in structuring mathematics knowledge in class, designing and
openness to hypothetical scenarios in situations where discourse did not
promote learning. This type of effect will be called “local ripple”. The other
ripple in a broader and more generic circle, is the influence on pre-service
teachers' perceptions of the effect of discourse on classroom management norms
(developing socio-mathematical norms, employing a range of interactions for
learning). This type of effect will be called “expanded ripple”. Pre-service
teachers who showed development of an expanded ripple also demonstrated a
change in local ripple, as can be seen in Figure 1, and therefore, expanded ripple
Is also contained within local ripple.

Finally, the works of about 13% of the remaining pre-service teachers (3 works)
did not testify to a meaningful process and analysis were paltry. Their group
was defined as “no change” (Figure 1).

g N
/ hY

change in local ripple
only
15

) no change
change in 3

expanded ripple
and local ripple
5

L\\\ ] N=23 ) ///‘l

Figure 1. Types of effects on pre-service teachers

Figure 1 shows that the most frequent change was in the local ripple as
researchers expected. However, among five of the 23 pre-service teachers, in
addition to a change in the local ripple effects of an expanded ripple were
found, a result that researchers did not expect would emerge. The following
section will demonstrate episodes taken from the research works and reflections
for each of the ripples and will discuss the challenges and difficulties described
by pre-service teachers throughout the process.

In the next section, three presentative examples demonstrate the two ripples.
Further examples will be presented at the conference.

“Local ripple” Effect: Awareness of Importance of Using Open Questions

The following episodes demonstrate how analytical analysis helped pre-service
teacher N acquire insights regarding the questions she asks in her transcript
analysis:
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Later,

“I don’t ask enough open questions. However, the open questions I do
ask are mainly two types. The one is questions asking for an explanation,
mainly the question “how”? — “How did you solve it?” (Line 5). “How
did you get to 9 % ?” (Line 8), “How did you get to the whole?” (Line
85). “The second type is questions asking for other ways of solving, “Is
there another way” (Line 87) “Did everyone solve it the same way?”
(Line 10).

N (referred as a "teacher") explained the implications of asking closed

guestions on the discourse with her learners.

80
83
84
85

86

87
88

91

92

93
94
95
96

97

A: 10 whole and a half less 9 and five tenths or 9 and a half.

Teacher: How many does that equal?

A: A whole

Teacher: How did you get to a whole? “I don’t understand” Explain it to

me.

A: Half less a half is zero, so it is nothing and 10 minus 9 equal 1 so
it iswhole.

Teacher: Is there another way?

B: I did 9 and a half and then a tried to add some wholes so it would
reach 10 and a half and it comes out 1.

L: | did it another way. | did a half plus another half and it came out
whole.

A: How did you get to a half plus another half? But what do you do
with the 9?

D: How do you do it? But why exactly did you choose the half.

L: Because | know that there is 9 and a half so | added the half.

D: Ah! | understand.

L: And then another half and then it comes out a whole. Do you
understand?

A: Yes.

N analyzed the above episode as the following:

2- 132

“One can see that in Line 83 | asked a closed question: "How many?”
And in Line 84, A gave me a fitting succinct answer. In contrast in Line
85 and Line 87 | asked open questions. Line 85 is a question requesting
an explanation and the question in Line 87 encourages learners to offer
further ways of solving the question. Accordingly, in Line 86, Line 88,
and Line 91 there is comprehension of the explanation by the learners. In
addition, one can see in Line 92- Line 93 that when learners did not
understand how L solved it, they also asked “how?” and requested an
explanation, like I ask for in lessons. In Line 94 and Line 96, L responded
appropriately in giving an explanation.”
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This episodes above shows the connection made by the pre-service teacher
(teacher) between types of question and learners’ comprehension performance,
in other words, a closed question leads to a short and concise answer that
actually testifies more to the existence of knowledge and less to comprehension.
In the transition to a discussion of open questions, the pre-service teacher
identifies the importance of using open questions to creating discussion norms
among pupils who use the word “how” among themselves (Line 92, Line 93).
Moreover, the pre-service teacher mainly supports a discourse being conducted
among learners without her intervention but does not develop the topic around
the various ways’ learners raised but suffices purely with their presence in the
discourse. She does not employ the practices of repeating and/or reasoning to
leverage this opportunity to a discussion about the similarities and differences
between the ways presented and verifying that discourse participants
comprehend how the others solved the problem.

“Local ripple” Effect: Frequent Use of the Question "Why" as Feedback
Promoting Learning

One of the criteria for feedback promoting learning is extending dialogue with
learners and asking clarification questions requiring an explanation. Pre-service
teacher K illustrated the importance of using the question “why” to encourage
causality in learners’ arguments and urging explanations from them.

K: “In that lesson I gave the learners a card containing a comparison
between two different lengths of chains. In addition, the learners were
asked to answer who had a longer chain. For this purpose, the learners
had to convert the unit of measurement from centimeters to millimeters
and then compare between two chain lengths.”

Below is the evidence from the “centimeter” lesson held on 16 March 2016,
Lines 39-40 and 46-49.

39 Teacher: Why is a centimeter longer than a millimeter?

40 HV: Because every 10 millimeters is one centimeter.
46 Teacher: Girls, why in your opinion is Yossi’s chain longer than Daniel’s?
47 A Because a centimeter is longer than a millimeter and Yossi has

one centimeter.

Pre-service teacher K (Teacher) summarized the importance of asking the
“why” question:

“When I ask the group questions that demands reasons, I am in fact
forcing them to use their existing knowledge so that they can base and
explain their answers why a centimeter is longer than a millimeter and
the like.”
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“Expanded ripple”: Changing the Discourse about Norms and Classroom
Management

The following excerpts illustrate the effect of analysis on the interactions and
norms by which pre-service teachers choose to manage learning.

T. “In lesson number 1, which took place in February, although most of
the questions | asked were closed questions, | also posed a lot of open,
reflective and meta-cognitive questions, and questions based on a high
order of thinking. However, because of the nature of the lesson tasks,
given to learners as personal tasks, there was almost no discourse
between learners and their colleagues, but mostly reactions to questions |
asked ... In the second half of the year, I used more group and pair tasks,
so as to encourage mathematical discourse between learners, and indeed,
it was possible to see in lesson no. 2 many more conversations between
learners working in pairs, more reactions to what the other said, reasons
and explanations they gave to each other, mediated by questions that |
asked and also without mediation.”

T moved to group tasks instead of personal tasks to allow learners to talk among
themselves. A change testifying to a different view of the teacher as a facilitator
striving to structure knowledge by creating interactions between learners and
not seeing herself as the source of knowledge. A perception promoting
interpersonal discourse instead of IRF discourse with the teacher attests to a
change in the teacher’s professional identity.

T added the effect of her learning process on organizing interactions and times
within a lesson.

“...I shortened the opening part of the lesson with frontal acquisition for
all, I prolonged the part of independent work experience and discussion
following it and | planned a range of activities for the whole lesson that
constituted demonstrating different levels of comprehension.”

DISCUSSION AND CONCLUSIONS

As mentioned, the aim of the research was to examine how employing an
analytical model to analyze discourse promoting meaningful learning among
pre-service teachers. The results of this research are compatible with the need
for teacher education to turn work experience not just to a place to experience
these skills but also to a field of theoretical research (Korthagen, 2010). In fact,
what occurred here was an active process of changing views of
teaching/learning processes expressed by awareness of the quality of discourse
and their role as teachers in mediating teaching.

The results testify to a development in pre-service teachers’ reflective ability as
expressed by critical observations of the discourse they conducted in lessons
they taught and its influence on them as teachers. The model developed here led
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to a significant step in pre-service teachers’ ability to connect between theory
and their personal teaching practices and to move to and from practice to theory
and vice versa in their ambition to advance their teaching. However, from the
testimonies about the first wave of influence it emerged that in most cases
partially considering discourse exists characterized by practices to encourage
discourse such as: Do you agree? Who wants to add? Whilst adhering to
preplanning and without authentically relating to learners' answers and without
deepening the discourse and promoting commitment to all participants. The
change, therefore, is firstly on the level of questions alone.

The case of the expanded ripple teaches us that a pre-service teacher can
metaphorically distance herself from the conversation and observe the group
discourse from the side and plan steps that perhaps were not considered in
lesson planning. Distancing allows them to develop the ability to listen to the
developing authentic “here and now” discourse between learners, detachment
from original planning that is likely to fixate and re-enter the conversation when
they feel more confident.

The key conclusion emerging from this research is that using an analytical
model to analyze discourse among pre-service teachers has great multi-
directional potential, which is simple and clear and demonstrates how it can be
integrated into the curriculum in an empowering and structured manner, and as
an integral part of the work experience. As such it meets the need for a link
between theory and practice in teacher education.
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The present research report takes one of the key notions of statistics and
probability as an object of study: the random variable, studied from its discrete
character. Supported by the theorical-methodological tools from the Onto-
Semiotic Approach (OSA) of mathematical cognition and instruction, it was
possible to define the reference meaning that diverse authors have built upon
this mathematical object, in order to study the representativeness of the
institutional meaning and the types of mathematical practices expected and
fostered by the Chilean mathematics curriculum for secondary education, to
learn the discrete random variable. The context of the proposed tasks plays a
key role, and in our work the possible relations between these and the meanings
of the discrete random variable promoted in textbooks, are also analyzed.

RANDOM VARIABLE AS A FUNDAMENTAL IDEA

The advances in science and technology, the exponential growth in data
collection systems, a globalized world that bombards day by day its citizens
with information through figures and graphs, have generated the need for new
analytic tools for the people, that could help them in the correct interpretation of
the information surrounding them. A key tool in this process is the so-called
statistical culture. Batanero (2002) explains that statistics have had a
fundamental role in the development of modern society, as it has provided a
battery of methodological tools to analyze variability, relations among
variables, design of studies and experiments, and improve the predictions to
make decisions in situations of uncertainty.

Because of the foregoing, the need to count with citizens culturized on statistics
have become an objective for leaders of diverse nations, who have promoted the
incorporation of statistics and probability in formal education. In this sense,
researchers and teachers have contributed to define curricular lines that allow
addressing these topics. The teaching of stochastic ideas throughout the
education process, began to be conceived by Bruner (1959; cited in Ruiz, 2013),
who in September of 1959 in the Woods Hole Conference, proposed the idea of
a spiral curriculum consisting of a series of possible fundamental ideas to teach
in different levels of complexity from preschool to university. Years later,
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Heitele (1975) boldly proposed ten fundamental ideas in stochastic, based on
psychological and epistemological reflections, that is to say: Expressions of
belief, the probability field, independence, the addition rule, equidistribution
and symmetry, combinatorics, urn model and simulation, stochastic variable,
the law of large numbers, and sample.

Heitele established the random variable as a fundamental idea from three
perspectives: the epistemological in which plays a basic role in the
mathematization of probability through history; the psychological in which the
intuition of magnitudes where chance participates, arises earlier than that of
random experiment; and as an explanatory model in which plays a key role in
three aspects, its distribution, its expectancy and operations between random
variables. Nevertheless, even when the importance of the random variable is
well-known, how does the mathematics curriculum and textbooks in the Chilean
context address the study of this notion? The present research report presents
the advances of a developing study about the meanings of the (discrete) random
variable, expected and promoted by the mathematics Chilean curriculum
(understood as the duo <Plans of study and textbooks>) and the
representativeness of those meanings regarding the reference meaning of the
random variable.

THEORETICAL FRAMEWORK

The present work uses some theoretical-methodological notions of the Onto-
Semiotic Approach (OSA) of mathematical cognition and instruction. To study
a mathematical concept, it is necessary to comprehend its characteristics,
scopes, fields of action, among other elements that might compose it, and thus
having a deeper understanding of that intended to be observed; it is necessary to
know the meaning of such mathematical object. It is possible to determine the
meaning or meanings of a given mathematical object from the historical
development of it through time. In this sense, Pino-Fan, Godino and Font
(2011), propose that the reference meaning is understood as the systems of
practices that are used as reference to elaborate the meanings that are intended
to be included in a study process. For a concrete educational institution, the
reference meaning will be a part of the holistic meaning of the mathematical
object.

In the OSA, the notion of mathematical practice is of great relevance, which
refers to any performance or manifestation (verbal, graphic, etc.) carried out by
someone in order to solve mathematical problems, to communicate the solution
to others, to validate the solution and generalize it to other contexts and
problems (Godino and Batanero,1994, p. 334). The practices can be
idiosyncratic of a person (personal practices) or shared within an institution
(institutional practices). Furthermore, in the OSA the anthropological premise
of socio-epistemic relativity of the system of practices, of the emergent objects

2- 138 PME 44 -2021



Carrera, Pino-Fan, Alvarado & Lugo-Armenta

and the meaning, is assumed. Thus, the meaning of a mathematical object is
understood as the system of practices that a person makes (personal meaning) or
shared in the heart of an institution (institutional meaning) to solve a type of
situations-problems.

Pino-Fan, Godino and Font (2011) indicate that the partial meaning of the
mathematical objects (that constitute the global reference meaning) have
associated epistemic configurations (situations/problems, linguistic elements,
concepts/definitions, properties/propositions, procedures and arguments) that
are mobilized when solving certain problems situations, in given historical
problems, and that gave rise to the emergence, evolution, formalization and
generalization of a given mathematical object, in this case, the random variable.

REFERENCE MEANING OF THE RANDOM VARIABLE

Based on the study of diverse historical stages of the random variable evolution,
according to different authors (e.g., Ruiz, 2013; Alvarado, 2007; Ortiz, 2002;
Heitele, 1975), it is shown that the mathematical object variable is the result of
numerous generalizations made through an evolution of more than 800 years.
Thus, it was possible to identify four meanings of the random variable, which
are described below.

Meaning 1: The Random Variable as a Variable of Interest

One of the first problem areas in which the idea of random variable is observed,
is the one linked with games of chance. However, the more formal
mathematical analysis of them, appeared in relatively recent times (Garcia,
1971). The ideas depicted in these works are not very formal, as the existence of
variables or distributions in a general form, is not mentioned. Nevertheless,
variables are defined for particular cases and in certain cases their distributions
are considered. Different mathematicians were attracted by the problem of
estimating the equitable wager in the game of chance, which led them to
implicitly consider random variables and distribution. In modern terms, their
main interest was the mathematical expectation of the variable. Such was the
case of Fournival, Cardano or Galileo, who motivated by their interest to find
the best wager in games of chance, were devoted to study the possible outcomes
for rolling three dice. At a later stage, Pascal and Fermat, based on the ideas of
Fournival, Cardano and Galileo, started with the probability theory in search of
the solution for the equitable wager, further on, is Huygnes who manifests the
need to think about a variable of study, that is to say a variable of interest in
consideration of the context. In the analysis of his solution, Huygens makes
explicit the needed variable to analyze: “IN the first place we must consider the
number of Games still wanting to (win) either Party” (Huygens, 1714/1657,
p.4), for that, he situates in the context of the problem.

Meaning 2: Random Variable as Magnitude
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De Moivre (1756), established a change regarding previous books of
probability. Latin began to be replaced by writing in or simultaneously
translating into English or the native language of the author, which made that a
specialized vocabulary would develop faster by working with a living language.
Furthermore, it showed a different conceptual approach, in which he clearly
separated the probability of an outcome from its value or the expectation. In its
third edition (De Moivre, 1756) established the paradigm of mathematical
probability, leaving behind the philosophical problems and forming the
theoretical basis to all his propositions (Sylla, 2006).

According to Pearson (1924), De Moivre wrote the first treatment of the
probability integral and the essence of the Normal Curve, contributing with
diverse tools for the field of probability. In that age, scientists used the idea of
variable connected with the study of mathematical analysis. It was commonly
called quantity or variable magnitude, which evidenced its character linked with
measurement, process in which, the quality could take different values.

Meaning 3: The Random Variable as Statistical VVariable

In parallel to the development of the probability theory, through the resolution
of game problems, emerged the birth of statistics through the gathering and
description of social or economic data. The human has had the need to do
counts and representations that could be considered simple statistical recounts
from time immemorial. The need to know and plan, in the sense of knowing
what is at hand and make accessible and manageable that information to take
decisions, caused that little by little politicians, traders and militaries would
carry out increasingly sophisticated census and counting.

Thus, the statistical variable is associated with the observation and description
of a sample from a dataset. Following this idea, Rios (1967) proposed that the
statistical variable describes the set of values obtained in the data by making the
experiment a concrete n number of times, then, if we consider a random
experiment S and make a certain n number of tests relative to the same, we
obtain a set of observations called random sample of extension n. This set of
results will provide a statistical table in which certain values of the variable
correspond certain frequencies. To such “variable, that only represents the n
results of n executions of the S random experiment will be referred as statistical
variable” (Rios, 1967, p.70).

Meaning 4: The Random Variable as a Function

Hawkins and cols. (1992), consider the concept of random variable as a function
with numerical values which domain is a sample space. Borovcnik and cols.
(1991) indicate that a variable is random when its value is determined as a result
of a random experiment; it also establishes that to characterize a random
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variable we need to know the set of all its possible results and the probabilities
associated to each of them.

Then, a random variable is defined as a function of the sample space E in the set
of real numbers R. Not any function can be a random variable. It is necessary
that, for each interval I, the set should be an event of the sample space and, thus,
should have a well-defined probability. This guarantees that the random
variable would carry the P probability that is defined over the E sample space to
the real line.

On the basis of that, Ortiz (2002) identifies the following elements of the
meaning of the random variable as a function:

RV 1: The random variable takes its values depending on the results of
a random experiment.

RV 2: It is a function of the sample space in R.

RV 3: Is characterized through the distribution of probability, along
with the values that takes with its probability.

RV 4: It is required that, for each | interval of R, the original set would
be the event of the sample space.

RV 5: A random variable defines a measurement of probability over
the set of real numbers.

RV 6: For each random variable we can define a function of
distribution in the following way:
1) R: e—— [0,1]

RV 7: The function of distribution of a random variable is a real
function of real variable, monotonous non decrescent.

RV 8: The function of distribution of a random variable determines on
a biunivocal form the distribution of probability.

RV 9: Be (x4,p;)i €1 the distribution of probability of a discrete

random variable. The media or mathematical expectation is
defined as E[§] = );erx;p; - This concept expands the idea of
media in a random variable.

RV 10: The mode is the most likely value of the variable.

RV 11: The median is the value of the variable by which the function of
distribution takes the 1/2 value. Then, the probability that one
random variable would take a lower or equal value to the
median es exactly 1/2.

METHODOLOGICAL ASPECTS OF THE STUDY
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The sample selected corresponds to the mathematics textbook of Chilean
secondary education. Secondary education in Chile considers 6 levels, from 7
grade (12 years old) to 12" grade (15 years old). Each year the Chilean Ministry
of Education (MINEDUC), provides textbook for free to all the students from
public institutions. The elaboration of such textbooks is awarded on a tender
basis, thus throughout secondary education it is observed that different
editorials oversee the elaboration of them, as we can see in Figure 1.

Editorial

- 20 ‘ 3° ‘ 4° ‘ 50 ‘ 6 ‘ 7° ‘ 8° ‘ 1° EM ‘ 2°EM - 4°EM‘ Ediciones Cal= [
\. AN ] SM=
Y Y— Santillana =

Basic education Middle education

Figure 1: Representation of the editorials in charge of the edition of textbooks in
Chile for each educational level

For the purposes of the present work textbooks from secondary education were
selected, excepting those of 11" and 12" grade, as they are outdated in relation
to the national curriculum published by the end of 2019. Along with the
mathematics textbooks of 7%, 8t 9™ 10" grade, the 8" and 11" grade history
textbooks were analyzed, because of the relationship between the axis of
statistics and probability with the objectives set by the history subject around
the development of skills such as critical thinking.

EXAMPLES OF DEVELOPMENT OF THE ANALYSIS

To facilitate the analysis, a database which user screen we can see on Figure 2,
was created. In such database the pictures of the proposed tasks in textbooks are
uploaded and further analyzed. First, the general information of the task, the
level, the subject, the code of the task, the section analyzed and the page of the
original document from which it was extracted, are entered.

POSTGRADOS N et Tipologias de problemas - -
2 =ULAGOS "Variable aleatoria” npA

240

Inciso [1 Pégina de documento| 285

~|  Significado $3: Como Variable estadistical |~

REPRESENTACIONES UTILIZADAS

Figure 2: Database for analysis of typologies of tasks and meanings of the R. V
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After that, the context present on the task is categorized. Based on a historical
study 7 possible contexts were determined: (a) games of chance, considering
every task involving dices, cards, coins, picking from a bag and others; (b)
census and records, considering every task related with the counting of a
population and its characteristics; (c) natural and biological sciences,
considering any task related with natural environment, health, flora and fauna;
(d) physics and astronomy, taking into account every task concerning stars and
physical processes such as sound, speed, among others; (e) observation and
interpretation of data from polls, entails every task in which interpretation of
poll data is not determined by a particular population and which size is lower
than that of a census, as well as, the data recording in matches of different types
of sports, is involved; (f) formal, considering tasks which context is the use of
axioms and formal definitions of the variable; and (g) without context.

Once the context is defined, the meaning which the task is trying to address is
identified, this is done through the statement itself of the task and of the
elements of the epistemic configuration intended to be used in the practices that
solve the task. These meanings are: (S1) as variable of interest: (S2) as
magnitude: (S3) as statistical variable; (S4) as function. Additionally, problems
without classification were contemplated for such cases in which the task
mobilizes more than one or any meaning, with or without context.

Once the context and meaning are identified, the types of activated
representations or the ones expected to be activated by the task are analyzed,
say: verbal, graphic, symbolic, tabular or iconic. Moreover, a differentiation
between the previous representation, which we understand as the ones that
should, originally, interpret and decode the student (or subject) with the aim of
comprehending and facing the task; and emergent, seen as those that emerge as
part of the subjects answers (or expected answers, if seen from an institutional
point of view), is made . Depending on the type of task, it is possible that apart
from a previous representation and an emergent one, may arise a transitory,
necessary to address before the emergent representation.

Finally, and particularly for meaning four (S4), random variable as function, the
intentional elements present in the task are identified, as well as, the typology of
problems, based on the previously mentioned proposal of Ortiz (2002).

FINAL REFLECTIONS

From the analysis performed so far, we have determined that the intended
meanings of the mathematics Chilean curriculum about the notion of random
variable seem not to be representative of the holistic meaning of reference.
While it possible to distinguish tasks that promote the S1 and S3 meanings, in
the earlier stages of secondary education (7" and 8™ grade) S2 meaning cannot
be observed. On the other hand, despite 10" grade provides a complete section
entitled random variable, in which this function is defined as that which takes
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values according to the results of an random experiment, promoting S4, in 9"
grade there is no visible definition of the variable provided, in detriment of an
adequate transition between meanings. It appears that the existent relation
between the statistical variable and the random variable is not promoted,
restricting the first to a mere characteristic of a population, omitting the
conception of this as the description of an n number of experiments, which
would allow favoring a better transition of the students from meaning 3 to
meaning 4. Finally, regarding the contexts of work, games of chance continue to
be present in greater extent, followed by the observation of polls and census and
records. Concerning the variables in study there is a tendency towards discrete
variables in lower levels, it is worth noticing that, although there are tasks that
promote the distinction between variables of discrete and continuous kinds in
the first levels, this distinction seems to be lost as the higher levels are reached.
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This study focuses on examining secondary school students’ approaches in ratio
comparison problems. Two hundred forty-eight secondary school students (12-
16 years old) solved two ratio comparison problems that can be interpreted as a
couple of expositions or compositions. Three main students’ approaches were
identified according to whether they identified the relative quantities: relative
comparison, relative trend, and non-relative comparison. Furthermore, the
subcategories identified in the relative trend and non-relative comparison
approaches showed students’ difficulties with critical components of the
problems: difficulties in interpreting the referent in the comparison, in
identifying the multiplicative relationship, and with the norming techniques.

THEORETICAL AND EMPIRICAL BACKGROUND

The understanding of the concepts of ratio and proportion and the development
of proportional reasoning have been broadly studied since the 80s (Cramer &
Post, 1993; Lobato & Ellis, 2010; Tourniaire & Pulos, 1985). Many studies
have reported students’ difficulties in distinguishing proportional from non-
proportional situations and the effect of some variables of the problem (such as
the context, and the nature of ratios) on the students’ success levels and
strategies (Alatorre & Figueras, 2005; Van Dooren, De Bock, & Verschaffel,
2010). Most of them has used missing-value problems (Fernandez, Llinares,
Van Dooren, De Bock, & Verschaffel, 2012; VVan Dooren, De Bock, Hessels,
Janssens, & Verschaffel, 2005) where three quantities of a proportion are
known and the fourth must be found. However, little is known about how
primary and secondary school students understand and use the ratio concept
when solving ratio comparison problems (Alatorre & Figueras, 2005; Nunes,
Desli, & Bell, 2003) where two ratios are given and have to be compared.

One of the challenges in these problems is that they involve the understanding
of intensive quantities. Nunes et al. (2003) showed that when primary school
students construct an understanding of intensive quantities, they have to face
two challenges: thinking in terms of proportional relations and understanding
the connection between the intensive quantity and the two extensive quantities
which are related to it. These authors also show that primary school students
have difficulties solving ratio comparison problems that involve intensive
guantities.
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In the understanding of the ratio concept, Freudenthal (1983) highlights the
Importance of considering situations in which the ideas of “relatively” and
“norming” are required. The idea of “relatively” in the sense of “put something
in relation to” involves the use of the term ratio as a relational number that
relates two quantities in one situation and projects this relationship onto a
second situation in which the relationship between the two quantities remains
the same (Smith, 2002). Norming describes the process of reconceptualising a
system in relation to some fixed unit or standard (Lamon, 1994).

Ratio comparison problems involve both ideas, relatively and norming. In these
problems, the multiplicative relationship that exists between the quantities can
be equal or unequal, and represents “relative quantities”, that is, “quantities put
in multiplicative relationship with other quantity of reference” (called “the
referent”) (Gomez & Garcia, 2015, p.267). These problems can be interpreted
as couples of expositions or compositions (Freudenthal, 1983). For instance,
given the following ratio comparison problem: In the greengrocer A, for each 2
kg of apples paid you get 3 kg. In the greengrocer B, for each 3 kg of apples
paid you get 4 kg. If the price of a kilogram is the same in the two greengrocers,
which offer is more advantageous?

If it is interpreted as a couple of expositions, there is a set of greengrocers Q =
{greengrocer A, greengrocer B}and two functions ®; and ®, which assign a
magnitude to each element of the set. The function ®; can assign the amount
paid to each greengrocer (2kg in greengrocer A and 3kg in greengrocer B) or
the amount free (1kg in greengrocers A and B). The function w, assigns the
amount purchased to each greengrocer (3kg in greengrocer A and 4kg in
greengrocer B). The ratios that can be compared are: amount paid (P) / amount
purchased (PU) (Table 1) and amount free (F) / amount purchased (PU) (Table
2).

Greengrocer A Greengrocer B
1. Q = Amount paid Pa=2 Pg=3
2: Q = Amount purchased PUa=3 PUg =4
c d Rati Py 2 Pg 3
ompared Ratio PU. 3 PU. 3
Table 1: Couple of expositions: amount paid (P) / amount purchased (PU).
Greengrocer A Greengrocer B
1. Q =2 Amount free Fa=1 Fe=1
2: Q =2 Amount purchased PUa=3 PUg =4
C d Rati B _ ] o 1
ompared Ratio PU. 3 PU. 3

Table 2: Couple of expositions: amount free (F) / amount purchased (PU).
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As a couple of compositions, it is interpreted as a class partitioning Qa =
{amount free, amount paid} and Qg = {amount free, amount paid} of two
universes (greengrocer A and greengrocer B) attained according to the same
principle, and two functions ®; and m,, each function representing a magnitude.
The function ®; assigns their respective kg to the amount free and the amount
paid of greengrocer A; while w; assigns their respective kg to the amount free
and the amount paid of greengrocer B. The ratio that can be compared is
amount free (F) / amount paid (P) (Table 3).

Amount free  Amount paid Compared Ratio
o1. Qa > PUa FA 1
(Greengrocer Fa=1 Pa=2 —= =
2. Op -> PUg FB 1
(Greengrocer Fe=1 Pg=3 —= =

Table 3: Couple of compositions: amount free (F) / amount paid (P).

In the ratio comparison problems, the norming techniques allow “the unification
of the antecedents (numerator) or consequents (denominator) of ratios in order
to favor the comparisons” (Gomez & Garcia, 2015, p.267), what can be done by
procedures such as unit rate (obtained by quotient), fraction strategy
(equivalence of fractions), cross product, or building-up (Cramer & Post, 1993).

In this study, we consider as critical components of ratio comparison problems:
the multiplicative relationships, their equality or inequality, and the quantities
used as referents (Gomez & Garcia, 2015). We are interested in situations that
can be interpreted both as a couple of expositions or compositions and that
involve the necessity to apply norming techniques. Previous studies have
focused on ratio comparison problems showing students’ success levels,
strategies and the effect of some variables, such as the context or the numerical
structure on students’ strategies (Alatorre & Figueras, 2005; Nunes et al., 2003).
However, studies focused on how secondary school students solve ratio
comparison problems examining the relationship between the critical
components of the problems and students’ performance are scarce (Gomez &
Garcia, 2015; Monje & Gomez, 2019, both studies with pre-service teachers).
The research question is: which are the secondary school students’ approaches
when solving ratio comparison problems?

METHOD

Participants were 248 secondary school students from 7" grade (n=68), 8" grade
(n=52), 9" grade (n=64) and 10" grade (n=64). There was approximately the
same number of boys and girls in each age group, and students were from
mixed socio-economic backgrounds. Participants solved the following two ratio
comparison problems (problem 1 has been described above) that involve
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Intensive quantities and can be interpreted as a couple of expositions or a couple
of compositions:

Problem 1 (Sale). In the greengrocer A, for each 2 kg of apples paid you get 3
kg. In the greengrocer B, for each 3 kg of apples paid you get 4 kg. If the price
of a kilogram is the same in the two greengrocers, which offer is more
advantageous?

Problem 2 (Mixture). To obtain chocolate shake, you need milk and chocolate.
John used 450 ml of milk and got 600 ml of shake while Mary used 750 ml of
milk and got 900 ml of shake. If both used the same grams of chocolate, which
shake would have a stronger chocolate taste?

Three researchers, independently, analysed the students’ answers to identify
categories of students’ approaches, considering:

e The idea of relatively. If students identify the relative quantities, i.e.,
quantities on a multiplicative relationship with another quantity of
reference:

o ldentification of the multiplicative relationship.
o ldentification of the referent in the comparison.

e The idea of norming. If students use the norming techniques properly
to compare ratios.

Then, agreements and disagreements were discussed until we reached an
agreement with regard to the final categories of students’ approaches. Final
categories identified are shown and exemplified in the results section.

RESULTS

In this section, students’ approaches are described and exemplified. Then, the
frequencies of these categories in each problem and grade are shown.

Students’ approaches

Three main categories of students’ approaches were identified according to
whether students identified the relative quantities: relative comparison, relative
trend and non-relative comparison.

Relative comparison

In this category, students identified the relative quantities: ‘“‘quantities put in
multiplicative relationship with other quantity of reference”. They were able to
obtain and compare ratios, applying a norming technique correctly. The
subcategories identified differed in the ratio and referent used.

Some students interpreted the problem as a couple of compositions using the
ratio amount free / amount paid in problem 1 and chocolate amount / milk
amount in problem 2. For instance, a 9"-grade student used a building-up
procedure in problem 1 looking for a common multiple: “A is better than B
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because if you pay 6kg in A you get 3kg for free, but if you pay 6kg in B you
only get 2kg”.

Other students interpreted the problem as a couple of expositions using the
ratios amount paid / amount purchased or amount free / amount purchased in
problem 1 and milk amount / shake amount or chocolate amount / shake amount
in problem 2. These ratios differ in the referent used for the comparison. For
instance, a 10"-grade student stablished the price of 1€ per kg paid, and
calculated the price paid for 1 kg (unit rate) in each greengrocer regarding the
kg purchased: “2€/3kg = 0.67€/kg in the greengrocer A and 3€/4kg = 0.75€/kg
In the greengrocer B, so A is the better option since a kg is cheaper”.

Relative trend

This category includes students’ approaches that showed evidence of
identifying the relative quantities, but they had difficulties in some critical
components. Two subcategories were identified: difficulty with the referent and
difficulty with norming techniques. In the first subcategory, students were able
to obtain the ratios applying a norming technique correctly, but the comparison
according to the referent was incorrect. For example, an 8"-grade student
obtained the ratios correctly using fraction equivalences (Figure 1), but had
difficulties in interpreting the antecedents concerning the consequents
(referent), since he said that “B is cheaper”. In this approach, the difficulty was
the loss of meaning of the referent when they applied norming techniques
(Gomez & Garcia, 2015).

g € 'y L -
$.2 . 33,1 3
! a5

L - I|_| -y ] - ‘_||

Figure 1. Example of a student who had difficulties with the referent.

In the second subcategory, difficulties are related to norming techniques. For
example, a 9™"-grade student used a building-up strategy to find a common
multiple for the amounts paid (6 kg), but he did not extend it correctly to the
amounts purchased (Figure 2): “B because in case you want 6 kg, with the same
price, you will get more quantity of apples”.

/! |('“| = l:E L e
A -1 ke L Ky ¢ E-‘.#-;»— rl=t iy
B -3y g 2hauf  ChEINEG
: b Ky (0

Figure 2: Example of a student who had difficulties with a norming technique.
Non-relative comparison

This category includes students’ approaches that did not show evidence of
identifying the relative quantities (they did not identify the multiplicative
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relationship). Five subcategories were identified: ignoring data, additive
answers, affective answers, incomprehensible answers, and blank answers.

Students who ignored data paid attention only to some data of the problem. For
instance, some students compared only the amounts paid in problem 1, ignoring
the relationship with the amount free or the amount purchased. The following
10"-grade student wrote: “The cheapest offer is the greengrocer A because you
pay only 2 kg of apples while you pay 3 kg in greengrocer B”. In the additive
answers, students related the quantities in absolute terms. For example, an 8-
grade student answered in problem 1: “It is the same because in both
greengrocers you can save 1 kg”. In the affective answers, students based their
answers on personal interpretations. A 7"-grade student said: “the choice
depends on the number of apples that you want to buy”. Incomprehensible
answers are those in which students did operations without sense.

Students’ approaches by problem and grade

Table 4 shows the percentages of each category by problem and grade.
Globally, students were more successful in problem 2 (mixture; 81.1%) than in
problem 1 (sale; 30.1%), due to their difficulties in interpreting the quantities in
relative terms. The average for all the grades considering both problems was
55.6%. Particularly, in problem 1, more than 50% of the students’ approaches
from 7" to 9"-grade were non-relative comparisons. Furthermore, although the
relative comparisons increased from 7" to 10"-grade in both problems, the
average in 10"-grade was 67.2%, so difficulties with ratio comparison problems
persisted at the end of secondary education.

Problem 1 (sale) Problem 2 (mixture)
Relative : Non- oo lative : Non-
Grade .~ Relative relative Relative relative Total
compari- compar-
son trend compar- . trend compar-
ison ison
7t 250% 14.7% 60.3%  70.6% 7.4% 22.0% 47.8%
gt 25.0%  19.2% 55.8%  86.5% 3.8% 9.7%  55.8%
oth 203%  18.8% 60.9%  82.8% 4.7% 125% 51.6%
10" 50.0% 15.6% 34.4%  84.4% 1.6% 14.0% 67.2%
Total 30.1% 17.0% 529% 81.1% 4.4% 145% 55.6%

Table 4: Percentage of each category by problem and grade.

Table 5 shows the percentage of each subcategory in problems 1 and 2. In
problem 1, 30.1% of students’ approaches were relative comparisons.
Particularly, the 23.3% interpreted the problem as a couple of expositions, while
the 6.8% interpreted the problem as a couple of compositions. In problem 2,
81.1% of students’ approaches were relative comparisons. Specifically, 68.2%
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interpreted the problem as a couple of compositions and 12.9% interpreted it as
a couple of expositions.

Subcategories Eroblem;
Relative As a couple of compositions 6.8% 68.2%
comparison As a couple of expositions 23.3% 12.9%
Relative trend Difficulty with the referent 5.6% 2.0%
Difficulty in norming 11.4% 2.4%
Ignore data 19.0% 4.3%
Non-relative Additive answers 8.1% 4.3%
comparison Affective answers 7.3% 1.6%

Incomprehensible or blank answers 18.5% 4.3%

Table 5: Percentage of the subcategories in problems 1 and 2.

In problem 1, students’ difficulties with the relative quantities are explained by
the 17% of students who used a relative trend approach having difficulties with
the referents or the norming techniques, and by the 52.9% of students who did
not identify the relative quantities (providing a non-relative comparison
approach). Of this last group, we can highlight the subcategories: ignored data,
and incomprehensible or blank answers. In problem 2, only 4.4% of the students
had difficulties with the referents or the norming techniques, and 14.5% of
students’ approaches were non-relative comparisons. Of the last group, the most
frequent subcategories were: ignore data, additive answers and
incomprehensible or blank answers.

DISCUSSION AND CONCLUSIONS

Results provide information about secondary school students’ approaches when
they solve ratio comparison problems with intensive quantities considering the
critical components of the problems. Three main students’ approaches were
identified according to whether secondary school students identified the relative
guantities: relative comparison, relative trend, and non-relative comparison.
These approaches coincide with the results obtained by Monje and Gdmez
(2019) with pre-service teachers, extending them to secondary education. In
addition, the subcategories identified in the relative trend and non-relative
comparison approaches showed students difficulties with some critical
components: difficulties with the referent in the comparison, difficulties in
identifying the multiplicative relationship, and difficulties with the norming
techniques.

Results about the percentages of each category along grades have shown that
students’ success levels increased from 7" to 10"-grade in both problems.
However, difficulties with intensive quantities (in ratio comparison problems)
persisted at the end of secondary education. Nunes et al. (2003) showed that
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primary school students have many difficulties in relation to intensive
quantities. Our study has shown that there is a positive evolution throughout
secondary education, but difficulties persist.

Finally, students were more successful in the mixture problem than in the sale
problem. This result contradicts previous research that has stated that mixture
problems are more difficult (Alatorre & Figueras, 2005; Tourniaire & Pulos,
1985) while other research has not found differences in primary school
students’ performance (Nunes et al., 2003). The characteristics of our problems
could explain this result. Both problems have one of the quantities unified. In
problem 1, although this quantity is not given explicitly, the amount free was
the same for both greengrocers (1 kg). In problem 2, this quantity is given
explicitly in the formulation of the problem: the chocolate amount is the same in
both shakes. If students identified this data, they only needed to compare the
other quantities, without performing calculations. This raises a question: would
have the success in the sale problem been greater if students had asked directly
about the amounts free given?

The characterization of the students’ approaches obtained in this study can
provide information for the design of classroom interventions aimed at
overcoming the difficulties encountered in ratio comparison problems.
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This paper reports on a coding framework for categorizing different forms of
mathematics teacher in-class learning. Utilizing a research design that
stimulates teachers’ reflection on their lesson planning and teaching, a coding
framework was developed as part of this international project to categorize
teachers’ interview statements in relation to their learning. This paper explains
the theory of teacher learning which underpins this project and reports on the
development and implementation of the coding framework with illustrative case
study examples from three countries (Australia, China, and Germany).

BACKGROUND

Organized professional development programs or activities are increasingly
relied upon in different education systems to enhance teachers’ professional
knowledge and improve classroom practices, with the ultimate goal of fostering
student learning and achievement gains (Borko, Jacobs, Eiteljorg, & Pittman,
2008). Nonetheless, participation in organized professional development
programs is not the only means for teachers to develop professionally. The
Learning from Lessons project (Chan et al., 2017) was designed to focus on
what we called teacher “in-class learning”: Teacher learning that takes place as
part of teachers’ day-to-day practice, particularly in relation to their lesson
planning and teaching.

Theories of Teacher Learning

Focusing on the mechanism of teacher learning, Boylan, Coldwell, Maxwell,
and Jordan (2018) reviewed five theoretical models of teacher professional
learning (Clarke & Hollingsworth, 2002; Desimone, 2009; Evans, 2014;
Guskey, 2002; Opfer & Pedder, 2011). These models intend to have wide
applicability and have variously been used to inform the design, analysis, and
evaluation of teacher professional development activities. Boylan et al. found
differences and inconsistencies between the models, particularly in terms of the
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components and domains of change included (e.g., teacher practice, student
outcomes, teacher beliefs and attitudes, and school and learning activity
systems), scope (micro, meso, or macro), theory of learning (socially situated
experiential, social constructivist, or cognitive), the location of agency in
directing or facilitating professional learning (mainly within the teacher or
involving broader structures, processes, or systems), and the philosophical
foundation (e.g., sociological positivist, social constructivist, or complexity
theory). Rather than providing a unified “meta” model of teacher professional
learning, Boylan et al. argued for the need to seek multiple answers in
understanding the complexities of teacher professional learning.

The current project draws from the Interconnected Model of Teacher
Professional Growth (Clarke & Hollingsworth, 2002; Clarke & Peter, 1993;
Peter, 1996) which suggests that the process of teacher professional growth is
non-linear and recursive. A unique feature of the model is the emphasis on the
processes of enactment and reflection in connecting and facilitating changes in
teachers’ professional environment, where enactment involves putting into
action a new idea, a new belief, or a newly encountered practice (Clarke &
Hollingsworth, 2002, p.953) and reflection involves “active, persistent and
careful consideration” (p.954).

A pilot study (Clarke, Clarke, Roche, & Chan, 2015) was undertaken in
Australia to identify empirical evidence of teacher learning based on teachers’
reflection of their lesson planning and teaching. Two forms of evidence were
found: Teachers’ declarative “claim to know” (epistemic claim) and an
observable or recounted change in the individual practice (adaptive practice).
Examination of further cases in Australia (Chan, Roche, Clarke, & Clarke,
2019) found different mechanisms of teacher learning evident in teachers’
epistemic claims — consolidation of existing knowledge and beliefs, and
realization of new knowledge and beliefs. It is suggested that these two
mechanisms both contribute to teacher learning, particularly in day-to-day
teaching practice as teachers expand their existing knowledge base
(consolidation) and form new knowledge and beliefs (new realization).

To further refine and validate the learning categories and investigate the nature
of teacher professional learning, this research seeks evidence of these learning
categories in cases beyond Australia. It addresses the research question: To
what extent do the learning categories of consolidation and new realization, and
adaptive practice, apply to teachers in Australia, China, and Germany?
Answering this question provides an important step towards cross-country
comparison of teacher learning in the project.

RESEARCH DESIGN
The case study data reported in this paper came from an international research
project, which aimed to investigate the mathematics teachers’ in-class learning
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in Australia, China, and Germany (Chan et al., 2017). The project combined
focused case studies with an online survey of mathematics teachers’ focus of
attention and consequent learning in the three countries.

Participants

Case studies were undertaken of three teachers, teaching Year 4 in China, and
Year 5 in Australia and in Germany. The reason for the difference in year levels
was to accommodate the difference in lesson topics commonly taught in the
three countries, where some of the Year 5 topics taught in Australia and
Germany are taught in Year 4 in China. The three teachers were male and in
their thirties. The Australian teacher (AU _T5) had 5 years’ teaching experience
and was trained as a generalist primary teacher. The Chinese teacher (CH_T4)
had 18 years’ teaching experience and was trained as a specialist mathematics
teacher. The German teacher (DE_T5) had 6 years teaching experience and was
trained as a secondary (grammar) schoolteacher.

Data Generation

The three teachers were separately given a different set of three researcher-
designed lesson plans in the local language appropriate for their teaching
context. Three lesson topics that were common across Year 5 Australia and
Germany, and Year 4 in China were chosen for the researcher-designed lesson
plans: i) division with two digit divisors; ii) introduction to decimals, and iii)
parallelograms and trapezia.

For example, for the Year 5 lesson plan on division with two-digit divisors
given to the teachers in Australia and Germany, students worked in pairs to
solve division word problems. The word problems all involve the same numbers
(1144 and 32, which do not divide exactly), but each word problem has a
different answer (e.g., “A dairy farm produced 1144 liters of milk, and has 32
containers in which to store the milk. If the containers are filled exactly, how
much milk should go into each container?”’). The purpose of the lesson is to
draw the attention of students to the meaning of the question, and that the
context of the problem determines the way in which the remainder is best used
and expressed (Clarke, Roche, Sullivan, & Cheeseman, 2014). For the Year 4
lesson plan in China on the same topic, students were asked to solve problems
with three-digit dividends and two-digit divisors in various contexts (e.g.,
“There are 178 storybooks to share with different classes. Each class can get 30
books. How many classes will have books?”). An emphasis of the lesson was
for students to correctly write the calculation steps. The content of each
researcher-designed lesson plan was checked for suitability to the local context
by each country team.

Each of the teachers was asked to adapt the researcher-designed lesson plan and
then teach the lesson to their usual class (26 students in a class in Australia; 55
students in China, and 30 students in Germany). After teaching the adapted
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lesson, the teachers were asked to design a follow-up lesson themselves and
deliver this lesson to the same class a few days after the adapted lesson. This
process was repeated for each lesson plan provided, resulting in the delivery of
three adapted lessons and three follow-up lessons per teacher. Pre- and post-
lesson interviews were conducted with each teacher on the same day as the
adapted and follow-up lesson. All the interviews were carried out by the local
team in the local language.

The project was designed to generate data on each teacher’s adaptation of a pre-
designed lesson, the teacher’s actions during the lesson, the teacher’s reflective
thoughts about the lesson and, most importantly, the consequences for the
planning and teaching of a second (follow-up) lesson. All the pre- and post-
lesson interviews and the adapted and follow-up lessons were video recorded,
with the video recording of the lesson just taught used in the post-lesson
interview to stimulate the teachers’ recall and reflection on the lesson. All the
interviews were fully transcribed in the local language.

Data Analysis

The analysis reported in this paper drew on the interview data with the three
case study teachers, and specifically, the teachers’ responses to interview
guestions related to their learning. Seven questions across the four interviews
(two interviews each, pre- and post-lessons, for the adapted and follow-up
lessons) were included in the analysis which explicitly asked what the teachers
thought they learned from the activities carried out as part of the project (lesson
plan adaptation, adapted lesson teaching, creation of follow-up lesson plan, and
follow-up lesson teaching). Example questions included: “Please describe
anything you have learned because of participating in the task activity, and in
reading and planning the lesson. Explain your response” (pre-lesson interview),
“Was there anything that happened during the lesson that was really unexpected
by you?” (post-lesson interview), “Which moments in the lesson do you think
provided learning opportunities for you? What did you learn?” (post-lesson
interview).

After collating the teacher interview responses to the above questions, the
responses were partitioned into idea units, where an idea unit is “a distinct shift
in focus or change in topic” (Jacobs, Yoshida, Stigler, & Fernandez, 1997, p.
13). Each idea unit was then coded for epistemic claim (consolidation or new
realization) and any indication of adaptive practice by at least two researchers in
each country team.

RESULTS

After reviewing the reflective statements of the three teachers, we found that all
the teachers identified things that they thought they had learned in the course of
participating in the project. We could find statements that indicate learning
based on the three coding categories (consolidation, new realization, and

2- 158 PME 44 -2021



Chan, Cao, Barton, Damrau, Wang & Clarke

adaptive practice) for all three teachers. The following provides illustrative
examples for the coding categories which were drawn from interviews where
the teachers have each been given a researcher-designed lesson plan on the topic
“division with two-digit divisors” for adaptation and teaching. The statements
of the Chinese and German teachers are translated into English for reporting in
this paper.

For the Year 5 Australian teacher, he thought the lesson topic on the context of
a mathematical problem “reignited” his emphasis on the topic in his teaching
(consolidation).

“I would’ve liked to have thought that it was a big priority in my teaching, but
reading this, it’s probably reignited that light of realising that, “hey, the
context of the problem is super, super, Super important.” ... I certainly have got
more appreciation of that. So, that would be learning out of it, for sure.”
(AU _T5 preadapted lesson interview)

In the post-lesson interview of the adapted lesson, he learned that not many of
his students applied a problem-solving strategy that was covered in the past
(new realization):

“lI was surprised that looking through the sheets that not many of them like
physically sort of circled or highlighted key information, which felt like a
problem-solving strategy weve done in the past.” (AU_T5 post adapted lesson
interview)

He particularly reflected on task difficulty for his students and thought starting
with smaller numbers for the division problems could have given students more
confidence for the lesson (adaptive practice).

“I guess I'm still sort of learning in terms of differentiating the task. On
reflection, maybe | could have done that better at the start, knowing that the
Grade 5 cohort would have really struggled with the big numbers. Even though
using smaller numbers does not change the thinking of the actual task, at least
it sorts of gives them a bit more of a security blanket.” (AU_T5 post adapted
lesson interview)

Similar to the Australian teacher, the Year 5 German teacher also found his
knowledge consolidated in the teaching process, specifically about the
importance of helping students to understand how to deal with decimal places in
relation to units of measurement (e.g., liters vs milliliters in the problem that
deals with the division of milk into containers described earlier).

“What | found confirmative again was how important the last zero was if it is
75 ml or 750. [...] For them (the students), the problem is about part-whole
relationship. They are not aware that I now have steps of thousandths for the
units.” (DE_T5 post follow-up lesson interview)
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In the pre-lesson interview for the first follow-up lesson, he learned from the
previous lesson to anticipate typical student mistakes, even if he does not think
that his students would make them (new realization).

“When considering typical mistakes beforehand, and then you realize that they
(the students) really do make them, so you can actually even expect them to
happen and plan how to deal with them. That they really occurred and that it
really did fit well, that was funny. That | have learnt.” (DE_T5 pre follow-up
lesson interview)

On reflection, the teacher thought it was important to give students who are still
working on the problem more chance to keep working rather than make visible
other students’ completed work to them pre-maturely, and he suggested an
alternative way to address this in the future (adaptive practice).

“Next time | would definitely turn them [the post-it’s with the student solutions
that had been pinned to the blackboard] around right away [so that the
students who are still working on the tasks cannot see them].” (DE_T5 post
adapted lesson interview)

Unlike the Australian and German teachers who spoke specifically about what
was reconfirmed for them in the teaching process, the Year 4 Chinese teacher
often spoke in general terms about what teachers should learn from their
teaching. The teacher’s comment can be considered as a form of confirmation
as he voiced his belief about the need to keep a positive attitude when teaching.

“For many inexperienced teachers, when the start of the class does not start
smoothly, their emotions get affected and the rest of the lesson doesn’t run
smoothly. So, there is a need to keep a positive attitude when teaching — it is
normal for children to make mistakes. How to adjust their mistakes is what we
(teachers) learn.” (CH_T4 post adapted lesson interview)

Through analyzing the lesson topic, the teacher “discovered” its importance
(new realization).

“I read through the later key points and discovered something. ... For all the
later key points, such as division that is not of numbers that are multiples of 10,
everything needs to be converted to multiples of 10 in order to calculate. When
do we need to convert? For example, the later Example Question 2, to divide ...
21, a student needs to think of 21 as 20 to try to divide. ... Examples I and 2
are basically the foundation of the entire two-digit division method, so this
lesson needs to be treated seriously, as it is basically giving (the students) the
foundation today.” (CH_T4 preadapted lesson interview)

For the teacher, the unexpected responses of the students’ summaries drew his
attention to his questioning, which he thought could be improved (adaptive
practice).

“When summarising the similarities between the two example questions, some
students concluded that they are both divisions, some concluded that they are
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division of multiple digits by multiple digits, which are all very superficial
summaries. These kinds of summaries were unexpected. I mainly wanted them
to summarise the two vertical mathematical expressions, (but) maybe my
questioning was too vague. If |1 had pointed to something clearer, | would let
(the students) directly see the similarities between these two vertical
mathematical expressions, maybe that would be better.” (CH_T4 post adapted
lesson interview)

Accordingly, we found statements given by the case study teachers in the three
countries that appeared to confirm the teachers’ already held beliefs and
expectations, even though they thought that was also part of their learning
(consolidation). Through these statements, the teachers expressed their existing
knowledge or beliefs, and how the new situation, activity, or event had
“reignited” or “confirmed” those knowledge or beliefs. These consolidation
statements contrast other teacher statements that appear to suggest something
that was unexpected, surprising, or new for the teachers, conveying a sense of
novelty in what the teachers observed or realized (new realization). In addition,
we also found statements given by the teachers which showed that they actively
thought of ways to improve their practice by suggesting alternative practice and
things that they may do differently (adaptive practice).

DISCUSSION

One of the aims of the Learning from Lessons project is to provide cross-
cultural insights into teacher in-class learning. Using purposefully designed
experimental mathematics lesson plans, teachers were asked in this project to
adapt a researcher-designed lesson plan, teach the adapted lesson, and create
and teach a follow-up lesson. The pre- and post-lesson interviews conducted in
the research provided opportunities for the teachers to reflect on what changes
in their knowledge and practice were evident, and how those changes occurred.
Care was given to replicate the research design in the three countries (Australia,
China, and Germany), while accommodating differences in local contexts.

While we found evidence of the learning categories developed based on the
Australian case studies (Chan et al., 2019), we were unsure if teachers in other
countries would express their in-class learning in similar ways. From the case
study teachers’ responses to the learning questions in the three countries, we
could distinguish two learning mechanisms in terms of consolidation
(reinforcement of existing knowledge and beliefs) and new realization
(realization of new knowledge and beliefs). We have also found that the case
study teacher in each of the countries actively considered ways to improve their
practice based on their teaching (adaptive practice). The presence of teacher
interview statements that fit with the proposed learning categories suggests the
research design allows similar evidence of teacher learning to be found in the
three different countries. This is a significant result, as this allows the project to
proceed with making comparisons between teachers in the case study and
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survey data in Australia, China, and Germany in terms of their reflection of
teacher in-class learning.

On a theoretical level, conceptualizing teacher learning in terms of
consolidation, new realization, and adaptive practice poses new questions for
further research. We can ask the questions: What characterizes teachers who
have a greater tendency to experience learning as new realization? What
characterizes those who have a greater tendency to experience learning as
consolidation? What types of events or conditions trigger new realization or
adaptive practice? What are such new realizations or adaptive practices about?
These questions will be addressed in future papers, drawing from the survey and
cross-cultural components of the project.
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MALAYSIAN SECONDARY SCHOOL STUDENTS’ VALUES
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This study examined 380 secondary school students’ values in mathematics
learning in Malaysia using the What | Find Important (in mathematics
learning) questionnaires. The preliminary analysis shows that Malaysian
secondary students valued the attributes of “process”, “fun”, “effort”,
“objectism ”, “ideas and practice ”, “exposition”, “recalling”, and “openness”.
Among different ethnics’ groups, Chinese students tended to value “process”
and “application” more than other ethnic groups. Malay students valued “hard
work” and “effort” more than their peers in learning mathematics. In terms of
gender difference, the result shows that Malaysian secondary school boys and
girls valued almost the same value attributes in learning mathematics. The
results provide some insights into understanding mathematics teaching and

learning from the multicultural classroom context.
INTRODUCTION

All the while, improving students’ learning has always been the focus of
(mathematics) education research. Many factors influence students’ learning,
including cognitive factors (such as students’ knowledge, ability and skills) and
affective factors (such as their attitudes and beliefs). As a deep-seated and
personal affective factor, Bishop (2001) proposed that students’ values can also
influence their learning. This idea was further elaborated by Seah (2013),
whereby values regulate how cognitive skills and emotion are used in learning
by a learner. He defined values as the “convictions” that a person perceived as
important or worthy (Seah, 2013, p.193). This implies that values can be
implicit as it is internalised in nature.

Alan Bishop first proposed three pairs of complementary mathematical values
in mathematics education, that is, values regarding the discipline of
mathematics: rationalism and objectism, control and progress, and openness
and mystery (Bishop, 1988). The three pairs of complementary values echoing
the three components of culture proposed by White (1959), namely ideological,
sentimental and sociological. Bishop (1991) explained that rationalism “is
concerned with the logic of the relationship between ideas” and objectism “is
about the genesis and phenomenology of those ideas™ (p. 202) as the ideology
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component. Control and progress as the sentimental component. Control refers
to developing mathematical ideas through specific rules or procedures and
progress refers to developing mathematical ideas through alternative ideas. The
sociological component, openness stresses the demonstration of ideas in public;
however, mystery emphasises the wonder or mystery of ideas. Later in 1996, he
further proposed a framework of three intersecting sets of values: mathematical
values (relating to the discipline), mathematics educational values (relating to
mathematics pedagogy), and general educational values such as honesty and
law-abiding (relating to the ethical and moral principles). At the same time, he
proposed that values are “deep affective qualities” which last longer in people’s
memories than conceptual and procedural knowledge (Bishop, 1996, p. 19).

Recently, Seah and Andersson (2015) suggested that the process of valuing can
be conative in nature, which involves both cognitive and affective aspects.
Specifically, values reflect what an individual perceives as important and
valuable through their actions in learning and teaching mathematics. This
suggests that values, including mathematical values and mathematics
educational values, can influence an individual’s learning process. Thus, to
identify what values related to learning mathematics are embedded in an
individual, within a classroom and even a cultural group to improve
mathematics learning, such study is needed.

This paper reports on the part of a study in The Third Wave Project. The Third
Wave Project is carried out by a consortium of research teams that concern the
influence of values and valuing on mathematics learning. This current study,
named ‘What I Find Important (in my mathematics learning)’ (WIFI), aims to
investigate what primary school and secondary school students value regarding
mathematics learning. The WIFI questionnaire has been translated into different
languages so that the student participants in the 19 economies could respond to
the items within their respective medium of instruction.

In Japan, Shinno, Kinone and Baba (2014) reported that data from 605 primary
school students and 711 junior secondary students had valued different
attributes in learning mathematics. Japanese primary students tended to value
process, effort, exploration, fact, openness and progress more than secondary
school students. Zhang (2019) has found a similar result in the Chinese
Mainland data, whereby different grades had valued different attributes.
Besides, there was a gender difference reported in several value attributes
(Zhang, 2019). Those findings suggest that students’ value might change over
time.

Moreover, boys and girls can value different attributes in mathematics learning
which require different teaching approaches. Furthermore, from the literature
(e.g., Seah, 2018; Shinno et al., 2014; Zhang, 2019; Zhang et al., 2015),
students value different value attributes even within the East Asian culture.
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How will the situation be in the context of a multicultural classroom as value is
culturally dependent?

The current study explored students' value in mathematics learning in three
(Malaysia, Singapore, and Thailand) out of 11 countries in Southeast Asia.
Furthermore, International Mathematical Union (2013) reported many
countries in Southeast Asia (e.g. Cambodia, Indonesia and Laos) face
challenges in improving students’ mathematics learning. Hence, more research
about values in mathematics education is needed in Southeast Asia. Value
researches in Malaysia focused on the primary school level, such as value
espoused and enacted in the primary school mathematics lesson (Lim & Kor,
2012) and Chinese primary school students’ values in mathematics learning
(Kor, Lim & Tan, 2010). Additionally, Ong (2014) analysed WIFI study data of
383 Malaysian Grade 5 students and reported differences in attributes of
learning mathematics valued by different gender and different ethnics groups.
There is a gap in what Malaysian secondary school student might value in
mathematics learning. Therefore, this research explores what Malaysian
secondary school students have valued as important in learning mathematics.
The following research questions guided this paper:

a) What Malaysian secondary students valued in mathematics learning in
general?

b) Do Malaysian secondary students from different ethnicities value
mathematics learning differently?

) Is there any gender difference in Malaysian secondary students’ values in
mathematics learning?

METHODOLOGY
Respondents

In this paper, the result from 380 secondary students (Grade 9 and Grade 10) is
shown in Table 1. The data was collected randomly from public schools in
Northern Peninsular Malaysia through personal contact. The sampling was
convenient sampling without any specific selection of criteria.

Gender Ethnicity N Percentage
Chinese Indian Malay Other (%)
Male 107 26 75 5 216 56.84
Female 73 24 69 1 167 43.16
Total 180 50 144 6 380 100

Table 1: The participants of the study according to gender and ethnicity.
Data Collection
Data were collected using the WIFI questionnaire developed and validated by
the WIFI study team (Seah, 2013). In the Malaysian context, the original
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English items were translated into Chinese and Malay to facilitate the students’
response to the questions. It was a four-section questionnaire, whereby Section
A consisted of 64 items with a rating of 5-point Likert scale, Section B
comprised 10 items of the slider rating scale, Section C contained four items of
open-ended question and Section D was pupils’ personal information items. In
this paper, our analysis focused on Section B, whereby the students were
required to choose by marking "x” at any one of the five positions in between
two values given. For instance, when given the description “How the answer to
a problem is obtained” (on the left) versus the description “What the answer to a
problem is” (on the right) on a horizontal line respectively, the students were
asked to mark their preference accordingly.

Data Analysis

In this paper, data were analysed using One-way ANOVA to analyse the
statistical differences in students’ responses of different ethnicity and the
independent t-test to analyse the statistical differences in students’ responses of
different genders. The scores were assigned from one to five from left to right
according to the five positions on the horizontal line. The lower the mean of the
item, the more tendency towards the description on the left and vice versa.

FINDINGS

Malaysian secondary students’ values in mathematics learning

The findings show that overall Malaysian secondary students tended to value
the process of getting an answer (process) more than the end product for a
problem (product), as shown in Table 2. They emphasised that having fun when
doing and learning mathematics (fun) more than hard work. However, whether
doing mathematics required abilities or effort, students tended to select effort.
Furthermore, students tended to value using a mathematical formula to obtain
the answer (rationalism) rather than applying mathematical concepts in
problem-solving (objectism). They believed mathematical ideas and practice in
daily life (idea & practice) were more important than discovering mathematics
facts and theories (facts & theories).

Moreover, the students preferred to learn mathematics by someone with direct
teaching, explaining or telling them the concept (exposition) rather than
exploring the mathematics by themselves, with their peers/others (exploration).
Yet, they tended to value exploration with a concrete example given more than
someone telling them. Besides, students tended to value remembering
mathematics ideas, concepts, rules or formulae (recalling) than creating. The
students had also chosen to demonstrate or prove the concept to others
(openness) over to keep mathematics mystical (mystery). They believed that
mathematics’ purpose should be more relevant in development or progression
(process) than predicting or explaining certain events (control).
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Malaysian secondary students’ values in mathematics learning according to

ethnicity
Items Total Chinese Indian Malay Other F n2
Mea  SD Mea  SD Mea  SD Mea SD Mea SD
n n n n n
66. 264 1.02 238 114 298 107 281 .808 283 408 9.545"* (.05
Process 4 1 0
Versus
product
67. Fun 2.97 1.24 2.65 1273 294 1345 335 1.08 2.83 408  11.742* Q.07
versus 1 4 *
hard work
68. Ability 3.47 123 324 1264 361 1255 372 115 283 132 4.886™ 0.04
versus 9 1 9
effort
69. 3.03 1.09 287 1142 3.00 1021 321 1.04 3.17 .983 2.691* 0.02
Objectism 4 3
Versus
rationalis
m
70. Facts&  3.08 1.10 3.12 1102 3.33 1.107 2.96 1.08 3.17 1.32 1.492 0.01
theories 1 4 9
Versus
ideas&
practice
71. 2.64 1.15 259 1293 286 1.000 2.65 1.03 2.00 1.09 1.462 0.01
Exposition 8 3 5
Versus
exploratio
n
72. 2.45 1.15 2.45 1196 2.55 1.081 243 1.14 2.50 .837 142 0.00
Recalling 1 1 1
Versus
creating
73. 3.35 1.18 334 1210 3.29 1.155  3.40 1.19 3.17 .983 197 0.00
Exposition 9 1 2
Versus
exploratio
n
74. 2.52 1.13 2.53 1121  2.69 1294 242 1.09 3.00 1.26 1.102 0.01
Openness 8 8 5
Versus
mystery
75. 3.20 1.00 3.11 927 3.37 1.035 3.28 1.05 2.67 1.03 1.697 0.01
Control 0 8 3
Versus
process

Note: p<0.001*** p<0.05**, SD= standard deviation

Table 2: The participants’ responses to section B according to ethnicity

As we take a closer look into different ethnicities, for item 66, the ANOVA
result was significant, F (3, 170.310) = 9.545, p<0.001, 2 = 0.05, suggesting
Chinese students tended to value the process more than their peers. The results
for item 67, F (3, 170.522) = 11.742, p<0.001, 2 = 0.07 and item 68, F (3,
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372) = 4.886, p=0.002, n2 = 0.04 imply that there are significant differences
among the means of the four groups for the two items respectively. The results
suggest that Malay students believed the effort was more important in learning
mathematics than their peers. In item 69, F (3, 372) = 2.691, p=0.046, 2 =
0.02, suggesting Chinese students emphasised application more than other
ethnic groups students.

Malaysian secondary students’ values in mathematics learning according to
gender

Further analysis in the secondary students’ population revealed a significant
difference in the mean score of two value attributes, as shown in Table 3. One
of the attributes was item 69, t (382) = -2.32, p=0.021, 95% CI [-0.48, -0.04].
This implies the girls (M=3.16, SD= 1.048) preferred to use a certain formula to
find the answer more than the boys (M= 2.90. SD= 1.104). While another
attribute is item 74, t (381) = 2.79, p= 0.006, 95% CI [0.10,0.55]. This suggests
that the girls (M=2.33, SD=1.171) tended to value openness in learning
mathematics as compared to the boys (M=2.65, SD=1.091).

Items Male Female t-test
Mean SD Mean SD

66. Process versus product 2.63 .962 2.66 1.107 -.289
67. Fun versus hard work 2.93 1.134 2.91 1.362 139
68. Ability versus effort 3.43 1.204 3.53 1.271 -.788
69. Objectism versus rationalism 2.90 1.104 3.16 1.048 -2.319*
70. Facts& theories versus ideas& 3.04 1.079 3.18 1.134 -1.228
practice
71. Exposition versus exploration 2.66 1.197 2.59 1.088 593
72. Recalling versus creating 2.54 1.176 2.40 1.146 1.109
73. Exposition versus exploration 3.27 1.114 3.45 1.269 -1.425
74. Openness versus mystery 2.65 1.091 2.33 1171 2.788*
75. Control versus process 3.12 1.030 3.32 .928 -1.944

Note: p<0.05*, SD= standard deviation
Table 3: Secondary students’ responses for section B according to gender.
DISCUSSIONS AND CONCLUSION

The results show that overall, Malaysian secondary students tended to value the
attributes of process, fun, effort, rationalism, ideas and practice, exposition,
recalling, openness over the respective opposing dimensions product, hard
work, ability, objectism, facts and theories, exploration, creating and mystery.
In addition, there are several values attributes that students from different ethnic
groups value differently. A similar result is reported by Ong (2014), whereby
Chinese and Malay primary students had valued different values attributes.
According to Lim (2003), this can be related to their previous learning
experience in primary schools whereby different medium schools applied
different cultural practices or parents’ influence from the family.
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In terms of gender difference, the result suggests that Malaysian secondary
school boys and girls valued almost the same value attributes in learning
mathematics except that girls tended to value rationalism and openness more
than boys. The finding is consistent with both studies conducted by Zhang
(2019) and Ong (2014), whereby boys and girls valued certain value attributes
differently.

One of the limitations of this study is the representation of the data. Due to the
randomly convenient sampling, the ethnicity proportion was slightly different
from the actual population in Malaysia. The proportion of Malay students was
38% in the sample, which is less than the actual population cap at 60%.
However, this exploratory study still provides a glimpse of what Malaysian
students valued in mathematics learning. More data will be collected in the
future to better represent the Malaysian secondary students’ population.

In conclusion, the preliminary analysis has provided evidence that different
ethnic groups value different values attributes in mathematics learning.
Furthermore, such a study helps the teacher promote effective mathematics
teaching and learning in a multicultural classroom. Teachers can structure their
teaching to align with students’ value in mathematics learning to facilitate their
learning process. Future study is needed to investigate factors that influence
students’ values in mathematics learning, so that students’ learning can be
understood and facilitated more effective.
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CONCEPTS IN ACTION: MULTIPLICATION AS SPREAD
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In this research report, we work with the novel, multitouch app TouchTimes,
which was designed to develop multiplicative thinking in young learners
through gesture-based interactions. One aspect of multiplication highlighted in
this app is its functional, one-to-many relation, which several researchers have
identified as key to developing multiplicative thinking. In this study, we use
Balacheff’s ¢cK¢ model, which highlights the action/feedback control structure
to describe how this relation is instantiated in children’s use of TouchTimes.
Through an analysis of a pair of 9-year-olds, we show how this relation evolved
into a concept, which we call multiplication-as-spread.

INTRODUCTION

Typically, children’s first encounters with multiplication in North America is in
terms of repeated addition. The use of this model often persists throughout
grades 3 and 4. While it may be an intuitive way of introducing multiplication,
it becomes problematic as it encourages continued use of additive thinking.
There exist several other models which can support a more robust conception of
multiplication. In this study, we focus on the model of the one-to-many relation
articulated by Confrey (1994), which she calls ‘splitting’, and which involves
“... an action of creating simultaneously multiple versions of an original” (p.
292). Splitting can be visualized using a tree diagram, which highlights the one-
to-many relation that simultaneously produces copies of the original. The
centrality of this relation is also highlighted by Askew (2018) and Davydov
(1992).

We will be presenting a touchscreen application TouchTimes (TT; Jackiw &
Sinclair, 2019) that aims to provide students with an experience of
multiplication that uses this one-to-many model. This is done through the
gestural expression of multiplication, which involves a dynamic, visual and
simultaneous production, rather than the sequential one typical of repeated
addition. Using Balacheff’s cK¢ model, which is a re-articulation of VVergnaud’s
(1990) notion of ‘concept in action’, that emphasises the essential feature of
control as an essential aspect of the concept, we study the emergence of the one-
to-many multiplicative relation both in the gestural interaction and then as an
articulated concept.
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BRIEF DESCRIPTION OF TOUCHTIMES

The initial screen of TT has a vertical line down the middle which creates two
sides (Figure 1a). When one side is touched with a finger, or a group of fingers,
discs will appear in a one-to-one correspondence with each finger. These discs
are called pips and represent the multiplicand, or unit, that will be multiplied.
Each pip will be a different colour. When the other side is touched with a single
or group of fingers, each configuration (called a ‘pod’) of the multiplicand side
(the side that was touched first), both in terms of position and colour, will
appear in a one-to-one correspondence with each finger. Each pod will be
identical to the finger configuration on the pip side. If three fingers touch the
left side in a triangle-like pattern, three pips will appear under each finger and
each of the three pips will be a different colour (Figure 1b). When the other side
Is touched, the triangular pattern of the multi-coloured pips will be copied under
each finger in pod-groupings (Figure 2c). If another finger is placed on the pip
side, each pod on the other side will grow, in a simultaneous copy—this
effectively performs the one-to-many relation. When a pip-finger is lifted, the
inverse occurs: each pod decreases in size. Fingers can be added to the pod side
to make new pods. Similarly, a pod can be dragged to the trash. Whenever pips
and pods are created on the screen, a multiplication statement appears on the top
of the screen (Figure 1c).

Figure 1: (a) Initial screen of TT; (b) Creating 3 pips; (c) Creating 4 pods
THEORETICAL FRAMING

Concepts in action as described by Vergnaud (1990) are actions made that are
correct and conceptually coherent, even though students may not be able to
explicitly articulate this. As Vergnaud writes, “We take up information with the
help of invariants (categories, relationships, and higher-level entities), without
expressing or even being able to express these invariants. This is especially
visible in students' mathematical behavior, as they often choose the right thing
to do without being able to mention the reasons for it” (p. 20). Concepts in
action stem from Vergnaud’s theory of conceptual fields in which multi-faceted
concepts (like multiplication) are not unified by one overall mathematical idea
but involve multiple conceptual experiences. In our case, we are interested in
the one-to-many conceptual experience that we hypothesise TT can provide.

Vergnaud’s concepts in action directs the researcher’s attention to the behaviour
of students—to their choices, their actions and their language—which is then
used to make inferences about their concepts in action. In articulating
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Vergnaud’s ideas further, Balacheff’s (2017) cK¢ model of conceptualization
draws attention to the action/feedback loop as an essential component of a
concept in action. Balacheff argues that choices made by a subject based on
feedback represent a necessary “control structure” (p. 9) that is a fundamental
part of the concept. In the case of studying TT, in which gestures are a
significant form of action, and in which the visual presentation of pips and pods
provides important and immediate feedback on these actions, our analysis of
behaviour will involve looking closely at the various hand movements made by
the students on the screen, and taking these particular movements as mattering
to students’ developing conceptualisations, as per the tenets of theories of
embodiment (c.f., Arzarello, Bairral & Dang, 2014; Sinclair & de Freitas, 2014).
The research objective is to document the transformation of the concept in
action developed in TT into an explicitly articulated concept.

METHODS

The study took place in an elementary school in western Canada. We conducted
teaching experiments aimed to gain insight into the multiplicative thinking that
might emerge from interactions with TT. For this paper, we have selected one
episode that involves two grade 3 girls (9 years old), who had begun to study
multiplication (as repeated addition). The girls were working on the following
task in TT: skip-count by 3s in two different ways. One method involves
changing the number of pods; the other involves changing the number of pips.
The students worked in pairs and many of them were video recorded by two
researchers who circulated in the classroom from pair to pair. We have chosen
this particular pair for analysis because the shift from a concept in action to the
concept of the one-to-many multiplicative relation occurred during a single
video clip (for most other pairs, we only captured the concept in action or the
explanation). In our analysis, we draw on Vergnaud’s (1990) method, which is:
to precisely describe the behaviour of the student; to identify the invariant
properties of the situation; and, to trace the development and transformation of
language and symbolic activity to highlight the way in which the student can
explicitly describe the concept.

FINDINGS

The two girls, whom we will refer to as Jen and Jessica, were working together
on the floor with one iPad that rested at an angle on Jen’s lap. Jessica did not
say anything during the entire episode but did touch the screen. In the video
clip, the researcher asked the girls to show her what they had figured out about
skip counting by 3s and Jen proceeded to place three pip-making fingers on the
left side of the screen and then iteratively placed one pod-finger on the right.
The researcher asked, “Did you have another way?”, to which Jen responded
“No, we couldn’t figure out a second way yet” (0.26s). The researcher
suggested they keep trying. Jessica started to touch the screen, she made four
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pips and touched sequentially on the pod side to make 6 pods (effectively skip-
counting by 4s).

Voice Hands

0:56 | Jen. If we do 4, Jessica makes four pips and six pods.
that’s counting up
by 4s.

0:58 Jessica lifts her index, left pip-making

finger. (The expression goes from 4 x 6 to 3
X 6; the pods go from having four to three
pips in them.)

1:00 Jessica lifts her middle finger. (The
expression goes from 3 x 6 to 2 x 6; the pods
go from having three to two pips in them.)

1:01 Jessica lifts her third finger. (The expression
goes from 2 x 6 to 1 x 6; the pods go from
having two pips to one pip in them.)

Jessica lifted all her fingers.

Table 1: A one-to-many concept in action.

When Jessica made 4 pips and 6 pods, she did not seem to know how this would
enable her to skip-count by 3s. She then lifted each individual pip-making
finger to go from 4x6 to 3x6 to 2x6 to 1x6 to 0x6. Each lift of her finger was
almost exactly 2 seconds. She was very intentional in her actions, which may
suggest that she was becoming aware of the effect of this finger lifting on the 6
pods (the product would have decreased by 6 at each lift and each of the 6 pods
would have become smaller and changed configuration at each lifting of a pip).
We thus hypothesise that Jessica was starting to develop a concept in action—
lifting the pip-making finger one by one—that could be used in the skip-
counting task, and that effectively instantiated one-to-many relation. We see this
as an example of action/feedback described by Balacheff, whereby Jessica is
continuing the same action of lifting her finger based on the feedback from TT.
The girls continued to make different combinations of pips and pods, and to
experiment with pip-making and pip-lifting. Then, at 2:45, Jen has four pips and
one pod on the screen.
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up by 2s.

2:45 | Jen. That’s 4 but Jen touches on the pod side to create another
when | add another | pod to make 4x2.
one.

2:49 | Jen. Oh wait. Jen lifts her index pip-making finger on the
left side, thereby getting 3 x 2. (The number
of pips in the pod goes from 4 to 3.)

2:53 | Jen. This. Jen touches her index pip-making finger on
the left side, thereby getting 4 x 2 again. She
points at her pip-making finger with her
right hand.

2:56 | Jen. Then that. Jen places another pip-finger on the left side.

) _ R. How much is it | She continues to point with her right hand at

3.03 going up by now? | her pip making fingers.

Jen. It will... it
went up by 2.
3:07 | Jen. Ya, it’s going | Jen places one more pip-making finger on

the left side after which Jessica adds a pip
making finger on the left side.

At 2:49 when Jen said, “Oh wait” she paused. Then she lifted her index pip-
making finger. Over the course of the next 14 seconds, she made three pips and
Jessica made one pip to produce 7 x 2 = 14. Jen stated at the end that the
product was going up by 2. Although the relationship had not been fully
articulated, the concept in action of spreading was emerging, as the girls became
aware that each touch on the pip side was increasing each of the pods. Jen
seemed to be “picking up” on the co-varying relation of the pips and pods. At
3:24 the girls successfully skip-counted by 3s by making three pods and then
iteratively adding pips up to 5 x 3 = 15. At 4:00, the researcher asked, “So how

Table 2: The spreading effect in TT.

is it doing that? How is it making it go up by three now?”
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Voice Hands

4:00 | Jen. Because Jen gestures to the pods on the screen.
there’s three here.

4:05 | Jen. And then each | Jessica places a pip-making finger on the
time that we add screen. Jen places two more pip-making
one up it goes here. | fingers on the screen.

Jen points to the top pod.

4:11 | R.Soifyouadda | Jessica places another pip-making finger
finger, oh, that’s a | on the screen.
purple one.

4:12 | What happened to | Jessica lifts the pip-making finger.
those purple ones?

4:19 | R. Oh now it’s Jessica places her pip-making finger on the
yellow. screen. Jen places two more pip-making
Jen. Um, a yellow fingers on the screen.
one drops in there.

4:21 | R. Does it just drop | R. points at the top pod.
in there?

4:25 | Jen. Ya. [Pauses] Jen points at all the pods in turn, starting
...In every single with the lower left one, moving to the
one. lower right pod, and then the top pod, as if

spreading her hand to each pod.

4:27 | Jen. And say if we | Without being prompted, Jen points at her
take away this one. | own thumb which holds a yellow pip.

4:28 | Jen. Then that Jen lifts her thumb, points to the top pod
colour would and moves her hand towards the bottom of
disappear. the screen. She then moves her hand in a

circular motion, spreading her fingers to
each pod.
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Table 3: Jen and Jessica skip-counting by changing the number of pips

When Jessica placed her pip-making finger on the screen, the concept in action
of one-to-many was in play, where each pip addition made the product increase
by three [4:05-4:19]. The researcher drew attention to this change when she
said, “That’s a purple one...Oh now it’s yellow”. In response to the researcher’s
question about the yellow pip, Jen explicitly articulated, by saying “every single
one” and the gesture of pointing to the top pod and the spreading gesture, the
relation between the change in pips and the ensuing change in each of the pods,
which is the one-to-many relation (“dropping” one pip will change many pods).

At 4:51, the researcher asked, “How do you think you’ll make it do it by
fours?”. Jen immediately tapped four times on the pod side. There were 9 pips
on the screen, producing 9 x 4 = 36. Jen said, “and we add one, that’s 40 so...”.
She placed another pip-finger on the screen, then counted on her fingers from
36 to 40, and said, “That’s by fours” and again gestured around to all the pods.

DISCUSSION AND CONCLUSION

The effect of seeing the pod change as Jen and Jessica touched and lifted their
pip-making fingers, going from 4 to 3 and back up to 6, seemed to draw the
girls’ attention to the relation between pips and pods and also encouraged them
to repeat through their now developed control structure a particular gesture that
required the coordination of two quantities—the pips on one side, changing, and
the pods on the other, staying the same. Instead of remaining within the additive
framework of repeated addition (sequentially adding one more pod, thereby
focusing on just one quantity), the girls were expressing multiplication as a
coordination of quantities. Once they had changed the number of pips, they
could use this action again, with more pods; and this allowed them to see the
simultaneous change in all pods that occurred when the number of pips
changed. They had figured out how to count by 3s in a new way. Since this
appeared to be a difficult task for all of the pairs in the classroom, we infer that
it involves a new awareness both about how TT works, but also about the
multiplicative relation.

In our analysis, we have shown the development of a concept in action, which
was in response to the task of skip-counting by 3s, and which involved making
three pods and then iteratively adding pips. We then showed how the
researcher’s prompt occasioned an explicit articulation of this concept in action.
The girls were then able to count by 4s—and it was perhaps the articulation of
the concept in action that made this not only possible, but seemingly effortless.
But more importantly, in terms of their multiplicative thinking, the girls
experienced a particular aspect of multiplication, which is its one-to-many
relation, which is instantiated in TT when a change in the number of pips (the
unit) leads to a change in each and every one of the pods. Connecting back with
Balacheff’s model of conceptualisation, we see that the girls have developed a
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control structure in this setting with TT contributing and being a part of the
knowledge they now have of multiplication-as-spread.
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WHERE TO PUT THE DECIMAL POINT? NOTICING
OPPORTUNITIES TO LEARN THROUGH TYPICAL
PROBLEMS

Ban Heng Choy?

INational Institute of Education, Nanyang Technological University, Singapore

It is challenging to design and structure lessons to maximize high-quality
opportunities to learn mathematics in the classrooms. This paper presents a
case study of Mary, a beginning mathematics teacher in Singapore, to illustrate
how she noticed opportunities to learn during the planning and enacting of a
lesson on decimal fractions for Primary 4 students. The case highlights the
importance of noticing affordances of typical problems and opportunities to
orchestrate productive discussions to provide quality opportunities to learn.

INTRODUCTION

All students should have access to high-quality mathematics curricular,
effective teaching and learning, high expectations, and the support and
resources needed to maximize their learning potential. To enhance students’
learning experiences, teachers need to provide their students opportunities to
learn from mathematically meaningful tasks. The notion of opportunities to
learn was defined as the “amount of time allowed for learning” (Carroll, 1989,
p. 26) and its conceptualization has broadened over the years. For example, Liu
(2009) positions opportunity to learn as an “entitlement of every student to
receive the necessary classroom, school and family resources and practices to
reach the expected competence” (p. v). Although this entitlement has often been
measured in terms of the amount of time (Carroll, 1989) given for a program, or
the number of tasks with certain characteristics in a textbook (Wijaya, van den
Heuvel-Panhuizen, & Doorman, 2015), Carroll (1989) highlighted that it is
what happens during lessons that matters most.

With the aim of broadening the notion of opportunity to learn to examine other
features of mathematics instruction, such as task implementation during lessons,
Walkowiak, Pinter, and Berry (2017) re-conceptualized opportunity to learn in
terms of teachers’ mathematical knowledge for teaching, time utilization,
mathematical tasks, and mathematical talk. This conceptualization puts teachers
as the main orchestrator in the lesson to provide students these opportunities to
learn. More specifically, Walkowiak et al. (2017) positioned teachers’
mathematical knowledge for teaching (Ball, Thames, & Phelps, 2008) as a
critical factor in relation to how teachers optimize time use during the lesson
(Gettinger, 1989), how they design, select, and implements tasks (Mason &
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Johnston-Wilder, 2006), and how teachers orchestrate discussions (Smith &
Stein, 2011). This paper examines how Mary (pseudonym), a primary school
mathematics teacher in Singapore, provided her Primary 4 students quality
opportunities to learn mathematics by orchestrating the time, task, and talk for a
lesson on decimal fractions.

Orchestrating Time, Task, and Talk

Although time allocated to teaching mathematics is important, Walkowiak et al.
(2017) went beyond the number of minutes and investigated the amount of time
spent in relation to the mathematical goal of the lesson. In particular, they
examined whether teachers use “the majority of time in the lesson to reach the
mathematical goal” and whether the lesson components are structured to “build
on each other with explicit attention to the mathematical goal” (p. 12). This
consideration is important for many classrooms because of the time constraints
faced by teachers, especially in examination-driven education systems such as
Singapore. In addition, many researchers suggest that it is crucial for students to
have discussions around mathematically rich tasks as part of their learning
experiences (Grootenboer, 2009; Smith & Stein, 2011). However, these tasks
are usually time-consuming and pedagogically challenging to use in the
classrooms. This raises the challenge of how teachers can optimize students’
opportunities to learn through mathematically meaningful tasks when given
limited curriculum time. To this end, Choy and Dindyal (2018) highlighted how
typical problems—standard examination or textbook-type questions—can be
used to promote productive talk between students and teachers. While
acknowledging the importance of using rich tasks, Choy and Dindyal (2018) not
only suggested the possibility of using typical problems to orchestrate
discussions, but also proposed how teachers can make connections between
different representations of mathematics, which reflect a connectionist approach
to teaching mathematics (Askew, Rhodes, Brown, Wiliam, & Johnson, 1997).

The Role of Teacher Noticing

Mathematics teachers, who use a connectionist approach to teaching
mathematics, can notice and exploit the mathematical possibilities of
instructional materials for different profile of students (Askew et al., 1997).
Adopting a connectionist approach to teaching requires teachers to develop a
keen awareness of the mathematical connections afforded by the tasks and use
these connections to design opportunities to learn through orchestrating time,
task, and talk during lessons. A key component of teaching expertise that
enables teachers to do this ambitious work is mathematics teacher noticing,
which  refers to what teachers attend to and how they interpret their
observations to make instructional decisions during lessons (Mason, 2002;
Sherin, Jacobs, & Philipp, 2011). Most of the earlier studies on teacher noticing
were centered about the use of video recordings of teaching episodes but Choy
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(2016) brought task design into the realm of teacher noticing. His findings
suggested that an explicit focus for noticing is useful, and an emphasis on
pedagogical reasoning can increase the likelihood of teachers making
instructional decisions that promote students’ reasoning. In this paper,
researcher extends and applies the notion of productive noticing (Choy, 2016) to
examine what and how Mary noticed about the opportunities to learn during a
lesson on decimal fractions. Vignettes of how Mary planned and implemented
the lesson will be discussed in relation to the time, task, and talk during the
lesson.

METHOD

The data reported in this paper were collected as part of a larger exploratory
study on building a culture of collaboration and listening pedagogy in
classrooms through Lesson Study for Learning Community in Singapore. The
study involved a Lesson Study team comprising of 10 mathematics teachers in
Quayside Primary School (pseudonym), a government-funded school. The
vignettes feature Mary, a beginning teacher who had only six months of
teaching experience at the time of this study. Although newly trained, Mary has
a strong foundation in mathematics as she had studied mathematics as a
university major. Data for this paper were generated through the voice and
video recordings of the lesson, and the lesson plan designed by Mary with
support from her colleagues. A thematic analysis approach (Braun & Clarke,
2006) was adopted for this study. Viewing the lesson plan as an instantiation of
her thinking about the opportunities to learn, findings were developed through
identifying aspects of the time utilization, tasks, and planned talk moves that
provided opportunities for students to do mathematics. For the lesson,
researcher analyzed the video and voice recordings by identifying segments,
which corresponded to Smith and Stein’s (2011) five practices for productive
discussions, and highlighted aspects of the time, task, and talk that presented
opportunities for students to learn.

NOTICING, DESIGNING, AND ORCHESTRATING OPPORTUNITIES
TO LEARN

In this section, researcher first presented an analysis of Mary’s lesson plan on
Decimals for a Primary 4 class before researcher discussed her actual lesson
implementation. Her students had previously learned about decimals and
fractions, including the addition of decimals. The lesson of interest (an hour in
duration) focused on developing students’ relational understanding (Skemp,
1978) of multiplication of decimals with a whole a number. Up to this point,
students had not learned how to do multiplication involving decimals. It is also
important to note that the Singapore Mathematics Curriculum only covers
multiplication and division of decimals by 10, 100, and 1000 in Grade 5. Mary
started the lesson by recapping the idea of multiplication as repeated addition
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before she set them the task of the day, which was to find the answer to 0.8 x 4
and orchestrated a lesson around the different solution methods developed by
the students, both individually and as a group. The episode reported here started
when a student asked a seemingly trivial question: How will you know where to
put the decimal point? In the following discussion, researcher uses three of the
four key dimensions of opportunities to learn—time, task, and talk—as
developed by Walkowiak et al. (2017) to highlight what Mary might have
noticed about the opportunities to learn for her students.

Designing Opportunities to Learn during Lesson Planning

In terms of time utilization, Mary and her colleagues planned 45 minutes (out of
55 minutes) of lesson time for students to work on two related forms of the
question, 0.8 x 4: (a) Solve 0.8 x 4, and (b) How many ways can you think of to
solve 0.8 x 4? Referring to Table 1, we see that Mary planned to spend most of
the time in the lesson to reach the mathematical goal. The students first worked
on the problem 0.8 x 4 on their own (10 minutes). This was followed by
students working in groups on developing multiple solutions to the same
question (How many ways can you think of to solve 0.8 x 4?). Moreover, Mary
planned to have the students discuss the different solutions during the whole
class discussion so that she could draw their attention to the linkages between
the various solutions and the standard multiplication algorithm (See Figure 1).
Hence, the time was structured so that the tasks built on each other, paying
attention to the goal of understanding the idea behind the multiplication
algorithm.

Components of Lesson Time planned (min)  Actual time used (min)

Introduction 5 3

Understanding the Problem 10 7
and Individual Work

Group work 15 15

Whole Class Discussion 20 25

Closure of lesson 5 5

Table 1: Planned and actual time utilization.

Next, the task “How many ways can you think of to solve 0.8 x 47” was a
modification of simply “Solve 0.8 x 4”, which opened up the solution space of a
typical problem (Choy & Dindyal, 2018). Although this will not be categorized
as a rich task, the design of Mary’s task provided students opportunities to use
and translate among two or more representations so that they could make sense
of the mathematics. In addition, Mary’s use of the typical problem highlighted
that she was cognizant of how the question could support students in making
connections between their prior knowledge and the new content. Therefore,
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Mary and her colleagues demonstrated a keen awareness of the affordances of
such typical problems beyond their usual usage (Choy & Dindyal, 2018).

More importantly, Mary did not plan to use the typical problem by simply
explaining the procedure. Instead, as seen in Figure 1, she planned for students
to explain their thinking and this could potentially allow students to move
towards a better understanding of the multiplication algorithm. A closer
examination of the lesson plan also reveals some planned talk moves similar to
those proposed by Smith and Stein (2011). For example, she anticipated
students’ different responses to the question and planned for the sequencing of
sharing by different students (See Figure 1). This corresponded to Smith and
Stein’s (2011) practices of anticipating, selecting, and sequencing.

As seen from Table 1 and Figure 1, Mary noticed the affordances of using a
typical problem and modified the problem to open its solution space (Choy &
Dindyal, 2018). Her planned use of time and planned talk moves around typical
problem also provided students opportunities to learn about the multiplication of
decimals, with a strong focus on mathematical reasoning.

20 Sharing and discussion of ideas — Class Discussion
Student representative from each group to present their
responses and explanations.

Allow pupils to consider possible
alternatives to solve a task and
critically follow through a
thinking process.

Anticipated responses and corresponding sequence for
discussion:

Anticipated responses Sequence Rational for Sequence
- Students using repeated addition to get the 1 1) Allow students to focus on
answer. multiplication as a repeated
- 08x4=08+08+08+08 addition.
- Students using number bond to break the 2 Qn : What happens if the whole
multiplication into simpler parts number gets changed to
- 08x4=08x2+08x2 something bigger, e.g. 1007
- Students make use of what they already 3
know (8 x 4 = 32) to make a list of possible 2) Highlight to the students that
answers. number bonds help to break
- 32,3.2,0.32 are possible answers the product into simpler parts
- Since 0.8 is slightly less than 1, answer that allow us to solve quickly
should be slightly less than 4, which gives
3.2 3) Students are allowed to use
- Students make use of the place value of the 4 their prior knowledge of whole
decimals to help them multiply numbers multiplication to form
- 0.8 X 4 is the same as 8 tenths x 4, which a list of possible answers,
gives 32 tenths. before using estimation to
- 32 tenths is the same as 3.2 eliminate other answers.
Multiplication algorithm is used. 5 4) Progression to multiplying
0.8 decimals by whole number by
X 4 looking at the decimal place
3 2 value of each digit.
5) Link to sequence 4

Figure 1: Snapshot of Mary’s lesson plan
Orchestrating Opportunities to Learn during Lesson

Mary also orchestrated several opportunities, as planned, for students to learn
during lesson. While Mary circulated the classroom, she took notice of the
strategies used by the different groups of students. Mary’s attention to students’
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strategies was demonstrated when she called upon different students to present
their solutions according to the sequence planned as indicated in Figure 1. More
importantly, Mary pressed the students for their explanation beyond giving the
correct answers:

1 Si So, first, we have four 0.8s, and after that we added all up, like 0.8
plus 0.8, then we get the answer then we plus 0.8 again then plus 0.8
again. Then...I thought that it will be easier if the number is smaller.
But if the number is bigger, | think, then the multiplication method
is easier?

2  Mary: Okay, so they [referring to the group of students including S1] did
not choose this strategy as the most efficient one, but | ask them to
present this strategy. Can anyone tell me why they did not choose
this one as opposed to this one? S1 actually mentioned it, how about
S2?

3 S22 Because is, when you get other bigger number, it will be hard for
you to ...

As with the above exchange, Mary continued to press her students to explain
their solutions to make their thinking visible to the other students throughout the
lesson. This was so even for unanticipated responses from her students:

22 S3: ... First, you need to kick the decimal place away because you do
not need it. And then you need to, er..., you need the time to,
convert both the numbers you are multiplying into whole numbers
and then you get the answer. And then you, you pick the decimal
point, in between the tenth place and the ones place of your answer.
And we chose this as the most efficient one because it takes only 2

steps...

23 Mary: Is that all? Okay, any questions for S3°s method? S4?

24 5S4 But the multiplication number reaches up to like a zillion, where
will you know how to put the decimal point?

25 S3: éust put it between the tenth place and the ones place, and you are

one.

26 S4. But how do you know which one [cross talk]?

27 S3: Yes, | checked it already.

28 Sb5: How do you know which number is in the tenth place?

29 S3: Because | checked just now.

30 Mary: How did you check? How did you know?

Here, S4’s question at Line 24 was unanticipated. Instead of brushing aside the
question, Mary stepped back and allowed students (S3, S4, and S5) to discuss
S4’s question. By doing so, Mary brought the question to the center of the
whole-class discussion and these students’ arguments were made available to all
students, for them to think about and evaluate the validity of the points made:
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31 S3: | put a big number times a big number and | tried it, and yes, it
works.

32 Mary: So, it is always between the tenth and the ones place? Anyone
disagrees?

As seen from Mary’s response, she was comfortable in letting her students
engage in a mathematical argument. The exchanges went on for several more
turns before Mary tried to connect these responses:

55 Mary: ... Let’s look at S3’s method, he started with 8 times 4, 32. How

many ways can we actually put the decimal point. How many ways,
S8?

56 S8: Er... you can put the decimal point in front of 2?

57 Mary: Infrontof 2, in between 3 and 2? So, we can have 3.2. what else can
we have?

58 S8: 0.32

59 Mary: 0.32. We can put it in front of the 2 numbers, we can have 0.32,32.0,
and anymore?

60 S9: 0.032

61 Mary: 0.032. So, you see we can have many ways to place the decimal
point, but why are we so sure that this is the final answer, that this is
the correct answer? ...Yes, S10?

62 S10: You could put it in between, because it’s a, you know because 0.8
times 4, and then 8 is in the tenth place, so that 4 is actually the ones
place, so it is like... since there is already a ones place that you need
to multiply by, which is 4, it can’t be a zero

... [After some discussion]

69 Mary: It cannot be zero in a ones place, because you are multiplying by 4
already. That is what he is (S10) trying to say. So, since you have
0.8 times 4, it should be more than 1, is that what you are trying to
say? So, we eliminate which two answers? This one, and this one.
But why can’t it be 32.0? S11? Thank you, S10.

70 S11:  Let us say the, since the question is 0.8 times 4, we can round 0.8 to
1...

In this series of exchanges between various students, Mary demonstrated her
ability to orchestrate mathematically productive talk around the answers. Rather
than endorsing or refuting the answers given by her students (See Line 32, and
69), she provided opportunities for her students to reasoning mathematically.
She could have simply endorsed the students’ answers and the discussion could
have ended. Instead, Mary attempted to build on students’ responses and moved
the discussion towards strengthening the reasoning behind the answer. At the
end, Mary used S11’s answer that 0.8 is approximately one to highlight the
importance of thinking about the reasonableness of an answer using estimation.
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CONCLUDING REMARKS

When Mary’s lesson plan and teaching moves are examined in terms of the
dimensions of opportunities to learn (Walkowiak et al., 2017), it can be argued
that Mary had optimised the time used during the lesson to orchestrate
productive discussions around a modified typical problem. The lesson plan
suggests her ability to notice the possibility of using typical problems such as
0.8 x 4 to create opportunities for students to reason, beyond simply explaining
the procedure of multiplying decimals. Her teaching moves also suggested that
she was able to notice opportunities to develop students’ reasoning by engaging
students to discuss the placement of the decimal point. Mary’s instructional
decisions during planning and lesson enactment reflect those of an experienced
competent teacher, which is surprising given that she is a beginning teacher.
What, and how, did Mary notice the opportunities to learn through the task? A
more in-depth study of Mary’s instructional decisions may yield some insights
into her pedagogical reasoning processes, which will have implications for
teacher professional development.
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INSTRUCTIONAL INNOVATION IN MATHEMATICS
COURSES FOR ENGINEERING PROGRAMS - A CASE
STUDY

Jason Cooper, Hadas Levi Gamlieli, Boris Koichu, Ronnie Karsenty, &
Alon Pinto
Weizmann Institute of Science, Israel

While the affordances of problem-based learning are broadly recognized,
implementation of this innovative approach is not common, particularly in
tertiary mathematics education. This study investigates early stages of an
implementation of problem-based instruction in 1% year mathematics courses
for engineering students, within a project encompassing 12 universities and
colleges across Europe. Twenty-three lecturers from participating institutions
took part in a preparatory workshop. Framing the project as a case of diffusion
of innovations, we analyze post-workshop questionnaires to reveal the
participants' conception-of and attitudes-toward the innovation. We highlight
some challenges that the innovation entails, and how they relate to participants’
general attitude toward implementing the innovation.

THEORETICAL BACKGROUND

First year university mathematics courses are considered challenging in general,
and for engineering students in particular (Jablonka, Ashjari, & Bergsten 2017).
In addition to general issues of transition from high school, the abstract
approach to the discipline that is common in mathematics departments may not
be appropriate for students who will eventually use mathematics as a practical
tool for solving problems.

Problem-based learning (PBL; Savery, 2006) is an educational approach by
which authentic real-world problem situations provide the impetus and the
context for studying disciplinary content. Often this approach is implemented as
project-oriented PBL (PO/PBL), where authentic problems emerge in the
context of a long term project. While such approaches have been studied mainly
in the context of pre-college education, PBL (project-oriented or otherwise) is
common in some universities (e.g., Aalborg University, Denmark), and has, in
particular, been found to be suitable for engineering education (Perrenet,
Bouhuijs, & Smits, 2000). While the potential gains of such an approach are
undisputed, implementing instructional innovation can be challenging (Begg,
Davis, & Bramald, 2003). In this article we investigate challenges related to
implementing PBL in 1% year mathematics courses for engineers.
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Processes of adoption of innovation have been studied for many years, and the
adoption model elaborated by Rogers in his 1995 book Diffusion of Innovations
(2003) has been used extensively in many contexts, including educational
innovation (e.g., Sahin, 2006). Rogers has recognized four main elements in the
diffusion of innovations — the innovation and its perceived consequences,
communication channels of diffusion, evolution of the diffusion over time, and
the social system in which the diffusion takes place. Rogers has focused on the
innovation decision process, which he describes as “an information-seeking and
information-processing activity, where an individual is motivated to reduce
uncertainty about the advantages and disadvantages of an innovation” (Rogers,
2003, p. 172). While approaches to teaching may often be prescribed by
educational institutions, the details of what ultimately takes place behind the
closed doors of classrooms and lecture halls are up to individual instructors.
Hence, this decision process is highly relevant in any process of instructional
innovation.

Early stages of the decision process are influenced by three factors (see table 1):
Prior conditions (in particular previous experiences related to the innovation);
Knowledge, including how-to-knowledge about the implementation and use of
the innovation and principles-knowledge about how and why the innovation
“works”’; Persuasion, whereby adopters develop an affective attitude toward the
innovation, influenced by the characteristics of the innovation as perceived by
individuals. These characteristics include: A. Relative advantage compared to
the current state of affairs;
B. Compatibility with past experiences and with existing conditions and values;
C. Complexity — the degree to which the innovation is perceived to be difficult
to understand or to use; D. Trialability — the extent to which the innovation can
be experimented with on a limited basis.

Prior conditions Previous Need for Innovativeness Norms
practice innovation

Knowledge Awareness How to Principles
Persuasion: Advantage Compatibility Complexity Trialability Observability

Table 1: Rogers’s model of diffusion of innovations (relevant aspects are
underlined)

We conducted our research in the context of an international project whose
objective is to improve teaching, learning and understanding of 1% year
mathematics among engineering students in European countries. Innovative
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teaching methods, in particular PO/PBL, are the main vehicle for achieving this
objective. We focus on a point in time immediately following a preparatory
PBL workshop for participating lecturers. Eventually, these lecturers will decide
whether, how and to what extent to implement the innovation. Their decision
will be influenced by their perception-of and attitude-towards the innovation.
Hence our research questions are:

Following a preparatory workshop on PBL, (1) What are the participants’
perceptions of PBL as an instructional innovation to be implemented in their
teaching? (2) What are their attitudes towards the innovation?

SETTING AND METHODOLOGY

ITEM — innovative Teaching Education in Mathematics — is a Capacity
Building project for higher education funded by the Erasmus Plus program (EU)
as of 2019. Its main objective is to improve teaching, learning and
understanding of 1% year mathematics among engineering students in Europe
through the implementation of PBL. Sixteen academic institutions are partners
in the project. Twenty-three mathematics lecturers from partner institutions
participated in a workshop organized by the University of Aalborg in
Copenhagen, whose goal was to inform and inspire participants on how to
integrate PBL-oriented ideas in their teaching. The workshop was preceded by
online individual preparation, which included reading assignments on PBL
approaches to teaching and learning and written exercises. The 2-day workshop
comprised group-work and plenary sessions on the following topics: Real-life
problems and strategies for their integration in university teaching; the special
nature of assessment in PBL; challenges and opportunities of the approach;
active learning and group work on problem solving. At the end of the workshop
participants submitted an anonymous questionnaire (see table 2), followed by a
plenary discussion on some of the questions. While the primary purpose of the
questionnaire was to provide formative assessment of the workshop, the
participants gave their written consent for using their responses for the research
reported herein.

Data for the research consists of 17 completed questionnaires (6 were too
incomplete to be useful). Pre-workshop submissions and video recordings of all
the sessions including a plenary discussion following the submission of the
questionnaire — were used as complementary data sources. Rogers’s (2003)
model of diffusion of innovations was used as a conceptual framework for
analyzing participants’ responses and utterances. To each response we ascribed
one or more aspects of the model. Coding was for the most part consistent with
Table 2, where we indicate for each question the categories of the framework
that we expected respondents to attend to, though in some cases respondents
attended to additional categories. The aspects of the innovation that respondents

PME 44 -2021 2-191



Cooper, Gamlieli, Koichu, Karsenty & Pinto

chose to attend to were very different, providing a rich qualitative image of
different conception of the innovation and the challenges it poses.

Reviewing respondents' questionnaires, it seemed clear that some had a more
positive attitude toward the innovation than others. We operationalize this
attitude as follows: Some questions invited a positive response, some a negative
response, and others were phrased neutrally. Each response that was more
positive/negative than the question invited scored +1, and the sum of these
scores over all questions constitutes the overall attitude. For example, responses
to gl (see Table 2) that only listed main ideas, but did not consider one that
appealed to the respondent scored -1, and responses to g4 that did not list any
id