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PREFACE 

We are pleased to welcome you to PME 44. PME is one of the most important international 

conferences in mathematics education and draws educators, researchers, and mathematicians 

from all over the world. The PME 44 Virtual Conference is hosted by Khon Kaen University 

and technically assisted by Technion Israel Institute of Technology. The COVID-19 

pandemic made massive changes in countries’ economic, political, transport, communication, 

and education environment including the 44th PME Conference which was postponed from 

2020. The PME International Committee / Board of Trustees decided against an on-site 

conference in 2021, in accordance with the Thailand team of PME 44 will therefore go 

completely online, hosted by the Technion - Israel Institute of Technology, Israel, and takes 

place by July 19-22, 2021. A national presentation of PME-related activities in Thailand is 

part of the conference program. 

This is the first time such a conference is being held in Thailand together with CLMV 

(Cambodia, Laos, Myanmar, Vietnam) countries, where mathematics education is 

underrepresented in the community. Hence, this conference will provide chances to facilitate 

the activities and network associated with mathematics education in the region. Besides, we 

all know this pandemic has made significant impacts on every aspect of life and provides 

challenges for society, but the research production should not be stopped, and these studies 

needed an avenue for public presentation. In this line of reasoning, we have hosted the 

IGPME annual meetings for the consecutive year, July 21 to 22, 2020, and 19 to 22 July 

2021, respectively by halting “on-site” activities and shift to a new paradigm that is fully 

online. Therefore, we would like to thank you for your support and opportunity were given to 

us twice. 

“Mathematics Education in the 4th Industrial Revolution: Thinking Skills for the Future” has 

been chosen as the theme of the conference, which is very timely for this era. The theme 

offers opportunities to reflect on the importance of thinking skills using AI and Big Data as 

promoted by APEC to accelerate our movement for regional reform in education under the 4th 

industrial revolution. Computational Thinking and Statistical Thinking skills are the two 

essential competencies for Digital Society. For example, Computational Thinking is related 

to using AI and coding while Statistical Thinking is related to using Big Data. Therefore, 

Computational Thinking is mostly associated with computer science, and Statistical Thinking 

is mostly associated with statistics and probability on academic subjects. However, the way 

of thinking is not limited to be used in specific academic subjects such as informatics at the 

senior secondary school level but used in daily life.   

For the PME 44 Thailand 2021, we have 661 participants from 55 different countries. We are 

particularly proud of broadening the base of participation in mathematics education research 

across the globe. The papers in the four proceedings are organized according to the type of 

presentation. Volume 1 contains the presentation of our Plenary Lectures, Plenary Panel, 

Working Group, the Seminar, National Presentation, the Oral Communication presentations, 

the Poster Presentations, the Colloquium. Volume 2 contains the Research Reports (A-G). 

Volume 3 contains Research Reports (H-R), and Volume 4 contains Research Reports (S-Z). 

The organization of PME 44 is a collaborative effort involving staff of Center for Research in 

Mathematics Education (CRME), Centre of Excellence in Mathematics (CEM), Thailand 
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Society of Mathematics Education (TSMEd), Institute for Research and Development in 

Teaching Profession (IRDTP) for ASEAN Khon Kaen University, The Educational 

Foundation for Development of Thinking Skills (EDTS) and The Institute for the Promotion 

of Teaching Science and Technology (IPST). Moreover, all the members of the Local 

Organizing Committee are also supported by the International Program Committee. I 

acknowledge the support of all involved in making the conference possible. I thank each and 

every one of them for their efforts. Finally, I thank PME 44 participants for their 

contributions to this conference. 

Thank you  

Best regards  

  

Associate Professor Dr. Maitree Inprasitha  

PME 44 the Year 2021 

Conference Chair   
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ENGAGING STUDENTS WITH ONLINE ELABORATED FEEDBACK: 

TWO MEDIATING TOOLS  

Raz Harel1 and Michal Yerushalmy1 

1University of Haifa, Israel 

 

Automatic feedback provided to students’ work has the potential to improve their 

mathematical thinking and skills. A commonly used type of online feedback is 

elaborated feedback. Engaging students with elaborated feedback is a well-

known challenge, which we addressed by examining two mediating tools that are 

part of a dynamic diagram environment: self-assessment, and interactive 

feedback. We focused on the students’ process of constructing position-over-time 

graphs, while they were working on an online example-eliciting task on the 

Seeing the Entire Picture platform. We present and compare two case studies of 

students' use of the elaborated feedback, engaging both mediating tools, and 

analyze changes in the students' examples after processing the elaborated 

feedback. 

INTRODUCTION 

Elaborated feedback  

Carless refers to educational feedback as "a dialogic process in which learners 

make sense of information from varied sources and use it to enhance the quality 

of their work or learning strategies" (2015, p. 192). Researchers distinguish 

between two main types of feedback: verification and elaborated. While 

verification feedback usually aims to ascertain the correctness of information, the 

elaborated feedback is provided to stimulate an explanatory dialog regarding the 

responsiveness of the answer. In the current research, we focused on “attribute 

isolation elaborated feedback,” which prompts the dialog based on mathematical 

characteristics of the objects and processes involved in a task. Provided 

observations are important regardless of whether the referred attributes meet the 

requirements of the task or not. Elaborated feedback provides opportunities for 

higher-order learning processes in mathematics (Van der Kleij, Feskens, and 

Eggen, 2015). At the same time, the learning that involves elaborated feedback is 

considered to be more complex, and therefore more challenging, as to engaging 

students in the self-assessment process (Shute and Rahimi, 2017).  
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Interactive diagrams 

We used interactive diagrams as a digital learning environment. Interactive 

diagrams include an initial example, its representations, and tools to manipulate 

it. Thus, interactive diagrams have the potential to engage students in the inquiry 

process (Mariotti, 2006). The illustrating interactive diagram is one of three types 

of interactive diagrams (Naftaliev and Yerushalmy, 2017). It usually consists of 

a single representation of a sketch example and it doesn't offer links between 

representations. Thus, an illustrating interactive diagram by itself offers fewer 

opportunities for engaging students into inquiry. There is a wide range of 

problems and learning situations, however, that benefit from the use of this type 

of interactive diagrams. For example, constructing graphs by direct manipulation 

of a given sketch. For the current research, we used the Seeing the Entire Picture 

(STEP) platform as an interactive environment that supports example-eliciting 

tasks and provides automatic elaborated feedback (Olsher, Yerushalmy, and 

Chazan, 2016). In example-eliciting tasks, students are asked to construct 

examples in a multiple linked representation (MLR) environment to support their 

answers. Eliciting examples is a vital element in the reasoning processes. Elicited 

examples or learner-generated example space may also be indicative of the 

students’ mathematical reasoning (Zaslavsky and Zodik, 2014). 

We address the challenge of engagement by creating a problem-solving digital 

environment that is based on illustrating interactive diagram construction tasks 

and involves inquiry with elaborated feedback. We observed the work of students 

by exploring their work with two mediating tools. The first is a self-assessment 

tool. The self-assessment process has the potential to enhance student learning 

(Stacey and Wiliam, 2013). We used self-assessment in which following the task 

submission, the students are asked to evaluate their work. The second tool 

dynamically provides interactive feedback, which, upon the construction of the 

required graph, verbally makes observations on the requirements of the task. By 

doing that, the interactive feedback acts as a parallel verbal representation. We 

studied the problem-solving process with each tool and sought to identify 

engagements with the automated elaborated feedback that grew out of the 

experience of the tools. We asked: how did the students use the elaborated 

feedback that follows engagement with each mediating tool? And were there any 

changes in the students' examples inspired by the elaborated feedback following 

the use of each mediating tool? 
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METHODOLOGICAL CONSIDERATIONS 

The current study is part of a larger study in which we explore the use of online 

elaborated feedback by students and describe a small-scale experiment that 

enables qualitative analysis. We present two case studies involving 10th-grade 

math students at an advanced level. Each student carried out the same activity 

within the framework of a task-based interview. The activity contained two 

example-eliciting tasks in which the students were asked to construct position-

over-time graphs. Each task required to construct and submit three different 

examples that meet specific given conditions. Asking the students to create three 

examples as different as possible aims to achieve a diverse personal example 

space. The submissions were automatically assessed and analyzed with STEP, to 

produce post-submission elaborated feedback for the students (hereafter, post-

feedback) (Olsher et al., 2016). Once the students submitted their examples to the 

first task, they received the post-feedback from STEP. After processing the post-

feedback, they proceeded to the second task. The post-feedback consisted of a list 

of task requirements and a list of mathematical characteristics of the task (see 

Figures 5 and 7). The lists were prepared in advance, as part of the task design. 

STEP can analyze the submitted work and mark the identified characteristic of 

the submitted example. By that STEP automatically produced a post-feedback. 

Figure 1 and 2 present the study procedure and a screenshot of task 1 

 

 

Figure 1: Study procedure 
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Task 2 contained the same instructions but instead of 4 segments of riding, task 

2 included 2 segments. The use of two almost identical tasks allowed us to 

analyze the changes as a result of post-feedback. The data were collected through 

the STEP platform, and the students’ work was also recorded, to check against 

the elements collected automatically. We analyzed the segments in the interviews 

where the students used the mediating tools and the post-feedback. To detect the 

effect of the post-feedback, we analyzed the changes in the personal example 

space and in meeting the task requirements in the first and the second task 

submissions.  

Figure 2: Task1 

Task 2 contained the same instructions but instead of 4 segments of riding, task 

2 included 2 segments. The use of two almost identical tasks allowed us to 

analyze the changes as a result of post-feedback. The data were collected through 

the STEP platform, and the students’ work was also recorded, to check against 

the elements collected automatically. We analyzed the segments in the interviews 

where the students used the mediating tools and the post-feedback. To detect the 

effect of the post-feedback, we analyzed the changes in the personal example 

space and in meeting the task requirements in the first and the second task 

submissions. 
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FINDINGS 

Self-assessment – Ela: After reading the instructions, Ela constructed three 

examples. While doing so, she explained that the left blue point on the graph 

represents the first location Noga reached. Later, she submitted three examples 

represented in Figure 3. 

Figure 3: The three examples Ela constructed 

Had the left point indeed represented Noga’s first location, all the examples Ela 

submitted would have met the task requirements. Yet, according to her 

interpretation, this was not the case. After submission, the interviewer gave Ela a 

page represented in figure 4 and asked her to mark all the characteristics she 

predicts STEP would identify in her examples. 

Figure 4: Ela's markings 

Figure 4 shows that Ela marked correctly that the starting point and the end point 

of the right and the middle examples are not in the correct position. Namely, 

during the self-assessment, she realized that she had placed the first and last points 

in the graph incorrectly. Ela also identified whether her examples represent 

situations in which Noga stopped or passed through the city from which she 

started. Regarding other characteristics, Ela marked incorrectly whether or not 

those characteristics existed in her examples. Furthermore, regarding one 

characteristic Ela mentioned that she did not know whether it existed in her 

examples. Note that from the marking, we can obtain information about the 

knowledge constructs Ela created during the self-assessment process, and about 
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those that she has not achieved yet. Figure 5 presents a screenshot of the post-

feedback Ela received following her self-reflection. 

 

Figure 5: The post-feedback Ela received 

Below are some of Ela's reactions to the feedback: 

1  E:  (Focused on the middle drawing) Got it! I didn’t address the distance 

from the starting point. 

2 I:  What made you understand this? 

3  E:  That I saw I stayed at the same point (middle drawing). The computer 

told me it was a mistake. So I thought about it one more time. 

4  E:  Now I also know that in the first hour she has reached a distance of 

five kilometres and then she can go back and reach a distance of zero. 

5 I:  What does it mean that she came back to the city which she left? 

6  E:  That she reached the point from which she left. In my drawing, she 

didn’t return. She drove five kilometres and stayed there. 

In line 1 Ela realized that she addressed the starting point incorrectly. In line 3 

Ela explained that the post-feedback helped her realize it. In line 6 Ela was able 

to identify the characteristic which she didn't know how to refer to during the 

self-assessment process (Noga ended up in the city from which she departed). 

Thus, Ela was assisted by the post-feedback in her learning process. Ela 

proceeded to the second task. Figure 6 presents the submission she made: 

Figure 6: Ela’s submission for the second task 
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All the examples Ela submitted in the second task met the task requirements. We 

can also observe the great diversity of Ela's examples in which four of the five 

characteristics included in the post-feedback existed (Noga changed direction, 

stopped, progressed at different speeds, passed through the city from which she 

left). 

Interactive feedback – Anna: After reading the task instructions, Anna 

addressed the interactive feedback and read the first mathematical characteristic 

in the list: "starting point." She reacted as follows: "Okay, so this should start 

from here (pointed at the first point of the graph)." Anna dragged the first point 

to the origin and noticed that the first characteristic was painted in blue. Then, 

she completed the construction of the example by placing the second point, the 

third point, and finally the fourth point. Doing so, Anna constructed a graph that 

meets the task requirements (see the example on the right in Figure 7) and all the 

characteristics in the interactive feedback turned blue. It seems that Anna used 

the interactive feedback to find a strategy for constructing the graph by placing 

the first point and to proceed according to the order of the points. Figure 7 shows 

a screenshot of Anna's submission and the online post-feedback: 

 

Figure 7: Anna's submission and elaborated feedback 

Unlike Ela's first submission, Anna’s submitted examples met the task 

requirements. According to Figure 7, Anna's examples were not varied and 

included only one direction riding. Below are some of Anna's reactions to the 

feedback: 
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2  A:  What does it mean that she passed through the city from which she 

left and she ended in the city from which she left? Did she drive in 

circles? 

3  I:  I cannot answer you. You can choose whether you want to crack it or 

move on. 

4  A: It can be done in the negative direction. 

5  I:  What made you think of this? 

6  A:  I thought only of the positive direction and then in the feedback it’s 

written that Noga changed the direction. So that gave me the idea. 

In line 1 Anna mentioned characteristics she didn't understand in the post-

feedback. As a result of the interactive feedback, however, at this point, Anna had 

to deal only with the part of the post-feedback that relates to characteristics. In 

line 4 Anna expressed a new idea ("negative direction"). In line 6 she explained 

that she got the new idea from the post-feedback. Figure 8 shows a screenshot of 

her submission to the second task: 

 

Figure 8: Anna's second task submission 

Anna indeed constructed graphs that are below the X-axis as she had planned. 

Moreover, unlike her first submission, the second one was very varied and 

included four of the five characteristics from the post-feedback (Noga changed 

direction, stopped, progressed at different speeds, and finished in the city from 

which she left). Thus, Anna used the post-feedback to diversify her examples. 

DISCUSSION AND CONCLUSIONS 

The aim of the present research was to examine two mediating tools for engaging 

students through the post-feedback on their work in a dynamic diagram 

environment: self-assessment, and interactive feedback. To this end, we explored 

the students' use of the post-feedback with each mediating tool, and the changes 

in the students' examples as a result of the provided post-feedback. Ela’s self-

assessment process helped her compare her predictions and the results of the post-

feedback. As a consequence, she was able to identify the characteristics in the 

post-feedback she misunderstood. Namely, she used the post-feedback that 
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followed the self-assessment to deepen the learning process. Following the post-

feedback, Ela improved the correctness and diversity of her examples. The 

interactive feedback helped Anna construct examples that met the task 

requirements from the first submission. After receiving the post-feedback, Anna 

focused on a subset of the characteristics and mentioned that the list of 

characteristics gave her new ideas. We suggest that due to the interactive 

feedback Anna could use the post-feedback to diversify her examples. According 

to the students’ use of the post-feedback and according to the changes in the 

students' examples, we suggest that the mediating tools promoted the students' 

engagement with the post-feedback.  

Shute and Rahimi (2017) noted that complexity is one of the reasons for students' 

difficulties in engaging with elaborated feedback. Both students indeed had 

difficulty in understanding the characteristics included in the post-feedback, but 

in the end, they were very much engaged. Ela’s self-assessment process led her 

to gradually address characteristics she did not understand. The self-assessment 

process may have helped her with the post-feedback complexity. The interactive 

feedback helped Anna focus on the part of the characteristics in the post-

feedback, which may have helped her overcome the complexity of the post-

feedback. 

Studies have noted the benefit of using self-assessment for the active involvement 

of students (Stacey and Wiliam, 2013). According to our results, the interactive 

feedback was found to be effective as well. To compare the characteristics of the 

tools, we examined them separately. Combining these tools will likely make it 

possible to significantly promote the use of elaborated feedback by the students. 

This of course requires further research that may be designed on the basis of the 

current research. 
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The aim of our project is to explore students' conceptions of rotational symmetry 

at the beginning of secondary school. Thereby, we are interested in how children 

build up a concept of rotational symmetry working in a concrete learning 

environment. In the sense of subject didactic development research we performed 

designed experiments and explored the learner’s conceptual ideas about 

rotational symmetry. This paper presents the concept of the learning environment 

and first reconstructive results based on student conversations using Steinbring’s 

epistemological triangle as an interpretative method. We succeed in identifying 

central aspects of the concept of rotational symmetry in different reference 

contexts.  

RATIONALE 

Symmetry is an important concept in mathematics and a subject matter from 

elementary school to university (Bornstein & Stiles-Davis, 1984). Although it can 

be defined clearly, we don’t know much about the evolvement of students’ 

conceptual understanding. At the same time, learning environments are used in 

mathematics classes to initiate an idea of rotational symmetry. But are they 

helpful to build up a fundamental conception? We answer both questions with the 

help of a design-based research project (Nührenbörger et al., 2016), which is 

characterized by the fundamental aspects: (1) designing learning environments 

for classrooms and (2) investigating the initiated learning processes and 

contributing to local theories. So, we ask how learning environments for 

rotational symmetry can be designed and which concepts students develop. 

Prediger, Schnell and Rösike (2016) identified four intertwined working areas in 

a design-based project, which are connected and passed several times: a) 

specifying and structuring goals and contents of the learning environment, b) 

developing the design, c) conducting and analyzing design experiments and d) 
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developing contributions to local theories. We structure our paper according to 

these working areas. 

a) Specifying the Content: Rotational Symmetry 

A figure is called symmetric, if apart from the identity, there exists at least one 

other mapping which maps the figure onto itself. Each of these mappings beside 

the identity is called "a symmetry” of the figure. In this sense a rotationally 

symmetric figure as a whole (the hexagon) can be mapped onto itself by a suitable 

rotation: mapping a figure onto itself by rotating it (figure 1). In a second 

perspective it is possible to identify an elementary figure (triangle) from which 

the whole figure can be built by suitable turns: using an elementary figure to build 

a symmetric figure. This elementary figure can then be identified in the overall 

figure as a repeating partial figure (Leuders, 2016). 

 

 

 

 

In mathematics education research we know a lot about students’ difficulties with 

axial symmetry and their conceptualization processes in primary and partially in 

secondary school (Bornstein & Stiles-Davis, 1984; Ramful, Ho & Lowrie, 2015). 

In contrast, rotational symmetry is frequently only an additional part when 

researching students’ difficulties and understanding of symmetry, but rarely the 

exclusive object of research. This also applies for the findings of the following 

studies and makes a research desideratum visible. Aktas & Ünlü (2017) identify 

students’ problems in determining the rotation angle and the direction of rotation. 

This goes along with Küchemann’s (1981) research who classifies children’s 

understanding of reflections and rotations into a number of levels. More recent 

research findings in the area of (rotational) symmetry tend to examine the 

differences in the use of digital and traditional media (e.g. Chan, Leung, & Ong, 

2017). Regarding research on the conceptualization processes of rotational 

symmetry Seah & Horne (2019) can be mentioned. They deduced that students’ 

knowledge is fragmented as well as that their reasoning ability is poor and more 

research is needed to describe the underlying learning processes of rotational 

symmetry. It can be stated, that there is a need for research regarding the design 

of learning environments and especially students’ conceptualization processes 

Figure  SEQ Figure \* ARABIC 1: Different perspectives of rotational 

symmetry (Leuders, 2016) 
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while learning the concept of rotational symmetry. This leads to the following 

research questions: 

● How can a learning environment for rotational symmetry be designed, 

which allows students to develop an understanding of the concept? 

● Which conceptualization processes regarding the concept of rotational 

symmetry can be reconstructed among learners of grade six? 

● Which reference contexts (in the sense of Steinbring) are used by the 

learners to develop a concept of rotational symmetry? 

 

b) Developing the Design  

The learning environment is aimed at children of grades five and six in Germany 

(age 10 to 11) according to the German curriculum. In order to stimulate a 

comprehensive understanding of rotational symmetry, we have designed the 

learning environment according to the following principles:  

Action-oriented approach: Due to the age of the children and the fact that they 

deal with rotational symmetry the first time, a constructive and action-oriented 

approach is chosen explicitly. Children are given lots of opportunities to explore 

figures, to move and to rotate them and to construct a figure out of elementary 

figures, which are repeatedly rotated.  

Integrated conception: The environment takes both concepts of rotational 

symmetry into account: a) using an elementary figure to build a symmetric figure 

and b) mapping a figure onto itself by rotating it. Within the learning environment 

we worked at the beginning with rotationally symmetric figures, so-called 

"windmills" (see figure 2 for some examples, Götze & Spiegel, 2004).  

Cooperative realization: Verbalizing, explaining, defending, asking and arguing 

are key activities for productive learning processes (Dekker & Elshout-Mohr, 

1998). Cooperative learning situations seem to be suitable for such key activities 

to emerge. Regarding these design principles the following tasks are offered after 

a short introduction to groups of children. 

Creating rotational symmetric figures  

In this part of the learning environment the focus is on action as well as on the 

perspective of an “elementary figure” of rotational symmetry (figure 1). Students 

work in groups of four and everyone gets a geoboard and a workbook on their 

own. They receive wings of various windmills represented on transparencies 

which they have to share. So, the cooperation between the students is fostered on 
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a natural way. They fix the wing at the centre of their geoboards, rotate the wing 

and stretch the figure with the elastics on the geoboard (see figure 2). By 

documenting the whole windmills in the workbook, the students change the 

perspective from an “elementary figure” to the entire rotational symmetric figure. 

According to their competences and speed the children stretch and draw a 

different number of figures.  

  

Figure 2: Examples of wings of windmills and stretched windmills on a 

geoboard 

Distinguishing rotationally symmetric and non-rotationally symmetric figures 

A larger number of figures (rotationally symmetric and not rotationally 

symmetric) are given to each group table. Students were asked to judge if a figure 

is rotationally symmetric or not (figure 3). All figures allow to identify an 

elementary figure, but they are arranged in a way, that some are axisymmetric, 

rotationally symmetric, or not symmetric at all. So, it is not enough to focus on 

the identification of the elementary figure, but the figure as a whole must be 

considered. The students are explicitly encouraged to work together, to discuss 

and to verbalize their judgements. In doing so, they can consider the figure as a 

whole, rotate it mentally or stretch it on the geoboard and rotate the board to solve 

the task.  

 

Figure 3: Examples of figures to sort 
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c) Conducting and Analyzing the Design Experiments 

The design experiments were carried out in the teaching and learning laboratory 

at Paderborn University. The classes worked in the learning environment for 120 

minutes. The groups were put together by the teacher, so that within the group 

children with different competencies work together. In this way, a productive 

discourse about different approaches and concepts may come up, which allows to 

reconstruct students’ conceptual understanding.  

In order to answer our research questions about the reconstructable concept of 

rotational symmetry, a qualitative approach is necessary to analyze students’ actions 

and statements. To characterize the conceptual understanding, we use the 

epistemological theory of Steinbring (2005). Steinbring explains that mathematics, 

as the knowledge of abstract relations, is neither directly accessible by 

communication nor by the use of signs. Students have to interpret mathematical signs 

and develop a meaning on their own. This meaning has to be produced by means of 

establishing a mediation to appropriate reference contexts or objects. “The triangular 

connecting scheme between the mathematical signs, the reference contexts, and the 

mediation between signs and reference contexts, which is influenced by the 

epistemological conditions of mathematical knowledge, can be represented in the 

epistemological triangle” (Steinbring, 2005, p. 22).  

 

Figure 4: Steinbring’s epistemological triangle 

Thus, the epistemological triangle helps to reconstruct the connection between 

the concrete signs (e.g. symmetrical figures), the verbalized concept (of rotational 

symmetry) and the chosen reference contexts.  

This mutual conceptualization process can be reconstructed by interpreting the 

statements and actions of the students (Steinbring, 2005). Therefore, the groups 

were videographed and corresponding transcripts were interpreted by a group of 

researchers (Krummheuer & Naujok, 1999). The aim of the interpretation process 

consists of reconstructing the ongoing development of the knowledge and 

characterizing typical (pre)concepts of rotational symmetry as local theories 

(Prediger, Schnell & Rösike, 2016).  
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Case: Sorting of symmetric and non-symmetric figures  

The episode takes place during the second activity. The students have already 

sorted some of the windmills when the teacher joins the group. 

1 Teacher (T): And how did you sort that out now? Now how did you know it was 

a windmill? 

2 Oskar:  So, if that, so if this is exactly the same on the other side, because then 

it can be better (silenced) … 

3 T:  Mhhh. 

4 Noel: But that is not a windmill (pointing to windmill 1, quiet). 

5 T:  You mean this isn’t a windmill. What do the others say? 

6 Julian:  Can I have a look?  

7 Oskar: gives the card with windmill 1 to Noel 

8 Robert:  What's the matter with this one (pointing to “windmill” 2)?  

9 Oskar:  That’s not a windmill, because on the opposite side, it isn’t the same.   

10 Julian:  (speaks to Noel and stretches out his hand) Show! Please! (takes the 

card (windmill 1) in his hand, turns the card clockwise) This is 

one.  

11 T: Are we gonna say this is one or this isn’t one? 

 

12 Julian:  Because, if you hold in this position, then this is the same as when it 

rotates.  

The discourse can be divided into two parts, where two reference contexts of 

rotational symmetry can be reconstructed: a) “parts are the same on the other 

side”, b) “windmills can be rotated”. Oskar chooses a figure sorted as a windmill 

and tries an explanation (line 2). He thus selects one concrete object, windmill 1, 

as his sign to explain the abstract concept of a windmill (rotational symmetry). It 

is not quite clear what he means with his reference to "exactly the same" and to 

"the other side". It could be that he possibly means a horizontal, vertical or 

diagonal axis of symmetry that divides the figure into two subfigures and 

probably refers to axial symmetry. These two partial figures would then be “on 

the other side” and congruent to each other. However, the assumed explanation 

referring to axial symmetry does not fit exactly to his example, because windmill 

1 is a rotationally symmetric figure consisting of four partial figures and not an 

axial-symmetric figure, so that his formulations "on the other side" and "exactly 

the same" probably have to have different meanings. With the expression "the 

other side" Oskar could also mean the diagonally opposite partial wings. "Exactly 

windmill 1 

„windmill“ 2 

windmill 1 
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the same" could then refer to the individual partial figures in the sense of 

congruence. Probably, Oskar’s strategy is to search for the “elementary figure” 

of the rotational symmetric figure. Answering Robert’s question in line 8, Oskar 

carries his idea forward, but now uses a new figure, a second sign, (“windmill” 

2) as a counterexample. He seems to want to check the reference context he 

invokes on a second example, but even at this point it remains unclear what he 

exactly means by "on the other side". Similar to line 2, the wings could be meant 

diagonally opposite each other. "The same" could be an allusion to an even 

distance between the wings or, as assumed in line 2, it could point to congruent 

wings. His concept of rotational symmetry seems to be based on the idea of 

corresponding parts. 

 

Figure 5: Epistemological triangle of Oskar’s concept 

Julian comes up with a different interpretation and a different reference. He turns 

the windmill clockwise and decides "This is one" (line 10-12). Julian verbalizes 

his decision. If you "hold it in this position, this is the same as when it rotates” 

(line 12). He uses the same sign, but a different reference to develop his idea of 

rotational symmetry. In his statement, it is not entirely clear whether he is looking 

at the entire figure or focuses on individual parts as his classmates. But since the 

individual figure elements are shown in a different position when the figure is 

rotated, it can be assumed that it refers to the entire figure. 
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Figure 6: Epistemological triangle of Julian’s concept 

d) First Results contributing to Local Theories  

The analysis of this and further episodes shows that students in guided discourse 

succeed in addressing central aspects of the concept of rotational symmetry using 

various reference contexts. The data analysis using Steinbring’s epistemological 

triangle let us succeed in reconstructing two different reference contexts for the 

(pre)concept of rotational symmetry as local theories: a) “parts are the same on 

the other side”, b) “windmills can be rotated”, whereas b) represents the concept 

to be built of mapping a figure onto itself by rotating. The concept regarding the 

reference context a) is not sufficient from a mathematical point of view, because 

the idea behind holds for axis-symmetry as well. Regarding the examination of 

used materials and methods of the learning environment, it can be supposed that 

the activity of creating rotational symmetric figures encourages these concepts. 

The repeated depiction of a wing might strengthen the reference context of “the 

same on the other side” while the rotation seems to be less important. So, for the 

next design circle we change the order of the activities. Additionally, we give 

transparencies of the whole figures to the students to validate their decisions by 

rotating the transparency on the geoboard. 

CONCLUSION AND PERSPECTIVES 

In summary, it can be stated that students use the identification of an elementary 

figure to build a symmetric figure as well as mapping a figure onto itself to 

identify rotational symmetric figures in their conversations. Thus, both 

perspectives from part a) of rotational symmetry kicks in. But it remains still 

questionable in how far students are able to distinguish between the different 

concepts of axial and rotational symmetry, when they mainly focus on the 

elementary figure.  
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In further analyses, the development of selected group conversations over a 

longer period of time is examined in order to be able to describe decision-making 

processes over their entire length. We will try to describe conceptualization 

processes for the concept of rotational symmetry which go beyond individual 

group discussions. Ideally, these results can be abductively condensed into 

theories concerning the conceptualization processes of learners to the concept of 

rotational symmetry. 
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In this case study of a grade-4 teacher, we address the question: How might a 

teacher conceptualize fractional units as multiplicative relations (measures) 

while operating on continuous quantities? We analyze two video-recorded 

coaching sessions in which Lily (pseudonym) solved tasks she also used for 

promoting her students’ construction of the equi-partitioning scheme. Lily’s case 

provides a glimpse into how knowledge from research on children’s fraction 

learning can support and be extended to studying teachers’ fractional reasoning. 

We infer and discuss the implications of changes in Lily’s coordination of 

operations on concatenated (composed) sub-units and on those units separately, 

which led to her use of the distributive property for solving tasks she previously 

solved through guess-and-check.  

INTRODUCTION 

In this case study with Lily (pseudonym), a grade-4 teacher, we address the 

question: How might a teacher conceptualize fractional units as multiplicative 

relations (measures) while operating on continuous quantities? Our work with 

Lily drew on, and extended, research that articulated children’s construction of 

the equi-partitioning scheme (Steffe & Olive, 2010; Tzur & Hunt, 2015). To this 

end, researchers engaged children in tasks of iterating units as a means for them 

to conceptualize unit fractions (1/n) as measures (Simon et al., 2018), that is, 

multiplicative relations to a given whole (Tzur, 2019). Given a continuous whole 

and the task to share it equally among a given number of people (e.g., 5), a learner 

would estimate the size of one person’s share, iterate it 5 times, and compare the 

iterated whole with the one to be partitioned (see Figure 1a). If not equal – the 

learner would adjust the length of the estimated piece and repeat the process. 

Simon et al. (2004) called such a sequence of actions the repeat strategy. Two 

issues arise in such adjustment, namely, (a) its direction (making the next estimate 

shorter or longer) and (b) the amount of change, including how to improve the 

estimate by using the difference between the given and iterated whole (left-over 
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or overage piece). Hunt, Tzur, and Westenskow (2016) showed that children 

progress through four stages, the last of which involving conceptualization of the 

amount of change as a unit fraction of the left-over (or overage; see next section). 

In Lily’s case study we examined the extent to which her progression would be 

similar. 

This study contributes to the line of work in which teachers’ fractional reasoning 

is examined by using research with children (Lovin et al., 2018). It provides a 

glimpse into how a teacher may progress to a way of operating on fractional units 

that lays the foundation for constructing higher-level understandings. Such a way 

of operating seems a critical component of a teacher’s mathematical knowledge 

for teaching (MKT, see Hill & Ball, 2004) so she can effectively teach fractions 

to her students. This study could thus provide mathematics educators with an 

empirically grounded model of what constitutes a teacher’s reasoning with 

fractional units as well as tasks to promote it.  

CONCEPTUAL FRAMEWORK 

We draw on the constructivist research program that has been articulating 

conceptual progressions in children’s schemes for reasoning about fractional 

units (Norton et al., 2015; Steffe & Olive, 2010; Tzur, 2019). The commencing 

scheme in this progression, called equi-partitioning, underlies two related 

understandings about unit fractions (1/n). First, the defining characteristic of such 

units is their multiplicative relation to another unit considered as a whole (a unit 

of 1). That is, a unit fraction (e.g., 1/5) is determined by the whole being 5 times 

as much of it, which is compatible with the number of times it needs to be iterated 

to fit within a given whole. Second, because iteration of larger units results in 

fitting fewer of them within the whole, an inverse relation is anticipated among 

unit fractions (e.g., 1/5 > 1/6 precisely because 5 < 6). The equi-partitioning 

scheme is postulated to be rooted in a person’s ability to disembed pieces from a 

whole while keeping the whole intact. 

To promote teachers’ (e.g., Lily) construction of the equi-partitioning scheme 

through solving tasks with the repeat strategy, we have been using the French Fry 

activity (Tzur and Hunt’s, 2015). In fact, Lily and her partner had been using this 

activity in their classrooms to foster their students’ learning of unit fractions. 

Figure 1a shows a computer screen with a yellow strip (whole French fry) to be 

shared equally among 5 people. Below it we see that a piece, estimated to be one 

person’s share, has been iterated 5 times to check if it accomplished the intended 

partitioning. Indeed – it did not, as the iterated, 5-piece whole is not equal to the 
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given French fry. A learner would thus face two challenges: determine if the next 

estimate should be shorter or longer than the first estimate – and by how much. 

Hunt, Tzur, and Westenskow (2016) showed that children may progress through 

four stages in resolving each of those challenges. First, they have no conception 

of the nature (direction) of adjustment (shorter or longer). Second, an anticipation 

of the direction is evolving while the amount of adjustment is not yet 

conceptualized. Third, an anticipation of the amount of adjustment is evolving. 

Finally, both anticipations are integrated into a conception underlying both 

aspects of equi-partitioning (unit fractions as multiplicative relations to a given 

whole and the inverse relations among them). Figures 1b and 1c depict the fourth 

stage, including the two ways in which the left-over piece could be purposely 

operated on (Fig. 1b shows iteration of a unit concatenating the first estimate with 

1/5 of the left-over piece; Fig. 1c shows separate iterations of those sub-units). 

When coordinated, these two ways provide a basis for using the distributive 

property while iterating (multiplying) continuous fractional units. 

 

Figures 1a-1b-1c: Attempts at equally sharing a French fry among five people 

METHODS 

Participant and Settings 

This was a case study with Lily, a grade-4 teacher working at a school in a large 

US city. We chose Lily as her work exemplifies the conceptual transition (similar 

to children) on which this study focused. She participated in a larger project (see 

Acknowledgements) to promote teachers’ understandings of mathematics and 

mathematical pedagogy.  

Lily’s work took place during coaching sessions with her partner (“V”), 

conducted after they taught fraction lessons to students in one of their classes 

(with the partner observing that class). In those sessions, a researcher from our 

team led them to reflect on what they considered to be critical in the observed 

lesson. We focused on the teacher’s own understanding of mathematical aspects 

of what students could (or not) do during the lessons. To this end, in the coaching 
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sessions we used tasks that mostly followed tasks the teachers used, while further 

probing for their thinking. 

Data Collection and Analysis 

We focus on two coaching sessions with Lily and “V,” involving two graduate 

students, the project’s PI, and another researcher on the team (the first session 

was led by a graduate student, the second by the PI). One graduate student video 

recorded each session, focusing the camera on the teachers’ actions (e.g., hand 

gestures) and written work. Analysis began with each team member observing 

(individually) the sessions and making detailed logs of the main events. Then, the 

four team members met to discuss what they noticed, and to identify themes (and 

data segments) that later informed the focus of this study. A graduate assistant 

transcribed the selected video segments and the team then discussed and co-

authored the qualitative analysis presented in the next section (including tasks 

used to promote Lily’s progression).  

RESULTS 

We present data excerpts that indicate the transition in Lily’s reasoning about 

continuous, concatenated fractional units. We highlight how she moved from a 

guess-and-check method to purposely partitioning the piece left-over after 

iterating an estimate of one person’s share. She realized that combining 1/n of the 

left-over with her initial estimate and re-iterating it would solve the task of 

equally sharing a whole through unit iteration. This realization indicated her 

construction of a for of the distributive property for concatenated (composed), 

continuous units. 

Data in Excerpt 1 (the first, post-lesson session) illustrate the starting point in 

Lily’s reasoning, and thus the conceptual challenge she faced, when having to 

operate on the left-over piece for a task of equally sharing the whole among four 

(4) people. Working on this task followed a previous task in which Lily and her 

partner shared the whole equally among 3 people. Both anticipated that one 

person’s share would have to be shorter than the piece they iterated to equally 

share the same whole among 3 people. Thus, the researcher followed by asking 

how much shorter it needed to be, which both teachers did not know. (R stands 

for Researcher, L for Lily, and V for her partner.) 

Excerpt 1 

R: So, I’m just going to guess. Let’s try there (makes a piece shorter than the 1/3 

piece). So, I’m going to measure it (iterates the piece four times along 
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the yellow strip; Fig. 2). So, I have this much left-over (points to it). 

I need to make this piece (points to the estimated-then-iterated piece) 

longer or shorter? 

 

Figure 2: Estimated piece iterated 4 times; iterated whole is too short 

L: You need to make them longer. 

R: How much longer [with so] much left over? What would be the way to go 

about it? 

L: Guess and check. [authors italicized words to highlight Lily’s ideas.] 

R: So how much longer? [Lily replies first, then her partner, V.] 

L: A little bit (points to the left-over piece). Like about there.  

V: So, taking this [leftover], splitting it into 4 equal parts, then take that little part 

[1/4 of the leftover] to add on this (the original white part), then 

remeasure.  

R: Why would that work?  

V: Because it is taking the same amount to split four times equally. So, each piece 

has ¼ of this (the leftover part).  

R: (To V) Let’s try Lily’s way, then [yours]. (N iterates Lili’s estimate). Lily, 

yours [now] has this much leftover. Would you make this longer or 

shorter?  

L: A little bit longer. 

R: How much longer?  

L: I guess a sliver. 

R: Lily, I want to push you. I want to make sure that this makes sense to you. 

L: I don’t understand why [V’s way] is faster. Because you can eye-ball it easier.  

R: I have these four pieces already and I have this much left-over. Rather than 

just guess and check, why would it make sense to have the precision 

to split this into four pieces and add one of those pieces to my pieces? 

L:  I don’t know. You’re still eyeballing, you’re still guessing the fourth here. 

Excerpt 1 illustrates Lily’s initial idea, which is similar to Ana’s work in the study 

by Hunt, Tzur, and Westenskow (2016). Like Ana, Lily understands the iterated 

piece needs to be longer, but when asked, “How much longer?” she simply says 
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a little bit or by a sliver. Two pieces of the data support our inference she is yet 

to coordinate the left-over piece with both the iterated piece and the whole to be 

shared. First, Lily heard V’s explicit suggestion to split the left-over into 4 pieces, 

but this did not seem to change her reasoning. Instead, she followed her own idea 

and faced yet another imprecise partitioning with some piece left-over. This leads 

to our second point. Lily realized the effect of this activity differed from the 

intended partition. Yet, she continued to suggest changes (“a sliver”) that do not 

account for the number of people among whom the whole is to be shared. We 

infer that Lily’s scheme (guess-and-check, eye balling) precluded assimilating 

V’s and R’s suggestions in a way that would yield her understanding and, hence, 

shift in operating. This could be seen particularly in her comment that what V has 

been doing is like her own eye balling method. For us, this brought forth a 

perturbation: How might we provoke a change in Lily’s reasoning? 

Our plan was to first orient Lily’s attention to and possibly anticipation of the 

effect of adding a small piece (not related to a left-over) to the estimated-then-

iterated piece once n-iterations would be performed. To this end, the project’s PI 

(last author) joined the team for a second coaching session with Lily. For the first 

task of that coaching session he first created a piece and iterated it 7 times, then 

drew a longer piece considered as an adjusted one (Figure 3). Excerpt 2 presents 

what followed. 

 

Figure 3: A task to bring forth Lily’s anticipation of the effect of iteration 

Excerpt 2 

R: Can you estimate how far we are going to end up [if the blue piece is 

iterated 7 times]? Are we going to end up here? Here? (points 

to different places on the bar). Can you see where it would end 

up before we do it? Do you have a way of thinking about it?  

L: (Uses her fingers to measure how much longer (extra) the new piece is, 

then points to where it would end up.) Like, around here.   

R: And why would that be the place? What were you trying to do with this? 

L: Multiply this (extra only) by 7 [then add it to the original whole].   

Excerpt 2 indicates the task promoted Lily’s attention to the iteration of one piece 

as if it is composed of two sub-units, which she would need to set as a sub-goal 
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for the partitioning of a left-over. Instead of asking her to determine how much 

of the left-over is to be added to the initial estimate (original yellow piece), she 

only had to compare that yellow piece with another, given one (blue piece). The 

task was based on our inference that Lily’s ability to decompose whole numbers 

would enable such a way of operating also on concatenated, continuous units. As 

intended, Lily did not measure the entire (blue) piece and iterated it 7 times. 

Rather, she measured just the extra piece she knew to be the difference between 

the yellow and blue pieces – and iterated it 7 times. From her seemingly 

purposeful actions we inferred Lily anticipated that the total of iterating the entire 

blue piece 7 times would be equal to composing the 7-piece yellow stick with the 

effect of iterating (just) the extra 7 times. In a continuous context, she could 

reason about the concatenated aspect of the distributive property equation. 

The researcher presented her with a follow-up task of determining the effect of 

iterating just one small (extra) piece. He drew another original (yellow) piece, 

iterated it 5 times, and then added an extra (blue) piece to its right end (Fig. 4). 

Lily, operating on the added (blue) piece separately from the initial (yellow) 

piece, copied the blue piece, iterated that copy 5 times, and pointed to the end of 

the 5-piece addition as the location of what she anticipated would have been 

produced if the original (yellow) and extra (blue) piece would have been iterated 

5 times. That is, in a continuous context, she could reason about the aspect of the 

distributive property pertaining to each of the added units multiplied separately. 

To further her reflection on this equivalence, the researcher asked Lily to check 

– which she confirmed by combining a copy of the yellow and the blue piece and 

then iterating the combined piece 5 times.  

 

Figure 4: Lily’s initial step in anticipating the 5-time iteration of an extra piece 

The researcher believed Lily’s reflection on and coordination of the effects of her 

two separate actions could support her transition to operating on a left-over. He 

inferred from her purposeful actions that, for the first time we could observe it, 

she began operating on a continuous piece composed of two sub-units and linking 

it with the effect of iterating each of the sub-pieces separately. He thus presented 

Lily with a follow-up task intended to further promote her coordination of this 

way of operating with the challenge of using a left-over in a task to equally 
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partition a given whole. He thus drew a whole (“French fry”) to be equally 

partitioned among 6 people, then a piece estimated to be one person’s share 

(which he purposely made too short) and replicated it 6 times to produce a “too-

short” iterated whole. Knowing Lily would think the next estimate would need to 

be longer than his first estimate, he continued as follows.  

Excerpt 3 

R: How much of this left-over should I add to this piece (points to the first estimate) 

so I get it right the next time? 

L: I will take this piece and eyeball six little parts in it (points to the left-over piece). 

R: How many little parts should I eyeball [and] where will you put the mark?  

L: I’m thinking, take this (points to the left-over piece) and splitting it into 6 parts. 

R: Six parts? Why six? 

L: Because you have to add the little part to each of the original ones you had.  

Excerpt 3 indicates the intended transition in Lily’s reasoning. We infer from her 

explanation, prior to any action, that she anticipated the effect of adjustment to 

the initial estimate by purposely partitioning the left-over into the desired number 

of shares. Having worked on the previous tasks, she seemed to bring forth her 

anticipation of iterating a continuous piece composed of two sub-pieces to bear 

upon the task at hand. Specifically, she seemed to coordinate the impact of adding 

a piece and then iterating it 6 times (which she worked on in the previous tasks) 

with the size of piece relative to the left-over that would allow her to accomplish 

this. In contrast to Lily’s lack of understanding of V’s suggestion (Excerpt 1), it 

then made sense to her that 1/6 of the left-over would produce both (a) the entire 

left-over (if iterated 6 times) and (b) a 6-piece whole equal to the given French 

fry if the extra is first composed with the estimate and then iterated 6 times. She 

conceptualized how the two actions of iterating (multiplying) continuous 

fractional units—one for a unit composed of two sub-units and one iterating each 

of those sub-units separately—could lead to the goal.  

DISCUSSION 

Our case study with Lily illustrates how research on children’s fractional 

reasoning (Steffe & Olive, 2010) can support, and be extended, to research on 

teacher’s reasoning. We point out two key contributions. First, we further 

articulated the fourth stage in Hunt, Tzur, and Westenskow’s (2016) study, in 

terms of conceptualizing the distributive property for continuous fractional units. 

Our starting point with Lily, and the conceptual change she went through, were 



Harrington, Hodkowski, Wei & Tzur 

PME 44 – 2021   3 - 29 

similar to their study of Ana’s case. By paying further attention to the 

coordination in her actions on continuous fractional units (concatenated or 

separated), we characterized this change as learning to apply the distributive 

property in a continuous context. Lily is a case of a person, adult like child, who 

uses iteration to construct unit fractions as multiplicative relations – measures 

consisting of one or more sub-units (Simon et al., 2018). That is, 1/n is a unit 

fraction in the sense of the whole being n times as much of it, regardless of the 

particular way the continuous unit is composed and/or iterated. We do not claim 

that Lily has conceptualized this at a stage she will not need prompting to engage 

in future tasks. However, her work on the tasks provides a glimpse into how 

coordinating operations on the left-over piece with the initial estimate may 

support conceptualization of unit fractions by bringing forth the distributive 

property in a continuous context.  

Second, for teaching (and teacher development), our study reveals a crucial way 

of reasoning about fractional units needed to effectively promote students’ 

understanding of fractions as measures. It thus adds to the growing body of 

knowledge on teachers’ mathematical knowledge for teaching (Hill & Ball, 

2004). Conceptualizing operations on fractional units presented in this study can 

become a basis on which teachers implement practices that build on students’ 

available understandings. Our work with Lily and her partners showed increased 

abilities to identify where one’s own students are in their reasoning and thus set 

goals and activities for moving them along a similar trajectory.  
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Although the importance of being able to appreciate the aesthetic qualities of 

mathematical objects during problem solving is now clear, there has been little 

research on facilitating students’ appreciation of the aesthetic qualities valued 

by mathematicians. This paper presents a case study on problem solving by pairs 

of high-school students to describe and characterize the process by which 

learners gain such an appreciation under pedagogical interventions. The results 

show that participants could appreciate aesthetic qualities; and that to facilitate 

learners’ appreciation more effectively, it is necessary to consider the curriculum 

and the order of the mathematical objects presented. 

INTRODUCTION 

By analyzing the mathematical problem-solving processes of experts, the 

importance of being able to appreciate the aesthetic qualities of mathematical 

objects during problem solving has become clear. Some studies have also shown 

empirically that being able to appreciate aesthetic qualities is a characteristic of 

experts (e.g., Dreyfus & Eisenberg, 1986; Silver & Metzger, 1989). Even gifted 

students tend to appreciate different aesthetic qualities than those valued by 

mathematicians (Tjoe, 2016). 

On the other hand, the subjectivity and contextual dependence of the concept of 

“beauty” have been empirically noted (e.g., Wells, 1990); therefore, some studies 

have come to consider the role of aesthetic judgments, rather than the aesthetic 

qualities themselves. Sinclair (2004) identified three roles of aesthetic judgments 

in mathematical inquiry— the evaluative role, the generative role, and the 

motivational role. In addition, Sinclair (2006) suggested that a “learner’s own 

aesthetic qualities” could play these roles. However, “learner’s own aesthetic 

qualities” do not necessarily have the roles that Sinclair identified. Therefore, in 

order to enrich learners’ problem-solving process—for example, to increase their 

motivation—it is useful to facilitate their appreciation of the aesthetic qualities 
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valued by mathematicians. A method for doing so has not yet been clarified and 

remains as an important research question. 

The purpose of this study is to elucidate a teaching method that helps learners to 

appreciate the aesthetic qualities of mathematical objects. For this purpose, the 

present study describes and characterizes the process whereby learners gain such 

an appreciation under pedagogical interventions (PIs). 

THEORETICAL FRAMEWORK 

The aesthetic qualities of mathematical objects are often explained by attributes 

such as simplicity and generality (e.g., Hardy, 1956; Poincaré, 1908), but some 

studies have highlighted the subjectivity of these values, or even the concept of 

“beauty” itself (e.g., Inglis & Aberdein, 2014; Wells, 1990), and have tended to 

avoid clear definitions for aesthetic qualities (Davis & Hersh, 1981). However, 

for the present study, which is aimed at helping learners to appreciate such 

qualities, it is essential to be able to define them. In addition, this definition must 

satisfy the characteristics of the aesthetic qualities valued by mathematicians. 

Hence, the author defines the aesthetic qualities of mathematical objects by 

adopting the following four viewpoints based on the theory of Takeuchi Toshio, 

a Japanese aesthetician, which is in turn based on the principle of “unity in 

variety” (Takeuchi, 1979). The first viewpoint is the “form,” which is the 

relationship among the components of a mathematical object. This viewpoint can 

be split into (i) “equivalence relations” (e.g., proportion) and (ii) “quasi-

equivalence relations,” which are not full equivalence relations but rather 

similarity relations (e.g., mappings). The former reasonably yields unity among 

the components and therefore gives rise to the aesthetic qualities of perceived 

objects in a wide area of fields, including mathematics, while the latter unifies 

components according to cultural and individual perception. In mathematics, 

similarity relations such as mappings are very important and give rise to attributes 

such as simplicity. The second viewpoint is the “essence” of a mathematical 

object, which is the property that is preserved during generalization and 

extension. The third is the “whole” of a mathematical object, which is the range 

in which its “essence” is established. The fourth is the “vastness” of a 

mathematical object, which is perceived through intuition about the “essence” 

and the “whole” of the mathematical object. 

The above four viewpoints and the principle of “unity in variety” are also well 

suited to the below reference by Poincaré (1908): 
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What is it that gives us the feeling of elegance …? It is the harmony of the 

different parts, their symmetry, and their happy adjustment; it is, in a word, 

all that introduces order, all that gives them unity, that enables us to obtain a 

clear comprehension of the whole as well as of the parts (pp. 30-31). 

METHODOLOGY 

This paper selects a multiple-cases study as its method based on the methodology 

of Yin (2014). The author observed learners’ problem-solving processes under 

PIs. Three pairs of high-school students were chosen from a school that has 

among the highest standards in Japan, with the expectation that they would be 

able to use the mathematical knowledge and skills learned up to middle school. 

Participants were asked to solve a problem collaboratively (Figure 1). This 

problem is widely used in junior high schools in Japan as a teaching material for 

the use of the symbolic expression 𝑎𝑥 + 𝑏𝑥 = (𝑎 + 𝑏)𝑥. On the other hand, by 

interpreting this figure as “a set of three similar figures sharing a base”, it is 

possible to understand at a glance that the two routes are equidistant. In other 

words, by identifying similarity or proportionality as a “form,” and at the same 

time, by intuiting this “form” as an “essence,” the aesthetic quality in this study 

can be appreciated. 

 

<Question>Please prove this property. 

 

Last names of authors in the order as on the paper 
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assumed that various symmetries (e.g., trajectory of the position of the empty hole) 

were identified; (III) asking what the cases are in which the common properties 

identified by (II) are not established; (IV) asking to compare the primitive way of 

counting the number of operations while manipulating the clips and the way by 

intuiting the “whole” from the viewpoint of symmetry. 

Takashi and Keiko are thinking about the following property of isosceles triangle [*]. 

 A property of isosceles triangle [*]  

  

 

 

 

 

In the Fig. 1, the triangle ABC is an isosceles triangle 

satisfying AC = BC. The three points D, P, and Q on the 

sides of the triangle ABC satisfy the following: 

AP = PD, DQ = QB 

In this case, the route (i) that departs from A, passes C, 

and reaches B, and the route (ii) that departs from A, 

passes through P→D→Q, and reaches B are equidistant. 

 

 Fig. 1  

[1] Please prove that this property [*] holds. 

 Figure 1: The problem solved by the students.  

 

RESULTS: STUDENTS’ APPRECIATION PROCESS 

 

DISCUSSION 
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Figure 1: The first form of problem presented to participants 

The participants received the following PIs from the observer (the author) when 

their thought processes seemed to stop: (PI-i) presenting some derived figures in 

which the triangles are not similar to each other or in which the figures are 

rectangular (Figure 2); (PI-ii) asking the common properties among problems 
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with different figures with two equidistant routes; (PI-iii) asking in what cases 

such common properties as are identified by (PI-ii) are established; and (PI-iv) 

asking to compare the primitive way of proving the statement with the means by 

intuiting the “whole” from the viewpoint of similarity or proportionality. These 

PIs are refinements of the method used in previous studies (Dreyfus & Eisenberg, 

1986; Tjeo, 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Derived figures for (PI-i) 

The data obtained from the study are qualitatively analyzed as follows.  

● Identify the point at which the “equivalence relation” was identified 

and intuited by the participants, as well as the point at which the 

“whole” was intuited by the participants.  

● Describe the problem-solving process leading up to the identification 

and intuition of the “equivalence relation.” If a part of this process can 

be considered to play an important role in the later appreciation 

process, it is also described in detail.  

● Identify the “vastness” felt by the participants from the utterances in 

the series of problem-solving processes and the answers to interview 

questions.  

RESULTS: AN APPRECIATION PROCESS BY A PAIR OF STUDENTS 

Because a detailed description consumes a lot of space, the problem-solving 

process followed by only one pair of students (S1 and S2) is described here. The 

processes followed by other pairs were almost the same. This pair solved the 

problem by “detouring” more than the other pairs; therefore, they can be expected 

to obtain rich information. Their entire problem-solving process can be divided 

roughly into two parts. 
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Identifying and Intuiting a Parallelism as the “Form” and the “Essence” 

In order to answer the <Question>, the pair constructed the proof as follows: 

based on the fact that the base angles of the isosceles triangles are equal, they 

claimed that ∠𝐶𝐴𝐵 = ∠𝐶𝐵𝐴, ∠𝑃𝐴𝐷 = ∠𝑃𝐷𝐴, and∠𝑄𝐷𝐵 = ∠𝑄𝐵𝐷. Next, since 

the isotope angles are equal, 𝑃𝐶 ∥ 𝐷𝑄, 𝐶𝑄 ∥ 𝑃𝐷, and the quadrilateral PDQC is 

assumed to be a parallelogram. Finally, they explained that the two routes are 

equal based on the fact that the opposite sides of any parallelogram are of equal 

length.  

Because they stopped thinking after this proof, the author asked them to think 

about the figure on the left-hand side of Fig. 2 as (PI-i) and to clarify the 

differences between the two different figures composed of isosceles triangles as 

(PI-ii). In response to this question, they referred to one of the figures as being 

composed of similar triangles, and attributed the factor of whether the isometric 

property is established to the presence or absence of a parallelogram. In response 

to their reaction, the author asked them what they would consider to be a similar 

property that could be realized in the case of a rectangle, as (PI-i) and as (PI-iii). 

The author asked them this without giving them the image on the right-hand side 

of Fig. 2, so they drew an image like that presented in Fig. 3. Then, based on the 

attention paid to the parallelogram by S1, they finally saved parallelism as the 

“essence” and identified the set of figures inside the parallelogram as the “whole” 

by drawing Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The figure drawn first Figure 4: The figure drawn last 

 
 

Identifying and Intuiting a Similarity as the “Form” and the “Essence” 

While affirming the focus on parallel by the pair, the author asked them to think 

about the figure on the right-hand side of Fig. 2. They noticed that the route 

passed through SE twice, but could not be convinced that the two routes were of 

equal distance. 
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Since their thoughts seemed to be stuck, the author asked them to consider the 

case in which the figure was composed of squares as (PI-i). In response, they 

inductively confirmed the property by drawing many figures and explained that 

the property is satisfied by expressing each side length of the two inner squares 

by symbols.  

In response to their reaction, the author asked them the range of the figure in 

which isometric routes exist as (PI-iii). Then, they considered parallelograms, 

pentagons, and diamonds. They found it difficult to draw a figure composed of 

pentagons, so they gave up drawing it. This confirms that they had not yet intuited 

similarity as the “essence” at this point. When considering diamonds (Figure 5), 

S1 said, “it will always hold if another shape is determined when the first internal 

shape is drawn.”  

 

 

 

 

 
 

Figure 5: The figure composed of diamonds drawn by S1 

On the other hand, S2 focused again upon similarity while referring to S1’s 

remark and to the picture drawn by S1; however, S2 was not confident in focusing 

upon similarity without knowing the similarity condition of a square. However, 

S1 supplemented S2's idea, and they began to analyze figures composed of 

isosceles triangles or squares with a view to similarity. Hence, they determined 

that the similarity of the three figures was a sufficient condition to establish the 

isometric property. In addition, they specifically constructed figures containing 

isometric routes using various rectangles, pentagons, semi-circles, and circles 

(Figure 6). 
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Figure 6: The figure composed of semi-circles drawn by S2 

The “Vastness” Felt by the Participants 

After asking participants to reflect upon the entire problem-solving process, the 

author asked them what they thought or felt. Their responses are shown in Table 

1.  

S1  S2 

Until now, I have solved both this 

problem about the figure composed of 

isosceles triangles and this problem 

about the figure composed of 

semi-circles. However, there is a great 

sense of accomplishment that can be 

developed from the former problem to 

the latter problem. Even if it has a certain 

property, even if it is a straight line or a 

curve, it is like a circle with no corners, 

no matter how many corners there are, if 

we can find some common parts, if we 

can find common properties from among 

them, (Interviewer: What is it now?) 

What is similarity now, without being 

caught in concrete cases like isosceles 

triangles, we can apply them to various 

things. It was interesting to know this. 

 Until now, even if I thought, it was 

only about this problem [1]. Rarely 

have I developed a square or a circle 

from here. Well, by deeply exploring 

when it holds, I'm interested in the 

question about one case or one 

problem, “What about the other case?” 

I mean, it's good to know that. 

Table 1: What was thought or felt (Translated by the author) 
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DISCUSSION 

The Learners’ Process of Appreciating the Aesthetic Qualities of 

Mathematical Objects 

This study defined the process for appreciating the aesthetic qualities of 

mathematical object as four subprocesses: identifying the “form,” intuiting the 

“essence,” intuiting the “whole,” and feeling the “vastness.” Particularly in this 

paper, since similarity is regarded as the “form” and the “essence”, identifying 

the “form” and intuiting the “essence” were regarded as the same process, without 

distinction. 

In the case described in this paper, the pair of high-school students followed the 

above process successfully under PIs. They first identified and intuited the 

parallelism as the “equivalence relationship” and then identified and intuited 

similarity as the “equivalence relationship.” It was only in this case that the 

learners identified and intuited an “equivalence relationship” as the “form” and 

as the “essence” that the author did not envision (cf. Hanazono, 2019). 

The particularity of this case is thought to be due to the mathematical task 

employed in this study and the curriculum experienced by participants. In Japan, 

in the second grade of junior high school, formal proof is positioned as a learning 

objective in the national curriculum. When learning to prove things formally, the 

properties of the parallel lines (which are introduced immediately beforehand in 

the curriculum) are frequently used. As these properties are used from the 

beginning, they will naturally be widely used in subsequent proof problems. 

Therefore, it is natural for many Japanese learners to focus on the parallelism 

when asked to prove statements. 

The curriculum can also explain why similarity is a viewpoint that is hardly 

noticed by Japanese learners when considering figures other than triangles. In 

mathematics education in Japan, enlargement and reduction are treated in 

elementary school subjects as being directly connected to similarity (Grade 6). 

Then, in junior high school, the fact that two figures are similar when straight 

lines connecting their corresponding points all intersect at one point is again 

treated (Grade 9). However, after the definition of similarity of triangles is 

handled following confirmation of the definition of similarity in general, many 

proof problems that require the identification of a set of triangles that satisfy the 

similarity condition will be presented. Therefore, as was the case with S2, the 

concept of similarity and the similarity conditions of triangles are strongly linked 

for many Japanese learners. Thus, it can be assumed that similarity will not 
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function adequately as a viewpoint when considering a figure other than a 

triangle. 

In the elementary school mathematics curriculum in Japan, concepts such as 

parallelism, symmetry, and enlargement/reduction are treated as viewpoints for 

considering figures in the context of concept formation for figures. When children 

learn these viewpoints, they recapture the figures which they have already learned 

from these viewpoints. On the other hand, in the junior high and high-school 

mathematics curricula, the context of concept formation for figures may be 

weakened, and the role of properties as viewpoints for considering mathematical 

objects becomes less noticeable. The curriculum needs to be reevaluated to 

develop educational methods aimed at facilitating learners’ appreciation of the 

aesthetic qualities of mathematical objects. 

Effects and Limitations of PIs 

As mentioned in the previous section, in the case detailed in this paper, a pair of 

high-school students who underwent PIs derived from a theoretical framework 

were found to appreciate the aesthetic qualities of mathematical objects. The 

effects of such PIs have been confirmed in other case studies (cf. Hanazono, 

2019). In other words, the case study in this paper supports the effectiveness of 

the theoretical hypothesis of the PIs. 

As for the details of the appreciation process, in the case where participants 

consider figures composed of rectangles, it is particularly effective to use PIs that 

encourage learners to consider figures composed of squares or diamonds. By 

constructing the two inner diamonds such that they are inscribed in the outer 

figure, the three diamonds are similar to each other. By considering a figure 

composed of diamonds (for which similar cases are easy to handle) and squares 

(which are always similar to each other), the author believes that it is possible to 

help learners to pay attention to similarity as a common point for isosceles 

triangles with two equidistant routes.  

On the other hand, in the case of an isosceles triangle in which the isometric 

property does not hold (the left-hand side of Fig. 2), or of a rectangle in which 

the isometric property holds but not the similarity (the right-hand side of Figure 

2), learners’ attention to similarity may be hindered. Although it is indispensable 

to consider the case in which the “essence” does not hold in order to intuit the 

“whole”, there is room for reconsideration of the order in which figures are 

handled. 
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A MODEL OF STUDENT MATHEMATICAL WELLBEING: 

AUSTRALIAN GRADE 8 STUDENTS’ CONCEPTIONS 
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1The University of Melbourne, Australia 

 

To support academic performance, many schools are increasingly focussed on 

supporting student wellbeing. Yet the high incidence of mathematics anxiety and 

disengagement suggests that many students experience poor wellbeing in many 

mathematics classrooms. This paper proposes a seven-dimensional model of 

student mathematical wellbeing. To test this model, 488 eighth grade students 

responded to one open-ended question; responses were analysed using a 

combined deductive/inductive thematic analytic approach. Findings supported 

the model. The study illustrates the importance of focusing on wellbeing within 

specific subjects, provides a model for studying student wellbeing specific to 

mathematics education, and points to areas to target to improve and develop 

student mathematical wellbeing.  

BACKGROUND 

Complementing the traditional focus on developing cognitive skills such as 

numeracy and literacy, schools worldwide are increasingly considering strategies 

for supporting holistic student development, including the development of non-

cognitive skills and student wellbeing. The United Nations includes wellbeing as 

one of 17 goals for sustainable development to achieve by 2030 (United Nations, 

n.d.), and student wellbeing is increasingly included as a key priority within 

policy and practice (NSWDET, 2015; VICDET, 2018). 

Mathematics is a foundational subject within education, as the benefits of 

attaining competence within the subject accrue over the lifespan; enhance 

employment opportunities; inform choices about the environment, health, and 

wellbeing; and correlate with longer life expectancy (Plunk, Tate, Bierut, & 

Grucza, 2014). However, despite significant global financial investments to 

improve mathematics education, student engagement in mathematics generally 

has remained low, with negative emotions and attitudes towards the subject 

persistently reported by students (Clarkson, Seah, & Pang, 2019). Many students 

experience ‘mathematics anxiety’, and perceive mathematics to be boring and 
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unenjoyable (Grootenboer & Marshman, 2015). In Australia, the proportion of 

secondary students taking advanced mathematics has steadily been declining over 

the past three decades (Kennedy, Lyons, & Quinn, 2014). These trends all point 

to poor student wellbeing in mathematics education.  

Despite the growing focus in education policy and practices on student wellbeing, 

there has been little attention exploring student wellbeing within individual 

subject disciplines, including mathematics. The current study addresses this gap, 

proposing and testing a model of mathematics wellbeing. 

THEORETICAL FRAMEWORK 

Wellbeing – also termed as ‘flourishing’ or ‘thriving’ – can be defined and 

operationalised in a number of ways. We focus on subjective wellbeing, in which 

wellbeing is defined based on a person’s subjective perception of the extent to 

which they are feeling and functioning well across a number of dimensions (e.g., 

physically, mentally, socially, cognitively). Drawing on research and theory from 

the field of positive psychology, a number of frameworks have been applied 

within schools over the past decade within Australia to operationalise student 

wellbeing (Slemp et al., 2017; White & Kern, 2018). For instance, the PERMA 

model includes five dimensions that together support wellbeing: positive 

emotions, engagement, relationships, meaning, and accomplishment (Seligman, 

2011). The EPOCH model suggests five positive psychological characteristics 

that support positive development: engagement perseverance, optimism, 

connectedness, and happiness (Kern et al., 2016).  

These various models and frameworks identify general student wellbeing, rather 

than wellbeing within specific subjects. To our knowledge only two studies have 

specifically explored ‘mathematical wellbeing’. Clarkson and colleagues (2010) 

proposed a three-dimensional model: cognitive, affective/values and emotions. 

Part (2011) includes an individual’s functioning’s and capabilities. Both 

frameworks ignore social aspects of wellbeing and mathematics learning and lack 

discrete measurable entities.  

We propose an updated seven-dimensional model of mathematical wellbeing 

(Table 1), which includes seven dimensions that have been linked to positive 

mathematics learning outcomes (e.g., Grootenboer & Marshman, 2015). The 

model integrates the five aspects of Seligman’s (2011) PERMA model, four 

aspects of Kern and colleagues’ (2016) EPOCH model; and two dimensions of 

Clarkson and colleagues’ (2010) mathematical wellbeing model (MWB).  
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METHODS 

Our research question was: To what extent do students’ conceptions of wellbeing 

in mathematics education align with our updated mathematical wellbeing model? 

To test this question, we compared our theoretical model with students’ 

experiences of mathematical wellbeing based on the open-ended question: What 

makes you feel really good or function well in maths?  

Participants included 488 grade eight students (223 females) aged 13 - 14 years, 

from nine urban and regional secondary schools (3 private; 4 Government/public; 

2 Catholic) located in Melbourne and surrounding cities in Australia. Students 

self-identified their ethnicities as Australian (71%), Asian (14%), European (6%), 

Indian/Pakistani (6%), Indigenous Australian (2%), Middle Eastern (1%), or 

North/South American (2%). Schools serviced socioeconomic neighbourhoods 

ranging from low to high.  

Dimension Description Source 

Positive Emotions Positive emotions in mathematics e.g., fun PERMA; 

EPOCH; MWB 

Engagement Concentration, absorption, deep intertest, or 

focus when learning/doing mathematics 
PERMA; 

EPOCH 

Relationships  Supportive relationships, feeling valued/cared 

for, connected with others, or supporting peers 

in mathematics 

PERMA; 

EPOCH 

Meaning A sense of direction, feeling mathematics is 

valuable, worthwhile or has a purpose PERMA 

Accomplishment A sense of achievement, reaching goals, or 

mastery completing mathematical tasks/tests 
PERMA 

Cognition Having the skills, and understanding to 

undertake mathematics  MWB 

Perseverance Drive, grit, or working hard towards 

completing a mathematical task/goal EPOCH 

 
 

Table 1: An updated mathematical wellbeing model 

Responses were imported into NVivo 11 and analysed using a combined 

deductive/inductive thematic analysis adapted from Braun and Clarke (2006). 

Initial nodes/themes were generated inductively. For example, “having friends in 
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my class to support me” was coded as peer support. Nodes were then categorised 

deductively into common themes based on our theoretical model. For example, 

the nodes peer support and teacher support were categorised as relationships. As 

students often mentioned multiple themes, the response for each student could be 

categorised into multiple nodes and themes (for students mentioning the same 

theme multiple times, the theme was only counted once).  

RESULTS 

Table 2 summaries the final categorisation of nodes into themes and how student 

responses aligned with our theoretical model. Most students associated their 

mathematical wellbeing with positive classroom relationships followed by a 

sense of engagement, mathematical cognitions, accomplishments, positive 

emotions, perseverance, and meaningful mathematics learning. In addition, music 

was mentioned several times, with numerous students suggesting music 

facilitated engagement and positive mood. As such, music appeared to contribute 

to the other themes, rather than being a separate dimension of wellbeing. 
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Themes & nodes Student examples N (%) 

Relationships  200 (32%) 

Teacher support A supportive or good teacher 94 

Peer support Having friends to help me 83 

General support When I get help with my learning 38 

Engagement  126 (20%) 

Interesting/hands on Learning interesting stuff 55 

Focused working Being absorbed in my work 37 

Independent/quietness  When it is quiet and I’m by myself 27 

Music (engagement) Music helps me concentrate well 15 

Cognitive When I understand the material 96 (15%) 

Accomplishment   86 (14%) 

Good marks When I do good in a test 31 

Accuracy When I get the answers right 24 

General mastery When successful at learning something  17 

Completing tasks When I complete my work 13 

Confidence When I’m really confident   3 

Positive emotions  60 (9%) 

Enjoyment/fun/happy If the maths class is enjoyable 47 

Relaxed/no pressure When there is no pressure 12 

Music (emotions) Music to listen to, to enjoy it more 4 

Perseverance  31 (5%) 

Challenge Having work I find challenging 21 

Working hard/practice When I work hard 13 

Music (no reasoning) Listening to music in class 24 (4%) 

Meaning  10 (2%) 

Future skills Knowing these skills will help me in life 5 

Real world relevance I like when problems relate to real life 5 

 
 

Table 2: Results, with coded student responses by theme and node 

DISCUSSION 

Despite a growing focus in schools on student wellbeing, existing models focus 

on general student wellbeing rather than considering how wellbeing might 
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depend on the context or specific subject. Extending existing theoretical models 

developed within positive psychology and mathematics education, we proposed 

a seven-dimensional mathematical wellbeing model. Based on qualitative data 

from 488 Australian Grade 8 students that asked students about what helps them 

feel and function well in mathematics classes, we found that students’ responses 

generally aligned with the seven proposed dimensions. Student responses also 

pointed to the importance of music in promoting positive emotions and a sense 

of engagement. Thus, our model offers a useful starting point to explore the 

factors that might promote student wellbeing, specifically within mathematics. 

Most students pointed to the importance of supportive classroom relationships 

with both teachers and peers. Previous mathematical wellbeing frameworks 

(Clarkson, Bishop, & Seah, 2010; Part, 2011) did not include a relationship 

dimension, pointing to the benefits of drawing on models developed through 

other disciplines. The impact of supportive social relationships on wellbeing and 

academic achievement is well recognised (e.g., Allen & Kern, 2017; Hattie, 

2008). Within mathematics education, supportive teachers are associated with 

improved student mathematical achievement; positive emotions, academic 

enjoyment and effort; and mathematical engagement (OECD, 2019; Sakiz, Pape, 

& Hoy, 2012). Interestingly, a similar proportion of students referenced peer and 

teacher relationships. In many countries, mathematics classrooms are teacher led, 

with limited opportunities for peer-collaboration (Geist, 2010). Peer collaboration 

can also greatly impact on student mathematical learning outcomes, especially 

students from minority cultures (Hill, 2018). The prevalence that students noted 

the importance of positive relationships for helping them feel and function well 

suggests that greater attention to the social aspects of mathematics learning could 

be beneficial. 

The second most common theme was engagement. Much research attention has 

focused on the impacts of engagement on student academic performance (e.g., 

Attard, 2013). Our findings illustrate that engagement also contributes to 

mathematical wellbeing. Notably, the comments by students pointed to factors 

that make the classroom more disengaging (e.g., distracting peers, repetitive 

pedagogy) or engaging (e.g., listening to music, quietness). Many students find 

mathematics boring, disengaging and repetitive (Grootenboer & Marshman, 

2015), especially when teachers rely on textbook focused pedagogies (McPhan, 

Morony, Pegg, Cooksey, & Lynch, 2008). Our findings support the incorporation 

of “fun” pedagogies that have been supported in other countries to increase 

engagement and enhance wellbeing (Clarkson et al., 2019; Hill, 2018).  
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The progressive yet linear nature in which mathematics is often taught can 

contribute to fears or anxieties about being left behind in a fast paced mathematics 

curriculum, resulting in greater anxiety and poor learning outcomes (Geist, 2010). 

Poor performance can result in greater pressure to perform well, at the expense 

of student mental health. Yet recent studies suggest that strategies to develop 

student wellbeing and academic performance can be complementary, rather than 

competing (White & Kern, 2018). Our findings support this, pointing to 

reinforcing spirals in which wellbeing supports performance and performance 

supports wellbeing. Students indicated that aspects such as understanding the 

problems, successfully completing tasks, and correctly solving problems resulted 

in positive feelings and greater confidence, whilst pressure to not make mistakes 

and to perform in tests promoted negative emotions.  

The low prevalence of perseverance was surprising, considering that 

perseverance is central to student academic achievement and mastery of goals 

(Duckworth & Gross, 2014). As mathematics involves reasoning and problem 

solving skills, perseverance is particularly important for mathematical 

accomplishments (Sullivan et al., 2013). The low prevalence could mean that 

perseverance is more relevant to achievement than to wellbeing, or as the data 

were based upon qualitative responses, other dimensions may have been more 

obvious. Future studies might use quantitative approaches to test the importance 

of this theme to wellbeing  

Meaning similarly was only mentioned by a small number of students. 

Meaningful, real world or useful mathematical pedagogies are associated with 

greater student interest and motivation, improved effort and engagement, and 

improved mathematical performance (Dobie, 2019). In Western countries, 

studies point to students desiring meaningful learning experiences (Hill, 2018). 

The sample included a number of non-Western participants, who might not value 

meaningful learning in the same way. Alternatively, as a required subject, 

meaningful learning may be considered less relevant by students. Future studies 

might further explore the role that meaning plays in mathematics education for 

both academic and wellbeing outcomes.  

Pointing to strategies for supporting student’s wellbeing, some students indicated 

that listening to music promoted their mood or engagement. Thus, music 

appeared to be something that supports other themes of our mathematical 

wellbeing model, rather than as representing a separate dimension of wellbeing. 

Other studies similarly find that adolescents often strategically listen to music to 
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enhance their wellbeing, motivation and concentration (Papinczak, Dingle, 

Stoyanov, Hides, & Zelenko, 2015). Future studies will benefit from identifying 

other strategies for promoting the seven wellbeing dimensions proposed by our 

model.  

IMPLICATIONS AND CONCLUSION 

While wellbeing is often considered as a global construct, a key message of this 

paper is that wellbeing is domain specific. Thus, student wellbeing should be 

explored in individual subjects. Using insights from positive psychology to 

inform mathematics education, this study provides a seven-dimensional model 

that aligns with aspects that help students feel and function well within 

mathematics. Necessary extensions of this research include the development of a 

measure to assess mathematical wellbeing, and understanding what factors enable 

students to thrive in mathematics education.  

Our mathematical wellbeing model points to areas to target to improve students’ 

experiences in mathematics. The model might not apply to students’ experience 

of wellbeing when engaging in other subjects, but the methods proposed in this 

study can be adapted to explore student wellbeing in other academic subjects. 

Future studies might test the relative importance of each dimension, using 

quantitative methods and extending to other year levels and populations. Cultural, 

school and gender differences in students’ conceptions of their mathematical 

wellbeing should also be explored.  

The widespread negative reactions experienced by students in mathematics 

education are well publicised, pointing to a poor sense of wellbeing in many 

mathematics classrooms (e.g., Attard, 2013; Fielding-Wells & Makar, 2008). 

Providing a balance to  the considerable research and media attention in 

mathematics education focused on the negative aspects, the ‘gaps’, and what is 

going wrong in the subject, our study offers a glimpse of the aspects of students 

mathematical learning that are working well and enable students to thrive in 

mathematics education. Considering the somewhat global preoccupation with 

student mathematics (under)achievement (e.g., OECD, 2019), this study makes a 

timely contribution offering a sense of hope that there is more to mathematics 

education than merely achieving academic benchmarks. 
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WHAT DO TEACHERS LEARN ABOUT THE DISCIPLINE OF 

MATHEMATICS IN ACADEMIC MATHEMATICS 

COURSES? 

Anna Hoffmann1 and Ruhama Even1  

Weizmann Institute of Science, Israel 

 

This study investigates the contribution of academic mathematics courses to 

teacher learning about the discipline of mathematics. Analysis of interviews with 

14 secondary school mathematics teachers, who graduated from a master’s 

program that included a strong emphasis on academic mathematics studies, 

identified references of contribution to nine topics that can be grouped into three 

aspects of knowledge about the discipline of mathematics: (1) essence, (2) doing, 

and (3) worth. Each of the three aspects was addressed by all or almost all the 

teachers. However, the number of teachers that addressed each topic varied 

considerably among and within aspects. 

INTRODUCTION 

Academic mathematics studies are, in many countries, an important component 

of the professional education of secondary school mathematics teachers. 

Theoretical contemplations and empirical studies suggest potential contribution 

in two dimensions of subject-matter knowledge that appear to be critical for 

teaching. One dimension is knowledge of specific topics, concepts, and 

procedures (Dreher et al., 2018; Weber et al., 2020), and the other – which is the 

focus of this study – is a more general epistemological knowledge about the 

discipline of mathematics (e.g., Even 2011; Zazkis & Leikin 2010; Ziegler & 

Loos 2014).  

The existing empirical research literature reports on contribution of academic 

mathematical studies to teaching in relation to knowledge about the discipline of 

mathematics (e.g., Baldinger 2018; Even 2011; Zazkis and Leikin 2010). Yet, this 

literature has shortcomings. First, the existing research does not clearly link 

between academic mathematics studies and modifications in teachers’ 

conceptions about mathematics; findings are commonly based on reports from 

teachers who studied in different academic programs, and, in addition, the course 

instructors’ intentions regarding what to teach these teachers about mathematics 
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has not been examined. Second, the contribution of academic mathematics 

studies, not only to knowledge, but to actual teaching, has rarely been examined. 

Our study addresses these shortcomings. 

The starting point for our investigation are results from a study that examined 

what mathematicians who teach academic mathematic courses to secondary 

school mathematics teachers would like to teach teachers about the discipline of 

mathematics (Even, 2020; Hoffmann & Even, 2018). The findings revealed that 

enriching, expanding and deepening teachers' knowledge about the discipline of 

mathematics was a central goal of all the participating mathematicians. They 

referred to nine topics that can be grouped into three key aspects: (1) the essence 

of mathematics, which deals with the question: What is mathematics? (2) doing 

mathematics, which deals with the question: How is mathematics done? and (3) 

the worth of mathematics, which deals with the question: What good is it to 

engage in mathematics? (see Figure 1).  

 

Figure 7: Framework for teacher learning about the discipline of mathematics.  

In the current research, we focus on teachers who studied in these 

mathematicians’ courses, using the conceptual framework in Figure 1 for data 

analysis, extending Hoffmann and Even's (2019) study, which addressed one 

aspect (the essence of mathematics)  to all aspects and topics. The research 

question is: What do secondary school mathematics teachers learn about the 

discipline of mathematics in academic mathematical courses, and how does this 

knowledge contributes to their teaching? 

METHODS 

Setting and Participants 

The study is situated in a two-year master’s program for practicing secondary 

school mathematics teachers. A major component of the program comprised eight 
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academic mathematics courses tailored for teachers, designed and taught by 

research mathematicians. Four of these courses dealt with topics in the school 

curriculum at an advanced level: algebra, analysis, geometry, and probability and 

statistics. Three courses were devoted to the use and application of mathematics 

in other domains: computer science, applied mathematics, and everyday 

technologies. One course dealt with the history and philosophy of mathematics. 

In addition, a final project was carried out under the guidance of a mathematician. 

Fourteen program graduates participated in the study; ten women and four men. 

Their teaching experience varied 3-23 years. 

Data Collection and Analysis 

The main data source included individual semi-structured in-depth interviews 

with the teachers. The interviews took place between 0.5-2.5 years after 

graduation, and lasted between 45-90 minutes. The aim was to learn how the 

mathematics courses contributed to the teachers’ knowledge about the discipline 

of mathematics, and how that knowledge contributed to their teaching. The 

interview consisted of eight open-ended questions. The main questions were:  

● Has there been any change in the teacher you were before the program 

and the teacher you are today?  

● The program has two main components: courses in mathematics 

education and courses in mathematics. Have the mathematics courses 

contributed to you as a teacher?  

● Have you learned anything new about what mathematics is from the 

mathematics studies in the program? 

Following each question, the interviewees were asked to explain their responses 

and to give examples from their experiences in the program and their teaching. 

Additional data sources were participant observations in most courses and 

informal conversations with the teachers. The aim was to strengthen the internal 

validity of the study.  

The interviews were transcribed and then analysed, employing the method of 

directed content analysis (Hsieh & Shannon 2005). First, we marked all excerpts 

in the transcripts that dealt with the contribution of academic mathematics courses 

to the teachers’ knowledge about the discipline of mathematics and changes 

related to their teaching. Then we used the framework in Figure 1 for coding these 

excerpts, enabling additional categories to be created if needed. The analysis was 

iterative and comparative, and included peer validation. 
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FINDINGS 

Analysis of the interviews revealed that reports on contribution of the academic 

mathematics courses to the teachers’ knowledge about the discipline of 

mathematics and to related changes in their teaching were associated with all 

three aspects and with all nine topics of the coding scheme. Also, no additional 

aspects or topics were mentioned. Whereas each of the three aspects was 

addressed by most of the teachers, the number of teachers that addressed each 

topic varied considerably (1-10 out of 14), and the teachers varied considerably 

in the number of topics to which each of them referred (1-7 out of 9). Below we 

describe the main characteristics of the teachers’ reports for each topic. 

The essence of mathematics  

Twelve teachers addressed this aspect; between four to nine of them addressed 

each of its four topics.  

Wide and varied 

Nine teachers reported on contribution associated with this topic. The teachers 

reported on learning that mathematics is much broader and more diverse than 

what they had thought; that the mathematics they were familiar with is just the 

tip of the iceberg of the existing mathematical knowledge, both in terms of the 

variety of fields and topics, and in terms of the amount of what is known or 

studied in mathematics. The following excerpt from J’s interview exemplifies 

this. 

Interviewer:  From the mathematical studies, was there anything you learned about 

what mathematics is? ... 

Teacher J:  Mostly perhaps how many areas it covers. Like when I’m studying 

mathematics, I learn that I don’t know... Actually, you see that 

mathematics is like a whole world. It is impossible to know it...You 

learn whatever you learn, but it is more than that. It gives you, like, 

the feeling of the size… 

Eight of the teachers reported that their new understanding promoted change in 

their teaching. They try now to extend students’ horizon regarding mathematical 

questions and mathematical domains beyond contents studied in school. For 

instance: 

…when we study vectors and we learn normals, then every plane has one normal. 

Today, after studying differential geometry, I know that surfaces have normals in 

different directions. I mean, you can talk now about, that a normal is not one normal 
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to a plane. If the surface is a bit curved, then you have infinite number of normals. 

You can convey this to a certain extent, just open it, and curious girls fly with it 

further. (K) 

Lively and developing 

Eight teachers reported on contribution associated with this topic. The teachers 

reported that they learned how and why mathematics has evolved, and that 

mathematics is an intensely researched scientific field also nowadays. For 

example,  

…it is very significant how mathematics has evolved... Let's say Euclid, his book of 

the elements of geometry, and then over the years how things evolved, and so on, 

and projective geometry, and so on, and then like all the developments of recent 

years. There is something in this conception that straightens out my head. I can 

understand much more deeply. How it was created. (B) 

Seven of the teachers reported on contribution to instruction related to this topic, 

saying that they began to present students with background on the development 

of the mathematical topics they study. For example,  

Interviewer: Is there anything else you teach differently that you can point out? 

Teacher A: …if I talk to them about the development of mathematics then it is to 

teach differently. Most definitely… anything new from the 

curriculum that I want to bring to class… I try not to dump it on them, 

but to prepare them for it…  

Rich in connections 

Six teachers reported on contribution associated with this topic. The teachers 

talked about contribution to their understanding about the existence, and 

importance, of connections among different mathematical fields, and among 

different concepts within a field. For instance, “I saw the connection between the 

different topics much more, how one domain uses another in order to prove, to 

make progress, to illustrate” (E).  

All six teachers mentioned contribution to teaching, reporting that they started to 

look for connections among different topics in the curriculum, and that they strive 

to present mathematical concepts in a variety of contexts. For example, C said, 

“When I teach something, I try to connect it to previous and subsequent contents, 

and to other domains.” She exemplified this by describing how she stresses for 

students that the straight line they sketch in geometry, the linear equation 𝑓(𝑥) =

𝑚𝑥 + 𝑛 they see while learning functions, and the equation 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0 
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that they meet in Cartesian geometry, are all the same mathematical concept in 

different representations.  

Structured deductively 

Four teachers reported on contribution associated with this topic. The teachers 

mainly reported on better understanding the role and importance of axioms, 

definitions and proofs. All four teachers reported on contribution to their teaching 

as well, describing that now they explicitly discuss in class the role and 

importance of these elements in mathematics. For example, K said: 

In any mathematical course. It suddenly pops up. You didn’t look for it until you 

became aware of it. When you are aware that you look for definition of everything, 

I just look for it... I suddenly explain to the kids: That is a definition, you cannot 

argue about it, let us define it properly. I also explain what ‘well defined’ is... I think 

it made me a much more organized teacher, and it makes order in the students’ 

heads... (K) 

Doing mathematics 

Ten teachers addressed the aspect doing mathematics; between three to eight of 

them addressed each of its four topics.  

Asking questions and explaining why  

Eight teachers reported on contribution associated with this topic. They reported 

on improved knowledge about the centrality of thinking and understanding in 

mathematics and the way questions and explainations advance understanding. 

The teachers reported also that they now pay more attention in their teaching to 

mathematical inquiry and understanding that involve explaining “why”, in 

contrast to focusing merely on technical aspects and explaining “how”. The focus 

on asking questions and explaining why included not only teachers’ focus on 

explanations and answering “why” questions, but also a strong expectation that 

their students would also do so. For example, by asking students questions that 

require them to practice explaining their reasoning. The following excerpt from 

E’s interview illustrates this: 

The class discourse is always a discourse of why and of what, and less of how. There 

is a lot of how, a lot, but if you say something, then: ‘Why is this thing true? Explain, 

prove, in your own words, look for justifications, reasons’… I think that it is very 

very prominent in my teaching today, that first it is based on understanding. If I need 

not to explain something, but just to give a formula, I really have difficulty with it. 

And before I used to live very peacefully with it. (E) 
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Using intuition and formalism 

Eight teachers reported on contribution associated with this topic. The teachers 

reported that the academic mathematics courses helped them understand the key 

roles of intuition and formalism in the process of doing mathematics. They 

developed their understanding regarding mathematicians’ use of intuition. For 

example, G described how surprised she was to discover that mathematicians 

examine specific examples when they start working on a problem: 

First of all I learned that also mathematicians can start from examples… I thought 

they think in formulas all their lives… And suddenly I discovered... that when a 

mathematician wants to check something, and he checks that on numbers.... I thought 

that I do that because I am a human being with a limited head and mathematicians 

don’t do that, they immediately think about the general case. (G) 

The teachers reported learning also that formalism and precision is important in 

mathematics; yet not as a goal by itself, but because intuition could be misleading. 

Thus, both intuition and formalism are needed. For example, C said,  

Another thing that we didn’t talk about… knowing that there is feeling the 

mathematics and then there is the tiring formalism. But there are two stages of the 

process, and to really distinguish between them. I think that it goes with me to the 

classroom, in explanations and also in thinking. (C) 

All eight teachers reported also that their new understandings enabled them to 

better judge the extent of accuracy that is appropriate in different teaching 

situations.  

Experiencing struggles and insights 

Three teachers reported on contribution associated with this topic while referring 

mainly to their improved understandings about the prolonged mental effort that 

doing mathematics requires and the inevitable mistakes that are done along the 

way. For example: 

You have to be diligent... it requires effort. Do not give up ... because 

mathematicians… if until today I thought that everything comes to them easily, then 

I think that, today I understand that mathematicians work hard to make discoveries. 

Work very hard. (G) 

The teachers added that following their new understanding they linger longer on 

tasks discussed in class, and are more open to expose their own struggles to 

students as a model for doing mathematics. For example, after teacher K 
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described her struggels with a piece of mathematics during her studies, she was 

asked how such experiences contributed to her teaching. She then said: 

…if I do not know [how to solve a problem in class] ... I'm not ashamed. I will tell 

them [the students] that we will think and figure it out, and we will rack our brains 

during the break... (K) 

The worth of mathematics 

Ten teachers addressed this aspect; all of them addressed the first topic and one 

teacher addressedadressed the second topic as well. 

Practical worth of mathematics 

Ten teachers reported on contribution associated with this topic. The teachers said 

that their academic mathematical studies made them aware of the practical worth 

of mathematics and of the central role that mathematics has in everyday life. For 

example: 

So what he [the course instructor] actually said, that mathematics, it’s role is, 

actually, there is a problem in life, and one needs to construct a model, a 

mathematical model, in order to solve that problem. That’s basically the role of 

mathematics. Like to create, like for life, for real life. And it was something that was 

really new and interesting for me to see mathematics like this, as a field that solves 

problems. Beforehand, I viewed it as an intellectual field, which is fun to deal with, 

it is interesting in itself. I did not look at the, at what it actually gives in practice. (I)  

The teachers said that becoming aware of the practical worth of mathematics 

helped them better address students’ questions regarding why they should learn 

mathematics. For instance, F said: “It was interesting to see how it fits into life” 

and added: “They ask me: ‘Why do I need that?’ Then I do tell them… You tell 

them what it does to cancer patients… It’s of great interest to them.” 

Worth per se 

Only one teacher elaborated on the contribution of her mathematical studies to 

her knowledge about the worth of mathematics per se. She said that now she 

better understands what beautiful mathematics means and that she tries to present 

such mathematics to her students. Several more teachers mentioned this topic but 

they either did not elaborate on it or rather contrasted it (as the excerpt’s from I’s 

interview above illustrates) with the practical worth of mathematics.  
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CONCLUSION 

As shown, the conceptual framework we developed, based on interviews with 

mathematicians about what they wished to teach secondary school teachers about 

the discipline of mathematics (Hoffmann & Even 2018), was useful for 

examining the contribution of academic mathematical studies to secondary school 

teachers’ knowledge about the discipline of mathematics, and in turn to their 

practice. Analysis of interviews with teachers, who graduated from a program in 

which academic-level mathematics that focus on specific fields (geometry, 

analysis, etc.) comprised a main component, generated the same three aspects and 

nine topics that the mathematicians who taught in that program mentioned. 

Furthermore, no additional aspects or topics were mentioned by the teachers.  

Although each of the three aspects was addressed by all or almost all the teachers, 

the number of teachers that addressed each topic of the coding scheme varied 

considerably among and within aspects. For example, most teachers (8-10) 

mentioned the contribution of the mathematics courses they studied to the 

following five topics: wide and varied, lively and developing, asking questions 

and explaining why, using intuition and formalism, and practical worth. 

However, only few teachers (1-4) mentioned the following three topics: 

deductively structured, experiencing struggles and insights, and worth per se. As 

expected, analysis of the teachers’ interviews indicated that whereas the topics 

that were adressed by most teachers included characteristics that were new and 

exciting for the teachers, the topics that were adressed by a small number of 

teachers included characteristics with which the teachers were already familiar. 

Yet, the topic experiencing struggles and insights was an exception. It appears 

that for quite a few of the teachers, having to struggle themselves with the 

mathematics during their studies, impeded their ability to view struggles as a 

general characteristic of doing mathematics. Instead, they perceived it as 

characterising learning mathematics only.  

Our findings suggest that all participating teachers learned something new about 

the discipline of mathematics in the academic mathematics studies. Yet, even 

though all the teachers studied the same academic mathematics courses with the 

same instructors, different teachers attended to different topics. More research is 

needed to better understand these variances among teachers, and how they relate 

to teacher characteristics and to course instruction. 



Hoffmann & Even 

3 - 60  PME 44 – 2021 

References 

Baldinger, E. E. (2018). Learning Mathematical Practices to Connect Abstract Algebra 

to High School Algebra. In N. H. Wasserman (Ed.), Connecting Abstract Algebra to 

Secondary Mathematics, for Secondary Mathematics Teachers (pp. 211–239). 

Springer International Publishing. https://doi.org/10.1007/978-3-319-99214-3_11 

Dreher, A., Lindmeier, A., Heinze, A., & Niemand, C. (2018). What Kind of Content 

Knowledge do Secondary Mathematics Teachers Need? Journal Für Mathematik-

Didaktik, 39(2), 319–341. https://doi.org/10.1007/s13138-018-0127-2 

Even, R. (2011). The relevance of advanced mathematics studies to expertise in 

secondary school mathematics teaching: Practitioners’ views. ZDM - International 

Journal on Mathematics Education, 43(6–7), 941–950. 

Even, R. (2020). Academic Mathematics in Secondary School Mathematics Teacher 

Education. In M. Peters (Ed.), Encyclopedia of Teacher Education. Springer. 

https://doi.org/10.1007/978-981-13-1179-6_243-1 

Hoffmann, A., & Even, R. (2018). What do mathematicians wish to teach teachers in 

secondary school about mathematics? In M. Graven, H. Venkat, A. A. Essien, & P. 

Vale (Eds.), Proceedings of the 42rd conference of the international group for the 

psychology of mathematics education (Vol. 3, pp. 99–107). PME. 

Hoffmann, A., & Even, R. (2019). Contribution of academic mathematics to teacher 

learning about the essence of mathematics. Proceedings of the 43rd Conference of 

the International Group for the Psychology of Mathematics Education, 2, 360–367. 

Hsieh, H.-F., & Shannon, S. E. (2005). Three Approaches to Qualitative Content 

Analysis. Qualitative Health Research, 15(9), 1277–1288. 

https://doi.org/10.1177/1049732305276687 

Weber, K., Mejía-Ramos, J. P., Fukawa-Connelly, T., & Wasserman, N. (2020). 

Connecting the learning of advanced mathematics with the teaching of secondary 

mathematics: Inverse functions, domain restrictions, and the arcsine function. The 

Journal of Mathematical Behavior, 57, 100752. 

https://doi.org/10.1016/j.jmathb.2019.100752 

Zazkis, R., & Leikin, R. (2010). Advanced mathematical knowledge in teaching 

practice: Perceptions of secondary mathematics teachers. Mathematical Thinking 

and Learning, 12(4), 263–281. https://doi.org/10.1080/10986061003786349 

Ziegler, G. M., & Loos, A. (2014). Teaching and Learning “What is 

Mathematics.” In Proc. Of the Int. Congress of Mathematicians (Vol. 4, pp. 

1203–1215).



3 - 61 

2021. In Inprasitha, M, Changsri, N., Boonsena, N. (Eds.). Proceedings of the 44th Conference of the 

International Group for the Psychology of Mathematics Education, Vol. 3, pp. 61-70. Khon Kaen, 

Thailand: PME. 

IMPACT OF DIFFERENT PROBLEM CONTEXTS ON STUDENTS’ TASK 

PERFORMANCE IN THE HOSPITAL PROBLEM 

Ippo Ishibashi1 and Soichiro Nishi2 

1Okayama University, Japan 

 2Hiroshima University Junior High School, Mihara, Japan 

 

This paper aims to clarify whether differences in problem contexts affect students’ 

task performance in the hospital problem. Our survey showed that 29/79 students 

in a Japanese junior high school applied different thinking approaches to 

different problem contexts. Some students made decisions based on personal life 

experience, and some made decisions based on their experience of school-based 

probability education. These results confirm the relationship between contextual 

knowledge and probabilistic knowledge. Our results and consequent discussion 

underline the necessity, when teaching probability, of raising awareness of the 

relationship between probabilistic knowledge and contextual knowledge, and of 

emphasising that examples of “equal likelihood” presented in probability 

problems represent subjective assumptions. 

INTRODUCTION 

In research of misconceptions regarding probability, a commonly highlighted 

issue is that many people neglect to consider the effect of sample size (Fischbein 

& Schnarch, 1997). According to the law of large numbers, the larger the sample 

size, the smaller the fluctuation of the statistic (Fischbein & Schnarch, 1997); 

however, many people make decisions without considering the size of the 

corresponding fluctuation, meaning they do not factor in the effects of the sample 

size (Fischbein & Schnarch, 1997). This issue has been examined across various 

fields, including mathematics education and psychology; notably, it is often 

investigated through consideration of the “hospital problem” (Figure 1) 

developed by Kahneman and Tversky (1972). 

A certain town is served by two hospitals. In the larger hospital about 45 babies 

are born each day, and in the smaller hospital about 15 babies are born each 

day. As you know, about 50% of all babies are boys. The exact percentage of 
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baby boys, however, varies from day to day. Sometimes it may be higher than 

50%, sometimes lower. 

For a period of 1 year, each hospital recorded the days on which (more/less) 

than 60% of the babies born were boys. Which hospital do you think recorded 

more such days? 

(The larger hospital / The smaller hospital / About the same) 

Figure 1: Hospital problem (Kahneman & Tversky, 1972, p. 443) 

Previous studies on the reasons people do not consider sample sizes in probability 

problems have suggested that both the character of the problems and the 

respondents’ characteristics are influencing factors (Weixler, Sommerhoff, & 

Ufer, 2019). One such factor is the “problem context”; for the hospital problem, 

the context is the presentation of births in a hospital. Weixler et al. (2019) 

presented subjects with the hospital problem and a similar problem featuring a 

coin-toss situation. They found no difference between the correct answer rates for 

the hospital context problem and the coin context problem. This indicated that the 

problem context has little influence on respondents’ task performance in the 

hospital problem. 

However, Weixler et al.’s (2019) conclusion was only derived from comparing 

the correct answer rate for the hospital context with that for the coin context. It is 

not clear whether, for example, the respondents applied the same task-

performance approach in both problem contexts or different task-performance 

approaches across the two problem contexts. The latter would indicate that the 

problem context influences respondents’ task performance in the hospital 

problem. 

Considering the above, the present paper aims to clarify whether differences in 

problem contexts affect respondents’ task performances in the hospital problem. 

To achieve this, we conducted a survey and analysed and discussed the results. 

From these results, we derive implications for the teaching of probability in 

schools. 

THEORETICAL FRAMEWORK AND RESEARCH QUESTIONS 

The hospital problem and its context 

Several previous studies, such as Fischbein and Schnarch (1997) and Watson and 

Callingham (2013), have considered problem contexts. However, no study has 

adequately investigated the relationship between problem contexts and correct 
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answer rates because the problem structure is significantly different from the 

original hospital problem, or the problem structure has a different numerical 

setting. Weixler et al. (2019) conducted a survey of 242 mathematics teacher 

education students at a German university, using two problems that featured the 

same problem structure and numerical data, but that concerned births in hospitals 

and numbers of coin tosses, respectively (Figure 2). They consequently found no 

difference between the respective correct answer rates for the problem featuring 

the hospital context and the problem featuring the coin context. From this, 

Weixler et al. (2019) concluded that, as the two problems featured the same 

problem structure, problem context has little effect on respondents’ task 

performance in the hospital problem. 

However, as mentioned above, Weixler et al.’s (2019) results do not 

comprehensively clarify whether problem context influences a change in task-

performance approach. Respondents may or may not apply the same approach in 

each context. Individuals who select “is less likely than” in the hospital context 

and “is as likely as” in the coin context (both of which are incorrect responses 

and would consequently, when only correct answer rate is considered, be grouped 

together) may not be applying the same task-performance approach; this would 

represent problem context influencing respondents’ task performance in the 

hospital problem. 

[Hospital context] 

Children are born again and again in 

the University-Hospital. 

That in 10 births at least 7 times a boy 

is born 

(is more likely than / is as likely as / is 

less likely than) 

that in 100 births at least 70 times a 

boy is born. 

[Coin context] 

Coins are thrown again and again into 

the Trevi-Fountain. 

That in 10 throws at least 7 times tails 

are face up 

(is more likely than / is as likely as / is 

less likely than) 

that in 100 throws at least 70 times 

tails are face up. 

Figure 2: Part of survey items by Weixler, Sommerhoff, & Ufer (2019) 

Research questions 

Fischbein and Schnarch (1997) and Matsuura (2006; who translated Fischbein 

and Schnarch’s [1997] survey items into Japanese and surveyed a pool of 

Japanese students ranging from 5th grade to university) both found that, in the 
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hospital problem, the more knowledge students have of probability, the more 

likely they are to choose the typical incorrect answer “about the same”. This 

suggests that learning probability alters associated thinking approaches. 

Consequently, along with problem contexts, we sought to examine the influence 

of learning probability on task-performance approaches in the hospital problem. 

Two research questions were developed: 

(RQ 1) How do problem contexts affect students’ task performance in the hospital 

problem? 

(RQ 2) How does students’ knowledge of probability affect their task 

performance in the hospital problem across different problem contexts? 

METHOD 

Survey problems 

The survey problems used in this paper are shown in Figure 3. These problems 

were created with reference to Weixler et al. (2019) and Kahneman and Tversky 

(1972). The difference between the problems used in this study and those of 

Weixler et al. (2019) is that the former state that the birth of a boy or a girl is 

generally equally likely and that receiving heads or tails in the coin toss is also 

generally equally likely. In classical probability, it is commonly implicitly 

assumed that individual results (for example, 1 to 6 when we throw a die) are 

equally likely (Borovcnik & Kapadia, 2014); thus, Weixler et al. (2019) did not 

mention events that are equally likely. However, to ensure a uniform 

interpretation of the survey items across the sample, it is necessary to state which 

events are equally likely. In fact, in Weixler et al.’s (2019) coin problem, 

respondents may consider that the coin is biased. Meanwhile, in the real world 

the respective likelihoods of giving birth to a boy or girl are not exactly equal; in 

Japan, more boys are born annually (see: Portal Site of Official Statistics of Japan, 

2020). Thus, we decided to explicitly state which events are equally likely. 

Further, the numerical settings in this study’s problems differ from those in 

Weixler et al. (2019). First, the frequency value was set to 60% instead of 70%. 

This was because Weixler et al.’s is the only version of the hospital problem to 

feature a frequency value of 70%; in other studies (e.g., Fischbein & Schnarch, 

1997; Watson & Callingham, 2013), the frequency matches that used by 

Kahneman and Tversky (1972): 60%. Next, we used sample sizes of 45 and 15 

rather than 100 and 10, respectively. Again, this decision was based on the 

approaches used in various previous studies, such as Kahneman and Tversky 

(1972) and Fischbein and Schnarch (1997). 
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[Hospital context] 

In a certain town there are two hospitals, a small one 

in which there are, on the average, about 15 births a 

day and a big one in which there are, on the average, 

about 45 births a day. The likelihood of giving birth 

to a boy is approximately 50% (nevertheless, there 

are days on which more than 50% of the babies born 

were boys, and there are days on which fewer than 

50% of the babies born were boys.) In the small 

hospital a record has been kept during the year of the 

days in which the total number of boys born was 

greater than 9, which represents more than 60% of 

the total births in the small hospital. In the big 

hospital, they have kept a record during the year of 

the days in which there were more than 27 boys 

born, which represents more than 60% of the births. 

In which of the two hospitals were there more such 

days? 

a. The big hospital 

b. The small hospital (Correct) 

c. About the same 

[Coin context] 

Kazu and Manabu are both tossing a 

fair coin. Kazu tosses his coin, on 

average, about 15 times a day, and 

Manabu tosses his coin, on average, 

about 45 times a day. For both coins, 

the likelihood of heads occurring is 

approximately 50% (nevertheless, 

there are days on which heads occurs 

for more than 50% of the tosses, and 

there are days on which heads occurs 

for fewer than 50% of the tosses). 

Kazu has kept a record during the year 

of the days on which heads occurred 

more than nine times, which would 

represent over 60% of his daily tosses 

of the fair coin. Meanwhile, Manabu 

has kept a record during the year of the 

days on which heads occurred more 

than 27 times, which would also 

represent over 60% of his daily tosses 

of the fair coin. Which of the two boys 

recorded the highest number of days? 

a. Kazu (Correct) 

b. Manabu 

c. About the same 

Figure 3: Our survey items 

If, for the problems in Figure 3, respondents select (a, b), (b, a), or (c, c) ([hospital 

context], [coin context], respectively), this would indicate that the problem 

contexts did not impact their task performance. However, selection of any other 

combination would suggest that the problem contexts influenced their task 

performance. 

Sample and procedure 

The survey was conducted in July 2020 on 39 students from grade 7 (aged 12–13 

years) and 40 students from grade 9 (aged 14–15 years) of a junior high school 
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attached to a national university in Japan. The reason that 40 students were 

selected from each grade is that there are 40 students per class in a Japanese junior 

high school. The survey was to be conducted on 40 students from grade 7 too, but 

one of the students was absent on the day. In Japan, frequentist probability is 

taught in the first half of grade 8, while classical probability is taught in the latter 

half of grade 8 and in high school (grades 10–12; Otaki, 2019). Thus, we felt that 

junior high school (grades 7–9) students would have a greater understanding of 

the effect of sample size than would students in other grades; notably, in Matsuura 

(2006) the correct answer rate was higher among 8th-grade students (44%) when 

compared to university students (19%). The reason we targeted students in grades 

7 and 9 was that in grade 8, probability is taught using coins and dice as teaching 

materials (Otaki, 2019). Therefore, it is possible that 9th-grade students who have 

learned probability have strong familiarity with the problem context of coin 

tossing, but not with the problem context of births in a hospital; alternatively, it 

is possible that learning probability in grade 8 using coins helps students correctly 

discern solutions even in the context of births in a hospital. On the other hand, 

7th-grade students, who have not learned probability, may take a different 

approach to the problem context of coin tossing, which they are likely to have 

experienced in their daily lives, when compared to the problem context of births 

in a hospital, with which they would generally be unfamiliar. Pfannkuch et al. 

(2016) highlighted that contextual knowledge and probabilistic knowledge are 

interrelated. 

In this survey, the [hospital context] and [coin context] problems shown in Figure 

3 were distributed to the students separately. Students were asked to choose one 

of the options (“a” to “c”), and to provide the reason for their choice. They were 

informed of the correct answers after they had provided answers to both 

problems. 

RESULTS AND ANALYSIS 

The results are shown in Table 1 and 2. One 9th-grade student did not answer (N) 

either problem, saying that “‘a,’ ‘b,’ and ‘c’ are all incorrect”. This student was 

considered to have applied the same task-performance approach in both contexts. 

First, we examined the relationship between problem context and students’ task 

performance (RQ 1). Overall, 50 of the 79 students were considered to adopt 

similar task-performance approaches across the two contexts: those who 

answered (a, b), (b, a), (c, c), or (N, N); ([hospital context], [coin context], 

respectively). Meanwhile, 29 of the 79 students were considered to have adopted 
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different task-performance approaches for the two contexts. Thus, approximately 

37% of the students applied different approaches to the two problem contexts. 

Next, we examined the relationship between the students’ existing knowledge 

and their task performance (RQ 2). Overall, 22 of the 39 7th-grade students were 

considered to have adopted the same task-performance approach across the two 

problem contexts, and 17 were considered to have adopted different task-

performance approaches. Meanwhile, 28 of the 40 9th-grade students were 

considered to have adopted the same task-performance approach across the 

different contexts, and 12 were considered to have adopted different task-

performance approaches. Thus, the percentage of students who adopted the same 

task-performance approach across the two contexts was higher among the 9th-

grade students, who had learned probability, than the 7th-grade students. 

 
Hospital context 

a b c N 

Coin context 

a 4 5 2 0 

b 9 2 2 0 

c 3 4 8 0 

N 0 0 0 0 

Table 1: Results for the 7th-grade students (𝑛 = 39) 

 
Hospital context 

a b c N 

Coin context 

a 2 9 0 0 

b 5 3 2 0 

c 2 3 13 0 

N 0 0 0 1 

Table 2: Results for the 9th-grade students (𝑛 = 40) 

DISCUSSION AND IMPLICATIONS 

Discussion of the survey results 

The survey results indicate that problem context frequently influence students’ 

task performance in the hospital problem. Some 7th-grade students who selected 
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“b” (“Manabu”) for the [coin context] problem and “c” (“about the same”) for the 

[hospital context] problem explained their decisions as follows: Their life 

experiences caused them to believe that people can improve their coin-tossing 

ability through repetitive practice, and can consequently improve their ability to 

receive heads; thus, they chose Manabu, who performed more tosses than Kazu. 

On the other hand, for births in a hospital, they chose “about the same” because 

they could not judge which was more likely to occur. The factor underlying these 

students’ judgment is their life experiences. According to Pfannkuch et al. (2016), 

contextual knowledge and probabilistic knowledge are interrelated, and different 

probabilistic knowledge is used in different contexts. Therefore, it is considered 

that students who utilise their own experiences as contextual knowledge change 

their task performance depending on the problem context. 

Some 9th-grade students who selected “c” (“about the same”) for the [coin 

context] and “a” or “b” (“the big hospital” or “the small hospital”) for the 

[hospital context] reported selecting “c” (“about the same”) for the [coin context] 

because they knew from learning probability in junior high school that there is an 

equal likelihood of heads or tails occurring in a coin toss. On the other hand, they 

knew from probability studies that the likelihood of giving birth to a boy or girl 

is actually not equal. Students make such judgments because they think the 

probabilities they learn in school apply to real-world events (e.g., coin tosses and 

baby gender), even though probabilities apply to our information about that world 

at any given moment in time (Devlin, 2014). Thus, students feel that the 

presentation in education of an event as having an equal likelihood reflects the 

nature of that event in the real world, rather than a human-manufactured 

assumption. Therefore, for them, the likelihood of heads or tails in a coin toss, 

which is presented in probability education as equally likely, is equal in the real 

world, but the likelihood of giving birth to a boy or girl, which is presented in 

probability studies as being unequally likely, is not equal. This thinking approach 

is natural among students who have learned probability because their probability 

education is based on performing measures of the frequencies by which various 

kinds of outcomes occur (Devlin, 2014). From the above, it can be considered 

that students educated in such probability recognition change their task-

performance approach depending on the problem context, even if the problem 

structure remains the same. 
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Implications for teaching probability 

The above discussion underlines two elements that are essential for teaching of 

probability. First, teachers and students should be aware that probabilistic 

knowledge is dependent on contextual knowledge. The present results suggest 

that students may not always answer correctly across different contexts, even if 

the problem structure remains the same. Teachers should take this into 

consideration, and should present in probability class diverse problems in diverse 

contexts. It is possible that exposure to a range of problems and contexts can help 

students acquire sufficient probabilistic knowledge to negotiate different 

contexts; however, it is preferable to present a single problem across various 

contexts, rather than presenting each problem in a unique context. Such an 

approach may help students learn to think critically and avoid erroneous 

judgments, as it can encourage them to self-reflect and change their thinking 

approaches depending on the context of the problem. 

Second, teachers should emphasise which events are assumed to be “equally 

likely” in that problem. Experts in classical probability may be able to apply the 

correct understanding that, even if the assumption is implicit, probabilities relate 

to our information about events in a specific situation. However, this is not easy 

for students. Our results indicate that students think “equally likely” is not an 

assumption but the nature of the event in the problem. Thus, teachers, when 

presenting probability problems, should state which events are equally likely and 

that this likelihood is not linked to the corresponding real-world event but is an 

assumption. 

CONCLUSION 

The results of the present survey suggest that differences in problem contexts 

affect students’ task performance regarding the hospital problem. This differs 

from the findings of Weixler et al. (2019). Contextual knowledge and 

probabilistic knowledge have been found to be interrelated, regardless of the 

problem structure (Pfannkuch et al., 2016); this supports the validity of this 

study’s finding that students’ task-performance approaches can differ depending 

on the problem context. 

A future task is to develop and administer lessons based on the teaching 

suggestions presented in this paper. 
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NOTICING ENHANCEMENT THROUGH THE RECONSTRUCTION 
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1University of Alicante, Spain 

 

Professional noticing of children’s mathematical thinking implies teachers’ 

ability to use their knowledge to attend to students’ strategies, interpret their 

understanding and decide how to respond. Developing this competence implies a 

shift from general descriptions to descriptions that include teachers’ reasoning 

based on students’ understanding. Practical arguments are post hoc 

examinations of actions that serve to explain or justify what was done. This study 

focuses on examining to which extent the elicitation and reconstruction of 

practical arguments help pre-service teachers enhance the noticing skill during 

their internship period at school. Participants were 17 pre-service teachers. 

Results show evidence that pre-service teachers were able to develop 

progressively more complete practical arguments during this period. 

INTRODUCTION AND THEORETICAL FRAMEWORK 

Jacobs, Lamb and Philipp (2010) conceptualised professional noticing of 

children’s mathematical thinking as a progression through three interrelated 

skills: (i) attending to children’s strategies (ii) interpreting children’s 

understanding, and (iii) deciding how to respond based on children’s 

understanding. Professional noticing of children’s mathematical thinking implies 

teachers’ ability to use their knowledge (mathematical content knowledge and 

pedagogical content knowledge) to attend to, interpret and decide what to do next 

(Brown, Fernández, Helliwell, & Llinares, 2020; Thomas, Jong, Fisher, & 

Schack, 2017). Therefore, developing this skill in teacher education programs can 

prepare pre-service teachers for classroom practice. 

Previous research has shown that developing this skill in teacher education 

programs is a challenging task, examining different contexts for its development 

(Amador, 2020; Fernández & Choy, 2020; Schack, Fisher, & Wilhelm, 2017). A 

crucial common assumption underlying them all is that changes in pre-service 

teachers’ discourse on students’ mathematical thinking indicate changes in their 

noticing expertise. In other words, the development of noticing can be inferred 
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from their written professional discourse and perceived as a shift from general 

strategy descriptions, to descriptions that included teachers’ reasoning based on 

mathematically relevant details of students’ mathematical thinking (Ivars, 

Fernández, Llinares, & Choy, 2018). The internship period at primary schools is 

a proper context to develop pre-service teachers’ noticing. However, as far as we 

know, little is known about its development during this period (Fernández, 

Llinares, & Rojas, 2020; Stockero, 2020).  

The notion of practical argument has been used from general educational 

perspectives to study how pre-service teachers learn to reason about a teaching 

situation (Fenstermacher & Richardson, 1993; Vesterinen, Toom & Krokfors, 

2014). Practical arguments are post hoc examinations of actions that serve to 

explain or justify what was done. A complete practical argument comprises four 

types of premises and is concluded with an action or intention to act (conclusion 

of the practical argument; Fenstermacher & Richardson, 1993). These premises 

are: 

● Situational premises: statements that describe the context of the 

situation. 

● Stipulative premises: statements arising from the theory that interpret 

what happened in the situation. 

● Empirical premises: statements that provide evidence or empirical 

support for future action. 

● Value premises: statements that include information regarding the 

benefit derived from performing a future action. 

In developing reasoning about teaching situations, Fenstermacher and 

Richardson (1993) consider two different processes: eliciting and reconstructing 

a practical argument. Eliciting is the process by which pre-service teachers 

provide reasoned descriptions of the teaching-learning situation and the actions 

taken. Reconstructing is the process by which pre-service teachers assess the 

practical argument elicited to improve it. From this perspective, engaging pre-

service teachers in the elicitation and reconstruction of practical arguments could 

help them learn to reason about students’ understanding and decide how to 

respond considering students’ understanding. Therefore, if pre-service teachers 

provide progressively more complete practical arguments (seen as a growth in 

their professional discourse), from the point of view of the premises indicated 

above, this could reflect the development of noticing children’s mathematical 

thinking skill. 
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Thus, in this study, we aimed to contribute to the field of noticing examining to 

which extent the elicitation and reconstruction of practical arguments help pre-

service teachers enhance the noticing skill during their internship period at 

school. 

METHOD 

Participants and instrument 

Participants were 17 pre-service primary school teachers (PTs) enrolled in the last 

year of their four-year-degree to become a primary school teacher. They were in 

the internship period at primary schools (8 weeks). In the first two weeks, they 

had to observe the school tutor's teaching and the remaining six weeks they had 

to plan and implement a lesson. PTs had completed two mathematics education 

courses related to numerical and geometrical sense and a mathematics method 

course. 

Writing narratives can be considered a facilitator for eliciting practical arguments. 

A narrative is a story described sequentially in which the author recounts some 

events that, according to his/her internal logic makes sense to him or her 

(Chapman, 2008). Moreover, writing narratives can be used as a tool that allows 

PTs to generate explanatory schemes and relationships between theory and 

practice (Ivars & Fernández, 2018; Schultz & Ravitch, 2013). 

Writing narratives provides a context in which: (i) PTs can express and describe 

what they consider relevant in a teaching-learning situation related to students’ 

thinking (providing situational premises); (ii) PTs can interpret students’ 

understanding using their knowledge about mathematics and the teaching and 

learning of mathematics (providing stipulative and empirical premises), and (iii) 

PTs can propose a learning objective and new actions to continue the instruction 

(providing value premises to conclude the argument). 

PTs had to write two narratives in which they considered that students were 

developing mathematical competence. PTs were provided with the following 

prompts as a guide to write their narratives: 

● Describe in detail a mathematics teaching-learning situation. The task 

(curricula contents, materials, resources…). What did the primary 

school students do? For example, you can indicate some students’ 

answers to the task, difficulties…What did the teacher do? For instance, 

you can describe the methodology and some aspects of the interactions. 
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● Interpret the situation. Indicate the mathematical objectives of the task 

and how the implementation of the task pursued the objective. Indicate 

evidence of students’ answers that show how they achieved the 

objectives (students’ understanding of the mathematical content) 

and/or the difficulties they had. 

● Complete the situation. Complete the situation indicating what to do 

next to support students in their conceptual understanding. 

After PTs had written the first narrative during the observation period, the 

narrative was shared with their university tutor who provided them with feedback. 

Feedback provided are tutor prompts to promote pre-service teachers’ learning, 

providing information that guides them towards the learning objectives (Wang, 

Gong, Xu, & Hu 2019). In our study, the role of feedback is relevant since it can 

help pre-service teachers to reconstruct their practical arguments. The feedback 

focused on the premises: asking for more detailed descriptions of students’ 

mathematical strategies, interpretation of students’ understanding, more evidence 

to support their actions, and information regarding the benefit derived from 

performing a future action. Afterwards, PTs wrote a second narrative during their 

practice (reconstruction of the practical argument after feedback). Data of this 

research are the two narratives written by PTs. 

Analysis 

In the analysis, we focused on whether the narratives included: 

● Situational premises: whether PTs provided detailed descriptions of the 

teaching-learning situation and students’ strategies. 

● Stipulative premises: whether PTs interpreted students’ understanding 

using their mathematical knowledge and knowledge of teaching and 

learning mathematics.  

● Empirical premises: whether PTs provided evidence from students’ 

understanding that can support their actions.  

● Value premises: whether PTs provided statements that include 

information regarding the benefit derived from performing a future 

action. 

Three researchers analysed the two narratives individually, then, compared, and 

discussed their agreements and discrepancies (triangulation process) until a 

consensus was reached. Afterwards, changes in PTs practical arguments 

regarding the premises were identified. 
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RESULTS 

Table 1 shows the changes in the premises included by pre-service teachers in 

their narratives. In the first narrative, nine out of the 17 PTs provided only 

situational premises. These PTs only described students’ strategies identifying 

some mathematical details. Eight out of the 17 PTs also provided stipulative 

premises interpreting students’ understanding. These PTs linked the 

mathematical details identified with their mathematical knowledge and 

knowledge of teaching and learning mathematics. However, only three PTs 

provided evidence from students’ understanding supporting their future teaching 

decisions (empirical premises) and included information regarding the benefit 

derived from performing this future action (value premises). 

 
Situational 

premises 

Situational 

premises 

Stipulative 

premises  

Situational premises 

Stipulative premises 

Empirical premises 

Value premises 

1st narrative 9 5 3 

2nd narrative 2 6 9 

Table 1.  Premises included in the narratives of pre-service teachers. 

In the second narrative, 15 out of the 17 PTs provided situational and stipulative 

premises. Moreover, nine out of these 15 PTs provided empirical and value 

premises.  

These data highlight that PTs were able to develop progressively more complete 

practical arguments showing evidence of noticing enhancement. This finding 

suggests that reconstructing practical arguments during the period of practices at 

schools and the feedback provided seem to be powerful tools to develop noticing. 

We are going to show extracts of the narratives written by PT03 and the feedback 

provided as an instance of this result. 

The first narrative of PT03 -Eliciting- 

In his first narrative, PT03 described a 2nd-grade classroom teaching-learning 

situation with 21 primary school students focused on problem-solving. This PT 

only provided situational premises describing the problem solved and some 

students’ difficulties. Following, some excerpts from his narrative are shown:  

Maria is saving money to buy a dollhouse in two different piggy banks. There are 

325 euros in the first piggy bank and, 172 euros in the second piggy bank. How many 

more euros does the first piggy bank have than the second one? 
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[…] instead of performing a subtraction operation to find out the difference between 

both piggy banks, they performed an addition operation. When the teacher asked one 

of these students: “What should we do to solve the problem?” he said “We have to 

add” “Why? “Because it appears the word more in the problem”.  

When students read the problem, they realised that they had to perform a 

mathematical operation to solve the problem. However, some of them had difficulties 

since they did not identify the correct operation to solve it. 

PT03 focused his attention on the difficulty of performing “the correct operation” 

since students were linking the word more from the problem with the use of 

addition. Therefore, this PT identified and described an important mathematical 

detail of students’ strategies (situational premises). Nevertheless, PT03 

associated students’ difficulties with the incorrect identification of the operation 

without providing additional information. He did not interpret students’ 

difficulties; for example, using knowledge of the type of problem solved 

(stipulative premises). For instance, the missing-value is the difference in this 

comparison word problem. These word problems are more difficult than the 

change, and combination word problems (Fuson, 1992) and students try to 

associate the words that appear in the problem with a type of operation (more 

with addition and less with subtraction). 

This PT concluded his narrative providing a future action focused on the use of 

smaller numbers in the problem: 

[…] presenting the problem, first, with smaller numbers to make the situation easier 

and introducing gradually bigger natural numbers […]. 

PT03 focused his future action on using smaller numbers instead of focusing on 

students’ understanding that would imply working on the relationships between 

quantities involved in the problem (identifying the structure of the problem). This 

part of the narrative shows that PTs’ difficulties providing stipulative, empirical 

and value premises did not let him thoroughly interpret the situation to make a 

teaching decision considering students’ understanding. 

Tutor’s feedback 

The university tutor’s feedback focused this PT attention on providing stipulative 

premises to interpret students' understanding: "[…] you should analyse students' 

difficulties deeply considering, for instance, the characteristics of the problem 

[…]". Besides, the feedback asked for more concrete future actions based on 

students' understanding (empirical and value premises): "[…]   it would be better 
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to suggest a concrete action focused on students' understanding […]. How would 

you help them overcome their difficulties with the problem?” 

The second narrative of PT03 -Eliciting and Reconstructing-  

In the second narrative, PT03 described a teaching-learning situation that 

involves the subtraction algorithm. He provided descriptions of the teaching-

learning situation using situational premises: 

I am going to describe a situation that happened in a 2nd-grade classroom of a primary 

school. Students were solving individually different activities involving subtractions. 

PT03 described some students’ difficulties: 

Initially, it seemed that the great majority of students understood what to do. 

Nevertheless, I corrected the subtractions, individually, and I identified that some 

students had difficulties with the subtraction algorithm since they answered “365” as 

a solution for the subtraction 418-173. 

In the following excerpt, PT03 used his knowledge about the characteristics of 

the decimal numbering system (place value and the idea of grouping, Battista, 

2012) to interpret students’ difficulties with the subtraction algorithm (providing 

stipulative premises):  

[…] These students seemed to understand that they always have to subtract a smaller 

digit from a bigger one. So, they seemed to have acquired a limited knowledge of 

subtraction; especially they seemed not to understand the place value of the digits 

and how to subtract by regrouping […].  

Moreover, he provided evidence from the situation to support his interpretation 

through empirical premises when he wrote: 

[…] I confirmed my thoughts when I asked one student to explain how she solved 

the subtraction 418-173 and she answered: From 3 to 8, 5, from 1 to 7, 6 and, from 

1 to 4, 3. 

Continuing with his narrative PT03 wrote a value premise when he provided a 

learning objective and included information regarding the benefit derived from 

performing a future teaching action using didactical resources that help students 

progress in their learning. He used his knowledge of teaching and learning 

mathematics to deal with the situation considering students’ difficulties: 

[…] we should work the decomposition of the numbers from the beginning. First, 

the canonical decomposition of the numbers using base ten blocks to help students 

understand that 1 ten is 10 units or that 1 hundred is 100 units or 10 tens. Following, 

we should work with multiple decompositions of the numbers to help students 
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understand how to group and regroup numbers and, understand the value represented 

by a digit in a number (place value). For instance, a decomposition of 117 is one 

hundred, one ten and seven units and other decompositions are 11 tens and 7 units or 

9 tens and 27 units. 

This value premise (and implicitly an empirical premise) was followed by an 

intended action linked with the interpretation of the situation considering 

students’ understanding of the subtraction algorithm. 

[…] Working with the different decompositions of the number will help students 

understand how the subtraction by regrouping works. In this case, I would provide 

students with base ten blocks and ask them to represent the quantity of the minuend 

(418) and subtract the quantity of the subtrahend (173). Then, using the base-ten 

blocks, students would realise that to subtract 7 tens to 1 ten they should break a 

hundred into 10 tens (418 = 3·100 + 11·10 + 8). 

The more complete practical argument provided in his second narrative 

(evidenced by the premises given) can be considered evidence of noticing 

enhancement.  

DISCUSSION AND CONCLUSIONS  

Results indicate changes in the PTs’ practical arguments regarding the premises 

considered. These changes derived in providing complete practical arguments 

progressively. Therefore, the reconstruction of practical arguments and the 

university tutor's feedback allowed PTs to explicitly establish the connections 

between what is observed (data, evidence) and theoretical knowledge that can 

help them to interpret the situation and justify future teaching actions (Ivars et al., 

2018). This finding suggests that reconstructing practical arguments during the 

internship period at primary schools and the tutor’s feedback seem to be powerful 

tools for the enhancement of noticing.  

The reported changes allow us to identify the potential of the prompts provided 

to pre-service teachers to write the narratives and the nature of the tutor’s 

feedback addressed to give more details of students’ understanding and make 

more explicit the reasons behind their interpretations and actions. It seems that 

the tutor’s feedback pushes PTs to generate complete practical arguments 

providing reasons (premises) for their actions (Vesterinen et al., 2014). Therefore, 

our results contribute to the field of noticing examining other contexts for the 

enhancement of noticing in teacher training programs while pre-service teachers 

are in the period of apprenticeship at schools (Stockero, 2020).   
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COORDINATING CO-OCCURENCE AND SAME EXTENT 

WHEN GENERATING LINEAR EQUATIONS 
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We conducted 1-on-1 interviews to investigate how 10 future middle grades 

mathematics teachers in the United States generated equations to express 

proportional relationships between two co-varying quantities. Our analysis 

revealed the importance of coordinating 2 perspectives on quantitative 

relationships we term the co-occurrence and same extent perspectives. We argue 

that past research on school algebra has overlooked as important the interplay 

between the 2 perspectives and demonstrate that the future teachers were 

successful generating normatively correct equations when they accounted for and 

coordinated both. The results provide new insight into proficient reasoning when 

generating equations that model problem situations. 

INTRODUCTION 

We conducted one-on-one interviews to investigate how 10 future middle grades 

mathematics teachers generated equations to model proportional relationships 

between two co-varying quantities. When analysing where these future teachers 

were more and less successful generating normatively correct equations, we came 

to see that a critical aspect of their proficient reasoning has been overlooked by 

past research. In particular, the future teachers succeeded when they coordinated 

two perspectives on relationships between quantities that we call the co-

occurrence and same extent perspectives.  

To illustrate the two perspectives, consider a situation in which gold and copper 

are mixed in a 7-to-5 ratio. When generating an equation, teachers or students 

might intend to express weights of gold and copper that co-occur––for instance, 

7 ounces of gold co-occur with 5 ounces of copper. Alternatively, they might 

intend to express weights of gold and copper that are the same––for instance, 5 

ounces of gold weigh the same as 5 ounces of copper. More generally, a person 

might want to convey two quantities that co-occur or go together or two quantities 

that have the same extent, such as the same weight or volume. We found that 
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when future teachers generated and explained normatively correct equations that 

modelled proportional relationships, they successfully coordinated these two 

perspectives.  

BACKGROUND 

Past research has delineated different strands of school algebra, and the two 

strands pursued most often have emphasized algebra as an extension or 

generalization of arithmetic and as the study of functions (e.g., Kaput, 2008; 

Kieran, 1992, 2007). Much of the research on generalized arithmetic has relied 

on numeric tasks with no reference to quantities in problem situations, while 

much of the research on functions has emphasized expressing co-occurrence, not 

same extent, of two quantities. The separate emphasis on these strands is one 

explanation for why the field has overlooked the importance of coordinating the 

co-occurrence and same extent perspectives.  

Equations in the context of generalized arithmetic 

Earlier research on school algebra as generalized arithmetic reported difficulties 

that students have with the use of letters (e.g., Küchemann, 1981), rules for 

transforming expressions (e.g., Matz, 1982), and interpretations of the equal sign 

(e.g., Kieran 1981). For purposes of locating the contribution of the present study, 

an important finding has been students’ tendency to use an operator perspective 

in which the equal sign separates an arithmetic expression on the left-hand side 

from an evaluated answer expressed as a single number on the right-hand side. 

This perspective contributes to students’ tendencies to use the equal sign in a 

chain of computations, as in 2.3 + 3.2 = 5.5 – 1.5 = 4 (e.g., Kieran, 1992), and 

difficulties making sense of equations like _ = 3 + 4, 4 + 5 = 3 + 6, and 2 x 6 = 

10 + 2 (e.g., Kieran, 1981). Researchers have contrasted the operator perspective 

with a relational perspective in which the equal sign indicates two equal values 

or equivalent expressions, which is consistent with same extent. More recent 

research has continued to rely on numerical tasks when assessing students’ 

interpretations of the equal sign (e.g., Blanton et al., 2015, 2019; Carpenter, 

Franke, & Levi, 2003; Carraher & Schliemann, 2007; Jones & Pratt, 2012). 

Further recent studies of teachers’ attention to the operator and relational 

interpretations have also relied on numerical tasks (e.g., Asquith, Stephens, 

Knuth, & Alibali, 2007; Hohensee, 2017; Prediger, 2010). One finding is that 

teachers can overestimate the frequency with which students use the relational 

interpretation.  
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Equations in the context of functions 

Research on school algebra as the study of functions (e.g., Blanton et al., 2015, 

2019; Kaput, 2008; Kieran, 1992, 2007) has often focused on connections among 

tables, graphs, equations, and language. We simply point out that tables and 

graphs are based on ordered pairs and, thus, provide students experience using 

algebraic notation to express co-occurrence more directly than same extent.  

Equations that model proportional relationships 

One of the best known results about equations that model proportional 

relationships is the so-called Students-and-Professors reversal error (e.g., 

Clement, 1982). A sample of 150 college engineering students were asked two 

write an equation for the following statement: “There are six times as many 

students as professors at this university.” Thirty-seven percent answered 

incorrectly, and two-thirds of the erroneous answers were of the form 6S = P. One 

explanation for the error was that students generated equations left-to-right as 

they read the problem statement phrase-by-phrase. A second explanation was that 

students intentionally compared a larger group to a smaller group. The first error 

has been termed “word order matching” and the second “static comparison.” 

Various researchers have continued to investigate similar reversal errors.  

THEORETICAL FRAME 

In previous reports (e.g., Beckmann & Izsák, 2015; Izsák & Beckmann, 2019), 

we have explicated an overlooked, yet promising, perspective on proportional 

relationships we term variable-parts. This perspective views quantities in terms 

of fixed numbers of equal-sized parts that can vary in size. Consider again a 

situation in which gold and copper are mixed in a 7-to-5 ratio. From a variable-

parts perspective, one imagines fixing seven parts for gold and five parts for 

copper and allowing the units in each part to increase or decrease in such a way 

that the number of units in each of the 12 parts is the same (Figure 1b). We 

emphasized this perspective when designing interview tasks.  
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Figure 1. Gold and copper in a 7-to-5 ratio from the variable-parts perspective.  

We have found aspects of the knowledge-in-pieces epistemological perspective 

(e.g., diSessa, 1993, 2006) useful for making sense of how future mathematics 

teachers reason about topics related to multiplication, including proportional 

relationships. The most important features of this perspective for the present 

report are that (a) future teachers can hold multiple ideas about a given problem 

situation that do not necessarily fit together into a coherent whole, (b) teachers’ 

activation of ideas are often sensitive to particular features of problem situations, 

and (c) learning does not proceed through a series of hierarchically organized 

stages but rather through complex processes in which knowledge is refined and 

reorganized. 

METHODS 

Data for the present report come from a larger, multi-year study in which we 

investigated future middle grades mathematics teachers’ reasoning about topics 

related to multiplication. We recruited future teachers enrolled in preparation 

programs at two large, public universities in the United States and used a survey 

targeting multiplication and division with fractions to select a mathematically 

diverse sample for interviews.  

During the 80-to-90 minute, semi-structured interviews (Bernard, 2006), the 

future teachers worked tasks we designed to engender reasoning about variable 

parts. Typical follow-up questions asked future teachers to explain their thinking 

in more detail, to discuss any additional ways they might have for thinking about 

a task, and to consider using a drawing. Such questions drew out diverse ways in 

which the future teachers could think about the tasks. 

We recorded each interview using two cameras, one to capture the future teacher 

and the interviewer and one to capture the future teacher’s written work. At the 

end of each interview, we collected all written work for later analysis.  

First, we reviewed the videos and verbatim transcripts independently of each 

other. We generated summaries of each future teacher’s reasoning, then met to 

compare summaries, and resolved discrepancies by reviewing the data in light of 

points each of us raised. Through several cycles of this process, we improved the 

fit between verbatim statements, gestures, and inscriptions we observed and our 

accounts of the concomitant reasoning. Finally, as we identified similarities and 

differences across cases, we began to suspect that ways future teachers did or did 
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not combine the co-occurrence and same extent perspectives contributed to 

important differences in their performance.  

As we sharpened our analysis, we converged on the following research question: 

How did the future teachers’ attention to and coordination of the co-occurrence 

and same extent perspectives contribute to their success when generating 

equations to model proportional relationships? 

RESULTS 

All 10 future teachers attended to both the co-occurrence and the same extent 

perspectives at one point or another during their interviews. Of these, five 

coordinated the two perspectives to a much greater extent than the others and, 

when so doing, were more successful in generating normatively correct equations 

that modelled proportional relationships between two co-varying quantities. We 

illustrate this result with two cases, the first illustrates coordinating the two 

perspectives to a lesser extent and the second illustrates coordinating the two 

perspectives to a greater extent.  

Nina 

Nina attended to the co-occurrence and same extent perspectives at different 

times over six approaches to the Jewelry Gold task. The initial version of the task 

read as follows:  

A company makes jewelry using gold and copper. The company uses different 

weights of gold and copper on different days, but always consisting of a total of 7 

parts gold and a total of 5 parts copper, where all parts weigh the same amount.  

One day the company uses 25 ounces of gold. Please explain a relationship among 

the number of ounces of copper the company uses that day and the 25, 7, and 5. 

For her first approach, Nina quickly set up the following proportion: “7/5 = 25/X.” 

The interviewer did not follow-up to determine how Nina made sense of her 

equation. 

When the interviewer asked for a solution using a drawing, Nina initiated her 

second approach for which she drew a double number line. One number line 

showed ounces of gold and one showed ounces of copper. She used vertically 

aligned tick marks to coordinate each 1 ounce of gold with 5/7 ounces of copper 

(Figure 2a). Thus, at least tacitly, she focused on co-occurrence.  

When the interviewer asked for other drawings, Nina’s third approach was to 

draw a rectangular array with 12 parts (Figure 2b) and to write “copper = 5 
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(25/7).” She expressed the ounces in each part correctly, but her explanation of 

equality was vague:  

You said to write an expression. This isn't really mathematical [gestured across 

“copper = 5(25/7)”], but because you said that, I put an equal sign, just like the 

copper, colon, copper is…like it could have been anything. I just put equal. 

 

    

 

 
 

(a) (b) (c)  

Figure 2. Three of Nina’s approaches to the Jewelry Gold task  

When the interviewer asked for “other kinds of expressions that you could 

generate based off this drawing that you’ve produced,” Nina generated her fourth 

approach. She quickly wrote “gold = x,” “copper = y,” and “7x = 5y.” The last 

equation was consistent with those characterized as reversal errors. Nina then 

attended to co-occurrence and same extent but expressed uncertainty:  

What I meant was…like for every seven groups of gold there would always be five 

groups of copper, but if I look at it in the drawing, then like these seven group…like 

it’s not actually equal. There’s more [pointed to the seven gold parts] than there is 

[pointed to the five parts copper]…there’s more gold than there is copper. So I feel 

like that is confusing. 

She commented that equations should “balance,” but she was unclear what would 

balance in the mixture situation. She knew to look for, but did not see, same 

extent.  

Next the interviewer presented a version of the Jewelry Gold task that introduced 

the letter G to stand for the unspecified number of ounces of gold, C to stand for 

the corresponding number of ounces of copper, and a strip diagram showing 

seven parts for gold and five parts for copper (Figure 2c). For her fifth approach, 

Nina commented:  

I feel like if there were five of these whole things [pointed to the seven part strip for 

gold], it’d be equal to seven of these whole things [pointed to the five parts strip for 

copper], which would change it. 
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She then wrote “5x = 7y,” using x and y instead of G and C, and explained that 

this was balanced because both sides indicated 35 total parts. This expressed same 

extent.  

When the interviewer asked for any other equations, Nina generated her sixth 

approach by writing G = 7/5C and C = 5/7G. She explained:  

C is five sevenths the size of G makes sense because these are all one seventh of G 

[wrote “1/7” in two parts of the gold strip, Figure 2c] and it’s the size of five of 

them….one seventh, two seventh, three seventh, four seventh, five seventh. That’s 

the size of C. 

She then gave a similar explanation for G = 7/5C and wrote “1/5” in two parts of 

the copper strip (Figure 2c). Finally, she explained that both sides of her equation 

“would give the same number of ounces.” Nina now articulated same extent 

explicitly. 

Leann 

In contrast to Nina, who initially found coordinating the co-occurrence and same-

extent perspectives “confusing,” Leann coordinated the two perspectives quickly 

when using both subtraction and multiplication. For her first approach to the 

Jewelry Gold task (the version with the variables C and G), she generated “C = 

G – 2” and explained:  

The way I was thinking about it was if you have seven gold and you’re using five 

copper, every time you get to seven gold you’ve used five copper, which is two less 

than the number of gold that you used, which would give you the total number of 

copper that you used.  

Leann’s statement that “every time you get to seven gold you’ve used five 

copper” was consistent with co-occurrence, while her statement that the number 

of copper was “two less than the number of gold that you used” was consistent 

with same extent. 

For her second approach, Leann computed 7 ÷ 5 = 1.4  and explained: 

So for every one bar––is it bar?––one part of copper, they used 1.4 parts of gold. So 

if I used, so I guess I want to say the gold equals the copper multiplied by 1.4 [wrote 

“G = C x 1.4”], since there’s 1.4 more gold than copper every time.  

Leann’s statement that for every one part of copper there would be 1.4 parts of 

gold was further evidence of attention to co-occurrence. At the same time, 

Leann’s “G = C x 1.4” equation combined with her comment that “gold equals 

the copper multiplied by 1.4” evidenced attention to same extent. In subsequent 
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work, Leann produced drawings, made co-occurrence statements like “every 

seven gold is five copper,” and made same extent statements such as: “The total 

gold would equal the total copper plus another two fifths of the copper.” Thus, 

her explanations for correct equations combined the co-occurrence and same 

extent perspectives fluidly.  

DISCUSSION AND CONCLUSION 

Our results suggest that coordination of the co-occurrence and same extent 

perspectives is a subtle, yet important, aspect of school algebra that has been 

overlooked by past research on students and teachers. In contrast to past research 

on Students-and-Professors and similar problems, which has characterized static 

comparison as an impediment to generating normatively correct equations, in our 

data future teachers were successful when they found ways to account for both 

perspectives. Nina had to find ways of viewing the jewelry gold mixture that fit 

with the same extent perspective, while Leann moved fluidly between the co-

occurrence and same extent perspectives. 

Our results have straightforward implications for teacher education programs. We 

imagine discussions in courses that identify the co-occurrence and same extent 

perspectives, highlight where each is useful, and examine how they are not in 

opposition but can complement one another. Such discussions could help prepare 

future teachers to recognize when students are similarly challenged by the two 

perspectives. 

Finally, the present study is limited both by the small number of participants and 

the narrow focus on a small number of tasks that included the Jewelry Gold task. 

We imagine future research that builds on insights reported here by investigating 

how future teachers and students generate and explain equations using a wider 

variety of tasks about proportional relationships and tasks in which other 

relationships are central. 
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Mathematical reasoning shows relevance for the support of mathematical 

giftedness. In order to combine both aspects from elementary school age, 

knowledge on two aspects is required: firstly, on changes in mathematical 

reasoning and secondly on possible connections between mathematical 

reasoning and the mathematical giftedness profile. This article takes up already 

known indicators for changes and connections and presents the methodology and 

results of a longitudinal study with potentially gifted children between 9 and 12 

years. Firstly, a scheme for the analysis of the orally produced arguments is 

developed. Afterwards, a detailed examination of the changes in the categories 

of Content and Validity results in six types that characterize differences in the 

temporal changes. 

INTRODUCTION 

With emphasis on the goal of training the later ability to prove, the importance of 

argumentation becomes apparent in the support of mathematical giftedness at a 

young age. Nevertheless, the PISA results, for example, show that even 

mathematically gifted students in lower secondary schools still find it difficult to 

argue correctly, completely and conclusively (OECD, 2016). However, it is 

consensus that the development of the giftedness potential is a process that takes 

several years and that the promotion of mathematical giftedness should be 

designed for the long term (Fritzlar & Nolte, 2019). This leads to the question 

how the long-term training of mathematical reasoning can be reconciled with the 

support of mathematical giftedness. The article takes up this research interest in 

a longitudinal study. After the derivation of the research questions, it presents the 

methodological development of a suitable analysis scheme. This takes into 

account the age of the children, orality as a form of the survey, the product 

character of the arguments and the longitudinal character of the study. 

Furthermore, the results on typical courses of change and their evaluations, as 
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well as on a possible connection between the argumentation characteristics and 

the giftedness profile is emphasized. 

THEORETICAL BACKGROUND 

Analysis of mathematical arguments 

The relevance of mathematical argumentations opens up the need for suitable 

analysis possibilities of arguments. In addition to competence models, e.g. in 

PISA and TIMSS, this is also done with the help of a structural analysis based on 

the Toulmin scheme. By definition, the core of the Toulmin scheme contains the 

Conclusion, i.e. a statement that asks for legitimation, the Data, i.e. the 

unquestioned statements to which the Conclusion is attributed and the Warrant, 

i.e. the statement which substantiates the step from Data to Conclusion (Toulmin, 

2003).  

The occurrence or non-occurrence of these elements does not allow any statement 

about the content or the conclusiveness of an argument (Koleza, Metaxa & Poli, 

2017). Especially the warrant can be the basis for a distinction whether an 

argument contains all necessary information for the step from data to conclusion 

and thus is complete, or if the argument leaves questions open and has to be 

evaluated as incomplete. Furthermore, different types of arguments give reason 

to analyze and categorize arguments in detail. Children, in particular, do not 

usually argue on a general level or use mathematical rules increasingly as 

evidence for their arguments (Koleza, Metaxa & Poli, 2017). Therefore, the 

argument’s method can be distinguished, e.g. through being based on an example 

or on a general mathematical statement. In addition, especially oral arguments 

might be promoted by questions, e.g. questions that request an evaluation or 

questions that request a warrant (Cervantes-Barraza & Cabañas-Sánchez, 2020). 

Therefore, it is possible to analyze the independency of the argument and their 

creation context. 

Mathematical giftedness 

Giftedness at a young age is often defined by means of competence definitions, 

i.e. a potential for an outstanding performance (Lucito, 1964). Such a definition 

raises the question of appropriate diagnostic methods for giftedness. Especially 

in the area of mathematical giftedness, there is a tendency to describe the 

construct with the help of catalogues and systems that contain several 

characteristics of mathematically gifted people. The system for third- and fourth-

graders with a potential mathematical giftedness by Käpnick (1998) and the 



Jablonski & Ludwig 

PME 44 – 2021   3 - 93 

counterpart for potentially gifted fifth- and sixth-graders by Sjuts (2017) 

reconcile specific mathematical traits with personality traits of potentially 

mathematically gifted children, e.g. structuring and creativity. So-called indicator 

tasks are based on the idea of operationalizing mathematical giftedness with the 

help of these area-specific characteristics.  

RESEARCH QUESTION 

Mathematical argumentation and its analysis play a role in international school 

achievement studies (e.g. PISA and TIMSS), but also in numerous empirical 

research projects (e.g. Reid & Knipping, 2010). The analysis is done either by 

classification in complex models or by recourse to schemata such as the Toulmin 

scheme. The hereby identified characteristics of reasoning are mainly cross-

sectionally, i.e. describing mathematical reasoning in one specific age. "Real" 

descriptions of changes in argumentation derive from the area of developmental 

psychology. Piaget's Step Theory (Piaget, 2002) and the LOGIK study (Ahnert, 

Boes & Schneider, 2003) describe cognitive changes in logical thinking and 

provide indicators of changes in children's general reasoning without reference to 

mathematical reasoning.  

Besides the lack of longitudinal studies on mathematical reasoning, the relation 

between mathematical giftedness and mathematical argumentation is still 

uncertain (Durak & Tutak, 2019). On the one hand, it is assumed that there are 

no differences between mathematically gifted and normally gifted primary school 

students with regard to the need for proof or argumentative reasoning (Fritzlar, 

2011). Instead, the mathematical intuition is taken into account here, which could 

hypothetically also have a negative impact on the explicitness of argumentation. 

Contrary to this assumption, the hypothesis that "[m]athematically gifted students 

[...] tend to show unusual paths of reasoning" (Gutierrez et al. 2018, p. 170) seems 

to be internationally widespread. This potential for increased reasoning skills is 

based on a possible cognitive advantage and on characteristics of mathematical 

giftedness, e.g. a creative approach to problem solving, special abilities in 

structuring mathematical facts and special abilities in reversing thought processes 

(Fritzlar & Nolte, 2019). 

With reference to the comparison of the systems of characteristics for potentially 

mathematically gifted third- and fourth-graders by Käpnick (1998) and for 

potentially mathematically gifted fifth- and sixth-graders by Sjuts (2017), a 

possible temporal change of the mathematical reasoning in mathematically gifted 

children becomes obvious. While logical reasoning is not listed in the system for 
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children in the third and fourth grades, it is taken into consideration as a gifted-

specific characteristic for children in grades five and six. This addition is based 

on empirical studies and a theoretical justification with reference to the transition 

to the formal-operational phase defined by Piaget (2002). This leads to the 

following research question: 

How can typical temporal courses (types) be characterized, evaluated and 

connected to mathematical giftedness?  

METHODOLOGY 

In an explorative approach, the indicators for changes in argumentation are 

investigated. With the emphasis on changes, a longitudinal study with an identical 

sample and survey method is designed. For a detailed overview on the study 

design see Jablonski & Ludwig (2019).  

The sample comprises 37 participating children from the enrichment program 

"Junge Mathe-Adler Frankfurt”. It is an out-of-school program for the long-term, 

regular support of mathematically interested and potentially gifted students from 

Frankfurt, Germany. The children are selected by nomination of their 

mathematics teachers. The teachers receive indicator tasks in advance that 

operationalize special mathematical giftedness characteristics.  

The children's argumentation products and possible changes are recorded with 

the help of problem-oriented interviews with arithmetic tasks. The task formats 

of the interviews are the number pyramid and the numerical lattice as well as the 

number relations contained therein (see Figure 1 and 2; de Moor, 1980).  

 

Figure 1: Task format number pyramid 
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Figure 2: Task formats numerical lattice 

First, a statement is presented in which it is claimed that the order of the basic 

elements (basic stones or arrow numbers) has no influence on the result of the 

respective format. The children are asked to comment on this (false) statement. 

Afterwards, the children are asked to investigate the relationship between the 

basic elements and the result in more detail, for example by asking how they have 

to be arranged so that the result is maximal. A guideline includes that the children 

firstly formulate discoveries and that – if not independently formulated – 

justifications and generalizations are initiated by the interviewer. In the last part 

of the interview, the children are asked to give reasons for their own "special" 

number pyramid or a "special" numerical lattice. The data collection of the 

interviews takes place every six months. There are four interview surveys in total, 

so that an observation period of 18 months is taken into account. 

The resulting argumentation products are coded with the help of an analysis 

scheme for oral individual interviews in the categories Structure, Content, 

Validity and Independence (see Figure 3).  

On the one hand theory-guided, on the other hand empirically tested on the basis 

of the interviews of the pilot study, the analysis scheme is delimited from already 

existing analysis schemes. Firstly, the involved Toulmin elements are coded. 

Afterward, the content and validity of the conclusion and warrant are analysed. 

Both happens with regards to the context, i.e. whether the element is formulated 

independently. The scheme is empirically confirmed in the context of the study 

with good values (Kappa between 0.66 and 0.74) of intercoder reliability. 
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Figure 3: Chosen Categories of the Analysis Scheme 

For the typology, two comparative dimensions are selected. These are the 

categories Content and Validity, which result in the corresponding feature space: 

 

Figure 4: Feature Space as Basis for the Typification 

The 37 children are ranked for each of the four data collections by means of 

empirical boundaries. Finally, the children are grouped according to their 

longitudinal classification.  

RESULTS 

Characteristics of the Types 

The children can be assigned to the following six types: 
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● Type 1.1 argues stably generally 

● Type 1.2 argues stably generally and completely 

● Type 2.1 argues stably incompletely 

● Type 2.2 argues stably incompletely and example-based 

● Type 3 argues increasingly generally 

● Type 4 argues increasingly completely 

These types characterize the interindividual differences in the progressions over 

the study period. Two of these types - type 3 and type 4 - also show intraindividual 

differences over the period of examination. 

Their characterization results from the following properties   

(1) concrete numerical examples/direct reference to the material 

(2) beyond concrete numerical examples/general facts 

(3) missing necessary information to complete the argument 

(4) all relevant information for a complete warrant 

In Table 1, these characteristics are assigned to the types, whereby a 

differentiation is made regarding their stability and variability. Additionally, their 

frequency among the children is quantified by N. Especially type 3 is strongly 

represented empirically. Therefore, a hypothetical statement on a group-

independent increase of generalizing elements can be assumed. All in all, 34 

children are allocated to the types, whereby three children show irregular courses 

of change. 

Type Characteristics N 

1.1 Stably: (2) 6 

1.2 Stably: (2) and (4) 5 

2.1 Stably: (1) 4 

2.2 Stably: (1) and (3) 6 

3 Increasing: (2) 10 

4 Increasing: (4) 3 

Table 1: Chosen Categories of the Analysis Scheme 
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Problems, Prognoses and Connections to Mathematical Giftedness 

Despite the initial descriptive orientation of the analysis, at this point three 

evaluative classifications of the argumentation characteristics should help in the 

normative evaluation of the types:  

1. The children should be able to formulate a complete warrant.  

2. The children should be able to formulate a general, valid conclusion.  

3. The children should be able to formulate valid warrants according to the task 

and be able to generalize them when asked.  

The combination of the three normative statements allows a one- or two-

dimensional positive classification of the types 1.1, 1.2, 3 and 4. In contrast, there 

are no positive classifications regarding the types 2.1 and 2.2. On the basis of this 

evaluative classification, it is possible to formulate problems and prognoses for 

those types that do not develop positively. With the help of a qualitative content 

analysis of all interviews, there are indicators for problems in arguing, especially 

with regard to types 2.1 and 2.2, e.g. an empirical reasoning (a generalizing 

conclusion is drawn on the basis of an example-based warrant) and the lack of 

need for justification (no independently formulated warrants). 

These problems occur not exclusively, but predominantly in types 2.1 and 2.2. 

This raises the question of the extent to which early diagnosis and support are 

possible. This is done retrospectively with the help of prognoses for a 

classification in the first data collection to a type. According to this, a low rate of 

generalizing elements on the one hand and a low rate of complete elements on 

the other hand serve as indicators for a later assignment to a non-positive type. 

Conversely, especially the generalizing argumentation can be seen as an 

indication for an assignment to a positive running type.  

Also in the context of generalizing argumentation, there are possible connections 

to increased abilities in structuring and mathematical creativity. In the evaluation 

of the indicator tasks, the generalizing types show, in comparison to the other 

types, a clearer connection to the generalized reasoning of structures. In contrast, 

the incomplete types show difficulties with the complete specification or 

justification of a structure. They primarily formulate a detailed description of the 

overall situation without explicitly presenting what has been discovered.  

CONCLUSION AND OUTLOOK 
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The results of the study show that the changes in mathematical reasoning at the 

age of investigation cannot be described one-dimensionally, despite the 

restriction to a potential mathematical giftedness. Nevertheless, the type 

formation in particular has shown that it is possible to structure, group and 

simplify the course of change. Together with the identified problems, prognoses 

and characteristics of giftedness, it is thus a decisive basis for the practical 

teaching goal of the study, which is to reconcile the long-term support of 

mathematical giftedness with the training of mathematical argumentation. In 

particular, initiation processes and the teaching of methodical argumentation 

knowledge seem to be promising. The formulated results are a first, explorative 

approach to describe the longitudinal change in reasoning of potentially gifted 

children. This explorative approach provides starting points for further questions 

that may validate the hypotheses. The types can be the basis for complex case 

studies. These could be characterized in detail by further categories from the 

analysis scheme, for example by extending the range of characteristics using the 

category Independence. Also in this context, the inclusion of further mathematic 

specific giftedness characteristics seems promising in order to promote 

mathematical argumentation as a learning goal and basis of understanding in the 

context of mathematical giftedness.  
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Place value understanding plays an important role in children's mathematical 

learning. Various studies show a need for further support of children regarding 

their development of place value understanding. What form such support might 

take has yet to be clarified. While we know from a theoretical point of view that 

place value understanding is based on two key ideas, that can be called “place 

value principle” and “regrouping principle”, empirical results on place value 

understanding differ considerably concerning underlying constructs. Our own 

study indicates that the two constructs place value principle and regrouping 

principle are two separate constructs. These results can contribute to the 

provision of individually tailored support for children’s place value 

understanding.  

INTRODUCTION 

The development of place value understanding in elementary school is amongst 

other things important for computational competence, e.g., in dealing with 

crossing the tens boundary, and the use of computational strategies (Verschaffel 

et al., 2007). However, place value understanding seems also to be a predictor of 

mathematics achievement in general (Moeller et al., 2011). Various studies show 

a need for action regarding support for children’s development of place value 

understanding (e.g., Herzog et al. 2019). But it is unclear what such support might 

look like, also because in several studies, albeit the authors conceptualize place 

value understanding similarly on a theoretical basis, they use different methods 

and tasks to examine it empirically. In the following, we take a comparative look 

at some empirical approaches, locating the core theoretical ideas of place value 

understanding. An own empirical study is presented afterwards, in which the two 

core ideas “place value” and “regrouping” were investigated in a comparative 

way. Thereby, our study aims at clarifying the possible contribution of these two 
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core ideas in place value understanding in order to provide starting points for 

developing support options. 

THEORETICAL BACKGROUND 

Two concepts, named the “place value principle” and the “regrouping principle” 

by Padberg and Büchter (2019), are consistently described as fundamental 

properties of place value systems. The place value principle states that each digit 

gives two pieces of information: First, the position indicates which bundling unit 

the digit stands for, and second, the value of the digit indicates the number of 

represented bundling units. The regrouping principle describes that continuously 

the same number of units is bundled. In the decimal system the number of units 

is ten. Models for developing place value understanding have been proposed by 

Fuson et al. (1997), Ross (1989), Herzog et al. (2019), and Fromme (2017), 

among others. In their empirical studies, the researchers capture place value 

understanding in different ways. In the following, the two principles presented 

are used to analyze the empirical approaches.  

Some authors try to get insight into place value understanding via observation of 

counting processes and solving behaviour in multi-digit addition and subtraction 

(Fuson, 1990; Fuson et al., 1997; Cobb & Wheatley, 1988). In this context the 

use of grouping and regrouping in crossing the tens boundary is considered a 

crucial indicator for place value understanding. Hence, the focus of these studies 

lies on the regrouping principle. However, it should be noted that by observing 

computational processes with regard to the use of tens structures the place value 

notation plays a subordinate role. Another option to analyse place value 

understanding is to focus on translation processes between different kinds of 

number representations used for example by Ross (1989) and Fromme (2017). 

Both authors draw attention to the differences between the procedures the 

children use. Ross (1989) asked children about the meaning of the digits in a two-

digit numeral. She distinguishes levels regarding the awareness of the quantity of 

objects corresponding to each digit. Thus, she examines primarily the 

understanding of the place value principle. Ross (1989) notes that some children 

refer to each digit by the names “units” and “tens”, but without associating the 

tens digit with the corresponding number of bundles of tens. Fuson et al. (1997) 

observe a similar kind of approach, when children perform digit-by-digit 

arithmetic while treating all digits in isolation as ones (“concenated single digit 

conception”). Although Fromme (2017) examines translation processes, she 

works out the problem of bundling as an important element. She differentiates 
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two kinds of assigning numerals/number words to number representations on the 

abacus in children’s answers: She highlights whether the children use the tens 

structure compared to counting the objects individually. Here, the focus is on 

using the tens structure analogous to the conceptualization in Fuson (1990), 

Fuson et al. (1997) and Cobb and Wheatley (1988). 

Herzog et al. (2019) develop a competency model based on the models of Fuson 

et al. (1997), Cobb and Wheatley (1988), and Ross (1989), among others, which 

they validated empirically conducting a Rasch analysis. The model consists of 

four levels and the authors differentiate procedural place value understanding and 

conceptual place value understanding. Here, the place value principle as 

described in the model of Ross (1989) is included as procedural place value 

understanding, which consists of being able to name positions by e.g., “tens”, 

“hundreds” in a multi-digit number or to show the right positions in a multi-digit-

number according to the given names (already developed at level 1). The 

regrouping principle is included in the conceptual place value understanding, 

which develops from level II to IV. It consists of understanding the relationships 

between different bundle units, e.g. the relation between tens and ones. It is 

initially at level II still dependent on visual support (e.g., base ten blocks). 

According to Herzog et al. (2019), the ability to translate non-canonical 

representations such as 3T 14U into a place-appropriate notation by regrouping 

ten ones into one ten is crucial for the determination of place value understanding. 

This is accomplished without visualization at level III and in larger number 

spaces at level IV.  

Looking at the presented empirical approaches, Herzog et al. (2019) take up the 

place value principle only as part of the procedural place value understanding at 

level 1, while the regrouping principle seems to be mainly relevant for all higher 

levels. Fuson et al. (1997) and Ross (1989) both point out that the activity of 

naming positions, that Herzog et al. (2019) include in procedural place value 

understanding, is not yet a sign of a full place value understanding. Because of 

that, the question arises whether place value understanding could also be 

differentiated at higher levels, or at least play a further role for place value 

understanding next to regrouping.  

Insofar it is still an open question, whether the understanding of the meaning of 

place values as described by the place value principle is included in the overall 

construct of conceptual place value understanding and whether it is inseparable 

of the regrouping principle, or if the both principles emerge as separate 
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constructs. To address this question, we conducted a study and used tasks in 

which the children had to consider the two principles. Our study aims at 

examining to which extent the two principles contribute to place value 

understanding. The results may help to diagnose specific difficulties in place 

value understanding and to address difficulties more precisely to support 

children’s development. 

Our research questions are: 

● Is place value understanding a unidimensional construct that combines 

the two principles “place value” and “regrouping” or a two-dimensional 

construct with “place value” and “regrouping” as two separate 

constructs? 

● If place value understanding proof to be two-dimensional: To what 

extent contribute the understanding of “place value” and “regrouping” 

each to children’s errors? 

METHODS 

To answer our research questions, we conducted a cross-sectional study: 100 third 

graders (8 to 10 years old) from 7 classes in three elementary schools were 

presented with twelve tasks. In the tasks the place value principle (PVP) and/or 

the regrouping principle (RP) had to be considered. In order to test understanding 

of the place value principle on a higher level than only naming, we chose tasks, 

in which the correct order of bundling units had to be considered. 

● Two tasks addressed translating a representation with base ten blocks 

into numerals. One representation was non-canonical, but sorted by 

bundling units according to the place value representation (RP, see 

figure 1), the other presented unsorted material (PVP).  

 

 

 

 

 

 

 

 

 

Fig. 1: Task in which regrouping is needed.  
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● Seven tasks request translations between representation with named 

units into multi-digit numbers e.g., 7U 1H 4T = ______ (PVP), 4H 15T 

6U = ______ (RP), 7H 3U 19T = ______ (PVP and RP).  

● One task calls for describing material handling with base ten blocks at 

92 - 8 (RP). 

● Two tasks gave prompts to take away tens: a) 1 ten from 305 and b) 14 

tens from 168 (both PVP and RP).  

For the analysis, we coded first dichotomously true/false and determined the 

solution rates of the tasks. Based on the solution rates, we excluded two tasks 

from further analysis:  

(1) The task for the transition from the representation with base ten blocks 

with unsorted material into a numeral was solved correctly by 91% of the 

children, the nine incorrect answers suggested counting errors instead of 

comprehension problems.  

(2) The task for the description of the usage of base ten blocks for solving 92 

– 8 was not worked on by the majority of the children in the intended sense. 

Most children described taking away a ten and giving back two ones instead 

of a regrouping process (take ten ones for one ten and then take away eight 

ones) thus offers no gain in knowledge for the children's understanding of the 

regrouping principle.  

This leaves ten tasks, three of which require only the observation of the place 

value principle and three of which require only the observation of the regrouping 

principle. In the remaining four tasks both principles have to be applied (see table 

1). To examine the extent to which the solution frequencies confirm the two 

principles as independent constructs, a confirmatory factor analysis was 

performed on the six tasks, that each cover only one of the principles (three tasks 

address the place value principle, the other three tasks the regrouping principle). 

For the one-dimensional model, the latent variable is place value understanding, 

while for the two-dimensional model, the two principles are assumed to be two 

latent variables.  

In order to be able to include the tasks for both principles in the analysis, a 

reliability analysis is carried out over all seven tasks in each of which the 

regrouping and/or place value principle must be considered. The four tasks in 

which both principles are addressed are included in both scales. To examine the 

causes of the children's errors in these tasks with regard to the both principles, the 
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errors are examined qualitatively. For this purpose, for each error we analysed, 

which of the two principles (or both) was violated. For example, in 7H 3U 19T = 

______ the solution 7193 indicates that the place value principle was considered, 

but the regrouping principle was not considered (regrouping error). Solution 749 

shows a disregard of the place value principle (place value error), and in 7319 

both principles are violated (regrouping and place value error).  

To understand whether children are more likely to make errors regarding one of 

the principles we compared the numbers of the two types of errors per child.   

FINDINGS 

Findings of the confirmatory factor analysis 

The mean value of the solution rate is 6 tasks out of ten (standard deviation 2.78). 

The confirmatory factor analysis shows that one-dimensional data does not fit our 

data well as indicated in the comparison of our model and the data as well as in 

the Fit-indices RMSEA, CFI and SRMR. The two-dimensional model however, 

shows no significant difference to our data and fits our data comparably well. If 

both models are compared, the AIC and the sample-size-adjusted BIC also 

indicate that the two-dimensional model represents our data better than the one-

dimensional model (see table 1).  

 df χ2 p RMSEA CFI SRMR AIC adjBIC 

1-dim 

model 

9 53.067 .000 .221 

[0.166, 

0.281] 

.645 .104 706.388 696.433 

2-dim 

model 

8 11.766 .162 .069 

[0.000, 

0.146] 

.970 .040 667.087 656.579 

 Table 1: Results of the confirmatory factor analysis 

Note: RMSEA (Root Mean Square Of Approximation); CFI (Comparative Fit 

Index); SRMR (Standardized Root Mean Square Residual); AIC (Akaike 

Information Criterion); adjBIC (Sample Size Adjusted BIC Information 

Criterion) 

Reliability analysis across the “place value principle” and “regrouping principle” 

scales (seven tasks each, with four tasks included in both scales) yields a 

Cronbach's α of .749 for the place value principle and Cronbach's alpha of .783 
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for the regrouping principle, so that a further analysis of the different kind of 

errors according to the two principles seems to be reasonable.  

Findings of the error analysis 

The solution rate in the three tasks in which the regrouping principle have to be 

considered is 68.33%, the solution rate in the three tasks for the place value is 

exactly the same. In the four tasks in which both principles have to be considered, 

the solution rate is 47.5%. The error numbers in the four tasks regarding both 

principles are shown in table 2.  

Table 2: Numbers of both kinds of errors in the tasks regarding both principles  

 7H 3U 19T 3H 15T Take away 1 

ten of 305 

Take away 14 

tens of 168 

Regrouping 

errors 

41 45 16 30 

Place value 

errors 

38 21 15 45 

The comparison of the numbers of the two kinds of errors per child shows that 33 

children made more regrouping errors than place value errors (in the mean 2,67 

more regrouping errors than place value errors) and 44 children the other way 

round (in the mean 2.05 more place value errors than regrouping errors).  

DISCUSSION 

The first research question was, whether the two principles “place value” and 

“regrouping” are empirically confirmed as two separate constructs. The results of 

the confirmatory factor analysis express a preference for a two-dimensional 

model with the two principles as separate latent variables over a one-dimensional 

model.  

The second research question was, to what extent the two principles each 

contribute to children’s errors. The comparison of the solution rate of tasks 

regarding only the place value principle with that of the tasks regarding only the 

regrouping principle shows, that neither principle seems to be more error-prone 

than the other, because the solution rates are exactly the same (68.33%). The 

solution rate of the four tasks regarding both principles is lower (47.5%). We 

therefore conclude that these tasks seem to be more error-prone. Counting and 

relating the regrouping errors and the place value errors made in all tasks show 

that there is not a great difference in problems with one of the two principles in 
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these tasks either. Interestingly, one of the four tasks (3H 15T = ____) seems to 

be more error-prone for the regrouping error. The common error “315” could be 

a result of the fact that the number of digits matches the number of digits actually 

required at the end. At the same time another task (Take away 14 tens of 168) 

seems to be more error-prone for the place value error. The common error “154” 

might be due to no hundreds beeing left over. Maybe a task like “Take away 14 

tens of 268” would lead to less errors.   

Our study emphasizes that problems in place value understanding are a highly 

important issue: Only of 60% of the tasks were solved correctly. This comparably 

low solution rate confirms results of other studies that show insufficient place 

value understanding (e.g. Herzog et al., 2019; Fuson et al. 1997). Our results can 

provide suggestions for individual support options. 

Our results indicate, that an understanding of both principles can be more or less 

present in children’s solutions. That is why an understanding for each principle 

has to be built up through mathematics education. 

While overall both principles present equal difficulty, some children show 

significantly greater difficulty with one of the two principles. Insofar, it seems 

highly important to consider children’s individual problems in place value 

understanding, and in doing so to include the two principles both specifically 

when diagnosing problems in place value understanding.  

Finally, our results can serve as an empirical foundation to further differentiate 

the existing models for place value understanding. For this, it might be necessary 

to describe the more or less separate development of both principles at the lower 

levels. A highest level, on which the complete place value understanding is 

described, would have to include the integration of the understanding of both 

principles.  
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Pre-service teachers acquire mathematical teacher knowledge at university, but 

often fail to apply that knowledge to spontaneous teaching situations in the 

classroom. In this study, we investigate whether an ability to prepare and reflect 

mathematics instruction may facilitate the application of mathematical 

knowledge in instructional situations under time pressure. For that, we assessed 

pre-service teachers’ mathematical teacher knowledge, their ability to prepare 

and reflect mathematics instruction and their ability to act in time pressuring 

teaching situations with partly video-based instruments. The results show that an 

ability to prepare and reflect instruction mediates between mathematical teacher 

knowledge and the ability to act in teaching situations. Our results give 

implications for teacher training at university. 

INTRODUCTION 

Teacher education programs at university aim at providing pre-service 

mathematics teachers with mathematical teacher knowledge such as Content 

Knowledge (CK) and Pedagogical Content Knowledge (PCK) (Kaiser et al., 

2014; Shulman, 1986). After graduating from university, early career teachers 

have to apply that knowledge to deal with the real-life demands of mathematics 

instruction. However, many of those teachers struggle with applying their 

knowledge in teaching situations under time pressure (Rowland et al., 2001; 

Stender et al., 2017). Regarding this issue, research has not yet conclusively 

explained what enables teachers to apply their knowledge in a teaching situation. 

Prior research suggests that an ability to prepare and reflect on instruction may 

facilitate an ability to apply knowledge for teaching (Stender et al., 2017). So far, 

quantitative empirical support for this assumption has not been provided. The 

present study investigates this assumption by examining relationships between 

pre-service and in-service mathematics teachers’ mathematical knowledge, their 

ability to prepare and reflect instruction and their ability to act in teaching 

situations under time pressure. 
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THEORETICAL BACKGROUND 

Modelling Teacher Competence 

To investigate mathematical teacher knowledge, their ability to prepare and 

reflect mathematics instruction and their ability to act in teaching situations, we 

use the model of subject-specific teacher competence by Lindmeier (2011). In 

this model, three aspects of teacher competence are differentiated: 

1. Mathematical Teacher Knowledge: This contains a teacher’s 

decontextualized (i.e., independent from specific contexts such as an 

instructional situation) mathematical knowledge. It encompasses 

content knowledge and pedagogical content knowledge. 

2. Reflective Competence (RC): This contains a teacher’s cognitive, 

motivational and affective characteristics that contribute to mastering 

the typical demands of preparing and reflecting instruction. Teachers 

need RC, for example, to plan an upcoming lesson (e.g., to choose 

content or teaching materials) or evaluate past teaching episodes. 

3. Action-related Competence (AC): This contains a teacher’s cognitive, 

motivational and affective characteristics that contribute to mastering 

the typical demands of teaching a subject under time pressure. Teachers 

need AC, for example, to react to a conceptual misconception displayed 

via a student’s statement during classroom discourse or to give 

immediate feedback to a student’s mathematical question. 

In particular, RC and AC contain mathematical teacher knowledge that is 

applicable for mastering demands of preparing/reflecting instruction and teaching 

situations, respectively (Kersting, 2008; Stürmer et al., 2013). To assess RC and 

AC of mathematics teachers, computer-based instruments were developed to 

approximate the typical demands that mathematics teachers may face (Lindmeier, 

2011; see Instruments). Prior studies using those instruments showed that 

mathematical teacher knowledge, RC and AC are related but empirically 

separable from each other (Jeschke et al., 2019; Knievel et al., 2015). 

How Mathematical Teacher Knowledge Becomes Part of AC 

The theoretical model by Stender et al. (2017) describes how mathematical 

teacher knowledge becomes applicable for teaching situations under time 

pressure (i.e., part of AC). The model refers to the ACT-R theory of cognition 

(Anderson, 1983). In ACT-R, factual, decontextualized knowledge is called 

declarative knowledge. Declarative knowledge can only be applied to a real-life 
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situation, if (1) its level of activation is high enough to be triggered in the 

demanding situations and (2) it underwent proceduralization so that the activated 

knowledge can be executed towards a specific goal in a demanding situation. 

Especially proceduralization is described as a time-consuming process that is 

unlikely to be completed in situations under time pressure (Anderson, 1983). 

Based on the model of Stender et al. (2017), preparation and reflection of 

instruction can be assumed to facilitate both the activation and the 

proceduralization of teacher knowledge: (1) Processing teacher knowledge in 

contexts of instructional preparation and reflection increases its level of 

activation. Thus, it is more likely to be activated in teaching situations under time 

pressure. (2) Anticipating future teaching actions, such as reactions to possible 

student’s misunderstandings, as well as considering past teaching experience, 

such as previous (reactions to) student misunderstandings, facilitate the 

proceduralization of teacher knowledge (details see Stender et al., 2017). Thus, 

by using knowledge for preparation and reflection of teaching, it is structured to 

a form that is easier for a teacher to apply in teaching situations. 

Based on the model described above, it can be hypothesized that RC (as the ability 

to prepare and reflect instruction) might facilitate a teacher’s ability to apply 

knowledge for mastering the demands of teaching (AC) in pre-service teachers. 

Research Questions 

So far, no quantitative study has investigated whether RC facilitates the 

acquisition of AC due to teacher knowledge in pre-service mathematics teachers. 

Accordingly, we approached the following research questions: 

(RQ1) What relationships can be found between mathematical teacher 

knowledge (CK, PCK), RC and AC in pre-service mathematics teachers 

with little teaching experience? 

(RQ2) Is the relationship between mathematical teacher knowledge and AC 

mediated by RC? 

METHOD 

Sample 

In order to investigate our research questions, we examined a total sample of 

N = 140 mathematics pre-service teachers (ca. 53% female, mean age ca. 26.3 

years) from 10 federal states in northern and southern Germany. The participants 

were enrolled in university teacher training programs (n = 116, mean semester: 
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ca. 6.4) or in their first semester of in-service training (n = 24, on average since 

ca. 2.7 month in in-service training). As the first months of in-service teacher 

training in Germany is mostly limited to observing experienced teachers, it can 

be assumed that the pre-service teachers in our sample had only few opportunities 

to teach on their own. Participation in the study was on a voluntary basis and each 

participant received a financial compensation. 

Instruments 

In this sample, we administered well-established instruments for AC, RC, and 

mathematical teacher knowledge (Lindmeier, 2011; Loch et al., 2015). The 

selected instruments aim at similar topics within secondary-level algebra, 

calculus, stochastics, and geometry. However, to avoid priming or repetition 

effects, each task contained in the instruments focusses a different mathematical 

issue (e.g., all instrument address misconceptions of fractions, but no particular 

misconception is featured more than once). The tests were administered in small 

groups (max. 20 test-takers) and under supervision of trained personnel. 

For AC, we used 9 computer-based items (Jeschke et al., 2019; see Figure 1 for 

an example item). Each item contains a short video-clip of a classroom situation 

typical for secondary mathematics instruction. Depending on the item type, the 

task is to provide, for example, an explanation that solves a student’s question or 

a hint that helps students with a mathematical problem without telling them the 

correct solution. Since AC is characterized by its spontaneous and immediate 

demands, the items had to be answered verbally (again, recorded via headset) and 

under time pressure. 

For RC, we used 9 computer-based items (Lindmeier, 2011, see Figure 2 for an 

example item). The items address demands of evaluating teaching material (4 

items; e.g., mathematical representations), reviewing students’ homework (2 

items; e.g., giving feedback to typical mathematical mistakes) and planning 

mathematics instruction. Whereas items for material evaluation and homework 

review contain a picture (of the material/homework in question) and required a 

written response, items for planning instruction contained a video clip of the 

previous lesson’s ending and required a verbal description (recorded via headset) 

of how the instruction would be continued in the following lesson. 

For mathematical teacher knowledge, we used paper-pencil items of mathematics 

PCK and (school-related) CK (for sample items see Jeschke et al., 2019, or Loch, 

Lindmeier, & Heinze, 2015). The scale contained in total 24 items (3 open-ended 
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and 10 closed-ended items for PCK; 5 open-ended and 6 closed-ended items for 

CK). 

All responses were scored to 0, 1 (partial credit), or 2 (full credit). Open responses 

(including the audio recordings for AC and RC) were coded and scored 

independently by two trained persons under usage of a detailed coding/scoring 

scheme. The scheme includes item-specific criteria for each item and code. For 

the scoring, interrater agreement (Cohen’s Kappa) was  = .77–.90 for AC, 

 = .80–1.00 for RC, and  = .70–1.00 for mathematical teacher knowledge. The 

three scales showed (marginally) acceptable internal consistency (Cronbach’s 

Alpha) of α = .63 for AC, α = .69 for RC, and α = .72 for mathematical teacher 

knowledge in this study. 

 

Figure 1: Example item for AC (translated and edited for publication).  

In the video, the students state that they only found 4/8, 5/8 and 6/8. Whilst one 

student claims that there are no more fractions, another thinks that there should 

be more. The test-taker is asked to give the students a helpful hint without telling 

the correct solution. 

 

Figure 2: Example item for RC (translated and edited for publication) 
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The vignette features a lesson in which the students of a class work on different 

tasks in groups. The video shows the end of the lesson and centers one group with 

the task to answer the question ‘What is 0.999… ?’ on a poster. After a short 

dialogue with the teacher about what they learned about 0.999…, one student 

says ‘0.9… is very close to 1, almost 1 itself’. The other students of this group 

agree. The lesson ends in that moment. The test-taker is asked to describe how 

he/she would start the first 15 minutes of the subsequent lesson. 

Data Analysis 

Using sum scores for each scale, we conducted correlational analyses and 

computed path models to investigate mediation effects. In those path models, 

standard errors were estimated using bootstrapping procedures (10 000 draws). 

Missing values (Mathematical Teacher Knowledge: 0; RC: 1; AC: 12) were 

estimated using full information maximum likelihood (FIML) methods. The 

computations were performed using R (version 3.6.0) and the package lavaan 

(Rosseel, 2012). 

RESULTS 

 AC RC Mathematical Teacher 

Knowledge 

  (1) (2) (3) 

(1) –   

(2) 0.57*** –  

(3) 0.42*** 0.61*** – 

M 7.28 7.21 18.58 

SD 3.29 3.41 6.51 

Max (theoretical) 18 18 47 
    

Table 1: Descriptive statistics for mathematical teacher knowledge, RC and AC 

including Pearson correlations between those variables. *** p < .001. 

Table 1 contains the descriptive statistics and Pearson correlations for 

mathematical teacher knowledge, RC, and AC. It shows strong correlations 

between AC and RC (r = .57, p < .001) and between RC and mathematical teacher 

knowledge (r = .61, p < .001). It also shows a moderate to strong correlation 

between AC and mathematical teacher knowledge (r = .42, p < .001). 

However, as Pearson correlations do not control for possible mediation effects, 

we computed a corresponding mediation model with mathematical teacher 
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knowledge as the independent variable, AC as the dependent variable and RC as 

the mediator (Figure 3). The results show that the relationship between 

mathematical teacher knowledge and AC is fully mediated by RC (direct 

effect: .11, p = .20; indirect effect: .31, p < .001; total effect: .42, p < .001). 

 

Figure 3: Mediation model with standardized regression coefficients for the 

relationship between mathematical teacher knowledge and AC mediated by RC. Total 

effect in parentheses. *** p < .001. 

 

DISCUSSION 

Aim of the present study was to quantitatively investigate relationships between 

mathematical teacher knowledge, RC and AC (RQ1), including a possible 

mediation of the relationship between mathematical teacher knowledge and AC 

by RC (RQ2) for pre-service teachers. 

The results show moderate to strong correlations between mathematical teacher 

knowledge and both RC and AC. This is in line with the assumption that 

mathematical teacher knowledge is highly relevant for pre-service teachers’ 

preparation and reflection of mathematical instruction as well as for their 

actions during instruction. Furthermore, the mediation analysis indicates that the 

relationship between mathematical teacher knowledge and AC is fully mediated 

by RC. This fits the theoretical assumption that an ability to apply knowledge to 

master the demands of instructional preparation and reflection (RC) facilitates 

an ability to apply teacher knowledge in teaching situations under time pressure 

(AC). The present study thus provides quantitative empirical evidence for the 
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model by Stender et al. (2017), including first evidence on how teacher 

knowledge and RC relate to teaching actions. 

Having said this, some limitations of our study should be considered. First, the 

cross-sectional design of our study only allows correlational interpretation of our 

data. Furthermore, our results should be interpreted carefully as possible selection 

effects, as well as the limited sample size might have affected the findings. 

Finally, we might have underestimated the strength of correlations due to rather 

low scale reliabilities, especially for AC. 

IMPLICATIONS 

Considering those limitations, future research should reproduce our results with 

larger samples. In particular, as this study is limited to correlational interpretation, 

future studies may investigate how RC affects the acquisition of AC by 

mathematical teacher knowledge with an experimental or longitudinal design. 

If our results find corroboration in future studies, some implications on how to 

foster AC in teacher training programs at university can be derived. First, 

following the assumption that RC facilitates the acquisition of AC, specifically 

designed learning opportunities for RC with focus on anticipating future teaching 

actions and reflecting past teaching experience—explicitly encouraging the 

inclusion of the own (mathematical) teacher knowledge—may foster AC in the 

university training phase. Second, our assessment approach for AC presenting 

teaching situations via video-vignettes could be used as a template to develop 

video-based learning environments for AC. Pre-service teachers could use those 

learning tools to reflect and apply the knowledge shortly after its acquisition. In 

this way, pre-service teachers may be able to transform their acquired knowledge 

into AC while still at university.  

This study thus paves the way for future strategies on how pre-service teachers 

can use their mathematical teacher knowledge more effectively for teaching 

mathematics. 
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TEACHERS’ AND STUDENTS’ PERCEPTION OF RATIONAL NUMBERS 
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It is known from several studies, that students have problems when treating 

rational numbers. In this paper, there is a focus on rational numbers as 

equivalent classes, in teaching expressed as extending of fractions. The current 

research shows how three teachers mediate extending of fractions and how their 

students understood this concept. The main outcome of the research is that most 

of the misconceptions were caused by shortcomings in teachers’ subject matter 

knowledge. For that reason, they were not able to find crucial aspects of the 

object of learning. Consequently, their students tried to find other, however 

irrelevant, patterns.  

BACKGROUND 

International research shows students’ problems and misconceptions when 

treating rational numbers (van Dooren, De Bock & Verschaffel, 2010). According 

to Adler and Sfard (2017) this is a problem that can be decomposed into three 

separate issues 

First, how can one explain he is lingering pervasive failure in mathematics 

experienced by so many students around the world […]. How can one transform 

the resulting understanding into educative action? […] How do we enable the 

impact of such interventions, and how do we make sure that local improvements 

or reforms are scaled-up. (p.1)  

To give an answer to these questions we must understand reasons for the student’s 

misconceptions. So, during some years researchers have studied the teaching 

process in 2nd to 8th Grade, in different schools and communities, in order to 

understand how students are initially introduced to fractions and how this is 

followed up during the following school-years. As a part of these studies, a 

special attention was paid to teachers’ content knowledge (Shulman, 1986) and 

how this influenced the object of learning (Marton, 2015). In this paper there is a 

focus on teaching and learning fractions in 4th and 5th Grade.  
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THEORETICAL FRAMEWORK 

Variation and Learning  

Variation theory (Marton, 2015) is a theory of learning that originates from 

phenomenography. A central concept in variation theory is the object of learning.  

The somewhat curious implication of our argument here is that the object of 

learning is constituted while learning. Or to sharpen the claim a touch further, 

learning is the constitution of the object of learning. (p.161) 

This means that the purpose of teaching is to plan and carry through activities that 

make it possible for the student to “constitute the object of learning”. For learning 

to take place, some crucial aspects of the object of learning must vary while others 

must remain constant. From a teacher’s point of view, it requires a good survey 

and insight of the actual content as well as possibilities to identify students’ 

multiple conceptions of the actual phenomenon. If not, it is neither possible for 

the teacher to present a content that makes it possible for the student to find the 

core of awareness, nor to offer a relevant variation.  

Against this background researchers analyzed how teaching of fractions was 

carried though and how learning took place in mathematics classrooms. One 

crucial aspect was to study to what extent teachers were capable to arrange 

learning conditions that gave their students possibilities to experience relevant 

objects of learning and then deepen the knowledge by suitable variation? This 

question is extended in the next section.  

Teachers’ Content Knowledge 

For the teachers to find the crucial aspects of the learning objects and a suitable 

variation, they have to master the current content as well as students’ pre-

knowledge of it and how to teach it. Shulman (1986) describes the concept of 

pedagogical content as an intersection of subject knowledge and pedagogical 

knowledge. However, a crucial question is which type of subject knowledge 

teachers require. According to Ma (1999) teachers need a profound 

comprehension of mathematics to understand the content to teach. Ball, Thames 

and Phelps (2008) call this a Mathematical Knowledge for Teaching (MKT). 

MKT contains two groups of knowledge, namely Subject Matter Knowledge 

(SMK) and Pedagogical Content Knowledge (PCK). According to Ball et. al 

(2008), SMK contains three subsections, namely Common Content Knowledge 
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(CCK), Knowledge at the Mathematical Horizon (KMH), and Specialized 

Content Knowledge (SCK).  

The importance of a developed subject matter knowledge is claimed by Even 

(1993). On the same subject, Stein, Baxter and Leinhardt (1990) wrote: 

[…] limited subject matter knowledge led to the narrowing of instruction in three 

ways: (a) the lack of provision of groundwork for future learning in this area; 

(b) overemphasis of a limited truth, and (c) missed opportunities for fostering 

meaningful connections between key concepts and representations. (p.659)  

At the same time, it is important to remember that not even elementary 

mathematics is superficial and must be studied hard to be understood in a 

comprehensive way (Ma, 1999).  

Rational Numbers and Subject Matter Knowledge  

In his section researchers explain our understanding of CCK as a background for 

our research. According to van der Waerden (1971), rational numbers can be 

defined as a number field Q constructed from the ring of whole numbers Z as a 

Cartesian product, Z x Z = { 
𝑎

𝑏
 : a, b 𝜖 𝑍, 𝑏 ≠ 0}. The rules for calculation are (b, 

d ≠ 0): 

 
𝑎

𝑏
 = 

𝑐

𝑑
 if and only if ad = bc.         

𝑎

𝑏
 + 

𝑐

𝑑
 = 

𝑎𝑑+𝑏𝑐

𝑏𝑑
           

𝑎

𝑏
 ∙ 

𝑐

𝑑
 = 

𝑎𝑐

𝑏𝑑
 .    

 

From this definition we can learn two important properties of rational numbers.  

● As Q is a field, the laws for addition and multiplication are the same as 

for natural numbers. It is just a matter of using them in a new number 

range. 

● In contrast to the whole numbers, the rational numbers consist of 

equivalence classes like  
3

4
 = 

6

8
 = 

9

12
 = 

12

16
 = 

15

20
 = 

18

24
 = … 

 

These two properties are paid too little attention to define teachers’ subject matter 

knowledge. In our opinion, CCK deals with understanding of definitions like the 

one presented above. However, the complexity of CCK requires translations into 
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a more comprehensible language, into a theory for practice (Subramaniam, 2019), 

to make it a complement to SCK. 

Rational Numbers in Teaching and Learning  

In a research agenda for mathematics education NCTM (1988) there is a 

comprehensive survey of the actual research on multiplication and rational 

numbers. Most of it is still valid and make up an important background to our 

research. In the survey, Vergnaud (1988) deals with multiplicative structures, an 

essential background for handling fractions. He emphasizes that  

The concept field of multiplicative structures consists of all situation that can be 

analyzed as simple and multiple proportion problems, and for which one usually 

needs to multiply or divide. […]. A single concept usually develops not in 

isolation but in relationship with other concepts …. (p.142) 

To this, researchers want to add the results from a study in 3rd and 5th Grade 

(Karlsson & Kilborn, 2018) showing that a one-sided focus on multiplication as 

repeated addition caused serious problems in understanding, and carrying 

through, operations with fractions. In the survey, Ohlsson (1988) calls attention 

to the fact that the concept of fraction has several mathematical meanings as well 

as several applicational meanings. He refers to Kieren (1975) who mentions 

seven different interpretations of rational numbers. Three of them are: 

● Rational numbers are fractions which can be compared, added, 

subtracted, etc. 

● Rational numbers are equivalent classes of fractions. This {1/2, 2/4, 3/6, 

…}and {2/3,4/6, 6/9, …} are rational numbers. […] 

● Rational numbers are numbers in the form p/q where 

p, q are integers and q ≠ 0. In this form, rational 

numbers are “ratio” numbers. (Kieren, 1975, pp102-

103) 

METHOD 

The overall design refers to variation theory, where the object of learning can be 

understood at three different levels: 

● The intended object: What the teacher intended to teach. 

● The manifest object: How the object of content in fact was mediated. 

● The experienced object: What the students in fact experienced. 
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The correspondence between the intended object and the experienced object is a 

criterion of the quality of the teaching/learning. As the object of learning and the 

crucial aspects are central parts of variation theory, researchers paid certain 

attention to the teachers’ subject matter knowledge and their ability to find key 

components in a current content  

Material 

In order to study teaching and learning of fractions in 4th and 5th Grade, 

researchers constructed a teaching material inspired by Vergnaud (1988), 

Ohlsson (1988), and van der Waerden (1971) where the object of learning was 

expanding fractions or more formally expressed, rational numbers as equivalent 

classes. In a first step researchers wanted to study the teachers’ ability to 

concretize the idea of expanding the fractions 
1

2
, 

1

3
 and 

2

3
.  

The following type of pictures was presented one by one to the students: 

 

 

By dividing the left figure into two equal parts by a vertical line, and then into 

three equal parts by two vertical lines, the students were supposed to understand 

that 
1

3
 = 

2

6
 = 

3

9
. When the number of rectangles becomes two (three) times as many, 

also the number of painted rectangles becomes two (three) times as many. To 

create variation, this was done for three different fractions, 
1

2
, 

1

3
 and 

2

3
. As the 

object of concretization is abstraction (verbalisation) this activity was followed 

up by the following questions as a basis for discussion and reasoning. 

  Which number is bigger, 
1

3
, 

2

6
 or 

3

9
?  Explain why. 

  Can you find a pattern here? Describe the pattern. 

Is it possible to write 
1

3
 in more ways than 

2

6
 and 

3

9
. Give two more examples. 
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After an abstraction, it is time to apply and generalise what is learnt (verbalised). 

For that purpose, teacher and students were supposed to discuss how to reason 

when solving the following types of tasks.   

a) 
1

4
 = 

8
 = 

12
 = 

20
 = 

6
          b)  

3

4
 = 

8
 = 

12
 = 

20
 = 

18
 

 

Participants and Realization 

The participants of the current research were three so called “first” teachers from 

different communities outside Stockholm and their classes, in all 60 students. 

During five lessons the teachers used the teaching material. During three of the 

five lessons, the teaching process was documented by video and an extra 

microphone on the teacher. At the end of the fifth lesson the students got a test 

and after still one week, a sample of the students were interviewed about their 

understanding of fractions. Finally, the teachers were interviewed with focus on 

their subject matter knowledge and how they apprehended their teaching and the 

results. 

RESULTS AND ANALYSIS 

To follow up the experienced object the student was tested and interviewed a 

week after the last lesson. It was quite easy to establish that the students in two 

of the classes had experienced the wrong object of learning. One example of this 

is presented in Table 1. 

Task    
1

3
 = 

2

6
          

2

3
 = 

6

9
  

1

4
 = 

2

8
         

 1

4
 = 

2

8
 = 

4

20
 

3

4
 = 

6

8
         

3

4
 =  

6

8
 = 

15

20
    

T1.  n = 21         19              12               19                18                  18               17 

T2.  n = 20  8                4                10                  3                    1                0 

T3.  n = 19        12               3                14                  8                   14               1 

Table 1. Number of students, taught by teachers T1, T2 and T3, who gave a correct  

answer to a certain task. 
 

According to variation theory, the quality of teaching can be apprehended by 

comparing the intended object and the experienced object. For teacher T1, there 

is a clear relation, however for teachers T2 and T3 the relation is very weak. One 

explanation for the result is that their students usually looked for additive patterns 

like “2-jumps” and “3-jumps”, instead of multiplicative patterns.  

To understand the weak relation between the intended object and the experienced 

object, researchers must study the manifest object, that is what happened during 
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the lessons. To begin with, only one of the three teachers apprehended what was 

the crucial aspects of the object of learning, that is to understand the concept of 

extending a fraction. Moreover, only that teacher was able to concretize, that is, 

to transfer a given illustration into abstraction. In the Table 2, there is an overview 

of what the teachers focused on during their lessons. 

During interviews with the teachers it became evident that just one of the teachers 

had sufficient subject matter knowledge. As the two other teachers lacked durable 

subject matter knowledge, they had problems in finding the object of teaching. 

Consequently, they had also problems to transfer their subject matter knowledge 

into pedagogical content knowledge.  

Teachers        crucial        number          students         concretising into        language and 

focus on        aspects      sequences      pre-knowl.         abstraction                 reasoning 
 

T1                  mostly           no                  yes                     yes                         mostly 

T2                    no            mostly          not enough              no                       not enough 

T3                    no            mostly          not enough              no                       not enough 

 
Table 2. The teachers focus during the lessons 

 

DISCUSSION AND CONCLUSIONS 

From this research, researchers find that variation theory is a suitable tool to 

analyze the quality of teaching, that is, the correspondence between the intended 

object and the experienced object. If the correspondence is insufficient it is 

important to study the manifest object, not least how the teacher mediated the 

object of learning and its crucial aspects. However, to do so, one must leave the 

variation theory and interpret the results from another angle, from teachers’ 

subject matter knowledge.  

Teaching and learning fractions are internationally recognized as a difficult 

domain (van Dooren et al., 2010). A crucial question is ‘why’. The outcome of 

the research shows that only one of the teachers was able to find and mediate the 

object of learning and its critical aspects, while the two other teachers were not. 

The main reason for these differences was the teachers’ subject matter 

knowledge. Without such a knowledge it is not possible to know which pre-

knowledge is required to find the crucial aspects of the object of learning, or to 

decide if an attempt to concretize really ended up in abstraction. 
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DEVELOPING STRUCTURAL THINKING FOR 

EQUIVALENCE OF NUMERICAL EXPRESSIONS AND 

EQUALITIES WITH 10- TO 12-YEAR-OLDS 
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In the numerical-algebraic world of school mathematics, equivalence has two 

faces: computational and structural. This paper offers firstly a brief review of the 

theoretical and empirical literature related to equivalence and structure, with 

attention to the properties associated with the structural dimension of 

equivalence of numerical equalities. It then provides a description of the six 

phases that the participating students passed through in shifting their thinking 

from the computational to the structural dimension of equivalence. The 

discussion focuses on the role of the interviewer’s interventions, as well as the 

evolving usage of the decomposing property that characterized students’ 

structuring activity. It also highlights the support offered by their sense of 

numerical structure and relationships. 

RATIONALE AND RESEARCH QUESTION 

In the numerical-algebraic world of school mathematics, equivalence has two 

faces: one, computational, and the other structural. For students in primary 

school, a great deal of research has been carried out on expanding their views of 

the equals sign from that of an operator symbol to one that encompasses a more 

relational interpretation involving multiple operations on both sides of the 

numerical equality. While advances have clearly been made in developing their 

notions of the meaning of the equals sign, the multi-facetted aspects of 

equivalence within a numerical setting remain largely unstudied – despite their 

relevance for later work in school algebra and the importance of beginning to 

develop such algebraic thinking at the primary levels of schooling. The present 

study aimed at filling part of this gap by fostering the growth of 10- to 12-year-

old Mexican students’ structure sense regarding equivalence of numerical 

expressions and equalities. The study included tasks and group interviews that 

focused on indicating the truth value of numerical equalities within the activity 

of generating equivalent equalities – where equivalence was grounded in 
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properties related to the order and addition structures, as well as in its reflexive, 

symmetric, and transitive properties. The research question addressed by the 

study was the following: What are the ways in which a structural form of thinking 

unfolds during the implementation of tasks related to the generation of equivalent 

numerical equalities by students who are nearing the end of their primary 

schooling? 

THEORETICAL FRAMEWORK AND RELATED LITERATURE  

This three-part section on the theoretical framework and related literature deals 

firstly with mathematical equivalence, secondly with structure, structuring, and 

structural thinking, and thirdly with prior research in this area.  

While the actual term equivalence came into its own as late as the 20th century, 

Asghari (2018) recounts the history of this notion as a rather winding path that 

goes back to much earlier times. Eventually, the following definition was arrived 

at: An equivalence relation is a binary relation that is reflexive, symmetric, and 

transitive. The relation “is equal to” is the canonical example of an equivalence 

relation, where for any objects a, b, and c:  a=a (reflexive property); if a=b, then 

b = a (symmetric property); and if a=b and b=c, then a=c (transitive property). 

Equality is a relationship between two quantities, or more generally two 

mathematical expressions, asserting either that the quantities have the same value, 

or that the expressions represent the same mathematical object, or that an object 

is being defined.  

With respect to the numerical world, equivalence clearly has a computational 

dimension. This dimension arises from the above definition of the equivalence 

relation “is equal to” whereby the two quantities “have the same value” – as in 

5+9+3=10+7 is true because both sides evaluate to 17. But, equivalence also has 

a structural dimension. This dimension arises from the same definition of 

equivalence, but capitalizes on the reflexive property where a=a with a being a 

mathematical expression – as in 5+9+3=5+9+3 where the structure of the non-

computed sum of each side of the initial equality (5+9+3=10+7) is reflected in 

the same decomposition on the two sides of the second equality and whereby the 

truth value of the equality statement is visibly obvious without computing.  

As with equivalence, structure is another of the fundamental ideas of 

mathematics. However, unlike equivalence, which has been well defined, 

structure is often treated within the mathematics education community as if it 

were an undefined term (Kieran, 2018). While many researchers use the term 

structure, it is just assumed that there is universal agreement on its meaning. In 
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fact, Venkat et al. (2019) argue that the community seems to have difficulty in 

defining structure in a coherent way. 

For Mason et al. (2009), the structural is closely intertwined both with the general 

and with attending to properties. We would argue, however, that the intertwining 

of the structural with the general has resulted in giving more emphasis to 

generalizing within arithmetic and algebra, and much less to the structural. To 

open up the notion of structure and the structural, we turn to Freudenthal (1991) 

who points out that the system of whole numbers constitutes an order structure 

where addition can be derived from the order in the structure, such that for each 

pair of numbers a third, its sum, can be assigned. The relations of this system are 

of the form a+b=c, which he refers to as an addition structure. In his related 

discussions on the properties of both the addition and multiplicative structures, 

Freudenthal (1983) emphasizes multiple means of structuring and properties that 

can be characterized in a manner not restricted to their axiomatic formulation 

within the basic properties of arithmetic. 

Linchevski and Livneh (1999) have drawn our attention to young students’ 

difficulties with using knowledge of arithmetic structures at the early stages of 

learning algebra. They suggest that instruction in arithmetic be designed to foster 

the development of structural thinking by providing experience with equivalent 

structures of expressions and with their decomposition and recomposition. Our 

broadening of perspective on structure and structuring leads us to consider 

decomposing, composing, and recomposing also as properties – properties that 

are tied to the order, addition, and multiplicative structures. The use of these 

properties is anchored in the symmetric property of equality; that is, symmetry 

allows for the rewriting of the addition fact of, say, 5+7=12 as 12=5+7. In other 

words, 5+7 can be composed into 12, and 12 decomposed into 5+7, or any of its 

other combinations.  

During the past several decades, research on the ways that students use the equals 

sign (e.g., Carpenter et al., 2003; Kieran, 1981) has characterized students’ 

thinking primarily in terms of “operator” (i.e., as a “do something signal”) versus 

“relational” views (i.e., as a “sign denoting the relation between two equal 

quantities”). The kinds of tasks that have generally been used in these studies 

have included: (i) true-false equalities where students are asked to state their 

truth-value and (ii) open sentences requiring them to determine which number 

will make the sentence true. By means of such tasks, Rittle-Johnson et al. (2010) 

found that by about the 5th grade most students can compare both sides of an 
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equation and thus hold a basic relational view of equivalence (e.g., they can 

accept equations with operations on both sides). However, very little of the 

existing research literature on the equals sign and equivalence has included 

explicit attention to decomposing, composing, and recomposing. One exception 

is a study by Warren (2003) who found that only 5% of the 672 7th and 8th graders 

she tested responded that there was an unlimited number of possibilities for 

answering the question: “Write other sums that add to 23; how many can you 

write?”; and fully one-third of the students failed to respond to the question in 

any way. In sum, little research has focused on the kinds of structural thinking 

involved in the generation of equivalent numerical equalities by primary students.  

METHODOLOGY 

This section presents both general aspects of the methodology, as well as brief 

information related to the design of the tasks. Six students from the 6th grade of a 

public community school in Mexico participated in the first part of the study, 

which was conducted when the students were halfway through their last year of 

primary school. The second part of the study took place when the students were 

finishing their last year. None of them had had any prior experience in structural 

activity with equalities or, in particular, with generating equivalent numerical 

equalities, but they had been exposed to equalities with numerical terms on both 

sides of the equals sign.   

The data collection technique was that of the Group Interview, a method that 

involved the students first working individually on a given task question or set of 

questions. This was followed by an interviewer-orchestrated, discussion segment 

where the students would share their responses with the rest of the group. During 

this group sharing, the interviewer (i.e., 2nd author) might probe their thinking by 

asking for clarification or might also pose additional questions. 

Data from Part 1 of the study were obtained during three sessions, one session 

per task-set, with sessions lasting about 60 minutes each in one of the rooms of 

the school. All six students participated in each of the three sessions. Data from 

Part 2 of the study were obtained during one session that lasted about 60 minutes 

and involved three of the original six students. The data sources for both parts of 

the study include the individual students’ worksheets, videotaped footage of the 

interviewer interacting with the group of students and the recording of all their 

verbalizations, and the researcher’s field notes. All interactions and task-sets were 

in the Spanish language. 

For Part 1 of the study, three task-sets were designed to explore students’ 
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strategies related to structure within the equivalence of expressions and equalities. 

The first two task-sets did not include the equals sign. Task-set 3 involved the 

equals sign in numeric equality statements and included two or more numerical 

terms on each side of the equals sign (i.e., 4+5=4+3+2, 480+6+123=486+123, 

172+10+75=182+50+25, 150-70=125+25-70, and the non-equality 2+8=1+1+5). 

The task-set consisted of two types of questions: one asking students whether a 

given equality statement was true and to explain why, and the other to rewrite the 

true equalities in another way so as to show they were true. 

Due to the computational nature of the results obtained for Task-set 3 in Part 1, a 

new Task-set (Task-set 4) was designed for Part 2. This task-set involved true 

equalities of equivalent expressions (10+7=5+12, 530+200=300+430, and 

8+2+16=10+12+4). However, the task instructions specifically requested that the 

students not calculate the total of each side in order to show that the equality was 

true, and then to explain their reasoning. The last question asked for a 

generalization of their main strategy. The structural properties that would be at 

play in students’ generation of equivalent numerical expressions and equalities 

would include: composition and decomposition, as well as the common-form 

property of equivalence (i.e., converting pairs of expressions into a common form 

to indicate equivalence) and the transitive property. 

RESULTS 

The development of students’ structural thinking related to the generation of 

equivalent numerical equalities evolved through six specific phases. The students 

featured in the extracts below are two girls (S1, S2) and one boy (S3).  

Phase 1: Computation Without Decomposition 

The first two task-sets evoked computational views. For the first task, Can the 

number 7 be written from the numbers 6 and 1? If so, how?, the students answered 

affirmatively and explained their thinking by means of a computation involving 

the property of composing the addends. Similar thinking was evidenced 

throughout the tasks of the second set. For Task-set 3, where all of the questions 

included the equals sign and involved, for some equalities, smaller numbers and 

for others, larger numbers, the students could accept without hesitation equalities 

in the form of a+b=c+d and justified their truth (or falsity) by calculating the 

result on each side and stating that an equality was true “because we get the same 

result” (see Fig. 1). 
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Figure 1: S3’s computational strategy (English translation also provided) 

Phase 2: Computation with Unrelated Decomposition of Each Side  

Each of the tasks in Task-set 3 also included the question: “In what other way 

could you rewrite the given equality?” While the totals for each side of the given 

equalities had already been computed, the students were still able to generate 

alternative forms by independently decomposing each side (see Figs. 2 & 3). 

There was no inclination, however, to re-express the equalities so that both sides 

of the equalities looked alike.  

     

 

 

 

 

   Figure 2: S1’s equality rewriting   Figure 3: S3’s equality rewriting 

Phase 3: Ad Hoc Decomposition of One Side and Copying to the Other Side 

When the students came together for Part 2 of the study six months later, Task-

set 4 requested that they show the truth-value of each of the given equalities, but 

this time without first calculating the total of each side. There were initially looks 

of puzzlement among the students, as if to say, “What other way is there?” Some 

prompting on the part of the Interviewer was necessary (the English transcriptions 

below are verbatim translations of the original Spanish version; I is the 

Interviewer):  

I:  Would there be a way to write also [referring to rewriting the given equality] 

but using, say, these same numbers? [points to the board to the equality 

10+7=5+12] 

S3:  Yes. 5+5+5+2 [verbalizes the expression]. 

Observe the following expression: 480 + 6 + 123 = 486 + 123 

Is the equality True or False?   T 

Explain with your own words 

Because we get the same result 

Observe the following expression: 172 + 10 + 75 = 182 + 50 +25 

Is the equality True or False?  T   

In which other way could you re-write the previous equality?   .Yes.  

Why it is correct re-write the expression in such a way? 

100 + 72 + 5 + 5 + 60 + 15 = 100 + 82 + 30 + 20 +20 + 5 

Because I get the same result 

Observe the following expression: 172 + 10 + 75 = 182 + 50 +25 

Is the equality True or False?  Yes   

In which other way could you re-write the previous equality?   .Yes.  

Why it is correct re-write the expression in such a way? 

207 + 50 = 150 + 107 
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I:  Ok, S3 says that this [referring to the left side of 10+7=5+12] could be written 

as 5+5+5+2 [writes on the blackboard the expression stated by S3]. Is this 

OK? 

S1 & S2: Yes [both at once]. 

 

I:  […] This [referring to the right side of 10+7=5+12], in which other way? 

Look, this [referring to 5+5+5+2] already has a form of, I mean, it [10+7] can 

be re-expressed in this way [referring to 5+5+5+2]? 

S3:  Yes. 

S2 & S1: It gives the same [see Fig. 4]. 

However, it was not yet certain whether or not the right side had actually been 

decomposed or simply recopied by S3 on his sheet. With the next equality 

involving larger numbers, S2 proposed transforming the left side of 

530+200=300+430 to 200+300+30+200. When she subsequently and clearly 

copied this to the other side and was asked how the new right side related to the 

initial right side, she was unable to do so. Eventually, she rewrote the left side 

differently; but this time she could reconcile it with the right side of the initial 

equality when she recopied it to the other side. Then the interviewer returned to 

the earlier equivalent equality that had been generated (see Fig. 4) and inquired 

into the need (or not) to calculate the total: 

I: Is it necessary to add? 

S2:  No, but if it is the same [in the same form], obviously it will give the same 

[the total will be the same]. If the expression is the same, it will be equal, it 

will give the same. 

Phase 4: Decomposition of Both Sides into a Third Common Form 

As the Group Interview progressed, it became obvious that the ad hoc 

decomposition strategy was evolving into a genuine decomposition of both sides 

of the initial equality so as to obtain an equivalent second equality (see Fig. 5). 

 

 

Figure 4: Ad hoc decomposition        Figure 5: S3’s finding a third common form 

The work illustrated in Fig. 5 suggests a structural strategy that involves the 

search for a third common form: Rewrite by decomposing both sides of the 

equality so as to show that both sides are the same – even if the order may be 
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different. This strategy based on decomposition differs from the ad hoc 

decomposition strategy in that both sides of the equality are genuinely 

decomposed and the decomposition of the second side is guided by the first 

decomposition so as to obtain the same common form.  

Phase 5: Decomposition/Composition of One Side to Match the Other Side  

The last step in the consolidation of the common-form strategy was seen when 

the interviewer asked if it would be possible to rewrite the equality 

8+2+16=10+12+4 in such a way that the common form would be the same as one 

of the two sides of the initial equality. S3 simultaneously related both sides of the 

initial equality by composing 8+2 into 10 and decomposing 16 into 12+4 (see 

Fig. 6a & 6b).  

a)         b)  

Figure 6: Composing and decomposing the left side (a) into (b) 

Phase 6: Expressing Structural Approaches in a General Way  

The last question was of a more general nature: “What should be done, regardless 

of the numbers involved in the equality and without calculating the total of each 

side, to show that the equality is true?” With generic examples, the students 

conveyed – even with somewhat imprecise language (e.g., S1’s initial response: 

“We must simplify the numbers, or convert them in a different way, but they 

should be the same”) – the dual aspect of both matching both sides of the equality 

and doing this matching in such a way as to safeguard the uncalculated values of 

each side.  

DISCUSSION AND CONCLUSIONS  

This study has investigated how a group of 6th graders moved from the 

computational to the structural dimension of equivalence with respect to 

numerical expressions and equalities. The excerpts presented above highlight 

how the interviewer’s responses and prompts were crucial to enabling this 

evolution, especially during the third phase where five key interviewer 

interventions occurred:  

● The first intervention was the request to show that the given equalities 

were either true or false, but without calculating the total for each side.  

● This was supplemented by the suggestion, implicit in the interviewer’s 

follow-up question, that asked if the students could find a way to rewrite 

the given equality, but based on the numbers that were in the equality.  
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● When students then decomposed one of the two expressions of the given 

equality, they were asked where the decomposed numbers came from. 

● Since the students then simply recopied the decomposed expression over 

to the other side of the equals sign in order to complete the transformed 

equality, they were asked to justify their recopied expression, that is, to 

relate explicitly the recopied expression to the corresponding expression 

of the initial equality.  

● The last prompt involved eliciting the awareness that the students no 

longer needed to total each side of an equality in order to determine its 

truth value.  

From this third phase onward, the realization that equivalence could be shown by 

converting either/both expressions of an equality into a common form was 

actualized and came to be expressed in a generalized, albeit generic, manner.  

In the movement of the students to the structural dimension of equivalence, two 

features of a cognitive nature are noteworthy: (i) the role played by the 

decomposing property of the addition structure in the students’ evolution, and ii) 

the way in which their use of properties, especially that of decomposition, was 

grounded in their sense of number and computational knowledge. Regarding the 

first feature, the way in which the decompositions of the various numerical terms 

of the expressions were written showed that these students had been able to 

develop a rather strong number sense in the growth of their computational 

knowledge throughout primary school. Not only could they, as expected, compute 

forward (as was seen in their initial approaches to determining the truth-value of 

equalities), but they could also work backwards by breaking up numbers into their 

principal structural parts.  

The grounding of the students’ use of decomposition in their sense of number and 

computational knowledge and the role this played in their building of structure 

sense for equivalent equalities relates to the operational-structural theory of Sfard 

(1994, p. 53), who argues that “from the developmental point of view, operational 

conceptions precede structural.” While we do not, in any way, minimize the 

crucial importance of the structural dimension of equivalence that we fostered 

within our study, we would be remiss if we did not raise the point about the 

significance of students’ number sense and computational knowledge in making 

their transition to the structural. 

Note 

I dedicate this paper to my young co-researcher, Cesar Martínez-Hernández, 

whose life was sadly taken away from him by COVID-19 on December 15, 2020. 
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EXCELLENCE IN MATHEMATICS IN HIGH SCHOOL AND THE CHOICE 

OF STEM PROFESSIONS OVER SIGNIFICANT PERIODS OF LIFE 

Zehavit Kohen1 and Ortal Nitzan 

Israel Institute of Technology, Technion, Israel 

 

The current study investigates the relation between excellence in mathematics in 

high school and the choice of STEM professions over significant periods of life. 

The study employs a big data analysis based on a total of about 550K records 

obtained from the central bureau of statistics over the last decade and a half. 

Main results suggest the importance of studying the advanced level in 

mathematics in high school, as well as the importance of excelling in this field. 

The study suggests theoretical, practical, and methodological contributions in 

relation to the factors that affect and predict STEM choice for study and 

employment in significant periods in human's life: high school, higher education, 

and employment. 

INTRODUCTION AND THEORETICAL BACKGROUND 

Science, Technology, Engineering, and Mathematics (STEM) professions are in 

constant demand (Caprile, Palmén, Sanz, & Dente, 2015). The foundations for 

pursuing a STEM career are laid early in a student’s life. Studies (e.g., Addi-

Raccah & Ayalon, 2008) revealed a correlation between students' experiences in 

high school and their post-secondary pursuit of STEM professions. Another study 

which was reported by Kohen, Nitzan, & Gafni (2019) revealed a similar trend, 

by which students who had studied AP STEM subjects in high school, were 1.6 

more likely to pursue academic studies as junior STEM students, to graduate 

STEM academic studies and subsequently, to pursue STEM careers. Mathematics 

has always been considered an invaluable and imperative component for STEM 

study and for many cases also for career in STEM (Maaß, O’Meara, Johnson, & 

O’Donoghue, 2018). Yet, studies that deal with the relation between excellence 

in high school mathematics and future employment in STEM professions for 

study and career, are not common, specifically studies that combine national 

cohort data in several time points with wide graduates and employee's data. 
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This study aims to investigate the relation between excellence in mathematics in 

high school and actual STEM choice for study and employment, based on records 

retrieved from the central bureau of statistics (CBS). 

The theoretical framework that guided this study is based on Reinhold et al. 

(2018) integrative model. This model is based on the Social Cognitive Career 

Theory (SCCT: Lent, Brown, & Hackett, 1994), but refers to four main phases in 

a person's life which represent different life periods: 1) the pre-decisional phase 

that indicates an interest in some field of study, 2) the pre-action phase that 

indicates an interest with commitment in some field of study, (3) the action phase 

that indicates actual choice of some field for study or career, and finally – (4) the 

post-action phase that indicates that a person pursued a chosen career. In this 

study we focus on the three last phases, which represent a person's actual choices 

in study and/or career and refer specifically to the choice in STEM professions in 

the following life periods: high school, higher education, and employment. 

RESEARCH QUESTIONS 

(1) What are the trends over the past decade and a half in actual STEM choice for 

study and employment in different life periods, by a person's excellence in 

mathematics in high school? 

(2) Can a person's excellence in mathematics in high school affect and predict 

actual STEM choice for study and employment in different life periods? 

(3) Can a person's excellence in mathematics in high school predict future success 

in STEM studies in higher education? 

METHODOLOGY 

The study is based on a big-data analysis, using a systematic sampling data obtained 

from the CBS in our country. The study population for this analysis is 

approximately 350K high school students over the last one-and-a-half decades 

(2001 - 2017), and about 200K bachelor's degree graduates, of whom about 70K 

employees in the industry in our country. 

The codebook that guided the analysis was comprised of the following data: (a) 

students' excellence in mathematics in high school that was defined by study level 

in mathematics: elementary, standard or advanced; (b) field of study in high 

school: STEM (physics, chemistry, biology, computer science, or electronics) or 

Non-STEM; (c) field of study in institutions of higher education: STEM (such as 

computer sciences, physics, or engineering) and Non-STEM; (d) grade in 

graduation from higher education; and (e) employment in the industry: STEM 
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(such as information and communications, or technological services) and Non-

STEM. 

Descriptive statistics and Chi-Square tests were applied to examine trends in 

choosing and persisting in STEM fields throughout students' lifespan (from high 

school to employment in the industry), and their correlation with students' study 

levels in mathematics in high school. Also, Logistic regression analyses were 

performed to investigate the predictability of students' excellence in mathematics 

in high school, on their likelihood to pursue subsequent STEM academic studies 

and careers. Finally, Regression analyses were performed to predict future 

success in STEM studies in higher education, by excellence in mathematics in 

high school. 

RESULTS 

Responding to the first research question, our findings revealed that on average, 

students who study mathematics at the advanced level in high school are about 

3.7, 5, and 3 times more likely to choose STEM in high school, to graduate STEM 

in higher education, and to being employed in the STEM industry (Respectively) 

[compared to students who study in the elementary level] and about 1.4, 3, and 

1.5 (Respectively) [compared to students who study in the standard level]. See 

Graph 1 (a, b, & c) for illustration of these findings in relation to STEM 

graduation in high school, in higher education, and in employment. 

Graph 1 a                                                                                          Graph 1 b 

      
Graph 1 c    
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Figure 1: Graph 1 (a, b, & c) - STEM graduation in high school, in higher 

education, and in employment (respectively), by students' level in mathematics 

in high school 

Due to the relatively similar trend that is observed over the years in regard to all 

life periods: high school, higher education, and employment, for responding the 

second research question, we elaborated the definition of excellence in 

mathematics to also inducing students' level of success in the matriculation exam 

in mathematics in high school: excellence; success; moderate; or weak. Our 

findings revealed a rank by which student's STEM choice in different life periods, 

is linearly affected by the combination between students' study level and level of 

success, i.e. the more advanced level you study and the more you succeed, then 

you are more likely to choose STEM for study and for career. Since similar 

findings were found in respect to predicting STEM graduation and employment, 

we illustrate the findings in Graph 2 in relation to STEM graduation in higher 

education. 

  

Figure 2: Graph 2 - STEM graduation in higher education by students' level & 

success in mathematics in high school 

Focusing on the advanced level for predicting STEM graduation in high 

education, the regression model for the comparison between weak learner and 

moderate learner was found to be significant, 2(1,15290) = 19.01, 𝑝 < .001, 

while the chances of a moderate learner to graduate STEM track is about 1.2 times 

more than a waek learner (B= .21, p<.001). Also, the regression model for the 

comparison between moderate learner and successful learner at the advanced 

level was found to be significant, 2(1,28745) = 248.86, 𝑝 < .001, while the 

chances of a successful learner to graduate STEM track is about 1.5 times more 
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than a moderate learner (B= .37, p<.001). Finally, the regression model for the 

comparison between successful learner and excellent learner was also found to 

be significant, 2(1,38276) = 733.30, 𝑝 < .001, while the chances of an 

excellent learner to graduate STEM track is about 1.8 times more than a 

successful learner (B= .58, p<.001). 

Finally, responding to the third research question, our findings revealed that a 

students' future success in STEM studies in higher education is predicted by 

his/her excellence in mathematics in high school. The regression model was 

found to be significant, 𝐹(2,26850) = 1611.86 ;  𝑝 < .001; 𝑅2 = 0.11., and 

indicates that students' level of success in high school mathematics is more 

contributing to future success in STEM studies in higher education, than the level 

of study in mathematics. 

DISCUSSION 

The current study demonstrates a positive relation between students' excellence 

in mathematics in high school and future STEM choice for study and 

employment. The linear rank that was observed in this study suggests the 

importance of succeeding in mathematics, and not just choosing an advanced 

level in mathematics. The most important insight of these findings is that in order 

to choose STEM as a major for study or employment, it is better to choose a more 

advanced level of mathematics in high school, even if you less succeed. 

The big data analysis that was obtained over the last decade and a half enabled us 

to have an objective data about students' actual choice, and to observe the trends 

in choice over the years, as well as in significant life periods. This observation 

enables us to link between global changes and the trend of choosing STEM for 

study and career. For example, the decrease in choosing STEM as a major in high 

school at 2006, might be a consequence of the "dot-com crash" in the STEM 

industry which occurred in 2001. 

The study adds on the literature on career choice, particularly the SCCT, by 

focusing on significant steps in a person's life toward STEM career choice. With 

that the study also contributes practically to the STEM field, as excellence in 

mathematics was found to be significantly contributing to choice of STEM for 

study and career. Methodologically, the study is based on a big-data analysis, 

which is not common in the literature that investigates the relation between high 

school studies and future study and career. Studies in this area are often based on 

prospective or retrospective data, rather that data that is based on a person's actual 

choices, specifically over the years in which these choices might be changed. 
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GESTURES AND CODE-SWITCHING IN MATHEMATICS INSTRUCTION 

– AN EXPLORATORY CASE STUDY  

Christina M. Krause1 and Danyal Farsani2 

1University of Duisburg-Essen, Germany / University of California, Berkeley, 

United States of America 

2Universidad Finis Terrae, Chile 

 

While gestures are considered an important resource in the mathematics 

classroom, gesture use in bilingual instruction has been largely neglected in 

research so far. This paper presents a case analysis of two teachers’ bimodal 

bilingual instruction in the context of isosceles triangles to show how they 

coordinate meaning making of content and terminology through code-switching 

and gestures. Based on the analysis, we will introduce the concept of ‘bimodal 

mnemonics’ as means to support learning mathematical terminology together 

with the respective concept and conclude with a brief discussion of our 

preliminary findings and an outlook on future research. 

INTRODUCTION  

Mathematics teachers of English Language Learners (ELL) – and generally of 

students that learn in a second language – face additional challenges as they need 

to coordinate the students’ varying levels of both mathematical proficiency and 

language proficiency (Moschkovich, 2013). However, language should not be 

seen as a barrier to learning that needs to be addressed first before it can be 

engaged with content. While learning mathematical terminology is important, 

“mathematics instruction should address more than vocabulary and support ELL 

participation in mathematical discussions as they learn English” (p. 50). For this, 

teachers are asked to acknowledge the students’ home language as an important 

resource for meaning making rather than seeing it as a deficiency. For example, 

using two or more languages within a single communicative event – a 

phenomenon referred to as code-switching – can become a powerful tool for the 

teacher to support bilingual learners of mathematics by providing a scaffold for 

accessing mathematical content, and by facilitating links between verbal and 

visual representations of this content (Prediger et al., 2019). Furthermore, 

Moschkovich (2002, 2013) advocates for acknowledging the multiple resources 
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beyond words in the mathematics classroom, like objects, drawings, and gestures. 

In fact, Church and colleagues (2004) showed that bilingual students benefit from 

gesture-rich instruction even more than their monolingual peers. It is hence 

surprising that in the steadily growing research on gestures in mathematics 

instruction (e.g. Alibali & Nathan, 2007; Arzarello et al., 2009), only very few 

scholars directed their attention to the bilingual classroom to understand better 

how teachers’ gesture use can support these students’ learning (e.g. Shein, 2012), 

and even less is known about how gestures interact with the practice of code-

switching in bimodal bilingual mathematics instruction. 

This paper presents an early exploration of teachers’ gestures in relation to their 

use of two languages in bilingual mathematics classrooms, aiming at getting a 

better grasp of how gestures can contribute to instruction to support meaning in 

mathematics across languages. We will present two cases from Farsi-English 

bilingual classrooms in a complementary school in the UK, dealing with the 

context of isosceles triangles. The cases are analysed for how teachers use 

gestures coordinated with language to navigate the tension between concept and 

terminology. In particular, we focus on the questions: 

(1) How do the teachers use gestures and the two languages Farsi and English 

in their bilingual mathematics instruction of language learners? 

(2) How might bimodal bilingual instruction support learning mathematical 

content as well as the second language? 

Our work is embedded within the larger body of research on bilingual 

mathematics education that adopts a situated-sociocultural perspective 

(Moschkovich, 2002), emphasizing on the social dimension in mathematics 

teaching and learning, especially on the role of mathematics communication in 

which meaning develops by drawing on social, linguistic, cultural, and material 

resources (ibid.). Learning mathematics can then be understood as increasing 

participation in mathematical discourse practices with the teacher facilitating the 

students’ active engagement in these practices by acknowledging their resources 

for meaning making. 

Gestures are considered those “idiosyncratic spontaneous movement[s] of the 

hands and arms accompanying speech” (McNeill, 1992, p. 37) that do not serve 

any practical or manipulative purpose. As semiotically different components of a 

single linguistic unit, speech and gesture are coordinated in thinking and 

expression as embodying “different sides of a single underlying mental process” 

(p.1), collaborating in forming an utterance as well as in its interpretation. With 
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respect to the development of mathematical meaning, a special focus is set on 

representational gestures (Alibali & Nathan, 2007): the relationship between the 

content of the verbal utterance and the gestural reference is established through 

pointing, through perceived similarity to a physical object or action (iconic), or 

by representing an abstract idea mediated through concrete reference 

(metaphoric). The different categories are not mutually exclusive.  

METHODOLOGY 

The data has been collected in the context of a study on multimodal 

communication in multilingual mathematics classrooms (Farsani, 2015), 

conducted in the UK in a bilingual British-Iranian complementary school. In this 

school, instruction was bilingual in Farsi and English and learners were 

encouraged to value both languages equally. What seemed to be at the heart of 

the school was creating multilingual spaces by using languages flexibly and 

integrating a full range of learners’ linguistic repertoires. This bilingual school 

welcomed teaching strategies that supported learning both content and language 

simultaneously. The students in the recorded lessons were between 14 and 16 

years old and of varying proficiency of the English language. 

The selected excerpts are taken from longer episodes analysed for the relationship 

between gestures and code-switching in mathematics instruction. They present 

instances of teachers’ use of gesture co-expressive to English and Farsi, in which 

they provide an additional visual component that enriches meaning making. The 

audio-visual data was transcribed, transliterated, and translated for analysis, with 

transliteration and translation being carried out by the second author (a native 

speaker of Farsi) and kept as literal as possible while overall adopting the 

language structure of the goal language English. The transcripts as presented in 

this paper have been prepared to visualize the use of two different registers by 

using a different colour for the Farsi register in the original transcript and its 

translation in the English transcript. Simultaneity of performance of gesture (start 

and end of the main movement) and speech is indicated in the transcript using 

squared brackets. For spatial reasons only selected gestures discussed more in 

detail in the analysis can be represented in pictures. 

A speech-based analysis focuses on the teachers’ code-switching practices as they 

can be identified in the discourse, followed by an analysis of the gestures in 

context as related to speech and inscription. The former was carried out based on 

the transcripts, the latter by additionally reviewing the video.  
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CASE ANALYSES 

The two excerpts are taken from different classrooms and display the gesture use 

of the two teachers Ebi – native speaker of Farsi, fluent L2-speaker of English – 

and Mamad – native speaker of Azeri and Kurdish, fluent L2-speaker of Farsi and 

English.  

In both excerpts, Ebi and Mamad are dealing with the topic of isosceles triangles 

in the contexts of regular polygons. Isosceles triangles are characterized by 

having two sides of equal lengths. While English adopts the Greek terminology 

of ‘isosceles’, many other languages (such as German and Farsi) use a quite literal 

translation referring to variations of ‘legs of equal length’. The Farsi translation 

for isosceles triangle is motasaavi-al saaghain – literally ‘equal shins’ – which 

will be used in both episodes. 

Excerpt 1  

In the first excerpt, the teacher (Ebi) explains to the students how to find an inner 

angle of a regular pentagon. For this, he divided the regular pentagon into five 

equal isosceles triangles, asking for the angle x located at the centre (see Figure 

1a, in the transcript).   

    Original Farsi-English dialogue English version 

1 Ebi That’s a regular pentagon obviously, and 

each side is four, ok.  

That’s a regular pentagon obviously, 

and each side is four, ok. 

2 Ebi Chon regular pentagon-e (points at the 

centre) centre-esh (points briefly towards 

the diagram) [age maa be behesh] (traces 

lines, Fig. 1b) vasl bekonim mitoonim 

hamash  

(short pause) [isosceles] (points to his eyes, 

Fig. 1c) triangles [peida bekonim, dorost 

bekonim, khob]? (traces all five inner lines 

similar to the three lines in Fig. 1b) 

Because this is a regular pentagon 

(points at the centre), [if we connect] 

(traces lines, Fig. 1b) to the centre, 

(points briefly towards the diagram)   

[it will all become (short pause) 

[isosceles] (points to his eyes, Fig. 1c) 

triangles, okay?] (traces all five inner 

lines similar to the three lines in Fig. 1b) 

 

               
Figure 1: Ebi’s inscription on the white board; (a), Ebi’s gestures co-timed to “age maa be behesh” (b) 

and to “isosceles” (c) 
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3 S1 motasaavi-al saaghain Isosceles triangles 

4 Ebi motasaavi-al saaghain Isosceles triangles 

5 Ebi khob, [iino (points at “x” in the pentagon) ke 

peida mikonim] angle of x is equal to angle 

of x equal to angle of x and so on. 

Okay, [when we find this] (points at “x” 

in the pentagon) angle of x is equal to 

angle of x equal to angle of x and so on. 

Ebi starts with establishing a common ground of reference by clarifying the figure 

drawn on the white board being a “regular pentagon” (1). While this first 

introduction into the situation is carried out in English, he switches back and forth 

between English and Farsi in his following utterance when explicating how 

isosceles triangles emerge through construction, using English exclusively for the 

technical terms – “regular pentagon”, “centre”, and “isosceles triangles” (2). He 

ends with ‘okay?’ inviting the students to ask for clarification. To this, one of the 

students reacts by repeating ‘isosceles triangles’ in Farsi – “motasaavi-al 

saaghain” (3) – potentially asking for reassurance that he can draw on his prior 

knowledge on a concept he already encountered in his mother tongue. After Ebi 

confirms by repeating the Farsi terminology (4), he returns to the actual task of 

finding the angle x, starting with Farsi but switching back to English to complete 

his statement about the central angles all being the same (5). His use of Farsi and 

English seems to emphasize mathematical terminology in the English language 

while using Farsi for the wider explanation that links the mathematical 

components. This reflects in praxis his approach to using English and Farsi in 

instruction as mentioned by him in an interview carried out prior to this study: 

There he stated that he emphasizes the use of English in instruction since “At the 

end of the day they go to an English school and they learn everything in English” 

but that he uses Farsi to support his students when he notices problems in 

understanding grounded in language use (see Krause & Farsani, under review).  

The gestures Ebi uses during his explanation are reminiscent of gesture use of 

teachers described by Alibali and Nathan (2007) during monolingual instruction 

in an algebra lesson: There, they found gestures to ground instructional language 

by linking it to physical referents, including inscriptions, potentially making “the 

information conveyed in the verbal channel more accessible to students” (p. 350). 

In line 2, we see two forms of grounding through gestures: pointing and tracing. 

Remarkably, the pointing gestures are all co-timed to the English mathematical 

terminology, while the tracing re-enacting the drawing of the lines that result in 

isosceles triangles (e.g., Fig. 1b) are co-timed with Farsi. Moreover, the gestures 

accomplished co-expressively to English and Farsi differ not only qualitatively, 
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they also seem to offer different functions in grounding: The tracing gestures 

provide additional semantic information to clarify the incomplete/imprecise 

verbal expression; the pointing gestures can be considered semantically 

redundant to speech but grounding the terminology in the second language 

through providing a visual frame of reference. However, Ebi’s gesture co-timed 

to “isosceles” remarkably appears to be different than the other two as it does not 

point to the diagram, but – seemingly unrelated – to his eyes (Fig. 1c). The 

pointing can be interpreted as a phonological rather than a semantic reference: 

emphasizing the “i” in “isosceles” by referencing the phonologically similar ‘eye’ 

by pointing to it, the gesture grounds the terminology and offers potential to 

provide a mnemonic device at service for the students with various degrees of 

English proficiencies to recall the technical term. In addition to the deictic 

reference, the concrete shaping of the gesture with two adjacent fingers of the 

same hand carries a reference to the semantic content of speech in the gesture’s 

iconic dimension, reminding of the two sides with equal length an isosceles 

triangle itself. The gestures’ deictic and iconic reference together offer a twofold 

semantic-phonemic link to both mathematical content and terminology.  

Ebi’s use of gestures coordinated with the two languages offers representational 

and phonemic support to potentially provide a scaffold for engaging in 

mathematical discourse about the respective topic through language and gesture, 

thereby helping the students learn and remember both the new mathematical 

concept and mathematical terminology. However, given that the gestural 

reference is rather implicit, further analyses of the classroom interaction would 

need to confirm this hypothesis. 

The second excerpt will illustrate a variant of the “isosceles gesture” (Fig. 1c), 

contrasted with a gesture accompanying the teacher’s explanation of the Farsi 

terminology. For reasons of space we will set the focus of our analysis of excerpt 

2 on those gestures that are linked to the teacher’s code-switching to English. 

Excerpt 2 

The second excerpt is taken from a lesson in which another teacher (Mamad) and 

some bilingual students are reviewing angles in the context of a regular octagon 

projected on the whiteboard. When they encounter isosceles triangles, Mamad 

(M) uses the occasion to discuss the terminology in both Farsi and English, using 

gestures as visual support.  

    Original Farsi-English dialogue English version 
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1 M. aha, Farsi sho baladin bacheha? saagh 

yanni chi? 

Aha/yeah. Do you know what’s the Farsi 

for it guys? What does ‘saagh’ mean? 

2 S1 paa leg 

3 S2 saagh yanni paaiinesh saagh means the lower part 

4 S1 chii bood dobare? What was it again? 

5 

 

M. 

 

motasaavi-al saaghain. [motasaavi yanni 

chi?] (moves both extended index finger 

together and apart, Fig. 2a) yanni equal.  

Motasaavi-al saaghain yanni do ta saghash 

chi-an, [do ta paahash chi-an?] (points 

down his legs, Fig. 2b) 

Isosceles. [What does ‘motasaavi’ mean?] 

(moves both extended index finger 

together and apart, Fig. 2a) It means 

equal.  

Hence ‘Motasaavi-al saaghain’ means both 

shins are what, [both legs are what?] 

(points down his legs, Fig. 2b) 

 

                    
Figure 2: Gestures co-timed to “motasaavi yanni chi?” (a) and “do ta paahash chi-an?” (b) 

6 S-s mosavi Is equal 

7 M. mosavi. Englisi besh migan [isosceles] (Fig. 

3a) yanni dota chesha shabihe haman, 

Irania [migan motasaavi-al saaghain.] 

Is equal. In English they call it [isosceles], 

(Fig. 3a) meaning just like our two eyes. In 

Iranian [it is referred to as ‘equal shins’] 

       
Figure 3: Gestures co-timed to “isosceles” (a),“migan motasaavi-al saaghain” (b) 

Together with the students, Mamad recalls the Farsi term for the concept under 

investigation – motasaavi-al saaghain – and the meaning of its single components 

(1-6): First, they identify the reference to the shin (saagh) – the lower part of the 

leg (2, 3) – then Mamad asks ‘What does motasaavi mean’. He does not wait for 

a response but provides it himself right away as “yanni equal” (5). His following 

prompt to put both together (‘Hence (…) their legs are what?’) is then responded 
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by students with ‘is equal’. Mamad then contrasts the terminologies in English 

and Farsi (which he mistakenly refers to as Iranian), explicating ‘how they call it 

(in English)’ and what the Farsi word refers to as just established, but now 

showing in the diagram (7, Fig. 3b). 

Mamad switches to English twice in this short excerpt – first in line 5 (“equal”) 

then in line 7 (“isosceles”). Similar to the use of English in excerpt 1, these 

switches to English concern mathematical terminology: While “equal” (5) is a 

rather general translation of the Farsi motasaavi, the teacher asks for its meaning 

in the context of the mathematical terminology motasaavi-al saaghain. Code-

switching here serves the function of expressing meaning in the second language, 

using vocabulary supposedly known by the students. In the second instance (7), 

Mamad explicitly uses “isosceles” as naming the English terminology to refer to 

the same concept, establishing new mathematical vocabulary through code-

switching.  

Both instances of using English can be linked to gesture use, even though the first 

one is carried out just before, co-timed to the Farsi equivalent of ‘equal’, carrying 

the same semantic meaning: While asking ‘What does ‘motasaavi’ mean?’ (5), 

he moves his extended index fingers horizontally and symmetrically together and 

apart in front of his body (Fig. 3a), adding a visual dimension to his question that 

might be seen as a metaphoric reference to equality, but also as iconic indicator 

of two sides (represented by the index fingers) with equal length. Co-timed to the 

English “isosceles” (7), Mamad points to his eyes, similar to what we have seen 

in Ebi’s gesture in excerpt 1, but – different to Ebi – verbally explicating the 

connection to ‘our two eyes’ right after. Again, the gesture grounds the 

accompanying language phonologically and anticipates the verbal reference in 

Farsi. In its performance, it however shows another difference to Ebi’s gesture: 

Ebi points to his eyes with two fingers of one hand, Mamad’s gesture is bimanual, 

pointing with the index fingers he used earlier in his reference to equality (line 

5). This might indicate a catchment in the sense of McNeill (2005) – a recurrent 

discourse theme whose link can be identified in the recurrence of gesture features, 

here the use of the two index finger in the gestures for ‘equal’ and “isosceles”. 

Even though this contextual link is made only implicitly, one can argue that 

gesture and speech are processed and interpreted as a unit such that the link 

carried in gesture can serve as potential additional resource for meaning making 

for both students and the teacher. 
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SUMMARIZING DISCUSSION AND OUTLOOK 

The bimodal analyses of the two teachers’ bilingual instruction provided some 

first insights on how bilingual teachers coordinate the use of both languages and 

gestures and how this might support meaning making in mathematical discourse. 

Similar to what has been observed in monolingual classrooms (Alibali & Nathan, 

2007), the teachers grounded their instructional language in the physical world 

around them to support the students’ understanding of the verbal explanation. 

However, the bilingual setting also directs our attention to some peculiarities in 

the teachers’ gesture use.   

A striking commonality in both cases is the teachers’ use of gestures as linked to 

the English terminology “isosceles”: Importantly, this does not only concern the 

phonemic support in the reference to the phonologically similar ‘eye’, but the 

concrete shaping of this reference that aligns with representational features of the 

concept. We see two variants – one-handed with two adjacent fingers (Ebi) and 

two-handed with the two index fingers (Mamad) – that both carry a reference to 

the two sides of equal length, a defining feature of isosceles triangles. We do not 

claim that the teachers established this link to the mathematics consciously – they 

certainly did not make it explicit. However, keeping in mind the multimodal 

nature of communication and speech and gesture being perceived as a unit in 

interpreting an utterance, the combination of gesture and speech can provide 

assistance for remembering the mathematical idea together with its English 

terminology – a combination we call bimodal mnemonic.    

A difference in both cases concerns the focus of instruction, causing differences 

in the coordination of gestures with language. Ebi’s explanation concerns the 

mathematics towards solving the problem with his gestures providing a 

referential frame to ground the English terminology by identifying the respective 

concepts in the diagram, and specifying the imprecise Farsi expression. The 

gestural reference to the English mathematical terminology is integrated 

implicitly. Mamad foregrounds the terminology in both languages, reflected in 

his gestures as they are largely related to making meaning of this terminology. 

Here, the gestural reference to the mathematics with respect to isosceles triangles 

in a regular polygon is rather implicit. In both cases, the use of gestures and two 

languages played an integral role in helping the students being engaged with the 

ongoing flow of the lesson content. 

The analyses presented here are only a first step in investigating the role of 

gestures for coordinating bilingual instruction with mathematical content to 
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support language learners. They serve us as a starting point by pointing at 

different forms and functions of bimodal bilingual instruction along the three axes 

of code-switching, gesture, and focus of instruction. Our further research will 

concern the development of a methodological tool that integrates these three axes 

for systematic analysis. Furthermore, we plan a wider exploration of 

mathematical contexts, including also other language backgrounds in bilingual 

classrooms.  
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Make a drawing is known to be a powerful strategy for solving mathematical 

problems. But surprisingly, the drawing strategy was found to negatively affect 

the ability to solve non-linear geometry problems. Our study replicates and 

extends this finding by addressing the quality of the drawing strategy, which 

might explain the negative effect. In a randomized controlled trial with 180 

students (ninth- to eleventh-graders), we enhanced drawing quality by prompting 

the students to highlight important elements in their drawings. Our results 

replicated the negative effect of the drawing strategy on performance and 

confirmed the quality of the drawing strategy as an important factor that affected 

the number of linear overgeneralizations. The roles of drawing quality and other 

factors that might influence the ability to solve such problems are discussed. 

INTRODUCTION 

The drawing strategy is a heuristic method that is claimed to have strong positive 

effects on problem solving. However, studies that have investigated the effect of 

applying the drawing strategy have arrived at divergent findings. Some studies 

showed that the drawing strategy facilitates problem solving (e.g. Hembree, 

1992), whereas others did not find any effects (e.g. De Bock, Verschaffel, & 

Janssens, 1998), and one study even provided surprising evidence for a negative 

effect of the drawing strategy on problem solving performance (De Bock, 

Verschaffel, Janssens, Van Dooren, & Claes, 2003). The present study is aimed 

at replicating the negative effect of applying the drawing strategy and elaborating 

on potential explanations for why applying the drawing strategy can hinder 

problem solving. 

THEORETICAL BACKROUND AND RESEARCH QUESTIONS 

Drawing Strategy 

Applying the drawing strategy involves constructing an external visual 

representation that corresponds to the structure of the mathematical problem. By 

drawing, the learner externalizes his or her mental model of the problem situation. 



Krawitz & Schukajlow 

PME 44 – 2021   3 - 155 

This involves re-organizing the given information in such a way that important 

elements and relations become visible and can be processed more easily after the 

drawing is constructed (Larkin & Simon, 1987). Hence, drawing makes the key 

information from the problem explicit and facilitates the process of problem 

solving (Cox, 1999). 

Empirical evidence for the positive effect of drawing strategy was found in a 

number of studies (Rellensmann, Schukajlow, & Leopold, 2016; Van Essen & 

Hamaker, 1990; Zahner & Corter, 2010). Teaching the drawing strategy was even 

identified as the most effective treatment for improving mathematical problem 

solving in a meta-analysis conducted by Hembree (1992), in which drawing 

strategy was compared with other strategies such as verbalizing concepts. 

However, drawing strategy does not help all students solve the problem. 

Theoretical models of self-generated drawings emphasize that the benefits of 

applying the drawing strategy are strongly related to the quality of the use of the 

strategy (Cox, 1999).  

The quality of the use of the drawing strategy is reflected in two properties of the 

drawing as the final product of the drawing process: the correctness and 

completeness of the drawing. High-quality use of the drawing strategy implies 

that students construct a correct drawing (correctness) that explicitly represents 

the key information from the problem (completeness). The first evidence for the 

importance of the quality of the use of the drawing strategy comes from research 

on text-based learning. Supporting students’ drawing activities positively 

affected performance on items that required comprehensive elaboration activities 

(Van Meter, 2001). Moreover, empirical studies in science and mathematics 

confirmed theoretical considerations and revealed that the quality of the drawing 

strategy is positively related to demanding problem solving (Rellensmann et al., 

2016; Schwamborn, Mayer, Thillmann, Leopold, & Leutner, 2010; Uesaka, 

Manalo, & Ichikawa, 2007). Students who constructed drawings of higher quality 

solved geometrical modelling problems better than other students (Rellensmann 

et al., 2016). The quality of the drawing strategy is expected to be particularly 

important when students are required to build connections and draw conclusions 

from the given information (Van Meter, 2001), as is the case for solving non-

routine mathematical problems. 

The Drawing Strategy for Solving Non-Linear Problems 

An important type of non-routine mathematical problems is the non-linear 

geometry problem, in which the area or volume of similar figures or solids has to 
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be determined by a given scaling factor. For example: “You need approximately 

400 grams of flower seed to lay out a circular flower bed with a diameter of 10 

m. How many grams of flower seed would you need to lay out a circular flower 

bed with a diameter of 20 m?” (De Bock et al., 1998, p. 68). This type of problem 

is important because it addresses students’ strong tendency to engage in linear 

overgeneralizations – the application of linear models to non-linear situations – 

which is known to be a common error in problem solving (Van Dooren, De Bock, 

Janssens, & Verschaffel, 2008). A series of studies conducted by De Bock and 

colleges (De Bock, Van Dooren, Janssens, & Verschaffel, 2002; De Bock et al., 

1998; De Bock et al., 2003) showed that this type of problem is very difficult for 

students, who often seem to use the linear model in an intuitive manner without 

being aware of the model they chose (De Bock et al., 2002).  

The drawing strategy can be helpful for solving non-linear geometry problems 

because it provides the opportunity to recognize the non-linear property of the 

area, and thus, it might facilitate the use of appropriate mathematical procedures. 

A drawing for a non-linear geometry problem should include the original and 

scaled figure, which enables the use of visual solution strategies aimed at 

estimating the relation of the areas (e.g. paving strategies). Contrary to these 

theoretical considerations, De Bock et al. (2003) showed that applying the 

drawing strategy did not facilitate the solving of non-linear geometry problems 

and even affected problem solving performance negatively. What can explain this 

unexpected finding? In the drawing condition, students between the ages of 13 

and 16 were given a drawing that referred to the geometrical object from the 

problem (e.g. a square). They were then instructed to complete the drawing by 

using the given scaling factor to add a scaled geometrical object. Students in the 

drawing condition performed worse than students in the control group, who 

worked on the same problems without receiving any instructions (23% vs. 44%). 

An in-depth analysis of students’ solutions indicated that the drawing strategy did 

not elicit visual solution strategies for determining and comparing the sizes of the 

areas. This argument provides a good explanation for why applying the drawing 

strategy was not beneficial, but it remains unclear why using a drawing negatively 

affected problem solving in this study. Another explanation might be that students 

use the drawing strategy inappropriately, which in turn decreases their 

performance in solving non-linear geometric problems. 

Because of the surprising nature of the negative effects of the drawing strategy, 

we aimed to replicate De Bock et al.’s (2003) study in order to validate its 

findings. We expected a negative effect of using the drawing strategy on problem 
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solving performance for non-linear geometry problems. Further, we expected the 

use of the drawing strategy to increase students’ tendency to engage in linear 

overgeneralizations. As geometrical figures are typically depicted by their 

circumferences, students’ attention is guided toward the linear property of the 

circumference while drawing instead of toward the non-linear property of the 

area. 

Further, we considered the quality of the drawing strategy as a potential reason 

for the negative effect of using the drawing strategy on problem solving 

performance. In particular, we expected that key information such as the area and 

its non-linear relationship would not be made salient in the drawings so that the 

quality of drawing strategy would be insufficient with respect to the completeness 

of the drawings. Therefore, we expected that increasing the quality by 

highlighting the key information would diminish the negative effect of the 

drawing strategy on performance because it would prevent the linear 

overgeneralizations that usually result from drawing. 

RESEARCH QUESTIONS 

These considerations led us to pose the following research questions: 

RQ 1: Does the use of the drawing strategy decrease problem solving 

performance and increase linear overgeneralizations? 

RQ 2: Does increasing the quality by highlighting important information in the 

drawing diminish the negative effects of the drawing strategy on problem solving 

performance and on the number of linear overgeneralizations? 

METHOD 

Participants and Design 

The sample involved 123 students (58.5% female, mean age = 16.19 years) from 

nine classes, including ninth-graders (11.4%), tenth-graders (48.8%), and 

eleventh-graders (39.8%). Students came from four high-track schools (German 

Gymnasium) and one comprehensive school (German Gesamtschule). Students 

in each class were randomly assigned to one of three groups: Students in the 

experimental conditions received either drawing (D) or drawing with highlighting 

(DQ) instructions, aimed at increasing the quality of the drawing strategy. 

Students of the control group (CG) received no drawing instructions. The 

instructions were embedded in the tasks given on a paper-and-pencil test. Figure 

1 shows the drawing with highlighting instructions (DQ condition) embedded in 

one of the tasks.  
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Figure 1: Sample item with drawing with highlighting instructions. Tasks were 

adopted from De Bock et al. (2003, p. 449) 

To check the implementation of the treatment, we examined whether students in 

the experimental and control groups followed the instructions by analyzing the 

numbers of papers with no drawings, drawings (without highlighting), and 

highlighted drawings in the different conditions (CG: 63% no drawings, 35% 

drawings, 2% highlighted drawings; D: 7% no drawings, 92% drawings, 1% 

highlighted drawings; DQ: 8% no drawings, 22% drawings, 70% highlighted 

drawings). Significantly more drawings and highlighted drawings were made in 

the respective conditions, indicating that the majority of students followed the 

instructions as intended for the non-drawing, drawing, and drawing with 

highlighting groups. 

Measures and Data Analysis 

Students’ performance and the number of linear overgeneralizations were 

assessed via a problem solving test, which included four experimental items and 

three additional buffer items. The experimental items were non-linear geometry 

problems in which the area or volume of a figure (square, circle) or a solid (cube, 

sphere), respectively, and a scaling factor were given with the question to find the 

size of the area or the volume of a similar figure. For example: “The side of square 

C is 12 times as large as the side of square D. If the area of square C is 1440 cm2, 

what’s the area of square D?” All items were taken from the study by De Bock et 

al. (2003). 
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To measure students’ performance, we analyzed whether the solutions were 

correct (coded 1) or incorrect (coded 0). The number of linear 

overgeneralizations was assessed by analyzing if they were based on a linear 

model (coded 1) or not (coded 0). Two independent raters rated 20% of the 

answers to each problem with sufficient inter-rater agreement (Cohen’s κ ≥. 

827). Scale reliability was satisfactory (Cronbach’s α = .787 for performance 

and .715 for linear overgeneralizations). To address the research questions, we 

compared the mean scores for students’ performance and linear 

overgeneralizations between the CG and D groups (research question 1) and the 

CG and DQ groups (research question 2) by using t-tests. All alpha values we 

report are one-tailed due to our directional expectations. For reasons of 

comparability, we followed De Bock et al.’s (2003) procedure and conducted our 

analysis with only two of the four experimental items. The results remained 

nearly the same when all items were included in the analysis. 

RESULTS 

Our first research question was aimed at replicating the negative effect of the 

drawing strategy on problem solving performance. We found that students in the 

drawing condition had significantly lower solution scores than their peers in the 

control group (MD = 0.268, SDD = 0.389; MCG = 0.476, SDCG = 0.460; 

t(80) = 2.203; p < .05; dCohen = 0.488). In line with our expectations, applying the 

drawing strategy negatively affected students’ problem solving performance for 

non-linear geometric problems.  

The first research question further referred to the number of linear 

overgeneralizations. We found that students in the drawing condition made in 

tendency significant more linear overgeneralizations than students in the non-

drawing condition (MD = 0.390, SDD = 0.426; MCG = 0.244, SDCG = 0.389; 

t(80) = -1.624; p = .054; dCohen = -0.358). As expected, applying the drawing 

strategy appeared to increase the number of linear overgeneralizations.  

The second research question referred to the quality of the use of the drawing 

strategy and was aimed at investigating whether the negative effect of the drawing 

strategy could be diminished by increasing the quality. We found that students 

who used the drawing strategy in a high-quality manner (DQ condition) had 

significantly lower solution scores than students who did not use this strategy 

(CG) (MDQ = 0.220, SDDQ = 0.388; MCG = 0.476, SDCG = 0.460; t(77.78) = 2.724; 
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p < .01; dCohen = 0.602). Increasing the quality apparently could not diminish the 

negative effect of the drawing strategy on performance. 

However, a high-quality use of the drawing strategy was found to diminish the 

negative effect for linear overgeneralizations. Students who used the drawing 

strategy in a high-quality manner made a similar number of linear 

overgeneralizations as students in the control group (MDQ = 0.342, SDDQ = 0.425; 

MCG = 0.244, SDCG = 0.389; t(80) = -1.08; p = .141; dCohen = -0.241). Hence, 

increasing the quality helped prevent students from making linear 

overgeneralizations, but it did not help them solve the problems. 

DISCUSSION 

One of the goals of the present study was to replicate and extend the findings 

from De Bock et al.’s (2003) study. In line with the previous findings, we found 

a negative effect of the drawing strategy on students’ problem solving 

performance for non-linear geometry problems. Even the solution scores in our 

study were very similar to the ones reported by De Bock et al. (2003), indicating 

that the negative effect is stable across time and different samples. This 

replication increases the validity of the surprising finding that drawing can hinder 

students’ ability to solve mathematical problems. 

Further, our study was aimed at elaborating on potential reasons that might 

explain the negative effect of applying the drawing strategy. The results 

confirmed the previous assumption that lower performance is caused by linear 

overgeneralizations (De Bock et al., 2003). Applying the drawing strategy 

without supporting students in using it in a high-quality manner increases the 

number of linear overgeneralizations. The process of drawing seems to guide 

learners’ attention to the linear property of the circumference, which they 

mistakenly transfer to the area or volume of the figure. Moreover, in both 

conditions (D and CG), we found that linear overgeneralizations appeared 

frequently, which, in line with prior research (Van Dooren et al., 2008), highlights 

the pervasive role of students’ tendency to apply linear models. 

With the second research question, we investigated the role of the quality of the 

use of the drawing strategy. We expected that the negative effect of the drawing 

strategy on performance and on the number of linear overgeneralizations in 

students’ solutions could be diminished by increasing the quality of their strategy 

use. Quality was increased by addressing the important feature of the drawing 

strategy to represent key information (completeness of drawings), which was 

done by instructing students to highlight the area or volume in their drawings. 
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The results partly confirmed the expectations derived from the theoretical 

considerations.  

Contrary to our expectations, improving the quality did not diminish the negative 

effect of the drawing strategy on students’ performance. Hence, even the use of 

the drawing strategy with an increase in its quality had a negative effect on the 

ability to solve non-linear geometry problems. A possible explanation is that 

applying the drawing strategy when drawing the geometrical figures might hinder 

a covariation view (area as an alterable value that depends on the length of the 

side), by leading to a static view of a specific figure’s lengths and area. Following 

this consideration, future studies should investigate how the drawing strategy 

affects different concept images (Vinner, 1997) for linear and non-linear 

functions. A promising approach for fostering the covariation view might be to 

construct a drawing by using dynamic geometry software. 

Regarding the number of linear overgeneralizations, the results confirmed our 

expectation that the quality of the use of the drawing strategy is a crucial factor 

that determines whether the negative effect occurs or not. This finding is in line 

with previous research demonstrating the important role of the quality with which 

strategies are applied. A high-quality use of the drawing strategy helped to 

prevent at least some of the students from falling into the linearity trap, but it did 

not help the students find the correct mathematical procedure. This result 

indicates that apart from linear overgeneralizations, students also encounter other 

difficulties in solving non-linear geometry problems. This highlights the need for 

qualitative studies to investigate the process of solving non-linear geometry 

problems with the help of the drawing strategy in order to get a more complete 

picture of students’ difficulties.  

Taken together, our findings show that applying the drawing strategy is not a one-

size-fits-all solution. Besides increasing the quality of the drawing strategy, 

teachers should consider that different conceptual images of linear and non-linear 

functions are essential for problem solving. Reflecting on the advantages and 

disadvantages of various representations is an important prerequisite for the 

beneficial use of this strategy. This stresses the need for further investigations on 

the drawing strategy. 
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Dealing with statistical variation is frequently emphasised as a key component of 

statistical literacy – related abilities should, therefore, be fostered already in the 

primary mathematics classroom. For being able to create corresponding 

learning opportunities, teachers need awareness of statistical variation and 

related learning potentials, which should be fostered during university teacher 

education. As relatively little is known so far to what extent teacher students 

already have such an awareness, a study was conducted in which teacher 

students’ awareness was compared with the awareness found in a sample of in-

service teachers. The results imply a need for building up specific criterion 

knowledge with a particular emphasis on a flexible use across different 

profession-related requirement contexts. 

INTRODUCTION 

In the last years, an extensive amount of research has been conducted focusing 

on how to build up foundations for students’ statistical literacy in the primary 

mathematics classroom (e.g. English, 2012). In the related literature, there is a 

broad consensus on the importance of being able to deal with statistical variation 

for students’ development of statistical literacy (e.g. Watson & Callingham, 

2003), and there are several classroom studies that have shown that engaging 

students to deal with statistical variation is a feasible endeavour (e.g. Ben-Zvi, 

2005). Creating appropriate learning environments, however, requires teachers to 

be aware of the relevance of statistical variation and related learning potentials. 

Teachers should be aware of these learning potentials in different profession-

related requirement contexts, such as task analysis, the analysis of data sets for 

being used in the classroom, or the analysis of classroom situations in which 

learning opportunities related to statistical variation could come into play, for 

instance. In a prior study with in-service primary school teachers (Krummenauer 
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& Kuntze, in press) it has been found that only a minority of the participants 

showed such an awareness when analysing in profession-related requirement 

contexts, which points not only to a need of corresponding professional 

development, but also emphasises the importance of building up related 

professional knowledge from university teacher education on. Relatively little is 

known so far about teacher students’ awareness of the learning potentials related 

to statistical variation. Addressing this research need, an empirical study has been 

conducted in which written analysis products from 57 teacher students have been 

collected and compared with data from 44 in-service teachers. The results 

indicate that only a relatively low percentage of the teacher students was aware 

of learning opportunities related to statistical variation, as it was also the case for 

the in-service teachers, and that the evidence of their awareness largely depended 

on the requirement context. We conclude that teachers should be supported in 

building up awareness and in its flexible use across different profession-related 

requirement contexts. 

THEORETICAL BACKGROUND 

As argued by Cobb and Moore (1997), variation is an omnipresent phenomenon 

when dealing with statistical data. A focus on dealing with statistical variation is 

thus frequently emphasised as a key element of the statistics classroom from 

primary school on (e.g. Franklin et al., 2005). Due to the omnipresence of 

statistical variation, data provide various opportunities for students to engage with 

statistical variation (e.g. English & Charles, 2000; Makar, 2018), e.g. when 

students interpret distributions (Ben-Zvi, 2005) or identify general trends in data, 

e.g. for making predictions based on patterns of data (e.g. Oslington, 2018). 

Whether or not such learning potentials are used for students’ learning in 

mathematics classroom, however, can be expected to depend highly on whether 

teachers have an awareness of statistical variation and related learning potentials. 

Awareness has been described as a part of professional knowledge which 

influences the readiness and ability of teachers to use related professional 

knowledge elements in instruction-related contexts (Kuntze & Dreher, 2015, p. 

298). The awareness of certain criteria – in this case, statistical variation and 

related learning potentials – can hence enable teachers to use relevant 

professional knowledge for analysing in profession-related requirement contexts 

and, therefore, can be expected to influence what learning opportunities teachers 

are able to provide to their students (e.g. Kuntze & Friesen, 2018).  
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To what extent teachers are aware of certain criteria becomes apparent when they 

analyse in profession-related requirement contexts (Kuntze & Friesen, 2018). 

Analysing is considered as an “awareness-driven, knowledge-based process 

which connects the subject of analysis with relevant criterion knowledge and is 

marked by criteria-based explanation and argumentation” (Kuntze, Dreher, & 

Friesen, 2015, p. 3214). As published in Kuntze & Friesen (2018), the process of 

analysing can be described by means of a model with a circular structure, similar 

to the modelling cycle described by Blum and Leiss (2005). The model primarily 

addresses teachers’ analysing of classroom situations, but it can also be applied 

to teachers’ analysing in other profession-related contexts, such as analysing 

students’ answers to tasks or analysing textbook material. In prior research (e.g. 

Kuntze & Friesen, 2018; Krummenauer & Kuntze, in press), the model had 

already been applied successfully. The process of analysing is structured into four 

phases, which are, however, meant to be not necessarily followed by each other 

in a fixed order, but also can be skipped, interrupted, or repeated. In the first phase 

of the model, teachers generate a situation model (“real model”) of the profession-

related context they analyse, which is interpreted in the subsequent phase based 

on criteria, which are part of their professional knowledge. These criteria are the 

basis of models for explaning teachers’ observations and developing 

implications, which subsequently can be validated against the situation model of 

the classroom situation in a further step. Teachers’ criterion awareness plays a 

key role in this cycle, as it activates relevant professional knowledge for an 

analysis, when a criterion appears to be relevant; without the awareness of the 

relevance of a specific criterion in a certain situation, it cannot be used for 

analysis, even if a teacher in principle has relevant professional knowledge.  

 

Figure 1: Model of the process of analysing (Kuntze & Friesen, 2018, p. 277) 
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As already introduced before, teachers’ analysing occurs in different profession-

related requirement contexts, such as classroom situations, choosing material 

from textbooks, or interpreting written student answers. In order to make these 

different situations accessible to teachers’ analysis, different vignettes can be 

used representing these profession-related requirement contexts (Friesen, 2017; 

Skilling & Stylianides, 2020). In an earlier study with N = 44 in-service primary 

school teachers (Krummenauer & Kuntze, in press), such vignettes had been used 

in order to investigate whether the teachers showed an awareness for learning 

potentials related to statistical variation when analysing the vignettes representing 

several profession-related requirement contexts. Based on the teachers’ written 

answers, a set of categories had been identified representing different types of 

answers. First of all, there were answers indicating an awareness of statistical 

variation and related learning potentials; in such answers, reference to the 

statistical variation implemented in the vignettes was made, and a learning 

potential related to the statistical variation was mentioned, e.g. a corresponding 

question focussed on engaging students with statistical variation or a suggestion 

on how to deal (better) with statistical variation in a classroom situation 

represented by a vignette. Besides such answers, there were further categories of 

answers which did not indicate an awareness of statistical variation. Some 

answers, for instance, only focused on didactical or pedagogical aspects of the 

represented profession-related context. Further, there were answers, in which 

teachers mentioned statistical variation (and therefore apparently identified it as 

a relevant criterion for their analysis), but it was considered as hindering for 

students’ learning and suggested to be removed from the analysed textbook 

material. Overall, only a minority of the in-service teachers showed an awareness 

for learning potentials related to statistical variation. Although all vignettes had 

been designed so that statistical variation played a predominant role for students’ 

learning in the respective contexts, differences in the rates of successful answers 

among the different vignette categories were found, which may indicate that there 

may be a relatively strong interrelation of teachers’ awareness with particular 

profession-related contexts. 

These first findings point not only to a need for specific professional 

development, but also appear as highly relevant for university teacher education. 

However, specific research on teacher students’ awareness of learning potentials 

related to statistical variation is scarce. In particular, relatively little is known so 

far to what extent teacher students’ awareness differs from that found in in-
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service teachers and whether they show that awareness when analysing in 

different profession-related requirement contexts.  

AIM OF THE STUDY AND RESEARCH QUESTIONS 

Consequently, this study addresses this research need; in particular, the 

following research questions have been investigated:  

● Do teacher students show an awareness of the learning potentials related 

to statistical variation when analysing vignettes representing profession-

related requirement contexts, and to what extent does their awareness 

differ from that found in a study with in-service teachers? 

● Are there differences in the teacher students’ awareness among different 

professional requirement contexts implemented in different types of 

vignettes? 

SAMPLE AND DESIGN OF THE STUDY 

The data analysed in this study comprises of N=101 data sets from n=57 primary 

teacher students and n=44 in-service primary school teachers (95 % female, 5 % 

male) from southern Germany. About 32 % of the in-service teachers studied 

mathematics as a major subject during their initial teacher education at university, 

29 % studied mathematics as a minor subject and about 40 % of the teachers had 

not studied mathematics/mathematics education during their university 

education. The teachers’ classroom experience ranged from 1 to 36 years with a 

mean experience of 8 years (SD = 7). About 70 % of the teacher students were in 

their third semester (M = 4 semesters); about half of the sample studied 

mathematics as a major subject, the other half as a minor subject.  

For collecting data from the teacher students, the same vignette-based paper-

pencil questionnaire was used as in the prior study with the 44 in-service teachers 

(Krummenauer & Kuntze, in press). The questionnaire consists of several 

vignettes representing three different types of profession-related requirement 

contexts: analysis of classroom situation (requirement context represented by 

means of a cartoon vignette; one item), analysis of learning tasks for students (4 

items), and analysis of data sets intended for use in the mathematics classroom (2 

items). Although the vignettes represent different types of profession-related 

requirement contexts, they are designed in a way so that awareness of learning 

potentials related to statistical variation is needed for creating optimal learning 

opportunities for students’ learning in the respective requirement context. The 

sample vignette-based items presented in the following will provide insight into 

how this approach was implemented in the questionnaire instrument. 
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In Figure 1, a data set is displayed as it was part of a vignette. It shows the fictive 

development of the weight of a newborn including a (possible) drop of the weight 

in the fourth week. These data can function as a starting point for several learning 

opportunities related to statistical data; students, for instance, could be asked what 

in week four might have happened or how the data could continue, how other 

kids with different birthweight may develop. Initiating only basic activities, on 

the contrary, would indicate that teachers are not aware of statistical variation and 

its learning potentials.  

 

Figure 2: Example of a data set, which is part of a vignette used in the 

questionnaire. 

In the learning tasks, the second vignette type of the questionnaire instrument, a 

data-set as shown in Figure 2 is combined with a question to students (e.g. “Draw 

a bar chart.”). The third vignette type requires the participants to analyse a 

classroom situation represented as a comic. A key feature of the classroom 

situation used in the instrument is that statistical variation is embedded in a 

classroom scenario, in which a teacher discusses a task with students, in which 

statistical variation has to be taken into account, but the teacher does not take 

notice of the high relevance of statistical variation. In the questionnaire, all 

vignettes are combined with open questions, which are formulated in a way that 

they initiate the participants’ analysing (e.g. in case of the data set in Figure 2: 

“Would you use this data set in the mathematics classroom? If yes: What 

questions would you ask the students? If no: What would you change?” or in the 

case of the classroom situation: “How could the teacher in the comic sequence do 

better?”), but without pointing to statistical variation in any way, in order to be 

able to distinguish whether the participants’ identified statistical variation as a 

relevant criterion and were aware of the related learning potentials.  

Data coding 

Based on the coding developed in Krummenauer and Kuntze (in press), the 

teacher students’ answers were subjected to a criteria-based top-down rating on 
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whether the answers indicate an awareness of the learning potentials related to 

statistical variation. For a positive rating, the answer had to fulfil two criteria: 

they had to contain at least one reference to the statistical variation in the 

respective data set/task/classroom situation, and a possible learning potential 

related to statistical variation had to be mentioned. In the case of the data set 

displayed in Figure 2, for instance, the sudden drop of the weight or the 

development of the weight could be mentioned for fulfilling the first criterion. 

The second criterium (mentioning a related learning potential) is fulfilled, when 

it is, for instance, stated that teachers could engage students to reflect on the rapid 

decrease in the data set or ask students for several scenarios on how the data could 

develop further. In the case of the vignette representing the classroom situation, 

it is required to identify that the teacher in the represented classroom situation 

ignored the predominant relevance of statistical variation in the task and the 

related learning potential. The coding had been validated during the prior study 

by means of a second rating with a measured overall inter-rater-reliability of 

κ=.84 (Krummenauer & Kuntze, in press). 

RESULTS 

Figure 2 shows the joint results of the coding for both samples of teacher students 

and in-service teachers. It can be seen, that the teacher students’ frequencies of 

answers, which indicate an awareness of statistical variation and the related 

learning potentials, are in a similar range compared with the frequencies of the 

in-service teachers; t-tests did not indicate any significant differences of the 

frequencies of teacher students and in-service teachers (p>.20). Further, the 

results show that the teacher students’ frequencies vary among the profession-

related requirement contexts almost to the same extent as it has been found for 

the in-service teachers (see Krummenauer & Kuntze, in press). The mean rate of 

answers indicating an awareness is 15.6 % for student teachers ans 18.3 % for in-

service teachers.  
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Figure 2: Frequencies of answers indicating an awareness of statistical variation 

and related learning potentials. 

In order to further explore whether the teachers’ and teacher students’ awareness 

is dependent or independent from the different profession-related requirement 

contexts, bi-variate correlations between the different categories were computed. 

In the joint sample of teacher stiudents and in-service teachers, a correlation of 

r=.29 (p<.01) was found between the participants’ responses to the data set 

vignettes and to the comic vignette, indicating a joint variance of about 8 %. 

Between the participants’ answers showing awareness to tasks and data sets, we 

found a weak correlation of r=.22 (R2=0.048, p<.05), while there is no correlation 

(r=.04) between answers to the vignettes containing learning tasks and answers 

to the comic vignette. 

DISCUSSION AND OUTLOOK 

Addressing the first research question, the results imply that the teachers students’ 

awareness of learning potentials related to statistical variation was very low on 

average, and the evidence resembles the earlier findings from the sample of in-

service primary school teachers. Although statistical variation has high relevance 

for students’ learning in all vignettes, showing awareness of this criterion in one 

profession-related requirement context appears not to be highly predictive of 

whether teachers and teacher students show this awareness also in other 

profession-related requirement contexts. Against the background that the learning 

task vignettes mainly differ from the data set vignettes in that the given data set 

had been combined with a question to students, it appears that already relatively 

little changes in the professional requirements can affect whether or not statistical 

variation is used as a relevant criterion in the teachers’ analysis.  
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Overall, the rate of answers indicating an awareness of statistical variation and 

related learning potentials is relatively low (mean frequencies below 20 %). As it 

has to be assumed that there is a strong relation of teachers’ awareness and 

learning opportunities teachers are able to provide to their students, there is a clear 

need both for in-service teacher professional development and for building up 

professional knowledge in university teacher education. For strengthening the 

teacher’s awareness  across different professional requirement contexts, a special 

focus should be given to vignette-based professional learning opportunities in a 

variation of methodological settings: Different types of vignettes should provide 

opportunities for analysis of tasks, classroom situations, data material, or written 

student responses, which show their thinking related to statistical variation. In the 

European project “coReflect@maths”, corresponding vignette-based material for 

further research and for teachers’ professional learning is under development.  
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When confronted with the complexity of classroom situations, mathematics 

teachers are often required to notice aspects of a situation with respect to multiple 

criteria. Such multi-criterion noticing requirements can be assumed to come with 

high cognitive load for the teacher and teachers need multi-criterion awareness 

as well as corresponding professional knowledge in the relevant domains. 

Despite its importance for mathematics teacher expertise, studies approaching 

multi-criterion noticing in a systematic way are still scarce. Consequently, this 

study examines pre-service teachers’ analyses of a classroom vignette designed 

to require noticing related to several criteria relevant for the students’ learning. 

The findings provide insight into pre-service teachers’ difficulties and point to 

the complexity of multi-criterion noticing. 

INTRODUCTION 

Mastering complex professional tasks in the mathematics classroom often 

requires that teachers analyse classroom situations with respect to multiple 

criteria. Dealing with students’ heterogeneous learning prerequisites is one of 

such complex professional tasks (e.g., Hardy, Decristan & Klieme, 2019): It 

requires mathematics teachers to draw on a bundle of criteria within their 

professional knowledge, since they have to keep an eye on tasks, on the students’ 

individual thinking, on multiple solution pathways and accesses for learning, 

while at the same time they have to avoid unnecessary obstacles when dealing 
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with representations of mathematical objects, amongst others. Therefore, to 

provide optimal support to students, teacher noticing has to focus on multiple 

criteria. Such multi-criterion noticing is expected to be demanding, especially for 

pre-service teachers. Consequently, research into difficulties related to multi-

criterion noticing is highly relevant in order to identify possibilities of supporting 

pre-service teachers in developing corresponding noticing competences.  

THEORETICAL BACKGROUND 

Teachers’ noticing has increasingly been considered as a key aspect of expertise 

(e.g. Berliner, 1991; Sherin, Jacobs & Philipp, 2011; Fernández & Choy, 2020; 

Amador et al., 2021). There is a growing body of research about noticing 

regarding specific criteria, e.g. regarding mathematical contents (e.g. Choy, 2014) 

or regarding how representations are dealt with in the classroom (e.g. Dreher & 

Kuntze, 2015; Friesen & Kuntze, 2016). Noticing in this sense has been 

characterised as a combination of selective attention and knowledge-based 

reasoning (Sherin et al., 2011): Different components of professional knowledge 

(Kuntze, 2012; Shulman, 1986) can be used as criteria which can be connected 

with observations in classroom situations (Sherin et al., 2011; Kuntze & Friesen, 

2016). The complexity of classroom situations (e.g. Petko, Waldis, Pauli, & 

Reusser, 2003) implies that multiple criteria are relevant for successful noticing 

in such multifaceted situations, i.e. noticing that enables teachers to support their 

students’ learning optimally (see below for specific examples). By the notion of 

multi-criterion noticing, we emphasise knowledge-based reasoning which draws 

on multiple knowledge-based criteria. As different noticing criteria can be 

expected to be in a competing relationship with each other (see findings of the 

prior study by Kuntze & Friesen, 2018), multi-criterion noticing is likely to bring 

high cognitive load (Sweller, 1994) for teachers who analyse classroom 

situations, particularly for pre-service teachers who are less experienced in 

noticing.  

Further, and beyond only possessing (potentially inactive) corresponding 

professional knowledge, teachers need criterion awareness (Kuntze & Friesen, 

2018) related to the different noticing criteria: this criterion awareness supports 

analysis cycles, which afford activating criterion knowledge and connecting it 

with observations in the classroom situation (see the process model published in 

Kuntze & Friesen, 2018). Such connections of professional knowledge elements 

with situation observations lead to successful knowledge-based reasoning (Sherin 

et al., 2011), hence successful noticing. In a somewhat similar way, Kersting and 
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colleagues (2012) emphasise the aspect of activating professional knowledge 

elements and using them for interpreting observations, namely in their notion of 

usable knowledge. 

A set of criteria based on mathematics teachers’ professional knowledge which 

can be seen as an example in this context, is needed when teachers have to deal 

with heterogeneous learning prerequisites of students in their classrooms: For 

analysing classroom situations in which heterogeneous learning prerequisites 

have to be dealt with, noticing criteria often have to include several criterion-

related foci, among which the following play key roles:  

● a focus on possible obstacles for learning and understanding in tasks (cf. 

Choy, 2014; Vondrová & Žalská, 2013),  

● a focus on the students’ individual thinking, as it can reveal their individual 

learning prerequisites and individual difficulties (e.g. Fernández et al., 

2018),  

● a focus on how individual, multiple solution pathways can be supported 

(Hardy et al., 2019), and  

● a focus on avoiding unnecessary obstacles when dealing with 

representations of mathematical objects (Ainsworth, 2006; Duval, 2006; 

Friesen & Kuntze, 2016). 

For eliciting teachers’ analysis of classroom situations in systematically designed 

research settings, vignettes offer various possibilities (Buchbinder & Kuntze, 

2018). Vignettes are based on representations of practice, e.g. classroom 

situations represented in video, text or cartoon format, on which teachers can be 

asked to reflect and/or to report their observations or suggestions. The noticing 

criteria introduced above can thus be implemented in specifically designed 

vignettes so as to create an analysis situation for mathematics teachers in which 

they need multi-criterion noticing in order to detect non-optimal aspects of the 

classroom situation through corresponding knowledge-based reasoning (cf. also 

Buchbinder & Kuntze, 2018; Skilling & Stylianides, 2019). Although vignette-

based empirical research offers a broad spectrum of possibilities, research about 

multi-criterion noticing is still relatively scarce. There is hence a need of studies 

exploring multi-criterion noticing, in particular whether and to which extent 

already pre-service teachers are able to show multi-criterion noticing in their 

analysis of classroom vignettes.  
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RESEARCH QUESTIONS 

As outlined above, multi-criterion noticing is likely to be associated with high 

cognitive load and to depend on the availability of professional knowledge related 

to the noticing criteria, as well as on criterion awareness supporting the active use 

of this professional knowledge. In all three areas, pre-service teachers can be 

expected to have lower prerequisites than experienced in-service mathematics 

teachers. As empirical evidence is still scarce despite the high relevance for 

professional growth, this study examines whether multi-criterion noticing is 

possible for pre-service teachers. Moreover, as a second research aim, we explore 

the role of possibly non-available professional knowledge and criterion 

awareness for multi-criterion noticing, by offering the pre-service teachers a 

seminar in which the noticing criteria introduced above are focused, and then 

asking the pre-service teachers to analyse the vignette again. Consequently, the 

research questions of this study are the following: 

(1) Are the pre-service teachers able to analyse situation aspects with respect to 

several criteria, which are relevant for helping the vignette students in their 

learning? 

(2) To what extent does a university seminar offering learning opportunities 

related to multiple noticing criteria lead to improved multi-criterion noticing? 

DESIGN AND METHODS 

As mentioned above, this study uses a vignette-based approach to address multi-

criterion noticing in a systematic way. The four noticing criteria introduced in the 

theoretical background section were implemented in the vignette, so that, from a 

normative point of view, an expert mathematics teacher could be expected to 

notice situation aspects related to these four noticing criteria.  

The cartoon-based vignette (shown together with its key design features in Fig. 

1) presents a classroom situation (material, student-teacher dialogues, students’ 

notes, etc.) from the perspective of a pre-service teacher who reports on his 

teaching experien-ce in a lesson with 7th-graders during his school internship. The 

task, the vignette stud-ents are asked to work on, is presented, and the teacher 

gives some information about his intentions. In the vignette situation, two 

students ask the teacher for help related to the given task. The teacher mainly 

reacts by writing a “hint” on the blackboard, which is however disconnected with 

the students’ thinking and the students’ representations. As the students ask the 

teacher again by showing him their notes, he does not connect with the students’ 
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ideas and suggests them to use the formula he had presented as “hint” on the 

blackboard. The vignette ends with an analysis question: “Give your peer teacher 

student feedback on the classroom situation shown above. Write down everything 

that comes to your mind when looking at the classroom situation and refer as 

specifically as possible to what has been said in the situation, to materials, etc.”   

 

Figure 1: The vignette and key design features 

Related to this analysis question, an expert teacher can be expected to notice 

possible 

● learning/understanding obstacles in the vignette task (possibility of 

entering the work on the task at different levels, but need of providing 

facilitated access for students with lower learning prerequisites) (criterion 

A) 

● learning/understanding obstacles arising from the vignette teacher’s 

reaction as the teacher does not connect with students’ thinking in his 

answers (criterion B) 

● learning/understanding obstacles in teacher “hint” through an unexplained 

and unnecessary change of representation (including new notions in 

formalised representation) (Ainsworth, 2006; Duval, 2006) (criterion C) 
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● learning/understanding obstacles as the vignette teacher insists on his way 

of solving the task instead of supporting the students in further developing 

their own solution ideas (criterion D). 

Based on this study’s theoretical background, we consider these four noticing 

criteria as necessary for a successful analysis of this vignette, hence for successful 

multi-criterion noticing. Of course, further noticing criteria can be used as well 

for answering the analysis question in addition to the criteria given above. As 

mentioned before, we expect that the noticing criteria are in a competing 

relationship with each other, making successful multi-criterion noticing relatively 

complex.  

The vignette was administered as a paper-and-pencil questionnaire to 20 pre-

service master students (i.e. bachelor secondary teacher studies completed), at the 

beginning and end of a seminar. In the seminar, opportunities for professional 

learning related to the criteria A-D corresponded to core content goals. 

Throughout the seminar, several vignettes were used to stimulate the participants’ 

analysis, however, mostly with a focus only on one of the criteria A-D at a time. 

Like this, we expect that professional knowledge and corresponding criterion 

awareness could be built up by the participants. 

For analysing the pre-service teachers’ answers, we used a top-down coding 

according to the four criterion categories (A-D) given above. This criterion-based 

content analysis (Mayring, 2015) led to a dichotomous coding whether the pre-

service teachers’ answers showed evidence that noticing based on the respective 

noticing criterion had taken place (see Fig. 3 and 4 in the results section for coding 

examples).  

RESULTS 

The first research question concentrates on whether pre-service teachers are able 

to notice situation aspects with respect to several criteria, which are relevant for 

helping the vignette students in their learning. The relative frequencies in Figure 

2 on the left, show how many of the four noticing criteria were visible in the pre-

service teachers’ answers. Before the beginning of the seminar intervention, none 

of the participants used all of the four noticing criteria implemented in the 

vignette, more than 60% of the pre-service teachers used none or only one of 

these noticing criteria.  
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Figure 2: Number of (coded) noticing criteria used in the pre-service teachers’ 

analysis (beginning and end of the seminar) 

An initial approach explored the role of professional knowledge and criterion 

awareness by focusing on the pre-service teachers’ answers at the end of the 

seminar (second research question). The corresponding relative frequencies are 

shown in Figure 2 on the right. In this context, we recall that these findings are 

not primarily intended to evaluate the seminar, but to explore the complexity of 

multi-criterion noticing for pre-service teachers. At the end of the seminar, there 

is evidence of successful multi-criterion noticing, even if more than 35% of the 

pre-service teachers used none or only one of the four implemented noticing 

criteria.  

Figure 3 allows a closer look at the pre-service teachers’ multi-criterion noticing 

as visible through their written analysis results, i.e. their answers to the analysis 

question. In this sample answer from the end of the seminar, the pre-service 

teacher first turns to the task and the contract offers displayed in it (see Fig. 1). 

Even if the answer does not give clear suggestions how to “change the 

representation”, we have evidence that the pre-service teacher noticed that the 

representation of the offers is “complex” and “confusing”, which constitutes a 

potential obstacle for the vignette students’ understanding and work on the task. 

Further, the vignette teachers’ reactions are analysed: As far as criterion B is 

concerned (code B), the pre-service teacher appears to have noticed that the 

vignette teacher did not connect with the vignette students’ thinking (“hardly 

connects with the students’ problems”), which is considered as non-sufficient 

(underpinned by the words “just” and “only” later in the sentence). 
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Figure 3: Sample answer (end of the seminar) 

Mentioning/describing the non-optimal use of representations in the teachers’ 

hint (“formula”, which is incongruent with the representation relevant for the 

“students’ problems” and later the “different representation”) indicates that 

noticing criterion C has been used in the pre-service teacher’s analysis. Finally, 

the vignette teacher’s non-optimal reaction related to multiple solution pathways 

(“He does hence not let the students calculate in their representation”) is also 

noticed, corresponding to Code D. 

Figure 4 shows a sample answer from the end of the seminar, for which none of 

the codes A-D was given, whereas different criteria were focused on. The answer 

appears to focus on the role of the vignette teacher’s “hint” for the other students 

in the classroom and for their working process. This noticing result draws on 

related, rather pedagogical criteria and mainly stays with this criterion domain, 

possibly together with a suggested different intervention of the vignette teacher. 

 

 

 

 

Figure 4: Sample answer (end of the seminar) 

DISCUSSION AND CONCLUSIONS 

Given the small sample and the explorative nature of this study, the results should 

be interpreted carefully. The results indicate that most pre-service teachers 

focused on a small number of noticing criteria in their vignette analysis. Even at 

the end of a one-semester university seminar in which the pre-service teachers 

had the opportunity to learn about the criteria implemented in the vignette, multi-

criterion noticing remained difficult for a majority of the pre-service teachers. 
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Therefore, providing professional knowledge learning opportunities is not 

sufficient for succeeding in related multi-criterion noticing. This result is in line 

with previous research focused on providing different theoretical lenses to 

support professional noticing in teacher education programs (a review in 

Fernández & Choy, 2020). 

The findings also show that multi-criterion noticing is possible already for pre-

service teachers (there are cases with four noticing criteria), in this case after they 

have been successfully supported in building up professional knowledge and 

criterion awareness for the corresponding noticing criteria.  

Nevertheless, multi-criterion noticing needs focused support in mathematics 

teacher education. Such support could focus on a meta-level and target explicit 

strategies of monitoring one’s own noticing: Pre-service teachers could be 

encouraged to explicitly monitor whether and how they draw on specific noticing 

criteria within their professional knowledge. Such strategy support can be 

combined with the analysis of vignettes: As vignette-based work is in the focus 

of the European project coReflect@maths (Digital Support for Teachers' 

Collaborative Reflection on Mathematics Classroom Situations, 

www.coreflect.eu), we expect more insight into multi-criterion noticing and its 

support in follow-up studies.  
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The rise of social media has afforded new opportunities for professional activity 

around mathematics teaching. Thousands of users are posting publicly about 

their experiences with mathematics teaching on an ongoing basis at an 

unprecedented scale in an unprompted, unfunded, and unmandated setting. Given 

the challenges around engendering sustainable professional development, 

informal professional activity, such as that found within a social media setting, is 

worthy of investigation. This study explores features of one such setting, with a 

specific focus on the underlying social structure that supports ongoing 

engagement. To this end, various social locations in this structure are defined 

and characterized, and modes of engagement in locations are found to vary 

according to social responsibility and ideational alignment. 

INTRODUCTION 

Professional activity around mathematics teaching is considered vital in the 

improvement of mathematics education at all levels (Borko, 2004). Research 

in mathematics education has identified various aspects of teacher professional 

development settings that make it effective at stimulating rich professional 

activity. For instance, activities should reflect and be driven by teacher needs and 

interests, and community building and networking should be at the core (Lerman 

& Zehetmeier, 2008). While many initiatives prove successful in engaging 

teachers in meaningful activity around mathematics teaching, there is growing 

attention on the sustainability of such activity. As such, informal settings where 

such activity occurs naturally have become of growing interest (e.g., Horn & 

Kane, 2015).  

With the rise of social media technology in recent years, education professionals 

are turning to resources that are becoming increasingly available beyond the 

confines of institutional boundaries. In turn, many of the constraints of traditional 

forms of professional activity are being bypassed, allowing for informal 
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professional activity to flourish. In some cases, collectives of professionals have 

formed. One such collective, referred to as the Math Twitter Blogosphere 

(MTBoS), has remained resilient for almost ten years, with ongoing activity 

around mathematics teaching occurring daily via Twitter. MTBoS participants 

also have very promising statements about the possibilities for professional 

growth they experience and are often found suggesting that MTBoS is an 

effective space to share and develop ideas for teaching. 

Following this weird #MTBOS hashtag on twitter has changed my teaching practice 

in so many ways. (@MrOrr_geek, 6 Feb 2018) 

Although communication through Twitter is generally random and unprompted, 

MTBoS is treated as an established space, determined by participation from 

members who contribute and continue to use the MTBoS hashtag. For instance, 

contributors often refer to it as a place rather than a hashtag, and grow to expect 

like-minded peers to be available there (Larsen & Parrish, 2019). Studies have 

explored various facets of MTBoS, such as around content quality (Parrish, 

2016), instances of negotiation (Larsen & Liljedahl, 2017), participant 

perspectives (Larsen & Parrish, 2019), and its capacity to support in-person 

conference events (Waddell, 2019). Taken together, these studies reveal strong 

potentialities of MTBoS as a tool for professional growth.  

While most of the investigations of MTBoS to date have taken interest in the 

ideational opportunities in the space, none have focused on the unique nature of 

the social structures that support its ongoing activity. Interestingly, Twitter offers 

its users unreciprocated ‘following’ relationships. That is, when a user ‘follows’ 

(or subscribes to the ‘tweet’ activity of) another user, that user need not 

reciprocate the relationship. This means that tweets published by users who are 

highly ‘followed’ are more likely to be seen and interacted with, and those who 

follow more users who publish ‘tweets’ in their domain of interest can build a 

better view on the activity in that domain of interest. Since all tweets made by 

users one follows are organized in chronological order in one’s newsfeed, this 

means each user has a unique view on the ideational space of MTBoS depending 

on the social relations they choose to create and maintain through both following 

other users and being followed by others. Therefore, following relationships can 

affect the nature of the ideational activity, and in turn, the social structure in 

MTBoS can influence the production and consumption of content. As such, the 

social location of a contributor could stimulate different kinds of engagement.  
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Given the interest in engendering communities of practice around mathematics 

teaching and the overall agreeance on the necessity of collaboration within 

professional activity around mathematics teaching, uncovering the implications 

of the unique social structure in MTBoS on professional activity around 

mathematics teaching is worthy of attention. As such, the study presented in this 

paper is driven by the global question – how and why does MTBoS invoke a 

sustainable form of professional activity around mathematics teaching? And more 

specifically in this paper – what is the social structure in MTBoS and how does 

it drive ongoing activity? 

THEORETICAL FRAMEWORK 

Although a variety of theoretical frameworks were taken into consideration when 

approaching MTBoS as a phenomenon of interest, the primary theoretical 

perspective in this study is drawn from complexity thinking (Davis & Sumara, 

2006). Complexity thinking provides the tools to describe a system of individual 

agents who seem to generate emergent macro-behaviours from individual 

autonomous actions. It is best suited for studying decentralized and bottom-up 

emergent learning contexts, where learning is treated as expanding the space of 

the possible and the “emergence of the as-yet unimagined” (Davis & Sumara, p. 

135). Since MTBoS has no central organization and is driven by individual 

professionals engaging in activity autonomously while simultaneously 

contributing to a collective that is often treated as a single entity, complexity 

thinking was the most well-aligned theoretical perspective for pursuing 

investigation into this context and served as the primary theoretical lens in this 

study. As such, we highlight some of its key theoretical notions.  

Davis and Sumara suggest six interdependent conditions necessary for complex 

emergence, which they organize into three complementary pairs (or tensions): 

specialization (diversity and redundancy), trans-level learning (neighbour 

interactions and decentralized control) and enabling constraints (randomness and 

coherence). Specialization has to do with the diversities and redundancies among 

agents, trans-level learning has to do with the possibilities for individual ideas to 

‘bump’ or interact with each other towards a greater whole, and enabling 

constraints consider the points of cohesion in the collective that maintain its 

structure while allowing for enough randomness for adaptation and learning. 

Although the focus in complexity thinking is primarily on ‘collective-knowing’, 

Davis and Sumara state, “the ideational network rides atop the social network” 

(p. 143). That is, through neighbour interactions among ideas, which are driven 
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by agents with enough diversity and redundancy with each other, ideational 

emergence can occur. The strength and resilience of a collective is in some sense 

dependent on the far-from-equilibrium behaviour of these conditions.  

Although the goal of complexity theory is not to identify interpersonal 

collectively, as do other social theories of learning, ‘collective-knowing’ cannot 

be considered without the social interactions that bring it to fruition. However, 

Davis and Sumara indicate these aspects should not be collapsed. Since the 

ideational network of MTBoS has been explored elsewhere (Larsen, 2019), the 

focus of the work presented in this paper is on the social network that supports 

the emergent ideational network in MTBoS. To this end, some terminology is 

also borrowed from communities of practice (Wenger, 1998), such as that of the 

existence of a periphery and a core in terms of participation in a community, and 

that there are trajectories along which participants move as they participate over 

time. While the terminology from communities of practice is used as appropriate, 

complexity thinking, and the conditions for complex emergence serve as the 

primary theoretical worldview underpinning the methods and analysis in this 

study. 

METHODS 

Towards the construction and examination of the social network underlying the 

ideational network of MTBoS, tweets published on Twitter that included the 

MTBoS hashtag were gathered for analysis. However, the sheer mass of data 

available on Twitter (and in MTBoS) made it impossible to investigate in its 

entirety. MTBoS has grown over the past ten years to include over 6308 users 

(the number of unique users tweeting with the hashtag at least twice between 

September and December of 2018), with an average of one tweet every two 

minutes (from this same timeframe). As such, a specific selection of data was 

chosen for analysis. Guided by the insider perspective of the presenting author, 

who gradually because a participant of MTBoS over a five-year period, the 

selection of data was made based on a 7-day period in late September of 2018. 

This timeframe was chosen strategically to avoid major influencing factors such 

as ‘back-to school’ or ‘midterm grading’ and the length of time was chosen to 

avoid influencing factors of certain days of the week while keeping data size 

manageable. As such, the data set was constructed by collecting all tweets from 

September 21-28, 2018 into a spreadsheet along with meta-information such as 

timestamps and usernames. This initial collection included 6146 tweets made by 

2948 unique user accounts, 4653 of which were direct retweets (exact replicas of 
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original tweets). Given the aims of this study, direct retweets were removed. This 

left 1493 unique tweets made by 694 unique users. However, to make the dataset 

feasible for analysis, 30% of these tweets were randomly selected, resulting in a 

final data set of 444 tweets made by 322 unique users. 

While this data set was analysed in various ways, the study presented in this paper 

pertains to the analysis of the follower relations among the 322 users and the 

tweet contents they produced as relative to their social locations in the social 

network. To this end, the followers of each of the 322 users were identified, and 

then only those relationships that existed within the set of 322 users were 

determined. The unreciprocated nature of these relationships allowed for each 

user to be granted two values: an in-degree and an out-degree, representing the 

number of users in the set they followed or were followed by, respectively. After 

plotting these values on a scatterplot, it became evident there were four possible 

social locations that corresponded to low and high values in each of these two 

dimensions (of in-degree and out-degree). As such, cut values were determined 

by taking the top 20% of values in each dimension to define what counted as high 

for that dimension. In-degrees of 56 or more and out-degrees of 49 or more were 

considered as high, which came to serve as boundaries for constructing the four 

regions of social location, as determined through this process. 

Tweet data was then organized by social location, and each set of tweet data was 

examined for redundancies and diversities among contributions. To achieve this, 

various aspects of contributions in each set were examined, such as key topics, 

presence of media in tweets, tone, and how content was presented by users. The 

most fruitful of these investigations was in looking at how content was presented. 

To this end, we drew on Remillard's (2012) distinction between forms and modes 

of address: where forms of address involve “particular ‘looks’ or formats that 

reflect and reinforce the mode of address” (p. 106). As such, each region of social 

location was examined in terms of the forms and modes of engagement used in 

publicizing the content. This was conducted via an open coding process that 

involved iterative coding with attention to redundancies and diversities within 

and across regions, beginning with tweets in the region with high values in each 

dimension. New codes were generated when necessary until a saturation point 

was reached in that every tweet fit into at least one coding. Overlap was permitted, 

and some tweets were coded with several codes if the tweet revealed multiple 

forms of engagement. The coding was then re-checked with a second pass. Once 

no new codes were found and each tweet in each of the categories was tagged 

with at least one of the codes, a final set of codes was determined. To explore 
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how these forms of engagement compared across regions of social location, the 

proportions of each code within each region were compared across regions. A 

final pass was then made to interpret the findings within each region of social 

location to build characterizations of the nature of contributions made in each 

region. These characterizations are revealed and interpreted in the results and 

discussion that follows.  

RESULTS 

After pursuing analysis of all selected tweets from each of the four social 

locations, the forms of engagement identified fell into eight categories: soliciting 

advice or resources, contributing resources or teaching advice, revealing 

practice, sharing accomplishments, endorsing, signalling an identity, advocating 

an opinion or stance, and building community. These forms occurred to varying 

degrees in each region and served to characterize the kinds of engagement 

prominent in each region. 

Those with relatively low numbers of followers and followings were referred to 

as newcomers. While this title may not be reflective of their longevity of 

participation, their social position and the forms of engagement they evidenced 

led us to consider them as newcomers in this setting. When examining the tweets 

made by this group, it because evident that they typically engaged in primarily 

practice-oriented ways, with a focus on pragmatism and utility towards classroom 

practice. Although their tweets were generally diverse in terms of topics, there 

was a strong redundancy among their tweets around being focused on either 

specific mathematical content or pedagogy, without making significant 

connections between them. Their tweets were relatively generic and could be 

considered as representations of the broader populous of mathematics teachers in 

the sense that they lacked reference to popular pedagogical approaches of MTBoS 

such as ‘noticewonder’ or ‘groupwork’.  

In terms of tone, the tweets made by newcomers were often celebratory in nature, 

with share-outs of pride and excitement for accomplishments that were most often 

practice-oriented. For instance, in Figure 8a below, the contributor reveals 

excitement for using technology towards improving student ability with 

evaluating functions. 
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(a)  (b) 

Figure 8: Examples of practice-oriented contributions 

Although many newcomers offered indication of contributing resources, the 

resources they contributed were often partial in nature without complete enough 

detail to be used in someone else’s classroom. As such, newcomers primarily 

seemed to use MTBoS to build their identities as teachers of mathematics in 

general rather than specifically as MTBoSers. Their concerns were often 

personally oriented rather than concerned with others and tended to involve 

mathematical content rather than pedagogy. 

On the other hand, slightly different forms of engagement were evident among 

users who followed more of the others in this dataset while still being not very 

highly followed. These users were referred to as observers due to their heightened 

capacity to view activity of others in MTBoS. Unlike newcomers, observers 

engaged by tweeting about practice in ways that revealed they were implementing 

pedagogies commonly found within MTBoS activity, such as ‘instructional 

routines’, ‘desmos activities’, and ‘noticewonder’, and not only mathematical 

ones such as ‘geometry’. In such ways, they were projecting their identities as 

those who belonged to MTBoS. The focus in these tweets was around sharing 

personal accomplishments aligned with popular trends in MTBoS and not just in 

the more generic domain of mathematics teaching. For example, in Figure 8b 

above, one contributor shows excitement for doing a hands-on activity that 

involves group learning and meaning making, as is common in MTBoS activity, 

and reveals an image of students using a hula hoop to explore the unit circle.  

Observers were also overall quite attention-grabbing in how they presented their 

contributions and came across as willing to be vulnerable to ask questions. 

Although many of their questions went unanswered, they revealed sensitive 

issues such as forgetting how to approach a mathematical topic or seeking 

opinions on an undesirable student response they encountered. In one case, an 

observer stated, “Can’t seem to help students to see variables as possibilities. 
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They just want numbers. Any ideas? #mtbos”. In such a query, they suggested 

their desire for helping students understand concepts more deeply while 

simultaneously indicating their inability to achieve this. This aligns with 

commonplace themes in MTBoS such as helping students make meaning and 

evidencing growth mindset. Overall, observers seemed to tweet in ways that 

positioned them as MTBoSers while maintaining a focus on personal aims and 

interests.  

In contrast to the personally focused newcomers and observers, those with more 

significant followings were more aptly focused on serving their community, such 

as by providing resources or sharing about initiatives. However, those who 

followed fewer MTBoS contributors seemed less aligned with the most central 

topics of interest than those who followed more. As such, highly followed 

contributors who did not follow as many MTBoS contributors were referred to as 

influencers, while those who also followed many MTBoS contributors were 

referred to as leaders. This distinction had to do with their capacity to view 

ideational trends in MTBoS based on who they followed. 

Interestingly, a similar pattern of misalignment continued for influencers as for 

newcomers, the two social locations that did not highly follow others in the set. 

While influencers were often contributing resources that were specific enough to 

be used directly in classrooms, their resources were often misaligned and 

sometimes even overly polished or marketed. However, unlike their newcomers, 

influencers used their high social visibility to promote new materials, expressions 

of gratitude, and questions of those who were less followed. In one case, an 

influencer even developed a ‘broken calculator’ tool and used their following to 

solicit feedback on it, with significant response. Leaders, on the other hand, were 

similarly attentive in terms of serving the community and pushing boundaries, 

but did so in ways that maintained alignment with prominent topics and values in 

MTBoS. For instance, they advocated for building relationships with students (as 

in Figure 9a), for learning about social justice issues (as in Figure 9b), and for 

welcoming newcomers to MTBoS (as in Figure 9c). 

  

 

(a) (b) (c) 

 
 

Figure 9: Examples of advocacy in contributions of leaders 
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And when sharing resources, their contributions provided enough specificity that 

they could be used directly by others while remaining within the ideational space 

commonly found in MTBoS. For example, they included hyperlinks to ‘desmos’ 

activities or to student self-reflection sheets that reveal student progress. 

Moreover, they linked pragmatic resources with pedagogical descriptions and 

rationale while also signaling a MTBoS identity. Their capacity for visibility and 

awareness of others was evident, which translated to being community-oriented, 

boundary-pushing, but also, aligned. 

DISCUSSION AND CONCLUSIONS 

Taken together, when looking across regions of social location, two key factors 

emerged as pertinent to identifying the modes of engagement evident within each 

social location in MTBoS: social responsibility and ideational alignment. Those 

who were more highly followed seemed to engage with more concern for others, 

and therefore, with social responsibility, than those who were less highly 

followed. Conversely, those who were following more of the other MTBoS 

contributors in the data set seemed to include prominent topics and ideas 

commonly shared in MTBoS (as determined in previous studies), and therefore, 

had more ideational alignment to prevailing discourse in MTBoS. These findings 

are summarized in Figure 10 below. 

 

Figure 10: Modes of engagement in social location – as two dimensions 

This implies that neighbour interactions among agents in MTBoS are not 

completely random, as suggested by complexity thinking, and the social structure 

is more nuanced than having a single core and periphery, as suggested by 

communities of practice. Rather, neighbour interactions are produced and 

influenced by a sort of social capital that privileges certain ideas and modes of 

engagement over others. There are also multiple social locations, determined by 
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visibility by others and awareness of others, that can be characterized by two 

related dimensions to modes of engagement: social responsibility and ideational 

alignment. When both are invoked, a sort of informed leadership emerges and 

seems to equip leaders to advocate for change, push boundaries, and build 

community. Combinations of these dimensions offer other social locations which 

may contribute to the robustness of MTBoS by offering sources of diversity and 

redundancy. Various trajectories for engaging in MTBoS over time may also be 

possible to determine with further study. Overall, the features presented in this 

paper illuminate the unique social structure of MTBoS, and in turn, challenge 

perspectives on social structures in professional communities as being centered 

around a single core. It also suggests further attention to the visibility of emergent 

ideas and opportunities for advocacy in professional learning environments. 
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The aim of this study is to analyse the reflection made by a preservice 

mathematics teacher on the role of mathematical modelling for improving an 

instructional process. The interest focuses on the use of didactic suitability 

criteria as a tool for reflection in his master’s thesis. The methodology consists 

of carrying out a content analysis of his written report. In terms of its extension, 

this is a case study. Based on the analysis of the teacher’s reflections, the main 

results are: on the one hand, the redesign of the implemented lesson plan adds 

more modelling projects to complement the teaching of functions; on the other 

hand, the inclusion of mathematical modelling is mainly related to the 

improvement of the epistemic and ecological suitability of the implemented 

instructional process. 

INTRODUCTION 

A key aspect in teachers training is teacher reflection on their own practice, in 

particular, the assessment of didactic suitability of instructional processes (Pino-

Fan, Font, & Breda, 2017). Once reflection becomes habitual for a teacher, it can 

become the main mechanism to improve his/her own practice (Schoenfeld & 

Kilpatrick, 2008; Schön, 1987). 

Various studies have addressed teacher reflection in the training of mathematics 

teachers, specifically, analysing the preservice teachers’ reflection in their 

Master’s Theses, using the didactic suitability criteria (DSC) proposed by the 

Onto-Semiotic Approach (OSA) (e.g., Breda, 2020; Breda, Pino-Fan, & Font, 

2016, 2017; among others). In contrast to these studies, which analyse the whole 

teacher reflection, our study focuses on preservice teacher’s reflection on the 

implementation of mathematical modelling for the improvement of an 

instructional process. 

Based on the latter, the following question arises: how do preservice teachers use 

the DSC in their master’s theses to reflect on the implementation of mathematical 

modelling? In order to answer it, we analyse the reflection made by a preservice 
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teacher (Justicia, 2020) on the role of mathematical modelling for the 

improvement of an instructional process, in which he used the DSC. Overall, the 

chosen master’s thesis is a reflection and reformulation of the design and 

implementation of a lesson plan (LP), which contemplates the work with 

mathematical modelling to teach functions in the first grade of baccalaureate 

(students aged 16 to 17 years-old). 

THEORETICAL FRAMEWORK 

This section presents the theoretical references considered in this study. 

Mathematical modelling 

The mathematical modelling process is understood, in general terms, as a 

transition between the real world and mathematics, to solve a problem-situation 

taken from reality. Although different cycles designed to explain this process 

coexist (Borromeo Ferri, 2006), and diverse perspectives on its implementation 

have emerged (Abassian, Safi, Bush, & Bostic, 2020), there is a clear consensus 

that its inclusion in curricula is necessary to improve the learning of mathematics 

(Kaiser, 2020). 

This study does not adopt any particular modelling cycle or perspective, but 

rather, we consider the following consensual attributes that characterise the work 

with this process through projects. In this approach, a real-world problem 

(question or task) is posed to students, which must be solved in groups over a 

longer period of time (Blomhøj & Kjeldsen, 2006). This problem must be open 

(not limited to a specific answer or procedures), complex (useful information 

must be distinguished from the rest of the wording of the task), realistic (adding 

elements taken from reality), and authentic (a situation consistent with a fact from 

reality) (Borromeo Ferri, 2018). This kind of projects presuppose greater degrees 

of autonomy and responsibility on the part of students, who assume the discussion 

and resolution of the problem through a constant reflection on the situation 

(Blomhøj & Kjeldsen, 2006). 

Didactic suitability criteria 

In the OSA, the didactic suitability of a teaching-learning process is understood 

as the degree to which it (or a part of it) meets certain characteristics that allow it 

to be qualified as suitable (optimal or adequate) in order to achieve an adaptation 

between the personal meanings achieved by the students (learning) and the 

institutional meanings intended or implemented (teaching), taking into account 

the circumstances and available resources (environment). 
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This multidimensional construct consists of six partial suitability criteria: 

epistemic criterion, to assess whether the mathematics that is taught is ‘good 

mathematics’; cognitive criterion, to assess, before starting the instructional 

process, whether what is intended to teach is at a reasonable distance from what 

the students know; interactional criterion, to assess whether the interaction solves 

doubts and difficulties of the students; mediational criterion, to assess the 

adequacy of resources and time used in the instructional process; affective (or 

emotional) criterion, to assess the involvement (interest, motivation) of the 

students in the instructional process; ecological criterion, to assess the adaptation 

of the instructional process to the educational project of the school, the curricular 

guidelines, the conditions of the social and professional environment, etc. 

(Morales-López & Font, 2019). Each of these criteria has its respective 

components and indicators (see Breda et al., 2017). 

In the OSA, mathematical modelling is considered as a hyper or mega process 

(Godino, Batanero, & Font, 2007), since it involves other more elementary 

processes (representation, argumentation, idealisation, etc.). Furthermore, within 

this framework, enhancing mathematical modelling is an aspect that improves the 

suitability of the instructional process (Ledezma, Font, & Sala, 2021; Sala, Font, 

& Ledezma, in press). 

METHODOLOGY 

In this work, we followed a qualitative research methodology (Cohen, Manion, 

& Morrison, 2018), which consisted of conducting a content analysis of the 

reflection of a preservice teacher in his master’s thesis; and, from the point of 

view of its extension, it is a case study (Stake, 2005). 

Research context 

This research was developed in the context of the Master’s Program in Teacher 

Training for Secondary Education and Baccalaureate (mathematics speciality), 

taught by public universities of Catalonia (Spain), during the academic year 2019-

2020. To obtain the Master’s Degree, preservice teachers must design and 

implement a teaching-learning sequence, which is determined by the educational 

institution, the level of students, and the time of the academic year in which 

preservice teachers do their teaching practice. Thus, a preservice teacher has 

many restrictions to work exclusively on mathematical modelling in his/her LP, 

although this is not the case in the redesign that he/she can propose in his/her 

master’s thesis. 
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Description of the master’s thesis 

After their teaching practice in the training centre, the DSC proposed by the OSA 

are introduced to preservice teachers, along with a guideline of components and 

indicators for the application of such criteria. Then, in their master’s theses, the 

teachers are suggested to use these tools to assess the teaching-learning sequence 

they implemented and propose changes to improve the suitability of the 

instructional process. 

The master’s thesis of Justicia (2020) is a proposal to teach functions in the first 

grade of baccalaureate. It consisted of 15 sessions: 4 of them were held in person 

and the remaining 11 online, because of the lockdown due to the COVID-19 

pandemic. In his master’s thesis, the preservice teacher includes a modelling 

project, which consists of the profitability study of a small company. The project 

develops during two sessions (the fifth and the sixth) of his LP. This project is 

detailed in the next section. 

Content analysis 

The qualitative analysis of the data was developed in four steps, following a 

methodology similar to that used by Sánchez, Font, and Breda (2021): first, 122 

master’s theses (from the academic year 2019-2020) were classified according to 

the educational level and the mathematical content of the LP; second, a search for 

keywords related to mathematical modelling was carried out (context*, model*, 

problem*, real*, etc.); third, the master’s theses were categorised according to the 

importance they gave to mathematical modelling (used in the implementation, in 

the redesign proposal, or both); fourth, the assessments of DSC were analysed to 

identify on which ones they focused their reflections on mathematical modelling. 

The master’s thesis of Justicia (2020) was classified in the group of master’s 

theses where mathematical modelling is used both in the implemented LP and in 

its redesign (step 3), that is why we analysed this one. In his master’s thesis, the 

preservice teacher writes evaluative comments related to the different 

components and indicators of the DSC. In this research, comments about working 

with mathematical modelling are analysed. The starting point of the content 

analysis are a priori categories, namely the criteria, components and indicators of 

didactic suitability to identify which criteria are related to mathematical 

modelling in the preservice teacher’s reflections (step 4). 
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ANALYSIS OF THE MASTER’S THESIS 

This section presents the analysis of the assessments made by the preservice 

teacher on the implementation of his LP. To this end, we describe this assessment 

and, for each DSC that is assessed, we point out the comments that justify his 

thought and that –directly or indirectly– allude to mathematical modelling. We 

also consider the components of each criterion to which these comments relate. 

The analyses focus on the assessment of the project Profitability study of a small 

company (see Figure 1), where the preservice teacher makes his reflections 

explicit. The aim of this activity is “to know, through multidisciplinary tools, 

whether a small business is profitable or not, setting economic reference values” 

(Justicia, 2020, p. 39, authors’ translation). 

 

 

Figure 1: Extract from the Profitability study statement 

(translated from Justicia, 2020, pp. 39-40) 

Epistemic suitability 

In the assessment of the component ‘richness of processes’, the preservice teacher 

highlights that his Profitability study allows the students to develop the following 

processes: ‘representation’, ‘communication’, and ‘argumentation’, but above all, 

‘problem solving’ and ‘mathematical modelling’. With this last process, he 

intends to: 

interpret the properties of functions, checking the results with technological tools 

[software GeoGebra] in contextualised problems, and to extract and identify 

information derived from the study and analysis of functions in real contexts, such 

as the initial study to start a small business. (Justicia, 2020, p. 6, authors’ translation) 

In the assessment of the component ‘representativeness’, he alludes to the fact 

that this project emphasises the partial meanings related to the concept of 

function (domain, codomain, cartesian representation, limit, continuity, etc.). In 

addition, he considers functions as a unifying concept and a useful tool for 

mathematical modelling. 
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Interactional, affective, cognitive, and mediational suitability 

These four DSC are presented together because the preservice teacher does not 

make very detailed assessments of these criteria. Regarding the component 

‘student’s interaction’ of the interactional suitability, the preservice teacher 

highlights the heterogeneous arrangement of student groups, the socialisation and 

collaboration between the students, and the minimum intervention by himself –

as a teacher– during the tasks related to the Profitability study project. In the 

assessment of the component ‘interests and needs’ of the affective suitability, he 

mentions that this project was used to awaken curiosity and interest in his 

students, and it is related to their own environment. Regarding the cognitive and 

mediational suitability, the preservice teacher does not mention mathematical 

modelling to these criteria in his assessments. 

Ecological suitability 

In the assessment of the component ‘adaptation to curriculum’, the preservice 

teacher considers that the content addressed, the objectives set, and the tasks 

proposed (Profitability study), are in line with what is stipulated by the curriculum 

for the first grade of baccalaureate (Departament d’Ensenyament, 2008). In the 

assessment of the component ‘intra and interdisciplinary connections’, the 

preservice teacher points out that the Profitability study establishes connections 

with economy, addressing issues such as the identification and calculation of 

costs and incomes of a business, the minimum interprofessional salary, economic 

profitability, etc. In the assessment of the component ‘social and labour utility’, 

the role of the Profitability study stands out, since both the context of the task and 

the transversal use of functions in working life, represent a strong point of this 

proposal. 

Global assessment of didactic suitability 

Figure 2 presents the global assessment made by the preservice teacher of the 

didactic suitability of the implemented instructional process. This consists of a 

hexagonal radial graph, in which the outer regular hexagon represents an ideal 

instructional process, and the inner irregular hexagon represents the suitability of 

the implemented instructional process. 
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Figure 2: Hexagon for the assessment of didactic suitability 

(adapted from Justicia, 2020, pp. 12-13) 

Lesson plan improvement proposal 

Based on the assessments presented in Figure 2, and in order to redesign his 

proposal, the preservice teacher focuses on improving the following components: 

‘representativeness’ (epistemic suitability), ‘high cognitive demand’ (cognitive 

suitability), ‘teacher-student interaction’ (interactional suitability), and ‘didactic 

innovation’ (ecological suitability). To this end, he considers that posing more 

mathematical modelling projects and contextualised problems would contribute 

to the improvement of such components, based on Font’s (2011) proposal for the 

work with functions. Therefore, the preservice teacher adds the following new 

projects: The Changes of phase of water project, whose objective is to discover 

the equations of a line using data from the experiment of boiling water; the 

Maximisation of the volume of a prism project, related to cubic functions, their 

derivatives, and the maxima and minima of these functions; and the Final speed 

of a car project, which considers the problem of maximum speed posed by a car 

company. 

DISCUSSION AND CONCLUSIONS 

From the analysis of the explanation of the preservice teacher Justicia (2020), the 

results show that his appraisals about the incorporation of mathematical 

modelling in his LP mainly focus on the epistemic and ecological suitability 

criteria; and to a lesser extent on the interactional and affective suitability criteria. 

The preservice teacher mentions mathematical modelling when he assesses the 

component ‘richness of processes’ of the epistemic suitability. However, he does 

not specify whether he adopted or not any modelling cycle, although the master’s 

training includes a mathematical modelling sub-module, which introduces, in 
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particular, the proposal of Blum and Leiß (2007). Moreover, the preservice 

teacher did not use this cycle –or any other– to describe or analyse his 

Profitability study project, which could indicate that he did not have enough 

conceptual clarity about theories on mathematical modelling. It should be noted 

that, although the statement posed in Figure 1 meets some of the characteristics 

of a mathematical modelling problem (it is open, complex, realistic and 

authentic), the description of its implementation shows that it was not carried out 

according to the methodology of a project. This is due to the structure of the 

educational system, where the curricular times are limited and mathematical 

modelling is subject to its treatment, mainly, as a competence and not as a content. 

Resuming the research question of this study, we can conclude that the DSC not 

only allowed the preservice teacher to reflect on his teaching practice, but also 

revealed both his conceptual and procedural notions of mathematical modelling, 

as well as the importance he attributes to it in the implemented instructional 

process. The latter conclusion is evidenced by the addition of more activities to 

develop mathematical modelling in his redesign proposal. 
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It is widely acknowledged that engaging young children with mathematics is both 

possible and beneficial. Being that young children spend a great deal of time with 

adults outside of school, this research investigates the beliefs of adults regarding 

engaging young children with number concepts. Questionnaires were handed out 

to 91 participants, none of whom were preschool teachers. In general, 

participants had positive beliefs regarding supporting children’s engagement 

with various numerical activities. Some differences between participants with 

different backgrounds (e.g., connections with young children, professions) were 

found. 

INTRODUCTION 

Researchers agree that promoting numerical skills, such as counting, comparing 

sets, number composition and decomposition, and recognition of number 

symbols, is important during early childhood (Nguyen et al., 2016). Several 

studies have investigated preschool teachers’ knowledge and beliefs related to 

teaching early number competencies (e.g., Vlassis & Poncelet, 2016). However, 

young children often spend much of their day in the care of other responsible 

adults who are not necessarily trained preschool teachers. Studies suggest that for 

children to take advantage of the academic opportunities provided at preschool, 

some level of support from the home environment, such as toys that stimulate 

learning number and shapes, is necessary (Anders et al., 2012). Furthermore, 

adults’ beliefs regarding the importance of doing mathematical activities at home 

was found to be significantly related to the frequency with which children 

reportedly did mathematics at home (Sonnenschein et al., 2012). Thus, it is 

relevant to investigate adults’ knowledge and beliefs related to numerical learning 

during the preschool years.  

Based on our previous work with preschool teachers (e.g., Tsamir, Tirosh, 

Levenson, Barkai, & Tabach, 2015), this paper introduces a framework for 
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investigating adults’ knowledge and beliefs related to playfully engaging with 

mathematics in the early years. Researchers use the term “playful” in recognition 

of the dilemma that early childhood educators face, both teachers and researchers, 

in how to balance instruction and play. Playfully engaging with mathematics 

infers that the child is active, the activities are flexible, and an adult is present to 

guide the child toward a specific knowledge (Hirsh-Pasek, Golinkoff, Berk, & 

Singer, 2009). After introducing the framework, the paper focuses on beliefs, and 

describes how this framework was used to investigate adults’ beliefs concerning 

children’s playful engagement with numerical concepts. Finally, the paper 

presents results regarding those beliefs.  

THEORETICAL FRAMEWORK 

For the past several years, researchers have used the Cognitive Affective 

Mathematics Teacher Education (CAMTE) framework, when investigating and 

promoting teachers’ knowledge and self-efficacy for teaching number, geometry, 

and pattern concepts (e.g., Tsamir, Tirosh, Levenson, Barkai, & Tabach, 2015(. 

This framework differentiated between two components of subject-matter 

knowledge (SMK): being able to produce solutions, strategies and explanations 

and being able to evaluate given solutions, strategies and explanations. In line 

with Ball, Thames, and Phelps (2008) the framework differentiated between two 

aspects of pedagogical content knowledge (PCK): knowledge of content and 

students (KCS) and knowledge of content and teaching (KCT). In adapting the 

framework for adults, researchers referred to the same aspects of SMK as our 

previous framework. Researchers consider the mathematics knowledge 

researchers wish to promote among young children, and the mathematics 

knowledge adults need in order to promote children’s knowledge (see Table 1, 

Cells 1 and 2). Thus an example of Cell 1 would be to request participants to 

count a set of objects, and then count them again in a different way (e.g., first by 

counting 1, 2, 3,… and then by skip counting 2, 4, 6,…). 



Levenson, Barkai, Tirosh & Tsamir 

PME 44 – 2021   3 - 207 

 Mathematics for adults and 

children 

Mathematics Engagement 

 Solving Evaluating Children Playful learning 

K
n

o
w

le
d
g

e 

Cell 1: solving 

tasks. e.g., count 

the number of 

elements in a set 

using a variety 

of strategies 

Cell 2: 

evaluating 

tasks. e.g., 

evaluate the 

efficiency of a 

counting 

strategy 

Cell 3: 

knowledge of 

children’s 

conceptions. 

e.g., which 

number symbols 

do children 

confuse. 

Cell 4: knowledge of 

content and playful 

learning. e.g., which 

activities can foster 

children’s 

acceptance of the 

one-to-one principle. 

B
el

ie
fs

 

Cell 5: 

mathematics 

beliefs related to 

solving tasks. 

e.g., is it 

important to 

know several 

ways to count 

the number of 

items in a set. 

Cell 6: 

mathematics 

beliefs related 

to evaluating 

tasks. e.g., is it 

important to 

know which 

solution 

methods are 

efficient. 

Cell 7: beliefs 

regarding 

children and 

mathematics. 

e.g., believing 

that young 

children enjoy 

learning number 

concepts.  

Cell 8: beliefs 

regarding ways of 

engaging children 

with playful 

mathematics. e.g., 

believing that adult 

guidance can foster 

the learning of early 

number concepts. 

  

Table 1: The Cognitive Affective Mathematics Adult Education (CAMAE) 

Framework 

Whereas for teachers, researchers referred to PCK, for adults, researchers refer to 

knowledge needed for engaging children with playful mathematics (henceforth, 

Mathematics Engagement Knowledge) (Cells 3 and 4). Thus, instead of KCS, 

researchers refer to knowledge of content and children, such as knowing that 

children aged three may not yet have acquired the cardinality principle of 

counting; instead of KCT, researchers refer to knowledge of content and playful 

learning, that is, knowledge of activities that can promote numerical thinking. 

Researchers call the adapted framework for adults who are not preschool 

teachers, the Cognitive Affective Mathematics Adult Education (CAMAE) 

framework.  

Each knowledge cell has a corresponding belief cell. Whereas for teachers, 

researchers were interested in their self-efficacy for teaching mathematics, in our 

research with adults, researchers were interested in their beliefs regarding what 

mathematics children (and the adults who interact with them) should know, and 
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how children can engage with mathematics. That is, researchers consider beliefs 

related to mathematics (Table 1, Cells 5 and 6) as well as engagement beliefs, 

i.e., beliefs related to engaging children with mathematics (Table 1, Cells 7 and 

8).  

BELIEFS REGARDING PRESCHOOL MATHEMATICS 

Several studies investigated beliefs regarding the importance of learning 

mathematics in preschool. Most studies found that both preschool teachers and 

parents agree that mathematics should be and can be promoted in the years before 

Grade 1 (e.g., Missall, Hojnoski, Caskie, & Repasky, 2015). That being said, 

when comparing the importance of learning mathematics to other subjects, 

Vlassis and Poncelet (2016) found that first-year prospective preschool teachers 

rated engaging with mathematics in preschool as less important than engaging 

with language, arts, and psychomotricity. Similarly, some home day care 

providers believe it is less important for young children to acquire mathematics 

skills before entering kindergarten, than other social and academic skills 

(Blevins‐Knabe, Austin, Musun, Eddy, & Jones, 2000). Furthermore, parents and 

caregivers reported that mathematics activities at home occurred less frequently 

than reading or other play. More specifically, it was found that parents help their 

children learn language skills more than mathematics in both everyday contexts, 

such as carrying out household chores, as well as during more structured contexts, 

such as direct teaching (Cannon & Ginsburg, 2008). Some participants claimed 

that teaching mathematics in preschool can hinder social and emotional 

development. These beliefs are in contradiction with educators’ 

recommendations for supporting early mathematics (Nguyen et al., 2016). 

Focusing on mathematical activities at home, Missall, Hojnoski, Caskie, and 

Repasky (2015) listed 19 activities related to number and operations and asked 

parents to rate how often they engaged their children with those activities. Among 

the most frequent activities were counting aloud, counting out several items from 

a larger group, and reading numbers. Among the least frequent activities were 

skip counting, counting backwards, and comparing the number of objects in two 

sets. Similar results were found by Skwarchuk (2009), who also found that many 

parents incorporated numerical concepts during natural settings at home.  

Parents’ backgrounds might also be related to their beliefs and home 

mathematical activities. For example, Chinese parents thought it was less 

important to do mathematics at home, than American parents (Sonnenschein et 

al., 2012). A different study found that middle socio-economic status (SES) 
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parents were more likely than lower SES parents to endorse embedding 

mathematics in the children’s home routine (DeFlorio & Beliakoff, 2015). 

Parents’ educational backgrounds were found to be positively correlated with 

their attitudes towards mathematics, which in turn affected their home numeracy 

practice (LeFevre, Polyzoi, Skwarchuk, Fast, & Sowinski, 2010). Some studies 

found a positive relationship between parents’ beliefs of their own mathematical 

ability and the types of mathematical activities they provide their preschoolers 

(Blevins‐Knabe et al., 2000).  

The aim of the present research is to investigate adults’ beliefs regarding 

engaging young children in mathematical activities, in accordance with the 

CAMAE framework described above. Previous studies investigated parents’ and 

home-care providers’ beliefs. Taking into consideration that grandparents, aunts, 

uncles, and other adults may also engage children with mathematics activities, 

this research includes adults who are not necessarily parents, as well as adults 

who have no specific current relationship with young children. Specifically, 

researchers ask: (i) Is there a difference in beliefs regarding engaging young 

children in mathematical activities between adults who have a relationship with 

children between the ages of 3 and 6, and those who do not? Considering that 

adult’s active engagement in mathematics during their daily life might also be 

related to their beliefs, the second research question is: (ii) Is there a difference 

in beliefs regarding engaging young children in mathematical activities between 

adults that work in a mathematics related profession and those who do not? 

METHODOLOGY 

Participants were 91 adults, between the ages of 20 and 60. Of the 91 adults who 

participated, 30 reported working in a mathematics related profession, such as 

mathematics teachers and engineers. The rest were teachers (not mathematics 

teachers and not preschool teachers), psychologists, occupational therapists, and 

municipal workers. A total of 58 participants stated that they have some 

relationship with children between the ages of three and six years. Researchers 

defined relationship as parent, uncle, aunt, grandparent, sibling, or other 

connection deemed close to the child. Questionnaires were handed out 

individually to the adults in the presence of the researcher.  

A nine-Likert-scale questions were designed for this research. The range of the 

scale was from 1 (I do not agree) to 6 (I fully agree). Table 2 presents the 

questions and their relationship to the CAMAE framework. The first two 

questions relate to general beliefs regarding children’s ability to learn 
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mathematics at an early age and their enjoyment in doing mathematics. While 

previous studies investigated adults’ beliefs regarding the importance of 

promoting mathematics at an early age, they did not address beliefs regarding 

children’s enjoyment in doing so. Questions 3 and 4 are similar but have a subtle 

difference. In Question 3, researchers ask participants if it is worthwhile to 

engage children with number activities, but do not specify why it would be 

worthwhile. In other words, participants may believe that it is worthwhile because 

it can promote a positive attitude towards numbers. In Question 4, the statement 

is more direct, specifically asking if playing with such games can enhance 

children’s number knowledge. Question 5 addresses participants’ beliefs 

regarding general activities, and not necessarily those that deal with number 

aspects. One may think of eating dinner as a general activity that does not 

specifically deal with number concepts and ask themselves if such an activity can 

invite engagement with numbers. Question 6 is again a rather general question 

dealing with the importance of solving mathematical tasks. On the other hand, 

Questions 7 and Question 8 deal with the importance of evaluating solutions. 

Preschool mathematics educators have suggested that evaluating solutions and 

comparing strategies is beneficial for preschool children in learning number sense 

and examining relationships between numbers (e.g., Linder, Powers-Costello, & 

Stegelin, 2011). Finally, Question 9 focuses on the benefit of an adult’s 

interaction. As can be seen from the questions, this part of the research mainly 

focused on participants’ beliefs regarding engaging children with mathematics. 

Researchers also avoided terms such as instruction, and instead related to 

activities and games, suggesting a playful approach.  
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Question Framework 

1. Children enjoy activities/games that deal with number aspects. Cell 7  

2. Children’s number knowledge can be promoted. Cell 7  

3. It is worthwhile to engage children with activities/games that deal 

with number aspects 

Cell 8 

4. Activities/games that deal with number aspects can increase 

children’s knowledge of number concepts. 

Cell 8 

5. Almost every activity/game can invite children to engage with 

aspects of number. 

Cell 8 

6. It is important for children to be able to solve number tasks in 

various ways. 

Cell 5 

7. It is important for children to be able to identify if a suggested 

method for solving a number activity/task is correct. 

Cell 6 

8. It is important for children to be able to choose appropriate ways for 

solving number activities/tasks. 

Cell 6 

9. Interaction between a child and an adult while engaging in an 

activity/game can increase the child’s knowledge of number. 

Cell 8 

  

Table 2: Relationship between beliefs questions and the CAMAE framework 

RESULTS 

In general, participants had positive beliefs regarding supporting children’s 

engagement with various numerical activities (see Table 3). Participants were less 

sure if every activity/game can invite children to engage with aspects of number 

(Item 5) and less positive about the need for children to be able to identify if a 

suggested method for solving a number activity/task is correct (Item 7). 

Researchers also note that Item 5 was the only item where responses ranged from 

1 to 6. It also had the highest standard deviation, inferring that participants did 

not agree on this item. 
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 Relationship with children Mathematics related profession 

Question Yes (N=58) 

M (SD) 

No (N=33) 

M (SD) 

Yes (N=30) 

M (SD) 

No (N=61) 

M (SD) 

1 5.21 (.93) 5.27 (.98) 5.27 (.91) 5.20 (.98) 

2 5.79 (.61) 5.73 (.57) 5.50 (.90) 5.90 (.30) 

3 5.55 (.84) 5.70 (.59) 5.63 (.72) 5.59 (.78) 

4 5.78 (.56) 5.76 (.56) 5.57 (.73) 5.87 (.43) 

5 4.48 (1.27) 3.70 (1.48) 3.90 (1.37) 4.36 (1.38) 

6 5.24 (1.01) 4.91 (1.01) 4.93 (1.02) 5.23 (1.01) 

7 4.83 (1.14) 5.00 (1.00) 4.93 (1.02) 4.87 (1.13) 

8 5.28 (.89) 5.15 (.80) 5.07 (.91) 5.25 (.93) 

9 5.74 (.61) 5.67 (.78) 5.47 (.97) 5.77 (.64) 

  

Table 3: General results of the beliefs questionnaire 

An analysis of variance showed that the effect of working in a mathematics 

related profession was significant to two items. Adults who were working in 

mathematics related professions believed less in the promotion of early 

mathematics (Item 2) than did adults in other professions, F(1,93) = 5.07, p 

= .008, η2
p =.102. Mathematics related professionals believed less that 

activities/games dealing with number aspects can increase children’s knowledge 

of number concepts (Item 4) than other adults (M=5.87, SD=.43), F(1,93) = 

3.194, p = .046, η2
p =.067. Regarding adults’ relationship with children, an 

analysis of variance showed that adults with a relationship to young children had 

a stronger belief that almost every activity/game can invite children to engage 

with aspects of number (Item 5) than adults who did not acknowledge a 

relationship with children, F(1,93)=7.249, p=.008, η2
p =.075.  

DISCUSSION 

In this paper researchers introduced a framework for investigating adults’ beliefs 

regarding young children’s engagement with mathematics. Our framework grew 

out of our work with preschool teachers. In answer to our first research question, 

it was interesting to find that the beliefs of adults who have a relationship with 

children hardly differ from those that do not have a relationship with children. 

The one exception was that adults with a connection to children had a stronger 

belief that almost every activity/game can invite children to engage with aspects 
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of number than those with no connection to children. This may be due to having 

more experiences with children in their natural environment and the realization 

that even mealtime may give rise to engagements with number concepts. 

Educators of adults, including preschool teachers, may consider this result, and 

demonstrate how number concepts can arise in almost every activity.  

In answer to our second research question, researchers found that adults working 

in mathematics related professions believed less in the promotion of early 

mathematics and believed less that activities/games dealing with number aspects 

can increase children’s knowledge of number concepts. Perhaps those adults who 

have studied mathematics at the university level believe that mathematics is a 

subject best learned formally in school.  Perhaps this result is related to those 

adults’ beliefs of mathematics as a domain. Yet, previous studies that found 

parents’ who have a positive attitude towards mathematics frequently engage 

their young children with number activities (LeFevre et al., 2010). This is a 

question for further studies.    

Previous studies recognized that parents ask their children questions such as, how 

many? Or where is there more? However, it is also important for children to know 

different ways for solving a problem and to evaluate given solutions (Linder, 

Powers-Costello, & Stegelin, 2011). In fact, studies have shown that some young 

children can evaluate other’s solutions, and can point out mistakes, for example, 

in one-to-one correspondence (Tirosh, Tsamir, Levenson, & Barkai, in press). A 

notable result of this research is that adults do believe that these issues are 

somewhat important, but believe it is more important for children to choose 

appropriate strategies than to be able to identify if a suggested solution is correct. 

It could be that adults believe that evaluating strategies is a task for a teacher, and 

not for children. Thus, it is important to introduce adults to these types of 

activities and demonstrate how they can be implemented in a playful way with 

children. The present research and studies such as these can help plan appropriate 

interventions for adults, that may motivate them to engage young children with 

number activities. 
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Taking into consideration that the home environment can impact on young 

children’s mathematical knowledge, this study investigates adults’ beliefs 

regarding the importance of adult interactions with children and mathematics. It 

also investigates beliefs regarding the importance of receiving guidance for these 

interactions. Results indicated that in general, adults, regardless of the types of 

relationships they had with children, believed in the importance of their 

interactions with children and mathematics, but felt it was less important to 

receive guidance. Participants’ reasons for both positive and negative beliefs are 

explored.  

INTRODUCTION 

The importance of fostering mathematical development during the early years is 

supported by studies that found early mathematics competencies to be a predictor 

of later school success (e.g., Duncan et al., 2007). Acknowledging the importance 

of these studies, mathematics educators (e.g., Ginsburg, Lee, & Boyd, 2008) have 

become increasingly interested in how to foster mathematics knowledge during 

the preschool years. Ginsburg (2016) stated that while researchers may now agree 

that young children engage with powerful ideas of number and shape, the same 

cannot be said of many teachers and parents.   

Regarding teachers, several countries have instated mandatory mathematics 

curricula for preschools. However, many young children spend a considerable 

amount of time at home. Furthermore, studies suggest that for children to take 

advantage of the academic opportunities provided at preschool, some level of 

support from the home environment, such as toys that stimulate learning number 

and shapes, is necessary (Anders et al., 2012). Thus, if we aim to promote young 

children’s mathematical knowledge, the home environment should also be 

considered. This study is part of a larger project that focuses on adults’ knowledge 

and beliefs regarding the teaching of number and geometry concepts during the 
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early years, and ways of supporting adults’ interactions with children and 

mathematics. In this paper we focus specifically on adults’ beliefs regarding their 

intervention in children’s learning number and geometry concepts and receiving 

guidance for this purpose.  

THEORETICAL BACKGROUND 

Several studies investigated teachers’ and parents’ beliefs regarding the 

importance of learning mathematics in preschool. Most studies found that both 

preschool teachers and parents agree that mathematics should be and can be 

promoted in the years before first grade (e.g., Missall, Hojnoski, Caskie, & 

Repasky, 2015). Yet, some home day care providers believe it is less important 

for young children to acquire mathematics skills before entering kindergarten, 

than other social and academic skills (Blevins‐Knabe, Austin, Musun, Eddy, & 

Jones, 2000). In one study, a few participants claimed that teaching mathematics 

in preschool can hinder social and emotional development (Cannon & Ginsburg, 

2008). Several studies found that parents believe it is more important to enhance 

reading skills than mathematical skills (Sonnenschein, Stites, & Dowling, 2020). 

Beliefs can impact on the amount of time and the types of activities adults engage 

with children at home. Several studies reported that parents help their children 

learn language skills more than mathematics in both everyday contexts, such as 

carrying out household chores, as well as during more structured contexts, such 

as direct teaching (e.g., Cannon & Ginsburg, 2008). In a more recent study 

(Sonnenschein, Stites, & Dowling, 2020), most parents reported engaging 

children with reading activities every day, while the frequency of engaging with 

mathematical activities varied and occurred sometimes as few as two days a 

week. Looking at specific types of mathematical activities, in one study parents 

kept a diary of mathematical activities carried out at home and were also observed 

during parent child laboratory interactions (Skwarchuk, 2009). Findings showed 

more activities related to number and operations, than geometry and shapes. 

However, in a different study (Missall, Hojnoski, Caskie, & Repasky, 2015), 

parents reported counting aloud and naming simple shapes as among the most 

frequent activities carried out at home.  

Adult’s knowledge may also impact on parents’ engagement with their children 

and mathematics. In one study (Cannon & Ginsburg, 2008), parents stated that 

they lacked knowledge about early mathematics and were unaware of the goals 

for learning mathematics at a young age. Some parents may be unaware of 

activities that can be carried out home. Sonnenschein, Stites, and Dowling (2020) 
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found that 64% of parents in their study wanted to receive information from their 

children’s preschool teachers regarding how to support their children’s 

mathematics. Most parents wished to receive ideas for carrying out fun 

mathematics activities with their children at home, about a third were interested 

in progress reports from the children’s teachers, and a quarter were interested in 

worksheets.  

Another factor that might influence adults’ involvement with children and 

mathematics is anxiety. Parents with higher levels of math anxiety engaged less 

frequently in mathematical activities at home than parents with lower levels of 

math anxiety (Elliott, Bachman, & Henry, 2020). Another factor might be 

parental goals. Elliot, Bachman, and Henry (2020) identified two goals that 

parents held for their children’s learning mathematics: they wanted their children 

to succeed in mathematics at school and they wanted their children to like 

mathematics. These goals led to different ways of interacting with children.  

While previous studies have focused on parents’ beliefs (e.g., Skwarchuk, 2009), 

children often spend time with a grandparent, aunt, or neighbour (e.g., Pilarz, 

2018). Our research questions are: (1) Do adults believe that their involvement is 

important to children’s number and geometry development, and what are the 

underlying reasons for these beliefs? (2) Do adults believe they need guidance in 

order to foster this development, and what are the reasons for these beliefs? (3) Is 

there a difference between parents’ beliefs and other adults’ beliefs? (4) Is there 

a difference between beliefs regarding number concepts and beliefs regarding 

geometry concepts? 

METHODOLOGY 

Fifty-one adults (labelled A1-A51), between the ages of 20 and 60, participated 

in the study. None of the participants were early childhood educators. Of the 51 

adults, 22 were parents of children between the ages of three and six, and 18 had 

some other relationship with children of this age, either as a grandparent, aunt, or 

uncle. The rest, 11, claimed to have no connection with young children. As this 

was part of a larger study, participants were handed two separate questionnaires, 

at least a week apart. The first questionnaire related to beliefs and knowledge 

regarding promoting children’s numerical knowledge and the second, beliefs and 

knowledge for promoting children’s geometrical knowledge. In this study we 

analyse responses to two questions from each questionnaire: (1) In your opinion, 

is it important for an adult to be involved in developing preschool (ages 3-6) 

children’s quantitative reasoning? Explain. (2) In your opinion, is it important for 
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an adult to receive guidance so that he/she can help foster quantitative reasoning 

among young children (ages 3-6)? Explain. (3) In your opinion, is it important 

for an adult to be involved in developing preschool (ages 3-6) children’s 

geometric reasoning? Explain. (4) In your opinion, is it important for an adult to 

receive guidance so that he/she can help foster geometric reasoning among young 

children (ages 3-6)? Explain.  

A first step in data analysis was to assess the frequency of positive and negative 

responses to the questions. Using grounded theory, a qualitative analysis was then 

conducted to assess reasons participants offered for their responses. Two 

researchers categorized all reasons. A third researcher validated categorization. 

Initial agreement was 91% for the intervention categories, and 88% for the 

guidance categories. After discussion between the three researchers, 100% 

agreement was reached. 

FINDINGS 

Quantitative results 

Table 1 presents the number of adults that reported positive beliefs regarding 

adult intervention for promoting young children’s number and geometry 

knowledge, according to their relationships with children. It also presents beliefs 

regarding the importance of receiving guidance. As can be seen, nearly all 

participants believed that adult intervention is important for enhancing children’s 

mathematics knowledge. Furthermore, using a McNemar test to compare 

marginal distributions of the two variables (number and geometry intervention), 

no significant differences were found between adults’ beliefs in the importance 

of their intervention in number concepts and geometry concepts. In addition, no 

differences were found between parents, adults who have some other connection 

with young children, and those who claimed to have no connection with young 

children.  

 Number concepts Geometry concept 

 Intervention Guidance Intervention Guidance 

Parents (N=22) 21(95) 12(55) 20(91) 14(64) 

Other relation 

(N=18) 

18(100) 15(83) 15(83) 12(67) 

No 

connection(N=11) 

10(91) 8(73) 10(91) 8(73) 
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Total (N=51) 49(96) 35(69) 45(88) 33(65) 

Table 1: Agreement (%) that adult intervention and receiving guidance is 

important  

When it came to receiving guidance, beliefs were not as positive. Using a 

McNemar test to compare marginal distributions of the two variables 

(intervention and guidance), for each mathematics domain, significantly less 

participants agreed that guidance was important both in supporting number 

concepts, as well as geometry concepts (p<.01). Although no significant 

differences were found between beliefs in guidance in the number and geometry 

domains, nine adults agreed to the importance of receiving guidance in the 

number domain, but not in geometry. For example, A38 stated for number 

concepts, “Children’s minds and their ways of thinking are different and so you 

must explain to them in ways they will understand.” However, for guidance in 

geometry A38 stated, “No. Children are too young to learn complex ideas in 

geometry.” Four adults did not believe that guidance was important in the number 

domain, but agreed to its importance in geometry. For example, referring to 

guidance in the number domain, A28 stated, “It’s not necessary. In general, we 

are talking about simple numerical concepts, and in my opinion, any adult with a 

little imagination can explain it to children.” However, in geometry, A28 wrote, 

“Yes, in order to know how to explain concepts correctly and lay the foundation 

for what comes next.” 

Intervention: Reasons for beliefs 

Although nearly all adults agreed that adult intervention is important, the reasons 

for these beliefs differed. From the data arose seven categories of reasons, quite 

similar for both number and geometry domains. Table 2 presents those reasons 

along with their frequencies of occurrence and examples of participants’ written 

responses. From Table 2, noting the statements given by A21, we can also see 

that each adult did not necessary give the same reason for intervening with 

numbers as with geometry.  

Among the few adults who were against intervening (two for number concepts 

and six for geometry), two reasoned that children will learn on their own, “by 

watching an adult or other children” (A36). The rest believed that it was the job 

of the preschool teacher to teach mathematics, and not the job of the parents or 

other non-teachers.  
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Category Frequencies 

Number (N=49) / 

Geometry (N=45) 

Example 

Children need 

adults to 

teach them 

23 / 25 

 

An adult should talk about shapes and their 

attributes, such as the difference between a square 

and rectangle, and that not everything round is a 

circle. (A21, geometry)  

An adult can 

expose 

children to 

new concepts 

9 / 8 

 

The more a child is exposed to concepts and 

possibilities, the more his thinking can improve. 

(A19, geometry) 

Preparation 

for school  

4 / 5 

 

You have to make sure that the child tries to learn 

concepts, so he will not enter first grade without 

having some idea (of numbers). (A45, numbers) 

Mathematics 

is all around 

us 

6 / 10 

 

To see what things are made from, everything in nature, from which 

shapes they are composed. (A40, geometry)  

An adult can 

promote 

practice 

7 / 5 

 

You need to talk to children… because they need 

more practice than what they get in kindergarten. 

(A1, number) 

To promote a 

positive 

attitude 

2 / - 

 

To promote counting, a positive attitude, and 

connect them to numbers. (A21, numbers) 

Age-related 

issues  

4 / - 

 

It’s easy at this age to learn and observe new ideas. 

(A6, numbers) 

Table 2: Reasons for believing in the importance of adult intervention (N=51) 

Beliefs regarding guidance 

As seen from Table 1, most adults agreed that guidance for adults is important. 

Reasons for agreeing with this statement are given in Table 3. As can be seen, 

most adults simply wished to acquire tools that may help enhance children’s 

mathematics. As with reasons for interventions, when someone agreed that 

guidance in both domains was important, the reasons for wanting guidance were 

not necessarily the same. For example, regarding number concepts, A21 agreed 
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to guidance, stating, “So many people are afraid of numbers.” For geometry, she 

agreed to guidance stating, “Adults sometimes use incorrect terminology.” Thus, 

for number concepts, A21 was interested in deflecting adult’s mathematics 

anxiety (an affective issue), while for geometry, she was concerned in avoiding 

mistakes. 

 

Category Frequencies 

Number 

(N=35) / 

Geometry 

(N=33) 

Example 

To learn how to 

promote early 

mathematics 

17 / 19 

 

Because I don’t have the tools to teach on my own. 

(A40, geometry) 

To avoid making 

mistakes 

4 / 5 For those who do not know geometry, so they won’t make mistakes. 

(A23, geometry) 

To raise adult’s 

awareness 

4 / 4 To raise parents’ awareness that children’s 

thinking can be developed informally. (A13, 

numbers) 

To understand 

how children think 

7 / 4 You need to know how to deal with children who are slower and 

those who are more advanced. (A17, numbers) 

Affective issues 5 / 1 You have to know how to challenge children 

without frustrating them. (A3, numbers) 

Table 3: Reasons why guidance for adults is important 

Reasons for negating the necessity for guidance are given in Table 4. Recall that 

a few adults believed that interacting with children and mathematics was the job 

of the preschool teacher. So too, a few believed that it is teachers who should 

receive guidance. However, some simply believed that promoting early number 

and geometry learning comes naturally to adults and that the mathematics 

involved at this age is basic and simple, thus guidance is not necessary. 

Category Frequencies 

Number 

(N=16) / 

Example 
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Geometry 

(N=18) 

Parents intuitively 

know what to do 

8 / 5 It comes naturally to most people that encounter 

children in situations that allow for numerical 

thinking, and so they automatically teach, and 

children learn. (A2, numbers) 

Preschool 

mathematics is 

basic knowledge 

2 / 1 In general, we are talking about simple numerical 

concepts, and in my opinion, any adult with a little 

imagination can explain it to children. (A28, 

numbers) 

It is the job of the 

preschool teacher 

4 / 6 It’s important to guide the preschool staff, because that is where most 

of the learning occurs (A2, geometry) 

Age-related issues - / 3 Children are anyway too young to learn complex geometry (A38, 

geometry) 

Table 4: Reasons why guidance for adults is not important 

DISCUSSION 

The first focus of this study was beliefs regarding adults’ involvement with 

children’s number and geometry development, and the underlying reasons for 

those beliefs. We found that nearly all adults believed adult involvement is 

important. Furthermore, while some studies found that parents engage more with 

number activities than geometry activities (Skwarchuk, 2009), this study found 

no differences between beliefs in the importance of adults’ involvement within 

these two domains. Perhaps this signifies a gap that needs to be filled. If adults 

believe that adult intervention is important in both number and geometry, but 

report being involved in fewer geometric activities, they might need more support 

in geometry. Significantly, while most previous studies focused solely on parents’ 

beliefs (Missall et al., 2015), this study found that parents, as well as 

grandparents, aunts, and even adults who have no current relationship with young 

children, believe in the importance of adult interactions with children and 

mathematics. On a practical level, this means that those offering workshops for 

parents might consider opening their workshops to additional adults.  

The reasons for adults’ beliefs in the importance of adult interaction with children 

varied. These reasons may impact on the types of activities adults implement at 

home. A future study might investigate if those who believe that mathematics 

may be found all around us tend to engage children with mathematics during daily 
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activities, such as setting the table. Might those who believe in the need to prepare 

children for first grade, engage children with more formal teaching activities, 

such as using flash cards? Interestingly, while previous studies found that parents’ 

mathematics anxiety can impact on their mathematical interactions with children 

(Elliott, Bachman, & Henry, 2020), only a few adults in this study related to 

affective issues.   

The second focus of this study concerned beliefs regarding the necessity for 

guidance. Finding in this respect were less positive. Among those that agreed that 

guidance is important, only a few expressed the need to learn more about 

children’s ways of thinking. While knowledge of students is recognized as an 

important element of teachers’ knowledge (Ball, Thames, & Phelps, 2008), it 

might also be that this type of knowledge can significantly affect the types of 

mathematical activities adults offer children to engage with at home. 

Understanding why adults may or may not be interested in guidance, might help 

educators attract adults to participate in workshops that encourage adults’, not 

only parents’, interactions with children and mathematics. It is not only the 

amount of time parents spend with children engaging in number concepts, but 

also the nature of that learning experience that is important (Pan, Gauvain, Liu, 

& Cheng, 2006).  
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We focused on both in-service elementary teachers’ (ETs) confidence about their 

knowledge and the extent of their knowledge of the specific topic of fraction 

division. The results revealed how these ETs’ confidence may or may not be 

supported by their knowledge for teaching fraction division, a concept they are 

expected to teach as part of the elementary school curriculum in China. The 

results also illustrated the importance of specifying knowledge components in 

mathematics in order to help further or support ETs’ confidence for classroom 

instruction. 

INTRODUCTION 

Worldwide efforts to facilitate teachers’ learning of mathematics for teaching 

have led to the increased emphasis not only on the mathematics training provided 

through teacher preparation programs (e.g., CBMS, 2012), but also on in-service 

teachers’ learning through teaching (e.g., Li & Huang, 2018). It is generally 

perceived that Chinese mathematics teachers had superior understanding of the 

school mathematics they teach (Ma, 1999). With the inclusion of both novice and 

experienced elementary teachers in her study, Ma indicated that “Chinese 

teachers begin their teaching careers with a better understanding of elementary 

mathematics than that of most USA elementary teachers’’ (p. xvii). However, the 

results from recent studies that involved prospective elementary teachers in China 

did not seem to support the hypothesis that prospective elementary teachers in 

China may have strong preparation in pedagogical content knowledge (Li, Ma & 

Pang, 2008; Li et al., 2020). The results obtained with Chinese prospective 

elementary teachers prompted us to wonder what may happen to Chinese in-

service elementary teachers, especially with the dramatic changes in school 

mathematics and instruction happening in China in recent years (Liu & Li, 2010). 

As part of a large research study of elementary school teachers’ mathematical 
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training, this paper focused on a group of ETs’ confidence and knowledge of 

mathematics and pedagogy on the topic of fraction division in China. 

The topic of fraction division is difficult in school mathematics not only for 

students (Li, 2008), but also for teachers (Li & Kulm, 2008; Simon, 1993). 

Mathematically, fraction division can be presented as an algorithmic procedure 

that can be easily taught and learned as “invert and multiply.”  However, the topic 

is conceptually rich and difficult, as its meaning requires explanation through 

connections with other mathematical knowledge, various representations, or real 

world contexts (Greer, 1992; Li, 2008).  The selection of the topic of fraction 

division, as a special case, can provide a rich context for exploring possible depth 

and limitations in in-service teachers’ knowledge in mathematics and pedagogy.  

Specifically, this study focused on the following two research questions: 

(1) What is the confidence of in-service elementary school teachers 

regarding their knowledge training for teaching? 

(2) What is the extent of in-service elementary school teachers’ knowledge 

in mathematics and pedagogy for teaching fraction division? 

CONCEPTUAL FRAMEWORK 

To be able to help students learn mathematics with understanding, teachers need 

to have mathematics conceptual knowledge for teaching (MCKT; Li et al, 2020). 

By MCKT we mean topic-based conceptual knowledge packages that are needed 

for understanding, explaining, as well as teaching specific mathematics content 

topics with connections. It can be specified as containing the following three 

topic-based knowledge components that can and should be acquired by 

mathematics teachers: 

(a) Having knowledge and skills directly associated with a specific content 

topic;  

(b) Being able to connect and justify the main points of a content topic, and 

to place it in wider contexts;  

(c) Knowing and being able to use various representations for teaching the 

content topic, and being able to teach the relations between them. 

Clearly, specific MCKT varies from one content topic to another. The task of 

specifying MCKT is needed but enormous for different content topics. 

Nevertheless, teachers’ acquisition of MCKT would enable them to develop a 

profound understanding of mathematics content topics they teach as termed by 

Ma (1999). Given the dramatic variations across mathematical content topics, we 
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focus on the MCKT that teachers would need to have for teaching fraction 

division. 

The conceptual complexity of the topic of fraction division is evidenced in a 

number of studies that documented relevant difficulties pre-service and in-service 

teachers have experienced (e.g., Borko et al., 1992; Simon, 1993; Tirosh, 2000).  

Although both pre-service and in-service teachers can perform the computation 

for fraction division, it is difficult for teachers, at least in the United States, to 

explain the computation of fraction division conceptually with appropriate 

representations or connections with other mathematical knowledge (Ma, 1999; 

Simon, 1993).  Teachers’ knowledge of fraction division is often limited to the 

invert-and-multiply procedure, which restricts teachers’ ability to provide a 

conceptual explanation of the procedure in classrooms (e.g., Borko et al., 1992).  

Because the meaning of division alone is not easy for pre-service teachers (e.g., 

Simon, 1993), fraction division is even more difficult (Li & Kulm, 2008; Ma, 

1999).  The findings from previous studies help provide specifics of these three 

components of MCKT as follows: 

(a) Having knowledge and skills about fraction division, including 

conceptual and procedural knowledge (e.g., Borko et al., 1992), and 

solving problems involving fraction division (e.g., Greer, 1992)  

(b) Mathematical connections and justifications of main points related to 

fraction division, including fraction concept; addition, subtraction, and 

multiplication of fractions (e.g., Ma, 1999; Tirosh, 2000)  

(c) Representational variations and connections for teaching fraction 

division such as explaining the computational procedure for “division of 

fraction” with different representations (e.g., Li & Huang, 2008; Li & 

Kulm, 2008) 

The specifications of these three components of knowledge provided a 

framework for the current study and served as a guideline for selecting items to 

examine the extent of ETs’ knowledge and specific difficulties with fraction 

division. 

METHODOLOGY 

Subjects 

The participants were in-service elementary school teachers sampled from three 

provinces and one major city in China.  All of these provinces and city are 

traditionally classified as developing areas located mainly in southwest of China.  

190 surveys were distributed, and 180 responses (returning rate: 94.7%) were 
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collected. All 180 responses (130 females, 44 males) are used for data reporting, 

with 117 (65%) of responses self-indicated from schools located in inner city, 16 

(9%) responses from sub-urban, 40 (22%) responses from rural areas, and 7 (4%) 

with no indication. 

Instruments and Data Collection 

A survey was developed for this study, containing two main parts with three items 

for Part 1 and seven items for Part 2. Part 1 contains items on elementary teachers’ 

knowledge of mathematics curriculum and their confidence in their readiness for 

teaching. Part 2 has seven main items that assess elementary teachers’ three 

knowledge components of MCKT on the topic of fraction division. Most items 

were taken from previous studies (Li, Ma, & Pang, 2008; Li et al., 2019), with 

some items adapted from school mathematics textbooks and others’ studies (e.g., 

Tirosh, 2000). Given the limited page space, only three items (note: each item 

containing two questions) from Part 2 and ETs’ responses to these items are 

included for analyses to provide a glimpse of sampled ETs’ confidence and 

MCKT. 

It was impossible to conduct the survey with in-service teachers with specified 

time and location. Thus, the survey was distributed and then collected the next 

day from in-service teachers in many schools, and was given during teachers’ 

professional development session in a few other schools. 

Data Analysis 

Both quantitative and qualitative methods were used in analysing and reporting 

the participants' responses. Specifically, responses to the items in Part 1 were 

directly recorded and summarized to calculate the frequencies and percentages of 

participants’ choices for each category.  To analyse participants’ solutions to the 

items in Part 2, specific rubrics were first developed for coding each item, and 

subsequently, the participants’ responses were coded and analysed to examine 

their solutions/answers. 

RESULTS AND DISCUSSION 

In general, the results showed interesting relationships between ETs’ confidence 

and their mathematical knowledge for teaching fraction division, which illustrates 

the importance of specifying knowledge components in mathematical training in 

order to help further or support ETs’ confidence for classroom instruction. 

For ET’s confidence, the results from the survey indicated that (1) participating 

ETs in China did not know well about their national curriculum standards in 
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general; (2) the majority of these ETs were confident in the knowledge needed 

for teaching; and (3) they knew very well about selected topic placement in 

mathematics curriculum. The results suggested that these ETs tend not to feel 

over confident. 

For specific knowledge components of MCKT, these ETs’ performance revealed 

that their mathematical knowledge was sound in the content topic itself, 

especially in the procedural aspect, and relatively weak conceptually in 

connecting the content topic with other topics both mathematically and 

pedagogically. The seemingly mixed results in their responses actually suggest 

that these ETs’ confidence was built upon or supported by what they know that 

can and should be specified in concrete terms or knowledge components.  The 

following sections are organized to present more detailed findings corresponding 

to the two research questions.  

In-service Teachers’ Confidence in Elementary School Mathematics 

The following items are from Part 1 of the survey to illustrate ETs’ confidence of 

their knowledge preparation needed for teaching, as related to fraction division. 

For item 1: How would you rate yourself in terms of the degree of your 

understanding of the National Mathematics Standards?  On a scale of four choices 

(High; Proficient; Limited; Low), 63% and 1% of the participants chose 

"Limited" and "Low", respectively.  Relatively smaller percentages of the in-

service teachers felt to have high (3%) or proficient (33%) understanding of their 

national mathematics standards. 

For item 2-(2): Choose the response that best describes whether elementary 

school students have been taught the topic – Multiplication and division of 

fractions.  On a scale of five choices (Mostly taught before grade 5; Mostly taught 

during grades 5-6; Not yet taught or just introduced during grades 5-6; Not 

included in the National Mathematics Standards; Not sure), 92% participants 

indicated that the topic is “mostly taught during grades 5-6" (a correct choice), 

and most of the remaining (3%) chose the first response ("Mostly taught before 

grade 5", a partially correct choice if only fraction multiplication is considered).  

The results, in contrast to the participants’ response to item 1, suggested that these 

ETs know very well about the content topic placement in mathematics 

curriculum, although the majority did not feel confident in knowing about their 

national mathematics standards. 
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For item 3-(2): Considering your training and experience in both mathematics 

and instruction, how ready do you feel you are to teach the topic of “Number – 

Representing and explaining computations with fractions using words, numbers, 

or models?”  On a scale of three (Very ready; Ready; Not ready), 69% of the 

participants thought they were "ready", while 21% chose “very ready,” and 7% 

“not ready.”  The results indicated that the majority of these ETs were confident 

in their knowledge for teaching fraction computations, including fraction 

division.  There was also a small percentage of in-service teachers who are not 

confident. The diversity in responses suggested the need of learning more about 

their confidence and possible connections with their knowledge preparation. 

Taking together, in-service elementary school teachers’ responses to the Part 1 

suggested that these ETs in China tend not to feel over confident, although they 

actually knew very well about some specifics. In fact, the results are consistent 

with what has been reported about in-service mathematics teachers in East Asian 

countries (Mullis et al., 2004) and China in specific (Li & Huang, 2008).  The 

consistency in the general response pattern between ETs in the current study and 

in-service teachers in other studies suggested that culture likely plays an 

important role in expressing confidence by teachers in East Asia including China. 

The Extent of i=In-service Elementary School Teachers’ Training in 

MCKT for Teaching Fraction Division 

These ETs’ responses to Part 2 allowed a closer look at the participants’ three 

knowledge components of MCKT, especially on the topic of fraction division.  

Results indicated that these ETs do very well on items related to fraction division 

computation and problem solving (MCKT knowledge component 1).  For 

example, for the problem “Say whether 3

2

11

9


 is greater than or less than 4

3

11

9


 

without solving. Explain your reasoning.”, 98% of these ETs answered the 

problem correctly (i.e., the first numerical expression is greater than the second 

one). Among those who provided the correct answer, 78% did not use fraction 

division computations and explained, “If the divisor is the smaller (and the 

dividend is the same), the result of the division is bigger; 2/3 (8/12) is smaller 

than ¾ (9/12)”. The other 17.2% used the computation rule for fraction division 

(i.e., converting division into multiplication, then followed by comparing 3/2 and 

4/3) to reach the correct answer. 4 out of 180 respondents (2.2%) used both 

methods. There were about 2.3% of those sampled in-service teachers who either 
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answered incorrectly or did not answer at all. They did not infer further on what 

would be the result of division if the divisor was the smaller. 

Moreover, these ETs also had great performance in solving multi-step word 

problems that involve fraction division. For example, 95% participants solved the 

following problem correctly.  

Johnny’s Pizza Express sells several different flavour large-size pizzas. One day, it 

sold 24 pepperoni pizzas. The number of plain cheese pizzas sold on that day was 

3/4 of the number of pepperoni pizzas sold, and 2/3 of the number of deluxe pizzas 

sold. How many deluxe pizzas did the pizza express sell on that day?  

Specifically, 42% used a multi-step computation method to get the answer (e.g., 

24 x ¾ =18, 18÷2/3 =27), about 49% used a combined computation method (e.g., 

24 x ¾ ÷ 2/3 =27), 2.2% adopted an algebraic approach to set up and solve an 

equation for solution, and a few (about 1.8%) provided more than one solution 

approach. About 5% of these respondents did incorrectly, resulting from either 

computation errors (e.g., providing a computation as 24 x ¾ ÷ 2/3 = 36) or 

misunderstanding of the problem (e.g., providing a computation as 24 ÷ 2/3 = 

36). 

For the knowledge component 2 of MCKT, ETs were asked to explain “the 

meaning of fraction division, and how fraction division relates to other content 

topics” that aims to assess their knowledge of fraction division and ability of 

connecting and justifying possible association between fraction division and other 

content topics. The results suggested that 82.3% provided one or more correct 

explanations to the first sub-question. The common explanation provided by 

53.9% sampled in-service teachers is that “the meaning of fraction division is the 

same as the meaning of the division of whole numbers, and if knowing the 

product of two factors and the value of one factor, it is an operation to find the 

value of the other factor”. 7.2% explained that “the meaning of fraction division 

is the same as the division of whole numbers”, and 9.4% provided their answers 

as “if knowing the product of two factors and the value of one factor, it is an 

operation to find the value of the other factor”. The rest (17.8%) either indicated 

“don’t know” (6.1%) or did not answer this question (11.7%). For the second sub-

question, about 40% of them provided correct answers, with 11.1% indicating 

“fraction division is an inverse operation of fraction multiplication”, 10% 

explaining that “fraction division relates to inverse number, e.g., if divided by a 

number equals to multiplying its inverse number”, 5.6% indicating that fraction 
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division relates to ratio, e.g., b
bba

a
a == ：

 (b≠0), 0.6% with other 

explanation, and 12.6% providing two different 

explanations. There are about 60% sampled in-service 

teachers who either provided incorrect explanation 

(33.8%), or no answer at all (26.1%). 

There were several items used to assess ETs’ knowledge component 3 of MCKT. 

As an example, ETs were asked to explain how to explain/teach given 

computations of fraction division. In particular, the problem of “How would you 

explain to your students why 3

1
2

3

2
=

?; Why 
4

6

1

3

2
=

?” (adapted from Tirosh, 

2000) was included in the survey. For the first fraction division (i.e., explaining 

why 2/3 ÷ 2 = 1/3?), 98% provided valid explanations and the majority (53%) 

relied on the meaning of fraction to provide their explanation as “dividing a whole 

into three equal parts, each part should be 1/3, so 2/3 mean to have two such parts. 

Dividing 2/3 into two equal pieces, so each piece should be 1/3.” 19.3% used 

drawings or a number line to explain, and 16% explained using the fraction 

division algorithm, i.e., flip and multiply to get the answer. There are about 9% 

sampled in-service teachers provided two or more different explanations. For the 

second fraction division (i.e., explaining why 2/3 ÷ 1/6 =4?), 88% provided valid 

explanations but the dominant explanation (39.8%) was based directly on the 

fraction division algorithm, that is, flip and multiply to compute. The other 18.8% 

provided their explanations mainly as “changing fractions so that they have the 

same denominator first, and then using the meaning of fraction for solution”. 

19.3% used drawings or a number line to provide their explanations. A few 

(0.6%) used the first fraction division to help explain the second fraction division 

as “based on the first fraction division 2/3 ÷ 2 = 1/3, we can deduct why 2/3 ÷ 1/6 

= 4 is correct. That is, keeping the dividend 2/3 unchanged, when the divisor 2 is 

decreased 12 times to become 1/6, the original quotient 1/3 should be increased 

12 times to become 4.” There are about 4.6% respondents provided two or more 

different explanations. 6.1% failed to provide correct explanations, with either 

incomplete explanation or simply copying the question without explanation. 

Taking together, these ETs did very well in explaining these two fraction 

divisions (98% and 88%, respectively). Their explanations were dominant with 

an approach that relies on either the meaning of fraction or the fraction division 

algorithm. Moreover, they performed better in explaining a fraction divided by a 

whole number than a fraction divided by a fraction. 
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The results from these ETs’ responses on MCKT items revealed their strengths 

in many aspects of MCKT, as specified in the framework.  However, ETs’ 

strengths across these aspects varied to a certain degree.  It appeared that these 

ETs have solid performance on items related to fraction division computation 

itself, especially in the procedural aspect and problem solving, but relatively weak 

conceptually in connecting the content topic with others both mathematically and 

pedagogically.  

CONCLUSION 

The findings from this study helped shed a light on the relationships between 

these ETs’ confidence and their mathematical knowledge for teaching fraction 

division. Specifically, these ETs didn’t feel over-confident about their 

understanding of national mathematics standards, but they knew very well about 

the curriculum placement of selected content topics. They also had better 

confidence in terms of their readiness to teach elementary school mathematics. 

Such confidence was likely supported by their solid knowledge and skill directly 

associated with fraction division, a knowledge component that is also typically 

required for school students. At the same time, their relatively weak performance 

on items that are conceptually demanding in mathematics or pedagogy likely 

failed to support their confidence in readiness for teaching. Such knowledge 

differentiations, as specified in the MCKT framework, help provide an important 

and feasible lens for us to know the strength and weakness of teachers’ 

knowledge. For the case of China in this paper, the results suggested that ETs are 

likely strong on mathematics, somehow less on mathematical pedagogy, and 

limited on connections of mathematical ideas through their teaching practices and 

professional development. In turn, such results helped illustrate what teacher 

professional development needs to do more in mathematical and pedagogical 

training in order to help further or improve ETs’ confidence and expertise. 
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We investigated the development of interest in mathematics of pre-service 

primary teachers (N=62) during the transition from school to university using 

longitudinal data and examined whether their beliefs about the nature of 

mathematics explained their future interest. One main result is that although high 

correlations between dynamic beliefs (the process and utility aspects of 

mathematics) and interest were found in each of three surveys, dynamic beliefs 

did not predict future interest (in addition to prior interest). Instead of dynamic 

beliefs, formalism beliefs formed an additional significant predictor of future 

interest. 

THE SECONDARY-TERTIARY TRANSITION 

The transition to university brings many changes and is often perceived as a 

stressful endeavour (Gueudet, 2008). Many students feel that mathematics has 

changed without being able to handle this new form of mathematics. A 

fundamental change refers to what Tall (2008) calls the formal world. Definitions, 

logic, and proofs are new to most students, whereas calculations now play a minor 

role. In particular, dealing with proofs is difficult for students and may negatively 

impact their interest in mathematics. Consequently, many students lose interest 

during the transition (Rach & Heinze, 2017). Interest and beliefs may be helpful 

concepts to understand the psychological side of this transition. In particular, 

analysing their relationship may help understanding why some students struggle 

more than others.  

We focus on primary teacher education that has some commonalities with 

secondary teacher education like the new role of formalism and proof. 
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Mathematics in primary teacher education is less formal than in secondary teacher 

education. Unlike in school, however, even the primary teachers’ mathematics 

courses emphasise argumentation and reasoning not only in the lectures but also 

in the homework. This work completes earlier analyses presented at PME 

(Liebendörfer et al., 2014). 

INTEREST AND BELIEFS 

We use Krapp’s (2005) interest concept, in which interest is defined as a 

motivational person-object relationship, which is rather stable over time. Interest 

is specific to a person, but, unlike other motivational concepts, it is also specific 

to a (mental) object which, in our case, is mathematics. Interest has a cognitive 

component, which refers to a high personal value, and an emotional component 

related to positive affect.  

Interest has gained importance as a predictor of good learning processes, such as 

the use of deep learning strategies, effort, and good learning outcomes, as can be 

shown across various disciplines and settings (Krapp et al., 1992; Köller et al., 

2001). Pre-service primary teachers have reported low interest in mathematics. In 

a study by Abel (1996), pre-service primary teachers’ interest scores (N=171) 

were about one standard deviation (SD) below the theoretical mean of the scale 

and considerably lower than the interest scores of pre-service secondary teachers 

(N=36) who had opted for mathematics as the subject of their future teaching 

careers. Whereas in higher secondary teacher education, interest declines during 

the transition (Rach & Heinze, 2017), this is not the case in lower secondary 

teacher courses that focus less on formalism (Liebendörfer & Schukajlow, 2017).  

We use Grigutsch et al.’s (1998) concept of beliefs on the nature of mathematics 

that distinguishes four dimensions: The process aspect describes mathematics as 

a vivid field of trial and discovery. The utility aspect emphasises the usefulness 

of mathematics in everyday life. The formalism aspect characterises mathematics 

by logic, proof, and abstraction. Finally, the toolbox aspect describes 

mathematics as the application of routine skills, formulae, and standard 

procedures (see also Table 1). The first two aspects are rather dynamic whereas 

the last two aspects reflect a rather static view on mathematics. 

Dynamic beliefs are often favoured over static beliefs because they emphasise 

opportunities for learning and improvement. They are further positively 

correlated with students’ interest, whereas toolbox beliefs are negatively 

correlated (Baumert et al., 2000). Beliefs generally affect the way we experience 

and deal with new mathematics. In particular, improper beliefs may be seen as 
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one reason for the decline of interest during the transition (Daskalogianni & 

Simpson, 2001) and beliefs that fit to the new mathematics students are presented 

may help them taking interest (Liebendörfer & Schukajlow, 2017). Thus, the 

static formalism beliefs may also be important for students’ interest development 

during the transition as they may help them understanding new elements like the 

role of axioms and definitions. 

RESEARCH QUESTIONS AND DESIGN 

Our main aim is to describe how pre-service primary teachers’ interest in 

mathematics develops in the first semesters at university and whether beliefs 

about the nature of mathematics may explain this development. 

RQ1: How is pre-service primary teachers’ interest connected to their beliefs? 

RQ2: How do interest and beliefs change during the first year at university? 

RQ3: Do beliefs serve as a predictor of future interest? 

Design of the Study 

We used data from the KLIMAGS-project (Blum, Biehler, & Hochmuth, 2014) 

collected at Kassel University. There, mathematics courses are compulsory for 

all pre-service primary teachers. The data were collected in the first (T1) and last 

lectures (T2) of a course on arithmetic during the students’ first semester. The 

third survey was collected at the end of a course on geometry (T3) during the 

students’ second semester in which they also took a course on the didactics of 

arithmetic. These paper-and-pencil surveys were collected over two consecutive 

years to gain a reasonable sample size. The sample consisted of N=62 pre-service 

primary teachers who participated at all three time points, 57 of whom were 

female. They were on average 21.75 years old (SD 5.06) and all but two were 

first-year students. 
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Scale Items Example  (T1-T3) 

Interest in 

Mathematics 
6 

I am not interested in mathematics.  

(reverse scoring) 

.74 / .81 

/.78 

Utility 

Beliefs 
4 

Mathematics is helpful for solving everyday 

tasks and problems. 

.79 / .74 

/.71 

Process 

Beliefs 
4 

Mathematics thrives on inspiration and new 

ideas. 

.80/ .80 

/.74 

Formalism 

Beliefs  
7 

Clarity, accuracy, and uniqueness are features of 

mathematics. 

.63 / .68 

/.76 

Toolbox 

Beliefs 
5 

Mathematics is a collection of procedures and 

rules that specify exactly how to solve tasks. 

.47 /.46 

/.50 

 

Table 1: Scales and their reliabilities 

To measure interest and beliefs, well-tested Likert scales were taken from other 

projects and were modified slightly if needed (words were adjusted; e.g. 

“university” instead of “school”). To measure interest, we used Rheinberg & 

Wendland’s (2000) scale; to measure beliefs, we took Grigutsch et al.’s (1998) 

scales from the COACTIV (Baumert et al., 2009) version with a 6-point format 

(1=not at all, 6=exactly). Reliabilities (Cronbachs ) ranged from poor to good, 

see Table 1. In particular, the toolbox scale had a low reliability. For the sake of 

completeness, we included this scale; however, results concerning toolbox beliefs 

should be handled cautiously. 

RESULTS 

We analysed data from a subgroup of the first-year pre-service primary teachers; 

namely, those who answered all three surveys. Using Levene’s tests and t-tests to 

compare the variances and means of the reported constructs, we found no 

differences between this subgroup and students who missed one of the three tests 

and had thus been excluded from further analyses (p>.10 in each case). The means 

(SDs in parentheses) of the different constructs are displayed in Table 2. We 

found that the interest values were below the theoretical mean of the scale (3.5). 
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  T1 T2 T3 

Interest in Mathematics 3.36 (0.83) 3.07 (0.92) 3.15 (0.80) 

Beliefs: Utility Aspect 4.59 (0.79) 4.03 (0.88) 4.35 (0.75) 

Beliefs: Process Aspect 4.27 (0.91) 3.99 (0.95) 4.13 (0.88) 

Beliefs: Formalism Aspect 4.21 (0.65) 4.29 (0.68) 4.26 (0.66) 

Beliefs: Toolbox Aspect 4.12 (0.66) 4.13 (0.64) 3.93 (0.61) 

 

Table 2: Means and standard deviations of interest and beliefs 

For RQ1, we found significant correlations between interest and both dynamic 

beliefs and toolbox beliefs on each survey. However, there were no statistically 

significant correlations between interest and formalism beliefs. The correlations 

between interest and the different aspects of belief are displayed in Table 3 for 

each time point. 

Correlation between interest and …  
T1 T2 T3 

r p r p r p 

… Beliefs: Utility Aspect .46 <.001 .50 <.001 .47 <.001 

… Beliefs: Process Aspect .52 <.001 .52 <.001 .50 <.001 

… Beliefs: Formalism Aspect -.10 .444 -.11 .393 .04 .758 

… Beliefs: Toolbox Aspect -.13 .308 -.28 .026 -.31 .013 

 
 

RQ2 asks for the development of interest and beliefs. Interest was a stable 

construct in our study. Correlations were .66 (both T1-T2 and T2-T3) and .60 

(T1-T3). The beliefs were also rather stable; correlations ranged from .44 to .59 

(T1-T2) and .37 to .43 (T1-T3). The changes in mean scores of both interest and 

beliefs can be derived from Table 2.  

 Between T1 and T2 Between T2 and T3 

p t(df=61) d p t(df=61) d 

Interest in Mathematics .003 3.14 .33 .423 -0.81 .09 

Beliefs: Utility Aspect <.001 5.95 .67 .003 -3.08 .39 

Beliefs: Process Aspect .006 2.85 .30 .227 -1.22 .15 
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Beliefs: Formalism 

Aspect 
.249 -1.17 .12 .706 0.38 .04 

Beliefs: Toolbox 

Aspect 
.744 -0.33 .12 .017 2.45 .32 

Table 4: Significance values, t-values, and effect sizes 

Results of paired samples t-test for these differences and the effect sizes (Cohen’s 

d) are shown in Table 4. There was a considerable decline in interest as well as 

in dynamic beliefs during the first semester, followed by a slight recovery in the 

second semester. Static beliefs were less affected; only toolbox beliefs decreased 

in the second semester.  

Table 5: Results of linear regressions. 

 
Effect on interest at T2 Effect on interest at T3 

β p R² β p R² 

Pre-Interest .615 <.001 

.47 

.666 <.001 

.50 

Beliefs: Utility Aspect .149 .297 -.088 .444 

Beliefs: Process Aspect .093 .462 -.089 .410 

Beliefs: Formalism 

Aspect 
-.168 .326 .292 .013 

Beliefs: Toolbox Aspect .168 .310 -.094 .464 

 

RQ3 was to investigate, whether beliefs could predict students’ future interest. 

We calculated a linear regression and took interest and beliefs at T1 and T2 as 

independent variables to predict interest values at T2 and T3 respectively. In a 

simple linear regression using interest values only, the explained variance of the 

dependent variable (R²) was .44 at T2 and .43 at T3. Including beliefs increased 

the R² to .47 and .50 for T2 and T3, respectively (cf. Table 5). The additional 

variance in interest explained by beliefs was rather low and not significant in the 

first semester. In the second semester, formalism beliefs explained an additional 

7% of the variance in future interest.  

DISCUSSION 

Answers to the Research Questions 

In terms of their general level, the students in our study had little interest in 

mathematics. This result compares to other findings and fits the idea that primary 

teachers often have a stronger pedagogical than content-specific (e.g. 
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mathematical) interest (Abel, 1996). In addition, at Kassel University, 

mathematics courses were compulsory for pre-service primary teachers.  

The answer to RQ1 is that the correlations between beliefs and interest during 

secondary school were positive for the two dynamic aspects (utility, process) and 

negative for formalism beliefs. The correlations of interest and beliefs even 

appeared to be slightly higher than those reported by Baumert et al. (2000). The 

answer to RQ2 for the development of beliefs and the interest in mathematics of 

pre-service primary teachers over the first year at university is threefold. For 

interest and dynamic beliefs, a strong decline was followed by a weak recovery. 

Toolbox beliefs decreased in the second semester, whereas formalism beliefs 

were constant. To answer RQ3, modelling the influence of interest and beliefs on 

future interest surprisingly revealed no effect of dynamic beliefs but a significant 

positive influence of formalism beliefs.  

How can this development and the predictive power of beliefs be explained? 

Students’ loss of interest is similar to the loss of interest reported for future higher 

secondary teachers (Liebendörfer, 2018; Rach & Heinze, 2017). An important 

reason for their loss of interest lies in the restrictions in students’ self-

determination. Formal mathematics requires competencies in handling symbols 

and working with definitions, that cause students problems in solving their tasks 

and it may even become difficult to understand the task itself. In such situations, 

competence and autonomy are hard to perceive (Daskalogianni & Simpson, 2001; 

Liebendörfer, 2018); however, they are necessary for a positive interest 

development (Krapp, 2005). Students who share a more formal view on 

mathematics may better handle the “formal world” (e.g. proving theorems) at this 

point and see its elegance and use. The changes in the second semester might then 

be an adaption of the students to the new situation. Our data thus underline the 

idea that beliefs that fit the mathematics addressed in future may help taking 

interest (Schukajlow & Liebendörfer, 2017).  

Strengths, Limitations and Practical Implications 

One strength of our study is the longitudinal sample that revealed differences 

between correlations and predictors. One limitation is that it is possible that more 

interested students have a greater willingness to participate in the testing thus 

affecting the results. We should further mention that our study could not cover 

students’ prior knowledge, performance, and other motivational factors, which 

most likely interact with interest and its development.  
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Our results shed some new light on interventions, which mainly focus on dynamic 

beliefs (e.g., Grootenboer, 2008). Formalism beliefs should not be seen as 

something obstructive but can also help students take an interest in mathematics.  
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Authentic assessment is developed for overcoming the problems caused by 

standardized tests. In mathematics education, many economies regard students' 

problem-solving ability as the essential goal of mathematics education and foster 

students' mathematical literacy by applying mathematics teaching standards 

related to authenticity assessment.  However, implementing authentic assessment 

in classroom teaching or integrating it with regular evaluations is still a 

challenge for teachers. This holistic review was conducted using the EBSCO host 

Library. Authentic assessment is identified as a tool and as a task in mathematics 

education. The applied characteristics in PISA, STEM, and e-learning 

environment are also summarized to provide suggestions for mathematics 

educators in utilizing authentic assessment.  

INTRODUCTION 

Standardized test popular in the last century can provide evaluation information 

about students’ learning performance in general. However, this form of 

assessment provides inadequate information on students’ learning process, 

especially without giving diagnostic information to instructors (Allsopp et al., 

2008). In contrast, some teachers found students responded naturally in authentic 

assessment because they did not realize that they were taking a “test” and felt 

authentic “tests” were easier than standardized tests (Gao & Grisham-Brown, 

2011). According to Wiggins’s study (1990), the assessment is authentic only 

when it directly examines students’ performance on worthy intellectual tasks. 

Svinicki (2004) further explained that authentic assessment based on students' 

activities was close to real-life performance, instead of imitating by paper-and-

pencil or even computer-drill-and-practice-type tests. In mathematics education, 

it is important for instruction to provide students more opportunities to transfer 

the knowledge or skills from previous learning experiences to new contexts in 

order to resolve meaningful tasks (Bottge, 2001). Authentic assessment could 
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play such a crucial role.  However, there still exists many obstacles for teacher to 

implement authentic assessment in teaching (Gao & Grisham-Brown, 2011; 

Hernández & Brendefur, 2003), such as teachers’ understanding of authentic 

assessment, the times of planning and preparing authentic tasks, and the 

application of authentic assessments in current e-learning environment or science, 

technology, engineering and mathematics (STEM) education.  

Besides, authentic context is an imperative factor in design authentic activities or 

tasks. However, it can but not necessarily improve students’ motivation since 

authenticity of a task sometimes is not apparent for learners, which means the 

task designer must foresee how students will recognize the authenticity of the 

context and the question, and whether they are capable of understanding in the 

context of the task (Vos, 2018). Thus, it is challenging for teachers to look for 

authentic and meaningful activities and apply authentic assessment to students 

(Cankoy, 2011). This study conducts a holistic review on authentic assessment-

related literature and provides suitable suggestions for mathematics teachers or 

educators in the design and application of authentic assessment in practical 

instruction.  

METHODOLOGY 

The holistic review puts focus on authentic assessment in mathematics education. 

We search full-text articles though priors research terms: authentic assessment, 

authentic intellectual work, authentic instruction (Villarroel, Bloxham, Bruna, 

Bruna, & Herrera-Seda, 2018), and authentic task (Murphy, Fox, Freeman, & 

Hughes, 2017) along with “math*” using EBSCO host Library from 1988 to 

2020. We have searched 113 articles in the initial review work. After removing 

the external words in the article title, such as “historical”, “discourse intonation” 

and “geographical”, there were 107 articles chosen in next phase. The researcher 

reviewed these articles to judge whether they suited for this review study. The 

topic including criteria is the research issues focus on mathematics education and 

authentic assessment. The former is easy to judge, but some articles study area is 

not clear, especially in some STEM studies. Articles which used “authentic” as a 

descriptor but did not actually focus on real-life contexts or assessment were 

excluded from the review. For example, Swaffield (2011) clarified the meaning 

of “authentic” as “genuine” but did not associate it with the term “authentic 

assessment”. The frequency of the term “authentic” and its synonyms was 

generally low in these articles. Finally, there were around 70 articles retained after 

two rounds of screening.  
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THE NATURE OF AUTHENTIC ASSESSMENT 

The term “authentic” was first used formally in the area of assessment by 

Archbald and Newmann (1988). In their studies, “worthwhile, significant, and 

meaningful tasks” are essential for ensuring the authentic assessment system’s 

validity. In order to design authentic problems or activities, researchers proposed 

several standards. Wiggins (1998) provided six standards for authentic 

assessment problems. For example, authentic assessment problem shall be 

realistic; it requires judgement and innovation; it asks the student to “do” the 

subject; it replicates or simulates the contexts in which adults are “tested” in the 

workplace, in civic life, and in personal life; it assesses the student’s ability to 

efficiently and effectively use a repertoire of knowledge and skill to negotiate a 

complex task; and it allows appropriate opportunities to rehearse, practice, 

consult resources, and get feedback on and refine performances and produces.  

Based on previous literature, Herrington and Oliver (2000) identified nine 

elements for designing authentic learning. For instance, three authentic related 

principals of these elements are “provide authentic contexts that reflect the way 

the knowledge will be used in real life”. “provide authentic activities”, and 

“provide for authentic assessment of learning within the tasks” In summary, an 

authentic learning activity shall contain authentic contexts, authentic tasks 

(activities), and authentic assessment. Meaningful and realistic context 

(authenticity) is a prerequisite for authentic learning, and influences of authentic 

tasks (activities). For example, primary teacher can provide authentic context 

about money in the classroom, and the economic concept of interest can improve 

students’ computation skills if the instructor design suitable authentic tasks and 

evaluation criteria (Althauser & Harter, 2016). 

AUTHENTIC ASSESSMENT IN MATHEMATICS EDUCATION 

Traditional mathematics education isolates content knowledge from real-life 

situations and mainly on tedious and repetitive mathematical problems solving 

(Kerekes, Diglio, & King, 2009). However, when learning in this way, children 

will always easily forget the mathematics knowledge and will not know how to 

apply mathematical knowledge to unfamiliar contexts (Freudenthal, 1973).  

A possible way to link authentic assessment and mathematics teaching could be 

problem-solving approach, which has been advocated by National Council of 

Teachers of Mathematics (NCTM) in 1989. Instead of rote memorisation, 

“understanding mathematics” and “student-centred” learning is promoted with 

the reform in mathematics education since the NCTM documents of the 1980s 
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(Suurtamm, 2004). To meet the demands in society for employable school 

leavers, more authenticity teaching has led to an increase in the demand for 

authentic assessment in mathematics (Lajoie, 1995). However, Hernández and 

Brendefur (2003) found that most teachers had a relatively shallow cognition of 

authenticity in mathematics education, tending to confine it to daily life and future 

occupation. The main obstacles include many aspects, such as time-consuming 

on planning and preparing tasks, insufficient participants, limited materials and 

funding, and outdated teacher professional development. which put more pressure 

to teachers, hence move them away from authentic instruction (Gao & Grisham-

Brown, 2011). Only a few teachers could extend the authentic classroom beyond 

the connection with the real-life context and get the chance to problem-solving 

critically (Hernández & Brendefur, 2003). Below, we will interpret authentic 

assessment in mathematics education from three different perspectives. 

Authentic assessment as a tool 

As an assessment tool, authentic assessment can be carried out during the 

mathematics learning process. There are many different methods, such as 

cases, portfolios, exhibitions of performance, and problem-based inquiries are 

identified as tools to enhance students’ learning and support teachers in the 

classroom (Darling-Hammond &Snyder, 2000). Reikerås, Løge and Knivsberg 

(2012) found that authentic assessment material may be a useful tool to cognize 

toddlers' mathematical competences for kindergarten teachers. Through 

structured observation performance of young children in their familiar 

environment, preschool teachers can distinguish stimuli of toddlers to acquire 

various abilities and provide professional help when needed. It also confirms the 

finding of Gao and Grisham-Brown (2011), teachers applied the authentic 

assessment to gather students’ information and found that personalization did not 

reduce the accuracy of evolution results in authentic assessment. Children are 

relatively fragile in their relationship with adults. Hence, authentic assessment is 

selected for testing and evaluation to avoid mental and physical harm to young 

children, allowing them to fully express themselves in a comfortable environment 

(Reikerås, Moser, & Tønnessen, 2017).  

Authentic assessment as a task 

A situated context is an important element in designing authentic activities. If the 

context is related to daily life in problem-based learning environment, the 

instruction and assessment can improve the learners’ mathematical thinking, 

understanding, and internalization (Kerekes et al., 2009). Authentic assessment 
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results are consistent with students’ learning processes from knowledge, 

competencies, and transfer. Thus, an authentic assessment could be regarded as a 

learning task to students. Through these tasks, the students' participation was 

enhanced in authentic assessment (Newmann, 1996). Some assessment tasks that 

allow students to construct knowledge related to real-world context are more 

meaningful than traditional assessment (Koh, 2011). In a cooperative learning 

environment, it is noted by Lowrie (2011), authentic assessment can be more 

complicated. Authenticity can be shown through solving problems combined 

with individual experience (Lowrie, 2011). Hernández and Brendefur (2003) 

found that when students have sufficient opportunities to explain generalizations, 

classifications, and relationships related to situations, problems, topics, or to 

defend their ideas, the course is considered more authentic. Consequently, 

emphasising the collaborative situation in authentic assessment is crucial. 

Authentic assessment as a process in PISA 

Although Organization for Economic Cooperation and Development (OCED) 

(2013) claims that the assessment materials of Programme for International 

Student Assessment (PISA) emphasize authenticity, and students will achieve 

authentic assessments. However, compared with authentic assessment standards 

(Wiggins, 1998), some open-end questions in PISA merely need students to 

answer few words or short sentences, which are less complicated than tasks in 

daily life (Koh & Chapman, 2018). In PISA 2012 (OECD, 2013), computer-based 

assessment of mathematics is provided optionally for participants because of the 

high usage of computer competence as a 21st-century skill of mathematics 

literacy, and improvement of interaction, authenticity and engagement. 

AUTHENTIC ASSESSMENT IN CURRENT LEARNING ENVIRONMENT 

With the rapid development of information technology (IT) and its close 

integration with education, the e-learning approach has been advocated at 

schools. Students are encouraged to integrate and apply knowledge and skills in 

practical situations to meet the changes in 21st century. In fact, since the 

mathematics curriculum reform in 2000, learning by using IT and across 

curriculum has been promoted. The foci of assessment forms have been changed 

from assessment of learning to assessment for learning, and assessment as 

learning. Authentic assessment is closely related to the real world and the learning 

process of students. Because of its characteristic, the authentic assessment is more 

valuable and meaningful under current learning environment. 
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Authentic assessment in e-learning environment 

Shaffer and Resnick (1999) maintain that new media can create an authentic 

situation for learning in connectivity, authenticity, and epistemological pluralism. 

Through informative technologies, the communication avoids geographical 

limitations and changes the quality of learning experience; at the same time, these 

technologies provide an authentic environment for assessment (McLoughlin & 

Luca, 2001). However, authenticity in online learning makes teachers' instruction 

difficult because, in the digital world, regardless of academic status, teachers 

must continuously redefine themselves as lifelong learners and set an example 

for students (Barber, King, & Buchanan, 2015). Additionally, information and 

computer skills and task re-designing are also challenging for teachers (Barber et 

al., 2015). Instead of utilizing the software itself, Herrington and Oliver (2000) 

found it necessary to conduct an authentic assessment in multimedia as part of 

the learning environment.   

Authentic assessment in STEM education 

With the development of globalization, to rise the competitive competency, the 

study and careers of information technology and STEM get the world's attention 

(Koh & Chapman, 2018). STEM education is used to solve real-world situations 

through a design-based problem-solving process (Williams, 2011). Tan, 

Nicholas, Scribner and Francis (2019) noted the mathematics tasks would become 

more complicated after integrating into the STEM framework. Based on the 

student-centred instruction and meeting different students’ needs, instructors who 

plan and construct authentic and interdisciplinary classroom activities should be 

encouraged, which is also adopted to foster students’ 21st-century skills 

(Mahanin, Shahrill, Tan, & Mahadi, 2017).  

CONCLUSION 

This article summarizes and identifies the inherent reasons that hinder the 

application of authentic assessment in mathematics teaching. These reasons 

include student factors (e.g., students’ characteristic), teacher factors (e.g., 

cognitive deviations about authentic assessment), and external factors (e.g., lack 

of time and funding, and insufficient related professional development training). 

Most of the relevant recommendations in the literature are for external factors. 

For example, Dennis and O’hair (2010) proposed that collaboration between 

teachers promotes teachers' professional competencies and saves the overall time 

for conducting an authentic assessment. Many research papers mention a 

combination of authentic assessment and on-going high-quality vocational 



Liu & Zhang 

PME 44 – 2021   3 - 251 

training to assess instructor adapt to the classroom that facilitates assessment and 

have more chance bring benefits for students' learning (Guskey, 1994), and 

promote 21st mathematics classroom (Mahanin et al., 2017). This kind of effort 

will also alleviate teachers' perception of authentic assessment to a certain extent. 

Future research should focus on directly solving or reducing student factors that 

hinder the application of authentic assessment in mathematics education. 
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In light of the ongoing radical national curricular reform agenda, this research 

aims at investigating Egyptian teacher readiness to embrace a shift away from 

traditional instruction and towards the integration of mathematical problem-

solving in the context of their daily instruction. Grounded on the Task Analysis 

Guide, the research maps out results of four mathematics teacher focus groups 

all centered around mathematical problem-solving task classroom integration 

schemes. Results confirm the anticipated gap between the national vision of the 

reformed mathematics classroom and the likely implementation of the reformed 

curricular agenda as reported by the teachers. The research calls for a 

contextualized approach to the distribution of the reform agenda.  

INTRODUCTION 

Multiple scholars have contended a repeating historical pattern of educational 

reform initiatives proceeding from a time of political turbulence (Burde, Kapit, 

Wahl, Guven & Skarpeteig, 2017). Cohen and Ball (1999) argue that for such 

reform initiatives to be effective, it is important to fully capture the history and 

cultural identity of a given learning context (Cohen & Ball, 1999). This research 

particularly focuses on the case of the Egyptian system reform in mathematics 

education which has been recently introduced by the Ministry of Education 

(MOE). It explores how this reform is locally and contextually perceived.   

In the recent years, ongoing national and international collaboration schemes are 

operating to serve the purpose of a complete system level reformation in the 

national schooling curriculum (MOE, 2019). Part of this reform targets to 

incorporate the element of problem-solving into the national mathematics 

curriculum (MOE, 2019). The reform is reported to present a radical shift away 

from the longstanding teaching culture of memorization (Megahed, 2017). This 

research seeks to investigate the readiness of ground level practitioners to 

embrace the reformation, which is mainly administered by the MOE. The study 

of ground level acceptance to hierarchically imposed reform in mathematics 
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education is relevant because of its transferability to other high distance power 

relation learning contexts.  

LITERATURE REVIEW 

The relationship between education and power has received substantial attention 

in scholarship. Multiple scholars (Apple, 1982; Arendt, 1993; Kupfer, 2015) have 

reflected on the Weberian view which envisions education as a tool of control 

and governance in the hands of policy makers. Literature on power and education 

in the Egyptian context has asserted the Weberian perspective (Hargreaves, 2006; 

Megahed, 2017). Naguib (2006) argues that educational schemes in Egypt serve 

the purpose of creating and re-creating a culture of despotism. In his works, he 

investigated the different hierarchical stages of the Egyptian educational system, 

arguing for the educational schemes to be created and communicated by decision 

makers at every level of the hierarchical ladder with the target of sustaining power 

distances and re-creating a culture of oppression (Naguib, 2006). According to 

Naguib (2006), school leaders lack the decision-making autonomy. This sense of 

oppression is cascaded all the way down across the schooling hierarchy.   

In their reflections on mathematics curricular reform initiatives in the past three 

decades, Cohen and Ball (1999) acknowledge the incapacity of mere curricular 

reform and teacher training initiatives to capture the full contextual complexity 

needed in order to achieve enduring and sustainable improvement in students’ 

mathematical classroom experiences. According to the Cohen and Ball (1999), 

schools are complex social institutions and a shift in the teaching mindset is only 

possible when buy in to the reform initiative is established at all levels of the 

schooling enterprise. 

With these perspectives in mind, and in view of the national mathematics 

curricular reform launched by the MOE in Egypt, this research seeks to 

investigate the ground level contextual buy in of Egyptian teachers to a 

hierarchically channeled (Al-Ashkar, 2018) reform agenda. The research 

addresses the following research question:  

● In light of the ongoing government-led mathematics education system 

reform initiative, which targets a shift towards mathematical problem-

solving, how do Egyptian mathematics teachers relate to a problem-

solving oriented lesson structure?  

To study the integration of mathematical problem-solving into the classroom 

context, researcher found the work of Stein, Smith, Henningsen, and Silver 

(2000) to be of significant relevance. As part of a wider mathematics education 
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system reform project, Stein et. al. (2000) observed mathematics classrooms, 

where problem-solving was incorporated into teachers’ daily practices. Based on 

their observations, Stein et al. developed a schematic to evaluate this integration 

process. They differentiated between two stages of classroom integration; namely 

the setup stage and the implementation stage (Figure 1). The former refers to the 

timeframe prior to students’ commencement of working on the task along with 

the approach the mathematics teacher adopts during this time. The latter refers to 

the timeframe where students are actively engaged with the task and the approach 

the teacher adopts during this time. Stein et al. (2000) argue that both stages of 

the mathematical problem-solving task integration are tightly related (Figure 1). 

In other words, it is unlikely for students to experience the mathematical task as 

a problem-solving task during the task implementation stage if already at the 

setup stage, the teacher has reduced the task complexity by, for instance, 

providing the necessary procedure for solving the task.  

 

Figure 1. Two-stage problem-solving task classroom integration scheme 

In their wider study, Stein et al. (2000) present the Mathematical Task Analysis 

Guide as a framework to evaluate mathematical tasks. They distinguish between 

four types of mathematical tasks, namely ‘memorization tasks’, ‘procedures 

without connection tasks’, ‘procedures with connection tasks’, and ‘doing 

mathematics tasks’ (Stein et al., 2000, p.20). The four task types vary in view of 

their cognitive level demand. At one end of the cognitive level demand spectrum, 

memorization tasks are mostly straightforward and simplistic. On the other end, 

the tackling of ‘doing mathematics tasks’ requires conceptual understanding, 

inquiry into the unknown, going through a process of constant re-examination of 

suggested solution approaches and pattern matching. Researcher chooses to refer 

to the ‘doing mathematics tasks’ as ‘problem-solving tasks’ for the purposes of 

this research, due to their high resemblance with described problem solving task 

features in literature (Callejo & Villa, 2009; Stylianides & Stylianides, 2014). In 

my investigation, researcher relies on Stylianides and Stylianides’s (2014) 

definition of problem-solving, which in turn relies of Callejo and Villa’s (2009) 

definition of a problem situation. In accordance with this view, the act of 

problem-solving is envisioned as finding a solution to a situation where there is 
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little immediate access to a process that relates the data available to a required 

unknown.  

In this research, researcher investigates how Egyptian mathematics teachers 

relate to the integration scheme of a given mathematical problem-solving task. 

Researcher bases the investigation on the depicted two-stage classroom 

integration scheme (Figure 1). Based on the analysis of the task setup and task 

implementation stages, researcher then utilize the Task Analysis Guide to map 

the likely mathematical task experience that would result from teachers’ reported 

classroom integration choices.  

METHODOLOGY 

This work adopts a multiple case study methodology, reporting results of a 

sample of four case studies: Each comprising a teacher focus group. Each focus 

group incorporates a group of teachers that teach mathematics at the same school. 

All schools that took part in this research are schools that adopt the national 

curriculum of mathematics and that are subjected to the suggested reform 

initiative reported earlier. All schools that took part in this research have been 

operating the highly centralized, highly traditional, memorization oriented 

national mathematics curriculum (Naguib,2006) at least for the past 30 years. The 

aim was to uncover how mathematics teachers, that are expected to radically shift 

from a longstanding history of traditional instruction, relate to mathematical 

problem solving when integrated in everyday practice. The wider study, from 

which this work is derived, also explores how group power dynamics – 

particularly in a collective Middle Eastern culture (Al-Omari, 2003)- influence 

the choice of buy in to problem-solving, being a foreign method of classroom 

mathematical task integration; hence the choice of focus groups as a data 

collection method.  

The following three-stage data collection protocol was replicated across the four 

case studies. Firstly, teachers were provided with a mathematical problem-

solving task and were given an open timeframe to grapple with the task. The task 

was then discussed in the group. Afterwards, researcher presented different 

approaches to tackle the task, each ascribing to a different level of mathematical 

cognitive demand as reported in the Task Analysis Guide (Stein et. al., 2000). 

Secondly, after being presented with the task and the various suggested 

approaches for addressing it, teachers were asked to each design their own lesson 

plan, outlining how they would integrate the presented task into the context of 

their daily instruction. Thirdly, the group was provided with three narrative 
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scenarios, each presenting a different classroom integration approach of the same 

mathematical problem-solving task. The group discussion of the narrative 

scenarios was guided by a set of questions, which are theoretically grounded in 

the two-stage problem solving classroom integration framework (Stein 

et.al.,2000). The idea was to triangulate between an inductive and a deductive 

data collection activity (devising lesson plans and reflecting on narrative accounts 

of lesson plans) in order to ensure higher validity of results and to more 

holistically capture how teachers relate to a mathematical problem-solving task 

in view of their daily contexts of instruction.  

The mathematical task, that the data collection activity has been centered around 

is reported by Stein et al. (2000) as being a highly demanding problem-solving 

task. Hence, in view of the problem-solving oriented national reform initiative, 

this task could be considered as a sample mathematical task which Egyptian 

teachers would be asked to integrate in their daily practices. The narrative 

scenarios present a culturally contextualized version of the narrative scenarios 

outlined by Stein et al. (2000). Setup and implementation of the same 

mathematical problem-solving task vary in each scenario, resulting in a different 

classroom experience of the task in every narrative.  

DATA ANALYSIS AND RESULTS 

Reported lesson plans as well as reported feedback to the three narratives were 

captured for each case study (schools S1-S4). Repeating trends were captured, 

coded, and mapped in view of the mathematical task features reported in Stein et. 

al.’s (2000) Task Analysis Guide (Table 1) which acts as an analytical framework 

of this research (Robson, 2000). Table 1 presents the resulting coding scheme. It 

adopts the frequency count analysis (Yin, 2009) to denote the most frequent 

patterns reported in the datasets of each case study with an X. The mapping 

against the Task Analysis Guide features targets to unravel the likely classroom 

task experience for every case study. To ensure validity of the results (Yin, 2009), 

multiple case study results (of schools with a similar history in a culture of 

memorization-based instruction) are cross compared. Table 1 also maps the 

results across the cases against the two-stage classroom integration scheme (task 

setup and task implementation) (Stein et. al., 2000).  
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 Mathematical Task Integration Stage Findings from 

schools 

Task Analysis 

Guide Mapping  

 I. Setup Stage  S1 S2 S3 S4  

 I.1 What are students expected to do?      

1 Reproduce memorised knowledge      Memorisation 

2 Adopt an already provided procedure  X  X X Procedure 

3 Relate to presented conceptual knowledge   X   Connection 

4 Develop a yet unknown approach      Problem Solving 

  

 I.2 How are students expected to do it?      

1 Compete against each other to recall a memorised 

method  

X   X Memorisation 

2 Follow the steps outlined by the teacher    X  Procedure 

3 Make use of conceptual knowledge    X   Connection 

4 Construct knowledge by connecting peers’ input in 

order to collectively develop the approach to solve a 

mathematical problem 

    Problem Solving 

  

 II. Implementation Stage  S1 S2 S3 S4  

 II.1 The target of working through the task       

1 The task is worked through with the target of recalling 

a memorised method  

X    Memorisation 

2 The task is worked through as a means to practise a 

studied procedure  

 X X X Procedure 

3 The task is worked through as an application of 

familiar concepts  

    Connection 

4 The task is worked through as a challenge to discover 

new knowledge  

    Problem 

Solving 

 

 II.2 The Meaning Making Process      

1 The teacher equips students with the capacity to use 

memorised procedures  

  X X Memorisation 

2 The teacher equips students with as many 

mathematical procedures as possible  

X    Procedure 

3 The teacher draws on conceptual connections    X   Connection 

4 The teacher facilitates a process of continuous inquiry 

to solve the task  

    Problem 

Solving 
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 II.3 The Task Ownership       

1 The teacher is the sole owner of the task   X X X X Memorisation 

2 The teacher tightly controls the student exploration 

process 

    Procedure 

3 The teacher guides students as they explore the task on 

their own  

    Connection 

4 The teacher avoids offering input as it is viewed as 

disrupting students' independent exploration  

    Problem 

Solving 

 

 II.4 The Time Management       

1 Any lesson time allocated for student exploration is 

considered wasted time  

X   X Memorisation 

2 Minimal time is dedicated to independent student 

exploration  

  X  Procedure 

3 The lesson time is split into teacher explanation 

followed by student application  

 X   Connection 

4 Most lesson time is dedicated to independent student 

exploration  

    Problem 

Solving 

 

 I. 3 What resources are the students provided with?      

1 The worked through sample task     X Memorisation 

2 The presentation of a mathematical procedure    X  Procedure 

3 The presentation of a mathematical concept  X X   Connection 

4 The announcement of the problem without further 

supporting information 

    Problem Solving 

  

Table 1: Mapping and across analysis of results 

DISCUSSION 

Table 1 shows how across the four schools, there were very little traces of the 

teachers setting up for- and implementing the task in such a way that its cognitive 

demand on problem solving (code 4) gets maintained and fully experienced in the 

classroom. Instead, teachers consistently, in almost all focus groups, seemed to 

prefer providing students with clear instructions on how to solve the task already 

at the setup stage (Table 1-I.1). Across all focus groups, teachers unanimously 

expressed that the implementation of the task was the role of the teacher and that 

students were viewed as passive recipients of the task implementation process 

(Table 1-II.3). Students were only given the chance to work on a mathematical 

task themselves once a similar task has already been presented by the teacher. In 

two of the focus groups (S1 and S2), there were traces of teachers emphasizing 

the importance of the establishing conceptual connections in relation to the 
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mathematical task (Table 1-I.3). The wider focus group discussion revealed that 

in these cases, the task was used as a tool to explain a mathematical concept, 

hence the connection making element would be entirely performed by the teacher.  

In line with Cohen and Ball (1999), the results in Table 1 confirm the incapacity 

of a reformed curriculum to alone penetrate the contextual barrier of school 

micro-cultures that have a longstanding history of traditional instruction. This 

research suggests that, beyond the efforts exerted in reforming the mathematics 

curriculum, the national roadmap needs to incorporate locally feasible 

implementation initiatives tailored to suit the unique and complex reality of every 

school microculture.  

Beyond the case of Egypt, the research offers a framework for studying ground 

level buy in to mathematics reform initiatives in similar high-power contexts. It 

also sheds light on how problem-solving is perceived in the Middle Eastern 

culture. This understanding is particularly relevant, considering the growing 

global representation (Burde et al., 2007) of the Middle Eastern culture in 

classrooms around the world.  
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THE SEMIOSPHERE LENS TO LOOK AT LESSON STUDY PRACTICES 

IN THEIR CULTURAL CONTEXT: A CASE STUDY 
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This paper presents an experience of Lesson Study involving primary school 

teachers in a school in North Italy. Researcher will show how Lotman’s 

Semiosphere construct can be used to analyze cultural and semiotic aspects of 

Lesson Study practices inserted in the Italian cultural context, as practices 

intended to enhance collaboration among teachers and their critical thinking on 

professional issues. Researcher will also show how this analysis may complement 

another analysis, performed in the perspective of the Chevallard’s 

Anthropological Theory of didactics, and concerning the institutional aspects of 

the Lesson Study experience. 

INTRODUCTION 

To meet the new challenges of mathematical education related to changes in 

workplaces and more generally in society, the OECD “Teachers Matter” report 

defines “teacher quality” as the “most important school variable influencing 

student achievement” (OECD, 2005, p.2). In Italy, the National Plan for the 

Professional Development of Teachers, scheduled for 2016-2019 but still in 

force, considers the professional development of in-service (and pre-service) 

teachers “compulsory, permanent and structural” by law. In particular, the plan 

aims “to promote reflective thinking and collaboration” in all its forms. 

The Lesson Study methodology (LS) can be considered one of the teachers' 

professional development methodologies suited to meet the Italian institutional 

requirements. Indeed, LS is “a teacher professional development approach, 

originating in Asia” (Huang, Takahashi, & da Ponte, 2019, p.3), that focuses on 

collaboration and co-responsibility. As Hummes, Font, and Breda (2018, p.69) 

exhaustively explain, we can consider LS as “a very broad and non-guided 

reflection phase of the professional development of mathematics teachers”. A LS 

cycle is constituted of three consecutive moments: planning a lesson in a given 

class, teaching and mutual observation, and discussion. After this last moment, 

the LS working group can choose to start the cycle again for a new class. Within 
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this cycle teachers are led, and in this free, to reflect for an improvement of the 

teaching and learning process of mathematics. We may observe that the need for 

a practice like LS is even stronger when teachers need to face the contradiction 

between current beliefs and new ideas. This contradiction must be resolved over 

time in a supportive community with mutual trust and respect. LS stimulates 

precisely an openly critical dialogue among educators about the teaching and 

learning processes collectively observed. 

Besides, international studies such as the OECD-PISA surveys encourage each 

of us to compare deal with the results of other countries, especially in the area of 

mathematics, and to study teaching and teacher professional development 

practices that are at the heart of the educational success of these countries, 

analyzing whether and how there can be a correlation between student learning 

and teacher professional development. However, studies like those by Kim, 

Ferrini-Mundy, and Sfard (2012) or Bartolini Bussi and Martignone (2013), 

suggest that teacher professional development is not the only element that affects 

the quality of student learning: We must take into consideration the cultural 

aspects that have an impact on teacher professional development, on teaching and 

and learning. In this perspective, my purpose is to study Lotman's Semiosphere 

construct (Lotman, 1990) as a theoretical lens – prospectively networking with 

others – to read the cultural aspects in teachers' practices. Hence, my research 

questions are as follows: How and which aspects of teachers' culture, relevant for 

their own professionality, are highlighted by the Semiosphere? Which elements 

of the Semiosphere are effective in analyzing teachers' practices? 

The semiotic space is my main unit of analysis, specifically researcher will 

investigate how teachers’ collective practice are observable in it within a LS 

experience: Since, as Geoffrey Saxe (2014) states, it is within collective practices 

where we can identify firmly the relationships between culture and cognition, and 

therefore between culture and reflection. 

THEORETICAL FRAMEWORK 

In the literature in mathematics education the systemic aspects (Font, 2002, 

pp.143-156) concerning the links between teaching and learning practices and 

organization and social constraints are the subject of important theoretical 

elaborations, in particular that of Yves Chevallard. His object of study is a ternary 

relation: the didactic system (students, teacher, mathematical knowledge), which 

cannot be understood except in relation to the (external) environment that 

surrounds it, the teaching system and society. The relationship between the 
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system and its surroundings passes through the process of didactic transposition 

that converts scholarly knowledge, initially into knowledge to be taught and then 

into taught knowledge - and finally into learnt knowledge. The “intermediate area 

between the teaching system and society” is the space that Chevallard (1981, p.8) 

defined as “the noosphere: (the sphere where one thinks) about the teaching 

system”. Bosch and Gascon (2006) warn us, however, that it can happen that the 

school may lose the logic of the knowledge to be taught, i.e. the questions that 

motivated the creation of this knowledge, stopping at the lowest levels of what 

Chevallard has defined as didactic co-determination (Figure 1). 

 

Figure 1: Didactic and mathematical co-determination levels (Bosch & Gascon, 2006, 

p.61). 

In-service teachers' professional development, focused on critical reflection and 

on experiences of sharing, thinking, and collaborating, are aimed at awakening, 

or renewing the knowledge to be taught. Each choice, each element living within 

the didactic and teaching system, is dictated by one (or many) in-depth reflection 

on the way this content is structured and taking into account the conditions and 

constraints posed by the different levels of co-determination during the didactic 

transposition process. However, since I could not leave aside the cultural and 

semiotic aspects – since, furthermore, in mathematics the signs are themselves 

objects of mathematics –, researcher attempted to verify if in the perspective of 

Lotman’s semiotics of culture there could exist theoretical tools suitable to 

account for these aspects. 

According to Lotman (1990), semiotic knowledge is embedded in culture, that is 

a complex system of signs. Studying semiotic aspects, we study the correlation 

between the different sign systems that constitute culture. Moreover, the systems 

do not present elements in isolation, but are always immersed in a homogeneous 

semiotic continuum. In this way the idea of culture explains the necessary notion 

of dependence and reciprocity between systems in which the necessity of the 

other (another person, another culture) is fundamental. To express it, Lotman 

coins the term Semiosphere: 

As an example […], imagine a museum hall where exhibits from different periods 

are on display, along with inscriptions in known and unknown languages, and 
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instructions for decoding them; […] imagine all this as a single mechanism 

(which in a certain sense it is). This is an image of the Semiosphere. […] all 

elements of the Semiosphere are in dynamic, not static, correlations whose terms 

are constantly changing. (Lotman, 1990, pp.126-127) 

Lotman's semiotics differs from the others (Peirce, Eco, Greimas) because, 

instead of using unity (sign) as a primary element of study, he believes that only 

a global understanding of the culture system can lead to the recognition of the 

units that make it up. The smallest functioning mechanism of the process by 

which an expression takes on the value of a sign, the unity of semiosis, is not a 

separate element but the entire semiotic space of the culture in question. In 

particular a specific culture (e.g. the Italian culture of teaching-learning 

mathematics, in our case) is a semiosphere that lives immersed in the global “all 

cultures” semiosphere and it can exist as a system only in relation to the cultures 

with which it continuously exchanges cultural elements: In this sense “it seethes 

like the sun” (Lotman, 1990, p.150). The internal translation (in its semiotic 

meaning) currents express the asymmetric character of the Semiosphere. In fact, 

"besides the structurally organized language, [the semiosphere] is crowded with 

partial languages [semiotically asymmetrical – i.e. without mutual semiotic 

correspondences with the previous], [...] which can be bearers of semiosis if they 

are included in the semiotic context" (Lotman, 1990, p.127-128). Asymmetry 

between languages engenders the dialogue. In fact, the whole for Lotman consists 

of at least two texts, which dialogue with each other thanks to their constitutive 

asymmetry. 

In potential continuity (to be further elaborated – see Discussion) with 

Chevallard’s systemic-institutional approach, Lotman’s Semiosphere might be 

considered as a dynamic (never motionless, always bubbling and exchanging) 

integration (considering also the semiotic and, more generally, cultural aspects) 

of noosphere. 

METHODOLOGY AND DATA COLLECTION 

A first experimental activity of LS cycles in a primary school near Turin was 

carried out starting from the LS experiences conducted in Reggio Emilia 

(Bartolini Bussi & Ramploud, 2018). 

The working group is made up of six people: the researcher (Carola, a PhD 

student), a retired former teacher-researcher (Ezio) and four teachers who teach 

in different primary school classes of the same institute. Three are 1st-grade 

teachers: Michela is a support teacher for low achievers, Nicoletta teaches Italian 
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in her class, Marcello teaches mathematics, science, history, geography, and 

English. Valentina, the fourth teacher, teaches mathematics and science in 3rd 

grade. The Italian school system is characterized by high flexibility in teaching 

in primary school. Teachers teach several subjects and even the support teacher, 

supporting the class in which there is the low achiever, can take charge of 

teaching subjects to the whole class, according to his skills, if the team deems it 

appropriate. 

The first part of the experiment consists of three complete cycles in the three 1st-

grade classes. The topic of the lesson is the introduction of the “plus” sign for the 

addition and its institutionalization. The specific goal for children is to understand 

the concept of addition as the sum of two quantities in its meaning of “putting 

together” and relate it to the signs of mathematical language. In the second part 

of the experience, consistently with the previous three cycle, a new lesson is 

carried out in the 3rd-grade. The designed activity is part of the educational path 

that includes the knowledge of weight measurements and the study of state 

transitions, via experiments. The aim is to accompany students in reinvesting their 

mathematical knowledge and argumentation skills with respect to the transversely 

of the disciplines. Each teacher implements the lesson in his or her class but in 

the total co-responsibility of the group, which is there in agreement with the 

school headmaster. During the lesson, the other participants play the role of active 

observers: in 1st-grade classes they interact with the students as “hand-lenders”, 

i.e. they transcribe the thoughts of not yet writing-skilled children. 

The experience, covering all four cycles, was carried out from November 2018 to 

April 2019. For a total duration of 24 hours of group work. All the design (4 hours 

of initial formation and 8 hours of design de facto, 2 per cycle) and discussion 

moments (8 hours, 2 per cycle), but also the classroom lessons (1 hour in each 

class – cycle –, for a total of 4 hours), were video-recorded. Some extracts from 

these recordings were then transcribed by the researcher. In addition, for each 

planned lesson, the group produced a Lesson Plan (Bartolini Bussi & Ramploud, 

2018): a written document – a table – that collects the entire lesson planning, the 

objectives the group chose for the lesson, the positioning of the lesson within the 

long-term planning of the class, and the educational intentionality behind each 

choice of the group. 

In the next section researcher will present a first analysis of a small transcription 

excerpt with the Semiosphere. Because of the nature of the Semiosphere, the 

excerpt is not self-sufficient: other extracts are required to grasp how the elements 
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external to the teachers’ and class’ semiosphere are gradually translated and 

understood. Researcher uses the asymmetry within the semiosphere to grasp how 

teachers’ collective practices evolve. Researcher looks at the teachers’ discourses 

- i.e. words and vocabulary used, references to the institutional and cultural 

aspects of their professional background. 

SOME EXCERPTS AND THEIR ANALYSIS 

Here is a short extract from the exact beginning of the first meeting of the second 

LS cycle. Among all the data researcher has chosen to report just this because it 

represents a turning point for the teachers of the group: They have “now 

appropriated the methodology, understood its functioning and potential” (in 

Nicoletta’s words, during the review of the first lesson held in her class), but they 

are still at the beginning of this professional development path. The lesson is still 

to be revisited and questioned in its details. 

Nicoletta has already implemented and discussed the lesson. The LS group are 

now in the planning phase of the same lesson for Michela’s class. Her children, 

also in Grade 1, have never worked in pairs. The lesson planned for LS includes 

an argumentation exercise in pairs on a double purchase: The children in a 

previous class bought a 12 cents card and 8 cents sample clips. Some of them 

paid with 20 cents. The key question is how and why they paid 20 if the prices 

tags were 12 and 8. The LS group is reflecting on what changes to make to the 

lesson for Michela’s class. Here they are thinking about an introductory activity 

to the lesson, to experience the work in pairs for the first time. 

Michela:       Now I am talking nonsense. I looked at the tests you did [referring to 

Ezio], the problem with the balloons: For example, it could be... […] 

you give it to a couple. Because I wanted to rework that one anyway 

because… I saw it, it is really interesting... also the motivations the 

students gave. But it could be an idea! 

Nicoletta: I believe we could also do something about the comics [introduced in 

the previous design]. […] The scheme is that one of this reasoning 

[…] that you should... that we want to re-propose: take two 

reasonings, do what he [Marcello] said […] That is: what did the 

children who said “9 plus 6” think before? […] they are balloons, kids 

[…] it's too similar with the LS lesson? 

Marcello:  [shoulders up] in the sense that it is!... in the sense that they put 

together... 
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In this brief dialogue we already note some essential aspects that can only 

be understood if we consider the Semiosphere in which the dialogue 

takes place: 

● Tasks reported by a teacher [Ezio] recognized as an expert by the LS 

group are chosen instead of those reported in the textbook. The teachers 

had already declared from the beginning that they did not want to rely 

on the textbook. 

To better understand the sphere in which this dialogue arises, researcher also 

report the following excerpt. Marcello describes his difficulty in relating to 

textbooks and institutional meta-didactic structures during the group’s first 

planning meeting. 

Marcello: [...] maybe you find a very fixed structure: Lessons, notebooks, but if 

you don't understand... [...] staring at the notebook and “making the 

notebook” is very far from me, even if it gives you a lot of 

[confidence]... I mean, I live a lot of anxiety, sometimes I get lost, 

because if you don't have a structure... but at the same time, I can't 

really get into it, because I am not interested in doing that. I think the 

best thing would be to meet [each other]. But of course, the times are 

what they are [...] I had to write all the subjects I do. Which is a lot. 

[…] I want to talk to people, I want to see the practices, I want to 

confront myself directly [...] in my opinion the university is too tied 

to the book [...] seeing things together gives you a sense. 

Using Chevallard we can say that the didactic transposition of some practices is 

not complete. At least in these teachers' beliefs, such practices have not passed 

through all the necessary levels of co-determination. There is a gap between 

academic and implemented knowledge. Lotman, analogously, could tell us that 

the Semiosphere of the group sees local institutional requests (“making the 

notebook”) and national ones (mention of university practices) as external 

elements. They are currently “written” in a language that, Marcello and Michela 

declare, is not that of the group today. The identification of critical thinking as a 

practice of semiotic translation allows researchers, but also teachers themselves, 

to analyze these practices from a semiotic and not only institutional point of view: 

a semiospherical dialogue is created. The lens of the Semiosphere allows us to 

perceive the existing asymmetry between the current school reality (many 

subjects to teach, no time available) and the Italian university culture of 

prospective teachers, that is a training ground for the first personal beliefs. 
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● Graphic, material, and gestural visualizations are preferred to only 

written text: The idea is to propose to the children a drawing with comics 

and cartoon price tags. Then the group will choose a theatrical 

performance. 

An excerpt from the implementation of the lesson underlines the embodied 

feature that the group sought to use. 

Michela:  So, now, kids, let us focus and work on what Valentina did in the 

sketch. […] She took a nice moment to think. She looked at the two 

prices and thought. Did you see Valentina thinking? […] She thought 

a little before giving me the coins. Okay? Good! So, I will put these 

two prices [on the board, so you can see them] ...  Now, each of you 

will have a moment to think to what to say in the couple! Because I 

am asking you to say what Valentina is thinking right now. Nevi, you 

must do it in pairs! So, you, your thought will have to share it with 

Mattia, and Mattia will say his. 

Teachers are aware of the Western culture in which they are immersed: Abstract 

thinking, for an Italian primary school child, must be approached gradually 

(Mellone, Ramploud, Di Paola, & Martignone, 2019, p.8). Grasping abstract 

thought requires time and continuity. A theatrical text, using bodily movements, 

returns the desired continuity: It realizes the act of thinking. Then, translating the 

action into the graphic text (the comics), the group keeps track of the signs that 

mark the passage from concrete to abstract. 

● The shift of attention from the single teacher – who will enter alone in 

the classroom – to the co-responsibility of the group is the main 

objective, and for them the beauty, of this work with the LS 

methodology. A co-responsibility that is not in the usual Italian teachers’ 

Semiosphere. Nicoletta says: [...] that you should... that we want to re-

propose the following time [...]. Co-responsibility belongs to LS, but not 

to the Italian class culture. This asymmetry between the LS Semiosphere 

and that of the group allows a cultural transposition (Mellone et al., 

2019) of the teachers’ practices: During all the meetings the teachers 

bring themselves and their educational intentionality into play. They 

question their teaching practices with the group. Now educational 

intentionality and objectives are shared: They are meaningful for each 

member of the group. 
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● The exact words of the children are repeated. The expression “put 

together” was how the children of Nicoletta’s class had referred to the 

idea of sum and therefore it becomes the pivot sign of the LS group for 

the institutionalization of the + sign. 

To discuss this last point more thoroughly, researcher adds here a final 

excerpt from the implementation of the lesson in Michela's class. A 

student is responding to the problem posed. 

Student:  Valentina thought a little bit about how she made the 20 cents. 

Carola:  But she has not read 20 anywhere! [...] Was there a 20 written 

somewhere? 

Student:  […] because she puts them together [the two prices on the price tags]. 

Carola:  What is it that she put together? 

Student:  20 uh... 12 cents and 8 cents. […] she counted in her mind... 

continually. And she realized that 20, uh... 12 cents and 8 cents make 

20. 

The task and its implementation guide the children within relational structures, 

going beyond simple calculation. They look at how the numbers relate to each 

other. The Semiosphere of the class sees the relational structure still external to 

itself, but through the pivot sign of “putting together”, it translates its meaning. 

DISCUSSION AND CONCLUSIONS  

In the previous section researcher tried to observe what happened in the LS 

experience, through the Semiosphere lens. It is just one of the possible ways to 

look at a teachers’ professional development practice. 

Researcher can thus answer the research questions; in fact, it is now explicit that 

asymmetry is the effective element in analyzing collective teachers' practices. It 

allows us to read the changes in teachers' daily practices when introducing an 

element belonging to a different culture, such as LS. Semiosphere allows to keep 

together levels of signification culturally distant from each other. However, there 

is more, it allows to outline the internal structure of our practices: Our 

Semiosphere. Such a double look helps researcher and teachers to read the 

transpositions of the knowledge through the levels of co-determination. Here the 

critical dialogue and reflection of the teachers, if read through the Semiosphere, 

do not lose contact with the reality in which they are born. So, the problem of 

possible integration between Lotman and Chevallard lenses according to the 

Networking of Theories approach (Radford, 2008) arises spontaneously. The 
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analysis of the institutional aspects and the levels of co-determination seems 

enriched by a dynamic interchange perspective, and vice versa this can be 

integrated with the institutional constraints typical of a school system governed 

by laws. Future studies could tell us about the connection of the two theories as 

lenses for professional development practices. 
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This study aims at exploring new ways to promote mathematical proof 

comprehension. It focuses on students' solutions to a proof activity based on a 

Proof Without Words (PWW). One hundred eighteen students worked in small 

groups to elaborate a proof, while having a PWW as an artifact at their disposal. 

Each student then individually wrote and submitted a proof-attempt and 

completed a proof comprehension test. We investigate the impact of the 

comprehension test on students' understanding of the proofs and their self-

assessment. Findings show that students improved their proof-products in their 

answers to the test. They also reported higher proof-understanding after 

completing it and reduced their self-given-grades for their submitted proofs. We 

discuss the pedagogical roles the comprehension test served in the proving 

activity. 

INTRODUCTION 

Proofs Without Words (PWWs) or Visual Proofs are diagrammatical 

mathematical artifacts in which diagrams or graphs allude to the way of proving 

mathematical propositions or theorems (Nelsen, 1993). The diagram may contain 

some mathematical symbols, characters, and calculations to guide the observer, 

but the use of any written word is obstructed in this genre. PWWs are common 

in many mathematical domains; however, this paper focuses on a particular 

geometry PWW task shown in Figure 1 of the Pythagorean Theorem (Garfield's 

PWW - adapted from Nelsen, 1993, p. 7):  

Figure 1: "discover and write down the proof implied by this diagram."  
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Since their appearance in American journals like the Mathematics Magazine and 

The College Mathematics Journal in the seventies, PWWs were designed 

primarily for mathematicians. When having a PWW at hand, experienced 

mathematicians can rapidly perform a set of epistemic mental actions to develop 

a valid proof: decode and transform diagrammatical information into verbalized 

expressions, construct a chain of warranted arguments, and fill in necessary gaps 

based on prior knowledge. Such mental actions are essential for elaborating an 

acceptable proof. As Nelsen, a mathematician and the author of three books on 

PWWs affirms: "Of course, 'proofs without words' are not really proofs" (Nelsen, 

1993, p. vi). Nevertheless, mathematicians seem to enjoy and appreciate PWWs 

because of their elegance, mathematical beauty, and the insights they instigate 

(Arcavi, 2003). Nelsen goes further and suggests that math teachers share PWWs 

with their students (Nelsen, 1993, p. vii). But can high-school students use PWWs 

like experienced mathematicians to elaborate and comprehend proofs? 

Research focusing on PWWs in mathematics education is scarce. Hanna and 

Sidoli (2007) referred to PWWs as a kind of mathematical visualization that 

represents a whole proof-process. Surveying attitudes towards the role of 

visualization in mathematics and mathematics education, they claimed that while 

the role of visualization as an essential aid to mathematical understanding is 

widely accepted, still, "there is room for more effort aimed at better ways to use 

visualization in this role" (p. 77). This study is one such effort, examining 

students' ability to (re-)construct a proof represented by a visualization of a PWW 

type. Two theoretical concepts are used to assess students' understanding: proof-

comprehension-test (PCT) and the notion of gap-filling. 

Proof comprehension and proof comprehension tests (PCTs) 

According to Yang and Lin (2008), proof comprehension (PC) means 

"understanding proofs from the essential elements of knowing how a proof 

operates and why a proof is right" (p. 60). They developed a model for PC of 

geometry proof that includes six facets. Their work also emphasizes the immense 

challenges of observing and assessing PC. Based on Yang and Lin's model, 

Mejia-Ramos, Fuller, Weber, Rhoads, and Samkoff, (2012) suggested a general 

assessment model for constructing PCTs. They called researchers to "use our 

models to document specific types of comprehension benefits that their 

innovative proof presentations may have" (p. 17). We relied on Mejia-Ramos et 

al.'s model to generate a PWW Comprehension Test (PWW-CT), which is a 

specific PCT, to assess students' proof-comprehension of a PWW. 
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Since self-assessment methods help students better understand learning goals, be 

more accountable for their learning process, and improve their performance (e.g., 

Semana & Santos, 2010), we incorporated self-assessment items in the PPW-CT 

to stimulate students' reflective thinking and as another means to evaluate their 

understanding. 

The notion of gaps and gap-filling  

The idea of gap-filling was developed in literary theory, conceptualizing any text 

as a system of gaps, which the reader constantly needs to fill to construct meaning 

(Perry & Sternberg, 1986). Building on Perry and Sternberg's (1986) theory, 

Marco, Palatnik, and Schwarz (2021) suggested gaps and gap-filling as 

theoretical constructs in the domain of proofs in mathematics education. They 

define a gap as missing information in a proof-document, the filling of which is 

essential for comprehending the proof and making it acceptable in the eyes of a 

specific reader. Accordingly, gap-filling is achieved by performing any action 

that aims at identifying and closing a gap (Marco, Palatnik & Schwarz, 2021). In 

this study, the notion of gap-filling is used as an analytical tool to assess students' 

proof-products: the more gaps it rightfully fills, the higher the proof-product is 

evaluated.   

Research question 

In a first cycle of a design study, Marco et al. (2021) gave students several PWWs, 

including Garfield's PWW, and invited them to elaborate a proof and to inscribe 

it (Figure 1). They investigated students' proof-products and found that most of 

them managed to develop proof-attempts that included the key idea of area 

calculations. However, these proof attempts lacked some subtleties essential for 

being considered formal proofs. Their results suggest that if it is wished that high-

school students construct valid proofs based on PWWs, then they need to be 

trained to do so. This paper describes one such pedagogical tool designed and 

included in a PWW-activity, A PWW-CT. The research question is: what are the 

impacts of a PWW-CT on students' written proof-attempts and their self-

assessment. 

METHODOLOGY 

The data were collected in different cycles of a design-research program (Cobb, 

Confrey, diSessa, Lehrer & Schauble, 2003) on the pedagogical use of PWWs. 

Every cycle included three phases: designing, testing, and revising-and-

redesigning. The analysis included questions such as which gaps in the PWW the 
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students tended to identify and fill, and which task revisions could support more 

gap-filling and better proof-products. 

The first design cycle was an exploratory case study (Marco & Schwarz, 2019). 

From the second cycle and on, the teaching experiment structure was as follows: 

(a) the students were given a PWW and collaborated in small teams to develop a 

proof based on it; (b) students individually wrote their proof attempt reflecting on 

their team discussions, and (c) completed an online PWW-CT developed to 

improve their proof-attempts. Students answered the PWW-CT via personal 

smartphones or laptops. 

The PWW-CT was tailored for Garfield's PWW (Figure 1) but was based on the 

Mejia-Ramos et al.'s (2012) model for building PCT. It was used to inform future 

design cycles and as a didactical tool. It aimed at prompting students to reflect on 

their work, revise their written proofs, and attend gaps they might have 

overlooked. The PWW-CT included a mathematical and a reflective section. The 

mathematical section relied on the categories elaborated by Mejia-Ramos and 

colleagues in their model (Mejia-Ramos et al., 2012). The PWW-CT was revised 

several times after each testing phase, and in its final version, it consisted of six 

items of the type "meaning of terms and statements" (i.e., "what is the formula 

for trapezoid's area?"); two items of the type "justification" (i.e., "is the whole 

figure a trapezoid? How can you know it?"); one item of the type "summarizing 

via high-level ideas" (i.e.," 'what is the key idea of this proof in your opinion?"), 

and one item of the type "identifying modular structure" addressing the 

mechanism that endows the proof of its generality ("Do you think this proof 

shows that the Pythagorean theorem holds for all right triangles? Why?"). An 

open-ended item was added at the end of the mathematical section: "Which 

improvement would you incorporate into the proof you submitted?" After each 

testing cycle, the PWW-CT was revised to support more students' gap-filling. 

The reflective section included two open-ended items and eight 10-point Likert 

scale items. Two of the 10-point Likert scale items are reported here: (1) "To what 

extent do you feel you understand the proof by now?" and (2) "What grade would 

you give yourself for the proof you submitted?" These two items appeared before 

and after the mathematical section, to check whether students' answers changed 

after completing the mathematical section.  

Participants 

A total of 118 tenth grade students from the second (N=37), third (N=10), and 

fourth (N=71) testing cycles answered the PWW-CT. Most of the students were 
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high-achievers in mathematics, and only a small minority were average or low-

achievers. Forty-two students refused to participate or did not submit the proof or 

the PWW-CT, and their data were excluded from the analysis.  

Data gathering and analysis 

Data from two sources were analyzed: the students' submitted proofs developed 

based on Garfield's PWW (Figure 1) and their answers to the PWW-CT. Two-

tailed paired sample t-tests were undertaken to assess the mathematical section's 

impact on students' reported understanding of the proof and the self-given grades. 

The null hypothesis was that there would be no difference before and after 

completing the mathematical section of the PWW-CT. Effect sizes were 

calculated. A gap-filling rubric containing nine gap-filling actions was used to 

evaluate students' written proofs and the improvements found in the answers to 

the PWW-CT. Due to space limitations, this paper will focus only on the 

following three gaps: 

● Gap-i - why is the middle isosceles triangle right-angled? 

● Gap-ii - why is the whole figure a (right) trapezoid?  

● Gap-iii - why is Garfield's PWW a general proof for the Pythagorean 

theorem? 

Each gap was coded as fully filled, half-filled, or not filled. For each gap, the 

average rates of filling were calculated. Our method is exemplified in the next 

section. 

An example of analysis 

Dan and Shira (pseudonyms) are two students who participated in the fourth 

testing cycle. Figure 2 shows Dan's submitted proof developed based on 

Garfield's PWW (Figure 1), in which he did not fill gaps-i-ii-iii. Dan improved 

his proof-attempt in the answers to the PWW-CT, while Shira's responses did not 

exhibit much improvement. 
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Figure 2: Dan's submitted proof (translation from Hebrew added by the author) 

For the PWW-CT item "Can the middle triangle's bottom angle be known? If yes, 

how?" (In the version of Garfield's PWW that Dan and Shira had, this angle was 

not marked as right) Dan wrote: 

Dan: Yes, it is 90° because the two triangles are congruent, and therefore their 

corresponding angles are congruent, and thus a straight angle minus two 

angles whose sum is 90° gives an angle equals to 90°. 

We can see that through angle calculations, Dan fully filled gap-i and partially 

filled another gap - the congruence of two triangles, that did not appear in his 

written proof (Figure 2). For this same item, Shira wrote:  

Shira: Yes, we can (calculate) because, in every right triangle, the angles are 

always  30°, 60°, and 90°... So, we will assume that the small angle 

is 30° and the other one is 60°, so from both sides of this angle lie 

angles of 30°, 60°. to complete it to 180° it must equal 90°. 

Even though Shira mentioned the idea of subtracting two angles that complement 

to 90° from a straight angle, the gap was considered as not filled because her 

inference was based on a wrong assertion ("in every right triangle, the angles are 

always  30°, 60°, and 90°"). For the item, "Is the whole figure a trapezoid? How 

can you know it?" Dan explained that the whole figure is a quadrangle with two 

parallel sides due to equal corresponding angles and received a top grade for 

filling gap-ii. Shira wrote: "This is a trapezoid because it has two parallel sides 

and two sides that are not parallel." Besides mentioning a correct definition of a 

trapezoid, Shira did not justify her assertion. Hence, we gave Shira half the points 
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for filling gap-ii. To the item "Do you think this proof shows that the Pythagorean 

theorem holds for all right triangles? Why?" Dan received a maximum grade for 

responding: "Yes. Because we did not substitute any particular values for the 

sides nor the angles. We did it on a general case so that it will work for every 

right triangle". Shira wrote she thinks it is a general proof but did not reveal why, 

so she received no points for this answer.  

General results 

Dan's submitted proof (Figure 2) represents a general proof-product pattern in the 

data.  In 44% of the submitted proofs, students expressed the key-idea of 

calculating the trapezoid area in two different ways. They simplified the equation 

to derive the theorem without filling any of the three gaps above. By completing 

the PWW-CT in the second (N=37), third (N=10), and fourth (N=71) testing, 

62%, 70%, and 88% of the students gap-filled at least one of these gaps, 

respectively. Table 1 shows the average rates of filling the three gaps above in 

the written proof-attempts and in the PWW-CT's answers (if the gap was not filled 

in written proof). Revision of the PWW-CT before the 4th testing cycle increased 

filling gap-i rates from 3% and 5% in the 2nd and 3rd testing cycles to 70% in the 

4th. 

 

 

 

Testing cycle: 

Gap-i - why the 

middle triangle 

is right? 

2nd    3rd    4th 

 Gap-ii - why 

the whole figure 

is a trapezoid? 

2nd    3rd    4th 

Gap-iii - why is 

this PWW a 

general proof? 

2nd   3rd   4th 

Rates of Gap-filling in 

submitted proofs 

 

18% 10% 50% 

 

24% 0% 45% 

 

0% 0% 2% 

Percentage of gap-

filling in the PWW-CT* 

 

3% 5% 70% 

 

59% 55% 66% 

 

31% 50% 54% 

* From those who did not gap-fill this gap in their submitted proof. 

Table 1: Rates of gap-filling actions in submitted proofs and answers to the CQ. 

Table 2 shows the average self-reported proof understanding and self-given grade 

before and after completing the PWW-CT.  
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  Mean SD p-value Cohen's d 

"To what extent do you 

feel you understand the 

proof by now?"  

Pre-CT 

Post-CT 

8.35 

8.76 

 

1.99 

1.26 

 

 

<.01 

 

0.242 

"What grade would you 

give yourself for the 

proof you submitted?" 

Pre-CT 

Post-CT 

7.6 

7.132 

1.95 

2.29 

 

<.001 

 

0.219 

Table 2: Average self-reported proof understanding and self-given grades 

before and after completing the PWW-CT. 

We see that the PWW-CT significantly increased the students' reported sense of 

understanding and significantly reduced their self-given grades. However, the 

effects of the PWW-CT on reported understanding and self-given grades were 

only minor. 

DISCUSSION 

This study contributes to the mathematics education literature on proof learning 

by pioneering empirical examination of students' activity around a PWW. It 

shows that students can develop proofs based on a PWW that includes its main 

idea but lacks essential details for being considered valid. A PWW-CT, 

accompanying the PWW activity, can improve students' proof-products, leading 

to better proof understanding, thus supporting proof learning.  

The PWW-CT significantly increased students' sense of understanding and 

caused them to give themselves lower grades for their submitted proofs (both with 

small effect sizes). These results can be interpreted with the Dunning-Kruger 

effect; the more ignorant a person is in a subject, the more likely s/he is to 

overestimate her/his performance (Kruger & Dunning, 1999). Training in a task 

alleviates this effect and increases calibration – self-assessment accuracy. What 

substantiates this effect is that the knowledge necessary for self-assessment is the 

same knowledge that the person lacks. Reducing their grades after completing the 

PWW-CT reinforces the claim that they became more knowledgeable. 

Pointing at the mechanisms that underlie the effectiveness of the PWW-CT 

requires further investigation. One possible explanation is that it functions as a 

didactical interview done by a teacher. It helps students doubt what seems 

apparent and recruit their mental resources to elicit uncertainties and fill gaps 

within their proof-product. The PWW-CT stir students' attention to identifying 
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gaps they might have overlooked. Once students identify a gap, they are more 

likely to fill it. Repeatedly using PWW-CTs for different PWWs may develop 

students' ability to identify gaps by themselves.  

The PWW-CT role could also be seen as setting proof-writing standards. In the 

collaborative learning part of the activity, some students may have filled some 

gaps that they did not write down in their submitted proofs. That might suggest 

they did not perceive these gap-fillings as essential details. If that is the case, the 

PWW-CT served as an indicator of the author's mathematical standards and 

expectations regarding the elements that students should elaborate on in written 

proof. To put it another way, it might be that the PWW-CT taught the students 

what should be written in a proof and did not necessarily help them generate new 

gap-filling actions. This way or the other, the data show that such PWW-CTs can 

facilitate high-school students' proving activity around PWWs and make PWWs 

more accessible and beneficial for them. The pedagogical approach of using such 

PCT can be well applied to proving activities based on other PWWs and other 

kinds of proof texts.  
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This study investigated how Japanese preschoolers (5–6-year-old children) 

understand the mathematical concepts of length, area, and volume, as 

mathematics is not part of the preschool curriculum. Researchers conducted 

structured clinical interviews with 32 children to investigate their mathematical 

content knowledge, skill, and problem solving ability. The interviews were 

statistically and qualitatively analyzed. The results indicated that children could 

perform direct comparisons in length, area and volume, but the challenge was 

found that they were not able to measure a few comparable objects with subtle 

differences correctly. Children’s difficulty measuring correctly suggested that the 

future mathematical programs could enhance integrated learning, dealing with 

length, area, and volume simultaneously. 

INTRODUCTION 

Many studies have focused on elementary mathematics education for preschool 

and lower elementary school children (e.g., Brandt, 2013; Lin, 2013). However, 

measurement knowledge has not been sufficiently incorporated into these studies 

(e.g., Kotsopoulos, Makosz, Zambrzycka, & McCarthy, 2015; Smith, van den 

Heuvel-Panhuizen, & Teppo, 2011; Szilágyi, Clements, & Sarama, 2011; 

Tzekaki & Papadopoulou, 2017), even though it is an essential mathematical skill 

that is frequently used in everyday life (Clements & Sarama, 2009). Wilkening 

(as cited in Ebersbach, 2009) stated that preschoolers have been shown to have 

two-dimensional reasoning despite Piaget’s earlier notion that young children 

could not reason beyond the number one; Ebersbach’s study (2009) further 

supported this finding. Zöllner and Benz (2013) reported that four- to six-year-

old children are competent in the normative aspects of indirect comparisons of 

mathematical concepts. This article, therefore, seeks to extend the research on 
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multidimensional reasoning—especially when comparing length, area, and 

volume—among young children, particularly for those who do not study 

mathematics as a subject in school. The research question is: How do Japanese 

preschool children use multi-dimensional reasoning in a play-based setting?  

Preschool Education in Japan  

Teaching and learning in Japanese public preschools focuses on fostering three 

to six-year-olds’ mental and physical development and is activity-based, not 

subject-based (Japanese Ministry of Education, Culture, Sports, Science and 

Technology [MEXT], 2018). Children are expected to develop through play. 

According to MEXT (2018), kindergarten teachers should focus on developing 

children’s learning of numbers, quantities, and geometric figures, which comprise 

the foundation of elementary mathematics skills and should consider children’s 

interests when teaching them. 

The Project and its Theoretical Underpinnings 

The article is part of our preschool mathematics education program in Japan. The 

aim of the project was for inexperienced preschool teachers to understand how to 

incorporate mathematical content into children’s play and recognize activities 

that cause children to think and act mathematically. The theoretical and 

methodological underpinnings of the program were mathematical guided-play 

(Weisberg, Hirsh-Pasek, & Golinkoff, 2013) and the Structure of the Observed 

Learning Outcome (SOLO) taxonomy (Biggs & Collis, 1982). In the project, 

fundamental mathematical programs were developed within a framework of 

learning activities, educational objectives, and the child’s expected thinking and 

learning processes (Clements & Sarama 2009) to enable a smooth transition from 

preschool to elementary school (Matsuo, 2017).  

DESIGN AND METHODS 

Research Participants  

One kodomoen—a type of hybrid day care and preschool in Japan—took part in 

our pilot study. This kodomoen focuses on mathematical activities. A retired 

professional with experience in both kindergarten and elementary school settings 

supports the research and training of novice teachers in kodomoen, and she can 

help develop and disseminate early childhood informal mathematics educational 

activities. Children attending this school do not formally learn mathematics, 

although they engage in mathematical activities to a limited extent, but there are 

no measurement activities. In total, 32 of the children—18 boys, 14 girls, aged 
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five and six years—were selected for participation from the graduating classes. 

Of them, 30 were Japanese and 2 were non-Japanese, and they were from middle- 

and upper-middle-class families. 

Data Collection and Analysis  

We evaluated the children’s performance on tasks incorporating numbers, shapes, 

and measurement, focusing on how well they measured length, area, and volume, 

using both direct and indirect comparison. The researchers developed a structured 

clinical interview (Goldin, 1998) with 21 mathematical content items, 8 of which 

were on mathematical measurement quantified by 16 questions. The questions 

covered the following areas: Q1-7 on length, Q8-11 on area, and Q12-16 on 

volume. The questions were developed referring to the framework for early 

childhood mathematical curricula (Matsuo, 2017), with theoretical and 

methodological underpinnings from mathematical guided-play (Weisberg, Hirsh-

Pasek, & Golinkoff, 2013) and the Structure of the Observed Learning Outcome 

(SOLO) taxonomy (Biggs & Collis, 1982.) The interviews took place in January 

2019 and each lasted about an hour. The interviewers were the first author and 

co-researcher of this paper. The children were randomly selected for interview 

order. Both interviewers sat in front of the child and took turns asking questions. 

The interviews were video recorded. The researchers analyzed the data 

statistically and qualitatively, scrutinizing each child’s actions on the video as 

well as their transcript. 

RESULTS  

The interview questions were scored as 1 point for every correct response and 0 

for incorrect response. The highest score possible was 16 points. The researchers 

calculated the participating children’s total score and the average percentage for 

each question item, the mean score. The average total interview score was 10.81. 

Table 1 shows the question items with the mean score of the correct answers.  
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S/N Questions 
Mean score (standard 

deviation) 

1 
Which pencil is longer? (direct comparison of the lengths of 

two pencils) 
96. 9 % (0.1740) 

2 
Why did you give that answer in Q1? (the reason why you 

selected a longer pencil in Q1) 
75.0 % (0.4330) 

3 

Which pencil is the longest? Which pencil is 

longer? (indirect comparison of three pencils 

drawn on the paper) 

96.9 % (0.1740) 

4 
Why did you give that answer in Q3? (the reason you gave 

using mediation etc. in Q3) 
31.3 % (0.4635) 

5 
Did you know how long 10 cm is? (knowledge of the word 

and meaning of 10cm) 
65.6 % (0.4650) 

6 Can you draw a straight line of 10㎝? 21.9 % (0.4134) 

7 Can you measure an 8 cm line drawn with a ruler? 34.4 % (0.4750) 

8 

Which card is larger? (comparison 

between two cards (rectangles) drawn on 

paper) 

59.4 % (0.4911) 

9 

Can you compare two cards using the yellow card as an 

intermediary? (The area of yellow card is as same as the area 

of red card, but smaller than blue card.) 

90.6 % (0.2915) 

10 
Can you put four cards of different sizes in order? (comparison 

among four cards (rectangles)) 
78. 1 % (0.4134) 

11 

Why did you give that answer in Q10? (the reason you gave is 

that the longer length means larger area while focusing on a 

particular part such as height in Q10) 

84.4 % (0.3631) 

12 

Which cup of water has more water in it? 

(comparison between the volume of two 

cups of water drawn on paper) 

96.9 % (0.1740) 

13 Why did you give that answer in Q12? 75.0 % (0.4330) 

14 
Did you compare the volume of the two cups of water in Q12 

in terms of depth? 
93.8 % (0.2421) 

15 Do you know how much 1L of water is? 53.1 % (0.4990) 

16 

Can you select 1L of water from four different volumes of 

water? (The interviewer reminds children of a 1L carton of 

milk and asks them to choose from four options (500ml, 

800ml, 1L, and 1.5L).) 

28.1 % (0.4996) 
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Table 1: Question items and mean scores of correct answers 

Correspondence and Cluster Analysis: The Relationship of Answering 

Patterns with Question Items 

Semantic similarities among interview items were investigated using 

correspondence analysis and cluster analysis, this included all 16 question items 

with average percentages of correct answers. Figure 1 shows the results of the 

interview, the correspondence analysis is on the left and the cluster analysis on 

the right. The numbers correspond to the numbers of the interview items. The 

correspondence analysis shows the contribution ratio of the first and second axes 

are 28% and 23%. The cluster analysis shows three groupings, (G1) (Q4, and 

Q15-16); (G2) (Q3, Q10, Q2, Q11-13, Q1, Q9 and Q14); and (G3) (Q5-8). These 

groups show the differences in children’s answer patterns. G1 and G3 show 

relatively lower achievement in their patterns. 

In G1 and G3, the question items were related to the context of comparisons, 

moreover, G1 contains an item on explaining length and volume, and G3 includes 

length and area. Looking at G1 and G3 in detail, in Q15-16, twenty-three children 

did not identify the exact 1L amount by comparing it with the other quantities of 

water. Instead, on Q16, they selected the similar quantity, 1.5L, out of the four 

options (500 ml, 800 ml, 1L and 1.5L). This result indicates that children found 

it difficult to compare a particular volume with the other volumes of a given 

liquid. This could be resolved similarly to Q4. In Q4, children were expected to 

describe their reasoning when comparing the lengths of the three drawn pencils 

shown in Q3. It was not possible for young children to use a particular length, 

that is, a ruler or paper clip intermediary when they compared the lengths. Thus, 

making the comparison of similar quantities was challenging for children.  

In G3, knowledge of length (Q5) and measurement of length 

(Q6 & 7) were related questions. Drawing a 10㎝ length and 

measuring the 8㎝ line were related to the skill of reading 

a measurement scale. Children also needed to capture the 

subtle differences between two areas of sheets of paper in 

Q8. They also had to make a comparison of the area of 

rectangles that were different in height (equal in width 

but slightly different in height). Thus, these three 

questions (Q6-8), which were categorized in the same 
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group in the cluster analysis required children to show 

the correct skills for measuring things.  

 

 

Correspondence analysis  

 

Cluster analysis 

Figure 1: Correspondence and cluster analysis 

DISCUSSION 

The statistical analysis did not show any differences in answering patterns 

between direct and indirect comparisons. Children’s achievement in these two 

areas is crucial for their learning.  

Direct Comparisons 

There were 5 direct comparison questions (Q1, Q3, Q8, and Q12). Q1 required a 

direct comparison of length, Q3 required a comparison of length by judging 

appearance, Q8 required a comparison of area by judging appearance. Q12 also 

required a direct comparison of volume (a comparison of water in the same glass 

as drawn on paper; see Q12 in Table 1). Except for Q8, the number of correct 

answers for items related to direct comparisons was relatively high, showing that 

children performed direct comparison of length, area, and volume well (Zöllner 

& Benz, 2013).  

Indirect Comparisons 

The results varied when taking a closer look at existing knowledge applied across 

concepts, and this was not an aspect discussed in the statistical analysis. First, 
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the research considered length measurement. Q4 required an indirect comparison 

of length. Children had to order the length of three pencils drawn on paper using 

another medium, such as a ruler, or a paper clip, and their performances were 

considerably poor. Moreover, in Q5-7, twenty-one children answered that they 

had heard of the standard unit of length, a centimeter, but they did not explain the 

concept well and could not measure or represent the length of an object in 

centimeters. Second, are measurement was considered. The result of Q8 showed 

that some children had a weak understanding of area measurement. However, 

when a medium for indirect comparison was provided (in the form of a yellow 

card the same size as the red square), ten more children succeeded in comparing 

area and answered correctly on Q9. This clearly indicated that simple 

interventions allowed children at these ages to be able to make indirect 

comparisons. Regarding Q10, twenty-five children answered correctly, but they 

may have judged the ordering of areas based on length without considering width. 

There was a possible misconception as it was difficult to arrange these cards in 

order of width: 12 cm × 12 cm, 11 cm × 11 cm, 9 cm × 15 cm, 9 cm × 9 cm; this 

result is consistent with that of a previous study (Skoumpourdi, 2015). Third, 

volume measurement was considered. As seen in the Q12 results, it seemed an 

easier task for children to compare the amount of water in a drawing on paper; 

they correctly identified the larger volume in the interview (Q14). Most children 

compared the volume of water by its depth (Q13); even when they looked at the 

same amount of water in different shaped glasses, they judged the difference in 

volume by comparing only the heights of the liquid in each glass. Similarly, in 

Q15-16, half of the children had heard of the standard unit, a liter, but could not 

express a concrete image of the volume. 

Relating Mathematical Concepts 

The analysis revealed that children were confused about the mathematical 

concepts of length, area, and volume (Skoumpourdi, 2015). Other previous 

finding (Nakawa, Watanabe & Matsuo, 2019) also found out the same results 

even with some interventions for two- and three-dimensional shapes. In 

particular, children were able to compare lengths well, but that knowledge was 

misleading when they applied it to area and volume measurement. When 

analyzing the performance of the 13 children who could not compare the area of 

two cards (Q8), only two of those children were able to explain, in Q4, how to 

compare length correctly using a medium (p = .02246 < 0.5). It can be inferred 

that children might not be able to compare the area correctly if they were not able 

to compare lengths. Furthermore, the number of correct answers was higher when 
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comparing the volume of water in the same shaped glass than when comparing 

the area of cards. In the case of volume, children could compare the amount of 

water by its depth, but they could not in the case of area. Children were likely to 

compare area based on length, even if they noticed differences in the width of the 

cards. One reason could be that Japanese children often deal with height in day-

to-day life. For example, teachers often measure the height of children or compare 

their height; they may teach children to observe plant growth and record height, 

and so on, but they get little experience with area or volume. Finally, even when 

children are able to act mathematically in specific activities (for example, Q12) 

in day-to-day life, they are not able to acquire the concepts for quantities such as 

1L, 10 cm, and skills for describing the results of measurement. This should 

motivate better mathematics teaching. 

CONCLUSION  

The analysis showed that fifteen (47%) children in the interviews could perform 

direct comparisons of length, area, and volume. However, the analysis also 

showed that in cases where they did not do well on length comparison, it was also 

challenging for them to compare area correctly. In particular, it is difficult for 

children to make a comparison using a third vehicle or to make a detailed and 

accurate comparison. The comparison of length, size, and volume is closely 

related, and it was also revealed that children who could not compare lengths 

could not compare area. We need to develop children’s understanding of 

measurement and consider how the individual concepts of length, area, and 

volume, which are currently learned separately, can be integrated with one 

another. Future research should analyze a larger number of children and develop 

an early mathematical educational program through which children can learn how 

to compare related mathematical concepts and gain better mathematical content 

knowledge and skills. 
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Situational affect (emotions and motivation) in first year mathematics courses in 

US high schools was studied using Experience Sampling Methods and Latent 

Path Analysis. Seven Hundred forty-six students from two US states were 

surveyed using Experience Sampling Methods. The results of a latent path 

analysis suggest that situational emotions can be distinguished by the objects to 

which they are directed, and that students interpret their engagement in 

mathematics tasks using both positive and negative emotions simultaneously 

depending on to whom or what they are directing their emotions. Finally, the 

objects to which emotions are directed are key determinants of the motivational 

outcomes they impact in mathematics classes. 

INTRODUCTION 

The role of emotion in students’ motivation and success in mathematics is well 

established (Hannula, 2006; Hannula & Laakso, 2011). Emotions have been 

projected as the primary link between experiencing mathematics and one’s 

motivation to engage (Hannula, 2006). The consensus in educational psychology 

and mathematics education, assumes that the role emotions play in self-regulated 

learning is complex. For example, in the psychological literature there is strong 

evidence that experiences promoting positive emotions improves student learning 

(Pekrun, Elliot, & Maier, 2009). Positive emotions (such as joy or hope) tend to 

be related to higher levels of self-efficacy and effort students are willing to 

expend on a task. But there is also evidence that positive emotions can have no 

effect or even negative effect on learning (Trevors, Muis, Pekrun, Sinatra, & 

Winne, 2016). Negative emotions, (such as anger or hopelessness) likewise, can 

have both positive and negative effects, depending on the constraints of the 

learning situation (Goldin, Epstein et al., 2011). 

As a case in point, Muis, Pekrun et al., (2015) show that in a computer-mediated 

environment, students’ emotions while engaged in the task impacted the self-

https://www.tandfonline.com/doi/full/10.1080/00461520.2017.1421465
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regulated learning strategies they utilized in the task. Importantly, “positive” and 

“negative” emotions did not fall neatly into simple categories. Curiosity (a 

“positive” emotion) and anxiety (a “negative emotion”) together, for example, 

contributed positively to more critical thinking in the assigned tasks. Likewise, 

confusion and curiosity together contributed positively to metacognitive self-

regulation. 

One of the hypotheses that explains such conflicting evidence is that emotions, 

rather than being general affective responses to a task, instead are directed at 

particular objects in the environment. Middleton, Jansen, & Goldin (2017) 

propose that each emotion one experiences is directed at some object such as the 

teacher, oneself, one’s peers, or the mathematics in which one is engaged.  One 

can simultaneously be frustrated with the mathematics, but excited about the 

teacher or one’s peers. There is some evidence that, given the multiple potential 

objects to which a student may direct their emotions, and given the multitude of 

emotions one may experience relative to those objects, there is no wonder 

emotional responses generate conflicting evidence related to learning outcomes. 

Mathematics and the teacher and peers in math class are prime objects. Recently, 

Vollstedt & Duchhardt (2019) show that students take both the academic and 

social features of their environment into account, and think about them separately 

when framing the meaning their mathematics engagement has for them (see also 

Botah & Hannula, 2019). 

The pattern of emotions one displays in a learning environment and the 

subsequent personal meanings of the task one constructs through appraisal of the 

objects of one’s emotions can be termed, situational affect in much the same way 

as the interest one experiences in a learning episode can be termed situatonal 

interest. In fact, situational interest can be thought of as one feature of situational 

affect. Other features such as mathematical self-efficacy, feelings of social 

inclusion, and personal relevance of the mathematics can also be seen as part of 

situation affect (Wiezel, Middleton, et al., 2019). 

The distinctions between situational affect and longer-term, trait-like beliefs are 

reviewed thoroughly by Middleton, Jansen, & Goldin, (2017). Like situational 

interest, situational emotions can sustain persistence in the task, while longer-

term moods and affective structures tend to direct whether or not one chooses to 

engage in mathematics-related activity in the future (e.g., Hannula, 2006). 

Together, aspects of situational affect, broadening the “catch and hold” theory of 

the transition of situational interest to personal interest (Mitchell, 1993), may 

contribute to long-term, trait-like approach orientations. 
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Recently, Wiezel, Middleton et al., (2019) found that positive and negative 

emotions were significantly associated with students’ mathematical self-efficacy 

and interest, but not with other motivational factors. Moreover, both positive and 

negative emotions appear to exist simultaneously in students’ experiences and 

contribute to their interpretation of their mathematical engagement. The present 

study builds on these findings. Whereas in that earlier study, we found that 

situational affect impacts situational motivation, the subtleties of emotional 

object, and measurement of situational affect were not measured at the task-level.  

In the present study, our working hypothesis was that situational emotions, if 

distinguished by object (e.g., teacher, classmates, self, or mathematics) would 

manifest different effects across the situational motivational variables. Following 

Muis, Pekrun et al., (2015) we expected to see both positive and negative 

emotions contributing simultaneously to the motivational variables, with 

valences that would suggest that students may hold two or more emotions with 

different valences simultaneously.  Evidence of these patterns would support the 

theory that: 1) Situational emotions are directed at objects; 2) Students may 

interpret a situation using both positive and negative emotions; and that 3) The 

objects to which emotions are directed will be a primary distinguishing feature of 

the motivational outcomes they impact. 

METHOD 

Participants 

Participating students were recruited from 42 classes, taught by 17 teachers (8 in 

a Mid-Atlantic US State, and 9 in a Southwest US State). Forty-five percent of 

the students identified as Male, 52% identified as Female, and 4 % identified as 

“Other.” Fifty-nine percent of our students identified as Hispanic/Latinx, 14% 

identified as /White, 14% identified as African-American, 2% American 

Indian/Alaska Native, and 2% identified as Asian, 2% identified as Other, and 

8% identified with more than one category. All students were enrolled in a 

mathematics course designated as “first-year high school mathematics.” The 

majority first year mathematics courses in the Mid-Atlantic sample were 

semester-long integrated mathematics focusing more heavily on Algebra, 

whereas in the Southwest, first-courses were year-long, traditional Algebra 1 

content.   

Measures 

We assessed students’ situational affect using Experience Sampling Methods 

(e.g., Shernoff, Kelly et al., 2016). A short survey (Wiezel, Middleton, Zhang, 

Tarr, Jansen, 2018) was designed to assess students’ situational affect and 

motivation during a focal class activity. This instrument featured a set of 
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situational emotion checklists including 16 emotions (angry, anxious, ashamed, 

bored, confident, embarrassed, excited, frustrated, happy, hopeful, hopeless, 

interested, proud, relieved, satisfied, and worried). Emotions were directed 

toward four possible objects in the students’ mathematics class (the math activity, 

themselves, their classmates, and their teacher), yielding a matrix containing 16 

emotions x 4 objects. Students were asked to check a box in the matrix 

corresponding each emotion they felt towards each object. 

Factor analysis of these items revealed 4 separable factors:  Negative emotions 

directed towards the teacher/class (4 items e.g., Bored about/by Teacher); 

Positive emotions directed towards the teacher/class (16 items e.g., Excited 

about/by Teacher); Negative emotions directed towards the mathematics (6 items 

e.g., Anxious about/by Math); Positive emotions directed towards the math (7 

items e.g., Excited about/by Math). Chronbach’s alpha for these 4 scales were 

0.72 for Positive math emotions, 0.76 for Negative Math emotions, 0.37 for 

Negative class/teacher emotions, and 0.84 for Positive Math emotions. 

The low reliability for Negative class/teacher emotions indicates that findings that 

show an impact of this factor on situational motivation should be taken with 

caution. There is current debate on what reliability means for experience 

sampling methods, wherein one “experience” may be quite different, qualitatively 

from another, even in the same mathematics class. We include this factor despite 

its low internal consistency, keeping this caution in mind. 

Situational motivation variables were measured on the survey using a set of 5-

point Likert items arranged in 5 factors (1 corresponding to a low rating and 5 

being a high rating):  Effort (4 items e.g., How hard were you trying during the 

activity you were just working on?), Self-Efficacy (2 items e.g., I felt successful 

in the activity I was just working on), Social Engagement (4 items e.g., I felt like 

my contribution was respected during this activity I was just working on), 

Perceived Instrumentality (4 items e.g., How I performed on the activity I was 

just working on will affect my future success); and Interest (2 items e.g., I think 

the topic covered in the activity I was just working on is interesting). Chronbach’s 

alpha for these scales ranged from a low of 0.71 for Effort, and a high of 0.85 for 

Interest. 

Procedure 

Students were surveyed in the Fall of 2018 and Spring of 2019. Researchers asked 

teachers to identify an activity in their classroom that had the potential for 
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engaging students in the mathematics. The entire class session was observed, and 

when the identified activity was completed, each student was asked to complete 

the ESM survey. Surveys were completed electronically, primarily, using the 

students’ phones, or school laptops. Several classes did not have universal access 

to these devices so the surveys were administered using paper-and-pencil. 

Surveys took less than 5 minutes to finish. This resulted in 746 returned surveys, 

each assessing the student’s emotions and motivations in the immediate situation 

they were studying. 

RESULTS 

Goodness 

of Fit 

Index 

Estimate 

χ² 2013.86 (p<.0001) 

df 1091 

RMSEA 0.034 (0.031, 0.036) 

CFI 

TLI 

0.85 

0.83 

Table 1. Goodness of fit indices for the Latent Path Model 

We fit a hypothesized latent variable path model to the data using Mplus software 

(Muthén & Muthén, 2017).  Each item on the survey was treated as either binary 

(for emotion items) or ordinal (for motivation items), and each scale was 

estimated as its own latent variable. To address the ordinal nature of these 

variables, polychoric correlations (which can handle both binary and ordinal data 

in the same analysis) and WLSMV estimations were used in our models.  

Standardized Regression Coefficients  

 +Class 

Emotions 

+Math 

Emotions 

-Math 

Emotions 

-Class 

Emotions 

Interest 0.17***  0.54*** -0.25*** -0.28*** 

Self-Efficacy -0.02 0.66***  -0.63*** 0.17 

Social 

Engagement 

0.24***  0.34*** -0.25*** -.26*** 

Instrumentality 0.26*** 0.25*** -0.06 -0.29*** 

Effort 0.08 0.07 0.28*** -0.50*** 

Table 2. Relationships Among Latent Variables  
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Overall, the model fit relatively well (see Table 1 for fit statistics). Although our 

chi square was significant [χ²(1091) = 2013.86, p < 0.0001], the rule of thumb 

that χ²/df be less than 3 shows that our model has adequate fit. The RMSEA was 

0.034 with a 90% confidence interval between 0.031and 0.036, which indicated 

very good model fit (Hu & Bentler, 1999). However, the CFI and TLI indices of 

0.85 and 0.83 indicate moderately good fit.  

In the hypothesized model, we found was a significant, positive standardized 

regression coefficient between emotion factors and all motivation outcomes. The 

pattern among the effects indicates that the object of the emotions determines, in 

part, the motivational variables impacted.   

Positive Math Emotions, for example, is positively related to all motivational 

outcomes with the exception of effort. Effort expended in the task is predicted by 

experiencing more negative math-oriented emotions, but by having fewer 

negative teacher/class-oriented emotions. Positive emotions show non-significant 

relationships, regardless of object, towards effort students were willing to expend 

on the task. 

The remaining significant effects in the model are as follows. Situational interest 

is positively associated with positive class- and mathematics-related emotions, 

and negatively associated with negative emotions. Task-based self-efficacy is 

positively associated with positive math emotions and negatively associated with 

negative math emotions. Emotions directed towards the class were not 

significantly associated with Self Efficacy.  Social Engagement—the 

belongingness and support students felt in the task is positively associated with 

both positive class- and math-related emotions and negatively associated with 

both negative class- and math-related emotions. Perceived instrumentality 

appears to be associated with positive class and math emotions, and negatively 

related to negative class emotions. Perceived instrumentality was unrelated to 

negative math emotions. Figure 1 provides the full path model. 
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Figure 1: Latent Path Model of Situational Emotions by Object and their 

Hypothesized Relationship with Situational Motivation 

DISCUSSION 

Results confirm our hypothesis that situational emotions are directed at objects, 

and if these objects are taken into account when assessing situational affect, they 

explain some of the perplexing findings in the field related to seemingly 

conflicting emotions appearing simultaneously in the same experience. We found 

that, when we accounted for math-related and teacher/class-related emotions, the 

different emotional objects appear to impact aspects of situational motivation 

differently.   

In particular, the role of “negative” emotions is fascinating, as negative math-

related motivations appear to positively impact, or at least interact with, effort 

students are willing to expend in mathematics learning. The finding that positive 

emotions appeared to have little to no relationship with effort, but that negative 

emotions appear to stimulate effort is a fruitful area for followup research. 

Goldin, Epstein et al., (2011) in discussing affective structures make the point 

that frustration and other “negative” emotions may be interpreted by students as 

calls to expend more effort in order to learn or at least show some success in the 

task. How this plays out is uncertain, but our confirming evidence of this seems 
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to indicate that challenging tasks, with support, are critical for students to feel 

that a task is worthy of effort. 

Social-related emotions—those pertaining to the teacher/class as objects—are 

interesting for their part. Self-Efficacy appears to be fairly unrelated to social-

oriented emotions compared to those focused on mathematics as the object. This 

makes sense, in that task-related efficacy beliefs are tied to feelings of success, 

and in the US, mathematics tasks are predominantly tackled individually, or even 

if done in groups, are assessed individually.   

Some limitations to our work here must be noted, however: First, our negative 

class emotions scale had low reliability. This makes the findings related to that 

scale somewhat suspect. Further research and refinement of this scale is 

warranted.  Second, our fit indices were inconsistent. Followup studies with 

larger samples should provide better estimates, particularly if the negative class 

emotions scale is improved. 

In summary, this research contributes three important ideas to the literature worth 

further pursuit: 1) situational emotions are directed at objects; 2) students do tend 

to interpret learning situations in both positive and negative terms depending on 

to whom or what they are directing their emotions, and 3) the objects to which 

emotions are directed determine, in part, motivational outcomes of mathematics 

learning experiences. 
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DEFINITION AND A MODEL 
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Building on Fischbein's notion of figural concept, this paper introduces a 

cognitive model of geometric prediction (GP) processes and proposes a revised 

definition of GP as the mental process of generation of a new geometrical object 

through the manipulation of figural elements that maintain invariant certain 

theoretical elements belonging to the solver’s Theory of Euclidean Geometry. The 

model was developed during my doctoral study aimed at investigating cognitive 

aspects involved into processes of prediction in Geometry. I introduce the model 

and provide an example of the qualitative analyses that can be carried out 

through it. Specifically, I focus on the central role played by theoretical control 

and dynamism within the process. 

INTRODUCTION 

This paper reports on the main finding of my doctoral study, aimed at 

investigating cognitive aspects involved in a cognitive process carried out in the 

domain of Euclidean geometry: geometric prediction (GP). GP is a theoretical 

construct that was first presented at the 42nd PME conference (Miragliotta & 

Baccaglini-Frank, 2018). This was the very beginning of our studies on prediction 

processes. Although the theoretical construct of GP still needs further 

investigation, here I continue my discussion of GP within the PME community 

by reporting one of the main findings of the study: a revised definition and a 

model through which GP can be analyzed.  

The study is situated within the wide domain of research on visualization in 

geometry, following Presmeg's definition (2006): 

[...] visualization is taken to include processes of constructing and transforming both 

visual mental imagery and all of the inscriptions of a spatial nature that may be 

implicated in doing mathematics (p. 206). 

Indeed, concerning the research on mental images involved in doing 

mathematics, processes of GP can be considered elaborations and processing of 

mental images. Moreover, when discussing the processes accomplished by a 



Miragliotta 

PME 44 – 2021   3 - 303 

solver facing a geometrical task, Mariotti and Baccaglini-Frank (2018) highlight 

that it is rather frequent to use geometric prediction “to mentally manipulate a 

figure and imagine how it will change given certain constraints, that is, 

maintaining certain properties invariant” (p. 156). Since the authors highlight that 

this process is common among the solvers, this study is meant to contribute to 

this topic by providing a precise definition and a fine-grained description of GP. 

In order to gain a deeper insight into GP processes, building on the Theory of 

Figural Concept (Fischbein, 1993), we have constructed a model (Miragliotta, 

2020) of the process, seeing it as a mental action of productively and dialectically 

combining figural and theoretical elements under the solver’s theoretical control. 

The model that I will introduce was developed, refined, and tested, to ensure that 

it provides a suitable lens for observing GP processes and has the potential to 

explain a variety of students' difficulties. In this paper, I use the model to describe 

different kinds of GP processes, highlighting especially the role of theoretical 

control and manipulation.  

THEORETICAL FRAMEWORK 

Within the domain of geometrical reasoning, generating a prediction is a process 

that involves the solver's use of and interaction with geometrical objects. These 

are very particular mathematical entities. As highlighted by Hershkowitz et al. 

(1989), geometry as a mathematical theory is a cultural artifact, whose objects 

belongs to a logical system, and therefore are ideal; however, unlike other 

mathematical domains, geometry relies on a natural conceptualization of space, 

and its objects maintain a strong connection with material objects (solids or 

drawings). So, from an educational point of view, for observing and describing 

personal processes of prediction, we need a theory that describes this multifaceted 

nature of geometrical objects when they are used and conceived by a solver.  

This is the key reason why we grounded our study on the Theory of Figural 

Concepts (Fischbein, 1993), which sees geometrical objects as composed by 

different – but strongly intertwined – aspects. Indeed, when a solver is 

approaching a geometrical task, s/he deals with figural concepts. A figural 

concept is neither a pure concept nor a pure image; it is the fusion between the 

conceptual and the figural components of a geometrical object as it has been 

thought by the solver. In Fischbein’s words: figural concepts “reflect spatial 

properties (shape, position, magnitude), and at the same time, possess conceptual 

qualities – like ideality, abstractness, generality, perfection” (Fischbein, 1993, p. 
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143). So, from a psychological and educational point of view, when people use 

or refer to ideal geometrical objects they are thinking in terms of figural concepts.  

As a consequence, the solver’s figural concepts can be very close or quite far 

from the corresponding geometrical objects. Such a distance can be more or less 

wide depending on the solver’s use of a system of control. Recently, building of 

Fischbein’s work, Mariotti and Baccaglini-Frank (2018) have provided an 

explicit definition of theoretical control as the act of “mentally imposing on a 

figure theoretical elements that are coherent in the theory of Euclidean geometry” 

(p. 156). Theoretical control has several functions (see, Mariotti, 1992, for further 

details). For example, when the solver needs to rearrange (through rotation, 

translation, reflection, …) figural components of a given drawing or imagined 

figure, s/he needs to theoretically control the figure in order to check the 

possibility of the transformation and its consistency within the mathematical 

reference theory (Mariotti, 1992); in this study the reference theory is the Theory 

of Euclidean Geometry (TEG). Generally speaking, the theoretical control 

supports the coordination between an image of a figural concept (the figural 

component) and its geometrical definition (the theoretical component). 

The model of GP in a nutshell 

In light of the theoretical framework and supported by data analyses, a new 

definition of GP was proposed in (Miragliotta, 2020) and here reported. 

Geometric prediction can be defined as: the mental process of generation of a 

new geometrical object through the manipulation of figural elements that 

maintain invariant certain theoretical elements belonging to the solver’s TEG. 

Manipulation can be physically performed or only imagined. Depending on the 

solver’s theoretical control, products of GP can be coherent or incoherent with 

respect to the given theoretical constraints within the TEG. 

Data analyses revealed that GP processes are composed of general and stable 

components, following described. Theoretical elements, recalled by the solver 

through introduction of new elements or interpretation of the given ones; these 

are elements of the solver’s productions that belong to the TEG; they include all 

the properties that solvers give to the figure (or part of it), theorems and 

mathematical results. Figural elements, on which the solver focused, and which 

can be manipulated; these are elements of the solver’s productions that belong to 

the figural domain in a specific moment related to the image of the figure in front 

of the solver. Depending on how these components interact and come into play, 

they produce a process of GP with specific characteristics. Looking at the diagram 
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(Fig. 1), the arrows make explicit the connections between the components and 

their possible features. 

 

Figure 1: Visual diagram of the GP model 

Starting from the upper left side of the diagram above, when a GP process starts, 

a geometrical figure is interpreted by the solver, who recalls or introduce 

theoretical elements that characterize certain figural elements. Figural and 

theoretical components are always intertwined (see the red arrow) and one can 

recall the other at any time. Theoretical control (Mariotti & Baccaglini-Frank, 

2018) envelopes and harmonizes these two components (see the funnel in the 

centre). Moreover, using theoretical control the solver manipulates or decides to 

focus on particular figural elements (see the blue arrow on the right), allowing 

solvers to obtain new figural elements or additional theoretical properties of the 

figural elements. Manipulations can be accomplished in two ways: continuously, 

that is solvers can imagine, perform or mimic a continuous movement of one or 

more parts of the configuration (i.e., points, segments); discretely, that is solvers 

can locate these parts at a specific position on the plane and reconstruct the 

corresponding configuration. The cycle described can be repeated. 

A GP process does not produce either a pure theoretical or a pure figural object: 

it produces an object that is a composition of the two. This object can be drawn 

out or conceived only mentally, according to the theoretical control that the solver 

exercises. The coherence of such a product within the TEG also depends on the 

theoretical control. 

METHODOLOGY 

The data collected for this qualitative study comes from 60-minute individual 

interviews in which solvers were assigned as many prediction open problems 

(i.e., open-ended task focused on prediction) as they could solve in the given time. 
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Data consists of audio, video recordings, and drawings produced by each solver. 

The participants are from a convenience sample of 37 Italian solvers who 

volunteered to take part in the study. Among them there are 32 high school 

students (ages 14-18), 5 among undergraduate, graduate, and PhD students in 

Mathematics (ages 23-35). Tasks were proposed through task-based interviews. 

The first question was always the same; then there was a sequence of questions 

defined a priori and a set of stimuli to obtain solvers’ comments or clarifications. 

In this paper I will refer to the following task: 

“Imagine a triangle ABC. Consider the midpoint of the side AB and call it M. 

Imagine tracing the segment CM. Imagine that A and B are fixed. Make a 

prediction: is it possible that CM is congruent to CB?” 

Solvers can reason in different ways. One of the possible resolution paths consists 

of recognizing CM as a median of the triangle ABC; focusing on the triangle 

CMB and interpreting the theoretical element “CM is congruent to CB” as the 

constraint “CMB is an isosceles triangle”. Starting from a first prediction about a 

position for C so that CM is congruent to CB, the solver can imagine moving C 

to explore other positions of C that maintain the given constraints. This way, the 

solver can predict or recognize an entire locus for C. Instead, the solver may 

directly recall a figural concept, that is “the axis of a segment”, and its definition 

as the locus of points equidistant from two given points (M and B). 

When the model is used for describing GP processes, the researcher needs to 

make explicit all the theoretical and figural elements that are involved. The solver 

can explicitly mention some of these elements, but others need to be inferred; 

inferences can be drawn by looking diachronically and synchronically at all the 

solver’s productions (i.e., utterances, gestures, drawings). Theoretical control can 

be inferred by looking at how theoretical and figural elements are blended within 

the process, more or less coherently with the mathematical reference theory. 

CASE ANALYSIS  

Among the data collected, I chose key excerpts from Sam’s interview to be 

presented here, since they provide (in a quite short timespan) an example of 

different kinds of GP processes accomplished by the same solver. When the 

interview took place, Sam was a 10th grade student. In the following 

transcriptions, I make use of bold font and underlying to highlight theoretical 

and figural elements, respectively. 



Miragliotta 

PME 44 – 2021   3 - 307 

Right after the first question, Sam expresses his first product of GP, stating that 

CM does not be congruent to CB (GP1) and explain why, as follows. 

1  Sam: Because the side CM would represent, in any way, the height of the 

triangle that I imagined and therefore could not reach the length of 

the side BC anyway. 

According to the model, initially, Sam introduces new theoretical elements: he 

sees CM as the height of the triangle ABC. His theoretical control is not strong 

enough to recognize the inconsistency (or at least the lack of generality) of this 

interpretation and to support manipulations of figural elements.  

The interviewer asks Sam to make a drawing of what he has imagined (Fig. 2a), 

and then she repeats the question. Sam’s answer is the following: 

2  Sam: Because the side CM, that represents the height, is in any case... since 

it is perpendicular to the sides AB that are fixed points, it is shorter 

than the side CB since it is slanted instead with respect to the side 

AB. 

The drawing supports Sam’s first interpretation of the configuration and the 

perpendicular relationship between CM and AB is a new theoretical element, 

which is directly drawn from the theoretical element “height”. This relationship 

is coherent within the solver’s TEG and interpretation, but it does not coherently 

fit with the given constraints, since CM is given as a median of ABC. Until Sam 

conceptualizes CM as a height, he does not seem to be able to overcome this very 

fixed interpretation. 

Now the interviewer asks Sam if he thinks he can move C so that CM is congruent 

to CB. Sam says that he does not think so, and he starts arguing why, but then he 

suddenly stops; after a long silence (8 sec) he states the following. 

3  Sam: No! No, no, there would be one point. I should...I should move C 

perpendicularly to the midpoint of segment MB [he points at a 

specific position, Fig. 2b] and therefore these two, these two [CM,CB] 

sides would be identical. 

He performs a drawing of the new configuration (Fig. 2c). Line 3 provides an 

example of a GP with different features. The interviewer's question seems to 

promote Sam's mental manipulation of figural elements (i.e., point C, segments 

CM and CB). He does not perform such a manipulation only figurally to reach a 

position for C so that CM “appears” equal to CB, but an important role is also 

played by theoretical elements. Indeed, Sam points at the position and, at the same 

time, provides theoretical elements (i.e., “midpoint”, “perpendicularly”) used to 
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find this position. Looking at his utterance we can see that CM is no longer 

conceptualized as a height, but as a side (of a triangle). We can infer that Sam is 

activating theoretical control over the figure, which allows him to coherently 

manipulate figural elements, take into account all the theoretical constraints 

which characterize the figure, and drop the idea that CM must be the height. At 

the end of the process, Sam has reached a new product of GP: C on a 

perpendicular segment through the midpoint of MB (GP2). The manipulation was 

discrete: Sam has pointed at a specific position within the plane and then mentally 

reconstructed the sides (“therefore would be equal”). Good theoretical control 

and discrete dynamic interaction with figural elements are the main features of 

this GP. 

When the interviewer asks him for other ways for CM to be congruent to CB, he 

says: 

4  Sam: Ehm... the other points would be moving point C perpendicularly to 

MB, I mean raising it [he points at C and mimics a straight trajectory 

that is perpendicular to MB, see Fig 2d] or lowering it [he mimics the 

trajectory, see Fig 2e] and, bringing to the other side, raising it or 

lowering it. Yes, moving point C only perpendicularly to MB. 

Sam’s utterances and gestures depict a new product of GP, by describing an entire 

locus for C. GP3 (C on a line perpendicular to MB through the midpoint of MB) 

constitutes a refined version of GP2. The dynamic dimension embedded into the 

process is evident: Sam continuously manipulates the figural element C for 

describing the locus that constitutes his prediction. This is a different way of 

accomplishing a GP. 

 

Figure 2: The drawings and gestures performed by Sam during the interview 

Looking at the whole excerpt (lines 1 – line 4) we can notice how movement is 

more and more intergraded into the GP processes, realizing an evolution from a 

very fixed configuration to a continuous manipulation of figural elements, 

passing through a discrete approach. Supported by the interviewer’s requests for 

alternative configurations that could realize the congruence between CM and CB, 

Sam undertakes three processes of prediction with different features. The first 
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process is characterized by a misleading interpretation of the given constraints 

that reveals a solver’s lack of theoretical control, leading to the fixedness of the 

whole figure. Sam's exploration is limited to the left part of the model; GP1 is 

only the description of the very first triangle that Sam has imagined. The last two 

processes are both characterized by good theoretical control which supports the 

solver in completing the cycle of prediction. More precisely, the process that 

leads Sam to communicate GP2 is characterized by the introduction of new figural 

concepts (the midpoint and the perpendicular segment). The theoretical elements 

that compose these figural concepts are verbally described; instead, the figural 

counterpart is performed gesturally (Fig. 2). The good theoretical control allows 

the solver to recall (eventually implicitly) the most suitable fragment of theory 

and ignore the first figural concept (the height of the triangle). A discrete 

manipulation of figural elements (i.e., C, CM, and CB) supports the prediction 

process. So, we can say that good theoretical control and (discrete) dynamism are 

the main features of this process. The last GP process manifests a prominent 

dynamic dimension, as well: seemingly, the locus is reached correctly because 

the solver is willing to manipulate figural elements (C, CM, and CB) 

continuously. While Sam is moving C, he constructs the locus; indeed, he starts 

moving C above the segment AB, and during this manipulation the idea of also 

moving C under the segment emerges. The last utterance suggests the 

intervention of the solver’s theoretical control to maintain the coherence of the 

manipulation; indeed, a theoretical counterpart is added. 

CONCLUDING REMARKS 

Analyses reveal that there is not only one single process of prediction with certain 

fixed characteristics; more likely there are stable components (theoretical and 

figural elements, theoretical control) whose different interaction gives rise to a 

process of GP with specific features. As far as this report concerns, I focus 

particularly on the role played by theoretical control and dynamic dimension. The 

case study in this paper provides an example of three different processes of GP 

that were accomplished by the same solver as he solved a given task. The first 

process is characterized by a lack of both theoretical control and dynamism; 

theoretical control, coupled with dynamic interactions with figural elements 

(discrete and continuous, respectively), characterizes the last two. 

Theoretical control is at the heart of the model; it has a crucial role in all the 

processes. For example, it is key for controlling the coherence of the manipulation 

of figural elements (line 4); for recalling suitable figural concepts (line 3); for 
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taking into account all the theoretical constraints given by the problem or deduced 

from those (lines 3-4). Moreover, this report focuses especially on the function of 

a dynamic dimension as a catalyzer of GP processes: the possibility of 

considering several configurations that change dynamically (in a discrete or 

continuous way) has revealed to be central for reaching a coherent product of GP. 

This is consistent with Presmeg’s findings on dynamic imagery (1997) which is 

revealed to be very effective and “especially powerful in facilitating the 

mathematical problem solving of the students who used them” (Presmeg, 1997, 

p. 305). Sam’s excerpt also provides an example of a (quite) instantaneous 

breakthrough in the situation which allows the solver to undertake effective GP 

processes right because he is willing to explore the configuration dynamically. 

For other students who have interpreted CM as a height, the interviewer’s request 

for other positions does not seem to trigger a more dynamic exploration, and they 

remain fixed in their first interpretation. Here is one of crucial roles played by the 

theoretical control: it makes the solver able to coherently reconceptualize the 

figure. In the excerpts, the interviewer’s questions simply activate Sam’s 

theoretical control. 

The model provides insights into the GP process of a particular solver at a given 

moment while that solver is solving specific prediction open problems. Although 

findings from this study have no statistical ambitions because of the limited 

number of cases analyzed, the fine-grained qualitative analyses that were carried 

out have provided a richness in detail and depth which would not have otherwise 

been possible. 

I see great educational value in tasks that explicitly ask students to make 

geometric predictions. Indeed, at the end of each GP process, solvers gain new 

insights into the initial geometric configuration; simultaneously such insight 

enriches the personal figural concepts with new figural and theoretical 

components that emerge during the process. Moreover, asking for a prediction 

sheds light onto the features of students’ figural concepts, and consequently 

provides teachers insightful information for designing geometrical activities 

aimed at strengthening students’ theoretical control. This is a new hypothesis that 

needs to be further investigated. However, in my view, considerations emerging 

from this paper can inspire educators to establish educational goals and “good 

practices” within the teaching and learning of Geometry. 
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Sumpter, L. (Eds.), Proceedings of the 42nd Conference of the International Group 

for the Psychology of Mathematics Education (Vol. 3), (pp. 387-394). Umeå, 

Sweden: PME. 

Presmeg, N. C. (1997). Generalization using imagery in mathematics. In L. D. English 

(Ed.), Mathematical reasoning: Analogies, metaphors and images (pp. 299-312). 

Mahwah, NJ: Erlbaum.  

Presmeg, N. C. (2006). Research on visualization in learning and teaching mathematics. 

In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of 

mathematics education (pp. 205-235). Rotterdam: Sense Publishers. 



3 - 312 

2021. In Inprasitha, M, Changsri, N., Boonsena, N. (Eds.). Proceedings of the 44th Conference of the 

International Group for the Psychology of Mathematics Education, Vol. 3, pp. 312-320. Khon Kaen, 

Thailand: PME. 

TEACHING–LEARNING STRUCTURES IN MATHEMATICS 

INSTRUCTION FROM A MULTIMODAL PERSPECTIVE  

Victoria Möller1 and Rose Vogel1 

1Goethe University of Frankfurt, Germany 

 

This article focuses on structures of teaching and learning in mathematics 

classrooms, which are observed in everyday teaching. They are designed by the 

teacher. The goals and motivation for the design are to activate the learners’ 

previous knowledge, to enable and to reflect mathematical explorations, as well 

as to structure and link new knowledge content. Different types of teaching–

learning structures are analysed in more detail and examined for connections 

between their function in the teaching practice and the utterances of the teacher. 

With the help of the Content Structuring according to Mayring (2014), authentic 

teaching material is analysed. A characteristic use of modes is revealed for 

certain teaching–learning structures.  

INTRODUCTION  

In order to make mathematical learning as meaningful and supportive as possible, 

teachers vary teaching–learning structures and thus set different emphases for the 

design of the mathematical learning process (Steinbring, 2005; Barzel et al., 

2013). At the center of these structural units is the object of learning, which is 

elaborated, illustrated, and made tangible, in the interaction between teacher and 

learners or in negotiation processes between learners, and can therefore lead to 

mathematical knowledge growth. Teachers design teaching–learning structures 

in different ways. The teacher’s task is to prepare what is to be learned according 

to teaching–learning theories and to activate, enrich, and structure what has been 

learned in order to initiate mathematical learning processes. In this paper, the 

focus is on the teacher's design of mathematics lessons and its importance for the 

students’ learning activities.  

The teacher's instructions and the interaction situations are not only in speech, but 

are also accompanied by other modes, such as gestures and inscriptions. Modes 

are often not used separately or sequentially, but the subject matter is explained, 

structured, repeated, and applied in new contexts through multiple modes 

simultaneously (Alibali et al., 2014).  
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THEORETICAL FRAMEWORK  

Multimodality 

Interpersonal interaction in everyday situations, but also in the context of learning 

processes, is characterised by the use of varied signs. Kress (2010) focuses in his 

semiotic interpretation on the relation between the design of the sign, called form, 

and its meaning. The specific configuration of signs is produced in interaction 

and is thus part of the semiotic resources of a culture. This means, for example, 

for mathematical learning processes, that fractions are inscriptively represented 

in mathematics classes in two dimensions with numerator and denominator. A 

specialist mathematician, on the other hand, often chooses the one-dimensional 

pair representation. The respective cultural context, i.e., the mathematical subject 

culture or teaching culture, shapes the design of the sign.  

“Mode is a socially shaped and culturally given semiotic resource for making 

meaning. Image, writing, layout, music, gesture, speech, moving image, soundtrack 

and 3D objects are examples of modes used in representation and communication.” 

(Kress, 2010, p. 79).  

In the present research context of authentic mathematics teaching, the main 

observable modes are speech, gestures, writing, and typical iconic images used 

in mathematics and mathematics teaching (including layout).  

In the context of mathematics education, speech is differentiated into technical 

language and academic language, which are used for interaction in mathematics 

lessons in addition to everyday language (Vogel & Huth, 2020). It can be stated 

that the academic language is shaped by the prevailing classroom culture, which 

in turn is strongly influenced by the teacher. The amount of technical language 

often varies greatly and depends on the teacher’s professional self-image. Speech 

differs from writing primarily in its grammatical structure and medial 

implementation form (graphical and phonetical signs). In mathematics 

instruction, written language is often used in the form of a notebook entry or in 

the written formulation of mathematical rules (e.g., in a rule book). 

Gestures as the result of hand movements in space (Goldin-Meadow, 2003) are 

described by Huth (2014, p. 151) as  

“stable components of the semiotic repertoire that it is probably almost impossible to 

suppress them for any length of time. But not only for the producer of gestures, but 

also for the reader or rather interpreter of them, they seem to be important in relation 

to the speech used, as indicated by Kendon (2004): ‘The meanings expressed by these 
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two components [gesture and speech] interact in the utterance and, through a 

reciprocal process, a more complex unit of meaning is the result.’ (ibid. 108 f.) ”. 

In addition to written language, iconic signs (images) are significant in teaching 

contexts for the representation of mathematical relations or for the illustration of 

ideas that have become established in theories of mathematical learning. Such 

“written-graphical products” (Schreiber, 2013, p. 54), generated by learners and 

teachers alike, are called “insciptions” by Latour and Woolgar (1986).  

“Inscriptions are seen by Latour and Woolgar as a very ductile means of 

representation that is continuously changing and improving. ” (Schreiber, 2013, p. 

54). 

This processual character of inscriptions can be used for mathematical learning 

processes in a special way. On the one hand, they are temporarily fixed and on 

the other hand they can illustrate transformation processes due to mobility and 

changeability. 

Structures in mathematics instruction 

The design of mathematics instruction is shaped by the teacher’s intended 

learning goals, which are determined by the mathematical content of learning and 

the mathematical concepts relevant to the process of understanding. These 

mathematical foundations are framed by mathematics teaching principles of 

creating instructional situations and teaching–learning arrangements. Thus, 

Barzel et al. (2013) formulate “four main phases” (p. 287) to design teaching–

learning arrangements that are oriented to the functions of learning and teaching 

and the learning activity initiated by it. For further analysis, the authors 

differentiate these into six teaching–learning structures.  

By activating students’ experiences from previous lessons and everyday 

experiences outside the classroom, existing knowledge is made accessible for the 

current learning content of mathematics lessons (Activating). Learners can refer 

to already existing knowledge and use it for the development of new learning 

content. While Explorating, learners discover and experience initial approaches 

and aspects of the new learning content (e.g., in authentic contexts). These 

findings can be shared informally within the learning group at first. By 

systematically observing the increase in knowledge, the learners become aware 

of the newly gained insights, so that an initial structuring is made possible 

(Reflecting & initial Regularizing). The pre-structured knowledge can be further 

abstracted, compared to previous mathematical knowledge, and linked to it 

(elaborated Regularizing & Linking). In this way, the experiences of the 
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exploration are condensed to their mathematical essence. The knowledge 

condensate, in the form of regularized and linked knowledge, is documented in 

writing and thus fixed for later access (Securing & Preserving). The described 

structures of initial Regularization, Linking, and Securing are summarised by 

Barzel et al. (2013) as “organization of knowledge” (p. 285). The framework for 

practicing the newly acquired learning content and transferring it to new contexts 

is provided by the teaching–learning structure Practicing. The challenge for the 

teacher is to identify suitable tasks (Watson & Sulivan, 2008), to offer adequate 

support, and to ensure that differentiation potential is available for specific target 

groups.  

These six teaching–learning structures can occur several times in the mathematics 

classroom or can be observed in different sequences. They are used variably by 

the teacher to enable an effective learning process for the students.  

PURPOSES AND METHODOLOGICAL ASPECTS  

The following research questions guide the analysis: 

(1) Which teaching–learning structures can be identified in authentic mathematics 

instruction? (2) In which modes does the teacher utter in these teaching–learning 

structures? (3) Is there a connection between the function of the teaching–

learning structures and the modes of the teacher’s utterances?  

The empirical findings presented refer to a lesson of 90 minutes. The lesson 

focuses on the introduction of addition and subtraction of like-named and unlike-

named fractions in a 6th grade class of an integrated comprehensive school. The 

authentic lessons were videotaped and analysed using Content Structuring 

according to Mayring (2014, p. 104). For the analysis, two category systems were 

developed based on theory. One category system deals with teaching–learning 

structures and their importance for the instructional mathematical learning 

process. The following main categories are defined: Activating prior knowledge 

and experience (a), Exploring and elaborating knowledge elements (e), reflecting 

and initial Regularizing (r), elaborating Regularizing and Linking (l), Securing 

and preserving (s), Practicing in selected tasks (p), and other structures (Other). 

The main categories are differentiated into subcategories. The observable 

interaction structure (instructions by the teacher or interactions between the 

teacher and individual students or a group of students) is considered here. Except 

for the main category Practicing, pure instructional situations can be identified 

in which the teacher refers to previous learning content or explains new learning 

content. In addition, interactions with individual students, groups of students, or 
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the entire class can be observed, each of which is coded in a subcategory. The 

category Other focuses on the teacher’s organisational activities. A total of 502 

time intervals of 10 seconds each are coded with this category system. The coding 

is done by two coders. An intercoder reliability of 0.89 (according to Holsti, 1969, 

p. 140) is achieved. The second category system deals with the semiotic resources 

(signs) used and their configuration (modes). For this purpose, the classical modes 

are used first: speech (sp), gesture (gs), and action (a). After coding, the authors 

decide not to consider the action mode.The actions observed by the teacher only 

have an organisational function and thus only have flanking significance for the 

learners’ discussion of the content, e.g., opening the pen to write on the board or 

leafing through documents and the textbook in order to set further tasks. The 

inscriptional expression is split into two modes: written text (w) and signs, used in 

mathematics and mathematics teaching, as well as their arrangement, hereafter 

called image (i). For example, the two-dimensional representation of a fraction, an 

equals sign, or the pie model of fractions are likewise coded as image. In addition 

to the coding of single modes, combinations of modes are also included in the 

category system. Situations with signs that do not show any of the mode 

interpretations described above are coded as other (0). The intercoder reliability 

achieved here is 0.82 (according to Holsti, 1969, p. 140). 

RESULTS  

  

Figure 1: Modes of teacher’s utterance in progress of coding intervals, 

modes: speech (sp), gesture (gs), image (i), writing (w) 
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(1) Which teaching–learning structures can be identified in authentic 

mathematics instruction?  

Each teaching–learning structure is condensing at certain times during the lesson. 

Activating previous knowledge can only be identified at the beginning of the 

lesson (see Figure 1, Activating). In the analysed introductory lesson, the teacher 

makes prior lesson content available by activating learners’ concepts of fractions 

(e.g., through iconic representations on the whiteboard). Early on, the teacher 

weaves explorations of the new learning content addition and subtraction of 

fractions with like and unlike denominators into the repetitive instructional 

segments of activation (see Figure 1, Explorating). This interlacing of previous 

knowledge (concept of fractions, comparison of fractions with the same name and 

fractions with different names, shortening and extending) and new knowledge 

elements is superseded by an interlacing of Exploring and Regularizing intervals 

(see Figure 1, Regularizing). In this process, new knowledge elements are 

provisionally reflected orally and increasingly systematised. The teacher 

therefore addresses the central mathematical aspects of the lesson at the beginning 

and systematises them successively in the teaching–learning structure, 

Regularizing. 

Subsequently, the new knowledge content is further systematised by an 

alternating sequence of Regularizing and Linking intervals to support the 

embedding in the  previous knowledge of the learners (see Figure 1, Regularizing 

& Linking). From interval 130 onwards, this combination of teaching–learning 

structures is replaced by an interplay of linking and Practicing intervals (see 

Figure 1, Linking & Practicing). While the students apply the new knowledge 

with textbook exercises, the teacher interrupts several times to discuss difficulties 

and errors observed by students’ representation. Finally, the learning content is 

preserved by documenting it in the rule book (see Figure 1, Securing). This 

structure appears exclusively at the end of the lesson and picks up both the new 

learning content as well as connectable content from the previous lessons. 

The subcategories of the category system of the teaching–learning structures 

show that the teaching practice is characterised by common dialogue between the 

learners and the teacher. This suggests that the teacher’s spoken and gestural 

expressions concentrated on stimuli for the active participation of the learners in 

the mathematical lessons. At the same time, however, it is clear that the teacher 

very much moderates, complements, and drives the lesson and thus the teaching 

practice is very much directed by the teacher.  
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(2) In which modes does the teacher utter in these teaching–learning structures?  

Across all coded intervals, speech emerges as an extraordinarily pronounced 

mode (approximately 91%), which substantially shapes the development of the 

mathematics lesson. Gestures are coded in more than half of the intervals, so that 

they are also attributed as a central part in the lesson’s progress (see Table 1). 

Moreover, this introductory lesson reveals the close intertwining of speech and 

gesture, which is complemented by the inscriptional mode writing in the 

teaching–learning structures Linking, Securing, and Practicing. 

(3) Is there a connection between the function of the teaching–learning structures 

and the modes of the teacher's utterances?  

Similar modes can be identified in the teaching–learning structure Activating as 

well as in Exploring (see Table 1). In addition to speech and gestures, images 

such as mathematical signs, which are relevant for the mathematical learning 

process, as well as graphical highlighting (e.g., framing important examples) are 

used for visualisation and structuring (approximately 43%). In this way previous 

knowledge and new learning content are structured and networked for all 

learners. The teaching–learning structure initial Regularizing is intertwined with 

the teaching–learning structures Activating and Explorating and is characterised 

by its oral and gestural character (see Table. 1). In this first oral reflection and 

systematisation, the teacher refers gesturally to inscriptions on the whiteboard, 

created in Activating and Explorating. Based on the work with already existing 

inscriptions, the teacher is not dependent on the conception of new inscriptions. 

In the interplay of gesture and inscription, mathematical representations are 

compared with each other, and their respective characteristics are highlighted. 

Likewise, the teacher also uses fewer images (approximately 34%) in intervals of 

the teaching–learning structure Linking, with a comparable gesture percentage to 

the intervals of Activating and Explorating This is due to the gestural references 

of the teacher to already existing images on the board. Thus, the teacher works 

with the existing inscriptions, which are already familiar to the students from the 

other teaching–learning structures and uses them for the elaborated 

regularisation. During the Securing and Practicing  of the learning content, the 

number of gesture codes decreases (approximately 40%), while the proportion of 

speech codes remains unexpectedly high. While the learners are working on tasks, 

the teacher comments on the further organisational workflow and gives content-

related hints for the processing of the tasks. In doing so, the teacher mostly holds 

the solution book in his hand, which explains the relatively low number of gesture 
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intervals (approximately 54%). As expected, the Securing, as a structure of 

written documentation, contains the highest proportion of written language. 

Table 1: Distribution of teaching–learning structures and modes among the intervals 

 speech gesture image writing 0 interval 

Activating  42 33 19 0 0   42  (8,37%) 

Explorating 39 30 17 0 0   41  (8,17%) 

Regularizing 18 16 4 2 0   18  (3,59%) 

Linking 59 46 21 0 2   62  (12,35%) 

Securing 53 26 24 13 6   72  (14,34%) 

Practicing 194 97 30 7 12  215  (42,83%) 

Other 52 21 3 4 0   52   (10,36%) 

 458 269 118 26 20  502 (100,00%) 

 

FINAL REMARKS 

Overall, the teacher’s spoken utterances are omnipresent in the lesson under 

consideration. This is explained by the teacher’s self-image as an expert, who 

models the process of exploration, reflection, and structuring in the sense of the 

“Cognitive Apprenticeship-Approach” by demonstrating how to work 

mathematically (Vogel, 2001). Intermodal and intramodal coherences of speech 

and gesture parts in the teaching–learning structures of Activating, Explorating, 

and Linking, as well as the high gesture part of the intervals of Regularizing, 

represent the initial point for further detailed analyses. Here, the focus will be on 

the respective concrete characteristics of the modes and their meaning for the 

mathematical content, and thus for the instruction and interaction between teacher 

and learners. The next step of the research will be to analyze and compare other 

teachers’ introductory lessons in addition of fractions and written arithmetic 

operations in order to identify differences or rather similarities. 
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This research explores engineering students’ math anxiety and math self-efficacy 

levels aiming to determine if there is a gender gap for this specific population. 

Data were collected from 498 students using adapted items from existing 

validated surveys. These items were translated to Spanish and validity tests were 

used to establish content validity and reliability. Student t-test and analysis of 

covariance (ANCOVA) were used to determine possible differences between male 

and female math anxiety and math self-efficacy levels. Male engineering students 

reported higher self-efficacy and lower math anxiety levels. However, the 

ANCOVA results showed that only the math test anxiety construct was 

significantly different. These results could help engineering educators to design 

strategies aiming to ameliorate female students’ math anxiety feelings.      

INTRODUCTION 

It is clear that enough engineers must be educated to be able to address society’s 

most relevant problems through developing new technologies. Many countries 

are employing strategies to attract and retain engineering students, and there is a 

special interest in attracting more females to engineering majors due to their 

under-representation in this field (Chubin, May, & Babco, 2005). 

This research focuses on two factors that have been shown to be relevant in 

students’ decisions to pursue and successfully complete an engineering major: 

mathematics self-efficacy (Hackett, 1985; Lent, Lopez, & Bieschke, 1991) and 

mathematics anxiety (Maloney & Beilock, 2012; Suinn & Winston, 2003). Self-

efficacy refers to “people’s judgments of their capabilities to organize and 

execute courses of action required to attain designated types of performances” 

(Bandura, 1986, p. 391). Richardson & Suinn (1972) defined math anxiety as 

“feelings of tension and anxiety that interfere with the manipulation of numbers 

and the solving of mathematical problems in a wide variety of ordinary life and 

academic settings” (p. 551). Analyzing students’ reactions and behaviors in math-
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related activities through the lens of their math self-efficacy and anxiety levels 

could help engineering educators to develop strategies to motivate and guide 

students in completing mathematics courses in engineering curricula. This is 

important because the lack of adequate mathematical preparation of engineering 

students as they complete their first semesters of engineering education is a 

challenge for educators; struggling to understand math topics and failing math 

courses is one of the main reasons for students leaving engineering majors 

(Kokkelenberg & Sinha, 2010). Strategies designed with students’ math self-

efficacy and math anxiety in mind could have additional positive effects if they 

specifically  address the needs of students from under-represented populations in 

engineering such as women (Marra, Rodgers, Shen, & Bogue, 2009).  

The literature shows a gender gap in students’ math self-efficacy and math 

anxiety, however most studies addressing this issue usually report analysing 

precollege populations (Chen & Zimmerman, 2007; Hill et al., 2016). The 

purpose of this research is to document the math self-efficacy and math anxiety 

levels of students after their high school experiences, focusing on engineering 

students and possible differences based on gender. This research aims to expand 

current literature about engineering students’ math self-efficacy and math anxiety 

due to the lack of focus in the gender gap of this specific population. This study 

was led by the following research question: Is there a gap between math self-

efficacy and math anxiety levels of female and male engineering students in 

Mexico?  

MATHEMATICS SELF-EFFICACY 

Literature suggests that high math self-efficacy is related to increased interest in 

pursuing a math-related major (Hackett, 1985). One study suggests that students 

with low math self-efficacy are more likely to avoid math-related activities, 

making it more difficult to overcome struggles they may experience in their math 

courses (Cooper & Robinson, 1991). Conversely, students with high math self-

efficacy are more likely to perform well in their math courses and persist in math-

related tasks even if they experience struggles learning complex math topics 

(Williams & Williams, 2010). The relevance of math self-efficacy beliefs and 

their influence on students’ performance in math courses is well-documented, and 

it is consistent for different contexts, cultures, and populations (Marra et al., 

2009). But there is very little research focusing on how math self-efficacy can 

affect engineering students’ performance in math courses and their motivation to 

successfully complete their major. Math self-efficacy is also relevant to students’ 
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decisions to leave STEM majors, with current literature suggesting that students’ 

math self-efficacy was lower for students leaving STEM majors; this factor was 

more significant for students leaving college during their first semesters (Eris et 

al., 2010). Retaining students that are enrolled in engineering degree programs is 

important for industry to meet its global technological work force needs (Chen & 

Soldner, 2013). Math self-efficacy beliefs could play a key role in engineering 

students’ motivation for successfully completing their major, influencing 

students’ performance in math-related courses that have shown to be significant 

predictors of student retention in engineering (Middleton et al., 2015). 

Previous studies have found that math self-efficacy beliefs of males are 

significantly stronger than those of females, and these findings seems to be 

similar in different contexts and populations (Gwilliam & Betz, 2001). Female 

students usually report lower math self-efficacy beliefs than male students even 

after performing better in their math courses, getting similar or even better grades 

than their male peers (Reis & Park, 2001). This math self-efficacy gender 

difference favoring male students could lead female students with similar math 

abilities as their male peers to perform at different levels, making them more 

likely to face difficulties performing math and jeopardizing their possibilities to 

complete the math courses required for an engineering major. 

MATHEMATICS ANXIETY 

Math anxiety is linked to students’ perceptions of low math ability, prior 

unsuccessful experiences, and lack of studying or test preparation skills 

(Hoffman, 2010). Math anxiety comprises a set of feelings that affect students’ 

performance in math that may lead to avoidance of math courses and math-related 

activities (Pajares, 1996). High math anxiety has been identified as a significant 

predictor of poor math performance, and is also negatively correlated with the 

decision to pursue a math-related major (Maloney & Beilock, 2012). Although 

moderate anxiety levels may actually facilitate performance and motivate 

students academically, high anxiety may hinder students’ performance and 

interest in certain academic activities (Skemp, 1986). Students’ math anxiety 

levels could be influenced by the importance they attribute to performing well in 

math, especially if their academic success involves math calculations (Wigfield 

& Meece, 1988).  

Although male and female students seem to place equal importance on math-

related activities and courses in their academic preparation, female students have 

shown to be more likely to report feelings of stress and anxiety when they perform 
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math (Karimi & Venkatesan, 2009). This math anxiety gender gap is more 

evident with college students, with female college students reporting higher math 

anxiety levels than males. In contrast, research with younger populations such as 

primary school students rarely report gender differences in math anxiety (Harari, 

Vukovic, & Bailey, 2013). These findings suggest that the math anxiety gender 

gap emerges in the secondary level, showing that female students experience 

more anxiety when performing math-related activities than males when they are 

facing higher educational demands (Hill et al., 2016). Higher math anxiety could 

negatively influence females in their decisions to take math courses or get 

involved in math-related activities, making them less likely to pursue a math-

related major like engineering. 

METHODS 

Participants for this study were selected from a Mexican university with only 

engineering majors. All participants were first year students taking the first math 

course required in their engineering curriculum during the Fall 2018 semester 

(n=498), with 203 female (41%) and 295 male students (59%).   

Participants answered a paper-based survey during their math class time. The 

survey was an adapted version of the Mathematics Self-Efficacy Survey (MSES) 

developed by Betz and Hackett (1983) and the 30-item Mathematics Anxiety 

Rating Scale (MARS 30-item) developed by Suinn and Winston (2003). The 

MSES assesses math self-efficacy with 52 items within three constructs, asking 

participants to rate their level of confidence performing math-related activities on 

a scale from 1 (“no confidence at all”) to 10 (“complete confidence”). The MARS 

30-item assesses math anxiety levels with Likert-type items considering two 

constructs with scores from 1 (“not anxious at all”) to 5 (“very anxious”). Items 

from these surveys were translated to Spanish and adapted to the Mexican 

engineering students’ context to represent relevant daily activities and problems 

related to the math topics in their first semester math course. The adapted items 

were presented to professors and students at the research site for face and content 

validity. Minor adjustments were made based on to their feedback. Maximum 

likelihood exploratory factor analyses were conducted on each survey to 

demonstrate validity, with three constructs for the MSES items: 1) math problem-

solving, 2) everyday math activities, and 3) math courses; and with two constructs 

for the MARS 30-items: 1) math test anxiety and 2) math activities anxiety. An 

oblique or promax rotation was used due to correlations found among factors 

within constructs. Items showing a correlation factor below 0.40 for each 
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construct were deleted from the final version of the survey. The final version of 

the MSES retained nine items for math problem-solving, nine items for everyday 

math activities, and six items for math course self-efficacy; for MARS, seven 

items for both math test anxiety and math activity anxiety constructs were 

retained. Additionally, Cronbach’s alpha values were used to evaluate the internal 

consistency reliability for all constructs for this specific population; all showed a 

Cronbach’s alpha value above 0.8.    

Averages of all the items within the three math self-efficacy constructs (on a scale 

of 1-10) and two math anxiety constructs (on a scale of 1-5) were calculated, and 

total math self-efficacy and math anxiety averages were determined for all 

participants. Seven Student t-tests were conducted to identify possible differences 

between the math self-efficacy and anxiety levels of male and female engineering 

students: three for the math self-efficacy constructs, two for the math anxiety 

constructs, and two for the total averages. Additionally, an analysis of covariance 

(ANCOVA) was conducted to determine if there was a difference between the 

constructs of math self-efficacy and math anxiety levels (7 independent variables) 

of male and female engineering students. The ANCOVA model was used for 

testing significant differences among all the constructs while controlling for 

confounding variables, and compare these results with the t-test analysis. All 

statistical tests were run using the statistical software R. 

RESULTS 

The math self-efficacy levels of male engineering students were higher than those 

for females for all constructs (see Table 1), and t-tests showed significantly higher 

average math self-efficacy scores for male versus female students. No significant 

differences were found between males and females for math problem-solving and 

math courses constructs; everyday math activities scores were significantly 

higher for male students.   

Math  

self-efficacy 

Female  

(n=203) 

Male  

(n=295) 

St. Dev. p-value 

Math problem-solving 6.09 6.33 1.69 Not Sig. 

Everyday math activities 8.05 8.37 1.43 0.015 

Math courses 6.88 7.17 1.95 Not Sig. 

Math self-efficacy (total) 7.01 7.29 1.37 0.022 
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Table 1: Scores (mean and standard deviation) for math self-efficacy constructs 

for male and female engineering students (n=498), and t-tests results (p-values) 

Math anxiety levels of female engineering students were higher than those of 

males for both constructs (see Table 2), and the t-tests results showed that the 

difference between the average math anxiety was significantly higher for female 

students. While the math activities math anxiety construct was not significantly 

different between female and male students, the math test anxiety construct 

showed a very significant difference with higher levels for female students (see 

Table 2). 

Math anxiety Female  

(n= 203) 

Male  

(n= 295) 

St. Dev. p-value 

Math test 3.87 3.43 0.90 < 0.001 

Math activities 2.03 1.98 0.74 Not Sig. 

Math anxiety (total) 2.95 2.70 0.66 < 0.001 

Table 2: Scores (mean and standard deviation) for math anxiety constructs for 

male and female engineering students (n=498) and t-test results (p-values) 

The ANCOVA analyzed the math self-efficacy and math anxiety constructs 

together, and showed that higher math self-efficacy average for male engineering 

students was not statistically significant, while the math test anxiety difference 

was significantly higher for female students (see Table 3). No significant 

differences were found between male and female students for the other math self-

efficacy and anxiety constructs, indicating that math anxiety is a covariate with 

math self-efficacy.          

Construct F-ratio p-value 

Self-efficacy - Math problem-solving 2.61 Not Significant 

Self-efficacy - Everyday math activities 3.39 Not Significant 

Self-efficacy - Math courses 0.87 Not Significant 

Math self-efficacy (average) 3.71 Not Significant 

Anxiety - Math test anxiety 24.12 < 0.001 

Anxiety - Math activities 1.32 Not Significant 

Math anxiety (average) 0.78 Not Significant 
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Table 3: Results of ANCOVA identifying significant differences between male 

and female student math self-efficacy and math anxiety levels 

DISCUSSION AND CONCLUSIONS 

There are significant differences between male and female engineering students’ 

scores on two of the math self-efficacy constructs based on t-test results, with 

males showing higher math self-efficacy for everyday math activities and total 

the total average. However, these difference drop out from the results of the 

ANCOVA, indicating that t-test results may have been subject to a Type 1 error 

due to multiple t-tests on the same data set. The average math self-efficacy for 

both male and female engineering students was above 7 on a scale of 1 - 10, 

suggesting that engineering students are confident they can perform math-related 

activities well and successfully complete math courses. Although math self-

efficacy scores were high for both male and female students, male students tend 

to have higher self-efficacy for performing everyday math activities such as 

calculating the mileage that a car can travel with 15 gallons of gasoline. Math 

problem-solving self-efficacy was the lowest math self-efficacy construct for 

both male and female engineering students.               

The math anxiety levels of male and female engineering students were relatively 

low, with an average math anxiety below 3 on a scale of 1 – 5. Although math 

anxiety average was significantly higher for female students based on t-test 

results, like math self-efficacy, this difference dropped out based on ANCOVA 

results. The math test anxiety construct was higher for both male and female 

students, and both statistical tests showed a strong significant difference between 

male and female engineering students, with female students reporting higher math 

test anxiety. A significantly higher math test anxiety could be a reason why 

female engineering students experience more stress and anxiety performing math 

in general. Experiencing higher math test anxiety than their male peers could be 

negatively affecting female students’ math performance, and this could be seen 

at high school level where a gender performance gap starts to emerge (Ganley & 

Vasilyeva, 2014), with male students traditionally outperforming females in 

achievement and selection tests.  

When math self-efficacy and math anxiety were tested in the same statistical 

model (ANCOVA), average differences were no longer significant. This indicates 

that these two factors could be covariates, or interacting with each other. This 

agrees with prior literature; according to Bandura (1986), math anxiety has an 

inverse relation to math self-efficacy levels. Any effort aiming to increase math 
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self-efficacy may help students to decrease feelings of anxiety when they perform 

math-related activities. Math and engineering educators should consider 

developing environments that help students to learn math topics without 

generating feelings of stress and anxiety. Developing strategies to motivate 

female engineering students to feel more confident about their math abilities 

could help them deal with their high math anxiety and avoid negative feelings 

towards math courses. Decreasing math anxiety feelings could have a positive 

impact in female students’ math performance, making them more likely to get 

involved in math-related activities and increase their interest and persistence in 

math-related majors such as engineering, which ultimately could help close the 

gender gap in these fields. 
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OPTIMIZATION PROBLEM AS REVEALED WITH EYE 

TRACKING  
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We use eye tracking to investigate the development of ideas in mathematical 

problem solving as three students equipped with eye trackers attempt to solve a 

geometrical problem. The problem has a rich solution space, and the eye trackers 

allow us to follow the students’ thinking as they generate plausible solutions to 

the problem and as they look at the different pictures representing the solutions 

they have already generated. We syntehsized the student eye movements into 

scanning signatures. These signatures revealed two of the students shifting their 

attention from more optimal to a less optimal, but more complex solution that 

served as a stepping stone on the way to the optimal solution. 

INTRODUCTION 

There is a rich body of literature on eye tracking, cognition, and expertise. Gaze 

is an early indication of the ultimate solution as that attentional gaze is more likely 

to be directed towards preferred (i.e., ultimately chosen) than unpreferred (i.e., 

rejected) options (Tsai, Hou, Lai, Liu & Yang, 2012). Experts more expediently 

locate relevant visual features than novices when performing a task 

(Gegenfurtner, Lehtinen, & Säljö, 2011). Novices display significantly more 

attentional transitions than more advanced problem-solvers (i.e., experts) while 

less advanced participants also use longer gaze sequences (called scanpaths) for 

each problem-solving task, compared with more expert counterparts (Kim, 

Aleven & Dey, 2014). Knoblich, Ohlsson, and Raney (2001) point out that even 

novices succeed more often if they attend to relevant features. Specifically in the 

context of geometry problems, Kim et al. (2014) highlight the value of attentional 

transitions. 

The question arises whether eye-tracking data can provide information about 

cognitive processing during mathematical problem solving. In some cases, 

mathematical tasks have multiple possible solutions. Leikin and Lev (2007) 

identify alternative solution spaces for such problems. Expert solution spaces are 
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the collection of solutions that expert mathematicians can suggest to the problem. 

Personal (available) solution spaces include those solutions that one is able to 

present independently. Potential solution spaces include also such solutions that 

once can produce with help. Collective solution spaces include solutions that a 

group can generate. In our study, we are interested in personal, potential, and 

collective solution spaces and especially how the potential solutions enter the 

realm of individual and personal solution spaces. In other words, how people 

create new solutions. We also acknowledge that the new solution can be either 

incrementally improved from an earlier solution (refining an idea) or a 

qualitatively novel solutions (creating an idea). The distinction between these two 

processes would be similar to, just less radical, than the difference between 

gradual development and conceptual change (Vosniadou, Vamvakoussi, & 

Skopeliti, 2008). 

In this study, we used a geometrical optimization problem that has a large 

potential solution space, even though there is a unique optimal solution. 

Moreover, we consider some ideas qualitatively different from some other 

solutions. In this article, we study the development of ideas during a collaborative 

mathematical problem-solving task using eye tracking. We analyze the evolving 

visual attention to different solution attempts using the “scanning signatures” 

(Garcia Moreno-Esteva, Kervinen, Hannula & Uitto, 2020) of each problem 

solver before a significant novel idea is accepted.  

METHODS  

Participants 

Three mathematics teacher students Meri, Tiina, and Toni, volunteered for 

wearing eye-tracking glasses in their mathematics education class in a Finnish 

university. They worked together as a group with a fourth student who did not 

wear eye-tracking glasses. 

Apparatus 

We recorded the group’s work using audio recording and two stationary video 

cameras. The eye-tracking device had two eye cameras, a scene camera, and 

simple electronics attached to 3D-printed frames (see, Toivanen, Lukander, & 

Puolamäki, 2017). Toivanen built the glasses for our project. The data was 

recorded on laptop computers carried in backpacks allowing subjects to move 

freely. 
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A priori task analysis 

In this study, the students were solving a four-point Euclidian Steiner tree 

problem. The teacher asked the students to find the shortest way to connect the 

four cities located on the corners of a square with fiber-optic cable. Here, we 

present the solutions collective solution space (Leikin & Lev, 2007), with the 

highest relevance to the group’s problem solving process. There were also other 

solutions, but they received less attention from the students. The Figure 1 shows 

the most relevant solutions that students generated during the process. These 

solutions have varying degrees of optimality and complexity.  

 

 

Figure 1. The student solutions that are relevant in this analysis are, from left to right, 

C, Z, T, H, X, odd Z, and double Y. 
 

With optimality, we refer simply to the total length of the path. The shorter the 

connecting path, the more optimal the solution is. We are only interested in the 

order of solutions by their optimality. Hence, we use the path length as an 

ordering criterion, not as a continuous measure. We classified the solutions in 

five categories of optimality. Two solutions (Z and T) belong to the least optimal 

category, C and H belong to the second category, then follow odd Z, X and double 

Y, each in their own category.  

As the measure of complexity, we use the number of nodes in the graph. In the 

task, there are four points to connect, so the lowest complexity solutions have 

four nodes. The optimal solution (double Y) and some suboptimal solutions (H 

and odd Z) have six nodes. There are several five-node solutions but we discuss 

only the optimal of these that connects the corners along the diagonals (X). While 

adding complexity makes it possible to find a shorter path, increasing complexity 

does not automatically make the solution more optimal. For example, the five-

node solution X is shorter than any of the four node solutions, but the six-node 

solution H is as long as the four node solution C. 

It would be expected that the solutions C, Z, T, and X are the easiest to find, as 

they simply connect the given points with direct lines in different ways. Of these, 

C and X are obviously shorter than Z or T, and the comparison between C and X 
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lengths might be possible purely visually or, at least, through measurement or 

calculation. 

H is relatively similar to C, with only one line positioned differently, so this might 

logically follow as the next solution idea. The optimal solution could be seen 

either as a modification of the solution X or of the solution H. As the solution H 

has already six nodes, this might better serve as a springboard towards the optimal 

solution. However, if the students already have concluded that X is shorter than 

C or H, their path could rather follow from there. The solution idea odd Z could 

be seen as a combination of the ideas X, Z, and H.  

Procedure for data collection and analysis 

The course teacher agreed to engage his class with a problem presented above. 

Students first worked on the problem individually, then with a partner, and then 

in groups of four. The fourth student in the group did not wear an eye tracker.  

As students tried to solve the problem, they invented several possible solutions, 

concluding that X was the best solution. However, they continued to work 

together, comparing each others’ solutions and generating alternative solutions 

for approximately ten minutes as their teacher challenged them frequently to 

search for a better solution. Both the odd Z and double Y solution were first 

produced by Tiina. In our analysis, we examined how the student solutions 

developed in complexity and optimality through an analysis on the students’ 

visual behavior during this time. 

The software used the information from the camera’s focused on the eyes to 

produce a marker of the gaze location on each frame of gaze video. The 

researchers and a research assistant then annotated the targets of each student’s 

every gaze manually.  

From the temporal dwell sequences, we computed scanning signatures (Figure 3) 

(Garcia Moreno-Esteva, Kervinen, Hannula & Uitto, 2020). In a scanning 

signature, nodes in a network represent the areas of interest (AOI), i.e. the 

relevant features of the scene. The relative size of the node tells the frequency 

with which a student was attending to that feature during the process. If student 

gaze moved directly from one feature to another feature, it is represented as an 

arc connecting the respective nodes. The thickness of the arc reflects the 

frequency of a such transitions during the process. Finally, we use colors to 

represent the temporal order in which features are observed and in which feature 

transitions (which indicate visual comparisons) take place on average.  
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The scanning signature thus tells how much attention, relatively speaking, the 

student devotes to each solution (size of the node), how common are transitions 

(which indicate comparison) between different solution attempts (width of the 

arrow), and in which temporal order these nodes and transitions occur (colors 

from red to blue). Moreover, we computed the average order in which the students 

attended to different gaze targets (Figure 2).  

Results  

In Figure 2, we present how the focus of attention for all three students developed 

during the problem solving session, using the “average order” measure of 

scanning signature. One thing to notice is how two students moved from a shorter 

solution to a more complex solution that is longer. This suggests that it is 

important to introduce complexity even if it leads to solutions that might not be 

near optimal in order to make the cognitive leap to discover solutions of higher 

complexity, potentially leading to the optimal solution. We see that the students 

have individual patterns before focusing on the odd Z solution. After attending to 

odd Z, all students progress to focus on the optimal solution. This reflects the 

observable progress in the group where they figured out the optimal solution after 

discussing the odd Z solution together. 
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Figure 2. The gaze trajectory of each student: Toni/Red {Z,C,T,X,H,OZ,YY}; 

Tiina/Green {C,X,OZ,T,Z,H,YY}; Meri/Blue {T,C,H,X,Z,OZ,YY}. 

The scanning signatures of the three students (Figure 3) before discussing odd Z 

indicate differences in how they analyzed the solution space in their search for a 

novel idea. All three have spent most of their attention on X, which they 

considered as their best solution. Toni had compared it with Z and to some extent 

also with H. Meri had compared X with C and H. Tiina, on the other hand, had 

examined rather evenly all other solutions, including a half-completed double Y, 

which she had drawn herself. Unlike Toni and Meri, her visual process reveals 

her not only comparing other solutions with X, but also comparing these other 

solutions to each other.  
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Figure 3. Scanning signatures for Toni, Tiina, and Meri before they discuss the 

solution odd Z. In this figure, 1 is the problem statement, 2 are some presolutions 

(e.g two of the four dots connected), 3 is C, 4 is H, 5 is Z, 6 is T, 7 is x, 8 is the 

odd Z, 9 is the double Y, 10 are variants of the double Y, and 11 are areas with 

computations. 

DISCUSSION 

Our study sheds light on mathematical problem solving as a process. There are 

two different observations that we make from this case study that highlight the 

importance of opening up solution space when searching for novel solutions. 

First, the pathway for all students in the group from a suboptimal solution (X) to 

the optimal solution (double Y) went through an intermediate solution (odd Z) 

that was less optimal than X, but had the same, higher level of complexity, as the 

optimal solution. Second, the student who was successful in generating novel 

solutions used a different visual strategy for working with existing ideas than the 

two students who were not successful. While the unsuccessful students focused 

on the so far best solution (x) and mostly compared other solutions to it, the 

successful student was comparing solutions in a more uniformly distributed way. 

While our study is a small-scale case study, it presents how the scanning 

signatures can synthesize the complexity of eye-movement behaviour in a 

meaningful way. The time series representing a visualization process is a complex 

data set with thousands of data points for each student. Hence, it is challenging 

to synthesize the eye-movement process in a phenomenologically meaningful 

way, which is both, intuitive, as well as quantitative. Unless the data can be 

quantified, it cannot be analyzed further with mathematical or statistical tools.  

When analyzing eye-tracking data, it is natural to ask the following questions: 

a) What are the salient features in the scene that the subjects observe? 

b) Are there salient feature comparisons? 
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c) Is there an overarching temporal order in which the different features of 

the scene are observed? 

Scanning signatures are designed to synthesize the eye-movement information 

both, in an intuitive and visual way, and in a quantitative way allowing further 

mathematical and statistical analysis. The information in a scanning signature 

helps us answer questions such as 

a) What did the observer look at first? What did she look at towards the end? 

And during the rest of the observation process? 

b) On what features of the scene did the observer focus her attention? 

c) Did the observer compare certain features? At what stage of the 

observation process did this happen mostly? 

In our study, the subjects were mostly looking at diagrams or drawing plausible 

solutions to the problem that was given for them to solve. They scanned different 

solutions, and while they discussed some of their ideas, the verbal information 

covers only a fraction of what we see in the eye-tracking data. Scanning 

signatures help us to understand how the participants navigated the solution space 

of already produced solutions as they attempted to find an even better solution 

that the teacher hinted there to be. Each of the representations draws upon a 

particular idea for its production. It is in this sense that navigating the visual space 

provided by the drawings reflects a trajectory in a cognitive space of ideas 

required to produce the representations as plausible solutions to the problem. And 

thus, we are able to analyze meaningfully, the flow of ideas that leads to the 

discovery of the optimal solution of the problem.  
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This paper reports on findings from a study focused on developing early number 

skills in a context of widespread low learner attainment in number. Positive 

learning gains achieved through Wright et al.’s (2006) Maths Recovery (MR) 

programme provided the rationale for a grouped intervention trial with 

comparison individual intervention cases incorporated. Learner pre- and post-

test data around the relatively short intervention indicated comparable learning 

gains made by a sample of middle- attaining Grade 2 learners across the grouped 

and individual intervention formats. Gains made by the intervention group also 

compared favourably to those made by a matched control group. This is an 

important finding in any context of highly inequitable learning outcomes coupled 

with ‘lags’ in number learning on the ground. 

INTRODUCTION  

The number skills children learn during their first years of schooling are 

considered by many researchers as the key foundation upon which all 

understandings of mathematics are built (Reys et al., 1999). Most of the 

mathematical concepts children learn during primary school are based on a sound 

understanding of number (Perry & Dockett, 2008). Poor number skills in young 

children, which are evident as early as pre-school, have far-reaching 

consequences as these learning ‘deficits’ tend to snowball rather than decrease 

over time (Spaull, 2013), thus the need for early intervention. Researchers agree 

that early intervention for children who fall behind the mainstream in hierarchical 

subjects like mathematics yield better learning gains over time than intense input 

during later years of schooling (NCTM, 2000). The importance of a solid 

foundation in early number skills, coupled with evidence of substantial 

differences in these skills among children in the early grades, prompted the 

development of Mathematics Recovery (MR). 
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THE MATHEMATICS RECOVERY (MR) PROGRAMME  

The MR programme has been used successfully in many developed countries to 

improve low attainers’ early number learning (Wright et al., 2006). Wright and 

colleagues make a strong case for individualised intervention that grows out of 

initial, comprehensive assessment of the child’s current number knowledge 

which then forms the basis for instruction that is aimed ‘just beyond the cutting-

edge of the child’s current knowledge’. The widespread success of this 

programme has caused it to evolve over time to the place where it is now also 

used as a daily classroom numeracy programme, addressing the needs of all ages 

and levels of ability. 

The Learning Framework in Number (LFIN) is a key part of the MR programme 

which guides teaching and assessment and provides a trajectory charting 

children’s learning. The LFIN enables summary profiling of children’s number 

knowledge which is an important first step for intervention and forms the basis 

for instruction. Learner profiles are created using several interrelated aspects of 

early number delineated in the framework: Stages of Early Arithmetical Learning 

(SEAL); Base-Ten Arithmetical Sequences; Forward Number Word Sequences 

and Number Word After; Backward Number Word Sequences and Number Word 

Before and Numeral Identification (Wright et al., 2006). An explanation of the 

SEAL and Base Ten aspects follow as the rest of the LFIN aspects are fairly self-

explanatory. 

Strategies for Early Arithmetical Learning (SEAL) focuses on children’s most 

sophisticated strategies for solving additive tasks. The SEAL profile is the most 

important part of the LFIN and is the only aspect where progression is described 

in terms of stages. In every other aspect of the LFIN, progression is described in 

terms of levels. In MR, every new stage is likened to a “plateau” and is 

characterised by “a qualitative advancement in knowledge” while a level is 

regarded as “a point on a continuum” (Wright et al., 2006, p.190). In this 

interpretation, progressing from one SEAL stage to another involves a bigger 

shift in conceptual understanding than moving across levels in other LFIN 

aspects. The SEAL stages are: 

SEAL Description of learners’ additive strategies 

Stage 1 can only count perceivable items 

Stage 2 solves additive tasks using the ‘count all’ strategy 
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Stage 3 uses curtailed counting strats like ‘count on’ and ‘count-down-

from’ 

Stage 4 uses ‘count-down-from’ and ’count-down-to’ efficiently 

Stage 5 solves 2-digit tasks using ‘non-count-by-one’ strategies like derived 

facts, N-10  and compensation without the support of materials 

Table 1: Description of SEAL stages 

Using base-ten involves the organisation of numbers and calculations into 1s, 10s, 

100s and 1000s and is premised on children seeing/using ten as a unit. ‘Base-ten 

thinking’ draws on children’s ability to reason in tens and ones which is linked to 

informal place value knowledge. Children’s ability to skilfully structure numbers 

and calculations using ‘base-ten thinking’ helps them to get a handle on working 

with numbers larger than twenty (Wright et al., 2012). A focus on developing 

‘base-ten thinking’ emerged during intervention when learners struggled to 

increase and decrease a quantity (shown with bundling sticks) by ten without 

counting-in-ones. Placing learners at particular Base-Ten levels requires 

determining their facility with using ten as a unit to solve additive tasks (Wright 

et al., 2006). The Base-Ten levels are: 

 

Base Ten Description 

Level 1 solves additive tasks involving tens by counting-in-ones 

Level 2 uses ten as a unit to solve additive tasks involving 10s and 1s but 

needs a tens-based setting (e.g. rek-en-rek) to do so 

Level 3 solves additive multidigit tasks using ten as a unit, without 

materials 

Table 2: Description of Base Ten levels 

Children’s understanding of ten as a collection of ten ones and as a single unit of 

ten is crucial for solving 2-digit by 2-digit number problems (Steffe et al., 1988). 

So, to achieve the highest SEAL stage – which involves solving 2-digit additive 

tasks mentally without a concrete tens-based setting – learners need an 

understanding of base-ten. This means that learner’s facility with using ‘base-ten 

thinking’, as opposed to counting-in-ones, is fundamental to their progress along 

the LFIN SEAL trajectory. 
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EARLY NUMBER LEARNING IN THE SOUTH AFRICAN CONTEXT 

Researchers rightly describe mathematics learning in South Africa as being in a 

state of ‘crisis’ (Fleisch, 2008) when seen in light of national, regional and 

international comparative studies. An over-emphasis on counting-in-ones, the use 

of concrete materials and the lack of progression from counting to calculating 

strategies underlie the poor early number development seen on the ground 

(Hoadley, 2012). Challenges that impede children’s early number learning in this 

context are found to apply more to poorer or working-class learners who attend 

no-fee public schools – who make up roughly the bottom 60% of children 

attending public schools (Ramadiro & Porteus, 2017). Individualised intervention 

in a context where the majority of learners in public schools are falling behind 

curriculum attainment targets (Ramadiro & Porteus, 2017) is impractical. Highly 

structured remedial interventions are considered key in addressing wide-spread 

low number attainment (in the midst of limited pedagogical content knowledge) 

in South Africa (Spaull, 2013). In light of the importance of developing children’s 

early number skills and the scale of the problem in South Africa, I considered 

investigating whether short, structured intervention using Mathematics Recovery 

for grouped and individual intervention could be effective in developing the early 

number learning of a sample of Grade 2 learners in the South African context. 

METHODOLOGY  

Twenty Grade 2 learners from a public primary school were purposively selected 

to make up the control and intervention groups (10 learners each). Results from 

Annual National Assessments and an adapted Leverhulme test (Brown et al., 

2008) conducted with Grade 1s at the end of 2013 were used to select 35 middle-

attaining Grade 2 learners at the start of 2014. Middle-attainers were selected 

because they were more likely in the country’s skewed international performance 

to gain from a short-term structured intervention than low-attainers. These 35 

learners were then tested using a shortened version of MR Assessment 1.1 to 

select 20 matched learners for the intervention and control groups. Intervention 

learners were equitably split into two quartets (4 per group) and two ‘singletons’ 

based on test results and pragmatic reasons. Each group and each singleton were 

withdrawn from class twice a week for 18 intervention sessions of 40 min, which 

totalled 12 hours. A ‘teaching experiment’ was the approach used and the ‘test-

teach-test’ model was followed: individual pre-test interviews using MR 

assessments followed by 18 grouped/individual intervention sessions based on 

Maths Recovery and then the same individual post-test interviews.  
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All intervention sessions and interviews were video-recorded (and later 

transcribed) so that focus could be placed on learners’ verbal responses and 

gestures. Thus, two sets of transcriptions were generated. Based on Cobb & 

Yackel’s (1996) Emergent Theory, which is framed by a social constructivist 

paradigm, the original study coordinated an individual constructivist perspective 

with a social interactionist perspective to analyse the different data sets. For this 

paper I only focus on participants’ pre- and post-test interviews which were coded 

using the LFIN descriptors outlined earlier. Through this individual constructivist 

analysis a pre- and post-test summary profile was created for each participant. 

While Wright and colleagues do not ascribe numerical stage/level descriptors in 

the LFIN, for the purpose of exploratory comparative analysis I followed Venkat 

& Weitz (2013) in interpreting levels attained on the LFIN as scores. The SEAL 

stage achieved was doubled for use as a score (hence the superscript x2) to reflect 

the qualitative difference between stages and levels in LFIN noted earlier. My 

dual roles as intervention teacher and researcher created an expected tension that 

was managed through ‘reflective practice’ (Schwab, 1959).  

RESULTS  

The results presented here only focus on the SEAL and Base-Ten aspects of 

learners’ (named using pseudonyms) pre- and post-test LFIN profiles. This is 

because of the importance of SEAL stages in the LFIN and the emergent focus 

on ‘base-ten thinking’ during intervention. Learners’ scores, shown according to 

the mode of intervention, are shown side-by-side in Tables 3, 4 and 5 (post-test 

scores in bold). The highest possible score for each LFIN aspect in learner profiles 

are: SEAL – 5x2, Base-Ten – 3, and a total score of 13. 

                               Khanye                            Josh                   Total Gains 

                           Pre       Post                    Pre      Post 

SEAL                  3x2         5x2                     2x2         3x2                   6 

Base-Ten             2           3                                     1                     2 

Totals                  8          13                       4           7                     

Gains                        +5                                    +3                        +8 

 

Table 3: Pre- and Post-test SEAL and Base-Ten scores for Singletons 

The ‘singletons’ scores in Table 3 show that Khanye, who started from a stronger 

base, made a higher gain in the SEAL aspect of the LFIN – an improvement of 2 
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SEAL stages – while both learners improved by 1 level on Base-Ten. Khanye 

made the highest overall gains for these aspects (+5) and the mean gain for 

singletons was +4.  

 Bongi Mali Jenna Sibu Gains 

   Pre Post   Pre Post   Pre Post   Pre Post  

SEAL    3x2  5x2    3x2  4x2   3x2  4x2    2x2  4x2 12 

Base Ten     1  3     1  2 1  2   2 6 

Totals     7       13     7      10     7      10     4      10  

Gains         +6         +3          +3          +6 +18 

Table 4: Pre- and Post-test SEAL and Base-Ten scores for Group 1 

In Group 1 the highest SEAL and Base Ten gains were made by the strongest and 

weakest members of the group, namely, Bongi and Sibu – each improved by 2 

SEAL stages and 2 Base-Ten levels. By way of example, in his pre-test Sibu 

found solutions to tasks like 5+4 (both addends screened) by counting from ‘one’ 

to ‘five’ on one hand, then counting from ‘one’ to ‘four’ on the other and finally 

counting all his raised fingers from ‘one’ to ‘nine’. This ‘count all’ strategy placed 

Sibu at SEAL Stage 2. During his post-test Sibu used ‘count-down-from’ to solve 

removed items tasks (9-4 and 15-3) and ‘count-down-to’ for missing subtrahend 

tasks (12-☐=9 and 15-☐=11). His judicious use of these advanced strategies put 

Sibu at SEAL Stage 4 for the post-test. The average overall gain for Group 1 was 

+4,5 which was slightly better than the singletons’ mean gain.  

 Julie Khosi Kyle Kgomo Gains 

 Pre Post   Pre Post   Pre Post   Pre Post  

SEAL   4x2  5x2    3x2  5x2    2x2  4x2    3x2  3x2 10 

Base 

Ten 
1  3 1  3   1  1  2 6 

Totals 9 13 7 13  4  9  7  8  

Gains       +4 +6  +5 +1 +16 

Table 3: Pre- and Post-test SEAL and Base-Ten scores for Group 2 

The highest SEAL gain in Group 2 was achieved by Kyle and Khosi. For Base-

Ten the two stronger attainers at the time of the post-test (Julie and Khosi) gained 
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2 levels each. For example, in her pre-test Khosi counted-on in ones (using 

fingers) to solve 13+10 and 40+10 posed with dot strips. She was thus placed at 

Base Ten level 1. But, solving additive problems in her post-test using base-ten 

strategies without the support of a tens-based setting qualified Khosi to be at Base 

Ten Level 3. For example, Khosi correctly solved all eight additive and 

subtractive 2-digit horizontal number sentences (like 38+24 and 43-15) in her 

post-test using mental jump (N10) and split (1010) strategies. The mean gain for 

Group 2 was the same as that made by singletons: +4.  

Next I compare SEAL and Base Ten results between intervention and control 

groups. For a nuanced comparison of the gains made in these aspects I will look 

at what was invariant between groups at the pre-test and what changed at the time 

of the post-test.  

Intervention: 

Top 4 learners    

Pre-

Test 

Post-

Test 

 Control:         

Top 4 learners 

Pre-

Test 

Post-

Test 

Julie 1 3  Yazu 1 1 

Kamo 2 3  Rila 2 2 

Bongi  1 3  Nozi 1 1 

Khosi  1 3  Olsen 1 1 

Table 4: Intervention and Control Top 4 learners’ Base-Ten scores 

Table 4 shows that in the pre-test 1 of the top 4 learners in each group could use 

ten as a unit with the support of a tens-based setting (level 2) while 3 of the 4 

could not use ten as a unit (level 1). Post-test results show that while all 4 

intervention learners could now use ten as a unit without the support of a tens-

based setting (thus reaching Base Ten level 3), the control groups’ Base Ten 

results remained unchanged.  
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Interventio

n learners 

at SEAL 3 

for Pre-test 

Post-Test  

SEAL Stages 

 Control 

learners at 

SEAL 3 

for Pre-test 

Post-Test  

SEAL Stages 

3 4 5  3 4 5 

Khanye   Khanye  Nozi  Nozi  

Bongi    Bongi  Olsen Olsen   

Khosi   Khosi  Ntlako  Ntlako  

Mali  Mali   Sipo  Sipo  

Kgomo Kgomo    Bonang  Bonang  

Jenna  Jenna   Rhaka  Rhaka  

6 1 2 3  6 1 5 0 

Table 5: Intervention and Control Group SEAL Comparison 

Both groups had the same number of learners who achieved SEAL Stage 3 (the 

‘counting-on’ stage) at the time of the pre-test, i.e. 6 learners each. At the time of 

the post-test, 1 of these learners from each group remained at SEAL Stage 3, i.e. 

Kgomo and Olsen. The biggest difference in groups’ post-test results was that 

half of the 6 intervention learners at SEAL Stage 3 at the time of the pre-test had 

achieved SEAL Stage 5 in the post-test (i.e. they could use various non-count-by-

one strategies to solve additive tasks). But, none of the control learners who were 

at the ‘counting-on’ stage at the pre-test reached SEAL Stage 5 at the time of the 

post-test. 

DISCUSSION AND IMPLICATIONS 

The biggest gain for intervention learners was made in the SEAL aspect of the 

LFIN. This result may seem unsurprising as intervention centred on improving 

learners’ strategies for solving additive tasks. Yet, the SEAL gains certainly 

surprised me as I did not expect such a relatively short intervention to produce 

the cognitive reorganisation required for learners to make big shifts. But, in the 

absence of a delayed post-test one cannot be certain to what extent these gains 

were sustained over time.  

The biggest individual gain across these two LFIN aspects was made by Bongi, 

Sibu and Khosi – who all received grouped intervention. These learners had very 

different pre-test profiles. Both Bongi and Khosi were at the ‘counting-on’ SEAL 

stage but could not use ten as a unit when solving multi-digit tasks. Sibu, not 
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placed on the Base-Ten model, solved additive tasks using ‘count-all’. The 

significance of this result is that gains were possible to achieve across the 

attainment range in the sample.  

Khosi had the highest overall gains for SEAL and Base Ten in Group 2, despite 

having begun intervention ostensibly from the same place on the LFIN 

framework as Kgomo who made the least gains in Group 2. This result shows 

that children’s acquisition of early number is an individual process even in the 

midst of the social construction of knowledge taking place within the 

microculture of a group.  

Both intervention and control groups had similar pre-test Base Ten results for 

their top four learners but the post-test results differed considerably – with higher 

attainment for intervention learners. This result speaks to the value of ‘base-ten 

thinking’ as a key contributor to the use of more sophisticated mental strategies 

for solving additive tasks.  

CONCLUSION 

The comparable mean learning gains made by learners who received one-on-one 

intervention and those who received grouped intervention is an important result 

as this outcome points to the efficacy of both intervention formats. This is an 

encouraging outcome in our current context of highly inequitable learning 

outcomes and the scale of the maths crisis on the ground (Schollar, 2008) where 

it is reported that 75-80% of children in South African public schools are two to 

four grade-levels below the grade-appropriate levels outlined in the curriculum 

(Spaull, 2013). Further, the higher gains made by intervention learners in the 

SEAL and Base Ten aspects compared to matched control learners is a promising 

outcome from short-term intervention using Maths Recovery which suggests that 

a broader trial into the use of MR for intervention in similar contexts is warranted. 
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In this paper we focus on students’ view of difficulty in solving mathematical 

exercises in order to study how the “learning to learn” competence may occur in 

the specific case of learning mathematics. Preliminary results give insights into 

“learning to learn” competence in mathematics and suggest directions for 

intervention in case of difficulty. Moreover, results show the importance of co-

responsibility between teacher and student in learning and the crucial role of the 

teacher in helping students to overcome learning difficulties. 

INTRODUCTION AND BACKGROUND 

The European Union recommendations (Education Council, 2006) identify 

“learning to learn” competence and mathematical competence as two of the eight 

key competencies for lifelong learning.  

“Learning to learn” competence is defined as “the ability to pursue and persist in 

learning, to organise one’s own learning, including through effective 

management of time and information, both individually and in groups” (European 

Council, 2006 annex, paragraph 5). Such a competence consists in being aware 

of one’s learning process and needs and being able to overcome obstacles, also 

through external guidance, with the final aim of learning. In such a definition, 

motivation to learn (especially a specific discipline) and self-confidence are 

crucial.  

Mathematical competence is defined as “the ability to develop and apply 

mathematical thinking in order to solve a range of problems in everyday 

situations, with the emphasis being placed on process, activity and knowledge” 

(European Council, 2006). The notion of mathematical competence is crucial yet 

problematic, as outlined by Maracci & Martignone (2016) who point out that 

mathematical competence can be considered a “boundary object” across the 

institutional context, pedagogy and mathematics education. In the field of 
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mathematics education, Niss (2003) refers to mathematical competence as “the 

ability to understand, judge, do and use mathematics in a variety of intra- and 

extra-mathematical contexts and situations in which mathematics plays or could 

play a role” (p.7) and takes into account a set of components: “thinking 

mathematically, posing and solving mathematical problems, modelling 

mathematically, reasoning mathematically, representing mathematical entities, 

handling mathematical symbols and formalisms, communicating in, with, and 

about mathematics, and making use of aids and tools” (Maracci & Martignone, 

2016, p. 263). This definition applies to specific mathematical activities and 

refers to all mathematical fields and all school levels. However, as Maracci and 

Martignone point out, it doesn’t take into account metacognitive abilities and 

affective and volitional resources. On the contrary, we take as a starting point the 

relevance of affective factors in mathematical activity (McLeod, 1992). As 

Goldin (2002) put it: “When individuals are doing mathematics, the affective 

system is not merely auxiliary to cognition, it is central” (p. 60). Hence, we 

propose to consider attitude towards mathematics as a key component of 

mathematical competence. Di Martino and Zan (2011) propose a 

multidimensional model for attitude towards mathematics characterized by three 

interconnected dimensions: emotional disposition towards mathematics, vision of 

mathematics, perceived competence in mathematics. 

In this paper we are interested in the way “learning to learn” competence may be 

described in the special case of mathematics and its possible links with attitude 

towards mathematics and connected affective constructs. More specifically, we 

investigate the way secondary school students interpret a situation of difficulty in 

mathematics, and how they are (or are not) resilient to difficulty and failure. The 

study may provide new insights to help teachers in helping students in difficulty, 

from the perspective of instructional design and formative assessment of learning. 

As pointed out by Lutovac (2019), research rarely addressed the issue of failure 

from a qualitative and subjective perspective. Lutovac analyzes pre-service 

teachers’ narratives of failure, showing that the concept of failure is highly 

subjective and is shaped by students’ goals and expectations. Lutovac claims that 

failure resilience should be addressed as “an adaptive process, including the 

variety of strategies that allow students to not only cope with failure, but also 

adapt and respond to it in ways that allow them to maintain their identities and 

continue learning, developing and changing” (p. 243).  
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In order to study students’ interpretation and reaction to a situation of difficulty, 

we also refer to two constructs. The first one is causal attribution, that is what 

subjects perceive as cause of the successes and failures (Weiner, 1980; Clarkson 

& Leder, 1984). Weiner (1980) categorizes attributions and perceptions of 

success and failure along three main dimensions: locus (internal vs. external), 

stability (stable vs. unstable), controllability (controllable vs. uncontrollable) of 

the causal agent. The second one success theories, that is what students believe 

to promote success and understanding in mathematics. For instance, students 

(especially those that are task-oriented) think that effort and cooperation with 

peers may promote success (Nicholls, Cobb, Wood, Yackel, Patashnick, 1990). 

METHOD  

As noted by Di Martino and Zan (2015), interpretive methods are more and more 

used in mathematics education research, thus shifting the attention from 

“measuring” or explaining in terms of causal relationships to understanding 

complex phenomena. In this paper we adopt an interpretive approach. An element 

of originality is the starting point, which is “fictional”. Students were proposed a 

comic strip that tells a story of difficulty in mathematics (Figure 1). The last 

drawing is empty and the students were asked to fill it, according to their personal 

interpretation of the story. Data consist in written texts for the last strip (in the 

following, we’ll refer to them as “answers”). This means that, rather than asking 

directly students’ views about difficulty and failure, students were involved in a 

fictional narrative situation of difficulty and failure and led to give it a sense.  
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Figure 1 – Translation of the strip: 1. Ms Swanson, I don’t understand the fourth 

exercise. 2. Obviously, I don’t understand very much also the other three 

exercises. 3. To tell the truth, I don’t understand mathematics at all. 4 Empty 

balloon to be filled 

The written answers were collected during a university orientation workshop (in 

collaboration with ALISEO - the regional Student Orientation Agency) for 

secondary school students, aimed at presenting them different options for their 

university career. More specifically, the data collection took place in front of the 

information desk for the science of education department. Totally, 355 secondary 

school students provided their answer. They came from secondary schools with 

different orientation. They could answer in an anonymous way and chose 

voluntarily to take part into the study.  

Data were initially coded adopting two perspectives: 1. “learning to learn” 

competence (code assigned by author 3, researcher in education) 2. attitude 

towards mathematics and connected affective constructs (code assigned by 

authors 1 and 2, researchers in math education). For each answer, a minimum of 

1 code and a maximum of 5 codes per perspective were attributed. For instance, 

answer 110 (“I don’t feel like doing the exercises, I give up, I don’t like”) was 

coded as “drop out” and “no motivation” from the “leaning to learn” perspective, 

and as “negative emotional disposition” for the perspective of attitude towards 

mathematics and connected affective constructs. Once coded all the answers, we 

looked for co-occurrences between couples of codes or code groups (one referring 
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to the “learning to learn competence”, one referring to affective constructs) that 

seemed to be interesting in order to study how the “learning to learn” competence 

may be related to mathematics learning and to difficulty and failure in 

mathematics. Results in terms of occurrences of codes and co-occurrences of 

codes are discussed in the subsequent paragraph.  

RESULTS 

As already mentioned, we collected 355 answers. Only 8 of them were out of 

topic and were not taken into account for our study. This is a good result, since 

almost all students accepted to “put themselves” into the situation of the comic 

strip. The answers were analyzed using the textual analysis software Atlas.ti (v. 

8), which generated the relevant Code-List, Code-Books and Code-Manager files. 

Totally, we used 143 codes (98 referring to “learning to learn”, 45 referring to 

attitude towards mathematics and connected affective constructs). Since for each 

answer it was possible to use up to 10 codes, we found 1499 occurrences of codes 

(790 referring to “learning to learn”, 709 referring to attitude towards 

mathematics and connected affective constructs). To organize results, we decided 

to group codes into 17 code groups. For instance, the group-code “internal 

strengths”, referring to those resources that can promote “learning to learn” 

competence, comprehends the following codes: “engagement”, “awareness”, 

“motivation”, “improvement”, “collaboration”, “communication”, “complicity”, 

“resolution”, “self-confidence”. 

First of all, we report on those code groups that were most represented. For the 

“learning to learn” competence, the relevant code groups are “help request” (71 

occurrences) and “internal strengths” (114 occurrences). Being aware of one’s 

needs and searching for external help are important components of the “learning 

to learn” competence. Concerning “help request”, we note that only 2 answers 

refer to a peer/classmate. 

Concerning attitude towards mathematics and other related affective constructs, 

we mention the group-code “low perceived competence in mathematics” (172 

occurrences). We may note that, within that group-code, the most represented 

code is understanding (36 occurrences). The group-code “view of mathematics” 

occurs 24 times, while “negative emotional disposition” (the third component 

of the tripartite model of attitude, according to Di Martino & Zan, 2011) occurs 

only 9 times. The situation of failure seems to call into action the perception of 

one’ competence, rather than the other two components of attitude.  
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Two connected constructs that emerge are “causal attribution” and “success 

theories”. “Causal attribution”, that is the process of looking for causes for 

failure, appears 35 times. Interestingly, only 8 occurrences represent external 

causal attribution (for instance, in answer 279 the student Patty says to Mrs. 

Swanson “Maybe you should learn how to explain better”), while in all the other 

occurrences the students identify an internal cause for failure (for instance, in 

answer 27: “I should listen to the lesson more carefully”). Being aware of a 

possible cause of failure is a good starting point for overcoming the difficulty, if 

the cause is perceived as controllable (e.g., attention during the lesson). 

220 students try to identify some strategies to overcome difficulty. We coded such 

answers as “success theories”, since they give us some insight into what is 

perceived by students as way to promote learning and reach success. The group-

code “success theories” contains for instance the following codes: “looking at 

future”, “engagement”, “explain again”, “remedial course”, “sense of the task”, 

“wake up”.  The most represented codes within the group-code “success theory”, 

apart from “looking at future” (73), that is a general disposition to overcome 

difficulty by changing some habit, are “explain again” (59) and “engagement” 

(50). Indeed, those are not necessarily very efficient strategies. “Explain again” 

refers to a mere repetition of the lesson. Engagement in terms of willingness to 

listen again the same explanation is not necessarily efficient. 

In front of difficulty and failure, also “math avoidance” is widespread (72 

occurrences). Math avoidance (Di Martino & Morselli, 2006), as the decision to 

choose the kind of school/university that provides the least amount of hours of 

mathematics in order to avoid difficulty (e.g. answer 3: “Then, scientific-oriented 

secondary school is not for me”), can be seen as the extreme way of giving up 

and not trying to overcome difficulty. 

Overall, the analysis of occurrences gives us a first glance on “learning to learn” 

competence and affective constructs, in front of failure. In order to gain more 

insight on what students need in order to overcome difficulty, we also study co-

occurrences. For our aim, we confine our analysis to specific couples of code 

groups and codes.  

The first couple of code groups we take into account is “success theories” and 

“learning”. The most relevant co-occurrence of “success theories” is with the 

specific codes “after school tutoring” (61 occurrences) and “explain again” (26 

occurrences). Hence, we may say that students recognize to after school tutoring 

a key role in overcoming difficulties. Students seem to perceive the class as the 
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place of "explaining": if the action of explaining does not lead to understanding, 

a new explanation is asked - not different or better, but simply a “replay”. 

Understanding often is reached at home with the help of another adult (“after 

school tutoring”). Knowledge construction and recovery after failure don’t take 

place, as one might think, at school (also understood as an interpersonal 

relationship with teacher and classmates) but out of school, with a tutor, who 

totally assumes the responsibility of the student’s learning. 

If we look at the couple “success theories” and “learning strategies”, we find that 

the specific code “looking at future” (to face failure situation) has interesting co-

occurrences with “understanding” (23), “reflection” (14), “method of study” 

(12) and “classroom concentration” (11). More in details, two specific codes 

belonging to “success theory”, that is to say “engagement” and “explain again”, 

have good co-occurrence with the code “understanding”. Once again, 

"engagement" and "explain again" seem to be fundamental, also with respect to 

learning strategies. In reference to the method of study, we wonder which kind of 

resources students identify to overcome difficulty. If we look at resources for 

learning, we find that “success theory” has a good co-occurrence with 

“engagement” (69), “motivation” (39), “awareness” (33) and “attention” (28). 

This shows that students are aware of the importance of internal resources. At the 

same time, they do not seem to have at disposal useful strategies to activate both 

engagement and motivation. In other words, students are willing to engage, but 

do not know how to “direct” such engagement. Indeed, “engagement” is 

associated with “attention in the classroom” (10), “collaboration” (1), 

“concentration” (3), “engaging in class” (1), “listening” (1), “practicing” (4), 

“doing exercises” (7), that are not necessarily efficient in terms of learning. Even 

“after school tutoring” is strongly associated with “engagement” (28 

occurrences), but it is not well explicated what engagement means. Only 5 

students interpret the engagement in terms of "study" (e.g. answer 58: “You can 

see that I did not study, next time I’ll have to study more”). Here we see the crucial 

role a teacher should play in promoting engagement and providing strategies to 

overcome difficulty. 

If we focus on the method of study, which is a relevant part of the “learning to 

learn” competence, only 9 students mention it. Moreover, if we look in details, 

we find that only 1 of these really refers to a method of study in terms of 

metacognitive awareness (answer 331: “Couldn't you help me or advise me what 

to do?”). Only in this case, we note a co-construction of learning, that is a 

relationship between teacher and student in order to construct learning.  
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PRELIMINARY CONCLUSIONS 

In the present study we investigated students’ views of difficulty and failure in 

mathematics, as a preliminary step to identify their needs and, consequently, 

approaches to help them in class. To this aim, we studied students’ ways of 

addressing a fictional story of difficulty and failure in mathematics. The analysis 

of their answers provided information on students’ attitude towards mathematics, 

as well as their learning to learn competence in the special case of mathematics.   

We found that students link failure to a low perceived competence, rather than to 

the other two components of attitude towards mathematics (view of mathematics 

and emotional disposition). In connection, we also evidenced a widespread 

phenomenon of mathematics avoidance. Those cases represent a first type of 

reaction to failure, that is to say just “assuming” difficulty, without any attempt 

to overcome it. Another reaction to failure consists in searching for causes, that 

is the process of causal attribution. Interestingly, we found that most causal 

attribution is internal. For all the aforementioned reactions to failure, we find a 

confirmation of the fact that an intervention at affective level could be efficient, 

as already discussed in the literature (Di Martino & Zan, 2011). 

Most students complete the comic strip with a final sentence that refers to 

something that can be done to overcome the situation of difficulty and failure. 

Most students look for an external help, which is in principle a good approach. 

However, some elements are striking. First of all, the kind of help that is required 

is a mere “explanation”. There is no reference to alternative ways to reach 

understanding, nor to class activities different from a frontal lesson. It is 

significant that only two students ask the help from a classmate. Moreover, many 

students refer to after school tutoring as the way of overcoming difficulty. This 

sheds light on their view of the mathematics lesson at school, that is the moment 

when explanation is given, versus home tutoring, the moment when difficulty is 

treated. Hence, the teacher is seen as the mere provider of explanation, rather than 

a mediator in the process of learning. Students don’t require the co-responsibility 

for their learning with the teacher and such a responsibility is given to another 

adult, the tutor, outside the school. Thus, the students seem to reject the implicit 

pact of co-responsibility in learning that should be present in school. 

Finally, many students are aware of the importance of relevant resources, such as 

engagement and motivation, but do not seem to have at disposal useful strategies 

or methods of study. Engagement, without having at disposal alternative learning 

strategies, risks to be non-relevant. Hence, internal resources are not used to 
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support some learning strategies that are deemed to be effective for overcoming 

failure in mathematics.  

As a preliminary conclusion, our study highlights the crucial role of the teacher 

in creating a learning environment where students learn together, with the 

mediation of the teacher, and are actively involved in doing mathematics, not just 

listening to explanations (Goos, 2004). In such an environment, alternative ways 

of learning are promoted and each student is at the same time responsible of his 

learning and resource for the classmates, as advocated in the formative 

assessment approach (Black & Wiliam, 2009). We mention here the project by 

Lee & Johnston Wilder (2013), where students are involved as co-researchers and 

led to experience alternative ways of learning and models of resilience. In this 

way, students are given the opportunity to express their voice and become “active, 

resilient participants in the learning process” (p. 175).  

In this way, the teacher could also address students’ perceived competence in 

mathematics. We mention here the study by Heyd-Metzuyanim (2013) who 

shows the crucial role of the teacher in the construction of an identity of math 

failure. Hence, we argue that the teacher can also have a role in turning difficulty 

into a success story. 

References 

Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. 

Educational Assessment, Evaluation and Accountability, 21(1), 5–31. 

Clarkson, P., & Leder, G. C. (1984). Causal attributions for success and failure in 

mathematics: a cross cultural perspective. Educational Studies in Mathematics, 15, 

413–422. 

Di Martino P., Morselli F. (2006). Maths avoidance and the choice of university, in J. 

Novotna (ed.), Proceedings of the 30th Conference of the International Group for the 

Psychology of Mathematics Education, Prague 16-21 July 2006, volume 2, p.425-

432 

Di Martino, P., & Zan, R. (2011). Attitude towards mathematics: a bridge between 

beliefs and emotions, ZDM – The International Journal on Mathematics 

Education,43 (4), 471-482. 

Di Martino, P. & Zan, R. (2015). The construct of attitude in mathematics education. In 

B. Pepin & B. Roesken-Winter (Eds.). From beliefs to dynamic affect systems in 

mathematics education. Exploring a mosaic of relationships and interactions (pp. 

51-72). New York: Springer. 



Morselli, Robotti & Traverso 

PME 44 – 2021   3 - 359 

European Council (2006). Recommendation 18 December 2006 on key competences 

for lifelong learning. OJEU L 394 of 30.12.2006. Brussels: European Council. 

https://eur-

lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:394:0010:0018:en:PDF  

Goldin, G. A. (2002). Affect, meta-affect, and mathematical belief structures. In G. C. 

Leder, E. Pehkonen, & G. Törner (Eds.), Beliefs: A hidden variable in mathematics 

education? (pp. 59–72). Dordrecht: Kluwer. 

Goos, M. (2004). Learning Mathematics in a Classroom Community of Inquiry. Journal 

for Research in Mathematics Education, 35(4), 258-291. 

Heyd-Metzuyanim, E. (2013). The co-construction of learning difficulties in 

mathematics-teacher-student interactions and their role in the development of a 

disabled mathematical identity. Educational Studies in Mathematics, 83(3), 341–

368. 

Lee, C., & Johnston-Wilder, S. (2013). Learning mathematics—Letting the pupils have 

their say. Educational Studies in Mathematics, 83, 163–180. 

Lutovac, S. (2019). Pre-service mathematics teachers’ narrated failure: Stories of 

resilience. International Journal of Educational Research, 98, 237-244. 

Maracci, M. & Martignone, F. (2016). Mathematical competences: struggling for a 

definition. In C. Csíkos, A. Rausch and J. Szitańyi (Eds.), Proceedings of the 40th 

Conference of the International Group for the Psychology of Mathematics 

Education, vol.3, 259-266. Szeged, Hungary: PME. 

McLeod, D. B. (1992). Research on affect in mathematics education: a 

reconceptualization. In D. A. Grouws (Ed.), Handbook of research on mathematics 

learning and teaching (pp. 575–596). New York, NY: Macmillan. 

Nicholls, J.C., Cobb, P., Wood, T., Yackel, E., Patashnick, M. (1990). Assessing 

Students' Theories of Success in Mathematics: Individual and Classroom 

Differences. Journal for Research in Mathematics Education, Vol. 21, No. 2, 

109-122.  

Niss, M. (2003). Mathematical competencies and the learning of mathematics: the 

danish KOM project. In A. Gagatsis & S. Papastavridis (eds.) 3° Mediterranean 

Conference on Mathematical Education, 3-5 January 2003, pp. 115-124, Atene: 

Hellenic Mathematical Society. 

Weiner, B. (1980). The order of affect in rational (attributional) approaches to human 

motivation. Educational Researcher, 19, 4–11.



3 - 360 

2021. In Inprasitha, M, Changsri, N., Boonsena, N. (Eds.). Proceedings of the 44th Conference of the 

International Group for the Psychology of Mathematics Education, Vol. 3, pp. 360-369. Khon Kaen, 

Thailand: PME. 

CONTRIBUTION OF ACADEMIC MATHEMATICS STUDIES TO 

TEACHING TOPICS FROM THE HIGH-SCHOOL CURRICULUM 
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This study investigates the contribution of academic mathematics studies to 

classroom teaching of topics from the high-school mathematics. Data sources 

included interviews with five teachers who taught high-school mathematics 

before, during, and after their academic mathematics studies. All teachers 

exemplified changes in classroom teaching of various topics, which they linked 

to knowledge they acquired in the academia. The domain of analysis and the topic 

of integrals were central in the reports. Use of the Essence-Doing-Worth 

framework revealed that the contribution of academic mathematics studies to 

classroom teaching was mostly related to: essence of the topic and topic-related 

calculations; the worth of the topic was seldom mentioned.   

INTRODUCTION 

In many countries, the education of high-school mathematics teachers 

traditionally includes a strong emphasis on academic mathematics courses. The 

assumption underlying this tradition is that academic studies of mathematics are 

relevant to teaching high-school school mathematics. Yet, the scholarly literature 

on the contribution of knowledge of academic mathematics to school teaching is 

rather limited. It mainly comprises theoretical contemplations of potential 

contribution, and offers only limited empirical research-based information (Even, 

2020). Review of the literature suggests that teachers often do not regard their 

studies of academic mathematics as having any contribution to their teaching. 

When they do, they tend to refer to contribution to their knowledge about the 

nature of the discipline of mathematics (e.g., Hoffmann & Even, 2019; Baldinger, 

2018), and sometimes mention responding to students’ questions or enriching 

topics taught (e.g., Even, 2011; Shamash et al., 2018). Reports on contribution of 

knowledge of academic mathematics to teaching specific high-school topics are 

rather rare. This is the focus of our study.  

The literature that centers on the contribution of academic mathematics studies to 

teaching specific mathematical contents mainly focuses on identifying and 
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making explicit connections between specific contents in academic mathematics 

and contents in school mathematics (e.g., Wasserman, 2018). Most of this 

literature centers on abstract algebra and to some extent analysis. For example, 

connections between group axioms studied in abstract algebra and the 

conventional procedure for solving equations in secondary school (Suominen, 

2018), or between group axioms and the concept of inverse function (Zazkis & 

Kontorovitch, 2016).  

Whereas the study of connections between specific contents in academic 

mathematics and in school mathematics is growing in recent years, it is not clear 

yet, how knowledge of such connections contributes to the actual teaching of 

mathematics in secondary school. The scarcity of teachers’ reports on 

contribution of their knowledge of academic mathematics to their teaching of 

specific secondary school topics may reflect the marginal role that such 

knowledge plays in teaching such topics. Yet, results of recent intervention 

studies that aimed at supporting teachers in connecting university to secondary 

mathematics (e.g., Wasserman et al., 2019) suggest that knowledge of 

connections between specific contents in academic mathematics and in school 

mathematics has the potential to contribute to the teaching of mathematics in 

secondary school, when academic mathematics courses purposely focus on 

helping teachers notice these connections. 

Thus, an alternative explanation of the scarcity of teachers’ reports on 

contribution of academic mathematics studies to the teaching of specific 

secondary school topics could be that such contribution may exist even when 

academic mathematics courses do not purposely focus on helping teachers notice 

these connections. It could be that teachers are simply unaware of this 

contribution. The limited teaching experience of prospective teachers may hinder 

their capability to recognize such contribution. And practicing teachers, who 

commonly start teaching after finishing their academic studies, may take their 

knowledge for granted, making it difficult for them to notice the contribution of 

their knowledge of academic mathematics to their classroom teaching of specific 

topics in school mathematics.  

Our study addresses this issue by focusing on a special group of teachers, who 

are likely to have greater capability to notice contribution of their knowledge of 

academic mathematics to their teaching of specific secondary school contents. 

These are teachers who began their studies of academic mathematics after several 

years of teaching high-school mathematics, and continued to teach in parallel 
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with, and after their studies, at the same grade levels they taught prior to their 

academic studies. The research question is: How do teachers, who taught high-

school mathematics before, during, and after their academic mathematics 

studies, regard the contribution of academic mathematics studies to teaching 

topics from the high-school mathematics curriculum? To address this question, 

we adapt the EDW (Essence-Doing-Worth) conceptual framework developed by 

Hoffmann and Even (2018, 2019), and examine the contribution of academic 

mathematics to teaching specific mathematics topics, using three aspects: (1) 

essence of the topic, (2) topic-related calculations, and (3) worth of the topic.  

METHODS 

Five high-school teachers participated in the study. All of them started teaching 

high-school mathematics, with no academic education in mathematics. After 

several years of teaching, these teachers enrolled in a B.Ed. program in 

mathematics education, that included academic mathematics courses whose 

scope and level were parallel to B.A or B.Sc. university mathematics programs. 

The teachers taught in Girls’ high-schools (single-gender education) the same 

grade levels before, during, and after their academic mathematics studies.   

Data sources included individual semi-structured in-depth interviews with the 

teachers. The aim was to learn how the academic mathematics courses 

contributed to their teaching. The interview consisted of two main open-ended 

questions: (1) Has there been any change in the teacher you were before the 

program and the teacher you are today? and (2) Has there been any contribution 

of the mathematics courses you studied to your work as a teacher? Following each 

question, the interviewees were asked to explain their responses and to give 

examples from their experiences in the program and their teaching. In addition, 

the teachers were shown artifacts that we had expected would help to refresh their 

memory, such as, the academic courses syllabi and list of topics in the national 

mathematics high-school curriculum.    

The interviews were transcribed and then analyzed, employing the method of 

directed content analysis (Hsieh and Shannon 2005). First, we marked all 

interview excerpts in the transcripts that included reports on changes in classroom 

teaching of mathematics topics that were explicitly linked to new knowledge 

acquired in the academic mathematics courses. Second, we marked the 

mathematics domain and the specific topic of each reported change, and using the 

EDW framework (Hoffmann & Even, 2019) we coded each change as 

contribution to teaching pertaining to: (1) essence of the topic, (2) topic-related 
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calculations, and (3) worth of the topic. The analysis was iterative and 

comparative, and included peer validation. Finally, we focused on the topic 

mentioned the most in the interviews – the integral – and conducted a similar in-

depth analysis of the changes reported regarding its teaching.  

FINDINGS 

Below, using the three EDW aspects, we briefly describe the contribution of 

academic mathematics to teaching different mathematics domains and topics. 

Then we elaborate on the topic of integrals that was rather central in the teachers’ 

reports.  

Contribution to teaching different mathematics domains and topics 

Analysis of the interviews revealed that all five teachers reported on changes in 

their classroom teaching of selected mathematics topics, which they explicitly 

linked to new knowledge they acquired in the academic mathematics courses. 

These changes in classroom teaching were associated with a variety of topics in 

different mathematics domains. All five teachers reported on changes in their 

teaching of selected topics in analysis; four teachers in selected topics in each of 

the domains of algebra and probability; and three teachers in selected topics in 

geometry. The topic of integrals was mentioned by four teachers; all other topics 

were mentioned by 1-3 teachers. 

The teachers reported mainly on contribution related to two aspects: essence of 

the topic, and topic-related calculations. The aspect, worth of the topic was hardly 

mentioned in the interviews.  

Regarding the aspect essence of the topic, the teachers reported changes 

associated with frequently used mathematical concepts and topics, such as, 

extremum point, derivative and integral in analysis, conditional probability and 

complementary events in probability, solution of equations in algebra, and 

Euclidean geometry in geometry. The teachers explained that following their 

academic studies, they modified the way they have presented these concepts in 

class. Such changes, they said, helped them to present concepts as they are in 

mathematics, and to overcome difficulties they had previously encountered in 

their teaching when using inaccurate definitions. In the following we exemplify 

changes Teachers A and D made in the definitions of extremum point of a 

function that they had previously used in their teaching (which did not cover all 

possible cases of extremum points) after learning at the academia a definition that 

was based on the notion of neighborhood of a point.  
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Teacher A’s original definition was based on finding points of “transition from 

increasing to decreasing” and vice versa. In the interview excerpt below, she 

explains the reason for the change she made:  

Teacher A:  Let’s say extremum points. Then, in the past, in high school, I could 

have said, point of change. Today I will never say that... that an 

extremum point is a transition from increasing to decreasing. [Today] 

I will say, this is a point that is the highest or the lowest in its 

neighborhood. The definitions would be more accurate today.  

Interviewer:  Why? 

Teacher A:  Because there are endpoints that are extremum points. So, when we 

get to the root function, I will not tell them that it is at the end. Then, 

I will define in advance that in my neighborhood, the point that is the 

highest in its neighborhood. 

Teacher D’s original definition was based on finding points for which the 

derivative was zero. In the interview excerpt below, she explains why she 

changed it: 

Can I say that extremum is everywhere the slope is zero? No, this is not the definition 

of extremum. It is a point that is the highest or the lowest in its neighborhood.  Then 

all questions regarding functions with absolute value automatically disappear: Is this 

peak… is it an extremum point? It is not differentiable, then, is it not an extremum 

point? [Or] is it an extremum point? If the definition is precise and correct, then there 

won’t be questions regarding these places, which actually it is unclear what happen 

with them, the points which are not differentiable. If it were before I learned all that 

I learned [in college], then for me, [to find] an extremum point, okay, then I do 

derivative equals zero, [and this way I] find the extremum points… No, there could 

be extremum points which I didn’t find: extremum points which are endpoints… 

[and] as we say, in absolute value functions.   

Regarding the aspect topic-related calculations, the teachers mainly reported 

changes associated with justifications of various methods of calculation, such as, 

differentiation and integration rules in analysis, and computing binomial 

distributions in probability. There were also a few reports related to learning new 

methods of calculation in the academic courses, which the teachers then 

incorporated into their classroom teaching. The teachers explained that their 

academic studies enable them to justify in class methods of calculation, which 

previously they presented to students as rules to follow only. The following 

excerpt from the interview with Teacher E demonstrates her changed practice that 

includes now justification of differentiation rules: 
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Interviewer:  Has there been any change in the teacher you were before the program 

and the teacher you are today? 

Teacher E:  I really give them proofs from calculus… Derivative, proof, these are 

actually things that I got from the college… I was not used to get to 

this… proving derivatives… You start with y=x2, and demonstrate 

the whole process on the board, with the limits, that is, with the 

approaching to zero… of the limit of the slopes of the secant lines… 

With the more complicated derivatives I also demonstrate it to them...       

Contribution to teaching the topic of integrals 

Four teachers reported on changes in their classroom teaching of the topic of 

integrals, and explicitly linked these changes to new knowledge they acquired in 

the academic mathematics courses. All four teachers mentioned contribution of 

their academic studies to their teaching of the topic of integrals in relation to two 

aspects: essence of the topic and topic-related calculations. None referred to the 

aspect worth of the topic.  

The main contribution reported by the teachers regarding the topic of integrals 

was related to the connection between two forms of the integral: the indefinite 

and the definite integral. The teachers explained that prior to their academic 

studies they did not really know what an integral is. They described their teaching 

of this topic as focused on how to calculate areas using integral as a formula. 

Following their academic studies, which included formal definitions of central 

concepts and proofs of key theorems, three teachers reported that they made 

substantial changes in their teaching of the topic of integrals (the fourth teacher 

made only a minor change). They incorporated into their classroom teaching the 

use of limit of sums of rectangles in order to justify the calculation of an area 

bounded by the graph of a function defined on an interval and the x-axis (definite 

integral), and then connected it to the antiderivative function (indefinite integral) 

and the Newton-Leibniz formula (∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = 𝐹(𝑎) − 𝐹(𝑏)). 

In the following interview excerpts, Teacher D demonstrated this change in her 

classroom teaching, which she connected to the knowledge she acquired in her 

academic studies. The first excerpt describes her teaching of the topic of integrals 

before her academic studies:  

And before I studied calculus at the college, I also didn’t know about the deep 

connection between area and integral. I didn’t really understand. I thought, okay, to 

find area, this is what I am supposed to do [∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = 𝐹(𝑎) − 𝐹(𝑏)], and this 

is what the girls [students] need to do. So, I automatically taught technically what 
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needs to be done. Not where it came from, and what it is, and so on. And that it 

doesn’t have to be area, the integral, like it can be many other things. And this is why 

an integral can be negative, the definite integral, it can be negative and not only 

positive... 

She then moved to describe the change she made in her teaching practice 

following her academic studies, and explained how she works now with her 

students: 

The goal was, okay, how do I find area without knowing the concept of the integral. 

How do I find the area between the function and the x-axis?… And then we really 

started to break it [the area] down into rectangles, together with the girls [students], 

and take the maximum of the areas of the rectangles, and take the minimum... So, the 

area should be in the middle. And then of course I introduced them to the theory of 

limits … And we did algebraic operations, and suddenly they see that the derivative 

function was created… And then they say: Ah, okay, then the area should be in the 

range between this and this… we [then] reached the inverse operation of derivative. 

And that was it, this is where it came from. And then we also proved the fundamental 

theorem of calculus, and so on. 

As demonstrated above, this change in classroom teaching was related to both 

aspects: essence of integral and integral-related calculations. The teachers used 

the knowledge they acquired regarding the connection between the indefinite and 

the definite integral to explain in class what an integral is; an explanation which 

served also to justify the way the definite integral is calculated. In addition to this 

significant change in classroom teaching, two teachers reported on three less 

substantial changes related to the indefinite integral, which were associated with 

the aspect integral-related calculations. Each of these changes was mentioned by 

one teacher. 

Two of these changes were mentioned by Teacher C. She described how before 

her academic studies, she used to teach her students a large number of formulas 

for finding the antiderivative function. During her academic studies she realized 

that quite a few of these formulas are actually specific cases of general formulas. 

This insight led her to change the way she presents and uses in class formulas for 

finding antiderivative functions. Instead of providing her students with a long list 

of formulas, she switched to presenting only general cases and to guide her 

students in using these general formulas in specific cases. For instance, 

∫ 𝑓(𝑥)
𝑛

𝑑𝑥 = 𝑓(𝑥)
𝑛+1

(𝑛+1)∙𝑓′(𝑥)
  when the function 𝑓(𝑥) is linear, is used in her class 

as a general case for finding the antiderivative of the function g(x) =  
1

(3𝑥+5)2
 . 
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This teacher mentioned also that learning about the notion of integrability in her 

academic studies enable her to respond to students’ common claim that it is 

possible to find the antiderivative for all functions:  

Because often girls tell me: ‘It is possible to find the antiderivative of every function.’ 

Then I show them that there are many more functions that don’t have antiderivatives. 

And many more functions for which is it very complicated to find their 

antiderivative, or that it is known that they have antiderivatives, but not how to find 

it. 

Another specific change was mentioned by Teacher D. She was introduced in her 

academic studies to the method of integration by substitution for calculating 

integrals. Even though this method is not part of the high-school curriculum, she 

decided to teach it to her students because it is useful: “They use it a lot, and they 

also understand where it came from… why I can switch dx with du.” 

DISCUSSION AND CONCLUSION 

The starting point for our study was the intriguing scarcity of secondary school 

teachers’ reports on contribution of their academic mathematics studies to their 

teaching of secondary school mathematics topics. We posited that a reasonable 

explanation for this situation could be not the absence of such contribution, but 

instead, teachers’ restricted capabilities to recognize such contribution. 

Consequently, we focused in our study on a unique group of teachers who we 

expected to have greater capability to notice contribution of their academic 

mathematics studies to their teaching of secondary school topics. These were 

teachers who began their studies of academic mathematics after several years of 

teaching high-school mathematics with background in high-school mathematics 

only, and then continued to teach in parallel with, and after their academic 

mathematics studies, at the same grade levels they taught prior to their academic 

studies.  

And indeed, all five teachers who participated in our study provided tangible 

examples of contribution of their academic mathematics studies to their teaching 

of various topics from the high-school mathematics curriculum. The domain of 

analysis in general, and the topic of integrals in particular, were central in the 

teachers’ illustrations of changes they made in their teaching. Thus, the results of 

our study add important insights to current literature, which mostly deals with the 

domain of algebra (e.g., Wasserman, 2018).  

The use of the EDW framework (Hoffmann & Even, 2018, 2019) revealed that 

the contribution to teaching mentioned in the teachers’ reports was mostly related 
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to two aspects: essence of the topic and topic-related calculations. The changes 

in classroom teaching reported by the teachers were mainly related to presenting 

mathematics concepts more accurately (e.g., extremum point, integral), and to 

justifying procedures used in class (e.g., rules for finding derivatives and definite 

integrals). Examination of these changes in light of the national high-school 

curriculum (Ministry of Education, 2019) suggests that these changes reflect a 

broader interpretation of the high-school curriculum, which previously was 

interpreted at face value.     

In contrast with the findings of another study (Hoffmann & Even, 2019) which 

used the EDW framework to study the contribution to secondary school teaching 

of academic mathematics studies in a different program, the aspect worth of the 

topic was seldom mentioned by the teachers in our study. This discrepancy 

between the results of our study and that of Hoffmann and Even might be related 

to the nature of the mathematics courses included in each of the different 

programs. More research is needed to better understand this discrepancy. 
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This research focuses on 9th grade students’ learning processes while playing 

mathematical games. We adopt the commognitive lens and ask: how do the 

discursive processes around a board-game about quadrilaterals afford 

explorative participation? We found four main routines followed by the 

participants: two relating to the mathematical objects and two relating to the 

rules of the game. These routines were organized in patterned ways where the 

mathematical routine usually preceded the game-playing routine. In addition, 

subjectifying discourse was relatively neutral in the mathematical discourse 

while competitive and identifying in the game-discourse. In this way, the 

mathematical routines served as a gateway and a resource for the main goal of 

winning the game.  

INTRODUCTION  

Several studies have shown that mathematics game-playing can promote 

motivation and engagement (Orim & Ekwueme, 2011; Parsons, 2008). These 

studies join the contemporary enthusiasm about gamification and game-based 

learning in education (Gee, 2008; Hays, 2005). However, not much is known 

about the processes of learning happening through these games. Even less is 

known about how students learn mathematics through game-playing. Having a 

long experience with teaching mathematics by game-playing in middle-school 

mathematics classrooms (2nd author), we designed a study that aims at identifying 

the learning opportunities that students are provided with during mathematics 

games. In the current paper we report on students' discourse around a board-game 

about quadrilaterals, and how the organization of this discourse affords 

explorative participation. 

GAMES IN CLASSROOMS AND LEARNING THROUGH GAMES 

Teaching through games is well supported by the constructivist theory since 

games are natural activities for children (Vankúš, 2005) and provide them with 
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opportunities to explore their ideas and create strategies through trial and error 

without being concerned with outcomes in real life. That is, mistakes which are 

done during games will not influence the players’ real lives when compared with 

mistakes done in a test (Hays, 2005). With no outcomes in reality, students are 

more motivated to explore the subjects through the game. Their social skills and 

emotional regulation can be improved as well as their ability to better understand 

and remember what they learn (Gee, 2008; Hamari, Koivisto & Sarsa, 2014; Stott 

& Neustaedter, 2013). Various studies detail possible contributions of game-

playing to mathematics learning. Those include: improving  mental calculations, 

providing an environment in which students generate their own mathematics 

questions and problems along the game (Parsons, 2008), helping to conceptualize 

mathematics problems, improving students' attitude towards mathematics, 

motivating students to practice in an enjoyable way, learning mathematical 

vocabulary and ideas, improving math reading (Henry, 1973) and improving 

logical thinking (Orim, Ekonesi & Ekwueme, 2011). It could also enhance social 

and communicational skills and competencies (Gee, 2013; Higgins & Chaires, 

1980). Literature relates to different types of games. In this study we focus on 

students playing one game which complies with the following definition: “A 

competitive interaction based on mathematical principles. This interaction must 

include at least two players that are committed to the same set of rules and are 

free to choose their own strategy and moves based on mathematics and luck”. 

This definition is based upon various other definitions for games (e.g. Gough, 

1999; Orim & Ekwueme, 2011). 

While studies about game-playing in educational settings have been growing in 

number and scope, studies about the learning processes involved in learning with 

mathematical games is still lacking. For studying such processes, a discursive 

lens, which focuses on students' communication while playing, can be beneficial. 

Adequate methodological tools would have to be able to analyze mathematical 

discourse among students and the way their identities and emotions are expressed 

during the games. Commognition theory (Sfard, 2008) has proved useful in the 

past for examining processes of learning, and in particular, for examining 

affective aspects of communication as they interact with mathematical activity 

(Heyd-Metzuyanim & Sfard 2012). Next we detail about the commognitive 

framework. 
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LEARNING AS BECOMING AN EXPLORATIVE PARTICIPANT 

According to the commognitive framework, learning mathematics is a change in 

one's mathematical discourse, towards becoming an explorative participant in the 

discourse (Lavie, Steiner and Sfard, 2019). Such participation is characterized by 

the students' authoring of narratives about mathematical objects. The learner 

chooses between alternatives according to the task at hand and considers 

alternative processes. She is expected to make independent decisions on the way. 

This, in contrast to ritual participation which is characterized by rigidly following 

rules according to others' authority and focusing on the doing and not on the goal.  

To learn about the type of student participation while playing in the mathematics 

classroom, whether more ritual or more explorative, we look at the routines that 

they perform. Routines are patterns that are repeated in similar situations. We 

identify routines as pairs of tasks and procedures: the task one sees herself 

performing together with the procedure she executed to perform the task (Lavie, 

Steiner and Sfard, 2019). That is, when a person faces a new task, she is able to 

act thanks to her previous experience, past situations that she interprets as 

sufficiently similar to the present one to justify repeating what was done then, 

whether it was done by herself or by someone else.  

As mentioned above, game-playing is often characterized as promoting 

motivation and emotional engagement (Hamari, Koivisto & Sarsa, 2014; Parsons, 

2008). Taking a discursive lens we use the terms of subjectifying and 

mathematizing to analyze these affective aspects in students' communication. By 

subjectifying we mean communication about the participants of the discourse, 

including statements about one's actions, thoughts, feelings and general attributes. 

These communicative actions are often accompanied by a distinct emotional hue 

– that aspect of the utterance that is interpreted by the audience as indicating how 

the communicator is feeling. By mathematizing we mean communication about 

mathematical objects. Previous studies (e,g, Heyd-Metzuyanim & Sfard, 2012) 

have found that subjectifying can interfere with mathematizing. For example, 

when students are focused on subjectifying negatively about each other (e.g. in 

relation to who is smarter, who is better understood, etc.), the effectiveness of the 

mathematical communication may suffer. These studies, however, did not relate 

to playful or game-playing situations. There, subjectifying may be intense due to 

the competitiveness of the game (the individual's goal to win), yet it is unexplored 

whether such subjectifying is beneficial or detrimental for learning.  
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The goal of the present study is to examine students' communication around 

game-playing to better understand the affordances of this teaching practice. 

Therefore we ask: How do the discursive processes around a board-game about 

quadrilaterals afford explorative participation? 

METHOD 

In this paper we closely look into students' playing of one geometric game, the 

"quadrilaterals Totem game", inspired by a game named Totem. It is a board 

game with 10x10 ellipses (Figure 1). On 96 ellipses, a name of a quadrilateral is 

written. The other 4 ellipses are empty. The game includes a stack of property 

cards. On each property card, a geometrical property is written, for example "two 

adjacent angles sum to 180". The players' goal is to move their 4 plastic chips 

from one side of the board to the other according to the property card. In each 

turn it is possible to move one chip in one direction through as many ellipses that 

comply with the written property. For instance, if the property card says, "all sides 

are equal", a player can move in one turn one plastic chip in one direction but it 

can pass through all sequential ellipses that comply with the property. Once a 

student reaches an empty ellipse, players draw a new card. 

  

Figure 1: The Totem game board – a sketch and in reality 

The data for this paper includes a videotaped 9th grade mathematics lesson in 

which students were playing the quadrilaterals Totem game. We focus on two 

groups of four students each. Both groups played for the whole lesson (about 30 

minutes). One group played eight rounds and the other – five. The videotapes 

were transcribed and analyzed in three steps. First, utterances were identified as 

either relating to the mathematical discourse (talk about mathematical objects) or 

to game-discourse (talk about the game). Second, we identified routines that the 

participants performed in each of the discourses, by identifying the tasks that they 
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set before them. To identify the task, we look at what the participants do and 

consider the possible task that she tries to perform. For example, if a player says: 

"it's a rhombus because it has four equal sides", we could interpret her task to be 

"justify your identification of shape". Third, we identified all subjectifying talk 

and identified its emotional hue. 

FINDINGS 

Finding 1. We found that while playing, students talked either about the game or 

about the mathematics. That is, they participated in two discourses – game and 

mathematics discourses. Only 1% of students' talk was about other issues. This 

implies that students were engaged with the game and did not talk about other 

topics. 

Finding 2. When looking at students' organization of the discourse in all rounds, 

we found that after picking a card and reading the property, students first jointly 

discussed which of the quadrilaterals comply with the property and which do not. 

They also clarified words that were written on the card. Later, students negotiated 

about specific mathematical narratives produced – they challenged narratives 

formerly endorsed by the group and justified narratives about the shapes. In those 

parts, students raised doubts, tried to convince others and addressed their peers' 

questions. After mapping the shapes as complying / not complying with the given 

property, players shifted to talk about the game. Here, students talked about game 

strategies and negotiated options and choices of moves that they could or should 

take. We conclude that during the game students' discourse included the 

following four routines of participation: (for each routine we specify the task that 

defines the routine). Math_a:  Laying the mathematical ground. This routine 

includes the task: to produce mathematical narratives that are required to play and 

win the game. This routine was initiated in every round right after reading the 

property card. Math_b: Negotiating the mathematical narratives. Task: to 

challenge and reason about formerly produced mathematical narratives. This was 

initiated when a certain shape was not checked earlier (after starting to play) or 

when an agreement about a shape was questioned. Game_a: Game strategy. Task: 

to identify the best strategy/moves to win. This was initiated after mapping which 

shapes comply (or not) with the property. Game_b: Negotiating game-moves. 

Task: to determine which moves are allowed according to the game rules.  

Episode 1 illustrates the Math_a routine. 
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Episode 1: Laying the Mathematical Ground 

Turn name what was said (what was done) 

196 H (Picks up a card and reads) Every pair of adjacent angles sums 180 

197 N Every pair of adjacent angles  

… 

201 S Ahh in a rectangle? What is adjacent? 

204 N Adjacent is, one (angle) next to the other (using hand gestures). Those 

are 180 

205 S So also in a square, in a rectangle, in a parallelogram 

206 H Almost every shape 

207 S In parallelogram? 

208 H Almost every shape except 

209 S Trapezoid 

… 

214 H Everything that includes, let's say, kite and rhombus 

215 S Great, my turn 

The routine is initiated by picking up a card and reading the property (196). The 

task that students were performing during this episode was to produce 

mathematical narratives that are relevant to moves required in the game. The sub-

tasks that students performed towards this goal were: (a) clarify mathematics 

words that are unclear (201, 204), and (b) determine the shapes that comply (or 

not) with the given property (201, 205-209, 214). 

Episode 2: Negotiating the Mathematical Narratives 

The next episode illustrates routine Math_b. The routine was initiated when a 

player challenged narratives that were formerly accepted by the group. The 

students' mathematical discourse during this routine usually included 

mathematical explanations and justifications. This episode refers to the property 

card “All opposite sides are equal” and was initiated when student M challenged 

a narrative formerly accepted by the group, that "in a rhombus all opposite sides 

are equal". 

Turn Name what was said (what was done) 

196 M In a rhombus opposite sides are eq(ual) not equal 

197 T In rhombus all sides are equal. 
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198 M But it doesn’t mean that they, like the opposite have to be equal, (but 

just) the adjacent are equal. 

199 A But all sides are equal 

200 T But all sides are equal in a rhombus, it’s like a square 

201 R Listen if it (the rhombus sides) were four four four four (each side 

equals 4 length units), so four equals to four (pointing at opposite 

sides), four equals four 

202 M Well. So, OK 

Here, students T, A and R justify the formerly accepted narrative by using three 

justifications: (a) if all sides are equal then a sub-set of them would necessarily 

be equal (197, 199, 200); (b) making an analogy to a different shape (a square, 

(200)) that was formerly accepted as being complying with the property due to a 

similar reason (all sides are equal); and (c) by giving an example by attributing 

specific length (four) to the sides (201).  

The sub-tasks that students perform here are "challenge a formerly accepted 

narrative", "justify a mathematical narrative" and "accept a suggested 

mathematical narrative".  

Finding 3. Performing routines Math_a and Math_b resulted in students' 

production of multiple narratives. For example, during the performance of routine 

Math_a  for the property-card: Every pair of adjacent angles sums 180 (episode 

1), students authored the following narratives: (1) adjacent angles are next to each 

other (204); (2) Each pair of rectangle’s adjacent angles sums 180 (201, 205); (3) 

Each pair of a parallelogram's adjacent angles sums 180 (205); (4) Each pair of a 

square's adjacent angles sums 180 (205); and (5) In a trapezoid, not every pair of 

adjacent angles sums 180 (208-209).  

Finding 4. In all 13 rounds that were analyzed, the activity structure that we 

identified was Math_a - Game_a - Math_b OR Math_a - Math_b - Game_a. The 

Game routines never started the round, and Game_b did not always occur. In 

cases in which it did, it followed Math_b or Game_a. 

Finding 5. In both discourses - the mathematics and game, subjectifying 

utterances were found. However, most subjectifying took place the game 

discourse, that is, while performing routines Game_a and Game_b. We found that 

26% (76/287) of the utterances in routine Math_a included subjectifying, and 

22% (68/305) in routine Math_b. In contrast, 78% (208/267) of the utterances in 

Game_a and 64% (190/299) of utterances in Game_b included subjectifying.  
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Finding 6. Subjectifying differed not only in quantity but also in quality: whereas 

routines Math_a and Math_b included neutral or positive subjectifying and call 

for collaboration, routines Game_a and Game_b included negative (mostly 

humorous) subjectifying narratives.  

Episode 3: Negotiating Game-moves 

Turn name what was said (what was done) [emotional hue] 

321 M You can’t come back to where I am [Worried about T’s move] 

322 T I can do whatever I want to and you won’t tell me what to do 

[annoyed] 

323 A So eat him (plastic chip), eat him [excited] 

324 R T is getting into a game mode (laughing) [cynical] 

… 

328 M No, where are you going? [surprised] 

329 T BOOM! No (lands on M’s chip and takes it backwards). [Pride and 

slight aggression] 

330 A Your turn (turns to R)  

331 T You don’t mess with T! [Arrogance and pride] 

In episode 3 we can see that the subjectifying during game discourse is mainly 

about winning, competing and teasing each other. This can be seen through the 

aggressive and exited emotional hue within the game-discourse, that was totally 

absent during the math-discourse. 

DISCUSSION 

Our question in this research was how do discursive processes around the game 

of "quadrilaterals Totem" afford explorative participation in mathematical 

learning. We found that students' routines of participation were organized in 

patterned ways, where the mathematical routines usually preceded the game-

playing routines. This pattern promoted explorative participation since every time 

students wished to reach the actual game-playing (routines Game_a and 

Game_b), they needed to pass through the mathematics (routine Math_a). Also, 

while participating in the game, students authored multiple mathematical 

narratives: they determined whether to produce a narrative, which narratives to 

produce, whether to question a narrative stated by others or when and how to 

justify narratives. Also, they often did not have a ready-made procedure to follow 

while producing or justifying narratives. In addition, the mathematics discourse 



Nachlieli, Levy & Heyd-Metzuyanim 

3 - 378  PME 44 – 2021 

hardly included subjectifying narratives, unlike the game-discourse. This allowed 

relatively free engagement with authoring mathematical narratives devoid of the 

potential negative consequences of authoring wrong mathematical narratives. At 

the same time, the motive to win, and the emotional enjoyment related to that was 

channeled to the game-playing discourse.  

The use of mathematical games in class may divert traditional narratives such as 

"being good/bad in mathematics" to two discourses with new narratives: the game 

discourse which is mainly about the narrative of "I want to win", and the 

mathematical discourse which is about collaborating to produce mathematical 

narratives that will serve the main narrative of the game. That is, the mathematical 

routines served as a gateway and a resource for the main goal of winning the 

game. 
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The article reveals how the processes of subjectification and objectification 

proceed in a mathematical activity at a Japanese preschool and how the roles of 

finger gestures change for children during these processes. The theoretical 

construct used was joint labor as proposed by Luis Radford throughout his work. 

We relied in part on his methodology and in part on a microgenetic approach to 

analyze a scene of addition involving children and a teacher in a Japanese 

preschool. The analysis captured children obtaining help from the teacher to 

reconstruct the meaning of fingers as tools for solving quizzes rather than 

preserving the meaning through unprompted practice. The analysis also showed 

that the role of finger gestures was reconstructed in class to solve a conflict 

between children’s differing solutions to an addition problem.  

INTRODUCTION 

In recent decades, studies examining young children’s mathematical abilities and 

skills in various areas from a constructivist point of view have accumulated (e.g., 

Duncan et al., 2007; Lin, Tsamir, Tirosh, & Revenson, 2013). Some have 

investigated children’s gestures during geometrical problem-solving (Elia & 

Evangelou, 2014; Elia, Hadjittoouli, & van den Heuvel-Panhuizen, 2014). 

Moreover, socio-cultural issues, which are not intensively discussed in 

constructivist research on young children, have been examined in the context of 

research on preschool children in recent studies (Dijk, Oers, & Terwel, 2004; 

Radford, in press), drawing attention to the socio-cultural nature of the early 

development of mathematical abilities. Gestures, as well as other embodied 

actions with verbal languages, were regarded by Radford (2012), as the integral 

part of children’s cognitive functioning. From this point of view, the purpose of 

this paper is to reveal finger gestures’ mathematical roles, especially in the 
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context of socio-cultural settings. To explore such roles, we refer to Radford’s 

theoretical construct of joint labor (2016a, 2016b) and analyze Japanese 

preschool children’s mathematical behaviors from a socio-cultural perspective. 

The Japanese Ministry of Education, Culture, Sports, Science and Technology’s 

Course of Study for kindergartens (2017) does not explicitly define school 

subjects, including mathematics, and expects groups of same-aged children to 

acquire mathematical concepts and skills through integrated play. Individual 

preschools are responsible for designing mathematical (and other) activities. The 

authors believe that observing a mathematical group activity in a Japanese 

preschool provides an opportunity to analyze the mathematical roles of finger 

gestures.  

THEORETICAL FRAMEWORKS AND RESEARCH QUESTIONS 

In the process of illustrating his theory, Radford (2016b) proposed the idea of 

joint labor—where students and teachers work together to create common 

work—as a key theoretical construct. The theory is built on a Vygotskian view of 

activities, the aim of which are 

the dialectic creation of reflexive and ethical subjects who critically position 

themselves in historically and culturally constituted mathematical practices and 

ponder and deliberate on new possibilities of action and thinking. (Radford, 2016a, 

p. 4) 

Radford (2016a, 2016b) calls such specific activities joint labor, arguing that 

subjectification and objectification are two sides of the same coin. These 

processes occur simultaneously during an activity: 

Learning can be theorized as those processes through which students gradually 

become acquainted with historically constituted cultural meanings and forms of 

reasoning and action. Those processes are termed processes of objectification 

(Radford, 2015, p. 551, italics in the original) 

[O]bjectification is more than the connection of the two classical epistemological 

poles, subject and object: it is in fact a dialectical process—that is, a transformative 

and creative process between these two poles that mutually affect each other […] 

Subjectification is the making of the subject, the creation of a particular (and unique) 

subjectivity that is made possible by the activity in which objectification takes place. 

[…] [L]earning is both a process of knowing and a process of becoming (Radford, 

2015, p. 553) 

The concept of joint labor, thus, reconceptualizes teaching. A mathematics 

teacher both objectifies a new aspect of the mathematical concept to be taught 
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and subjectifies herself as two sides of the product of a collaborative activity with 

her students. Radford (2016a) views: 

[T]eaching and learning not as two separate activities but as a single and same 

activity: one where teachers and the students, although without doing the same 

things, engage together, intellectually and emotionally, toward the production of a 

common work. Common work is the sensuous appearance of knowledge (e.g., the 

sensuous appearance of a covariational algebraic or statistical way of thinking 

through collective problem posing and solving and discussion and debate in the 

classroom). […] The joint labor-bounded encounters with historically constituted 

mathematical knowledge materialized in the classroom common work are termed 

processes of objectification. (p. 5, italics in the original) 

Based on the abovementioned theoretical frameworks, our research questions are 

as follows: 1) How does the process of subjectification and objectification 

proceed in a mathematical activity at a Japanese preschool? and 2) How do 

mathematical roles of finger gestures for preschool children change in the 

process? 

METHOD 

Research Design 

As mentioned, Japanese preschools design and implement the annual plan for 

activities on an individual school basis. The present authors have an interest in 

the development of children’s mathematical abilities during activities 

implemented as a part of the curriculum. The first author of the current paper has 

collaborated with a Japanese private preschool on the development of a 

mathematics curriculum. That school participated in the study.  

From the perspective of joint labor, we focus on an activity featuring 

mathematical quizzes where students and teachers quiz each other regarding the 

number of bananas belonging to a monkey. The episode of activity presented in 

the paper is short-term; longitudinal research on joint labor is recommended for 

documenting processes of objectification and subjectification (cf. Radford, 2015, 

2011). Instead of the longitudinal track of studying children’s mathematical 

development, we adopted a microgenetic approach to capture the processes of 

developmental changes themselves in short-term episodes rather than only 

milestones, or snapshots of development (Lavelli, Pantoja, Hsu, Messinger, & 

Fogel, 2008). Indeed, even Radford reported a set of short-term episodes as parts 

of the historical processes of objectification and subjectification (e.g., Radford, 

in press, 2016b, 2011). Accordingly, we recorded the entire session and then 
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selected a salient segment to analyze in terms of joint labor. We did not follow 

the remaining procedures proposed by Radford (2015) because our focus on joint 

labor is a relatively new application of his theory, and its means of identification 

have not yet explicitly emerged in his methodological formulations (2015). 

Instead, our analysis was inspired by the steps used in the microgenetic approach 

(Lavelli et al., 2008): (1) roughly identify stable and changing components of the 

relationship between children and teacher through repeatedly watching a clip; (2) 

transcribe the clip chronologically; (3) divide the transcription into several 

frames; and (4) create a storyline synthesizing the frames to explain the stable 

and changing components.  

Procedure (4) for creating the storyline is further divided into four steps: (4.1) 

identify joint labor based on stable and changing components of the relationship 

between children and teacher; (4.2) interpret the algebraic knowledge which 

emerges through the joint labor; (4.3) interpret how it emerges, i.e., how it is 

objectified; and (4.4) interpret how the children subjectify themselves. 

RESULT 

Children’s Activity  

In the implemented activity, after the children watched a video clip on wild 

animals, the teacher introduced an activity about monkeys and their lives. When 

the children and teacher sang a song about monkeys, she introduced questions 

about 1-digit addition and subtraction. Children were encouraged to use their 

fingers, with each finger representing one of the monkey’s bananas. As she 

quizzed the children regarding the number of bananas, they calculated their 

answers by watching and counting the teacher’s presenting fingers. After that, the 

children indicated that they wished to share their own quizzes by raising their 

hands. The teacher selected students one by one, and each in turn came to the 

front of the class and took on the teacher’s role. Their questions followed the 

sentence format for verbal expressions provided by the teacher, a common 

pedagogy at the school. Children provided simple addition and subtraction 

problems, including 10 - 5, 4 - 1, 10 - 8, 10 - 5, 10 + 2, and 11-3, to their seated 

peers, who listened and answered the quizzes together by counting the presenting 

student’s fingers. Student presentations were followed by additional 

presentations from the teacher, followed by presentations from the remaining 

students who quizzed their peers on 10 - 9, 10 - 7, 5 + 4, and 9 + 1.  

The focal scene comprised the penultimate question asked by a student. 

Following the third procedure for microanalysis, the transcription was divided 
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into six frames. All the conversations were in Japanese and were translated into 

English by the authors. All children’s names are pseudonyms.  

Frame 1 features a male child’s question.  

182 Yu: (Singing a song.) Quiz, quiz  

183 SS&T: What is the quiz? 

184 Yu: (Singing.) Quiz of answering the number of bananas. 

185 SS&T  What is the question? 

186 Yu: Here are 12 bananas. A monkey put 5 more bananas. How many 

bananas are there altogether? 

After Yu’s question, the teacher wryly smiled, likely due to the large size of the 

number, considering the ages of the children, but decided to continue the game.  

187 T: It seems more difficult than before. Okay, okay. Let us try.  

188 SS: (Raising their hands.) Yes, me.  

 Frame 2 shows the teacher’s confirmation of the content of the question. 

189 T: How many bananas were there in the beginning?  

190 Saki: 12. 

191 T: 12. And how many bananas were added? 

Frame 3 shows a conflict between children.  

192 Yu: (Pointing to a child, saying her name.) Hiroko.  

193 Hiroko: 17. 

194 Yu: Wrong. 

Though Hiroko correctly and quickly answered, Yu did not seem to correctly 

understand what she said. After denying her answer immediately once he put a 

troubled look on his face. 

Frame 4 shows the conversations between Yu and teacher to reconfirm the 

question.  

195 T: Let us think together.  

196 Yu: Wrong.  

197 T: Wasn’t it right? What was the answer?  

198 Yu: 16. 

199 T: 16. Well, let’s think together. It became more challenging than before.  
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200 Yu: There were 12 bananas and the monkey added 5 more bananas, and 

then…  

Frame 5 shows the start of a collaborative discussion using finger gestures.  

201 T: Well, in the beginning, the monkey had 10 and 2 bananas. (Showing 

her 10 fingers and using 2 of Yu’s right fingers.)  

202 T: So, there are 12 and it added 5 more… (Showing 10 with her hands 

and letting Yu show 7 more with his hands.)  

203 Konoha: There are 16 bananas.  

204 T: 16 bananas?  

205 Yu: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17.    

206 T: Thus? Right! Wonderful! (Clapping) It became difficult gradually.  

The teacher demonstrated the use of finger gestures, and the children followed 

her lead, actively counting using finger gestures.  

Frame 6 shows Hiroko’s reasoning about the solution to 12 + 5. Immediately after 

recognizing that her friends obtained the same answer she had, 17, by using finger 

gestures, she saw the connection between 12+5 and 2 + 5 and argued the point.  

207 Hiroko: Well, 2 + 5 = 7. (Showing her 2 and 5 fingers together) 

208 T: Wow, well, you counted! I see, so let us do the final one? Please.  

Created Storyline 

The activity presented constitutes joint labor between children and teacher. We 

regarded it as joint because its production was considered historically contingent. 

The quiz was given by Yu, a child, not by the teacher (Frame 1). Following her 

song format he invented a quiz by selecting the numbers 12 and 5 by himself. 

Although his quiz was relatively difficult for most children besides Hiroko, they 

finally obtained the answer ‘17’ with the assistance of the teacher (Frame 5). The 

role of the teacher was to provide neither the quiz nor the answer. She only 

provided the format of the activity and demonstrated the use of finger gestures. 

That is, her role of supporting the children did not change when they presented 

quizzes. Instead, the children were free to decide (Frame 5) whether to count on 

their fingers as the teacher had modeled. The children’s focuses actively changed 

following their interactions with the teacher. Their joint labor was visible in that 

particular scene. 

During the joint labor, three kinds of algebraic thinking emerged as common 

work. First, Yu proposed new numbers: 12 and 5. The teacher’s smile indicated 



Nakawa, Uegatani, Otani & Fukuda 

3 - 386  PME 44 – 2021 

that she did not expect her children to use a number as large as 12. However, 

contrary to her expectations, Yu realized that he could use larger numbers for 

quizzes. In the beginning, the teacher controlled the rules, but ultimately such role 

was delegated to the children, which might have prompted Yu to further develop 

the scope of the questions. In this process, the children objectified the new 

numbers as part of the quiz and gradually subjectified themselves as new quiz 

producers. 

Second, the children used finger gestures to determine the number of bananas. 

They did so under the teacher’s facilitation. For example, since the number 17 

was too large for the children to quickly count, Konoha counted her fingers in 

error (Frame 5). The finger expressions of the number, however, spatially 

maintained the initial assumption of the quiz that there were twelve and five 

bananas and mediated the children’s repeated and careful counting. Therefore, 

adding and counting, kinds of algebraic thinking, are re-embodied and re-

mediated by the artifactual use of the fingers by the teacher. The children re-

objectified finger gestures as tools for solving the conflict over the solution and 

re-subjectified themselves as the finger gesture users in solving the quizzes. 

Third, Hiroko realized that 12 + 5 was separable into 10 and 2 + 5. Since she 

immediately answered the quiz, she might have already known how to calculate 

this way before the joint activity. Only the teacher recognized what Hiroko 

asserted; the other children, including Yu, did not respond to her. Her separating 

strategy was difficult for the others, who depended on the finger gestures. She 

objectified the separating strategy as a tool for solving the quizzes, but her 

subjectification could not be determined from this observation. When she uses 

the strategy again in the future, her subjectification might be gradually 

determined, depending on the responses from members of her community. 

DISCUSSION AND CONCLUSION 

Our observation of the children’s reuse of finger gestures shows that spatial and 

numerical structures are linked in accord with Radford’s (2011) claim that 

algebraic thinking is by nature embodied and mediated by artifacts. On the other 

hand, the children needed the teacher’s suggestion to finger gestures. Although 

they repeatedly used finger gestures before the focal scene, they did not 

themselves propose to use them to resolve Hiroko’s and Yu’s conflicting 

solutions. This fact does not completely fit into Radford’s (2008) theoretical 

assumption that humans on their own preserve artifacts’ meanings. The children 

appeared to obtain help from the teacher to reconstruct the meaning of fingers as 
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a tool for solving quizzes rather than demonstrating the preserved meaning in 

practice. Although the ability to preserve the meaning of artifacts might be built 

into human beings by nature, we may need to be taught to demonstrate such 

ability. 

However, that the children did not use finger gestures should not be construed 

negatively. Instead of focusing on the intermediate process of the finger gestures, 

they seemed to focus on input and output. This could be an origin of flexible 

thinking, also called proceptual thinking (Gray & Tall, 1994), which is based on 

a focus on the relationship between input and output. It is natural and 

mathematically appropriate for finger gestures to lose their artifactual meaning 

for children as they master adding two numbers mentally. 

We agree with Radford’s (in press) argument that social rules and mathematical 

content in classrooms are part of the fabric of children’s subjectivities. Our 

interpretation and analysis corroborate this. We draw one possibly important 

implication: the role of the knowledgeable other, in this case the teacher, in 

solving conflicts between learners’ idiosyncratic rationalities. The observed 

children showed their own valuable abilities: Yu’s ability to generate a new quiz, 

Hiroko’s strategy for addition without counting, and other children’s focus on the 

input-output relationship. However, these are still potential abilities and are not 

always performed in appropriate situations. Teacher intervention may potentially 

show them when to perform their abilities. We argue, therefore, that the 

traditional constructivist focus on learners’ own idiosyncratic rationality 

(Confrey, 1991) can be more widely investigated from Radford’s theoretical 

perspective. 

Let us finally answer our two questions. First, in accordance with Radford’s 

theory, the subjectification and objectification proceeded in the scene of 

preschoolers’ and teacher’s conversations regarding addition; joint labor in a 

classroom activity offers a valuable opportunity to investigate these processes. 

Second, through teacher mediation, the role of finger gestures was reconstructed 

to solve a conflict over a mathematical problem. In addition to Radford’s 

assumptions about the ability of human beings to preserve the meanings of 

artifacts, we suggest that for young children, learning may be part of that process. 

As our methodology is, at this stage, suggested, our interpretations will be refined 

each time we obtain new empirical data. 
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The idea of 'Assessment for Learning' is widely encouraged in education, but 

mathematics assessment lags behind. In Finland, mathematics is mainly assessed 

through exams. Implementing alternative assessment practices might cause 

resistance, from both teachers and students. The present study, conducted in the 

context of undergraduate mathematics, introduces summative self-assessment 

that includes the element of self-grading as an assessment model that violates the 

norms of mathematics assessment. Utilising the discursive framework of 

boundaries, it was observed whether students were able to cross the boundaries 

of mathematics assessment. 

INTRODUCTION 

“Cultures of assessment” are often advocated as beneficial for students, but they 

might actually hinder learning. This might be true in university mathematics, 

where the assessment culture is heavily based on examinations and students even 

prefer these traditional ways of assessment (see, e.g., Iannone & Simpson, 2015; 

Nieminen, 2020). The situation does not seem to differ too much at lower levels 

of education, either. A recent Finnish national report (Atjonen et al., 2019) 

revealed that mathematics teachers mainly assessed learning through traditional 

methods such as exams, although this is clearly against the ethos of the National 

Curriculum that calls for “Assessment for Learning”. For example, the STEM 

subjects, with mathematics included, scored the lowest of all of the school 

subjects in the use of peer-, self-, and group-assessment. It seems that if 

assessment is to truly “reflect the mathematics that is important to learn and the 

mathematics that is valued” (Suurtamm, 2016, p. 5), there would need to be a 

substantial rethink of the culture of mathematics assessment. 

The present study introduces an attempt to challenge the culture of Finnish 

university mathematics assessment that as such reflects the current international 

culture of undergraduate mathematics education (Iannone & Simpson, 2015; 
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Nieminen, 2020) and the culture of lower levels of Finnish mathematics 

education (Atjonen et al., 2019). The aim of this study is two-fold: By reporting 

on an empirical study of an innovative assessment model, the study seeks both to 

highlight the outlines of the usual norms of mathematical assessment culture and 

to reimagine them. Following Ben-Yehuda and colleagues I argue that “a norm 

becomes explicit and most visible when violated” (2015, p. 183). Here, student 

perceptions of an implementation of a summative self-assessment model are 

reported (see Nieminen, Asikainen, & Rämö, 2019). In a linear algebra course we 

asked students to self-grade, therefore challenging the usual norms of summative 

assessment in mathematics. I call this a “shaking up method”, since rather than 

simply interviewing students about the norms of mathematics assessment these 

norms were shaken up by self-grading to make their outlines more visible. 

In the field of higher education, it has been suggested that mathematicians are to 

be held responsible for their resistance to developing new assessment practices 

(Burton & Haines, 1997). However, as they have been shown to favour traditional 

assessment methods in university mathematics (Iannone & Simpson, 2015), the 

students themselves might also show resistance towards non-traditional 

assessment practices. Furthermore, implementing alternative assessment methods 

in mathematics would require students to adapt to these practices by changing 

their concept of learning (see Martínez-Sierra et al., 2016). However, exactly how 

this is achieved is rarely covered in the literature. The present study approaches 

the concept of mathematical assessment culture by utilising the theoretical 

framework of boundaries, aiming to understand how students both challenge and 

co-create the cultural norms of assessment. 

THEORETICAL FRAMEWORK: BOUNDARY CROSSING 

The present study conceptualises the assessment culture of mathematics through 

the framework of boundaries. The approach draws on discourse analysis by 

defining cultures of assessment as the outputs of discursive practices. This 

theoretical lense allowsme to capture the two-fold nature of assessment cultures, 

both as the overarching artefact of the way assessment is done and simultaneously 

as a factor influencing the assessment practices and students’ perceptions of those 

(Fuller & Lane, 2017). Connecting the framework of boundaries with that of 

discursive practices shifts the focus from “what are the boundaries of 

mathematical assessment culture?” to “how are the boundaries of mathematical 

assessment culture constructed?” 
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Boundaries have been defined as ‘socio-cultural differences leading to 

discontinuity in action or interaction’ (Akkerman & Bakker, 2011, p. 132). 

Therefore, boundaries are constructed to maintain sameness and continuity 

through categorisation. These categorical boundaries organise social life and 

maintain social order (Lamont & Molnár, 2002). A person’s transition between 

different fields has been characterised as boundary crossing (Engeström, 

Engeström, & Kärkkäinen, 1995). Boundary crossing involves entering a new 

territory through negotiation of the boundaries themselves – for example, 

crossing the boundaries of mathematics assessment through self-assessment 

might leave the students feeling unqualified to assess their own learning if the 

transition is not truly made. Boundary objects (Star, 1989, cited in Akkerman & 

Bakker, 2011, p. 133) are used to bridge various fields in the process of boundary 

crossing. Here, these objects refer to concrete actions and artifacts that are 

conducted to help students cross the boundaries of mathematics assessment. In 

the present study, personal boundary crossing is defined to have happened when 

the new norms of mathematical self-assessment are internalised in the discourse 

of a student. 

In the present study, the boundaries of different assessment cultures are not taken 

as given; rather, they are actively constructed by various actors in the field 

through boundary-work (Lamont & Molnár, 2002). It is notable that boundary-

work is not always purposeful. As Tan (2012) has argued, both teachers and 

students bring their previously learned assumptions and roles into the assessment 

process. Since both may have been conditioned to these roles in assessment, 

boundary-work done by students occurs only within the restricting effects of the 

assessment culture itself. However, the present study aims to see students not as 

passive recipients of the assessment culture but as active agents co-constructing 

the boundaries of assessment cultures through their own boundary-work (see 

Raaper, 2019). Finally, boundary-work does not always lead to boundary crossing 

(Akkerman & Bakker, 2011). The present study utilises a ‘micro perspective’ as 

suggested by Akkerman and Bakker to investigate whether boundaries are 

crossed in students’ discourses, and how this is conducted. 

THE OBJECTIVE OF THE STUDY 

The present study uses summative self-assessment as a concrete example of an 

assessment model that demands that students cross the usual norms and 

boundaries of mathematics assessment. By observing university students’ 

discourses, the study aims to understand students as active co-constructors of the 
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assessment culture of mathematics. The research questions were formulated as 

follows: What kind of boundary-work did the students take part in when they 

negotiated the boundaries of mathematics assessment after taking part in 

summative self-assessment? What kinds of boundary objects did they use to cross 

these boundaries? 

METHODOLOGY 

The course design: Summative self-assessment in action 

This study utilises the concept of summative self-assessment (Nieminen, 2020; 

Nieminen et al., 2019) to refer to a self-assessment model that builds on formative 

self-assessment but also includes the element of self-grading. Most often higher 

educational studies recommend using self-assessment as a formative tool for 

learning that would help students to monitor their own learning (see Brown & 

Harris, 2013; Panadero et al., 2016). This means that during the learning process, 

the teacher would provide some kind of self-assessment tasks that would prompt 

self-reflection on one’s actions, therefore leading to a better quality of learning 

(Brown & Harris, 2013). However, it has been argued that effective self-

assessment models would not just allow students to compare their skills and 

knowledge with teacher-generated criteria, but would give them power over their 

own grade. Hence, in the summative model the students can decide their own 

grade, but only after a longer process of engaging in practicing self-assessment. 

The study took place at a large undergraduate mathematics course (313 

participants) in a research-oriented university in Finland. The proof-based course 

addresses linear algebra and matrix computations and is usually one of the first 

courses students take in their mathematics studies Assessment in the mathematics 

department of this university is heavily based on individual exams. On this 

course, the traditional course exam was replaced with summative self-

assessment; the students graded themselves on a scale of 0 (‘fail’) to 5 

(‘excellent’). During the course, self-assessment was practised through formative 

self-assessment. Digital feedback on students’ self-assessments was offered, and 

students could reflect in writing how that feedback represented their skills and 

knowledge. The feedback processes were designed as dialogic and sustainable, 

and students were prompted to act on the feedback they received from their peers, 

tutors and themselves (cf. Carless et al., 2011). Self-assessment was based on a 

learning objective matrix (rubric), making the learning objectives transparent. For 

further details about the course arrangements, see Nieminen et al. (2019; also 

Nieminen, 2020; Nieminen & Tuohilampi, 2020). 
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Data collection and analysis 

In total, 26 students were interviewed after the course about their experiences of 

summative self-assessment. Eight of the participants were majoring in 

mathematics and the rest studied, for example, computer science and chemistry. 

None of the participants reported to have any previous experience of self-

assessment practices in mathematics. 

The analysis draws on discourse analysis. First, the interview data was reduced 

through thematic analysis, using in vivo coding to capture the words and 

meanings by the students themselves. After the data had been structured into 

meta-themes, further discourse analysis followed. 

FINDINGS 

Crossing the boundaries: “Finally studying for myself” 

Many students described how summative self-assessment enabled them to study 

in a way that was not aimed at succeeding in an exam but rather at gaining 

personal mathematical knowledge. These accounts were coded to reflect 

boundary crossing, since the students needed to internalise the new cultural norms 

of summative self-assessment. 

Student: It supported independent studying [studying through summative self-

assessment]. Acknowledging that encouraged me to think that there’s some sense in 

assessing yourself, and that was inspiring. 

*** 

Student: I took more responsibility of my learning. Now I didn’t need to stress about 

any exams, but I could challenge myself with a good feeling. 

Quite soon in the analysis it became evident that boundary objects were needed 

to support students in their boundary-work. As one student put it: 

Interviewer: Will you continue assessing your own mathematical skills after this 

course as well? 

Student: I guess I should (laughs). It would be bad to just leave it here. But it’s 

another thing if you are offered tools for that. 

The most frequently described boundary object was the detailed rubric with 

exemplars. A frequent theme in the data was that students felt that self-assessment 

was strange and complicated at first, but could be conducted after becoming 

familiar with the transparent learning objectives of the course. Overall, the 

formative self-assessment tasks were described as important boundary objects 
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that taught goal-setting and self-reflection skills. In particular, the feedback 

offered from the digital self-assessment tasks was described as a crucial boundary 

object. 

Student: In the beginning of the course it [self-assessment] felt more like, well let’s 

just write something here according to my feelings. The learning objective matrix 

included many confusing concepts that you couldn’t even define at the time. But 

during the course you digged deeper to it, you could learn those skills. 

Reflection (Akkerman & Bakker, 2011) was the discursive practice that was 

connected with boundary crossing while the students negotiated the boundaries 

of mathematics assessment. Summative self-assessment forced the students to 

reflect on why it challenged the usual norms of mathematics assessment. 

Furthermore, this process enabled them to critically reflect on those usual norms. 

Thus, summative self-assessment did not just generate simple boundary crossing, 

but rather encouraged students towards critical boundary-work. 

Student: If I’m studying for an exam, I often feel like now I’m studying for that exam. 

And for the fact that I would get a good grade. Now I felt more like I would have 

been learning to be able to use these skills in the future. 

Student: I feel it was so useful and should be used in studying everywhere. Once in 

a while you stop and think about what you really know and what you don’t know. 

Strengthening the boundaries: “Self-assessment belongs to humanistic 

disciplines” 

Across the whole dataset, summative self-assessment was largely described as a 

new, strange, and even radical kind of assessment method. Not all of the students’ 

discourses reflect boundary crossing - many of them were not willing or able to 

cross the boundaries as the course teacher wanted them to. In these cases, the 

boundaries of mathematics assessment with their usual norms were strengthened 

further. Two discursive practices were identified when the students resisted 

internalising the norms of summative self-assessment: Naturalisation and 

illegimatisation. 

Naturalisation was identified when the students leaned on simplifications of the 

assessment culture of mathematics; when socially constructed discourses and 

practices were taken as natural and even connected to the nature of mathematics 

itself. For example, the students often naturalised the traditional practices, 

framing the use of exams as a given. These accounts underlined that mathematics 

must be assessed with exams. This was seen as the nature of mathematics 
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assessment: Because summative self-assessment does not belong to this nature, it 

should not be used. 

I think self-assessment belongs to humanistic disciplines. Somehow in mathematics 

I’m used to the fact that knowledge has to be assessed brutally. 

The teaching culture of mathematics has never before guided us towards self-

assessment, so I can’t say it would have felt natural. 

Illegitimating the process of summative self-assessment was also a common 

discourse aiming to frame it as an inadequate assessment model. Many students 

thought that self-grading is not an adequate way of determining one’s grade since 

it might not reflect one’s real skills and knowledge. Often, the legitimacy of 

summative self-assessment was only doubted in certain contexts or with certain 

student groups. For example, it was pondered whether this assessment model was 

suitable for ‘lazy’, ‘young’ and ‘mathematically weak’ students. Self-assessment 

was constantly compared to exams, and many students thought that the validity 

of summative self-assessment could be improved with an external exam. 

Maybe this kind of self-assessment would be suited better for advanced mathematics 

courses later on in the studies. So that in the beginning of your studies you would get 

a certainty of the level of your knowledge by doing an exam. 

I would combine the methods of self-assessment and exams. Just because an exam 

would really show whether you have really learnt or not. 

DISCUSSION 

The present study investigated university students’ discursive boundary-work 

after taking part in a mathematics course drawing on summative self-assessment. 

Seeing students as active negotiators of the assessment culture (Nieminen, 2020; 

Raaper, 2019), this study sought to understand how students either crossed the 

boundaries of mathematics assessment and adjusted to summative self-

assessment or resisted this by further boundary-work that re-established the 

frontiers already existing. 

The results underline the importance of offering adequate boundary objects (e.g. 

rubrics) to students when asking them to negotiate the boundaries of the culture 

of mathematics assessment. None of the students reported having any earlier 

experience of self-assessment in mathematics, which calls for a careful 

scaffolding of self-reflection. These findings reflect earlier research on self-

assessment in higher education; for example, studies highlighting the importance 

of practicing self-reflection skills based on transparent learning objectives 
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(Brown & Harris, 2013; Panadero et al., 2016). I argue that these kinds of concrete 

support systems are especially important in the exam-driven culture of 

mathematics. Here, the students were not only required to learn new mathematical 

content but to adjust to new cultural norms as well, each of which is quite 

demanding in themselves. 

Through carefully designed boundary objects some students were able to 

critically reflect (Akkerman & Bakker, 2011) on the boundaries of mathematics 

assessment. As noted above, a certain structure was needed to support students in 

this process. However, the results of the present study emphasise the power of 

offering students alternative experiences of mathematics assessment. I argue that 

this method of ‘shaking up’ the boundaries of assessment offers a powerful tool 

not only for practice but for future research as well. The present study showed 

that summative self-assessment was able to generate reflection; would formative 

self-assessment, added on top of external summative testing, truly challenge the 

boundaries the assessment culture of mathematics in the same way? 

Not all of the students were able - or willing - to cross the boundaries of 

mathematics assessment. Two discourses were identified as boundary work: 

naturalisation of the usual norms of mathematics assessment and illegimitation of 

summative self-assessment. These findings remind us that students are active co-

constructors of assessment cultures. Their perspective must be considered while 

re-imagining mathematics assessment, and especially while evaluating whether 

boundary crossing has actually occurred. It is notable that naturalisation and 

illegimitation can be made visible to the students themselves through reflection 

(Akkerman & Bakker, 2011). However, the two-fold nature of assessment 

cultures (Fuller & Lane, 2017) creates a challenge, as students both co-construct 

the cultural norms and are restricted by them. We call for future research to tackle 

this methodological issue by further understanding assessment practices as 

discursive practices; as shown here, the framework of boundary crossing can 

offer an adequate tool for this. 

CONCLUSIONS 

Finally, I argue that mathematics educators have an ethical responsibility to 

actively try to reconstitute the exam-driven assessment culture of mathematics. 

Even though the present study examined the viewpoint of the students, the 

teachers - and researchers! - need to do boundary-work as well. It is argued that 

the least mathematics educators could do is to avoid strengthening the boundaries 

of mathematics assessment through offering alternative discourses such as those 
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identified in this study. If new frontiers are not reached in the field of summative 

mathematics assessment, it might be that external testing and validation will, by 

default, keep dominating what is seen as ‘valued mathematics’ (Suurtamm et al., 

2016). Finally, there is a need for future research that would boldly initiate 

innovations in mathematics assessment. A vast amount of literature on 

sustainable assessment practices already exists - it is time to take that knowledge 

into mathematical classrooms. 
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THE USE OF QUANTITIES IN LESSONS ON DECIMAL FRACTIONS 

Kazuhiko Nunokawa1 

1Joetsu University of Education 

 

As numbers and quantities are closely related, it is sometimes recommended that 

situations including quantities are used so that students can understand numbers 

and their operations well. The purpose of this paper is to analyze the lesson on 

decimal fractions in order to get insights into such a use of quantities in learning 

numbers. The analysis using the framework, which distinguishes two different 

relationships between numbers and quantities, showed that while the use of 

quantities helped the students develop their own explanations, it enabled them to 

bypass the reasoning process critical for achieving the goal of the lesson. This 

result suggested that the use of quantities should reflect the structures of numbers 

necessary for learning of the lesson. 

INTRODUCTION: NUMBERS AND QUANTITIES 

As younger students’ understanding of numbers is closely related to their 

experiences of quantities (Irwin, 2001; Krajewski & Schneider, 2009), it is 

natural that some researchers recommended using situations with quantities and 

measurement in learning numbers (Astuti, 2014; Rahayu, 2018).  

Nunokawa (2001) extended the scheme of mathematical modeling and introduced 

the “Manipulations in Real World” component (Figure 1a). When applying this 

extended scheme to situations including quantities, we can get the scheme in 

Figure 1b. 

  

Figure 1: Relations between numbers and quantities 

It shows the following process: (a) some relations among quantities in a situation 

are expressed by arithmetic expressions; (b) calculations in the expressions are 
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performed and their answers are found out; (c) new information about the 

situations is obtained based on those answers. The dotted line indicates 

manipulations of quantities. The results of these manipulations can be inferred, 

however, by the operations in the number system even when relevant quantities 

are not actually manipulated. 

But, when students begin to learn decimal fractions, they do not yet know how to 

perform operations on decimal fractions. That is, the arrow in the Number System 

box is not yet established and will be established through lessons on decimal 

fractions. In the lessons where teachers utilize realistic situations with quantities, 

it may be expected that students construct operations on decimal fractions (e.g. 

0.4+0.5) by referring to manipulations of quantities and their results (combining 

0.4 L- and 0.5 L-milk). The scheme in Figure 1c shows this process: (a) an 

operation on numbers, represented by the dotted line, is temporally considered in 

a realistic situation; (b) corresponding quantities are manipulated; (c) the steps 

and the result of the operation of numbers are established by referring to the steps 

and the result of the manipulation of quantities. 

Nunokawa (2019) used these schemes to analyze textbooks and found that there 

are some pitfalls from the perspective of the relationship between numbers and 

quantities in learning fractions, which might provoke the difficulties students 

often face. It may be also possible to find such pitfalls in mathematics lessons on 

fractions if we analyze lessons using the above-mentioned relationship between 

numbers and quantities. 

The purpose of this paper is an attempt to analyze a mathematics lesson from the 

perspective of the relationship between numbers and quantities in order to get 

insights into the use of quantities in learning numbers. 

THE LESSON ANALYZED 

The lesson analyzed here was recorded in a third-grade classroom (8 or 9 year-

old), whose goal was to understand how to calculate additions of decimal 

fractions. For this goal, the teacher posed the following problem to the class: “The 

teacher’s family drank 0.4 L milk at breakfast and 0.5 L milk at lunch. How many 

liters milk did the family drink in all?” According to her lesson plan, the teacher 

planned to ask her students to explain why the answer of 0.4+0.5 is 0.9 so that 

they became able to understand how to add two decimal fractions deeply. She 

expected that through devising their explanations, the students would pay 

attention to 0.1 as a unit of decimal fractions and understand that they can reduce 
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the addition of decimal fractions (0.4+0.5) to an addition of natural numbers 

(4+5) by considering the numbers of this unit 0.1. In other words, it might be 

expected that her students would not understand the procedure of additions 

instrumentally: Removing 0 and decimal points, adding resulting integers, and 

bring back the removed 0 and decimal points. 

The outline of the lesson 

At the beginning of the lesson, the teacher reviewed the knowledge of decimal 

fractions, which the students had learned before and they could use to make their 

explanations in this lesson. The teacher asked how many liters the drawings in 

Figure 2a show, how many deciliters 0.1 L and 0.2 L are equal to (Figure 2b), 

and how many 0.1s 0.7 and 0.3 are equal to (Figure 2c). The students could 

respond to these questions immediately. 

After the review, the teacher posed the above problem. She put two one-liter 

measures on a table (see Figure 3a) and poured 0.4 L- and 0.5 L-milk in each one-

liter measure. Showing these one-liter measures, she wrote the problem on the 

blackboard. 

a.   

 

 

 

b. 

 

 
 

 

c. 

Figure 2: The review at the beginning of the lesson 

The students noticed soon that they could find out the answer by addition 0.4+0.5. 

Many students also told that the answer probably became 0.9 L. The teacher 

invited her students to explain this probable result and required them to explain 

why combining 0.4 L and 0.5 L makes 0.9 L. The teacher wrote on the blackboard 

the numerical expression 0.4+0.5=0.9 and the goal of the activity as follows: “Let 

us explain the reason why 0.4+0.5 becomes 0.9.” 

When the teacher asked them about ideas usable for explanations, the students 

proposed the following ideas: (a) Converting L to dL; (b) Actually combining 0.4 

L- and 0.5 L-milk; (c) Using drawings; (d) Using a number line. The teacher 

pointed to Figure 2c and asked whether they could use this idea. Then, one student 

mentioned using the number of pieces after dividing it into 10 equal pieces (the 

idea (e)). 
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All the above five ideas were observed when the students attempted to build their 

explanations for the reason why combining 0.4 L and 0.5 L makes 0.9 L. There 

were students who first went to the teacher’s desk and poured the milk into 

another one-liter measure (Figure 3a). Some of them tried to represent what they 

had observed using drawings or number lines. Many other students also used 

drawings or number lines. The students who used a drawing represented 0.4 L-

milk in a one-liter measure and then found the drawing of the combined milk by 

adding 0.5 L-milk to it on the drawings (Figure 3b). The students who used 

number lines marked the fourth tick mark on the number line and found the tick 

mark corresponding to the answer by taking five steps forward (Figure 3c). Some 

students used the idea (a). They converted 0.4 L and 0.5 L into 4 dL and 5 dL 

respectively and then converted 9 dL into 0.9 L to answer the “How many liters” 

question (Figure 3d). Most of those students also drew drawings of one-liter 

measures. Only a few students used the idea (e) (Figure 3e). 

After the students worked individually for about 10 minutes, the teacher asked 

them to present their explanations to their neighbors. Finally, the teacher chose 

four students and asked them to present their explanations to the class. The 

explanations of those students were the ones based on the idea (c), (e), (a), and 

(d) respectively. Figure 3b, 3e, 3d, and 3c are the worksheets which these students 

presented to the class. The teacher also reviewed these four explanations after the 

four students presented their explanations (Figure 4). As most of the students 

came to know the explanations new to them, the teacher encouraged them to try 

the new types of explanation by themselves. 

 

a. b.  

 

 

c. 

 
 

Figure 3: The strategies the students adopted 



Nunokawa 

3 - 404  PME 44 – 2021 

  

 
 

Figure 4: The teacher’s review of the four explanations 

At the end part of the lesson, the teacher attempted to summarize the 

students’explanations first. She asked the students what a kind of computation 

they performed when finding the answer of 0.4+0.5. The students immediately 

said, “An addition.” When the teacher questioned them what plus what, the 

students told 4 plus 5. The teacher checked that all the four explanations included 

the addition 4+5 as a part of them. In order to clarify the main point of this lesson, 

the teacher asked the students what to think when we add decimal fractions. One 

student answered spontaneously that they should change an addition of decimal 

fractions into an addition of integers. Following this student’s answer, the teacher 

began to write the summary of this lesson on the blackboard as follows, by 

interacting with the students: “An addition of decimal fraction gets easier by 

thinking of it using integers.” Here the phrase of “gets easier” was proposed by 

some students. The students first proposed “by changing it into integers,” instead 

of “by thinking of it using integers.” As the teacher seemed unsatisfied with that 

proposal, the students suggested other expressions and the teacher adopted the 

phrase “by thinking of it using integers.” When she finished writing the above 

summary, however, the teacher tilted her head and still looked unsatisfied. 

Then the teacher asked the students to calculate 0.2+0.7 and 0.5+0.1 as a practice. 

The students seemed able to calculate them easily. The lesson ended with 

individual reflections of the lesson. 

QUANTITIES IN THE LESSON 

On the one hand, in this lesson, the students could translate the situation with 

quantities (i.e. drinking milk) into the arithmetic expression 0.4+0.5. Moreover, 

they could find out the answer 0.9 L and develop their own explanations of the 

reason why the answer became 0.9 L. On the other hand, although the teacher 

expected that the students would pay attention to 0.1 as a unit of decimal fractions 

and understand how to calculate additions of decimal fractions focusing on the 

numbers of the unit 0.1s, the idea of the numbers of the unit 0.1s was not 

mentioned by the students when the class made up the summary of this lesson 
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and the teacher looked unsatisfied with this summary. That is, this lesson seemed 

successful on the one hand but also seemed unsuccessful on the other hand. In the 

rest of this paper, this consequence of the lesson will be analyzed from the 

perspective of the relationship between numbers and quantities. 

Quantities’ support for students’ thinking 

The teacher’s use of the situation with quantities in this lesson enabled her 

students to adopt at least three strategies for thinking about the addition of 

decimal fractions: (a) Converting L to dL; (b) Actually combining 0.4 L- and 0.5 

L-milk; (c) Using drawings representing milk in one-liter measures. Because they 

understood well that 0.1 L is 1 dL and 0.2 L is 2 dL and so on (Figure 2b), the 

students could translate 0.4 L and 0.5 L into 4 dL and 5 dL respectively and find 

the resulting quantity by calculating 4+5. Here, the students transformed the 

original situation a little by converting the units so that they could apply to this 

situation the mathematical knowledge they had already learnt (Figure 5a). Two 

one-liter measures and a pack of white-water representing milk provoked the idea 

of pouring one measure of milk into another to combine them, which is a 

manipulation of quantities. The students who used this idea could confirm the 

resulting quantity by the direct manipulation of quantities (Figure 5b). 

  

Figure 5: Strategies supported by the use of quantities 

When they used the drawings, the students drew the pictures of milk in one-liter 

measures, the quantities in the situation. The student who presented her 

explanation based on the drawings (Figure 3b) to the class explained that she 

“added the tick marks of the 0.5 L-milk measure (i.e. 5 ticks) to the drawing of 

the 0.4 L-milk measure.” Her explanation implied that she simulated the 

quantitative manipulation of pouring milk on her drawings. That is, her strategy 

was based on the manipulation of quantities (Figure 5b). 

The operations on number lines can be considered operations in a number system. 

Seeing the number line in Figure 3c, which was drawn by the student who 

presented her explanation based on the idea (d) to the class, however, even 
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number lines might be influenced by the use of quantities in this lesson. This 

number line has the following elements: (1) the picture of one-liter measures 

(boxes) and liquid (pained parts in the boxes); (2) natural numbers 1, 2, …, 9 

written at the tick marks instead of 0.1, 0.2, …, 0.9; (3) the quantities 0.4 L and 

0.5 L written at each interval on the number line instead of decimal numbers 0.4 

and 0.5. In other words, this number line has the feature similar to the drawings 

discussed above. This suggests that the reasoning similar to the drawing strategy 

might be used even when the students used number lines, and their use of number 

lines was supported by the use of quantities in this lesson (Figure 5c). 

The situation with quantities might remind the students of their experiences of 

manipulating quantities, and such experiences could help the students develop 

their own explanations of the reason why the answer became 0.9 L. 

 

Quantities’ interruption in students’ thinking 

The student who presented her explanation based on the idea (e) to the class wrote 

the following explanation without using drawings and number lines: “0.4 is four 

0.1s, 0.5 is five 0.1s, when combining four 0.1s and five 0.1s, because 4+5=9, 

then the answer is 0.9L.” This explanation is based only on the structures of 

decimal numbers 0.4 and 0.5, which consists of four and five 0.1s respectively, 

and on the operation on those structures: 4×0.1+5×0.1=(4+5)×0.1. In this sense, 

her explanation can be schematized as Figure 6. And this is the explanation the 

teacher seemed to expect her students to attend to at the end of this lesson, as her 

lesson plan shows. In fact, the teacher pointed to Figure 2c and tried to remind 

her students of the structures of decimal fractions. And it might be the reason why 

the teacher asked how many 0.1s 0.7 and 0.3 are equal to at the beginning of this 

lesson. 

 

Figure 6: Explanation in number system 

Contrary to the teacher’s expectation, the students did not mention the numbers 

of 0.1s in making the summary of the lesson. The students paid their attention to 
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the additionof natural numbers 4+5, but did not focus on 0.1 as a unit of decimal 

fractions. 

Seeing the students’ explanations shown in Figure 3, all of them except Figure 3e 

did not include 0.1s as a component of the explanations. That is, most of the 

students did not use the idea of 0.1 as a unit of decimal fractions in constructing 

their explanations. The students who combined milk or used drawings or number 

lines attempted to explain the resulting quantity on the basis of the number of the 

tick marks. The students who converted L into dL attempted to explain it referring 

to the numbers of 1 dL, instead of the numbers of 0.1 L. Even when they 

calculated 4+5=9, these students used this calculation to find the total number of 

ticks or 1 dL. The students could pay attention to the natural numbers and their 

addition, which represented the numbers of ticks or dL. That is the reason why 

the students focused on the idea of “thinking of [an addition of decimal fraction] 

using integers” in summarizing the lesson, but could not pay attention to 0.1 as a 

unit of decimal fractions. 

Furthermore, the students could develop such strategies because they could resort 

to reasoning about quantities. Adopting manipulations of quantities, the students 

could bypass the conversion of 0.4 and 0.5 to four 0.1s and five 0.1s (Figure 7a). 

The situation with quantities allowed the students to use their knowledge and 

experiences about quantities to make their explanations, and those knowledge and 

experiences in turn made it possible for the students to convert L into dL or 

translate the quantities of milk into the numbers of tick marks. In other words, the 

use of quantities in the lesson might facilitate bypassing the conversion of 

decimal fractions to multiples of 0.1s. 

 

Figure 7: Bypass of conversion of 0.4 and 0.5 

In fact, the use of quantities can facilitate converting decimal fractions into 

multiples of 0.1s. In order to make the use of quantities facilitate this conversion, 

the way in which quantities are used should reflect this conversion of decimal 

fractions. That is, 0.4 L and 0.5 L should be converted into four 0.1 L and five 



Nunokawa 

3 - 408  PME 44 – 2021 

0.1 L, instead of 4 dL and 5 dL. Even when 0.4 L and 0.5 L are represented by 

drawings or number lines, it should be highlighted that a tick mark represents 0.1 

L, and the numbers of 0.1 L, rather than the numbers of tick marks, should be 

focused on. This conversion of 0.4 L and 0.5 L might be able to facilitate the 

conversion of 0.4 and 0.5 into four 0.1s and five 0.1s by the translation of the 

structures of quantities into the structures of numbers (Figure 7b). The fact that 

this conception of 0.4 L and 0.5 L, i.e. four 0.1 L and five 0.1 L, was not 

highlighted during the lessons can be considered the reason why the students did 

not mention the numbers of 0.1s in making the summary of the lesson. 

Furthermore, seeing the activities at the beginning of this lesson, the students 

could convert 0.7 and 0.3 into seven 0.1s and three 0.1s without much trouble. If 

the students could carry out this conversion without referring to quantities, it 

should be examined whether it was really necessary to adopt the learning process 

shown in Figure 1c. The learning process shown in Figure 1b could have been 

also adopted in this lesson. That is, a situation with quantities is used only to 

introduce additions of decimal fractions and students attempt to develop their 

explanations why 0.4+0.5=0.9, without referring to 0.4 L+0.5 L=0.9 L, based on 

the structures of 0.4 and 0.5, i.e. consisting of four and five 0.1s respectively. 

CONCLUDING REMARKS 

The above finding has some implications for teaching numbers using quantities. 

First, while the use of quantities can be helpful for learning numbers, the ways of 

using them must correspond to the ways of seeing numbers which are necessary 

for achieving the goals of lessons. If students are expected to use a certain 

structure of numbers in a lesson, a teacher should introduce the situation which 

enables students to attend to the aspects of quantities corresponding to that 

structure. 

Second, the use of quantities does not necessarily lead to learning of numbers 

which teachers expect to occur in students. Unless using quantities makes 

students deal with necessary structures of numbers more easily than directly 

dealing with numbers and manipulations of quantities can substantially support 

students’ operations on numbers (Figure 1c), it may be unnecessary to use 

quantities in learning numbers and operations on numbers. The relationship 

between quantities and numbers which can be helpful for the learning expected 

in a lesson should be examined in advance and highlighted during the lesson. 
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This study aimed to examine middle school sixth grade students’ thinking 

processes during posing problems and to discover the determinants of their 

problem-posing processes. Eight students were asked to write three problems for 

each of the two semi-structured problem-posing tasks, and then interviews were 

conducted with them. The data were analyzed by means of the thematic analysis 

method. The findings of this study indicated that students were affected by the 

mathematical structure of the activity and their own situations when they were 

posing problems. In addition, eight codes were determined under these themes, 

and it was observed that students tended to use multiple codes together for 

different problems.   

INTRODUCTION 

Problem posing (PP) has interested mathematics education researchers for more 

than 30 years. Silver (1994) defines PP as producing new problems or 

reformulating an existing problem. Kilpatrick (1987) argued that “the experience 

of discovering and creating one’s own mathematics problems ought to be part of 

every student’s education” (p. 123). Although students are interested in engaging 

in PP activities, our knowledge of the processes involved when generating 

problems is still limited (Cai & Leikin, 2020). In support of these results, Lee 

(2020), who reviewed the articles published in 13 mathematics education 

journals, found that only a small portion were related to PP (62/17456 about 

0.4%), and only four examined the students’ thinking processes. This study is 

stimulated by these limitations and aimed to examine the middle school sixth 

grade students’ PP processes and thus to discover the determinants of their PP 

processes. 
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THEORETICAL BACKGROUND 

Based on previous studies, Kontorovich et al. (2012) presented a theoretical 

framework regarding the complexity of students’ PP in small groups. According 

to this framework, the PP process is influenced by task type and organization, 

mathematical knowledge, and individual considerations of aptness, as well as PP 

heuristics and schemes, and group dynamics and interactions. Stoyanova and 

Ellerton (1996) classified PP activities as free, semi-structured, and structured, 

and studies have indicated that PP performance differentiates in line with these 

activity types (e.g., Silber & Cai, 2017).  PP also requires strong mathematical 

content knowledge (Harpen & Presmeg, 2013). This is because the data in the 

activity should be analyzed in depth and the problem should be associated with 

the added mathematical concepts to write mathematically valid and complex 

problems (Leung & Silver, 1997). Kontrovich et al. (2012) also stated that the 

process of posing a problem within the scope of individual considerations of 

aptness was influenced by the intrinsic satisfaction of the problem poser about 

the nature of the problem, how other individuals would evaluate this problem, or 

whether it was suitable for potential solvers. For example, Lowrie and Whitland 

(2000) indicated that third grade students took into consideration the interests of 

the problem solvers in addition to the mathematical structure of the problem (e.g., 

number magnitude and operation complexity) when they were posing problems 

for second and fourth grade students.  

Christou et al. (2005) pointed out two important cognitive processes that 

characterize successful PP performance: editing (generating meaningful 

problems on the tasks by organizing their data) and selecting (selecting the data 

for a specific answer). The researchers indicated that these two processes were 

used more dominantly in PP tasks for open-ended stories or pictures. Silver and 

Cai (1996) asked elementary school students to pose three problems for an open-

ended story (see Figure 1, task 2). The results of the study showed that students 

posed their second and third problems based on the first problem in a chained 

manner, and the complexity of problems tended to increase. 

As a result, the presented literature indicates that there are various factors 

affecting PP performance. However, the current literature does not provide any 

conclusive data in detail about the factors students effectively use (particularly 

for editing cognitive process) for open-ended PP tasks and how they use them. 

This study aimed to clarify this situation by adopting qualitative approaches.  
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METHODOLOGY 

Participants 

This study was carried out with the students of a teacher experienced with PP, 

who had taken a master’s course and was also conducting a thesis on PP. The 

school was located in the rural areas of the city center and reflected the middle 

and low socioeconomic groups. There was only one classroom for sixth grade 

students, and this was composed of nine students. Although the researchers 

planned to conduct the interviews with all students, since one student did not want 

to attend the study, it was completed with eight. The mathematics teacher rated 

the math achievement of four students as high and the others as moderate or low. 

She stated that high-achieving students were able to establish strong connections 

between newly learned and previous content, show high performance in solving 

problems, provide alternative solution strategies to the problems, and have low 

error rates in arithmetic operations compared to others. She also indicated that 

tasks such as PP for open-ended stories were used in her lessons, but PP tasks for 

symbolic operations were used more frequently. Each student was assigned a 

pseudonym.  

Data collection and analysis 

In this study, semi-structured PP situations (Stoyanova & Ellerton, 1996), which 

gave opportunities for students to pose various problems based on their 

knowledge and experiences (see Figure 1), were used. Both tasks were related to 

daily life. The tasks differed from each other in terms of their mathematical 

structure (quantitative data and the relationship between these data). In the first 

task, the variables (prices for pizza, cherry juice, and balloons) were not 

expressed in terms of others. When constituting the second task, on the other 

hand, the relational data, in which some quantitative data in the problem were 

described over others, were presented. In this context, a widely used PP task in 

different studies was applied to the students in this study.  

An incomplete problem sentence is given below. Imagine (consider) you wrote down the problem 

and brought it up to this part. You can complete the rest of the story as you wish. Write three 

problems for each task by using your mathematical knowledge and experience. 

  

Task 1: Pizza, cherry juice, and balloons are ordered for the birthday party. The prices of small, 

medium, and large pizzas are 18 Turkish Liras (TL), 24 TL, and 32 TL, respectively. The price of 

one liter of cherry juice is 3 TL, while a two-liter cherry juice is 5 TL. The price of each balloon is 5 

TL.  

 

Task 2: Mehmet, Ali, and Hasan went on vacation in a car together. During the trip, Hasan drove 80 

km more than Ali. Ali drove twice as many kilometers as Mehmet. Mehmet drove the car for 50 

kilometers. 
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Figure 1: PP tasks 

The tasks with each of the eight students were held on different days. First, the 

students were given 30 minutes for the PP test and asked to write three problems 

for each task. Then, a break was given. The teacher examined the problems posed 

by the students. After the breaks, interviews were conducted ranging from 11 

minutes to 22 minutes with an average of 17 minutes. The focus of the interviews 

was on how students thought and considered different problems. In this context, 

interviews were conducted around two questions, and these questions were 

directed to the students for all the posed problems: i) Can you explain what you 

thought when posing the problem? and ii) How did you differ this problem from 

your previous problem(s)? (What do you think about the difference between this 

problem and your previous problem(s)?)  

The data were analyzed according to Braun and Clarke’s (2006) thematic analysis 

process, which “minimally organizes and describes your data set in (rich) detail” 

(p. 79). First, the interviews were transcribed. Then, the two researchers, who 

were the authors of this study, independent of each other, read the transcripts 

many times to become familiar with the data and create the initial codes. Each of 

these two researchers created the initial codes by considering the factors in the 

related literature affecting PP performance. Then, they came together and 

compared the coding. They composed the codes and themes, which reflect the 

entire data set. A total of eight codes were determined, and they were presented 

under two main themes (see results section).  

RESULTS 

The codes regarding the factors that students took into consideration when posing 

problems were categorized under the following themes: considering the task 

structure (CTS) and problem poser’s own situation (PPOS).  There were three 

codes under the CTS theme: i) focusing on the operations evoked by the data, ii) 

separating the data set into independent parts, and iii) increasing the amount of 

data. Five codes were observed under the PPOS theme: i) experience, ii) interest 

area, iii) mathematical knowledge limitations, iv) testing the mathematical 

knowledge, and v) understanding the task (some codes are explained in this paper, 

but others will be presented at the conference due to page limitation).   

Students focused on mathematical data in the task and the nature of the 

connections between these data in the CTS theme. The code focusing on the 

operations evoked by the data was frequently considered by the students, and it 

was emphasized that the presented data encouraged students to write some 
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problem types. For example, providing the prices of the objects in the birthday 

task encouraged them to ask the amount of money to be paid if a certain number 

of them were purchased. For example, the problems posed by Kerem were as 

follow:  

Problem 1: According to this, how much money will he pay if he purchases 2 large 

size pizzas, 3 cherry juice and 1 balloon? 

Problem 2: According to this, how much money will he [the buyer] pay if he 

purchases 4 medium size pizzas, 6 cherry juice and 2 balloons? 

Problem 3: According to this, how much money will he pay if he purchases 3 small 

size pizzas, 2 cherry juice and 3 balloons? 

A script from the interview with Kerem was as follows: 

Researcher: Can you explain how you posed your first problem? 

Kerem: As seen, a text is provided. The prices of the pizzas, cherry juice and 

balloons were given.  The pizzas are given in small, medium and 

large sizes. We are asked to write three problems. In the first 

problem, I wrote how much money will be [the buyer] paid if 2 large 

pizzas, 3 cherry juice and 1 balloon are purchased.  

Researcher: Ok. After reading the task, what attracted your attention when 

writing your problem?  

Kerem: There are pizzas, cherry juice and balloons. The prices were given 

there [data on the tasks is meant]. I thought it would be a good result 

by summing them up.  

Since the students were asked to write three problems, in the separating the data 

set into independent parts code, they separated the data in the task into three 

independent parts and used each part in a different problem. This approach was 

observed in Ayşegül’s paper. Three problems were posed by Ayşegül in the 

birthday task, and a script from the interview with her was as follows:  

Problem 1: Ahmet brought a small, a medium, and a large pizza to Ayşe’s party. The 

small pizza costs 18 TL, while the medium pizza costs 24 TL and the 

large pizza costs 32 TL. How much money in total does she pay? 

Problem 2: Sultan will buy cherry juice for Ayşe’s party. If a one-liter container of 

cherry juice costs 3 TL and a two-liter cherry juice costs 5 TL, what is the 

total amount of money to be paid for 4 one-liter and 4 two-liter cherry 

juices? 

Problem 3: If Erol buys 100 balloons, how much will he pay?  

Researcher: Can you explain how you posed your third problem?  
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Ayşegül: In fact, I wanted to write it first. But since I went in order, I 

wrote this at the end. It was an easy problem as I solved it in my 

mind. 

Researcher: Why did you use the story by separating it into parts? 

Ayşegül: Because, how can I say, it says three problems here. The first 

problem could be pizza. Or it could be cherry juice or a balloon. 

That’s why I wrote pizza in the first problem. I wrote cherry 

juice on the second problem and balloons on the third problem. I 

went in order.  

Researcher: You could write a problem by using them all. In this way, was 

there a reason to use it in order? 

Ayşegül: First, I wrote pizza since it was in the first place. I went like that. 

I used the order. I also like to follow the order.  

In increasing the amount of data code, students tried to make the problem 

difficult by focusing on increasing the volume of the data. By adopting this code 

frequently, students tended to pose their problems from simple to complex. In this 

context, they either increased the number of the operations in the posed problems, 

changed the magnitude of the numbers in the task, or tried to add different 

mathematical concepts, such as fractions. For example, Erol explained the 

rationale for writing difficult problems as follows: Difficult problems become 

more different and beautiful. The simple problems are generally the things we 

have learned. They do not look very beautiful. It is better to struggle and find 

something difficult. Within the scope of this code, students’ second problems 

commonly contained more data than their first problems. However, they 

experienced difficulty in the third problem by adding more data than their second 

problem. For this reason, students either left the third problem empty or opted to 

write an easier problem than their second problem. Beril’s opinion reflecting this 

situation was as follows: This [her second problem] was the hardest one for me. 

I wrote the second problem with difficulty. I thought what I could write differently. 

I did not think of anything more to write. It was simpler than this [her third 

problem].  

Within the scope of PPOS, some students also considered their mathematical 

knowledge limitations when posing their problems. For example, Yağmur 

considered her limitations in the mathematical knowledge in the vehicle task. 

Yağmur indicated in her explanations that the unit of kilometer was very large, 

and she had not been able to understand this concept since primary school. She 

also stated that she had difficulty in understanding this concept, and therefore, 

she focused on posing short problems for this task. A part of her explanations was 

as follows: I have been confusing kilometer problems since primary school years. 



Öçal, Kar, Öçal & Güler 

3 - 416  PME 44 – 2021 

That’s why I always wanted to write short... When I think of kilometers, I think of 

huge lengths. I'm afraid of doing operations with them. She asked the difference 

between the lengths of the trip that Mehmet and Ali took in the first problem, 

while in the second problem, she asked three times about the total of the trip Ali 

and Mehmet traveled. Parallel to her explanations, it was understood that the 

problems she posed were in a form that did not require analyzing the data set.  

Some students, on the other hand, posed problems that tested the limits of their 

mathematical knowledge or improved their understanding of the connections 

among the data set in the task. For example, Engin posed two problems for 

birthday tasks and indicated that the second problem was more difficult. Engin 

stated that the purpose of posing a difficult problem was to see how hard the 

problem he could pose. Therefore, he indicated that he did not pose a third 

problem because he could not think of a more difficult problem. A part of the 

interview conducted with Engin was as follows:  

Researcher: You stated that you thought of posing a longer problem in the second 

problem. Why did you think like that?  

Engin: I wanted to test myself, whether I could solve my own problem or 

not. 

Researcher: Why did you not write your third problem? 

Engin: Third problem. Since I got confused in the second problem, the third 

one did not come to my mind.  

Understanding the task code was observed only in Engin’s explanations about 

why he posed his first problems. In his problem, Engin asked the total amount of 

money to be paid if two large-sized pizzas, two two-liter cherry juices, and 20 

balloons were purchased. Engin emphasized that this problem was a simple one. 

He indicated that this kind of simple problem helps to create different problems. 

A part of Engin’s explanations was as follows: First, I decided to write simple.… 

I said two large pizzas because they had many friends. Again, two of two liters of 

cherry juice. And balloons, too. I said there should be 20 balloons. I did that 

way.... A simple problem. Because sometimes when I pose a simple problem, I 

think of other problems. 

DISCUSSION 

The results of this study support the fact that PP is a multifaceted and complicated 

task (e.g., Leavy & Hourigan, 2019). This study reveals important results about 

students’ PP processes. First, it was determined that the students looked at the 

data in the task from the perspective of their own mathematical understanding, 

interests, and experiences. In particular, it was pointed out that how students 
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perceive their mathematical understanding was an important factor affecting PP 

products. These results underline the effect of metacognitive factors on PP 

processes. Second, previous studies indicate that participants consider the 

problem solver’s or problem-solving group’s interest areas when posing 

problems (Lowrie & Whitland, 2000; Kontorovich et al., 2012). This situation 

was not observed in this study. This might be due to the differences between the 

directives of the PP tasks used in the present study and in other related studies 

(e.g., pose problems for your friends).  Third, students also frequently tended to 

make the problem more difficult in this study. They tried to add more operations 

to their second problems compared to their first. When some students thought 

that they could not write more complex problems than the ones they posed in their 

second problem, they either did not write the third problem or posed a simpler 

one. Therefore, the tendency to increase the difficulty of the problems could not 

be maintained systematically. These results differ from the studies identified in 

the literature (e.g., Silver & Cai, 1996) that students’ second and third problems 

tended to be more complex than their first. Fourth, the tendency to increase the 

difficulty of the problems was also a factor in the number of posed problems. The 

quantity indicating the number of problems posed for the tasks is an important 

component in PP analyses (Silver & Cai, 2005). The results of this study revealed 

that having a small number of problems stemmed from students’ inability to 

produce complex problems. From this point of view, this study indicated that 

some students gave more importance to posing complex problems than the 

number of problems they posed. 

“Although interest in integrating mathematical problem posing into classroom 

practice is growing, implementing this integration remains a challenge” (Cai et 

al. 2020, p.2). We believe that the results of this study, which aims to expand our 

knowledge about what students do and how they think in PP tasks, will contribute 

to the efforts to make PP an important component of mathematics classrooms. 
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This case study investigates how ninth-grade students enhanced their geometric 

thinking from van Hiele’s third level toward the fourth level through lessons on 

the inscribed angle theorem. We found that students’ reasoning went beyond the 

third level when they discussed how to construct case proofs, compared them with 

each other, and integrated them into one overall proof as follows: 1) developing 

the proof using semiotically guided analogical reasoning, 2) standardizing 

symbol use, 3) identifying the case proofs as being the same based on their 

identical linguistic descriptions, 4) conceptualizing the proof as a description 

package when comparing the case proofs with each other, and 5) interpreting all 

of the case proofs in terms of one description (by introducing zero degree and 

negative degree angles). 

INTRODUCTION 

The basic understanding of a geometric proof corresponds to van Hiele’s third 

level of thinking (in his revised model incorporating levels 1 to 5). However, how 

do students who have achieved this level progress toward the fourth level, and 

what type of learning environment do they require? Van Hiele (1985, p. 48) 

describes these levels as follows: “Properties are ordered. They are deduced one 

from another: one property precedes or follows another property. At this level the 

intrinsic meaning of deduction is not understood by the students” (third level), 

and “Thinking is concerned with the meaning of deduction, with the converse of 

a theorem, with axioms, with necessary and sufficient conditions” (fourth level). 

Numerous studies on proofs and proving have focused on how students can 

achieve the third level of thinking, but only a few studies have been conducted 

on the learning necessary to enhance students’ geometric thinking beyond the 

third level (e.g. van Hiele, 1986; Battista, 2007), although there have been related 

studies on levels of proof writing (Yang and Lin, 2008; Zazkis & Zazkis, 2016). 
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What type of learning environment helps students to progress beyond the third 

level of thinking? In this study, we analyzed ninth-grade students’ learning of the 

inscribed angle theorem (IAT) and its proof in the classroom setting. The proof 

of the IAT involves combining the proofs of three separate cases based on the 

relationship between the inscribed angle and the middle of a circle. In exploring 

the IAT, it is expected that students will compare the proofs of the three separate 

cases and investigate them from a higher point of view. If we categorize proofs 

by cases when solving the problem, this enables us to identify all appropriate 

situations necessary to solve the problem (Boero, 2011). Thus, a dilemma arises: 

the cases are determined only after completing the proof, although the proving 

begins only after deciding on the cases. We believe that the point at which a 

person understands the structure of proofs by cases is achieved through a mutual 

process of deciding on the cases and constructing the proof of each case. 

The main purposes of this study are to clarify how ninth-grade students display 

their geometric thinking beyond van Hiele’s third level through learning the proof 

of the IAT and to theoretically explain their thinking. 

THEORETICAL BACKGROUND 

Understanding the proof of the inscribed angle theorem 

The IAT is proved using the following three cases (see Figure 1), which differ in 

terms of the relationship between the inscribed angle and the middle of a circle. 

Case 1  Case 2 Case 3 

 
  

Figure 1: The three cases used to develop the proof of the inscribed angle 

theorem. 

To understand the proof of the IAT, students need to overcome two key 

difficulties. 

First, the proof of case 3 is more difficult to construct than those of case 1 and 

case 2. Case 1, the fundamental case, can be proved by using the relationship 

between the isosceles triangle composed of two radii and the exterior angle. Case 

2 can be proved by first drawing the auxiliary line and then applying the proof of 

case 1 twice. The proof of case 3 is basically equivalent to that of case 2. 
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However, the figure configuration of case 3 may be harder to see in terms of 

where the auxiliary line is drawn, where two isosceles triangles exist, and how 

the angles can be dealt with. In particular, it is necessary to obtain the proof of 

case 3 using subtraction of the angles, while that of case 2 is obtained by addition 

of the angles. 

Second, it may be difficult to understand why investigating just three cases 

satisfies all of the phenomena related to the IAT. For example, students may ask 

whether it remains true if the central angle changes, or whether it is true if the 

point on the circumference falls within the arc of the central angle. Furthermore, 

they may wonder why it is necessary to compare the three cases. 

We assume that the students’ new level of thinking can emerge when they discuss 

and overcome these difficulties. In the following section, we use two theories to 

capture their learning process: relational analogical reasoning and semiotic 

change. 

Relational analogical reasoning and the integration of symbolic expressions 

Analogical reasoning refers to the transfer of structural information from one 

system (the base) to another system (the target). English (1997, p. 198) stated that 

“this transfer of knowledge is achieved through matching or mapping processes, 

which entail finding the relational correspondences between the two systems. It 

is this emphasis on corresponding relational structures that has significant 

implications for mathematics learning.” We examine how the relational structure 

of the proof is transferred from one deductive system (proof as a base) to another 

system (proof as a target). 

In this respect, we refer to the process of semiotic change in terms of the diverse 

representations and the mutual changes among them that are involved in 

mathematics learning. Duval (2008) calls the semiotic change within the same 

kind of representation “treatment,” and that between the different kinds of 

representation “conversion.” Treatment is the transformation guided by the 

potentials and rules that are intrinsic to the representation, based on which some 

explanation or proof is achieved. This transformation includes not just the 

algorithmic change of symbols, but also the change between drawings or the 

change from one figure configuration to another. Conversion provides a means 

of truly distinguishing the difference in meaning between two statements that 

look alike and determining which statements’ meanings are mathematically 

relevant (Duval, 2008). Duval notes that thinking in mathematics involves 
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synergy between at least two mobilized registers, even when a person works 

explicitly in only one register. 

We can observe how a proof is semiotically constituted by relational analogical 

reasoning. First, the proof of case 1 may be used for the construction of the proof 

of case 2. Then, a figurative or graphical argument is useful for supporting the 

construction of proofs. Mason and Pimm (1984) presented a generic example of 

a mathematical representation that presents the context and powerfully influences 

problem solving. From this viewpoint, the figurative pattern of case 1 may work 

as a generic example for the construction of the other proofs. However, the 

transition from the figurative pattern of case 2 to that of case 3 may be difficult 

for students. One option may be to construct the proof of case 3 after students 

first consider the analogical reasoning in relation to the differences in symbolic-

linguistic representations between cases 2 and 3, followed by the conversion of 

case 3 from a symbolic-linguistic representation to a figurative pattern. 

Regardless, we need to examine how students’ semiotic changes are implemented 

within/between representations (symbolic-linguistic and figurative) in the 

analogical relationships between the case proofs. 

Furthermore, it is necessary to synthesize or integrate the proofs constructed for 

each case into a single overall proof. Students may then focus on the analogical 

and semiotic correspondences among the proofs of the cases and reflectively 

abstract the essential components necessary for proof construction. We consider 

this process as the beginning of the formal deduction necessary for understanding 

proofs and proving. 

METHOD 

In this study, we used data obtained from two ninth-grade classrooms, I and II, in 

a junior high school attached to a national university. There were three one-hour 

lessons in each classroom in which the IAT and its proof were dealt with. The 

teacher had 19 years of teaching experience, and the students had a higher level 

of scholastic ability than public school students because they had already 

mastered the skills involved in proof construction using basic knowledge such as 

the properties of a triangle and the conditions for congruence/similarity among 

triangles before learning the IAT. However, the students had not experienced the 

process of developing a proof after dividing the conditions of the theorem into 

various cases. 

We asked the teacher to first prepare a lesson on the proof of the IAT that enabled 

the students to freely divide the phenomena in the theorem into several cases that 
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they felt were necessary to prove the IAT and to construct the proof for each case, 

and then to discuss whether all of the cases they had created were necessary, and 

if so, why. 

We videorecorded the lessons and created transcripts of the discussions. Then, 

we undertook qualitative analysis using these transcripts, our research notes, and 

the students’ worksheets. Our analysis focused on classroom episodes in which it 

seemed that the students had progressed beyond van Hiele’s third level of 

thinking during discussions on generating and evaluating their proof for the IAT, 

and analyzed whether and how their thinking could be perceived through the 

theoretical lenses of semiotic change and relational analogical reasoning. 

RESULTS 

We identified 26 episodes in classroom I and 27 episodes in classroom II, in 

which we found four different types of episodes related to the students’ thinking 

that indicated progression beyond van Hiele’s third level. Below, we discuss these 

episodes, labeled episodes 2 to 5, in addition to episode 1, which involved the 

students’ initial selection of cases. We used data from classroom II for episodes 

1 to 3 and data from classroom I for episodes 4 and 5, as our aim is not to identify 

the process of understanding, but rather to identify the aspects of the students’ 

thinking regarding the proof. 

Episode 1: The students’ initial selection of cases for proving the IAT 

In the first lesson, the students’ initial selection of cases necessary for the proof 

of the IAT resulted in five different cases (see Figure 2) after the teacher asked 

them to draw the figures necessary to prove the IAT. 

 

Figure 2: The five cases initially selected for proving the IAT. 

The cases were characterized in terms of the position of points and straight lines 

as follows. Case a: points A, O, and P are on a straight line; case d: points A, O, 

and B are on a straight line; and case e: line AP intersects line OB. Furthermore, 

cases b, c, and d differed in terms of the size of the central angle. In case b, the 
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central angle was less than 180 degrees, in case c, the central angle was greater 

than 180 degrees, and in case e, the central angle was exactly 180 degrees. The 

students were given two tasks: to construct the proof for each case, and to 

determine whether the proofs of all of the cases were necessary to prove the IAT. 

Episode 2: Developing the proof for the case with a complex composite 

figure 

In the second lesson, the teacher first requested the students to 

develop proofs of all of the cases in alphabetical order. They 

obtained the proof of case a by using the isosceles triangle POB 

and the relationship between the two base angles and the 

exterior angle. In this proof, the students perceived the 

configuration as representing a person’s slipper, which provided 

the figurative generic example used to generate the proof (see 

Figure 3). They were also able to use this idea to obtain the 

proofs of cases b, c, and d. 

However, approximately 50% of the students could not construct a proof for case 

e. For example, although Nana could find the isosceles triangle AOB and mark 

the base angles, she had difficulty finding the other isosceles triangle, either OAP 

or OBP. We believe that this was primarily caused by the students’ difficulty in 

extracting the appropriate figures from the complex composite figures. In 

addition, because two slippers overlapped, it may have been harder to find them, 

and thus the figurative generic example was not helpful in this case. 

Conversely, we found that the students who could find the two isosceles triangles, 

OAP and OBP, for case e referred to the proof descriptions of the other cases. In 

particular, they either viewed case e in terms of an analogy with cases b, c, and 

d, or related all cases with each other. Thus, we believe that it may be difficult to 

successfully focus on the slippers as the figurative example to generate the proof 

for case e if the students have not paid attention to the symbolic-linguistic 

descriptions of the other cases. 

 

Figure 3: the 

figurative generic 

example perceived as 

a person’s slipper. 
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Episode 3: Standardizing symbol use across all cases and identifying some 

cases as the same in terms of their symbolic-linguistic 

description 

In the third lesson, when the teacher asked the students to 

discuss the proofs of the five cases, they tried to 

conceptualize the proofs in a consistent manner. Most of the 

students who completed the proof for case e adopted the same 

use of symbols, labeling the angle OPA as a and the angle 

OPB as b. Then, because the angle APB was represented by −𝑎 + 𝑏, the angle 

AOB was represented by −2𝑎 + 2𝑏, and thus case e was proved. 

One student, Kura, proposed a proof of case e by labeling the angle OPA as a and 

the angle APB as b (see Figure 4). While several students accepted his proof after 

examining it, they suggested that he should standardize his use of symbols, stating 

that “the way you have used the label b differs from the proofs for the other 

cases.”   

Then, the teacher again asked if the five cases were necessary for the entire proof. 

Several students responded that just three cases, a, b, and e, were sufficient for 

the entire proof because cases b, c, and d had the same description. 

Episode 4: Conceptualizing the proof as a package of symbolic-linguistic 

descriptions 

In the third lesson in classroom I, when the teacher 

asked the students if all five cases were necessary 

for proving the IAT, several students responded that 

all of the proofs had almost the same description. 

Then, one student, Yuwa, stated that all of the cases 

could be understood using just one proof, that of 

case b. Then, the teacher confirmed that the 

descriptions in relation to case a had been used twice 

for case b, and that the proof of case a could not be 

used as a substitute for the proof of case b (see Figure 5). Yuwa responded by 

stating that “The opposite is possible.” A comparison of the proofs showed that 

cases b, c, and d were identical in terms of their descriptions. Here, it was clear 

that the proof of case a was conceptualized as one package of description, and 

that the necessary and sufficient conditions were contained in the other proof 

descriptions, as Yuwa had suggested.  

 

Figure 4: A 

different figure 

configuration. 

 

Figure 5: the proof as a 

package of symbolic-linguistic 

descriptions. 
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Episode 5: Interpreting the proofs for all of the cases in terms of one 

description 

The teacher and the students continued to discuss Yuwa’s idea using the figures 

for case a and case b. Then, Yuwa again proposed the idea of integrating the 

phenomena of case a into case b by considering the angle PBO as an angle of 0 

degrees. 

1  Yuwa: If we just write the proof of case b, we have the proof for all of the 

cases. 

2 Teacher: All of the cases? But in the figure for case a, the angle AOC does 

not exist. 

3 Yuwa:  Uh…if we consider the angle PBO in case b as being 0 degrees, … If 

point C in the figure for case b arrives at point B, we can regard the 

situation as the same as in case a. (Note: point C is the intersection of 

line PO and the circumference.) 

In addition, the idea of integrating case e into case b was discussed. Yuwa tried 

to integrate them by considering the angle PBO as a variable, saying that “If we 

consider the angle PBO as a negative angle for case e, the proof of case e can be 

regarded as being the same as that of case b.” Moreover, Kana explained that 

“While the expression is 𝑎 + 𝑏 for cases b, c, and d, in case e it becomes 𝑏 − 𝑎, 

and thus the sign changes.” Here, we note that her idea of integrating the proofs 

by changing from a plus sign in cases b to a minus sign in case e was based on 

the symbolic-linguistic descriptions. 

At the end of the third lesson, the teacher summarized the activity by stating that 

the proof of the IAT consisted of the proofs of three cases, a, b, and e, based on 

the students’ considerations. Even Yuwa finally realized that there were 

limitations to his idea of integrating all of the cases using just one proof because 

of the complexity involved in Kana’s proposal to incorporate negative angles. 

DISCUSSION 

Five aspects of proof understanding were identified in the process of learning the 

proof for the IAT: 1) developing the proof using semiotically guided analogical 

reasoning, 2) standardizing symbol use throughout all case proofs, 3) identifying 

those case proofs with identical linguistic descriptions, 4) conceptualizing a proof 

as a package of symbolic-linguistic descriptions, and 5) interpreting all of the case 

proofs in terms of one description. 
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The first aspect refers to connecting the case proofs with each other in terms of 

the relational correspondences between the symbolic-linguistic descriptions and 

between those and the figure configurations. Approximately 50% of the students 

could not construct a proof for case e, while they could indicate van Hiele’s third 

level of thinking for cases a and b, as shown in episode 2. The reason seemed to 

be the lack of relational analogical reasoning in moving from case b to case e. We 

believe that students who were able to derive the proof for case e had achieved a 

level of proof understanding that enabled them to use the links among the proof 

descriptions. 

We identified two of the abovementioned aspects in episode 3. The first (aspect 

2) involves being able to identify the unification of symbol use throughout all of 

the case proofs, with the students able to recognize another proof involving 

different use of the symbols. We believe that the ability to identify consistencies 

among various cases goes beyond merely being able to construct the proof for a 

case. The other aspect (3) involves being aware of the proof descriptions and 

being able to integrate cases that were initially seen as different because of 

differences among the figure configurations. Because the figure configurations 

for cases b, c, and d had very different appearances as a result of changing the 

central angle, the students initially regarded these cases as requiring different 

proofs.  

The fourth aspect involves conceptualizing a proof as a package of symbolic-

linguistic descriptions when comparing proofs. This was seen in episode 4, in 

which the description of case a was twice used for the proof of case b, while 

acknowledging that the proof of case a could not be used as a substitute for the 

proof of case b, even though the reverse was possible in terms of the necessary 

and sufficient conditions contained in the proof descriptions. Regarding the fifth 

aspect, one student attempted to unify the interpretation of all of the case proofs 

using only case b, as seen in episode 5. Then, he introduced the concept of a zero 

degree angle for case a and negative degree angles for case e, while another 

student symbolized these angles as 𝑏 − 𝑎.  

In summary, we consider that the students’ reasoning identified in this case study 

is based on two kinds of correspondences. One is between the symbolic-linguistic 

description and the figure configuration within each case proof, and the other is 

between either the figure configurations or the symbolic-linguistic descriptions 

of the various case proofs. Specifically, we believe that the students 

conceptualized the proof as an object for their thinking, focused on the proof 
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structure, compared the proofs semiotically, and then tried to integrate them into 

one proof. The idea of connecting the relationships within and between the case 

proofs appears to be a new level of proof understanding, one that seems to move 

beyond van Hiele’s third level. In particular, we believe that understanding the 

proof structure is an important first step in progressing toward van Hiele’s fourth 

level. We recognize that these five aspects of thinking are not sufficient for 

students to attain van Hiele’s fourth level of thinking. Nevertheless, we believe 

that they signify progress by the students beyond merely constructing the proof. 

We reiterate that these aspects of thinking occurred when the students discussed 

how the cases were determined after developing the proofs for the various cases. 

In other words, these would not have occurred if the teacher had treated the cases 

as pre-determined before constructing the proof. 

In future research, we aim to investigate new qualities in relation to proof 

understanding regarding other content and to further clarify the learning process 

necessary to attain Hiele’s fourth level of thinking. 
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It is well established that digital formative assessment can support student 

learning, for example by means of digital automatic-assessment of students' work 

in rich digital environments. However, at the same time self-assessment is 

regarded as important in order to support students’ meta-cognitive skills and to 

put learners in a key position where they develop responsibility and ownership of 

their learning. Yet, little is known about combining automatic- and self-

assessment. In this pioneering research study, we investigate the interplay 

between automatic-assessment and self-assessment in the context of Example-

Eliciting-Tasks. Based on quantitative and qualitative data we demonstrate the 

potentials of combining self- and automatic-assessment and outline obstacles that 

can inform design principles for combining both forms of assessment.  

INTRODUCTION & THEORETICAL BACKGROUND 

The Interplay between Self-assessment and Automatic Digital Assessment 

project (ISAA) is a design-based research project that aims at scrutinizing how 

students’ self-assessment and digital automatic-assessment can be combined in 

order to support student learning in the context of formative assessment. The 

research reported in this paper reports on results from the first design-cycle of the 

project.  

Formative assessment 

Formative assessment can be conceptualized as “all those activities undertaken 

by teachers, and or by their students, which provide information to be used as 

feedback to modify the teaching and learning activities in which they are 

engaged” (Black & William, 1998, pp. 7–8). With respect to formative 

assessment, it is well established that feedback is essential, and that the 

effectiveness of formative assessment will therefore depend to a great extent on 

the nature of the feedback (Hattie & Timperley, 2007). Feedback can range from 

simple verification feedback, which merely provides information about whether 
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or not the student's answer is correct to more elaborated forms of feedback. For 

example, “attribute isolation feedback” presents information regarding central 

mathematical attributes of the student solution. The meta-analysis by Van der 

Kleij et al. (2015) shows that elaborated forms of feedback are more effective for 

higher-order learning outcomes in mathematics. We view feedback not only as a 

singular event but rather as a more holistic, bi-directional ongoing process of 

interaction between the student and various parts of the activity in which both 

sides of the interaction (e.g., student, technology) are affected and modified by 

actions of the other side. 

Digital formative assessment with example-eliciting-tasks 

Technological tools can support formative assessment by providing immediate 

and automatic feedback to students. For example, Harel et al. (2019) use 

“attribute isolation elaborated feedback” (AIEF) to support students learning 

when working with “Example-eliciting-Tasks” (EET). EETs are a special kind of 

formative assessment tasks that are built on the notion that the examples that 

students generate are indicative of the students’ mathematical reasoning 

(Zaslavsky & Zodik, 2014). For example, the EET depicted in figure 1 was 

designed by Harel et al. (2019) to support the students in raising conjectures, as 

part of a guided inquiry activity. In this EET students investigate the relations 

between two non-constant linear functions and their product function in a 

multiple linked representation (MLR) interactive diagram. For this, students can 

dynamically drag points on the linear functions to create multiple examples and 

can display the product function by pressing a button. Then, they are asked to 

formulate a conjecture about which types of product functions can be obtained 

and to construct three examples that support their conjectures. Subsequently 

students receive AIEF that provides feedback on whether certain predefined 

characteristics are fulfilled in their examples (see figure 1, characteristics that are 

fulfilled are highlighted in yellow). Harel et al. (2019) show, that iteratively 

working with the EET task and the AIEF can support students in improving their 

conjecture.  



Olsher & Thurm 

PME 44 – 2021   3 - 433 

 

Figure 1: Example of an EET with attribute isolation elaborated feedback 

(characteristics that are fulfilled by the examples are highlighted in yellow) 

Self-assessment 

Besides automatic-assessment, student’s self-assessment has intensively been 

researched as an essential element of formative assessment (Black & William 

1998; Cizek, 2010). For example, Cizek (2010) highlights that current usage of 

the term formative assessment “equally, if not to a greater extent, highlights the 

notions of student engagement and responsibility for learning, student self-

assessment, and self-direction” (Cizek, 2010, p. 7). This reflects more holistic 

approaches to formative assessment where assessment is “not just ‘done’ to 

students, but rather something in which they participate and have some element 

of ownership” (Bull & Mc Kenna, 2004, p. 13). This could be achieved with the 

self-assessment being part of an ongoing feedback process. In particular, self-

assessment is regarded as important as it can support students to develop meta-

cognitive skills which are urgently needed if students should become self-directed 

learners in a fast-changing and complex world. Despite this, in many cases self-

assessment is rarely implemented in classrooms (e.g., Kippers et al. 2018).  
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RESEARCH QUESTIONS & METHODOLOGY  

Research questions 

While self- and automatic-assessment both carry much potential to enable rich 

formative assessment the lack of integrated research that investigates the 

combination of both forms of assessment in order to support student learning is 

stunning. Little is known about how to best integrate both forms of assessment in 

a learning environment and which opportunities and obstacles arise from an 

amalgam of both forms. This study addresses this research gap by exploring the 

interplay between self- and automatic-assessment in the context of an EET 

learning environment. In particular the study addresses the following research 

questions (RQ): 

RQ1: To what extent are students' able to self-assess the EET characteristics? 

RQ2: Does the self-assessment of the students improve when combining self- 

and automatic-assessment with EETs?  

RQ3: What potentials and obstacles can be identified with respect to the interplay 

of self- and automatic-assessment of EET characteristics? 

Methodology 

To answer these questions, we used the Seeing the Entire Picture (STEP) platform 

(Olsher, Yerushalmy & Chazan, 2016) which is a digital environment that 

supports example-eliciting tasks. We combined self- and automatic-assessment 

using the EET described before (see figure 1) in the following way: 

A) Creating examples and formulating conjectures: Students first created three 

examples and elaborated about the types and characteristics of quadratic 

functions that can be obtained from multiplying two non-constant linear 

functions.  

B) Self-assessment: Instead of receiving the automatic-assessment right away, 

students were now asked to self-assess whether the characteristics depicted in 

figure 1 were fulfilled or not. Besides the categories “fulfilled” and “not 

fulfilled”, we included the categories “unsure” and “I don’t understand the 

characteristic”. The students were provided with a pre-structured paper sheet 

where they could mark which characteristics were fulfilled for each of their three 

examples.  

C) Comparing self-assessment and automatic-assessment: After finishing the 

self-assessment students received the automatic-assessment report. The report 
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indicated which characteristics were fulfilled in the examples that were submitted 

by the students (part A), by highlighting them in yellow (see figure 1). Students 

were now asked to compare their self-assessment (part B) with the automatic-

assessment.  

In order to gain more insight into how students experienced parts A-C, students 

subsequently answered various multiple-choice questions about their experience. 

For example, one question asked students whether the comparison between self- 

and automatic-assessment brought new insights or was surprising. Another 

question captured whether students preferred the self-assessment, the automatic-

assessment or a mixture of both. After finishing these questions students entered 

a second cycle working through the previously described parts once more.  

 

Figure 2: Self- and automatic-assessment when working with EET 

Nine pairs of students from grade 9 of a German upper secondary school were 

video-recorded. Data was analysed in two ways. To answer research questions 1 

and 2 we captured how often students' self-assessment was correct, and how often 

students choose the options “unsure” or “I don’t understand the characteristic”. 

Students' self-assessment was rated correct if a characteristic was fulfilled in the 

submitted example and the student realized this in their self-assessment or if a 

characteristic was not fulfilled in the submitted example and the student realized 
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this in their self-assessment (see figure 2). To identify potentials and obstacles 

with respect to the interplay between self- and automatic-assessment (research 

question 3) we analysed the parts of the video-recordings where students self-

assessed themselves and where they compared their self-assessment with the 

automatic-assessment. Analysis was done in an exploratory manner with a focus 

on how students engaged in self-assessment and comparing both types of 

assessment.  

RESULTS 

Quantitative results 

Table 1 shows the frequencies on how often students’ self-assessment (SA) was 

correct, incorrect and how often students chose the option “unsure” or “I don’t 

understand the characteristic”. As we had nine pairs of students, nine 

characteristics per example and three examples submitted per cycle, there were 

in total 486 (=9·9·3·2) characteristics that the students had to self-assess.  

 1st Cycle 

n=243 

2nd Cycle 

n=243 

Difference % 

SA correct 150 194 29.33 

SA incorrect 43 31 -27.91 

Unsure 20 6 -70 

Don't understand 24 12 -50 

Missing  6 0 -100 

Table 1: Students self-assessment (SA) across the two cycles 

With respect to research question 1, it can be seen that in the first cycle roughly 

only 61% (150/243) of the self-assessments were correct, indicating that self-

assessment was not an easy endeavor for students. However, the self-assessment 

improved remarkably (research question 2) as the number of correct self-

assessments increased substantially in the second cycle to 194 which corresponds 

to an increase of roughly 30 percent. These trends will also be statistically 

analyzed for significant differences.  
Pair 
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 S1 S2 S3 S4 S5 S6 S7 S8 S9 

C1 20 20 14 22 17 20 6 6 25 

C2 27 21 20 21 24 26 14 16 25 

Table 2: Number of correct self-assessments in cycle 1 (C1) and cycle 2 (C2) 

for each pair of students (S1-S9) 

Table 2 shows that almost all pairs of students improved with respect to the 

number of correct self-assessments. The increase in correct self-assessments was 

not only due to a reduction of incorrect self-assessment: In addition, students 

reported in fewer cases that they were unsure about whether a characteristic was 

fulfilled or not, or that they do not understand a characteristic.  

In line with these results, the answers of the students to the questions that were 

asked after the completion of each cycle, indicate the great appreciation of the 

combination of self- and automatic-assessment by the students. Eight out of nine 

pairs stated that comparing the self- and automatic-assessment brought new 

insights or encouraged them to think differently and that they prefer a mix 

between self- and automatic-assessment. Interestingly five groups stated that they 

were surprised that there were any differences between their self-assessment and 

the automatic-assessment. These findings can be further elaborated using the 

qualitative results presented in the following section. 

Qualitative results 

The analysis of the segments where students self-assessed their work (part B) and 

where they compared their self-assessment with the automatic-assessment (part 

C) brought to the forefront the following four central aspects related to the 

potentials and opportunities of combining self- and automatic-assessment 

(research question 3).  

High cognitive activation during self-assessment  

During the self-assessment (part B) students often discussed whether a certain 

characteristic was fulfilled or not. As mentioned before, many times students did 

not self-assess the characteristics correctly (see table 1) which was often due to 

students limited concept images. For example, one pair of students held the 

concept image that a quadratic function is always opened upwards and therefore 

the parabola in their example which was opened downwards could not be a 

quadratic function. Another pair of students noted that the two linear functions 

that they had produced have slightly different slopes, however they argued that 

Cycle 
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the slopes are sufficiently similar to say that they are actually the same 

(characteristic 4).  

Comparing self- and automatic-assessment can lead to new insights 

The combination of self- and automatic-assessment (part C) has the potential to 

lead to new insights as illustrated by the following example from the first cycle. 

Two students had generated the linear functions f(x)=-2.01x+10 and g(x)=-

0.4x+2. In the self-assessment the students had marked the characteristic “The 

product function has exactly one zero point” as fulfilled. When they compare their 

self-assessment with the automatic-assessment they realize that the automatic-

assessment has marked this characteristic as not fulfilled. They look at the graph 

and are surprised because the product function appears to have only one zero 

point (see figure 1, second example). Then one student started to investigate the 

graph, zooms into the zero point and concludes that they probably have not looked 

close enough. Hence students encountered a cognitive conflict, and resolved it by 

reanalyzing their example.  

High cognitive load when comparing self- and automatic-assessment 

Even though some cases appeared where students investigated conflicts between 

self- and automatic-assessment (part C)) these investigations were quite rare. A 

possible reason for this was that before investigating possible differences between 

self- and automatic-assessment students had to identify whether their self-

assessment was aligned with the automatic-assessment or not. Figure 2 highlights 

the complexity of this evaluation process as students have to distinguish between 

four cases. While most students managed to identify their self-assessment as 

aligned if a characteristic was fulfilled in self- and automatic-assessment (upper 

left square in figure 2), the other cases were considerably more difficult for 

students to evaluate and led to high cognitive load just to manage the evaluation 

of the self-assessment. This cognitive demand was additionally increased by the 

fact the automatic-assessment was displayed on the screen while the students’ 

self-assessment was done on paper. Students had to constantly move back and 

forth between screen and paper which made the comparison between self- and 

automatic-assessment quite tedious.  

Making graph and algebraic expressions easily accessible 

Another reason that impaired student’s investigation of the differences between 

self- and automatic-assessment was that the tablet which students used could not 

display the automatic-assessment and the submitted examples of the students 
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(e.g., the graphs) at the same time. Most students scrolled down to easily oversee 

the yellow highlighted characteristics but did not bother to scroll back and forth 

between seeing the characteristics and the graphs of their examples.  

SUMMARY AND DISCUSSION 

The Interplay between Self-assessment and Automatic Digital Assessment 

project (ISAA) aims at scrutinizing how students’ self-assessment and automatics 

assessment can be combined in order to support student learning. The results of 

the first design-cycle show that students’ self-assessment did improve remarkably 

throughout the two cycles (table 1 and 2). This is particularly striking since this 

improvement was not moderated or scaffolded by any teacher intervention. 

Rather, one of the likely reasons for the improvements was the fact that students 

worked in pairs which allowed interactions and discussions between the group 

members. The qualitative analysis revealed how the comparison of differences 

between self- and automatic-assessment can create cognitive conflict that can 

lead to new insights. However, we also identified several challenges that can 

inform the design of learning environments that combine self- and digital 

automatic-assessment. First, evaluating the self-assessment with respect to the 

automatic- assessment was not easy for students and created high cognitive load 

which impeded a deeper engagement with the differences between self-and 

automatic-assessment. A possible way to reduce cognitive load would be to 

embed the self-assessment into the digital environment, and automatically 

highlight differences between self-assessment and automatic-assessment within 

the digital environment. This would allow students to immediately investigate the 

difference between the two forms of assessment. Another aspect would be to 

increase the simultaneous accessibility to all relevant information for example by 

presenting the interactive diagram on the same screen as the report without having 

to scroll between them. 

Self- and automatic-assessment carry both tremendous potentials to support 

formative assessment. We have shown that combining self-assessment and 

automatic-assessment has the potential to enhance students learning and outlined 

important design considerations. However, while we gained many important 

insights, the results of this study are somewhat limited by the small number of 

students that were investigated. The next design cycle of the ISAA project will 

comprise a larger group of students, a further development of the technological 

environment with the goal of supporting an easier and deeper engagement with 

the differences between self- and automatic-assessment. Furthermore, we will 
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investigate whether the combination of self- and automatic-assessment increases 

the quality of students conjectures in the EET. 
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This study used exploratory factor analysis to explore and compare Filipino and 

Taiwanese students' perception of effective mathematics teaching behaviors, 

which help students understand, focusing on the dimensions of representation, 

teaching methods, and problem-solving strategies employed by the teacher. Every 

dimension yielded two factors. On representation: Filipino students endorsed 

"formal and symbolic" and "concrete and real-life" similarly while Taiwanese 

students endorsed the second more.  On teaching methods: "teacher-supported 

student active learning activities" and "teacher-led heuristic inquiry 

opportunities," and on problem-solving: "lecture centered approach" and 

"teacher-facilitated multiple self-discovery opportunities" where both countries 

endorsed the second factor higher than the first. 

INTRODUCTION  

The past years have seen the Philippines participate in various international 

assessments for mathematics given to students. Unfortunately, results from both 

assessments, PISA (2018) and TIMSS (2019), show the Philippines at the bottom 

of mathematics competency standings. In contrast, Taiwan and its other East 

Asian neighbor countries have always been consistently placed on top of these 

assessments. This prompted cross-country-comparative research on students' 

various preferences of effective mathematics teaching behaviors that may give 

hints as to why they learn well or not.  For example, Hsieh et al. (2020) found 

that students in high achieving countries, China and Taiwan, endorsed formal and 

symbolic representation to a higher degree than their teachers and concluded that 

this might relate to students' pursuit of academic achievement.  It is thus 

interesting and helpful to see how Filipino students fare compared to their 

neighboring country and see commonalities or differences that might explain the 
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gap between achievement in international mathematics assessments.  This might 

influence educators' view as to what teaching behaviors to tweak to ensure 

effective mathematics teaching, as reflected in students' mathematics 

understanding. 

Effective mathematics teaching 

Many studies about what can be considered as effective mathematics teaching 

between countries have been done in the past decade.  This range from cultural 

contexts (Cai & Wang, 2010) to belief systems (Purnomo, 2017; Yu, 2009) to 

values (Seah & Peng, 2012) and to many other topics in between.  Many pertinent 

studies consider effective teaching as whether the instruction done by the teacher 

cultivates student understanding of mathematics. In a study done by Correa et al., 

(2008) it was found out that US teachers tend to favor hands-on activities, 

whereas Chinese teachers tend to favor linking mathematics to real-life situations 

in their instruction.  Others asserted that it might have something to do with one's 

race, like the premise of the study done by Jerrim (2015).  Other studies focused 

on teaching behaviors and the role of teachers in mathematics instruction.  In their 

paper, Ismail et al. (2015) stressed the vital role of teachers in ensuring classroom 

instruction effectiveness. They further mentioned that for mathematics teaching 

to be effective, a teacher must be both an explainer and an inquirer, highlighting 

the interplay of teacher-led and student-centered instruction.  Thus, it shows that 

the teacher's teaching behaviors are a great contributor to developing and 

nurturing a students' mathematics understanding. A consensus exists in the 

literature that effective mathematics teaching measures may consist of a. ways 

that teachers present mathematical concepts and ideas through representation 

(Capraro et al., 2010) and teaching methods (Cai & Wang, 2010), and b. ways to 

help students understand problem-solving solutions (Ambrus & Barczi-Veres, 

2015). Thus, in this study, the conceptual framework focused on the teachers' use 

of representation and teaching methods to help students understand mathematics 

content and strategies and methods in teaching problem solving to help students 

understand solutions (see Figure 1). 

 

 

 
Effective 

Mathematics 
Teaching 

 Use of representation 

 

 Teaching method 

 
Teaching problem-
solving solutions 
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Figure 1: The framework of this study 

Research questions 

This research aims to answer the following questions: 

1. What factors of teaching behaviors are preferred by students from Taiwan 

and the Philippines to better understand mathematics? 

2. Are there commonalities and significant differences in the preferred factors 

that help mathematical understanding between students from Taiwan and 

the Philippines? 

METHODOLOGY 

The survey instrument 

The research proponents adopted an instrument used by Wang & Hsieh (2017) 

for gauging the perspectives on effective mathematics teaching behaviors of 

Taiwanese high school students.  The dimensions tested for this study were on 

representation, teaching methods, and how teachers teach problem-solving.  A 

common prompt of what they think helps them understand mathematics better is 

used throughout the study.  Use of representation was composed of 11 items, 

teaching methods 17 items, and problem-solving 15 items.  A sample of survey 

questions is found below in Figure 2. 

 

Figure 2: Sample questions used in the instrument 

Participants and data collection 

An initial pilot study consisting of 100 high school students and 56 mathematics 

teachers was conducted to determine the instrument's validity and reliability in 

the study as it applies to the Philippine setting.  Reliability was computed using 

the KR20 formula for dichotomous variables in SPSS and yielded a result of 

0.929, indicating that it is suitable for use in the Philippine setting.  

A formal survey was conducted with students from four different high schools in 

three cities in Metro Manila. The total number of participants for the two 
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countries combined was 1819, Philippines: 600, Taiwan 1219. Kaiser-Meyer-

Olkin Measure of Sampling Adequacy result was 0.895, indicating that the data 

is suitable for factor analysis to be conducted.  Exploratory factor analysis was 

done using MPlus software on each dimension to identify the factors contributing 

to students' perception of effective mathematics teaching.  Fit statistics, including 

CFI, TLI, RMSEA, and SRMR, were used. 

RESULTS AND DISCUSSION  

On the use of representation 

Teachers' use of representation in presenting and explaining mathematical 

concepts and ideas showed two factors extracted after running the EFA.  Fit 

statistics for the data are as follows: CFI = 0.969, TLI = 0.950, RMSEA = 0.061, 

and SRMR = 0.059.  All the factor loadings reached an adequate level of greater 

than 0.3. 

Figure 3 shows the percentages of picking (POP) of the items of the two factors 

extracted, F1: Formal and Symbolic representation and F2: Concrete and Real-

Life Representation.  Formal and symbolic representation involves using 

formulas, symbols, proofs, and other abstract means to present new concepts or 

ideas.  Concrete and real-life representation consists of manipulatives, graphs, 

or stories, tangible, concrete, and related to real-life situations. The POPs of F1 

and F2 are 29% and 28% and 27% and 50% for Philippines and Taiwan. From 

the figure, it can be seen that Taiwanese students overwhelmingly preferred the 

second factor with a 50% percent of picking and with five (R8: use of graphs, 

R11: use of examples, R6: use of appropriate metaphors, R9:use of things in real-

life, and R10: use of demonstrations) out of the six descriptors for the factor 

clustered in the top five slots as opposed to their Filipino counterparts where the 

descriptors were scattered, and where the first factor was endorsed more than the 

second (29% vs. 27%).  The R11: use of examples was both highly favored by 

Filipino and Taiwanese students, where it ranked first and second place, 

respectively, at 50% and 60% POP.  On the other end, the R1: use of abstract 

symbols (POP: 12%, 9%) and R7: use of stories (POP: 25%, 8%) were both not 

highly favored. Differences can be seen in the preference for the R6: use of 

metaphors, where Taiwanese students endorsed it at 55%, whereas it is one of the 

least preferred by their Filipino counterparts at only 9%.  Filipino students 

supported the R5: use of formulas highly at 48% (ranked 2nd), whereas their 

Taiwanese counterparts endorsed it at only 22% (ranked 10th).  The R4: use of the 

formal approach is also supported more by Filipino students at 39% (ranked 3rd) 
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as opposed to the 34% (ranked 8th) given by their Taiwanese counterparts.  

Results indicate that Filipino teachers prefer to use a more straight-forward 

approach to teaching instead of using other forms like stories or graphs. In 

contrast, Taiwanese students prefer alternative representations that are not purely 

numerical and symbolic.  The reason may relate to the different difficulty levels 

of curriculum or examinations. 

 

Figure 3: Percentages of pickings for the use of representation  
 

On teaching methods 

The EFA had to be done twice because, in the first run, one of the indicators 

(Adopt lecturing as the main teaching form to avoid wasting unnecessary time) 

did not load to any of the two factors extracted. After deleting this item, the 

second EFA still had the same number of extracted factors and had desirable 

model fit statistics as follows: CFI = 0.984, TLI = 0.979, RMSEA = 0.041, and 

SRMR = 0.041.  All the factor loadings reached an adequate level of greater than 

0.3. 

Figure 4 shows the POP of the items of the two factors extracted: Factor 1: 

Teacher supported student active learning activities, and Factor 2: Teacher-led 

heuristic inquiry opportunities. Factor 1 is more student-centered; the teacher 

plays more of a supportive role in providing students with worksheets, learn 

through games, work in groups, and employ various teaching methods in a class.  

Factor 2, on the other hand, is centered more on the teacher as he/she leads the 

students to self-discovery opportunities by facilitating inquiry from students, 

clear explanations in class, and emphasizing critical ideas in class.    
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Figure 4: Percentages of pickings for teaching method  

Both countries endorsed the second factor (Average POP: Taiwan - 55%, 

Philippines – 29%) higher than the first factor (Average POP: Taiwan - 33%, 

Philippines – 25%). Both countries students also shared four items that are on the 

top five of their preferences (TM13:introduce new concepts from easy to difficult 

levels, TM16: use simple and clear words to introduce new ideas, TM15:explain 

to clarify our doubts and confusions, and TM14: guide us in observation and 

induction to develop our concepts).  Students do not prefer teachers TM1: 

employing small group learning in both countries, ranking it 15th and 16th for 

Taiwan and the Philippines, respectively.  Completing their top 5 preferences, 

Filipino students included TM8: provide hands-on activities for us to understand 

mathematics in class (40%) ranked 2nd while Taiwanese students have TM11: 

emphasized critical ideas repeatedly in class (63%) ranked 3rd.  The indicators 

TM4: use well-designed worksheets to teach, and TM3: allow us to learn through 

games in class, are part of the bottom four of preferred teaching methods by 

Taiwanese students (rank 14th and 16th). In contrast, the Filipino students ranked 

it relatively higher (rank 10th and 11th) based on their POP values.  The most 

significant difference in preference is on TM11: emphasizing critical ideas 

repeatedly in class, with Taiwanese students ranking it 3rd at 63%, whereas their 

Filipino counterparts ranked it at 12th at 22%.  On the other hand, Filipino students 

favored if they were TM7: asked to solve problems on the board to enable them 

to learn how others solve the same problems, which they ranked 6th at 33% 

compared to rank 14th (also at 33%) by their Taiwan counterparts.    Results would 

show that indeed students from both countries favor teacher-led heuristic inquiry 
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opportunities over that of teacher-supported active learning activities.  Results 

may indicate that many students still rely heavily on or feel confident in teacher 

guidance and instruction in both countries.  Students would rather want to be 

taught that way than making the discoveries for themselves via prepared 

worksheets or small group activities to play a more significant part in their 

learning.  It is also evident that there is a rather large gap with Taiwanese students' 

preference between the factors. In contrast, it is not as heavily pronounced in their 

Filipino counterparts. 

On teaching students problem-solving 

Teachers' ways of teaching students how to solve mathematical problems in class, 

as shown in the EFA results in Figure 4, showed two factors extracted.  Fit 

statistics for the data are as follows: CFI = 0.993, TLI = 0.991, RMSEA = 0.028, 

and SRMR = 0.034.  All the factor loadings reached an adequate level of greater 

than 0.3. 

 

Figure 5: Percentages of pickings for teaching problem solving 

Figure 5 shows the POP of items of the two factors extracted: Factor 1: Lecture 

centered approach, and Factor 2: Teacher facilitated multiple self-discovery 

opportunities.  The first factor deals with teachers immediately solving problems 

on the board once presented, going over only on the important steps rather than 

every single one when solving a problem, and using challenging problems as 

examples and using it for examples, as can be seen heavily teacher-centric.  Factor 

2, on the other hand, involves the students more as they go through the problem-

solving process; they are allowed to work on the problems first, elaborate their 

ideas, work on similar problems, look back at the way the teacher solved the 
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problem to see how it was done, this is more student-centered, and needs more 

attention to detail on the part of the teacher.  In this dimension, the differences 

between the students' preferences from the two countries are more evident. Factor 

1 had averages of 17% and 19%, whereas factor 2 had averages of 23% and 49% 

endorsement from the Philippines and Taiwan. Among the top choices, both 

countries endorsed the indicators PS15: identify crucial points and keywords of a 

problem when solving it and PS7:ask us to look back at the problem after he/she 

solves it to see how it is done with the Filipino students ranking it at 4th and 5th, 

while Taiwan students rated it 1st and 2nd based on POP. However, consideration 

must be given to this dimension as the gap between the POP values is great, with 

the highest of 64% and 64% for the two items from Taiwanese students as 

opposed to 28% and 26% from the Filipino students.  Filipino and Taiwanese 

students differ significantly on teachers PS14: writing problems and solutions on 

the board to let the students know what he/she is talking about and on teachers 

PS13: elaborating on his/her train of thought in detail, where the former ranked 

it at 1st and 3rd. In contrast, the latter ranked it 14th and 15th.   On the flip side, 

Taiwan students endorse it when teachers PS9: allow them to use their own 

methods to solve problems at 56% ranked 6th, compared to their Filipino 

counterparts with 19% ranked 12th.  The findings indicate that both countries' 

students place a premium on seeing the detail of the technique rather than the 

teacher just going over the essential steps in a problem.  Results also show that 

Taiwanese students are more accustomed to using their methods and solutions to 

solve problems. In contrast, Filipino students tend to follow how the teachers 

solve the problems and mimic them.  Taiwanese students are also generally given 

a chance to think about how a problem could be solved before the teacher explains 

how to solve it, contrary to what Filipino students experience. 

CONCLUSION  

The study results show that Taiwanese and Filipino students share some common 

teaching methods that they prefer to learn mathematics.  Some indicators are 

regarded highly by Taiwanese students but generally not endorsed by their 

Filipino counterparts.  Results could show that there are still underlying 

differences in how mathematics is taught in schools.  One sensible explanation of 

the Filipino students' endorsement of teacher-led heuristic inquiry opportunities 

to a higher degree than teacher supported student active learning activities as 

well as their endorsement of formal and symbolic representation and concrete 

and real-life representation to a similar degree is that students prefer those 

teaching methods they are accustomed to in class.  This may result from their 
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teachers' not exhibiting those teaching behaviors or not doing it well. This may 

mean that teachers from the Philippines might not be using varied teaching 

mathematics approaches in the classroom.  This could be caused by limited 

resources, lack of training, too much content to cover, and many other factors that 

could be studied further based on the results found in this research.  Results have 

also shown that Taiwanese students are generally accorded more freedom in their 

ways of tackling problems. However, they generally still want more of the 

teacher, leading them towards self-discovery in their learning.  Filipino students 

are more exposed to the teacher-centered approach, whereas Taiwanese students 

show a semblance of a student-centered approach to mathematics learning. 
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This contribution focuses on start exploring possible relations between students’ 

academic performance in mathematics and their creativity in a semi-structured 

problem-posing task, and between students’ academic performance and the 

quality of their posed problems in terms of solvability and syntactic complexity. 

Findings suggest that students with a good academic performance seem to 

generate more creative mathematical problems, while in terms of solvability and 

syntactic complexity no difference is evident between students with a higher or 

lower academic performance. The data analysis scheme developed should 

represent a prototype for analysing various aspects of problem-posing, such as 

creativity and syntactic complexity, in different mathematical domains. 

INTRODUCTION 

Problem-posing is a process through which the importance of creativity and 

critical thinking are emphasized (NCTM, 2000), representing an essential skill 

for the future. Indeed, in this perspective students can actively construct meaning 

in both the natural and simulated worlds in classrooms, making connections 

between mathematics and their real lives (Kopparla et al., 2019), supporting in 

this way the development of more democratic and critically thinking members of 

society (Singer, Ellerton & Cai, 2015).  

Although mathematical problem-posing has great importance in mathematics 

education practice and research, it has received little attention by students, 

teachers and researchers (Silver, 1994, 2013; Van Harpen & Sriraman, 2013). Lee 

(2020) remarked how in literature still persists little research on problem-posing, 

finding that in the last thirty years only the 0.4% of papers in the most important 

journals in Mathematics Education focused on mathematical problem-posing. 

Further research is needed for the future (Singer, Ellerton & Cai, 2015) 

particularly on: (i) developing problem-posing skills for pre-service and in-
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service teachers’ education; (ii) analysing possible connections between problem-

posing and creativity; (iii) supporting students’ learning trough problem-posing.    

The aim of this contribution consists in exploring possible relations between 

students’ academic performance in mathematics and their problem-posing 

performance. Specifically, the results of an exploratory study conducted in a 12th-

grade class (age 17) are presented, together with an analytic scheme used to 

analyse students’ creativity in problem-posing and the quality of the posed 

problems in terms of solvability and syntactic complexity.  

THEORETICAL FRAMEWORK 

In this contribution problem-posing is considered as the process by which 

students construct personal interpretations of concrete situations and formulate 

them as meaningful mathematical problems (Stoyanova & Ellerton, 1996). In the 

specific, the focus will be on a semi-structured situation, where students are 

provided with an open situation and are invited to explore its structure and to 

complete it using their personal previous mathematical experience. 

The theoretical arguments supporting the importance of problem-posing in school 

mathematics are supported by a growing body of empirical research.  Several 

studies focused on the relations between problem-posing and problem-solving 

(Silver, 1994; Van Harpen & Presmeg, 2013) and/or between problem-posing and 

creativity (Leung, 1997; Bonotto, 2013; Xie & Masingila, 2017), developing 

several analytic schemes to assess students’ or teachers’ problem-posing 

performances.  

A first analytic scheme to examine problem-posing of middle school students was 

developed by Silver and Cai (1996). Students’ problem-posing responses were 

firstly categorized as mathematical questions, non-mathematical questions or 

statements. Then, mathematical questions were divided in solvable and non-

solvable. Specifically, problems were considered to be non-solvable if they 

lacked sufficient information or if they posed a goal that was incompatible with 

the given information. The last step involved examining the complexity of the 

posed problems. Complexity was considered under two perspectives: syntactic 

complexity and semantic complexity. Syntactic complexity consisted in the 

presence of assignment, relational or conditional propositions. Semantic 

complexity involved the number of the semantic relations used, taken from the 

five categories: change, group, compare, restate, vary.  
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Creativity started receiving attention in the fifties, when Guilford (1959) 

proposed three categories characterizing creativity in his model for divergent 

thinking: fluency, flexibility and originality. Fluency in thinking referred to the 

quantity of output; flexibility in thinking referred to a change of some kind 

(meaning, interpretation, use of something, strategy); originality in thinking 

meant the production of unusual, remote or clever responses. Researchers created 

and applied different schemes to evaluate students’ creativity in problem-posing. 

For example, Bonotto (2013) used Guilford’s categories to examine the 

relationships between problem-posing and creativity with students engaged in 

problem-posing activities implemented involving the use of real-life artefacts. 

More recently, Xie and Masingila (2017) proposed a scoring rubric to assess 

prospective teachers’ problem-posing performances. In particular, in relation to a 

given problem, they analysed teachers’ posed problems in terms of creativity 

assigning 3 points if the posed problem was completely different respect to the 

given one, 2 points if it was somewhat different, 1 point if it was comparable.  

RESEARCH QUESTIONS 

Students who are good at solving routine mathematical problems or taking routine 

mathematical tests might not be good at posing good quality mathematical 

problems, as indicated in Van Harpen and Sriraman (2013). Moreover, Bonotto 

(2013) suggested the necessity of studies with the aim of investigating a possible 

relation between students’ academic performance in mathematics and their 

performance in creativity. The aim of this study is to start exploring possible 

relations between students’ academic performance in mathematics and their 

creativity in semi-structured problem-posing situations, and between students’ 

academic performance and the quality of their posed problems in terms of 

solvability and syntactic complexity. As a consequence, the research questions of 

this study are the following: 

1. Is there a relationship between students’ academic performance in 

mathematics and students’ creativity in problem-posing? 

2. Is there a relationship between students’ academic performance in 

mathematics and the quality of their posed problems in terms of solvability 

and syntactic complexity? 

Another goal of this study was to develop and use an analytic scheme to examine 

students’ creativity in problem-posing. In order to find first answers to the 

research questions, the results of an exploratory study are reported.  
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METHOD 

Participants and procedure 

The exploratory study was conducted in a twelfth-grade class (age 17) composed 

by twenty-one students. The classroom had never participated to a problem-

posing activity before the study. At the moment of the intervention, the official 

mathematics teacher, used to teach in a traditional way, was working on 

probability. With students’ academic performance in mathematics, in this study 

the choice was to consider the mathematics level of each student in result of a 

mathematics test performed before the problem-posing activity. The test 

consisted of three problems involving various mathematical topics already 

covered in previous mathematics lessons by the teacher.  For each problem the 

maximum score was 2, so the total maximum score was 6. In order to examine 

the relationship between students’ performance in the test and their problem-

posing performance, two extreme groups were formed on the basis of the results 

from the test, in analogy with Silver and Cai (1996): the high-test group, 

composed by students whose score was from 4 to 6 (48%, 10 students over 21); 

the low-test group, composed by students whose score was from 0 to 3 (52%, 11 

students over 21). The two groups had substantially different levels of success in 

the test, indeed the high-test group had a significantly higher mean test score than 

the low-test group (MeanHigh=5.0, MeanLow=2.5, z= -3.84, p<.001). 

After the initial test, each student completed a semi-structured problem-posing 

task in a single class period of approximately 40 minutes. The task was 

administered by the regular mathematics teacher during a mathematics class. The 

context chosen for the activity was the Italian game of tombola, that students were 

used to play with their teacher every year before Christmas holydays. As a 

consequence, the context was meaningful for students, in addition of being rich 

in mathematical stimulus to generate probabilistic problems. To complete the 

task, students were provided with a sheet of paper with the rules of tombola, and 

the request to pose at least three problems starting from that game dealing with 

probability.  

Data coding 

A summary of the data coding developed in this study is provided in Figure 1. 

The scheme is an adaptation of Silver and Cai (1996) scheme. The novel 

contribution concerns the characterization of creativity, that is explained in this 

section.  
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Figure 1: Data coding scheme 
 

The first step of the coding consisted in classifying each student’s responses as 

mathematical problems, non-mathematical problems or statements. The next step 

involved categorizing the mathematical problems as solvable or non-solvable. 

The following step consisted in associating to each student a level of creativity. 

To do this, an analytic scheme was developed starting from the one proposed by 

Xie and Masingila (2017). Let 𝑃𝑖
𝑛 be the i-th solvable problem posed by the n-th 

student, so for three problems  𝑖 = 1, 2, 3;  𝑛 > 0. For every 𝑛, consider the first 

posed problem 𝑃1
𝑛 and compare it with the second posed problem 𝑃2

𝑛: if  𝑃2
𝑛 and 

𝑃1
𝑛 are comparable, then (𝑃2

𝑛, 𝑃1
𝑛) = 0; if  𝑃2

𝑛 and 𝑃1
𝑛 are somewhat different, 

then (𝑃2
𝑛, 𝑃1

𝑛) = +1; if  𝑃2
𝑛 and 𝑃1

𝑛 are completely different, then (𝑃2
𝑛, 𝑃1

𝑛) = +2. 

Then consider the third posed problem and compare it with both the second and 

the first one: if  𝑃3
𝑛 and 𝑃2

𝑛 are comparable, then (𝑃3
𝑛, 𝑃2

𝑛) = 0; if  𝑃3
𝑛 and 𝑃2

𝑛 are 

somewhat different, then (𝑃3
𝑛, 𝑃2

𝑛) = +1; if  𝑃3
𝑛 and 𝑃2

𝑛 are completely different, 

then (𝑃3
𝑛, 𝑃2

𝑛) = +2; if  𝑃3
𝑛 and 𝑃1

𝑛 are comparable, then (𝑃3
𝑛, 𝑃1

𝑛) = −2; if 

 𝑃3
𝑛 and 𝑃1

𝑛 are somewhat different, then (𝑃3
𝑛, 𝑃1

𝑛) = −1; if  𝑃3
𝑛 and 𝑃1

𝑛 are 

completely different, then (𝑃3
𝑛, 𝑃1

𝑛) = 0. In the end, calculate the sum 𝑐 ≔

(𝑃2
𝑛, 𝑃1

𝑛) + (𝑃3
𝑛, 𝑃2

𝑛) + (𝑃3
𝑛, 𝑃1

𝑛) ∈ {−2, −1, 0, 1, 2, 3, 4}. If 𝑐 ≤ 0, the student 

has a low level of creativity, if 𝑐 ∈ {1,2}, the student has a medium level of 

creativity, if 𝑐 > 2, the student has a high level of creativity. The scheme can 

easily be extended to activities in which students pose a number of problems d 

greater than three, with 𝑐: = ∑𝑑
𝑗=2 (∑𝑗−1

𝑘=1 (𝑃𝑗
𝑛, 𝑃𝑘

𝑛)  ) , where (𝑃𝑗
𝑛, 𝑃𝑘

𝑛) ∈

{0, +1, +2} 𝑖𝑓 𝑗 − 𝑘 = 1, (𝑃𝑗
𝑛, 𝑃𝑘

𝑛) ∈ {0, +1, +2} 𝑖𝑓 𝑗 − 𝑘 > 1.  
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The final step of the data coding involved examining the syntactic complexity of 

the posed problems. In the specific, every problem of each students was classified 

as an assignment problem, a relational problem or a conditional problem. In 

agreement with Mayer (1992), the presence of relational or conditional problems 

was considered as an indication of complexity. For this reason, to each student 

was associated a level of complexity as follows: low level if s/he posed only 

assignment problems; medium level if s/he posed an assignment plus a relational 

problem, or an assignment plus a conditional problem, or only a relational 

problem, or only a conditional problem; high level if s/he posed an assignment 

plus relational plus conditional problems, or a relational plus a conditional 

problem.  

Concerning inter-rater reliability of the scoring, the coding was performed 

separately by two different researchers. Rates of agreements on the classifications 

of levels of creativity and complexity were highly acceptable: concerning 

creativity, agreement of 85% with Cohen’s k of 0.83 (almost perfect agreement); 

concerning complexity, agreement of 85% with Cohen’s k of 0.74 (substantial 

agreement). 

MAIN RESULTS 

Students provided a total of 65 responses. About the 95% of the responses were 

classified as mathematical problems, about 3% were statements and 2% were 

non-mathematical problems. More than 87% of the mathematical problems posed 

by students were judged to be mathematically solvable.  

Concerning creativity, a level of creativity was calculated for every student, 

applying the developed coding scheme to students’ solvable problems (Figure 2). 

Then, distributions of students respect their level of creativity were calculated. 

The 42% of students had a high level, the 29% a medium level and the 29% a low 

level of creativity.  

The syntactic complexity of the posed problems was determined by examining 

the presence of assignment, relational or conditional problems among all the 

solvable problems posed by students. The 50% of the solvable problems were 

assignments problems, the 13% relational problems and the 37% conditional 

problems. Some examples are shown in Table 1. Concerning levels of 

complexity, the 10% of students had a high level, the 67% a medium level and 

the 23% a low level, showing that the majority of students (74%) reached a 

medium-high quality level in terms of complexity of the posed problems.  



Passarella 

PME 44 – 2021   3 - 457 

 

Figure 2: Example of calculation of a student’s level of creativity 
 

Assignment problem In the game of bingo, what is the probability that a number is drawn 

which is power of 2 and multiple of 3? 

Relational problem Luca and Marco are playing tombola. Marco bought 2 folders while Luca 

4. Each folder had 15 different numbers that did not appear in the other 

folders. What is the probability that Marco makes tombola before Luca? 

Conditional problem Suppose the croupier tricks the game before its start, by removing all the 

two-digit numbers starting with the digit 4. Which is now the probability 

of doing ambo in a given folder where one of the removed numbers was 

present? 

Table 1: Examples of assignment, relational and conditional problems 

In order to answer to the research questions, similarities and differences among 

the high-test group and the low-test group of students were examined, in terms of 

solvability, levels of creativity and complexity. Results are reported in Table 2.  

             Number 

of   

              math pr. 

                  Solvability                          Levels of creativity Levels of syntactic 

complexity 

                     solv           non-solv  low med high     

low 

med high 

high-

test 

group 

27 count 

% within 

math pr. 

25 

93 

2 

7 

students’ 

number 

row percentage 

 

1 

10 

 

2 

20 

7 

70 

    2 

    22 

6 

67 

1 

11 

low-

test 

group 

35 count 

% within 

math pr. 

29 

83 

6 

17 

students’ 
number 

row percentage 

 

5 

45 

4 

36 

2 

18 

     3 

     25 

8 

66 

1 

9 

Table 2: Results from the data analysis 
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DISCUSSION AND CONCLUSIONS 

In the present study students were asked to pose at least three problems dealing 

with probability from a given context. The students involved in the study, despite 

the novelty of the task, were able to generate a large number of mathematical 

problems, precisely the 95% of their responses.  

The findings of this exploratory study provide first insights into some aspects of 

the relationships between students’ academic performance and creativity in 

problem-posing, and between students’ academic performance and the quality of 

their posed problems, in terms of solvability and syntactic complexity. To pursue 

this goal, students were divided in two groups respect to the results of an initial 

test: high-test group and low-test group. The majority of mathematical problems 

posed by the two groups was represented by solvable problems (93% and 83% 

respectively, table 2). As a consequence, a good mathematical level in terms of 

test performance should have no direct consequences in terms of solvability of 

the posed problems. However, some differences can be observed concerning 

creativity. The 70% of students in the high-test group showed a high level of 

creativity, and only the 10% a low level of creativity. In the low-test group, 

instead, almost a half of students (45%) had a low level of creativity, and only the 

18% reached a high level of creativity. These findings suggest that students’ who 

are good in solving mathematical tests reaching a high academic performance, 

seem to have a more creative disposition during problem-posing activities. 

Besides creativity, students’ academic performance was compared also with the 

complexity of the posed problems. In this case, differently from the analysis of 

creativity, students’ in the high-test and low-test group showed a comparable 

behaviour. Indeed, students’ distributions respect to their level of complexity in 

the two groups was almost equal: for high-test group the 22% of students had a 

low level, the 67% a medium level and the 11% a high level of complexity; for 

the low-test group the 25% of students had a low level, the 66% a medium level 

and the 9% a high level of complexity. Therefore, answering to the research 

questions, results from this exploratory study suggest that students with a good 

academic performance seem to generate more creative mathematical problems, 

while in terms of the quality (solvability and syntactic complexity) of the posed 

problems no difference is evident between students with a higher or lower 

academic performance. However, due to the small-scale sample, at this stage 

results cannot be generalized. 
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Besides the previous results, the study also offers an approach to problem-posing 

through an analytic scheme that may be used by practitioners or researchers. 

Teachers should use the scheme to evaluate the effectiveness of their problem-

posing-oriented instruction, or to measure students’ progress in the problem-

posing process. Researchers, instead, might see at this scheme as a prototype for 

analysing various aspects of problem-posing, such as creativity and syntactic 

complexity, in different mathematical domains. However, there are limitations to 

the scheme used, and improvements are necessary. Indeed, other measures should 

be assessed, concerning for example the originality (Guilford, 1959) and semantic 

complexity (Silver & Cai, 1996) of the posed problems. Another limit, already 

remarked, consisted in the small sample size. For the future other problem-posing 

activities are requested, in order to support (or not) the findings of this exploratory 

study and increase the power of statistical analysis, combining to the descriptive 

also an inferential analysis. 
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THE IMPORTANCE OF UNDERSTANDING EQUIVALENCE FOR 

DEVELOPING ALGEBRAIC REASONING 

Catherine Pearn1, Max Stephens1, & Robyn Pierce1 
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While many researchers have highlighted the importance of algebraic reasoning 

for middle-years students some have suggested that students should develop 

computational procedures using the algebraic idea of equivalence to integrate 

their learning of whole numbers and fractions. This paper focuses on four tasks 

from a paper and pencil assessment instrument used in a larger study which 

investigated the links between fractional competence and algebraic reasoning. 

The tasks were developed to encourage students to move beyond using the equals 

sign as meaning ‘give an answer’ to a relational understanding of the equals sign 

which focused on the equivalence of the expressions on both sides of the equals 

sign.  

INTRODUCTION 

Many researchers have highlighted the importance of algebraic thinking for 

middle-years students. Kieran (2004) described algebraic thinking as: analysing 

relationships between quantities, noticing structure, studying change, 

generalizing, problem solving, modelling, justifying, proving, and predicting. 

Empson, Levi and Carpenter (2010) suggest that students should develop and use 

computational procedures using relational thinking to integrate their learning of 

whole numbers and fractions. Other researchers have noted that three distinct 

aspects of algebraic thinking include students’ understanding of equivalence, 

transformation using equivalence, and the use of generalisable methods (Jacobs, 

Franke, Carpenter, Levi, and Battey, 2007; Stephens and Ribeiro, 2012). Knuth 

et al. (2008) suggest that: “helping students acquire a view of the equal sign as a 

symbol that represents an equivalence relation between two quantities many, in 

turn, help prepare them for success in algebra (and beyond)” (p.518). 

Jones, Inglis, Gilmore and Evans (2013) highlighted three different conceptions 

of the equals sign: operational, sameness-relational, and substitutive-relational. 

The operational conception of the equals sign is described as the expectation that 

the equals sign indicates that the student needs to ‘give an answer’ (Jones et al., 
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2013, p. 36). The sameness-relational conception of the equals sign involves 

seeing the equals sign as meaning ‘is the same as’ (Jones et al., 2013, p. 34). This 

encourages students to see the sameness of the expressions on both sides of the 

equals sign thus seeing the equivalence when comparing each expression. The 

substitutive-relational conception involves students thinking that the equals sign 

also means ‘can be substituted for’ (Jones et al., 2013, p. 35) and enables students 

to use arithmetic rules, such as commutativity, to change the arithmetic 

expressions on either side of the equals sign but retain the equality. Jones et al 

(2013) suggested that students’ understanding of both the sameness-relational and 

substitutive-relational conceptions of the equals sign are important for algebraic 

thinking. Researchers such as Knuth et al. (2008) believe that students’ 

dependence on the operational conception of the equals sign hinders both 

arithmetic and algebraic calculations.  

THE CURRENT STUDY 

The key question of our current research is to investigate the links between 

fractional competence and algebraic thinking as middle-years students solved 

mathematical tasks using whole numbers, fractions, decimals and pronumerals. 

More than 600 Australian students from Years 5 – 9 (10 – 16 years) completed 

two paper and pencil assessments: The Fraction Screening Test (Pearn, Pierce, & 

Stephens, 2017; Pearn & Stephens, 2018) and the Algebraic Thinking 

Questionnaire (Pearn & Stephens, 2016) and 45 students were interviewed 

(Pearn, Stephens, Zhang & Pierce 2019) using a semi-structured interview. This 

paper focuses on four tasks from The Algebraic Thinking Questionnaire (ATQ). 

DEVELOPING THE ALGEBRAIC THINKING QUESTIONNAIRE 

The ATQ (Pearn & Stephens, 2016) built on research that identified specific 

features of the transition from arithmetic or calculation-based thinking to thinking 

about number sentences as mathematical expressions with algebraic features that 

include: 

● Keeping a number sentence in its uncalculated form and viewing the 

number sentence as a group of numbers in relation to each other 

according to the operations involved (Britt & Irwin, 2011; Jacobs, 

Franke, Carpenter, Levi, & Battey, 2007). 

● Utilising the idea of equivalence to solve missing number sentences 

(Kaput, Carraher, & Blanton, 2008). 
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● Exploring variation, compensation and equivalence, and identifying 

numbers that stay the same and numbers that vary in equivalent 

expressions (Britt & Irwin, 2011). 

● Identifying rules that underlie relationships in equivalent expressions 

and expressing these relationships in the form of a generalisation 

(Stephens & Ribeiro, 2012). 

The purpose of the ATQ tasks was to ensure that students needed to move beyond 

an operational conception of the equals sign in order to successfully solve tasks. 

It was hoped that the tasks would encourage them to use either of the two 

relational conceptions of the equals sign: sameness-relational or the substitutive-

relational which Jones and colleagues (2013) indicated were important for 

algebraic reasoning. 

The ATQ has two distinct parts that include whole numbers, fractions, decimals 

and pronumerals. Part M focuses on multiplication and Part D focuses on 

division. Each part is divided into two sections: Question 1 and Question 2. 

Question 1 has one box for an unknown response while Question 2 includes two 

boxes for two unknown responses.  

Figure 1 shows the first of four tasks of Question 1 for multiplication (Task M1a) 

and division (Task D1a). Later Question 1 tasks include decimals and fractions. 

For each of the following number sentences, write a number in the box to make a true 

statement. Explain your working briefly. 

  

  

Figure 1: Examples of whole number tasks from Question 1, Parts M and D 

Figure 2 shows the first of five tasks for Question 2 for multiplication (Task M2a) 

and division (Task D2a). Question 2 tasks were designed to focus students’ 

attention on the relational features of equivalence while a follow up question 

requires them to describe that relationship: “When you make a correct sentence, 

what is the relationship between the numbers in Box A and Box B?” Later tasks 

in Question 2 expected students to apply the same thinking to similar questions 

for pronumerals and fractions. 
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In each of the sentences below, can you put numbers in Box A and Box B to make each 

sentence correct? 

  

  

Figure 2: Examples of initial tasks from Question 2, Parts M and D (ATQ) 

To be successful with Question 1 and Question 2 tasks students would need to 

use the sameness-relational or substitutive-relational understanding of the equals 

sign. 

RESULTS AND DISCUSSION 

Question 1 (ATQ): Equations with One Unknown 

Multiplication Task (M1a): Students used a variety of strategies to successfully 

complete Task M1a (left-hand side of Figure 1). Student A (left-hand column of 

Figure 3) used arithmetical calculations that demonstrate the sameness-relational 

understanding of the equals sign and ensured that the expressions on both sides 

of the equal sign were equivalent. This student calculated the left-hand side of the 

expression as 900 and then determined that the missing number in the expression 

on the right-hand side was 100. Student B (right-hand column of Figure 3) used 

relational thinking that demonstrate the substitutive-relational understanding of 

the equals sign. This student recognised that 36 divided by four is nine and that, 

in order to maintain the equality of the two expressions, multiplied 25 by four to 

get 100. 

  

  

Figure 3: Students’ responses to Task M1a  

Students who successfully solved Task M1a (left-hand side of Figure 1) used 

either a sameness- or substitutive-relational approach. Column T (Table 1) shows 

the results for Task M1a while Column E shows the results for the explanation 

for Task M1a. Fifty-six percent of all students gave a correct response for Task 

M1a. There was an increase in the successful responses from 45% at Year 5 to 
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63% at Year 6. Fewer Year 8 students were successful than those at Year 6, with 

55% at Year 8, while 87% Year 9 students correctly answered Task M1a (Column 

T).  

While 56% of all students gave a correct response for Task M1a only 45% 

explained their solution (Column E). Forty-one percent of all students used 

arithmetical calculations while 4% used relational thinking. Of the Year 5 

students who gave a correct response 94% used arithmetical calculations and 6% 

used relational thinking similar to that shown in Figure 3. Ninety-six percent of 

successful Year 6 students used arithmetical calculations and 4% used relational 

thinking while 82% of Year 8 students used arithmetical calculations and 18% 

used relational thinking to successfully respond to Task M1a. Six of the 13 

successful Year 9 students used arithmetical calculations and seven (54%) used 

relational thinking. 

Responses 
Year 5 

(n = 195) 

Year 6 

(n = 175) 

Year 8 

(n = 122) 

Year 9* 

(n = 15) 

 T E T E T E T E 

Not attempted 18 41 11 33 7 23 0 0 

Incorrect 37 25 26 17 38 32 13 13 

Correct 45 35 63 50 55 45 87 87 

  

Table 1: Percentage of responses and explanations by year level for Task M1a 

(ATQ) 

Many students gave a correct response to Task M1a but did not show their 

solution method, so it was not possible to determine whether they used 

arithmetical calculation or relational thinking. 

Division Task D1a: Some students used their knowledge of equivalent fractions 

to respond to Task D1a (right-hand side of Figure 1). Student C (left-hand column 

of Figure 4) used equivalent fractions and then simplified the answer to check his 

response. Student D used relational thinking and indicates the relationship 

between the numbers on either side of the equals sign using arrows.  
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Figure 4: Two students’ correct responses for Task D1a 

As shown in Row 3 (Table 2) there was an increase in the percentage of successful 

responses from 20% at Year 5, 35% at Year 6, 69% at Year 8, while 100% Year 

9 students correctly answered Task D1a (Column T).  

Responses  Year 5 

(n = 195) 

Year 6 

(n = 175) 

Year 8 

(n = 122) 

Year 9* 

(n = 15) 

 T E T E T E T E 

Not attempted 41 84 29 73 16 48 0 20 

Incorrect 39 7 36 7 16 7 0 0 

Correct 20 9 35 20 69 45 100 80 

Table 2: Percentage of responses and explanations by year level for Task D1a 

(ATQ) 

Table 2 shows the percentage of students who explained or presented the method 

they used to solve Task D1a (Column E). Many students did not show their 

solution method, so it was not possible to determine whether they used an 

arithmetical calculation or relational thinking. Nearly 40% of all students 

successfully explained their responses for Task D1a. Three percent of all students 

successfully used an arithmetical calculation including 4% of primary students 

(Years 5 and 6) and 2% of Year 8 students. Five percent of successful Year 5 

students, 16% Year 6, 43% Year 8 and 80% of Year 9 students used relational 

thinking to explain their solution for Task D1a. 

While the primary students were less successful solving the division task (Task 

D1a) than the multiplication task (Task M1a) the secondary students were more 

successful with the division task (Task D1a) than the multiplication task (M1a). 
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Question 2 (ATQ): Equations with Two Unknowns 

Some students started by substituting numbers in the two empty boxes and 

checked if both sides were equal as for the sameness-relational conception of the 

equals sign. However, in the following question students needed to reason that, 

whatever numbers were substituted for Box A and Box B, the relationship 

between the numbers was the same. While this may not be quite the same as 

substitutive-conception of the equals sign, used by Jones et al. (2013), there is a 

clear sense that students need to realise that whatever numbers are used the 

relationship between the numbers in Box A and Box B must remain the same. 

Multiplication Task M2a: Figure 5 shows two students’ correct responses for 

Task M2a (left-hand side of Figure 2). It is difficult to determine how Student F 

solved Task M2a (left-hand side of Figure 5) as there was no working shown, but 

Student G (right-hand side of Figure 5) has used arrows to demonstrate the 

relational thinking.  

  

Figure 5: Two correct responses for Task M2a (ATQ) 

Table 3 shows the results in percentages for the students by year level. Column 

M shows the results for Task M2a while Column D shows the results for Task 

D2a. Overall, 64% of students gave two correct pairs and another 16% gave one 

correct pair for Task M2a. As shown in Row 4 (Table 3) 54% Year 5, 67% Year 

6, 73% Year 8 and 93% Year 9 students gave two correct pairs for Task M2a. 

Another 19% Year 5, 10% Year 6, 13% Year 8 and 7% Year 9 students correctly 

gave one pair of numbers. 

Altogether 39% of all students explained the relationship between the two 

numbers in Task M2a. Thirty-two percent of Year 5, 36% Year 6, 55% Year 8 

and 93% Year 9 students were able to explain the relationship between the pairs 

of numbers using a similar response to that of Student G: "Box A is two times as 

much as Box B".  
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Responses 
Year 5 

(n = 195) 

Year 6 

(n = 175) 

Year 8 

(n = 122) 

Year 9* 

(n = 15) 

 M D M D M D M D 

Not attempted 19 46 9 33 6 43 0 0 

Incorrect 8 31 9 31 8 19 0 0 

One correct response 19 11 16 11 13 7 7 0 

Two correct responses 54 13 67 25 73 32 93 100 

Table 3: Percentage of responses by year level for Task M2a and Task D2a (ATQ)  

Division Task D2a: Overall 26% of students gave two correct responses for Task 

D2a similar to Student H's response (left-hand side of Figure 6), an additional 

10% gave one correct response, while 27% gave no written response. However, 

some students used an incorrect inverse relationship as shown in the right-hand 

column of Figure 6. 

As shown in Row 4 (Table 3) 13% Year 5, 25% Year 6, 32% Year 8 and all Year 

9 students correctly wrote two appropriate pairs of numbers for Task D2a. An 

additional 11% of Year 5 and Year 6, and 7% of Year 8 students correctly gave 

one pair of numbers. However only 9% Year 5, 19% Year 6, 25% Year 8 and 

93% Year 9 students stated the correct relationship symbolically or verbally using 

multiplication e.g. Box B is five times Box A or division e.g. Box A is one-fifth 

of Box B or Box A equals Box B divided by five. 

  

Figure 6: Two responses for Task D2a (ATQ) 

The primary and Year 8 students were more successful with the multiplication 

task with two unknowns (Task M2a) than the division task (Task D2a). All Year 

9 students gave a correct response for the division task (Task D2a) while one 

student gave an incorrect response for the multiplication task (Task M2a). 

CONCLUSION 

Many students found the ATQ tasks difficult with a large number of no attempts. 

While some students relied heavily on arithmetical or computational methods 

some began to use equivalence-based relational thinking as evidenced by the use 



Pearn, Stephens & Pierce 

PME 44 – 2021   3 - 469 

of arrows in their responses. Question 1 and Question 2 tasks using division 

appeared to be considerably more difficult for primary students as the percentage 

of “no attempts” and incorrect responses increased. The percentage of correct 

responses for Task D2a are much lower for Year 5, Year 6 and Year 8 than the 

results for Task M2a. Year 8 and 9 students correctly solved more Question 1 

division tasks than multiplication tasks. 

The four whole number tasks described in this paper permitted students to use a 

sameness-relational or substitutive-relational understanding of the equals sign 

which focused on the equivalence of the expressions on both sides of the equals 

sign. The operational understanding of the equals sign was not appropriate for 

these tasks. While only four tasks were described in this paper the results are 

similar for subsequent tasks involving fractions and pronumerals (Pearn & 

Stephens, 2016).  

In answering our key research question, many students in the middle years are 

not confident using equivalence based algebraic thinking for either multiplication 

or division tasks. In order to develop algebraic reasoning, teachers will need to 

determine the types of strategies their students are using to solve mathematical 

tasks, and then develop tasks that will encourage their students to demonstrate 

their understanding of the equals sign and equivalence which will enable them to 

use generalisable methods. 
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Facilitators play a crucial role when scaling up continuous professional 

development (CPD). They have to design and conduct programs to initiate the 

process of teachers` professionalization. This requires competencies about adult 

learning and the specific knowledge and needs of mathematics’ teachers, which 

are much broader than teachers’ competencies. The aim of the study was to 

specify facilitators’ competencies in a framework mainly for the design and use 

in the context of qualification. Following a Delphi method in the context of the 

German Center for Mathematics Teacher Education (DZLM) network, experts 

(researchers, facilitators, stakeholders) were interviewed in several development 

cycles. This resulted in a competency framework for facilitators who train 

mathematics teachers in teaching and learning. 

INTRODUCTION 

There is a great diversity of terms used in literature to describe the profession of 

the group of people who are initiating and leading processes to professionalize 

teachers, e.g. facilitators, teacher trainers, multipliers, coaches or teacher 

educators. We prefer the term facilitator to emphasize the cooperation aspect of 

learning, it being rather a give-and-take than a one-sided teacher-pupil 

relationship. When it comes to the breadth of terminology or the lack of clarity in 

the qualification or task description of the facilitators (Thomas, 2004), it is clear 

that their competencies are also not directly identified.  

Kunina-Habenicht and colleagues (2012) highlighted the necessity of a 

competency framework instead of just formulating a curriculum on the level of 

teachers’ professionalization. They regard the concretization of competencies as 

an important step to develop adequate quality standards in the field. This is 

relevant on the facilitators’ level, as well, especially when regarding that many 

facilitators were trained primarily as teachers, and often act "self-made" in their 

new profession as facilitators (Zaslavsky, 2008, p. 93). Usually, there are no 
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uniform career paths or qualification programs for these persons. Coming up with 

a clear competency framework emphasizes the importance of a specific 

qualification for facilitators.  

There is a research gap about what facilitators need to know and how to act to be 

able to adequately support teachers (Sztajn, 2011). It is, therefore, the goal of this 

study to develop a competency framework for facilitators in mathematics 

education and thus to use it in the context of qualification within the DZLM. In 

order to follow the aim of reaching to competencies of facilitators in mathematics 

education, the perspective of general adult education and of mathematics-focused 

facilitations were taken into account. 

THEORETICAL BACKGROUND 

Teacher competencies in Mathematics Education 

At the level of teachers, research on professionalisation has already resulted in 

differentiated frameworks, which in particular also include mathematic-specific 

aspects (Ball et al., 2008; Baumert & Kunter, 2013). Baumert and Kunter (2013) 

are often cited in this context and provide a summary of the existing literature, 

which relates to teacher competencies in mathematics education. The aim of this 

overview was to organize the different approaches to the CPD of teachers, which 

brings together, integrates and empirically tests knowledge from different 

research areas. It is relevant to include the facilitators’ perception on teachers’ 

competencies, their beliefs on mathematics, teaching of mathematics (Grigutsch 

et al., 1998) and their self-awareness (Hattie, 2009; Thurm, 2019). For 

professional knowledge, Shulman’s (1987) proposal has largely prevailed – 

content knowledge (CK), pedagogical content knowledge (PCK) and pedagogical 

knowledge (PK). At the level of teacher competencies, the professional 

knowledge was supplemented by organizational knowledge (e.g. school 

organization, school quality, according to Fried, 2002) and the advisory 

knowledge on which professionals in communication with laypersons are 

dependent (Bromme & Rambow, 2001). These two knowledge areas are rather 

largely content-independent. 

Facilitators in General Adult Education 

One can also find numerous competency frameworks in general adult education, 

which usually refer to company structures and therefore define “competencies” 

as authority, rights and duties, also as the ability to cope with complex 

requirements in certain situations (see Weinert, 2001). An overarching 



Peters-Dasdemir, Holzäpfel, Barzel & Leuders 

PME 44 – 2021   3 - 473 

framework covering the competencies of teachers and facilitators in general adult 

education has been developed within the framework "Basics for the Development 

of a Cross-Provider Recognition Procedure for the Competences of Teachers in 

Adult and Continuing Education" (germ. abbrev. GRETA; Lencer & Strauch, 

2016). The GRETA framework has been developed on the basis of a literature 

review and by conducting a Delphi method (ibid.). The Delphi method is a multi-

level qualitative survey procedure aiming to combine the knowledge of several 

experts in order to arrive at a forecast for the future. It takes the competency 

framework of Baumert and Kunter (2013) into account and includes all areas of 

adult education. In addition to the close cooperation between science and practice, 

this framework offers orientation for the first time on competency requirements 

for adult and continuing education. Next to professional values and beliefs and 

professional self-monitoring, professional knowledge is specifically divided into 

didactic and methodological areas that take adult learning into account. 

Facilitators in Mathematics Education 

Usually, the typical requirements that facilitators have to accomplish, are 

described in a non-specialized way. In the literature, there are already a number 

of approaches to systematize the competencies for facilitators. Smith (2005, p. 

182-183) mentions a number of relevant aspects for qualified facilitators in any 

subject: They should be self-confident, reflective on their actions and they should 

have comprehensive, in-depth knowledge based on theory and practice. 

Facilitators could benefit from being involved in curriculum development and in 

research, and at least they should be good teachers with experiences teaching 

different age groups. In addition to a comprehensive understanding of the 

educational system, a high degree of professional maturity would be useful. 

Zaslavsky (2008, p. 95), who focussed on facilitators in mathematics, adds further 

aspects such as adaptivity and conscious selection of methods and media.  

For the CK-elements that facilitators should have at their disposal, different 

emphasis is placed in various studies, even though they all accentuate that the 

knowledge required from facilitators must go beyond the knowledge of teachers, 

since they must impart new knowledge in a similar way as teachers do to their 

students (Borko et al. 2014, p. 165). This becomes vivid by looking at the "three-

tetrahedron model (3TM) of professionalization research" for the content-related 

PD research, where the individual levels are described and related to one another 

(see in more detail Prediger, Leuders & Roesken-Winter, 2019). A first bundling 

of the mathematical specific competencies for facilitators is developed by Borko 
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and colleagues (2014). With their competency framework, they refer to the work 

of Ball and colleagues (2008) but they make explicit that there is a specific math 

related knowledge needed to cover PCK with teachers as learners and they call it 

"Mathematical Knowledge for Professional Development (MKPD)". 

Going beyond the classroom-level, expanded knowledge refers not only to the 

new knowledge of mathematical content and the relevant didactic aspects aimed 

at continuing education, but also to the didactic knowledge of adult education. 

This includes, for example, knowledge about mentoring, about existing teacher 

practices (Even, 2008) or current views on teacher education (Borko et al., 2014). 

Cochran-Smith and Lytle (1999) also stress the knowing about conceptions of 

teacher learning as a relevant aspect for facilitators. The following practices must 

be taken into consideration when designing a PD module: practical knowledge 

generated in the teacher's professional action ("knowledge-in-practice"), 

theoretical knowledge delivered to the teacher from outside ("knowledge-for-

practice") and theoretical knowledge generated by the teacher's own reflection on 

professional actions ("knowledge-of-practice").  

Even though facilitators should have a more extensive knowledge than teachers, 

it should be emphasized that there are also knowledge elements that are relevant 

for teachers, but not for facilitators (Beswick & Chapman, 2015). These include, 

for example, detailed background knowledge about individual students. For 

facilitators, only general knowledge of educational standards and curricula is 

important, as well as relevant empirical findings (ibid.). 

RESEARCH QUESTIONS 

Taking into account the research gap concerning a comprehensive competency 

framework for facilitators in mathematics education, the following research 

questions arise:  

(1) Which competencies are relevant for facilitators with a focus on 

mathematics teacher professionalization?  

(2) How can these competencies be structured and categorized to give a good 

orientation for the design and research of qualification programs? 

METHODOLOGY  

Based on the findings of the literature we conducted a research process following 

the Delphi method (Linestone & Turoff, 2011). We involved 33 researchers, 28 

key stakeholders and teachers with experience in CPD and realized three cycles 

of further development. All researchers involved are experts in the field of CPD 
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in mathematics education for primary and secondary level and were asked to use 

this expertise to point out key competencies of facilitators. The teachers’ and the 

stakeholders’ perception was important to gasp the systemic processes and 

necessities by reflecting their practical experiences in the field.  

Different instruments were used to collect the ideas and experiences – a 

questionnaire and individual written statements and discussions in small groups 

(recorded). Due to the fact that the discussions were not anonymous, but were 

still supported by anonymous surveys, one could rather speak of a quasi-Delphi 

method. Nevertheless, several cycles have been carried out in the frame of 

networking conferences, which were documented and evaluated. The aim of a 

Delphi method is not necessarily to reach consensus, but rather, in a first step in 

particular, to identify the breadth of the field so that all relevant aspects can be 

covered.  

The three examination surveys were carried out as follows: 

Survey 1: 

The first development step was carried out by a team of DZLM researchers, which 

consisted of 4 persons - the authors of this paper. The literature was reviewed, 

and discussions were held within this team with the aim to come up with a first 

framework combining the essential competencies from adult education and from 

the perspective of mathematics education. The GRETA competency framework 

(Lencer & Strauch, 2016) was considered as a good structure to categorize the 

broad range of diverse competencies of facilitators: Professional Values and 

Beliefs, Professional Self-Monitoring, Competency on the Professional 

Development Level, Competency on the Classroom Level. In addition, the 

substructuring in aspects and facets was also picked up from the GRETA 

framework and adapted to mathematics education. This first framework was 

presented to 20 DZLM researchers  and reflections in group work were initiated. 

This phase was characterized by the discussion of the topic and the central 

questions "What is missing? What can be omitted?".  

Survey 2: 

The results from the first survey of the Delphi method and the further adaptation 

were again presented to the DZLM network with 26 experts. This discussion was 

followed by an online questionnaire, which was made accessible to 33 DZLM 

experts. With a response rate of 34%, this can be assumed to be very satisfactory.   
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After the results had been incorporated, it was established that there were no more 

significant differences of opinions, so that a new round in the DZLM network 

was no longer necessary. 

Survey 3: 

The results of survey 2 were presented to 11 further researchers and 28 

stakeholders. The stakeholders come from 12 different federal states and are in 

their region responsible for the qualification of facilitators in mathematics 

education. This whole sample included representatives from various universities, 

(pedagogical) state institutes, ministries of education, schools and special 

authorities for teacher training. 

This third survey was conducted in two steps. In a first round, everyone wrote 

down a personal statement to the framework in general. These statements were 

discussed in small groups resulting in written group statement. All these written 

statements were analysed and included in the further development of the 

framework.  

In a second round we focussed on the usability of the framework. For this the 

stakeholders reflected the framework by applying it to a specific PD-topic from 

their experiences. They were asked to think of whether the single competencies 

have been addressed and how and if they could structure all the competencies 

according to their importance.   

 

Figure 1: Competency framework for facilitators in mathematics education 
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Based on these findings and exchange processes in the DZLM, a final 

competency framework for facilitators in mathematics education has now 

emerged (Figure 1). 

RESULTS 

All the steps of the Delphi method were characterized by strong discussions 

resulting in important points for the further development of the framework. To 

give an exemplarily insight into the whole process and the emerged framework 

we highlight the most important aspects, which easily converged or led to strong 

debates.  

The key issue through all surveys was the question to figure out differences and 

similarities between the teachers’ competencies on classroom level and the 

facilitators’ competencies on PD-level. What can be lifted from classroom- to 

PD-level and what is new on PD-level? These were the questions, which emerged 

at different steps in the process and led to the specification in the two areas about 

competencies on the classroom and on the PD-level. It was an intensive debate, 

whether these two areas are separated as equal areas or if knowledge on classroom 

level is an integral part of knowledge on PD-level. The final agreement was that 

content knowledge on PD-level (CK-PD) covers all aspects of teachers’ 

knowledge. Lifting the well-established specification CK, PK and PCK from 

classroom- to PD-level, you must specify PK-PD and PCK-PD for facilitators 

(Wilhelm et al. 2019). Both take into account the specific orientation on teachers 

as learners, either from a general view on adult education (PK-PD) or as PCK-

PD in a subject-related way (Prediger, 2019). PCK-PD covers all “the abilities to 

engage teachers in purposeful activities and conversations about those 

mathematical concepts, relationships and to help teachers gain a better 

understanding of how students are likely to approach related tasks” (Jacobs et al., 

2017, p. 3). It also includes learning hurdles when teaching mathematics (Rösken-

Winter et al., 2015). 

The clear structure of the framework in key competency areas was appreciated 

from the beginning. The four areas (Competencies on PD Level, Competencies 

on Classroom Level, Professional Values and Beliefs, Professional Self-

Monitoring) were changed to five by supplementing “Professional Social 

Competencies”. The reason was to point out that “Communication and 

Cooperation” has to be considered on all levels and is relevant between all players 

(teachers, facilitators, stakeholders).  
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The segments “Professional Values and Beliefs” and “Professional Self-

Monitoring” have been restructured. Above all, the dual role and one's own 

understanding of their role as a facilitator also had an increase influence. 

Therefore, the facet “Role Identity” was included alongside professional beliefs 

and ethics. The concept of motivational orientation has been replaced by self-

efficacy beliefs, as this is the more relevant aspect in the field of PD (Bandura, 

1999; Thurm & Barzel, 2020). For stakeholders it was important to include 

“Professional Experiences” explicitly to foster appreciation for teaching practice.   

What became apparent, however, was that the developed framework did not 

directly cover the systemic dimension such as school development processes, 

which are rather in the background, behind the aspects. Nevertheless, on the basis 

of the evaluation of the documents, the participants found the idea, that 

embedding the systemic dimension has to be always taken into consideration, 

sufficient. 

CONCLUSIONS 

The development process of this competency framework showed the importance 

of involving the different players who are responsible for scaling up CPD-process 

in mathematics education. The Delphi method was highly relevant to reach a 

consensus in structure, the detailed competencies and in terminologies. This 

offers a sound basis when designing cooperatively processes in scaling up in 

CPD.  
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REASONING IN EARLY CHILDHOOD EDUCATION:                

A CASE STUDY  
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We report a case study intervention pilot-testing a program of activities aiming 

at enhancing pre-primary children’s multiplicative reasoning competences. The 

program treated discrete and continuous quantities in a unified manner; provided 

learning experiences pertaining to three fundamental multiplicative operations, 

namely iteration of a quantity, equi-partitioning, and counting with composite 

units / measuring with fractional units; and introduced terms for multiples and 

submultiples. Four pre-primary children participated in an intense 4-day 

intervention. The program of activities was well within their range of abilities 

and enhanced their competences in terms of their ability to discern and express 

verbally multiplicative relations; and to tackle multiplicative situations and 

explain their strategies.  

THEORETICAL FRAMEWORK 

Research-based evidence indicates that young children perceive, at a rudimentary 

level, multiplicative/proportional relations (Mix, Huttenlocher, & Levine, 2002), 

and are able to tackle simple multiplicative situations between discrete as well as 

continuous quantities (e.g., Hunting & Davis, 1991; Kornillaki & Nunes, 2005). 

For example, 4-5 year-olds identify pictures of imaginary creatures that are 

magnified proportionally among others that are not (Sophian, 2000). Provided 

that a sufficient number of area models of a part-whole relation are presented, 6-

year-olds can select a model that represents the same relation albeit via different 

shapes with respect to kind or size (Goswami, 1989). Children who have not been 

taught multiplication or division (6-7 years of age) can recognize simple 

multiplicative transformations of discrete and continuous quantities and predict 

the effect of the transformation on a different quantity (McCrink & Spelke, 2016). 

Five to seven-year-olds deduce the principle “more recipients, smaller share” that 

underlies fair-sharing situations (Kornillaki & Nunes, 2005), for discrete as well 

as continuous quantities. As could be expected, these early competences manifest 
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themselves in a limited range of contexts and conditions. In addition, there are 

inter-individual differences with respect to these competences. It is nevertheless 

important to note that early multiplicative reasoning is enhanced when children 

are exposed to relevant informal or formal learning experiences (Hunting & 

Davis, 1991; Van den Heuvel-Panhuizen, & Elia, 2020). 

Early education has not capitalized yet on such evidence. For example, an 

analysis of the latest Greek early mathematics curriculum (K-2) showed that 

learning objectives pertaining to additive reasoning precede and are far more than 

the ones for multiplicative reasoning, for discrete as well as continuous quantities 

(Vamvakoussi & Kaldrimidou, 2018). In the Kindergarten curriculum, in 

particular, all learning objectives for multiplicative reasoning are limited to 

discrete quantities; no linguistic or other tools for expressing multiplicative 

relations are mentioned, not even the word “half”. Nevertheless, children are 

intended to familiarize themselves with multiplicative situations pertaining to 

multiplication, partition, and quotition that call for three fundamental 

multiplicative operations, namely iteration of a quantity, equi-partitioning, and 

counting with composite units. These operations are applicable also for 

continuous quantities, if “counting with composite units” is replaced by 

“measuring with fractional units”. This fact is not exploited in instruction.  

These limitations in the Greek kindergarten early math curriculum indicate that 

early multiplicative reasoning competences are not adequately supported in early 

instruction, especially in the context of continuous quantity. The lack of terms for 

multiplicative relations is also important, given that linguistic tools are 

indispensable for prompting children to attend to the relations embedded in 

multiplicative situations and recognize the same relation in different contexts 

(Hunting & Davis, 1991). Indeed, vocabulary pertaining to multiplicative 

relations in the first grade has been found to uniquely predict proportional 

reasoning abilities in the second grade (Vanluydt, Supply, Verschaffel, & Van 

Dooren, 2021). 

It could be argued, however, that introducing terms for multiples and 

submultiples in the first years of instruction as well as extending the 

multiplicative situations that children are intended to explore to continuous 

quantities as well, might be beyond the range of abilities of young children.  

We designed an program of activities addressing discrete and continuous 

quantities in a unified manner (see Steffe, 1991, for a relevant recommendation); 

providing learning experiences pertaining to all three aforementioned operations; 
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and introducing terms for multiples and submultiples. To the best of our 

knowledge, there is no similar intervention reported in the literature targeting 

young children. We report results from a case study intervention investigating 

whether this program a) was within the range of abilities of pre-primary children, 

b) would enhance children’s multiplicative reasoning competences, in terms of 

their ability to discern and express verbally multiplicative relations; and to tackle 

multiplicative situations and explain their strategies. 

METHOD 

The present study is a quasi-experimental case study. (Pre- test/ Intervention/ 

Post-test without a control group).  

Participants 

The participants were 4 children (mean age 5 years 7 months, one girl) who had 

just graduated from kindergarten and were familiar with fair-sharing situations 

involving discrete quantities (two recipients, no remainder). 

Experimental tasks  

Pre- and Post-test were conducted via individual interviews. Three tasks were 

used (A, B, C, 4 trials each) targeting the relations 1:2 and 2:1 for discrete and 

continuous quantities (represented by concrete materials). Task A was an 

analogical task where the intended relation (X/Y) was exemplified, with the 

information that “X matches Y”. The children were asked to find the quantity Z 

matching a new quantity W. Task B was framed as a fair-sharing problem. The 

children were given the initial quantity and asked to find the share (1:2); and vice 

versa (2:1). In task C children were explicitly asked to find “half” and “double” 

of given quantities, and to explain what the terms “half” and “double” mean. 

Overall, there were 3 trials for 1:2 for discrete quantities, 3 trials for 1:2 for 

continuous quantities; and similarly for 2:1.  

An additional task (D), similar to C, albeit for 1:3/ 3:1 was added in the post-test. 

The children were given 5 alternatives for each trial and were asked to explain 

their answers.    

Procedure 

The children participated in the intervention as a group, during four consequent 

days (one session per day, about 45΄ each). The pre- and post-test took place one 

day before and two days after the intervention, respectively. Children and their 
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parents consented to participate in the study. Τhe intervention was carried out by 

the first author of this paper, a qualified kindergarten teacher.  

The intervention  

We designed two types of activities. Both types addressed discrete and 

continuous quantities represented by concrete materials; were embedded in story-

based scenarios; and required iteration of a quantity, equi-partitioning, and 

measuring with different units (composite units for discrete quantity, fractional 

units for continuous quantity). The first type of activity was based on simple and 

proportional sharing. The children worked with 24 such multiplicative situations 

during the first two days. According to the scenario, the children were asked to 

help imaginary creatures (represented by rectangular bars of cardboard with equal 

width, but different length) to share candies (discrete) or chocolate bars 

(continuous) proportionally to their length. The relations between the lengths 

were 1:1 (fair-sharing), 1:2, and 1:3 (proportional sharing). Depending on what 

was asked (number of recipients, quota, or the shared quantity), different 

operations were required.  

The second type of activities addressed multiplicative change situations. We 

employed “fractions machines” (Hunting & Davis, 1991), producing multiples of 

given quantities from one side (2, 3, 4), and the corresponding submultiples (1/2, 

1/3, 1/4) from the other. The children worked with 23 such problems during the 

last two days.  

During the intervention, the researcher modeled the operations and introduced the 

new terms. The terms for multiples (double, triple, quadruple) were introduced in 

the context of iteration of a quantity. The children were familiar with the term 

“half” in fair-sharing situations (equi-partitioning), so the same context was used 

for the introduction of other terms for submultiples (one third, one fourth). 

Because equi-partitioning continuous quantities, in particular in three parts, was 

challenging for the children, fractional pieces of the quantities were available for 

them to choose from and examine how many times they fit in the given quantities. 

Thus, the children had to estimate the magnitude of the part first, and then to 

verify their estimate by measuring the quantity with its part.  

RESULTS  

Children’s response to the intervention  

The intervention tasks were challenging for the children. Indeed, most of the 

tasks were unfamiliar to them, in particular the tasks pertaining to multiplicative 
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change, which was a novel multiplicative situation for them. The children 

collectively came up with effective strategies for some of the unfamiliar 

situations (e.g., dealing for fair-sharing to more than two recipients, folding for 

equi-partitioning a continuous quantity in two parts). More importantly, they 

appeared capable of adopting and using the intended strategies and vocabulary 

introduced by the researcher; and to transfer them to the novel situation of 

multiplicative change. To illustrate this point, we present two episodes that 

occurred οn the fourth day of the intervention. In the first episode, the 

researcher presents for the first time the children with the 1:3/3:1 “fraction 

machine” for discrete quantities. The capital letters in the brackets refer to 

Figure 1, illustrating the use of materials by the researcher and the children. 

Researcher:  This machine works with candies. If I put this candy in here, it will 

produce three candies out of its big side [illustrates with the materials, 

A] 

Child 1:  Triple. And if you put two candies in, it will make them six [mentally].  

Researcher:  How do you know this? 

Child 1: Because it will repeat three two times [illustrates with the materials, B] 

Child 4: No, it will repeat two three times. Because there are two candies 

[illustrates with the materials, C]   

 

Figure 1: Introducing the 1:3/3:1 “fraction machine” (discrete quantity, 

multiple) 

Child 1 discerned and verbalized the intended relation already with the first 

example (Figure 1, B), and offered an additional example. His answer, although 

numerically correct, did not model accurately the given situation. Child 1 

presumably relied on one-to-many correspondence (one candy -> three candies, 
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one + one candies -> three + three candies), a strategy that was not presented in 

the intervention. Child 4 recognized and corrected the “misstep” using the 

intended strategy (Figure 1, C). 

In the second episode, the researcher had already introduced the 1:3/3:1 

“fraction machine” for continuous quantities and the children had worked with 

tasks regarding the increase of the length of stick candies by a factor of 3. The 

researcher then asked about the inverse process:  

Researcher:  Now let’s see what happens if I put this stick candy into the big side of 

the machine. What do you think will come out from the small side?   

Child 3:  It will share it [sic].  

Child 1: Yes, three times [sic] 

Child 2: Where are the little pieces? [tries with two smaller stick candies (1/2, 

1/3) checking whether they fit three times into the given one]. 

As this excerpt indicates, the children were able to anticipate what the machine 

would do, and also to use the intended strategy in order to find the outcome. 

However, none of them used the term “one third”. More generally, regarding 

submultiples, the children used spontaneously only the word “half” during the 

intervention. On the contrary, they adopted and used the terms for multiples (e.g., 

Child 1 in the first episode), and also attempted to generalize them. For example, 

Child 3 invented a word similar to “sixtuple” to refer to “the one that makes 

everything six times bigger”.  

Quantity, 

Relation 

Pre-test Post-test 

Ch1 Ch2 Ch3 Ch4 Total Ch1 Ch2 Ch3 Ch4 Total 

D, 1:2 (n=3) 1 3 1 1 6 2 2 2 3 9 

D, 2:1 (n=3) 0 0 1 0 1 2 2 2 3 9 

C, 1:2 (n=3) 0 1 2 1 4 1 2 1 3 7 

C, 2:1 (n=3) 2 0 1 1 4 3 3 3 3 12 

Total 3 4 5 3 15 8 9 8 12 37 

D, 1:3 (n=2) - - - - - 1 0 1 0 2 

C, 3:1 (n=2) - - - - - 0 1 0 1 2 

Table 1: Total of correct responses per type of quantity, per relation, and per 

child in the pre- and post-test. 



Pitta, Kaldrimidou & Vamvakoussi 

PME 44 – 2021   3 - 487 

Performance  

Children’s correct and incorrect responses in the pre- and post-test were scored 

by 1 and 0, respectively. Table 1 presents the frequencies of correct responses in 

the trials corresponding to each relation (1:2, 2:1) across the tasks A, B, C, for 

discrete (D) and continuous (C) quantities. For the common part of the pre- and 

the post-test, this results in three responses per relation and per type of quantity; 

and similarly to two responses in the additional task (Dask D) of the post-test.  

Table 1 shows that there was a considerable increase in correct responses after 

the intervention, at group as well as at individual level. For the common part of 

the pre- and post-test, the percentage of correct answers in the total of trials 

involving discrete quantities has increased from 29,2% to 75%; and the 

percentage of correct responses in the trials involving continuous quantities has 

increased from 33,3% to 79,2%. In Task D, each child responded correctly to one 

out of four trials. 

Explanations 

Children explanations during pre and post- test can be roughly categorized in two 

different types. The first type (Non-valid explanations) includes null explanations 

(e.g., “I don’t know” or “I saw it”); pseudo-explanations that were relevant to the 

general context but not to its quantitative aspects (e.g., “Because he wants to eat 

chocolate after dinner”); and inadequate quantitative explanations, typically 

based on absolute quantity, rather than on quantitative relations (e.g., “because 

it’s small”, “because there are three”).    

The second type of explanations (Valid explanations) includes the cases where 

children expressed verbally and/or non-verbally (e.g., with gestures) a valid 

strategy that they used to make or verify their choice. We also included in this 

category explanations indicating that the children employed the principles 

underlying the situation at hand. In the following excerpts we present three 

examples of valid explanations, two in the context of continuous quantity, and 

one in the context of discrete quantity.  

In the first example, Child 3 explained how he found half of a “chocolate bar”: 

Child 3: We cut in the middle and we got one half [passes his hand over the 

“chocolate bar]. And the other piece that remains is also half. It is the same 

as this one [points to the correct alternative]. Here, look! [picks up the 

correct part and shows it fits two times into the “chocolate bar].   
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In the second example, Child 2 was presented with a “chocolate bar” and was 

asked to find the one that was double (in length) than the given. 

Child 2:  Which chocolate bar should I choose for this small one? I know! That 

one! [points to the correct alternative] 

Researcher:  Why do you think it’s this one?    

Child 2:  Because if you try to fill the big chocolate bar, you have to have two like 

the small one [mentally].  

In the third example, Child 4 was told that the researcher gave some candies to 

“Helen and her little sister” and that the two girls shared the candies fairly. Then 

he was presented with the two candies that Helen took.   

Researcher: Look, Helen took two.  

Child 4:  And her little sister another two [mentally].  

Researcher: And how many candies did I have in the beginning? 

Child 4: Four. And then they became two for each girl. 

In this excerpt, Child 4 showed a quite principled understanding of the situation 

at hand: First, he appeared to employ the principle that in fair-sharing situations, 

the shares must be equal. He then used the two equal shares to compose the initial 

quantity, while also referring to the inverse process. 

Table 2 presents the frequency of valid and non-valid explanations in the total of 

the trials in the common part of the pre- and the post-test (12 trials per test) and 

in the additional task of the post-test (4 trials), per child. There was a considerable 

increase in the number of valid explanations after the intervention, at group as 

well as at individual level. Overall, in the common part of the pre- and the post-

test the percentage of valid explanations increased from 6,3% to 62,5%. In the 

additional task (task D) of the post-test, two of the children gave no valid 

explanations.  

Tasks Explanation 

type 

Pre-test Post-test 

Ch1 Ch2 Ch3 Ch4 Total Ch1 Ch2 Ch3 Ch4 Total 

A, B, & C Non-valid 12 11 12 10 45 4 5 7 2 18 

Valid 0 1 0 2 3 8 7 5 10 30 

Total 12 12 12 12 48 12 12 12 12 48 

D Non valid - - - - - 3 4 2 4 13 

Valid - - - - - 1 0 2 0 3 

Total      4 4 4 4 16 
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Table 2: Total numbers of valid and non-valid explanations in the pre- and post-

test, per child. 

CONCLUSION –DISCUSSION 

We designed a program of activities introducing three fundamental multiplicative 

operations in a variety of situations, and terms for expressing multiplicative 

relations, across discrete and continuous quantity. We pilot-tested this program 

with a case study intervention, with four pre-primary children. The intervention 

was short and, arguably, very intense in terms of the amount of work required 

from the children. 

Nevertheless, the results were promising. The program of activities was well 

within the children’s range of abilities. By the 4th day, the children implemented 

the intended strategies; invented their own strategies; discerned and verbalized 

multiplicative relations and anticipated the outcome of multiplicative 

transformations. These competences were fairly stabilized for 1:2/2:1, as 

indicated by children’s performance in the post-test in terms of correct answers 

and valid explanations. Children’s ability to tackle relations beyond 1:2/ 2:1 was 

evident during the intervention, but did not reflect in their performance in the 

post-test. This is not an unexpected result, since 1:2/ 2:1 are more accessible to 

young children (Hunting & Davis, 1991) and the participants already had some 

relevant experience. The short duration of the intervention should also be taken 

into consideration.  

A long-term, systematic intervention, with a larger and more diverse sample, is 

required to investigate whether a program of activities with the specific features 

can substantially enhance young children’ multiplicative reasoning. In particular, 

it is worth investigating whether children who have acquired vocabulary relevant 

to multiplicative relations in early instruction (possibly, at kindergarten) and can 

use it in a variety of multiplicative situations are more competent in multiplicative 

reasoning in the long run (Vanluydt et al., 2021).     
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LEARNING SITUATIONS AND  
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Students’ individual interest in mathematics decreases in the first semester at 

university which leads to demotivation and even dropout. One way to prevent this 

could be to foster students’ situational interest. Thus, the present study aimed to 

take a closer look to individual and situational factors that influence the emerge 

of situational interest in university mathematics courses. 150 first-semester 

students filled in a questionnaire concerning individual traits and stated three 

times in a lecture their situational interest as well as their experience of 

competence and autonomy. Linear mixed models indicate that individual interest 

in university mathematics as well as experience of autonomy and competence 

strongly relate to situational interest. These findings could contribute to a better 

support of students’ interest development. 

INTRODUCTION 

Transition to Advanced Mathematics Courses 

A high dropout rate of study programs in mathematics indicates serious students’ 

problems, especially in the first year of study (di Martino & Gregorio, 2018; 

OECD, 2010). Researchers postulate two changes of the learning environment at 

the transition from school to university: a shift in the character of the learning 

domain, mathematics, and a change of the learning opportunities from guided to 

self-regulated learning (cf. Rach and Heinze, 2017).  

Advanced mathematics includes mathematics as an academic discipline based on 

concept definitions and deductive proofs (Gueudet, 2008). This character of 

mathematics strongly shapes teaching at university, e. g., by a strong focus on the 

Definition–Theorem–Proof structure (Engelbrecht, 2010). In contrast to that, 

teaching mathematics in school primarily focused on the goal of general 

education: Mathematical concepts and procedures are useful tools for describing 

the world and solving real world problems (e. g., Gueudet, 2008). Specifically, in 

Germany, the transition from school to university therefore coincides with a shift 
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of the learning domain from an applied-oriented form of mathematics to advanced 

mathematics. 

In addition, the formal organization of learning opportunities and the individual 

learning strategies necessary for an effective use of the learning opportunities 

differ between school and university. In Germany, the Linear Algebra course for 

students in a mathematics or a teacher education program consists of three 

different learning opportunities a week: two 90-minutes lectures, a set of approx. 

four challenging exercises as obligatory homework (self-study phase alone or in 

small study groups) and a 90-minutes tutorial per week (see Rach & Heinze, 

2017). In lectures, a lecturer presents fundamental definitions, theorems, and 

proofs which students apply when solving the exercises. In tutorials, students 

discuss the exercise solutions with a tutor. 

Role of Situational Interest in Learning Processes 

Students’ problems in the first year of study are mainly based on insufficient 

performance and the lack of motivation. One important motivational variable is 

interest, often conceptualized as a person-situation-relationship (Hidi & 

Renninger, 2006; Krapp, 2002). It is assumed that high interest leads to a frequent 

use of deep learning strategies (Willems, 2011) and to more engagement in 

learning situations (Dietrich, Viljaranta, Moeller, & Kracke, 2017) because an 

interested learner seeks to find out more about the learning content. However, 

there is only little empirical evidence for this chain of effects. One reason for this 

difference between theoretical argumentation and empirical results is that many 

studies analyse the relation between individual interest and the use of learning 

strategies and not between interest in a specific learning situation and the use of 

the learning strategies in this situation. In contrast to individual interest as a trait, 

situational interest is defined as “a temporary state aroused by specific features 

of a situation, task, or object (e. g., vividness of a text passage)” (Schiefele, 2009, 

pp. 197-198) and may influence learners’ behaviour in concrete learning 

situations. Situational interest consists of two components, a feeling- and a value-

related one: “The feeling-related valences refer to positive experiential states 

while being engaged in an interest-based activity” (Krapp, 2002, pp. 389) and 

“The value-related valences refer to the assumption that an interest has the quality 

of personal significance” (Krapp, 2002, pp. 388). In line with these works, I 

define situational interest as follows: Situational interest is a motivational state 

which is characterized by a feeling- and a value-related component. Situational 

interest results of an interaction of learners’ and situational features. 
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Other psychological models that describe feeling- and value-related valences are 

expectancy-value-models (Eccles & Wigfield, 2002). Especially, value 

concerning an object is closely connected to situational interest because e. g. 

value is decomposed in intrinsic value (similar to the feeling-related component 

of interest) and utility value (similar to the value-related component of interest). 

Gaspard and colleagues (2015) divide the utility component further on in utility 

for career, school, daily life etc. Since these two concepts are very similar to each 

other, results from both research directions will be considered. In the following, 

I will summarize in which way situational interest resp. value supports learning 

processes which individual and situational characteristics may influence the 

emerge of situational interest resp. value. 

Previous studies show that situational interest resp. value is related to engagement 

in learning situations (e. g. Dietrich et al., 2017; Linnenbrink-Garcia et al., 2013) 

and a long-maintained situational interest can grow into individual interest (Hidi 

& Renninger, 2006). Individual interest is an important trait that has an impact 

on the choice of study program or career (Ufer, Rach, & Kosiol, 2017). 

Several studies indicate that individual interest influences situational interest 

(Ferdinand, 2014, 10th grade, social sciences; Linnenbrink-Garcia, Patall, & 

Messersmith, 2013, science summer program for adolescents; Willems, 2011, 

8th grade, mathematics). Until now, there are divergent result concerning the role 

of prior knowledge on situational interest: Whereas Schukajlow and Rakoczy 

(2016) didn’t identify any relation in a study with 9th graders in mathematics, 

Rotgans and Schmidt (2011) reported a small correlation between prior 

knowledge and situational interest in a university economic lecture.  

Divergent results of these studies can be explained because the reported studies 

vary in the learning context, e. g. in the learning content and the learners’ age. 

Thus, characteristics of the learning context should be taken into account. As 

summarized above, learning situations in the first year of university are 

characterized by specific features, especially by distinguishing academic 

mathematics from school mathematics. However, in many questionnaires items 

like “I enjoy doing mathematics” are applied when measuring individual interest 

in mathematics. For students, it is not clear which character of mathematics they 

should refer to when estimating such items – mathematics at school or advanced 

mathematic at university. So, I recommend for studies in tertiary mathematics 

programs to use instruments that differentiate between mathematics at school and 

at university (Ufer et al., 2017).  
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Not only individual characteristics but also person-situation-interactions can 

influence the emerge of situational interest. A prominent approach to describe 

learners’ experiences of a learning situation is the self-determination theory, 

especially the concept of basic needs (Deci & Ryan, 2002). The mode of action 

may be that only if the basis needs are fulfilled, then learners perceive situational 

characteristics of the learning context that foster learners’ interest. Empirical 

studies partly support this assumption: Situational interest is partly connected to 

the experience of competence (Ferdinand, 2014; Willems, 2011; see also 

Linnenbrink-Garcia et al., 2013) and to the experience of autonomy, especially to 

the fit of personal wishes (Ferdinand, 2014; Willems, 2011). Based on these 

studies, the experience of relatedness seems to be less important for the 

occurrence of situational interest.  

To increase the experience of autonomy, competence and thus situational interest, 

situational characteristics of the context could be helpful. Hulleman and 

Harackiewicz (2009) found that students in a science class with low expectations 

profit from activities which encourage them to connect course materials to their 

lives. These learners with low expectations reported a higher interest in science 

than students who didn’t think about the relevance of the course content. Gaspard 

and colleagues (2015) use a similar approach for a relevance intervention in 

mathematics classrooms.  

In sum, it is essential to foster situational interest and situational interest is 

probably closely connected to individual interest. However, at the beginning of 

tertiary courses in mathematics, the character of mathematics change and it is an 

open question which motivational traits concerning which character of 

mathematics influence situational interest in this situation. I expect that a more 

differentiated measure of individual, motivational variables could explain the 

emerge of situational interest better. In addition, the role of prior achievement and 

experiences of competence for the emerge of situational interest is not fully 

clarified.  

RESEARCH QUESTIONS 

To gain a closer insight into students’ situational interest, I focus on the following 

questions: 

● How does students’ situational interest relate to their individual charac-

teristics, especially their study program, prior achievement and facets of 

individual interest? 
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● How does students’ situational interest relate to their experience of 

autonomy and competence? 

METHODS 

Participants were 150 students (94 male, 56 female) in a first-semester-course. 

The majority of these students (72%) were enrolled in a teacher education 

program for secondary schools; the others in a mathematics (13%) or in a 

computer science or physics program (15%). Almost all students of the lecture 

participated in this study. 

  

Figure 1: Design of the study 

The study took place in a first-semester lecture “Linear algebra” in the second 

week of semester. This course was an advanced mathematics course and typical 

topics like vector spaces, bases, linear equation systems etc. were included. 

Students voluntarily reported at the beginning (after 15 minutes of lecture), in the 

middle (after 45 minutes of lecture) and at the end (75 minutes of lecture) their 

situational interest (Figure 1). The applied questionnaire is based on the 

instruments of Gaspard et al. (2015) and Dietrich et al. (2017) and contains the 

feeling- as well as the value-related component of situational interest (see 

Table 1). When stating their situational interest, students also rated how 

autonomous and self-competent they felt in the last 15 minutes of the lecture 

(adapted from Willems, 2011, see Table 1). As I only wanted to interrupt the 

lecture smoothly, I used single-items to measure the experience of competence 

and autonomy. Students rated all items on a four-point-likert scale from agree (4) 

to disagree (1). The descriptive analyses don’t give hints for floor or ceiling 

effects, the reliability for the scale “situational interest” is still acceptable 

(Table 1). 
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Scale Sample Item M / SD α 

Situational interest, 

feeling- and value-

related component 

(4 items) 

I like these contents.  

The content is important for 

my study. 

2.89 / 0.57 

2.82 / 0.61 

2.89 / 0.64 

.64 

.66 

.69 

Experience of 

competence 

(1 item) 

I have the feeling that I can 

understand difficult content. 

2.65 / 0.82 

2.40 / 0.86 

2.45 / 0.88 

- 

Experience of 

autonomy  

(1 item) 

I have the feeling that the 

lecture is as I wish. 

2.59 / 0.81 

2.52 / 0.89 

2.50 / 0.91 

- 

Table 1: Scales with sample items, means (M), standard deviations (SD), and 

cronbachs’ α for all three times. 

Before the lecture started, students filled out a questionnaire concerning their 

individual interest in school and their interest in university mathematics (each 

scale à five items, α = .74 and α = .81, item example for interest in school 

mathematics: “I am interested in the kind of mathematics that I learned at school”, 

see Ufer et al., 2017). The correlations between these two interest facets are small 

to middle: r = 18, p < .05. To use it as an indicator for prior achievement, the 

students reported their overall final school grade (reversed scale, from 1.0 

sufficient to 4.0 very good). 

RESULTS 

This design is a multi-level design because situational interest is measured three 

times in a lecture. So, to investigate which factors situational interest predict and 

to control the standard errors, I use a linear mixed model (see Bates, Mächler, 

Bolker, & Walker, 2015). By this model, one can explore the relation between 

fixed factors like study program or facets of individual interest as well as random 

factors, such as times.  

In the first step, I analyse if the person or the time is more relevant to explain 

differences in situational interest. It turns out that situational interest differs more 

between persons than between time. In the second step, I examined which 

individual and situational factors predict the emerge of situational interest. 

Whereas the final school grade doesn’t explain any variance in situational 

interest, the study program does: Students enrolled in a teacher education 
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program reported less situational interest than students from the mathematics 

study program (Table 2, Model 1). By integrating facets of individual interest into 

the analysis, the prediction power of the study program decreases because 

individual interest in university mathematics relates strongly to situational 

interest, in contrast to interest in school mathematics (Table 2, Model 2). In the 

last model, interactions of students and the learning context are focused: 

Experiences of competence as well as of autonomy relate to situational interest. 

As individual interest and experiences are measured on the same likert-scale, one 

can compare the strength of the relations: Individual interest and experience of 

autonomy are similar connected to situational interest, while experience of 

competence shows a smaller relation to situational interest than the other two 

factors (Table 2, Model 3). With the last model, 41% of the variance of situational 

interest can be explained. 

Variable Model 1 Model 2 Model 3 

Study Program -.61*** -.37*** -.30**   

Final school grade .03      .02      .00      

Individual Interest School  -.09       -.05       

Individual Interest University    .41*** .21** 

Experience of Competence     .12*** 

Experience of Autonomy     .19*** 

R² .18 .31 .41    

Table 2: Results (unstandardized regression coefficients) of a mixed-linear 

regression model to predict situational interest; *** p < .001, ** p < .01. 

DISCUSSION 

The starting point of this contribution are the enormous dropout rates in 

mathematics study programs which are partly based on students’ demotivation of 

studying (academic) mathematics. The present study aims to take a closer look 

on factors which influence students’ situational interest in university learning 

situations. In line with previous research (Linnenbrink-Garcia et al., 2013), 

individual characteristics, especially individual interest in university 

mathematics, strongly influence situational interest. The results also provide 

additional support for the relation between experience of autonomy resp. of 

competence and situational interest (see Ferdinand, 2014; Willems, 2011). In 
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addition, the results of this study show that situational interest differs between 

learners of different study programs. Students in a teacher education program 

report less situational interest comparing to students of the mathematics program 

in this study. Following the results of Dietrich et al. (2017), these students will be 

less engaged in learning academic mathematics. Ufer and colleagues (2017) 

support this observation when they reported that students in a teacher education 

program are much more interested in school mathematics than in academic, 

university mathematics. For these students who want to become teachers in the 

future, it is probably important to understand the relevance of university 

mathematics for their future career as a school teacher to improve their learning 

engagement. 

The interpretation of this study is limited because the reliability of the situational 

interest scale is only acceptable. This is probably due to the broadness of the 

construct. In addition, I investigated situational interest at three times in only one 

lecture. Future research could replicate these results in other study programs and 

deeply examine the influence of situational interest on the engagement and 

success in university learning situations by a longitudinal study.  

The results of this study still can contribute to our understanding of the emerge 

of situational interest and can help to construct activities that foster the 

development of situational interest. According to the study of Hulleman and 

Harackiewicz (2009), university courses could offer activities which encourage 

students to make connections between the learning content and their future career. 

One possible activity builds on the so called “Schnittstellenaufgaben” which link 

school and advanced university mathematics (Bauer & Kuennen, 2017) and could 

be helpful to motivate students in teacher education programs. Besides supporting 

students in their learning process, these intervention studies could deeply explain 

the relation between situational interest and the experience of autonomy and 

competence in concrete learning situations. 

The project SIMs (“Situational Interest in a Mathematics study program”) is 

supported by the German Research Foundation.  
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In South Africa, although school language policy expects that the majority of 

early grade teachers should teach mathematics in an African language, initial 

teacher education programmes are offered in English. To investigate bilingual 

sense making of mathematics, students in their first year of a teacher training 

programme wrote the same mathematics test in two languages:  English and 

isiXhosa, as part of the national assessment. Data from 88 student teachers 

revealed that their performance was better in the English version of the test. The 

majority of the students (69%) preferred the English version of the test. The study 

recommends that universities need to pay far greater attention to the teaching of 

mathematics in isiXhosa for the early grades. 

INTRODUCTION 

Globally mathematics classrooms are becoming increasingly diverse in terms of 

their linguistic resources (Barwell, Wessel & Parra, 2019). There are a 

diminishing number of classrooms where all the children in the class speak the 

world language which is used as the medium of instruction for mathematics. It 

can no longer be guarenteed that the mathematics teacher shares a home language 

with all the members of her class. This is a result of globalisation and increased 

migration and movement of displaced people; and the growth of small groups 

advocating for the rights of indigineous people and those in the linguistic minority 

in a country to access learning of mathematics in their mother tongue (Barwell, 

Barton, & Setati, 2007). According to Moschkovich (2002: 189) 

if mathematics reforms are to include language-minority students, research needs 

to address the relation between language and mathematics learning from a 

perspective that combines current perspectives of mathematics learning with 

current perspectives of language, bilingualism, and classroom discourse. 

A systematic review of research in multilingual classrooms in South Africa 

(Setati, Chitera, & Essien, 2009) found an insignificant number of publications 
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focusing on multilingual classrooms; and described the research on the role of 

language in early grade mathematics (Grades R–4) as insignificant (compared to 

research on language in mathematics at higher levels). This gap has been partly 

addressed by a more recent review which focuses explicitly on the early grades 

and has South Africa, Kenya and Malawi with their multilingual mathematics 

classrooms (Essien, 2018). In this review Essien identifies three themes 

pertaining to this corpus of research: (1) research on the impact of language policy 

framework on curricula in relation to teaching and learning of mathematics; (2) 

research in teacher education and professional development; and (3) research on 

pedagogic/language practices. Essien (2018) notes that, in relation to theme 2, 

there is a paucity of research in general, and clear gaps in terms of how teachers 

are trained to teach early grade mathematics in multilingual contexts; and that 

there are rarely quantitative or mixed methods studies.  

This paper seeks to contribute to filling this gap by offering a mixed methods 

research design focusing on language and mathematics competencies of student 

teachers in an initial teaching programme. As home language speakers of a 

African language it is assumed that teachers will be able to translate their 

understanding of mathematics, taught in English at university level, into their 

African language when teaching in an early grade classroom. We investigated the 

assumption be comparing student teachers‘ attainment in mathematics tests 

(written in English and isiXhosa); as well as their perceptions of this experience 

of the tests and needs in relation to teaching mathematics in an African language. 

THEORETICAL FRAMING 

South Africa with 11 official languages, all being used to teach mathematics in 

the early grades, provides a rich lab for reflections on multilingualism and 

mathematics. Its language context is complex, and reflects both its colonial and 

Apartheid past. There are two languages of the colonisers (English and Afrikaans) 

and those may be considered world languages. The other nine languages comprise 

of sign language, and eight indigenous African languages (some of which stem 

from the same linguistic branches). 

The use of African languages for the teaching of mathematics has been an area of 

debate for a long time in South Africa (see Setati & Adler, 2000). While mother 

tongue instruction in mathematics is considered to be the most valuable for 

learning; such learning is allusive when the language in question is not yet fully 

developed as an academic language; and when this language competes with the 

hegemony of a world language. Essien (2018: 52) describes the language in 
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education policy in South Africa as being: “Based on non-discriminatory 

language use, ...which calls for the promotion of multilingualism in the education 

sector through the use of languages”.  The policy therefore advocates that learners 

choose their [Language of Learning and Teaching (LOLT) and that school 

governing bodies need to stipulate how the school will promote multilingualism 

in the school. Most (public) schools use the mother tongue as the LOLT in the 

foundation phase (Grade R–3) (Essien 2018: 52).  

Setati (2008) describes the ‘freedom to choose’ the language of learning of 

teaching in schools as advocated in policy, as a chimera, given the economic, 

social, political and ideological factors underpinning the world language 

(English). So while the majority of children in the early grades learn mathematics 

in their home language, by Grade 4 they are expected to learn mathematics in 

English. They continue to learn an African language (at home language level) and 

English (as a first additional language).    

In order to find solutions to the mathematics under-achievement in all levels of 

schooling, particular importance was given to primary school mathematics 

teaching and learning and the national Primary Teacher Education (PrimTEd) 

was established. This had a dual focus: on mathematics and on language (where 

the primary concern was African languages). 

METHODOLOGY 

The setting for this study was the rural province of Eastern Cape, were the 

dominant African language is isiXhosa. The study was conducted in a rural 

university where the majority of student teachers were isiXhosa home language 

speakers, and had passed their National Senior Certificate with isiXhosa as a 

subject at home language level. They are also relatively fluent in English (having 

been taught in English from Grade 4 onwards and passed their National Senior 

Certificate being examined in English).  

The research question addressed in the paper is: How did student teachers 

perform in, and respond to, the same mathematics test administered first in 

isiXhosa and then in English (or vice versa). Quantitative data was gathered from 

the performance trend by the primary teacher education student teachers in 

PrimTEd mathematics test (Alex, Roberts, Hlungulu 2020).  

The PrimTEd mathematics test items were translated from English into isiXhosa 

by an accredited isiXhosa language translator from the rural university. The 

translation was reviewed by the isiXhosa speaking primary mathematics lecturer. 
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The test comprised of 50 questions worth a total of 50 marks. Each item was 

allocated 1 mark and there was no partial marking as a result of the single answer 

and multiple choice format of items. The test was written using pen and paper, in 

one of the lecturer session of the university, under normal test conditions. The 

scripts were marked by the second author, using a memorandum.  

The first year students (n = 96) voluntarily took part in the study (after giving 

informed consent). They were randomly assigned into two equal groups. Half of 

the class wrote the English version and half of the class wrote the isiXhosa 

version. After a week, the test was administered the other way around. After 

checking the number of student teachers who wrote both tests, the final data set 

comprised of 88 students in two groups: ‘isiXhosa first’ group (n = 44) who wrote 

Test 1 in mother tongue and Test 2 in English; and the ‘English first’ group (n = 

44) who wrote Test 1 in English and Test 2 in mother tongue). It was assumed 

that student teachers would apply roughly the same effort to both tests (see Alex, 

Roberts, Hlungulu 2020). The results were considered in relation to the four 

categories: 

  Group 

  ‘English first’ group ‘isiXhosa first’ group 

Language of the test 
English Test 1 Test 2 

isiXhosa Test 2 Test 1 

Table1: Four categories of groups of participants 

Firstly, the test was analysed using descriptive statistics for overall attainment 

across all the items. Each student had two data points: Test 1 and Test 2. The 

mean result and standard deviation were calculated for each category. Paired t-

tests were conducted to establish whether the observed differences in the means 

from Test 1 to Test 2 were significant or not. Secondly, for each student their 

change in result (delta) from Test 1 to Test 2 was calculated. They were each 

coded as having ‘improved’, ‘stayed the same’ or ‘declined’ from Test 1 to Test 

2.   

A short structured questionnaire was designed. This was administered after the 

second test, in English (which is language of instruction of the university). The 

following questions were posed: (1) What do you feel about the tests? (2) Which 

version of the test you felt easier to answer? English/ IsiXhosa? Why do you say 

so? (3) Based on your performance in the test, what would you like us to do for 
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you? (4) Any other comments you want to share with us? The responses from the 

students, in their groups, were categorized into themes.   

FINDINGS  

In the first attempt (Test 1), the isiXhosa version of the test (𝑥 = 29%, SD = 7%) 

was found to be more difficult than the English version of the test (𝑥 = 34%, SD 

= 12%).  A paired t-test assuming equal variance found this difference to be 

significant, t (43) = 1.99, p < 0.05.  Calculating Cohen’s D gave an effect size of 

0.47 (medium). At the second attempt (Test 2) the isiXhosa version of the test 

(𝑥 = 34%, SD = 9%) was found to be more difficult than the English version of 

the test (𝑥 = 35%, SD = 13%).  A paired t-test assuming equal variance found this 

difference was not significant. So while in the first attempt the English results 

were better than the isiXhosa results, (by a significant difference, of medium 

effect size), this difference was no longer evident at the second attempt. 

 

From T1 to T2 isiXhosa first (%) English first (%) 

Improved  32 73% 27 61% 

Stayed the same 3 7% 0 0% 

Declined 9 20% 17 39% 

Total 44 100% 44 100% 

Table 2: Percentage of student teachers where results improved, stayed the same 

or declined from Test 1 and Test 2 for each group 

A greater proportion of ‘isiXhosa first’ students improved (73%), than the 

proportion of ‘English first’ students who improved (61%). We see a 

complementary trend for the proportions of student teachers whose results 

declined from Test 1 to Test 2: There was a lower proportion (20%) of ‘isiXhosa 

first’ students, than the proportion (39%) of ‘English first’ students whose results 

declined. There was lower attainment on the mother tongue version of the test 

than the English version of the test.    

Drawing on the qualitative data, we found that 61 (69%) of the student teachers 

said that the English version of the test was easier to answer; 23 (26%) of them 

found the isiXhosa version easier, and 4 (5%) student teachers responded that 

both versions were easy.  Most of the open ended responses on why found the 

English version easier to answer were “I understand it in English better”, 

“isiXhosa words are difficult”, “English explains better than isiXhosa”, and “I 

was taught in English”.  



Roberts & Alex 

3 - 506  PME 44 – 2021 

In relation to the question: Based on your performance in the test, what would 

you like us to do for you? The main theme that emerged out of the student 

teachers’ responses from both groups was that there are content issues and 

language issues need to be addressed for them to do better in the mathematics. 

Some of the content issue were general in nature: “Help me learn more Maths”; 

“We need to do revision” and “I need extra lessons”, while others were more 

specific such as the mention of ‘fractions’ as an area of difficulty. It was positive 

to see that the student teachers realised that they need help with the topics and 

directly request help with isiXhosa vocabulary and discourse. The typical 

responses on language issues were “I need help with isiXhosa terms” and “Teach 

in English not in isiXhosa”. There was a strong plea from the students to change 

the language of future mathematics tests to English. On a more general note, the 

students requested for the use of calculators in doing the mathematics tests in 

future.  

The open ended question on ‘any other comments’, resulted in similar responses 

in terms of language and content. The language issues were stronger this time as 

student teachers in both groups recommended that “Maths should be taught in 

English” and a small minority group of students suggested that “Maths should be 

taught in home language and English”. “Make sure learners understand the 

language” and “Teaching Maths in isiXhosa won’t work” also echoed in the 

responses. The major concern from the student teachers was that Mathematics is 

more difficult when it is in isiXhosa as they were not exposed to it in their own 

schooling years and in their teacher training. The majority of the student teachers 

suggested that to support their teaching of Mathematics in isiXhosa required the 

provision of relevant resources.    

DISCUSSION 

The assumption that as home language speakers of an African language, teachers 

will be able to translate their understanding of mathematics, taught in English at 

university level, into their African language was found to be false. Despite the 

student teachers being home language speakers of isiXhosa, and expected to teach 

mathematics in isiXhosa, their attainment in the isiXhosa version of the PrimTEd 

mathematics test was significantly worse than their attainment in the English 

version of the same test. In addition, the students expressed a preference for the 

English test. They were less able to make sense of the mathematics, when it was 

expressed in isiXhosa, and felt that they lacked the isiXhosa vocabulary and 

discourse to communicate mathematics in isiXhosa.   
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The findings affirm the conclusion by Ramollo, (2014) who identified from two 

Initial Teacher Education programs that both lecturers and student teachers were 

concerned about the lack of vocabulary and syntax to communicate some 

mathematical concepts in African languages and the poor preparation which 

student teachers receive in the teaching of mathematics in an African language.  

CONCLUSION 

This paper sheds light on the complexity of the South African language and 

mathematics education situation. In a rural province, teachers are expected to 

teach early grade mathematics in isiXhosa and bring isiXhosa as their home 

language resource. Yet they perform better in the mathematics tests administered 

in English than in isiXhosa. In addition, when reflecting on the experience, the 

majority of the student teachers indicated their preference for the English version. 

This is a serious problem considering the policy expectation that they should 

teach mathematics in isiXhosa to early grade isiXhosa speaking children in their 

communities. The impact of the language policy – on their own mathematics 

development – where they last communicated in formal written mathematics 

using isiXhosa when they were ten years old; has not adequately prepared them 

for their role as a mathematics teacher in a multilingual classroom. As a result, it 

is clear that universities need to pay far greater attention to the teaching of 

mathematics in isiXhosa when preparing teachers for the early grades.  
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WHAT MIGHT BE CRITICAL IN A CRITICAL EVENT? 

Sigal-Hava Rotem1 and Michal Ayalon1 

University of Haifa, Israel 

 

The goal of this study is to examine how different definitions for a critical event 

may reflect what is found to be critical by pre-service mathematics teachers. We 

describe and analyze two critical events that were identified by two pre-service 

mathematics teachers from two different classroom observations. In each event, 

the pre-service teacher identified an instance where the teacher could build his 

or her instruction based on the student’s mathematical understanding. Data 

analysis is used to identify the similarities and differences between the two events. 

Implications are discussed. 

RATIONALE 

What is “critical” in a critical event that occurs during a mathematical lesson? It 

seems that the answer is in the eye of the beholder. Different researchers define, 

characterize and use critical events differently (e.g., Goodell, 2006; Rowland, 

Thwaites, & Jared, 2015; Stockero, Leatham, Ochieng, Van Zoest, & Peterson 

2019). Here we refer to critical events as moments that hold the opportunity for 

the teacher to build on the student’s thinking, to make connections within 

mathematics and extend students’ mathematical horizons beyond the immediate 

task (Stockero et al., 2019). 

The common thread between the different definitions and characterizations is that 

they all use critical events as a tool to foster teachers’ learning and professional 

development in teachers’ education programs (e.g., Jacobs, Lamb & Philipp, 

2010; Karsenty, Arcavi & Nurick, 2015; Stockero et al., 2019; Van Es, Cashen, 

Barnhart & Auger, 2017). Here, we suggest using critical events that were chosen 

by pre-service teachers (hereinafter PTs) from their lesson observations as a 

“research tool that provides a ‘window’ into a learner’s mind” (Zazkis & Leikin, 

2007; p.15). In contrast to the shared use of critical events in teachers’ education, 

where the critical events are brought to the PTs for interpretive discussions by the 

researchers (e.g., Karsenty et al., 2015; Stockero et al., 2019; Van Es et al., 2017), 

here the PTs choose critical events for interpretation from their lesson 

observations.  
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Similar to Zazkis and Leikin’s (2007) use of examples that were generated by 

teachers, we believe that the critical events PTs choose “mirror their conceptions 

of […] their pedagogical repertoire, their difficulties and possible inadequacies 

in their perceptions” (p.15). Therefore, characterizing PTs’ critical events will 

enable researchers’ learning. In this study, we will examine how the different 

existing definitions reflect what is found to be critical by PTs in order to suggest 

an initial characterization.  

LITERATURE REVIEW 

The research of critical events is usually done within the context of research on 

mathematics teachers’ professional development programs, and mathematics 

PTs’ preparation programs, in which teachers’ educators bring critical events for 

interpretive discussion to enhance teachers’ learning. For example, Karsenty et 

al. (2015) examined the way interpretive discussions regarding observed 

videotaped events enhanced the development of mathematical knowledge for 

teaching within the context of a teachers’ professional development program. Van 

Es et al. (2017) examined the development of PTs’ noticing of ambitious 

mathematics pedagogy while using videotaped critical events as the focus of the 

university course.  

However, critical events are addressed differently by different researchers. The 

different names: MOST (Sotckero et al., 2019), contingency moments (Rowland 

et al., 2015), and critical incidents (Goodell, 2006) somewhat reflect the different 

characteristics of the different definitions. Each definition brings to the forefront 

some different features of critical events. For example, Stockero et al. (2019), 

who framed critical events as MOST, characterized them at the intersection of 

student mathematical thinking, significant mathematics, and pedagogical 

opportunity. Student mathematical thinking means that the student’s statement 

concerns mathematics. Significant mathematics is defined as mathematics that is 

appropriate for the students’ mathematical development level and central for the 

students’ learning goals. Pedagogical opportunity is framed by the opening to 

build on that student’s thinking and the timing for taking advantage of that 

opening. In this definition, Stockero et al. (2019) emphasized the mathematics of 

the event and the opportunity to deepen the student’s mathematical 

understanding. Rowland et al. (2015) characterized critical events according to 

the triggers that led the teacher to deviate from the lesson plan: (1) Responding 

to student’s idea – whether a response to a teacher’s question or a spontaneous 

statement; (2) A teacher’s insight that provoked her/him to modify their 
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instruction ‘in the moment’; (3) The teacher’s response to the availability of tools 

and resources (for example, a digital resource that was central to the lesson plan 

is unexpectedly unavailable). Rowland et al. (2015) characterization emphasizes 

the gap between the planning of the teacher and the actual occurrences of the 

lesson. Goodell’s (2006) use of critical events highlights the learning potential 

for PTs who use mathematical and non-mathematical critical events while 

learning to teach. 

With the overarching goal of suggesting critical events that were chosen by PTs 

as a tool for researchers’ learning, the goal of this study is to examine how 

different existing definitions for critical events may be reflected in what is found 

to be critical by PTs. As an initial step, in this study, we will compare and contrast 

two critical events that were chosen by PTs from lesson observation in order to 

identify what might be characterized as critical in the critical events. The specific 

research question is: What are the similarities and differences between the two 

critical events?  

THE STUDY 

Data Collection 

The data source for the research project was 48 critical event reports submitted 

by 13 participants in the context of a pre-service high-track secondary school 

mathematics teachers’ university course, ACLIM-5 (a Hebrew acronym for 

“clinical training for unique 5-unit (high track) mathematics teaching”). ACLIM-

5 is a part of the PTs’ field-based preparation in which critical events identified 

by the PTs during classroom observations served as a focus for interpretation.  

In the study, PTs were directed to choose critical events and to submit written 

reports in which they described and interpreted events according to a structured 

framework based on Jacobs et al., (2010). The reports included prompts for 

describing the critical event, the mathematical context, what the student said 

and/or did, and what the teacher said and/or did and their thoughts about the 

students’ and teacher’s actions. PTs were instructed that a critical event is an 

instance where a student says something that involves mathematics and which 

holds the potential for further mathematical learning.  

In this study, we chose to analyze two critical events, Felice’s and Nora’s. Felice 

and Nora had their field-based preparation in different schools. Choosing two 

critical events that were identified in different classrooms and were taught by 

different teachers allows us to compare and contrast the events to examine how 
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the different existing definitions are reflected in the critical events. Additionally, 

both Felice’s and Nora’s critical events were exemplary in the sense that their 

events represented an instance where a student’s mathematics holds the potential 

for further mathematical learning. 

Data Analysis 

To examine what might be characterized as critical in the critical events, we used 

the following characteristics: The mathematics of the event, student’s learning 

opportunity (both taken from Stockero et al., 2019), the teacher’s response to 

student’s idea that could lead the teacher to deviate from the lesson plan (taken 

from Rowland et al., 2015) and, the learning potential critical events hold for the 

PTs (taken from Goodell, 2006).  

FINDINGS 

Felice’s Story of a Critical Event 

The place: 10th-grade high track gifted mathematics classroom. 

Lesson topic: Complex numbers. Up to this class, the students learned to 

add/subtract/multiply complex numbers in the Cartesian form. The lesson goal, as I 

[Felice] see it, was to expose students to the concept of the absolute value of Complex 

numbers as preparation for transitioning from the Cartesian form to the Polar form. 

The situation lasted no more than 5 minutes. 

[…] One situation caught my attention, […] when she [the student] did not 

understand how (6)2 = 36 = (−6)2 but √36 maybe only 6. In response to her 

question, the teacher said: “Look at the equation 𝑥2  =  36 and the function 𝑦 =  √𝑥  

for 𝑥 =  36. The equation has two solutions ±6, and this can be checked by 

substitution. While the function 𝑦 =  √𝑥 corresponds to 𝑥 =  36 a single value (𝑦 

value), since this is the definition of a function, each 𝑥 corresponds to a single value 

of 𝑦. Also, the ‘numbers’ world’ (domain) of the function is only the non-negative 

number set; that is why there is a difference; an equation does not act as a function.” 

This event occurred in the 10th-grade high track mathematics classroom while 

learning the absolute value of Complex numbers. A student’s question regarding 

(6)2 = 36 = (−6)2 vs. √36 = 6 seems unconnected to the lesson’s topic, 

complex numbers. Felice tried to settle this gap between the mathematical content 

of the lesson and the mathematical content of the student’s question in several 

ways. First, she addressed this gap in her interpretation of the event: “Throughout 

mathematics, students meet quite a few times with square roots, powers and 

absolute values (for example, the distance between a line and a point). In my 
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experience, I see quite a few students experiencing this situation at the very end 

of their track in the 12th-grade.” In this excerpt, besides acknowledging this gap, 

Felice also legitimized it. According to the Israeli context, the question 𝑜𝑓 (6)2 =

36 = (−6)2 vs. √36 = 6 is usually dealt with in the previous year while learning 

about the square root function. However, Felice relied on her experience and did 

not consider this a unique phenomenon. Second, she framed the context and gave 

an interpretation for the goal of the lesson as a way to bridge the gap between the 

mathematics of the lesson and the mathematics that the student’s question 

entailed. She wrote: “The lesson goal (from my perspective) was to expose 

students to the concept of the absolute value of complex numbers as preparation 

for transitioning from the Cartesian form to the Polar form.” In the Israeli context, 

the absolute value of the complex number is a usual intermediate phase in the 

transition between the Cartesian form and the Polar form. A typical approach will 

be to start with  |𝑥 + 𝑦𝑖| = √𝑥2 + 𝑦2  and then to give some numeric examples 

such as |−1 + 6𝑖| = √(−1)2 + 62 = √1 + 36 = √37.  

In terms of the opportunity to deepen the student mathematical understanding, 

Felice wrote: “I think it was a great question that would benefit the whole class 

for several reasons: It first sharpened the understanding of what equation is and 

what function is and what it means to solve an equation and what it is a value of 

a function, it further sharpened the meaning of the equal sign.”  From her 

perspective, the question of (6)2 = 36 = (−6)2 vs. √36 = 6 held the 

opportunity to differentiate between the multiple mathematical concepts, and she 

saw this as an opportunity to benefit the whole class mathematical understanding.  

When addressing the teacher’s response to the student’s idea Felice wrote: “I 

think the teacher was not surprised by the question, in particular, this question 

was not a surprise in this specific class (Because they seem to understand things 

so deeply, how can it be that one student got confused by such a matter).” Felice’s 

explanation for the reasons why the teacher was not surprised by the student 

question is characterized by the class traits, as the students of this class are gifted, 

they have internal motivation for a profound understanding of the mathematics. 

She wrote: “[…] Students in this class (gifted) do not take things for granted, it is 

very difficult to ‘sell’ them things as they are, they strive for deep understanding.” 

Consequently, from Felice’s point of view, the teacher did not deviate from his 

plan, and there was no gap between the planning of the teacher and the actual 

occurrences of the lesson. 



Rotem & Ayalon 

3 - 514  PME 44 – 2021 

The learning potential that this event held for Felice was articulated by her, as the 

following interesting question: “I am debating whether the teacher should 

introduce students to this question and its solution in advance […] or give them 

the possibility that they will come to a ‘something here does not work out’ 

moment and then provide an answer?” Felice’s question can be framed in the 

broader context of the teacher’s role. Is the teacher’s role to attempt to address 

questions and mathematical contradictions in advance, or is his role to support 

students as they struggle to understand mathematics?   

Nora’s Story of a Critical Event 

The lesson was about trigonometric functions analysis. […] The teacher asked to 

analyze the function 𝑦 =  𝑠𝑖𝑛 (2𝑥 − 𝜋 / 3). The class found extremum points, 

calculated the axis intersection points, and drew the graph. After they were finished, 

the teacher asked them if they could guess the graph without doing the analysis. One 

of the students said that we got this function after contracting 𝑠𝑖𝑛(𝑥) by two and then 

moving it to the right by 𝜋 / 3. Later the same student asked what would the graph 

of 𝑠𝑖𝑛 (𝑥)  +  𝑐𝑜𝑠 (𝑥) look like, will it be one graph at the end or two graphs? The 

teacher explained to her that, in the end, we would get one graph and suggested using 

the function analysis. 

This event occurred in a trigonometric function analysis lesson at the beginning 

of the lesson as the teacher was checking homework. The class was requested to 

analyze the function 𝑦 =  𝑠𝑖𝑛 (2𝑥 − 𝜋 / 3). After the class used the procedure 

of function analysis, the teacher asked the follow-up open question: “if [they] can 

guess the graph without doing the analysis.” One student used function 

transformation as a way to draw the function without analyzing it. The student’s 

response followed by her question: “how would the graph of 𝑠𝑖𝑛 (𝑥)  +  𝑐𝑜𝑠 (𝑥) 

look like, will it be one graph at the end or two graphs?” This question can be 

seen as an elaboration on function transformation. As Nora wrote: “The student 

developed a method to understand the behavior of a function without doing 

function analysis, so in my opinion, she divided the functions into groups, and 

each group has a parent function. And this led her to ask about the function I 

mentioned. How, by the same logic, can you guess the graph or understand 

behavior without analyzing it?” Nora saw the student’s question as an attempt to 

generalize a mathematical idea of graphing without analyzing. If multiplying is 

expansion and contraction and adding and subtracting from the function argument 

leads to shifting the function, then what happened in terms of function 

transformation when adding functions? Nora saw the students’ question as an 

outcome of the teacher’s question: “I really admire his method, which does not 
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settle for one solution and always wants to hear more ideas which lead students 

to think further.” It seems that from Nora’s perspective, the teacher’s question 

was the opening for the student’s question. In that sense, she reconciled for herself 

the gap between the mathematics of the lesson and the mathematics of the student. 

It was the teacher’s open question which led the student’s “what if?” follow up 

question.   

In terms of learning opportunities for the students, Nora addressed the learning 

that this event held for the entire class and not just the student who asked the 

question. She wrote: “I would […] use desmos, for example (i.e., dynamic 

software) and show them how the two graphs look and try to conclude from the 

graphs and their features.”. Nora suggest for the whole class to explore possible 

connections, difference and similarities, between 𝑠𝑖𝑛(𝑥) and 𝑐𝑜𝑠(𝑥) and 

𝑠𝑖𝑛(𝑥) + 𝑐𝑜𝑠(𝑥). This mathematical exploration is beyond the scope of the 

curriculum, and it can broaden the students’ horizons. 

Nora did not elaborate on the teacher’s response to the student’s idea. However, 

from the teacher’s answer to the student’s question, we can assume that he did 

not deviate from his plan as he did not elaborate on this instance. Furthermore, 

even the teacher’s open question, which, in a sense, triggered the student’s 

question, aligns with the context of the Israeli curriculum. This type of question, 

relying on function transformation after conducting function analysis, is apparent 

in all recent matriculation exams. Therefore, the teacher’s open ‘follow up’ 

question and the student response can be viewed as a usual instance in function 

analysis lesson. It seems that there was no gap between the teacher’s plan and the 

actual occurrences of the lesson.  

The learning potential that this event held for Nora was articulated by her: 

“During high school, I would solve all the function analysis questions using the 

standard procedure as we all did, but this event and the teaching courses I take 

have given me an option to look at things from a different perspective.” Here it 

seems that she referred to the opportunity to graph a function based on function 

transformation. However, she did not articulate if it was an opportunity for her to 

learn about the connection between function transformation and graphing a 

trigonometric function, or an opportunity for her to learn that this is a legitimate 

way to learn and to teach students to graph a function. From her suggestion to 

explore 𝑠𝑖𝑛(𝑥) and 𝑐𝑜𝑠(𝑥) and 𝑠𝑖𝑛(𝑥) + 𝑐𝑜𝑠(𝑥), it seems that Nora learned more 

about teaching mathematics than the mathematical content itself.  
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Compering Felice’s and Nora’s Events    

The analysis indicated two similarities between the events: (1) the gap between 

the planning of the teacher and the actual occurrences of the lesson and, (2) the 

learning opportunities the critical events held for the PTs. In both events, it seems 

that the teacher stuck to his plan. Even if the teacher did not plan to discuss the 

question of (6)2 = 36 = (−6),2 vs. √36 = 6, he addressed it with a simple 

explanation, and as Felice wrote, the teacher was not surprised. In that sense, it 

seems that there was no gap between the teacher’s plan and the actual occurrences 

of the lesson. In terms of the learning opportunities the events held for Felice and 

Nora, both articulated insights about teaching and learning mathematics. Felice 

has discussed the teacher’s role and Nora the possibility to use function 

transformation while teaching function analysis.  

The analysis indicated two differences between the events: (1) the gap between 

the mathematics of the lesson and the mathematics of the student and (2) learning 

opportunities for the students. First, in terms of the gap between the mathematics 

of the lesson and the mathematics of the student, in Felice’s critical event, it seems 

that the student’s question was not connected to the lesson’s topic. In fact, the 

student’s mathematics is connected to a previous topic (square root function). In 

Nora’s critical event, the student’s question can be seen as an attempt to 

generalize a mathematical idea of using function transformation to graph a 

function without analyzing it. This attempt can be seen as a step forward from the 

lesson’s topic. Thus, both events had a gap between the mathematics of the lesson 

and the mathematics of the student but not the same gap. Second, in terms of 

learning opportunities for the students, Felice’s event held the opportunity to 

underscore the distinction between two key mathematical concepts studied 

formerly. Nora’s event held the opportunity to elaborate the mathematical 

meaning of the concept by going into new mathematical territory (Lampert, 

2001). In that sense, Felice’s event had the opportunity to review old mathematics 

and Nora’s event had the opportunity to broaden the students’ horizons by 

learning new mathematics.    

DISCUSSION AND POSSIBLE IMPLICATIONS   

The differences between the two events can be viewed in terms of the gap 

between the mathematics of the student and the mathematics of the lesson and the 

learning opportunities for the students. These parameters in which the two events 

differ can be seen as connected. The magnitude of the gap between the 

mathematics of the student and the mathematics of the lesson influences the 
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learning opportunities for the students. When there is a low magnitude between 

the mathematics of the student and the mathematics of the lesson - for example, 

when a student tries to make sense of a mathematical concept that was used in the 

lesson, as in Felice’s critical event - the teacher aligns the unclear concept with 

mathematical concepts the student is already familiar with (e.g., Stockero & Van 

Zoest, 2013). When there is a high magnitude between the mathematics of the 

student and the mathematics of the lesson - for example, when a student tries to 

generalize the mathematical concept, as in Nora’s critical event - the learning 

opportunity for the students can be an exploration of that generalization by going 

into new mathematical territory (Lampert, 2001), which enhances the 

mathematical knowledge of the student. 

Furthermore, the parameters in which the two events are similar - the gap between 

the planning of the teacher and the actual occurrences and the learning potential 

critical events held for them - are also connected. Although Felice and Nora did 

not perceive a gap between the planning of the teacher and the actual occurrences, 

it seems that they both learned from the teacher teaching while continuing with 

his plan. Felice raised the question whether the teacher should tackle in advance 

issues that the students might perceive as contradictory, or wait until the 

contradiction arises from the student, as happened in her critical event. Nora 

embraced the idea of function transformation as a legitimate teacher’s question 

that prompts student thinking.  

Despite the limitation of generalizing from these particular examples, we propose 

this initial characterization as a step toward the emergence of a model for critical 

events that will not only allow us to analyze critical events but will also allow 

pinpointing what is critical in the critical event.  
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ARE YOU JOKING? USING REFLECTION ON HUMOR TO TRIGGER 

DELIBERATIVE MINDSETS 
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In this study with 401 pre-service teachers, inspired by a study by Van Dooren et 

al., we show that presenting a humoristic situation significantly increases critical 

thinking as compared to a context in which routine word problems are given. We 

interpret our findings in the context of the mindset theory by Gollwitzer: 

reflecting on incongruences in jokes triggering a deliberative mindset that 

enhances reflective thinking. 

INTRODUCTION 

At PME 41, Van Dooren et al. (2017, 2019) presented a study, in which 6th 

graders had to solve four so-called problematic word problems (P-items). Such 

word problems are tasks in which realistic considerations must be taken into 

account to solve them reasonably (cf. Greer, 1993), for example  

When Calvin goes to school, Hobbes sometimes takes a swim. His best time to swim 

25 m is 20 seconds. How long does it take Hobbes to swim 500 m? 

A non-realistic answer to this P-item would be “20 times 20 seconds = 400 

seconds,” whereas a realistic answer would be “probably more than 400 seconds, 

because he can’t keep up the pace” (cf. Van Dooren et al., 2019). 

The intriguing result of this study is that students who were presented with jokes 

(and had to comment on them) in between tasks did significantly better in giving 

realistic answers than students who had to solve routine tasks (standard or S-

items) instead. The jokes on the one hand and the routine tasks on the other hand 

were framed similarly: 

Humor Condition: Calvin says: ‘If I 

have one melon in one hand, and two in 

the other, what do I have, Hobbes?’ 

Hobbes answers: ‘Very large hands, and 

strong muscles! 

Word Problem Condition: Calvin and 

Inge are doing an excursion with the 

class. The bus drives on the highway at 

80 km/h. After how much time will the 

bus have travelled 120 km? 
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Van Dooren et al. (2019), drawing on Attardo (1997), explain this result with the 

fact that “[h]umor may also stimulate children to see the problem situation from 

a different perspective,” focussing on the incongruity theory of humor with their 

interpretation: 

The incongruity relief mechanism is specifically relevant for our study as it focuses 

on the perception of the same situation from two different, seemingly incongruent, 

perspectives. Only one of these two interpretations of the situation is considered to 

be the more plausible one, and this one will occur in the listener/reader when the 

situation is presented. Humor originates when it becomes clear that the alternative, 

less plausible interpretation – the one the listener/reader did not think of initially – 

ultimately turns out to be true. The reaction to this unexpected experience of 

incongruity is one of laughter. (ibid., p. 99) 

In their article, Van Dooren et al. (2019) conclude that “the addition of humor 

could be tested on a variety of items, taking into account different item 

characteristics” (p. 103). In the study at hand, we will follow two goals: Firstly 

we test the “humor effect” in a different context: we use critical thinking items 

instead of P-items and ask pre-service teachers instead of 6th graders, thus testing 

for the replicability of the effect. Secondly, we introduce a theoretical explanation 

for the effect of humor, which draws on more general considerations on human 

reasoning. In our interpretation of the study by Van Dooren et al., the experience 

of incongruence produced by reading the jokes triggered a specific “deliberative” 

mindset in the students, making them aware of realistic considerations, whereas 

solving routine tasks triggered another “implemental” mindset, making them 

ignore such considerations. Thus, drawing on the mindset theory by Gollwitzer 

(2012), the rationale of our study is to further explore the humor condition as an 

implicit trigger for a deliberative mindset, compared to an implemental mindset 

triggered by the routine tasks (S-items). 

In the following, we elaborate on theoretical foundation of our approach and then 

present an empirical study to support our interpretation. 

THEORETICAL BACKGROUND 

The ability to solve problems is certainly influenced by someone’s intelligence 

as well as other characteristics (Guilford, 1967). However, psychologists like 

Kahneman (2011) have demonstrated convincingly, that humans do not always 

make rational choices. Decision processes are influenced by heuristics and biases 

(ibid.). Such factors – favorable as well as unfavorable – are usually seen as traits 

that characterize a person, which can be measured with special tests like IQ tests 
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or test for critical thinking. In addition to such traits, decisions and the ability to 

solve tasks can also be influenced by states, which should be visible in 

randomized studies with specific manipulation conditions. (The differentiation 

between states and traits was introduced by Cattell and Scheier, 1961.) A theory 

which allows for interpreting the solution behavior described above from the 

perspective of states is the aforementioned theory of mindsets: 

Mindsets 

Gollwitzer defined mindsets as mental procedures and cognitive orientations that 

influence the ways in which people act intellectually (see Gollwitzer, 2012, for a 

summary). He distinguishes between a deliberative and an implemental mindset; 

the former facilitating a heightened receptiveness to all kinds of information 

(open-mindedness), and the latter facilitating a focus on processing information 

and realizing previously set goals (closed-mindedness). (Please note: Do not 

confuse Gollwitzer’s theory with Dweck’s (2006) theory of fixed and growth 

mindsets. The latter is regarding a trait rather than a state.) 

In several studies (see Gollwitzer, 2012, or Weinhuber et al., 2019), it could be 

shown that mindsets tend to remain active beyond the triggering situation (cf. 

ibid.). For example, Gollwitzer had one group of test persons deliberate on 

unresolved personal problems and another group plan chosen goals. This way, 

the first group was placed into a deliberative and the second in an implemental 

mindset, respectively. Afterwards, these groups acted differently in a second, 

seemingly unrelated task. Persons who were placed in a deliberative mindset 

showed more planning and reflecting on reasons that persons who were placed in 

an implemental mindset. 

In two studies with 62 pre- and 54 in-service teachers, Weinhuber et al. used 

comics to induce mindsets: a comic showing a “math-club” in which secondary 

students are shown to debate alternative approaches to differential calculus 

problems vs. a comic showing a “math-test-prep” course in which the teacher 

shows consecutive steps of solving a complex differential calculus task. In both 

studies, the participants were asked to subsequently draft explanations about an 

extremum problem. On the one hand, participants primed with a math-club comic 

(i.e. deliberative mindset) generated more principle-oriented and less procedure-

oriented explanations. On the other hand, participants primed with a math-test-

prep comic (i.e. implemental mindset) generated more procedure-oriented and 

less principle-oriented explanations. 
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Critical thinking 

To investigate the effect of humour on task solutions within mindset theory, we 

chose to use problems with specific characteristics: (i) they should reflect 

mathematics-specific solution processes but should not require higher level 

mathematics, and (ii) require a reflective component of reasoning and judgment 

when solving a task or evaluating the solution (cf. Rott et al., 2015). Our choice 

fell on problems from the heuristics and biases literature, and especially from the 

Cognitive Reflection Test (CRT) by Frederick (2005) as those are predictive of 

decision making and cognitive ability (ibid., p. 26) and have mathematical 

content (ibid., p. 37). Typical participants – pre-service teachers, in our case – 

should be able to solve such problems correctly as they have all knowledge and 

skills necessary. However, in multitude of studies, such problems have proven to 

have solution rates that are far from perfect (e.g., Frederick, 2005; Rott & 

Leuders, 2016). 

For the analyses of such problems and the construction of the CRT, researchers 

differentiate cognitive processes into two types or systems: subconscious or 

“Type 1” processes are characterized as fast, automatic, and emotional, whereas 

conscious or “Type 2” processes are described as slow, effortful, logical, and 

calculating (cf. Kahneman, 2011; Stanovich & Stanovich, 2010). 

A problem that requires type 2 thinking would be 123  456 as no solution comes 

to mind spontaneously. Without a calculator, an algorithm is needed to arrive at 

the solution 56.088. By contrast, the famous bat-and-ball problem (that is part of 

the CRT; Frederick, 2005) does produce a spontaneous, automatically generated 

answer: “A bat and a ball cost $ 1.10 in total. The bat costs $ 1 more than the ball. 

How much does the ball cost?” Almost everyone thinks of “10 cents” as a first 

response. Finding the correct answer – “5 cents” – requires a critical reflection of 

the “intuitive” answer. In this sense, critical thinking encompasses the conscious 

checking and regulation of intuitive answers (cf. Frederick, 2005; Stanovich & 

Stanovich, 2010). 

Research questions 

Against this background, we assume that the solution rates of critical-thinking 

tasks can be increased by influencing the state of the participants: 

● Do explicit awareness prompts increase critical thinking?  
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● Does triggering a deliberative mindset by humor situations (compared to an 

implemental mindset in routine-problem situations) increase critical 

thinking? 

METHODOLOGY 

Design and material 

Drawing on the model of thinking by Stanovich and Stanovich (2010), and using 

the CRT by Frederick (2005) as inspiration, Rott and Leuders (2016) have 

developed a pool of items for measuring mathematical critical thinking (CT). For 

the study at hand, ten CT items have been selected that have proven their worth 

in qualitative and quantitative studies; i.e. they measure critical thinking and not 

arithmetic skills. Sample items (without the bat-and-ball problem, see above, that 

is also part of the test) are presented in Table 1. The items are rated dichotomously 

with 1 point for a correct solution and 0 points for a wrong solution. 

 

Item Examples of Responses 

Water lilies grow in a lake and their surface area doubles every 

week. At the beginning of the growth phase only ¼ m² of the lake 

surface is covered, but already after 12 weeks, the whole lake is 

overgrown. After how many weeks was half of the lake covered? 

CR: 11 weeks 

MR: 6 weeks (linearity 

assumed) 

In a gamble, a regular six-sided die with four green faces and two 

red faces is rolled 20 times. You win € 25 if a certain sequence of 

results is shown. Which sequence would you bet on?  

 RGRRR       GRGRRR       GRRRRR  

CR: RGRRR 

MR: GRGRRR (i.e. most 

occurrences of “G”) 

A frog falls into a 20 m deep well. During the day, it climbs up 4 m, 

at night it slides down 2 m again. After how many days does the 

frog climb out of the well? 

CR: 9 days 

MR: 10 days (= 20:2) 

For a 56 cm high mural, you need 6 ml of 

paint. How many ml of paint is needed for a 

168 cm high mural? 

CR: 54 ml 

MR: 18 ml (= 6 ml  3) 

Table 1: CT items with correct responses (CR) and typical misresponses (MR) 

To investigate the possible influence of mindsets and their triggers, we developed 

the three-group design that is presented in Table 2. (Please note that we do not 

think that it is possible to differentiate between an explicit and an implicit trigger 

for an implemental mindset; therefore, it is not a four-group design.) 

Trigger / Mindset Implemental Deliberative 
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Explicit (1)  

Mathematical routine 

procedures (comparable to S-

Items by Van Dooren et al.) 

(2) 

Awareness prompts 

Implicit 
(3)  

Humor (cf. Van Dooren et al.) 

Table 2: Three-group design of the study 

For each of the three groups, a different test booklet has been created: The ten CT 

items were spread over three pages in the test booklet. On top of each of these 

three pages, an environment trigger (1), (2), or (3) was presented to the 

participants (see Table 3). 

Env. Trigger 

(1) 

(i) What is the size of angle α? 

(ii) Solve the following equation: x² – 4 = 0 

 

(iii) What is the area of the shown trapezium?  

(2) 

(i) ATTENTION, check your results! 

(ii) THINK CRITICALLY! 

(iii) REMINDER: THINK TWICE! 

(3) 

(i) Teacher: “75% of all students in this class have no idea of percentages.” 

Students: “Teacher, we’re not that many!” 

(ii) The teacher gives a simple task: “If five birds sit on the roof and you shoot 

one, how many are left?” 

Student: “None, teacher, the others have flown away!” 

(iii) Why does a mathematician who is afraid of terrorist attacks smuggle a 

bomb on board an airplane? 

Because the probability of two bombs being smuggled into an aircraft 

independently of each other is almost zero. 

Table 3: Environment (env.) triggers that differentiate the three test booklets 

Participants 

In May 2019, the test was administered in three different lectures at the University 

of Cologne, addressing mathematics pre-service teachers for primary and special 

education schools (cf. Noeding, 2019). Those lectures were “B1: Fundamentals 
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of Mathematics” for the first Bachelor semester, “B2: Fundamentals of 

Mathematics Education” for the second Bachelor semester, and “B5: Didactics 

of Arithmetic” for the fifth Bachelor semester. Participating in this study was 

voluntary and not participating did not have any consequences for the students.  

In total, 401 university students (338 or 84.3 % female, 61 or 15.2 % male, and 2 

or 0.5 % not specified; B1: 198 or 49.4 %, B2: 179 or 44.6 %, and B5: 24 or 

6.0 %) with a mean age of 21.8 years (standard deviation 4.0 years) submitted a 

completed booklet (filled in on paper), which took them less than 20 minutes. By 

distributing the booklets in no specific order, the students were randomly 

assigned to the three environments. 

Additionally, all participants reported their Abitur (university entrance degree) 

grade (median 2.0 on a scale from 1, the best, to 6, the worst) as well as their final 

mathematics degree from school (median 2.0 on the same scale). 

RESULTS 

On average, the students solved 3 problems (median = 3; mean = 3.20) with a 

minimum of 0 and a maximum of 8 points. The sizes, mean values and standard 

deviations sorted by the lecture in which data was gathered are given in Table 4. 

Compared to our previous experiences with CT tests (e.g., Rott et al., 2015; Rott 

& Leuders, 2016), these results are on the lower end of the spectrum, but not 

untypical, especially since almost 95 % of the participants are in their first or 

second semester and students with a low number of semesters normally do worse 

than students with a high number of semesters. 

B1 B2 B5 total 

N = 198 N = 179 N = 24 N = 401 

M = 2.94 M = 3.44 M = 3.63 M = 3.20 

SD = 1.84 SD = 1.87 SD = 1.58 SD = 1.85 

Table 4: Mean values (M), standard deviations (SD) sorted by semester 

The data regarding the mindset environments (Table 5) show that group (2) – 

explicit, deliberative mindset, awareness – performed better than group (3) – 

implicit, deliberative mindset, humor – which in turn performed better than group 

(1) – implemental mindset, S-items. A one-way ANOVA confirms significant 

differences between those groups with post-hoc tests revealing significant 

differences between groups (1) – (2) and (1) – (3), but not (2) – (3). 
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As expected, the groups in which a deliberative mindset was triggered, 

outperformed the group in which an implemental mindset was triggered. A state 

highlighting open-mindedness (i.e. the deliberative mindset) is favourable for 

working on CT problems compared to a state inducing closed-mindedness (i.e. 

the implemental mindset). Interestingly, both the explicit (awareness) as well as 

the implicit (humor) environments seem to trigger the deliberative mindset, which 

strengthens our initial interpretation of Van Dooren’s humor environment in the 

light of the mindset theory. 

(1) routine (2) awareness (3) humor   (1) (2) (3) 

N = 148 N = 135 N = 118  (1)  p = 0.002 p = 0.024 

M = 2.86 M = 3.51 M = 3.29  (2)   p = 0.172 

SD = 1.79 SD = 1.98 SD = 1.72  (3)    

One-way ANOVA: F = 4.64, p = 0.0102  Post-hoc t-tests (one-sided) 

Table 5: Mean values (M), standard deviations (SD) per environment 

DISCUSSION 

The data confirm the result by Van Dooren et al. that a humoristic environment 

is favorable for solving problems demanding reflection as compared to a word 

problem environment. Presenting jokes in the test booklet has an effect in the 

same direction as direct awareness prompts. Using the notion of mindsets by 

Gollwitzer (2012), reading the jokes might have placed the students in this 

specific environment in a deliberative mindset, whereas students in the 

environment with routine tasks were placed in an implemental mindset. 

However, there are limitations to this study: Even though the differences between 

the three groups are significant, the effect is rather small – especially, compared 

to the study by Van Dooren et al. (2017), in which pupils in the humor condition 

“gave almost twice as many realistic reactions compared to the word problem 

condition” (p. 4-303). This might be due to the different problems (CT items 

instead of P-items), the different participants (university students instead of 

pupils), or differences in the conditions: Unlike Van Dooren et al., where pupils 

were asked to compare the jokes, our tests persons were only presented with the 

jokes and with a lower number of jokes. This way, the humor environment 

provided only a very “soft trigger” for a deliberative mindset. In other studies 

using mindsets (e.g., Gollwitzer, 2012; Weinhuber et al., 2019), the triggers are 

more intense. Therefore, in future studies, we plan to make our participants reflect 

upon jokes for a presumably even stronger effect. 
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Implications of this study are introducing the theory of mindsets to the PME 

community and as a consequence the awareness for considering states in 

performance testing compared to only considering traits (like knowledge and 

beliefs). 
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“I DON’T WANT TO BE THAT TEACHER”:  ANTI-GOALS IN 

TEACHER CHANGE 

Annette Rouleau1 
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This paper uses the theory of goal-directed learning to examine anti-goals that 

arise as teachers implement change in their mathematics practice. Findings 

suggest that anti-goals develop as teachers begin to recognize who they do not 

want to be as a mathematics teacher. Accompanying anti-goals are emotions that 

can be useful in measuring progress towards anti-goals (fear and anxiety), and 

away from anti-goals (relief and security). Furthermore, acknowledging anti-

goals allows mathematics teachers to focus on the cognitive source of their 

difficulties rather than be overwhelmed by the emotional symptoms.  

INTRODUCTION 

In Intelligence, Learning, and Action, Skemp (1979) describes a thought 

experiment in which we are to imagine two events. Firstly, we strike a billiard 

ball causing it to move across the table into a pocket. Secondly, we are in a room 

with a child who, upon our command, moves across the room to sit in a chair. 

Superficially, these are two similar events: we have ‘caused’ the child to cross 

the room and we have ‘caused’ the billiard ball to roll into the pocket. This is 

basic stimulus and response in which an object remains in a state of rest, or 

uniform motion in a straight line, unless acted upon by an external force. Now 

imagine inserting an obstacle into the pathways of both the ball and the child, 

what a strange billiard ball it would be if it could detour around the obstacle and 

continue its path. However, a child will do this with no change in stimulus — 

perhaps by going around the obstacle, hopping over it, or even moving it. Skemp 

suggests that, unlike those of a billiard ball, the child’s actions are goal-directed, 

and necessary to reach her goal state (sit in the chair). 

Recognizing that many human activities are goal-directed is essential if we want 

to understand their actions. In other words, we need to attend to their goals with 

the same importance as we do their outwardly observable actions. Skemp offers 

the example of someone crawling around on their hands and knees on the office 

floor. There is no point in asking them what they are doing — we can see that for 
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ourselves. A better question might be “Why are you doing that?”, which might 

elicit a reasonable answer such as “I’m looking for the cap of my pen”. 

Let us try another thought experiment. Imagine observing a secondary 

mathematics teacher in her classroom. The teacher is standing by an overhead 

projector demonstrating how to solve a problem while the students sit quietly at 

their desks and take notes. Another adult sits with a notepad at the back of the 

room. Students who talk are met with a polite reminder to raise their hand if they 

wish to speak. What might the actions of the teacher suggest? An immediate 

response might be the teacher is teaching, albeit in a somewhat traditional 

manner. Now imagine talking with the teacher after the lesson as she describes 

her frustration with having to conform with school norms regarding effective 

teaching of mathematics to successfully pass a probationary evaluation. To 

observe that the teacher was teaching traditionally is accurate, but incomplete. To 

make sense of her actions also requires consideration of her goal — she was 

teaching traditionally to achieve her goal of maintaining employment. 

The aim of this study is to make sense of teachers’ actions through consideration 

of their goals. As the pursuit of a goal is an emotive experience (Skemp, 1979), I 

begin the next section by describing some of the literature regarding emotions in 

teaching. To connect emotions with goals, I then outline Skemp’s theory of goal-

directed learning. 

EMOTIONS, ACTIONS, AND GOALS 

Liljedahl (2015) describes emotion as the “unstable cousin” of beliefs yet there is 

much to be learned from their study; it is the erratic cousin at the family dinner 

who is most likely to blurt out uncomfortable truths. Fortunately, while pursuit of 

these uncomfortable truths was once the least researched aspect of teaching 

practice over the past two decades. There has been an increased focus on what 

emotion reveals to us about teaching and its implications for teacher change 

(Zembylas, 2005). As Kletcherman, Ballet, and Piot (2009) suggest, “A careful 

analysis of emotions constitutes a powerful vehicle to understand teachers’ 

experience of changes in their work lives” (p. 216). The unstable cousin is being 

heard. 

Prior to this, teacher cognition had been the primary focus of research on teachers 

(e.g., Richardson, 1996) and its underlying assumption was that teacher actions 

and behavior were strongly influenced by cognition. More recently has come the 

recognition that emotion and cognition are inseparable and that emotions may 

provide insight into the relationship between a teacher and the socio-cultural 
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forces that surround her (Van Veen & Sleegers, 2009). According to Hannula 

(2006), emotions (along with attitudes and values) encode important information 

about needs and may even be considered representations of them. While 

cognition is related to information, Hannula understands emotions as affecting 

motivation and therefore as directing behavior by affecting both a person’s goals 

and choices. Emotions constitute a feedback system for goal-directed behavior, 

and thus shape a person’s choices. Hence, emotions, cognitions, and actions turn 

out to be strongly intertwined and inseparable; it is necessary to consider these 

factors and their relationship to understand teachers’ actions. 

Skemp’s (1979) theory of goal-directed learning considers these connections 

between emotions and actions. His framework was built on fundamental ideas in 

psychology and links emotions to goals which a learner may wish to achieve, and 

to anti-goals which a learner wishes to avoid. Goals can be short-term, such as 

the desire to learn a procedure for solving a routine problem or long-term, as in 

the desire to be successful in mathematics. A short-term anti-goal may be to avoid 

failing a test, while a long-term anti-goal may be to avoid future mathematics 

studies altogether. Skemp emphasizes that goals and anti-goals are not simply 

opposite states, rather, a goal is something that increases the likelihood of success, 

while an anti-goal is something to be avoided along the way. 

For Skemp, emotions come into play as they provide information about progress 

towards either goal state in two distinct ways (see Figure 1). First are the emotions 

experienced as one moves towards, or away from, a goal or anti-goal (pleasure, 

unpleasure; fear, relief). For example, moving towards a goal brings pleasure, 

while moving towards an anti-goal result in unpleasure. Although the four 

emotions bear similarities, there are subtle differences. Consider relief and 

pleasure; the relief one feels upon not failing a test is a different feeling from the 

pleasure one experiences upon learning the correct procedure for a problem. The 

second aspect of emotions concerns one’s sense of being able to achieve a goal 

or, conversely, avoid an anti-goal (confidence, frustration; security, anxiety). For 

example, believing one can achieve a goal is accompanied by confidence while 

believing that one is unable to move away from an anti-goal state induces anxiety. 
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Figure 1. Emotions associated with goal states (adapted from Skemp, 1979) 

Although initially designed to examine goals related to the learning of 

mathematics, in this study, researcher uses the Skemp’s theory to examine goals 

related to the teaching of mathematics, particularly those of teachers who are 

trying to change elements of their practice. In doing so, researcher follows 

Jenkins (2003) who suggests that change is not just to make different, but, like 

learning, it is also to continually improve in skill or knowledge. Specifically, 

researcher uses Skemp’s notion of goals and anti-goals to better understand the 

actions of teachers involved in changing their mathematics practice. 

METHODOLOGY 

McLeod (1992) suggests that detailed, qualitative studies of a small number of 

subjects allow for an awareness of the relationship between emotions, cognitions, 

and actions that large-scale studies of affective factors overlook. Accordingly, in 

this study, researcher adopt an exploratory and qualitative approach that focuses 

on documenting that relationship. Data for analysis was taken from a larger study 

involving 15 teachers whose teaching experience ranged from 1 to 16 years. The 

data was created during semi-structured interviews that ranged from 40 to 60 

minutes. The interviews were audio-recorded and then fully transcribed. The 

structure of the interview aimed at letting emotions emerge organically through a 

narrative rather than by direct questioning. For example, the teachers were asked 

to describe the changes they had implemented in their mathematics practice 

without explicitly asking them to describe the emotions they felt. This allows for 

richer descriptive data of personal experiences that leading questions may inhibit. 

With DeBellis and Goldin (2006), researcher aware that emotional meanings are 

often unconscious and difficult to verbalize but, with Evans, Morgan, and 

Tsatsaroni (2006), researcher believes that textual analysis of teachers’ narratives 

allows the identification of emotional expressions that function in teachers’ 

positioning. As such, the transcripts were scrutinized for utterances with 

emotional components such as “I was worried…” and then re-examined for their 
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potential connections to goals. Due to space limitations, researcher reported only 

on those findings related to anti-goals. 

THE DEVELOPMENT OF AN ANTI-GOAL 

For the teachers in this study, the decision to implement change in their 

mathematics classrooms stemmed from dissatisfaction with their current practice. 

Most had learned mathematics as learners in traditional mathematics classrooms 

and had simply gone on to replicate that for their own students. As Kelly recalled, 

“There was nothing during my journey to becoming a mathematics teacher that 

made me think of another way to teach math.” Their collective desire to move 

away from the notion of teaching as telling and learning as listening (and 

remembering) so permeated their interviews that I originally coded these excerpts 

as ‘That Teacher’. However, it was this tension between who they were and who 

they wanted to be that led to change in their mathematics practice, as who they 

wanted to be as a teacher became their goal, while who they had been, or wanted 

to avoid becoming, became an anti-goal. 

Many of the teachers described similar situations where tension with their 

teaching practice drove them to seek out professional development. For example, 

the development of Amy’s anti-goal began with the feeling that “I was boring, 

like they just weren’t getting from me what they needed.” It coalesced into an 

anti-goal as she realized her practice was harming, rather than helping, her 

students: 

“My practices resulted in increased anxiety and frustration amongst my 

students; damaged their mathematical confidence; removed their desire to think 

deeper and search for understanding; as well as robbed my students of 

conceptual experiences. Valuing speed and accuracy comes at a great cost for 

students and gives them little mathematical benefit.” 

To alleviate the anxiety that caused her, Amy sought out professional 

development “for some new ideas”. Instead she experienced a student-centred 

teaching style that “completely transformed my pedagogy.” No longer content 

with her product-oriented mathematics classroom where students worked 

individually to develop fluency with procedural skills, she turned to a process-

oriented model that valued conceptual understanding and collaboration. In 

searching for relief from her anti-goal, Amy found security in the new practices 

she implemented. 

For other teachers, it was attending professional development that caused the 

development of an anti-goal. Kelly described the same sort of experiential 
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learning from professional development as Amy but added, “I never questioned 

it [her practice] until my eyes were opened — when I saw another way. Since then, 

I have felt my teaching pedagogy do a complete 180° shift.” Although she had 

willingly attended the professional development session, it was not due to tension 

with her own practice; it was more a matter of convenience and opportunity: “It 

was our district Professional Development and it was a mathematics topic. I was 

there because I was a mathematics teacher.” Describing herself as a typical, 

traditional mathematics teacher, the experience provoked a desire to implement 

changes in her teaching as she noted: 

“It was confounding to learn that something I was doing in my class was taking 

away from students’ learning. It really makes you think about and reflect on what 

you are doing as a teacher.”  

Like Amy, the traditional teacher she once was became her anti-goal as she 

emphasized, “I knew I never wanted to be that teacher.” 

For both Amy and Kelly, their use of figurative language like “transformed” and 

“eyes opened” suggests the core of who they were as a teacher had been 

unexpectedly altered and the result was the development of an anti-goal. They 

may have set out to change some things about their practice but ended up 

changing themselves. For other teachers, this alteration appeared to be a more 

purposeful decision. Sam spoke of being at a “crossroads” where anxiety with 

his teaching style caused him to ponder two choices: seek out professional 

development or quit teaching. In the end he chose the former as he explained, 

“I'm going to try out for one more year and I'm going to become better.” No 

mention of transformational experiences, this was a deliberate response to relieve 

the pressure of an anti-goal: he was not happy with who he was as a teacher and 

he set out to change that. This sense of deliberation appears again in David, a new 

teacher assigned to teach mathematics. Having never planned to be a mathematics 

teacher, he first turned to colleagues for advice on what to do:  

“I asked them, how do you teach mathematics? How can I make this fun? 

And they are...like, I hate to say it, but they are older teachers, and they 

have very traditional views on mathematics, and the kind of do it like how 

I was taught in mathematics. They just work on the problem on the board, 

show them how it is done, and get them to practice, practice, practice until 

they get it. And I knew that is not how I want to do it. That is not who I 

want to be.” 
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Although David had not yet developed a mathematics pedagogy, he knew who 

he did not want to be as a teacher. This anxiety led him to sign up for a series of 

professional development sessions that focused on progressive teaching practices 

in mathematics. Over time he implemented the strategies he learned in his 

classroom. Again, there is less a sense of an unexpected transformation and more 

of a determined decision to avoid an anti-goal. 

Like the others, Corey had implemented new practices in her classroom that 

required changes not only in the physical movements of her students but for 

herself as well. She mentioned, “Physically the vertical learning can be 

challenging for me. I struggle to stand for the whole day, so I have to make sure 

I am doing a mix of things throughout the day.” During the interview, she let this 

thought be and then came back to it unexpectedly about 10 minutes later as she 

further explained, “I just don’t want to be that teacher.” When asked to clarify, 

she added: 

“Because I struggle to stand. I do not ever want to be that teacher that sits at the 

desk all day, because that's not effective at all. I think if it is this bad, I am 43, 

what am I going to do five years from now? Six years from now? How is it going 

to look? That is something that keeps me up at night. How am I going to best 

serve these kids when I cannot move around the room? So, yeah, it is a concern. 

That is one of the reasons I might not always be a classroom teacher; it might 

not be an option for me physically, to do a really good job of it.” 

There are two things to note here. Like Kelly and David, Corey’s use of the 

adjective/noun combination ‘that teacher’ suggests she has developed a schema 

of what a teacher is and is not. This sets up an anti-goal as she knows what kind 

of teacher she does not want to be, and despite the tension that results from 

worries over her physical limitations, she does not veer from that. Second, it is 

interesting that while Corey does later mention solutions such as a “motorized 

scooter” or “mixing things up”, moving away from the new practices that are 

taxing her physically is not mentioned. Like Sam, it seems she would rather leave 

the profession than move towards her anti-goal state.  

RECONNECTING WITH AN ANTI-GOAL 

Traditional mathematics practices comprise universally accepted norms such as 

teacher-led examples, individual seat work, and silent practice that are especially 

difficult to displace. Such a strictly controlled environment offers the illusory 

appeal that serious learning is taking place. This notion is embedded in the 

mathematical backgrounds of the teachers in my study for whom the pull of 
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traditional practices lingered. This created anxiety and fear for those attempting 

to suppress these desires and for those who succumbed. Lily recalled that in her 

early teaching career she believed that “The quieter the class the more I thought 

learning was happening.” She had come to recognize that this is not the case, yet 

acknowledged: 

“I do on occasion go back to this method because of a bad day or I am not 

prepared. When I do go back to this traditional method, I am aware that it was 

not a good teaching day for me or the students.” 

This created anxiety as she realized that her decision, while satisfying her 

immediate needs, had unintended consequences for both her and her students. 

Interestingly, this notion of being unprepared appeared to be the impetus for 

several others who also return to traditional practices to satisfy their own needs. 

As Kelly recounted: 

“So today I sort of reverted. I have not been feeling great and I needed something 

quick and easy to put together for a lesson. I started the class with a review/notes 

of all the topics we have been doing. We did some examples together on the 

board then I gave them a worksheet. This class has rarely come into the room to 

see desks and chairs set out that are available to sit in. But today I caved. I was 

hoping for some quiet time while they worked.” 

This backfired for Kelly as she later admitted, “For the most part I spent the rest 

of class going from one student to another with hands up helping them with 

problems.” Like Lily, her anxiety lay in knowing that her decision to ‘revert’ had 

had unintended consequences for both herself and her students. It appears that the 

challenge of implementing change can occasionally nudge teachers towards 

which was once familiar and therefore seen as easier. Hoping for a respite, they 

instead experience the emotion that accompanies a move towards an anti-goal. 

This return to the familiar also occurred for several teachers not because it was 

easier but rather, they missed the reassurance of traditional teaching. This created 

anxiety for them as they struggled to suppress this need. Linda mentioned wanting 

to be sure she was covering the content since she implemented the changes in her 

classroom: 

“I still occasionally like to start by demonstrating something new and then 

having students do similar problems or problems connected to what was 

demonstrated. This comforts the ‘conventional’ teacher in me, but I do feel like 

it is cheating or missing the point.”  
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This need for reassurance is also apparent in Diane who mentioned occasionally 

returning to her previous teaching practices: 

“I really want to make sure that everybody's learning. When they are quiet, and 

they are all looking at me I know I have their attention. I am not sure if everybody 

is paying 100% attention when they are working in the problem-solving groups.” 

When speaking later of year-end assessments she added, “I know I do not need 

to do it [teach traditionally]. I know I should not. They all did so well that it 

solidified for me that the way I was doing it was already working.” This suggests 

that anti-goals serve another purpose. Teachers, like Diane, might purposefully 

move towards an anti-goal to experience the relief it brings when they move 

away. They are reconnecting with their anti-goal in order to affirm the changes 

they are making in their mathematics practice. 

CONCLUSION 

Anti-goals develop during teacher change as teachers come to recognize and 

articulate who, and how, they do not want to be in the mathematics classroom. 

For some, this process occurs during change, for others this recognition propels 

them to seek out ways to change. In either instance, researcher suggests anti-goals 

are useful in three ways. Firstly, having teachers reflect on the emotions they feel 

may be useful in reasoning why they felt this way and how they might use this 

knowledge to their advantage. Doing so allows teachers to focus on the cognitive 

source of their difficulties rather than being overwhelmed by the emotional 

symptoms. For example, a teacher who can connect the anxiety she experiences 

to the action she is undertaking, can take steps to alter the action. Secondly, I 

suggest that recognizing what one does not want to be brings into sharp relief 

what one does want. Having that clarity might enable teachers to seek out the 

actions and changes that will help them reach that goal. For example, a teacher 

who realizes she does not want to be that teacher who only uses unit tests for 

assessment may look for learning opportunities that broaden her assessment 

practice. Finally, anti-goals also prove useful in keeping change alive. Teachers 

who find themselves pulling back from the changes they have implemented, find 

in the emotional reconnection with their anti-goal encouragement or 

reinforcement needed to continue with the change. As Zembylas (2005) suggests, 

“Teaching practice is necessarily affective and involves an incredible amount of 

emotional labor” (p. 14). Harnessing that emotion during teacher change may 

prove valuable for teacher educators. 
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Teacher participants were asked to choose three from a set of eight solutions to 

a task to feature in a whole-class discussion. Participants were asked to indicate 

whom they would invite to present each solution, from among higher-achieving 

girls and boys and lower-achieving girls and boys. Participants often indicated 

that they would first have students present the direct model or an error, that they 

would invite a lower-achieving girl to present a direct model, and that they would 

invite a higher-achieving student to present an error. Most indicated that they 

would invite a higher-achieving boy to present the solution with an unexpected 

geometric representation, usually at the end of the sequence. Participants’ 

explanations reveal how gendered beliefs about mathematics shape this aspect of 

classroom instruction.  

INTRODUCTION  

A lesson format featuring whole-class discussions begins with the posing of an 

open-ended problem, allotment of time for problem-solving, and culminating in 

a teacher-facilitated discussion during which specific students present their 

solutions. Stein et al.’s (2008) 5 Practices (anticipating, monitoring, selecting, 

sequencing and connecting) are seen to support the quality and content of the 

whole-class discussion in this lesson model. Part of that model, the selecting and 

sequencing of solutions, indicates the inviting of students to present mathematical 

ideas. In doing so, teachers publicly position students as authors of noteworthy 

ideas. Here, we focus on teacher decision-making regarding whom to select to 

present a mathematical idea. 

In particular, we focus on social considerations of gender and mathematics 

achievement. We selected gender as a social construct because it carries meaning 

in mathematics learning contexts (Walkerdine, 1998). Solely focusing on gender, 

however, would essentialize and over-extend the meaning of this single 

dimension of identity. Mathematics as a school domain tends to be highly 
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stratified by perceptions of ability level, thus we explore teachers’ decision-

making with respect to the intersection of gender with mathematics achievement. 

That is, in the context of multiple solutions to a mathematical task, if a given 

solution is available to be presented by higher-achieving and lower-achieving 

girls and boys, whom do teachers invite to present which solution and why? 

CONCEPTUAL FRAMEWORK  

Our understanding of gender and mathematics ability are as socially constructed, 

rather than fixed characteristics. We acknowledge a problematic reproduction 

here of outdated binary notions of gender but opt for a political analysis in a 

context in which the predominant social understanding of gender in schools 

remains as binary and fixed. Perceptions of students’ mathematics abilities are 

socially constructed as well and represent a significant dimension of a student’s 

status in and outside of the classroom. Teachers’ perceptions of students’ 

mathematical abilities interact with conceptions of ability as innate and as context 

independent (Snell & Lefstein, 2018). 

Decisions about whom to invite to the classroom’s public floor are not only about 

resolving a problem’s solution. Encouraging students to share ideas, as well as 

prompting the class to evaluate the mathematical ideas of others, are considered 

to be pedagogical moves that distribute mathematical agency and mathematical 

authority (Gresalfi & Cobb, 2006). Inviting a student to present their ideas could 

signal the teacher’s assignment of competence, in a form of public validation 

(Cohen & Lotan, 1997). Affordances, however, of inviting a student to present 

their ideas to the whole class might depend on the classroom’s norms (Cobb et 

al., 2008). In some classrooms, for example, being invited but among the first to 

present could signify the teacher’s positioning of an idea as the least 

sophisticated. In this paper, we explore the question: whom do teachers select to 

present which mathematical solutions and why?  

RELATED RESEARCH 

Gender-based differences in mathematics achievement have narrowed over time, 

unlike girls’ and women’s lower self-concept in mathematics, which persists and 

around the world (Sax et al., 2015). This is an outcome of social systems that 

position mathematics as masculine and reinforce boys as better suited for it, rather 

than evidence of deficiencies innate among girls (Walkerdine, 1998). How 

students see themselves relative to mathematics is shaped, in part, by their 

teachers’ gender-related beliefs and their impact on classroom interactions 

(Gunderson et al., 2012). Even when teachers perceive girls as equally capable in 

mathematics, they might attribute that success in different, gendered ways. That 
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is, teachers might attribute the success of high-achieving girls to their eagerness 

to learn and compliant classroom behavior, but attribute the success of boys to 

their spontaneity and independent thinking (Robinson-Cimpian et al., 2014). This 

example is part of a broader, extensive set of interrelated and unequal binary 

oppositions -- like objective/subjective, analytic/emotional, certain/fleeting, 

innately able/ hard-working, -- wherein one in every pair is more valued and 

associated with masculinity. Gender, though, does not carry meaning or operate 

in an isolated way, and our focus is on its intersection with mathematics 

achievement. Prior studies show that achievement, not gender, determines 

classroom participation (Myhill, 2002). By accounting for achievement with 

gender, Myhill revealed how, as students increase in age, high-achieving boys 

become less involved in classroom participation, whereas high-achieving girls 

remain compliant and willing to participate. This pattern is interpreted by Myhill 

as not serving girls well, in how boys’ success then becomes positioned as a 

product of their intellect, in contrast with girls’ success as produced by their 

attentiveness and effort.  

Sequencing & selecting solutions   

Prior research presents a range of pedagogical principles that might guide 

teachers’ selecting and sequencing of solutions (Ayalon & Rubel, under review). 

This research indicates that teachers tend to value accessibility over mathematical 

storyline considerations. Livy et al. (2017) found that most explained that they 

would sequence the solutions in a progressive order, beginning with what they 

considered the weakest solution and then progress to what they viewed as the 

strongest. Meikle (2014)’s results similarly show that participants tend to 

sequence solutions either by starting with an erroneous solution and building to a 

correct solution; starting with an incomplete solution and building to a complete 

one; or starting with a direct-model strategy and building to an abstract one. 

Participants in both studies justified their choice of these progressions in terms of 

an assumption that such progressions best support students that might be 

struggling. These studies focus on which mathematical ideas teachers value for 

inclusion in a whole-class discussion but do not extend to teachers’ considerations 

about which students are invited to present what kinds of ideas on the public floor. 

Our research question is: With respect to lower and higher-achieving girls and 

boys, who do teachers select to present which kind of solution and why?   

METHODS 

Forty-two Israeli teachers participated, in the context of a university-based 

course. All but four participants identify as women. We posed this version of the 

Handshake Problem (in Hebrew):  
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There were 9 players at the first basketball practice of the season. The coach told the 

players to introduce themselves by shaking hands with one another. Assuming that 

every player shook hands exactly one time with every other player, how many 

handshakes occurred? 

In written form, we provided participants with the problem and eight solutions 

(Figure 1) and prompted them to interpret the mathematical thinking underlying 

each. We draw attention here (because of their dominance in our results) to how 

solution H is a direct-model; solution C uses a geometric representation; and 

solutions D and G are errors. We asked participants to consider a hypothetical 

top-track 7th grade class of 32 students, and to consider that each solution was 

produced by four students: a higher-achieving girl or boy and a lower-achieving 

girl or boy. We asked participants to indicate the three solutions to be presented 

to the class, in what sequence, which student they would choose to present from 

among the four categories, and to explain their choices.  

Analysis 

We tabulated the selections, according to position (Table 1) and the assignment 

of each solution by gender and mathematics achievement (Table 2). We 

compiled the written justifications for each solution, separated them according 

to the gender-achievement attributes and then analyzed those justifications 

using qualitative thematic analysis (Braun & Clarke 2006). This process yielded 

three main categories of justifications, which we describe in the results section.

 

Figure 1. Provided Solutions  
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RESULTS 

As shown in Table 1, participants frequently chose one or more from among three 

solutions: C, the geometric representation; H, the direct model, or D/G, errors. 

Those who selected H, assigned it to the first or second position, explaining that 

H is the most accessible, comprehensive, and confirms the correct answer. Those 

who selected an error (D or G), also usually in one of the first two positions, 

explained this as a way to fix the error or to normalize error-making. Those who 

chose C assigned it nearly always as the last in the sequence, explaining that it is 

“non-routine” and “creative.”  

Participants commonly cited accessibility considerations in justifying the 

sequencing of an error or the direct model, citing needs of “struggling” or 

“weaker” students. Fewer continued to attend to accessibility with regards to the 

third position, even though they often culminated their sequence with what they 

perceived to be more complex. Instead, in justifying their third choice, most often 

the geometric representation, participants commonly cited an inclination toward 

a variety of representations and approaches. Our analysis of their justifications 

about which solutions and in what sequence is presented elsewhere (Ayalon & 

Rubel, under review).  

Although participants selected boys or girls roughly evenly, there are patterns in 

terms of how they assigned each solution, as shown in Table 2, according to three 

main trends: 1) Solution C to a higher-achieving boy; 2) Solution H to a lower-

achieving girl; 3) an error to higher-achieving students. We note that Solution A 

was assigned only to lower-achieving students but was seldom chosen. 

Solution 1st choice 2nd choice 3rd choice Total  

A 2 9 0 11(26%) 

B 0 2 4 6(14%) 

C 0 4 30 34(81%) 

D or G 21 8 0 29(69%) 

E 1 3 1 5(12%) 

F 2 6 1 9(21%) 

H 16 10 6 32(76%) 

Table 1: Selection of Solutions in Sequence 
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 B-Low G-Low B-High G-High Total n(%) 

Solution A 4.5* 6.5 0 0 11(26%) 

Solution B 1 0 2 3 6(14%) 

Solution C 5 2 18.5 8.5 34(81%) 

Solution D or G 6.5 3.5 10.5 8.5 29(69%) 

Solution E 3 1 3 1 5(12%) 

Solution F 2.5 0.5 0 3 9(21%) 

Solution H 5.25 20.25 2.25 4.25 32(76%) 

 27.75 33.75 36.25 28.25  

*Responses such as lower-achieving boy or girl were halved in this table. 

Table 2: Assignment of selected solutions by gender and math status 

Participants explained their assignment of a solution to a student because of (1) 

characteristics of individuals in that group, pertaining to perceived mathematical 

reasoning or communication skills; (2) to encourage participation, of the 

designated student or others in the class; or (3) to attend to issues of self-

confidence, status, or other existing gender-achievement stereotypes. Here we 

present our analysis of justifications of Solutions C, H, and D/G, because these 

were the most commonly selected and because their assignment was not 

distributed equally across the indicated social categories. 

Participants assigned errors more often to higher-achieving students, for three 

reasons connected to the above themes: (1) Because of an expectation that higher-

achieving students will be able to identify and explain the errors; (2) To normalize 

error-making in mathematics, primarily to encourage participation. For example, 

P24 explained, “I want everyone to learn that everyone makes mistakes. This will 

support and motivate all of the students”; and (3) because participants perceive 

these students, particularly boys, as invulnerable as a result of self-confidence 

perceived to be high enough to easily withstand criticism. Several participants, in 

contrast, noted that girls might be vulnerable in this situation. For example, P37 

explained “It would embarrass a girl to show this or to start a discussion.”  

Participants most often assigned Solution H to a lower-achieving girl. In many 

cases, participants explained that they felt the direct model was more likely to 

have originated with a girl, according to gendered beliefs about mathematical 

reasoning. For example, P27 explained, “Girls usually choose the long and safe 

way, different from boys who look for short-cuts and clever ways." Many 

indicated a trust in a girl’s ability to present H in a clear and organized way for 
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the class. For example, P29 explained “Girls are more organized than boys and 

can present better than boys.” Many others explained that inviting a lower-

achieving girl would represent an opportunity to broaden participation among 

others in the class and strengthen her self-confidence. Assignment of Solution H 

to lower-achieving boys was far less common, and in those instances, justified by 

how solution H is clear and not hard to explain.  

Participants most often assigned Solution C to the category of higher-achieving 

boy. Most commonly, they justified this around expected characteristics of 

individuals in that group, with respect to mathematical reasoning or 

communication skills. Participants attributed characteristics to these boys such as 

above-average, creative, and special. For example, P26 explained that “on the 

basis of experience, boys like busy-work less than girls, and mostly try to find 

other ways to solve a problem. In addition, boys have better spatial abilities than 

girls, so this solution is better suited to a boy than a girl, in my opinion.” In 

contrast, when participants assigned solution C to a higher-achieving girl (this 

occurred much less often), they tended to explain this as an opportunity to remedy 

those girls’ lack of self-confidence. For example, P8 explained that a high-

achieving girl would “explain well. Girls don't have self-confidence, and are shy, 

so I chose a girl because boys have self-confidence, to go to the board and to talk 

in front of the class.” 

DISCUSSION  

An important limitation of our study is that it is oriented around a single 

mathematics task. In addition, we have flattened broad social diversity into only 

two social constructs (gender and achievement) and separated those continua into 

artificial, binary distinctions. Neither of these variables actually operate in binary 

terms and clearly intersect with other variables, such as race, language status, 

physical appearance, social popularity, and more, depending on the context. 

Despite these limitations, our results contribute to a growing knowledge-base 

about classroom interactions with respect to an essential component of structured 

problem-solving lessons, the selecting and sequencing students’ ideas for the 

subsequent whole-class discussion (Livy et al., 2017; Meikle, 2014; Stein et al., 

2008). Our results suggest that social considerations play a significant role in 

teachers’ decision-making about whom to invite to present which kind of 

solution. 

Participants often selected lower-achieving girls to present the direct-model 

solution (H), and explained this in several ways. In many cases, they invited a 
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lower-achieving girl because of their perceived lesser mathematical ability, even 

though this was stated to be a top-track class. Inviting them to present 

mathematical work represents, according to many participants’ justifications, an 

opportunity to boost what they perceive to be their lower self-confidence. It is 

important to remember that in most cases, they designated solution H as the first 

or second to be presented, and only in rare instances as the third. If there is a 

classroom norm around supporting accessibility by always beginning with the 

easiest example or least sophisticated solution, as prior studies indicate, then 

inviting the lower-achieving girl to present first or early on presents a signal to 

the class (and to the girl herself) about the low value of her solution. Thus 

participants’ indications about inviting a lower-achieving girl to present her 

mathematical ideas to increase what they perceive to be girls’ low self-confidence 

might, instead, undermine that intention and reinforce a position of low self-

confidence. 

With respect to solution C, on the other hand, participants tended to invite higher-

achieving boys to present the more unusual solution, with a geometric 

representation (C). They explained this primarily in terms of these students’ 

mathematical and communication skills. Here, too, the sequencing is significant, 

as in most cases, participants designated Solution C as the last to be presented. 

Again, if there is a classroom norm around the sequencing of examples or ideas, 

as the prior research indicates, then who is invited to present later in the sequence 

could signal to the class the value of this solution, as most sophisticated.  

The fact that there were no gender differences around the assignment of errors is 

telling. That participants more often assigned errors to higher-achieving students 

to present is evidence of their recognition that this could be risky for lower-

achieving students in terms of that student’s self-confidence or willingness to 

further participate. This indicates that participants were paying attention to the 

potential impact on a student of being invited to present a particular kind of 

solution. It is striking, therefore, that our results did not include more instances 

of their seizing opportunities to assign competence, either to lower-achieving 

students or girls, by having them present more sophisticated solutions.  

Prior studies outline a range of pedagogical principles that guide teachers in 

selecting and sequencing of solutions for a whole-class discussion. These studies 

focus on the mathematical and pedagogical considerations, without addressing 

how teachers consider which students to invite to present which kinds of solutions 

on the classroom’s public floor. Our findings suggest that gender and 
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achievement play a significant role. Further research could explore this question 

relative to other mathematical tasks. Additional research could study how such 

practices around sequencing of solutions or examples are enacted to determine 

how students interpret these norms.   
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