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PREFACE 

We are pleased to welcome you to PME 44. PME is one of the most important international 

conferences in mathematics education and draws educators, researchers, and mathematicians 

from all over the world. The PME 44 Virtual Conference is hosted by Khon Kaen University 

and technically assisted by Technion Israel Institute of Technology. The COVID-19 

pandemic made massive changes in countries’ economic, political, transport, communication, 

and education environment including the 44th PME Conference which was postponed from 

2020. The PME International Committee / Board of Trustees decided against an on-site 

conference in 2021, in accordance with the Thailand team of PME 44 will therefore go 

completely online, hosted by the Technion - Israel Institute of Technology, Israel, and takes 

place by July 19-22, 2021. A national presentation of PME-related activities in Thailand is 

part of the conference program. 

This is the first time such a conference is being held in Thailand together with CLMV 

(Cambodia, Laos, Myanmar, Vietnam) countries, where mathematics education is 

underrepresented in the community. Hence, this conference will provide chances to facilitate 

the activities and network associated with mathematics education in the region. Besides, we 

all know this pandemic has made significant impacts on every aspect of life and provides 

challenges for society, but the research production should not be stopped, and these studies 

needed an avenue for public presentation. In this line of reasoning, we have hosted the 

IGPME annual meetings for the consecutive year, July 21 to 22, 2020, and 19 to 22 July 

2021, respectively by halting “on-site” activities and shift to a new paradigm that is fully 

online. Therefore, we would like to thank you for your support and opportunity were given to 

us twice. 

“Mathematics Education in the 4th Industrial Revolution: Thinking Skills for the Future” has 

been chosen as the theme of the conference, which is very timely for this era. The theme 

offers opportunities to reflect on the importance of thinking skills using AI and Big Data as 

promoted by APEC to accelerate our movement for regional reform in education under the 4th 

industrial revolution. Computational Thinking and Statistical Thinking skills are the two 

essential competencies for Digital Society. For example, Computational Thinking is related 

to using AI and coding while Statistical Thinking is related to using Big Data. Therefore, 

Computational Thinking is mostly associated with computer science, and Statistical Thinking 

is mostly associated with statistics and probability on academic subjects. However, the way 

of thinking is not limited to be used in specific academic subjects such as informatics at the 

senior secondary school level but used in daily life.   

For the PME 44 Thailand 2021, we have 661 participants from 55 different countries. We are 

particularly proud of broadening the base of participation in mathematics education research 

across the globe. The papers in the four proceedings are organized according to the type of 

presentation. Volume 1 contains the presentation of our Plenary Lectures, Plenary Panel, 

Working Group, the Seminar, National Presentation, the Oral Communication presentations, 

the Poster Presentations, the Colloquium. Volume 2 contains the Research Reports (A-G). 

Volume 3 contains Research Reports (H-R), and Volume 4 contains Research Reports (S-Z). 

The organization of PME 44 is a collaborative effort involving staff of Center for Research in 

Mathematics Education (CRME), Centre of Excellence in Mathematics (CEM), Thailand 
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Society of Mathematics Education (TSMEd), Institute for Research and Development in 

Teaching Profession (IRDTP) for ASEAN Khon Kaen University, The Educational 

Foundation for Development of Thinking Skills (EDTS) and The Institute for the Promotion 

of Teaching Science and Technology (IPST). Moreover, all the members of the Local 

Organizing Committee are also supported by the International Program Committee. I 

acknowledge the support of all involved in making the conference possible. I thank each and 

every one of them for their efforts. Finally, I thank PME 44 participants for their 

contributions to this conference. 

Thank you  

Best regards  

  

Associate Professor Dr. Maitree Inprasitha  

PME 44 the Year 2021 

Conference Chair   
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SECONDARY MATHEMATICS TEACHERS USE OF 

FACEBOOK FOR PROFESSIONAL LEARNING 

Judy Anderson1 and Blanca Swanson1 

The University of Sydney, Australia 

 

Professional learning is critical for mathematics teachers to support reflective 

practice, and to learn about new ideas, resources and pedagogies. Online 

communities provide opportunities for teachers to engage with other 

practitioners, but to what extent do these sites enable shared understandings, 

mutual engagement, and the development of shared meaning-making 

resources? Little is known about how secondary mathematics teachers interact 

with online groups, and how such groups function for members of different 

levels of engagement. This study used an audit, questionnaire and interviews to 

explore levels of teacher engagement and to investigate the potential for the 

development of an online community of practice. 

INTRODUCTION 

Innovative reforms in practice, such as using inquiry-based pedagogies and 

alternative assessment approaches are less evident in secondary mathematics 

classrooms, particularly if teachers teach the way they were taught (Goos & 

Bennison, 2008). Changing practice is complex. Strategies such as policies 

which mandate new approaches to assessment have been used to change 

practice (Barnes, Clarke, & Stephens, 2000) although not always successfully 

nor sustainably. More successful reform programs employ high quality 

professional learning (Darling-Hammond, Hyler, Gardner, & Espinoza, 2017), 

frequently aiming to develop teacher ownership through shared understandings, 

mutual engagement and the collaborative development of resources.  

Traditionally, teacher professional development involved attending courses, 

seminars and conferences (Lantz-Andersson, Lundin, & Selwyn, 2018), but 

there has been increased recognition of other opportunities for teacher 

professional learning, including through communities of practice, which allow 

for dynamic, collaborative and participant-driven learning (Goos & Bennison, 

2008). Professional learning communities encourage teachers to ask questions 

focused on their practice, which facilitates growth in teachers’ professional 

identities. Regardless of geographical location and potential isolation, social 

media sites provide new opportunities for teachers to share experiences and 

resources, and to create, develop and incorporate innovative pedagogies into 

their teaching practice. It is therefore worth investigating how an established 
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social media site such as Facebook could serve as a space for professional 

learning, potentially leading to an online community of practice.  

This project investigated an existing Facebook group used by secondary 

mathematics teachers in one Australian state. The recent implementation of a 

new mathematics syllabus, including requirements for alternative, inquiry-based 

high-stakes assessment tasks for the final two years of schooling, positioned the 

group in a key period of implementation of new classroom practices. The 

project thus aimed to investigate the question: To what extent can an established 

Facebook group become a community of practice for secondary mathematics 

teacher members of the group?  

LITERATURE REVIEW 

The “community of practice” framework (Lave & Wenger, 1991, p. 10) is used 

to describe a group of professionals who use their social ties and common 

objectives to improve their practice, by building a body of related resources and 

knowledge (Goos & Bennison, 2008; Lantz-Andersson et al., 2018). The 

process of learning in such a community is inherently social; it is achieved 

through observation and participation within the community. Wenger (1998) 

described three key features of a community of practice: the formation of a joint 

enterprise held by the group; the practice of mutual engagement from members; 

and the creation of a shared repertoire of meaning-making resources. Wenger, 

McDermott, and Snyder (2002) noted there are three typical levels of 

participation in a community of practice: core members, who regularly initiate 

group interactions and energise the community; active members, who regularly 

participate in group interactions; and legitimate peripheral participants, who 

learn through observation of the interactions between core and active members. 

The legitimate peripheral participants have the potential to become core or more 

active members since through apprenticeship, they transition from novice to 

expert. 

The rise of the Internet and its enhanced capacity to maintain stable 

infrastructure without external financial patronage, has provided new 

possibilities for teacher networking and collaboration. Consequently, there has 

been a multitude of initiatives designed to utilise online sites for professional 

learning, resource sharing and forming communities (e.g., Lantz-Andersson et 

al., 2018). Researchers have focused on Facebook groups as an opportunity for 

teacher professional learning (Rutherford, 2010), a means to promote teacher 

inquiry, collaboration, and adoption of innovative pedagogies (Goodyear, 

Casey, & Kirk, 2014), and as an “extended staff room” (Lantz-Andersson, 

Peterson, Hillman, Lundin, & Rensfeldt, 2017, p. 54). However, these studies 

have not addressed how Facebook groups can function independently as a 

community of practice, or to what extent participants’ contributions within the 

group might impact classroom practice. While online communities appear to 
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promote the resource and idea sharing that forms the development of innovative 

practice, how effective are they in promoting mutual participation and a shared 

teacher identity? 

In addition, there is little information about how peripheral participants engage 

with online communities, as they often leave no digital trace of their presence. 

This limitation was recognised by Rutherford (2010), who concluded “there is 

no way of knowing if the knowledge of these ‘lurkers’ was affected by simply 

reading the posts of the active group members” (p. 68). Lantz-Andersson et al. 

(2017) argued that peripheral participants might view Facebook groups as 

networks rather than communities of practice, yet they suggested meaningful 

forms of passive engagement could still exist within the group. Also, there is 

limited research about how mathematics teachers engage in online communities, 

despite their potential to model the planning and pedagogy needed to bring new 

ideas and practices into the classroom (Goos & Bennison, 2008), hence the need 

for this study. 

METHODOLOGY 

A case study of teachers’ participation in the Mathematical Association of New 

South Wales (MANSW) Facebook group, a closed group with over 2000 

members was conducted by the authors. Previous research on Facebook as an 

online teacher community has used a range of data collection methods such as 

participant interviews and collecting archival documents (Kelly & Antonio, 

2016), surveys, online participant observations (Goodyear et al., 2014), and 

audits (Lantz-Andersson et al., 2017). Since the project aimed to investigate 

how a specialised Facebook group might support secondary mathematics 

teachers as a community of practice, the combination of an audit, questionnaire 

and interviews was chosen to explore the context. However, due to space 

constraints, this paper only presents data from the audit and questionnaire. 

The audit of the group was conducted, focusing on the posts, comments and 

reactions within a one-year period. Facebook’s Group Insights tool was used to 

find the total number of posts, comments, reactions and members who viewed 

posts per day, as well as information on member demographics. Since the tool 

did not record which members posted to the group, one month was examined 

manually to record the frequency with which members posted to the group. A 

small sample of posts were then analysed with a process of open coding, 

resulting in the formation of 12 descriptive categories of post types. All posts 

within the one-year timeframe were then coded into these categories (see Table 

1). The audit recorded the number of peripheral participants in the group, in 

comparison to previous studies that lacked such data (Lantz-Andersson et al., 

2017). 

After the audit, an anonymous questionnaire was posted to the discussion page 

of the group, seeking information about the underlying motivations of members 
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to participate in the group, as well as their perceptions about how their 

engagement impacted practice. The questionnaire was brief, asking respondents 

to identify: their reasons for visiting the group from a list of possible responses 

derived from the categories developed in the audit; how often they visited the 

group; whether they had seen any ideas or resources in the group that they 

would be interested in using in the classroom; whether they had used any ideas 

or resources from the group in the classroom; how long they had been teaching 

mathematics; and how often they commented or posted to the site. In 

comparison to the audit, surveying participants enabled a greater understanding 

of members’ different levels of engagement.  

For expedience, in contrast to Wenger et al (2002) definitions of core, active 

and peripheral members as representing experts or novices, we chose to initially 

classify members according to their engagement with the Facebook page 

through posting comments or reacting to the posts of others. This categorisation 

was further explored in the questionnaires and interviews suggesting that some 

experienced and potentially ‘expert’ teachers were peripheral participants. We 

argue that the focus of the study was to ascertain engagement and the potential 

for the development of a community of practice regardless of the level of 

expertise of participants. 

RESULTS AND DISCUSSION 

During the audit, posts were categorised into twelve purposes for engagement 

with the Facebook group (Table 1). The audit also provided evidence of the 

three levels of member involvement; over the year, there was an average of five 

posts, 45 comments and 108 reactions submitted to the group each day, showing 

the widening impact of core and active members. However, there was also an 

average of 1200 members each day who viewed posts, with approximately 13% 

of members who saw posts actively responding to them on a given day, and the 

remaining 87% of these members were considered peripheral participants. It is 

therefore crucial to consider how these peripheral users engaged with the group, 

as they appeared to comprise such a high proportion of members. 

Category Number of 

Posts 

% Total 

Sharing a link for discussion 327 18% 

Sharing a link for humour 231 13% 

Sharing resources/teaching ideas 230 13% 

Asking for opinions on teaching 198 11% 

Sharing experience or awards 173 9% 

Asking for resources/ideas 141 8% 

Asking questions about syllabus 135 7% 

MANSW admin/conference information 131 7% 

Offering/asking for employment 114 6% 

Asking for solutions to a mathematics question 80 4% 
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Asking for assessment ideas/advice 51 3% 

Other 16 1% 

Total 1827 100% 
Table 1. Categories of discussion posts over a one year period 

The 120 questionnaire responses were collated and analysed to determine each 

respondents level of engagement. The levels of engagement were defined as: 

core members as those who regularly started discussions, commented on posts, 

and energised the community (11, 9%); active members as those who often 

commented or reacted to posts and occasionally started discussions (53, 44%); 

and peripheral participants as those who mainly read posts without actively 

replying (56, 47%). It is not surprising that more core and active members 

(53%) responded to the questionnaire than peripheral members (47%) given 

their more active engagement with the Facebook group. To investigate the 

extent to which the group supports mathematics teachers as a community of 

practice, the remaining data are presented under the three features of joint 

enterprise, mutual engagement, and a shared repertoire of resources. In each of 

the sections, attention is given to members of varying levels of engagement. 

Joint Enterprise 

Wenger (1998) describes the joint enterprise of a community as the purpose of a 

group as continually redefined and acted upon by its members. While the 

MANSW Facebook group (ttps://www.facebook.com/MathsNSW/) was 

developed for the exchange of information and ideas between members, it is 

important to consider how the group was used by its members. Within a one-

year period, the 1827 posts submitted to the main discussion page of the group 

were analysed to determine the most common ways the site was used. From the 

12 categories identified in Table 1, categories were grouped to provide the main 

uses presented here. 

First, the group functioned as a place for intentional professional discussion. 

While discussions also arose in the comments of other posts, 29% of posts were 

intentionally aimed at either informing or starting discussions, by sharing an 

article related to teaching or asking for members’ opinions on specific aspects 

of pedagogy. For example, the following post asked for opinions on a 

screenshot from one of the new syllabus documents, resulting in 32 comments 

and 66 reactions. The phrase “brains trust” was commonly used in such posts to 

the discussion group, evidencing a culture of collaborative discussion. 

Brains trust, Asymptotes have been discussed here a few times. What do we think 

of this definition, from the Glossary attached to the new syllabus? 

Second, the group acted as a space for individual teachers to seek specific help 

from a larger body of mathematics teachers – 22% of posts asked for resources, 

assessment advice, and clarifications about the syllabus, or solutions to specific 
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mathematics questions. The following post had 35 comments and 18 reactions, 

including teachers offering to share a Google Drive of resources. 

I'm trying to come up with an alternative assessment task for my Year 12 Ext 1 

class. Any ideas? I'm struggling! 

Third, the group functioned as a social space for mathematics teachers, with 

22% of posts used to share mathematics memes or jokes, personal experiences 

and pictures of conferences, or to celebrate members who had won awards. 

Fourth, the group was a place for individuals to offer resources or ideas to the 

community, as seen in 13% of posts. The group was also used by the MANSW 

executive to share information about conferences or administration (7% of 

posts) or for people to ask or offer employment (6% of posts). These posts 

generally had fewer interactions from other group members.  

Each of these categories can be broadly considered to support the stated purpose 

of exchanging ideas and information in the group. However, members who 

posted directly to the group have expanded upon the set purpose to collectively 

start professional discussions, support teachers in need and share among other 

practitioners: essentially, to engage in collective professional learning. There 

was also a strong emphasis on posting for the benefit of the wider collective, 

rather than the group functioning simply as a get-help site for individual 

questions. 

To gain further information about the use of the group from members who did 

not post directly to the discussion page, the questionnaire asked participants 

why they visited the site. From the 120 questionnaires, many provided more 

than one response but the most common selected categories were “to stay 

connected to other mathematics teachers” (83%), “to find resources” (79%), and 

“to ask a question about the syllabus” (47%). It is worth noting the passive 

nature of the two most common responses, which indicates many members visit 

the page regularly to benefit from reading existing posts.  

Considering the responses of the peripheral members in more detail, there was a 

greater difference between the top two categories and the rest of the responses, 

as can be expected considering their observatory habits. Other differences for 

peripheral members indicated the top category was to “find resources/ideas” 

rather than “stay connected”. Ultimately, data from the audit and questionnaires 

reflected a common purpose of member participation with the group: to connect 

with like-minded practitioners for community and professional learning. The 

joint enterprise was thus evidenced among members of all levels of 

participation, despite their varying levels of engagement.  

Mutual engagement from members 

Relationships of mutual engagement are a key component to understanding how 

a network of people is united into a single social entity: in essence, how the 
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group functions as a community. In the MANSW Facebook group, engagement 

was expressed primarily through the main discussion page as users reacted to, 

and commented on, others’ posts. Throughout the year, there was an average of 

eight comments and 20 reactions per post, which demonstrates a high level of 

community engagement. The nature of the Facebook group as a digital space 

also enabled mutual participation between members of different geographical 

backgrounds, although a clear majority (67%) of the members originated from 

the Sydney metropolitan area.  

However, it should be acknowledged that many members of the group do not 

participate in mutual engagement to the same extent as the small group of core 

and active members. To obtain the frequency of members posting to the 

discussion page, March 2019 was chosen for detailed analysis because it was 

early in a new school year when a new syllabus was being implemented for the 

first time. In this month, there were 200 posts, 2429 comments and 4709 

reactions submitted to the group. Each day, there was an average of seven posts, 

78 comments and 152 reactions submitted, with 1485 members viewing posts at 

some point in the day. The posts submitted to the discussion page originated 

from 115 different members of the group, with 81 members only posting once 

in the month. This suggests that most members do not engage by actively 

posting to the group, and that even members who do post to the group do so 

infrequently. Yet, it would be unwise to underestimate the engagement of 

peripheral members. In a community of practice, all members, including 

peripheral participants, learn through watching the interactions between active 

and core members (Wenger et al., 2002). Indeed, online sites provide a powerful 

space for people to view these discussions, which are digitally preserved and 

visible to all members despite location or time.  

The important practice of observation was exercised frequently by most 

members of the group, as evidenced by the questionnaire. Ninety-three percent 

of those surveyed checked the group multiple times a week, with 58% of 

respondents checking the group at least once a day. Facebook’s Group Insights 

corresponded with the data, showing that for any given day, an average of 58% 

of the total members were viewing the group. Furthermore, frequent observation 

was common across members from all levels of engagement. In particular, 86% 

of peripheral members checked the group multiple times per week, with 46% 

viewing the page at least once a day. Notably, Wenger et al. (2002) argued if 

observation is frequent, peripheral members are not as passive as they appear, 

despite limited records of engagement. They explained, “like people sitting at a 

café watching the activity on the street, [peripheral members] gain their own 

insights from the discussion and put them to good use” (p. 56). 
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Shared repertoire of meaning-making resources 

Sharing resources was a key function of the MANSW Facebook group; it was 

the third highest category (13%) of posts observed in the audit. The frequency 

of this category is especially notable when considering the comparative effort of 

each category of posts. Sharing links to Facebook is relatively easy; in contrast, 

resource sharing requires members to find or create a resource and take the 

initiative to share it, unprompted, with the group. An additional 11% of posts 

were submitted to ask for resources or ideas, which had a high level of response 

in comments by other members of the group. Furthermore, 79% of 

questionnaire respondents nominated “finding resources,” as the main reason 

for visiting the site. Evidently, the repertoire of meaning-making resources 

created by the group is important to core, active and peripheral members.  

It is important to recognise that the resources created by a community of 

practice do not only consist of actual lesson plans or pedagogical ideas, but also 

the shared competencies and knowledge collectively produced by the group 

(Wenger, 1998). Shared competencies in the MANSW Facebook group, were 

evidenced through teachers contributing to knowledge on interpreting syllabus 

documents, marking solutions to mathematics questions, and textbook selection. 

Thus, the professional discussions held by the group, particularly to develop 

collective interpretations of the syllabus, should also be considered as part of 

the created shared repertoire.  

CONCLUDING REMARKS 

The qualities of a community of practice (Lave & Wenger, 1991): joint 

enterprise, mutual engagement between members, and the creation of a shared 

repertoire of meaning making resources, were all evidenced within the 

interactions of the MANSW Facebook group. However, in considering how the 

group supports mathematics teachers as a community of practice, there must 

also be an acknowledgement of the fundamental ongoing processes of 

observation and learning within the group that leave little digital trace. The 

project found evidence to confirm significant professional learning among 

peripheral members of the group, demonstrating that online communities should 

be considered as a powerful form of professional learning across members from 

all levels of engagement.  It should be acknowledged that the project examined 

a single case study of a closed Facebook group for mathematics teachers in 

NSW, over the course of one year. Data from the interviews and questionnaire 

were also reliant on participant self-reporting, which may be affected by 

unconscious bias or deliberate self-censoring. However, its findings are relevant 

in recognising that social media sites can lead to an online community of 

practice.  
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Beliefs that teachers hold about mathematics teaching and learning are the 

most investigated domain in affect-related research. These beliefs can be 

contradictory and thus lead to dilemmas that play a crucial role in shaping how 

a teacher changes her practice. In this paper, we give an account of how such 

contradictions have been addressed in literature and then propose a worldview 

lens to analyse the dilemmas of four teachers enrolled in Professional 

Development (PD) programs. 

INTRODUCTION: BELIEFS AND PRACTICE 

Beliefs are propositions about a certain topic that are regarded as true (Philipp, 

2007), and tend to form clusters as they “come always in sets or groups, never 

in complete independence of one another” (Green, 1971, p. 41). According to 

Green (1971), belief clusters are coherent families of beliefs across multiple 

contexts. Thus, beliefs have a systemic nature. Affect-related research has 

provided evidence that beliefs have observable behavioural consequences (e.g., 

Di Martino & Zan, 2011), and a change in a teacher’s beliefs is likely to result 

in a change in their practice (Leder, Pehkonen & Törner, 2002), suggesting a 

dialectical relationship between change and beliefs in that one influences the 

other (Buehl & Beck, 2015). One of the challenges with this, however, is that 

such a dialectic relationship can lead towards the emergence of tensions 

between belief clusters. In this paper we are interested in looking closely at such 

tensions, to better illuminate the role of beliefs in shaping teachers’ behaviour.  

THEORETICAL FRAMEWORK 

The systemic nature of teachers’ beliefs can be understood in terms of “world 

views” (Grigutsch, Raatz & Törner, 1998), or epistemological beliefs about 

mathematics (Hofer & Pintrich, 1997), including its teaching and learning. 

According to Grigutsch et al. (1998), it is possible to outline four different 

world views (see also Liljedahl, Rolka & Roesken, 2007): a process-oriented 

view that represents mathematics as a creative activity consisting of problem 

solving using different and individual ways; an application-oriented view that 
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represents the utility of mathematics for real world problems as the main aspect 

of the nature of mathematics; a formalist view that represents mathematics as 

characterised by a strongly logical and formal structure; a schema-oriented view 

that represents mathematics as a set of calculation rules and procedures to apply 

for routine tasks. Even from the sketchily description, we can notice how world 

views are strongly linked to practice. 

Each teacher’s beliefs, thus, belongs to (at least) one world view (Erens & 

Eichler, 2019), as teachers’ beliefs are organised in systems of beliefs (Fives & 

Buehl, 2012; Green, 1971; Philipp, 2007). One aspect of a belief system 

relevant for our research is that beliefs are organized in clusters that are not 

necessarily logically connected. The fact that beliefs can be contradictory (Fives 

& Buehl, 2012) allows the possibility for teachers to hold beliefs that belong to 

different clusters. Skott (2015) suggests, however, to interpret possible 

contradictions in teachers’ belief systems not merely as incoherence, but rather 

to consider the different contexts in which beliefs are evoked. As “beliefs are 

expected to significantly influence the ways in which teachers interpret and 

engage with the problems of practice” (Skott, 2015, p. 19), they cannot be 

exhaustively described by one cluster of central beliefs. Given the complexity of 

teaching and the variety of stakeholders (e.g., students, parents, colleagues, the 

Ministry of Education), teachers usually show a coexistence of more than one 

cluster of beliefs (Erens & Eichler, 2019). 

These considerations shed light on two intertwined features of teachers’ beliefs: 

they are subjective in nature and individually held, but at the same time they are 

(or can be) socially and contextually shaped. The context plays a crucial role in 

evoking beliefs, for example a teacher, talking with a colleague (context 1), 

might show some beliefs that are different from, or even in conflict with, the 

ones she enacts in class (context 2) (e.g., Fives & Buehl, 2012). Our research 

hypothesis is that, even in the same context, contrasting beliefs may emerge. 

Namely, beyond Skott’s (2015) findings, we aim at exploring the existence of 

beliefs that emerge in the same contexts but are in conflict with each other, 

almost like anti-clusters, and this reverberates in a teacher’s practice, as change 

in a teacher’s practice can be understood as an attempt to balance contrasting 

world views held by different stakeholders (Andrà, Rouleau, Liljedahl & Di 

Martino, 2019). In order to frame this, we refer to research on teachers’ 

tensions. 

Lampert (1985) understood tensions as problems to be managed, rather than 

solved, characterising teachers as “dilemma managers”, who find ways to cope 

with conflict between equally undesirable (or desirable but incompatible) 

options without necessarily coming to a resolution. For Lampert (1985), the 

ongoing internal struggles presented by the tensions arise from and contribute to 

the developing identity of the teacher, and as such they have value in 

themselves. For Chapman and Heater (2010), “Meaningful change can occur 
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when the process is initiated and rooted in the teacher’s experience based on a 

tension in self and/or practice that is personal and real to him or her” (p. 456).  

We further suggest that tension research applied to beliefs can offer a new 

insight into the frustrations and needs of the classroom and the changes that 

result. Furthermore, recognition of the tension inherent in teaching can help us 

as researchers in better understanding those apparently inconsistent behaviors 

we observe, and what might be construed as minimal or no change could be 

recast as a rational decision that weighed the practicality of the change against 

its potential consequences (Andrà et al., 2019). Our aim with the research 

presented here is to understand the tension(s) between different world views. 

Tensions may emerge when teacher beliefs are challenged, for example during 

PD. Our research questions are as follows: When does a tension between world 

views emerge? How does a teacher cope with tensions? How does a tension 

reverberate in a teacher’s practice? 

METHODOLOGY 

The participants for this study come from a set of more than 200 teachers who 

participated in PD sessions led by one of the authors in 2016. Of them, 26 

volunteered to be interviewed at the end of the sessions. The relatively limited 

number of interviewees is due to the fact that researchers aimed at conducting 

extended interviews, which were semi-structured, lasted 30 to 60 minutes, were 

audio-recorded, and then fully transcribed. The structure of the interview aimed 

at letting beliefs emerge through the narrative rather than by direct questioning. 

For example, we invited the teachers to describe their school, the relationship 

with their colleagues, and with parents. Preliminary analysis of each of these 26 

transcripts revealed that 19 expressed beliefs belonging to different clusters. To 

note, this confirmed Fives & Buehl’s (2012) study that teachers often hold 

beliefs that can be contradictory. Further analysis revealed that the ways in 

which the teachers coped with this fell into one of four categories - (i) ignoring 

the conflict, (ii) internal struggling, (iii) balancing two worldviews, (iv) 

resolving the conflict. In what follows we present a deeper analysis of four 

prototypical cases, one selected from each of the aforementioned categories. 

Teachers’ fictitious names are, respectively: Vicky for case (i), Julia for (ii), 

Ron for (iii) and Mary for (iv). 

In analysing the verbatim transcribed interviews, we used a qualitative coding 

method (Mayring, 2015), based on Erens and Eichler’s (2019) four deductive 

categories described in their coding manual. Examples of statements coded as 

application-oriented view are: “mathematics helps to solve tasks and problems 

that originate from daily life”, “the ideas of mathematics are of general and 

fundamental use to society”, and “a sound knowledge of mathematics is very 

important for students in their whole life”. Examples of statements coded as 

formalist view are: “logical strictness and precision are very essential aspects in 

mathematics”, “mathematics is a logically coherent edifice free of contradiction 
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consisting of precisely defined terms and statements which can be 

unequivocally be proven”, and “in mathematics students must use mathematical 

terms correctly”. Examples of statements coded as process-oriented view are: 

“there is usually more than one way to solve a task or problem in mathematics”, 

“in order to comprehend and understand mathematics, one needs to create or 

(re-)discover new ideas”, and “everyone is able to (re)invent or to comprehend 

the central ideas of mathematics”. Examples of statements coded as schema-

oriented view are: “Mathematics consists of memorising, recalling and applying 

procedures”, “doing mathematics demands a lot of practice in adherence and 

applying to calculation rules and routines”, “nearly any mathematical problem 

can be solved by the direct application of familiar rules, formulas and 

procedures”, and “to solve a mathematics task, there is mostly a unique way of 

solution which needs to be found”. These examples are taken from Erens and 

Eichler’s research. Each teacher’s statement has been assigned a world view by 

one of the authors, and the other authors independently agreed or disagreed. In 

case of disagreement, discussion among the authors took place, until consensus 

has been reached. 

RESULTS AND ANALYSIS 

As teachers talk about (aspects of) their practice in their interviews, we analyse 

the tensions between worldviews that emerged. For Vicky and Julia, tensions 

emerge between two coexisting views, whilst for Ron and Mary the tension is 

provoked by an external agent. Julia and Mary significantly change their 

practice, Ron introduces a new practice but still employs the ‘old’ one, and 

Vicky does not show change. 

Vicky: When asked to talk about her teaching method, Vicky commented that 

she does not “have a specific one: it is different for each class, because each one 

is different. […] I propose problem-based group activities, where math and 

physics are applied to everyday life”. An application-oriented view emerges 

from Vicky’s words, as mathematics helps to solve problems originating from 

daily life (see examples of codes). Vicky, then, referred to one of her classes: 

The characteristic of this class is that the traditional lessons annoy them, hence I 

started to propose group activities dedicated to the study of physical phenomena 

applied to real situations. The result has been excellent: the students have 

developed a high sense of critique and above all they have cooperated together for 

solving the given problems. Every activity has been welcomed with absolute 

enthusiasm. 

In the last excerpt, a process-oriented view, which values solving problems in a 

creative way, emerges in one of Vicky’s classes. When talking about her 

teaching, and referring to her specific classes, two different views of 

mathematics emerge for Vicky, but there seems to be no tension lived by the 

teacher. It is as if they can coexist. Overall, Vicky’s teaching orientation could 
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be interpreted as being a means to an end to achieve application and process-

oriented views. These two belief clusters coexist and the reason why Vicky does 

not live a conflict may reside in a lack of awareness about their differences, or 

more likely in a worldview that tries to accommodate these differences. 

Moreover, Vicky’s teaching practice is a blending of problem-based activities 

originating from everyday life and solved in creative ways. Her reference to a 

specific class suggests that, in other classes, she may opt for a mostly 

application-oriented view, as she declares that she adopts different methods in 

different classes. 

Julia: A completely different picture emerges from Julia’s words. In her 

interview, she does not refer to a specific class or situation, but she makes a 

general statement about an uncomfortable internal struggle:  

I really struggle when I see a student struggling to try and figure out a problem. I 

have a really hard time not giving them the answer as an example, and then letting 

them go from there, it’s very — yeah. I really struggle with watching them 

struggle, I guess. 

This excerpt can be interpreted in terms of a tension between a process-oriented 

view (struggling with new ideas, finding one’s own path to solve a problem), 

and a schema view, according to which nearly any mathematical problem can 

be solved by the direct application of familiar rules, formulas and procedures 

and as such it may encourage a teacher to give the students the answer. Julia is 

well aware of the conflict. Like Vicky, she does not mention any external force 

that pushes her to act in a way that contrasts with her beliefs (e.g., she does not 

mention any PD session she attended, where she was faced with either 

alternative of teaching): rather, the two views, which are specific to the role of 

the teacher in problem solving, coexist in her belief system and the dilemma can 

be read mainly as her own, subjective elaboration. We can further see that, in 

her practice, Julia opts for the process-oriented view, as she tells us that she 

does not intervene. 

Ron: After having attended a PD session, Ron referred back to his first 

experiences of teaching: “When you're a young teacher, you love having all the 

lessons and your notes set and all that and all this is great, got it all set.” Ron 

seemed, from this quote, to adopt a formalist view, according to which 

mathematics is a logically coherent edifice consisting of precisely defined terms 

and statements. A formalist view blends with a schema-oriented one, as Ron 

further acknowledged that students like taking notes. However, also a non-

formalist and non-schema view emerges, as he added: “I was getting tired of 

giving notes, giving lessons and just having them sit there and do it and observe. 

Because my thinking was they can get these notes anywhere”. These words 

suggest that Ron came to PD with an emerging tension, seeking for a way to 

sort it out. In fact, Ron recognised that, “once you've been doing that for a short 
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while, you just, you realise it's kind of limiting”. Ron’s belief system was in 

motion, and the timing of the interview allowed us to capture this. A new view 

of mathematics was emerging: 

Getting the students to do the work in class so that you know, even if they only 

get one or two problems, they really got it. And just so that, if they have to come 

in and think. I mean, I have to come in and think too because I don't really have to 

think if there's a [conventional] lesson. In a conventional lesson, I already know 

what to say and do. 

A process-oriented view, according to which in order to understand 

mathematics one needs to create or re-discover new ideas, started to take form 

in Ron’s orientations, and was valued. In Ron’s words, not only the students 

have to “come in and think” during problem solving, but also the teacher has to 

do the same, whilst he does not “really have to think if there is a [conventional] 

lesson”. However, Ron has not abandoned his previous, schema-oriented view 

as he mentioned: 

A few of them [the students] would say to me that they like notes and so 

sometimes I would say, okay let's do that and then I would always tell them, see 

why I don't do this anymore. Some students said to me they liked the mini-lesson 

before, which is fair enough. But sometimes it's the questions that get you 

thinking in the first place, so I think it's fair enough to balance. 

Ron uses the verb “to balance” to represent his way of living with the tension 

that is provoked by some of his students’ preference for notes and formalism, 

which contrasts with his love for more engagement and thinking. Here, an 

important feature of tension emerges, that is: tensions are dilemmas that often 

cannot be resolved. In Ron’s practice, this results in a mixture of teaching 

methods: sometimes students are exposed to ‘mini-lessons’ and take notes, 

while other times they ‘come in and think’. As for Vicky, coexistence of 

different views mirrors the one of different practices. 

Mary: Mary had been accustomed to strictly adhering to grade 1 curriculum in 

grade 1, and grade 2 in grade 2, without mixing up the content (a schema-

oriented view). Participating in a PD session created a tension that caused her to 

change her mind. She acknowledged a change from before the PD, when she 

had a schema-oriented view of curriculum, to the present, as she now had a 

process-oriented view of mathematics, which involves a shift of attention to 

problem-based mathematical activities in her lessons, rather than being too 

much concerned about the constraints of curriculum. In Mary’s words, the 

tension between these two views seems to be resolved: 

It just freed up boundaries, I would say, like this is a grade one, this is grade two. 

You don’t teach grade two in grade one. (laughs) It's just now that we’re doing 

problem-solving activities it just naturally comes out and students that are ready 

will do it and students that are not ready just won’t. The students can only learn at 
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their own pace or at their own development level and I’m okay with that. Before, I 

used to worry but now, it’s just, — Okay. 

The tension, currently resolved, initiated a change in Mary’s practice and in 

certain belief clusters. Unlike Ron, for Mary there was not an external force 

prompting her to compromise, at least to a certain extent, between two 

worldviews, she abandoned the ‘old’ one and tension resolved. Differently from 

Vicky, Mary was aware of the conflict: she contrasted the two views explicitly 

in her account. Similarly to Julia, Mary makes a choice (her practice originating 

from that choice), but unlike Julia, Mary does not live uncomfortably with a 

struggle beyond her actions. 

DISCUSSION AND CONCLUSIONS 

The four prototypical cases allow us to exemplify some important features of 

tensions among belief clusters, and to attempt an answer to our research 

questions. Tension emerges when the teacher sees the conflict between different 

views, but is unable to resolve it. Teachers can live an internal struggle, or try to 

balance. There is no tension when the teacher ignores, or resolves, it. Tensions 

can be occasioned by PD, or emerge as the teacher encounters her classes and 

reflects upon her practice. An interesting case is Ron, who started to live a 

tension before PD and PD showed a way to (partly) solve it. For Mary, PD 

provoked a tension as it introduced a new worldview. Whilst Mary’s case show 

that ‘old’ worldviews can be abandoned and the tensions can be resolved, 

resulting in a significant change in practice, Ron’s case show that ‘old’ and 

‘new’ views can find a way to coexist in a teacher’s practice, as Ron’s practice 

is a compromise between ‘come and think’ and ‘take notes’, since the schema-

view has not been completely abandoned. We remark that, without a tension 

lens, Ron’s choice would have been interpreted in a different way, namely as 

beliefs’ resistance to change. For Mary’s, Julia’s and Ron’s cases, we can say 

that we see a change in their practice, but we can also see the struggle behind it. 

For Vicky, we see no change and she blends different world views in her 

practice. In order to enrich the discussion, we summarise our results in Table 1, 

where we further distinguish between existence of external forces and ‘pure’ 

internal conflicts. 

Table 1: Ways of dealing with beliefs belonging to contrasting world views 

 Internal contradiction External force(s) 
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There is 

tension 
…when the teacher values ideas, 

practices, behaviour that belong to 

different belief clusters and she is 

aware that they are in conflict (e.g., 

Julia).  

For Julia, there is change. 

…when someone has different beliefs, 

and the teacher values the point of view 

of these people, she cares to have a good 

relationship with them and she sees the 

conflict (e.g., Ron).  

For Ron, there is partial change. 

There is 

no 

tension 

…when the teacher lives with ideas, 

practices, behaviour that do belong 

to contrasting belief clusters, but this 

is not a problem for her (e.g., Vicky).  

For Vicky, there is no change. 

…when new experiences provoke a 

teacher change and tension between the 

old and the new is resolved (e.g., Mary).  

For Mary, there is change (resolving 

tension in favour of the new one). 

 

Focusing on external forces, we notice a dual nature of world views: on one 

hand, they are subjective and internal to an individual person. They may conflict 

with external sources but are - in terms of cognition - cognitive traits (Erens & 

Eichler, 2019). On the other hand, however, if we consider the case of Ron, the 

formalist view which is tied to taking notes is also shared by Ron’s students, 

and valued both by the teacher and the students. This view belongs to the 

teacher’s beliefs system and to the ‘external’ source. Also, the process-oriented 

view, which resulted in breaking the boundaries among grade-specific curricula 

for Mary, was shared by the PD facilitator. This suggests that a teacher’s world 

views can be altered by tension from external forces. Our data, thus, do not 

allow us to discard the central role of the social context not only in mirroring a 

person’s belief system, but most importantly in dealing with contrasting world 

views and resolving (or balancing) the tension. This poses a question which 

deserves further investigation: Does an external force provoke a tension only if 

teachers hold the same view as the external force? Our preliminary results 

suggest the answer to this might be ‘yes’. A follow up study will confirm this 

and it will reveal the incidence of each prototype in a much larger sample of 

teachers. 
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We focus on the role of signs in the process of constructing proofs by 

mathematical induction of high-achieving post-graduate students. Using a 

multimodal semiotic perspective, speech, written inscription (symbols, 

drawings, etc.), and gestures are analysed, and two particular categories of 

signs are identified and observed: linking signs and iteration signs. We analyse 

what these signs reveal and how the students use them to formulate a conjecture 

and to structure the proof by mathematical induction. 

INTRODUCTION 

The analysis of signs offers an interesting access to mathematical thinking and 

has promoted the discovery of interesting processes with important didactical 

implications. In the last decades the semiotic analysis has been integrated by the 

study of gesture that has enriched research in different areas of mathematics 

education and, recently, the studies on argumentation and proof (see, for 

example, Edwards, 2010; Arzarello and Sabena, 2014; Krause, 2015; Sabena 

2018). In particular, Arzarello and Sabena show that gestures can contribute 

“not only to the semantic content of mathematical ideas, but also to the logical 

structure that organizes them in mathematical arguments” (Arzarello & Sabena, 

2014, p. 76). Along the same line, Krause (2015) analyses the gestures produced 

during an activity involving reasoning by induction by grade 10 students who 

had not studied mathematical induction at school and states that gestures “give 

visual access to the structure of a reasoning action” (Krause, 2015, p. 1432). 

The study presented in this paper is part of a wider research on proving by 

mathematical induction of post-graduate, undergraduate and secondary students. 

In particular, in this paper, we focus on signs in post-graduate students’ 

processes involved in the generation of a conjecture and of proof by induction.  

THEORETICAL FRAMEWORK 

In a multimodal perspective, we consider that thinking and learning processes 

involve simultaneously different kinds of signs (mathematical symbols, 

diagrams, sketches, language, gestures, etc.). Arzarello (2006) considers these 

different kinds of signs as an inseparable unit and defines a semiotic bundle as a 
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dynamic structure consisting of different semiotic sets and relationships among 

them. Two main types of analysis are carried out on a semiotic bundle: a 

synchronic analysis of relationships between different kinds of signs activated 

simultaneously and a diachronic analysis of evolutions of signs activated over 

the time.  

In this paper, we analyse the semiotic bundle made of three semiotic sets - 

speech, written inscriptions (symbols, drawings, etc.) and gestures - in the 

production of a conjecture and of a proof by mathematical induction. The 

analysis of complex units of signs has enabled the identification of new 

interesting processes in argumentation and proof. In particular, Sabena (2018, p. 

554) provides empirical evidence that “gestures may contribute to carrying out 

argumentations that depart from empirical stances and shift to a hypothetical 

plane in which generality is addressed”. Sabena, Radford and Bardini (2005) 

observe that a deictic gesture used by a grade 9 student to point at a figure on 

the sheet becomes a gesture in the air and identify a crucial role of a progressive 

detachment of gestures from a sheet in generalization processes. Similarly, 

Krause (2016) proposes a classification of gestures in three levels (concrete, 

potential, and general) according to their detachment from a concrete 

inscription. Gestures of level 1 refers concretely “to something actually 

represented in a fixed diagram” (e.g. pointing to the sheet). Gestures of level 2 

potentially “depict new entities in an established diagram” but they need to be 

considered as embedded in it (e.g. gesture of rotating a figure). Gestures of level 

3 are general gestures performed in the gesture space. They are detached from a 

concrete level and their interpretation is general, i.e. not dependent on a 

“present referential frame” (Krause, 2016, p. 138). 

In our study, we also refer to the classic distinction of gestures into iconic, 

metaphoric, deictic and beats (McNeil, 1992). We will use these classifications 

and synchronic and diachronic analyses to investigate processes of construction 

of a proof by induction. 

Linking and Iteration Signs in Mathematical Induction 

A proof by mathematical induction of a proposition nN, P(n) consists in a 

proof of the base case P(0) and of the inductive step nN, P(n)→P(n+1). 

Referring to the theory of natural numbers and to the logic theory, we know that 

the validity of the base case and of the inductive step guarantees that P(n) holds 

for all natural numbers. Usually, a non-formal explanation is that from the 

propositions P(0) and P(0)→P(1) it follows P(1) by modus ponens; from P(1) 

and P(1)→P(2) it follows P(2), and so on. In other words, this process can be 

iterated to cover all the natural numbers. In this paper we aim to investigate 

signs that reveal and support the construction of the inductive step and the 

iteration in the generation processes of a conjecture and of proof. Constructing 

the inductive step requires the consideration of two cases (P(n) and P(n+1)) and 
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their relationships. The iteration requires the consideration of the possibility to 

repeat the inductive step. Thus, in particular, we look for and analyse: 

• signs produced or used to refer to two or more entities (objects, 

mathematical objects, problems, situations, etc.) and to their 

relationships, where these entities are seen in connection with two 

consecutive natural numbers. For these we use the term linking signs;  

• signs that refer to iteration, or that are composed by a repetition (in 

time or in space) of linking signs, or that refer to a repetition of them. 

For these we use the term iteration signs.  

Examples of linking signs can be found in usual algebraic manipulations. For 

instance, in the construction of the proof of the formula for the sum of the first n 

consecutive natural numbers it is common to use the sign (1+2+…+n)+(n+1). 

This sign links the case n with the case n+1 and prepares the proof of the 

inductive step. Some examples of the iteration signs are the verbal “and so on”, 

or the image of falling dominoes.   

In this study, our goal is to look for the presence of linking and iteration signs, 

and to investigate what they reveal, in the process of generating a conjecture 

and a proof by induction, and considering not only mathematical symbols but a 

wider variety of signs, as speech, written inscriptions, and gestures.  

METHODOLOGY 

This is a qualitative study based on interviews in which students were asked to 

solve 4 problems and then to speak about mathematical induction. Data consist 

of audio, video recordings, and of written inscriptions produced by the students. 

The subjects were 1 high-achieving post-graduate student in the Master’s course 

in Mathematics and 4 doctoral students in Mathematics. They were interviewed 

individually by the second author of this paper, for approximately 70 minutes 

each. They were neither aware of our interest about their written inscriptions 

and gestures nor of our focus on proof by mathematical induction. In this paper 

we will refer to the following problem: 

“Consider a 2nx2n chessboard. What is the maximum number of squares which 

can be tiled with L-shaped pieces composed of 3 squares each?”  

The solution is that it is possible to tile the entire 2nx2n chessboard except for 

one square, for any natural number n. This can be proved by mathematical 

induction on n. 

CASE ANALYSIS 

Giuditta is a post-graduate student in the Master’s course in Mathematics. In the 

first 10 minutes of the interview she produces some drawings and recognises 

that for reasons of divisibility it is not possible to completely tile any 

chessboards. By minute 10:00 she has sketched an 8x8 chessboard (n=3) and 

determined a tessellation which covers every square except one. The 
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interviewer then asks her if this property is also valid in other cases, for 

example in the case 16x16. In the transcript, Giu stands for Giuditta and with 

italics we describe gestures in the moments when they occur. 

1 Giu: 16 by 16 (with her left middle finger and the tip of the pen in the 
right hand she points to two vertices of the 8x8 chessboard drawing, 
Fig. 1a). 

2 Giu: but, then I have another three (she keeps her left middle finger on 
the vertex, and with the pen in the right hand she indicates 
respectively to the right, upper right, and above the drawing of the 
8x8 chessboard, Fig. 1b,c,d) of these (she points with the pen to the 
drawing of the 8x8 chessboard) squares here (she moves the tip of 
the pen along the perimeter of three imaginary squares in the three 
places she has indicated before, Fig. 2). 

The synchronic analysis of the bundle produced in line 1 reveals an interesting 

element. In this moment, on the sheet there is the drawing of the 8x8 chessboard 

and no other written inscriptions referring to a 16x16 chessboard. Giuditta says 

“16 by 16” and at the same time points to two vertices of the drawing of the 8x8 

chessboard (fig. 1a). She refers to something through her speech and to 

something else through her gesture: this is a case of speech-gesture mismatch 

and Goldin-Meadow (2003) highlights the cognitive potential of a mismatch in 

the representation of a new idea. In this case, pointing at the drawings of the 

8x8 chessboard is co-timed to saying “16 by 16”. The bundle and the mismatch 

offer Giuditta the possibility to represent simultaneously two different 

chessboards (8x8 and 16x16).  

  

Figure 1: Gestures in line 2. 

The diachronic analysis allows us to look at the evolution of signs. In line 2, 

Giuditta produces signs connecting the chessboards. She keeps the left hand still 

on the drawing of the 8x8 chessboard (deictic gesture of level 1) and with the 

right hand she points to three places on the sheet (fig. 1b,c,d). Then she moves 

the tip of the pen along the sides of three imaginary squares in the three places 

she has just indicated. In summary, four 8x8 chessboards are represented: one 

by a written inscription, and three by speech and gesture (fig 1 and 2). These 

gestures represent something new into the inscription and are therefore gestures 

of level 2. The bundle speech-inscription-gesture represents a 16x16 chessboard 

composed by four 8x8 chessboards and, as a unit, can be considered a linking 

sign referring to the two chessboards and to their relationships. This linking 
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sign, at this point, allows Giuditta to access the connections between the 

tessellation problem in the case n=3 (8x8) and in the case n=4 (16x16): 

 

Fig. 2: Pointing with the left hand to the drawing of a 8x8 chessboard, Giuditta 

follows with a pen (without marking) the perimeter of 3 squares.  

3 Giu: And then there would be left out one, one, one and one (she points 
to the drawing of the 8x8 chessboard on the sheet and to the other 
three she has in mind) [omissis]. And so I would think to put three 
of them together, somehow. And then, there would always be one 
left out? 

Giuditta conjectures that the 16x16 chessboard can be tiled except for one small 

square (a square 1x1) and imagines doing it by using the tessellation of the four 

8x8 chessboards. In each of them, one small square would be left out, thus 4 

squares in total, but three of them can be covered with an L-shape tile. 

Therefore, also the 16x16 chessboard would be tiled except for one little square. 

Her linking sign has a crucial role in the conjecture generation. In particular it 

enables Giuditta to anticipate the fact that the 16x16 chessboard can be tiled 

using the tessellation of the smaller one “somehow” (she doesn’t know in which 

way and the conjecture is expressed as a question). At this point, Giuditta 

focuses on verifying her conjecture for n=1, n=2 and then for n=0. Differently 

from her reasoning in line 3, these cases are each tiled independently, without 

connections between them. Then she claims to be convinced of the truth of her 

conjecture. In argumentation process, new signs enrich the bundle: 

4 Giu: So, what I was thinking (the drawing of the 4x4 chessboard, Fig.3a, 
is extended into a new drawing, Fig. 3b) was that to come, to move 
forward from n=1 (she makes an arc-shaped gesture in the air from 
left to right, Fig.3c,d) to n=2 (with her left middle finger she points 
to a drawing of a 2x2 chessboard) practically (with the right hand 
she points specifically to three squares of the drawing of the 2x2 
chessboard, see arrows in Fig. 3e) I have to put another three 
identical little squares (she draws two lines on the drawing in Fig. 
3b obtaining the drawing of Fig. 3f). 
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Figure 3: Gestures and written inscriptions in line 4 (a,b,c,d,e) and in line 5 (g).  

Fig. 3e indicates where Giuditta points to on the sheet. 

 

In this excerpt, Giuditta produces three linking signs that become the object of 

her exploration. The first is the drawing of a big square (fig. 3b) as extension of 

the drawing of the chessboard 4x4 (already on the sheet, fig. 3a). The second is 

the gesture in the air from left to right (fig. 3c,d). The third is the bundle 

composed by the deictic gesture with her left middle finger pointing to the 

drawing of the 2x2 chessboard and the gesture made by the right hand referring 

to the action of adding three small 1x1 squares to build a 2x2 chessboard up 

from a single square. The gesture from left to right is iconic and refers to a path, 

but can also be interpreted as a metaphoric gesture of level 3. This gesture is 

detached from a concrete inscription and it is co-timed to the verbal “to move 

forward from n=1 to n=2”. This gesture appears here for the first time and does 

not refer to any drawings, any chessboards or tessellations. With this, Giuditta 

doesn’t refer to the specific aspects of the relationship between a smaller 

chessboard and a bigger one, neither to the relationship between tessellations. 

Rather, the gesture represents metaphorically the transition between two cases, 

i.e. the inductive step. The structure of the argumentation is thus emerging. The 

analysis of the bundle shows the genesis of linking signs with different levels of 

generality and in reference to different cases: the verbal “from n=1 to n=2”; the 

written inscription linking the drawings of the 4x4 and the 8x8 chessboards 

(from n=2 to n=3, see fig. 3a,b,f); the gesture (level 2) linking the drawing of 

the 2x2 and 1x1 chessboards (from n=1 to n=2, see fig. 3e) and the metaphorical 

gesture (level 3, see fig. 3c,d). Giuditta is progressively shifting her focus from 

the tessellation of some specific chessboards to the links between these 

tessellations. Now, the produced linking signs allow her to establish the 

inductive relationship. In fact, at this point Giuditta shows how she could 

tessellate the 8x8 chessboard (except for one square) using a tessellation of the 
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4x4 chessboard and placing a tile in the central part of the chessboard (fig. 3g). 

After a few minutes, she concludes: 

5 Giu: And this, I can do it in general (after a circular gesture around the 
drawing of a 4x4 chessboard, with the right hand she makes a spiral 
movement that widens as the right hand rises and concludes with 
spreading both the hands, Fig.4a,b,c,d,e and Fig. 4f for a summary). 

 

Figure 4: Gesture in line 5. The fig. 4f summarises the whole movement. 

 

Giuditta does not write anything and she uses very few words: “and this, I can 

do it in general”. However, her gesture reveals the structure of argumentation 

and give us access to her reasoning. The gesture is articulated in four 

components.  

The first component is the same gesture she has produced several times since 

line 1 when she linked the 8x8 and the 16x16 chessboards; now this gesture 

represents the action of constructing the 8x8 chessboard using the 4x4 

chessboards.  

The second component consists of contracting the previous gesture and moving 

away her right hand from the sheet in two directions: upwards and outwards. 

The upward direction takes the gesture from level 2 to level 3. It is the first time 

that Giuditta produces this gesture in the air. The shift through levels and her 

words indicate the generality of the actions of tessellation. Moreover, the 

gesture grows wider away from her body to indicate the construction of bigger 

chessboards (in mathematical terms, n is increasing). Until now, the left hand 

has remained still with a finger of the drawing of the 4x4 chessboards (which 

could represent the starting point of the recurrence; in fact she has already 

directly verified the cases of the smaller chessboards).  

The third component consists in moving the right hand to the right - making the 

metaphoric gesture of a link, as seen in figure 3c,d - and moving the left hand to 

the left: the link between the chessboards of different sizes, represented before 

by an iconic gesture, here becomes an inductive step represented by a 
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metaphoric gesture. These first three components, consisting of a sequence of 

different linking signs, constitute a unique iteration sign, which in its complete 

form is a gesture of level 2-3: it starts on the sheet, in which the base of the 

induction is represented, and rapidly moves away from the sheet becoming a 

gesture of the level of the general (level 3).  

Finally, the fourth component consists in keeping her hands still in the air, as if 

they contain the space in which the iteration gesture took place. This space, to 

use an expression of McNeil (1992, p. 173) when describing an iconic gesture 

that indicates a point in space, is not empty but “full of conceptual 

significance”. In our case, this space is the location that contains the 

argumentation and its logical structure.  

CONCLUDING REMARKS 

The multimodal perspective and the notion of semiotic bundle (Arzarello, 2006) 

has allowed us to identify and to analyse linking and iterative signs, and to 

observe and study the genesis of a proof by mathematical induction. Our 

analysis confirms the results presented in other studies (Arzarello & Sabena, 

2014; Krause, 2015; Sabena, 2018) regarding the role of gestures in providing a 

logical structure to argumentation. 

In the first excerpt, the speech-gesture mismatch (synchronic analysis) shows 

that the subject focuses simultaneously on two cases (8x8 and 16x16 

chessboards). The bundle evolves and new signs are produced (diachronic 

analysis) to connect the two objects. The bundle is composed by different kinds 

of signs with mutual relationships. Only when we consider the bundle as a unit, 

we can see the linking sign representing a 16x16 chessboard as composed by 

8x8 chessboards. This and other signs lead the subject to establish the 

connection between the problem of tessellating a chessboard and the same 

problem on a bigger chessboard, and then to construct the inductive step.  

During the production of the argumentation, a repetition of linking signs 

produces an iterative sign and the complete detachment of the gesture from the 

sheet shows the transition to the general (Krause, 2016). The gesture contracts 

progressively, from iconic (referring to the extension of a chessboard into a 

bigger one) to metaphoric (referring to the inductive step), from level 2 (level of 

concrete) to level 3 (level of general). The iterative sign reveals that Giuditta 

constructs the entire recurrence even if it is not formally necessary (having 

proved the base case and the inductive step). The still hands at the end show the 

transition of argumentation from process to object. 

The contraction of linking signs reveals a change of the focus. For Radford, 

“contraction is the mechanism for reducing attention to those aspects that 

appear to be relevant […] We need to forget to be able to focus” (Radford, 

2008, p. 94). The contraction of Giuditta’s gesture shows that she “forgets” the 

tessellation and focuses on the relationships between tessellations. Following 
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Radford (2003), the contraction of linking signs is a process of objectification of 

the inductive step. 

Moreover, the repetition of linking signs is an example of catchment. According 

to McNeill (2005), a catchment is due to the recurrence of consistent 

visuospatial imagery in the speaker’s thinking, and indicates and provides the 

discourse cohesion. Arzarello and Sabena (2014) show that catchments 

contribute to support the students in structuring a mathematical argumentation. 

Our analysis seems to confirm their results. 

Finally, further research is necessary to identify linking signs in symbolic 

manipulation and to study the evolution of linking signs within the bundle from 

the proving process to the written proof. 
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Family background predicts success in mathematics education in many 

countries – and particularly in Germany. Mathematical modelling with its 

authentic and realistic contents may be of importance for inequality research. 

Based on the German National Assessment Study, correlation comparisons, 

variance and regression analyses indicated that socio-economic status, 

migration background, and language use are more strongly related to 

mathematical achievement (excluding modelling) than to modelling 

achievement. Mathematical modelling might, therefore, contain facets which 

contribute to the reduction of social disparities. 

INTRODUCTION 

Family background determines educational success. Studies have repeatedly 

shown a connection between students’ migration background, language use and 

socio-economic status (SES) on the one side and their achievement in 

mathematics on the other (e.g., OECD, 2013). This issue is of importance to the 

German education system. While on OECD average social disparities in 

mathematics sank over the last years, in Germany they rose again (OECD, 

2013; 2019). Thus, Germany has a relatively low level of educational equity 

about mathematics. The German National Assessment Study – conducted by the 

Institute for Educational Quality Improvement (IQB) – identified a learning 

disadvantage in mathematics of almost three years for students from families 

with lower SES (Pant, Stanat, Schroeders, Roppelt, Siegle & Pöhlmann, 2013). 

Mathematics education should, hence, create conditions and provide learning 

opportunities that reduce social disparities. German educational standards 

describe mathematics education in which mathematical knowledge is applied 

functionally and flexibly in context-related situations. Therefore, in addition to 

content, general mathematical competencies are central to mathematics 

education in Germany (KMK, 2003). Mathematical modelling is one of those 

competencies.  It includes solving realistic and authentic problems (Maaß, 

2010) and thereby differs from dressed-up tasks with extra-mathematical 

contents. 
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However, empirical research does not come to consistent conclusions regarding 

background-related barriers and strategies in modelling processes. On the one 

hand, Cooper and Dunne (2000), amongst others, pointed out that lower SES 

students overemphasize everyday experiences while processing tasks with real-

world content.  

According to them, the SES is more important for realistic tasks than for purely 

mathematical tasks. On the other hand, Schuchart, Buch and Piel (2015) showed 

that the item context was not systematically related to the response rate of lower 

and higher SES students. The present study approaches this issue quantitatively 

by analyzing and comparing the effects of different family background factors 

on the response rates of modelling and non-modelling tasks. 

THEORETICAL FRAMEWORK 

For quite some time, research has been addressing the mechanisms through 

which family background is related to student’s education outcomes. From a 

sociological perspective, according to Bourdieu's habitus theory (1984), 

individuals find themselves in a social space which limits their scope of action. 

This scope forms the way individuals think and act and it constitutes the 

foundation on which social inequality is built. It is passed on through 

socialization and by this, certain behaviors and values are being internalized. 

Empirical studies identified many factors that produce social disparities and 

then contribute to its consolidation and reproduction. Students from families 

with higher SES on average “benefit from a wider range of financial […], 

cultural […] and social […] resources that make it easier […] to succeed in 

school” (OECD, 2016, p. 206). Regarding family communication, higher SES 

parents place higher value on reasoning and discussing, whereas lower SES 

parents focus more on conformity (Heath, 1983). By different socialization, 

higher SES parents are comparatively better able to prepare children for 

educational requirements (Schuchart et al., 2015) and pass on their social 

advantages to their children. Besides, teachers tend to educate lower SES 

students’ mechanical behaviors or give them routine instructions (‘Do it this 

way’), while they tend to teach students with higher SES to think (Anyon, 

1981). Further, teachers might underestimate the mathematical capacity of 

lower SES students, if they attribute students’ problems to their cognitive ability 

and not to their background (Schuchart et al., 2015). Also, teachers may 

communicate differently with students of different social classes, since lower 

SES students are often less well equipped to interact with teachers and 

institutions (Calarco, 2011). This is accompanied by the tendency that higher 

SES students request and hence receive more help from teachers. They can use 

their working time more efficient (ibid.) and thereby create their own 

advantages. In this way, students, parents, and teachers contribute to the 

consolidation and reproduction of social disparities. Thus, it is hardly surprising 
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that PISA refers to socio-economic heterogeneity as being a challenge for 

teachers and education systems (OECD, 2016). 

Mathematical Modelling 

The German educational standards comprise six general competencies which 

students are expected to develop in secondary level: (i) Arguing; (ii) problem-

solving; (iii) modelling; (iv) using descriptions; (v) dealing with symbolic, 

formal and technical elements, and (vi) communicating (KMK, 2003). 

Regarding mathematical modelling, students are supposed to translate the 

respective situation into mathematical terms, structures, and relations, to work 

within the mathematical model, to interpret and to check results with respect to 

the corresponding situation (ibid.). While modelling tasks in general contain 

solving realistic problems, they might differ in terms of authenticity, realism, 

involved modelling activities, level of openness, etc. (Maaß, 2010). An example 

for a modelling task that could occur similarly in the test described below is 

given by Figure 1. 

 

 

 

In the picture you can see the 

historical city hall of Muenster. 

How high is the city hall 

approximately? 

……………… m 

Write down your assumptions 

and your approach. 

 

 

Figure 1: Modelling problem “city hall” 

 

The illustrated historical building really exists and estimating sizes by using 

reference values are part of everyday life. The mentioned problem is thus 

authentic and realistic. It is open since the students are free in choosing the 

object of comparison, for example, the man with the white shirt. The task 

involves modelling activities, including making assumptions about the average 

size of a person and interpreting the mathematical results in a meaningful way. 
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Therefore, there is not a single solution, but rather an interval of results that can 

be evaluated as correct. This ensures the comparability and evaluability of 

students’ results. 

DESIGN AND METHOD 

The following research question derives from the current state of research: 

• Is mathematical achievement in modelling and non-modelling 

differently connected to students’ family background? 

This study is based on data from the German National Assessment Study 2012, 

which was conducted by the IQB. In total, a representative sample of 24731 

ninth-grade students across Germany participated in the mathematical part of 

this standards-based assessment (Pant et al., 2013). We compared students’ 

achievement in mathematical modelling with their achievement in other 

mathematical competencies. We predicted achievement by students’ SES. As 

SES is often related to migration background, language proficiency and 

language use (OECD, 2016; 2019), which in turn may affect mathematical 

achievement, we used these variables as additional predictors.  

The test booklets were assembled under a multi-matrix design, so that each 

student worked on 24 to 60 out of 349 items. Based on specified evaluation 

criteria for each item, student solutions were coded dichotomously as ‘correct’ 

or ‘incorrect’. A global score for mathematical competency – including all items 

– was estimated for every participant on a one-dimensional dichotomous Rasch 

Model (Warm, 1989). The estimation results in a metrical measure namely the 

Weighted Likelihood Estimate (WLE). For the present study, we further 

estimated person parameters (WLE) using the same statistical model for the 

achievement in modelling and the mathematical achievement excluding 

modelling. We will refer to them as modelling achievement and non-modelling 

achievement. The estimates are based on two nonoverlapping subgroups of 

items: Items targeting modelling according to the German educational standards 

and items targeting other mathematical competencies. The first subgroup 

contains 41 out of the 349 items.  

Students’ family background was assessed using student questionnaires. In this 

study, we used the HISEI (Highest International Socio-Economic Index of 

Occupational Status of both parents) to measure families’ SES. It is determined 

by the professions of the parents and takes income and educational level into 

account. By means of the HISEI, it is possible to capture the SES of occupations 

by putting them on a one-dimensional hierarchical scale from 10 (e.g., kitchen 

helper) up to 89 (e.g., medical doctor), with a higher HISEI indicating higher 

SES (Ganzeboom, de Graaf & Treiman, 1992). Students’ migration background 

was operationalized ordinally via the countries of birth of the parents. For the 

language use, students were asked how frequently they speak German at home 

(see Table 1). Though, the data on family background has missing values, since 
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in some German states it was optional for students to fill out the questionnaire. 

Further, part of the sample (𝑛 = 14 793) completed a C-Test to measure their 

language proficiency in German (Robitzsch, Karius & Neumann, 2008).  

Variable Operationalization Distribution 

SES  

(𝑛 = 17810) 

HISEI ∈ {10, … , 89} 𝑀 =  51.40 

𝑆𝐷 =  20.47 

Migration 

background  

(𝑛 = 18663) 

Both parents were born in Germany 

One parent was born in another country 

Both parents were born in another country  

14710 

1780  

2713 

(76%) 

(10%) 

(15%) 

Language use  

(𝑛 = 17276) 

Mostly/ only speaking German at home 

Sometimes speaking another language at home 

Or never speaking German at home 

14025  

3251  

(81%) 

(19%) 

Table 1: Background variables 

To answer the research question, we conducted linear regressions and single-

factor variance analysis (ANOVAs), measured and compared the percentage of 

explained variation by means of 𝜂2 and 𝑅2 (Cohen, 1988). In order to do so, we 

compared dependent correlations with one common index (i.e., the correlation 

coefficients are calculated from a single sample and the correlations are 

overlapping with one common variable) according to Hittner, May and Silver 

(2003). They indicated that Type I error depends not only on sample size and 

population distribution, but also on the intercorrelation (between modelling and 

non-modelling achievement) 𝑟3 and the discrepancy between predictor-criterion 

correlations 𝑟1 and 𝑟2 (see Figure 2). 

RESULTS 

Table 2 summarizes the results of the ANOVAs and linear regressions. 

Dependent 

variable 

Independent 

variable 

Method Explained 

variation 

df F Signifi- 

cance  

Modelling 

achievement 

SES Linear 

regression 
𝑅2 =  .06 1 1045.66 𝑝 < .001 

Migration 

background  

ANOVA 𝜂2 =  .02 2 190.60 𝑝 < .001 

Language use ANOVA 𝜂2 =  .03 2 224.63 𝑝 < .001 

Non-

modelling 

achievement 

SES Linear 

regression 
𝑅2 =  .12 1 2355.77 𝑝 < .001 

Migration 

background  

ANOVA 𝜂2 =  .04 2 389.55 𝑝 < .001 

 Language use ANOVA 𝜂2 =  .05 2 474.76 𝑝 < .001 

Table 2: Explained variation in modelling and non-modelling achievement by 

family background 
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It appears that all family background variables can explain variation in 

modelling and non-modelling achievement. Also, all background variables have 

a higher effect on non-modelling achievement than on modelling achievement. 

 

Figure 2: Comparison of the correlation between SES and modelling 

achievement with the correlation between SES and non-modelling achievement 

Figure 2 shows the results of comparing the correlation coefficients. Analysis, 

based on Hittner’s et al. (2003) correlation comparison yielded that the 

correlations 𝑟1 and 𝑟2 vary significantly from each other (𝑛 = 15 711, 𝑧 =
14.8, 𝑝 < .001). The magnitude of the intercorrelation (IC) is high (𝑟3 >
.6) and the effect size is .09. With a power of 1 − 𝛽 = 1, a statistically verified 

small correlation difference can be assumed. The same applies for migration 

background and language use with an effect size of .04 for both variables (𝑛 =
16 446, 𝑧 = 6.7, 𝑝 < .001, 1 − ß = 1, 𝐼𝐶 > .6;  𝑛 = 15 138, 𝑧 = 6.3, 𝑝 <
.001, 1 − ß = 1, 𝐼𝐶 > .6). Repeating the analysis controlling for language use, 

migration background and language proficiency still yields a significant 

difference in partial correlations between SES and the two mathematical 

achievement variables with a small effect size of .09 (𝑛 = 7 384, 𝑧 = 7.7, 𝑝 <
.001, 1 − ß = 1, 𝐼𝐶 > .5). Further analysis show that this difference cannot be 

explained by the fact that modelling tasks are, on average, more likely to 

contain extra-mathematical content. In fact, in our data SES correlates more 

closely with the response rates of tasks with extra-mathematical content 

compared to purely mathematical tasks (𝑛 = 17 810, 𝑧 = 2.3, 𝑝 < .05, 1 −
ß = .75, 𝐼𝐶 > .7). 

DISCUSSION AND CONCLUSION 

The current study shows that SES, migration background and language use are 

more strongly related to mathematical achievement (excluding modelling) than 

to modelling achievement. However, only for SES the correlation comparisons 

reveal an important, albeit small, difference. In addition, even when controlling 

for migration background, language use and language proficiency, SES is less 

closely correlated with modelling achievement. SES appears to be less 

important for modelling tasks than for non-modelling tasks. Considering that 

modelling tasks are on average more realistic than non-modelling tasks, one 
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could expect that SES is also less important for tasks with extra-mathematical 

content than for purely mathematical tasks. Though, in our data SES seems to 

be more important for tasks with extra-mathematical content than for purely 

mathematical tasks (see also Cooper & Dunne, 2000). Therefore, in our data the 

difference between 𝑟1 and 𝑟2 from Figure 2 cannot be explained by more 

realistic nature of modelling tasks. In conclusion, SES appears to be less 

relevant for modelling tasks, even though they contain realistic content. 

At this point it remains uncertain which characteristics of the tasks cause these 

correlation differences and must be explored in further investigations. 

Moreover, even though SES is less closely correlated to modelling achievement 

than to non-modelling achievement, it is still important for the explanation of 

variation in modelling achievement. Methodologically, it must be mentioned 

that the contents of the extra-mathematical and the purely mathematical tasks 

differed from each other (in our study as well as in Cooper and Dunne’s study). 

Further, considering the limitations of our study regarding the teaching of 

mathematics, the results should be interpreted with caution, since performance 

tests only provide very limited implications for mathematics teaching. 

Furthermore, our sample is representative only for ninth-grade students. 

In sum, our study indicates that mathematical modelling contains aspects which 

may contribute to the reduction of social disparities in mathematics education. 

Since modelling plays a more underrepresented role in classroom practice than 

it would be desirable (Blum & Borromeo Ferri, 2009), these results may 

strengthen the importance of modelling in mathematics education. Future 

quantitative and qualitative studies should analyze these aspects in more detail, 

especially within the scope of classroom practice. This study does not aim to 

place mathematical modelling above other competencies. Rather, it should 

encourage to confront students from all social backgrounds with authentic and 

realistic mathematical problems. With a view to the empirical findings 

mentioned at the beginning, especially lower SES students might profit from 

mathematical modelling.  
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This study explores how secondary mathematics teachers envision potential 

argumentation situations in the classroom. The data were collected by means of 

individual semi-structured interviews conducted with 31 secondary mathematics 

teachers. The participants were asked to express their views on argumentation 

for teaching mathematics, provide examples of argumentation as manifested in 

their own teaching, and formulate a script for the hypothetical implementation 

of a mathematical task in the classroom with the goal of engaging students in 

argumentative activity. Analysis of the teachers' responses yielded categories 

related to: (1) task characteristics, (2) teaching strategies, and (3) students’ 

characteristics. From a cross-analysis of the teachers' statements, certain 

categories appeared more frequently than others. The findings are interpreted 

in light of theory and practice.  

INTRODUCTION 

In the last several decades, there has been a growing appreciation for the 

incorporation of argumentation in the mathematics classroom (Krummheuer, 

2007; Yackel & Hanna, 2003). Firstly, argumentation is a valued mathematical 

practice whereby mathematicians socially construct knowledge through 

generating and evaluating alternative arguments. Secondly, existing literature 

suggests that participation in argumentation requires students to explore, 

confront, and evaluate alternative positions, voice support or objections, and 

justify different ideas and hypotheses, all of which promote meaningful 

understanding and deep thinking (Asterhan & Schwarz, 2016; Staples & 

Newton, 2016). Recent reform documents, in various subject domains 

worldwide, highlight argumentation as an important goal for students (e.g., 

Israel Ministry of Education, 2013). Nevertheless, argumentation in the 

mathematics classroom is not yet a commonplace practice (Bieda, 2010).  

Research exists on many aspects of argumentation as it pertains to learning 

mathematics (e.g., Mueller et al., 2014; Staples & Newton, 2016; Yackel & 

Cobb, 1996); yet little work has focused specifically on teachers' understanding 

of argumentation (Ayalon & Even, 2016, Mueller et al., 2014). Considering that such 

an understanding impacts the way in which argumentation practices are 

implemented in the classroom (Conner et al., 2014), we deemed it important to 
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make it the focus of investigation. Hence, this study addresses the topic by 

exploring secondary teachers’ views on argumentation. We asked teachers to 

provide examples of argumentation as manifested in their own teaching and to 

write a script for the hypothetical implementation of a mathematical task that 

would engage students in argumentation. Analysis of their responses yielded 

several dimensions of teachers’ attention to potential classroom situations of 

argumentation, and these provide a lens through which we may learn about 

teachers' grasp of argumentation. 

THEORETICAL BACKGROUND 

A commonly accepted definition of argumentation is that of van Eemeren and 

Grootendorst (2004) who maintain that argumentation is “a verbal, social, and 

rational activity aimed at convincing a reasonable critic of the acceptability of a 

standpoint by putting forward a constellation of propositions justifying or 

refuting the proposition expressed in the standpoint” (p. 1). According to this 

definition, argumentation involves generating claims, providing evidence to 

support the claims, and evaluating evidence to assess their validity. This 

definition also posits argumentation in a social space, and, if incorporated into 

classroom discourse, it affords a venue for the articulation and critical 

evaluation of alternative ideas, eventually supporting collaborative knowledge 

construction (Asterhan & Schwarz, 2016). This definition forms the foundation 

in the literature for common descriptions of argumentation that are ‘fruitful’ for 

learning.  

According to this definition, the present paper considers argumentation as 

having two important aspects – structural and dialogic (McNeill & Pimentel, 

2010). The structural aspect of argumentation focuses on the feature of 

discourse whereby a claim, which can be presented as an idea, conclusion, 

hypothesis, solution etc., is supported by an appropriate justification. While 

mathematicians support claims using diverse justification types, specific types, 

such as deductive justifications, are valued in the mathematics discipline over 

others. In the mathematics classroom, the appropriateness of justifications is 

attained by negotiating socio-mathematical norms (Yackel & Cobb, 1996). The 

dialogic aspect regards argumentation as the interactions between individuals 

when they attempt to generate and critique each other’s ideas. In mathematics 

classrooms, this is indicated by students listening to each other, building on 

each other's ideas, and critiquing ideas as the community moves toward 

consensus.  

In this study, we explore secondary mathematics teachers' envisioning of 

potential classroom argumentation situations in both the structural and dialogic 

aspects of argumentation. We assume that teachers' attention to both of these 

aspects could help them better incorporate argumentation into their classroom 

instruction (McNeill & Pimentel, 2010). In mathematics education, research has 
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focused on teachers' attention as a topic for both investigation and development, 

upon the premise that it shapes teachers' actions and practices (Mason, 2015). 

For those researchers who focus on teachers' noticing (e.g., Jacobs, Lamb, & 

Philipp, 2010), attention is considered a fundamental skill. One important issue 

discussed in the research literature relates to how professionals attend to 

noteworthy aspects of complex situations: “We are interested in the extent to 

which teachers attend to a particular aspect of instructional situations” (Jacobs 

et al., 2010, p. 172). Research has shown that attention can be narrowly focused 

on one aspect of a situation at the expense of others, or, alternatively, it may be 

broad in processing a wide variety of details and aspects of the situation 

(Mason, 2015). Therefore, investigating what teachers attend to when 

envisioning potential classroom argumentation situations is important and can 

serve as an avenue for teacher educators to devise appropriate support, direction 

and guidance. 

Mathematics teaching that encourages argumentation provides students with 

ample opportunities to take an active role in both structural and dialogic aspects; 

i.e., to construct arguments, share their ideas, consider others' ideas, and 

critically evaluate their validity, while adhering to normative aspects of 

mathematical discourse that are specific to the students’ mathematical activity 

(Yackel & Cobb, 1996). Various factors associated with teaching generate 

opportunities for students to participate in argumentation. For example, teaching 

for argumentation is fundamentally associated with implementing appropriate 

tasks (e.g., Ayalon & Hershkowitz, 2018). In particular, open-ended tasks that 

invite multiple strategies for solutions are perceived as enhancing opportunities 

for argumentation (Mueller et al., 2014). In addition, teaching for argumentation 

is intrinsically linked with the teacher's actions, such as encouraging students' 

participation and thoughtful questions (e.g., Ayalon & Even, 2016). Moreover, 

teaching for argumentation requires teachers' sensitivity to their students' 

cognitive factors, such as prior knowledge, common ways of thinking, and 

argumentation skills, as well as to their students' affective characteristics, such 

as self-confidence, interest, and enjoyment (Knuth & Sutherland, 2004). 

While recognizing that the three dimensions of task characteristics, teaching 

strategies, and student characteristics are only a subset of factors contributing to 

classroom argumentation, we view them as important initial steps for the 

successful integration of argumentation into classroom practice. These 

dimensions are naturally inter-related; however, focusing on each one 

individually allows us to discern each one and learn about its place in teachers' 

envisioning of class argumentation. Taking into account the two aspects of 

argumentation (structural and dialogic) across the three dimensions of 

argumentation (task characteristics, teaching strategies, and student 

characteristics), this study addresses the research question: To what do 
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secondary mathematics teachers attend when asked to envision argumentation 

in their classroom? 

METHODOLOGY 

Research participants  

Thirty-one secondary mathematics teachers participated in this study. All of 

them had five years or more of teaching experience. The decision to focus on 

secondary-school teachers derived from the emphasis placed on argumentation 

in the curriculum of this student population in Israel (Ministry of Education, 

2013).  

Data collection  

The data used for this study consisted of individual, semi-structured interviews 

of approximately 90 minutes that comprised two main parts. The first part 

involved questions about the place of argumentation in teaching mathematics 

and whether and how the research participants practice argumentation in their 

respective classrooms. The teachers were encouraged to explain their responses 

in detail and provide examples from their own teaching. In the second part, they 

were asked to select a mathematical task which, in their view, encourages 

argumentation, and to write a script for its hypothetical implementation, 

including the context of the teaching situation and the discourse among the 

participants while working on the task. Follow-up questions included: (1) What 

were you considering when writing the script, in terms of engaging students in 

argumentation? (2) In what ways do you find that ‘your manner of teaching’ 

within the script provides opportunities for students to engage in 

argumentation? (3) In your script, what factors contribute to shaping the 

argumentation? (4) What difficulties or inhibitors are you taking into 

consideration here? How do you deal with them?  

Data analysis  

The aim of the data analysis was to ascertain what secondary mathematics 

teachers attend to when asked to envision argumentation in their classroom. We 

used the teachers' responses as the main source of our systematic analysis. The 

teachers' written scripts served as a resource for us to better understand and 

interpret their discourse. First, we employed the three predominant dimensions 

found in the literature to in creating opportunities for class argumentation – task 

characteristics (TC); teaching strategies for argumentation (TS); and students’ 

characteristics (SC) – as lenses through which we analyzed the teachers' 

statements. at the same time, we remained open to other dimensions emerging 

as well, although this ultimately did not happen. We then distinguished between 

statements in which the teachers' focal attentiveness was directed toward 

structural aspects of argumentation (i.e., responses pertaining to elements of 

arguments such as claims and justifications and what counts as an appropriate 
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justification) and those in which their focal attentiveness was devoted to 

dialogic aspects of argumentation (i.e., responses associated with students' 

interactions when generating and critiquing arguments). We then used inductive 

content analysis to devise sub-categories for each of the six categories 

(structural and dialogic across TC, TS, and SC). We iteratively checked 

categorizations against the whole data set. Since the analytical process was 

comparative, it required repeated analysis of the whole data set. Based on an in-

depth discussion of the emerging categories, we reached a final consensus. We 

ultimately obtained 13 sub-categories, to be discussed in the upcoming findings 

section. Subsequently, we used these codes to re-analyze the transcripts of the 

interviews with the 31 secondary mathematics teachers for characterizing each 

teacher's envisioning of potential argumentation situations in the classroom. The 

analysis focused on classifying each response according to the previously 

received categories and sub-categories.  

FINDINGS AND DISCUSSION 

Table 1 presents the categories identified in the teachers' responses1. For each 

dimension, we present categories that were found to focus on structural aspects 

(S) of argumentation and categories found to focus on dialogic aspects (D) of 

argumentation. Note that ‘T’ stands for a teacher. The third column presents the 

number of teachers found to attend to each category according to their 

interviews.  

Table 1: Categories of teachers' envisioning of potential classroom 

argumentation situations 

Category Examples from the teachers' responses #Teachers 

(n=31) 

Task characteristics (TC) 

TC1. (S) Inviting the 

use of specific 

mathematical 

justifications 

I asked the students to justify the claim 𝑛3 − 𝑛 is divided by 6 

for each natural n. My goal in choosing this task was to expose 

the students to different kinds of arguments while distinguishing 

between their merits: an algebraic solution, which is valued; 

and other approaches, such as substitution of numbers into the 

expression, which are not…. (T13) 

5 

TC2. (D) Affording 

various solutions as 

enabling students' 

participation 

I give the students multiple-solution tasks to encourage their 

participation…. Such tasks afford fruitful argumentation, with 

different points of views, allowing for disagreements among 

students which they will need to resolve. (T24) 

26 

Teaching strategies (TS) 

 
1 In the presentation we will elaborate the discussion on the categories and examples. 
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TS1. (S) Encouraging 

and scaffolding 

justifications 

I would use various scaffolding strategies that serve to generate 

justifications for their solutions. For example, as I wrote in my 

script, by providing real matches [from a matchbook] to help 

students develop a sense of the situation…. or by encouraging a 

student to use a table of values to support his efforts to justify 

his generalization. )T1) 

26 

TS2. (S) Promoting 

adherence to standard 

disciplinary criteria 

for determining the 

truth of a claim 

In my script, in response to this student's argument, I, as the 

teacher, emphasized: "[That's] a very good argument. We have 

here a counterexample for the claim that the number of matches 

is the number of wagons multiplied by four. This is a 

mathematical method to show that the claim is incorrect." (T1) 

9 

TS3. (D) 

Encouraging students 

to collaborate on 

constructing 

arguments  

I prompt students to collaborate on developing their arguments. 

For example, when a student suggests a solution, I ask the other 

students questions, for example: Who would like to explain the 

other student’s idea? How can you build upon this idea? And 

when a student responds, I commend him for collaborating. 

(T28) 

26 

TS4. (D) Prompting 

students to critically 

evaluate each other's 

arguments and search 

for alternative ideas  

I encourage my students to critically evaluate each other’s 

arguments… I do that by asking them questions like: Do you 

agree or disagree? What do you think about it? (T8)  

 

24 

TS5. (D) 

Encouraging attempts 

to reach a consensus 

 

During the activity, I wrote on the board all the arguments that 

the students raised... and discussed with them which are correct 

and which are incorrect... It is very important to me that all 

students will be convinced and then reach a consensus as to 

which arguments are correct and which are incorrect, and why. 

(T19) 

11 

TS6. (D) Establishing 

a climate of mutual 

respect 

I explain to my students that there should be mutual respect 

within the classroom; they should listen to each other 

respectfully, not disparage the other's opinion, and 

acknowledge that different people have different points of 

view… I praise students who critique others respectfully or 

receive others' critiques in a polite and open-minded way. (T16) 

7 

Student characteristics (SC) 

SC1. (S) Students' 

strengths and 

challenges in 

justifying and 

refuting 

In the script, I took into account familiar ways in which 

students’ thinking about forming and justifying generalizations 

might be incorrect, such as employing empirical methods or 

using invalid proportional reasoning…. Here, in my script, I 

tried to deal with these tendencies by challenging the students 

with dilemma. (T1) 

8 

SC2. (D) Students' 

skills of 

communicating 

arguments  

Some students may know and understand the correct answer 

but are unable to articulate and present it in class, which makes 

it difficult for others to evaluate it and thus impedes having a 

productive discussion. (T15) 

7 

SC3. (D) Students' 

skills of critiquing 

each other’s ideas 

…If students are asked to evaluate their peer's answers, they 

usually do so by saying ‘right’ or ‘wrong’, without discussing 

the weaknesses or strengths and how to correct the mistakes if 

any are found. (T17) 

6 
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SC4. (D) Students' 

sense of confidence 

Sometimes only a few students participate. This is because some 

students, especially the weaker ones, suffer from a lack of self-

confidence which causes them to be awkward about expressing 

themselves and reluctant to give critical feedback to their peers. 

(T9) 

13 

SC5. (D) Students' 

interest and 

enjoyment 

For my students, it is more interesting and challenging to work 

together on a task, try to convince their peers about their 

solutions' correctness, and critique each other's ideas, rather 

than to be assessed solely by the teacher. (T31)   

8 

 
As seen in Table 1, whereas some categories were attended to by a large 

number of teachers, some were scarcely mentioned. In terms of dialogic aspects 

of argumentation, analysis of the teachers' responses revealed that, in their 

envisioning of potential classroom argumentation situations, the majority (26 

out of 31), attended primarily to choosing mathematical tasks that invite 

multiple solutions as a means for students to discuss differences in viewpoint 

and critique ideas (TC2). Most teachers also attended to teaching strategies that 

encourage students to collaborate on constructing and critiquing arguments 

(TS3 & TS4, 26 and 24 teachers, respectively), and, to a lesser degree, 

encourage students to reach a consensus (TS5, 11 teachers). Still only a few 

teachers expressed sensitivity to student characteristics that enable or inhibit 

participation in argumentation, and those that did referred mainly to students' 

difficulties in communicating their ideas in a comprehensive and coherent way 

(SC2, 7 teachers). A relatively small number of teachers attended to affective 

factors such as students' lack of self-confidence or to students' interest and 

enjoyment when participating in argumentation (SC4 & SC5, 13 and 8 teachers, 

respectively). In terms of structural aspects of argumentation, the analysis of 

the teachers' responses revealed that most teachers (26 out of 31), in their 

envisioning of potential classroom argumentation situations, attended to 

teaching strategies that encourage and support students in their struggle to build 

justifications for their claims (TS1). Only a few teachers mentioned in-class 

teaching strategies which promote adherence to standard disciplinary criteria for 

evaluating the quality of arguments and which cultivate students' sensitivity to 

what constitutes acceptable mathematical  arguments in the classroom (TS2, 9 

teachers). In addition, few teachers referred to students' tendencies and possible 

difficulties when generating specific kinds of mathematical justifications, such 

as the tendency to use empirically based justifications, or the challenge in 

generating deductively-based arguments (SC1, 8 teachers).  

Overall, in the teachers' envisioning of argumentation in their classrooms, we 

see much attention to social interactions that attempt to generate new ideas and 

those involving the critiquing of each other’s ideas and solutions. To a much 

lesser degree, we see teachers' attention to the specific normative aspects of 

mathematical argumentation and to students' characteristics in relation to their 
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engagement in argumentation. Research has indicated the importance of 

instructional practices that integrate both the dialogic and structural aspects of 

argumentation which are mathematically specific (Nathan & Knuth, 2003). 

Research has also suggested that teachers who are likely to support student 

participation in argumentation but do not emphasize distinctions between 

acceptable and unacceptable mathematical justifications, may limit students’ 

opportunities to develop an understanding of what constitutes accepted 

mathematical justifications and thus act more autonomously when engaging in 

mathematics (Ibid., 2003). In the teachers' interviews included in our study, we 

found wide mention of providing students with opportunities to participate in 

co-constructing and critiquing arguments. At the same time, we witnessed rather 

limited attention to facilitating students' participation in classroom 

argumentation grounded in normative aspects of mathematical argumentation. 

Our study suggests, therefore, that the teachers’ envisioning of argumentation in 

the mathematics classroom was partial, at least as far as can be inferred from 

their interviews. Hence, there is more to learn about teachers' understanding of 

argumentation. 

CONCLUSION 

While the interviews used in this study provided a snapshot of teachers' views at 

a particular point in time, research suggests that attention can be cultivated over 

time (Mason, 2015; Paparistodemou et al., 2014).  Findings of the current study 

can serve as a foundation and a resource for enhancing teachers' attention to 

argumentation. The range of dimensions identified in this study can serve as an 

analytic platform for planning and facilitating professional development 

activities to promote teachers' awareness of, and enthusiasm for, argumentation. 

Examples of teachers' responses compiled in this study can serve as sources for 

other teachers to analyze, compare, and reflect on, so as to construct a broad 

range of ‘attention to argumentation’ aspects. The fact that some of the teachers 

participating in this study perceived both the structural and the dialogic aspects 

across the three dimensions as an integral part of enhancing the argumentation 

processes in the classroom, is encouraging. It is evident from our findings that 

teachers are at least partially open to adopting a new mindset with respect to the 

teaching of argumentation in the classroom. 
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METACOGNITIVE BEHAVIOUR IN PROBLEM POSING –  
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This investigation aims at developing a framework for identifying metacognitive 

behaviour in problem-posing processes and illustrating the potential of such a 

framework for assessing the quality of problem posing. For this purpose, 36 

task-based interviews were conducted with pairs of student teachers. On these, 

an inductive category development has been carried out to identify problem- 

posing-specific metacognitive behaviour of planning, monitoring, and 

evaluating. Subsequently, the identified metacognitive behaviours were applied 

to a selected transcript fragment. 

INTRODUCTION 

At least since Flavell’s 1979 seminal work, metacognition has been a central 

construct of research in psychology and mathematics education (Schneider & 

Artelt, 2010). In particular, research on problem solving has benefited from the 

consideration of metacognitive behaviour (e.g., Schoenfeld, 1987). Surprisingly, 

for the field of problem posing, a systematic literature review in high-ranked 

journals on mathematics education revealed that nearly no study explicitly 

considered metacognitive behaviour (Baumanns & Rott, 2021). Yet we are 

convinced that considering and analysing problem-posing-specific 

metacognitive behaviour may be a pivotal enrichment to the field. On the basis 

of this desideratum, we aim at (1) developing a framework for identifying 

metacognitive behaviour in problem-posing processes and (2) illustrating the 

potential of such a framework for assessing the quality of problem posing.  

THEORETICAL BACKGROUND 

Problem posing 

The numerous definitions of problem posing conceptualise mostly equivalent 

activities. Silver (1994) defines problem posing as generation of new and 

reformulation of given problems which occurs before, during, or after problem 

solving. Stoyanova and Ellerton (1996) refer to problem posing as the “process 

by which, on the basis of mathematical experience, students construct personal 

interpretations of concrete situations and formulate them as meaningful 

mathematical problems” (p. 218). 
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Based on the categories by Stoyanova and Ellerton (1996), we distinguish 

between unstructured and structured problem-posing situations depending on 

the degree of given information (Baumanns & Rott, 2021). Unstructured 

situations are characterised by a given naturalistic or constructed situation in 

which tasks can be posed without or with less restrictions. Asking to pose many 

problems to a given geometric configuration would be, for example, an 

unstructured situation. In structured situations, people are asked to pose further 

problems based on a specific problem, for example by varying its conditions. As 

structured situations are used in this study, an example is shown in the section 

Methods.  

Metacognition 

According to Flavell (1979, p. 906), metacognition describes “knowledge and 

cognition about cognitive phenomena”, which roughly means thinking about 

thinking. Based on this understanding, two facets of metacognition are 

identified: (1) knowledge of cognition and (2) regulation of cognition. In this 

paper, regulative activities are investigated, therefore facet (2) will be focused. 

Regulation of cognition refers to procedural knowledge with regard to processes 

that coordinate cognition, including planning, monitoring, and evaluation 

(Schraw & Moshman, 1995). Planning refers to the identification and selection 

of appropriate strategies or resources concerning the current endeavour. 

Monitoring refers to the attention and awareness of the comprehension 

concerning the current endeavour. Evaluating refers to the assessment of the 

processes and products of one’s learning. Cohors-Fresenborg and Kaune (2007) 

provide a category system for classifying teachers’ and students’ metacognitive 

(i.e. planning, monitoring, and evaluating) and discursive activities in class 

discussions. This approach is used in this study.  

Research on metacognition in problem posing 

In mathematics education research, metacognition is considered most 

prominently in problem-solving research which had an immense impact on this 

field (e.g., Schoenfeld, 1987). However, research on metacognitive behaviour in 

problem posing remains largely unresearched to date. Some studies contain few 

aspects of metacognition and self-regulation (Pelczer & Gamboa, 2009; 

Kontorovich et al., 2012), metacognition is rarely explicitly addressed, though. 

Yet, for example, Voica et al. (2020) mention that they found metacognitive 

behaviour in their study with students as they were able to analyse and reflect 

on their own posed problems and thinking processes. 

RESEARCH QUESTIONS 

The lack of conceptual and empirical insight into metacognitive behaviour in 

problem posing constitutes a desideratum from which the following research 

questions emerge:  
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(1) Which problem-posing-specific metacognitive behaviour (i.e. planning, 

monitoring, and evaluating) can be identified in students’ problem-posing 

processes?  

(2) To what extent can different degrees of problem-posing-specific 

metacognitive behaviour be empirically assessed?  

METHODS 

Research design for data collection 

For this study, 32 task-based interviews were conducted, each with two pre-

service primary and secondary mathematics teachers, working in pairs on one of 

two structured problem-posing situations (A. Nim game; B. Number pyramid). 

Situation A, the Nim game, reads: “There are 20 stones on the table. Two 

players A and B may alternately remove one or two stones from the table. 

Whoever makes the last move wins. Can player A, who starts, win safely? 

Based on this task, pose as many mathematical tasks as possible.” In total, 15 

processes of situation A and 17 processes of situation B that range from 9 to 25 

minutes with an average length of 14.5 min have been recorded. The processes 

ended when no ideas for further problems emerged from the participants. 7h 

46min of video material was recorded and analysed. 

Data analysis – Assessment of metacognitive behaviour 

To answer research question (1), we conducted a qualitative content analysis 

(Mayring, 2000). There are three main categories of the metacognitive 

behaviour, planning, monitoring, and evaluating, which stem from theoretical 

considerations on regulation of cognition presented above, especially Cohors-

Fresenborg and Kaune (2007). Although their framework is developed for 

analysing classroom interaction, it has been used successfully in paired 

problem-solving processes (Rott, 2014). Problem-posing-specific sub-categories 

were obtained through an inductive category development, with the goal of 

identifying the activities of planning, monitoring, and evaluating within the 32 

recorded problem-posing processes. 

For research question (2), we analysed in detail several transcripts using the 

developed framework. The analysis of a selected process fragment is discussed 

in the results. In this transcript, the participants’ statements are reproduced 

verbatim. For the analysis, the transcripts were first read iteratively in order for 

us to obtain a rough understanding of the text and to be able to better integrate 

finer sections of the text into the overall context of the text. The codes 

developed in research question (1) are then applied to the transcript. The quality 

of the coding was ensured through consensual validation in team discussions. 

The coding of metacognitive behaviour of planning, monitoring and evaluation 

are color-coded in blue, red and yellow the style of Cohors-Fresenborg and 

Kaune (2007).  
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RESULTS 

Identification of metacognitive behaviour in problem posing  

In Table 1, the observed problem-posing-specific metacognitive behaviours of 

planning, monitoring, and evaluating are summarized. In the following, the 

behaviours are commented and discussed. 

Planning. Four different behaviours of planning have been identified in the 

students’ processes. Code P1 denotes the focus on a starting point for problem 

posing from which new problems can be posed. This can be, for example, a 

certain condition, a certain context or even a certain solution structure of the 

given initial problem. The behaviour in P2 has been frequently observed and is 

reminiscent of the well-known “What-if-not”-strategy (Brown & Walter, 2005), 

in which a similar activity is suggested before the actual problem posing. 

Reflecting necessary knowledge (P3) was observed quite rarely. Nevertheless, 

participants have partly considered what knowledge they or the potential solvers 

of a posed problem need to have in order to be able to solve it. In some cases, a 

general procedure for the upcoming problem-posing process was also named by 

the participants, e.g. first vary the initial task in multiple ways, then solving the 

varied tasks (P4).  

Monitoring. M1 characterises that metacognitive behaviour in which 

participants control the problem-posing process. Controlling the notation or 

representation of the posed problems (M2) refers to figures drawn to illustrate a 

problem, to the formulation of the specific question so that it becomes 

understandable and precise, or similar behaviours. We frequently observed that 

participants made a modification to the initial problem and analysed the 

consequences of this modification on the newly created problem (M3), for 

example for the solution structure or its difficulty. The code M4 was set when 

participants analysed the mathematical structure of the given situation in order 

to get to a new problem or analysed the structure of a posed problem in order to 

be able the characterise it, for example with regard to its solvability or 

appropriateness.  

 Planning  Monitoring  Evaluating 

P1 Focus on a starting point 

of the problem-posing 

situation to generate new 

problems 

M1 Controlling 

the general procedure 

for problem posing 

E1 Assessing and 

reflecting 

on the characteristics 

of the posed problems 

P2 Capturing the conditions 

and identifying the 

restrictions of the given 

problem-posing situation 

M2 Controlling the 

notation or 

representation of the 

posed problems 

E2 Reflect on 

modifications of the 

posed problems 
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P3 Reflect necessary 

knowledge 

M3 Assessing 

consequences for the 

problem’s structure 

through the modified 

or new constructed 

conditions 

  

P4 Express general 

procedure for problem 

posing 

M4 Mathematical 

activities related to a 

posed problem 

  

Table 1: Regulative processes in problem posing 

Evaluating. Assessing and reflecting on the characteristics of a posed problem 

(E1) was a common behaviour of the participants. They often evaluated whether 

their problem is interesting, solvable, or appropriate for a specific target group. 

This behaviour was also mentioned in previous studies on the process of 

problem posing (Pelczer & Gamboa, 2009; Kontorovich et al., 2012). A 

reflection on modifications of the posed problems (E2) was frequently observed 

when the posed problem lacks a specific characteristic, for example it is too 

easy or too difficult, it is not very interesting, or it is too similar to the initial 

problem.  

The case of Tino & Ulrich 

In this section, we show the analysis of a process fragment by the students Tino 

and Ulrich, focussing on the metacognitive behaviours that have been 

developed in the previous section. The transcript starts at 19m 49s of their 33m 

21s problem-posing process of the Nim game. Beforehand, they already posed, 

solved, and analysed several new variations of the Nim game such as: What if 

there are 21 stones on the table in the beginning? What if you could remove 1, 

2, or 3 stones from the table? In the following fragment, they pose the problem 

that you are only allowed to remove 2 or 3 stones from the table.  

1. U: So and now we make a next variation namely you may no 

longer take 1 to 3, but you may either take 2 stones or 3 stones 

P1 

2. T:  What about the variation with number of stones is also a 
victory factor? 

 

3. U: Oh yes, we can do that too...   

4. T: At least we can notice for a moment, right? 

 

 

5. U:  … But I would like to do that later, I would like to save that 

for a little, so this is definitely also a variation.  

M1 
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In turn 1, Ulrich poses a new variation, in which only 2 or 3 pieces may be 

removed from the table. This new starting point is derived from a previous task 

(1 to 3 pieces may be removed). Since Ulrich sets a new focus for the upcoming 

problem-posing activity, this statement is coded as planning (P1). After Tino 

has thrown in what happened to one of the previous ideas, Ulrich directs the 

general procedure in turn 5 and thinks that this task can be dealt with later and 

that the task posed in turn 1 should be discussed in greater depth. Ulrich 

intervenes in the process and tries to guide it in a structuring way. Therefore, 

this statement is coded as monitoring (M1). 

10. T: (referring back to the problem posed in Turn 1) So you can’t 

just remove one tile, right? (writes down) Okay. 

M2 

11. U:  Here is a scenario; at 4 nobody wins (5 sec).  

12. U: When I take 3.  

13. U: Yes. This is a new game. I think it’s great, it’s already totally 

good. There are situations where nobody wins. Yeah, it’s like 

at the game…  

M3 & 

E1 

 

14. T:  Tic-tac-toe… M1 

17. U: Yes, I can’t remember exactly. Already interesting! It is 

already interesting. 

E1 

18. T: Yeah, it’s definitely interesting.  E1 

 

In turn 10, Tino tries to find a formulation for the problem that was posed in 

turn 1. He writes down this task as a negation that one may not just remove one 

stone from the table. His thinking about the formulation of the question 

represents a control of the notation or representation of the problem and is 

therefore coded as monitoring (M2). Ulrich says that this change results in a 

“new game”. This assessment of the consequences that their variation has for 

the Nim game was coded as monitoring (M3). Ulrich states that he likes the 

consequences that follow from their variation since they are different from the 

initial task. Therefore, this is coded as evaluation (E1). In turn 18, Tino agrees 

with Ulrich’s positive evaluation of the game. 

20. T: The question is, the question is whether one still admits that 

one also loses if one only has one stone left, but one can no 

longer move. 

E2 

21. U:  Yes, but I would not do that.   E2 

24. T: Because then you practically keep it up, right? The winning  

strategy. 

M3 

25. U: But I’d say it’s a little lame somehow.  E1 
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26. T: Yes, of course, but just to think about how I can keep this 

system up, it would probably be a possibility.  

E2 

27. U: Yes, that’s true. Then, exactly, then the system would also be 

upright. But let’s move on to the next step. … 

E2 & 

M1 

38. T: … What if one could remove 3 or 4?  P1 

Tino interjects in turn 20 whether they should modify the new game due to this 

situation. Ulrich argues not to make this change. In both statements, the 

participants consider to modify the posed problem so that the game has a 

definite winner (E2). Tino states in turn 24 that this change would restore the 

original winning strategy of the initial task. By that, he assesses the 

consequences of his slight modification and compares it to the initial task. 

Therefore, this statement is coded as monitoring (M3). Ulrich does not seem to 

like this change, perhaps because it would bring him too close to the initial task. 

In turn 13, he seemed to like this new element very much. This statement is 

coded as evaluation (E1). Tino reflects in turn 26 that one could modify the 

game with his suggestion in order to maintain the original winning strategy of 

the initial task. This is a reflection on their modification and, thus, is coded as 

evaluation (E2). Ulrich initially agrees with Tino’s previous assessment (E2). 

Then, he focuses on a solution strategy of the modified game again and thinks 

about the situation in which five stones lie on the table. With his statement, he is 

controlling the process which is why this statement is coded as monitoring 

(M1).  

DISCUSSION AND CONCLUSION 

The present study examined metacognitive behaviour, which has so far been 

widely disregarded in problem-posing research. Analyses of 32 problem-posing 

processes of student teachers were conducted to identify regulative behaviours, 

sorted into planning, monitoring, and evaluating. The results of this exploratory 

investigation are discussed in the following with regard to research questions 

(1) and (2):  

(1) Table 1, summarises observed behaviours that are predominantly 

metacognitive. Some of these behaviours may be considered as cognitive. Yet, 

it should be noted that being able to intentionally use these kinds of cognitive 

behaviour is a sign for metacognitive abilities. For example, searching for a 

solution can be seen as cognitive behaviour, but considering the solution in 

order to get a better idea whether the posed problem is, for example, solvable or 

appropriate for a specific target group can be seen as metacognitive behaviour. 

Moreover, not all codes within the main categories of planning, monitoring, and 

evaluating are separable from each other. However, a clear separation between 

these main categories should be recognizable. It should be emphasised that even 

if the named behaviours are labelled as metacognitive, they should not be 

considered without cognitive behaviour. 
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(2) Tino and Ulrich show several and dense acts of metacognitive behaviour in 

their problem-posing process. In the analysed fragment (duration 3:12 min), 19 

activities were coded as metacognitive, i.e. one code every 10 seconds. This 

value should not be interpreted as a fixed value for metacognitive behaviour. 

However, it allows to identify a tendency for quantity of metacognitive 

behaviour. In other fragments that have been analysed in this study, this value 

was strikingly lower. Coding using the developed categories is intended to 

support this assessment.  

The framework developed in this study provides numerous opportunities for 

follow-up research. With a larger sample, maybe additional problem-posing-

specific metacognitive behaviours can be identified. As in research on problem 

solving, a comparison between metacognitive behaviours of experts and novices 

could reveal metacognitive behaviour related to successful problem posing. This 

study uses structured problem-posing situations. Future studies could 

investigate whether there are different metacognitive behaviours in unstructured 

situations. Often, the ability to pose problems is measured by analysing the 

products of a problem-posing process (cf. Van Harpen & Sriraman, 2013). The 

analysis of metacognitive behaviour could be used to assess the ability to pose 

problems on a process-oriented level. Neglected in this study was the 

metacognitive facet knowledge of cognition. The importance of this facet of 

metacognition could also be the focus of future studies. In addition, the 

interaction and discourse of the participants in the transcript fragment also plays 

a central role in the quality of problem-posing processes. Future considerations 

could look more closely at this interaction as an additional aspect of (negative) 

discursivity similar to Cohors-Fresenborg and Kaune (2007). Overall, we 

believe that the so far largely neglected perspective of metacognitive behaviour 

can be a significant enrichment for problem-posing research in the future.  
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Reasoning about covarying quantities in terms of both a fixed measurement unit 

and a measurement unit that varies in size is an overlooked but potentially 

valuable way to help learners make sense of a range topics that past research 

has demonstrated pose perennial challenges. We identify several such topics 

including developing and explaining linear equations, making sense of slope 

and average rate of change, interpreting geometric similarity and trigonometric 

ratios, and understanding the relationship between empirical and theoretical 

probability. We explain how a specific way of conceptualizing proportional 

relationships—the variable-parts perspective—relies on reasoning with both a 

fixed measurement unit and a measurement unit that varies in size, and make 

the case this perspective can be a foundational and productive way of reasoning 

about a critical swathe of school mathematics.  

INTRODUCTION 

A well-known concern in mathematics education is disjointed, incoherent 

treatments of topics that rely on isolated, single-purpose tools. Another concern 

is that many important topics are difficult for students and teachers, including 

linear relationships, rates of change, trigonometry, and the law of large numbers 

(e.g., see Cai, 2017). One possibility is that there are foundational ideas that 

students need to work productively across a variety of topics, but that these 

ideas have either not been emphasized or their importance has not been 

discovered in mathematics education. Also, when the same idea can be used 

repeatedly, across many topics, students may see how prior experiences can 

help them reason about new situations. 

In this theoretical essay we propose that a specific way of conceptualizing 

proportional relationships—the variable-parts perspective (Beckmann & Izsák, 

2015)—may be valuable, in part, because it includes an idea that is needed in 

many contexts: the idea of using both a fixed unit of measurement and a unit of 

measurement that varies in size to measure and describe covarying quantities.   
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USING VARIABLE PARTS TO GENERATE AND EXPLAIN 

EQUATIONS 

Research has shown that the variable-parts perspective provides one specific 

way to conceive of how quantities can vary together, yet be in a constant linear 

(or proportional) relationship (Beckmann & Izsák, 2015). It is part of a 

coherent, connected landscape of multiplicative ideas at the core of a large 

swathe of important mathematics (Izsák & Beckmann, 2019). 

To illustrate the variable-parts perspective, Figures 1a and 1b show 4 parts of 

red paint covarying with 3 parts of blue paint. Initially, each of the 7 parts is 1 

Litre. Then the parts are allowed to vary in such a way that the 7 parts remain 

the same size as each other, but that size can be any number of Litres. If we 

view 1 part as a unit of measurement that varies in size, then we can interpret 

the quantities of paint as simultaneously fixed and varying. Measured in parts, 

the red paint is fixed at 4 parts and the blue paint is fixed at 3 parts. Yet 

measured in Litres, the numbers of Litres of red and blue paint vary. When 

mixed, the paint would always make the same fixed hue of purple, but in larger 

or smaller amounts, depending on how many Litres make 1 part. 

We can use the above perspective on the red and blue paint to develop an 

equation. Let the red paint consist of X Litres and let the blue paint be Y Litres. 

Then because Y is always 3 parts and X is always 4 parts, Y must always be ¾ of 

X, and therefore the equation Y = ¾ X describes how the covarying quantities of 

paint are related.  

If we rotate the 3 parts blue, as in Figures 1c and 1d, we can see the line through 

(0, 0) and (4, 3) from a variable-parts perspective (see 

www.geogebra.org/m/fe9q378s for these and other dynamic Geogebra 

sketches). The forgoing reasoning also explains why the line has equation Y = ¾ 

X.   

http://www.geogebra.org/m/fe9q378s
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Figure 1: Covarying quantities of red and blue paint from a variable-parts 

perspective. (a, c) 1 liter per part. (b, d) 2 liters per part. 

The variable-parts perspective is different from another “multiple-batches” way 

to conceive of the red and blue paint. For example, we might think of 20 Litres 

of red paint and 15 Litres of blue paint as composed of 5 batches, each 

consisting of 4 Litres red paint and 3 Litres blue paint. From this multiple-

batches viewpoint, as we vary the numbers of Litres of red and blue paint, we 

imagine a fixed batch, consisting of 4 Litres red paint and 3 Litres blue paint, 

and we imagine varying the number of batches that we consider. But there is no 

unit of measurement that varies in size, and we do not describe the overall 

quantities of paint as fixed. In a coordinate plane, from this multiple-batches 

perspective we might view quantities of red and blue paint as obtained by 

repeatedly going over 4 Litres and up 3 Litres, or over 1 Litre and up ¾ Litres.   

Past research has shown that middle grades students as well as future teachers 

often have difficulty justifying linear relationships (e.g., Rivera & Becker, 2007; 

Stephens, Ellis, Blanton, & Brizuela, 2017). Students and teachers have more 

success when they use visual strategies with figural patterns, but figural patterns 

are discrete and do not offer the opportunity to reason about a continuous 

context. Above, we showed one way to generate and justify linear equations in 

two variables by reasoning about how quantities are related in a continuous 
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context viewed from a variable-parts perspective. Beckmann and Kulow (2017) 

showed that future middle grades teachers enrolled in a mathematics course 

were able to use the variable-parts perspective to reason about covarying 

quantities and to generate and justify linear equations in two variables, 

including equations in non-standard forms. Thus, a variable-parts perspective 

might also be promising for helping middle grades students to reason 

quantitatively to generate and justify linear equations. 

USING VARIABLE PARTS TO INTERPRET RATE OF CHANGE 

Research has shown that the concepts of slope and rate of change are difficult 

for students and teachers. For example, in Lobato, Ellis, and Munoz’s (2003) 

study, middle grades students interpreted m in y = b + mx as a difference rather 

than a ratio. In a study of secondary teachers’ meanings for measure, slope, and 

rate of change, Byerly and Thompson (2017) found that the majority of teachers 

interpreted a slope of 3.04 as meaning that for every change of 1 in x, there is a 

change of 3.04 in y, or as moving to the right 1 space and up 3.04 on a graph. 

When these teachers were asked how to interpret 3.04 if x changes by 

something other than 1, only 8% conveyed a multiplicative meaning for 3.04, 

such as x can change by any amount and y will change by 3.04 times the change 

in x.    

The variable-parts perspective offers a way to view (average) rates of change 

and slope as the result of a measurement and therefore multiplicatively. In the 

example of Figure 1 discussed previously, the rate of change or slope, ¾, is the 

constant measure of Y Litres (3 parts) in terms of X Litres (4 parts); it is how 

much of X it takes to make Y exactly. This interprets the rate of change or slope 

multiplicatively, as how many times one needs to take one quantity to produce 

another, and is not limited to the case where the change in X is 1 unit.       

More generally, the idea of using a unit of measurement that varies in size could 

be important for interpreting instantaneous rates of change in calculus. With a 

variable-parts perspective, we can interpret the average rate of change of a 

function in a way that makes sense even when both X (the change in X) and Y 

(the change in Y) shrink toward 0. The average rate of change of a function over 

an interval is given by a difference quotient, namely Y divided by X. To 

interpret this difference quotient as a measure, we can view X as a 

measurement unit that varies in size, and we can use it to measure Y. The 

resulting measure—how many (or how much) of X it takes to make Y 

exactly—is the value of the difference quotient Y/X. See Figure 3. For a 

differentiable function, as X shrinks toward 0 (keeping the left end point of the 

intervals fixed, say), these measures are approximately constant, and approach 

the value of the derivative at the left end point.  
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Figure 3: Average rate of change as the measure of Y by X as X shrinks 

toward 0. 

A variable-parts perspective might build on approaches students have been 

found to use in past research. In a study of students’ quantitative reasoning 

about covarying quantities, Johnson (2015) asked students to reason about how 

the height of liquid in a bottle varied with the liquid’s volume. Even though 

height and volume are not the same kind of quantity and not measured in the 

same units, all three students compared changes in height with changes in 

volume. Johnson found that making such comparisons can be useful for 

interpreting covariation, but it does not foster attention to variation in the 

intensity of change. We propose that a productive next step for the students in 

Johnson’s study might be to measure changes in the dependent variable by 

changes in the independent variable, given that they had just compared such 

changes. Such a next step would put students on a path to interpreting average 

and instantaneous rates of change as we described in the previous paragraph.             

USING VARIABLE PARTS IN GEOMETRY AND TRIGONOMETRY 

To see how the variable-parts perspective is useful for situations of geometric 

similarity, including trigonometry, consider dilations of 2-dimensional 

Euclidean space equipped with Cartesian coordinates. We may think of 

dilations that are centred at the origin in terms of two systems of coordinates on 

the same axes: one in which 1 unit of distance is fixed at 1 cm (say) and another 

set of coordinates in which 1 unit of distance—1 part—varies in size and 

consists of x cm, where x is the scale factor of the dilation. Given any point in 

the plane, its coordinates can be expressed in centimetres or in parts. For 

example, Figure 4 shows the effect of applying a dilation with scale factor 2. 

The light (grey) grid lines remain 1 cm apart and the heavy (red) grid lines 

remain 1 part apart even though 1 part changes from (a) 1 cm to (b) 2 cm. 

Expressed in terms of parts, the coordinates of the apex of the triangle are 

always (4, 3) even though the apex’s coordinates expressed in centimetres vary 

as the scale factor of the dilation varies.  
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Figure 4: Heavy (red) grid lines are 1 part apart where 1 part is (a) 1 cm (b) 2 

cm. 

This variable-parts perspective highlights that the side lengths of a triangle 

remain in the same ratio even as the triangle is dilated. For example, in Figure 4 

the height of the triangle, h, is always 3/4 its width, w, and therefore h/w is 

always 3/4 and is independent of the dilation that is applied to the triangle. The 

constancy of ratios of side lengths of right triangles is necessary and implicit in 

trigonometry.  

To apply the variable-parts perspective to trigonometry, consider a right triangle 

inscribed in a circle of radius 1 part, which is r cm (say), where r is the scale 

factor of a dilation centred on the centre of the circle. With this view, the radian 

measure of an angle is the measure in terms of parts—i.e., in terms of the 

radius—of the arc subtended by the angle on the circle. The variable-parts 

perspective highlights that the radian measure of an angle does not depend on 

the size of the circle and that it is always how many or how much of the radius 

it takes to make the subtended arc. 

A variable-parts perspective fits with the successful approach Moore (2013, 

2014) took in his teaching experiments on angles and trigonometric functions. 

In particular, Moore’s teaching experiments seem to have fostered the idea of 

measurement with respect to both a fixed unit and a variable unit (the radius). 

For example, Zac interpreted an arc length of 0.61 as 61% of a radius and 

explained that it is always the same percentage for each different circle. Zac was 

also able to interpret the sine and cosine as percentages of a circle’s radius, 

regardless of the circle’s size.   

USING VARIABLE PARTS FOR THE LAW OF LARGE NUMBERS 

In their review of the teaching and learning of probability and statistics, 

Langrall, Makar, Nilsson, and Shaughnessy (2017) noted that there has been 

particular interest in informal inference and a strong consensus that “informal 

inference includes (1) making claims or predictions beyond the given data while 
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(2) using the data as evidence for any claims that are made and (3) 

acknowledging that there is uncertainty in any claims or predictions” (p. 516). 

In reviewing misconceptions of statistical inference, Castro Sotos, Vanhoof, 

Van den Noorgate, and Onghena (2007) found a number of empirical studies 

that documented misconceptions regarding the idea behind the law of large 

numbers. According to Castro Sotos et al., students’ difficulties may have their 

source in the misconception known as “the law of small numbers,” in which 

even small samples are assumed to be highly similar to the population from 

which they are drawn (Tversky & Kahneman, 1971). Tversky and Kahneman 

noted that in sequential games of chance “subjects act as if every segment of the 

random sequence must reflect the true proportion: if the sequence has strayed 

from the population proportion, a corrective bias in the other direction is 

expected. This has been called the gambler’s fallacy” (p. 106). Castro Sotos et 

al. called for further research to identify sources and possible solutions for 

misconceptions.   

In situations of random processes, such as spinning a spinner, there are different 

ways students might informally conceptualize the law of large numbers. 

Consider a spinner that has 5 sectors of the same size, 3 purple and 2 blue (see 

Figure 6), and assume that every time one spins the spinner, each sector is 

equally likely to be landed on. One way to interpret the theoretical probability 

of landing on purple, 3/5, is “we expect 3 out of every 5 spins to land on 

purple.” With this interpretation, one might interpret the law of large numbers in 

terms of multiple “batches” (sets) of 5 spins, expecting that in every such batch, 

3 should land on purple, and that when batches deviate from this expectation, 

subsequent batches will adjust to compensate. Such a view seems similar to the 

“law of small numbers” ideas described by Tversky and Kahneman (1971). 

Although it seems reasonable to some extent for students to use ideas like “3 out 

of every 5 spins should be purple,” it also seems that this way of thinking could 

reinforce the “law of small numbers” and the gambler’s fallacy.   

The variable-parts perspective provides a different way to think about the law of 

large numbers. In the context of the spinner discussed above, imagine spinning 

the spinner over and over, and think of measuring sets of spins in two ways: in 

terms of the fixed unit “1 spin” and in terms of the unit “all the spins so far,” 

which varies in size. (Alternatively, one could use “the spins that have landed in 

Sector 1 so far.”) One can then think of measuring various sets of spins, such as 

the spins that have landed in purple so far. If we measure the spins that landed 

in purple by the unit “1 spin,” the result is a number of spins. If we measure the 

spins that landed in purple by “all the spins so far,” the result is some fraction or 

percentage—the empirical probability. Because the spinner is equally likely to 

land in each sector, we expect approximately 1/5 of the spins to land in each 

sector, and so we expect approximately 3/5 of the spins to land in purple. As 

more and more spins are performed, we should expect the spins to become more 
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and more evenly distributed across the 5 sectors (see Figure 6). So when we 

measure the spins that landed in purple by the unit “all the spins so far,” we 

should expect the measure to be approximately 3/5, with a better and better 

approximation as there are more and more spins. This is a way for students to 

see why we should expect the empirical probability to approximate the 

theoretical probability more and more closely as the number of spins increase. 

We propose that such an interpretation of the law of large numbers provides a 

more accurate image and a better foundation for informal inference than a “3 

out of every 5 spins” idea.   

 

Percentages of spins landing in each sector on 10 total spins

Percentages of spins landing in each sector on 100 total spins

Percentages of spins landing in each sector on 1000 total spins

0% 10% 0% 50% 40%

21% 23% 12% 21% 23%

20.1% 21.8% 18.6% 20.6% 18.9%

A spinner with

3 purple sectors and

2 blue sectors

 

Figure 6: A spinner and percentages of spins landing in each sector on 10, 100, 

and 1000 spins. 

In a study of future middle grades teachers who were enrolled in a mathematics 

course that taught the variable-parts perspective, Stevenson, Beckmann, 

Johnson, and Kang (2018) found that all 4 participants were able to reason 

about spinners using a variable-parts perspective, even though probability had 

not yet been discussed in the course. Three of the future teachers also used an 

interpretation like “3 out of every 5 times.” Two of them got stuck when using 

such an interpretation, but then made progress when they shifted to focusing on 

spins landing in parts (sectors) of the spinner and used variable-parts reasoning. 

Although further study is needed, these results suggest that a variable-parts 

perspective could be both accessible and useful for reasoning in probability and 

statistics. 
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In the present study, we tested the hypotheses that: a) there are individual 

differences in secondary students’ conceptual and procedural fraction 

knowledge, and b) these differences are predicted by students’ approach (deep 

vs. surface) to mathematics learning. We used two instruments developed and 

evaluated for the purposes of the study which were administered to 463 students 

at seventh and ninth grade. We found four clusters of students corresponding to 

different ways of combining conceptual and procedural knowledge of fractions. 

Students’ approach to mathematics learning predicted membership to some, but 

not all clusters.  

THEORETICAL BACKROUND 

Procedural knowledge is commonly defined as the knowledge of algorithmic 

procedures, whereas conceptual knowledge as the knowledge of concepts and 

principles pertaining to a certain domain (Rittle-Johnson & Schneider, 2015). 

This distinction has been criticized (e.g., Star & Stylianides, 2013), a main issue 

of concern being whether it is possible for the two types of knowledge be 

separated, given that they are typically found to be highly correlated. 

Nevertheless, there are indications that the two types of knowledge can be 

separated both theοretically and empirically (Lenz & Wittman, 2021), and this 

distinction remains useful in the area of research on mathematics learning 

(Vamvakoussi, Bempeni, Poulopoulou, & Tsiplaki, 2019). 

Assuming that conceptual and procedural knowledge are distinct types of 

knowledge, the order of acquisition and their relation have long been an issue of 

interest. The currently predominant theory, namely the iterative model (Rittle-

Johnson, Siegler, & Alibali, 2001), came to bridge the gap between two 

different accounts according to which one type of knowledge precedes the other 

(procedures-first and concept-first theories). The iterative model assumes that 

either type of knowledge can trigger the learning process, depending on the 

child’s prior experience with the domain in question; and that, from then on, the 

links between the two types of knowledge are bi-directional and continuous, 

with increases in one kind of knowledge leading to gains in the other type of 
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knowledge.  The iterative model explains many empirical findings, notably the 

well-established one that the two types of knowledge are positively correlated. 

However, such correlations found at group level do not accurately depict what 

happens at the individual level (Vamvakoussi, et al., 2019). Indeed, there is 

evidence that there are individual differences in the ways students combine the 

two types of knowledge. Hallett and colleagues (2010; 2012) investigated such 

individual differences in the area of fraction learning and identified different 

groups of students (Grades 5-8) with the one type of knowledge, conceptual or 

procedural, to be more developed than expected, given the other type. Similar 

individual differences in fraction knowledge have been found for older students, 

namely 9th graders (Bempeni, Poulopoulou, Tsiplaki, & Vamvakoussi, 2018; 

Lenz & Wittman, 2021), and they may be even extreme (Bempeni & 

Vamvakoussi, 2015). 

With the aim of explaining how these individual differences regarding 

knowledge in the domain of fractions, or other domains, arise, several 

hypotheses have been tested looking at various factors such as the amount of the 

prior knowledge in a domain (Schneider, Rittle-Johnson, & Star, 2011); 

differences in cognitive profiles, measured as general conceptual and procedural 

ability (Gilmore & Bryant, 2006; Hallett et al., 2012) or general cognitive 

abilities (Lenz & Wittman, 2021); and differences in educational experiences, 

measured as attendance in different schools or as school grade (Canobi, 2004; 

Hallett et al., 2012). No or limited support for these hypotheses has been found. 

We have formulated the hypothesis that a possible source of individual 

differences in conceptual and procedural fraction knowledge is the individual’s 

approach to mathematics learning.  In the literature there is an overarching 

distinction between the deep approach to learning, associated with the 

individual’s intention to understand; and the surface approach, associated with 

the individual’s intention to reproduce. There are several ways of characterizing 

each approach, mainly adapted to tertiary education (Entwistle & McCune, 

2004). In a qualitative study (Bempeni & Vamvakoussi, 2015) we adopted a 

model developed by Stathopoulou and Vosniadou (2007) and tested with 

secondary students. This model differentiates between the deep and the surface 

approach to learning along three axes, namely goals (personal making of 

meaning vs. performance goals); study strategies (e.g., searching for 

connections vs rote learning); and awareness of understanding (high vs. low). 

We interviewed in depth three 9th graders (A, B, C) who differed with respect to 

their fraction knowledge: A had strong conceptual as well as procedural 

knowledge; B had strong conceptual, but extremely weak procedural 

knowledge; and C had strong procedural, but extremely weak conceptual 

knowledge. We found indicators of the deep approach to mathematics learning 

for A and B, and indicators of the surface approach for C. We also traced 

differences among the students with respect to particular aspects of motivation 
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(e.g., enjoying vs. avoiding intellectual challenges in mathematics). In a second 

qualitative study, we further investigated the features of the deep approach to 

mathematics learning by studying exceptionally competent students in 

mathematics (Bempeni, Kaldrimidou, & Vamvakoussi, 2016).  

These two qualitative studies, informant the development of an instrument 

assessing secondary students’ approach to mathematics learning (deep vs. 

surface) along four axes, namely goals, study strategies, motivation, and self-

regulatory behaviors (e.g., monitoring of understanding, regulation of study 

habits). 

In the present study, we examined the hypotheses that there are individual 

differences in conceptual and procedural knowledge of fractions (hereafter, 

CKn and PKn) that become less salient but remain present up to Grade 9; and 

that these differences are predicted by students’ approach to mathematics 

learning (surface vs. deep). 

METHOD 

Participants 

The study had two phases. The participants in the first phase were 510 students 

at Grades 7 and 9, of whom 463 participated also in the second phase (262 ninth 

graders and 201 seventh graders). The participants came from seven Greek 

secondary schools. 

Materials 

Students’ CKn and PKn was measured by an instrument that has been evaluated 

in a previous study with respect to reliability and validity (Bempeni et al., 

2018). The instrument comprised 12 procedural tasks (e.g.: fraction operations, 

simplification of a complex fraction) and 14 conceptual tasks such as fraction 

representation, comparison, estimating the outcome of fraction operations (see 

Bempeni et al., 2018; Vamvakoussi et al., 2019 for a more detailed description 

of the instrument). 

The new instrument assessing student’s approach to mathematics learning 

comprised of 28 statements and 6 scenarios in which two hypothetical students 

presented two different views on an issue. Half of the statements were 

consistent with the deep approach to learning, and the other half with the 

superficial approach to learning. The students were asked to express the degree 

of their accordance in a scale of 1-4 (1=Totally Disagree, 2=Disagree, 3=Agree, 

4=Totally Agree). The neutral choice “Neither Agree or Disagree” was not 

included because it has been proved problematic in similar studies (e.g.: 

Entwistle et al., 2015). Examples of such statements were the following: “It’s a 

waste of time to study for something that is not required for the exams”, “If I do 

not remember the particular strategy to solve a problem, it is meaningless to try 
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to solve it”, “I prefer to solve new problems, than practicing with the ones I 

already know how to solve”. 

Procedure 

The students had fifty minutes to complete the first questionnaire with the 

fraction tasks, which was enough for them. The questionnaire for the approach 

to mathematics studying and learning was administered three weeks later. No 

time limit was imposed, but the students needed at about half hour to complete 

it.  

DATA ANALYSIS – RESULTS 

1st Phase of the study 

The data of the first phase of the study were classified using the proposed 

hierarchical method of cluster analysis, and taking as variables the standardized 

residuals in the two types of tasks (Bempeni et al., 2018; Hallett et al., 2010, 

2012). By following this method, we examined the relative difference between 

the two variables. Using a series of evaluation measures in R programming 

language (R project for statistical computing), we determined that the optimal 

number of clusters was 4. 

In Figure 1, we present the average performance in conceptual and procedural 

knowledge by cluster. In a little more detail, the first cluster (“Stronger than 

expected in CKn and PKn”, N=163, 32%, 10% 7th Grade) performed better than 

expected in both types of tasks. The second cluster performed better than 

expected in procedural tasks based on their CKn (“Stronger than expected in 

PKn”, N=207, 40.6%, 28.6% 7th Grade). The third cluster performed better 

than expected in conceptual tasks based on their PKn (“Stronger than expected 

in CKn”, N=75, 14.7%, 6.9% 7th Grade). Finally, the fourth cluster (“Weaker 

than expected in CKn and PKn”, N=65, 12.7%, 8.4% 7th Grade), comprised of 

students with low performance in both measures. It is worth noting that despite 

the fact that the overall score of the cluster “Stronger than expected in PKn” 

was higher than the one of the cluster “Stronger than expected in CKn”, the 

CKn score was comparatively lower. Moreover, the average performance in 

PKn and CKn was better at 9th grade (69.5% and 49.2% respectively) than at 7th 

grade (66.9% and 32.8%). 
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Figure 1: Average performance in CKn and PKn by cluster 

2nd Phase of the study 

In the second questionnaire, for the items consistent with the deep approach to 

learning, each choice (1-4) was taken to reflect the degree (low to high) of 

consistency of the response with the deep approach to learning. For the items 

consistent with the surface approach to learning the scores were ranked in the 

inverse order. The total score (hereafter, LA score) was calculated as the sum of 

the scores of all the items. For the analysis of the data, we used R programming 

language. 

For the evaluation of the second questionnaire, we conducted a small pilot 

study. The participants of the pilot study were 120 seventh and ninth graders. In 

order to assess the internal consistency of the instrument, we calculated 

Cronbach’s alpha. The value of Cronbach’s alpha for two of the items had 

negative correlation with the scale, and as a result, these questions were 

excluded from our instrument. Finally, the value of Cronbach’s alpha for the 

scale was α=0.821. We also assessed the external consistency of the instrument 

over a period of 15 days with a test-retest method. Forty-one students completed 

the questionnaire for a second time. We calculated the value of intra-class 

correlation coefficient for each item separately. Five of the items displayed 



Bempeni, Poulopoulou & Vamvakoussi 

2 -  71 

 

PME 44 -2021 

intra-class correlation below 0.4 and thus we decided to exclude them from the 

final version of the instrument. 

Clusters N Mean SD Median Range 

1 Stronger than expected 

in CKn and PKn 

158 2.987 0.414 3.037 (1.852 - 3.704) 

2 Stronger than expected 

in PKn 

194 2.830 0.397 2.923 (1.630 - 3.593) 

3 Stronger than expected 

in CKn  

52 2.636 0.275 2.633 (2.222 - 3.370) 

4 Weaker than expected 

in CKn and PKn 

59 2.593 0.367 2.630 (1.481 - 3.481) 

Table 1: Mean LA score by cluster 

The test of independence showed that there is a statistically significant 

correlation between cluster and approach to mathematics studying and learning 

(χ2=60.396, df=3, p-value<0.0001). As illustrated in the Table 1, the cluster 

“Stronger than expected in CKn and PKn” had the highest score with respect to 

the approach to mathematics learning, followed by the group “Stronger than 

expected in PKn”. The group “Weaker than expected in CKn and PKn” had the 

lowest score. 

In order to test the hypothesis that learning approach and school grade are 

predictors of the level of students’ CKn and PKn, we conducted multinomial 

logistic regression (Table 2). The results showed that both learning approach 

and grade can predict cluster membership. With the cluster “Weaker than 

expected in CKn and PKn” as base level, for every unit that the individual’ s 

LA score increases, it was 21.98 more likely for the student to belong to the 

cluster “Stronger than expected in CKn and PKn” and 4.77 more likely to 

belong to the cluster “Stronger than expected in PKn”. Using the same base 

level, a ninth grader is 8.35 more likely to belong to the group “Stronger than 

expected in CKn and PKn” than to the group “Weaker than expected in CKn 

and PKn”. 

Predictor Weaker than expected in 

CKn and PKn 

Vs. 

B OR= exp(B) p-value 

Score in mathematics 

learning approach  

Stronger than expected in 

CKn and PKn 

3.09 21.98 0.000 

 Stronger than expected in 

PKn 

1.56 4.77 0.000 
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 Stronger than expected in 

CKn 

0.42 1.53 0.390 

9th Grade Stronger than expected in 

CKn and PKn 

2.12 8.35 0.000 

 Stronger than expected in 

PKn 

0.18 1.19 0.606 

 Stronger than expected in 

CKn 

0.52 1.69 0.206 

Table 2: Predictive factor testing 

CONCLUSIONS – DISCUSSION 

The results of our study confirm the hypothesis that there are individual 

differences in the way students combine CKn and PKn for fractions (Hallett et 

al., 2010; 2012). Although older students were more likely to have strong CKn 

as well as PKn, a considerable percentage of 9th graders belonged to the clusters 

“Stronger than expected in PKn” and “Stronger than expected in CKn”, 

indicating that individual differences remain present up to Grade 9. It is worth 

noting that the greater part of our sample was found in the group “Stronger than 

expected in PKn”, indicating that instruction favours mainly the development of 

PKn (see also Canobi, 2004). 

In our attempt to detect the possible factors that are responsible for individual 

differences in CKn and PKn, we tested the hypothesis that the approach to 

mathematics learning predicts such individual differences. The LA score 

predicted the membership in the clusters “Stronger than expected in CKn and 

PKn” and “Stronger than expected in PKn”. This result only partially supports 

our hypothesis, due to the fact that the probability for a student to belong to the 

cluster “Stronger than expected in CKn” cannot be predicted; moreover, the 

mean LA score for this cluster was the second lowest one, lower than the mean 

LA score of the “Stronger than expected in PKn” cluster. A possible 

explanation is, that as a result of using residualized scores in the cluster analysis 

(Hallett et al., 2010, 2012; Bempeni et al., 2018), the “Stronger than expected 

in CKn” cluster includes students with relatively stronger CKn given their PKn, 

but not necessarily in absolute terms; and similarly, for students in the 

“Stronger than expected in PKn” cluster. A different method for clustering the 

students, differentiating between the low from the high performing students 

could be a viable solution (see Lenz & Wittman, 2021, for such a method). 

Whilst the development of the two types of knowledge is not assumed to be 

symmetrical at any given moment (Rittle-Johnson & Schneider, 2015), our 

results put a challenge to the iterative model. More specifically, given the age 

and educational experience of the participants, we would expect a more 
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balanced development of the two types of knowledge which is not the case in 

our study.  

The learning approach to mathematics deserves to be further investigated as a 

source of individual differences in CKn and PKn. The instrument that we 

developed is a contribution of some significance per se, since, to the best of our 

knowledge, there is no similar instrument targeting secondary students. An 

enrichment and refinement of our instrument, in view of the fact that several 

items had to be excluded from its final version following its evaluation, is 

worth-considering. 
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In this paper, we draw on the commognitive framework to explore types of 

mathematical growth during middle-school geometry peer interaction. 

Comparing students’ routines when working apart with their joint routines 

when working together, we identified four types of mathematical growth. Three 

types were object-level growth: applicability, refinement, and flexibility. One 

type was a meta-level growth consisting of a shift from a configural/visual 

procedure to a deductive one. Our study pinpoints the types of mathematical 

learning that can be achieved during peer interaction and shows the ways in 

which they can occur. Specifically, the study shows how different types of 

growth can be achieved by students building on their partner’s procedure in 

different ways. 

RATIONALE 

Learning through peer interaction has come to be highly regarded not only as an 

important 21st century skill, but also as a means to improve learning (Kuhn 

2015). Studies have shown that under certain interactional conditions, such as 

readiness of peers to listen to each other, problem-solving in pairs or small 

groups can be more conducive to students’ learning than solving a problem 

alone (e.g., Schwarz and Linchevski 2007). Other studies have examined the 

types of learning that can occur in peer interactions. Phelps and Damon (1989), 

for example, have found that peer interactions are more effective for conceptual 

learning and reasoning than for rote kinds of learning. Pai and colleagues (2015) 

showed, through the examination of pre/post-tests, that peer interaction is 

conducive to learners’ ability to apply or adapt prior knowledge to a novel 

situation. Although we learn from these studies about learning in peer 

interaction, we still know very little about the processes of mathematical 

learning that take place in these interactions and about how these different types 

of learning occur. In this study, our goal is to better understand how peer 

interaction promotes different types of growth in students' mathematical 

procedures used to solve a certain problem. 

THEORETICAL FRAMEWROK 

The theoretical framework which we use to pursue our goal is commognition 

(Sfard 2008). Commognition is a sociocultural discursive framework which has 

been productive in studying processes of peer interactions (Chan and Sfard 



Ben-Dor & Heyd-Metzuyanim 

2 -  76 

 

PME 44 -2021 

2020; Sfard and Kieran 2001) as well as processes of mathematical learning 

(Lavie and Sfard 2019; e.g. Lavie, Steiner, and Sfard 2019). The commognitive 

framework conceptualizes learning as a process of routinization of students’ 

actions (Lavie et al. 2019). Routines - repetitive patterns of actions – are thus 

the commognitive basic unit for analyzing learning. A routine is a task-

procedure pair; it is defined as “the task, as seen by the performer, together with 

the procedure she executed to perform the task” (Lavie et al. 2019:161).  

By studying mathematical routines, commognitive studies have been able to 

track learning over time and identify different types of growth in learners' 

routines (Lavie and Sfard 2019; Lavie et al. 2019). Flexibility is one such type 

of growth. A routine grows in its flexibility when another procedure is used in 

response to the same task. For example, Lavie and Sfard (2019) showed a 

growth in a young child’s routine for the task "where is there more?" when in 

addition to the initial procedure of visually estimating two piles of cubes, the 

child used another procedure of aligning these cubes. The child’s routine thus 

grew in flexibility to offer two alternative procedures for accomplishing the 

task. Applicability is another type of growth. Growth in applicability is detected 

when after applying a certain procedure to a certain task, a learner applies the 

same procedure to a new unfamiliar task. 

Much of the growth in children's mathematical routines happens at the object 

level. As they become familiar with certain procedures (e.g., adding, dividing) 

and certain objects (e.g., natural numbers), learners gradually apply the familiar 

procedures to different tasks, producing an increasing number of narratives 

about these objects. This growth constitutes object-level learning. Yet from time 

to time, as students gradually get introduced to more sophisticated mathematical 

discourses, a meta-level change is needed (Sfard 2007). Such a meta-level 

change can happen when rules for substantiating mathematical narratives 

change, or when new objects are introduced. For example, when students get 

introduced to rational numbers, the familiar arithmetic rules that had so far been 

successfully applied to natural numbers no longer apply. 

In this study, we wish to examine processes of peer interaction in junctures that 

afford object-level as well as meta-level learning. We pursue this goal by 

focusing on middle-school geometry, since a particularly critical transition is 

required from students in those years – the meta-level shift to deductive 

geometric procedures (Duval 1998). In this transition, students who are used to 

performing visual-configural procedures for substantiating claims about 

geometric objects (such as showing congruence by placing one triangle on top 

of the other) are required to shift to using new deductive procedures based on 

given data and geometric theorems (such as congruence theorems).  

For examining mathematical learning in peer interaction, we add to our 

commognitive conceptual toolset the concept of a joint routine which we define 
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as the collection of procedures used by a group (or pair) of people working 

together on the same task. Based on this theoretical framework, we ask: in what 

ways did students’ geometric joint routines grow during middle-school 

geometric peer interaction? 

METHODOLOGY 

The participants of our study were 10 middle-school students, six 8th graders 

(13-year-old) and four 9th graders (14-year-old), who took part in in a one-hour 

geometric activity facilitated by the first author. The design of the activity was 

based on videotaped lessons of the VIDEO-LM project (Karsenty and Arcavi 

2017) in which a geometric problem called The three squares was presented. 

The students in these lessons were asked to compare areas in three drawings. 

The canonical (correct) answer is that all areas are equal. Our design included: 

(1) a presentation of the geometric problem; (2) an individual session in which 

students worked on a worksheet (see Figure 1); (3) a dyadic session in which 

they worked on the same worksheet. Colored, half-transparent plastic shapes of 

a square and a triangle were given to the students as supporting tangible 

mediators.  

 

Figure 1: The worksheet 

Data collected included students’ 10 individual worksheets and 5 dyadic 

worksheets as well as footage from different cameras of both individual and 

dyadic sessions. Individual and dyadic sessions were fully transcribed 

(including non-verbal communication) and analyzed using footage from 

different cameras. Overall, 1530 transcription lines of verbal and non-verbal 

communication were analyzed.  

Data analysis included the following steps: (a) analyzing students’ visual 

mediators by adding to each line in the transcript a graphic representation of 

what they did, looked at and pointed to in the worksheet; (b) identifying 

students’ procedures for the task of comparing areas when working alone, by 

examining students’ written answers in individual worksheet as well as the 
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footage from their individual session and their communication at the beginning 

of dyadic session (c) tracking developments in dyads’ joint routine for the task 

of comparing areas when working together, by analyzing their communication 

during dyadic session as well as their dyadic worksheet; (d) deductively and 

inductively identifying types of joint routine growth. 

FINDINGS 

Individually, the ten students used four main procedures for the task of 

comparing areas. These were: (1) the “Supplement procedure” – cutting and 

“moving” parts in order to supplement similar-looking shared areas; (2) the 

“Ratio procedure” –visually estimating the ratio of the shared area from the 

whole square; (3) the “Formula procedure” – visually estimating the relation 

between heights and bases of the shared areas and then applying to it an area 

formula (such as base*height/2); and (4) the “Given procedure” – examining the 

givens (or lack thereof) to assess if enough information is provided.  

During the start of the dyadic session, the students within each dyad (dyad 1 to 

5) compared their solutions with the solutions of their dyadic partners and tried 

to reach an agreement. Some of them used different procedures in their 

individual routines for comparing the shared areas.  

Examining students’ joint routines during dyadic session, we found four ways in 

which growth in these routines occurred. Three of these ways were object-level. 

In other words, the growth did not include a change in meta-rules. These 

categories of growth were: (1) applicability; (2) refinement; and (3) flexibility. 

Two of these growth patterns – applicability and flexibility – have been known 

from previous studies (Lavie and Sfard 2019; Lavie et al. 2019). Refinement is 

a new bottom-up category that we used to describe growth which included the 

refinement of specific steps in a procedure previously used by one of the 

students. The fourth type of growth was a meta-level shift to deductive 

procedures. Table 1 presents these types of growth, their description, and 

examples.  

# Type Description Example 

1 Applicability 

(Object-level 

growth) 

Extending 

application of an 

initial procedure 

to another task 

The Supplement procedure, initially 

applied by one of the students only in 

relation to the comparison between 

shared areas I and II, was applied in 

dyadic sessions also to the comparison 

between shared areas I and III. 

2 Refinement 

(Object-level 

growth) 

Refining steps 

of an initial 

procedure 

In the Ratio procedure, the step of 

visually estimating the ratio of the 

shared area from the whole square was 

refined into two separate steps: (a) 
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 visually estimating how many times the 

shared areas can fit into the square; (b) 

deducing the ratio of the shared area 

from the whole square. 

3 Flexibility 

(Object-level 

growth) 

Forming a new 

procedure based 

on an initial 

procedure (same 

meta-rules) 

A new rotational procedure was formed 

based on the Ratio procedure. Both 

procedures, the original and the newly 

developed, relied on the same meta-rule 

of visual estimation. 

4 Meta-level 

growth 

Forming a new 

procedure based 

on an initial 

procedure (more 

developed meta-

rules) 

A new deductive congruence procedure 

was formed based on the Supplement 

procedure. The newly formed procedure 

relied on a more developed meta-rule 

(visual estimation is insufficient; 

justifications should be based on 

theorems and givens). 

Table 1: Types of growth in joint routines during dyadic session 

In what follows, we illustrate two of these types of growth – applicability and 

meta-level. We do so by focusing on the development of the most commonly 

used procedure – the Supplement procedure – through the case of dyad 1 (8th 

graders Noa and Eyal) and dyad 4 (9th graders Tamara and Orna).  

Example of growth in applicability during dyad 1’s session 

Analyzing Noa and Eyal’s initial processes in individual session, we found that 

Eyal only used the Ratio procedure, while Noa only used the Supplement 

procedure. Noa’s use of the Supplement procedure was limited to the 

comparison between shared area I and II. Although they used different 

procedures to compare between shared areas I and II, they endorsed the same 

narrative, namely, that shared area I and shared area II are equal. Here is how 

Noa explained her procedure to Eyal at the start of their dyadic session: 

Legend: (implied words); [parallel speech]; right column: representations of 

visual mediators. 

 

Look, these (shared areas I and II) are 

definitely equal 'cause… 'cause if you cut 

this, say, in half… here (draws line a), so 

what we have here (points to triangle b) 

you can move here (c), so we get a triangle 

(like shared area II) (in the picture to the 

right, Noa uses the plastic shapes to 

demonstrate more tangibly her procedure) 

Noa 36 
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How did you think about that?? Eyal 37 

From her written answer in her individual worksheet as well as from her 

explanation in this excerpt, we deducted that Noa’s procedure for comparing 

shared areas I and II included: (1) identifying the geometric shapes of the shared 

areas. This is evident in her reference to shared area I as “square” and to shared 

area II as “triangle”; (2) cutting the shape (line (a) cuts the square) of one area 

(area I) into sub-shapes (two triangles); (3) moving a sub-shape (triangle b) to 

another place (c) in the same drawing (I) so that it supplements a shape 

(triangle) similar to the other area (area II); (4) determining the relation between 

the shared areas (I and II) according to a visual comparison between the newly 

formed area (formed triangle in drawing I) and the other area (triangle in 

drawing II). The same procedure, with slight variations, recurred several times 

in students’ answers, and was named the Supplement procedure.  

Eyal’s reaction to Noa’s Supplement procedure, communicates not only that the 

procedure was new to him, but that he was surprised by and appreciated Noa’s 

“thinking” (37). Following his reaction Noa suggested that they write her 

explanation in their shared worksheet. Eyal then said:  

Yes, wait a second, you can cut also here (a), see? From here (a) and then 

put it here (b), We get this (c) 

Eyal 47 

 

Why? Noa 48 

To cut this, you can… Eyal 49 

[No but listen] Noa 50 

[take here this] small piece (a) Eyal 51 

[Aha] Noa 52 

[and then you] put it (a) here 

(b) 

Eyal 53 

But it’s not enough for… [ahh right, o.k., you’re right] Noa 54 

Here, Eyal applied Noa’s Supplement procedure to the task of comparing 

between shared areas II and III. He suggested cutting the shape of one area into 

sub-shapes and moving a sub-shape to another place so that it supplements a 

similar looking shape. Therefore, Eyal did not only adopt Noa’s Supplement 

procedure (starting his suggestion with “yes”), but also built upon it to suggest a 

new application (comparison between II and II) to the same procedure, an 

application which was not previously used by Noa. His words in line 47 

communicate that he found (“wait a second”) a new way of applying the same 

procedure (“also”, “see?”). Therefore, Noa and Eyal’s joint routine for 

comparing areas grew in applicability: from only applying the Supplement 

a b c
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procedure to the task of comparing areas I and II at the start of dyadic session 

(Noa’s individual routine) to applying it also to the task of comparing between 

areas II and III (Noa and Eyal’s joint routine). 

Example of meta-level growth during dyad 4’s session 

Meta-level growth was found only in the interaction of Tamara and Orna, a pair 

of relatively high achieving 9th graders. This did not come as a complete 

surprise since only two interactions (Orna and Tamara’s and one more dyadic 

interaction) were of 9th grade dyads; the other three were of 8th grade dyads, 

who were at the very initial stages of exposure to deductive geometric 

procedures. Both Tamara and Orna started out with configurally-based 

procedures. Orna used the Ratio procedure, while Tamara used the Supplement 

procedure. Toward the end of the pair’s session, a meta-level growth in the dyad 

joint routine occurred when the girls discussed why shared area I and III are 

equal. The following exchange begins with Tamara suggesting using the 

Supplement procedure for comparing areas I and III: 

 

… you need to say that, like you 

move this part (a) to here (b) and 

then like [it will form a square] 

Tamara 132 

[I have an idea], if we, like, show congruence (between) this (a) and 

that (b), then… (given the context of previous utterances we interpret 

this as meaning: by showing that these triangles are congruent, we can 

show that their areas are “the same”) 

Orna 133 

 …   

No, No look, you need to say that this (a) is like (meaning congruent 

to) this (b) in order for it to be ok to move the… 

Orna 141 

In line 132 Tamara suggested her Supplement procedure: to move part (a) so 

that it covers part (b) and forms a square similar to the shared area in drawing I. 

In response to Tamara’s suggestion, Orna proposed that they use congruence 

theorems to substantiate that the areas of the triangles (a and b) are the same (“I 

have an idea, if we, like, show congruence” [133]). In line 141, Orna further 

explained that in order to claim that triangle (a) can be moved on top of the 

triangle (b) in a way that exactly covers it, they need to show that they are 

congruent (“you need to say… in order for…”). In other words, she did not 

agree (“no, no…”) with the meta-rule of the Supplement procedure that visual 

estimation is enough. Rather, she drew on the Supplement procedure to suggest 

a new deductive congruence procedure. The newly formed procedure relied on a 

more developed meta-rule (visual estimation is insufficient; justifications should 

be based on givens and theorems). By that, Tamara and Orna’s joint routine for 

comparing areas underwent a meta-level shift. 
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DISCUSSION 

Our goal in this study was to explore types of mathematical growth in peer 

interaction. Specifically, we examined developments in students’ joint routines 

around a geometric problem that invited movement from purely 

configural/visual procedures to deductive ones. We found four ways in which 

students' routines grew during interaction. Three of these were object-level 

learning – applicability, refinement, and flexibility – while the fourth was a 

meta-level learning that included a shift from configural to deductive meta-

rules. Our study contributes to commognitive research by extending the 

application of the study of routine growth (Lavie et al. 2019) from individuals’ 

learning to peer learning. In addition, it adds on previous research on peer 

learning (Kuhn 2015) by pinpointing the types of mathematical learning that 

can be achieved during peer interaction, and showing the ways in which they 

can occur. Specifically, the study shows how different types of growth can be 

achieved in routines by students building on their partner’s procedure in 

different ways. 

The conclusions from this study are limited by the relatively small scope of 

cases, a regular limitation in studies that take such a micro-analytical look at 

students' discourse. Thus, future studies are needed to determine the relative 

frequencies of different types of joint routine growth in peer interaction. In 

addition, it is yet to be examined how much of what is developed jointly during 

students' interaction is later individualized by the participating students. 

Nevertheless, we believe that through our detailed theoretically anchored report, 

we are making progress in understanding the precise mechanisms of 

mathematical learning during peer interaction. A better understanding of these 

mechanisms of peer learning can aid educators in preparing, designing, and 

facilitating collaborative activities in the mathematics classroom. 

References 

Chan, Man Ching Esther, and Anna Sfard. 2020. “On Learning That Could Have 

Happened: The Same Tale in Two Cities.” The Journal of Mathematical Behavior 

60. 

Duval, Raymond. 1998. “Geometry from a Cognitive Point of View.” Pp. 37–52 in 

Perspectives on the Teaching of Geometry for the 21st Century. Vol. 5, 

Perspectives on the Teaching of Geometry for the 21st Century, edited by C. 

Mammana and V. Villani. Dordrecht: Springer Netherlands. 

Karsenty, Ronnie, and Abraham Arcavi. 2017. “Mathematics, Lenses and Videotapes: 

A Framework and a Language for Developing Reflective Practices of Teaching.” 

Journal of Mathematics Teacher Education 20(5):433–55. 

Kuhn, Deanna. 2015. “Thinking Together and Alone.” Educational Researcher 

44(1):46–53. 



Ben-Dor & Heyd-Metzuyanim 

2 -  83 

 

PME 44 -2021 

Lavie, Irit, and Anna Sfard. 2019. “How Children Individualize Numerical Routines: 

Elements of a Discursive Theory in Making.” Journal of the Learning Sciences 

28(4–5):419–61. 

Lavie, Irit, Aya Steiner, and Anna Sfard. 2019. “Routines We Live by: From Ritual to 

Exploration.” Educational Studies in Mathematics 101(2):153–76. 

Pai, Hui-Hua, David A. Sears, and Yukiko Maeda. 2015. “Effects of Small-Group 

Learning on Transfer: A Meta-Analysis.” Educational Psychology Review. 

27(1):79–102. 

Phelps, Erin, and William Damon. 1989. “Problem Solving with Equals: Peer 

Collaboration as a Context for Learning Mathematics and Spatial Concepts.” 

Journal of Educational Psychology. 81(4):639–46. 

Schwarz, Baruch B., and Liora Linchevski. 2007. “The Role of Task Design and 

Argumentation in Cognitive Development during Peer Interaction: The Case of 

Proportional Reasoning.” Learning and Instruction 17(5):510–31. 

Sfard, Anna. 2008. Thinking as Communicating: Human Development, the Growth of 

Discourses, and Mathematizing. Cambridge: Cambridge University Press. 

Sfard, Anna. 2007. “When the Rules of Discourse Change, but Nobody Tells You: 

Making Sense of Mathematics Learning from a Commognitive Standpoint.” 

Journal of the Learning Sciences 16(4):565–613. 

Sfard, Anna, and Carolyn Kieran. 2001. “Cognition as Communication: Rethinking 

Learning-by-Talking through Multi-Faceted Analysis of Students’ Mathematical 

Interactions.” Mind, Culture, and Activity 8(1):42–76. 

 

 



2 - 84 

2021. In Inprasitha, M., Changsri, N., Boonsena (Eds.). Proceedings of the 44th Conference of the 

International Group for the Psychology of Mathematics Education, Vol. 2, pp. 84-92. Khon Kaen, 

Thailand: PME. 

 

TEACHERS’ INTERPRETATIONS OF THE CONCEPT OF 

PROBLEM—A LINK BETWEEN WRITTEN AND INTENDED 

REFORM CURRICULUM 

Ewa Bergqvist and Tomas Bergqvist 

Umeå Mathematics Education Research Centre, Umeå University, Sweden. 

 

Over the last decades, there has been an on-going international reform for 

school mathematics, which has, not surprisingly, been difficult to implement. 

This study focuses on teachers’ interpretation of formal written curriculum 

documents, especially whether their interpretations align with how a concept 

(the concept of problem) is conveyed in the documents (in Sweden). The results 

show that the formal written documents are vague, but that it to some extent 

conveys the concept of problem as “a task for which the solution method is not 

known in advance to the solver.” The interviews show that about 53 % of the 

teachers interpreted problem as “any task,” and that teachers’ interpretations 

therefore are not aligned with how the concept is (albeit vaguely) conveyed in 

the documents. 

INTRODUCTION 

During the last 25 years, the descriptions of school mathematics have gradually 

changed all over the world. The main message of this reform is to complement 

content goals (such as algebra) with competency goals (such as problem 

solving) and this idea can be found in many international reform frameworks 

(e.g., NCTM, 2000; Niss & Jensen, 2002). In many countries the formal written 

(national) curriculum documents now use these kinds of competency goals to 

formulate goals for student learning in mathematics (e.g., in Singapore, SME, 

2012). Many researchers argue that in the heart of doing mathematics you find 

problem solving (e.g., Schoenfeld, 1992) and problem solving is sometimes 

considered as the most important part of the reform. There is a lot of research on 

the implementation of educational reforms, for example, in Norway (e.g., 

Gundem, Karseth, & Sivesind, 2003), and in North America (e.g., Fullan, 

2001). One main result is that educational reforms most often do not give the 

desired effect in schools (Hopmann, 2003) even when the teachers themselves 

believe that their teaching reflects the new ideas (e.g., Stein, Remillard, & 

Smith, 2007, p. 344). It is therefore important to understand how the different 

parts of the curriculum chain are connected. The purpose of this study is to 

deepen the understanding of the connection between written and intended 

curriculum in mathematics. The study will compare how a central standards-

based reform concept is conveyed in the Swedish formal written curriculum (the 
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policy documents) with how it is interpreted by Swedish teachers’, that is, the 

intended curriculum. In particular, we focus on the concept of problem and on 

Sweden, as one of the countries that has been part of the standards-based 

reform.  

CURRICULUM CHANGE 

The word curriculum has many different meanings in research. In this article we 

use a framework suggested by Stein et al. (2007), including the written (the 

printed page), the intended (as planned by the teachers), and the enacted (actual 

implementation in the classroom) curriculum. Research has shown many 

possible reasons that a reform does not result in change in teacher practice, that 

is, that change in the written curriculum does not result in change in the enacted. 

One possible reason is that the reform message is not clearly conveyed to the 

teachers (Fullan, 2001). Another is that the teachers are not supported enough to 

carry out the change (Fullan, 2001). Different parts of the chain between written 

curriculum and student learning have been studied extensively (see e.g., Stein et 

al., 2007), but in comparison there is not much research on teachers’ 

interpretation of the formal written curriculum.  

DEFINITIONS OF PROBLEM AND PROBLEM SOLVING 

Problem solving has had an important role in many areas of research, for 

example, in cognitive psychology as the “paradigm for the higher cognitive 

processes” (Kintsch, 1998, p. 2). There are, however, many possible different 

definitions of problem and problem solving, and this has often been discussed 

(see e.g., Schoenfeld, 1992; Xenofontos & Andrews, 2014). In the words of 

Stigler and Hiebert (2004), “the word ‘problem’ clearly means different things 

to different people” (p. 13). 

A traditional definition of the concept of problem is that it is any task including 

both routine and non-routine tasks (Schoenfeld, 1992, p. 337). This definition is 

in line with definitions presented in both English and Swedish dictionaries. 

Within mathematics education research, this traditional definition is often 

questioned: “In education it is important to distinguish a problem from a simple 

question to which the answer is known without any need for reflection” (Borba, 

1990, p. 39).  

Another definition that is more common today is to see a mathematical problem 

as a task for which the solution method is not known in advance for the solver 

(see e.g., Blum & Niss, 1991). In addition, this is a common definition in 

standards-based reform, which is central to this study (e.g., NCTM, 2000). 

Lester (2013) summarizes that although there have been many different research 

areas that have focused on problem solving, in general, “they all agree that a 

problem is a task for which an individual does not know (immediately) what to 

do to get an answer” (p. 247).  
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Another suggested definition of problem is word task, that is, a task with verbal 

text describing a situation or a context (see e.g., Borasi, 1986). A real-world 

task, that is a task with a real-world context or an applied task (se e.g., Chen, 

1996) is also a suggested definition. In conclusion, even though most 

researchers presently define problem in line with a task for which the solution 

method is not known in advance for the solver there are many different 

definitions of and opinions regarding what a problem is. 

TEACHERS’ INTERPRETATIONS OF THE CONCEPT OF PROBLEM 

That many mathematics education researchers use the same definition of what a 

problem is, does not necessarily imply that teachers would agree. Few studies 

focus on how teachers actually define what a problem or what problem solving 

is (Xenofontos & Andrews, 2014). Grouws, Good, and Dougherty (1990) 

interviewed 24 teachers and summarized their conceptions of problem solving 

into four categories: solving word problems (6 teachers), solving real-world 

problems (3 teachers), solving problems (10 teachers) and solving thinking 

problems (6 teachers). The third category is described as following a “step-by-

step adherence to predetermined guidelines” and “involved computations or 

setting up equations” (p. 137), which we interpret as including any task and, 

perhaps in particular, routine tasks. Another study examined a representative 

random sample of 63 Finnish third grade elementary teachers’ conceptions 

about mathematical problem and problem solving (Näveri, Pehkonen, Hannula, 

Laine, & Heinilä, 2011). On the multiple-choice question, “What is a problem?” 

most of the teachers (70 %) answered that it primarily is a word task. For a 

smaller group of teachers (24 %) “problem is a task for which the solution is not 

known” (p. 5). In conclusion, teachers’ definitions of the concept of problem 

varies, and also vary between cultures, but are generally not in line with the 

most common definition within mathematics education research. 

PURPOSE AND RESEARCH QUESTIONS 

The purpose of this study is to deepen the understanding of the connection 

between written and intended curriculum in mathematics. The study will 

therefore compare how the concept of problem is conveyed in the Swedish 

formal written curriculum (the policy documents) with how it is interpreted by 

Swedish teachers. The research questions are: 

1. What meaning of the concept of problem is conveyed in the Swedish 

formal written curriculum in mathematics? 

2. How do Swedish mathematics teachers interpret the concept of problem 

when it is used in the formal written curriculum in mathematics? 

METHOD 

The method consists of an analysis of the written Swedish formal written 

curriculum, in relation to research question 1, and another analysis of teachers’ 
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interpretations of curriculum documents, in relation to research question 2, as 

described below.  

Categories for Analysis 

The analyses use four categories of possible definitions of the concept of 

problem, chosen since they represent the four most common definitions within 

mathematics education research, as presented in the Background. The categories 

are:  

1. any task (including routine tasks) 

2. tasks for which the solution method is not known in advance to the solver 

(i.e., non-routine tasks) 

3. real-world tasks, that is, tasks set in a context or applied tasks  

4. word tasks, that is, tasks with verbal text describing a situation or a 

context 

All these definitions make sense in a mathematics. However, note that the 

categories are not disjoint, since categories 2-4 are subsets of category 1. 

Data Collection and Analysis of the Formal Written Curriculum 

To answer the first research question, the Swedish formal written curriculum for 

mathematics in primary and lower secondary school and for upper secondary 

school valid at the time of the interviews (Utbildningsdepartementet, 1994) are 

examined. For upper secondary school, we analyze one text describing 

mathematics in general, common to all courses, and the text describing course 

A, since it is the only compulsory course for all students. We also include the 

official Commentary documents written by experts engaged in the writing of the 

formal written curriculum for mathematics for primary and lower secondary 

school (Emanuelsson & Johansson, 1997). There were no other official 

documents explicitly concerning mathematics valid at this time.  

The formal written curriculum is searched for all instances where the word 

problem is used. The search includes the word problem, as well as any 

compound word including the word problem, such as problem solving (Sw. 

problemlösning). All instances are then analyzed in two steps. First, and most 

importantly, by examining each instance in search for definitions, explanations, 

and examples. Second, by examining whether the wording in the instances are 

in line with one or more of the definitions of problem (1-4) or if any instance 

has a wording that conflicts with any of these.  

Data Collection and Analysis of Teachers’ Interpretations 

This part of the data collection was carried out within a larger project (see 

Boesen et al., 2014) in which almost 200 teachers were observed and 

interviewed. The selection of schools was “based on stratified random sampling 
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and was carried out by the Swedish Schools Inspectorate” (Boesen et al., 2014, 

p. 77). The data in this particular study consists of answers to one specific 

interview question from 126 upper secondary mathematics teachers and 61 

primary and lower secondary school teachers, in total 187 teachers. During the 

interviews the teachers were presented quotes from the formal written 

curriculum and one quote included the word “problem”. The quote presented to 

the upper secondary school teachers was: “Pupils use appropriate mathematical 

concepts, methods, models and procedures to formulate and solve different 

types of problems”. The quote shown to the primary and lower secondary 

school teachers was similar. The teachers were then asked: “How do you 

interpret the word problem?”  

The analysis was carried out in three steps. First, the researchers separately 

analyzed the answers from the upper secondary school teachers (126 answers) 

using the categories presented above. The researchers made the same 

categorization for 103 of these, which indicates a reasonable inter-rater 

reliability. Second, the researchers discussed the 23 answers for which they did 

not initially agree, which resulted in more detailed instructions regarding how to 

interpret the categories. Third, the remaining 61 answers) were analyzed by the 

second researcher.  

RESULTS 

The Concept of Problem in the Written Curriculum 

The first research question is: What meaning of the concept of problem is 

conveyed in the Swedish formal written curriculum in mathematics? In the 

documents for primary and lower secondary school) the word problem is used 

21 times as it is or in compound words. In the documents for upper secondary 

school, it is used 25 times. 

First, and most importantly, examining the 46 instances, our main result is that 

there is no definitions, explanations, or examples of what a problem or problem 

solving is.  

Second, that 37 of the 46 instances are compatible with all the definitions used 

in the analysis (1-4). Typical examples are instances saying that a problem can 

be solved, understood, developed, formulated, and that different methods can be 

used to solve problems, and all these are reasonable regardless of definition 

used. The other nine instances have wordings that are to some extent in conflict 

with one or more of the definitions. For example, the wording “mathematical 

problem solving is a creative activity” is in conflict with the definitions that 

include routine tasks. In summary, the concepts are undefined and used in a 

vague or even contradictory way. This is also the case for most other concepts 

in the Swedish formal written curriculum (Bergqvist & Bergqvist, 2017).  
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In the Commentary, the development of problem solving is described as a 

central purpose of all mathematics education (Emanuelsson & Johansson, 

1997). The word problem is not explicitly defined but is used under the headline 

Problem solving: “Sometimes it is not even a genuine problem since the needed 

calculation method is given through the context or the chapter heading...” 

(Authors’ own translation. Emanuelsson & Johansson, 1997, p. 18). For a 

genuine problem “the needed calculation method” is not “given through the 

context or the chapter heading”, which indicates that a “genuine problem” is of 

type 2, tasks for which the solution method is not known in advance to the 

solver. Our conclusion is that in the Commentary a problem is conveyed as 

category 2, but that the wording is vague. 

The answer to research question one is that the conveyed meaning of the 

concept of problem in these documents is unclear. The concept is not defined, 

explained, or exemplified in any text, but it is to some extent conveyed as being 

of type 2, tasks for which the solution method is not known in advance to the 

solver (or non-routine tasks). 

Teachers’ Interpretations of the Concept of Problem 

We present 187 teachers’ interpretation of the word problem in the written 

curriculum. Four categories (1-4) of possible interpretations were predefined 

and 151 of the 187 teachers gave answers that could be placed within these 

categories (see Table 1). 

Interpretation of 

problem 

Primary and 

lower secondary 

teachers (61) 

Upper secondary 

teachers (126) 

All teachers 

(187) 

1. Any task 49% (30) 55% (69) 53% (99) 

2. Task for which the 

solution method is not 

known in advance 

10% (6) 15% (19) 13% (25) 

3. Real-world task 3% (2) 8% (10) 6% (12) 

4. Word task 10% (6) 7% (9) 8% (15) 

5. Other 28% (17) 15% (19) 19% (36) 

Table 1: Percentage (number) of teachers making interpretations of  

the concept of problem in line with each of the predefined categories. 

The most common answer was that a problem is any task (99 teachers). This 

was expressed in a few different ways, but the most common answer (given by 

61 teachers) was “uppgift”, which is Swedish for “task.” Other answers 

categorized as any task were “something to be solved” and “everything is a pro-

blem.” In category 2, 18 of the 25 teachers used expressions close to the 



Bergqvist & Bergqvist 

2 -  90 

 

PME 44 -2021 

definition in this study, like “unfamiliar tasks”, “when you don’t know how to 

solve it,” and “when you can’t see the answer.” The remaining 7 used 

expressions that were not as close to the definition, for example, “many 

solutions”, but we chose to include them to avoid underestimating the category 

that is most common among researchers. Twelve teachers used expressions that 

were categorized as real-world tasks. In this category, statements like 

“applications”, and “real life tasks” were placed. Fifteen teachers said that a 

problem is a word task. They all used either the expression “text task” (Sw. 

textuppgift) or the expression “reading task” (Sw. lästal or läsuppgift). The 

expressions put in category 5, other, were of different types, for example, 

“problems are mathematical problems”, and “it can be on different levels, 

different for different students.” In general, these answers were hard to interpret. 

Three teachers in this group answered: “I don’t know what a problem is.” 

The answer to research question two is that there is a large variation in how 

Swedish mathematics teachers interpret the concept of problem, but that more 

than half of the teachers interpret it as any task. 

DISCUSSION 

The purpose of this study is to deepen the understanding of the connection 

between written and intended curriculum in mathematics, and the study has a 

particular focus on the concept of problem. The results show that the formal 

written documents and the Commentary are vague, but that they to some extent 

convey that a problem is a task for which the solution method is not known in 

advance to the solver. The interviews show that about 53% of the teachers 

interpreted problem as any task, and that the rest of the teachers interpreted it in 

many different ways. The teachers’ interpretations are therefore not aligned 

with how the concept is (vaguely) conveyed in the documents.  

In the formal written curriculum, problem is a very central concept, and it is 

implied that a significant part of the students’ work in mathematics should be 

devoted to solving problems. Different interpretations of the word problem 

could therefore lead to very different teaching practices. One example is that 

Swedish students spend a large part of their time (two thirds of the lessons) 

during mathematics classes working with the textbook (Boesen et al., 2014). 

Interpreting problem as any task means that the students already spend two-

thirds of their time on problem solving. A teacher interpreting problem as a task 

for which the solution method is not known in advance to the solver, would have 

to examine the textbook tasks and probably add different kinds of tasks from 

other sources in order to ensure that their classroom practice meets the goals of 

the written curriculum. In this case, different interpretations of the written 

curriculum would result in large variation regarding both the intended and the 

enacted curriculum. Under these circumstances, the formal written curriculum 

cannot be said to clearly guide the teachers’ practice, a situation in line with 
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previous research (e.g., Hill, 2001). In this study we asked teacher to explain 

what a problem is, but not what problem solving is. Initially it was assumed that 

problem solving would be considered to be the same thing as solving problems. 

However, three teachers suggested that problems to be solved during problem 

solving are of a different kind than problems in general.  
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— A SEMIOTIC PERSPECTIVE ON A GEOMETRIC 
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Goethe University of Frankfurt, Germany 

 

In this paper, a semiotic perspective on mathematics learning is taken, focusing 

on diagrammatic work and thus on diagrammaticity. With this theoretical 

approach, action on diagrams, which include designing, manipulation and 

experimenting with diagrams on paper, on the computer screen or with physical 

material, are examined in more detail. It is assumed that the actions on 

diagrams show the mathematical interpretation of actors, which can be used to 

draw conclusions about their mathematical awareness. With the help of Vogel’s 

(2017) adaptation of the context analysis according to Mayring (2014), 

mathematical interpretation processes from young learners are reconstructed 

using a geometric example of actions on physical material. 

INTRODUCTION  

The semiotic perspective on mathematical learning makes it possible to focus 

more strongly on materialised actions and to use these as a starting point for the 

identification of the learners’ mathematical interpretation processes and thus to 

make them accessible for research in mathematics education. The material 

arrangement — often initiated by the formulated work task and the 

materialisations given therein (on paper, on the screen or in form of physical 

material) — is interpreted as a mathematical diagram and represents the 

beginning of diagrammatic work. In diagrammatic work, diagrams are 

interpreted mathematically, and rule-guided actions are performed in the 

diagrams. The implicit or explicit interpretation of diagram rules depends, 

among other things, on the selected material and problem arrangement. Which 

possibilities of reconstruction open up for research into mathematical 

interpretation processes and thus mathematical learning through this semiotic 

perspective will be presented in the following using a geometric example from 

primary school. 

THEORETICAL FRAMEWORK  

Mathematical Learning from Semiotic Perspective 

From a semiotic point of view, learning of mathematics is seen as a perceptible 

action. These actions include dealing with diagrams, manipulating and 
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experimenting with diagrams as well as inventing new diagrams (Dörfler, 2006) 

“A Diagram is a representamen which is predominantly an icon of relations and 

is aided to be so by conventions.” (CP 4.418). The relations and conventions of 

a diagram become clear through the interplay of different inscriptions. 

Inscriptions can be signs on paper, illustrations on screen or consist of tactile 

material (Gravemeijer, 2002). In order to do mathematics with diagrams, the 

implicit and partly conventionalised rules in which the relation of the diagram 

are expressed must be interpreted by the learners. Only by this interpretation 

rules become usable for manipulations and the learners can experiment with the 

diagram. Through a rule-guided transforming of the diagram, a learning space is 

opened up for the learners, in which the learners can apply existing 

mathematical knowledge but also can gain new mathematical knowledge, and 

thus mathematical learning takes place. These insights include, for example, the 

determination of characteristics, the discovery of previously unknown 

relationships or the calculation of a result. Learning mathematics can thus be 

seen as interpreting and acting with diagrams (Dörfler, 2006).  

Semiotic Perspective on Actions on the Material  

The semiotic perspective on mathematical learning, especially the 

diagrammaticity described above (Dörfler, 2006), is another way to grasp 

actions on materials theoretically. The widespread view of material in 

mathematics teaching is that it is used to construct mental images (Lorenz, 

1993; Dörfler, 1991). The material is usually assigned the function of 

representation. These representations of mathematical objects, which are 

concretely available through the materialisation, can be used for actions. 

Materialisations from a semiotic perspective do not stand for a mathematical 

object but allow to make mathematical experiences through manipulations and 

their interpretations. “[…] the number line does not represent Z in an objective 

manner. However, the number line can be used to think ‘about’ whole numbers 

and their operations and relations.” (Dörfler, 2000, p. 103) 

Therefore, in this paper actions are to be understood as what learners do in order 

to design diagrams (on paper, on the screen or in form of physical material), to 

manipulate them according to certain rules (also conventionally shaped) and to 

experiment with them. The central assumption for this paper is that actions on 

diagrams show the mathematical interpretation of the actors, from which their 

mathematical knowledge and mathematical cognitive processes can be deduced 

(Dörfler, 2000). Thus, the actions are the starting point for the reconstruction of 

the mathematical interpretations of the diagrams of the learners. Through 

actions, further inscriptions can be designed as part of the diagram on which the 

learners perform further actions and which they can take into interaction with 

other learners. Thus, the action itself is temporary, and the resulting inscription 

(manifestations on the material) can be interpreted as a diagram and 
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manipulated by the learners. In this way, further actions emerge from actions, 

which can lead to mathematical awareness (Dörfler, 2000).  

RESEARCH DESIGN AND GOALS  

The Study “MatheMat — Mathematical Learning with Materials” 

The study “MatheMat — Mathematical Learning with Materials” focuses on 

primary school children’s actions on various material (digital and physical) 

(Billion, 2018). In four learning situations, primary school children deal with 

the representation of data, and in another four learning situations they deal with 

geometric quantities (e.g. volume and surface). Each learning situation is 

realised on the one hand with physical material and on the other hand with 

digital material. In total, 32 children (16 child pairs) from third and fourth grade 

participate in the study. Each child pair works on one geometric and one 

statistical problem, working once with digital and once with physical material. 

The processing time of one problem is about 45 minutes. The processing of the 

primary school children was recorded with two video cameras. One camera 

records the long shot, and the second camera focuses on the actions on the 

material. Specially selected video sequences from the learning situations are 

transcribed in order to be able to analyse them qualitatively. For this paper, the 

geometric learning situation “Relationship between surface and volume of 

similar cubes”, which is realised with physical material, is selected.  

Learning Situation “Relationship Between Surface and Volume of Similar 

Cubes” 

As in all learning situations, prompts are available to the fourth-graders. 

Prompts are challenges or short questions that activate learners’ mathematical 

concepts and knowledge, induce the execution of processes and stimulate 

cognitive and metacognitive strategies (Bannert, 2009). The learning situation 

starts with the same prompt for all learners. This prompt intended to stimulate 

with a question to produce similar cubes using an edge model. In this way, the 

concept of similar cubes can be clarified at the beginning.  

In order to structure this first approach, at the beginning the learners are asked 

to consider a similar but larger cube and then to build it. In this way, learners 

intuitively but also systematically generating rules for the construction of 

similar cubes. Plastic sticks of different lengths are available to the learners to 

build the edge model, which they can plug together with corner connectors. 

Furthermore, in the arranged learning environment (see Fig. 1) they can use a 

wooden cube, which is introduced as a unit cube, and a flat square grid with the 

grid size of one side area of the unit cube. After processing the start prompt, 

further prompts are available to the learners. The order of processing is 

determined by the children. 
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Figure 1: Prompts and the material arrangement from the selected learning 

situation 

The prompts are written on paper cards 

that are spread out on the table in front of 

the learners. Each prompt contains the 

same information text, which clarifies 

basic concepts, a work assignment usually 

in the form of a question and a request for 

the children to reflect on their learning 

process or to note down results. The 

learners can flexibly decide which prompt 

they want to work on. If they do not 

understand the question of the prompt, 

they can put it in the back and work on 

another prompt first. Using the prompts, 

learners are asked to check how many 

unit cubes fit into and how many unit 

squares fit on all sides of the edge models 

of similar cubes and what patterns can be 

discovered.  

Figure 2: Prompt with which the children work in the transcribed scene 

To determine this, learners can use the square grid and the unit cubes, indicating 

the volume and surface in unit cubes or squares. The learners have the 

instruction to record their observations, findings and results either verbally or in 

writing e.g. in the form of a table.  

DATA ANALYSIS  

For the analysis of the data, selected sections of the video material are 

transcribed. For this purpose, those places in the data material are selected 

where the child pairs working with digital or physical material use at the same 

place in the order of processing (e.g. the third place) the same prompt. In the 
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transcripts, all action on the material and gestures of the children are reproduced 

in detail.  

On the basis of the theoretical explanations, the following research question will 

be pursued in this paper: Which mathematical interpretations of the learners can 

be reconstructed on the basis of their actions on physical material during their 

processing of the learning situation “Relationship between surface and volume 

of similar cubes”?  

Methodological Approach — Analysis of the Mathematical Interpretation  

The basis of the qualitative reconstruction of the learners’ mathematical 

interpretations of the diagrams and their actions on them is the adaption of the 

context analysis (explication) according to Mayring (2014) for mathematical 

learning processes made by Vogel (2017). Here, the explication of a linguistic 

expression is transferred to the reconstruction of mathematical concepts. This 

adaption (Vogel, 2017, pp. 68–69) is specified for the reconstruction of 

learners’ interpretations as follows.  

Step 1 – Determination of evaluation unit: As a starting point for the context 

analysis, a transcript passage is selected in which a mathematical 

(diagrammatic) action is described that is significant in the situation and that 

matches the research question and in this case is interesting for the 

reconstruction of the learner’s individual interpretations.  

Step 2 – Explication 1 — mathematically and diagrammatically intended 

actions of the evaluation unit: (E1.1) Determining mathematically and 

diagrammatically intended actions by prompts and chosen material based on 

mathematical contents. (E1.2) Analysis of the transcription passage with regard 

to the shown actions and the interpretation of the actor expressed therein by 

contrasting them with the intended action. (E1.3) Compilation of the previous 

findings.  

Step 3 – Explication 2 — narrow context analysis: (E2.1) All actions which are 

directly related to the transcript passage to be explained are compiled. (E2.2) 

Pursuing actions are searched in the transcript, which provide further 

dissociations for the actor’s interpretations. (E2.3) These transcript passages are 

the starting point for in-depth analyses. The description of the mathematically 

intended actions from Explication 1 as a frame of reference may need to be 

extended at this point. 

Step 4 – Explication 3 — broad context analysis: Further explanatory material 

of the transcript is compiled, such as non-transcribed sections of the 

videographed learning situation. These will be used for a more in-depth 

continuation of the reconstruction.  
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Step 5 – Conclusion: Now, the reconstructed aspects of the mathematical 

interpretations of the selected actor during the different phases of the analysis 

are described in summary.  

The following context analysis of the learning situation “Relationship between 

surface and volume of similar cubes” cannot be shown completely due to lack 

of space. Therefore, the broad context analysis (step 4) is not explicitly shown 

here. Selected results from this analysis are integrated into the conclusion (step 

5).  

Analysis of the Individual Interpretation of a Child  

A transcript (scenes 01 to 29) of the editing of the prompt “volume table” by 

two fourth-graders is created (see Fig. 2), in which the learners are to determine 

the volume of similar cubes. The learners have already determined the volume 

of cubes with edge length two and three (scenes 05 to 07). The selected passage 

of the transcribed dialogue of the child couple (scene 15, 33:17 min) reflects 

exactly the actions of Mia to be explained in this analysis. 

1  Mia: No no no no stop stop  

2   Mia places the plastic stick with length 4 back on the square grid 
perpendicular to the edge of the table.  

3   She still touches the stick with the index finger and thumb of her left 
hand.  

4  She removes her fingers from the stick.  

5  She takes three more sticks with length 4, lying between the green 
and red sticks, between thumb and index finger of the left hand.  

6  She places the first stick from her hand perpendicularly at the back 
end of the already lying stick as seen from the girl.  

7  She places the second stick from her left hand again perpendicularly 
at the end of the stick she just placed.  

8  She places the last stick from her hand perpendicularly on the first 
stick lying on the square grid and the last stick placed on it. 

Step 1: In this scene, Mia places a square of sticks with length 4 on the square 

grid. In the further analysis, we will focus on Mia.  

Step 2 – Explication 1: (E1.1) In the learning situation, edge models of similar 

cubes are considered. The focus of the selected prompt (see Fig. 2) is 

determining the number of unit cubes (volume determination) that fit into 

similar cubes of different sizes. A suitable action for processing would be the 

construction of edge models for cubes of different sizes. By positioning the 

edge model on the square grid and using the unit cube, the volume can be 

determined. For example, the squares on the square grid can give orientation 

how often the unit cube fits into a row, a plane and finally into the complete 

edge model. To build an edge model of a cube, sticks of equal length must be 

selected for the twelve edges. In perpendicular prisms, the three edges that meet 
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in a corner are aligned at right angles to each other. The so-called spatial tripod 

(Müller, 2004, p. 30), which stands for the three-dimensional coordinate system, 

is materialised in the form of a plastic corner connector. The edge lengths can 

be measured using the unit cube or the square grid. It is also possible to 

determine whether the different sticks are of the same length by placing them 

next to each other. (E1.2) By selecting sticks of the same length, it becomes 

clear that Mia considers that edges of equal length are necessary to make a 

cube. In total, Mia selects four sticks of equal length, which she places on the 

square grid. She places the sticks on the square grid so that the ends of the sticks 

meet at a 90° angle. It can be assumed that due to the square grid and the 

available corner connections, Mia can interpret the conventionalised 

materialisation of a right angle in the plane and in space and use it for the 

construction of cube edge models. It is not clear at this point whether she uses 

the square as the basic side area for the edge model or whether she just does not 

extend what is lying. (E1.3) In the actions from this transcript, it becomes clear 

that she deliberately selects sticks of the same length and places them on the 

square grid in such a way that they are at right angles to each other, which 

becomes clear in the square grid. It can be assumed that Mia has interpreted the 

convention of sticks of equal length and the observance of right angles for the 

construction of a square and uses it in her actions.  

Step 3 – Explication 2 — narrow context analysis (Analysis in sections): In 

scene 20, Mia grabs four sticks of length 5, and in the following scene, she 

places these four sticks on the square grid at right angles to each other, creating 

a square. At this point, it is still not clear if she will extend the square further. In 

scene 22, Mia taps the square grid five times with her stretched finger, moving 

her finger to the right after each tap. Then, she taps the square grid five times 

again and moves her finger down after each tap. Meanwhile, she counts from 

one to five twice. In comparison to the intended actions, it becomes clear that 

Mia does not use the unit cube to determine the area or volume but works with 

the square grid. In the following scene, Mia expresses the calculation five times 

five is twenty-five and then twenty-five times five. Already in the narrow 

content analysis, it becomes apparent that Mia recognises rules in the material 

arrangement, uses them to work on the mathematical problem and transfers her 

two-dimensional actions to the space.  

Step 5 – Conclusion: It can be seen in Mia’s actions that she uses the available 

material (sticks, corner connections, unit cubes and square grids) 

diagrammatically. The implicit rules and conventions for building cubes of 

different sizes as a basis of determining the volume are used by Mia to process 

the problem. Including the broad context analysis (see Fig. 1, left picture), it is 

noticeable that she reduces her actions in the course of the situation and still can 

make the same interpretations. No longer does she have to build a cube, nor 

does she move the unit cube in the built edge models, but she can infer the 
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volume of the cube from the base area using the internalised rules and 

conventions.  

DISCUSSION 

Based on the actions, Mia’s individual interpretations of the diagrams and the 

interpretations of the actions on the diagrams can be reconstructed. By using 

different rules, such as the necessity of equal edge length for the representation 

of a cube, it becomes clear that Mia recognises this rule and uses it for 

processing the problem. Working on the problem, this diagrammatic work has 

to be applied several times and is incorporated into the work with other 

diagrams, e.g. determining the volume or filling in the table (see Fig. 2). It is 

noticeable that the actions decrease with the internalisation of the 

conventionalised set of rules. Thus, in the broad context analysis it becomes 

clear that Mia initially executes the actions, such as building an edge model, 

completely (see Fig. 1, left picture). Later, she only lays the base area of the 

cube and extrapolates from this area to the volume. For this purpose, further 

analyses will be carried out to see whether the actions and thus the 

interpretation of the diagram for the same problem situation, but with digital 

material, differ from the interpretations reconstructed here.  
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The aim of this paper is to analyse a symmetry and art workshop from a STEAM 

perspective. The theoretical framework of the Meta-Didactical Transposition is 

taken as a reference. The sample consists of seven Primary School teachers. A 

qualitative methodology is followed that is developed in four phases: learning, 

planning, implementation and reflection. The results show that the teachers are 

not flexible in dealing with the different conceptions of symmetry and the 

creative aspect of the workshop. In general, there is a positive attitude towards 

the interdisciplinary character of the workshop, despite the fact that they were 

not able to connect both disciplines in a balanced way.  

INTRODUCTION 

Recently, the ‘A’ of art has been included in the acronym STEM (Science, 

Technology, Engineering, Mathematics). The main goal of STEAM education is 

to make the students grasp the connections between different pieces of 

knowledge incorporating an artistic vision into the activities from a creative and 

emotional point of view (Henricksen, 2014; Yakman & Lee, 2012).  

In particular, what is the relationship between Visual Arts Education and 

Mathematics? One reason for asking this question is that “on the one hand, 

mathematics is art, and on the other hand, working in art has a mathematical 

basis” (Hickman and Huckstep, 2003, p.1). Mathematics and art are two 

disciplines that have a close relationship since immemorial times. In order to 

motivate students to study mathematics, the connections between art and 

mathematics, in particular geometry, have been exploited in many works in 

mathematics education (Fenyvesi, K. & Lähdesmhäki, T., 2017; Lavizca, Z. et. 

al., 2018; Portaankorva-Koivisto, P.  & Havinga, M., 2019) showing them that 

these have been used for aesthetic reasons in the history and modern art. 

Recently, the recommendations for including the arts and creativity in the 

teaching of mathematics significantly increased all over the world along with 

demands to move from paradigms of teaching concepts and methods in a purely 

disciplinary way to an interdisciplinary and integrated education that shows 
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connections, is  based on complex problems and promotes critical and creative 

thinking (Council of the European Union, 2018). These recommendations come, 

in general, from outside the school. In particular, from EU and other 

transnational institutions and from labour market. That recommendations oblige 

the curriculum developer who wants to meet such promising but ambitious 

goals to take the issue of teacher training education seriously. Indeed, in order 

to make this new approach become a structural innovation in schools, a change 

of perspective would be necessary, first of all in teacher education: the teachers 

need to be prepared to carry out properly the classroom activities, becoming 

aware of their non-renounceable features and pursuing their goals with their 

more traditional ones in the complexity of the real classrooms.  

In this paper a STEAM training workshop for Primary School teachers is 

analysed, emphasizing the disciplines of mathematics and art. The aims are to 

attend how the teachers react to the activities proposed and how they implement 

them in the classroom. Moreover, the process of personal transformation of the 

proposal made by some teachers is observed. 

RESEARCH FRAMEWORK 

The framework of the Meta-Didactical Transposition (MDT) (Aldon et al., 

2013; Chevallard, 1999) is considered as a main reference. In particular, in this 

paper, the construct of praxeology is used. “The praxis or ‘to know how’ 

includes different kinds of problems to be studied as well as techniques 

available to solve them; and the logos or ‘knowledge’ includes the discourses 

that describe, explain and justify the techniques used and even produce new 

techniques” (Garcia et al, 2006, p.226). Within the MDT approach, the praxis is 

didactical and the logos not only concerns the knowledge of the discipline, but 

also of didactical and pedagogical research results. On one hand, in a teacher 

training activity, researchers’ and teachers’ praxeologies meet each other and 

members of two communities of practice have to find a common ground in 

order to allow the teachers to appropriate of the researchers’ proposals and 

effectively modify their praxeologies.  

The transition from individual to shared praxologies is very delicate and 

requires the action of a ‘broker’, a subject that is a hybrid between the two 

communities who acts as a hinge between the two fields, the school itself and 

the academic. The broker has the difficult role of creating new connections and 

encouraging creations of meaning and learning (Rasmussen et al., 2009).  

To analyse the teachers’ choices, when they plan and implement the activities of 

the symmetry-art workshop, the goal-oriented decision-making theory by 

Schoenfeld (2010) is relied on. This framework deals in particular with choices 

of the teachers in real-time. As Schoenfeld (2010) stated clearly, when the 

teachers move from the design to the implementation, something that changes 

even completely the goals of the designed activities often happens. Indeed, they 
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are only partially aware of their resources, goals and orientations, and these 

might remain invisible in the design phases, but appear clearly in the way they 

react to students’ questions or unexpected happenings. Tensions appear between 

the planned and the implicit goals and orientations (Liljedal et al., 2015) and 

oblige the teachers to make real-time decisions according to their priorities. This 

point is crucial: a deep innovation requires the teachers to become aware of 

their knowledge and assumptions and seriously reconsider in a conscious way 

their goals and priorities.  

RESEARCH METHODOLOGY 

The training symmetry-art workshop was designed for Primary School teachers 

and was carried out in two Italian cities. In this paper, a sample of seven 

Primary School teachers is analysed. The objective is to answer the follow 

research question: what is the general impact of the symmetry-art workshop on 

the teacher’s design and implementation in their classrooms?  

The research methodology is qualitative and from a STEAM perspective 

involves working the two disciplines together in a balanced way, both in terms 

of concepts procedures and procedures and attitudes. It was organized in four 

phases that are described below: (i) learning; (ii) planning; (iii) implementation; 

(iv) reflection.  

(i) Learning phase. In this phase, the researchers present the STEAM 

methodology. Then, the teachers carry out the different workshops by 

interacting with the researchers. In accordance with the MDT, a PhD student 

graduate in Primary Education Sciences took on the role of broker, mediating 

the delicate passage of the interweaving of the praxeologies of the teachers with 

those ones of the researchers. 

(ii). Planning phase. The objective is that teachers develop this proposal to the 

classroom, after a careful co-design shared between teachers and researchers. 

To this end, they should decide which tasks they are going to implement, 

whether and how they want to modify them, in which order, the time they are 

going to use for each task, the links with their curricular teaching plan and the 

methodology they are going to carry out (group or individual work, classroom 

discussions and the educational environment where the students would do the 

activities).  

(iii). Implementation phase. In this phase, the teachers implement the 

symmetry-art workshop tasks as they have designed them in the previous phase. 

The aim of the research is to compare the decisions taken in the planning phase 

and the teachers’ actual praxeologies in the classroom.  

(iv). Reflection phase. Here, both researchers and teachers reflect on the entire 

instructional process. In this way, following the theoretical framework, 
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researchers’ praxeologies should change interacting with the teachers to make 

the proposal more suitable from the cognitive and institutional points of view. 

To collect the data the following instruments were used. In the planning phase, 

individual and group interviews with teachers were recorded. In addition, they 

were given a grid to fill in different sections regarding the organization of the 

tasks. In the implementation phase, video recordings were made of the 

observations of teachers and students in the classroom. Moreover, an 

observation tool was also designed which comprehends thirteen items. Within 

these items, special attention was given to those that refer to, among others, the 

good use of mathematical vocabulary, the mastery of the artistic techniques and 

the methodology carried out in class.  

The tasks that were carried out in the STEAM training workshop are described 

below. 

Description of the Tasks 

Training Symmetry-Art workshop is made up of four tasks to carry out in two 

sessions of two hours. The tasks of this workshop are aimed at Primary School 

students (six to twelve years old). In mathematics education, the difficulties in 

the learning of this topic have been investigated in many studies (Bulf, 2011; 

Chesnais, A. & Munier, V., 2013, Bohorquez et. al., 2009), and it has been 

shown to be more complex as it might seem. These difficulties might affect the 

teachers’ resources, both on the side of disciplinary knowledge and of the 

anticipation of students’ difficulties. Within this proposal, a balance is sought 

between the two subjects of mathematics and art. Following a STEAM 

perspective, the objective is to work these two subjects in an equal way, that is, 

these tasks form a cycle starting from art (task 1) and coming back to art (task 

4), with a renewed conceptualization of the everyday conception of symmetry 

(Chesnais, 2012) triggered by the artistic work and supported by research-based 

mathematical tasks (2 and 3).  

Task 1: Artistic folding paper 

This activity is designed with the intent to create a symmetrical artwork from 

the blank paper and without mentioning the concept of symmetry. The aim is to 

bring students closer to the study of symmetry and its elements, starting from 

the original artistic creation of each of them through the manipulation of 

different resources, in this case, thread, tempera and sheets. The contents that 

are worked on in this task are the concept of symmetry, the axis of symmetry, 

the types of lines, the equidistance, the concept of shape and dimension, the 

horizontal and vertical meaning, the manual work and the use of colour and its 

possible mixtures.  

Task 2: TEPs. 



Blanco, Roel, Capone, Branchetti & Gaio 
 

2 -  106 

 

PME 44 -2021 

Following to D’Amore and Maier (2003), the objective is, for each student, to 

create a TEP (Textual Eigen Production), which is an autonomous textual 

production, in this case, of the concept of symmetry and its characteristics based 

on the artistic work and the discussion carried out in the previous task. The 

contents worked on here are the use of the mathematical vocabulary to elaborate 

the definition, the written expression and, again, the concept of symmetry with 

some of its elements as the axis of symmetry, the equidistance of each point to 

that axis and the concept of form and dimension. 

Task 3: Schematization 

This task consists of drawing, on the grid sheet, the figure that the students 

made in the task 1. The aim is to make them work on symmetry and its 

characteristics through the elaboration of a scheme with drawing instruments as 

the rule or the compass. The students also work on the reproduction of a figure 

to scale, since at the moment of drawing the figure in a schematic way, they are 

transferring the figure to the grid sheet, taking the little square as a unit.  

Task 4: Symmetrical figures with coloured threads 

The last task is designed to finish the proposal with an artistic activity that 

gathers everything learned in the previous tasks. The activity consists of 

recreating, with coloured threads and pins, the figure made in task 1, and then 

outlined in the task 3. By stretching the threads and tightening them, the 

students create another artistic work in a different format in which the main 

theme is symmetry. 

RESULTS AND DISCUSSION 

The results are presented according to the aims set, derived from the research 

question presented in the previous section: to observe how the teachers react to 

the activities proposed in the symmetry-art workshop and how they implement 

them in the classroom. 

Teachers Reactions 

In terms of STEAM methodology, the teachers initially stated that they dealt 

with mathematics and art topics always separated. Although they had already 

dealt with the topics proposed in their classes, they did not realize that they 

could make an interdisciplinary lesson by drawing inspiration from artistic 

creations to get to the formalization of mathematical concepts. Moreover, it 

could be observed that the reactions of some teachers consisted on not 

considering the STEAM activities truly mathematical didactical activities, since 

the contents and the kind of tasks were different from the text-books exercises, 

that are their institutional reference. Some teachers perceived these activities as 

extracurricular motivation, since they emphasize their artistic character and 

gave importance only to the aesthetic aspect, that is, they did not consider them 

‘mathematical’ (learning phase).  
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For most of the teachers, the tasks seemed to be not so far from their usual 

practice and the mathematical contents and artistic skills were considered easy. 

However, some of them did not feel confident to carry out the activities in the 

classroom observed by researchers and, in many cases, they had some 

difficulties to pursue the planned goals in the implementations. For example, a 

teacher somewhat insecure, asked “how I should start the lesson? Are we going 

to carry out the activity together?” (planning phase). 

In the implementation phase, two of the seven teachers said “Do we have to 

carry out the lesson? But we can’t do it, we don’t know how to do it”, revealing 

to be unsure at the beginning of the class. Another teacher renounced to lead the 

activity and asked the researchers to do it. Part of the problem could be due to 

the presence of the researchers in the classroom or to the insecurity of applying 

the STEAM methodology. 

Implementation in the Classroom 

Of the seven teachers who planned to carry out the art and symmetry workshop 

in the classroom, six did so. Of those six, four implemented it autonomously 

while the other two needed further assistance from the researchers. Although the 

planning phase allowed them to modify and adapt the proposal to their 

classroom and students, only one of the teachers changed the order of the tasks 

and dedicated more time to the discussion that is carried out in task 1. 

Paying attention to the mathematical aspect of the workshop, several facts are 

considered important. When the students commented on their TEPs for the rest 

of the class (task 2), the teachers corrected those who talked about important 

aspects of symmetry such as distance to the symmetry axis, because they 

identify the term symmetry only with the definition they know, which is the 

same one that appears in the textbook. Therefore, their goals were far from ours 

and were influenced by the textbook definition in a negative way for the 

students' mathematical processes.  

For some teachers there is a total identification between the concept of 

symmetry and the fact that half of a figure could be superposed to its other half 

folding a piece of paper containing the picture; the paper folding activity helped 

them to feel comfortable but in some cases the symmetry-art workshop was not 

effective in enriching their concepts moving from the everyday to the 

mathematical concept. In some cases, the teachers did not take care properly of 

the students’ spontaneous mathematical processes and interrupted the students 

who were carrying out their own reasonings in terms of symmetry. For instance, 

many students interpreted correctly the request of explaining with their words 

how to draw a ‘symmetric figure’ that is, a figure admitting (at least) one axis of 

symmetry while their teacher expected the students to use formal words and 

define the symmetry in the way the teacher had suggested and started limiting 

them without helping them in their developmental zone. This may be due to 
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teachers’ lack of flexibility in conducting a group discussion with students on 

the concept of the symmetry (ibid., 2012). On the other hand, in many cases the 

teachers declared that their insecurities were due to unexpected difficulties with 

the mathematical contents, and emerged when the students were working and 

proposing their ideas in a manner that was different than the usual (reflection 

phase).  

Focusing on the artistic part, it should be pointed out that it was the main aspect 

that motivates the teachers to implement the mathematics and art workshop. 

However, initially, most of them limited the creativity of the students, especially 

in task 1. This limitation could be due to the fact that the teachers showed a 

perfectionist attitude when they performed the workshop by themselves 

(learning phase) and wanted their students to obtain similar results to theirs, 

imposing some criteria like the colours they should use or indicating that the 

artwork should be ‘beautiful’ and ‘well done’ (implementation phase). Between 

these two phases, it could be seen that teachers’ praxeologies (Schoelfeld, 2010) 

changed, since they were forced to make decisions just in time. For example, 

because of the motivation students to do this workshop, many of the teachers 

spent more time experimenting with more colours and creating more artworks. 

In addition, some of them left the students total freedom when performing the 

schematization (task 3) allowing them to use different colours and shapes.  

CONCLUSIONS 

Taking into account one of the aims of this paper, it could be observed that 

teachers’ reactions to the proposed STEAM workshop were positive. In the 

reflection phase, all teachers valued the importance of proposing activities with 

an interdisciplinary character. Adding the planning phase was intended to give 

teachers flexibility and creativity in implementing the workshop in their 

classrooms. However, the changes that were observed were very specific and 

only one of the seven teachers modified the tasks by adapting them to her 

classroom context. In this case, the intersection between the teacher's and the 

researcher's praxeologies was obviously no longer empty. 

On the other hand, the tasks of the workshop have an intrinsic complexity that 

makes students act in unpredictable ways. Although many of the teachers stated 

that the schematization (task 3), specifically, was very difficult, the students 

performed it very effectively obtaining great results. In some cases, however, 

teachers were not flexible to adapt the activities to just-in-time happenings.  

The fact that more than one teacher has declared that they want to continue 

experimenting with mathematics and art workshops means that some practices 

have changed and that the symmetry-art workshop has been successful. It is 

therefore desirable that a dynamic process of professional evolution has been 

triggered in which some components external to the teachers praxeologies, such 
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as the use of interdisciplinary teaching through appropriate tasks, become 

internal as an effect of the process of meta-didactic transposition. The meta-

didactic transposition, in our case, has its strength in the use of innovative tasks 

and the adoption of interdisciplinary teaching. Therefore, we propose to 

continue carrying out workshops and to focus on the relationship between 

mathematics and art encouraging a balance between these two disciplines.  
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Motivation is important for students’ learning and strategy use. However, we do 

not know much about the relations between motivation and the use of strategies 

such as the drawing strategy. In this study, we assessed the mathematical and 

strategy-based motivation of 194 ninth- and tenth-grade students using 

expectancy-value questionnaires. Further, we measured the spontaneous use of 

drawings for solving geometric modelling problems. We found a positive 

relation between mathematical and strategy-based expectations of success as 

well as between mathematical and strategy-based attainment value. 

Furthermore, mathematical and strategy-based motivation differed in their 

relation to the use of drawings. These results indicate the importance of both 

mathematical and strategy-based motivation for strategy use and modelling. 

INTRODUCTION 

Mathematics as an applied science is part of many other disciplines, such as the 

natural sciences, computer science, and the social sciences. An application-

based view of mathematics is reflected in mathematical modelling. 

Mathematical modelling involves the use of mathematics to solve real-world 

problems (Niss, Blum, & Galbraith, 2007). Because of the importance of 

applications for life and work, countries around the world recommend that 

mathematical modelling be promoted in mathematics education, and it is 

included in the mathematics curriculum of different countries. However, prior 

research has repeatedly demonstrated that students have trouble solving 

modelling problems (Niss et al., 2007). The use of strategies such as self-

generated drawing is considered to have a beneficial effect in overcoming the 

difficulties involved in solving modelling problems (Galbraith & Stillman, 

2006; Hembree, 1992). Positive effects of drawings have been shown for 

students who made drawings spontaneously. However, why do learners rarely 

make drawings spontaneously? One possible factor that influences the 

spontaneous use of drawings is motivation. In the present research, we targeted 

mathematics and the drawing strategy as the objects of motivation because 

mathematical and strategy-based motivation might both be important for the 

spontaneous use of drawings. In this paper, we aimed to examine the relation 

between mathematical and strategy-related motivation and their importance for 

the spontaneous use of drawings in mathematical modelling. 
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THEORETICAL BACKGROUND 

Self-generated Drawings in Mathematical Modelling 

By making a self-generated drawing for a mathematical modelling task, the 

learner visualizes a problem described in the task by representing the objects 

and their relations to each other in an iconic way. By applying the strategy of 

making a drawing, we understand both the drawing process and the drawing as 

a product (Rellensmann, Schukajlow, & Leopold, 2017). As a strategy for 

learning and problem-solving, making drawings can support various activities in 

mathematical modelling such as constructing a mental model of the text, 

discovering errors in the mental model, structuring and simplifying the given 

situation and constructing a real model, mathematizing the real model, or 

validating the mathematical result. 

Spontaneously making a drawing for a given mathematical word problem has 

already been shown to be a potentially performance-enhancing strategy for 

learners (Hembree, 1992; Uesaka et al., 2007). This strategy was found to be 

more helpful than improving mathematical vocabulary, verbalizing important 

concepts, or applying other strategies (Hembree, 1992). Thus, making a drawing 

might also be helpful for solving geometrical modelling problems. Despite the 

expected positive effects of generating a drawing in mathematical modelling 

derived from the analysis of modelling activities such as mathematizing, 

students rarely use this strategy spontaneously. One reason for this result might 

be students’ motivation. For example, in Pressley's (1986) model of a Good 

Strategy User, motivational beliefs are suggested to predict the spontaneous use 

of strategies. Pressley further suggested that if students are motivated to use a 

strategy, they will use it more often. 

Expectancy-value Theory of Motivation 

In a broader definition, Middleton and Photini (1999) specified motivation as a 

reason for human behavior in a specific manner and in each situation. At the 

core of many theories of motivation are expectancy-value models such as the 

one by Eccles and Wigfield (1995). These models propose that performance-

related decisions (e.g., using a specific strategy) are essentially influenced by 

two subjective beliefs: expectations of success (ES) and the value attached to 

the different options that are available. In research, expectations of success have 

often been estimated via self-concept or via general self-efficacy, which have 

repeatedly been found to be closely connected to each other (see the overview 

by Marsh et al., 2019). The value component includes three sub-components: 

the interest and enjoyment gained from the task (Intrinsic Value, IV), the 

personal importance of being able to do it well (Attainment Value, AV), and the 

perceived utility from solving it (Utility Value, UV). Similar to other affective 

constructs, motivation can target different objects (Schukajlow, Rakoczy, & 

Pekrun, 2017). The objects of motivation can be learning in general, a specific 
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topic, or even a specific problem. The present research involves mathematical 

motivation because the object of motivation is mathematics. Motivation that 

targets a specific strategy or its characteristics as its objects can be called 

strategy-based motivation. In the present research, we assessed strategy-based 

motivation by using the drawing strategy because of the importance of this 

strategy for problem-solving (Hembree, 1992).  

Prior research hypothesized a positive relation between expectations of success 

that targeted different objects in one domain such as mathematics. The reason 

for this positive relation is that problem-solving activities within mathematics 

require related abilities and skills. Furthermore, students acquire different 

abilities and skills in mathematics in parallel in their mathematics lessons or in 

mathematical activities that they participate outside of school. These 

considerations were confirmed empirically by Marsh et al. (2019), who 

demonstrated a positive relation between mathematical expectations of success 

(that were asked about by referring to mathematics in general) and to specific 

mathematical problems as objects of motivation. Likewise, a positive relation 

can be expected between values within the same domain such as mathematics. 

The expectation that values for different objects in mathematics can be related 

has been supported by empirical results. For example, the utility value of 

modelling problems was found to be positively related to the utility value of 

intra-mathematical problems (Krawitz & Schukajlow, 2018). However, prior 

empirical results should be interpreted with caution because the differences in 

the objects of motivation are essential for the relations between the constructs. 

The relation between mathematical and strategy-based motivation is still an 

open question. 

Motivation and Strategy Use 

Many studies have demonstrated the positive effects of expectations of success 

and value on the use of cognitive and meta-cognitive learning strategies. For 

example, Virtanen, Nevgi, and Niemi (2013) showed that university students 

who reported high expectations of success and high intrinsic value were also 

more likely to report that they organize the learning content in their discipline. 

Focusing on the relation between mathematical motivation and self-reported 

learning strategies in mathematics, Berger and Karabenick (2011) found that 

both expectations of success and value predicted elaboration and metacognitive 

strategies. However, in these studies, researchers used self-reports to assess the 

strategies, and the validity of assessing strategies via self-reports has often been 

criticized in the past. Because of research on the relation between mathematical 

motivation and self-reported strategies, we suggest a positive relation between 

mathematical motivation and the use of the drawing strategy. 

Moreover, we found only a few studies that analyzed the relation between 

motivation and the spontaneous use of the drawing strategy. A case study of an 
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eighth-grade girl who did not use a drawing strategy spontaneously at first but 

used it successfully after being instructed to do so suggests that spontaneous 

strategy use depends on the perceived efficiency of the strategy and thus also on 

motivation (Ichikawa, 1993; Uesaka, Manalo, & Ichikawa, 2007). Furthermore, 

Uesaka et al. (2007) demonstrated that the benefits attributed to learner-

generated drawings reported by students were significantly related to the use of 

drawings. These findings indicate that strategy-based motivation might be 

important for the spontaneous use of drawings. 

RESEARCH QUESTIONS AND HYPOTHESIS 

Based on theoretical considerations, we conclude that the spontaneous use of a 

drawing strategy is related to motivational factors. However, there is a research 

gap regarding the relation between mathematical and strategy-based motivation 

as well as to the relation between motivational factors and the use of the 

drawing strategy. Moreover, we did not find any research that investigated the 

relation between motivation and making a drawing to solve modelling 

problems. Therefore, we addressed the following questions in this study:  

(1) How are the mathematical motivational constructs (ES, IV, AV, UV 

MATH) related to the corresponding strategy-related constructs (ES, IV, AV, 

UV DRAW)? 

We expected a positive relation between mathematical and strategy-based 

expectations of success because the development of the strategic skills involved 

in making drawings takes place within mathematical learning. We also expected 

positive relations between the different values of the mathematical and strategy-

based constructs. However, as the relations between motivational constructs 

strongly depend on how close the objects of motivation are to each other, and 

only a little research has been conducted on strategy-based motivation, these 

expectations were based mostly on theoretical considerations. 

(2) How are mathematical and strategy-based motivational constructs (ES, IV, 

AV, UV) related to the spontaneous use of the drawing strategy while students 

solve modelling problems? 

Based on the expectancy-value theory, we expected both mathematical and 

strategy-based motivation to be important for the spontaneous use of drawings. 

An empirical indication for the positive relation between mathematical 

motivation and the use of the drawing strategy comes from research on self-

reported strategies. One case study and one cross-sectional study carried out 

with school students on the use of the drawing strategy supported the 

expectation that students’ strategy-based motivation might be related to 

spontaneous strategy use. 
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METHOD 

Participants and Research Design 

Two hundred twenty German ninth- and tenth graders (49.5% female, M = 

14.93 years) of 10 comprehensive classes participated in the study. At the first 

occasion, the students answered a questionnaire about motivational constructs. 

After two weeks, they were asked to solve eight geometric modelling tasks. The 

analysis of students’ solutions allowed us to assess their spontaneous use of the 

drawing strategy. Some students could not participate on both occasions for 

various reasons. In sum, 194 students participated on both occasions and were 

included in our analysis. 

Measures 

The 22-item survey was applied to assess mathematical motivation (MATH, 10 

items) and strategy-based motivation with respect to the use of drawings 

(DRAW, 12 items). Students rated each statement on a 5-point scale (1 = "not 

true at all" to 5 = "completely true").  

Mathematical motivation scale. The mathematical motivational items were 

adapted in accordance with Eccles and Wigfield (1995). Expectations of success 

(ES MATH) were assessed with three items (e.g., “I am very good at 

mathematics”). The three components of value are intrinsic value (IV MATH; 2 

items; e.g., "In general, I find working on mathematics assignments very 

interesting"), attainment value (AV MATH; 3 items; e.g., "It is very important 

to me to be able to solve mathematical problems very well"), and utility value 

(UV MATH; 3 items; e.g., "Mathematics in school is very useful for my 

professional future after graduation"). The reliabilities of the subscales were 

mostly good to satisfactory (.55 < α < .89). The confirmatory factor analysis 

revealed that the model with four factors fit the data adequately (𝜒2/𝑑𝑓= 1.72, 

SRMR = .04, RMSEA = .06, CFI = .97). 

Strategy-based motivation scale. The strategy-based motivation scale with 

respect to the use of the drawing strategy was assessed with four subscales: 

expectations of success (ES DRAW; 3 items; e.g., “I believe I can make very 

good drawings for any word problem”), intrinsic value (IV DRAW; 3 items; 

e.g., "I like to make a drawing for a difficult word problem"), attainment value 

(AV DRAW; 2 items; e.g., "It is important to me to be able to make a drawing 

for a difficult word problem"), and utility value (UV DRAW; 4 items; e.g., 

"Making drawings is important to me because it helps me solve difficult word 

problems"). The reliabilities of the subscales were mostly good to satisfactory 

(.58 < α < .86). Confirmatory factor analyses showed acceptable values for the 

model (𝜒2/𝑑𝑓= 3.27, SRMR = .04, RMSEA = .07, CFI = .95). 

Use of drawings. The use of drawings was measured dichotomously for each of 

eight modelling tasks that could be solved by applying the Pythagorean 
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Theorem. A code of 0 was assigned to solutions without a drawing and a code 

of 1 to solutions with a drawing. The measurement showed good reliability 

(Cronbach's α = .866). 

RESULTS 

Relations of mathematical and strategy-based motivation. As expected, the 

analysis of the correlations between mathematical and strategy-based 

motivation (Table 1) showed moderate positive correlations between ES MATH 

and ES DRAW as well as between AV MATH and AV DRAW. These results 

indicate that students who have high expectations of success and ascribe a high 

attainment value to mathematics are confident that they can use a drawing 

strategy to solve problems and feel that this strategy is personally important to 

them. However, we did not find a positive relation between intrinsic value or 

utility value for mathematical and strategy-based motivation. For example, 

students who ascribed a higher utility value to mathematics did not differ in 

their estimation of the utility value of the drawing strategy. 

  MATH 

  ES IV AV UV 

      

D

R

A

W 

ES      .289**     .255** .377**     .234** 

IV -.041 .010 .233** .087 

A

V 
 .007 .104 .351** .117 

U

V 
-.018 .010 .278** .038 

      

Note. ** p < .01, p two-tailed. MATH: mathematical motivation, DRAW: strategy-based 

motivation, ES: expectancy of success, IV: intrinsic value, AV: attainment value, UV: utility 

value. Correlations between the same constructs in different domains are presented in grey. 

Table 1: Correlations between mathematical and strategy-based motivational 

constructs 

Motivation and the use of drawings. Our analysis of the relation between 

mathematical motivation and the use of drawings confirmed our expectation for 

IV MATH (Table 2). Students who attributed high intrinsic value to 

mathematics used the drawing strategy to solve modelling problems more often. 

Mathematical expectations of success, attainment value, or utility value in 

mathematics were not related to the use of drawings. The analysis of the relation 

between strategy-based motivation and the use of drawings while modelling 

revealed a more consistent picture and confirmed our expectations. We found 

positive correlations for all strategy-based sub-constructs IV DRAW, AV 

DRAW, UV DRAW, and ES DRAW with the use of drawings. These results 
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indicate the importance of strategy-based motivation for the spontaneous use of 

the drawing strategy. Students who have high expectations of success for the 

use of drawings and who ascribe high intrinsic, attainment, and utility value to 

the drawing strategy more often used this strategy spontaneously. 

  MATH  DRAW  

  EX IV AV UV  EX IV AV UV  

USE r .047 

.180

* .088 .098  

.164

* 

.212*

* .138a .172* 

 

            

Note. a p < .10, * p < .05, ** p < .01, ** p < .001. p: two-tailed. MATH: mathematical 

motivation, DRAW: strategy-based motivation, EX: expectancy, IV: intrinsic value, 

AV: attainment value, UV: utility value, USE: spontaneous use of drawings. 

 

 

 

Table 2: Correlations between mathematical and strategy-based motivational 

constructs and the spontaneous use of drawings 

DISCUSSION 

Based on expectancy value theory (Wigfield & Eccles, 2000), we investigated 

the relation between mathematical and strategy-based motivation and the 

importance of motivation for the use of drawings while solving modelling 

problems. As expected, the analysis of the relation between mathematical 

motivation and the strategy-based motivation to make drawings showed that 

mathematical and strategy-based expectations of success were positively 

related. However, the relation was weak. One reason for this result may be the 

cognitive structure of the activities: Although the making of drawings as a 

visual strategy is part of the mathematical curriculum, formal symbolic 

procedures usually predominate in students’ learning in mathematics. Another 

reason may be the different categories of focused objects (the domain of 

mathematics vs. the strategy of drawing). As mathematics is a more general 

object and the drawing strategy is a more specific object, this difference might 

have an impact on the strength of the relation between the constructs (Marsh et 

al., 2019). The relation between the personal importance of being good at 

mathematics (AV MATH) and the personal importance of making good 

drawings (AV DRAW) was moderate in size. This result revealed that the 

personal importance of mathematics is closely related to the personal 

importance of making a drawing to solve mathematical problems. By contrast, 

the intrinsic and utility values of one object were not related to the values of 

other. The perceived utility of drawings for solving problems did not depend on 

whether mathematics was considered useful or not. 

The strategy- and mathematics-based motivational constructs differed in their 

relations with the spontaneous use of drawings during mathematical modelling. 
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Whereas only the intrinsic value of mathematical motivation was correlated 

with the use of drawings, all four strategy-based motivational constructs were 

positively related to the use of the drawing strategy. We suggest that future 

studies conduct deeper investigations of the relation between mathematical and 

strategy-based motivation on the one hand and the use of drawings and 

performance on the other hand. One interesting research question might be 

whether mathematical motivation has an indirect effect on the use of strategies 

and performance via strategy-based motivation. In line with results from 

learning strategy research (Berger & Karabenick, 2011; Virtanen et al., 2013), 

intrinsic value with respect to mathematics was found to be related to 

spontaneous strategy use. In addition, as suggested by expectancy-value theory, 

we found a positive relation between strategy-based expectations of success and 

the use of drawings in our research. Positive relations between strategy-based 

values and the use of strategies indicated the importance of values for students’ 

strategy use. Thus, our results confirmed the validity of expectancy-value theory 

for strategy use. 

The results revealed intrapersonal differences when comparing mathematical 

motivation and strategy-based motivation with respect to making a drawing in 

mathematical modelling and in problem-solving. Effects of strategy-based 

motivation on learning outcomes should be addressed more often in future 

research because it can explain why some students make drawings 

spontaneously and others do not. Research on strategy-based motivation can be 

applied not only for the use of the drawing strategy but also to other strategies. 

Finally, for the practice of teaching, it is important to investigate which teaching 

interventions improve strategy-based motivation and students’ strategic and 

achievement-related learning outcomes. 
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WHEN TEACHER-STUDENT DISCOURSE REACH 

IMPASSE: THE ROLE OF COMPUTER GAME AND 

ATTENTIVE PEER  
Orit Broza1 and Yifat Ben-David Kolikant 

Levinsky College of Education, Israel 

 

Researchers traced the learning processes of 26 low-achieving students 

studying subtraction of decimal numbers, as they worked in small groups within 

a rich learning environment involving a computerized game, play money, peer 

interactions and teacher mediation. Data sources were videotaped sessions, 

worksheets, observations, and pre- and post-program teacher evaluations. 

Results indicate that low achieving students can build new significant 

knowledge, to participate in a reflective mathematical discourse, and benefit 

from it. Yet, the setting of computer games with an attentive peer served a fertile 

platform for strategies to emerge and consolidate. 

INTRODUCTION AND THEORETICAL FRAMEWORK 

Applying mathematics into real life is considered as an essential component for 

professional life (OECD, 2016). This might be the reason for mathematics 

educators to actively engage students with mathematical knowledge building, 

based on meaning, and avoid routine procedural learning. Insignificant learning 

base on drill and memorization, especially in early years, might lead to under-

achievement among students who do not have any identified disability. This 

phenomenon is reflected in PISA findings which show that around 20% of 

OECD students with normal cognitive skills do not reach a minimum level of 

basic skills in mathematics (OECD, 2016).  

Trying to explain these students’ poor performance, the literature focuses on 

cognitive deficits and on behavioral manifestations of their failure (e.g. 

participation patterns). Low achieving students (LASs) find it difficult to 

retrieve basic mathematic facts (and knowledge) from their memory (Gray, 

1991). Craik (2002) referred to this difficulty as 'fragile memory': a product of 

superficial data processing in the brain. Other explanations points on affective 

reasons such as frustration, anxiety, and passivity (Ramirez, Gunderson, Levine, 

& Beilock, 2013). 

Although the population of low-achieving students is heterogenic, some 

cognitive difficulties and behavioral characteristics are common. For example, 

such students find it difficult to retrieve basic mathematic facts from their 

memory (Geary, 2004) and to use effective computation strategies based on 

meta-cognitive skills (Goldman, 1989). They are sensitive to the learning 
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context (e.g., written and oral arithmetic practices or every day and formal 

mathematics), and find it much harder than other students to solve simple and 

complex addition and subtraction problems (Linchevski & Teubal, 1993). These 

difficulties may lead them to use less sophisticated strategies, and thus commit 

more errors. As they repeatedly experience failure and cannot keep up with the 

class, their motivation and self-esteem decrease. Therefore, they might have a 

weak sense of internal responsibility, be passive and/or rely on external 

authority (Geary, 2004; Linchevski & Tuval, 1993; Haylock, 1991).  

Adding to that, teachers do not always take into account socio-emotional 

aspects of LAS, neither going beyond the cognitive and subject matter aspects, 

and look into socio-emotional aspects of the teacher-student interaction that 

could affect learning (Broza & Ben-David Kolikant, 2015). Instead of 

increasing LAS ability to build on past successes, and fostering a sense of 

internal responsibility for their advancement, some teachers typically conclude 

that the most effective way of promoting mathematical performance in low-

achieving students is to ‘drill and kill’ (Anderson, Reder, & Simon, 2000), that 

is to focus more on the mathematical algorithms than on the mathematical 

meaning.  

Digital game-based learning is considered as an effective means to overcome 

negative implications of learning mathematics. They are fun, meaningful and 

inspiring by their nature, thus, they allow disengaged students to gain interest 

for mathematics, enhance motivation to perform difficult tasks and maintain 

effort, and help children to overcome anxiety (OECD, 2016). Digital game-

based learning theories (Squire, 2008; Gee, 2003), emphasize the potential of 

games to engage and motivate students in becoming active rather than passive, 

by enabling experiments and explorations without fear of failing in front of the 

entire class. Through active participation in a meaningful and authentic learning 

environment, mathematical strategies can develop naturally, as the concrete 

context is served as a cognitive scaffolding (Wood, Bruner, & Ross, 

1976).Therefore, the use of games for teaching may thus be particularly 

beneficial for low-achieving students. 

The current research examines learning processes of LAS who learn 

mathematics with a digital game and a teacher who was trained to attune her 

support to LAS cognitive and emotional needs. The learning environment was 

designed according to three theoretical lines: (a) ‘Learning in Context’  in which 

mathematical concepts and procedures are presented in a context relevant to a 

child’s day-to-day life (Gravenmeijer, 2004); (b) game-based learning (Gee, 

2003; Squire, 2008), and (c) ‘Accountable talk’, which focuses on the role of 

the teacher to create a safe and constructive space for building new knowledge 

by establishing norms and provide opportunities to talk mathematics, as well as 

share thoughts and ideas with group members (Chapin, O'Connor & Anderson, 

2009).  
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Researchers aimed at engaging students in significant learning by transforming 

their social and socio-mathematical norms (Cobb, 2004) from passive to active, 

from isolated to social collaboration, from impulsive to thoughtful. Group 

discussions were focused on reporting student' mathematical strategies (built by 

tools and teachers' scaffoldings), and establishing shared norms (e.g., examining 

students' strategies by approval and disapproval, and optimizing ineffective 

strategies).  

Researchers were aware of LAS's tendency to impulsivity; thus, students were 

asked to learn in dyads, in front of a computer. Researchers hypothesized that 

the collaborative setting will trigger two types of interactions: Computer-student 

and student-student; and that peers will explain their calculations to each other, 

and question other’s action, bringing about reflective and thoughtful interactions 

(Dillenbourg & Ficher, 2007).  

In a previous work (Broza & Ben-David Kolikant, 2015), researchers 

endeavored to characterize the meaningful and complex learning processes 

among LAS in a rich supporting environment in general and at the different 

levels of progress. In the following section researchers present the importance 

of the presence of computer game in the environment with peers’ discussions 

for progression. 

METHODOLOGY 

A total of 26 low-achieving fifth grade students took part in the above-

mentioned extracurricular program, for one weekly hour, for the duration of 

eight weeks in tow iterations. They studied subtraction with decimal fractions 

prior to the topic being studied in their parent mathematics classes, learning in 

small groups (up to four students), with a teacher trained by the researchers. The 

instruction framework emphasized a delicate transition from the realistic 

environment to formal mathematics. For this reason, for example, in the first 

four lessons, subtraction was presented only through monetary simulations and 

problems, with no formal exercises. From the fifth lesson onward, the formal 

representation of operations was interwoven into the learning situations, while 

maintaining the focus on authentic contexts.   

When playing the learning environment's "ice-cream shop" game 

(http://kids.gov.il/money_he/glideriya.html), the students acted as sellers: They 

received orders, prepared ice-cream, and then calculated and gave change. In 

addition, students were asked to work in supplementary online study units, 

which concerned the transition between money and formal representations, as 

well as change calculations. Students also enacted game-like situations with 

mock Israeli money (shekels and agorot).   

While students engaged in computerized activities, the teacher stayed in the 

background, observing their work and difficulties, taking notes for the following 

discussion, and intervening when needed. Much of class time was devoted to 
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pair and group discussions. The teacher's interventions did not include direct 

corrections of students' strategies, but rather meta-scaffolding questions that 

encouraged the students to use the tools in the environment to build their own 

strategies. 

Our primary data source was the transcripts of eight videotaped, 45-minute-long 

learning sessions, accompanied by eight screen captured computer sessions 

video screenshots (about 20 minutes each). Other tools included pre-program 

student interviews focusing on mental computation strategies, observation of the 

parent mathematics classes, student evaluations filled in by their parent 

mathematics class teachers' pre-and post-program, and individual worksheets 

each student filled in during the extracurricular lessons. According to a design-

based research, data were  collected in two iterations: Pilot study and main 

iteration. The transcripts were coded twice by two researchers. Using micro 

genetic approach (Siegler, 2006) researchers analyzed their knowledge building 

trial by trial. Utterances were segmented into episodes, so that each episode 

began with the presentation of a new task (Broza & Ben-David Kolikant, 2010). 

Each episode was classified according to the problem it deals with, and 

examined: (i) who participated in it; (ii) the tools that were involved; (iii) the 

knowledge pieces that emerged, and (iv) the difficulties that arose, including 

whether they were solved, and if so how and by whom.  

After identifying the episodes in which constructing occurred, researchers 

searched for historical evidence, i.e. indications in previous episodes, that could 

hint about the specific ways this new piece of knowledge could have been 

constructed. This integrative analysis enabled to focus on the developmental 

changes in the student's thinking and behavior chronologically, as well as to 

examine it with respect to the literature of LASs.  

RESULTS 

Eighty two percent of the students in the main iteration significantly changed 

their discourse participation, and actively built their own strategies to solve 

mathematical problems and exercises. The learning process was complex or 

inconsistent with regressions and progressions alternately due to LAS fragile 

memory. Therefore, the teacher found it difficult to calibrate her support in 

accordance with students' prior experiences. However, despite the difficulties, 

55 percent of the students in the main iteration exhibited stability in their 

knowledge during at least three continuous lessons. Additional 27 percent of the 

students exhibited short progressions with localized consolidations (within a 

specific lesson and not between lessons).  

Students' Behavior While Playing the Game 

As researchers hypothesized, the computerized environment, encouraged the 

students to be active as well as engaged in their task. During the play, 

researchers observed that the students were very focused on the task in hand. In 
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fact, students continued working (or playing) after the class had ended. The 

students reported in the interviews and ad hoc conversations that “it was 

fun…not a regular class”, “playing with the computer provides a sense of fun, 

[vs.] a blackboard, where you just sit and solve exercises”. Each student solved 

many subtraction exercises, manifested by the need to give change to customers 

in the shop. Students usually worked in turns: The one on the keyboard gave 

ice-cream, calculated the price, the change, and returned change.  

Failures in this context did not discourage them. On the contrary, this is when 

researchers observed mathematical discussions with their peers and with the 

teacher. Usually, when they received a response from a “customer” indicating 

that the change they gave was incorrect, they paused to think and sometimes 

they turned to their peers and verbalized their solution process. Sometimes this 

verbalization occurred after their peers asked them how they had worked. The 

discussion often helped them to correct themselves. This behavior was 

dramatically different from the observed (and reported) passivity (or 

impulsivity) in the regular classes. Moreover, in this context, the students 

generally welcomed the teachers’ intervention and cooperated with them. 

Hence, the computer and the peers often generated a synergetic effect on the 

students.  

The next two examples (to be reported at the conference) illustrates knowledge 

building next to the computer when the teacher find it hard to build on previous 

experiences due to the fragility of the knowledge. In both cases the successions 

of success were in lesson or between two lessons in front of the computer and at 

the next writing task. In both cases the strategy was not consolidated in the long 

term. 

Li 's Example 

In Lesson 3, Li was able to easily use borrowing to subtract decimals with 

halves from integers, yet in Lesson 4, she found it difficult to extend this to 

subtrahends with different decimals (e.g., 7.70). It took the teacher several 

attempts to identify the problem. Then, rather than explicitly teaching the 

procedure, the teacher elected to create opportunities for Li to build her own 

knowledge and made many attempts to support her in this process. Amongst her 

attempts were her suggestions and guidance to use play money, the verification 

procedure, the conversion procedure, and the linking of subtraction exercise in 

the task to the monetary terms of the problem story (the price, the change). Her 

suggestions were reasonable, given that Li previously experienced success with 

these activities and procedures. However, Li was apparently unable to 

remember or apply this past knowledge to the situation at hand.  

It was only in the next lesson that Li was able to construct a conversion strategy.  

It was in the subsequent computer session when Li managed to solve a 
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succession of tasks as demonstrated in her explanation to her peer. The task was 

20-12.20 = 

1  Li: 20 minus 10 equals 10…minus two equals] eight. Look, seven [NIS] 
and 20 agorot, right? [Gets feedback from the computer that the 
answer is correct]. 

2 Nina:  Ah!! I got it, I got it… 

3 Li:  Understood?  

In another task 20-15.50 = Li explains to her peer: "First do not pay attention to 

this [Agorot], look at the integers. Then do 20 minus 10 is 10, minus five is five. 

And five minus fifty [agorot]. And then you continue with the agorot…" after 

they got a positive feedback from the computer Li added to her peer: "You see, 

you are learning!".  

Li could even apply her strategy to written individual tasks (as shown in Figure 

1). 

 

Figure 1: Li's writing performance 

Yar's Example 

The following excerpt  is from the fifth lesson, solving the exercise 20-7.70. 

After the teacher collected all the answers, she saw that Yar got a wrong 

answer, 13.30, and turned to him for an explanation: 

59  Yar:  It can be done vertically. 20 minus 7.70 

60 Teacher:  How shall I write it? I really do not know... 

61 Yar:   As if 20…[pause]  

62 Teacher: 20, yes…[writing on the board] 

63  Yar:  Minus 

64 Teacher:  Vertical minus? 

65 Yar:   Now, you should do…[thinking]  

66 Teacher: Come [to the board], tell me exactly where [to write 7.70]? 

67  Yar: [goes to the board] eh, here [points right under the 0 of the 20] 
here…no, no…it is impossible. 

68 Teacher:  Impossible… 

Yar thought that a vertical-solving procedure might help. However, it was the 

first time he wrote decimal numbers vertically, and he was unsure where to put 
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the decimal point. The teacher let him struggle with writing, repeating his 

conclusion, “impossible” (Line 68).  

The next lesson opened with a computer session. For the first six of the ten 

exercises presented on the computer, Yar quickly typed a response in what 

seemed like a trial-and-error fashion, responding to "customer" feedback from 

the computer and correcting, as necessary.  Then he was observed "just 

thinking". The exercise at hand was 20-12.80. He solved it, got positive 

feedback from the computer, and explained to his peer, Ron: “[20 minus 12 

equals] 8, [changes one shekel to 100 agorot on the computer] 7 and 20 agorot”. 

Namely, he subtracted the integers, then subtracted one more integer and added 

the right amount of agorot. He solved the remaining three exercises in this 

computer session straightforwardly, employing the same strategy.  

Apparently, the computer immediate feedback (and probably its non-judgmental 

nature) and the presence of a peer, to whom Yar verbalized the strategy he has 

just constructed, not only helped him construct a strategy.  

In the next written individual task, Yar also succeeded: 

 
Figure 2: Yar's writing performance 

DISCUSSIONS AND CONCLUSSIONS 

Both examples illustrate knowledge building next to the computer when the 

teacher find it hard to build on previous experiences due to the fragility of the 

knowledge. In both cases the successions of success were in lesson or between 

two lessons in front of the computer and at the next writing task. Probably, the 

experience while playing and explaining to attentive peer strengthen their 

fragile memory in the short term. Although the computer changes their learning 

experience, the strategies were not consolidated in the long term.  

This complex picture is perhaps a result of the tension between LASs’ active 

engagement in mathematics and their weaknesses. It is no surprise that teachers 

frequently conclude that LASs fail to acquire mathematical thinking and 

therefore minimize situations that require such thinking (Metz, 1978). Still the 
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change in their capacities and behavior points on potential of the environment. 

A longer research might conduct to observe longer-time stability.  
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THE INFLUENCE OF ANALYTIC MODEL ON CRITICAL 

REFLECTIVE THOUGHT OF PRE-SERVICE 

MATHEMATICS TEACHERS FOR ELEMENTARY SCHOOL 

Orit Broza and Ariel Lifshit 

Levinsky College of Education, Israel 

 

A total of 23 mathematics pre-service teachers learning process was examined 

as a result of using an analytic model designed for discourse protocols' 

analysis. The model contains three lenses to analyze discourse: (i) Examines the 

pre-service teachers' dominance in discourse; (ii) maps the types of questions, 

and (3) focuses on learners’ reactions and comprehension performance. Results 

revealed that an active and dynamic process occurred, modifying teacher 

practice, and developing critical reflective thinking among pre-service teachers. 

The change occurred in two “ripples of influence”: (i) Improving discourse to 

one promoting learning by demonstrating hypothetical scenarios and (ii) 

perception of the role of teachers and class management.  

INTRODUCTION AND THEORETICAL FRAMEWORK 

One of the challenges in teaching mathematics in general and teacher education 

is the existence of meaningful discourse that will lead to generalization and 

justification processes. Data collected in the past two years in the framework of 

work practicum lessons in a college of education demonstrate a difficulty 

among pre-service teachers to establish meaningful developing mathematical 

discourse for the purpose of constructing mathematical knowledge. Existing 

discourse is generally characterized by closed questions (e.g. IRF) and 

consequently, answers that do not lead to generalizations or justifications. 

Michaels, O’Connor, and Resnick (2007) used the term “accountable talk” (to 

express the desired classroom mathematics discourse and the importance of 

teachers as leading the discourse. This approach was meant to involve pupils 

and create discourse situations whereby participants listened to one another, 

built ideas on one another’s and asked questions to clarify or broaden any 

opinion. The participants create links between statements voiced in the 

discourse and provide reasons and justifications when disagreements arise. The 

teacher's role is to encourage conversation with questions such as: “Has anyone 

got anything to add?” or “Can someone say what he (a colleague) said in other 

words?”, to request clarifications and explanations for what was said, to give 

time to think, to encourage learners who do not participate by asking to hear 

their opinion and to encourage agreements or disagreements about a common 

idea that arose in the group.  
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In recent decades, attempts have been made to characterize and define the 

concept justifications. Research literature deals mainly with high school. For 

example, Harel and Sowder (2007) defined justifications as a process carried 

out by a learner so as remove any doubt about a given hypothesis, a process 

made up of two secondary processes: Persuasion and becoming convinced. In 

‘persuasion’ a learner removes the doubts of others. In ‘becoming convinced’ a 

learner (with the help of others) removes his own doubts. In elementary schools 

today, referring to justification as a process is very common to help processes of 

structuring knowledge and promoting meaningful learning. The expectation is 

for justification to occur within the framework of tools learners have and in 

accordance with their developmental stages, in other words, employing 

explanations for how something is solved, using supporting examples, using 

non-examples to refute arguments, employing definitions, rules and law and not 

complicated processes of proof. 

Employing reflection in teacher education promotes teachers’ abilities to learn 

from experience, initiate changes and be more aware of their understandings 

(Fox et al., 2011; Shulman & Shulman, 2004). Many studies have employed 

joint video observations to analyze teacher-learners interaction or transcripts of 

teachers’ lessons to characterize diverse teaching styles, examine congruence 

between content and executing lesson aims or in order to understand unrealized 

teaching opportunities (Santagata & Yeh, 2013; Spitzer et al., 2011). A 

reflective process that combines in-depth research analysis contributes to 

understand processes of situational understanding (Korthagen, 2010). Hence, 

work experiences become not only a place to practice these teaching skills but a 

field in which to examine theory. Furthermore, reflective writing improves self-

regulation, cognitive and meta-cognitive qualifications as well as motivation. 

The aim of this research is to examine the learning that occurred among pre-

service teachers who employed a reflective model developed especially for the 

practicum research course. The assumption is that analytical analysis will 

develop pre-service teachers' awareness of the way in which they conduct 

discourse, will reflect barriers in developing discourse, will lead to the 

development of optimal scenarios for situations that were not exploited, to 

finding possible leverage to improve discourse during research lessons and at 

the end of the day improve mathematical discourse in work experience classes. 

The Model 

Researchers constructed an analytical model containing three different lenses 

for analyzing discourse protocols focusing on diverse episodes of the discourse 

conducted in a lesson, examining the types of pre-service teachers' questions 

and answers in the discourse, and the connection between these and their 

learners’ comprehension performance. The work stages of the model were as 

follows: 



Broza & Lifshit 

2 -  130 

 

PME 44 -2021 

Stage A: Mark and quantify only pre-service teachers’ expression in a discourse 

protocol and the frequency of these expressions in various episodes. Using this 

lens, the dominance of pre-service teachers in the discourse was examined (for 

example, IRF). 

Stage B:  Map the types of pre-service teachers' questions and answers in 

discourse: Closed, procedural, open, challenging questions or high thinking 

order questions that awaken thought and investigation (Bozo-Schwartz, 2011). 

Learning promoting feedback was defined as prolonging conversation through 

clarification questions, challenging learners to discuss with and explain to one 

another, repeating what learners say, linking learners’ ideas in a discussion of 

mistakes (Bozo-Schwartz, 2011; Chapin, O’Connor & Anderson, 2009). 

Stage C: Code learners comprehension performance in the discourse: providing 

an explanation, bringing examples, application, generalization, or justification 

(Perkins, 1998). 

METHODOLOGY 

The research was conducted within the framework of a “practicum research”, 

which is an integral part of the 23 pre-service teachers' practical experience in 

schools in the second and the third year of their studies. The course is annual 

and addresses improving the quality of teaching and self-examination of 

teaching/learning processes using questions regarding adapted teaching in 

general and in the field of mathematics. The researchers served as pedagogical 

instructors for the research group. 

Research tools included 46 transcripts of complete lessons analyzed according 

to the three lenses of the model (23 from each semester), 46 lesson plans and 23 

complete reflections on the research process. 

Thematic qualitative analysis was carried out on the research work results and 

complete reflections of each pre-service teacher, a total of 23 pieces of work. 

The works were coded twice by two researchers, each separately, and there was 

a 95% match. The following aspects were analyzed:  (a) Examining coding of 

types of questions asked by pre-service teachers at two points in time; (b) 

examining coding of learners comprehension function at two point in time; (c) 

discussion of link between type of question pre-service teachers asked, learners 

reactions, and their comprehension performance; (d) pre-service teachers’ 

explanations and interpretations of the change occurring, if at all, and (e) pre-

service teachers’ ability to develop hypothetical scenarios at times when they 

were not satisfied with discourse progress. 

RESULTS 

An analysis of finding and comprehensive reflections pointed to a proactive 

process-taking place that led to a change in views of teaching/learning processes 

over and above the fundamental hypotheses of the model that sought to improve 
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the quality of discourse. In fact, two “ripples of influence” were created: The 

one at the level of awareness of classroom discourse, the role of a teacher as a 

mediator in structuring mathematics knowledge in class, designing and 

openness to hypothetical scenarios in situations where discourse did not 

promote learning. This type of effect will be called “local ripple”. The other 

ripple in a broader and more generic circle, is the influence on pre-service 

teachers' perceptions of the effect of discourse on classroom management norms 

(developing socio-mathematical norms, employing a range of interactions for 

learning). This type of effect will be called “expanded ripple”. Pre-service 

teachers who showed development of an expanded ripple also demonstrated a 

change in local ripple, as can be seen in Figure 1, and therefore, expanded ripple 

is also contained within local ripple. 

Finally, the works of about 13% of the remaining pre-service teachers (3 works) 

did not testify to a meaningful process and analysis were paltry. Their group 

was defined as “no change” (Figure 1). 

 

Figure 1:  Types of effects on pre-service teachers  

Figure 1 shows that the most frequent change was in the local ripple as 

researchers expected. However, among five of the 23 pre-service teachers, in 

addition to a change in the local ripple effects of an expanded ripple were 

found, a result that researchers did not expect would emerge. The following 

section will demonstrate episodes taken from the research works and reflections 

for each of the ripples and will discuss the challenges and difficulties described 

by pre-service teachers throughout the process. 

In the next section, three presentative examples demonstrate the two ripples. 

Further examples will be presented at the conference. 

“Local ripple” Effect: Awareness of Importance of Using Open Questions 

The following episodes demonstrate how analytical analysis helped pre-service 

teacher N acquire insights regarding the questions she asks in her transcript 

analysis:  
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“I don’t ask enough open questions. However, the open questions I do 

ask are mainly two types. The one is questions asking for an explanation, 

mainly the question “how”? – “How did you solve it?” (Line 5). “How 

did you get to 9 ½ ?” (Line 8), “How did you get to the whole?” (Line 

85). “The second type is questions asking for other ways of solving, “Is 

there another way” (Line 87) “Did everyone solve it the same way?” 

(Line 10).  

Later, N (referred as a "teacher") explained the implications of asking closed 

questions on the discourse with her learners.  

80  A:  10 whole and a half less 9 and five tenths or 9 and a half. 

83 Teacher:  How many does that equal? 

84 A:   A whole  

85 Teacher:   How did you get to a whole? “I don’t understand” Explain it to 
me. 

86  A: Half less a half is zero, so it is nothing and 10 minus 9 equal 1 so 
it   is whole.  

87 Teacher:  Is there another way? 

88 B:  I did 9 and a half and then a tried to add some wholes so it would 
reach 10 and a half and it comes out 1. 

91 L:   I did it another way. I did a half plus another half and it came out 
whole. 

92 A:  How did you get to a half plus another half? But what do you do 
with the 9? 

93 D:   How do you do it? But why exactly did you choose the half. 

94 L:  Because I know that there is 9 and a half so I added the half. 

95 D:   Ah! I understand. 

96 L:  And then another half and then it comes out a whole. Do you 
understand? 

97 A:   Yes. 

N analyzed the above episode as the following:  

“One can see that in Line 83 I asked a closed question: "How many?” 

And in Line 84, A gave me a fitting succinct answer. In contrast in Line 

85 and Line 87 I asked open questions. Line 85 is a question requesting 

an explanation and the question in Line 87 encourages learners to offer 

further ways of solving the question. Accordingly, in Line 86, Line 88, 

and Line 91 there is comprehension of the explanation by the learners. In 

addition, one can see in Line 92- Line 93 that when learners did not 

understand how L solved it, they also asked “how?” and requested an 

explanation, like I ask for in lessons. In Line 94 and Line 96, L responded 

appropriately in giving an explanation.” 
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This episodes above shows the connection made by the pre-service teacher 

(teacher) between types of question and learners’ comprehension performance, 

in other words, a closed question leads to a short and concise answer that 

actually testifies more to the existence of knowledge and less to comprehension. 

In the transition to a discussion of open questions, the pre-service teacher 

identifies the importance of using open questions to creating discussion norms 

among pupils who use the word “how” among themselves (Line 92, Line 93). 

Moreover, the pre-service teacher mainly supports a discourse being conducted 

among learners without her intervention but does not develop the topic around 

the various ways’ learners raised but suffices purely with their presence in the 

discourse. She does not employ the practices of repeating and/or reasoning to 

leverage this opportunity to a discussion about the similarities and differences 

between the ways presented and verifying that discourse participants 

comprehend how the others solved the problem. 

“Local ripple” Effect: Frequent Use of the Question "Why" as Feedback 

Promoting Learning 

One of the criteria for feedback promoting learning is extending dialogue with 

learners and asking clarification questions requiring an explanation. Pre-service 

teacher K illustrated the importance of using the question “why” to encourage 

causality in learners’ arguments and urging explanations from them. 

K: “In that lesson I gave the learners a card containing a comparison 

between two different lengths of chains. In addition, the learners were 

asked to answer who had a longer chain. For this purpose, the learners 

had to convert the unit of measurement from centimeters to millimeters 

and then compare between two chain lengths.” 

Below is the evidence from the “centimeter” lesson held on 16 March 2016, 

Lines 39-40 and 46-49. 

39  Teacher: Why is a centimeter longer than a millimeter? 

40 HV:   Because every 10 millimeters is one centimeter. 

46 Teacher:  Girls, why in your opinion is Yossi’s chain longer than Daniel’s?  

47 A:   Because a centimeter is longer than a millimeter and Yossi has 
one centimeter. 

Pre-service teacher K (Teacher) summarized the importance of asking the 

“why” question: 

“When I ask the group questions that demands reasons, I am in fact 

forcing them to use their existing knowledge so that they can base and 

explain their answers why a centimeter is longer than a millimeter and 

the like.” 
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“Expanded ripple”: Changing the Discourse about Norms and Classroom 

Management 

The following excerpts illustrate the effect of analysis on the interactions and 

norms by which pre-service teachers choose to manage learning. 

T. “In lesson number 1, which took place in February, although most of 

the questions I asked were closed questions, I also posed a lot of open, 

reflective and meta-cognitive questions, and questions based on a high 

order of thinking. However, because of the nature of the lesson tasks, 

given to learners as personal tasks, there was almost no discourse 

between learners and their colleagues, but mostly reactions to questions I 

asked … In the second half of the year, I used more group and pair tasks, 

so as to encourage mathematical discourse between learners, and indeed, 

it was possible to see in lesson no. 2 many more conversations between 

learners working in pairs, more reactions to what the other said, reasons 

and explanations they gave to each other, mediated by questions that I 

asked and also without mediation.” 

T moved to group tasks instead of personal tasks to allow learners to talk among 

themselves. A change testifying to a different view of the teacher as a facilitator 

striving to structure knowledge by creating interactions between learners and 

not seeing herself as the source of knowledge. A perception promoting 

interpersonal discourse instead of IRF discourse with the teacher attests to a 

change in the teacher’s professional identity. 

T added the effect of her learning process on organizing interactions and times 

within a lesson. 

“…I shortened the opening part of the lesson with frontal acquisition for 

all, I prolonged the part of independent work experience and discussion 

following it and I planned a range of activities for the whole lesson that 

constituted demonstrating different levels of comprehension.” 

DISCUSSION AND CONCLUSIONS 

As mentioned, the aim of the research was to examine how employing an 

analytical model to analyze discourse promoting meaningful learning among 

pre-service teachers. The results of this research are compatible with the need 

for teacher education to turn work experience not just to a place to experience 

these skills but also to a field of theoretical research (Korthagen, 2010). In fact, 

what occurred here was an active process of changing views of 

teaching/learning processes expressed by awareness of the quality of discourse 

and their role as teachers in mediating teaching.  

The results testify to a development in pre-service teachers’ reflective ability as 

expressed by critical observations of the discourse they conducted in lessons 

they taught and its influence on them as teachers. The model developed here led 
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to a significant step in pre-service teachers’ ability to connect between theory 

and their personal teaching practices and to move to and from practice to theory 

and vice versa in their ambition to advance their teaching. However, from the 

testimonies about the first wave of influence it emerged that in most cases 

partially considering discourse exists characterized by practices to encourage 

discourse such as: Do you agree? Who wants to add? Whilst adhering to 

preplanning and without authentically relating to learners' answers and without 

deepening the discourse and promoting commitment to all participants. The 

change, therefore, is firstly on the level of questions alone. 

The case of the expanded ripple teaches us that a pre-service teacher can 

metaphorically distance herself from the conversation and observe the group 

discourse from the side and plan steps that perhaps were not considered in 

lesson planning. Distancing allows them to develop the ability to listen to the 

developing authentic “here and now” discourse between learners, detachment 

from original planning that is likely to fixate and re-enter the conversation when 

they feel more confident. 

The key conclusion emerging from this research is that using an analytical 

model to analyze discourse among pre-service teachers has great multi-

directional potential, which is simple and clear and demonstrates how it can be 

integrated into the curriculum in an empowering and structured manner, and as 

an integral part of the work experience. As such it meets the need for a link 

between theory and practice in teacher education.  
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The present research report takes one of the key notions of statistics and 

probability as an object of study: the random variable, studied from its discrete 

character. Supported by the theorical-methodological tools from the Onto-

Semiotic Approach (OSA) of mathematical cognition and instruction, it was 

possible to define the reference meaning that diverse authors have built upon 

this mathematical object,  in order to study the representativeness of the 

institutional meaning and the types of mathematical practices expected and 

fostered by the Chilean mathematics curriculum for secondary education, to 

learn the discrete random variable. The context of the proposed tasks plays a 

key role, and in our work the possible relations between these and the meanings 

of the discrete random variable promoted in textbooks, are also analyzed. 

RANDOM VARIABLE AS A FUNDAMENTAL IDEA 

The advances in science and technology, the exponential growth in data 

collection systems, a globalized world that bombards day by day its citizens 

with information through figures and graphs, have generated the need for new 

analytic tools for the people, that could help them in the correct interpretation of 

the information surrounding them. A key tool in this process is the so-called 

statistical culture. Batanero (2002) explains that statistics have had a 

fundamental role in the development of modern society, as it has provided a 

battery of methodological tools to analyze variability, relations among 

variables, design of studies and experiments, and improve the predictions to 

make decisions in situations of uncertainty.  

Because of the foregoing, the need to count with citizens culturized on statistics 

have become an objective for leaders of diverse nations, who have promoted the 

incorporation of statistics and probability in formal education. In this sense, 

researchers and teachers have contributed to define curricular lines that allow 

addressing these topics. The teaching of stochastic ideas throughout the 

education process, began to be conceived by Bruner (1959; cited in Ruiz, 2013), 

who in September of 1959 in the Woods Hole Conference, proposed the idea of 

a spiral curriculum consisting of a series of possible fundamental ideas to teach 

in different levels of complexity from preschool to university. Years later, 
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Heitele (1975) boldly proposed ten fundamental ideas in stochastic, based on 

psychological and epistemological reflections, that is to say: Expressions of 

belief, the probability field, independence, the addition rule, equidistribution 

and symmetry, combinatorics, urn model and simulation, stochastic variable, 

the law of large numbers, and sample. 

Heitele established the random variable as a fundamental idea from three 

perspectives: the epistemological in which plays a basic role in the 

mathematization of probability through history; the psychological in which the 

intuition of magnitudes where chance participates, arises earlier than that of 

random experiment; and as an explanatory model in which plays a key role in 

three aspects, its distribution, its expectancy and operations between random 

variables. Nevertheless, even when the importance of the random variable is 

well-known, how does the mathematics curriculum and textbooks in the Chilean 

context address the study of this notion? The present research report presents 

the advances of a developing study about the meanings of the (discrete) random 

variable, expected and promoted by the mathematics Chilean curriculum 

(understood as the duo <Plans of study and textbooks>) and the 

representativeness of those meanings regarding the reference meaning of the 

random variable.  

THEORETICAL FRAMEWORK 

The present work uses some theoretical-methodological notions of the Onto-

Semiotic Approach (OSA) of mathematical cognition and instruction. To study 

a mathematical concept, it is necessary to comprehend its characteristics, 

scopes, fields of action, among other elements that might compose it, and thus 

having a deeper understanding of that intended to be observed; it is necessary to 

know the meaning of such mathematical object. It is possible to determine the 

meaning or meanings of a given mathematical object from the historical 

development of it through time. In this sense, Pino-Fan, Godino and Font 

(2011), propose that the reference meaning is understood as the systems of 

practices that are used as reference to elaborate the meanings that are intended 

to be included in a study process. For a concrete educational institution, the 

reference meaning will be a part of the holistic meaning of the mathematical 

object.  

In the OSA, the notion of mathematical practice is of great relevance, which 

refers to any performance or manifestation (verbal, graphic, etc.) carried out by 

someone in order to solve mathematical problems, to communicate the solution 

to others, to validate the solution and generalize it to other contexts and 

problems (Godino and Batanero,1994, p. 334). The practices can be 

idiosyncratic of a person (personal practices) or shared within an institution 

(institutional practices). Furthermore, in the OSA the anthropological premise 

of socio-epistemic relativity of the system of practices, of the emergent objects 
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and the meaning, is assumed. Thus, the meaning of a mathematical object is 

understood as the system of practices that a person makes (personal meaning) or 

shared in the heart of an institution (institutional meaning) to solve a type of 

situations-problems.  

Pino-Fan, Godino and Font (2011) indicate that the partial meaning of the 

mathematical objects (that constitute the global reference meaning) have 

associated epistemic configurations (situations/problems, linguistic elements, 

concepts/definitions, properties/propositions, procedures and arguments) that 

are mobilized when solving certain problems situations, in given historical 

problems, and that gave rise to the emergence, evolution, formalization and 

generalization of a given mathematical object, in this case, the random variable.  

REFERENCE MEANING OF THE RANDOM VARIABLE 

Based on the study of diverse historical stages of the random variable evolution, 

according to different authors (e.g., Ruiz, 2013; Alvarado, 2007; Ortiz, 2002; 

Heitele, 1975), it is shown that the mathematical object variable is the result of 

numerous generalizations made through an evolution of more than 800 years. 

Thus, it was possible to identify four meanings of the random variable, which 

are described below. 

Meaning 1:  The Random Variable as a Variable of Interest 

One of the first problem areas in which the idea of random variable is observed, 

is the one linked with games of chance. However, the more formal 

mathematical analysis of them, appeared in relatively recent times (García, 

1971). The ideas depicted in these works are not very formal, as the existence of 

variables or distributions in a general form, is not mentioned. Nevertheless, 

variables are defined for particular cases and in certain cases their distributions 

are considered. Different mathematicians were attracted by the problem of 

estimating the equitable wager in the game of chance, which led them to 

implicitly consider random variables and distribution. In modern terms, their 

main interest was the mathematical expectation of the variable. Such was the 

case of Fournival, Cardano or Galileo, who motivated by their interest to find 

the best wager in games of chance, were devoted to study the possible outcomes 

for rolling three dice. At a later stage, Pascal and Fermat, based on the ideas of 

Fournival, Cardano and Galileo, started with the probability theory in search of 

the solution for the equitable wager, further on, is Huygnes who manifests the 

need to think about a variable of study, that is to say a variable of interest in 

consideration of the context. In the analysis of his solution, Huygens makes 

explicit the needed variable to analyze: “IN the first place we must consider the 

number of Games still wanting to (win) either Party” (Huygens, 1714/1657, 

p.4), for that, he situates in the context of the problem.  

Meaning 2: Random Variable as Magnitude 
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De Moivre (1756), established a change regarding previous books of 

probability. Latin began to be replaced by writing in or simultaneously 

translating into English or the native language of the author, which made that a 

specialized vocabulary would develop faster by working with a living language. 

Furthermore, it showed a different conceptual approach, in which he clearly 

separated the probability of an outcome from its value or the expectation. In its 

third edition (De Moivre, 1756) established the paradigm of mathematical 

probability, leaving behind the philosophical problems and forming the 

theoretical basis to all his propositions (Sylla, 2006). 

According to Pearson (1924), De Moivre wrote the first treatment of the 

probability integral and the essence of the Normal Curve, contributing with 

diverse tools for the field of probability. In that age, scientists used the idea of 

variable connected with the study of mathematical analysis. It was commonly 

called quantity or variable magnitude, which evidenced its character linked with 

measurement, process in which, the quality could take different values. 

Meaning 3: The Random Variable as Statistical Variable 

In parallel to the development of the probability theory, through the resolution 

of game problems, emerged the birth of statistics through the gathering and 

description of social or economic data. The human has had the need to do 

counts and representations that could be considered simple statistical recounts 

from time immemorial. The need to know and plan, in the sense of knowing 

what is at hand and make accessible and manageable that information to take 

decisions, caused that little by little politicians, traders and militaries would 

carry out increasingly sophisticated census and counting. 

Thus, the statistical variable is associated with the observation and description 

of a sample from a dataset. Following this idea, Ríos (1967) proposed that the 

statistical variable describes the set of values obtained in the data by making the 

experiment a concrete n number of times, then, if we consider a random 

experiment S and make a certain n number of tests relative to the same, we 

obtain a set of observations called random sample of extension n. This set of 

results will provide a statistical table in which certain values of the variable 

correspond certain frequencies. To such “variable, that only represents the n 

results of n executions of the S random experiment will be referred as statistical 

variable” (Ríos, 1967, p.70). 

Meaning 4: The Random Variable as a Function  

Hawkins and cols. (1992), consider the concept of random variable as a function 

with numerical values which domain is a sample space. Borovcnik and cols. 

(1991) indicate that a variable is random when its value is determined as a result 

of a random experiment; it also establishes that to characterize a random 
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variable we need to know the set of all its possible results and the probabilities 

associated to each of them.   

Then, a random variable is defined as a function of the sample space E in the set 

of real numbers R. Not any function can be a random variable. It is necessary 

that, for each interval I, the set should be an event of the sample space and, thus, 

should have a well-defined probability. This guarantees that the random 

variable would carry the P probability that is defined over the E sample space to 

the real line.  

On the basis of that, Ortiz (2002) identifies the following elements of the 

meaning of the random variable as a function:  

RV 1: The random variable takes its values depending on the results of 

a random experiment. 

RV 2: It is a function of the sample space in R. 

RV 3: Is characterized through the distribution of probability, along 

with the values that takes with its probability. 

RV 4: It is required that, for each I interval of R, the original set would 

be the event of the sample space. 

RV 5: A random variable defines a measurement of probability over 

the set of real numbers. 

RV 6: For each random variable we can define a function of 

distribution in the following way:  

 

 

RV 7: The function of distribution of a random variable is a real 

function of real variable, monotonous non decrescent. 

RV 8: The function of distribution of a random variable determines on 

a biunivocal form the distribution of probability. 

RV 9: Be  (xi, pi) i ∈ I  the distribution of probability of a discrete 

random variable. The media or mathematical expectation is 

defined as E[ξ] = ∑ xipii ∈I  . This concept expands the idea of 

media in a random variable. 

RV 10: The mode is the most likely value of the variable. 

RV 11: The median is the value of the variable by which the function of 

distribution takes the 1/2 value. Then, the probability that one 

random variable would take a lower or equal value to the 

median es exactly 1/2. 

METHODOLOGICAL ASPECTS OF THE STUDY  
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The sample selected corresponds to the mathematics textbook of Chilean 

secondary education. Secondary education in Chile considers 6 levels, from 7th 

grade (12 years old) to 12th grade (15 years old). Each year the Chilean Ministry 

of Education (MINEDUC), provides textbook for free to all the students from 

public institutions. The elaboration of such textbooks is awarded on a tender 

basis, thus throughout secondary education it is observed that different 

editorials oversee the elaboration of them, as we can see in Figure 1. 

 

Figure 1: Representation of the editorials in charge of the edition of textbooks in 

Chile for each educational level 

For the purposes of the present work textbooks from secondary education were 

selected, excepting those of 11th and 12th grade, as they are outdated in relation 

to the national curriculum published by the end of 2019. Along with the 

mathematics textbooks of 7th, 8th, 9th, 10th grade, the 8th and 11th grade history 

textbooks were analyzed, because of the relationship between the axis of 

statistics and probability with the objectives set by the history subject around 

the development of skills such as critical thinking.  

EXAMPLES OF DEVELOPMENT OF THE ANALYSIS 

To facilitate the analysis, a database which user screen we can see on Figure 2, 

was created. In such database the pictures of the proposed tasks in textbooks are 

uploaded and further analyzed. First, the general information of the task, the 

level, the subject, the code of the task, the section analyzed and the page of the 

original document from which it was extracted, are entered. 

 

Figure 2: Database for analysis of typologies of tasks and meanings of the R. V 
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After that, the context present on the task is categorized. Based on a historical 

study 7 possible contexts were determined: (a) games of chance, considering 

every task involving dices, cards, coins, picking from a bag and others; (b) 

census and records, considering every task related with the counting of a 

population and its characteristics; (c) natural and biological sciences, 

considering any task related with natural environment, health, flora and fauna; 

(d) physics and astronomy, taking into account every task concerning stars and 

physical processes such as sound, speed, among others; (e) observation and 

interpretation of data from polls, entails every task in which interpretation of 

poll data is not determined by a particular population and which size is lower 

than that of a census, as well as, the data recording in matches of different types 

of sports, is involved; (f) formal, considering tasks which context is the use of 

axioms and formal definitions of the variable; and (g) without context.  

Once the context is defined, the meaning which the task is trying to address is 

identified, this is done through the statement itself of the task and of the 

elements of the epistemic configuration intended to be used in the practices that 

solve the task. These meanings are: (S1) as variable of interest: (S2) as 

magnitude: (S3) as statistical variable; (S4) as function. Additionally, problems 

without classification were contemplated for such cases in which the task 

mobilizes more than one or any meaning, with or without context.  

Once the context and meaning are identified, the types of activated 

representations or the ones expected to be activated by the task are analyzed, 

say: verbal, graphic, symbolic, tabular or iconic. Moreover, a differentiation 

between the previous representation, which we understand as the ones that 

should, originally, interpret and decode the student (or subject) with the aim of 

comprehending and facing the task; and emergent, seen as those that emerge as 

part of the subjects answers (or expected answers, if seen from an institutional 

point of view), is made . Depending on the type of task, it is possible that apart 

from a previous representation and an emergent one, may arise a transitory, 

necessary to address before the emergent representation.  

Finally, and particularly for meaning four (S4), random variable as function, the 

intentional elements present in the task are identified, as well as, the typology of 

problems, based on the previously mentioned proposal of Ortiz (2002). 

FINAL REFLECTIONS 

From the analysis performed so far, we have determined that the intended 

meanings of the mathematics Chilean curriculum about the notion of random 

variable seem not to be representative of the holistic meaning of reference. 

While it possible to distinguish tasks that promote the S1 and S3 meanings, in 

the earlier stages of secondary education (7th and 8th grade) S2 meaning cannot 

be observed. On the other hand, despite 10th grade provides a complete section 

entitled random variable, in which this function is defined as that which takes 
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values according to the results of an random experiment, promoting S4, in 9th 

grade there is no visible definition of the variable provided, in detriment of an 

adequate transition between meanings. It appears that the existent relation 

between the statistical variable and the random variable is not promoted, 

restricting the first to a mere characteristic of a population, omitting the 

conception of this as the description of an n number of experiments, which 

would allow favoring a better transition of the students from meaning 3 to 

meaning 4. Finally, regarding the contexts of work, games of chance continue to 

be present in greater extent, followed by the observation of polls and census and 

records. Concerning the variables in study there is a tendency towards discrete 

variables in lower levels, it is worth noticing that, although there are tasks that 

promote the distinction between variables of discrete and continuous kinds in 

the first levels, this distinction seems to be lost as the higher levels are reached.  
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RATIO COMPARISON PROBLEMS: CRITICAL 

COMPONENTS AND STUDENTS’ APPROACHES 
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This study focuses on examining secondary school students’ approaches in ratio 

comparison problems. Two hundred forty-eight secondary school students (12-

16 years old) solved two ratio comparison problems that can be interpreted as a 

couple of expositions or compositions. Three main students’ approaches were 

identified according to whether they identified the relative quantities: relative 

comparison, relative trend, and non-relative comparison. Furthermore, the 

subcategories identified in the relative trend and non-relative comparison 

approaches showed students’ difficulties with critical components of the 

problems: difficulties in interpreting the referent in the comparison, in 

identifying the multiplicative relationship, and with the norming techniques. 

THEORETICAL AND EMPIRICAL BACKGROUND 

The understanding of the concepts of ratio and proportion and the development 

of proportional reasoning have been broadly studied since the 80s (Cramer & 

Post, 1993; Lobato & Ellis, 2010; Tourniaire & Pulos, 1985). Many studies 

have reported students’ difficulties in distinguishing proportional from non-

proportional situations and the effect of some variables of the problem (such as 

the context, and the nature of ratios) on the students’ success levels and 

strategies (Alatorre & Figueras, 2005; Van Dooren, De Bock, & Verschaffel, 

2010). Most of them has used missing-value problems (Fernández, Llinares, 

Van Dooren, De Bock, & Verschaffel, 2012; Van Dooren, De Bock, Hessels, 

Janssens, & Verschaffel, 2005) where three quantities of a proportion are 

known and the fourth must be found. However, little is known about how 

primary and secondary school students understand and use the ratio concept 

when solving ratio comparison problems (Alatorre & Figueras, 2005; Nunes, 

Desli, & Bell, 2003) where two ratios are given and have to be compared. 

One of the challenges in these problems is that they involve the understanding 

of intensive quantities. Nunes et al. (2003) showed that when primary school 

students construct an understanding of intensive quantities, they have to face 

two challenges: thinking in terms of proportional relations and understanding 

the connection between the intensive quantity and the two extensive quantities 

which are related to it. These authors also show that primary school students 

have difficulties solving ratio comparison problems that involve intensive 

quantities.  
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In the understanding of the ratio concept, Freudenthal (1983) highlights the 

importance of considering situations in which the ideas of “relatively” and 

“norming” are required. The idea of “relatively” in the sense of “put something 

in relation to” involves the use of the term ratio as a relational number that 

relates two quantities in one situation and projects this relationship onto a 

second situation in which the relationship between the two quantities remains 

the same (Smith, 2002). Norming describes the process of reconceptualising a 

system in relation to some fixed unit or standard (Lamon, 1994).  

Ratio comparison problems involve both ideas, relatively and norming. In these 

problems, the multiplicative relationship that exists between the quantities can 

be equal or unequal, and represents “relative quantities”, that is, “quantities put 

in multiplicative relationship with other quantity of reference” (called “the 

referent”) (Gómez & García, 2015, p.267). These problems can be interpreted 

as couples of expositions or compositions (Freudenthal, 1983). For instance, 

given the following ratio comparison problem: In the greengrocer A, for each 2 

kg of apples paid you get 3 kg. In the greengrocer B, for each 3 kg of apples 

paid you get 4 kg. If the price of a kilogram is the same in the two greengrocers, 

which offer is more advantageous?  

If it is interpreted as a couple of expositions, there is a set of greengrocers Ω = 

{greengrocer A, greengrocer B}and two functions ω1 and ω2 which assign a 

magnitude to each element of the set. The function ω1 can assign the amount 

paid to each greengrocer (2kg in greengrocer A and 3kg in greengrocer B) or 

the amount free (1kg in greengrocers A and B). The function ω2 assigns the 

amount purchased to each greengrocer (3kg in greengrocer A and 4kg in 

greengrocer B). The ratios that can be compared are: amount paid (P) / amount 

purchased (PU) (Table 1) and amount free (F) / amount purchased (PU) (Table 

2). 

 Greengrocer A Greengrocer B 

ω1: Ω → Amount paid PA = 2 PB = 3 

ω2: Ω → Amount purchased PUA = 3 PUB =4 

Compared Ratio  
PA

PUA 

= 
2

3
 

PB

PUB 

= 
3

4
 

Table 1: Couple of expositions: amount paid (P) / amount purchased (PU). 

 Greengrocer A Greengrocer B 

ω1: Ω → Amount free FA = 1 FB = 1 

ω2: Ω → Amount purchased PUA = 3 PUB =4 

Compared Ratio  
𝐹A

PUA 

= 
1

3
 

𝐹B

PUB 

= 
1

4
 

Table 2: Couple of expositions: amount free (F) / amount purchased (PU). 
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As a couple of compositions, it is interpreted as a class partitioning ΩA = 

{amount free, amount paid} and ΩB = {amount free, amount paid} of two 

universes (greengrocer A and greengrocer B) attained according to the same 

principle, and two functions ω1 and ω2, each function representing a magnitude. 

The function ω1 assigns their respective kg to the amount free and the amount 

paid of greengrocer A; while ω2 assigns their respective kg to the amount free 

and the amount paid of greengrocer B. The ratio that can be compared is 

amount free (F) / amount paid (P) (Table 3). 

 Amount free Amount paid Compared Ratio 

ω1: ΩA → PUA 

(Greengrocer 

A) 

FA = 1 PA = 2 
FA

PA 

= 
1

2
 

ω2: ΩB → PUB 

(Greengrocer 

B) 

FB = 1 PB = 3 
FB

PB 

= 
1

3
 

Table 3: Couple of compositions: amount free (F) / amount paid (P). 

In the ratio comparison problems, the norming techniques allow “the unification 

of the antecedents (numerator) or consequents (denominator) of ratios in order 

to favor the comparisons” (Gómez & García, 2015, p.267), what can be done by 

procedures such as unit rate (obtained by quotient), fraction strategy 

(equivalence of fractions), cross product, or building-up (Cramer & Post, 1993). 

In this study, we consider as critical components of ratio comparison problems: 

the multiplicative relationships, their equality or inequality, and the quantities 

used as referents (Gómez & García, 2015). We are interested in situations that 

can be interpreted both as a couple of expositions or compositions and that 

involve the necessity to apply norming techniques. Previous studies have 

focused on ratio comparison problems showing students’ success levels, 

strategies and the effect of some variables, such as the context or the numerical 

structure on students’ strategies (Alatorre & Figueras, 2005; Nunes et al., 2003). 

However, studies focused on how secondary school students solve ratio 

comparison problems examining the relationship between the critical 

components of the problems and students’ performance are scarce (Gómez & 

García, 2015; Monje & Gómez, 2019, both studies with pre-service teachers). 

The research question is: which are the secondary school students’ approaches 

when solving ratio comparison problems? 

METHOD 

Participants were 248 secondary school students from 7th grade (n=68), 8th grade 

(n=52), 9th grade (n=64) and 10th grade (n=64). There was approximately the 

same number of boys and girls in each age group, and students were from 

mixed socio-economic backgrounds. Participants solved the following two ratio 

comparison problems (problem 1 has been described above) that involve 
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intensive quantities and can be interpreted as a couple of expositions or a couple 

of compositions: 

Problem 1 (Sale). In the greengrocer A, for each 2 kg of apples paid you get 3 

kg. In the greengrocer B, for each 3 kg of apples paid you get 4 kg. If the price 

of a kilogram is the same in the two greengrocers, which offer is more 

advantageous? 

Problem 2 (Mixture). To obtain chocolate shake, you need milk and chocolate. 

John used 450 ml of milk and got 600 ml of shake while Mary used 750 ml of 

milk and got 900 ml of shake. If both used the same grams of chocolate, which 

shake would have a stronger chocolate taste? 

Three researchers, independently, analysed the students’ answers to identify 

categories of students’ approaches, considering:  

• The idea of relatively. If students identify the relative quantities, i.e., 

quantities on a multiplicative relationship with another quantity of 

reference:  

o Identification of the multiplicative relationship.  

o Identification of the referent in the comparison. 

• The idea of norming. If students use the norming techniques properly 

to compare ratios.  

Then, agreements and disagreements were discussed until we reached an 

agreement with regard to the final categories of students’ approaches. Final 

categories identified are shown and exemplified in the results section. 

RESULTS 

In this section, students’ approaches are described and exemplified. Then, the 

frequencies of these categories in each problem and grade are shown. 

Students’ approaches 

Three main categories of students’ approaches were identified according to 

whether students identified the relative quantities: relative comparison, relative 

trend and non-relative comparison.  

Relative comparison 

In this category, students identified the relative quantities: “quantities put in 

multiplicative relationship with other quantity of reference”. They were able to 

obtain and compare ratios, applying a norming technique correctly. The 

subcategories identified differed in the ratio and referent used.  

Some students interpreted the problem as a couple of compositions using the 

ratio amount free / amount paid in problem 1 and chocolate amount / milk 

amount in problem 2. For instance, a 9th-grade student used a building-up 

procedure in problem 1 looking for a common multiple: “A is better than B 
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because if you pay 6kg in A you get 3kg for free, but if you pay 6kg in B you 

only get 2kg”.  

Other students interpreted the problem as a couple of expositions using the 

ratios amount paid / amount purchased or amount free / amount purchased in 

problem 1 and milk amount / shake amount or chocolate amount / shake amount 

in problem 2. These ratios differ in the referent used for the comparison. For 

instance, a 10th-grade student stablished the price of 1€ per kg paid, and 

calculated the price paid for 1 kg (unit rate) in each greengrocer regarding the 

kg purchased: “2€/3kg = 0.67€/kg in the greengrocer A and 3€/4kg = 0.75€/kg 

in the greengrocer B, so A is the better option since a kg is cheaper”. 

Relative trend 

This category includes students’ approaches that showed evidence of 

identifying the relative quantities, but they had difficulties in some critical 

components. Two subcategories were identified: difficulty with the referent and 

difficulty with norming techniques. In the first subcategory, students were able 

to obtain the ratios applying a norming technique correctly, but the comparison 

according to the referent was incorrect. For example, an 8th-grade student 

obtained the ratios correctly using fraction equivalences (Figure 1), but had 

difficulties in interpreting the antecedents concerning the consequents 

(referent), since he said that “B is cheaper”. In this approach, the difficulty was 

the loss of meaning of the referent when they applied norming techniques 

(Gómez & García, 2015). 

 

Figure 1: Example of a student who had difficulties with the referent. 

In the second subcategory, difficulties are related to norming techniques. For 

example, a 9th-grade student used a building-up strategy to find a common 

multiple for the amounts paid (6 kg), but he did not extend it correctly to the 

amounts purchased (Figure 2): “B because in case you want 6 kg, with the same 

price, you will get more quantity of apples”. 

 

Figure 2: Example of a student who had difficulties with a norming technique. 

Non-relative comparison 

This category includes students’ approaches that did not show evidence of 

identifying the relative quantities (they did not identify the multiplicative 



Castillo & Fernández 

2 -  151 

 

PME 44 -2021 

relationship). Five subcategories were identified: ignoring data, additive 

answers, affective answers, incomprehensible answers, and blank answers. 

Students who ignored data paid attention only to some data of the problem. For 

instance, some students compared only the amounts paid in problem 1, ignoring 

the relationship with the amount free or the amount purchased. The following 

10th-grade student wrote: “The cheapest offer is the greengrocer A because you 

pay only 2 kg of apples while you pay 3 kg in greengrocer B”. In the additive 

answers, students related the quantities in absolute terms. For example, an 8th-

grade student answered in problem 1: “It is the same because in both 

greengrocers you can save 1 kg”. In the affective answers, students based their 

answers on personal interpretations. A 7th-grade student said: “the choice 

depends on the number of apples that you want to buy”. Incomprehensible 

answers are those in which students did operations without sense.  

Students’ approaches by problem and grade 

Table 4 shows the percentages of each category by problem and grade. 

Globally, students were more successful in problem 2 (mixture; 81.1%) than in 

problem 1 (sale; 30.1%), due to their difficulties in interpreting the quantities in 

relative terms. The average for all the grades considering both problems was 

55.6%. Particularly, in problem 1, more than 50% of the students’ approaches 

from 7th to 9th-grade were non-relative comparisons. Furthermore, although the 

relative comparisons increased from 7th to 10th-grade in both problems, the 

average in 10th-grade was 67.2%, so difficulties with ratio comparison problems 

persisted at the end of secondary education. 

Grade 

Problem 1 (sale) Problem 2 (mixture) 

Total 
Relative 

compari-

son 

Relative 

trend 

Non- 

relative 

compar-

ison 

Relative 

compar- 

ison 

Relative 

trend 

Non- 

relative 

compar-

ison 

7th 25.0% 14.7% 60.3% 70.6% 7.4% 22.0% 47.8% 

8th 25.0% 19.2% 55.8% 86.5% 3.8% 9.7% 55.8% 

9th 20.3% 18.8% 60.9% 82.8% 4.7% 12.5% 51.6% 

10th 50.0% 15.6% 34.4% 84.4% 1.6% 14.0% 67.2% 

Total 30.1% 17.0% 52.9% 81.1% 4.4% 14.5% 55.6% 

Table 4: Percentage of each category by problem and grade.  

Table 5 shows the percentage of each subcategory in problems 1 and 2. In 

problem 1, 30.1% of students’ approaches were relative comparisons. 

Particularly, the 23.3% interpreted the problem as a couple of expositions, while 

the 6.8% interpreted the problem as a couple of compositions. In problem 2, 

81.1% of students’ approaches were relative comparisons. Specifically, 68.2% 
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interpreted the problem as a couple of compositions and 12.9% interpreted it as 

a couple of expositions.  

Subcategories 
Problems 

1 2 

Relative 

comparison 

As a couple of compositions 6.8% 68.2% 

As a couple of expositions 23.3% 12.9% 

Relative trend 
Difficulty with the referent 5.6% 2.0% 

Difficulty in norming 11.4% 2.4% 

Non-relative 

comparison 

Ignore data 19.0% 4.3% 

Additive answers 8.1% 4.3% 

Affective answers 7.3% 1.6% 

Incomprehensible or blank answers 18.5% 4.3% 

Table 5: Percentage of the subcategories in problems 1 and 2.  

In problem 1, students’ difficulties with the relative quantities are explained by 

the 17% of students who used a relative trend approach having difficulties with 

the referents or the norming techniques, and by the 52.9% of students who did 

not identify the relative quantities (providing a non-relative comparison 

approach). Of this last group, we can highlight the subcategories: ignored data, 

and incomprehensible or blank answers. In problem 2, only 4.4% of the students 

had difficulties with the referents or the norming techniques, and 14.5% of 

students’ approaches were non-relative comparisons. Of the last group, the most 

frequent subcategories were: ignore data, additive answers and 

incomprehensible or blank answers. 

DISCUSSION AND CONCLUSIONS 

Results provide information about secondary school students’ approaches when 

they solve ratio comparison problems with intensive quantities considering the 

critical components of the problems. Three main students’ approaches were 

identified according to whether secondary school students identified the relative 

quantities: relative comparison, relative trend, and non-relative comparison. 

These approaches coincide with the results obtained by Monje and Gómez 

(2019) with pre-service teachers, extending them to secondary education. In 

addition, the subcategories identified in the relative trend and non-relative 

comparison approaches showed students difficulties with some critical 

components: difficulties with the referent in the comparison, difficulties in 

identifying the multiplicative relationship, and difficulties with the norming 

techniques. 

Results about the percentages of each category along grades have shown that 

students’ success levels increased from 7th to 10th-grade in both problems. 

However, difficulties with intensive quantities (in ratio comparison problems) 

persisted at the end of secondary education. Nunes et al. (2003) showed that 
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primary school students have many difficulties in relation to intensive 

quantities. Our study has shown that there is a positive evolution throughout 

secondary education, but difficulties persist. 

Finally, students were more successful in the mixture problem than in the sale 

problem. This result contradicts previous research that has stated that mixture 

problems are more difficult (Alatorre & Figueras, 2005; Tourniaire & Pulos, 

1985) while other research has not found differences in primary school 

students’ performance (Nunes et al., 2003). The characteristics of our problems 

could explain this result. Both problems have one of the quantities unified. In 

problem 1, although this quantity is not given explicitly, the amount free was 

the same for both greengrocers (1 kg). In problem 2, this quantity is given 

explicitly in the formulation of the problem: the chocolate amount is the same in 

both shakes. If students identified this data, they only needed to compare the 

other quantities, without performing calculations. This raises a question: would 

have the success in the sale problem been greater if students had asked directly 

about the amounts free given? 

The characterization of the students’ approaches obtained in this study can 

provide information for the design of classroom interventions aimed at 

overcoming the difficulties encountered in ratio comparison problems. 
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This paper reports on a coding framework for categorizing different forms of 

mathematics teacher in-class learning. Utilizing a research design that 

stimulates teachers’ reflection on their lesson planning and teaching, a coding 

framework was developed as part of this international project to categorize 

teachers’ interview statements in relation to their learning. This paper explains 

the theory of teacher learning which underpins this project and reports on the 

development and implementation of the coding framework with illustrative case 

study examples from three countries (Australia, China, and Germany). 

BACKGROUND 

Organized professional development programs or activities are increasingly 

relied upon in different education systems to enhance teachers’ professional 

knowledge and improve classroom practices, with the ultimate goal of fostering 

student learning and achievement gains (Borko, Jacobs, Eiteljorg, & Pittman, 

2008). Nonetheless, participation in organized professional development 

programs is not the only means for teachers to develop professionally. The 

Learning from Lessons project (Chan et al., 2017) was designed to focus on 

what we called teacher “in-class learning”: Teacher learning that takes place as 

part of teachers’ day-to-day practice, particularly in relation to their lesson 

planning and teaching.  

Theories of Teacher Learning 

Focusing on the mechanism of teacher learning, Boylan, Coldwell, Maxwell, 

and Jordan (2018) reviewed five theoretical models of teacher professional 

learning (Clarke & Hollingsworth, 2002; Desimone, 2009; Evans, 2014; 

Guskey, 2002; Opfer & Pedder, 2011). These models intend to have wide 

applicability and have variously been used to inform the design, analysis, and 

evaluation of teacher professional development activities. Boylan et al. found 

differences and inconsistencies between the models, particularly in terms of the 
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components and domains of change included (e.g., teacher practice, student 

outcomes, teacher beliefs and attitudes, and school and learning activity 

systems), scope (micro, meso, or macro), theory of learning (socially situated 

experiential, social constructivist, or cognitive), the location of agency in 

directing or facilitating professional learning (mainly within the teacher or 

involving broader structures, processes, or systems), and the philosophical 

foundation (e.g., sociological positivist, social constructivist, or complexity 

theory). Rather than providing a unified “meta” model of teacher professional 

learning, Boylan et al. argued for the need to seek multiple answers in 

understanding the complexities of teacher professional learning. 

The current project draws from the Interconnected Model of Teacher 

Professional Growth (Clarke & Hollingsworth, 2002; Clarke & Peter, 1993; 

Peter, 1996) which suggests that the process of teacher professional growth is 

non-linear and recursive. A unique feature of the model is the emphasis on the 

processes of enactment and reflection in connecting and facilitating changes in 

teachers’ professional environment, where enactment involves putting into 

action a new idea, a new belief, or a newly encountered practice (Clarke & 

Hollingsworth, 2002, p.953) and reflection involves “active, persistent and 

careful consideration” (p.954). 

A pilot study (Clarke, Clarke, Roche, & Chan, 2015) was undertaken in 

Australia to identify empirical evidence of teacher learning based on teachers’ 

reflection of their lesson planning and teaching. Two forms of evidence were 

found: Teachers’ declarative “claim to know” (epistemic claim) and an 

observable or recounted change in the individual practice (adaptive practice). 

Examination of further cases in Australia (Chan, Roche, Clarke, & Clarke, 

2019) found different mechanisms of teacher learning evident in teachers’ 

epistemic claims – consolidation of existing knowledge and beliefs, and 

realization of new knowledge and beliefs. It is suggested that these two 

mechanisms both contribute to teacher learning, particularly in day-to-day 

teaching practice as teachers expand their existing knowledge base 

(consolidation) and form new knowledge and beliefs (new realization). 

To further refine and validate the learning categories and investigate the nature 

of teacher professional learning, this research seeks evidence of these learning 

categories in cases beyond Australia. It addresses the research question: To 

what extent do the learning categories of consolidation and new realization, and 

adaptive practice, apply to teachers in Australia, China, and Germany? 

Answering this question provides an important step towards cross-country 

comparison of teacher learning in the project. 

RESEARCH DESIGN 

The case study data reported in this paper came from an international research 

project, which aimed to investigate the mathematics teachers’ in-class learning 
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in Australia, China, and Germany (Chan et al., 2017). The project combined 

focused case studies with an online survey of mathematics teachers’ focus of 

attention and consequent learning in the three countries. 

Participants 

Case studies were undertaken of three teachers, teaching Year 4 in China, and 

Year 5 in Australia and in Germany. The reason for the difference in year levels 

was to accommodate the difference in lesson topics commonly taught in the 

three countries, where some of the Year 5 topics taught in Australia and 

Germany are taught in Year 4 in China. The three teachers were male and in 

their thirties. The Australian teacher (AU_T5) had 5 years’ teaching experience 

and was trained as a generalist primary teacher. The Chinese teacher (CH_T4) 

had 18 years’ teaching experience and was trained as a specialist mathematics 

teacher. The German teacher (DE_T5) had 6 years teaching experience and was 

trained as a secondary (grammar) schoolteacher. 

Data Generation 

The three teachers were separately given a different set of three researcher-

designed lesson plans in the local language appropriate for their teaching 

context. Three lesson topics that were common across Year 5 Australia and 

Germany, and Year 4 in China were chosen for the researcher-designed lesson 

plans: i) division with two digit divisors; ii) introduction to decimals, and iii) 

parallelograms and trapezia. 

For example, for the Year 5 lesson plan on division with two-digit divisors 

given to the teachers in Australia and Germany, students worked in pairs to 

solve division word problems. The word problems all involve the same numbers 

(1144 and 32, which do not divide exactly), but each word problem has a 

different answer (e.g., “A dairy farm produced 1144 liters of milk, and has 32 

containers in which to store the milk. If the containers are filled exactly, how 

much milk should go into each container?”). The purpose of the lesson is to 

draw the attention of students to the meaning of the question, and that the 

context of the problem determines the way in which the remainder is best used 

and expressed (Clarke, Roche, Sullivan, & Cheeseman, 2014). For the Year 4 

lesson plan in China on the same topic, students were asked to solve problems 

with three-digit dividends and two-digit divisors in various contexts (e.g., 

“There are 178 storybooks to share with different classes. Each class can get 30 

books. How many classes will have books?”). An emphasis of the lesson was 

for students to correctly write the calculation steps. The content of each 

researcher-designed lesson plan was checked for suitability to the local context 

by each country team. 

Each of the teachers was asked to adapt the researcher-designed lesson plan and 

then teach the lesson to their usual class (26 students in a class in Australia; 55 

students in China, and 30 students in Germany). After teaching the adapted 
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lesson, the teachers were asked to design a follow-up lesson themselves and 

deliver this lesson to the same class a few days after the adapted lesson. This 

process was repeated for each lesson plan provided, resulting in the delivery of 

three adapted lessons and three follow-up lessons per teacher. Pre- and post-

lesson interviews were conducted with each teacher on the same day as the 

adapted and follow-up lesson. All the interviews were carried out by the local 

team in the local language. 

The project was designed to generate data on each teacher’s adaptation of a pre-

designed lesson, the teacher’s actions during the lesson, the teacher’s reflective 

thoughts about the lesson and, most importantly, the consequences for the 

planning and teaching of a second (follow-up) lesson. All the pre- and post-

lesson interviews and the adapted and follow-up lessons were video recorded, 

with the video recording of the lesson just taught used in the post-lesson 

interview to stimulate the teachers’ recall and reflection on the lesson. All the 

interviews were fully transcribed in the local language. 

Data Analysis 

The analysis reported in this paper drew on the interview data with the three 

case study teachers, and specifically, the teachers’ responses to interview 

questions related to their learning. Seven questions across the four interviews 

(two interviews each, pre- and post-lessons, for the adapted and follow-up 

lessons) were included in the analysis which explicitly asked what the teachers 

thought they learned from the activities carried out as part of the project (lesson 

plan adaptation, adapted lesson teaching, creation of follow-up lesson plan, and 

follow-up lesson teaching). Example questions included: “Please describe 

anything you have learned because of participating in the task activity, and in 

reading and planning the lesson. Explain your response” (pre-lesson interview), 

“Was there anything that happened during the lesson that was really unexpected 

by you?” (post-lesson interview), “Which moments in the lesson do you think 

provided learning opportunities for you? What did you learn?” (post-lesson 

interview). 

After collating the teacher interview responses to the above questions, the 

responses were partitioned into idea units, where an idea unit is “a distinct shift 

in focus or change in topic” (Jacobs, Yoshida, Stigler, & Fernandez, 1997, p. 

13). Each idea unit was then coded for epistemic claim (consolidation or new 

realization) and any indication of adaptive practice by at least two researchers in 

each country team. 

RESULTS 

After reviewing the reflective statements of the three teachers, we found that all 

the teachers identified things that they thought they had learned in the course of 

participating in the project. We could find statements that indicate learning 

based on the three coding categories (consolidation, new realization, and 
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adaptive practice) for all three teachers. The following provides illustrative 

examples for the coding categories which were drawn from interviews where 

the teachers have each been given a researcher-designed lesson plan on the topic 

“division with two-digit divisors” for adaptation and teaching. The statements 

of the Chinese and German teachers are translated into English for reporting in 

this paper. 

For the Year 5 Australian teacher, he thought the lesson topic on the context of 

a mathematical problem “reignited” his emphasis on the topic in his teaching 

(consolidation). 

“I would’ve liked to have thought that it was a big priority in my teaching, but 

reading this, it’s probably reignited that light of realising that, “hey, the 

context of the problem is super, super, super important.” ... I certainly have got 

more appreciation of that. So, that would be learning out of it, for sure.” 

(AU_T5 preadapted lesson interview) 

In the post-lesson interview of the adapted lesson, he learned that not many of 

his students applied a problem-solving strategy that was covered in the past 

(new realization):  

“I was surprised that looking through the sheets that not many of them like 

physically sort of circled or highlighted key information, which felt like a 

problem-solving strategy we’ve done in the past.” (AU_T5 post adapted lesson 

interview) 

He particularly reflected on task difficulty for his students and thought starting 

with smaller numbers for the division problems could have given students more 

confidence for the lesson (adaptive practice). 

“I guess I’m still sort of learning in terms of differentiating the task. On 

reflection, maybe I could have done that better at the start, knowing that the 

Grade 5 cohort would have really struggled with the big numbers. Even though 

using smaller numbers does not change the thinking of the actual task, at least 

it sorts of gives them a bit more of a security blanket.” (AU_T5 post adapted 

lesson interview) 

Similar to the Australian teacher, the Year 5 German teacher also found his 

knowledge consolidated in the teaching process, specifically about the 

importance of helping students to understand how to deal with decimal places in 

relation to units of measurement (e.g., liters vs milliliters in the problem that 

deals with the division of milk into containers described earlier). 

“What I found confirmative again was how important the last zero was if it is 

75 ml or 750. [...] For them (the students), the problem is about part-whole 

relationship. They are not aware that I now have steps of thousandths for the 

units.” (DE_T5 post follow-up lesson interview) 
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In the pre-lesson interview for the first follow-up lesson, he learned from the 

previous lesson to anticipate typical student mistakes, even if he does not think 

that his students would make them (new realization).  

“When considering typical mistakes beforehand, and then you realize that they 

(the students) really do make them, so you can actually even expect them to 

happen and plan how to deal with them. That they really occurred and that it 

really did fit well, that was funny. That I have learnt.” (DE_T5 pre follow-up 

lesson interview) 

On reflection, the teacher thought it was important to give students who are still 

working on the problem more chance to keep working rather than make visible 

other students’ completed work to them pre-maturely, and he suggested an 

alternative way to address this in the future (adaptive practice). 

“Next time I would definitely turn them [the post-it’s with the student solutions 

that had been pinned to the blackboard] around right away [so that the 

students who are still working on the tasks cannot see them].” (DE_T5 post 

adapted lesson interview) 

Unlike the Australian and German teachers who spoke specifically about what 

was reconfirmed for them in the teaching process, the Year 4 Chinese teacher 

often spoke in general terms about what teachers should learn from their 

teaching. The teacher’s comment can be considered as a form of confirmation 

as he voiced his belief about the need to keep a positive attitude when teaching.  

“For many inexperienced teachers, when the start of the class does not start 

smoothly, their emotions get affected and the rest of the lesson doesn’t run 

smoothly. So, there is a need to keep a positive attitude when teaching – it is 

normal for children to make mistakes. How to adjust their mistakes is what we 

(teachers) learn.” (CH_T4 post adapted lesson interview) 

Through analyzing the lesson topic, the teacher “discovered” its importance 

(new realization). 

“I read through the later key points and discovered something. … For all the 

later key points, such as division that is not of numbers that are multiples of 10, 

everything needs to be converted to multiples of 10 in order to calculate. When 

do we need to convert? For example, the later Example Question 2, to divide … 

21, a student needs to think of 21 as 20 to try to divide. … Examples 1 and 2 

are basically the foundation of the entire two-digit division method, so this 

lesson needs to be treated seriously, as it is basically giving (the students) the 

foundation today.” (CH_T4 preadapted lesson interview) 

For the teacher, the unexpected responses of the students’ summaries drew his 

attention to his questioning, which he thought could be improved (adaptive 

practice).   

“When summarising the similarities between the two example questions, some 

students concluded that they are both divisions, some concluded that they are 
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division of multiple digits by multiple digits, which are all very superficial 

summaries. These kinds of summaries were unexpected. I mainly wanted them 

to summarise the two vertical mathematical expressions, (but) maybe my 

questioning was too vague. If I had pointed to something clearer, I would let 

(the students) directly see the similarities between these two vertical 

mathematical expressions, maybe that would be better.” (CH_T4 post adapted 

lesson interview) 

Accordingly, we found statements given by the case study teachers in the three 

countries that appeared to confirm the teachers’ already held beliefs and 

expectations, even though they thought that was also part of their learning 

(consolidation). Through these statements, the teachers expressed their existing 

knowledge or beliefs, and how the new situation, activity, or event had 

“reignited” or “confirmed” those knowledge or beliefs. These consolidation 

statements contrast other teacher statements that appear to suggest something 

that was unexpected, surprising, or new for the teachers, conveying a sense of 

novelty in what the teachers observed or realized (new realization). In addition, 

we also found statements given by the teachers which showed that they actively 

thought of ways to improve their practice by suggesting alternative practice and 

things that they may do differently (adaptive practice). 

DISCUSSION 

One of the aims of the Learning from Lessons project is to provide cross-

cultural insights into teacher in-class learning. Using purposefully designed 

experimental mathematics lesson plans, teachers were asked in this project to 

adapt a researcher-designed lesson plan, teach the adapted lesson, and create 

and teach a follow-up lesson. The pre- and post-lesson interviews conducted in 

the research provided opportunities for the teachers to reflect on what changes 

in their knowledge and practice were evident, and how those changes occurred. 

Care was given to replicate the research design in the three countries (Australia, 

China, and Germany), while accommodating differences in local contexts.   

While we found evidence of the learning categories developed based on the 

Australian case studies (Chan et al., 2019), we were unsure if teachers in other 

countries would express their in-class learning in similar ways. From the case 

study teachers’ responses to the learning questions in the three countries, we 

could distinguish two learning mechanisms in terms of consolidation 

(reinforcement of existing knowledge and beliefs) and new realization 

(realization of new knowledge and beliefs). We have also found that the case 

study teacher in each of the countries actively considered ways to improve their 

practice based on their teaching (adaptive practice). The presence of teacher 

interview statements that fit with the proposed learning categories suggests the 

research design allows similar evidence of teacher learning to be found in the 

three different countries. This is a significant result, as this allows the project to 

proceed with making comparisons between teachers in the case study and 
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survey data in Australia, China, and Germany in terms of their reflection of 

teacher in-class learning. 

On a theoretical level, conceptualizing teacher learning in terms of 

consolidation, new realization, and adaptive practice poses new questions for 

further research. We can ask the questions: What characterizes teachers who 

have a greater tendency to experience learning as new realization? What 

characterizes those who have a greater tendency to experience learning as 

consolidation? What types of events or conditions trigger new realization or 

adaptive practice? What are such new realizations or adaptive practices about? 

These questions will be addressed in future papers, drawing from the survey and 

cross-cultural components of the project. 
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This study examined 380 secondary school students’ values in mathematics 

learning in Malaysia using the What I Find Important (in mathematics 

learning) questionnaires. The preliminary analysis shows that Malaysian 

secondary students valued the attributes of “process”, “fun”, “effort”, 

“objectism”, “ideas and practice”, “exposition”, “recalling”, and “openness”. 

Among different ethnics’ groups, Chinese students tended to value “process” 

and “application” more than other ethnic groups. Malay students valued “hard 

work” and “effort” more than their peers in learning mathematics. In terms of 

gender difference, the result shows that Malaysian secondary school boys and 

girls valued almost the same value attributes in learning mathematics. The 

results provide some insights into understanding mathematics teaching and 

learning from the multicultural classroom context.  

INTRODUCTION 

All the while, improving students’ learning has always been the focus of 

(mathematics) education research. Many factors influence students’ learning, 

including cognitive factors (such as students’ knowledge, ability and skills) and 

affective factors (such as their attitudes and beliefs). As a deep-seated and 

personal affective factor, Bishop (2001) proposed that students’ values can also 

influence their learning. This idea was further elaborated by Seah (2013), 

whereby values regulate how cognitive skills and emotion are used in learning 

by a learner. He defined values as the “convictions” that a person perceived as 

important or worthy (Seah, 2013, p.193). This implies that values can be 

implicit as it is internalised in nature.  

Alan Bishop first proposed three pairs of complementary mathematical values 

in mathematics education, that is, values regarding the discipline of 

mathematics:  rationalism and objectism, control and progress, and openness 

and mystery (Bishop, 1988). The three pairs of complementary values echoing 

the three components of culture proposed by White (1959), namely ideological, 

sentimental and sociological. Bishop (1991) explained that rationalism “is 

concerned with the logic of the relationship between ideas” and objectism “is 

about the genesis and phenomenology of those ideas” (p. 202) as the ideology 



Chia & Zhang 

2 -  165 

 

PME 44 -2021 

component. Control and progress as the sentimental component.  Control refers 

to developing mathematical ideas through specific rules or procedures and 

progress refers to developing mathematical ideas through alternative ideas. The 

sociological component, openness stresses the demonstration of ideas in public; 

however, mystery emphasises the wonder or mystery of ideas. Later in 1996, he 

further proposed a framework of three intersecting sets of values: mathematical 

values (relating to the discipline), mathematics educational values (relating to 

mathematics pedagogy), and general educational values such as honesty and 

law-abiding (relating to the ethical and moral principles). At the same time, he 

proposed that values are “deep affective qualities” which last longer in people’s 

memories than conceptual and procedural knowledge (Bishop, 1996, p. 19).  

Recently, Seah and Andersson (2015) suggested that the process of valuing can 

be conative in nature, which involves both cognitive and affective aspects. 

Specifically, values reflect what an individual perceives as important and 

valuable through their actions in learning and teaching mathematics. This 

suggests that values, including mathematical values and mathematics 

educational values, can influence an individual’s learning process. Thus, to 

identify what values related to learning mathematics are embedded in an 

individual, within a classroom and even a cultural group to improve 

mathematics learning, such study is needed. 

This paper reports on the part of a study in The Third Wave Project. The Third 

Wave Project is carried out by a consortium of research teams that concern the 

influence of values and valuing on mathematics learning. This current study, 

named ‘What I Find Important (in my mathematics learning)’ (WIFI), aims to 

investigate what primary school and secondary school students value regarding 

mathematics learning. The WIFI questionnaire has been translated into different 

languages so that the student participants in the 19 economies could respond to 

the items within their respective medium of instruction.  

In Japan, Shinno, Kinone and Baba (2014) reported that data from 605 primary 

school students and 711 junior secondary students had valued different 

attributes in learning mathematics. Japanese primary students tended to value 

process, effort, exploration, fact, openness and progress more than secondary 

school students. Zhang (2019) has found a similar result in the Chinese 

Mainland data, whereby different grades had valued different attributes. 

Besides, there was a gender difference reported in several value attributes 

(Zhang, 2019). Those findings suggest that students’ value might change over 

time.  

Moreover, boys and girls can value different attributes in mathematics learning 

which require different teaching approaches. Furthermore, from the literature 

(e.g., Seah, 2018; Shinno et al., 2014; Zhang, 2019; Zhang et al., 2015), 

students value different value attributes even within the East Asian culture.  
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How will the situation be in the context of a multicultural classroom as value is 

culturally dependent? 

The current study explored students' value in mathematics learning in three 

(Malaysia, Singapore, and Thailand) out of 11 countries in Southeast Asia. 

Furthermore, International Mathematical Union (2013) reported many 

countries in Southeast Asia (e.g. Cambodia, Indonesia and Laos) face 

challenges in improving students’ mathematics learning. Hence, more research 

about values in mathematics education is needed in Southeast Asia. Value 

researches in Malaysia focused on the primary school level, such as value 

espoused and enacted in the primary school mathematics lesson (Lim & Kor, 

2012) and Chinese primary school students’ values in mathematics learning 

(Kor, Lim & Tan, 2010). Additionally, Ong (2014) analysed WIFI study data of 

383 Malaysian Grade 5 students and reported differences in attributes of 

learning mathematics valued by different gender and different ethnics groups. 

There is a gap in what Malaysian secondary school student might value in 

mathematics learning. Therefore, this research explores what Malaysian 

secondary school students have valued as important in learning mathematics. 

The following research questions guided this paper:  

a) What Malaysian secondary students valued in mathematics learning in 

general? 

b) Do Malaysian secondary students from different ethnicities value 

mathematics learning differently? 

c) Is there any gender difference in Malaysian secondary students’ values in 

mathematics learning? 

METHODOLOGY 

Respondents 

In this paper, the result from 380 secondary students (Grade 9 and Grade 10) is 

shown in Table 1. The data was collected randomly from public schools in 

Northern Peninsular Malaysia through personal contact. The sampling was 

convenient sampling without any specific selection of criteria. 

Gender Ethnicity N Percentage 

 Chinese Indian Malay Other  (%) 

Male 107 26 75 5 216 56.84 

Female 73 24 69 1 167 43.16 

Total 180 50 144 6 380 100 

Table 1: The participants of the study according to gender and ethnicity. 

Data Collection 

Data were collected using the WIFI questionnaire developed and validated by 

the WIFI study team (Seah, 2013). In the Malaysian context, the original 
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English items were translated into Chinese and Malay to facilitate the students’ 

response to the questions. It was a four-section questionnaire, whereby Section 

A consisted of 64 items with a rating of 5-point Likert scale, Section B 

comprised 10 items of the slider rating scale, Section C contained four items of 

open-ended question and Section D was pupils’ personal information items. In 

this paper, our analysis focused on Section B, whereby the students were 

required to choose by marking "x” at any one of the five positions in between 

two values given. For instance, when given the description “How the answer to 

a problem is obtained” (on the left) versus the description “What the answer to a 

problem is” (on the right) on a horizontal line respectively, the students were 

asked to mark their preference accordingly.   

Data Analysis 

In this paper, data were analysed using One-way ANOVA to analyse the 

statistical differences in students’ responses of different ethnicity and the 

independent t-test to analyse the statistical differences in students’ responses of 

different genders. The scores were assigned from one to five from left to right 

according to the five positions on the horizontal line. The lower the mean of the 

item, the more tendency towards the description on the left and vice versa.  

FINDINGS 

Malaysian secondary students’ values in mathematics learning 

The findings show that overall Malaysian secondary students tended to value 

the process of getting an answer (process) more than the end product for a 

problem (product), as shown in Table 2. They emphasised that having fun when 

doing and learning mathematics (fun) more than hard work. However, whether 

doing mathematics required abilities or effort, students tended to select effort. 

Furthermore, students tended to value using a mathematical formula to obtain 

the answer (rationalism) rather than applying mathematical concepts in 

problem-solving (objectism). They believed mathematical ideas and practice in 

daily life (idea & practice) were more important than discovering mathematics 

facts and theories (facts & theories).   

Moreover, the students preferred to learn mathematics by someone with direct 

teaching, explaining or telling them the concept (exposition) rather than 

exploring the mathematics by themselves, with their peers/others (exploration). 

Yet, they tended to value exploration with a concrete example given more than 

someone telling them. Besides, students tended to value remembering 

mathematics ideas, concepts, rules or formulae (recalling) than creating. The 

students had also chosen to demonstrate or prove the concept to others 

(openness) over to keep mathematics mystical (mystery). They believed that 

mathematics’ purpose should be more relevant in development or progression 

(process) than predicting or explaining certain events (control). 
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Malaysian secondary students’ values in mathematics learning according to 

ethnicity 

Items Total Chinese Indian Malay Other F η2 

 Mea

n 

SD Mea

n 

SD Mea

n 

SD Mea

n 

SD Mea

n 

SD   

66. 

Process 

versus 

product 

2.64 1.02

4 

2.38 1.14

1 

2.98 1.07

0 

2.81 .808 2.83 .408 9.545*** 0.05 

67. Fun 

versus 

hard work 

2.97 1.24

1 

2.65 1.273 2.94 1.345 3.35 1.08

4 
2.83 .408 11.742**

* 
0.07 

68. Ability 

versus 

effort 

3.47 1.23

9 

3.24 1.264 3.61 1.255 3.72 1.15

1 
2.83 1.32

9 
4.886*** 0.04 

69. 

Objectism 

versus 

rationalis

m 

3.03 1.09

4 

2.87 1.142 3.00 1.021 3.21 1.04

3 
3.17 .983 2.691** 0.02 

70. Facts& 

theories 

versus 

ideas& 

practice 

3.08 1.10

1 

3.12 1.102 3.33 1.107 2.96 1.08

4 
3.17 1.32

9 
1.492 0.01 

71. 

Exposition 

versus 

exploratio

n 

2.64 1.15

8 

2.59 1.293 2.86 1.000 2.65 1.03

3 
2.00 1.09

5 
1.462 0.01 

72. 

Recalling 

versus 

creating 

2.45 1.15

1 

2.45 1.196 2.55 1.081 2.43 1.14

1 
2.50 .837 .142 0.00

1 

73. 

Exposition 

versus 

exploratio

n 

3.35 1.18

9 

3.34 1.210 3.29 1.155 3.40 1.19

1 
3.17 .983 .197 0.00

2 

74. 

Openness 

versus 

mystery 

2.52 1.13

8 

2.53 1.121 2.69 1.294 2.42 1.09

8 
3.00 1.26

5 
1.102 0.01 

75. 

Control 

versus 

process 

3.20 1.00

0 

3.11 .927 3.37 1.035 3.28 1.05

8 
2.67 1.03

3 
1.697 0.01 

Note: p<0.001***, p<0.05**, SD= standard deviation 

Table 2: The participants’ responses to section B according to ethnicity 

As we take a closer look into different ethnicities, for item 66, the ANOVA 

result was significant, F (3, 170.310) = 9.545, p<0.001, η2 = 0.05, suggesting 

Chinese students tended to value the process more than their peers. The results 

for item 67, F (3, 170.522) = 11.742, p<0.001, η2 = 0.07 and item 68, F (3, 
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372) = 4.886, p=0.002, η2 = 0.04 imply that there are significant differences 

among the means of the four groups for the two items respectively. The results 

suggest that Malay students believed the effort was more important in learning 

mathematics than their peers. In item 69, F (3, 372) = 2.691, p=0.046, η2 = 

0.02, suggesting Chinese students emphasised application more than other 

ethnic groups students.  

Malaysian secondary students’ values in mathematics learning according to 

gender 

Further analysis in the secondary students’ population revealed a significant 

difference in the mean score of two value attributes, as shown in Table 3. One 

of the attributes was item 69, t (382) = -2.32, p=0.021, 95% CI [-0.48, -0.04]. 

This implies the girls (M=3.16, SD= 1.048) preferred to use a certain formula to 

find the answer more than the boys (M= 2.90. SD= 1.104). While another 

attribute is item 74, t (381) = 2.79, p= 0.006, 95% CI [0.10,0.55]. This suggests 

that the girls (M=2.33, SD=1.171) tended to value openness in learning 

mathematics as compared to the boys (M=2.65, SD=1.091).  

Items Male Female t-test 

 Mean SD Mean SD  

66. Process versus product 2.63 .962 2.66 1.107 -.289 

67. Fun versus hard work 2.93 1.134 2.91 1.362 .139 

68. Ability versus effort 3.43 1.204 3.53 1.271 -.788 

69. Objectism versus rationalism 2.90 1.104 3.16 1.048 -2.319* 

70. Facts& theories versus ideas& 

practice 

3.04 1.079 3.18 1.134 -1.228 

71. Exposition versus exploration 2.66 1.197 2.59 1.088 .593 

72. Recalling versus creating 2.54 1.176 2.40 1.146 1.109 

73. Exposition versus exploration 3.27 1.114 3.45 1.269 -1.425 

74. Openness versus mystery 2.65 1.091 2.33 1.171 2.788* 

75. Control versus process 3.12 1.030 3.32 .928 -1.944 

Note: p<0.05*, SD= standard deviation 

Table 3: Secondary students’ responses for section B according to gender. 

DISCUSSIONS AND CONCLUSION 

The results show that overall, Malaysian secondary students tended to value the 

attributes of process, fun, effort, rationalism, ideas and practice, exposition, 

recalling, openness over the respective opposing dimensions product, hard 

work, ability, objectism, facts and theories, exploration, creating and mystery. 

In addition, there are several values attributes that students from different ethnic 

groups value differently. A similar result is reported by Ong (2014), whereby 

Chinese and Malay primary students had valued different values attributes. 

According to Lim (2003), this can be related to their previous learning 

experience in primary schools whereby different medium schools applied 

different cultural practices or parents’ influence from the family.  
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In terms of gender difference, the result suggests that Malaysian secondary 

school boys and girls valued almost the same value attributes in learning 

mathematics except that girls tended to value rationalism and openness more 

than boys. The finding is consistent with both studies conducted by Zhang 

(2019) and Ong (2014), whereby boys and girls valued certain value attributes 

differently. 

One of the limitations of this study is the representation of the data. Due to the 

randomly convenient sampling, the ethnicity proportion was slightly different 

from the actual population in Malaysia. The proportion of Malay students was 

38% in the sample, which is less than the actual population cap at 60%. 

However, this exploratory study still provides a glimpse of what Malaysian 

students valued in mathematics learning. More data will be collected in the 

future to better represent the Malaysian secondary students' population. 

In conclusion, the preliminary analysis has provided evidence that different 

ethnic groups value different values attributes in mathematics learning. 

Furthermore, such a study helps the teacher promote effective mathematics 

teaching and learning in a multicultural classroom. Teachers can structure their 

teaching to align with students’ value in mathematics learning to facilitate their 

learning process. Future study is needed to investigate factors that influence 

students’ values in mathematics learning, so that students’ learning can be 

understood and facilitated more effective. 
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CONCEPTS IN ACTION: MULTIPLICATION AS SPREAD 
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In this research report, we work with the novel, multitouch app TouchTimes, 

which was designed to develop multiplicative thinking in young learners 

through gesture-based interactions. One aspect of multiplication highlighted in 

this app is its functional, one-to-many relation, which several researchers have 

identified as key to developing multiplicative thinking. In this study, we use 

Balacheff’s cK¢ model, which highlights the action/feedback control structure 

to describe how this relation is instantiated in children’s use of TouchTimes. 

Through an analysis of a pair of 9-year-olds, we show how this relation evolved 

into a concept, which we call multiplication-as-spread.   

INTRODUCTION 

Typically, children’s first encounters with multiplication in North America is in 

terms of repeated addition. The use of this model often persists throughout 

grades 3 and 4. While it may be an intuitive way of introducing multiplication, 

it becomes problematic as it encourages continued use of additive thinking. 

There exist several other models which can support a more robust conception of 

multiplication. In this study, we focus on the model of the one-to-many relation 

articulated by Confrey (1994), which she calls ‘splitting’, and which involves 

“… an action of creating simultaneously multiple versions of an original” (p. 

292). Splitting can be visualized using a tree diagram, which highlights the one-

to-many relation that simultaneously produces copies of the original. The 

centrality of this relation is also highlighted by Askew (2018) and Davydov 

(1992). 

We will be presenting a touchscreen application TouchTimes (TT; Jackiw & 

Sinclair, 2019) that aims to provide students with an experience of 

multiplication that uses this one-to-many model. This is done through the 

gestural expression of multiplication, which involves a dynamic, visual and 

simultaneous production, rather than the sequential one typical of repeated 

addition. Using Balacheff’s cK¢ model, which is a re-articulation of Vergnaud’s 

(1990) notion of ‘concept in action’, that emphasises the essential feature of 

control as an essential aspect of the concept, we study the emergence of the one-

to-many multiplicative relation both in the gestural interaction and then as an 

articulated concept. 
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BRIEF DESCRIPTION OF TOUCHTIMES 

The initial screen of TT has a vertical line down the middle which creates two 

sides (Figure 1a). When one side is touched with a finger, or a group of fingers, 

discs will appear in a one-to-one correspondence with each finger. These discs 

are called pips and represent the multiplicand, or unit, that will be multiplied. 

Each pip will be a different colour. When the other side is touched with a single 

or group of fingers, each configuration (called a ‘pod’) of the multiplicand side 

(the side that was touched first), both in terms of position and colour, will 

appear in a one-to-one correspondence with each finger. Each pod will be 

identical to the finger configuration on the pip side. If three fingers touch the 

left side in a triangle-like pattern, three pips will appear under each finger and 

each of the three pips will be a different colour (Figure 1b). When the other side 

is touched, the triangular pattern of the multi-coloured pips will be copied under 

each finger in pod-groupings (Figure 2c). If another finger is placed on the pip 

side, each pod on the other side will grow, in a simultaneous copy—this 

effectively performs the one-to-many relation. When a pip-finger is lifted, the 

inverse occurs: each pod decreases in size. Fingers can be added to the pod side 

to make new pods. Similarly, a pod can be dragged to the trash. Whenever pips 

and pods are created on the screen, a multiplication statement appears on the top 

of the screen (Figure 1c).  

   

Figure 1: (a) Initial screen of TT; (b) Creating 3 pips; (c) Creating 4 pods 

THEORETICAL FRAMING  

Concepts in action as described by Vergnaud (1990) are actions made that are 

correct and conceptually coherent, even though students may not be able to 

explicitly articulate this. As Vergnaud writes, “We take up information with the 

help of invariants (categories, relationships, and higher-level entities), without 

expressing or even being able to express these invariants. This is especially 

visible in students' mathematical behavior, as they often choose the right thing 

to do without being able to mention the reasons for it” (p. 20). Concepts in 

action stem from Vergnaud’s theory of conceptual fields in which multi-faceted 

concepts (like multiplication) are not unified by one overall mathematical idea 

but involve multiple conceptual experiences. In our case, we are interested in 

the one-to-many conceptual experience that we hypothesise TT can provide. 

Vergnaud’s concepts in action directs the researcher’s attention to the behaviour 

of students—to their choices, their actions and their language—which is then 

used to make inferences about their concepts in action. In articulating 
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Vergnaud’s ideas further, Balacheff’s (2017) cK¢ model of conceptualization 

draws attention to the action/feedback loop as an essential component of a 

concept in action. Balacheff argues that choices made by a subject based on 

feedback represent a necessary “control structure” (p. 9) that is a fundamental 

part of the concept. In the case of studying TT, in which gestures are a 

significant form of action, and in which the visual presentation of pips and pods 

provides important and immediate feedback on these actions, our analysis of 

behaviour will involve looking closely at the various hand movements made by 

the students on the screen, and taking these particular movements as mattering 

to students’ developing conceptualisations, as per the tenets of theories of 

embodiment (c.f., Arzarello, Bairral & Danè, 2014; Sinclair & de Freitas, 2014). 

The research objective is to document the transformation of the concept in 

action developed in TT into an explicitly articulated concept. 

METHODS 

The study took place in an elementary school in western Canada. We conducted 

teaching experiments aimed to gain insight into the multiplicative thinking that 

might emerge from interactions with TT. For this paper, we have selected one 

episode that involves two grade 3 girls (9 years old), who had begun to study 

multiplication (as repeated addition). The girls were working on the following 

task in TT: skip-count by 3s in two different ways. One method involves 

changing the number of pods; the other involves changing the number of pips. 

The students worked in pairs and many of them were video recorded by two 

researchers who circulated in the classroom from pair to pair. We have chosen 

this particular pair for analysis because the shift from a concept in action to the 

concept of the one-to-many multiplicative relation occurred during a single 

video clip (for most other pairs, we only captured the concept in action or the 

explanation). In our analysis, we draw on Vergnaud’s (1990) method, which is: 

to precisely describe the behaviour of the student; to identify the invariant 

properties of the situation; and, to trace the development and transformation of 

language and symbolic activity to highlight the way in which the student can 

explicitly describe the concept. 

FINDINGS 

The two girls, whom we will refer to as Jen and Jessica, were working together 

on the floor with one iPad that rested at an angle on Jen’s lap. Jessica did not 

say anything during the entire episode but did touch the screen. In the video 

clip, the researcher asked the girls to show her what they had figured out about 

skip counting by 3s and Jen proceeded to place three pip-making fingers on the 

left side of the screen and then iteratively placed one pod-finger on the right. 

The researcher asked, “Did you have another way?”, to which Jen responded 

“No, we couldn’t figure out a second way yet” (0.26s). The researcher 

suggested they keep trying. Jessica started to touch the screen, she made four 
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pips and touched sequentially on the pod side to make 6 pods (effectively skip-

counting by 4s).  

 Voice Hands iPad 

0:56 Jen. If we do 4, 

that’s counting up 

by 4s. 

Jessica makes four pips and six pods.  

 

0:58  

  

Jessica lifts her index, left pip-making 

finger. (The expression goes from 4 x 6 to 3 

x 6; the pods go from having four to three 

pips in them.)  
 

1:00  

 

 

Jessica lifts her middle finger. (The 

expression goes from 3 x 6 to 2 x 6; the pods 

go from having three to two pips in them.)  

 

1:01  

 

Jessica lifts her third finger. (The expression 

goes from 2 x 6 to 1 x 6; the pods go from 

having two pips to one pip in them.)  

Jessica lifted all her fingers.  

Table 1: A one-to-many concept in action. 

 

When Jessica made 4 pips and 6 pods, she did not seem to know how this would 

enable her to skip-count by 3s. She then lifted each individual pip-making 

finger to go from 4x6 to 3x6 to 2x6 to 1x6 to 0x6. Each lift of her finger was 

almost exactly 2 seconds. She was very intentional in her actions, which may 

suggest that she was becoming aware of the effect of this finger lifting on the 6 

pods (the product would have decreased by 6 at each lift and each of the 6 pods 

would have become smaller and changed configuration at each lifting of a pip). 

We thus hypothesise that Jessica was starting to develop a concept in action—

lifting the pip-making finger one by one—that could be used in the skip-

counting task, and that effectively instantiated one-to-many relation. We see this 

as an example of action/feedback described by Balacheff, whereby Jessica is 

continuing the same action of lifting her finger based on the feedback from TT. 

The girls continued to make different combinations of pips and pods, and to 

experiment with pip-making and pip-lifting. Then, at 2:45, Jen has four pips and 

one pod on the screen. 
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2:45 Jen. That’s 4 but 

when I add another 

one. 

Jen touches on the pod side to create another 

pod to make 4x2. 

 

2:49 Jen. Oh wait. Jen lifts her index pip-making finger on the 

left side, thereby getting 3 x 2. (The number 

of pips in the pod goes from 4 to 3.)  

 

2:53 Jen. This. Jen touches her index pip-making finger on 

the left side, thereby getting 4 x 2 again. She 

points at her pip-making finger with her 

right hand. 

 

2:56

- 

3:03 

Jen. Then that. 

R. How much is it 

going up by now? 

Jen. It will… it 

went up by 2. 

Jen places another pip-finger on the left side. 

She continues to point with her right hand at 

her pip making fingers. 

  

3:07 Jen. Ya, it’s going 

up by 2s. 

Jen places one more pip-making finger on 

the left side after which Jessica adds a pip 

making finger on the left side. 

 

Table 2: The spreading effect in TT. 

 

At 2:49 when Jen said, “Oh wait” she paused. Then she lifted her index pip-

making finger. Over the course of the next 14 seconds, she made three pips and 

Jessica made one pip to produce 7 x 2 = 14. Jen stated at the end that the 

product was going up by 2. Although the relationship had not been fully 

articulated, the concept in action of spreading was emerging, as the girls became 

aware that each touch on the pip side was increasing each of the pods. Jen 

seemed to be “picking up” on the co-varying relation of the pips and pods. At 

3:24 the girls successfully skip-counted by 3s by making three pods and then 

iteratively adding pips up to 5 x 3 = 15. At 4:00, the researcher asked, “So how 

is it doing that? How is it making it go up by three now?” 
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 Voice Hands iPad 

4:00 Jen. Because 

there’s three here. 

 

Jen gestures to the pods on the screen. 

 

4:05 Jen. And then each 

time that we add 

one up it goes here.  

Jessica places a pip-making finger on the 

screen.  Jen places two more pip-making 

fingers on the screen. 

Jen points to the top pod. 
 

4:11 R. So if you add a 

finger, oh, that’s a 

purple one. 

Jessica places another pip-making finger 

on the screen. 

 

4:12 What happened to 

those purple ones? 

Jessica lifts the pip-making finger. 

 

4:19 R. Oh now it’s 

yellow. 

Jen. Um, a yellow 

one drops in there. 

Jessica places her pip-making finger on the 

screen. Jen places two more pip-making 

fingers on the screen. 

 

4:21 R. Does it just drop 

in there? 

R. points at the top pod.  

 

4:25 Jen. Ya. [Pauses] 

…in every single 

one. 

Jen points at all the pods in turn, starting 

with the lower left one, moving to the 

lower right pod, and then the top pod, as if 

spreading her hand to each pod. 
 

4:27 Jen. And say if we 

take away this one. 

Without being prompted, Jen points at her 

own thumb which holds a yellow pip. 

 

4:28 Jen. Then that 

colour would 

disappear. 

Jen lifts her thumb, points to the top pod 

and moves her hand towards the bottom of 

the screen. She then moves her hand in a 

circular motion, spreading her fingers  to 

each pod.   
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Table 3: Jen and Jessica skip-counting by changing the number of pips 

When Jessica placed her pip-making finger on the screen, the concept in action 

of one-to-many was in play, where each pip addition made the product increase 

by three [4:05-4:19]. The researcher drew attention to this change when she 

said, “That’s a purple one…Oh now it’s yellow”. In response to the researcher’s 

question about the yellow pip, Jen explicitly articulated, by saying “every single 

one” and the gesture of pointing to the top pod and the spreading gesture, the 

relation between the change in pips and the ensuing change in each of the pods, 

which is the one-to-many relation (“dropping” one pip will change many pods).  

At 4:51, the researcher asked, “How do you think you’ll make it do it by 

fours?”. Jen immediately tapped four times on the pod side. There were 9 pips 

on the screen, producing 9 x 4 = 36. Jen said, “and we add one, that’s 40 so…”. 

She placed another pip-finger on the screen, then counted on her fingers from 

36 to 40, and said, “That’s by fours” and again gestured around to all the pods.  

DISCUSSION AND CONCLUSION 

The effect of seeing the pod change as Jen and Jessica touched and lifted their 

pip-making fingers, going from 4 to 3 and back up to 6, seemed to draw the 

girls’ attention to the relation between pips and pods and also encouraged them 

to repeat through their now developed control structure a particular gesture that 

required the coordination of two quantities—the pips on one side, changing, and 

the pods on the other, staying the same. Instead of remaining within the additive 

framework of repeated addition (sequentially adding one more pod, thereby 

focusing on just one quantity), the girls were expressing multiplication as a 

coordination of quantities. Once they had changed the number of pips, they 

could use this action again, with more pods; and this allowed them to see the 

simultaneous change in all pods that occurred when the number of pips 

changed. They had figured out how to count by 3s in a new way. Since this 

appeared to be a difficult task for all of the pairs in the classroom, we infer that 

it involves a new awareness both about how TT works, but also about the 

multiplicative relation. 

In our analysis, we have shown the development of a concept in action, which 

was in response to the task of skip-counting by 3s, and which involved making 

three pods and then iteratively adding pips. We then showed how the 

researcher’s prompt occasioned an explicit articulation of this concept in action. 

The girls were then able to count by 4s—and it was perhaps the articulation of 

the concept in action that made this not only possible, but seemingly effortless. 

But more importantly, in terms of their multiplicative thinking, the girls 

experienced a particular aspect of multiplication, which is its one-to-many 

relation, which is instantiated in TT when a change in the number of pips (the 

unit) leads to a change in each and every one of the pods. Connecting back with 

Balacheff’s model of conceptualisation, we see that the girls have developed a 
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control structure in this setting with TT contributing and being a part of the 

knowledge they now have of multiplication-as-spread.  
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WHERE TO PUT THE DECIMAL POINT? NOTICING 

OPPORTUNITIES TO LEARN THROUGH TYPICAL 

PROBLEMS 
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It is challenging to design and structure lessons to maximize high-quality 

opportunities to learn mathematics in the classrooms. This paper presents a 

case study of Mary, a beginning mathematics teacher in Singapore, to illustrate 

how she noticed opportunities to learn during the planning and enacting of a 

lesson on decimal fractions for Primary 4 students. The case highlights the 

importance of noticing affordances of typical problems and opportunities to 

orchestrate productive discussions to provide quality opportunities to learn.  

INTRODUCTION 

All students should have access to high-quality mathematics curricular, 

effective teaching and learning, high expectations, and the support and 

resources needed to maximize their learning potential. To enhance students’ 

learning experiences, teachers need to provide their students opportunities to 

learn from mathematically meaningful tasks. The notion of opportunities to 

learn was defined as the “amount of time allowed for learning” (Carroll, 1989, 

p. 26) and its conceptualization has broadened over the years. For example, Liu 

(2009) positions opportunity to learn as an “entitlement of every student to 

receive the necessary classroom, school and family resources and practices to 

reach the expected competence” (p. v). Although this entitlement has often been 

measured in terms of the amount of time (Carroll, 1989) given for a program, or 

the number of tasks with certain characteristics in a textbook (Wijaya, van den 

Heuvel-Panhuizen, & Doorman, 2015), Carroll (1989) highlighted that it is 

what happens during lessons that matters most.  

With the aim of broadening the notion of opportunity to learn to examine other 

features of mathematics instruction, such as task implementation during lessons, 

Walkowiak, Pinter, and Berry (2017) re-conceptualized opportunity to learn in 

terms of teachers’ mathematical knowledge for teaching, time utilization, 

mathematical tasks, and mathematical talk. This conceptualization puts teachers 

as the main orchestrator in the lesson to provide students these opportunities to 

learn. More specifically, Walkowiak et al. (2017) positioned teachers’ 

mathematical knowledge for teaching (Ball, Thames, & Phelps, 2008) as a 

critical factor in relation to how teachers optimize time use during the lesson 

(Gettinger, 1989), how they design, select, and implements tasks (Mason & 
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Johnston-Wilder, 2006), and how teachers orchestrate discussions (Smith & 

Stein, 2011). This paper examines how Mary (pseudonym), a primary school 

mathematics teacher in Singapore, provided her Primary 4 students quality 

opportunities to learn mathematics by orchestrating the time, task, and talk for a 

lesson on decimal fractions. 

Orchestrating Time, Task, and Talk 

Although time allocated to teaching mathematics is important, Walkowiak et al. 

(2017) went beyond the number of minutes and investigated the amount of time 

spent in relation to the mathematical goal of the lesson. In particular, they 

examined whether teachers use “the majority of time in the lesson to reach the 

mathematical goal” and whether the lesson components are structured to “build 

on each other with explicit attention to the mathematical goal” (p. 12). This 

consideration is important for many classrooms because of the time constraints 

faced by teachers, especially in examination-driven education systems such as 

Singapore. In addition, many researchers suggest that it is crucial for students to 

have discussions around mathematically rich tasks as part of their learning 

experiences (Grootenboer, 2009; Smith & Stein, 2011). However, these tasks 

are usually time-consuming and pedagogically challenging to use in the 

classrooms. This raises the challenge of how teachers can optimize students’ 

opportunities to learn through mathematically meaningful tasks when given 

limited curriculum time. To this end, Choy and Dindyal (2018) highlighted how 

typical problems—standard examination or textbook-type questions—can be 

used to promote productive talk between students and teachers. While 

acknowledging the importance of using rich tasks, Choy and Dindyal (2018) not 

only suggested the possibility of using typical problems to orchestrate 

discussions, but also proposed how teachers can make connections between 

different representations of mathematics, which reflect a connectionist approach 

to teaching mathematics (Askew, Rhodes, Brown, Wiliam, & Johnson, 1997). 

The Role of Teacher Noticing 

Mathematics teachers, who use a connectionist approach to teaching 

mathematics, can notice and exploit the mathematical possibilities of 

instructional materials for different profile of students (Askew et al., 1997). 

Adopting a connectionist approach to teaching requires teachers to develop a 

keen awareness of the mathematical connections afforded by the tasks and use 

these connections to design opportunities to learn through orchestrating time, 

task, and talk during lessons. A key component of teaching expertise that 

enables teachers to do this ambitious work is mathematics teacher noticing, 

which  refers to what teachers attend to and how they interpret their 

observations to make instructional decisions during lessons (Mason, 2002; 

Sherin, Jacobs, & Philipp, 2011). Most of the earlier studies on teacher noticing 

were centered about the use of video recordings of teaching episodes but Choy 
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(2016) brought task design into the realm of teacher noticing. His findings 

suggested that an explicit focus for noticing is useful, and an emphasis on 

pedagogical reasoning can increase the likelihood of teachers making 

instructional decisions that promote students’ reasoning. In this paper, 

researcher extends and applies the notion of productive noticing (Choy, 2016) to 

examine what and how Mary noticed about the opportunities to learn during a 

lesson on decimal fractions. Vignettes of how Mary planned and implemented 

the lesson will be discussed in relation to the time, task, and talk during the 

lesson. 

METHOD 

The data reported in this paper were collected as part of a larger exploratory 

study on building a culture of collaboration and listening pedagogy in 

classrooms through Lesson Study for Learning Community in Singapore. The 

study involved a Lesson Study team comprising of 10 mathematics teachers in 

Quayside Primary School (pseudonym), a government-funded school. The 

vignettes feature Mary, a beginning teacher who had only six months of 

teaching experience at the time of this study. Although newly trained, Mary has 

a strong foundation in mathematics as she had studied mathematics as a 

university major. Data for this paper were generated through the voice and 

video recordings of the lesson, and the lesson plan designed by Mary with 

support from her colleagues. A thematic analysis approach (Braun & Clarke, 

2006) was adopted for this study. Viewing the lesson plan as an instantiation of 

her thinking about the opportunities to learn, findings were developed through 

identifying aspects of the time utilization, tasks, and planned talk moves that 

provided opportunities for students to do mathematics. For the lesson, 

researcher analyzed the video and voice recordings by identifying segments, 

which corresponded to Smith and Stein’s (2011) five practices for productive 

discussions, and highlighted aspects of the time, task, and talk that presented 

opportunities for students to learn.  

NOTICING, DESIGNING, AND ORCHESTRATING OPPORTUNITIES 

TO LEARN 

In this section, researcher first presented an analysis of Mary’s lesson plan on 

Decimals for a Primary 4 class before researcher discussed her actual lesson 

implementation. Her students had previously learned about decimals and 

fractions, including the addition of decimals. The lesson of interest (an hour in 

duration) focused on developing students’ relational understanding (Skemp, 

1978) of multiplication of decimals with a whole a number. Up to this point, 

students had not learned how to do multiplication involving decimals. It is also 

important to note that the Singapore Mathematics Curriculum only covers 

multiplication and division of decimals by 10, 100, and 1000 in Grade 5. Mary 

started the lesson by recapping the idea of multiplication as repeated addition 
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before she set them the task of the day, which was to find the answer to 0.8 × 4 

and orchestrated a lesson around the different solution methods developed by 

the students, both individually and as a group. The episode reported here started 

when a student asked a seemingly trivial question: How will you know where to 

put the decimal point?  In the following discussion, researcher uses three of the 

four key dimensions of opportunities to learn—time, task, and talk—as 

developed by Walkowiak et al. (2017) to highlight what Mary might have 

noticed about the opportunities to learn for her students.  

Designing Opportunities to Learn during Lesson Planning 

In terms of time utilization, Mary and her colleagues planned 45 minutes (out of 

55 minutes) of lesson time for students to work on two related forms of the 

question, 0.8 × 4: (a) Solve 0.8 × 4, and (b) How many ways can you think of to 

solve 0.8 × 4? Referring to Table 1, we see that Mary planned to spend most of 

the time in the lesson to reach the mathematical goal. The students first worked 

on the problem 0.8 × 4 on their own (10 minutes). This was followed by 

students working in groups on developing multiple solutions to the same 

question (How many ways can you think of to solve 0.8 × 4?). Moreover, Mary 

planned to have the students discuss the different solutions during the whole 

class discussion so that she could draw their attention to the linkages between 

the various solutions and the standard multiplication algorithm (See Figure 1). 

Hence, the time was structured so that the tasks built on each other, paying 

attention to the goal of understanding the idea behind the multiplication 

algorithm.  

Components of Lesson Time planned (min) Actual time used (min) 

Introduction 5 3 

Understanding the Problem 

and Individual Work 

10 7 

Group work 15 15 

Whole Class Discussion 20 25 

Closure of lesson 5 5 

Table 1: Planned and actual time utilization.  

Next, the task “How many ways can you think of to solve 0.8 × 4?” was a 

modification of simply “Solve 0.8 × 4”, which opened up the solution space of a 

typical problem (Choy & Dindyal, 2018). Although this will not be categorized 

as a rich task, the design of Mary’s task provided students opportunities to use 

and translate among two or more representations so that they could make sense 

of the mathematics. In addition, Mary’s use of the typical problem highlighted 

that she was cognizant of how the question could support students in making 

connections between their prior knowledge and the new content. Therefore, 
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Mary and her colleagues demonstrated a keen awareness of the affordances of 

such typical problems beyond their usual usage (Choy & Dindyal, 2018).  

More importantly, Mary did not plan to use the typical problem by simply 

explaining the procedure. Instead, as seen in Figure 1, she planned for students 

to explain their thinking and this could potentially allow students to move 

towards a better understanding of the multiplication algorithm. A closer 

examination of the lesson plan also reveals some planned talk moves similar to 

those proposed by Smith and Stein (2011). For example, she anticipated 

students’ different responses to the question and planned for the sequencing of 

sharing by different students (See Figure 1). This corresponded to Smith and 

Stein’s (2011) practices of anticipating, selecting, and sequencing.  

As seen from Table 1 and Figure 1, Mary noticed the affordances of using a 

typical problem and modified the problem to open its solution space (Choy & 

Dindyal, 2018). Her planned use of time and planned talk moves around typical 

problem also provided students opportunities to learn about the multiplication of 

decimals, with a strong focus on mathematical reasoning.  

 

 

Figure 1: Snapshot of Mary’s lesson plan 

Orchestrating Opportunities to Learn during Lesson  

Mary also orchestrated several opportunities, as planned, for students to learn 

during lesson. While Mary circulated the classroom, she took notice of the 

strategies used by the different groups of students. Mary’s attention to students’ 
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strategies was demonstrated when she called upon different students to present 

their solutions according to the sequence planned as indicated in Figure 1. More 

importantly, Mary pressed the students for their explanation beyond giving the 

correct answers:  

1  S1: So, first, we have four 0.8s, and after that we added all up, like 0.8 

plus 0.8, then we get the answer then we plus 0.8 again then plus 0.8 

again. Then…I thought that it will be easier if the number is smaller. 

But if the number is bigger, I think, then the multiplication method 

is easier? 

2 Mary:  Okay, so they [referring to the group of students including S1] did 

not choose this strategy as the most efficient one, but I ask them to 

present this strategy. Can anyone tell me why they did not choose 

this one as opposed to this one? S1 actually mentioned it, how about 

S2? 

3 S2:  Because is, when you get other bigger number, it will be hard for 

you to … 

As with the above exchange, Mary continued to press her students to explain 

their solutions to make their thinking visible to the other students throughout the 

lesson. This was so even for unanticipated responses from her students:  

22 S3:  … First, you need to kick the decimal place away because you do 
not need it. And then you need to, er…, you need the time to, 
convert both the numbers you are multiplying into whole numbers 
and then you get the answer. And then you, you pick the decimal 
point, in between the tenth place and the ones place of your answer. 
And we chose this as the most efficient one because it takes only 2 
steps… 

23 Mary:  Is that all? Okay, any questions for S3’s method? S4? 

24 S4:  But the multiplication number reaches up to like a zillion, where 
will you know how to put the decimal point? 

25 S3:  Just put it between the tenth place and the ones place, and you are 
done. 

26 S4:  But how do you know which one [cross talk]? 

27 S3:  Yes, I checked it already.   

28 S5:  How do you know which number is in the tenth place?   

29 S3:  Because I checked just now.   

30 Mary:  How did you check? How did you know?   

Here, S4’s question at Line 24 was unanticipated. Instead of brushing aside the 

question, Mary stepped back and allowed students (S3, S4, and S5) to discuss 

S4’s question. By doing so, Mary brought the question to the center of the 

whole-class discussion and these students’ arguments were made available to all 

students, for them to think about and evaluate the validity of the points made: 
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31 S3:  I put a big number times a big number and I tried it, and yes, it 
works. 

32 Mary:  So, it is always between the tenth and the ones place? Anyone 
disagrees? 

As seen from Mary’s response, she was comfortable in letting her students 

engage in a mathematical argument. The exchanges went on for several more 

turns before Mary tried to connect these responses: 

55 Mary:  … Let’s look at S3’s method, he started with 8 times 4, 32. How 
many ways can we actually put the decimal point. How many ways, 
S8? 

56 S8:  Er… you can put the decimal point in front of 2? 

57 Mary:  In front of 2, in between 3 and 2? So, we can have 3.2. what else can 
we have? 

58 S8:  0.32 

59 Mary:  0.32. We can put it in front of the 2 numbers, we can have 0.32,32.0, 
and anymore? 

60 S9:  0.032 

61 Mary:  0.032. So, you see we can have many ways to place the decimal 
point, but why are we so sure that this is the final answer, that this is 
the correct answer? …Yes, S10? 

62 S10:  You could put it in between, because it’s a, you know because 0.8 
times 4, and then 8 is in the tenth place, so that 4 is actually the ones 
place, so it is like… since there is already a ones place that you need 
to multiply by, which is 4, it can’t be a zero 

  … [After some discussion] 

69 Mary:  It cannot be zero in a ones place, because you are multiplying by 4 
already. That is what he is (S10) trying to say. So, since you have 
0.8 times 4, it should be more than 1, is that what you are trying to 
say? So, we eliminate which two answers? This one, and this one. 
But why can’t it be 32.0? S11? Thank you, S10. 

70 S11:  Let us say the, since the question is 0.8 times 4, we can round 0.8 to 
1… 

In this series of exchanges between various students, Mary demonstrated her 

ability to orchestrate mathematically productive talk around the answers. Rather 

than endorsing or refuting the answers given by her students (See Line 32, and 

69), she provided opportunities for her students to reasoning mathematically. 

She could have simply endorsed the students’ answers and the discussion could 

have ended. Instead, Mary attempted to build on students’ responses and moved 

the discussion towards strengthening the reasoning behind the answer. At the 

end, Mary used S11’s answer that 0.8 is approximately one to highlight the 

importance of thinking about the reasonableness of an answer using estimation. 
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CONCLUDING REMARKS 

When Mary’s lesson plan and teaching moves are examined in terms of the 

dimensions of opportunities to learn (Walkowiak et al., 2017), it can be argued 

that Mary had optimised the time used during the lesson to orchestrate 

productive discussions around a modified typical problem. The lesson plan 

suggests her ability to notice the possibility of using typical problems such as 

0.8 × 4 to create opportunities for students to reason, beyond simply explaining 

the procedure of multiplying decimals.  Her teaching moves also suggested that 

she was able to notice opportunities to develop students’ reasoning by engaging 

students to discuss the placement of the decimal point. Mary’s instructional 

decisions during planning and lesson enactment reflect those of an experienced 

competent teacher, which is surprising given that she is a beginning teacher. 

What, and how, did Mary notice the opportunities to learn through the task? A 

more in-depth study of Mary’s instructional decisions may yield some insights 

into her pedagogical reasoning processes, which will have implications for 

teacher professional development. 
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While the affordances of problem-based learning are broadly recognized, 

implementation of this innovative approach is not common, particularly in 

tertiary mathematics education. This study investigates early stages of an 

implementation of problem-based instruction in 1st year mathematics courses 

for engineering students, within a project encompassing 12 universities and 

colleges across Europe. Twenty-three lecturers from participating institutions 

took part in a preparatory workshop. Framing the project as a case of diffusion 

of innovations, we analyze post-workshop questionnaires to reveal the 

participants' conception-of and attitudes-toward the innovation. We highlight 

some challenges that the innovation entails, and how they relate to participants’ 

general attitude toward implementing the innovation. 

THEORETICAL BACKGROUND 

First year university mathematics courses are considered challenging in general, 

and for engineering students in particular (Jablonka, Ashjari, & Bergsten 2017). 

In addition to general issues of transition from high school, the abstract 

approach to the discipline that is common in mathematics departments may not 

be appropriate for students who will eventually use mathematics as a practical 

tool for solving problems. 

Problem-based learning (PBL; Savery, 2006) is an educational approach by 

which authentic real-world problem situations provide the impetus and the 

context for studying disciplinary content. Often this approach is implemented as 

project-oriented PBL (PO/PBL), where authentic problems emerge in the 

context of a long term project. While such approaches have been studied mainly 

in the context of pre-college education, PBL (project-oriented or otherwise) is 

common in some universities (e.g., Aalborg University, Denmark), and has, in 

particular, been found to be suitable for engineering education (Perrenet, 

Bouhuijs, & Smits, 2000). While the potential gains of such an approach are 

undisputed, implementing instructional innovation can be challenging (Begg, 

Davis, & Bramald, 2003). In this article we investigate challenges related to 

implementing PBL in 1st year mathematics courses for engineers. 
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Processes of adoption of innovation have been studied for many years, and the 

adoption model elaborated by Rogers in his 1995 book Diffusion of Innovations 

(2003) has been used extensively in many contexts, including educational 

innovation (e.g., Sahin, 2006). Rogers has recognized four main elements in the 

diffusion of innovations – the innovation and its perceived consequences, 

communication channels of diffusion, evolution of the diffusion over time, and 

the social system in which the diffusion takes place. Rogers has focused on the 

innovation decision process, which he describes as “an information-seeking and 

information-processing activity, where an individual is motivated to reduce 

uncertainty about the advantages and disadvantages of an innovation” (Rogers, 

2003, p. 172). While approaches to teaching may often be prescribed by 

educational institutions, the details of what ultimately takes place behind the 

closed doors of classrooms and lecture halls are up to individual instructors. 

Hence, this decision process is highly relevant in any process of instructional 

innovation.  

Early stages of the decision process are influenced by three factors (see table 1): 

Prior conditions (in particular previous experiences related to the innovation); 

Knowledge, including how-to-knowledge about the implementation and use of 

the innovation and principles-knowledge about how and why the innovation 

“works”; Persuasion, whereby adopters develop an affective attitude toward the 

innovation, influenced by the characteristics of the innovation as perceived by 

individuals. These characteristics include: A. Relative advantage compared to 

the current state of affairs;  

B. Compatibility with past experiences and with existing conditions and values;  

C. Complexity – the degree to which the innovation is perceived to be difficult 

to understand or to use; D. Trialability – the extent to which the innovation can 

be experimented with on a limited basis.  

Prior conditions Previous 

practice 

Need for  

innovation 

Innovativeness Norms   

Knowledge  Awareness How to Principles   

Persuasion: Advantage Compatibility Complexity Trialability Observability 

 

 

Table 1: Rogers’s model of diffusion of innovations (relevant aspects are 

underlined) 

We conducted our research in the context of an international project whose 

objective is to improve teaching, learning and understanding of 1st year 

mathematics among engineering students in European countries. Innovative 
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teaching methods, in particular PO/PBL, are the main vehicle for achieving this 

objective. We focus on a point in time immediately following a preparatory 

PBL workshop for participating lecturers. Eventually, these lecturers will decide 

whether, how and to what extent to implement the innovation. Their decision 

will be influenced by their perception-of and attitude-towards the innovation. 

Hence our research questions are: 

Following a preparatory workshop on PBL, (1) What are the participants’ 

perceptions of PBL as an instructional innovation to be implemented in their 

teaching? (2) What are their attitudes towards the innovation? 

SETTING AND METHODOLOGY 

iTEM – innovative Teaching Education in Mathematics – is a Capacity 

Building project for higher education funded by the Erasmus Plus program (EU) 

as of 2019. Its main objective is to improve teaching, learning and 

understanding of 1st year mathematics among engineering students in Europe 

through the implementation of PBL. Sixteen academic institutions are partners 

in the project. Twenty-three mathematics lecturers from partner institutions 

participated in a workshop organized by the University of Aalborg in 

Copenhagen, whose goal was to inform and inspire participants on how to 

integrate PBL-oriented ideas in their teaching. The workshop was preceded by 

online individual preparation, which included reading assignments on PBL 

approaches to teaching and learning and written exercises. The 2-day workshop 

comprised group-work and plenary sessions on the following topics: Real-life 

problems and strategies for their integration in university teaching; the special 

nature of assessment in PBL; challenges and opportunities of the approach; 

active learning and group work on problem solving. At the end of the workshop 

participants submitted an anonymous questionnaire (see table 2), followed by a 

plenary discussion on some of the questions. While the primary purpose of the 

questionnaire was to provide formative assessment of the workshop, the 

participants gave their written consent for using their responses for the research 

reported herein. 

Data for the research consists of 17 completed questionnaires (6 were too 

incomplete to be useful). Pre-workshop submissions and video recordings of all 

the sessions including a plenary discussion following the submission of the 

questionnaire – were used as complementary data sources. Rogers’s (2003) 

model of diffusion of innovations was used as a conceptual framework for 

analyzing participants’ responses and utterances. To each response we ascribed 

one or more aspects of the model. Coding was for the most part consistent with 

Table 2, where we indicate for each question the categories of the framework 

that we expected respondents to attend to, though in some cases respondents 

attended to additional categories. The aspects of the innovation that respondents 
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chose to attend to were very different, providing a rich qualitative image of 

different conception of the innovation and the challenges it poses. 

Reviewing respondents' questionnaires, it seemed clear that some had a more 

positive attitude toward the innovation than others. We operationalize this 

attitude as follows: Some questions invited a positive response, some a negative 

response, and others were phrased neutrally. Each response that was more 

positive/negative than the question invited scored ±1, and the sum of these 

scores over all questions constitutes the overall attitude. For example, responses 

to q1 (see Table 2) that only listed main ideas, but did not consider one that 

appealed to the respondent scored -1, and responses to q4 that did not list any 

ideas that the respondent will not implement scored +1. Our aim in this was to 

reveal which aspects of the respondents' perception of the innovation correlate 

with a general attitude toward the innovation. 

 Question Diffusion categories 

1 List the main ideas raised in the course. Consider one idea 

that appealed to you, and elaborate or exemplify it. 

Knowledge (neutral)  

Advantage (positive) 

2 Is there any idea discussed in the course that you already 

implement in your current teaching? If so, please indicate 

which and describe how. 

Prior practice (neutral) 

3 Was there an idea discussed in the course that was novel 

to you? What do you think of this idea? 

Innovation-
(dis)advantage (neutral) 

4 Was there an idea discussed in the course that you do not 

think you will implement in your teaching? If so, why not? 

Innovation-
disadvantage/ 
compatibility (negative) 

5 Of all the mathematical examples discussed in the course, 

which did you most connect to? 

Innovation-advantage 
(positive) 

6 Which resources are needed in order to implement the 

ideas discussed in the course, or some of them, in your 

teaching? Which of these resources are already available 

to you in your institution and which would need to be 

developed? 

Innovation-
compatibility (neutral) 

7 To what extent do you feel ready to implement the course 

ideas in your teaching? What, if at all, are you missing in 

order to do that? What kind of support are you expecting? 

Knowledge-how 
(positive); Compatibility 
(negative) 

8 Towards summing up the ideas in a Teaching 

Methodology Document, which ideas in your opinion still 

need to be added or elaborated upon? 

Knowledge-how 
(negative) 

9 In the next course, which idea(s) would you like go deeper 

into? 

Knowledge (neutral) 
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10 Please add any comments that you feel are not covered by 

your previous responses. 

Neutral 

Table 2: Questionnaire items mapped to framework categories,  

classified as inviting positive/negative/neutral response 

ANALYSIS AND FINDINGS 

We begin with a report of the diversity in respondents’ perception of the PBL 

innovation, organized according to the categories derived from Rogers’s model. 

We then focus on eight respondents whose attitudes were most/least positive. 

Prior Conditions: Previous Practices 

Many respondents reported prior practices pertinent to the PBL innovation, 

mainly in response to question 2. Practices included the use of real-world 

problems in homework, tutorials or lectures (7 respondents), some project work 

for course credit (4), and assessment practices that are consonant with those 

presented in the workshop, including varied and frequent testing, often based on 

real-life problems (4). One respondent’s response was particularly revealing in 

this respect: “I thought I did [implement ideas discussed in the course], but now 

I understand that I did not. I feel this is a big step forward for me”. This serves 

to remind us that self-reports of prior practices are highly subjective, and further 

indicates that at least this respondent gained some principles-knowledge 

regarding PBL, as discussed in the following subsection. 

Knowledge: Principles-knowledge and How-to-knowledge 

Eight respondents attended in their responses to principle-knowledge that they 

acquired during the course. Some responses were vague (e.g., attending to the 

general nature of PBL and recognizing its challenges), while others were more 

specific, attending to the independence of students (3) and the role of the 

teachers (1) where problems do not necessarily rely on prior teaching (1), the 

relationship between PBL and courses based on project work (1), and the ability 

of PBL-based instruction to attend to variance in student background and prior 

learning (1). 

Nearly all respondents (15/17) attended to aspects of how-to-knowledge that 

were addressed in the course, including how to construct or find appropriate 

real-world problems (6) and integrate them in their mathematics courses (8), 

how to implement novel assessment methods (8), organize group work (2), 

motivate self-learning (2) and make use of visualization software (2). 

Nevertheless, many (11) attended to how-to-knowledge that was still lacking or 

inadequate. For the most part, they felt a need for more detailed guidance for 

implementing aspects of PBL, including assessment methods (6), teaching 

methodologies (6) and in particular those that can motivate students’ 

independent learning (4). Some (2) attended to the challenge of connecting the 

innovation (real-world problems and novel teaching methods) with current 
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practices (prescribed curriculum and traditional teaching methods). This need 

for more practical knowledge was further elaborated in the plenary discussion. 

It was recognized that while the workshop could teach principles, the details of 

implementation in mathematics courses for engineers are quite unique, and will 

need to be figured out and shared by the partners. One respondent, who 

recognized the benefits of PBL principles, felt a need to be introduced to 

alternate non-PBL ways of achieving them. This demonstrates that the 

persuasion stage of diffusion, discussed in the following subsection, is 

conceptually separate from the knowledge stage, as Rogers has claimed. 

Persuasion: Perceived Characteristics of the Innovation 

Relative advantage: Nine of the 17 respondents referred to advantages of the 

innovation over their current practices. The advantages they attended to were: 

the active nature of students’ participation in learning and their increased 

responsibility (5), increased applicability and relevance of student learning for 

their future studies and employment (3), utilization of existing technologies for 

enhancing learning (2), advantages of novel assessment methods, including 

frequent tests and oral peer-assessment (4). Some respondents recognized 

inherent advantages in the way PBL learning is organized, whereby problem 

solving precedes instruction (1) and there is a stronger connection between 

lectures and homework (1). 

(In) compatibility and complexity: All but two respondents (15/17) attended to 

aspects of perceived compatibility and complexity of the innovation, mainly in 

response to questions 6 and 7. We do not distinguish between these categories, 

because they were often intertwined (e.g., incompatibility due to complexity). 

Once again, some responses were vague (2, e.g., I can’t implement full PBL), 

while others attended to specific issues, including a rigid curriculum (4), large 

numbers of participants in courses (4), student maturity and willingness to 

cooperate (3), university policy (1), rigid lecture-hall arrangement that does not 

support group-work (1), staff devotion (1) and time constraints (1). Few 

respondents attended to positive aspects of compatibility, stating that their 

institution is basically flexible (1), that changes in the way material is presented 

in courses (2) and in the way the budget is managed (1) can be accommodated, 

and that the necessary hardware, software and facilities are in place (2). Mainly 

in response to question 6, respondents indicated some resources that would be 

required for implementing the innovation, including: curricular and assessment 

material (7), an increase in internal and external (censor) staff (4) and additional 

time (4), which would entail an increase in budget (2), classroom facilities (3), 

IT facilities and support (5), instructional resources – bot printed (1) and 

internet-based (2). Two respondents noted that communication channels 

between the project partners would be a crucial resource. 
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Trialability: Six respondents attended to their ability to try out the innovation on 

a limited scale. Five spoke of implementation with small pilot test groups, while 

one spoke of small scale integration of real-world problems across many 

courses. 

Attitude toward the Innovation 

According to our coding scheme, attitudes ranged between +6 (very positive) 

and -2 (somewhat negative). We now focus on the four most positive and four 

least positive respondents, and describe some commonalities and differences. 

Positive attitude: Focusing on the four respondents whose attitudes were the 

most positive, measured at +6 (hereafter respondent A), +5 (B), +4 (C) and +3 

(D), we find that all of them had some kind of previous practice related to the 

innovation – innovative projects integrated into coursework (A, D), use of 

mathematical software (A), diverse and frequent formative assessment (A, C), 

group work (A). The three most positive respondents (A, B, C) felt that their 

institutions (B), departments (A, C), and their students (C), would be supportive 

of the changes that the innovation would entail. In other respects, this group was 

indistinguishable from the rest. 

Negative attitude: Focusing on the four respondents whose attitudes were 

measured at -2 (P, Q) and -1 (R, S), we find that only one of them (P) attended 

to principle-knowledge. Three of them listed significant incompatibilities of the 

innovation, including a large number of students per course (Q, S), and three of 

them (Q, R, S) felt that they lack how-to-knowledge for implementing 

appropriate assessment. In other respects, this group was indistinguishable from 

the rest. 

DISCUSSION 

We have analyzed what the respondents – 17 lecturers from participating 

institutions who attended a PBL workshop – attended to in their responses to a 

post-workshop questionnaire. There is a dialectic relationship between the data 

and the conceptual framework that guided our analysis. We first discuss what 

we have learned about the respondents’ perception-of and attitude-toward the 

innovation, relying on the framework. This part of the discussion has practical 

implications for the implementation of instructional innovation of a similar 

nature. We then discuss implications in relation to the conceptual framework 

based on Rogers’s (2003) categories and about its applicability in the context of 

tertiary instructional innovation. 

Elaboration on Decision-process in PBL as an Instructional Innovation 

All the participants in the workshop belong to educational institutions that have 

opted to participate in the iTEM project, and as such are expected to be 

committed to the instructional innovation that it entails. Yet the extent and 

nature of their implementation of the innovation is ultimately up to them, thus it 
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makes sense to analyze their responses to the post-workshop questionnaire as 

revealing a decision process about adoption of innovation, which Rogers’s 

model proved useful to analyze.  

One interesting finding of our study is the relationship between the participants’ 

prior experience with related innovative practices and their attitudes towards the 

current innovation. The four most-positive respondents all reported some prior 

experience, while only one of the four least-positive respondents reported such 

experiences. This suggests that prior exposure may be a significant factor in the 

decision process. 

How-to-knowledge was an explicit focus of the workshop, and nearly all the 

respondents attended to aspects of such knowledge in their responses. Of the 11 

respondents who attended to how-to-knowledge they were lacking, three were 

among the least-positive respondents, while only one was among the most-

positive. In contrast, the two groups were indistinguishable regarding 

principles-knowledge (1 of 4 attended to this in each of the groups). This 

suggests that a clear vision of the practical details of implementation may be a 

significant factor in the decision process.  

Regarding the perceived characteristics of PBL as an innovation to be accepted 

or not, more than half of the respondents attended to advantages of the 

innovation, nearly all attended to incompatibilities of the innovation, and one 

third attended to its trialability. Perhaps surprisingly, the most-positive and the 

least-positive respondents were not distinguishable in any of these respects. 

This suggests that a positive attitude to an innovation does not necessarily rely 

on optimal conditions for its implementation.  

Additional Implications  

Perceptions-of and attitudes-toward the PBL innovation discussed above have 

practical implications for the implementation of instructional innovation. A 

careful reading of the findings section may yield quite specific implications for 

similar contexts (tertiary mathematics for engineering programs), while the 

more general patterns that we have discussed in the previous subsection may 

have implications in a broader context.  

From a theoretical perspective, we have considered implementation of an 

instructional innovation as a case of diffusion of innovations, and have shown 

how Rogers’s (2003) model of decision-processes can serve as a conceptual 

framework for the analysis of emerging attitudes to the innovation. We have 

operationalized a notion of positive-attitude regarding implementation, and have 

shown how it is constituted in the framework. We now discuss some 

peculiarities of the framework in the context in which it has been applied.  

Of the four main elements of diffusion of innovations we have attended 

primarily to innovation. We now turn our attention to time and communication 



Cooper, Gamlieli, Koichu, Karsenty & Pinto 

2 -  197 

 

PME 44 -2021 

channels, and suggest some extensions of the model. While for Rogers (2003) 

time is relevant primarily as a factor in the rate of innovation-adoption, the 

respondents in our investigation referred to the time element in varied contexts: 

as a crucial resource for implementation (scarce lecture and tutorial time, and 

the need for more preparation time), yet also as an important element in the 

decision process (“it takes time to process and think”). While for Rogers, the 

relevance of communication channels is primarily in creating and changing 

adopters’ (i.e., lecturers’) attitudes, one respondent drew attention to the role of 

students in this process – “this year's students will advertise the change to the 

next year ones” – highlighting a systemic aspect of the diffusion. Additionally, 

some respondents viewed channels of communication as crucial for sharing 

knowledge and resources between project partners (examples of real-world 

problems, knowledge about educational software and it use, etc.), and also for 

sharing expertise within universities (help from the engineering department in 

formulating real-world problems that target particular mathematical content).  

In conclusion, our study has put forth the importance of an emerging 

infrastructure for collective and mutually supportive adoption of instructional 

innovations in tertiary mathematics education. We believe that such 

infrastructures can be developed within consortia of institutions, as the case of 

the iTEM project suggests.   
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Alternatives generation can be considered as knowledge-based prerequisite for 

conditional reasoning in elementary school students. This study examines the 

role of alternatives generation skills on conditional reasoning within an 

everyday and a mathematical context. A total of N=102 students from 2nd, 4th, 

and 6th Grade in Cyprus were interviewed. Alternatives generation skills predict 

correct conditional reasoning in both contexts, but interesting differences 

occurred. The results from the everyday context mirror previous results, 

predicting correct Acceptance of the Consequent and Denial of Antecedent 

reasoning and inhibiting correct Modus Tollens reasoning. In the mathematical 

context, alternatives generation predicted correct reasoning in all forms. The 

study points to the specific role of mathematical knowledge in conditional 

reasoning with mathematical concepts. 

INTRODUCTION  

Logical reasoning is considered as a key component of advanced thinking 

amidst human species (Markovits & Barrouillet, 2002) while if-then statements 

form the basis of scientific mathematical thinking (Markovits & Lortie-Forgues, 

2011). Reasoning with if-then statements (e.g. ‘If Anna breaks her arm, then it 

hurts’) refers to conditional reasoning. Current theories describe conditional 

reasoning in younger students as a process that is based on semantic 

representations of the statements involved. Thus, it is an open question, to 

which extent domain knowledge influences conditional reasoning skills. In 

everyday contexts, reasoners’ ability to generate multiple alternative models for 

a given condition (e.g. ‘For which other reasons might Anna’s arm hurt?’) has 

been found as a predictive factor to draw valid inferences even from early age 

(e.g. De Chantal & Markovits, 2017). For conditions about mathematical 

concepts, this generation of multiple alternatives is similar to generation of 

alternative solutions for mathematical problems which according to Leikin and 

Lev (2007) is considered as an indicator of students’ creativity and 

mathematical knowledge. However, our knowledge about the connection 

between alternatives generation skills and conditional reasoning in the context 

of elementary school mathematics is still weak. 
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CONDITIONAL REASONING  

Conditional reasoning tasks are formed of a conditional rule “if p, then q” as a 

major premise, and a minor premise (e.g. "q is not true"). The traditional 

interpretation of conditionals considers p as sufficient, but not necessary for q 

(Evans & Over, 2004). Four different minor premises lead to four possible 

logical forms of inference: Modus Ponens (MP; "p is true, so q is true"), Modus 

Tollens (MT; "q is false, so p is false"), Denial of Antecedent (DA; "p is false, so 

q or not q") and Acceptance of the Consequent (AC; "q is true, so p or not p"). 

Thus, the uncertain logical forms AC and DA do not allow for definite 

conclusions about p and q respectively. The other two forms (MP and MT) 

allow valid definite conclusions.  

According to Mental Model Theory (MMT) inferences are drawn through the 

construction of mental models (Johnson-Laird & Byrne, 2002). MMT has been 

found to describe conditional reasoning accurately not only in adults but also in 

the age group of primary school children (e.g. Markovits, 2000). Mental models 

are semantic representations of the possibilities, given the truth of the premises 

(Johnson-Laird & Byrne, 2002). To derive conclusions, individuals reconstruct 

the meaning of premises based on their knowledge, to represent what is possible 

given the premises (Nickerson, 2015). Based on working-memory 

considerations, Barrouillet and Lecas (1999) proposed an evolvement of 

individuals’ conditional reasoning skills starting from a conjunctive-like 

interpretation (only one model ‘p and q’; correct MP reasoning), to a 

biconditional (‘p and q’; ‘not-p and not-q’; correct MP and MT reasoning), and 

then a conditional interpretation (‘p and q’; ‘not-p and not-q’; ‘not-p and q’; 

correct reasoning in each logical form). This evolvement shows up in increasing 

solution rates for MT, followed by later changes towards a conditional 

interpretation with increased solution rates for DA and AC. ‘Alternatives’ are 

mental models of the type ‘not-p and q’, which are necessary to arrive at the 

indefinite conclusions in the AC and DA forms. Beyond model generation, 

other authors also state that MT and DA are more cognitively demanding 

compared to MP and AC forms due to the negation statements involved 

(Johnson Laird & Byrne, 1993). 

Conditional Reasoning & Alternatives Generation in Everyday Contexts  

According to MMT, generation of mental models, and in particular of 

alternatives, is based on knowledge about the content of the conditions. 

Alternatives generation for a given condition is considered as a crucial 

prerequisite to draw valid inferences (Johnson-Laird & Byrne, 2002; Markovits 

& Barrouillet, 2002).  
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Studies on reasoning with conditions from an everyday context (e.g. De Chantal 

& Markovits, 2017) have shown that alternatives generation skills predict 

conditional reasoning even from pre-school age onward. In these studies, 

alternatives generation skills are associated with correct AC and DA reasoning, 

in particular (Cummins et.al, 1991; Markovits & Vachon, 1990). In addition to 

alternatives generation, individuals might also generate disablers (mental 

models of the form ‘p and not-q’, contradicting the major rule) describing 

inhibitory factors which might prevent q from occurring, even in the presence of 

p (e.g., ‘Anna took a painkiller, so her arm does not hurt, even though it is 

broken’), according to Cummins et al. (1991). Disablers might lead to the 

rejection of valid conclusions for MP and MT inferences (Janveau-Brennan & 

Markovits, 1999). Many studies report a positive correlation between the 

numbers of generated alternatives and disablers (Thompson, 2000; De Neys, 

Shaeken, & D’Ydewalle, 2002).  

In this line of reasoning, studies with university students revealed that correct 

DA and AC reasoning correlates negatively with correct MT reasoning 

(Newstead et.al, 2004). Hence, it is likely that alternatives generation is 

positively linked with AC and DA reasoning, being not or negatively related 

with MT reasoning. In prior research with young students, disabler generation is 

considered less relevant for logical reasoning than alternatives generation 

(Janveau-Brennan & Markovits, 1999; De Chantal & Markovits, 2017). 

Conditional Reasoning and Alternatives Generation in Mathematical 

Contexts  

While the role of alternatives for conditional reasoning is well-studied in the 

everyday context, it has not been studied for conditions that involve 

mathematical concepts (mathematical context; e.g., “If I arrange three rows of 

four squares each, then I need 12 squares.”). In this case, alternatives 

generation concerns the mental construction of mathematical objects that fulfill 

‘not-p and q’ (e.g., “12 squares could be constructed by six rows of two squares 

each”), beyond those that represent ‘p and q’ (or ‘not-p and not-q’). Generating 

such alternative perspectives to mathematical situations is often discussed in 

research on multiple solutions (Leikin & Lev, 2007). Based on this perspective, 

alternatives generation can be assumed to require mathematical knowledge of 

the conditional content (Leikin & Lev, 2007). Beyond a general link between 

mathematics skills and conditional reasoning skills (Attridge & Inglis, 2013), 

this could lead to a specific influence of mathematical knowledge on AC and 

DA conditional reasoning in the mathematical context. Studies in the field of 

mathematics with university students show negative correlation between MT 

form and DA as well as AC form (Attridge & Inglis, 2013; Morsanyi, 

McCormack & O' Mahony, 2017). This backs up the assumption that 

conditional reasoning in this context is based on mental model construction, 

similar to the everyday context. 
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Overall, the existing literature in primary school pupils investigates the relation 

between alternatives generation and conditional reasoning only in the everyday 

context (with different levels of abstraction (Markovits & Lortie-Forgues, 

2011). In the mathematical context, research with elementary school students 

either investigate conditional reasoning (Christoforides, Spanoudis & 

Demetriou, 2016) or multiple solution tasks (Sullivan, Bourke & Scott, 1997). 

Yet, to date research has not addressed alternatives generation in relation to 

conditional reasoning in two different contexts and this study aims to fill this 

research gap. 

STUDY GOALS AND QUESTIONS  

This study aimed to transfer results on the role of alternatives generation in 

elementary students’ conditional reasoning from everyday conditions to 

conditions from a mathematical context. The following study questions are 

addressed:  

(1) Is the influence of alternatives generation skills on conditional reasoning 

specific to the respective context (everyday vs. mathematical)? Based on the 

MMT account, we expected alternatives generation in each context to primarily 

predict conditional reasoning in the corresponding context (e.g. De Chantal & 

Markovits, 2017). 

(2) Do alternatives generation skills predict correct reasoning differently across 

the four logical forms? Based on prior results and the MMT account, we 

expected that alternatives generation skills in the everyday context would 

predict correct AC and DA reasoning (Markovits & Vachon, 1990). However, 

considering that alternatives generation skills are related with the generation of 

disablers in the everyday context (Thompson, 2000; De Neys, Shaeken & 

D’Ydewalle, 2002), this might entail a decrease in MP and MT reasoning. For 

the mathematical context we expected alternatives generation skills to be related 

to correct AC and DA reasoning, but not to MT reasoning (Attridge & Inglis, 

2013; Morsanyi, McCormack, & O' Mahony, 2017).  

METHODS 

In this cross-sectional study, N=102 students from 2nd, 4th, and 6th Grade in 

Cyprus (average age 12 years old) were interviewed individually. The 

feasibility of the instrument was piloted in a previous study, showing that it is 

accessible to this age group of students (Datsogianni, Ufer, & Sodian, 2018). 

Ethics approval, parental consent signed form, and students’ individual oral 

assents were obtained. 

Participants solved four conditional reasoning tasks on each context 

(Cronbach’s α: .62. for everyday and .68 for mathematical contexts 

respectively). The everyday conditions referred to daily life situations. 

Conditions in the mathematical context referred to situations that involved 
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mathematical structures which were supposed to be familiar for the participants 

(e.g., “If a dwarf’s house has exactly 3 rows of 4 rooms each, then it has 12 

rooms”). All forms (MP, MT, DA, and AC), were included in each task. The 

order of two contexts, the order of the conditions in each context, and the order 

of logical forms for each condition were randomized across students. 

Alternatives generation skills were measured afterwards with specific tasks in 

each context, using the same situations as in the conditions (4 mathematical and 

4 everyday). The reliability scores were good (Cronbach’s α=.86 for everyday 

and .76 for mathematical contexts respectively). The experimenter (first author), 

asked students to find as many examples as they could that matched the model 

‘not-p and q’ by drawing their ideas. Participants did not receive positive or 

negative feedback. The order of two contexts and the order of the conditions in 

each context were randomized across students.  

Example of alternatives generation task in the everyday context: “Remember 

what Peter found out before. If a glass is dropped on the ground in the kitchen, 

then there is a sound. Peter is at home and hears a sound in his kitchen. Find as 

many reasons why a sound in the kitchen may occur, as you can.” 

Example of alternatives generation task in the mathematical context: 

“Remember that dwarfs build their houses so that there are rooms which all 

have this form: The houses always have one or more rows of rooms which are 

all equally long. Remember what Peter found out before. If a dwarf’s house has 

exactly 3 rows of 4 rooms each, then it has 12 rooms. How could a dwarf house 

with 12 rooms look like? Draw as many different houses as you can.”  

In the end of the interview procedure, students solved a working memory test 

(backward digit span). Separate linear mixed models for each context were used 

to analyze the data using the package lme4 in R, controlling for working 

memory skills. The factor logical form and the alternatives generation scores 

were included in the model. Insignificant interactions between logical form and 

the alternatives generation scores were removed from the model prior to the 

final analysis. In the mathematical context, the random factor controlling for 

individual differences explained no variance. 

RESULTS 

Overall, students solved 59.1% of the items correctly in the everyday context 

(ED), and 57.1% in the mathematical context (MA). In both contexts, MT was 

solved significantly less of than MP (ED: MP 88.9%, MT 73.7%, p< .001; MA: 

MP 84.3%, MT 61.5%, p< .001) and AC less often than MT (ED: AC 42.2%, 

p< .001; MA: AC 37.2%, p< .001). DA was solved less often than AC in the 

everyday context (ED: DA 31.5%, p < .05), while the difference was not 

significant in the mathematical context (MA: DA 45.65, p = .16). 
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Students generated more alternatives per task in the everyday context (range 1-

11, M = 4.25) compared to the mathematical context (range 0-5, M = 2.08). It is 

worth noting that the number of possible alternative solutions was more limited 

in the mathematical context compared to the everyday context. 

 

Figure 1: Estimated solution rates and 95% confidence intervals by alternatives 

generation and logical form for everyday context 

 

Figure 2: Estimated solution rates and 95% confidence intervals by alternatives 

generation and logical form for mathematical context 

Regarding study question (1), mathematical alternatives generation 

(F(1,398)=13.7, p < .001), but not everyday alternatives generation 

(F(1,398)=0.32, p = .57), showed a significant effect on conditional reasoning in 

the mathematical context. Conditional reasoning in the everyday context was 

related significantly to mathematical alternatives generation (F(1,98)=8.35, 

p < .001) but – over all logical forms – not to everyday alternatives generation 

(F(1,98)=0.70, p = .41). 

Regarding study question (2), we found a significant interaction between logical 

form and alternatives generation scores only for everyday conditional reasoning 

(F(3,300)=6.57, p < .001, fig. 1). In this context, everyday alternatives 

generation predicted correct reasoning significantly positively in the AC 
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(B = 0.039, CI95%[0.008, 0.070]) and in the DA (B = 0.040, CI95%[0.010, 0.071]) 

form, but negatively for MT (B = -0.034, CI95%[-0.065, -0.004]). For example, 

B = 0.039 indicates an estimated increase in the conditional reasoning solution 

rate of 3.9% per generated everyday alternative. The non-significant interaction 

(F(3,398)=0.75, p = .52, fig. 2) between logical form and mathematical 

alternatives generation for mathematical reasoning indicates, that alternatives 

generation (positively) predicted conditional reasoning comparably strongly for 

all logical forms in this context. 

DISCUSSION  

Regarding study question (1), alternatives generation skills in the everyday 

context did not have a significant main effect on conditional reasoning in the 

same context in general (cf. De Chantal & Markovits, 2017). Given the 

significant interaction between everyday alternatives generation scores and 

logical form, this pattern is in line with prior results. Mathematical alternatives 

generation skills predicted logical reasoning in both contexts. Since alternatives 

generation is mainly based on prior knowledge of the respective content (Leikin 

& Lev, 2007), this is in line with previous evidence about the relation between 

logical reasoning and mathematical knowledge that has been found in the 

literature, before (Attridge & Inglis, 2013). 

Regarding study question (2) and the results for the everyday context were 

similar to those found in prior studies. Alternatives generation in the 

corresponding context was predictive for correct AC and DA reasoning 

(Cummins et.al, 1991; Markovits & Vachon, 1990). It is also observed that 

alternatives generation (in this context) inhibits correct MT reasoning; probably 

students extend the strategy of generating antecedents to generating and 

(incorrectly) interpreting inhibitors (De Neys, Shaeken, & D’Ydewalle, 2002). 

However, as for the mathematical context, it seems that alternatives generation 

is generally predictive of conditional reasoning skills, mostly independent of the 

logical form. As mentioned above this might reflect a general relation between 

logical reasoning and mathematical knowledge (Attridge & Inglis, 2013). On 

the other hand, we cannot differentiate this explanation in this study – it might 

also be that knowledge about the mathematical content is necessary to generate 

a representation of mathematical conditionals and any kind of related mental 

model (not only of the type ‘not-p and q’). If the sole representation of 

mathematical conditions is indeed so strongly dependent on corresponding 

knowledge, this might cover a specific effect of alternatives generation for DA 

and AC in this context. 

Overall, the results of this study indicate that reasoning with mathematical 

conditions is, overall, not substantially harder, or easier than reasoning with 

everyday conditions. However, the analysis of the relation to alternatives 

generation points to possible differences in the reasoning process. For example, 
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it might be that, in spite of early conditional reasoning skills in the everyday 

context, students are not able to activate the corresponding strategies in the 

mathematical context, due to restricted ability to represent the conditionals’ 

meanings in mental models. If indeed problem representation turns out as the 

primary problem, this implies the necessity not only to practice conditional 

reasoning, but also to carefully consider students’ mathematical knowledge 

before engaging with basic deductions about mathematical concepts in 

mathematics instruction. However, reflecting deductions and the meaning of 

conditionals about mathematical concepts during classroom instruction might 

also help to build up this prerequisite knowledge. 

One possible limitation arising from this study is that alternatives generation 

tasks addressed only questions with given consequents, for which students had 

to create as many possible antecedents, as possible. Future studies might 

separately measure the generation of an initial mental representation of the 

conditional and alternatives generation. The negative relation between 

alternatives generation and MT reasoning, moreover, might be explained 

through investigating the generation of disablers in future research. However, 

alternative antecedents have been considered more central to conditional 

reasoning of young students than disablers (Janveau-Brennan & Markovits, 

1999). Thus, this study provides first insights for the relation between 

alternatives generation and conditional reasoning with mathematical concepts, 

which can be extended in further research.  

Summarizing, the role of conditional reasoning in mathematics can hardly be 

denied. Thus, the results of this study imply the instructional necessity to 

include and practice conditional reasoning tasks in elementary school within the 

context of mathematical statements by providing opportunities to students to 

interpret and discuss mathematical conditions, as well as generate alternative 

antecedents for these conditions. Even though open question remains, the study 

extends evidence, that knowledge of mathematical concepts and being able to 

reason about them (with conditionals) are strongly related. 
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In this paper we conceptualise Lakatos-style proof instruction (LSI) as a 

teaching approach based on the formulation and refinement of conjectures 

through the examination of supportive examples and counterexamples. We 

identify aspects of mathematical knowledge that LSI requires from teachers 

(MaKTeLaP) in relation to content, student perceptions and teaching practices, 

and we report findings of ten primary school teachers’ MaKTeLAP based on in-

depth, vignette-based interviews. Participants’ responses indicate satisfactory 

content knowledge, intermediate knowledge of teaching practices, and weak 

knowledge of students. This study offers a theoretical basis for further research 

on the incorporation of LSI into the classroom and on the provision of support 

for the development of teachers’ MaKTeLAP. 

INTRODUCTION 

Proof is considered as a key element of mathematics (Bundy, Jamnik, & 

Fugard, 2005), but also a focal point of modern school mathematics (Hanna, 

1990; Stylianides, 2016). Many scholars have acknowledged the crucial role 

example examination can play in proving, including the philosopher Imre 

Lakatos. In his seminal book “Proof and Refutations”, Lakatos (1976) used an 

imaginary classroom setting to narrate historic moments in the evolution of 

conjectures around Euler’s theorem. Although his theory was not intended for 

use in actual classrooms, certain aspects of it have been considered in 

educational contexts (e.g., Balacheff, 1991; Komatsu, 2010, 2016; Larsen & 

Zandieh, 2008). These studies offered images of school and university students 

productively engaging in Lakatos-style proving activity, illustrating also the 

benefits of instruction that aims to engage students in this kind of activity. 

Despite their encouraging findings, teachers’ mathematical knowledge for 

Lakatos-style proof instruction has received no research attention thus far. In 

this paper we take a step towards addressing this gap. We developed a 

conceptualisation of Lakatos-style proof instruction and of important aspects of 

mathematical knowledge for teaching (Ball, Thames & Phelps, 2008) that 

Lakatos-style proof instruction requires from teachers, and we used those as a 

theoretical basis in an interview study with ten primary teachers to address the 
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following research question: What is the state of primary school teachers’ 

mathematical knowledge for Lakatos-style proof instruction? 

THEORETICAL FRAMEWORKS 

LSI: Lakatos-style Instruction  

Considering Lakatos’ (1976) original theory and studies describing attempts for 

the incorporation of certain aspects of it into classrooms (e.g., Balacheff, 1991; 

Komatsu, 2010, 2016; Larsen & Zandieh, 2008) we conceptualised LSI: a 

teaching approach inspired by, and based on, Lakatos-style reasoning. LSI 

consists of four phases: P1- Formulation, P2- Validation, P3- Refutation, P4- 

Modification. First, students are presented with a task and are asked to 

formulate a relevant conjecture (P1). Then, they examine several cases to check 

whether it is true. The discovery of supportive examples may lead them to 

assume that it holds for all the cases of its domain (P2). However, the discovery 

of counterexamples may indicate to them that the conjecture does not hold (P3). 

Reflecting on the examined examples, students may modify the original 

conjecture (P4), and then test and refine it, going through the same steps again. 

Conjecture types and modification techniques, and student justification and 

refutation schemes are all relevant to LSI. We elaborate on them next.   

MT: Modification Techniques 

This aspect of our framework elaborates on P4 of LSI. To modify a conjecture, 

solvers may employ two Lakatosian techniques: Restriction and Expansion. As 

the names indicate, the domains of the conjecture can either be restricted to 

exclude the counterexample or expanded to include it as a supportive example. 

As an illustration, let us imagine that the conjecture “the digits of multiples of 

nine add up to nine” is refuted by 99. By employing restriction, one could 

examine whether this is applicable only for numbers up to 90, while by 

employing expansion one could conjecture that the digits of the sum should 

continue being added until they give a one-digit result.  

CT: Conjecture Types  

This is a categorisation of statements, as proposed by Tsamir, Tirosh, Dreyfus, 

Barkai, and Tabach (2008), that identifies three types of conjectures: Always 

True (AT), Sometimes True (ST), Never True (NT). The type of conjecture in 

LSI is determined by the kinds of examples a solver may discover during its 

investigation: while both supportive examples and counterexamples exist for an 

ST conjecture, only supportive examples and only counterexamples exist for 

AT, and NT conjectures, respectively. 

JS: Justification Schemes 

This is a three-level taxonomy of students’ perceptions about the role of 

supportive examples in proof based on Harrel and Sowder’s (1998) framework 
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of justification schemes and their adaptation by Stylianides and Stylianides 

(2009). The students holding the least sophisticated perception believe that 

evidence from a few supportive examples suffices to validate general statements 

(naïve empirical justification scheme). Others continue to believe so, but 

demand that the examined cases be selected on the basis of a strategy or 

rationale (crucial experiment justification scheme). Finally, others realise that 

supportive examples cannot prove, no matter how many there are or how they 

have been selected (nonempirical justification scheme). 

RS: Refutation Schemes  

Aside from students’ views about supportive examples, their understanding 

about counterexamples has also attracted researchers’ attention (e.g., Balacheff, 

1991; Stylianides & Al-Murani, 2010). Still, unlike supportive examples, there 

exists no widely accepted categorisation of student perceptions about 

counterexamples. Aiming to address this gap, we developed a three-level 

taxonomy of students’ refutation schemes (Deslis, 2020). Starting from the least 

advanced level, some students resist to the idea that the existence of 

counterexamples can affect the validity of a convincing conjecture, treating 

them as exceptions (naïve objection to refutation scheme). Others acknowledge 

counterexamples’ power to refute, on the condition that several are found, 

usually coming from a strategical selection of cases (crucial experiment 

refutation scheme). Finally, students may realise that even a single 

counterexample suffices for the refutation of conjectures (refutation scheme). 

MaKTeLaP: Mathematical Knowledge for Teaching Lakatosian Proof 

Previous research has attempted to extend Shulman’s (1986) popular construct 

about teachers’ professional knowledge, to outline the knowledge required for 

the instruction of specific subjects, including mathematics (e.g., Ball, Thames & 

Phelps, 2008) or even more specifically proof (e.g., Stylianides, 2011). Our 

Framework MaKTeLaP (Deslis, 2020) attempts to further specialise those 

constructs by describing the knowledge a teacher needs to implement LSI. 

MaKTeLaP consists of three interrelated types of knowledge: CoLaP, StuLaP, 

TeLaP (standing for knowledge of Content, Students and Teaching, 

respectively). CoLaP refers to knowledge of the role examples play in proving 

and refuting. It is expressed by the ability to produce valid example-based 

arguments or evaluate the validity of arguments raised by others. StuLaP 

focuses on knowledge of students’ typical understandings about the interplay 

between examples and proof. In the classroom, teachers are expected to 

anticipate, recognise, and analyse students’ relevant misconceptions. Finally, 

TeLaP refers to knowledge of appropriate instructional techniques that can 

effectively support students’ engagement with Lakatosian methods and 

procedures. It is associated with the ability to provide guidance through 

feedback or questions to promote the productive use of examples. All three 
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components of MaKTeLaP revolve around two types of examples, which are 

the backbone of LSI: supportive examples (SEs) and counterexamples (CEs). 

Therefore, alongside with the previous analysis, we can also distinguish one 

strand of knowledge for each example type: MaKTeLaP-SE and MaKTeLaP-

CE, which both run across the three components. 

RESEARCH METHODS 

Data were collected through in-depth, semi-structured, vignette-based 

interviews with ten in-service primary school teachers in Greece (2 males; 8 

females; average teaching experience: 1y 9mo). The participants were recruited 

through a convenience sampling strategy, conditional upon teaching experience 

at fifth and/or sixth grade (10-12 y.o.). All of them held a bachelor’s degree in 

primary education while all but two participants also held a master’s degree in 

various education-related fields. 

During the 50-minute open-ended interviews the participants were presented 

with 19 short classroom episodes (EP1-19) depicting students’ exchange of 

arguments within groups about the “Count the Squares” proof task (Zack, 

1997). The problem asked students to examine how many squares there are in 

square grids of various sizes starting from the 4-by-4 grid and up to the 60-by-

60 grid, and to prove their answers. The vignettes reflected situations that are 

likely to emerge in the classroom covering all the possible combinations of LSI 

phases, modification techniques, conjecture types, justification and refutation 

schemes, as described in the theoretical framework. The vignettes were based 

on real classroom episodes reported by Zack (1997) and Reid (2002), although 

in some cases adaptations were necessary. To make the conversations more 

engaging and immersive, the vignettes were presented trough comic-style 

representations. Like in Lakatos’ original book, the protagonists were named 

after letters of the Greek alphabet. Aside from a tribute to his work, this (in 

conjunction with the comic characters’ generic appearance) enabled the 

concealment of characteristics like ethnicity and gender, thus preventing 

teachers from judging on the basis of potential biases. As an illustration, parts of 

two sample episodes are given below: 

EP6- CT: Sometimes True, LSI Phase: P2-Validation, JS: naïve empirical 

justification 

Stud. Iota: I checked the 5x5 grid and found 55 squares. Like in the 4x4 grid, 

the result is again a multiple of five. So, it will be a multiple of five 

in all grids! 

EP9- CT: Sometimes True, LSI Phase: P3-Refutation, RS: refutation 

Stud. Theta: I think I’ve found a grid that breaks the pattern. Imagine an 1x1 

grid: it has only one square. This is not a multiple of five. So, the 

rule is wrong! 
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The design of the interview protocol was guided by our conceptualisation of 

MaKTeLaP and its three components. After each of the 19 episodes, 

participants were asked to (1) evaluate the validity of students’ arguments, (2) 

comment on the level of students’ understandings and predict their upcoming 

moves, and (3) explain what they would encourage students to do next by 

suggesting feedback and/or questions they would use in the classroom. In this 

way, information about participants’ perceptions was elicited, relevant to 

CoLaP, StuLaP, and TeLaP, respectively. After the transcription of the audio 

recordings, participants’ responses were analysed for themes with a twofold 

focus: MaKTeLaP components and example types. The qualitative findings 

were supplemented by the calculation of descriptive statistics. 

FINDINGS & DISCUSSION 

The thematic analysis in conjunction with the examination of the guiding 

frameworks generated one set of three themes for each possible combination of 

MaKTeLaP components and example type. These six sets are given in Table 1, 

with the themes presented in descending order of sophistication (SE2-SE0 and 

CE2-CE0), which was determined by the degree of their alignment with the 

respective frameworks. To enable the calculation of statistics, every response 

was given a score ranging from 0 to 2, determined by the level of sophistication 

the respective response theme represented. Figure 1 visualises the variation of 

teacher participants’ (T1-10) responses in the three MaKTeLaP components and 

the two example types, with reference to the themes their responses represented. 

The overall MaKTeLaP score was 1.5/2. The average performance was better in 

the SE-related episodes (1.57/2) than in the CE-related ones (1.43/2), although 

the respective differences varied within each knowledge type. 

SE CoLaP [SE] StuLaP [SE] TeLaP [SE] 

2 Non-empirical 

justification 

Awareness of SEs’ misuse and 

consideration of it as such 

Examination of SEs aiming at 

proper proof/refutation 

1 Crucial experiment 

justification 

Awareness but favourable 

consideration of SEs’ misuse 
Examination of SEs to 

terminate the investigation 
0 Naïve empirical 

justification 

Unawareness of SEs’ misuse Disregard of SE use 

CE CoLaP [CE] StuLaP [CE] TeLaP [CE] 

2 Refutation Awareness of CEs’ misuse and 

consideration of it as such. 
Examination of CEs aiming 

at conjecture modification 
1 Crucial experiment 

refutation 

Awareness but favourable 

consideration of CEs’ misuse 
Examination of CEs 

endlessly/ to terminate the 

investigation 
0 Naïve objection to 

refutation 
Unawareness of CEs’ misuse Disregard of CE use 

Table 1: Response themes for each MaKTeLaP component and example type.  
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The formulation of response themes for CoLaP [CE] and CoLaP [SE] was 

informed by Frameworks RS and JS, respectively. As for the former (average 

score: 1.8/2), the wide acceptance of the idea that a single CE can sufficiently 

refute a statement (8/10 participants) was amongst the most positive findings of 

the study. Yet, although the majority (6/10) was also aware about the limitations 

of SE use in proving, a large proportion of participants were found to believe 

that empirical arguments can also sufficiently validate statements, resulting in a 

relatively lower average score of 1.6/2. Despite this difference between the 

scores in the two example types, the sample’s overall CoLaP score was the 

highest among the three components of MaKTeLaP. 

In contrast, the overall performance in StuLaP was the lowest of the three 

components (1.3/2), while the sample had, in general, better knowledge of 

students’ perceptions around SEs (1.4/2) than those around CEs (1.2/2). As far 

as StuLaP [SE] is concerned, nine teachers showed an awareness of students’ 

tendency to base their proofs on empirical arguments and expected that their 

next moves would reflect this erroneous belief. However, only five of them 

were fully aware that this constitutes a misconception. The remaining four 

evaluated favourably students who hastily validated the conjecture after the 

discovery of a few SEs and/or unfavourably others who legitimately questioned 

this practice. To illustrate this finding, commenting on a student’s objection to 

example-based validation in EP8, participant T7 said: “This student has not 

understood how patterns work and how generalisations can come out of them. I 

believe that this view is unproductive.” 

Turning to StuLaP [CE], again nine participants were found to be aware of 

students’ tendency to treat CEs as exceptions. However, the majority (6/10) 

critiqued students who argued that one CE suffices and/or misperceived other 

students’ demand for additional CEs as productive or desirable. As an 

illustration, in EP16, where a student objects to the rejection of a conjecture 

after the discovery of one CE, T4 commented: “I like this student’s critical 

attitude! It is always good to be reluctant and demand more evidence.” Still, the 

other three participants consistently argued against the treatment of CEs as 

exceptions across all relevant episodes. In the same episode another teacher 

(T3) said: “This student has weak understanding. The conjecture had already 

been proved wrong; any additional checks would be superfluous.” 
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  Knowledge of Supportive Examples 

Figure 1:  Comparative presentation of teachers’ (T1-10) performance in 

CoLaP, StuLaP, and TeLaP in relation to the two example types. 

The average performance in TeLaP was 1.5/2. In general, teachers promoted the 

search for, and examination of, both SEs and CEs, thus showing an appreciation 

of their role in proving. Overall, the responses indicate that participants are in a 

better place to support students’ productive use of SEs (1.7/2), in comparison 

with the use of CEs (1.3/2), although difficulties relevant to both emerged. 

Three teachers encouraged students to conclude the investigation after the 

discovery of many SEs, like T10 in EP3: “The examples have shown that the 

rule works; I’d give the students a new problem”. Furthermore, most teachers 

were either unable to suggest a sensible next step after the discovery of CEs, 

proposing a pointless never-ending examination of cases, or encouraged 

students to discard the faulty conjecture and replace it with a new one (unrelated 

to the starting conjecture). However, three participants took a step further giving 

responses that either implied conjecture modification in a generic sense or 

clearly referred to one of the Lakatosian modification techniques (usually 

conjecture restriction). T4’s and T9’s responses to EP10, and T6’s to EP9 are 

indicative: 

Part. T4: The student can investigate under which conditions the rule can be 

correct. 

Part. T9: Clearly not all numbers are multiples of five. The student can re-

examine the results […] This could lead to a new rule… for 

example: “only grids with side multiple of five give a result that is 

also a multiple of five”. 

Part. T6: The student should improve the conjecture by investigating whether 

the rule is correct only for a subset of the grid for example, only for 

every n>2. 

Responses of this kind indicate that some teachers are capable of spontaneously 

encouraging students to employ this less obvious, but crucial, step of the 

Lakatosian investigation, which constitutes an encouraging finding. 

CONCLUSION 

This interview study explored the thus far uncharted territory of primary 

teachers’ mathematical knowledge about LSI, a style of teaching proof inspired 

by Lakatos-style reasoning. The vignette-based interviews shed light on ten 
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participants’ knowledge in relation to (1) content, student perceptions and 

teaching practices relevant to LSI, and (2) two example types that constitute the 

backbone of the Lakatos-style investigation: supportive examples and 

counterexamples. In general, the sample’s performance was better at situations 

relevant to supportive examples, although the results fluctuated within each 

knowledge type. Considering the performance in both example types, the 

participants’ responses indicated satisfactory content knowledge, intermediate 

knowledge of teaching practices, and relatively weak knowledge of students. 

Although each teacher’s strengths and difficulties were different, all teachers 

showed good intuitive perception of at least some aspects of LSI. No teacher 

performed excellently across all six scales, but for each scale there was at least 

one teacher who achieved the maximum score, despite the lack of any prior 

instruction. This shows that all aspects of LSI can lie within primary teachers’ 

reach, and they can overcome the difficulties they encounter if offered adequate 

support. 

A primary limitation of this study is the small sample size, due to which it is 

unknown whether any of the findings can safely be generalised. However, the 

theoretical frameworks and the exploratory findings of this study have laid the 

foundation for further research with larger samples and/or at different education 

levels. In future we will also explore appropriate ways of assisting teachers in 

refining the professional knowledge required for the implementation of LSI in 

classrooms, which may include the design of an interactive simulated 

environment based on choice-driven scenarios. 

References 

Balacheff, N. (1991). Treatment of refutations: Aspects of the complexity of a 

constructivist approach to mathematics learning. In von Glasersfeld E. (Ed.), 

Radical Constructivism in Mathematics Education (pp. 89‐110). Dordrecht: Kluwer 

Academic Publishers. 

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: 

What makes it special. Journal of Τeacher Εducation, 59(5), 389-407. 

Bundy, A., Jamnik, M., & Fugard, A. (2005). What is a proof? Philosophical 

Transactions of the Royal Society A: Mathematical, Physical & Engineering 

Sciences, 363(1835), 2377–2391. 

Deslis, D. (2020). Using Examples and Counterexamples to Prove: Primary School 

Teachers' Perceptions about Lakatos-style Instruction of Proof. (MPhil 

dissertation, University of Cambridge, UK).  

Hanna, G. (1990). Some pedagogical aspects of proof. Interchange, 21(1), 6–13. 

Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory 

studies. In A. H. Schoenfeld, Kaput, J., & Dubinsky, E. (Eds.), Research in 

Collegiate Mathematics Education III (pp. 234-283). American Mathematical 

Society. 



Deslis, Stylianides & Jamnik 

2 -  217 

 

PME 44 -2021 

Komatsu, K. (2010). Counter-examples for refinement of conjectures and proofs in 

primary school mathematics. The Journal of Mathematical Behavior, 29(1), 1–10. 

Komatsu, K. (2016). A framework for proofs and refutations in school mathematics: 

Increasing content by deductive guessing. Educational Studies in Mathematics, 

92(2), 147-162.  

Lakatos, I. (1976). Proofs and refutations. Cambridge: Cambridge University Press.  

Larsen, S., & Zandieh, M. (2008). Proofs and refutations in the undergraduate 

mathematics classroom. Educational Studies in Mathematics, 67(3), 205-216. 

Reid, D. A. (2002). Conjectures and refutations in grade 5 mathematics. Journal for 

Research in Mathematics Education, 33(1), 5-29.  

Shulman, L. (1986). Those who understand: Knowledge growth in teaching. 

Educational Researcher, 15(2), 4-14.  

Stylianides, A. J. (2011). Towards a comprehensive knowledge package for teaching 

proof: A focus on the misconception that empirical arguments are proofs. 

Pythagoras, 32(1), 1-10. 

Stylianides, A. J. (2016). Proving in the elementary mathematics classroom. Oxford, 

UK: Oxford University Press. 

Stylianides, A. J., & Al-Murani, T. (2010). Can a proof and a counterexample coexist? 

Students' conceptions about the relationship between proof and refutation. 

Research in Mathematics Education, 12(1), 21-36.  

Stylianides, G. J., & Stylianides, A. J. (2009). Facilitating the transition from 

empirical arguments to proof. Journal for Research in Mathematics Education, 

40(3), 314-352. 

Tsamir, P., Tirosh, D., Dreyfus, T., Barkai, R., & Tabach, M. (2008). Inservice 

teachers’ judgment of proofs in ENT. In O. Figueras, J. L. Cortina, S. Alatorre, T. 

Rojano, & A. Sépulveda (Eds.), Proc. 32nd Conf. of the Int. Group for the 

Psychology of Mathematics Education (Vol. 4, pp. 345-352). Morélia, México: 

PME. 

Zack, V. (1997). “You have to prove us wrong”: Proof at the elementary school level. 

In E. Pehkonen (Ed.), Proc. 21st Conf. of the Int. Group for the Psychology of 

Mathematics Education (Vol. 4, pp. 291-298). Lahti, Finland: PME.  

 

 

 

  



2 - 218 

2021. In Inprasitha, M., Changsri, N., Boonsena (Eds.). Proceedings of the 44th Conference of the 

International Group for the Psychology of Mathematics Education, Vol. 2, pp. 218-226. Khon Kaen, 

Thailand: PME. 

  

DO QUALITATIVE EXPERIMENTS ON FUNCTIONAL 
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Introducing functional relationships with experiments has proven to be 

beneficial for functional thinking (FT). While hands-on material elicits 

modelling schemes, simulations open up a dynamic view. Combining both seems 

promising, but the question on how remains unanswered. Prevalent approaches 

set a numerical focus through measurement, but research on the development of 

a functional concept strongly suggest a rather qualitative view to foster 

covariational thinking. This ongoing study compares two experimental settings 

(numerical vs. covariational) in a pre-post-test intervention. Preliminary 

analyses (N = 66) show that both settings lead to a significant increase in 

functional thinking, with higher gains in the covariational settings, indicating 

that a focus on covariation seems to be beneficial for 7th graders.  

FOSTERING FUNCTIONAL THINKING 

According to Vollrath (1989), functional thinking is based on three main 

aspects: the correspondence of an element of the definition set to exactly one 

element of the set of values; the covariation of the dependent variable when the 

independent variable is varied and the final aspect, in which the function is 

considered as an object.  

Concept of function according to APOS 

This differentiation is in line with the developmental perspective on students’ 

conceptualization of functions derived by Breidenbach et al. (1992) using the 

Action-Process-Object-Scheme (APOS) theory. The action concept on the 

lowest level is limited to the assignment of single output values to an input. 

With the more generalized process concept students consider a functional 

relationship over a continuum, enabling the reflection on output variation 

corresponding to input variation. Finally, functions conceptualized as objects 

can be transformed and operated on. Students with an elaborate concept of 

functions are supposed to be able to use the action, process or object conception 

depending on the mathematical situation (Dubinsky and Wilson 2013).  

Findings on experimental approaches to functional thinking 

Experiments provide a basis to enable constructivist approaches, that lead to 

higher learning gains in combination with digital technologies (Drijvers 2020). 

And learning environments with experimentation activities have proven to be 
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beneficial for functional thinking (Lichti and Roth 2018). One possible 

explanation could be the proximity of functional thinking to scientific 

experiments as illustrated by Doorman et al. (2012): with a given variable as 

starting point, a dependent variable is generated in an experiment. Relating the 

output to the input clearly addresses the correspondence aspect and the action 

concept. Following manipulations of the input and concurrent observation of the 

output make the covariation of both variables tangible and enables a process 

view.  

Lichti and Roth (2018) implement the scientific experimentation process – 

preparation (generate hypotheses), experimentation (test the hypotheses) and 

post-process (reflect results) – in a comparative intervention study to foster 

functional thinking of sixth graders with either hands-on material or simulations 

and report learning gains for both approaches (ibid.), but a closer look reveals 

disparities: while hands-on material promotes the correspondence aspect and the 

association to the real situation, simulations foster covariational thinking, the 

interpretative usage of graphs and lead to higher overall gains in functional 

thinking (Lichti 2019). 

Theory of instrumental genesis 

The instrumental approach (Rabardel 2002) and its distinction between artefact 

and instrument can be useful when interpreting these results: while the artefact 

is the object used as a tool, the instrument consists of the artefact and a 

corresponding utilization scheme that must be developed. This developmental 

process - the so-called instrumental genesis (Artigue 2002) - depends on the 

subject, the artefact and the task in which the instrument is used. Hence, 

different artefacts lead to different schemes.  Artefacts that are more suitable for 

the intended mathematical practice of a task appear to be more productive for 

the instrumental genesis and facilitate the learning process (Drijvers 2020). In 

addition, embodied activities in a task seem to contribute to the instrumental 

genesis (ibid.). From the viewpoint of instrumental genesis, the results of Lichti 

(2019) can be interpreted as follows: when using simulations, schemes that 

develop are concerned with variation and transition, while measurement 

procedures of the hands-on material induce schemes that concentrate on values 

and conditions (ibid.). The students working with hands-on material associate 

their argumentation more often with the material, while the rationale of students 

using simulations frequently relates to the graph. Again, the instrumental 

genesis can explain these disparities: the hands-on material stimulates basic 

modelling schemes, relating the situation to mathematical description. 

Simulations already contain models of a situation and when used as multi-

representational systems (Balacheff and Kaput 1997) illustrate connections 

between model and mathematical representation (e.g. graph and table) that 

evoke schemes for these representations and their transfer.  
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The study presented here attempts to make use of these beneficial influences on 

the instrumental genesis through an appropriate combination of hands-on 

material and simulations in experimental activities to foster functional thinking. 

Setting 1: Experiments with hands-on material and simulations (numerical) 

The learning environment is set in a story of two friends preparing to build a 

treehouse. The student activities are structured in six contexts (see below for 

details), each one laid out like a scientific experimentation process with 

preparation, experimentation and post-processing phase. Starting off with 

hands-on material to activate modelling schemes and enable embodied 

experience, students are asked to make assumptions about a pattern or 

relationship and on that basis, estimate values. During experimentation phase 

they take a series of measurements and data is recorded in a table within a 

simulation (GeoGebra). The simulation is designed in accordance to the hands-

on material and provides the opportunity to create a graph concurrent with the 

context animation and to display the measurements of the hands-on material 

(and a corresponding trendline). This gives students the opportunity for 

systematic variation and parallel observation of the altering quantities, to induce 

schemes with a dynamic view and covariational thinking. Above, it facilitates 

the time consuming but little challenging representational switch from table to 

graph (Bossé et al. 2011). In the post-processing phase the students verify their 

measurements and analyse the graph (interpreting and interpolating). 

Subsequently they get back to the real material to check their estimations from 

preparation phase. Finally, they elaborate on the answer to the overarching task 

(calculate the amount of material needed to build the treehouse) based on the 

insights from experimentation activities, bringing together the modelling and 

representational schemes developed.  

The learners go through these phases for three contexts subsequently, share their 

insight after each context with a partner and solve the overarching tasks as team. 

Contexts  

Both settings use a treehouse building story with identical overarching tasks. 

The contexts are implemented with the same hands-on material (see figure 1 

and 2) and simulations, but different components of the simulations are visible 

in the settings.  
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The students work in pairs (A and B), each working on three contexts. The 

contexts are chosen to represent a linear and a quadratic relationship and one 

with varying change rate. 

 

 

 

 

Figure 1: Hands-on material of the contexts for partner A  

For partner A (see Figure 1) these are: the perimeter of a circular disc 

determined by its diameter, the number of cubes needed for a “staircase” 

determined by the number of steps and the fill height of a vessel determined by 

the volume of water filled into. 

 

 

 

 

Figure 2: Hands-on material of contexts for partner B in both settings  

Partner B (see Figure 2) examines the weight of a package of nails determined 

by the number of nails, the number of beams needed for a woodwork 

determined by the number of floors and the fill height of cylindric vessels with 

different diameters determined by the volume of water filled into. A bonus 

context for quick learning teams depicts the diameter of an unrolling tape 

determined by the length of tape that has been unrolled.  

Setting 2: Combination of artefacts with a focus on covariation 

(covariational) 

In setting 1 proposed above the measurement plays a dominant role, which sets 

a focus on the individual values of quantities and on single states of the 

relationship. This promotes the action concept of function and concentrates on 

the correspondence aspect (see above). In accordance with Breidenbach et al. 

(1992) and Dubinsky and Wilson (2013) it would be desirable to shift this focus 

to a process concept and to covariation, especially since possible sources of 

student’ difficulties with functional relationships are seen in the dominance of 

numerical settings in school (Goldenberg et al. 1992). Together with the close 

relation of covariation to the difficult concept of variables (Leinhardt et al. 

1990), this led to the call for a qualitative approach to functions (Thompson & 

Carlson 2017) to facilitate the idea of covariation. Thus, in a second setting we 

explicitly choose a non-numerical approach for experimenting with immediate 

examination of covariation.  
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The learning environment of setting 2 is structured accordingly to setting 1, 

with modifications in the experimental structure of the contexts: in the 

preparation phases the students estimate subsequent values of a quantity 

represented in the hands-on material, before they use simulations to identify the 

relation between quantities. In the following experimental phase, the students 

observe the variation and covariation of the quantities in the simulations and 

verbally describe the relationships discovered. Subsequently graphs are 

generated within the simulations and in the post-processing phase students are 

asked to analyse the form of the graphs and connect their insights with the 

relationship described in the previous phase. Similar to setting 1 the students 

then team up with their partner and share their insights, but here they are asked 

to compare both contexts and identify similarities in the relations. In an 

additional phase they take measurements in the context of their partner, 

represent the covariation in the measurement table and compare this to the 

results reported by their partner. As a final task the partners are asked to group 

the contexts by their kind of covariation, i.e. build pairs of similar contexts 

based on their findings.  

The settings can be accessed in digital classrooms: 

www.geogebra.org/classroom Code: HQX7 UZRQ for the numerical Setting (1) 

“Team of Engineers”    

Code: D3XM DDSB for the covariational Setting (2) “Team of Architects”.  

STUDY DESIGN 

A comparative intervention study (pre-post design) contrasts the two 

approaches with regards to their effect on students’ functional thinking to 

answer the following research question: 

1. Do both settings (numerical and covariational) based on experiments 

with hands-on material and computer-based simulations (GeoGebra) 

lead to significant effects on the FT of seventh graders?  

2. Does the covariational setting lead to a significant different effect on FT 

than the numerical setting? 

The intervention is designed for six lessons (split into three sessions) in the 

seventh grade and comprises of. It is preceded and followed by a short test on 

functional thinking (FT-short, 27 items, Rasch-scalable, see Digel and Roth 

2020, online version of test: www.geogebra.org/m/undht8rb), to compare the 

learning outcomes in both settings. Students work in groups of two pairs and 

two focus groups (low-/high-performer in FT-short) per school class are 

videotaped. For an in-depth analysis on the learning progression throughout the 

intervention it is planned to evaluate the student products and videotapes 

regarding the aspects of functional thinking in general (Lichti 2019) and 

covariational thinking in particular (levels of covariational reasoning, 

Thompson and Carlson 2017).  
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A pilot study (Digel and Roth 2020) verified the comparability of the two 

approaches in terms of processing time and difficulty. Due to the corona 

shutdown the intervention was adapted to an online classroom supplemented 

with a “math box” containing the hands-on material. The qualitative analysis of 

group interaction was replaced by an expert rating and a reflective analysis with 

student teachers.   

METHOD 

Here we present preliminary results of the ongoing main study. It is an 

intermediate quantitative analysis on the data collected so far. Four additional 

intervention groups (N~100) are scheduled from January to May 2021 and a 

control group is planned as well. A statistical power analysis (2 groups, 2 

measurements, power .85, α =.05) for a medium effect (ηp
2 = .06) in a mixed 

ANOVA gave a desired sample size of N = 144. 

Data analysis was conducted according to Item Response Theory. The 

dichotomous one-dimensional Rasch model and the virtual persons approach 

were used to estimate an item difficulty for every item of FT-short (N = 132). 

The person ability was then estimated with fixed item difficulties. We applied a 

mixed ANOVA (between factor: numerical/covariational setting; within factor: 

time) after controlling data for normal distribution and homogeneity of 

variance. Pairwise t-tests were used to investigate differences of both settings. 

RESULTS  

The estimation of the Rasch-model, which was used to determine the person 

abilities, showed good reliabilities in the pre- and post-test: EAP-Relpre = .73 

and EAP-Relpost = .77 as well as WLE-Relpre = .73 and WLE-Relpost =.76. 

The mixed ANOVA (see Figure 3 left) resulted in one significant effect and one 

minor effect: First, there was a significant main effect for time F(1.64, 0.42) = 

45.54, p <.001, ηP
2 = .42. The results in FT-short for the total sample (numerical 

and covariational setting together) increased significantly with a large effect 

from M= −.61 logits (SD = .96) up to M= .21 logits (SD = .99). The subsamples 

of both settings did not differ before the intervention (t(64) = −.55, p=.132), but 

results of both increased significantly from pre- to post-test (numerical: t(66) = 

−2.61, p =.005, d= .32; covariational: t(62) = −3.84, p <.001, d= 0.50). The 

mixed ANOVA also showed a non-significant interaction effect between time 

and setting (F(1.64, 0.42) = 1.32, p =.256, ηp
2 =.02).  

The intersecting discrepancy in the effect sizes (pre/post) for both settings 

indicate a difference, that could possibly not be identify due to the lack of 

statistical power. Since there were large SDA SD for both groups a second 

analysis was performed on a subset of FT-short, using the 27 items assigned to 

covariation and object aspect of functional thinking, representing a concept of 

functions developing towards a process scheme. 
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Figure 3: Increase in FT-short (left) and reduced FT-short (right): 

comparison of covariational (A) and numerical (I) setting in pre- and post-test 

The estimation of the Rasch-model, which was used to determine the person 

abilities in the reduced FT-short showed acceptable to good reliabilities in the 

pre- and post-test: EAP-Relpre = .71 / EAP-Relpost = .74 as well as WLE-Relpre = 

.67 / WLE-Relpost =.73. 

The mixed ANOVA (see Figure 3 right) resulted in two significant effects: 

again, there was a significant main effect for time F(1.64, 0.42) = 43.11, p 

<.001, ηP
2 = .40. The results in reduced FT-short for the total sample (numerical 

and covariational setting together) increased significantly with a large effect 

from M= −1.23 logits (SD = 1.12) up to M= -.45 logits (SD = 1.08). The 

subsamples of both settings did not differ before the intervention (t(62) = −.33, 

p=.371), but results of both increased significantly from pre- to post-test 

(numerical: t(66) = −1.85, p =.034, d= .23; covariational: t(62) = −3.84, p <.001, 

d= 0.51). The mixed ANOVA also showed a significant interaction effect 

between time and setting (F(1.64, 0.42) = 3.58, p =.050, ηp
2 =.053).  

The sum scores of the six items that were excluded from the FT-short were not 

significantly different between both settings in the pre- and post-test (pre: t(62) 

= .52, p =.696; post: t(64) = .59, p =.772). Sum scores are reported here since 

the subset of these items was not Rasch-scalable.  

DISCUSSION 

The results show an increase of FT in both settings from pre- to post-test, with a 

small effect for the numerical setting (FT-short d=.32 / reduced FT-short d=.23) 

and a medium effect for the covariational setting (d= .49 / reduced d=.51). 

There seems to be an influence of both interventions on FT. Regarding the 

function concept and the intended covariational thinking, we found a first 

indication, that the covariational setting seems to be more suitable to foster this 

aspect: there was a small to medium interaction effect of time and setting 
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(F(1.64, 0.42) = 3.58, p =.05, ηp
2 =.053). The results of FT-short in the items for 

covariation and object aspect increases significantly more in the covariational 

setting. Hence for our first research question, we can conclude that both 

learning environments, as designed in this study, lead to a significant increase of 

students’ FT. Considering the second research question, there is no evidence on 

significant differences on FT in general, but our results indicate that the setting 

with a focus on covariation tends to be more suitable to foster the covariation 

and object aspects of FT than the numerical approach. Since no data for a 

control group is available at the moment and with regards to the sample size that 

does not match the power analysis, this conclusion must be handled with 

caution and needs to be verified. Results on the extended sample will be 

presented at the conference. Overall, our results are not generalizable, they 

depend on the concrete settings developed in the study as introductory course 

for sixth to seventh graders. 

Nevertheless, with reference to our theoretical background, we can assume that 

in both settings hands-on material and simulations are combined in a supportive 

way for the instrumental genesis. The results for the reduced item set of FT can 

be interpreted as a first indication that the covariation aspect of FT is also 

accessible to learners in introductory courses on functional relationships and can 

be fostered through non-numerical experiments with simulations and hands-on 

material. Moreover, this benefit for the covariational aspect is not on the 

expense of the correspondence aspect.  
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There is a growing interest in the international mathematics education 

community in research on teacher noticing as an important component of 

teaching expertise. However, it is likely that often the researchers’ 

understanding of good instructional quality influences what they expect 

teachers to notice. It is particularly not clear if and how different cultural 

norms of instructional quality influence how teacher noticing is operationalized 

in East Asian and Western cultures. Therefore, our cross-cultural research 

project on teacher noticing in Taiwan and Germany focuses in a first step on 

eliciting such expert norms. By means of a vignette-based online expert survey, 

we explored culture-specific norms regarding instructional quality. In this 

paper, we provide evidence of culturally different norms for dealing with 

students’ thinking. 

INTRODUCTION 

Students’ mathematical thinking is a focus that has been frequently used for 

investigating and developing teacher noticing – especially in the US context 

(e.g., Colestock & Sherin, 2015; Jacobs, Lamb, & Philipp, 2010). An 

underlying reason for this focus is the idea that instructional quality depends 

heavily on whether and how teachers attend to, interpret, and deal with students’ 

thinking in the mathematics classroom. Corresponding research usually uses – 

at least implicitly – a frame of reference for what the teachers are expected to 

notice (so-called “target noticing”, Stockero & Rupnow, 2017). However, it is 

well known that Western and East Asian perspectives on what constitutes high 

quality mathematics classrooms are different in many aspects (Leung, 2001). 

Since such different norms probably influence how teacher noticing regarding 

students’ thinking is assessed by researchers in different cultures, it is 

questionable whether such research can be cross-culturally valid (Clarke, 2013). 

Therefore, it is important in our inter-cultural research community to make such 

culture-specific norms, which may influence how teacher noticing is assessed, 

explicit and take them into account for the interpretation of findings. 

Consequently, this research report focuses on revealing how researchers’ (i.e., 
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experts’) norms for dealing with students’ thinking can be different from a 

Western and an East Asian perspective. 

THEORETICAL BACKGROUND 

Especially in the last decade, teacher noticing has been established as an 

important component of teaching expertise in the international research 

community in mathematics education. Although different conceptualizations of 

teacher noticing can be found in the growing body of research, essentially, they 

encompass the perception and interpretation of relevant features of instructional 

situations (Sherin, Jacobs, & Philipp, 2011). Hence, in line with Sherin (2007), 

we understand teacher noticing as attending to aspects of classroom situations 

that are relevant for instructional quality (selective attention) and interpreting 

them by drawing on corresponding professional knowledge and beliefs 

(knowledge-based reasoning). Similarly, many different operationalizations of 

the construct exist, but it is widely accepted that vignettes in the form of short 

videos, comics, or transcripts can be used as representations of practice. 

Furthermore, a common “operational trick” for assessing teacher noticing is to 

design or select vignettes in a way that in the represented instructional situation 

something occurs that does not meet the expectations of “good” teaching, that 

is, they include a breach of a norm regarding some aspect of instructional 

quality (e.g., Dreher & Kuntze, 2015; Herbst & Kosko, 2014). The teachers’ 

reaction in response to these critical incidents is then used as an indicator for the 

specific noticing expertise. 

This kind of operationalization makes particularly obvious that norms regarding 

aspects of instructional quality play a double role in teacher noticing research: 

Such norms are assumed to shape what teachers notice and they also form the 

frame of reference that is already implemented (more or less explicitly) in the 

operationalization by the researchers. In particular, researchers use the 

consistency of their own norms with what teachers notice as an indicator for 

noticing expertise (e.g., Stockero & Rupnow, 2017). Hence, it is not clear 

whether such research can be cross-culturally valid, since corresponding norms 

may be culture-specific (e.g., Louie, 2018). 

Especially East Asian and Western cultures, it is well-known that different 

perspectives on mathematics classrooms exist. Leung (2001) contrasted for 

instance characteristics and underlying values of East Asian and Western 

mathematics education by means of six dichotomies: product versus process; 

rote learning versus meaningful learning; studying hard versus pleasurable 

learning; extrinsic versus intrinsic motivations; whole class teaching versus 

individualized learning; and competence of teachers: subject matter versus 

pedagogy. He emphasized that these distinct characteristics “are based on deep-

rooted cultural values and paradigms” (p. 35) and thus influence the 

perspectives of mathematics educators on mathematics classrooms. He pointed 
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out for instance that although mathematics educators from both East Asian and 

Western countries would say that mathematics is both the product (a body of 

knowledge with distinctive knowledge structure) and the process (a distinctive 

way or process of dealing with particular aspects of reality), their position on 

the continuum between the two extremes is different: While the contemporary 

Western perspective is that the process of doing mathematics is more important 

than the content arising out of the process, the East Asian perspective is rather 

that ultimately the content and its correctness are essential (Leung, 2001, p. 39). 

Although there is also diversity within and among Western countries as well as 

East Asian countries (e.g., Clarke, 2013), Germany and Taiwan can be 

considered as representatives of Western and East Asian cultures in this respect 

(Yang et al., 2019). Against this background, it can be assumed that aspects of 

instructional quality, which are in the focus of research on teacher noticing are 

perceived differently from researchers in Taiwan and Germany. Specifically 

regarding the focus of students’ thinking, Colestock and Sherin (2015) 

identified for instance different purposes for attending to student’ mathematical 

thinking, which may depend on different overarching instructional goals, such 

as diagnosing student errors or misunderstandings that need to be addressed or 

looking for students’ ideas that have the potential to serve as the foundations for 

new understandings. In their study, they explored different teacher-identified 

purposes for attending to students’ mathematical thinking and found that the 

teachers focused on these purposes to various degrees. However, Colestock and 

Sherin (2015) did not take into account the perspectives of experts in 

mathematics education or different cultural contexts and hence it is still an open 

question whether there exist different cultural norms for attending to and 

dealing with students’ thinking in the mathematics classroom. 

OBJECTIVE 

According to the need for research pointed out in the previous section, the 

objective of this research report is to illustrate how expert norms for dealing 

with students’ thinking can be different from a Western and an East Asian 

perspective. 

SAMPLE AND METHODS 

The vignette that we focus on in this contribution (see Figure 1) is part of a 

larger bi-cultural instrument developed in a process comparable to the dual-

focus approach (Erkut et al., 1999). The vignette was authored by the 

Taiwanese researchers in our team. Accordingly, from their perspective, the 

represented classroom situation contains a breach of a norm regarding how the 

teacher deals with students’ thinking. In this case: The teacher does not address 

S1’s misunderstanding and inadequate use of strategy (over-generalizing the 

strategy applicable in the case “𝑓 × 𝑔 = 0”) properly. 
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Figure 1: Taiwanese vignette focusing on students’ thinking 

When the German researchers in our team saw this vignette, they agreed with 

the idea that the teacher should have asked S1 how he or she obtained the 

answer. However, they had problems to see a misunderstanding or an 

inadequate strategy. We figured that these different perspectives on the 

student’s thinking in this classroom situation may not be restricted to our 

research teams and thus we anticipated underlying cultural differences between 

the perspectives of Taiwanese and German experts in mathematics education. 

To investigate whether this was indeed the case or whether this was just a 

matter of different perspectives in mathematics education in general, this 

vignette was presented to Taiwanese and German professors of mathematics 

education in an online expert survey.  

This online survey was conducted in the native languages of the experts 

(Chinese/German). The necessary translation processes were carried out 

according to the ITC Guidelines for Translating and Adapting Tests (ITC, 

2017). A sample of n1=19 Taiwanese professors (6 females, 13 males) from 10 

universities and a sample of n2=19 German professors (5 females, 14 males) 

from 14 universities completed the survey. All of them were researchers as well 

as educators in mathematics education. Most of them had experience as school 

teachers (TW: 14, GER: 17) and some of them had also conducted research in 

mathematics (TW: 5, GER: 6). To capture the experts’ frame of reference for 

investigating teacher noticing with a focus on students’ thinking, the experts 

were asked to answer the same open-ended prompt that would be used to assess 

corresponding teacher noticing: ”Please evaluate how the teacher deals with 

students' thinking in this situation and give reasons for your answer.” 

Their evaluations were analyzed with respect to two main aspects: 1) Did they 

see some breach of a norm regarding the teachers’ dealing with S1’s thinking? 
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And if so: 2) Which norm was breached from their perspective? Hence, in a first 

step, the answers of the participants were coded in a top-down process 

regarding the question whether the teachers’ dealing with S1’s thinking was 

evaluated as insufficient/inadequate. In a second step, the answers were 

analyzed regarding the question why the teacher’s dealing with S1’s thinking 

was evaluated negatively in order to infer which norm was breached from the 

perspective of the expert. This step was partly inductive: On the other hand, we 

coded whether the experts saw the same norm being breached as the developing 

Taiwanese researchers (S1’s misunderstanding and inadequate use of strategy is 

not addressed). Likewise, as mentioned above, we expected especially the 

German experts may see different reasons. Hence, reasons indicating a different 

norm were also extracted inductively from the experts’ answers.  

To allow all authors to engage in the coding process of all experts’ answers and 

to compare them directly across cultures, the answers were translated into 

English and all the language versions were included in the coding processes. 

Moreover, all of the answers were coded independently twice by all of the 

authors: In a first round, the coding scheme was complemented inductively and 

in the second round the resulting coding scheme was applied to all of the 

answers. In both rounds, the coding was first compared within the national 

research teams and discrepancies were resolved through discussion. 

Subsequently, the resulting national coding was compared again, in case of 

discrepancies, a consensus was reached through discussion.  

In view of the aim to identify culture-specific or inter-cultural norms of 

instructional quality regarding the aspect “dealing with students’ thinking”, we 

finally took a look at how many of the experts in each country recognized a 

breach of a specific norm regarding this vignette. For interpreting this result, it 

should be considered that even if a specific norm exists, it cannot be expected 

that all the experts’ answers indicate that they noticed the corresponding breach. 

There may always be individual experts who do not agree with commonly 

accepted norms in their culture. Furthermore, like teachers, the experts had to 

accomplish a process of noticing which becomes visible in their answer in way 

that we could code it accordingly. Thus, we assumed that if most of the experts 

from one country actively recognized the breach of a specific norm, then there 

was strong evidence for the existence of this norm in the corresponding culture. 

RESULTS 

As the Taiwanese team authored this vignette, we start by focusing on the 

answers of the Taiwanese experts, in the sense of a validation within a culture. 

Indeed, almost all answers (17 out of 19) indicated negative evaluations of how 

the teacher dealt with Student 1 (S1)’s thinking, suggesting these experts saw 

breach of a norm for dealing with students’ thinking. A total of 11 experts’ 

answers indicated that they assumed that S1’s answer shows a problem to be 
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addressed (misunderstanding/inappropriate strategy), which was not done 

properly by the teacher. These experts recognized the breach of the norm, which 

was implemented by the Taiwanese research team. To get some insight into 

these kinds of experts’ answers, we will now focus on two typical examples. 

TW1: The teacher allowed two students to propose their answers. However, after 

detecting that one student’s answer was incomplete, the teacher did not ask 

him further, how he got the answer to guide him to figure out where the 

problem is on his own. 

TW2: […] the teacher gave a correct method but did not bother to find out why S1 

found only one solution. 

Both experts criticize that the teacher did not ask S1 how he got his answers, 

indicating that they recognized a breach of a norm for dealing with students’ 

thinking. While TW2 identified a problem in the fact that S1 found only one 

solution, TW1 makes even more explicit that there is a problem to be addressed 

regarding S1’s thinking. 

In view of the answers by the German experts, it became quickly obvious that 

the situation was different: While also most of the German experts saw some 

kind of breach of a norm for dealing with S1’s thinking, only one answer 

indicated that a problem was seen in S1’s thinking that should have been 

addressed. Instead, different reasons for why the teacher should have dealt 

differently with S1’s thinking were mentioned. To provide insight into these 

kinds of answers, we will give three examples. 

GER1: […] The fact that S1 immediately saw a solution in the given equation, 

namely 2, is an expression of number sense or structure sense. However, 

this achievement remains completely without recognition by teacher in 

this situation. […] 

GER2: The teacher does not appreciate the achievements of the students to find 

solutions through thinking. However, it is appropriate to address other 

ways of solution as well. 

GER3: The teacher ignores the students’ abilities to use the method of looking 

closely (or Viéta’s formula). The teacher wants the students to use the 

standard way of solution via the “Mitternachtsformel” or p-q formula. 

This hinders the development of flexible solution strategies by the 

students. […] 

Hence, from answers like these, another kind of reason for seeing the teachers’ 

dealing with S1’s thinking as inadequate/insufficient was extracted and added to 

the coding scheme: S1’s answers hint at a valuable mathematical ability or 

strategy, which should have been appreciated and encouraged. To investigate 

further, whether these two perspectives reflected culture-specific norms of 

instructional quality regarding dealing with students’ thinking, the resulting 

coding scheme was applied to all the experts’ answers as described above. This 
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is allowing to distinguish the following cases: i) breach of originally 

implemented norm recognized; ii) breach of alternative norm recognized, and 

iii) breach of unidentifiable norm recognized or no breach of a norm 

recognized. For the first three cases, it was necessary that the teachers’ dealing 

with S1’s thinking was evaluated as insufficient/inadequate. Which of the three 

cases were applied depending on the kind of reason that was identified for this 

evaluation. The comparison of the number of these cases among the experts in 

Taiwan and Germany presented in Table 1 clearly shows the differences. Most 

of the Taiwanese experts actively recognized the breach of the norm 

implemented by the Taiwanese research team. Most of the German experts’ 

evaluations indicated that they recognized a breach of a different norm 

corresponding to another kind of purpose for attending to students’ 

mathematical thinking in this classroom situation (“mathematical 

strategy/ability to be valued”). 

 Taiwanese experts German experts 

Breach of “original” norm recognized 11 1 

Breach of “alternative” norm recognized 0 10 

Breach of unidentifiable norm recognized 6 4 

No breach of a norm recognized 2 4 

Table 1: Numbers of experts in each case 

DISCUSSIONS AND CONCLUSIONS 

Regarding a specific representation of practice, we illustrated how expert norms 

for dealing with students’ mathematical thinking can be different from an East 

Asian and a Western perspective. While experts from both countries pointed out 

that the teacher should have attended to the student’s thinking, different 

purposes for attending to students’ thinking (Colestock & Sherin, 2015) were 

identified: The majority of the Taiwanese experts assumed that the student’s 

answer shows a misunderstanding or inappropriate strategy to be addressed and 

the majority of their German counterparts assumed that the student’s answer 

indicates a mathematical ability or strategy to be valued. On other hand, these 

results suggest that attending to individual students’ thinking is considered as an 

important aspect of instructional quality in both countries. This may reflect the 

phenomenon that what is considered high-quality mathematics instruction in 

Taiwan today is not only shaped by traditional perspectives, but also by 

Western ideas of constructivist-based instruction, such as discussing individual 

students’ solutions as well as focusing on individual students’ thinking and 

misconceptions (Hsieh, Wang, & Chen, 2019). On the other hand, there appears 

to be a difference between Taiwanese and German experts regarding what is the 

most important frame of reference for the interpretation and evaluation of the 
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students’ thinking: the content and its correctness or the students’ processes of 

doing mathematics. This result may be interpreted as evidence for how the 

deep-rooted cultural values underlying Leung’s (2001) dichotomy product 

versus process still shape the perspectives of researchers and educators in 

mathematics education on dealing with students’ mathematical thinking in a 

specific classroom situation.  

Before discussing possible implication for international research on teacher 

noticing, we would like to recall the limitations of this research, which suggest 

interpreting the evidence with care. Although the experts in the sample of this 

study were professors in mathematics education from many different 

universities and the response rate was about 60% in both countries, it is not 

entirely clear whether these experts’ answers can fully represent the 

perspectives of mathematics education researchers and educators in Taiwan and 

Germany. Furthermore, the results of this research report are based on only one 

vignette. The analysis of our data regarding further vignettes will soon allow us 

to draw a broader picture. Moreover, further research should complement these 

findings by means of different methodological approaches. 

Bearing this in mind, our findings give, however, insight into different expert 

norms for dealing with students’ mathematical thinking in different cultures. In 

view of the fact that such different norms may influence how teacher noticing 

regarding students’ thinking is assessed by researchers in different cultures, it is 

questionable whether and how such research can be cross-culturally valid 

(Clarke, 2013). Therefore, the question of how teacher noticing can be 

investigated in a way that is sensitive to different cultural context certainly 

merits attention in our international research community. 
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This study focuses on gaps between the knowledge which functions-as-if-shared 

in a class as a collective and the knowledge that is used by each individual 

student. We analyze to what extent knowledge and ideas that are shared by the 

class community are available to and have been applied by the individual 

students. The research is based on data collected in an introductory course on 

chaos and fractals. The course included challenging inquiry activities that led 

to genuine argumentation, and to the emergence of quite a few new (for the 

students) mathematical notions. Initial findings present important gaps. We 

investigate to what extent these gaps can be explained by individual students’ 

problem-solving skills, in heuristics. 

INTRODUCTION 

Understanding learning in mathematics classrooms requires coordinated 

analysis of individual learning and collective activity in the classroom (e.g., 

Cobb, Stephan, McClain, & Gravemeijer, 2001). A considerable amount of 

research has been dedicated to documenting collective classroom activity or 

group activities without considering individual students (e.g., Conner, 

Singletary, Smith, Wanger & Francisco, 2014; Stephan & Rasmussen, 2002). 

The research presented here investigates whether there are important gaps 

between the knowledge of individual students and the knowledge shared by the 

class as a collective. We performed a coordinated analysis of class discussions, 

followed by individual problem-solving in an interview situation. The class 

discourse was analyzed using the Documenting Collective Activity (DCA) 

methodology (Rasmussen & Stephan, 2008). The problem-solving activity was 

analyzed based on existing methodologies of problem-solving (Schoenfeld 

1992; Carlson & Bloom 2005). 

The mathematical domain selected for our research was chaos, fractals, and 

dynamical systems. Chaos is a phenomenon wherein a deterministic rule-based 

system appears to behave unpredictably. It is characterized by mathematical 

ideas whose in-depth comprehension is challenging. A major reason for 

selecting this domain are the counter-intuitive situations it affords; these 

situations give rise to challenging problems, for which deep and thorough 
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knowledge is crucial; therefore, they are useful for the investigation of problem-

solving behaviors. 

THEORETICAL BACKGROUND 

Collective activity is a sociological construct that addresses the construction of 

ideas through patterns of interaction (Rasmussen & Stephan, 2008). More 

specifically, this activity is defined as the normative ways of reasoning that 

develop in a classroom community. DCA methodology proposes a rigorous 

approach for analyzing this communal activity. It uses Toulmin’s (1969) model 

which considers an argument as composed of data, claim, warrant, rebuttal, 

backing and qualifiers. DCA uses three criteria to identify when a mathematical 

idea or way of reasoning becomes normative and functions in the classroom as 

if it is shared.  “Function-as-if-shared” (FAIS) means that particular ideas or 

ways of reasoning are functioning in classroom discourse “as if” everyone in the 

classroom community reasoned in a similar manner. It should be noted that only 

some mathematical ideas discussed in class become FAIS. 

Knowledge accumulated in problem-solving (PS) has shed light on both, what 

mathematical thinking involves and how learners can construct robust 

knowledge in problem-solving environments (Schoenfeld 1992). In this 

research, we focus on two major aspects of PS: Firstly, the use of PS 

methodology for analyzing students’ problem solution and knowledge 

reconstruction processes; secondly, PS heuristics, their variety, taxonomy and 

usage as fundamental means in students’ PS processes. A heuristic is "a 

systematic approach to representation, analysis and transformation of scholastic 

mathematical problems that solvers use (or can use) in planning and monitoring 

their solutions" (Koichu, 2010). 

The Multidimensional Problem-Solving Framework (MPSF) developed by 

Carlson and Bloom (2005) offers a method for investigating and explaining 

mathematical problem-solving behavior. The framework defines four phases 

during problem-solving, namely orientation, planning, executing, and checking. 

We used MPSF for analyzing how a student applies FAIS knowledge when 

dealing with the interview problems. We use the term gap to refer to all 

mathematical ideas which were observed to FAIS in the class but were not or 

incorrectly applied by a student during the interview. 

Dynamical systems (DS) theory is an area of mathematics used to describe the 

behavior of a time-dependent system, usually by employing differential 

equations or difference equations. The subset of dynamical systems which is 

relevant to our research is that of iterated functions (Feldman, 2012). The 

process of repeatedly applying the same function is called iteration. In this 

process, starting from some initial number 0x , a given function is iteratively 

applied, thus generating an infinite sequence called orbit. An initial number p 

satisfying f(p)=p is called a fixpoint. An orbit might reach or tend to a fixpoint. 
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A fixpoint is called attractor (ATT) if it attracts any orbit in a small 

neighborhood. The behavior of dynamical systems can be analyzed analytically 

and graphically. The basic graphical tool is called Cobweb (see Figure 1). 

Analytically, the value of the first derivative of f at the fixpoint xfp indicates 

whether xfp is an attractor ( ( ) 1fpf x  ) or not. This is called the fixpoint stability 

theorem (FPST). 

 

 

 

 

  
Starting from 0

x , drawing a 

vertical segment to f followed 

by a horizontal segment to y=x. 

 

, drawing a Starting from 

 

Figure 1: A cobweb plot (dashed segments) 

RESEARCH QUESTIONS 

1. In a class learning about chaos and fractals, which mathematical ideas 

related to attractors function-as-if-shared (FAIS) by the class? 

2. Among the FAISes identified in 1, which ones are used, possibly after 

reconstructing them, by individual students in interviews, and which 

ones are not used, thus suggesting the existence of gaps? 

3. If a student closes an initial gap by reconstruction during the 

individual interview, can the reconstructing process be explained by 

PS notions? 

While this paper focuses on ATT, other notions of DS have been analyzed 

similarly. 

RESEARCH DESIGN AND METHODOLOGY 

To answer the research questions, we needed data from a class as well as data 

from students’ individual interviews. To identify ways of reasoning that FAIS, 

we looked for a classroom where all members were actively engaged in 

producing, challenging, and modifying arguments. We chose an introductory 

course to chaos, fractals, and dynamical system for graduate level mathematics 

education students at an Israeli university. The course had 11 participants. Their 

degree program required a substantial mathematics component, and the chaos 

and fractals course fulfilled part of that requirement. 
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A typical course session consisted of presentation of a new notion, such as ATT 

by the teacher, followed by group work and whole class discussions designed to 

develop the notion’s properties and relationships. Lessons were video-taped, 

transcribed and analyzed. Interviews on ATT were held with nine of the 

students about a month after the relevant lessons. The relevant part of the 

interview protocol dealt with orbits of an iterated function, cobweb diagrams, 

fixpoints and attractors.  

The data analysis comprised three stages: Firstly, we analyzed the FAIS 

knowledge of the class using DCA analysis of the whole class discussions, 

resulting in a list of FAISes related to ATT. Secondly, we analyzed the 

interviews to identify which of these FAISes that each student mentioned or 

used; we categorized these uses into three levels: A - the student used the FAIS 

fully and correctly; B - the student used the FAIS partially; C - the student 

incorrectly used the FAIS or did not use it in spite of having an opportunity to 

use it. This resulted in a list of gaps: All cases of levels B and C. In the third 

stage, we focused on those cases in which a student reached either level A or 

level B by reconstructing their knowledge during the interview. On these cases, 

we carried out an MPSF analysis to identify the PS phases as well as the 

heuristics used by the student and examined how the heuristics supported the 

reconstruction. 

FINDINGS 

Stage 1: DCA Analysis 

The DCA analysis resulted in a total of 51 mathematical ideas which 

functioned-as-if-shared by the class. Here we focus on the ones related to ATT: 

• ATT term: An attractor is a term used in DS. 

• ATT definition: A fixpoint p  of the dynamic process generated by f  

is attractive, if there is a neighborhood of p  such that for any point x  

in this neighborhood, the x -orbit converges (in a finite or infinite 

sequence) to p . 

• ATT meaning: An attractor p  means that if the orbit is slightly 

"bumped" away from p , the orbit subsequently moves back to p . 

• ATT graphical solution: A fixpoint p  is potentially ATT if a cobweb 

starting in a neighborhood of p  moves back to p . 

• ATT analytical solution: A fixpoint p  is ATT if ( ) 1f p  . 

One important element of the analysis is our distinction between ATT term, its 

definition, its meaning, and its applications. This allowed us to refine our study 

of FAIS knowledge by students over a scale from lack of knowledge, 

remembering the term, via mastering the definition, up to competency in using 

and applying the knowledge in various scenarios. 
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Stage 2: Interview Analysis: Levels of Students’ Use of FAISes 

The interview analysis provided the proficiency level of every student per each 

of the five FAISes. Three levels were defined to evaluate the extent to which the 

student mastered a FAIS. Tables have been prepared for each notion; an 

example related to ATT is given in Figure 2. 

In this case the aggregated results of mastering FAISes by level are: A - 41%, B 

- 17%, C - 22%, and undetermined - 20%. By undetermined we refer to FAISes 

which students did not have the opportunity to relate during the interview. 

 

Figure 2: Student FAISes proficiency map for attractor (ATT) 

Stage 3: Interview Analysis by MPSF Protocol 

Our PS analysis protocol focused on students’ problem-solving phases and their 

use of heuristics. Special attention was given to 11 major heuristics which were 

either classified as useful by experts (Koichu, 2010) or appeared more than 

three times throughout all interviews. This stage resulted in a description of the 

variety of the heuristics that the student used while solving the problems in the 

interview and the general work-flow of the student according to MPSF phases 

(see four examples in Table 1). 

Heuristic Description 

Break down into modular 

sub-problems 

When the problem is difficult, trying to 

decompose it and examining smaller independent 

parts 

Use multiple 

representations 

Representing a problem by means of a 

representational system different from the given 

representational system 

Examine extreme cases Choosing extreme cases (e. g. a function with a 

large slope) to observe attributes at extreme ends 
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Working backwards, 

reverse thinking 

Imagining having solved the problem and work 

backwards from visualizing the solution to the 

problem. 

Table 1: Examples of major heuristics 

In the following section we provide an in-depth analysis of one student, Bzl. We 

present his solution process for finding the ATTs for a given iterative function 

graph (Figure 5), which Bzl could not immediately answer. The analysis 

presents the mathematical solution behavior with special attention to heuristics 

which led to a successful response, bridging what initially was a gap. We 

selected this example since Bzl was a knowledgeable student (PhD in 

engineering) and very cooperative. He reflected deeply and shared his thoughts 

in a detailed manner. 

 

Task 2.c.iv: Fixpoint type 

 

Task 2.c.iv: Fixpoint type 

 

Task 2.c.iv: Fixpoint type 

 
 

Figure 3: Interview task 

Bzl identified the three fixpoints and then continued with a global analysis, 

although the question referred to local points. "We can say that the world is 

divided into four parts" (Line 21); he used the heuristic of breaking-down the 

problem into modules, the four regions between the fixpoints. Using this 

heuristic was unusual: Most other students started with a local fixpoint analysis 

or did not manage to continue at all. 

Then, Bzl decided to navigate by random selection of a single region, selection 

of a point in this region, and using a cobweb diagram for graphically analyzing 

the orbit behavior around the middle fixpoint ("It maybe stated that the world is 

split into 4 regions and then I can randomly check what happen in each one of 

them", Line 22). 

Bzl did not remember how to draw a cobweb, but he managed to reconstruct 

this FAIS, step by step. We describe his PS process in detail, pointing to the 

observed heuristics according to MPSF. Later, after completing this task, Bzl 

explained that in similar situations he regularly uses a general heuristic: instead 

of remembering a mathematical item, understand the logic behind it and 

redevelop it. So, he knew where to begin and selected a starting point close to 

the designated fixpoint. He used the heuristic of check by example. He drew a 

Can you tell whether the 

fixpoints you identified on this 

graph are attractive? 



Dvir, Dreyfu, & Tabach 

2 -  242 

 

PME 44 -2021 

vertical line to the f-graph since "if I start here on the x-axis, I know where f(x) 

is" (Line 23). The next step is tricky, one must find the next iteration. So, Bzl 

continued with "now f(x) turns into be the x for the next iteration". He thought 

for about twenty seconds and then drew a horizontal line to the auxiliary y=x 

line (the heuristic: use auxiliary elements). Now he graphically managed to turn 

the y-coordinate into the x-coordinate for the next iteration. He completed the 

iteration by a similar move drawing again a vertical line and reached f(f(x)). He 

continued to contemplate the viability of his approach, by generalizing that "I 

can repeat that and see that we have some sort of a process" (the heuristic of 

generalization). He continued by drawing three more cobweb iterations. We 

may claim that Bzl managed to reconstruct the cobweb procedure, a FAIS 

which he did not immediately remember. 

The cobweb convinced Bzl that this fixpoint is an attractor. This could be 

considered as a complete answer. However, right after the execution phase, Bzl 

turned to a checking phase by asking himself: 

Bzl25: Is it enough? Does one location suffice? Is it the same from both 
directions? 

I26:   What do you mean by both directions? 

Bzl27:  In principle, I do not think that the point selection really matters. I 
can see that the general behavior will be similar.  

I28:  So? 

Bzl29: I start another one here if I want [draws additional cobweb]. I can 
see the general behavior, which means that I always move up, go 
here [horizontally to y=x] and I have the overall picture how the 
orbits behave. 

From a PS perspective, Bzl used the check by example heuristic, followed by 

the generalization heuristic since he identified the pattern of the cobwebs about 

the middle fixpoint. We summarize that during his iterative execution-checking 

process Bzl managed to progress by using several common heuristics. 

Bzl continued by providing a long explanation of what he meant by the 

geometrical patterns. In order to understand the dynamic process behavior in the 

neighborhood, he had to build auxiliary segments between the function graph 

and the graph of y=x and analyze them graphically in combination with the 

algebraic meaning of moving between the graphs. He restored the cobweb 

algorithm by using multiple representations. In his own words: "I don't know 

why I was stuck here. When you move from this point, which is an intersection, 

you had to move up since you want to apply this value to f(x). And then you 

move back to y=x..." (Line 37). 

When summarizing his solution process, Bzl exposed an additional layer of 

thought. "The split into regions was not random... I think that the guiding 

principle was to start by observing something, decompose it, and this way I can 
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move from the micro to the macro and vice versa.". Evidently, Bzl had very 

good reflection skills, which significantly helped in understanding his 

mathematical thoughts.  

We observed that Bzl used relatively large variety of heuristics and closed the 

temporary gap by reconstructing the relevant FAISes of ATT and cobweb. 

During the solution process he moved in cycles of execution-checking phases, 

skipping the planning, a solution behavior which resembles experienced 

mathematicians (Carlson, 2005). He was flexible and managed to change his 

focus and navigate between global and local views, which is prevalent among 

experienced mathematicians. 

DISCUSSION 

In response to the first question, the learning processes by group inquiries and 

class discussion in the specific chaos and fractals course resulted in a large 

number (51) of mathematical ideas which functioned-as-if-shared in the class. 

However, moving on to the second research question, we found gaps between 

what FAIS in the class and what students individually applied. Furthermore, we 

found interrelationships between a student’s heuristic literacy and their ability to 

bridge initial gaps by reconstructing in the interviews. In particular, the 

heuristics proficiency, as shown in our research, might make the difference 

between students who manage to reconstruct and rebuild what they learned in 

class, and students who do not. The reasons for the gaps call for additional in-

depth future research, but their existence is ground for caution since the teacher 

might assume that the class masters FAISes, although the reality is different. 
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Aiming at unfolding possible cultural differences concerning pre-service 

teachers’ beliefs towards mathematics and its teaching, this paper presents a 

comparative study between nearby regions: Italy and Germany. The sample is 

composed by 460 pre-service teachers from three universities, one in Germany 

and two in Italy, one of them close to the Austrian border and multilingual. 

Using a clustering technique, we analyse responses to two multiple-answer 

questions, and we compare the composition of the obtained clusters in terms of 

linguistic background and origin. Relevant differences are evidenced and 

explained, at least partially, in terms of cultural differences. 

INTRODUCTION 

The importance of the effects of teachers’ beliefs on their practice was the 

motivation for the extensive research on teachers’ beliefs (cf. Fives & Gill, 

2014). However, a major obstacle in interpreting locally obtained results about 

teachers’ beliefs from an international perspective is given by the impact of 

local culture on teachers’ beliefs (Felbrich, Kaiser, & Schmotz, 2012; Hofstede, 

1986; Romijn, Slot, Leseman, & Pagani, 2020). Whereas Hofstede (1986) refers 

to cultural differences from a global perspective including the effect of high or 

low individualism that divides, for example, Europe from Asian countries, 

Romijn et al. (2020) refer to differences in beliefs of teachers from European 

countries. Thus, a seemingly homogenous cultural region may comprise cultural 

differences that are apparent in teacher’ beliefs. Following this line of research, 

our research aims at providing a contribution to unfold possible cultural 

differences concerning teachers’ beliefs towards mathematics and its teaching in 

two nearby regions, Italy and Germany.  

Following Felbrich and colleagues (2012) we understand common experiences 

of a group of people that are shared through generations as the basis of culture. 

Furthermore, according to Hofstede (1986, p. 314), we conceive language as 

“the vehicle of culture”. We investigate Italian and German pre-service 

teachers’ beliefs as a specific expression of culture. Taken the linguistical 
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influence into account, we also consider Italian pre-service teachers from a 

border region where some teachers use German language and other teachers 

speak Italian at school and in their daily life.  

THEORETICAL LENSES ON TEACHERS’ BELIEFS 

We refer to beliefs on the basis of two aspects: First, teachers’ beliefs as part of 

teachers’ mathematics related affect (Hannula, 2012) play an important role in 

teachers’ professional lives (Calderhead, 1996).  For example, Eichler and 

Erens (2014), starting from the definitions by Pajares (1992) and Philipp (2007), 

understand the term beliefs as an individual’s personal conviction concerning a 

specific subject, which shapes an individual’s ways of both receiving 

information about a subject and acting in a specific situation. Thus, beliefs 

strongly impact on the way teachers learn mathematics at universities and teach 

mathematics at school (cf. Philipp, 2007). As pointed out by Pajares (1992), 

teachers’ beliefs are often already developed during pre-service university 

courses; hence many studies focus on beliefs of perspective mathematics 

teachers (cf. Hannula, Liljedahl, Kaasila, & Roesken, 2007).  

The second one concerns the impact of cultural aspect on pre-service teachers’ 

beliefs towards mathematics and its teaching. One of the main obstacles to the 

general interpretation of results about to teachers’ beliefs obtained at national 

level is the influence of social and cultural factors on teachers' beliefs (Felbrich 

et al., 2012). Some studies highlight that the process of learning and teaching of 

mathematics is dependent on the teachers’ cultural background; this is 

evidenced both from global (Hofstede, 1986) and European (Romijn et al., 

2020) perspectives.  

Our research moves within this stream of thought and our aim is to investigate 

the cultural differences concerning teachers’ beliefs towards mathematics and 

the teaching mathematics in two nearby regions, namely Italy and Germany. In 

details, in this paper we focus on pre-service teachers’ beliefs about features 

that are decisive both for being successful in mathematics and performing well 

as teacher. As detailed below, we frame pre-service teachers’ beliefs about 

mathematics within the model of mathematical giftedness by Pitta-Pantazi and 

colleagues (2011); we frame beliefs about mathematics teaching within the 

Knowledge Quartet (Rowland et al., 2005). Our research question is: What 

differences can we observe in beliefs manifested by primary pre-service 

teachers from different cultural and linguistic backgrounds? 

METHODOLOGY 

Sample 

Our sample consists of students of the university of Bologna and the University 

of Bozen-Bolzano (Italy) and the university of Kassel (Germany). The 

University of Bologna is an historical big university in the northern part of Italy, 
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attended by students coming from many different Italian regions. The 

University of Kassel, in Germany, is younger and is attended mainly by students 

from the surrounding area. The University of Bozen-Bolzano is a small 

university located in the South Tyrol region (Italy), at the border with Austria. 

This region, originally Austrian, was annexed to Italy after World War I and it 

still is a bilingual region. There are both German and Italian schools for any 

school level. The university of Bozen-Bolzano provides two versions of each 

course, in Italian and in German. Among our 460 respondents, 40% are from 

Bologna and 39% from Kassel. Pre-service teachers who attended their courses 

in Italian (we will refer to this group as Bozen ITA) are 15% of the sample; the 

remaining ones attended classes in German (Bozen GER). Respondents 

received the text of the questionnaire in the same language of their courses. 

Translation of the questionnaire has been checked by all the authors and by a 

consultant speaking both languages. 

Questionnaire 

The data analyzed in this paper refer to two questions from a wider 

questionnaire (Ciani et al., 2019). We analyze the answers to two multiple-

answer questions (Maffia et al., in press), corresponding to questions B2 (Fig. 1) 

and B4 (Fig.2) in the original questionnaire. 

 

Figure 1: Question B2 on beliefs about success in mathematics 

We selected the answer-options to question B2 according to the model of 

mathematical giftedness described by Pitta-Pantazi, Christou, Kontoyianni and 

Kattou (2011). Following this model, mathematical ability is the result of 

Learned Abilities (like verbal, spatial, quantitative abilities, etc. – options B, C, 

and H) and Creativity (defined as a combination of fluency, flexibility, and 

originality – options A, D, and N). Both Learned Abilities and Creativity are 

supported by Natural Abilities (including working memory, control, and speed 

of processing – options G, L, and M). We integrate this model adding the 

dimension of affect (options E, F, and I).  
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Figure 2: Question B4 on beliefs about mathematics teaching 

Answer-options for question B4 were established according to the model of the 

Knowledge Quartet by Rowland and colleagues (2005). It is a theoretical 

framework for the analysis and development of mathematics teaching. From the 

perspective of the Knowledge Quartet, knowledge and beliefs evidenced in 

mathematics teaching can be seen in four dimensions: Foundation (options B, 

E, and N), Connection (A, I, and M), Transformation (C, F, and L) and 

Contingency (D, G, and H). 

Data analysis 

Answers to the multiple-answer questions have been clustered using an 

agglomerative hierarchical clustering algorithm on the whole sample of 460 

respondents. In terms of the method, single linkage may function to determine 

the outliers in the data, and then performing the Ward algorithm classifies the 

remaining elements. While this algorithm usually results in a valid clustering, in 

this work its performance was reduced, due to the lack of isolated data points 

(Maffia et al., in press). The complete linkage rule was then chosen aiming to 

find compact clusters of similar diameters, avoiding chaining phenomena 

(Everitt, Landau, Leese & Sthal, 2011). The number of clusters is established 

minimizing the absolute maximum deviation from the median of the number of 

respondents per cluster (Maffia et al., in press).  

RESULTS 

In presenting our results, we dedicate a sub-section to each of the two 

abovementioned questions, that is B2 and B4, providing information about the 

obtained clusters and comparing the composition of clusters in terms of 

respondents having different origin.  

Beliefs about success in mathematics 

For question B2 we obtained six clusters and, even if they differ one from the 

other, their characterization depends on a few answer-options. In general, we 

can notice that Natural Abilities are considered as not important for succeeding 

in mathematics, while attention to affective factors is high. Clusters differ 
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mostly in terms of the percentage of selection of affective factors, being 

‘Motivation’ and ‘Perseverance’ some of the most selected options in many 

clusters. Creativity is represented in the largest clusters by ‘Flexible thinking’, 

while ‘Originality’ is usually undervalued. In the same fashion, the most 

representative Learned Ability is ‘Analytic thinking’, while ‘Language 

appropriateness’ is rarely considered. 

As it is shown in figure 3, the composition of the six clusters differ in terms of 

the origin of respondents having some clusters mainly composed by Italian-

speaking pre-service teachers and other more populated by German ones. 

 

Figure 3: Composition of clusters (question B2) according to respondents’ 

origin.  

Respondents from Bologna are highly represented in the first three clusters 

where Affective factors are strongly considered. Clusters 1 and 2 comprehend 

respondents paying strong attention to ‘Motivation’. While respondents 

belonging to the first cluster (10% of the sample) also often select ‘Organized 

working’, those in the second one (20% of the sample) selects more often 

‘Flexible thinking’, showing a preference for Creativity over Learned Abilities. 

The third cluster (25% of the sample) gives high credit to ‘Flexible thinking’ 

and ‘Perseverance’ (Fig. 4). 

The percentage of pre-service teachers from Kassel is higher in clusters 4, 5, 

and 6 (respectively 26%, 14%. and 5% of the respondents), characterized by a 

high selection rate of options related to Learned Abilities (mainly options H or 

B, e.g. Fig. 4). Cluster 6 is the only one having a high percentage of members 

opting for ‘Predisposition’.  

0%

20%

40%

60%

80%

100%

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Bologna Kassel Bozen ITA Bozen GER



Eichler, Ferretti & Maffia 
 

2 -  250 

 

PME 44 -2021 

  

Figure 4: Standardized frequencies (1 unit corresponds to a difference of 1 SD 

from the average) for the answer-options to question B2 for the two largest 

clusters.  

Respondents from Bozen-Bolzano are represented more evenly in the clusters, 

but we can notice that, among them, German-speaking pre-service teachers are 

more strongly represented in clusters 1 and 2. The percentage of Italian-

speaking students from Bozen-Bolzano is higher in clusters where 

‘Perseverance’ is considered one of the most important features. More 

generally, there is not a correspondence between clusters having the higher 

percentage of respondents from Kassel or Bologna and those having the higher 

number of respondents from Bozen-Bolzano speaking the same language. The 

only exception is cluster 3 that is composted by a large majority of Italian 

speakers. 

Beliefs about mathematics teaching 

The number of clusters obtained for question B4 is 11, much higher than the 

previous question. This result may suggest that per-service primary teachers’ 

beliefs about mathematics teaching are more various than those towards 

mathematics itself. Participants are distributed unevenly in the clusters having 

the smallest ones representing each 4% of the sample (clusters 1 and 6) and the 

larger ones comprehending almost 15% of the sample (cluster 2 and 5). Clusters 

3 and 4 count each 8% of the sample while other clusters include the 10% of the 

participants circa. 

Even if the number of clusters is quite high, it is interesting to notice that most 

of them are characterized by four answer-options belonging to three of Rowland 

and colleagues’ (2005) dimensions: Foundations (knowledge about teaching 

methods and/or mathematics in particular), Transformation (mainly the 

effectiveness of explanations), and Contingency (mainly feedback on students’ 

errors) have a more relevant role than Connections in characterizing our pre-

service primary teachers’ beliefs about the teaching of mathematics.  

Figure 5 shows the composition of the eleven clusters in terms of the origin of 

respondents. We can see that there are extreme cases, where the cluster is 

-1

-0.5

0

0.5

1

1.5

2

2.5

3

A B C D E F G H I L M N

Cluster 3

Cluster 4



Eichler, Ferretti & Maffia 

2 -  251 

 

PME 44 -2021 

almost entirely composed by pre-service teachers speaking the same language, 

while other clusters are more evenly composed. 

 

Figure 5: Composition of clusters (question B4) according to respondents’ 

origin.  

The first four clusters are all characterized by a high percentage of respondents 

from Bologna. In these clusters, there is a high rate of selection for the option 

‘Knowing several teaching methods’, while other aspects of Foundation are 

often ignored. Cluster 3, the most “Italian” cluster, differs from the others since 

‘Knowing mathematics’ is the most chosen option. Members of clusters 1 and 2 

often select ‘Giving feedback about errors’. However, these two clusters differ 

in their attention for Transformation: cluster 1 believes that ‘Giving effective 

explanations’ is as important as ‘Knowing several teaching methods’. A high 

attention to effective explanations characterizes cluster 4 as well, but this cluster 

does not have a particular preference for options belonging to the categories of 

Connection and Contingency. On the contrary, Contingency is the focus for the 

last three clusters, where students from Kassel are more present. Members of 

clusters 9 and 10 often refer to ‘Giving feedback about errors’, while cluster 11 

selects mostly ‘Valorising students’ interventions’. Cluster 7, 8, and 9 pay 

strong attention to effective explanations. Cluster 7 – the one with the highest 

percentage of respondents form Kassel – often opts for ‘Planning with 

awareness’ and its attention to Foundation is lower than many other clusters.  

Clusters 5 and 6 reflects the composition of the whole sample. Cluster 6 is the 

one giving more credit to knowledge about mathematics (option B) and it is one 

of the two smallest clusters. Cluster 11 is characterized by a high presence of 

respondents from Bozen-Bolzano and by a high rate of selection for option D; 

this is also the only cluster paying a certain attention to answer-options related 

to Connections. 

DISCUSSION AND CONCLUSION  

Our analysis allowed to observe relevant differences in pre-service teachers’ 

beliefs about features that are decisive both for performing well in mathematics 
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and for a successful mathematics teacher. We obtained six different clusters 

related to mathematics (question B2) and 11 clusters concerning its teaching 

(question B4).   

Our results show that pre-service teachers from the three universities give less 

importance to natural abilities as basis of success in mathematics (B2). The 

clusters seem to show cultural differences. For example, the clusters more 

populated by students from Kassel are characterized by a strong attention to 

analytical thinking and creativity. By contrast, the percentage of pre-service 

teachers from Bologna is higher in clusters characterized by attention to flexible 

thinking and affective factors. Students from Bozen-Bolzano are almost 

distributed equally in all the clusters, suggesting a mix of beliefs. In relation to 

the basis for successfully teaching mathematics(B4), we observe that Italian 

speakers have a stronger attention to foundations than the German ones. Also, 

pre-service teachers from Bozen-Bolzano are characterized by the strongest 

attention to connections; a peculiarity of this border-location differing both from 

the German context and the context of another Italian university. 

Considering together the results of both questions, we can state there are 

common features to all the linguistic and cultural contexts, but also 

peculiarities. These differences may depend on many factors related to the 

common experiences of the group of people attending the same university in the 

same city, that is what we have considered as their culture (Felbrich et al., 

2012). Among these experiences we must certainly consider schooling and, in 

particular, the university courses attended by the pre-service teachers 

participating in the research. The organization of their university degree cannot 

be the only source of the observed differences. Indeed, in Italy, Primary 

Education degrees are regulated at national level and so pre-services teachers 

from the University of Bolzano-Bozen attend a degree course that is structurally 

similar to the course of the University of Bologna – the main difference being 

multilingualism. We are not assuming that all the observed differences could be 

explained in terms of the spoken language but, assuming that language is the 

vehicle of culture (Hofstede, 1986), we can claim that cultural factors can affect 

pre-service beliefs even in nearby regions, and not only at the global level as 

most of research has shown up to date (e.g. Felbrich et al., 2012). However, 

more research is needed to better clarify the nature of these factors. 

Furthermore, it is an open question if and how the observed differences 

correlate with other constructs that shape the teachers’ professional lives, 

namely the teachers’ knowledge, emotions, or motivation. 
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This paper addresses gender differences in mathematics at the early grades of 

primary school, based on a research study conducted in Italy, in the region with 

the largest gender gap in mathematics in the National panorama. Borrowing 

from the literature around gender and its different conceptualizations, we focus 

attention on the possible relationship between the gap and the cognitive 

demand, task and formulation of mathematical test questions. Restricting the 

analysis to the content area of numbers, the one with the largest gap, we will 

highlight some of the variables that seem to affect the gender gap, arguing for a 

more equitable mathematical practice. 

INTRODUCTION 

In this paper we want to contribute to the current discussion on gender 

differences in mathematics. Differences in mathematical performances in favour 

of boys exist and are considered as having implications on the fact that females 

are substantially under-represented in STEM university subjects and in highly 

innovative and technological careers (Miyake et al., 2010). We refer to the 

difference in mathematical performance between males and females as the 

gender gap in mathematics (GGM). Research has shown that the GGM is a 

matter of concern for policies that address equity both at school and in the 

labour market (Di Tommaso et al., 2018), especially at a time of social crisis, 

like the current one in regard to the pandemic. On the other hand, patterns of 

gendered inequity provide a sobering counterpoint to claims of an equitable 

mathematical experience, thus troubling and disrupting given gender 

performances within contexts and conditions does matter more than ever 

(Walshaw et al., 2017). As Walshaw and colleagues underline, other constructs 

of social difference such as class, race, ethnicity also become significant, as do 

histories of mathematical access, success, production, underachievement or 

exclusion. Speaking of GGM is therefore important in relation to a wider 

perspective of binaries between diversity and equity. 

The latest international assessments of mathematics (like PIRLS and PISA) 

show Italy as one of the countries with the largest GGM. This emerges from the 

primary through upper secondary school test scores. In particular, Italy 

possesses the largest gap among the 57 countries taking part in TIMSS grade 4 

evaluation (Mullis et al., 2016), and is in the second position in the case of 15-



Ferrara, Ferrari, Robutti, Contini & Di Tommaso 

2 -  256 

 

PME 44 -2021 

year-old students (OECD, 2016). These results are further problematized 

looking at data from the National Institute for the Evaluation of the Education 

System (INVALSI) in Italy, according to which a GGM is observable since 

grade 2 and becomes more prevalent during secondary school. The primary 

purpose of this paper is to address issues concerning the GGM in grade 2 in 

Italy, starting from the results of the assessment of mathematics of years 2013 to 

2017. We are particularly interested in studying variables that might affect the 

GGM in this context, and in designing classroom-based interventions to reduce 

it in mathematics. To this aim, the research team is interdisciplinary and 

involves mathematics educators and social economic researchers. In the next 

section, we frame the research study into the literature that we see as relevant to 

highlight and discuss differences between male and female performances in 

mathematics. 

THEORETICAL HIGHLIGHTS 

Much international literature shows unique achievement trends of males and 

females in mathematics and reading across a number of countries (e.g., 

Robinson & Lubienski, 2011; Ajello et al., 2018). Math gaps favouring males 

were found to increase between kindergarten and third grade (Rathbun, West, & 

Germino-Hauskin, 2004). Also, the GGM is particularly pronounced among 

high-performing than among low-performing students and widens as children 

grow older even if it does not widen during lower secondary school (grade 4 

through 8; Contini et al., 2017). In the broader literature, developments in 

gender research endeavour to think differently about the GGM, with 

understandings of gender ranging from biological or cultural and environmental 

factors to family and teacher beliefs and biases, to girls’ low self-confidence 

and self-efficacy in terms of mathematical ability and performance within 

gendered identity-work (Else-Quest et al., 2010; Lubienski et al., 2013). The 

role of stereotypes and other socio-cultural forces is well established (see 

Aronson & Steele, 2005 for a detailed review). Some available research studied 

gender differences in mathematics in relation to performance and highlighted 

that they seem to be related to the cognitive processes that are investigated by 

the question and linked to the type of question. For example, Bolger and 

Kellaghan (1990) discovered that while boys outperform girls in multiple-

choice questions, girls outperform boys on open-ended questions. Other studies 

indicated strong association between aspects of reading and of mathematics 

tests (Marks, 2008; Caponera et al., 2016). Robinson and Lubienski (2011) 

further claimed that given that gender patterns in math performance tend to run 

counter to those in reading, examinations of both subjects together provide a 

more complete picture of girls’ and boys’ learning. Ajello et al. (2018) claim 

that the reading burden of mathematics questions is associated with student 

performance in mathematics, independently of mathematical ability. Due to the 

fact that girls are better performers than boys when facing reading tests, they 
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seem to be advantaged in mathematics questions with a high reading demand, 

independent of their level of reading literacy. Questions with a low reading 

demand are instead more in favour of boys. According to Ajello and colleagues 

(2018), question difficulty and task can also be related to such differences, 

therefore further research should investigate the type of cognitive process 

involved in answering the task, for example whether a computation or problem 

solving. Other research stresses that variations on question formulation affect 

differently male and female performances and that this might be concerned with 

different strategies used by the two populations (e.g., Bolondi et al., 2018). 

Borrowing from these considerations, we shift attention to studying the possible 

relationships between the type of task, formulation and cognitive demand in 

mathematical questions and the existence of a GGM, as we have defined it 

above. In this way, the paper wants: (a) to contribute to current discussions on 

mathematical gender differences at primary school, in a double manner: by 

confirming findings from the literature, and by expanding these focusing on 

variables strictly related to the questions; and (b) to examine the local context of 

Piedmont, which shows to be the Italian region with the largest GGM in grade 

2, supported by territorial funding for dedicated research. In the next section, we 

introduce context and method of the study. 

CONTEXT AND METHOD 

As mentioned above, in our research we take the GGM as the difference 

between average male and female scores in their mathematical performance. 

Our original data source is given by the scores of the National grade 2 

assessment tests of mathematics over the period 2013 to 2017. In order to avoid 

possible bias related to cheating, the estimation sample was reduced to 

including only those classes that were supervised by external inspectors during 

the tests. In addition, the sample was further restricted to a sub-sample including 

only the classes in Piedmont, where we work with an active network of policy 

makers and schools.  

The assessment test of mathematics delivered each year by INVALSI 

approximately contains 25 to 28 questions, each of which can be composed by 

more than one item, like in the case of True or False multiple complex choice 

questions. The scores to which we associate the GGM take into account all the 

items of the grade 2 assessment of mathematics in the period mentioned above, 

for a total of 6.732 observations. The items are associated to a content area, a 

dimension (the main cognitive process implied by the item) and a question 

intent (the item purpose). According to the Mathematics Assessment 

Framework of INVALSI (INVALSI, 2018), which follows the National 

Guidelines for the curriculum, three are the possible content areas for grade 2: 

Numbers, Data and previsions, Space and figures, and three the cognitive 

dimensions: Knowing, Problem solving and Arguing. The question intent is 



Ferrara, Ferrari, Robutti, Contini & Di Tommaso 

2 -  258 

 

PME 44 -2021 

concerned with typical forms of mathematical thinking, like text 

comprehension, calculation, use of different representations or measurement 

tools, reasoning, data research, and problem solving. 

Table 1 offers the results of the initial descriptive statistics of our sample by 

content area, with average score and GGM, and the percentage of items for each 

area. The score provided for each student is measured as the percentage of 

correct answers over the total items. The results show that the average score is 

lowest in the case of Numbers for both males and females, but also contains the 

majority of items. On average, the total gap is 0.028 (2.8 percentage points, or 

p.p.): while females answer correctly to 53.9% of the items, for males we get 

56.7%. Additionally, the area of Numbers has the largest GGM (3.7 p.p.), 

moving us to centre our investigation on this particular area. The number of 

items belonging to Numbers between 2013 and 2017 is 82 (the number of 

observations in the table; each observation was assessed on about 1340 

subjects). Focus was on these items to better understand which of their 

characteristics could partake of the GGM revealed by the statistics. The analysis 

was centred on the study of constant differences in the GGM concerned with 

item characteristics over the entire period rather than on the trend over time. 

Therefore, we adopted a mixed method, both qualitative and quantitative. The 

qualitative part borrows from the literature we refer to and regards an initial 

search for variables that constitute each item formulation and structure, beyond 

those variables that are considered already by the assessment framework. The 

second part of the analysis involves descriptive statistics of all these variables. 

This allows us to study the relationships between the GGM and the type of task, 

formulation and cognitive demand of the mathematical items. 

Variable Overall Males Females GGM (M-F) % items 

Average score 0.554 0.567 0.539 0.028*** 100 

Content area      

  Numbers 0.517 0.535 0.498 0.037*** 56.9 

  Data and previsions 0.614 0.620 0.608 0.012* 16.0 

  Space and figures 0.613 0.618 0.608 0.010** 27.1 

N. observations 6,732 3,387 3,345   

*p-value < 0,10; **p-value < 0,05; ***p-value < 0,01 

Table 1: GGM: Average score (% of correct answers) by content area 

QUALITATIVE ANALYSIS AND VARIABLE IDENTIFICATION 

As anticipated above, we identified the variables that characterise item 

formulation and structure through a qualitative analysis of all the selected items. 

This process brought forth the following as relevant variables: 

A. Cognitive dimension: Arguing, Knowing, Problem solving. 
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B. Question intent: Calculation, Text comprehension, Reasoning, 

Different representations, Data research, Problem solving, 

Measurement tools. 

C. Type of item: Open-constructed response, Multiple choice. 

D. Item formulation: Situation, No Situation, Objective, No objective. 

E. Kind of figure: No figure, Drawing, Figure in context, 

Representation. 

While the first three classes of variables (A, B, C) refer to INVALSI framing of 

the items, the other two classes (D, E) were added to account for: the presence 

or absence of a situation which provides the context of the task, or of an 

objective which gives the aim of the task (D); the absence or presence of a 

figure and the eventual kind of figure (E). We distinguish figures according to 

three kinds: drawings, figures in context, and representations (Fig. 1 shows 

three examples from specific questions of the 2017 assessment test). A drawing 

simply contains a number of objects to which the task refers (asking for 

example to count them, Fig. 1a). A figure in context implies an understanding of 

the sense to attribute to objects in specific contexts (like in the case of money, 

Fig. 1b). A representation requires a step forward to infer the relationships 

between objects (like when lengths of different objects need to be compared, 

Fig. 1c).  

Drawing Figure in context Representation 

 

 
 

item D1, 2017 item D11, 2017 item D21, 2017 

Figure 1: Examples of different kinds of figures 

After this identification process, we selected the particular variables for each of 

the 82 items of our sample and created a table, in which each row refers to a 

specific item Dn while the column cells are targeted with value 0 or 1 

depending on whether the corresponding variable is absent or present in that 

item.   

QUANTITATIVE ANALYSIS AND RESEARCH FINDINGS  

The attribution of values 0 and 1 to item variables was used to develop the new 

statistics for our quantitative analysis through simple linear regression, which 

allowed us to get some descriptive measure of the influence of particular 

variables on the presence of the GGM. In so doing, we focused on the 

difference across single items obtaining some information from which to begin: 
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the mean percentage of correct answers across items is 52.5%, while the gender 

gap across items is 0.039; there is large variability embedded in this gap, with 

the minimum -0.10 (in favour of females) and the maximum 0.23 (in favour of 

males). This relevantly suggested that, as a matter of fact, the nature of the 

items (briefly, their formulation and structure) actually affects the gap, although 

without saying in which terms. Investigating the variables above exactly allows 

us to see how and to which extent this occurs. Tables 2 to 4 below help to better 

explain this. In all the tables standard errors are in parentheses and the number 

of asterisks defines how significant the gap is (the lower the p-value the more 

significant the gap is). In particular, Tables 2 and 3 are concerned with the 

influence of the variables from the INVALSI framework, that is, cognitive 

dimension and question intent. Table 4 instead refers to the additional variables 

we identified. 

Cognitive dimension Item GGM 

Arguing 0.018 (0.015)    

Knowing 0.036*** (0.008) 

Problem solving  0.052*** (0.010) 

Obs. 82    

R2 adj. 0.348    

*p-value < 0,10; **p-value < 0,05; ***p-value < 0,01 

Table 2: Item GGM: influence of Cognitive dimension 

Question intent Item GGM   

Calculation 0.027** (0.011)       

Text comprehension 0.021 (0.018)      

Reasoning 0.012 (0.027)         

Different representations 0.048*** (0.013)   

Data research 0.067** (0.031)   

Problem solving  0.050*** (0.011)   

Measurement tools 0.038 (0.038)   

Obs. 82      

R2 adj. 0.348      

*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01 

Table 3: Item GGM: influence of Question intent 
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 Item GGM     

Open constructed-response 0.028***  (0.008)          

Multiple-choice 0.053*** (0.009)          

No situation  0.061*** (0.016)      

Situation  0.035*** (0.006)      

No objective     0.039*** (0.006)     

Objective   0.036** (0.018)     

No figure       0.033** (0.011)   

Drawing    0.010 (0.013)   

Figure in context    0.064*** (0.013)   

Representation    0.045*** (0.010)   

Obs. 82    82 82 82     

R2 adj. 0.364    0.345 0.327 0.386     

*p-value < 0,10; **p-value < 0,05; ***p-value < 0,01 

Table 4: Item GGM: influence of Item type and formulation 

From Table 2 we see that problem solving is the cognitive dimension that 

affects the GGM the most. Table 3 shows that the use of different 

representations and problem solving are the two most problematic aspects 

implicated by the items concerning the GGM. Regarding item type and 

formulation variables (Table 4), our results confirm (in the local context) the 

findings of the literature according to which males perform better than females 

in answering multiple-choice questions, showing a gap of 53%. On the contrary, 

open constructed-response items are more favourable to females (in fact, the 

gap is 28%). Further, the absence or the presence of a situation does not seem to 

affect the GGM in any particular manner (both contribute to it to an almost 

equal extent), while the presence of an objective seems to act in the direction of 

reducing the gap with respect to its absence (two asterisks instead of three). The 

bearing of a drawing is marginal as regards that of a representation or (even 

more) of a figure in context, while the absence of figures affects the GGM on 

average. These findings move us to make didactical considerations. For 

example, more work with representations seems to be needed within the 

mathematics classroom, both in terms of the treatment of different 

representations and in relation to their meanings, with the aim to reduce the 
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documented GGM. Similarly, attention should be devoted to contextualising 

mathematical activity, like in the case that we use figures requiring knowledge 

of the context to be understood. The dimension of problem solving is another 

delicate one that calls for didactical intervention. 

CONCLUSIVE REMARKS  

Our study wants to contribute to existing discussions about gendered disciplines 

by shifting emphasis from available gender research to material, concrete 

experiences of gendered performances in mathematics. Borrowing from the 

existing literature and the findings from these performances, we suggest that 

lines of didactical intervention are needed to deeply engage both females and 

males in mathematical doings. This is particularly relevant in a time of social 

crisis like that of the pandemic, which also showed to intensify differences. A 

rethinking of educational practice is needed towards a more equitable 

mathematics, one that disrupts boundaries to overcome gendered identity 

discourses within the classroom, for example by de-centring consensus about 

practice mainly based on calculation and procedural knowledge and shifting 

attention to problem solving. Focusing on the local context of Piedmont, the 

Italian region with the largest GGM already at grade 2, we offered reflections 

about variables that seem to affect the presence of the gap and that we see as 

relevant to any discourse of mathematics teaching and learning. Future research 

is necessary to widen the horizon on possible interventions and efficiently 

inform policy making in these directions. 
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Sweden has a reputation for its equality work, but at the same time mathematics 

is still considered a male domain. We studied grade nine students’ attitudes 

about who could be considered best in mathematics, both from an individual 

perspective and how they perceived different groups in  society would answer. A 

questionnaire was used and the analysis showed that girls more often think that 

this is not a matter connected to biological sex, whereas boys more often state 

that boys and girls are equally good. Two groups are stereotyped as thinking 

that boys are better in mathematics both by girls and boys: boys in grade nine 

and boys in general. This is not reflected in their self-evaluation. Overall, the 

students showed an awareness of the concept of gender, including some intra-

cultural dimensions of the concept. 

INTRODUCTION 

In many western countries, although there is no major differences in 

achievements in mathematics (OECD, 2013), the subject is often considered as 

a male domain; for instance, there are differences in enrolment in various 

STEM subjects, both at undergraduate level and at graduate level (Piatek-

Jimenez, 2015), and stereotypical symbols have been attributed to boys and 

girls,  such that boys are creative and girls insecure (Walkerdine, 1998; 

Sumpter, 2016). Another example is that boys express a higher degree of ability 

and self-confidence compared to girls (OECD, 2013). In this way, gender is an 

issue relevant for research and discussion. This is true for Sweden too, which is 

interesting given it is a country with reputation for its work regarding gender 

equality (Weiner, 2005). In the curriculum for Swedish school, we can read that 

teachers should actively work to enhance and develop students’ critical thinking 

about gender stereotypes and this has been a central topic in governing school 

documents for over 50 years (Hedlin, 2013). Previous studies signal that 

students at different ages consider mathematics as a male domain (Brandell, 

Leder & Nyström; 2007; Brandell, 2008) including boys reporting higher levels 

in measures of self-evaluation (OECD, 2013; Sumpter, 2012), this despite that 

girls’ grades are higher throughout secondary school (age 13-19). At the same 
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time, teachers state that gender is not an issue neither in their teaching nor for 

themselves as teachers (Gannerud, 2009).  

Therefore, there is a paradox between the social, political norm and the symbols 

that individuals express including gender stereotyping. This paradox invites to 

further study how individuals perceive that different groups in the society view 

mathematics and gender, and how individuals would reply from their own 

perspective. Here, we would like to study grade nine students’ expressed 

attitudes with a focus on attributed ability in mathematics. Our research 

questions are: (1) In what way do boys and girls attribution differ regarding 

ability in mathematics?; (2) How do they experience other groups attributions?; 

and, (3) To what extent do students express that this has changed over time?. 

BACKGROUND 

Our theoretical starting point is that gender is a social construction more than 

just a consequence of a biological sex, that gender is: 

“a pattern of social relations in which the positions of women and men are defined, 

the cultural meanings of being a man and a woman are negotiated, and their 

trajectories through life are mapped out.” (Connell, 2006, p. 839). 

These social relations include characteristics and traits that are cultural 

dependent, and in a longer time perspective, they create norms. This is a 

dynamic process meaning that the attributions, beliefs, identities, norms etc. are 

not static and as socially constructed differences, they support differences and 

inequality (Acker, 2006). In order to study attributed symbols, a further division 

of gender is fruitful. Here, we follow Bjerrum Nielsen (2003) and divide gender 

into four different aspects: structural, symbolic, personal, and interactional 

gender. The first aspect, structural gender, is about social structures alongside 

with other factors such as  class end ethnicity. One example of structural gender 

is the ratio men/women in enrolments in mathematics. The second aspect is 

symbolic gender which appears in the shape of symbols and discourses. It 

informs us what is considered normal and what is deviant (Bjerrum Nielsen, 

2003).  One example is the idea of mathematics as a male domain (Brandell, 

Leder & Nyström, 2007; Brandell, 2008). Symbols as such can be very 

powerful; studies have shown that the main reason for gender imbalance at 

university level is the explanation for success that uses the two symbols ‘the 

hard working female’ (e.g. Hermione Granger) and ‘the male genius’ (e.g. 

Sherlock Holmes)  (Leslie, Cimpian, Meyer & Freeland, 2015). The third aspect 

is personal gender which looks at how individuals perceive the structure with its 

symbols (Bjerrum Nielsen, 2003). Given it is a dynamic process, the structure 

and symbols can influence and change which in turn affects personal 

gender.The following quote illustrates the experience of not fitting in to the 

created norm: 
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An advantage of being male would be to have been more encouraged to pursue a 

career in mathematics/engineering/technology. I would also have fitted in at high 

school better than I did—my Years 9 and 10 were spent on an all-girls campus 

where it was supremely uncool to be good at maths and science (Leder, 2010, 

p.453).  

The last aspect described by Bjerrum Nielsen (2003) is interactional gender 

which focus on interactions of individuals within the structure with its symbols. 

In the present paper, we are interested in how individuals perceive themselves 

in the structure (i.e. personal gender) and symbols including stereotyping (i.e. 

symbolic gender).  

METHODS 

The first step towards the data collection was a pilot study where a well-known 

questionnaire was used with the intention to reproduce studies of individual’s 

attitudes about gender and mathematics (e.g. Gómez-Chacón, Leder & Forgasz, 

2014). However, although following “good practices”, the results indicated 

several limitations and not just intercultural differences but also intracultural 

(Nortvedt & Sumpter, 2017). The feedback stressed that “you can’t ask question 

like this” meaning a revision was needed to make the questionnaire function in 

a Nordic context. A literature review showed that most prior research treat 

gender as a cultural-neutral construct and do not consider cultural dimensions: 

that questionnaires very seldom gave the respondents opportunities to 

demonstrate knowledge about gender beyond the classic male –female 

dichotomy or nuances in gender symbolism. (Sumpter & Nortvedt, 2018). We 

therefore applied  Clarke (2013)’s seven dilemmas: (1) Cultural-specificity of 

cross-cultural codes; (2) Inclusive vs Distinctive; (3) Evaluative Criteria; (4) 

Form vs Function; (5) Linguistic Preclusion; (6) Omission; and, (7) 

Disconnection. One solution to meet some of these dilemmas were to apply 

vignettes.  One example is the first question, Question 1a, “Who is best in 

mathematics, boys or girls?” with an vignette saying that different groups in the 

society might have different views of who is considered able in mathematics. 

By adding such a vignette, the question allow the respondent to express 

perceived gender stereotyping from others whilst expressing a personal attitude 

that might differ. The pilot study indicated that the questionnaire did allow 

students to demonstrate their awareness of a range of culturally rooted 

differences in attitudes towards boys’ and girls’ abilities to learn mathematics 

(Nortvedt & Sumpter, 2018).  

To answer the research questions in the present paper, we will focus on 

Question 1a, “Who is best in mathematics, boys or girls?”, Question 1b, “Do 

you think this has changed over time?” where the latter also allowed qualitative 

responses. We also analyse the responses to one of the background questions 

which was a self-evaluation. The data comes from lower secondary school 
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students (grade 9; age 15; n=241) from seven schools in different locations in 

Sweden (north/south; rural/town/city). Given that online surveys have less 

response rate (Fan & Yan, 2010), the first author used personal contacts to find 

participating schools. Ethics rules provided by Swedish Research Council were 

followed. This means that those students who had not turned 15 before 

December 2019 could not participate, which according to Statistics Sweden 

should be around 6% of the population meaning two students per class. The 

statistical analysis of the replies used stated gender (boy/girl) as a factor 

(n=222) and we applied chi-squared test to analyse where girls’ replies differ 

from boys. The qualitative responses were analysed using inductive thematic 

analysis (Braun & Clarke, 2006), and then compared to previous research as a 

second step. This means that we searched for similarities and differences in the 

written replies, gathering similar statements using a coding scheme. One 

example are statements that could be connected to a broader theme describing 

gender as a dynamic concept, where the codes were words like “change” or 

“difference”. In this way, disjoint themes were created.  

RESULTS 

The first set of results focus on the attribution of ability in mathematics meaning 

the responses to the question “Who is best in mathematics, boys or girls?”. In 

Table 1, G stands for Girls and B for Boys:  
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Groups Girls are best Boys are 

best 

They are 

equally 

good 

It is not 

about 

sex* 

I’m not 

sure 

p 

Girls in 

grade 9 

G: 27(24.5%) 

B: 57(53.3%) 

7(6.4%) 

5(4.7%) 

19(17.3%) 

14(13.1%) 

50(45.5%) 

27(25.2%) 

7(6.4%) 

4(3.7%) 

<0.05 

Boys in 

grade 9 

G: 17(15.6%) 

B: 23(21.9%) 

49(45.0%) 

45(44.9%) 

19(17.4%) 

14(13.3%) 

19(17.4%) 

18(17.1%) 

5(5.0%) 

5(4.8%) 

>0.05 

Dads G: 7(6.5%) 

B: 17(16.3%) 

21(19.4%) 

27(26.0%) 

31(28.7%) 

30(28.8%) 

36(33.3%) 

24(23.1%) 

13(12.0%) 

6(5.8%) 

<0.05 

Mums G: 12(24.5%) 

B: 23(53%) 

1(0.9%) 

9(8.7%) 

31(28.7%) 

40(38.5%) 

59(54.6%) 

28(26.9%) 

5(4.6%) 

4(3.8%) 

<0.05 

Male 

teachers 

G: 14(13.1%) 

B: 17(16.5%) 

10(9.3%) 

14(13.6%) 

31(29.0%) 

36(35.0%) 

48(44.9%) 

32(31.1%) 

4(3.7%) 

4(3.9%) 

>0.05 

Female 

teachers 

G: 10(9.3%) 

B: 23(28.7%) 

3(2.8%) 

7(6.7%) 

32(29.9%) 

41(39.4%) 

57(53.3%) 

28(26.9%) 

5(4.7%) 

5(4.8%) 

<0.05 

Girls in 

general 

G: 31(28.7%) 

B: 44(42.3%) 

10(9.3%) 

8(7.7%) 

19(17.6%) 

25(24.0%) 

36(33.3%) 

14(13.5%) 

12(11.1%) 

13(12.5%) 

<0.05 

Boys in 

general 

G: 24(22.2%) 

B: 18(17.5%) 

40(37.8%) 

40(38.8%) 

17(15.7%) 

22(21.4%) 

18(16.7%) 

12(11.7%) 

9(8.3%) 

11(10.7%) 

>0.05 

You G: 7(6.6%) 

B: 12(11.4%) 

2(1.9%) 

18(17.1%) 

13(12.3%) 

24(22.9%) 

81(76.4%) 

37(35.2%) 

3(2.8%) 

14(13.3%) 

<0.05 

 

 

Table 1: Responses to “Who is best in mathematics?”, n(%). Total responses 

differ from 106-110 (girls) and 103-107 (boys).*In Swedish, there is a 

difference between gender (‘genus’) and biological sex (‘kön’) 

The majority of boys and girls attributes no gender, both regarding what they 

think other groups would answer but also in their own responses. It is 

interesting to note that one difference between girls and boys is that girls more 

often has their main response ‘It is not about gender’ more often than boys, 

whereas boys more often choose ‘they are equally good’. A few results stand 

out: both girls and boys reply that boys in grade nine and in general would reply 

that they are better. However, when responding as themselves (as ‘you’), this is 

not reproduced. Instead, the majority of boys (58.1%) think it is not a question 

about sex or that boys and girls are equally good. Here, there is a difference 
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between what is attributed to boys as a symbol and what could be considered as 

a personal view on a group level. Continuing with self-confidence and 

stereotyping, boys more often reply that girls in grade nine and in general would 

answer that girls are best in mathematics, a response pattern girls do not repeat. 

An interesting symmetry which is statistical significant appears in the responses 

about what the students think that mums and dads would reply: both boys and 

girls state that fathers would pick boys as better in mathematics, and for mothers 

to pick girls. This symmetry is not repeated regarding female and male teachers.  

On the question whether this has changed over time, girls and boys differ in 

their responses, Se Table 2: 

 Yes No I’m not 

sure 

p 

Girls 85(75.9) 9(8.0) 18(16.1) <0.05 

Boys 56(50.9) 22(20.0) 32(29.1)  

 

 

Table 2: Changed over time n(%) 

Although the majority of both groups states “Yes”, girls do it more so. In the 

motivations why, the analysis generated three themes. The first theme is based 

on the idea that things do change over time, especially stereotypes:  

I believe that before, one thought that boys were better. Women have always been 

oppressed and lads were the ones who got to show that they could do maths. Lately, 

I think that girls also have had a chance to show that they are good at maths and 

humans have realised that the difference is not so big [Girl 1]; I think that 

everything depends on the stereotypes what is male and [what is] not. We have 

[previously] related that men are often best in mathematics since they used to be 

[Boy1]. 

Both these motivations show an awareness of gender as a dynamic concept and 

that stereotyping is a part of the this changes of power. The second category is 

about boys and symbols attributed to boys: 

I believe that boys normally are less interested [in school] than girls and therefore 

are looked upon as worse than girls. Guys live a life where you should not care 

about school to be considered cool. [Boy2] 

In this response, there is an awareness about the relationship between symbolic 

gender and personal gender. The third theme is that biological sex is irrelevant: 



Frid, Nortvedt & Sumpter 
 

2 -  270 

 

PME 44 -2021 

Biological sex should not determine your knowledge in math and there is no sex 

better than the other. [Girl2]  

Since Swedish language uses different words for gender and biological sex, the 

focus here is that biological sex is extraneous in this matter. That doesn’t imply 

that gender is not relevant. 

Table 1 indicates that both boys and girls more often connect boys with the 

reply ‘Boys are best’, but when looking at responses from a personal view, this 

is not repeated. As a final measure, we studied girls and boys responses 

regarding self-evaluation (see Table 3): 

 Very good Good Average Below 

average 

Weak p 

Girls 13(11.7) 34(30.46) 39(35.1) 12(10.8) 13(11.7) >0.05 

Boys 19(17.1) 26(23.4) 40(36.0) 10(9.0) 16(14.4)  

 

 

Table 3: Self-evaluation n(%) 

In Table 3, most responses are ‘Good’ or ‘Average’ and the results do not 

significantly differ. As a summary, the students participating in this study 

indicated that overall, gender is not a determining factor or there is no 

difference between boys and girls. In their written motivation, they showed 

great awareness of gender as a dynamic concept. However, their responses still 

signalled that boys, as a group, would think that they are better in mathematics, 

either as a sign of self-confidence or ability.  

DISCUSSION 

Here, grade nine students’ attitudes about boys, girls and mathematics were 

studied with a focus on who could be considered better in mathematics: boys or 

girls, if they were equally good or if the question was not about biological sex at 

all. The majority of the respondents picked the latter two categories, but there 

were some differences in their response patterns. One pattern is that although 

the majority of responses, both from boys and girls, signal that neither boys nor 

girls are better at mathematics, boys more often answered that boys and girls are 

equally good and girls more often state that this is not about sex. When one take 

this result in comparison with  gender theories (e.g. Acker, 2006; Connell, 

2006), it could be seen as a difference between the level of understanding of 

gender; that boys more often signal that there is a gender division whereas girls 

more often state that such division is not fruitful. Both groups, however, turn to 

traditional stereotypical patterns when answering the questions from a group 
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perspective of boys in grade 9 and boys in general. Both groups are connected 

to the statement ‘Boys are best’. This is in line with previous reports that boys 

more often than girls opt for higher levels in self-evaluations (OECD, 2013; 

Sumpter, 2012). This it is not repeated when boys answer from a personal 

perspective: girls and boys responses in the self-evaluation do not differ. Here, 

we have a variation between what is attributed and what is reported from an 

individual perspective. Boys also attribute similar gender stereotyping to girls, 

which girls do not repeat. This difference needs to be further investigated since 

it can inform us about intra-cultural tensions (e.g. Clarke, 2013; Nortvedt & 

Sumpter, 2017) or, in the light of Bjerrum Nielsen (2003) different aspects of 

gender, relationships between symbolic gender and personal gender.  

When the students responded what they think their parents would reply, a 

symmetry appeared: fathers would say that boys are better in mathematics and 

mothers would choose girls. However, this symmetry should be viewed from 

the perspective that most of the students state that parents would express gender 

neutral attitudes. One possible explanation could be found in the written 

motivations where the main theme was that gender stereotypical views has 

changed in the society as a whole. The awareness of gender as a social 

construct, and not just a division of sex, among the 15 year olds participating in 

this study was impressive. When comparing to Gannerud’s (2009) study where 

the teachers answered that gender is not an issue since the society is already 

equal, the students talked about an awareness of change including less 

oppression and how power has shifted (e.g. Acker, 2006). One possible 

explanation could be that this is a reflection of gender equality work in Swedish 

schools (e.g. Hedlin, 2013) or that progress has continued (e.g. Brandell, 2008). 

One implication is that if teachers want to fulfil the goals of the curriculum 

where it states that they should help students to critically analyse and discuss 

gender issues, they should be aware of that the students might have a developed 

gender view but that old stereotypes could still exists within this view.   
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Being able to analyse classroom situations forms an essential part of teacher 

expertise. Research into the development of what teachers identify and interpret 

as relevant for students’ learning merits, consequently, particular attention. 

Building on our prior research, this longitudinal study investigates N=100 

teachers’ analysing regarding the use of multiple representations and its 

development in the first year of teaching (induction phase). A vignette-based 

test with 12 classroom situations from the content areas fractions and functions 

was administered at two points of measurement. For each of the situations, the 

participants were asked to evaluate the observed use of representations. The 

findings show little growth in the teachers’ analysing as well as differences 

between analysing vignettes dealing with fractions or functions.   

INTRODUCTION 

Teachers’ analysing of classroom situations informs teaching decisions and is 

therefore highly relevant for instructional quality and student learning (e.g., 

Kersting et al., 2012; Sherin, Jacobs & Philipp, 2011). In the mathematics 

classroom, the essential role of multiple representations draws specific attention 

to teachers’ corresponding competence of analysing: Learning mathematics 

requires the use of multiple representations in a flexible and controlled manner 

(Acevedo Nistal et al., 2009). The complex cognitive demands related to 

changes between different representations can, at the same time, cause 

difficulties and hinder students’ learning (Ainsworth, 2006; Duval, 2006). 

Consequently, the competence to analyse the use of multiple representations 

can be described as an important aspect of mathematics teachers’ expertise 

(Friesen & Kuntze, 2016; Friesen, 2017).  

The study presented in this paper builds on our research into teachers’ 

competence of analysing and addresses in particular the development of such 

competence in the first year of teaching, the so-called induction phase in 

Germany. In most of the German federal states, an induction phase follows the 

university part of teacher education: For a period of mostly 18 months, the 

prospective teachers teach at a reduced level of hours and are supervised by a 
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mentor, usually an experienced teacher in the subject. One day per week, they 

attend courses on mathematics education. The Standards for Teacher Education 

(here: for the Federal State of Baden-Wuerttemberg) highlight the importance of 

developing mathematics teachers’ competence of analysing during the induction 

phase and explicitly describe analysing the use of representations in the 

mathematics classroom as an essential learning goal. There is, however, not 

much evidence how that important aspect of mathematics teachers’ professional 

competence develops in the first year of teaching. We addressed that need for 

research and describe the theoretical framework, the design of the study and 

selected results in the following. 

ANALYSING THE USE OF MULTIPLE REPRESENTATIONS 

The use of multiple representations plays a crucial role for the teaching and 

learning of mathematics. As mathematical objects are abstract in nature, they 

can only be accessed by using representations (e.g., Goldin & Shteingold, 

2001). According to Duval (2006), representations can stand for mathematical 

objects and often use so-called representation registers (e.g., oral or written 

language, symbols, drawings, diagrams, graphs, etc.). Since changing between 

representation registers is often a key to solving problems and mathematical 

understanding (Ainsworth, 2006), the use of multiple representation registers 

can be regarded as indispensable for the teaching and learning of mathematics. 

Teachers and students generate and use multiple representations for introducing 

new topics, for explaining, for solving problems and for sharing ideas in the 

classroom, among others (Duval, 2006; Acevedo Nistal et al., 2009).  

Numerous studies have shown, however, that using multiple representations of a 

mathematical object and changing between them involves high cognitive 

demands for the learners (Ainsworth, 2006; Duval, 2006). The changes between 

different representation registers, so-called conversions, can consequently lead 

to serious problems in understanding, e.g., when students fail to see how 

representations of the same mathematical object in different registers (e.g., 

verbal explanation, written symbols and drawing) are connected (Duval, 2006). 

For this reason, mathematics teachers have to be able to analyse classroom 

situations regarding the use of multiple representations to support their students 

in connecting different representation registers when conversions are carried out 

(Friesen & Kuntze, 2016). Based on the concept of teacher noticing (e.g., 

Sherin, Jacobs & Philipp, 2011), we described such ability as teachers’ 

competence of analysing the use of representations, in particular regarding 

learning obstacles arising from conversions between unconnected representation 

registers (Friesen & Kuntze, 2016). In earlier research, we found that such 

competence can be described empirically through a one-dimensional Rasch 

model (Friesen, 2017).  
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Although analysing classroom situations as described above is regarded as 

highly relevant for the learning of mathematics, corresponding studies have 

found that both pre-service and in-service teachers often lack such competence 

(e.g., Friesen, 2017). Since it can be expected that practice-based learning 

opportunities can lead to further development in teachers’ analysing (cf. 

Stahnke, Schueler & Roesken-Winter, 2016), this study aims at contributing to 

the field by addressing how teachers’ competence of analysing focusing on the 

use of representations develops in their first year of teaching. 

RESEARCH INTEREST AND RESEARCH QUESTIONS 

In previous studies, we used cross-sectional designs to compare pre-service and 

in-service teachers’ competence of analysing classroom situations regarding the 

use of multiple representations (e.g., Friesen, 2017). There is hence still a need 

for longitudinal studies allowing the assessment of teachers’ analysing at 

several points of measurement to better describe its development; also the role 

of specific learning opportunities can thus be taken into account (specific course 

contents related to the use of representations as well as teaching practice 

regarding particular content areas). Most studies investigating teachers’ 

analysing address only one particular content area, such as fractions, geometry, 

arithmetic or functions (cf. Stahnke, Schueler & Roesken-Winter, 2016). We 

were consequently particularly interested in comparing the development of 

teachers’ analysing in two content areas (fractions and functions). 

Consequently, this study addresses the following research questions: (A) How 

does teachers’ competence of analysing the use of representations develop 

during the first year of teaching (induction phase)? (B) Does teachers’ 

competence of analysing develop differently in the two content areas fractions 

and functions? (C) What is the role of specific learning opportunities (course 

content, teaching practice in the two content areas during induction phase) in 

the context of questions (A) and (B)? 

SAMPLE AND METHODS  

The data analysed in this study was collected from N=100 teachers (61.0% 

female; Mage=26.8; SDage=4.3) in their induction phase for teaching 

mathematics at secondary level (grades 5–10). The teachers’ competence of 

analysing was assessed at two points of measurement using a vignette-based test 

instrument (pre-test: at the beginning of the induction phase; post-test: 12 

months later). Vignettes can represent classroom practice in different formats 

(video, cartoon, text) and offer various possibilities for eliciting teachers’ 

analysis of classroom situations in systematically designed research settings 

(Buchbinder & Kuntze, 2018). In our prior research (Friesen, 2017), we could 

show that different vignette formats are equally suitable for eliciting teachers’ 

competence of analysing regarding the use of representations. Accordingly, we 

used twelve purposefully designed vignettes in the formats cartoon and text that 
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represented mathematics classroom situations with a similar narrative: A group 

of students struggle with solving a task, they show the teacher their work in a 

certain representation register (e.g., calculation, written symbols) and ask the 

teacher for help. The teacher tries to support the students by unnecessarily 

changing the representation register (e.g., by making a sketch or drawing). 

However, the teacher does little to connect the students’ representations with 

this new representation and there is no specific support for the students to see 

that the different representations belong to the same mathematical object. Based 

on the theory of learning with multiple representations as outlined above, such 

unconnected conversions are very likely to cause further problems in students’ 

understanding. 

The vignettes (Figure 1; cf. Friesen, 2017) were administered in a paper-and-

pencil test and the participants of the study were asked to evaluate the vignette 

teachers’ teaching in the twelve different classroom situations (six situations 

each from the content area of fractions in grade 6 and functions in grade 8). 

Each vignette was followed by an open-ended question (How appropriate is the 

teacher’s response in helping the students to solve the task? Please evaluate the 

use of representations and give reasons for your answer.) and four rating-scale 

items (e.g., By using an additional representation, the teacher supports the 

students’ understanding). 

          

Figure 1: Sample vignettes (left: cartoon-based function vignette; right: text-

based fraction vignette; drawings by Juliana Egete) 

In a prior study with N=175 mathematics teachers (Friesen & Kuntze, 2020), 

the empirical item difficulties of the twelve vignettes were computed using IRT 

scaling. Accordingly, different booklets for the pre-test and post-test were 

designed (eight vignettes at each point of measurement, four anchor items) to be 

able to control for test repetition effects (see Figure 2 for the design of the 

booklets). 
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Figure 2: Design of the test booklets in pre-test and post-test (T: text-based, C: 

cartoon-based; 1–6: vignette numbers in the content areas of fractions or 

functions) 

To examine the role of specific learning opportunities for the development of 

the participants’ competence of analysing during their induction phase, they 

were asked in the post-test: (1) if multiple representations and their use had 

been provided as a course topic during induction phase and (2) if and how long 

(instruction time per week) they had collected experience in teaching fractions 

and/or functions. 

DATA ANALYSIS AND SELECTED RESULTS 

The rating-scale items were scored dichotomously to examine if the participants 

of the study have perceived the potentially hindering changes of representations 

in the classroom situations in their analysis. This coding resulted in a maximum 

of eight points per measurement. Taking into account the design as shown in 

Figure 2, we analysed the data from pre-test and post-test using the joint 

calibration method (Wu, Tam & Jen, 2016). We could find a good compatibility 

with the Rasch model (0.88 ≤ wMNSQ ≤ 1.12; -1.2 ≤ T ≤ 1.7; cf. Bond & Fox, 

2015), indicating that the scores from pre-test and post-test can be modelled on 

a joint scale. Since the study contained vignettes from two different content 

areas (fractions, functions), we compared a one-dimensional model (containing 

all vignettes) with a model including two subdimensions (subdimension 1: 

fraction vignettes, subdimension 2: function vignettes). The model with 

subdimensions takes into account the potentially higher local dependencies 

amongst vignettes from the same content area (cf. Hartig & Höhler, 2009). The 

comparison of the two models indicated no significant difference (χ2(2)=3.70, 

p= .157). Since good fit values for the Rasch model could be found, we were 

able to use the raw scores for the following analysis to compare the results from 

pre-test and post-test.  

To answer research question A and B, we compared the participants’ scores for 

their competence of analysing between pre-test and post-test. The findings 

revealed different developments of the participants’ competence of analysing in 

the two content areas under investigation: Only in the content area of functions, 

a significant increase in the analysing scores could be found (Mpre=2.17, 

SDpre=1.11; Mpost=2.57, SDpost=1.19; F (1, 99)=8.800; p= .004), indicating a 

small effect (d= .308).  
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Figure 3: Scores in pre-test and post-test: means and their standard errors  

Figure 4 and 5 illustrate these findings with sample answers to the open-ended 

items. As reported above, each of the vignettes was followed by the question: 

How appropriate is the teacher’s response in helping the students to solve the 

task? Please evaluate the use of representations and give reasons for your 

answer. Figure 4 shows a participants’ responses to a fraction vignette (C2 in 

Fig. 2) from pre-test and post-test. At both points of measurement, there is no 

indication for a successful analysis regarding the use of representations: In the 

pre-test, the vignette teacher’s reaction to the students’ question is evaluated as 

“good”. Although the change of representations is described, its potentially 

obstructing role for the students’ understanding is not mentioned. In the post-

test, the answer focuses only on the potential of the bar model used by the 

vignette teacher, the change of representations is no longer mentioned. 

                  
Figure 4: Sample answers (pre and post) to the same fraction vignette  

Figure 5 shows another participants’ answers to a function vignette (C2 in Fig. 

2) illustrating the pre-service teachers’ growth in analysing this classroom 

situation: In the pre-test, the vignette teacher’s change of representation from 

equation to graph is mentioned but evaluated as helpful for the students’ 

understanding. The answer from the post-test indicates that the participant 

analysed both the students’ problem in understanding and the teacher’s reaction. 

The participant acknowledges the role of using another representation for 

helping the students in this situation, however, he also describes the lack of 

explanation when the change of representation is carried out. The missing 

connection between the students’ question and the teacher’s reaction is 
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highlighted additionally by mentioning that the students’ question was not 

answered.  

 

Figure 5: Sample answers (pre and post) to the same function vignette 

To answer research question C, the items addressing the specific learning 

opportunities during the participants’ induction phase were examined. 58.0% of 

the participants reported that one of the weekly courses (lasting about two 

hours) focused on representations and their use in the mathematics classroom or 

that this topic was discussed frequently, regardless of grade level or content 

area. Asked about their teaching experience, 45.0% of the participants stated 

that they had taught fractions in grade 6 (or 7) and 23.0% stated they had taught 

functions in grade 8 (or 7) during their induction phase. This corresponded to a 

reported instruction time of four to five lessons per week. Examining relations 

between the reported learning opportunities and the teachers’ post-test scores 

did, however, not yield statistically significant findings in terms of correlations 

or systematic relations in contingency tables.   

DISCUSSION 

Before we discuss the findings of the study, we would like to address its 

limitations. The vignette-based test is restricted to analysing the use of multiple 

representations in classroom situations from the content areas of fractions and 

functions. Since the sample is not representative for German mathematics 

teachers, conclusions should be drawn with care. Despite these limitations, we 

could find answers to our research questions: The results from the rating-scale 

items indicate that there was on average only little development in the pre-

service teachers’ competence of analysing during their induction phase. 

Furthermore, it could be shown that the development differed in the two content 

areas under investigation: Significant growth in the participants’ competence of 

analysing (indicating a small effect) could only be found in the content area of 

functions. However, no systematic relations of the teachers’ competence of 

analysing with any of the reported learning opportunities (teaching experience, 

course contents) could be revealed. Deepened analyses of the answers to the 

open-ended items might provide additional insight into the development of the 

teachers’ competence of analysing in their first year of practice since they allow 

to explore participants’ reasoning and also related difficulties in more detail. 
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The findings of the study encourage further research into effective learning 

opportunities for facilitating teachers’ analysing during their induction phase, a 

phase during which teachers are particularly required to connect classroom 

observations with the professional knowledge developed at university. Our prior 

research related to developing such analysing in the context of teacher 

education courses (e.g., Friesen, Dreher & Kuntze, 2015) showed, for example, 

how (video) vignettes can be used to foster student teachers’ growth in 

analysing. We expect further insight how prospective and early career teachers 

can be supported in analysing classroom situations from follow-up studies 

carried out in the ERASMUS+ project coReflect@maths (Digital Support for 

Teachers' Collaborative Reflection on Mathematics Classroom Situations).  
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Research in teacher education over the past ten years has led to policy and 

practice implications for learning and instruction, including institutionalization 

of the world’s first academic program in ethnomathematics. The 

ethnomathematics program at the University of Hawai‘i empowers teachers as 

leaders to align professional practices with state and national standards via the 

innovative design, implementation, and assessment of culturally-sustaining 

research and praxis in formal and informal, place-based contexts. The mission 

and vision of the program are inspired by its role in the worldwide voyage of 

the traditional canoe Hōkūle‘a, bridging Indigenous wisdom and 21st century 

interdisciplinary knowledge and action toward the transformational 4th 

Industrial Revolution. The underlying goal is a shared commitment to equity, 

empowerment, and dignity for all. 

FOCUS AND OBJECTIVES 

Three decades after the 1984 International Congress on Mathematical 

Education’s declaration of “mathematics for all,” we have come to understand 

that mathematics is undergoing one of the most critical periods in its recorded 

history (Bishop, 1988; NSTC, 2018). The U.S. National Science & Technology 

Council’s Strategy for STEM Education (2018) is to “provide all Americans 

with lifelong access to high-quality STEM education, especially those 

historically underserved and underrepresented in STEM fields and 

employment…[and] an urgent call to action for a nationwide collaboration with 

learners, families, educators, communities, and employers—a “North Star” for 

the STEM community as it collectively charts a course for the Nation’s success” 

(p. v). The current era emphasizes the “dreams, possibilities, and necessity of 

public education,” and the role of mathematics in influencing the equilibrium of 

achievement (Weiss & Miller, 2006). 

The goal of this paper is to discuss how knowledge and action for change are 

achieved through professional practice in ethnomathematics, in an ongoing 

process of navigating toward the “North Star” in Hawai‘i and the Pacific 

(Furuto, 2018; Tuhiwai Smith, 1999). Specifically, our research has developed 

new theoretical insights into honoring and sustaining non-Western systems 

based on examples in mathematics teacher education. The premise is that 
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“Mathematics is powerful enough to help build a civilization with dignity for 

all, in which ethnomathematics practices encourage respect, solidarity, and 

cooperation…in the pursuit of peace” (Rosa, D’Ambrosio, Orey, Shirley, 

Alangui, Palhares, & Gavarrete, 2016, p. ix). Our vision is grounded in a shared 

commitment to equity and empowerment, as required to responsibly and 

ethically navigate toward the 4th Industrial Revolution (Maynard, 2015; Rosa et 

al., 2016). 

THEORETICAL FRAMEWORKS 

Ethnomathematics is real-world problem-solving that empowers locally-

minded, global citizens through interdisciplinary learning that is connected to 

the ecological, cultural, historical, and political contexts in which schooling 

takes place (Gutiérrez, 2017; Rosa et al., 2016). Over the past three decades, 

research in teacher education has emerged to promote development in the areas 

of equity, empowerment, and ethnomathematics, including: culturally relevant 

pedagogy (Ladson-Billings, 1995), engaged pedagogy (hooks, 1994), critical 

care praxis (Powell & Frankenstein, 1997), and culturally sustaining pedagogy 

(Paris, 2012). According to Paris (2012), “Culturally sustaining requires that our 

pedagogies be more than responsive of or relevant to cultural experiences and 

practices…it requires that they...simultaneously offer access to dominant 

cultural competence” (p. 95). 

Research in Hawai‘i and Pacific communities demonstrates the importance of 

culturally sustaining pedagogy as we strive toward social justice and overcome 

deficit theories (Furuto, 2014; Kanaʻiaupuni, 2005). Through interconnected 

work with educational institutions, research organizations, and community 

partners, we have created an ethnomathematics program to further a deeper 

understanding of the psychological and other aspects of teaching and learning 

mathematics and the implications thereof (Adler & Venkat, 2014). 

A tradition that runs deep in Indigenous peoples of Hawai‘i and the Pacific for 

over 2,000 years is deep sea voyaging by celestial navigation without modern 

navigational tools (Finney, Kilonsky, Somsen, & Stroup, 1986). Traditional 

wayfinding is guided by the sun, moon, stars, winds, currents, and mathematical 

modeling. When the navigation renaissance began in the early 1970s by the 

Polynesian Voyaging Society (PVS), Native Hawaiian and others voyaged to 

prove that purposeful migration occurred across the Pacific (PVS, 2016). Now, 

with the tradition of wayfinding revived and thriving, the voyages allow new 

generations to honor and sustain knowledge, culture, and values through 

education. The PVS prototype canoe Hōkūle‘a has sailed over 160,000 nautical 

miles and spawned a legacy of more than 25 deep sea voyaging canoes birthed 

across 11 Pacific Island nations (Finney et al., 1986; Furuto, 2018). Hōkūle‘a 

serves as a powerful vehicle to draw on the strengths of our Pacific histories, 
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identities, and cultures, and broadens the participation of groups historically 

underrepresented in mathematics. 

Hōkūle‘a’s most recent voyage circumnavigated the globe from 2013–2017 

with a mission to mālama honua—to “care for Island Earth” and all people and 

places as ‘ohana (“family”). The lead author was an apprentice navigator and 

education specialist on the voyage, sailing with leaders such as the Archbishop 

Desmond Tutu, His Holiness the 14th Dalai Lama, and United Nations (UN) 

Secretary General Ban Ki-moon. From outside the UN Headquarters on World 

Oceans Day 2016, Ban Ki-moon stated, “I am honored to be part of the Mālama 

Honua Worldwide Voyage. I am inspired by its global mission, and support our 

common cause of ushering in a more sustainable future and a life of dignity for 

all through education.” 

SETTING AND SIGNIFICANCE OF WORK 

Knowledge and action for enduring, transformational change toward the 4th 

Industrial Revolution comes from working with and learning from the 

populations we are endeavoring to serve, and co-constructing thinking skills 

necessary for the future (Powell & Frankenstein, 1997). According to Jaworski, 

Wood, and Dawson (1999), “In-service providers cannot just ‘deliver’ a course 

or workshop. They must become part of learning communities” (p. 12). This is 

what we have strived to do by bringing the voyages back to land. 

Hawai‘i’s population is among the most diverse in the nation. The breakdown is 

Caucasian (25%), Filipino (15%), Japanese (14%), Native Hawaiian/Pacific 

Islander (10%), and others (U.S. Census Bureau, 2010). There are a range of 

schools classified as urban, suburban, and rural. The Hawai‘i State Department 

of Education (HIDOE) serves many students in poverty, and 47% receive free 

and reduced lunch (HIDOE, 2020). Moreover, Hawai‘i is the only statewide 

school district in the nation, and operates a single public higher education 

system at the University of Hawai‘i (UH). The data and context make Hawai‘i a 

valuable study, and provide a significant lens into the future of diversity in the 

U.S. with global implications. 

In Fall 2013, the PVS Promise to Children was authored by educational 

leadership in Hawai‘i and the Pacific, including the HIDOE Superintendent and 

UH system President who participated as crew members on the Mālama Honua 

Worldwide Voyage. This alliance spans early childhood education through 

graduate studies (P–20), public and private sectors, and invites new partners to 

achieve collective impact (Kania & Kramer, 2011). As a result of P–20 

collaborations, the HIDOE created learning outcomes to inform policy at the 

statewide level. Nā Hopena Aʻo (2015) is a framework to honor the unique 

context of Hawai‘i’s Indigenous language and culture. Similarly, interwoven in 

the UH System Strategic Directions 2015–2021 (2015) are key imperatives to 
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being a foremost Indigenous-serving institution and advancing sustainability, 

with the Mālama Honua Worldwide Voyage as a catalyst.  

The College of Education at the UH system’s flagship campus, UH Mānoa, is 

ideal to help achieve P–20 knowledge and action for change through 

ethnomathematics. The College of Education directs teacher preparation 

programs, curriculum design, and research projects in Hawai‘i and U.S. 

affiliated Pacific Islands. It produces more than 65% of Hawai‘i’s teaching 

force and prepares professionals to contribute to a just, diverse, and democratic 

society across the Pacific (UH IRO, 2020). 

RESEARCH METHODS AND DATA  

The Ethnomathematics Institute was developed to bring together research 

institutions, cultural practitioners, and community-based organizations in 

support of undergraduate STEM majors at UH West O‘ahu (2008-2013), and 

later, transitioned to UH Mānoa to strengthen professional development for P–

20 STEM educators (2013-2018).  Grant funding was provided over the years 

by the National Science Foundation and U.S. Department of Education, among 

others. 

The main objectives of the institute were to: (1) explore promising practices in 

historically marginalized populations in alignment with national and state 

standards, such as Mathematics Common Core State Standards (CCSS), Next 

Generation Science Standards (NGSS), and Nā Hopena Aʻo (HĀ); (2) prepare 

teachers as leaders to provide ethnomathematics instruction and professional 

development in their schools and communities that are relevant, contextualized, 

and sustainable; and (3) strengthen campus-community partnerships to build 

sustainable networks within Hawai‘i and the Pacific. 

From 2013-2018, the participants in the Ethnomathematics Institute represented 

a diverse range of experience, disciplines, grade levels, and locations (Table 1). 
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Demographic Descriptions No. of teachers 
 

Grade level taught during study year (n = 78): 

Elementary school (Grades K–5) 12 

Middle school (Grades 6–8) 18 

High school (Grades 9–12) 28 

District resource teacher (K–12) 4 

Undergraduate students 6 

Post-secondary teachers 

Other (i.e., non-formal, informal educators) 

6 

4 

Ethnic background (n = 78): 

Asian  24 

Caucasian 24 

Native Hawaiian 18 

Hispanic 4 

Pacific Islander 4 

Other 4 

No. of years teaching (n = 78): 

<1 2 

1–4 30 

5–10 11 

11–15 13 

>15 22 

School type (n = 78): 

Public  58 

Public charter 15 

Private 5 

Disciplines taught during study year (n = 78): 

English   4 

Math 32 

Science 24 

Technology 6 

All subjects (elementary) 12 

 

 

Table 1: Demographic descriptions of participants 

Within the Ethnomathematics Institute, learning occurred in formal and 

informal place-based contexts. Through real-world applications from mountains 

to sea, the project activities, assignments, and assessments bridged Indigenous 

wisdom and 21st century skills to classrooms and communities.  For example, 

content areas included: wayfinding by geometrical angles of the sun, moon, and 

stars; algebraic studies of currents and water quality in nearby rivers and 

streams; and monitoring the impact of climate change on school gardens, among 

others (Furuto, 2018).  
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Project evaluation from 2013-2018 was based on mixed-methods grounded in 

strengths-based approaches. The evaluators collected both formative and 

summative data. Evaluation questions were aligned with the three objectives of 

the Ethnomathematics Institute (Table 2). 

Goals      Evaluation Questions 

  Increase knowledge of content and 

pedagogy in culturally sustaining 

mathematics aligned with Common 

Core State Standards (CCSS), Next 

Generation Science Standards (NGSS), 

and Nā Hopena Aʻo (HĀ) 

1. To what extent did the participants 

perceive that the project affected their 

knowledge of culturally sustaining 

mathematics pedagogies aligned with 

CCSS, NGSS, and HĀ?  

Prepare teachers as leaders to provide 

instruction and professional 

development in ethnomathematics in 

their schools and communities through 

high-quality learning that is relevant, 

contextualized, and sustainable 

2. How did the participants perceive the 

process of their lesson plan 

development and implementation? 

Strengthen campus-community 

partnerships within Hawai‘i and the 

Pacific for sustainable classroom and 

community networks 

3. To what extent did the participants 

report the project cultivated a 

supportive, sustained community? 

 

 

Table 2: Program goals and evaluation questions 

Qualitative data was collected using semi-structured focus groups. Content 

analysis was utilized to evaluate constructed response questions with a 

grounded theory approach (Corbin & Strauss, 2014). Participants reported that 

the program increased culturally responsive pedagogy and emphasized the 

importance of understanding student culture, promotion of cultural 

understanding, and adjustment of teaching practice to reflect student culture 

using pedagogical strategies familiar to students. One participant commented, “I 

am making…a point to connect almost everything I teach to something the kids 

know about already, something that is in our community or environment and 

close to their hearts. It is making all the difference.” 

Quantitative data analysis consisted of descriptive statistics. In general, 

participants perceived the Ethnomathematics Institute to be valuable and 

relevant to their teaching practice, as measured on a Likert scale from 1-5 with 

1 = Do Not Agree and 5 = Strongly Agree (N = 78, M = 4.84, SD = 0.37). At 

the end of the Ethnomathematics Institute, participants were most likely to agree 

that they understood and could incorporate culturally sustaining pedagogy 

aligned with state and federal standards into their classrooms. The 
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disaggregated items had a reliability of 0.75 (Cronbach’s alpha) and an overall 

mean of 4.15 (select results in Table 3). 

Prompt N M SD 
Min,  

Max 

1. The project helped me better understand and 

incorporate culturally sustaining pedagogy 
78 4.74 0.45 4, 5 

2. The project helped me better understand and 

incorporate mathematics content  
78 4.42 0.69 3, 5 

3. The project helped me better understand and 

incorporate Common Core State Standards  
78 4.78 0.52 4, 5 

4. The project helped me better understand and 

incorporate Next Generation Science Standards 
78 4.52 0.65 3, 5 

5. The project helped me better understand and 

incorporate Nā Hopena Aʻo 78 4.78 0. 56 4, 5 

 

 

Table 3: Understanding and incorporation of pedagogy, content, and standards 

RESULTS 

Over the past ten years, the Ethnomathematics Institute has grown through 

successes and challenges. When the program was based at UH West O‘ahu, 

performance measures included a 1400% increase in undergraduate students 

enrolled in mathematics courses, as the population grew from 940 students in 

2007 to 2,361 students in 2013 (UH IRO, 2020). This led to the development of 

11 new mathematics courses tied to institutional learning outcomes, 

accreditation, and graduation requirements, all of which are grounded in 

ethnomathematics. When the Ethnomathematics Institute transitioned into a 

yearlong professional development program for P-20 educators, the participants 

represented all HIDOE complexes and districts. This led to an integrated 

statewide network that extended to the Pacific and demonstrated a commitment 

to transform education. 

The world’s first academic program in ethnomathematics was institutionalized 

at the UH Mānoa College of Education in 2018, thus leading the way for 

mathematics education. The 15-credit program is designed to lead into the 

M.Ed. Curriculum Studies: Mathematics Education, providing an attractive 

option for graduate students. There are no master’s degrees in mathematics 

education at any other UH system institutions or U.S. affiliated Pacific Islands. 

Moreover, in an unprecedented move, the Hawai‘i Teacher Standards Board, 

which licenses teachers throughout Hawai‘i and U.S. affiliated Pacific Islands, 

officially approved ethnomathematics as a field of licensure in 2018. This 

approval indicates that program assessments, rubrics, and frameworks aligned 
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with the Council of Chief State School Officers’ model core teaching standards 

(CCSSO, 2013). 

CONCLUSIONS 

A decade of research, theory, and praxis has ultimately led our voyage to the 

creation of a new academic program. This illustrates how ethnomathematics has 

empowered teachers as leaders, through equitable practices aligned with state 

and federal standards that bridge Indigenous wisdom and 21st century learning. 

The skills necessary for the 4th Industrial Revolution require innovative and 

interdisciplinary research-based practices that further our understanding of 

teaching and learning mathematics (Adler & Venkat, 2014; Maynard, 2015). 

Three decades after the 1984 International Congress on Mathematical 

Education, we have increasingly hopeful responses to the challenge of re-

examining the equilibrium of mathematics. “Mathematics for all” is not just a 

vision but a growing reality. As we reflect on our calls to action, we are inspired 

by the proverb, “‘A‘ohe hana nui ke alu‘ia—No task is too big when done 

together by all” (Pukui, 1993, p. 18). Through storms and calm seas, we will 

remain steadfast in our firm commitment to follow the “North Star” to equity, 

empowerment, and dignity for all. 

References 

Adler, J., & Venkat, H. (2014). Teachers’ mathematical discourse in instruction. In H. 

Venkat, M. Rollnick, J. Loughran, & M. Askew (Eds.), Exploring Mathematics and 

Science Teachers’ Knowledge (pp. 132-146). New York, NY: Routledge Press.  

Bishop, A. (1988). Mathematical enculturation: A cultural perspective on 

mathematics education. Ann Arbor, MI: Kluwer Academic Publishers. 

Corbin, J., & Strauss, A. (2014). Basics of qualitative research: Techniques and 

procedures for developing grounded theory. Thousand Oaks, CA: Sage 

Publications. 

Council of Chief State School Officers. (2013, April). InTASC model core teaching 

standards and learning progressions for teachers 1.0. Washington, DC: Author. 

Finney, B., Kilonsky, B., Somseon, S., & Stroup, E. (1986). Re-learning a vanishing 

art. Journal of the Polynesian Society, 95(1), 41–90. 

Furuto, L. (2018). Knowledge and action for change through culture, community, and 

curriculum. In G. Kaiser, H. Forgasz, M. Graven, A. Kuzniak, E. Simmt & B. Xu 

(Eds.), ICME-13 Invited Lectures (pp. 103–114). Cham, Switzerland: Springer 

Publishing. 

Furuto, L. (2014). Pacific ethnomathematics: Pedagogy and practices. Teaching 

Mathematics and its Applications: International Journal of the IMA, 33(2), 110–

121. 



Furuto 

2 -  291 

 

PME 44 -2021 

Gutiérrez, R. (2017). Living mathematx: Towards a vision for the future. Philosophy 

of Mathematics Education, 32(1), 1–34. 

Hawai‘i State Department of Education. (2020). Media kit. Retrieved 24 May 2020 

from http://www.hawaiipublicschools.org/ConnectWithUs/MediaRoom/MediaKit  

Hawai‘i State Department of Education. (2015). Nā hopena a‘o. Retrieved 24 May 

2020 from 

http://www.hawaiipublicschools.org/DOE%20Forms/NaHopenaAoE3.pdf 

hooks, b. (1994). Teaching to transgress. New York, NY: Routledge Press. 

Jaworski, B., Wood, T., & Dawson, A. (1999). Mathematics teacher education: 

Critical international perspectives. New York, NY: Routledge Press. 

Kana‘iaupuni, S. (2005). Ka‘akālai kū kanaka: A call for strengths-based approaches 

from a native Hawaiian perspective. Educational Researcher, 33(9), 32–38. 

Kania, J., & Kramer, M. (2011). Collective impact. Retrieved 24 May 2020 from 

http://www.ssir.org/articles/entry/collective_impact 

Ladson-Billings, G. (1995). Toward a theory of culturally relevant pedagogy. 

American Education Research Journal, 32, 465–491. 

Maynard, A. D. (2015). Navigating the fourth industrial revolution. Nature 

Nanotechnology, 10, 1005-1006. 

National Science and Technology Council (NSTC). (2018). Charting a course for 

success: America’s strategy for STEM education. Washington, D.C.: Author. 

Paris, D. (2012). Culturally-sustaining pedagogy: A needed change  in stance, 

terminology, and practice. Educational Researcher, 41(3), 93–97. 

Polynesian Voyaging Society. (2013). Promise to children. Honolulu, HI: Author. 

Powell, A., & Frankenstein, M. (1997). Ethnomathematics: Challenging Eurocentrism 

in mathematics education. Albany, NY: SUNY Press. 

Pukui, M. K. (1993). ‘Ōlelo no‘eau. Honolulu, HI: Bishop Museum Press.  

Rosa, M., D’Ambrosio, U., Orey, D., Shirley, L., Alangui, W., & Palhares, P. (2016). 

ICME-13 Current and future ethnomathematics perspectives. New York, NY: 

Springer. 

Tuhiwai Smith, L. (1999). Decolonizing methodologies. New York, NY: Zed Books. 

 

 

 



2 - 292 

2021. In Inprasitha, M., Changsri, N., Boonsena (Eds.). Proceedings of the 44th Conference of the 

International Group for the Psychology of Mathematics Education, Vol. 2, pp. 292-300. Khon Kaen, 

Thailand: PME. 

  

FLEXIBILITY IN DEALING WITH MATHEMATICAL 
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Empirical studies have underlined students’ difficulties with arithmetic word 

problems involving comparisons of sets. Although research has proposed 

strategies to reinterpret difficult word problems into easier ones, no 

corresponding interventions have been designed and evaluated. This study takes 

up the idea and aims at (1) replicating and systematizing former results on the 

difficulty of word problems and (2) investigating, if second graders are able to 

identify similar situation structures in pairs of word problems, and use this 

information to solve more difficult word problems. Results did only partially 

replicate prior research on the difficulty of word problems, and did not show 

that students transferred situation structures between pairs of tasks. This 

underlines the necessity of a corresponding intervention study. 

INTRODUCTION 

Prior research has shown that the way an arithmetic problem is presented 

influences the difficulty for learners: The same problem presented in numerical 

format (e.g., 3 + 5 = 8) is solved 10 to 30% less frequently, if it is embedded in 

a word problem (Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1980). This 

implies that factors other than arithmetic skills influence a word problem’s 

difficulty. Current research often distinguishes between comprehension 

obstacles, which relate to reading comprehension, and conceptual obstacles, 

which relate to problems with the acquisition of the semantic problem structure 

of a word problem (Prediger & Krägeloh, 2015). In this article, we present a 

preparatory study for the design of an intervention program with a focus on the 

analysis of conceptual obstacles: After summarizing processes and difficulties 

occurring when solving of word problems, and presenting strategies to tackle 

these difficulties, we investigate, if students already make use of these strategies 

spontaneously. 

CURRENT STATE OF RESEARCH 

In the past, there has been extensive research on solving word problems (Stern, 

1993; Vicente, Orrantia, & Verschaffel, 2008), in particular focusing on one-

step arithmetic word problems on addition and subtraction. Common 

frameworks on solving word problems (e.g., Kintsch & Greeno, 1985) include 

two models that need to be constructed individually: the situation model and the 
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mathematical problem model. An alternative perspective focuses on structures 

that problem authors may have intended while writing word problems. 

According to this perspective, students need to reconstruct these structures in 

the form of situation models when solving the problem. The relationship 

between these two perspectives will be outlined in the following. 

Problem authors can realize a word problem linguistically in different ways 

(text base). For instance, a description of the comparison of two sets requires 

relational terms. The authors can decide how they describe the relation (with 

terms like “more”, “less”, “bigger”, or “smaller”, etc.). (1) As a first step of 

solving a word problem, the learners decode this generated text base and 

integrate the information and prior knowledge into an initial situation model 

(Kintsch & Greeno, 1985). At best, the first “draft” of an individual situation 

model contains the basic components of the author’s intended situation 

structure. In course of the solution process, learners can enrich their situation 

model so that it also reflects alternative situation structures, using inferences 

based on their prior knowledge (Kintsch, 1998). (2) Furthermore, the learners 

need to transfer the situation model to a mathematical problem model by 

describing their situation model with mathematical concepts (Kintsch & 

Greeno, 1985). At best, this mathematical problem model corresponds to the 

author’s intended mathematical structure of the word problem. To find an 

adequate mathematical problem model based on the situation model, the 

learners need to know, which mathematical structures can describe a certain 

situation structure. The constructed situation model is essential during this 

process. Depending on the aspects of the situation structure, which are available 

in the individual situation model, the learners are assumed to activate different 

facets of their individual knowledge, which might be more or less helpful for 

the construction of a mathematical problem model. 

Various prior studies have investigated, which factors influence the difficulty of 

solving word problems (e.g., De Corte & Verschaffel, 1987). One line of 

research indicates that the linguistic presentation influences the difficulty of 

word problems (Bailey & Butler, 2003). Beyond this, the intended situation 

structure of word problems has been found as another relevant factor. Different 

characteristics of this situation structure may influence the difficulty of a word 

problem on addition and subtraction: the semantic structure, the unknown set, 

and the additive or subtractive wording. 

Regarding the semantic structure, research on word problems on addition and 

subtraction often distinguished between change, combine, compare, and 

equalize situations (e.g., Riley, Greeno, & Heller, 1983). While change and 

equalize word problems describe a dynamic action, combine and compare word 

problems are considered static situations. Past research has shown that students’ 

solution rates vary with the semantic structures in a word problem, and compare 

problems seem to be particularly challenging for learners (Riley & Greeno, 
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1988; Stern, 1993). One reason might be that the difference set in compare 

problems does not describe an existing quantity but a relationship between two 

sets and therefore is hard to represent in a situation model. In the sequel, we 

mostly exclude combine problems from our analysis, since they have a 

substantially different situation structure and are usually not among the more 

difficult problem types. 

Moreover, one of the three involved sets of a one-step word problem is usually 

unknown initially (unknown set). In change word problems, this can be the start 

set, the change set, or the result set, whereas these options are called reference 

set, difference set, or compare set in compare word problems (Riley et al., 

1983). Studies on the impact of the unknown set agree that word problems with 

an unknown reference set or start set are most difficult (Stern, 1993). 

Additionally, additive or subtractive wording (a/s wording) (Fuson, Carroll, & 

Landis, 1996) can be seen as a part of the situation structure: It determines a 

certain direction of the action or a certain perspective on a compare situation, 

which can be represented in a situation model. While the a/s wording of 

dynamic change and equalize problems is expressed with action verbs (additive 

wording: e.g., “to get”, “to win”, subtractive wording: e.g., “to give”, “to lose”), 

the comparison of sets requires relational terms such as “more than”, “bigger 

than” (additive wording) or “less than”, “smaller than” (subtractive wording). 

Combined with the mathematical structure of a word problem, the a/s wording 

influences the difficulty of a task: If the a/s wording and the directly applicable 

mathematical operation do not match (e.g., additive wording in a problem that 

can be solved by a direct subtraction) lower solution rates for the word problem 

are observed. These word problems are called inconsistent (Lewis & Mayer, 

1987). 

Differences in performance caused by the various characteristics of the situation 

structure led to the idea that reinterpreting more difficult types of word 

problems by reinterpreting them in terms of easier situation structures could be 

useful for solving them. Greeno (1980) proposes to use easier accessible 

semantic structures: Instead of solving change word problems, he suggests that 

students could adapt their situation model by reinterpreting the situation as a 

combine word problem. Alternatively, Stern (1993) proposes to reinterpret a 

word problem’s a/s wording. Being able to transfer between different directions 

of mathematical relations (e.g., “Anna has two marbles more than Ben.” equals 

“Ben has two marbles less than Anna.”) or actions might help learners to 

reinterpret inconsistent word problems as easier, consistent word problems. For 

this, learners need to understand the equivalence of such symmetric relational 

expressions. Both approaches describe processes that require the enrichment of 

the initial situation model with an alternative situation structure that represents a 

different perspective on the situation. Being able to make such inferences 

towards alternative situation structures provides flexibility in dealing with 
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mathematical situations. We assume that this flexibility might support learners 

to find a mathematical problem model based on the enriched situation model. A 

lack of this flexibility could be one cause for the described differences in 

performance when solving word problems. Accordingly, an intervention 

supporting students in acquiring this flexibility might improve the students’ 

performance in solving difficult word problems. 

However, it is currently unclear why learners do not apply the reinterpretation 

of situation structures spontaneously. On the one hand, learners might not have 

gained flexibility in dealing with mathematical situations yet. This would imply 

the need for an intervention study to determine, whether the skill can be trained. 

On the other hand, learners might have acquired the required skill but fail to 

apply it. In this case, solving two consecutive, structurally similar tasks should 

elicit the application of this flexibility: Students might transfer features of the 

empirically easier situation structure (e.g., equalize situations) to the situation 

structure of the next, more difficult word problem (e.g., compare situations), if 

it is embedded in the same context situation. Finally, if providing a hint to use 

this structural similarity of consecutive tasks would trigger learners to apply the 

described strategy, an intervention would need to focus on the application rather 

than the acquisition of this flexibility.  

AIMS AND RESEARCH QUESTIONS 

To study if an intervention based on Greeno’s and Stern’s suggestions could be 

helpful, two main issues need to be resolved: The first aim of this contribution 

is to replicate prior results regarding task difficulty, which are fundamental for 

the intervention. 

Q1: Which of the task features semantic structure, a/s wording, and unknown 

set cause differences regarding the difficulty of word problems on addition and 

subtraction? 

Based on prior studies, we expected that compare word problems would be 

more difficult than equalize (H1.1) and change word problems (H1.2). Solution 

rates should be higher for consistent word problems than for inconsistent word 

problems (H1.3). Moreover, existing studies have varied surface features of the 

word problems (names, quantities, involved objects) together with the 

mentioned task features. Our study controls the variation of difficulty caused by 

these surface features. We expected only minor differences in solution rates due 

to surface features (H1.4). 

The second aim of this study was to study the (spontaneous) use of the 

described strategy to reinterpret situation structures. 

Q2: Do students use similar situation structures spontaneously for the solution 

of word problems? Does a hint support the use of the strategy? 
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The successful use of this strategy should cause higher solution rates for items 

for the second of two structurally similar, consecutive word problems (as 

compared to the first problem in the pair, H2.1). We expected stronger 

differences, when compare situations occurred after a dynamic situation, than in 

the reverse sequence (H2.2). In the case that students have already gained the 

required knowledge but fail to apply the strategy spon-taneously, we assumed 

that the effects in H2.1 and H2.2 would be more pronounced, if the learners 

receive an explicit hint on the similarity of the situation structures (H2.3). 

METHOD 

To answer the research questions, paper-and-pencil based tests were used in a 

cross-sectional study with second graders from eight classrooms in Germany 

(N = 139). Each student solved twenty different word problems on addition and 

subtraction, which were selected from a larger collection of task variations. To 

examine Q2, the word problems were arranged in pairs. Each pair of word 

problems contained two structurally similar word problems with the same 

surface features, a/s wording, and unknown set, but differed only in their 

semantic structure. An exemplary pair of word problems could consist of task 

A: “Anna has 13 marbles, Ben has 8 marbles. How many marbles does Anna 

have to give Ben, so that she has as many as Ben?” and task B: “Anna has 13 

marbles, Ben has 8 marbles. How many marbles does Anna have more than 

Ben?” In this example, the first word problem deals with the equalization of 

sets, while the second word problem describes a similar comparison of sets. For 

the compilation of all possible versions of pairs of word problems, we varied 

combinations of semantic structures (change and compare, equalize and 

compare), the a/s wording, and the unknown set systematically. These 

prototypical types were each embedded in twelve different situation contexts. In 

the end, we generated a second set of word problems by reversing the order of 

the two word problems within each pair. 

Procedure: Each student solved ten randomly selected pairs of word problems 

in a random sequence. Each questionnaire also contained two distractor pairs of 

word problems, which had dissimilar mathematical structures in the two tasks. 

This was done to keep students from solving only the first task and 

automatically transferring the answer to the second word problem. Each page of 

the questionnaire showed one word problem and students were instructed to not 

move backwards through the pages to avoid them from adjusting their answers 

retrospectively. In half of the participating classrooms, students received an 

explicit hint, which aimed to encourage them to use similar structures for 

solving the following word problem. 

Coding: Students’ solutions were coded in two different ways: The first option 

(correct result) classified the answer of a student as correct, if the numerical 
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result was correct. The second option (correct operation) classified the answer 

of a student as correct, if at least the calculation or the result was correct. 

Statistical analysis: For the inferential statistical analyses, we used generalized 

linear mixed models for dichotomous data with a logit link function (Bates, 

Maechler, Bolker, & Walker, 2014), which predict the correctness of an 

operation or a result for each task based on individual person features and task 

features. Dependencies between answers of the same person were taken into 

account by including a random intercept. For the examination of main effects 

and interaction effects of the task features, we used likelihood ratio (LR) tests 

based on a chi-square statistic. To compare solution rates under different 

conditions, we calculated contrasts between the respective estimated marginal 

means. The reported regression coefficients can be interpreted as difference 

values on a log odds ratio scale similar to differences of item parameters in an 

IRT model. All calculations were executed in R with the packages lme4 (Bates 

et al., 2014) and emmeans (Lenth, Singmann, Love, Buerkner, & Herve, 2018). 

RESULTS 

To answer Q1, we analyzed only the first task of each pair of word problems 

excluding the distractor pairs. As expected (H1.4), the variation of the situation 

context explained only a small proportion of variance (less than 0.01%). First, 

we analyzed the main effects of a word problem’s semantic structure, unknown 

set, and a/s wording. There were no significant differences between the 

semantic structures concerning the frequency of correct results (change: 77.1%, 

equalize: 71.0%, compare: 72.1%; LR test χ2(2) = 4.06; p = 0.13). However, 

students identified the correct operation significantly less frequently (B = -0.60; 

p = 0.03) in equalize word problems than in change word problems (change: 

82.4%; equalize: 75.4%; compare; 76.3%; LR test χ2(2) = 6.71; p = 0.027). 

Concerning compare word problems, there were no significant differences 

regarding the frequency of correct operations in comparison to change and 

equalize word problems. These results did not confirm H1.1 and H1.2. The 

main effects of a/s wording on the frequency of correct results (LR test 

χ2(1) = 0.54; p = 0.46) and the frequency of correct operations (LR test 

χ2(1) = 2.70; p = 0.10) were not significant. However, we found significant 

differences for the frequency of correct results (LR test χ2(2) = 20.99; p < 0.001) 

and correct operations (LR test χ2(2) = 32.72; p < 0.001) depending on the 

unknown set. Students gave the correct result significantly more often, if the 

result/compare set (78.1%; B = 0.51; p < 0.001), or the change/difference set 

(74.0%; B = 0.81; p = 0.001) was unknown, than if the start/reference set was 

unknown (66.8%). Similar effects occurred, when the identification of correct 

operations was analyzed. This matches with results by Stern (1993). 

Second, we analyzed the interactions between the three main effects. The results 

showed a significant interaction effect of unknown set and a/s wording for the 
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frequency of correct results (LR test, χ2(2) = 22.40; p < 0.001) as well as the 

frequency of correct operations (LR test, χ2(2) = 30.84; p < 0.001). Furthermore, 

there was an interaction of semantic structure and a/s wording (LR test, 

χ2(2) = 8.20; p = 0.017). The triple interaction was not significant for both 

performance measures (results: LR test, χ2(4) = 2.75; p = 0.60; operations: LR 

test, χ2(4) = 2.61; p = 0.62). As expected (H1.3), correct results and operations 

occurred more frequently, if the a/s wording matched the operation necessary to 

solve the problem (consistent word problems). 

For Q2, we analyzed both tasks of each word problem pair. The main effect of 

task position (first vs. second task in a pair) was not significant for both coding 

options and all variations of word problem pairs (e.g., LR test for pairs of 

compare and change word problems: correct results: χ2(1) = 1.61; p = 0.20, 

correct operation: χ2(1) = 1.67; p = 0.28). Consequently, the hypothesis that the 

processing of a structurally similar word problem supports at solving the 

following task was not confirmed (H2.1). Also, the interaction of task position 

and semantic structure was not significant in all cases. Thus, the assumption 

that the solution of change or equalize word problems improves the solution 

rates of structurally similar, subsequent compare word problems was not 

confirmed (H2.2). Finally, we included the effect of hint into the models. This 

main effect and its interaction with task position was not significant for both 

combinations of semantic structures. In addition, the interaction of hint and 

semantic structure and the triple interaction of hint, task position, and semantic 

structure was not significant. Consequently, the hint showed no effect on the 

use of structurally similar word problems (H2.3). 

DISCUSSION 

One aim of this contribution was to investigate if prior results concerning 

factors influencing the difficulty of word problems on addition and subtraction 

could be replicated (Q1). Results indicate higher, more homogenous solution 

rates compared to previous studies (e.g., Stern & Lehrndorfer, 1992 in grade 1). 

In particular, substantial solution rates for compare word problems contradicted 

prior results that classified this type as the most difficult type. This finding 

could be explained by the assumption that learners in grade 2 might already 

have gained experiences with all semantic structures. Additionally, students 

might benefit from the advancement of mathematics education since the 

reported studies were conducted (early 1990s). Results underline, that the a/s 

wording of a word problem is far more important for the identification of a 

correct operation or result. Consequently, an intervention supporting students in 

solving word problems should not only focus on the understanding of semantic 

structures, but also on equivalent statements concerning the a/s wording of a 

word problem.  
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Regarding the use of similar situation structures for the solution of consecutive 

word problems (Q2), results indicate that the participating students did not use 

preceding, structurally similar word problems to solve subsequent tasks in the 

same situation context, even if the students received a hint on their structural 

similarity. One explanation could be, that because of the similar difficulty of 

both tasks in each pair of word problems, learners might not have considered 

the transfer of situation features useful. Another reason might be that students 

were not capable of applying this strategy. Finally, it is also possible that the 

students did not apply the described strategy for other, unknown reasons, 

although they were able to apply it in principle. Each of these explanations 

speaks for further research to obtain more evidence whether and how flexibility 

in dealing with mathematical situations can support students in solving word 

problems. 

Although the present study allows statements on causal relationships between 

task features and task difficulty because of its experimental design, some 

questions remain open. For example, the study provides valuable information 

for the design of an intervention, but cannot predict its potential effect. In order 

to understand mechanisms underlying the identified relations better, an in-depth 

analysis of individual problem solving and learning processes would be 

valuable. Another open question concerns the conscious restriction of task 

variety in this study, as only one-step word problems were considered. In which 

way learners apply the examined skills in more complex situation should be 

analyzed in further research. Nevertheless, this study provides an update on 

older results concerning factors influencing the difficulty of word problems on 

addition and subtraction, which need to be integrated in further investigations. 

Regarding an intervention study to support students, this study contributes 

essential implications for the focus of a training program. The result that 

students do not use strategies of dealing flexibly with situation structures 

underlines the need to analyze potential obstacles. 
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Prior research confirmed language and situation structure as factors 

influencing a word problem’s difficulty. Until now, instructional approaches to 

encounter these difficulties still need empirical foundation. This paper describes 

an intervention to develop second graders’ flexibility in dealing with arithmetic 

situations. During ten sessions, two strategies to enrich students’ situation 

models were introduced supported by macro-scaffolding. We investigated the 

development of four preselected second graders by applying qualitative content 

analysis and compared their development to the intended learning trajectory 

(LT). Results point to potential key processes when gaining such flexibility and 

to required adaptations of the LT. 

Many learners struggle with solving additive (including subtractive) one-step 

word problems. Language skills play an important role during word-problem 

solving, since textually represented descriptions of arithmetic situations need to 

be decoded (Dröse, 2019). This process can be more or less difficult depending 

on the text’s linguistic features, such as syntax or semantics (e.g., Stern, 1993). 

Such potential difficulties have led to ideas how students could reorganize their 

situation model by integrating different perspectives on the depicted situation. 

In this paper, we describe an intervention program that intends to support 

students with describing arithmetic situations displayed in word problems 

flexibly from different perspectives. Since it is an open question, if and how 

students respond to the intervention, this paper aims at the detailed analysis of 

four preselected students’ development during the program. 

PRIOR RESEARCH  

Various studies have investigated the difficulty of additive one-step word 

problems and emphasized features of the problems’ underlying situation 

structure, such as semantic structure, unknown set, and additive or subtractive 

wording (a/s wording), as factors determining a word problem’s difficulty (e.g., 

Daroczy, Wolska, Meurers, & Nuerk, 2015; Gabler & Ufer, 2020; Stern, 1993). 

For example, a problem’s semantic structure can relate to either a change, 

combination, comparison, or equalization of sets (Riley, Greeno, & Heller, 

1983). Research identifies problems on the comparison of sets as particularly 

challenging and assumes that the difference between two compared sets is a 
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main reason for students’ difficulties (Riley & Greeno, 1988). Moreover, 

understanding quantitative comparison statements, such as “Susi has 2 marbles 

more than Max” is considered linguistically demanding. Fuson, Carroll, and 

Landis (1996) emphasize the importance of deriving from a quantitative 

comparison statement which quantity is more or less (qualitative information) 

and how big the difference between the two quantities is (quantitative 

information). The a/s wording of a word problem defines a certain perspective 

on a situation (e.g., expressed by “more than” as additive, “less than” as 

subtractive wording in compare problems). Finally, the difficulty of a problem’s 

situation structure varies depending on which of the three involved sets is 

unknown. For compare problems, either the reference set, the difference set, or 

the compare set can be missing (Stern, 1993). Problems with an unknown 

reference set (e.g., “Susi has 5 marbles [compare set]. She has 2 marbles 

[difference set] more than Max. How many marbles does Max have [reference 

set]?”) are considered the most difficult type. The unknown set also affects the 

directly applicable mathematical operation (addition or subtraction). In 

combination with the a/s wording, the variation of the unknown set results in 

either consistent or inconsistent compare problems: Problems, in which the 

directly applicable mathematical operation is inconsistent with the a/s wording 

(e.g., directly applicable subtraction but additive wording, like in the example 

above), are usually harder than consistent problems (Lewis & Mayer, 1987). 

To address students’ difficulties, a theoretical account of solution processes 

during word-problem solving is crucial. Common models on this matter assume 

that students decode the problem text into an initial situation model (Kintsch & 

Greeno, 1985) by reconstructing features of the situation structure as close as 

possible. To find a matching mathematical operation, they need to identify 

corresponding mathematical concepts that describe this model adequately. 

During these processes, students can extend and enrich their situation model 

with further information (Kintsch, 2018). 

These theoretical foundations led to the idea of introducing strategies that aim at 

enriching the situation model by reinterpreting the problem’s situation structure 

as an easier accessible problem type. Some authors assume that this 

reinterpretation can make it easier to mathematize an individual situation model: 

One suggestion originates from Greeno (1980), according to whom students 

could make use of easier accessible semantic structures. For example, they 

could reinterpret difficult compare problems as dynamic situations on the 

equalization of sets (Dynamization Strategy, see Fig. 1). Alternatively, Stern 

(1993) suggests to rely on the inversion of the a/s wording: By transferring 

between different perspectives on relations (e.g., “Susi has 2 marbles more than 

Max” and “Max has 2 marbles less than Susi”), learners could reinterpret 

inconsistent problems as easier, consistent problems (Inversion Strategy, see 

Fig. 1). We summarize these strategies to enrich the individual situation model 
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with further aspects of the situation structure under the term flexibility in 

dealing with arithmetic situations. Understanding and describing situations 

flexibly is tightly connected to language skills: While the Inversion Strategy 

requires well-connected vocabulary on relations, equalization within the 

Dynamization Strategy builds on action verbs (“to take away”, “to get”) and 

conditional sentences (“If…, then…”). 

 

 

Figure 1: Examples for Inversion Strategy and Dynamization Strategy 

CONTEXT OF THE CURRENT STUDY 

To build up such flexibility, and to support students to progress from easier to 

more complex applications of the mentioned strategies, macro-scaffolding was 

included in the intervention as pre-organized support (Hammond & Gibbons, 

2005). In addition, the intervention was guided by an intended learning 

trajectory (LT) describing a sequence of phases and activities, which were 

distributed over ten 40-50 min sessions over five weeks. After an initial phase 

of Basics in session 1 and 2 (e.g., on understanding quantitative comparison 

statements or the concept behind equalizing), students worked with given 

statements to encounter crucial linguistic means needed for the application of 

the two strategies. During Verifying in session 2, students decided if given 

statements on a situation displayed as text or as a picture were true and 

discussed their decision afterwards. In session 3 and 4, students matched 

statements to two situations with swapped concrete sets in the Matching phase 

(e.g., Susi has one piece of candy less in the first picture, and one piece of candy 

more in the second picture). Contrasting statements on these inverse situations 
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should systematize the provided linguistic means and raise the students’ 

language awareness in the context of comparison and equalization. During the 

Describing phase, which spanned over the sessions 5 to 10, students were 

encouraged to make use of the provided linguistic means and describe situations 

flexibly. Tutors provided sentence templates, sentence starters and word cards 

(“more”, “less”, “If…, then…”) oriented at the two strategies and removed 

these scaffolds gradually. Overall, the difficulty of the tasks progressed from 

empirically easier to more difficult compare situations. Explicitly solving 

traditional word problems was not part of the intervention. 

AIMS AND RESEARCH QUESTIONS 

Since the intervention was implemented for the first time, we were interested, if 

and how students made use of the learning opportunities in the intervention, and 

how this related to their development of flexibility in dealing with arithmetic 

situations. To this end, we investigated two questions: 

Q1: Which differences in students’ learning paths point to parts of the 

intervention at which the intended LT is not sufficiently adapted to individual 

students yet? 

We expected that learners would respond differently to the offered learning 

opportunities of the intervention. Investigating these differences may help with 

the identification of typical patterns or obstacles and result in potential “key 

processes”, which need to be considered when supporting students to develop 

the pursued flexibility. These key processes may provide first indications, which 

adaptations of the intended LT are necessary to meet the students’ individual 

needs.  

Q2: How does students’ flexibility develop during the intervention? 

Taking the key processes from Q1 under consideration, we analyzed how the 

students’ flexibility in dealing with arithmetic situations developed during the 

intervention. We expected the learners to become familiar with the introduced 

strategies and to be able to describe arithmetic situations richly from different 

perspectives at the end of the intervention. 

METHOD 

Sixty second graders from elementary schools in southern Germany participated 

in ten different the intervention groups. For the qualitative analysis, four of the 

sixty students were selected based on the pre-test. Since we were particularly 

interested, if the intervention was helpful for students with lower language 

skills, we selected students with relatively low scores in a reading test (ELFE 

II). Valerie and Anna were selected from group 6, and Adrian and Emil from 

group 5. Both groups were trained by the same tutor.  
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Coding: Following the principles of qualitative content analysis (Mayring, 

2014), the transcripts from all intervention sessions were investigated together 

with the students’ answers on work sheets. Based on theoretical implications, 

we developed a coding manual to identify different manifestations of flexibility. 

While the first two categories address assumed prerequisites for the pursued 

flexibility, such as the verbalization of comparison and equalizing statements, 

the other two categories reflect the application of the two strategies. Each 

student statement counted as one coding unit. Phases of group work were 

omitted, since contributions could not be attributed to specific individuals.  

Analysis: To identify key processes, we started from the coded data and 

proceeded to the raw data to check and enrich our initial interpretations. 

Additionally, we used coded data to substantiate remarkable observations in the 

raw data (Q1). The students’ development of flexibility was traced by analyzing 

codes during activities, in which students should describe situations without 

explicit instruction (Q2). 

RESULTS 

Q1: During the analysis, three main differences in students’ learning paths 

emerged (key processes, “KP”). KP1 showed in the raw data that students 

seemed to interpret difference sets in comparison statements differently. Thus, 

we investigated the codings for such situations systematically. In contrast to 

Adrian and Emil, Valerie and Anna’s answers frequently related to concrete 

sets, although questions targeted quantitative comparison. This is exemplified in 

the following excerpt: 

Session 1, group 6, Basics: The students play a game with the tutor. After 

determining who has more chips, the tutor encourages Valerie to quantify the 

difference. 

Tutor: Valerie, what do you think, how many do I have more? 

Valerie: You have six. 

Tutor: I do have six, but how many do I have more than you? Think about it. 

Valerie: Four. 

Tutor: Four, exactly. So, how many [chips] am I allowed to take? 

Valerie: Four. 

With the help of the tutor, who contrasted the concrete set and the difference set 

verbally, Valerie determined the difference set correctly. However, the codings 

indicate that Valerie and Anna still related to concrete sets instead of difference 

sets occasionally during the intervention. The data suggest that they often 

seemed to understand statements on quantitative comparison, such as “Susi has 

two marbles more than Max” as two messages: “Susi has two marbles” and 

“Susi has more marbles than Max”. This observation indicates that the Basics 
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phase, which should tackle such difficulties, was not adapted sufficiently to 

some of the students’ needs and that the interpretation of compare statements 

might require more attention. 

KP2 relates to the transfer of linguistic means from the Verifying phase to the 

Matching and Describing phase. Since the encounter with relevant linguistic 

means played a crucial role in the intended LT, we decided to investigate 

transcripts on Matching and Describing tasks with a specific focus on instances 

where students made use of language support. While Adrian and Emil had few 

problems to integrate the provided linguistic means in their active language use, 

Valerie and Anna received more language support by the tutor. For example, 

Valerie struggled with the expression of an equalization first, since she did not 

find an adequate action verb to complete her sentence (e.g., “add”). Session 5, 

group 6: 

Elisa: [reads aloud the provided sentence frame] If I …, then my tower is 

as tall as yours. 

Tutor: What should she do? Valerie. Do you remember what we did there? 

Valerie: If I one… eh? From Sebastian? 

Tutor: So, try to think about it again. 

Valerie: If I one, then… at this tower… as tall as yours. 

Tutor: If you do what? “Then my tower is as tall as yours.” 

Valerie: If I… 

Tutor: What can you do, so that the tower is as tall as this one? 

Valerie: One away? 

Tutor: Exactly! Let’s do that. 

Providing a sentence frame and the subsequent possibility to follow a peer’s 

example helped her to broaden her vocabulary and to make progress in 

formulating equalization statements. This emphasizes the importance of 

individual language support especially during the transfer to the active 

description of situations. 

In some transcripts from Matching tasks, students based their explanations why 

certain statements or pictures were similar or different on different aspects of 

the underlying situation (KP3). To back up these observations, we compared the 

codes for each student during such activities. While Valerie and Anna mostly 

referred to concrete sets (Valerie: 8 statements on concrete sets; Anna: 2 

statements on concrete sets, 2 on equalization), Adrian and Emil reasoned with 

comparison statements frequently (Adrian and Emil: 4 resp. 5 statements on 

involved difference sets). It seems that such reasoning activities can uncover 

students’ perception of situation structures and thus help the teacher to identify 

corresponding need of support. 
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Q2: To analyze the students’ development of flexibility over the ten sessions, 

we selected three activities, which required describing situations freely without 

explicit support or instruction, distributed over the sessions 2, 5, and 10. The 

codes during these activities indicated that, despite relatively low language 

skills, all four students progressed in developing flexibility, but in different 

ways and different pace.  

Adrian was the only one who already formulated a comparison statement 

spontaneously in session 2. Very low general language skills and comparably 

low arithmetic pre-test scores did not prevent him from quickly adopting the 

two strategies. In line with his consistent focus on relations, he preferred 

formulating comparison statements and applying the Inversion Strategy to 

equalizing statements and the Dynamization Strategy. In contrast to Adrian, 

Emil did not focus on the relation between sets initially. Although he missed 

session 5 and 6, Emil managed to adopt both strategies and gained flexibility 

with a strong focus on equalizing statements until session 10. Valerie developed 

flexibility more slowly and did not follow all parts of the intended LT: While 

her focus laid on concrete sets during session 2 and 5 (in line with KP1), she 

formulated an (incorrect) comparison statement and correctly applied the 

Inversion Strategy with equalizing statements in session 10. To make further 

progress in flexibility, an even stronger focus on supporting her with 

comparison statements might have been helpful. Anna had similar problems 

with understanding and formulating comparison statements. However, she 

progressed more quickly in developing flexibility and already focused on 

equalizing in session 5. In session 10, Anna attempted to formulate comparison 

statements and their inversion. Her answers indicated a misunderstanding of the 

strategy: Instead of inverting the a/s wording, she formulated the opposite of 

each comparison statement, which did not match the given situation. Similar to 

Valerie, a stronger focus on the Basics phase might have allowed her to benefit 

more from subsequent learning opportunities regarding both strategies. In 

particular, Anna’s possibly superficial application of the Inversion Strategy 

deserves further attention when developing the LT. 

DISCUSSION 

The students’ different learning paths point to parts of the intended LT, which 

require adaptation and reveal insightful implications in the context of fostering 

the pursued flexibility (Q1). KP1 emphasizes the importance of developing an 

adequate understanding of linguistic means to describe situations from different 

perspectives, in particular in the context of comparison statements. This issue 

could be addressed by providing tasks that emphasize the difference between 

statements such as “Susi has 2 marbles more than Max” and “Susi has 2 

marbles, and more marbles than Max”. KP2 underlines the necessity to not only 

encounter and understand linguistic means, but also to be able to use them in 

descriptions. Developing further ideas how to support students with this transfer 
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may be a next step in refining the intervention. KP3 delivers a tool to determine, 

which support might be helpful to encourage a specific student to enrich the 

situation model. If students focus on concrete sets in their descriptions and 

explanations, teachers could encourage students to consider other aspects of the 

situation structure, for example with word cards (“more”, “if…, then…”). 

Despite different learning paths and learning paces, the students’ progress along 

the intended LT supports the assumptions that the intervention is a feasible way 

to foster students’ flexibility. This allows to study, if such flexibility supports 

word problem solving as has been argued, but not studied systematically in the 

past (Gabler & Ufer, 2020; Greeno, 1980; Stern, 1993). Beyond the mentioned 

adaptations to the LT, other factors than the fit of the LT may have caused 

different learning paths. For example, Adrian already had a tendency to focus 

on relations at the beginning (McMullen, Hannula-Sormunen, & Lehtinen, 

2013), which might have given him a good starting point to adopt both 

strategies. We also cannot exclude that motivational aspects or the mathematical 

self-concept influenced the students’ development. 

The analyses yield information on possible learning paths to develop flexibility 

in dealing with arithmetic situations and necessary adaptations of the intended 

LT. However, quantitative analyses are necessary to investigate, whether the 

intervention caused a substantial gain in students’ flexibility for some students 

or the whole sample, and if students could transfer the corresponding skills to 

word-problem solving. 

1 An extended version of this work is published in the journal ZDM Mathematics Education. 
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In interdisciplinary teaching, students’ attitude to generalize mathematical 

knowledge to new contexts of application is encouraged naturally. Moreover, it 

fosters the development of creativity and critical thinking. In our research, we 

focused on integration of Mathematics and Arts in primary school. We designed 

and tested a Teaching Learning Sequence about axial symmetry, to develop 

mathematical skills through the execution of artistic techniques and reflections 

on products and actions carried out. In this paper, we present tasks and results 

about students’ mathematical activity obtained analyzing classroom 

implementations with children in 4th and 5th grade in Italy. The generalization 

processes make interesting information about their conceptualization and 

schemes application and validation emerge.  

INTRODUCTION 

When students, by themselves or guided by teachers, search for new situations 

and contexts in which applying and revising their mathematical knowledge, 

they develop successfully key aspects of mathematical thinking, like problem 

solving and generalization; design research should “offer teachers an 

empirically grounded theory on how a certain set of instructional activities can 

work.” (Gravemeijer, 2004). In interdisciplinary tasks, students’ attitude to 

generalize mathematical knowledge to new contexts of application is 

encouraged naturally. The European Union recently published 

recommendations (EU Council, 2018) to integrate all areas of the scientific 

disciplines with their applications in technology and engineering, and with 

artistic expressions (STEAM). Benefits would be, for example, the positive 

effects of art in interaction with different disciplines, including mathematics, 

from the affective and motivational point of view. Moreover, it fosters the 

development of creativity and critical thinking (ibid., 2018). Among the several 

possibilities to pursue such goals, we focused on integration of Mathematics and 

Arts in primary school. We decided to design and test a Teaching Learning 

Sequences (TLS, Psillos & Kariotoglou, 2016) about axial symmetry, where 

students were asked to “reinvent” mathematical concepts (Gravemeijer, 2004) 
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and develop mathematical skills through the execution of artistic techniques and 

reflections on products and actions carried out.  

In this work, we present some tasks of this interdisciplinary TLS and some 

results we obtained analyzing classroom implementations. We focus 

particularly on the students’ mathematical activity. We worked with children in 

4th and 5th grade in different schools across Italy. We collected data through 

video and audio recordings, observation and materials produced during the 

lessons by the students. Results show that encouraging students to generalize 

make interesting information about their conceptualization emerge. Moreover, 

we show how linguistic practices and discussions are important to self-realize 

this generalization and conceptualization mechanism. 

LITERATURE REVIEW 

In many research, it has been shown that learning axial symmetry is not trivial 

for primary school students. First of all, the term “symmetry” might be used in 

different ways (Chesnais, 2012): (a) symmetry as a property of a given figure; 

(b) axial symmetry as a ternary relationship involving two figures and an axis 

and/or (c) symmetry as geometrical transformation involving points.  

Moreover, axial symmetry is a mathematical concept but also an everyday 

concept (ibid., 2012). From a mathematical point of view, the geometrical 

transformation comes before symmetry as a property, being the property a result 

of the invariance of the figure under the transformation. On the other hand, in 

the everyday concept, the geometrical transformation could be seen only in the 

paper folding movement. If not expanded upon, it can lead to the main 

misconceptions about symmetry, that can be an obstacle to global 

characterization of the properties of a figure and of the geometrical 

transformation of the plane (ibid., 2012). It is possible for the teachers not to see 

these conceptions, since students will continue to produce results as 

constructing the mirror image of a figure or identifying axes of symmetry on a 

single simple figure. In general, students are more confident with tasks that 

require an intrafigural perspective (Piaget & Garcia, 1989),  where  attention  is  

directed  towards  the  internal  relationships  of  figures,  than  with tasks 

involving interfigural demands requiring attention to the relationships between 

the figures and objects that are external to them (Healy, 2004). Relying on this 

review, we decided to orient the students’ activity gradually towards the 

construction of the mathematical concept and an interfigural approach, 

encouraging them, by means of generalization and verbalization tasks, to 

reframe the everyday characterization of the axial symmetry.  

THEORETICAL FRAMEWORK 

In this study, we refer to generalization as the process of applying a given 

argument in a broader context (Harel & Tall, 1991). Generalization is classified 

as expansive generalization when the subject expands the applicability range of 
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an existing scheme without reconstructing it; reconstructive generalization 

when the subject reconstructs a scheme to widen its applicability range (ibid., 

1991). A common trait is the need to change the applicability range of a given 

concept, extending it to a broader concept. In reconstructive generalization, the 

old scheme is changed and extended, to be embedded in a more general scheme, 

that still “contains”, or is a generalization of, the first schema.  

According to Vygotsky (2012), concepts can be spontaneous or scientific, 

where the former are the result of a generalization process of everyday personal 

experience. Considering our tasks and our target grade, we refer essentially to 

the Theory of Conceptual Fields (Vergnaud, 1998) to frame the notions of 

concept and scheme. According to Vergnaud (1998; 2013), mathematical 

knowledge is centered and constructed around a concept; a concept results from 

a process of actions and perceptions. Concept is constituted by three 

components: the set of situations the concept is rooted in and has meaning on, a 

set of operational invariants and the set of different linguistic and non-linguistic 

representations used to represent it.  

A scheme (Vergnaud, 2013) is defined as “invariant organization of activity and 

behavior for a certain class of situations” (p. 47); to tackle new situations extend 

the scope of application of the scheme. It is made of four categories of 

components: goals and anticipation, a set of rules of action, operational 

invariants and possibilities of inferences. Operational invariants, which make 

the scheme operate and often remain implicit, can be of two kinds: theorems-in-

action and concepts-in-action (ibid., 2013). They can be expressed by words and 

sentences, but their original function is action and the application of schemes is 

based on them.  

METHODOLOGY 

We designed the TLS following these principles: a growing challenge level; to 

foster generalization (in the meaning given by Harel and Tall (1991), to 

promote linguistic practices that can be meaningful to connect the different 

activities and to build up to a gradual conceptualization (in the sense of 

Vergnaud’s Theory of Conceptual Fields, 1998; 2013), developing a more 

precise language and promoting argumentation.  

In the first two tasks, students met the first two situations:  

Task (1), artistic symmetry: folding the paper with colors, a “similar” figure is 

obtained (same shape, same, area, same colors). 

Task (2), modelling the art: doing “the same things” on the left and on the right, 

at the same height and the same distance with respect to a line, a figure is 

obtained that resembles the figure obtained by folding. 

We told the students that the line obtained folding and the line drawn in the 

second situation were both called ‘axes of symmetry’, that the figure obtained 
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by folding was ‘the symmetric figure’ with respect to the starting one and that 

the whole ‘figure is symmetric’. Thus, we introduced some terms and the 

relationships between different elements of a conceptual field named 

‘symmetry’.  

Task (3), TEP: “explain to a younger student how it is possible to build a 

symmetrical figure with respect to another figure”. 

Here students are asked to produce a textual eigenproduction (TEP, D’Amore & 

Maier, 2002), i.e. texts produced by students in an autonomous way to describe 

some mathematical situation. The goal of TEPs is that of better understanding 

and exploring the true conceptualization of the student. We expected the 

students to find linguistic and/or not linguistic representations of their concepts 

and to start making explicit their actions that they should then organize to make 

them become schemes.  

Task (4), square: “find, by folding, the axes of symmetry of a square”. 

Students are expected to generate a first version of their concept of axis of 

symmetry including: three situations (1, 2 and 4), an operational invariant 

(concept in action: if, folding, the two parts are overlapping exactly, the fold 

represents an axis of symmetry) and graphic and linguistic representations of 

the axis. Meanwhile, since they have to solve a new task, they are also asked to 

start generalizing their previous actions to a scheme, composed by: one goal (to 

find axes of symmetry), the rules of action (correct procedure to build a fold 

that is an axis and a control procedure to check if it is an axis or not), an 

operational invariant (concept in action of axis of symmetry), a set of possibility 

of inference (conditions to carry out the procedure: possibility to fold the paper, 

possibility to check if the pieces of the figure have the same features).  

Task (5) star: “find, by folding, the axes of symmetry of a regular 5-pointed 

star”. 

Students are expected to enrich their previous concept, including another 

situation and to reinforce the previous scheme. Students are expected (and 

encouraged) to use their linguistic characterization of the concept in action, on 

which the scheme should be based (task 3), to validate their actions in the 

different situations (4 and 5).  

Task (6), snowflake: “build, as you want, this snowflake” (see Figure 1). 

 

Figure 1: The snowflake to build from a blank sheet of Task 6. 
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Students are expected to recognize that the figure is symmetric, what are the 

axes of symmetry, and to decide to exploit this property to build the figure 

without retracing it, folding a sheet of paper (scheme 1) and/or using the 

distances from the axes (scheme 2). To do this, the students should: study the 

situation in terms of possibilities of inference; recognize the same goals of Task 

4 and 5 (to find axes of symmetry) even if it is not mentioned in the description 

of the task; carry out a set of rules to identify the correct folds. Only after the 

application of the scheme, the students should draw the starting figure, 

reproducing it symmetrically, to have the most correct result. 

Our research questions are:  

1. How do the students face spontaneously tasks in which a concept is 

expected to be applied in a new situation? What kind of information can 

the observation of a process of generalization give about the students’ 

conceptualization? 

2. Whether and how the verbalization tasks and the classroom discussions 

lead the students to a refinement or a generalization of their personal 

concepts? 

Context and participants 

The TLS was implemented in classes of students 8 to 10 years old (two 4th 

grade and four 5th grade classes of primary school) as part of an in-service 

teacher training lasting one semester. Class context and formation are variable 

both geographically through the country and in terms of background of the 

students. The class teacher acted as main teacher for the TLS; one or more of 

the authors planned the lesson with the teachers involved, collected data about 

the students, assisted and helped, intervening occasionally, during all teaching 

blocks.  

Data collection and analysis 

The explorative nature of the study led us to use qualitative techniques for data 

collection towards an interpretative approach. The research data were collected 

over several sessions at school and consists of (1) audio and video recordings, 

(2) documents review, (3) researchers’ field notes and (4) students’ textual 

productions (TEPs, D’Amore & Meier, 2002).  

In particular, (1) videos were analyzed by more researchers and transcripts were 

finally used as data which we present here. Video analysis (Powell et al., 2003) 

has been done in more phases: a first review of the videos, cataloguing their 

content and annotating some particular episodes; a deeper analysis with 

transcription of some episodes, that were flagged as occurring of generalization; 

connection of single episodes to consider the overall development of the 

students’ conceptualization. Focus was, as said, on the understanding of the 

students’ conceptualization of axial symmetry, analyzing data inside 
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Vergnaud’s Theory of Conceptual Fields (1998; 2013) and with an eye on the 

generalization processes that took place (Harel & Tall, 1991).  

RESULTS 

In relation to our first research question, we observed, in the majority cases, in 

the tasks from Task 3 to Task 6, spontaneous application of previous knowledge 

to the new situations they are facing. However, is the procedure always correct? 

Re-applying the spontaneous concepts (in this sense, generalizing; Vygotsky, 

2012) can lead the students to different situations. A spontaneous expansive 

generalization process can be correct but still lead to some non-correct 

conclusion, due to a concept in action that is either incomplete, and therefore 

not extendable to other cases without adding other conditions, or valid only in 

some situations, thus becoming not correct when the related scheme is applied 

to a new range of situations. Examples can be seen in Table 1.  

We can observe that one of the main risks here is that students go on with what 

they think is a good property (concept in action), and apply it in a range where it 

will not work without realizing it will not actually be valid. However, without 

asking students questions that encourage them to apply their schemes in a new 

situation, these incomplete or situated concepts would not be identified and 

revised by the students. 

From the video analysis, we could pinpoint also different cases in which correct 

generalization occurs, both expansive and reconstructive. Some students 

connect the two schemes, performing in this way a sort of reconstructive 

generalization. Viola and Andrea, for instance, in Task 6, overlapping the 

drawing with a folding, realize that “sides cannot be longer or shorter, they need 

to have the same measures!”, connecting the two schemes and reconstructing 

Scheme (2), which allows them to re-describe the concepts in action of the 

paper folding Scheme (1) in terms of measures and distances.  
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Table 1. Examples of data analysis 

Expansive generalization occurs in many more cases, in all tasks: Task 3 – Task 

6, i.e. students keep one scheme they built, always applying the same to a new 

situation and expanding it, without seeing the connection between folding and 

overlapping on one hand, lengths and measures on the other hand. This is for 

example the case of Dora, who generalizes in every situation her scheme about 

symmetry as folding (1), even when it was easier to use Scheme 2, and never 

compare the two.  

Initial 

concept 
 

Situation 

/ Concept 

Examples of students’ 

sentences/indicators 

What happens when re-

applying the concept 

Incomplete 

concept 

I1 
Folding 

the paper 

“Axes of Symmetry 

are lines” (also 

“zigzag” lines) 

“Symmetry is just 

folding the paper” 

Students identify every 

fold/line, or every line 

dividing the figure in two 

parts with the same area, 

with an axis of symmetry. 

The right answers based on 

this incomplete concept, are 

true but partial. 

There is a need for a 

strengthening of the concept 

in action. 

I2 

Two 

parts 

with the 

same 

area 

“a line that divides 

the paper in two 

halves with the same 

area” 

Concept 

valid in some 

situation but 

that becomes 

not correct if 

changing the 

applicability 

range 

S1 

Axis has 

to be 

vertical 

“the axis of symmetry 

is a vertical line 

dividing the figure in 

two parts” 

Students apply the concept 

they inferred from a 

particular example, but it is 

not working when changing 

the setting. More difficult to 

correct, there is a need to 

revise the concept  in 

action, removing some 

features of the line (S1) or 

referring the concept to a 

given figure (S2). 

S2 

Axes not 

related to 

the figure 

when “finding all the 

axes of symmetry of 

a figure”, students 

iterate the procedure, 

with the new figures 

obtained by folding 

the first one. 
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On some occasions, the attempt to generalize the concept will first lead to a 

non-correct conclusion in a broader situation, but it can also help realize the 

mistake and therefore adjust the concept and definition the students are trying to 

identify. For example, as in the transcript below, after an I2 occurring, Elin and 

then Sara realize there is something not working with their previously discussed 

definition of axis of symmetry as “a line that divides the paper in two halves 

with the same area” (Andrea I2 misconception).  

Teacher:  Why is the diagonal of the square an axis of symmetry? 

Andrea:  Because it is a line that divides the paper in two halves that are the 

same, the quantity is the same. […] 

Teacher:  So, if I do this, showing a square that is folded in two parts with the 

same area, but where the fold is not an axis of symmetry, I fold the 

square and obtain two pieces with the same area, are they the same? 

Is this fold representing an axis of symmetry? 

Class:  Yes! No! Yes! 

Teacher:  Why is it or why not? Please try to provide some arguments. 

Michael:  Yes, because there is a line, anyways… [I1 misconception] 

Andrea:  It works because there is the same half [on both sides – I2 

misconception] 

Elin:  I say no, because…because the figure is rotated. It is the same half 

on both sides, but one goes up and the other goes down… the same 

figure is turned one facing up and the other facing down […] 

Sara:  I say no, because…so, it looks like it is, because it forms a line that 

divides the sheet into two parts that are equal. But in my opinion, it 

is not an axis of symmetry because…it should have been like this” 

indicates the diagonal folding with the hands […] 

James:  “the angles are not corresponding…” 

Sara: Ok, if I try again with the colors experiment and fold the paper it 

will not work. If I do once more the thing with the thread, it could 

not work on the other side. The two sides are different [they will not 

overlap]”. 

During the discussion, students realize their starting point was correct only if 

applied to the initial problem of a rectangle divided in two parts, but also that 

not all lines, even if dividing the figure in two equal parts with the same area, 

are axes of symmetry for a figure. Therefore, the discussion led to an 

enrichment of the concept, reconstructed to be adapted to the new situation.  

DISCUSSION AND CONCLUSION 

We observed that students facing tasks in which a concept is expected to be 

applied in a new situation re-apply their previous schemes and concepts in 
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action to the new situation. While this spontaneous generalization inclination 

does not surprise, as it seems to be in fact natural in the students, it is interesting 

to observe the complete process students are undertaking, to get information 

about their conceptualization. The kind of tasks proposed are revealing 

students’ misconceptions (as in Table 1), which cannot always be observed with 

standard “textbook exercises” and which cannot be identified by the class 

teachers themselves, who were surprised by this discovery during the 

implementations.  

While re-applying schemes is a spontaneous process, the same cannot be said of 

the processes of evaluation of the consistency between the concept in action and 

the linguistic representations and the control of the rules applied in the new 

situation. With an appropriate mediation by the teachers and encouraging 

discussion with peers and argumentation, the lack of a proper control or 

validation structure for the generalization process can be identified. Properly 

guided by the teacher, students can understand that their set of rules might not 

be applicable to every situation and revise their concept in action and scheme to 

adapt them to the new situations. In Task 3 and Task 6 students are encouraged 

to connect two schemes based on two different concepts in action and to carry 

out a reconstructive generalization by means of a verbalization task and a 

problem- solving activity. While in the first task this process of generalization 

never occurs, we observed it in the problem-solving activity, and other students 

did it during the discussion about their solutions, using one Scheme (2) to check 

the validity of the procedure carried out with the other Scheme (1). 
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EARLY DROPOUT FROM UNIVERSITY MATHEMATICS: 

THE ROLE OF STUDENTS’ ATTITUDES TOWARDS 

MATHEMATICS 

Sebastian Geisler 

Ruhr University Bochum, Germany 

 

High dropout rates in mathematics during the first year at university underline 

students’ difficulties in the transition from school to university mathematics. In 

this contribution, we present a quantitative study based on the three-

dimensional model for attitude towards mathematics. Using questionnaires, we 

analyse differences concerning attitudes towards mathematics between dropped 

out students and students who continued their studies of mathematics. Our 

results show that dropped out students are less interested in university 

mathematics and report a lower mathematical self-concept than those students 

who continued their studies. Moreover, dropped out students report a decline of 

their mathematical self-concept during the transition from school to university 

mathematics. 

INTRODUCTION 

Dropout is a major concern in university mathematics. In Germany nearly 80 % 

of all mathematics students drop out or change their subject (Dieter & Törner, 

2012) – most of them during their first year at university, so called early 

dropout. These facts reveal students’ difficulties during the transition from 

school to university mathematics.  

One obstacle during the transition are the major differences between 

mathematics at school and at university. These differences have been 

extensively discussed in the literature – for a detailed discussion see Ufer, Rach 

and Kosiol (2017). At school, new concepts are introduced with many examples 

aiming at an intuitive understanding. In contrast, new concepts at university are 

introduced via formal definitions. Whereas tasks in school mathematics are 

often focused on solving real-world problems and schematic calculations, 

typical tasks at university involve proofing (cf. Ufer et al., 2017). These tasks 

usually are not directly connected to the real world and cannot be solved by 

schematic calculations. In Germany, freshmen traditionally attend the courses 

Real Analysis and Linear Algebra which are focussed on formal definitions and 

deductive proofs (Halverscheid & Pustelnik, 2013). Both courses are usually 

accompanied by weekly tutorials and homework tasks with a strong focus on 

proofs. 
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According to theories of person-environment-fit (e.g. Swanson & Fouad, 1999) 

a sufficient fit between the characteristics of the students (e.g. attitudes, prior 

knowledge, learning behaviour) and the characteristics of the university (e.g. 

contents, learning environment) is necessary for a successful transition. Due to 

the already mentioned differences between mathematics at school and at 

university, this fit does not seem to be self-evident. However, a sufficient fit 

between the characteristics of the students and the characteristics of the 

university leads to satisfaction and appropriate achievements of the students 

(Swanson & Fouad, 1999) while an insufficient fit increases the risk for 

dropout. According to Haak (2017), an insufficient fit leads to a personal crisis. 

This crisis is frequently mentioned in the mathematics education literature (e.g. 

Di Martino & Gregorio, 2019). Haak (2017) proposes two ways to overcome 

this crisis: Students can either adapt their personal characteristics (e.g. their 

attitudes or their learning behaviour) or they can decide to drop out.  

While early studies in the field of transition to university mathematics had 

mainly a cognitive orientation (Artigue, 2016), recent research pays attention to 

affect and the role of attitudes during the transition as well (e.g. Rach & Heinze, 

2017; Di Martino & Gregorio, 2019). In this contribution, we focus on the role 

of students’ attitudes towards mathematics for early dropout from university 

mathematics. 

ATTITUDES TOWARDS MATHEMATICS 

The question how to conceptualise attitudes and mathematics related affect has 

been frequently discussed in the mathematics education literature (Di Martino & 

Zan, 2011). Di Martino and Zan (2011) have proposed a Three-dimensional 

Model for Attitude (TMA) towards mathematics (comprising the dimensions 

emotional disposition, vision of mathematics and perceived competence), which 

is based on an analysis of school students’ narratives about their attitudes to and 

experiences with mathematics. Following the TMA, we understand attitudes 

towards mathematics as an interplay between interest in mathematics 

(emotional disposition), beliefs concerning the nature of mathematics (vision of 

mathematics) and mathematical self-concept (perceived competence) (cf. Di 

Martino & Gregorio, 2019). The TMA has already been used in qualitative 

studies focussing on students’ experiences and difficulties during the transition 

to university mathematics (e.g. Di Martino & Gregorio, 2019).  

Interest in Mathematics 

Individual interest is considered to be a rather stable relationship between an 

(abstract) object and a person, comprising of emotional (e.g feeling of joy while 

engaging with the object of interest) and value related (e.g. personal esteem of 

the object of interest) components (Krapp, 2007). Since people are motivated to 

engage with the objects of interest, interest is considered to play a crucial role 

for successful learning processes.  
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Studies concerning the role of interest during the transition from school to 

university mathematics have reported contradictory results (cf. Ufer et al., 

2017). Ufer et al. (2017) have argued, that a clear distinction between interest in 

school mathematics and interest in university mathematics is necessary, when 

dealing with interest during the transition. Otherwise it is not clear whether 

students have school or university mathematics in mind, while answering items 

measuring interest in mathematics. Kosiol, Rach and Ufer (2019) found that 

interest in university mathematics goes hand in hand with more satisfaction 

during the first term at university, while interest in school mathematics is 

connected with less satisfaction. We follow the argumentation of Ufer et al. 

(2017) and differentiate between interest in school mathematics and interest in 

university mathematics in this contribution. 

Beliefs Concerning the Nature of Mathematics 

Philipp (2007, p. 259) describes beliefs as “propositions about the world that are 

thought to be true”. Traditionally we distinguish between rather static and 

dynamic beliefs concerning the nature of mathematics (Grigutsch & Törner, 

1998). Static beliefs are characterized by the view that mathematics is a static 

summary of different (unconnected) procedures, rules and formula. In contrast, 

dynamic beliefs highlight that mathematics is a creative process and field of 

research with applications in other domains and everyday life. 

Regardless that university teachers hold static as well as dynamic beliefs 

(Grigutsch & Törner, 1998), dynamic beliefs seem to be more beneficial than 

static ones during the transition. Dynamic beliefs correlate positive with interest 

in mathematics during the first year at university (Liebendörfer & Schukajlow, 

2017). Moreover, students with rather dynamic beliefs are more successful in 

exams than students with rather static beliefs (Crawford, Gordon, Nicholas & 

Prosser, 1994). 

Mathematical Self-Concept 

Bong and Skaalvik (2003) describe self-concept as a person’s perception about 

herself or himself with emphasis on the own skills and abilities. The self-

concept is influenced by prior experiences especially mastery experiences and 

the feeling of competence and success in a particular domain (Bong & Skaalvik, 

2003). 

Di Martino and Gregorio (2019) found that most mathematics students start 

their studies with a high mathematical self-concept but report decreasing self-

concept during the transition due to experiences of failure. Rach and Heinze 

(2017) found that students’ mathematical self-concept predicts their exam 

attendance in the first term at university. Students who do not attend their exams 

– according to Baars and Arnold (2014) an useful indicator for dropout – report 

a lower mathematical self-concept than those students who attend the exams. 
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RESEARCH QUESTIONS AND METHODS 

In this contribution, we want to clarify the role of students’ attitudes towards 

mathematics for early dropout during the first year at university. Since the 

character of mathematics changes during the transition from school to 

university, changes in students’ attitudes during this transition phase are likely. 

Furthermore, an adaption of attitudes is one possibility to overcome the crisis 

that occurs if students’ attitudes do not fit to the characteristics of university 

mathematics (Haak, 2017). Therefore, we consider students’ attitudes at the 

beginning of the first term and during the first term at university. This leads to 

the following questions and hypotheses: 

1) Do students who dropped out from mathematics and students who 

continued with their studies already differ concerning their attitudes 

towards mathematics at the beginning of the first term? 

2) Do students who dropped out from mathematics and students who 

continued with their studies differ concerning their attitudes towards 

mathematics in the middle of the first term? 

Overall, we expect the differences between the two groups of students during 

the first term to be larger but in the same direction as the differences at the 

beginning of the term. In detail, we phrase the following three hypotheses: 

Since interest in university mathematics goes hand in hand with more 

satisfaction (Kosiol et al., 2019), we expect that students who dropped out 

report less interest in university mathematics than those students who continued 

their studies of mathematics (H1). We have no special hypothesis concerning 

the interest in school mathematics. 

With regard to beliefs concerning the nature of mathematics, dynamic beliefs 

seem to be more beneficial for a successful transition than static beliefs 

(Crawford et al., 1994). That is why we expect that dropped out students tend to 

agree more to static beliefs and less to dynamic beliefs than those students who 

continued their studies (H2).  

Based on the result that students with low mathematical self-concept often do 

not attend their exams (Rach & Heinze, 2017) – which is an indicator for 

dropout – we believe that dropped out students will report a lower 

mathematical self-concept than those students who continued their studies of 

mathematics (H3). 

In order to answer the research questions, two questionnaires – one at the 

beginning of the first term (at the end of the second week, T1) and one in the 

middle of the first term (at the end of the ninth week, T2) – were used. At the 

end of the first year we checked whether students continued their studies or 

dropped out. The questionnaires have been handed out in the Real Analysis and 

the Linear Algebra lectures (which German freshmen usually attend during their 
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first term) at a large public German university. The instruments used in the 

questionnaires can be found in table 1.  

Variable Source # (T1/T2) Example 

Interest School 

Mathematics Ufer et al., 

2017 

5 0,80/ 0,80 In school, mathematics was 

very important for me.  

Interest University 

Mathematics 

5 0,88/0,87 The kind of mathematics that is 

done at university is fun for me. 

Beliefs: static 
Laschke &         

Blömeke, 

2013 

6 0,52/ 0,64 Mathematics means learning, 

remembering and applying.  

Beliefs: dynamic 6 0,71/ 0,76 Mathematics involves creativity 

and new ideas.  

Mathematical  

Self-Concept 

Kauper et 

al., 2012 

4 0,84/ 0,82 I am very good in my study 

subject mathematics.  

 

 

Table 1: Instruments used in the questionnaire with number of items (#) and 

reliability (cronbachs ) 

All items had to be answered on a five-point likert scale (1= totally disagree; 

5=totally agree). 271 freshmen (mathematics majors and mathematics pre-

service teachers) voluntarily filled out the first questionnaire. 222 freshmen 

participated in the second survey. All used scales had at least satisfying 

reliability, except the static beliefs scale, which has therefore been excluded 

from the further data analysis.  

RESULTS 

To answer the research questions and to check the hypotheses, multivariate 

analyses of variance (MANOVA) were used – to avoid the cumulation of the -

error compared with single t-tests. In the following, we first describe the results 

concerning students’ attitudes at the beginning of the first term (T1), before 

discussing the results concerning students’ attitudes during the term (T2). 

Attitudes at the Beginning of the first Term (T1) 

A large group of students who dropped out during their first year did not attend 

the lectures at the middle of the first term (T2) anymore. Therefore, we compare 

three groups of students: students who continued their studies (no dropout), 

students who dropped out prior to T2 (very early dropout) and students who 

dropped out during the first year but after T2 (early dropout). Table 2 shows the 

results concerning the differences between these groups: 
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Variable 

Very Early 

Dropout 

N=59 

Early 

Dropout 

N=40 

No 

Dropout 

N=172 

 

2 

M SD M SD M SD  

Interest School Mathematics 3,41 0,65 3,45 0,63 3,62 0,69 0,02 

Interest University Mathematics 2,55 0,79 2,86 0,78 3,17 0,83 0,09*** 

Beliefs: dynamic 3,50 0,54 3,60 0,53 3,74 0,59 0,03* 

Mathematical Self-Concept 2,41 0,62 2,76 0,58 2,97 0,70 0,10*** 

 

 

Table 2: Means, standard deviations and results of the MANOVA concerning 

the attitudes towards mathematics at T1; N=271; *p<0.05;   ***p<0.001 

As expected, dropped out students report less interest in university mathematics 

(H1), less dynamic beliefs (H2) and a lower self-concept (H3). No significant 

differences can be found with regard to interest in school mathematics. Due to 

the fact, that the static beliefs have been excluded from the analysis, H2 can 

only be confirmed partially. 

Post-Hoc-tests (with Bonferroni correction) show that mainly the differences 

between the very early dropped out students and the students who continued 

their studies are significant. Furthermore, the very early dropped out students 

report significantly lower self-concept than the early dropped out ones. 

However, early dropped out students do not differ significantly in their attitudes 

from students who continued their studies.  

Attitudes during the First Term (T2) 

Since the very early dropped out students did not attend the lectures at T2 

anymore, differences concerning the attitudes during the first term can only be 

compared between early dropped out students and those students who continued 

their studies. Table 3 shows these differences. As expected dropped out students 

report significantly less interest in university mathematics than the students who 

continued their studies (H1). We found no significant differences with regard to 

interest in school mathematics and dynamic beliefs. However, early dropped out 

students report significantly less mathematical self-concept than the students 

that continued their studies (H3).  
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Variable 

Early Dropout 

N=56 

No Dropout 

N=166 

 

2 
M SD M SD 

Interest School Mathematics 3,62 0,72 3,70 0,72 0,00 

Interest University Mathematics 2,97 0,79 3,27 0,81 0,03* 

Beliefs: dynamic 3,40 0,60 3,42 0,64 0,00 

Mathematical Self-Concept 2,51 0,63 2,95 0,66 0,06*** 

 

 

Table 3: Means, standard deviations and results of the MANOVA concerning 

the attitudes towards mathematics at T2; N=222; *p<0.05;    ***p<0.001 

This is remarkable because at the beginning of their studies, these two groups of 

students did not differ significantly concerning their mathematical self-concept. 

A closer look at the means at T1 and T2 reveal that the mathematical self-

concept of those students who continued their studies remains nearly constant 

while the early dropped out students report a clear decline of their self-concept. 

DISCUSSION 

Our results indicate that dropped out students and students who continued their 

studies of mathematics differ mainly concerning their interest in university 

mathematics and their self-concept. The differences found depend on the time 

of measurement.  

At the beginning of the first term, only the very early dropped out students 

report less interest in mathematics, less agreement to dynamic beliefs and a 

lower mathematical self-concept than the students who continued their studies. 

It seems that the very early dropped out students start their studies of 

mathematics with unfavourable attitudes that do not fit to university 

mathematics (in the sense of person-environment-fit). It seems that these 

students do not try to adapt their attitudes (as proposed by Haak (2017)) and 

therefore drop out very fast. It remains the question, whether some kind of 

supporting program would be beneficial for this group or if the very early 

dropout has to be understood as a fast correction of a wrong study choice. In 

this case it would be helpful to inform future students better about mathematics 

at university to enable them to make deliberate and appropriate study choices. 

Especially information about major differences between mathematics at school 

and at university should be given – preferably already during secondary school. 

The early dropped out students did not differ from those students who continued 

their studies concerning their attitudes towards mathematics at the beginning of 

the first term. However, in the middle of the first term, the early dropped out 
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students report significantly less interest in university mathematics and a lower 

mathematical self-concept than the students who continued their studies. While 

the self-concept of the students who continued their studies remained nearly 

constant during the transition, the self-concept of the early dropped out students 

decreased. This is in line with the findings of qualitative studies like the one of 

Di Martino and Gregorio (2019) who found that the mathematical self-concept 

of many students – even those that continued their studies – decreases during 

the transition from school to university due to the unexpected experiences of 

failure in mathematics. Many experiences of failure during the transition are 

connected to students’ problems with the weekly homework tasks (Liebendörfer 

& Hochmuth, 2017). Therefore, the design of these tasks could be reconsidered. 

Tasks that are challenging but offer experiences of success might help 

strengthening students’ mathematical self-concept. 

All in all, we found clear evidence for differences concerning the attitudes 

towards mathematics between students who dropped out and those who 

continued their studies. However, our study has some limitations. We only 

collected data at one university, thus our results might only reflect the local 

situation. The questionnaires relied on self-reports that can be biased. In 

addition, questionnaires were filled out during lectures. Students who do not 

regularly attend the lectures were not captured in our study. Our ongoing 

research will now focus on supporting measures that foster students’ 

mathematical self-concept.  
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DATA-BASED MODELLING WITH EXPERIMENTS – 

STUDENTS’ EXPERIENCES WITH MODEL-VALIDATION 

Sebastian Geisler 

Otto-von-Guericke-University Magdeburg, Germany 

 

Validating mathematical models is important yet challenging for many students. 

One pedagogical approach to foster validation is to use tasks that combine 

modelling with experimental data collection. In this paper we present a 

modelling-task with related experiment concerning the decay of beer froth. We 

analyse students’ validation of their models using qualitative content-analysis. 

Our results indicate that even if students are aware of substantial deviations 

between their model and their experimental data, they struggle with the 

validation of their models. Furthermore, students seem to put more trust in their 

models than in the data they measured during the experiment. Therefore, 

students tend to suggest to improve the measurement during experimentation 

instead of revising their models in order to improve fit between model and data. 

INTRODUCTION  

According to Niss (1994), modelling is a central contribution of mathematics 

for a modern society. Accordingly, mathematical modelling is considered a key 

mathematical competence to be taught. This is reflected by several national 

curricular documents (e.g. National Governors Association Center for Best 

Practices and Council of Chief State School Officers, 2010; KMK, 2012) as 

well as the PISA-framework (OECD, 2017). However, modelling is a complex 

cognitive process. Therefore, modelling tasks are challenging for many 

students. Specially the absence of validation of the formulated models is an 

often reported shortcoming in students’ modelling processes (e.g. Blum & Leiß, 

2007). 

In the case of data-based modelling with functions, Engel (2010) criticises that 

some tasks in textbooks use unrealistic data which already fit well to the 

intended model. The necessity to validate ones’ models becomes not apparent 

for students in this case. Therefore, Engel (2010) argues that real data – which 

usually does not fit perfectly to a mathematical model – is necessary for 

authentic modelling and to illustrate the relevance of model-validation. One 

possibility to integrate real data in the modelling process to stimulate validation 

is to combine modelling tasks with data which students gather themselves via 

(scientific) experiments (cf. Zell & Beckmann, 2009). 

Even though this approach is often described in articles that offer concrete 

teaching-ideas for teachers at different educational levels (e.g. Ludwig & 
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Oldenburg, 2007), only a few empirical studies deal with benefits and 

constraints of modelling tasks with experiments. In the exploratory study 

reported here, we analyse students’ validation in a modelling task concerning 

the decay of beer froth. 

THEORETICAL BACKGROUND 

Mathematical Modelling and Model-Validation 

Even though different conceptualisations exist for mathematical modelling in 

educational contexts, most researchers assume modelling to be a circular 

process (e.g. Galbraith, Stillman, & Brown, 2010). We follow the 

conceptualisation of Blum and Leiß (2007) describing an idealized modelling-

cycle with seven steps (see Figure 1). 

 

Figure 1: Modelling-Cycle following Blum & Leiß (2007) 

During the validation step, students examine whether the fit between their 

model and their obtained results is adequate. According to Niss (1994, p. 369) 

validation is the “single most important point related to mathematical 

modelling”. For many students, validation is also a hurdle in the modelling 

process. Blum and Leiß (2007) report, that the model-validation is absent in 

many students’ modelling-processes. Some students even seem not to see 

model-validation as necessary (Stillman & Galbraith, 1998; Hankeln, 2020). 

However, some scholars report, that students validate their models but 

sometimes rely on rather intuitive feelings that their model might be wrong 

(Borromeo Ferri, 2006). In an intervention-study aimed at fostering students’ 

modelling-competencies, Borromeo Ferri, Grünewald and Kaiser (2013) found 

that ninth grade students’ validation-competence was the weakest developed 

sub-competence. Furthermore, they found that validation-competence can be 

fostered even in short interventions. 

Modelling Tasks with Experiments 

Experiments related to mathematics find their natural place in the framework of 

mathematical modelling because they represent the “rest of the world” for which 

mathematical models are built. (Halverscheid, 2008, p. 226) 
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Carreira and Baioa (2018) describe that students see modelling tasks with 

experiments as credible. Furthermore, Ludwig and Oldenburg (2007) argue that 

experiment-based tasks tie the whole modelling-process to students’ practical 

experiences and allow models to be validated with students’ own 

measurements. Similarly, Zell and Beckmann (2009) see valuable opportunities 

for validation and reflection upon models when using measurements from real 

experiments: 

Because of measurement errors the formula is never correct. So it is natural to talk 

about the correctness and the limitations of the model and its results. […] Hence 

there is a strong emphasis on the validation process […]. (Zell & Beckmann, 2009, 

p. 2216) 

They report that secondary students were able to validate their models based on 

physical experiments during classroom discussions. Maull and Berry (2001) 

found that undergraduate students did not validate their experiment-based 

models on their own and that prompts from the teacher were necessary for the 

validation process. However, even if students notice divergences between their 

model and experimental data, this does not ensure useful validation: Carrejo and 

Marshall (2007) describe how students justify systematic shortcomings in their 

models by measurement errors in their data.  

So far, empirical studies do not draw a consistent picture of the benefits and 

constraints of experiment-based modelling tasks. More research on how 

students approach modelling tasks with experiments focusing specially on how 

they validate their models with respect to their experimental data is needed. 

THE CURRENT STUDY 

The study at hand is part of the Design-Based-Research (DBR) project 

“Mathematical Modelling with Experiments” (MaMEx). MaMEx objectives are 

the design and evaluation of modelling tasks with experiments and research 

concerning the benefits and constraints of such tasks for fostering students’ 

modelling- and especially validation-competencies. Before addressing the 

research-questions of our study, we give a brief overview of the modelling tasks 

used in the MaMEx-project. 

Design-Principles and Modelling Task “Stale Beer” 

The modelling tasks and related experiments used in the MaMEx-project satisfy 

the following design-principles (cf. Galbraith et al., 2010): (1) The context 

should be realistic and use only physical quantities that are familiar to students. 

(2) Experiments should be easy to conduct and not take too much time so that 

mathematical modelling is foregrounded. (3) Setting up a mathematical model 

should not be too complicated but the task should offer useful occasions for 

validation. (4) Since not all students validate their model spontaneously, a 

validation prompt should be implemented. We illustrate these design-principles 

for the task “Stale Beer”. In this task, students model the decay of froth from 
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alcohol-free beer using data measured in an experiment. Similar tasks without 

the experiment can be found in several mathematics textbooks from Germany 

(Leike, 2002). The initial task was formulated as follows:  

The quality of beer is (among other criteria) evaluated by the speed of decay of its froth. 

Since people drink beer at different paces, there are different opinions on how long froth 

should be stable. Model the decay of froth for the alcohol-free beer at hand and evaluate 

the quality of the beer.  

The context is realistic (1) since the quality of froth is a quality-criterion of beer 

for both: consumers and breweries (Evans, Surrel, Sheehy, Stewart & Robinson, 

2008). Furthermore, consumers from different countries prefer different 

characteristics of beer froth (Evans et al., 2008). Students were advised to 

conduct an experiment by measuring the height of froth from freshly poured 

beer for five minutes. The quantities time and height are familiar to students. 

The experiment takes only a few minutes and materials used (alcohol-free beer, 

measuring cylinder, ruler) are easy to handle (2).  

After conducting the experiment, students were asked to set up a function 

serving as a model for the decay of froth. Mathematising is not too complicated 

(3) since the decay of froth can be approximated by exponential decay: 𝑓(𝑥) =
𝑏 ∙ 𝑎𝑥, 0 < 𝑎 < 1, 𝑏 > 0. A reasonable solution is to use the first measured 

height (in cm) as an estimate for the parameter b. a can be estimated as the 

quotient of two consecutive measured values (e.g. 𝑎 =
height(1 min)

height(0 min)
). Occasions 

for validation are given, since the decay of froth is not perfectly exponential 

(Leike, 2002). This subtask served as validation prompt (4): 

Compare your function with your measurement-data. Does your function describe 

the data accurate enough? How could your model be improved? 

One possibility to improve ones’ model is to consider several pairs of 

consecutive measured values and using the mean of their quotients as an 

estimate for a.  

Finally, students were asked to reflect upon their validation: 

In which way was the former subtask relevant for evaluating the quality of the 

beer? Why does it make sense to ask yourself the questions in the former subtask? 

Research-Questions 

This paper reports results from the first DBR-cycle of the MaMEx-project. 

Within this cycle the task “Stale Beer” was implemented in German upper-

secondary schools in order to analyse students’ model-validation and – if 

necessary – to refine the task for the next DBR-cycles. In particular, we were 

interested in the following questions: 

• How do students validate their models with respect to their 

experimental data?  
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• In which way do students explain the relevance of validating their 

models? 

Methods 

19 German upper-secondary students from two classes of a grammar-school 

serve as the sample for the study at hand. The students were familiar with 

exponential functions of the type 𝑓(𝑥) = 𝑏 ∙ 𝑎𝑥 as well as the typical 

characteristics of exponential growth and decay. However, so far they had not 

worked with empirical data and did not all already know how to compute the 

parameters b and a based on given values. 

In order to answer the research questions, students’ answers on the 

aforementioned validation prompt and the reflection subtask were analysed 

using qualitative content analysis (Mayring, 2010). Inductive categories have 

been derived from students’ answers, resulting in a coding guide. Based on this 

guide, all answers were coded independently by two coders, reaching a good 

intercoder-reliability of 𝜅 = 0.75. Given the limited space, we cannot present 

the coding-guide here. 

RESULTS 

Except of two, all students were able to construct an exponential function as a 

model for the decay of beer froth. The students used their first measured value 

as an estimation for b. Ten students computed a as the quotient of consecutive 

measured values (see Fig. 2a). Only three of these students used more than two 

consecutive measured values and computed a mean as an estimate for a (see 

Fig. 2b for an example). However, three students indicated that they 

systematically tried different values for a and compared the resulting functions 

with their measurement data. Five students did not provide an explanation for 

how they set up their model. 

 

Figure 2: a) Solution using two consecutive measured values to estimate a, b) 

Solution using in sum four consecutive measured values and the mean of their 

quotients to estimate a 

Model Validation 

Nine students indicated that they identified no or only a small deviation between 

their model and experimental data. These students stated that their models 

described the data adequately enough (e.g. “The function describes the 

measured values precisely. There are hardly any major deviations.”). Even if 

they identified no significant deviations, five students proposed ideas for 
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improvement of the fit between model and data. Two of them proposed to 

measure the height of the froth more precisely during the experiment (e.g. “by 

using more precise measurements”) and three suggested to take into 

considerations more decimal places while computing a (e.g. “You can make the 

function more precise by adding more places after the comma.”). Four students 

described no concrete idea to improve their models. 

 

Figure 3: Model and data of a student who identified no significant deviations 

(left picture), and of a student who identified significant deviations (right 

picture) 

Ten students indicated that they see significant deviations between their models 

and experimental data (e.g. “The values differ greatly. The measured values are 

not described adequately by our function.”). All of these students suggested to 

improve the fit between their models and the experimental data by increasing 

the number and precision of the measurements during the experiment (e.g. “The 

model can definitely be improved by better measuring.”). No student suggested 

to use more or even all measured values to estimate a. 

It is noteworthy that students’ judgement, whether the deviations between the 

experimental data and the model are significant is very subjective. Comparing 

models from students who did not indicate relevant deviations and models from 

students who did, reveals that the models and deviations from the data are quite 

similar. For example, both models in Fig. 3 reveal similar systematic 

shortcomings.  

Relevance of the Validation 

Being asked, why the validation subtask was relevant, two students stated that it 

was not important for them (“It was not relevant for us!”).  
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16 students argued that comparing their model with their experimental data was 

relevant for their modelling-process. Three different argumentations could be 

identified in students’ answers:  

Eight students wrote that it was important in order to understand how fast the 

froth decreased and to determine the quality of the beer froth (e.g. “It was 

important to notice the speed of the decay. With the speed you can recognize 

and explain the quality of the beer.”). However, these eight students did not 

explicitly explain how the validation contributed to the evaluation of the quality 

of beer froth.  

Two students argued that validation was necessary in order to set up a model 

that can adequately predict the further decay of beer froth (“It was important 

since – theoretically – the function can approximately predict the quality and 

the amount of froth that is still there after »x« time.”). These students saw their 

model not only as a description of their data but as a tool to predict the further 

decay. 

Evaluating the fit of ones’ model with the data, as a reason why validation is 

relevant, was mentioned by six students (e.g. “Verification whether function and 

data can fit together.”). Two of these students explicitly linked the comparison 

of model and data with the evaluation of the froth quality (“It was important to 

see that – in contrast to our function – the decay of froth was faster, indicating 

that the quality was not good.”). 

DISCUSSION AND OUTLOOK 

Mathematical modelling and in particular model validation are very important 

(Niss, 1994). In the context of modelling with functions, the results of our study 

show that many students struggle with validation. Some students did not 

recognize systematic shortcomings of their models (e.g. Fig. 3, left). Those 

students who noticed relevant deviations between their model and experimental 

data argued that these deviations are the result of imprecise measurements 

during the experiment. Systematic shortcomings of fit between model and data 

– as apparent in the right picture in Fig. 3 – are attributed to measurement errors 

(cf. Carrejo & Marshall, 2007). Consequently, students suggested to improve 

the data by more precise measurements instead of revising the model in order to 

increase the fit between data and model. It is surprising that even the three 

students who used more than two consecutive measured values to estimate a, 

did not suggest using the rest of their data in order to further improve their 

models. 

It seems that the majority of students put more trust in their mathematical 

models than in their experimental data, with the result that they try to adjust 

their data to the model instead of the other way around. However, in the 

reflection statements of those two students who linked the comparison of model 

and data with the evaluation of beer froth quality some doubts about their 
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models came through (“It was important for judging the beer quality, because – 

in contrast to our function – the beer froth decreased much faster.”). But even 

these students wanted to improve the fit between model and data by more 

precise measurements during the experiment.  

Since we worked with a small group of students from two classes using only 

one task and experiment, our results are rather explorative and should be 

confirmed by further studies with similar tasks and experiments as well as a 

larger sample of students. 

The question remains, why students put more trust in their models than in their 

data and why they prefer to adjust the data instead of revising the model. A 

possible reason is that students are more familiar with tasks which use 

unrealistic data, already fitting well to the intended model (cf. Engel, 2010). 

Furthermore, it is possible that students’ hesitation to change the model is 

rooted in a belief that mathematics is always precise and that mathematical tasks 

have only one correct solution (cf. Schoenfeld, 1992). With this belief, students 

might assume that the first model they set up is “correct”. However, another 

reason could be that students simply find it easier to improve their measurement 

than to revise their model. Stimulated recall interviews (with students who 

worked on experiment-based modelling tasks) could be used to gather more 

insights into students’ reasons for putting more trust in their models than in their 

data. We will follow this strategy within the next DBR-cycle of the MaMEx-

project.  
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CALCULUS 
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We report how an inquiry-oriented, open source, and open access calculus 

textbook shaped one university instructor's planning and enactment of his 

lessons. We use two analytical lenses—curricular noticing (Dietiker et al., 

2018) and Inquiry in Mathematics Instruction (Gerami et al., 2020)—using 

various sources of data (surveys, bi-weekly logs, classroom observations, and 

instructor interviews). We found that the instructor relied heavily on the 

textbook to plan his lessons and that his enactment of the lesson plans resulted 

in meaningful interactions about calculus ideas in the spirit of inquiry. 

INTRODUCTION AND BACKGROUND 

University calculus instruction, specifically lecturing, has been blamed for the 

high proportion of students leaving science and engineering programs 

(Rasmussen & Ellis, 2013). Citing current evidence that ‘active learning’ is 

associated with higher student performance (Freeman et al., 2014; Laursen et 

al., 2014), the popularity of inquiry-oriented teaching and learning in university 

mathematics has increased, as has the interest in creating curriculum materials 

that can support inquiry (Haberler et al., 2018). Whereas there is empirical 

research on how inquiry-oriented research-based curriculum materials  support 

teaching and learning (e.g., Rasmussen & Kwon, 2007), there is scant research 

on how non-research-based textbooks that are designed to engage students 

shape instructors’ teaching. An exception is Fukawa-Connelly’s (2016) study 

about an undergraduate abstract algebra instructor who used his own non-

research-based inquiry-oriented curriculum. He showed that even though the 

instructor wanted students to engage in various defining and proving practices 

and some elements for inquiry were present in his curriculum, the enactment of 

the curriculum did not seem to support that goal because of the absence of 

design principles that would allow the instructor to “devolve much 

responsibility to [the students] in the defining and conjecturing phase” (p. 747). 

Our study contributes to this body of research, as we seek to understand how a 

textbook designed to create inquiry opportunities in a first-year calculus course 

shaped two teaching processes of one university instructor (Casey, pseudonym): 

planning and instruction. We chose a case study approach (Yin, 2003) because 

it afforded us an in-depth analysis of the processes of planning and instruction 
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in a bounded system: the teaching of calculus by one instructor. We chose to 

work with Casey, because he mentioned wanting to implement inquiry into his 

calculus course, after having some success implementing inquiry in a few of his 

upper-division courses. Because we were interested in how the textbook entered 

the processes of planning and instruction, we thought that an instructor 

interested in incorporating inquiry but who lectured in his calculus course 

would be ideal to see whether the textbook was the catalyst to implement 

inquiry. We pose the following research questions: How does an inquiry-

oriented calculus textbook shape lesson planning by a calculus instructor in 

inquiry-oriented ways? and, How does an inquiry-oriented calculus textbook 

shape one college instructor’s interactions with students and the mathematics at 

stake in inquiry-oriented ways? 

The inquiry-oriented textbook: Active Calculus 

To teach his course, Casey used Active Calculus (Boelkins, 2019), an open 

source and open access textbook created in PreTeXt (https://pretextbook.org) in 

an HTML format. The book is designed to “actively engage students in learning 

the subject through an activity-driven approach in which the vast majority of the 

examples are generated by students” (Boelkins, 2019, preface for instructors). 

The textbook is conceived as a workbook with activities that have to be done 

with peers in class; students are expected to ask questions, make mistakes, and 

write about and talk through the concepts (see preface for students). The 

textbook includes three interactive features: links to GeoGebra animations 

(interactive applets), preview activities (students can submit their responses to 

questions about the upcoming material), and WeBWorK 

(https://webwork.maa.org) exercises that provide immediate feedback to 

students. Each section is designed to map class time in a five-phase instructional 

sequence: 1) students completing a preview activity prior to each class meeting, 

2) short class discussion, 3) short lecture and discussion based on the preview 

activity, 4) students working on an activity while engaging with peers, 5) 

instructor wrapping ideas up. The materials include a YouTube channel with 

short videos for every section and a set of worksheets (prep assignments) that 

are given to the students to do as homework before class. 

THEORETICAL FRAMEWORK 

In this study, we see artefacts as an interdependent element that mediates and 

modifies the interactions between the teacher and his or her students and the 

mathematics at stake as they engage in activities that bring them together 

(Rezat, 2013). We attend to two activities, planning and enactment of a lesson, 

and seek to understand them from the perspective of the teacher. 

We conceive of planning as the set of activities instructors engage in to generate 

a plan that outlines the goals, activities, times, roles, etc., of the teacher and the 

students in the classroom. We used Dietiker and colleagues’ (2018) curricular 

https://pretextbook.org/
https://webwork.maa.org/
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noticing framework to conceptualize this activity vis a vis the textbook. 

Curricular noticing refers to how teachers “take advantage of the opportunities 

in curricula in mathematically and pedagogically productive ways” to create 

such plan (p. 524). The framework consists of three phases: 1) curricular 

attending refers to the set of actions involved in viewing or visually taking in 

information within the curriculum; 2) curricular interpreting includes the actions 

teachers take to make sense, mathematically and pedagogically, of the 

information they have visually taken in during the attending phase; and 3) 

curricular responding describes the actions teachers use to make curricular 

decisions and the way in which those decisions are carried out in the classroom. 

The three phases follow one another consecutively, but teachers may refer to 

prior phases as needed (see Figure  1). 

 

Figure 1: The curricular noticing framework (adapted from Dietiker et al., 2018) 

Instruction is conceptualized here as the interactions between the teacher, the 

students, and the mathematics, bounded by particular contexts. Attending to the 

interactions, we identify various dimensions of inquiry (or pillars, Laursen & 

Rasmussen, 2019) to define inquiry instruction as instruction that supports 

inquiry in the classroom (see Figure 2). 
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Figure 2: Dimensions of inquiry in the classroom (adapted from Cohen et al., 

2003) 

Inquiry in the classroom can refer to: 1. Individual student inquiry, that is, the 

extent to which students engage with “coherent and meaningful mathematical 

tasks”; 2. collective student inquiry, that is, the extent to which “students 

collaboratively process mathematical ideas”; 3. instructor inquiry, that is, the 

extent to which the instructors express interest and curiosity about how 

individual and groups of students are thinking about and processing 

mathematical ideas and use that information to guide the interactions; or 4. 

environment that supports inquiry for all, that is, an environment in which 

equitable participation is expected and supported through lesson design and 

facilitation choices (Laursen & Rasmussen, 2019, p. 138). To define the specific 

inquiry-oriented processes under each dimension, we identified actions 

(behaviours or items) from 15 extant observation instruments and 

questionnaires concerned with inquiry-oriented classroom practice (e.g., Cawley 

et al., 2018; Laursen et al., 2014; Shultz, 2020; full list of instruments and 

definitions provided upon request). We mapped them into the interactions 

outlined in Figure 2. This process resulted in The Inquiry in Mathematics 

Instruction framework, shown in Figure 3, with 28 behaviours (which we 

identify by a number representing a dimension and a letter, e.g., “3a: Interactive 

lecture” is a behaviour under the third dimension). 
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Figure 3: The Inquiry in Mathematics Instruction framework (Gerami et al., 

2020) 

METHODS 

Data for this case study were collected over the Fall 2019 semester, as part of a 

large project (Beezer et al., 2018) that involved 18 instructors. Casey had nine 

years of experience in teaching at the university level and taught at a small 

private university in the Midwestern United States. He had eight students (three 

females) in his calculus course, all majoring in STEM fields. The data included 

a teacher survey (collected before teaching started), five teacher logs (short 

surveys collected through the semester), course syllabus, audio recordings and 

fieldnotes of three one-hour interviews with the instructor, and video-recordings 

and fieldnotes of four classroom observations (during the 10th week of the term: 

Monday, Wednesday, and Friday morning, and a lab on Friday afternoon). In 

the first interview, we video-recorded Casey to capture his lesson planning 

process. In the second interview, we discussed his enactment process using clips 

from classroom observations and lesson planning. In the third interview, we 

revisited some themes of planning and enactment. 

To analyse Casey’s planning, we focused on the set of actions that constituted 

Casey’s curricular noticing using relevant pieces from his records: We listened 

to each interview, reviewed the field notes, and highlighted aspects that were 

directly relevant to planning or instruction with the textbook. To analyse 

Casey’s instruction, we identified video segments that exemplified interactions 

between Casey, his students and the mathematics that were shaped by the 

textbook features and resulted in mathematically meaningful exchanges. Here 

we showcase the results of our analyses of two such segments, using the Inquiry 

in Mathematics Instruction framework. We shared a summary of our findings 
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and assertions with Casey to make sure that he agreed with the representation 

and interpretation of our findings. 

FINDINGS 

Using Active Calculus during Planning Inquiry Instruction 

Casey’s planning exhibited the three phases of curricular noticing as he 

produced two documents: the lesson plan (a to-do checklist to be used in class) 

and the prep assignment (a plan for student work to be completed in advance of 

the lessons). First, he searched within and reflected on the resources he had at 

hand—the textbook, Boelkins’ and his own previous notes and prep 

assignments—searching for specific content and features; this gave evidence of 

the curricular attending phase. In the second phase, curricular interpreting, he 

made sense of the materials by interacting with them and by anticipating 

students’ difficulties and the time needed to complete each activity. He 

recognized opportunities embedded in this particular set of curriculum 

materials, thinking they might “provoke discussion among his students” or be 

redundant because they repeat the content in the textbook. Casey questioned and 

made sense of the amount of class time that he would need, should he choose to 

include these textbook features. In the curricular responding phase, Casey made 

several decisions related to use of textbook features in both his lesson plan and 

his prep assignment. Casey’s decisions were mainly about selecting and 

sequencing textbook features in both documents, and how he and his students 

were going to interact with them (e.g., in whole-class discussion or group 

work). Casey closely followed the textbook and its supplemental materials in 

designing these documents, consequently embedding the author’s inquiry-

oriented intentions for textbook use. For instance, following the author’s 

suggestions, Casey expected his students to come to class after interacting with 

the content via the prep assignment, so that whole-class discussions could be 

generated at the beginning of the lessons. 

Using Active Calculus during Inquiry Instruction 

We documented several actions using the Inquiry in Mathematics Instruction 

framework in all of Casey’s lessons that we observed. He started each lesson by 

collecting the prep assignment for the day and asking students if they had any 

questions. This opening generated whole-class discussions or interactive 

lectures (3a, 3c), with Casey inquiring into student thinking (3d), evaluating 

their thinking (3e), and making connections across content and representations 

(1f, 1g, 3h, 3j). Throughout the lesson, they followed the textbook and its 

activities, often referring to the mathematics as sections of the textbook. When 

working on problems at the board, Casey interacted with the students by asking 

them next-step questions, calling them by their names, and eliciting their 

thinking (3a, 3d, 3e, 3f). When students worked individually or in groups (1d, 

2a), Casey spent time with all students (4b), going back and forth between 
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groups (4c), eliciting student thinking (3d), and checking their work and 

connecting it to formal mathematics (3i). During these interactions, Casey 

seemed comfortable not answering students’ questions directly, allowing them 

to struggle with open problems (1a). Moreover, we analysed two segments of 

instruction and coded every utterance by Casey and his students. Although we 

cannot show our analyses of these segments here due to lack of space, in Figure 

4 we present a summary of the inquiry actions observed in instruction and those 

supported by the textbook. 

 

Figure 4: Actions enacting inquiry by dimension; a circle represents that the 

particular action was identified in the episode; a filled circle means that the 

textbook supported the interaction. 

DISCUSSION 

In this study, we perused two research questions: How does an inquiry-oriented 

calculus textbook shape lesson planning by a calculus instructor in inquiry-

oriented ways? and, How does an inquiry-oriented calculus textbook shape one 

college instructor’s interactions with students and the mathematics at stake in 

inquiry-oriented ways? We answer our first research question as follows: Casey 

designed his prep assignments and lesson plans carefully and efficiently because 

the textbook and its supplemental materials made it easy to do so. We think that 

the availability of the resources, especially the textbook with its interactive 

features and its ancillary materials, afforded Casey time to think through the 

available information, meticulously tweaking the details that were not aligned 

with his goals and visions. Because this was his first time teaching the course 

with Active Calculus or with inquiry, Casey might have relied on the textbook 

and the author’s suggestions more, as he built up knowledge and experience 

with the textbook. It has been reported that instructors tend to be more attentive 

to new textbooks and that as they gain confidence, they tend to use it less (Mesa 

& Griffiths, 2012). To answer our second research question, we assert: Casey’s 

instruction was inquiry-oriented because he closely followed his prep 

assignments and lesson plans which were based on a textbook and its 

supplemental materials that supported inquiry. Regarding this assertion, we 

believe that this was the case in part, because Casey had wanted to use inquiry 
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in calculus in the first place. From interviews we know that he had had some 

success doing inquiry in his upper division courses and was already predisposed 

to use it. That the students also did the work required of them ahead of time was 

important for the inquiry enactment to happen—and he had planned for it. 

Students came to class with questions that were freely asked and got into the 

relevant topics much quicker and with more focus. Casey might have created a 

classroom climate that supported students being comfortable with inquiry, 

included the appropriate incentives for students to do the work (homework 

credit), or students may have found the prep assignments (including the 

YouTube explanations and animations) interesting and the amount of work 

appropriate. 

Thus, we believe that we have evidence demonstrating that this textbook 

facilitated a shift in Casey’s way of teaching the course towards inquiry 

compared to his previous teaching of calculus. From our interviews with him, 

we know that Casey used to lecture before using Active Calculus and was 

dissatisfied with it but had not engaged in a change because his textbooks did 

not support his visions and goals. Casey had been slowly building more inquiry 

into his upper-division classes but found it very time consuming to design 

calculus activities that would enable students to explore the ideas in class. This 

hurdle was resolved when he had the opportunity to take part in the research 

project and teach with a textbook that supports inquiry in calculus. 

Our study suggests that investigating how textbooks shape undergraduate 

mathematics education is an important area of research. Research should 

describe and analyse curriculum on aspects beyond their content to see how 

they afford opportunities for altering practice. Our study shows that a textbook 

that is oriented towards inquiry can support instructors in implementing it. 

Although supporters of inquiry have traditionally focused on shifting university 

instructors’ practices via professional development opportunities or 

participation of faculty in research projects, our findings suggest that they could 

consider curriculum materials as a complementary resource and catalyst for 

instructional change (Laursen, 2019). Our findings are encouraging for 

advocates of reshaping teaching of university calculus by promoting inquiry 

using a resource that is readily and freely available to all. 

Acknowledgements 

Funding for this work has been provided by the National Science Foundation 

through Awards IUSE 1624634, 1821509. Carlos Quiroz, Yue Ma, Thomas 

Judson, and Lynn Chamberlain have provided assistance in the project. We 

thank Casey for participating in this study and for his suggestions and 

comments on early findings of this paper. 



Gerami, Mesa & Liakos 

2 -  348 

 

PME 44 -2021 

References 

Beezer, R., Judson, T., Farmer, D., Morrison, K., Mesa, V., & Lynds, S. (2018). 

Undergraduate Teaching and learning in Mathematics with Open Software and 

Textbooks (UTMOST): National Science Foundation (DUE 

1821706,1821329,1821509,1821114). 

Boelkins, M. (2019). Active Calculus. CreateSpace Independent Publishing Platform, 

Available at https://activecalculus.org/single/. 

Cawley, A., Duranczyk, I., Mali, A., Mesa, V, Ström, A., Watkins, L., Kimani, P., & 

Lim, D. (2018). An innovative qualitative video analysis instrument to assess the 

quality of post-secondary algebra instruction. In E. Bergqvist, M. Österholm, C. 

Granberg, & L. Sumpter. (Eds.). Proceedings of the 42nd Conference of the 

International Group for the PME (Vol. 2, pp. 227-234). Umeå, Sweden: PME. 

Cohen, D. K., Raudenbush, S. W., & Ball, D. L. (2003). Resources, instruction, and 

research. Educational Evaluation and Policy Analysis, 25, 119-142. 

Dietiker, L., Males, L. M., Amador, J. M., & Earnest, D. (2018). Research 

commentary: Curricular noticing: A framework to describe teachers' interactions 

with curriculum materials. Journal for Research in Mathematics Education, 49(5), 

521-532. 

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., & Jordt, H. 

(2014). Active learning increases student performance in science, engineering, and 

mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410-

8415. 

Fukawa-Connelly, T. (2016). Responsibility for proving and defining in abstract 

algebra class. International Journal of Mathematical Education in Science and 

Technology, 44(5), 733-749. 

Gerami, S., Liakos, Y., Mesa, V., Quiroz, C., Judson, T., Chamberlain, L., & Ma, Y. 

(2020). How an inquiry-oriented textbook shaped an instructor’s interactions 

inside a classroom: A case study of college calculus. Unpublished manuscript. 

Haberler, Z., Laursen, S. L., & Hayward, C. N. (2018). What's in a name? Framing 

struggles of a mathematics education reform community. International Journal of 

Research in Undergraduate Mathematics Education, 4(3), 415-441. 

Laursen, S. (2019). Levers for change: An assessment of progress on changing STEM 

instruction. Washington, DC: American Association for the Advancement of 

Science. 

Laursen, S., Hassi, M.-L., Kogan, M., & Weston, T. (2014). Benefits for women and 

men of inquiry-based learning in college mathematics: A multi-institution study. 

Journal for Research in Mathematics Education, 45(4), 406-418. 

Laursen, S., & Rasmussen, C. (2019). I on the Prize: Inquiry approaches in 

undergraduate mathematics. International Journal for Research in Undergraduate 

Mathematics Education, 5, (129–146). 



Gerami, Mesa & Liakos 

2 -  349 

 

PME 44 -2021 

Mesa, V., & Griffiths, B. (2012). Textbook mediation of teaching: An example from 

tertiary mathematics instructors. Educational Studies in Mathematics, 79(1), 85-

107. 

Rasmussen, C. L., & Ellis, J. (2013). Who is switching out of calculus and why. In A. 

M. Lindmeier & A. Heinze (Eds.), 37th Conference of the International Group for 

the PME (Vol. 4, pp. 73-80). Kiel, Germany. 

Rasmussen, C. L., & Kwon, O. N. (2007). An inquiry-oriented approach to 

undergraduate mathematics. Journal of Mathematical Behavior, 26, 189-194. 

Rezat, S. (2013). The textbook-in-use: Students' utilization schemes of mathematics 

textbooks related to self-regulated practicing. ZDM Mathematics Education, 45, 

659-670. 

Shultz, M. (2020). The rationality of college mathematics instructors: The choice to 

use inquiry-oriented instruction. University of Michigan, Ann Arbor, MI. 

Yin, R. K. (2003). Case study research design and methods. Thousand Oaks, CA: 

Sage. 

 

 

  



2 - 350 

2021. In Inprasitha, M., Changsri, N., Boonsena (Eds.). Proceedings of the 44th Conference of the 

International Group for the Psychology of Mathematics Education, Vol. 2, pp. 350-359. Khon Kaen, 

Thailand: PME. 

  

“I DON’T NEED THIS” - UNDERSTANDING PRESERVICE 

TEACHERS DISAFFECTION IN MATHEMATICS 

Lara Gildehaus1 and Michael Liebendörfer1 

Paderborn University, Germany 

 

In some countries, preservice mathematics teachers enrol in specific teaching 

degree programs but share some lectures with mathematics majors. In this 

setting, we analyse the phenomenon of preservice teachers’ deeming university 

mathematics as irrelevant through the lens of social psychology. Group 

interviews of in total 14 preservice teachers were analysed for students’ 

positioning of themselves and others within the mathematics community. The 

students experienced the two conflicting communities of mathematics and 

teacher education, which seem incompatible. Feeling excluded, they may 

project their negative experience against the community of mathematics. The 

proclaimed irrelevance should thus be seen as an expression of tensions in their 

identity and a reaction on their rejection by the mathematics community.  

TEACHER TRAINING IN MATHEMATICS 

In their training, secondary mathematics teachers often take courses together 

with mathematics majors. Yet, they may have separated programs. In Germany, 

preservice higher secondary teachers formally chose a different degree from the 

beginning and have different study schedules than mathematics majors. Yet, 

they often attend the first-year lectures on analysis and linear algebra together. 

Later, preservice teachers tend to have more and more specific courses on 

mathematics education and pedagogical contents (e.g., Bauer & Hefendehl-

Hebeker, 2019). 

While it is well known and discussed, that university mathematics can be 

challenging for all beginners, “it is striking, not to say frightening, how 

negatively preservice teachers assess their studies” (Mischau & Blunck, 2006, 

p. 49). While differences in learning prerequisites between mathematics majors 

and preservice teachers are rather small at the beginning of their studies (Bauer 

& Hefendehl-Hebeker, 2019), preservice teachers strongly lose their interest in 

university mathematics after the first weeks and some describe themselves as 

being excluded from the mathematics community (Ufer, Rach & Kosiol, 2017; 

Liebendörfer, 2014). They drop out of mathematics studies more often and are 

disaffected with their study content. Many students criticize university 

mathematics as being irrelevant for their future profession and demand more 

practice-related content (Bauer & Hefendehl-Hebeker, 2019; Liebendörfer, 
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2014). Accordingly, they report to copy homework and use surface learning 

strategies more often (Liebendörfer & Göller, 2016).  

Current interventions therefore address this desire for more practical relevance 

(e.g. practice semesters and internships in schools) and relevance of content 

(e.g. specific tasks connecting university mathematics with school mathematics; 

Eichler & Isaev, 2017). Whereas such interventions are meant to comply with 

the demands of preservice teachers, their critique often seems to sustain (Bauer 

& Hefendehl-Hebeker, 2019) and may have further reasons. We therefore aim 

to understand preservice teachers’ disaffection from mathematics from a social 

psychological perspective. 

STUDENTS’ IDENTITY AND PROJECTIONS 

With their concept of “leading identity”, Black et al. (2010) introduced a 

construct that may frame preservice teachers’ concrete career aspirations. 

“Leading activities are those which are significant to the development of the 

individual’s psyche through the emergence of new motives for engagement.” 

(Black et al., 2010, p. 55). Alongside those motives comes a new understanding 

of self – the leading identity –, which reflects the hierarchy of motives. A 

leading identity focused on the later career aspiration would rather see the “use 

value” in studying mathematics to pursue the aspirations, in contrast to a 

leading identity that is focused on the activity of studying and becoming a 

university student, which values qualification one may obtain (Black et al., 

2010). Accordingly, preservice teachers may rather search for a “use value” of 

their studies, than mathematics majors, who are more diverse in their career 

opportunities. 

Similar to these results on individual level, Solomon (2007) found that 

mathematics undergraduates may find themselves within potentially conflicting 

communities during their studies. While one may expect first-year students, 

who managed to participate successfully in the mathematics community, will 

built a functional mathematics learner identity, this was not the case for all 

students. “On the contrary, students who describe identities of heavily 

alignment can appear unworried by their lack of participation in mathematics, 

successful as they are in the more dominant local communities” (Solomon, 

2007, p. 79). Considering preservice teachers as a specific community with their 

own leading identities and ways of participation may thus explain the differing 

behaviour compared to mathematics majors. It remains unclear, however, if, and 

if so, how this community relates to the mathematics community.  

The social psychological concept of projection (Baumeister et al., 1998, p. 

1090) may clarify this relation, as it provides a frame to analyse preservice 

teachers’ disaffection from mathematics along their positioning to the 

mathematics community. A projection is a psychological mechanism of 

attribution that is usually triggered by experiences that challenge one’s own 
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identity, e.g. fear. It describes a defence mechanism to repress impulses that the 

individual does not allow for self-perception – because they contradict the self-

image, for example. For this purpose, a projection screen is sought to transform 

fear, into hatred of something that is not supposed to belong to oneself, and to 

relieve the self of psychological strains. The projection screen is then “the 

foreign” – a construct that developed from one's own unconscious fantasies and 

affectation. Obviously, “the foreign” is constructed to take ambivalences out of 

the self and to clarify one’s own identity. In contrast to “the foreign” one can 

easily determine oneself, by what one is not. A group-stabilizing mechanism of 

exclusion and inclusion succeeds: “The foreign” is generalized and perceived as 

fundamentally incompatible with the own identity.  One valorises oneself as 

belonging to “one's own” by devaluing “the foreign”. A longing for a 

community of wholesome identity arises and legitimates defence against “the 

foreign” (Pohl, 2017).  

The preservice teachers’ challenge to mediate between one’s leading identity on 

the individual level and to be torn between different communities might be seen 

as a base for projections. If students’ disaffection from university mathematics 

could be seen as part of a projection, then the demand for more practice-

oriented content could not easily be satisfied by including some practice-

oriented elements in their studies.  

Research questions  

To explain preservice teachers’ disaffection and demand for practice-oriented 

content from a social psychological perspective, we pose the following research 

questions:  

RQ1: How do preservice teachers position themselves and others in relation to 

university mathematics?  

RQ2: Which elements of projection (according to Pohl) can we find in the 

positioning?  

METHODS AND DESIGN  

To answer these questions, three semi-structured group interviews with four to 

five preservice teachers each (n=14, 8 female) were analysed. The interviews 

were conducted at the University of Paderborn two months after the first 

semester started. The interviewees participated voluntarily and they were 

guaranteed anonymity.  German secondary teachers need to study two subjects 

and the participants represented diverse second subjects (e.g. sciences, foreign 

languages, or social science). In Paderborn, the first semester includes a regular 

lecture on linear algebra together with mathematics majors and a specific 

introductory course for preservice teachers only.  

The interviews focussed on the students’ experiences in the first semester and 

their identity. Questions in the guide included the following: “To what extent do 
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you identify yourself here at the university? How much do you feel yourself as 

mathematicians? How would you describe your parents what mathematicians 

are and do?” 

In the data analysis, we first coded passages with statements about one's own 

position and descriptions of other persons within the study program (lecturers, 

fellow students, tutors). These passages were then examined and structured for 

specific references to the teaching profession. In a second pass, indicators of 

projections were sought in the identified passages (generalizations, 

revaluations/devaluations, longing for a wholesome identity), which were then 

interpreted based on theory (Pohl, 2017). All presented citations were translated 

from German by the first author.  

RESULTS  

Regarding RQ 1, all students said they had always been good in mathematics 

and mostly had enjoyed it in school. Facing cognitive struggle, especially in 

linear algebra, challenged their mathematical identity. They felt frustration and 

irritation (“Here you think to yourself: I work and work and still nothing comes 

of it”). Very quickly, they developed a leading identity of becoming a teacher. 

The profession was very dominant in students’ self-descriptions and teaching 

was labelled as “the dream-job”. For most students, teaching itself was 

described to be more important than the subject was: 

Anna:  So, maths is not my big love now either, so it's not that I'm happy 

like some mathematician there in my math world, but I just want to 

teach it to someone. 

Hence, their new motives of engagement were quickly orientated towards 

formal requirements, particularly on the graded weekly homework:  

 Thomas:  So at the beginning, it [the goal] was to understand that. And then, 

after the first two results or so, it was then: “we need points now and 

no matter how”. 

Although they had been studying for only two months, all groups substantially 

questioned the relevance of the content:   

Melissa:  Well, I actually don't see the point of having our lectures with 

mathematics majors. Sure, maybe a certain part, but not as it is at 

the moment. And as abstract as it is at the moment, I don't think 

you'll ever need it in school, not even in a few years. I don't see that 

being purposeful. 

Positioning along this content-relevance started from Melissa’s mostly 

individual statement, but also referred to generalizations that were legitimatized 

with the school curricula (“You don’t need it. It is simply not part of the school 

curricula”). In contrast, the specific lecture for preservice teachers was widely 
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accepted. We should note, however, that students experienced less cognitive 

demand in this lecture.  

Thus, for most of the students, the uncertainties experienced in the transition to 

university mathematics seemed to strengthen the focus on their actual goal of 

becoming a teacher. In addition to this inner struggle, the students also 

described external struggle, feeling degraded by mathematics major students 

and faculty members: 

Marc:  I think it's always a pity when people come and say, oh yeah, you're 

only doing a teaching degree. 

They argued that mathematics majors as well as the professor in their linear 

algebra course see themselves as something better and therefore exclude 

preservice teachers. Part of this exclusion was also being recognized as less 

competent:  

Melissa: They [mathematics majors] really think as if they are something 

better. And I think that preservice teachers are always a bit 

excluded.  

Melissa:  […] But you always have the feeling that he [the professor] doesn't 

really think much of preservice teachers either. […] 

Miranda: So you always notice that you're talked down to. 

Melissa:  Like: “Yes, we do that so that the future teachers sitting here can 

teach their students that, so they can then solve the math problems 

of tomorrow.” And then you think to yourself: “are we too stupid for 

that or what”? 

Anna: […] for them [mathematics major tutors] it's all logic and easy of 

course and in their point of view we're just stupid because we don't 

understand it. 

In line with this degradation, the students positioned themselves as more distant 

from the professor and less part of the mathematical community than 

mathematics majors: 

Melissa:  Well, they're already into this abstract thinking, which we all don't 

seem to be yet. 

Laura:  They are more on the professor's level than ours. 

Melissa:  Well, they always get along really well with him and he also makes 

jokes with them. But we just don't understand it. 

The two communities seemed rather incompatible: 

Melissa: So, computer scientists and mathematicians always sit together and 

preservice teachers always sit together somehow. And I think that it 

just doesn't come together at all. 
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This perceived incompatibility made it difficult to participate in both 

communities or to negotiate ones positioning. The preservice teachers’ 

community was formed based on their common career aspirations. Being 

positioned as preservice teacher, however, resulted in downgrading and 

separation from the mathematics community, e.g. being considered less 

competent. Some students quickly adapted to this position and described 

themselves as preservice teachers rather than mathematicians: 

Marc:  I would never call myself a mathematician, for that I also see more 

and more in the homework that it's just not like that.  

Other students struggled with this positioning, trying to avoid the attribution as 

less competent. However, they failed negotiating this position and could not 

participate successfully in the mathematics community (e.g. they felt 

marginalized by their tutors and struggled with the weekly exercise). One 

female student reported participating mathematically as she successfully 

discussed her homework with tutors. Notably, she is the only student who did 

not show a strict leading identity of becoming a teacher. Her participation in the 

mathematics community lead to distance herself from the preservice teachers’ 

community, but she tried to negotiate this incompatibility: 

Lydia:  That's why I don't know yet if I'll eventually be a computer scientist 

instead of a teacher, I don't know. I wouldn't either/ Why can you 

only be one thing, // why can't you be everything? 

There is an ambivalence in students’ self-positioning. Being positioned as a 

preservice teacher, who is generally less competent, was mostly denied and 

criticized. However, it was also accepted sometimes and used to legitimate 

lower effort and achievement, as the content was proclaimed not relevant: 

Miranda:  As if my students would ask me: “What is a group 

homomorphism?” […] So, if I have basics with which I can 

understand that, then I think that's enough. Then I don't really need 

to do all the stuff in LinA [linear algebra].  

Mathematically, a group homomorphism is a very basic concept, from which 

Miranda distances herself, claiming she only needs basics to become a teacher. 

Such ambivalences are now discussed in the framework of projection in RQ 2:  

Projections related to mathematics majors could be found in all interviews. 

Notably, they varied in their extent, mostly linked to the perceived identity 

tensions. Those, who could not identify themselves as “just teachers” described 

most precisely their projection based on the nerd stereotype:  

Anna  Well, I don't know if they look different, but, I don't know, I often 

find that their behaviour is a bit/[…] They are a bit in their own 

world. For them, everything is always logic. They all understand it 

immediately. And I think that these mathematics majors, in part, that 

it is more difficult with them, for example, to form learning groups, 
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because I think they are often so on their own level. And they are 

not the kind of people who are capable of social interaction and 

empathy, who sit down with others and do that. But I think they are 

also often really loners, lone fighters. 

This description used the stereotype that higher mathematical competence 

implies lower social competence. Major students were seen to live in their own 

world, which separates them and their active living from the preservice 

teachers. Projecting their label of being incompetent, preservice teachers 

described major students to always understand everything. Those interrelations 

can also be found in Miranda’s quote. Additionally, she deemed the majors 

responsible for the separation of the two worlds:   

Miranda:  You just have the feeling that they don't have any other topics 

among each other. So I don't want to generalize that either, but there 

are so many: "Yes, that was quite simple, it was totally logical. That 

was it, I understood it all." And then you think to yourself, "Yes, 

that makes me happy for you, maybe you can explain that to 

someone." But then they all just hang out with each other. They also 

don't manage to break it down, to make it more understandable.” 

As Miranda directly answered to Anna, we see that they constructed a 

contradictory perspective: Majors were described to be “lone fighters”, who 

“hang out with each other”. This perspective includes generalizations that are 

negatively attributed for majors and positively attributed for the preservice 

teachers: Mathematics majors are conceived as a homogeneous group of nerds, 

with no other themes than mathematics:  

Miranda:  I just think that all the mathematics students really only, so from the 

feeling, they all just hang out at home after university and only deal 

with maths.  

Preservice teachers instead are described to be “still all okay” and “more 

social”. This separation associated with positive or negative attributions was not 

limited to fellow students, but also projected on tutors who are higher semester 

students: 

Melissa:  And I honestly have to say, that you can really recognize a 

difference between the tutors in EmDA [the specific lecture] and 

LinA [the linear algebra lecture] […]. In EmDA, I think, there are 

only people who are real preservice teachers and where you realize, 

they are really nice. 

In contrast to this, Lydia, who did not have the leading identity of becoming a 

teacher, described the least downgrading of mathematics majors and hence the 

lowest extent of projection: She only referred to the “cute nerds” she met at a 

first-semester party. 
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Following the framework of projection, we found that the interviewed students 

experienced tensions between their developing leading identity of becoming a 

teacher and their perceived position as downgraded, less competent preservice 

teachers with less access to the mathematics community. Students who 

struggled with this positioning distanced themselves from mathematics. This 

can be reconstructed as a projection: Based on their fear of being unsuccessful 

in their studies and being excluded from the mathematics community, 

preservice teachers constructed the image of mathematics majors being nerds 

who lack social skills and developed a negative identity towards these students. 

This, however, inevitably goes hand in hand with their own disaffection from 

the scientific content. 

DISCUSSION  

We analysed three group interviews investigating preservice teachers 

positioning and possible projections with regard to their disaffection. We firstly 

found that the interviewed students quickly defined themselves in terms of their 

career goal and only secondarily in terms of mathematics. This is consistent 

with previous research (Bauer & Hefendehl-Hebeker, 2019). The results 

indicated a situation of incompatible communities of preservice teachers and 

mathematics majors. The preservice teachers described their position as 

downgraded and perceived to be less competent. Hence, they experienced 

challenging identity work, positioning themselves to this attribution, which 

formed a base to build projections. Secondly, the analysis of this projection 

made visible, that the demand of preservice teachers for more relevant content 

is not (only) a rational fact, neither exclusively indicated by their leading 

identity. It is also part of the projection that occurred in the disaffection from 

university mathematics including the content and the major students. At the 

same time, this projection is caused by the ambivalent identity tensions that the 

preservice teachers experience in their attempt to find their way into two 

conflicting communities. 

The split into two communities is ambiguous: On the one hand, the preservice 

teachers’ community forms the basis for specific participation and identity 

formation. On the other hand, it reinforces the downgrading, which could 

legitimize actions such as copying homework and surface learning based on 

students’ leading vocational identity. The resulting projections thereby exclude 

participation in the mathematics community.  

Changes towards more and more equal participation of preservice teachers thus 

need to consider the outer circumstances, such as faculty members’ implicit 

positioning, as well as preservice teachers’ inner tensions along their leading 

identity. Specific preservice teachers’ lectures provide a basis for experiencing 

the wholesome identity students seek in regard to their projection. Hence, such 

interventions may have mostly situated effects. As long as preservice teachers 
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share lectures with mathematics majors and experience inner tensions due to 

excessive cognitive demands, we may assume that they will position themselves 

as future teachers. They may use this position to participate less intensive and 

will represent their position publicly, e.g. articulate their demands. Specific 

interventions must thus not only serve students' longing for practical relevance, 

but also reduce their tensions by valuing the content they learn as relevant for 

their profession, as well as worth to participate mathematically (e.g., Eichler & 

Isaev, 2017). Our research highlights a need to examine not only student 

satisfaction with the interventions, but also whether they promote identification 

with mathematics.  

Limitations & further indications  

The results presented here are highly dependent on the study context and thus at 

most exemplarily for very similarly organized teacher education. Further 

research, for example in the context of pure teaching degree programs or 

entirely mixed degree programs, is desirable. Furthermore, the identified 

incompatibility of the two communities could not be fully reconstructed. 

Further research is needed here to more concretely understand the positioning of 

preservice teachers. In particular, future research should take into account the 

perspectives of major students and faculty members, to better reflect the social 

context of the communities. The “all knowing” mathematics majors are 

obviously the preservice teachers’ construct and usually face similar struggle, 

probably positioning themselves along a different leading identity. 
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This paper presents an extension of the unidimensional PISA 2003/2012 

mathematics self-efficacy scale to a four-dimensional measuring model related 

to the mathematical subdomains algebra, applied mathematics, geometry, and 

probability theory. Its first application in a Swiss large-scale assessment shows 

the following results: 1) The four-dimensional model allows a more fine-

grained analysis of group differences, illustrated here with respect to gender 

and schools levels. 2) The subdimensions of self-efficacy are good predictors for 

the mathematics test outcome, but work differently: algebra and applied 

mathematics are most important. 3) The explanatory value of the predictors is 

different in homogeneous and heterogeneous groups and can be supplemented 

by a scale on mathematics self-concept (only) in homogeneous groups. 

INTRODUCTION: PISA’S MATHEMATICS SELF-ASSESSMENT 

In 2016, the first national school assessment took place in Switzerland, focussed 

on mathematics in grade 9 (Konsortium ÜGK, 2019). Typical for a large-scale 

assessment, this survey consisted of two parts: a performance test and a context 

questionnaire gathering data that are suspected to allow a deeper insight in the 

outcome of the performance test (cf. Martin, Mullis, Arora, & Preuschoff, 

2014). Some variables of a context questionnaire are often linked to self-

assessment, following the idea that students’ beliefs about their own abilities 

could be a good background variable to analyse and interpret their test scores. 

Mathematics self-assessment can be measured in different ways. Usually, two 

approaches are used: The first one is related to a person’s so-called mathematics 

self-concept. It is measured by items based on general statements like “I have 

always believed that mathematics is one of my best subjects” (cf. Marsh, 1990). 

The second approach is called mathematics self-efficacy and is based on 

Bandura’s theory of (academic) self-efficacy (cf. Bandura, 1977 & 1986). 

Bandura defined self-efficacy expectation as “people’s judgments of their 

capabilities to organize and execute courses of action required to attain 

designated types of performances” (Bandura, 1986, p. 391). Applied to 

mathematics, Bandura’s theory implies the strategy to measure mathematics 

self-assessment by items that allow a person to express his or her level of 



Girnat 

2 -  361 

 

PME 44 -2021 

confidence about feeling able to solve specific problems that are relevant to 

mathematics in general or to a specific mathematical subdomain of interest. 

Research has shown that scales based on these two approaches are correlated, 

but empirically distinguishable (cf. Multon, Brown, & Lent, 1991). Both of 

them are good predictors of test performance (Hackett & Betz, 1989). 

The supervising group of researcher that were responsible for the Swiss context 

questionnaire decided to measure both mathematics self-concept and 

mathematics self-efficacy (cf. Hascher, Brühwiler, & Girnat, 2019). They 

followed the PISA framework, adopting the items of PISA 2003 and 2012 

(OECD, 2005, pp. 291–294, & OECD, 2014, pp. 322–323). However, a Swiss 

pre-study with about 2,000 participants in 2015 had shown that the PISA self-

efficacy scale could not be regarded as unidimensional. A factor analysis led to 

the conclusion that the different subdomains of mathematics formed related, but 

empirically distinguishable factors that should not be mixed up in one 

unidimensional scale (cf. Girnat, 2018). An independent study came to the same 

result analysing the original PISA data of 2003 (Oberski, 2014, p. 13). 

Therefore, the supervisors of the Swiss test decided to use a multidimensional 

measuring model. As far as possible, the PISA items were reused. However, the 

PISA scales did not contain enough items to implement this idea: With regard to 

the Swiss curriculum, it was necessary to measure self-efficacy with respect to 

elementary geometry and probability theory – the PISA scale contains neither of 

them –; for statistical reasons, each scale should consist of at least four items to 

be a sufficient measurement tool (cf. Beaujean, 2014, pp. 145–152). Insofar, the 

supervising group decided to use a “4x4 arrangement” that relies on four scales, 

each of them containing four items to measure the following mathematics 

subdomains: applied mathematics (app), algebra (alg), elementary geometry 

(geo), and probability theory (prb), reusing as many PISA items as possible: 

seff.app1) Calculating how much cheaper a TV would be after a 30% discount. 
(PISA) 

seff.app2) Calculating how many square metres of tiles you need to cover a floor. 
(PISA) 

seff.app3) Calculating the petrol consumption rate of a car. (PISA) 

seff.app4) Finding the actual distance between two places on a map with a 1:10 
000 scale that problem. (PISA) 

seff.alg1) Solving an equation like 3x+5= 17. (PISA) 

seff.alg2) Solving an equation like 2(x+3) = (x + 3)(x - 3). (PISA) 

seff.alg3) Developing and simplifying an algebraic expression like 2a(5a-3b)². 

seff.alg4) Solving an equation like 2x-3=4x+5. 

seff.geo1) Applying the Pythagorean Theorem to calculate the length of one side 
of a tri-angle. 

seff.geo2) Constructing a perpendicular bisector using compass and ruler. 
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seff.geo3) Calculating the area of a parallelogram. 

seff.geo4) Constructing the focus of a triangle. 

seff.prb1) Calculating the probability of throwing a dice twice in succession to 
achieve two sixes. 

seff.prb2) Calculating the probability of getting the first prize in a lottery. 

seff.prb3) Calculating how likely it is to take two sweets of the same colour from 
a sweet jar. 

seff.prb4) Calculating how likely it is that two pupils in a class have the same 
birthday. 

As mathematics self-efficacy is related to mathematics self-concept, a short 

scale to measure the latter (abbreviated as matcon) was included in the 

questionnaire, also based on items used by PISA (cf. OECD, 2013b, p. 95): 

matcon1) I get good grades in mathematics. (PISA) 

matcon2) Mathematics is one of my best subjects. (PISA, shortened) 

matcon3) I have always been good at mathematics. 

The research questions related to these scales are as follows: 1) Are the 

statistical properties of the four-dimensional model of self-efficacy sufficient? 

2) How can this model be used to gain deeper insights into the test population? 

Following PISA, gender differences and differences concerning different school 

level are of a special interest (cf. OECD, 2013b, p. 91). 3) How are the four 

scales related to each other and to the mathematics self-concept scale? 4) Are 

the four scales good predictors for the test scores of the participants? After a 

short description of the Swiss test, these question will be answered in the 

following section. 

CONTENT, SAMPLE, AND METHODS 

A total of 22,423 students took part in the Swiss test in 2016. This population 

was a representative sample of Swiss students in class 9 (according to the Swiss 

numbering grade 11). Insofar, exactly the same grade was tested, which is also 

the basis of the PISA studies. The context questionnaire was available in two 

variants: The first variant was focussed on sociological issues. Only the second 

variant contained questions related to mathematics. This variant was worked on 

by 11,131 students and is the basis of the following analysis (Konsortium ÜGK, 

2019). The performance test (cf. Girnat & Linneweber-Lammerskitten, 2019) 

consisted of 180 test items that were related to five subdomains of mathematics 

(data and probability, quantities and measurement, functional relationships, 

numbers and variables, space and shape) and five mathematical processes 

(reasoning and argument, representation and communication, concepts and 

knowledge, mathematisation, operations and calculations). This framework is 

quite similar to that one used in PISA (cf. OECD 2013a, p. 26), however, the 

items were designed in such a way that they meet the Swiss curriculum more 

precisely than a worldwide study like PISA can do. The sampling design and 



Girnat 

2 -  363 

 

PME 44 -2021 

the evaluation of the test followed the standards of PISA (cf. Angelone & 

Keller, 2019). The data from the test are linked to the questionnaire data. A 

Rasch model is used for the test, including 50 plausible values as technical tools 

(cf. Mislevy, 1991). The questionnaire data and the plausible values are 

evaluated using structural equation modelling (Loehlin & Beaujean, 2017, pp. 

95–125). This is the same method that PISA applies (cf. OECD, 2005, p. 293). 

The calculations were done using the R packages TAM (Robitzsch, Kiefer, & 

Wu, 2019) and lavaan (Rosseel, 2012). 

RESULTS 

According to the research questions, the first step of the evaluation is to check 

the statistical properties of the scales. Cronbach’s alpha is used as a measure of 

reliability (cf. Cronbach, 1951). Various quality criteria (fit indices) are known 

from the context of the structural equation modelling. CFI, SRMR and RMSEA 

are reported here (for the definition and interpretation of these values cf. 

Beaujean, 2014, pp. 153–166; a short summary: CFI should be greater than 

0.95, but definitively not below 0.90, SRMR should be lower than 0.06 and 

RMSEA lower than 0.05 or 0.08 according to different sources). 

Scale Cronbach’s alpha CFI SRMR RMSEA 

matcon 0.89 n.a. n.a. n.a. 

seff.app 0.79 0.993 0.017 0.047 

seff.alg 0.90 0.951 0.036 0.076 

seff.geo 0.76 0.994 0.013 0.039 

seff.prb 0.88 0.982 0.026 0.079 

Table 1: Reliabilities and fit indices of the scales 

The values reported in Table 1 indicate good reliabilities and fit indices (the 

latter are not available for matcon, since this scale consists of three items only). 

Hence, the scales are usable measuring instruments. Next, the correlations 

between the scales and the test outcome are reported. Since a structural equation 

model is used, the correlations reported here are latent correlations, i.e. these 

correlations are stripped from the measurement error observed variables are 

contaminated with and, hence, they reflect the relationship between the 

underlying latent concept more accurately than normal (Pearson) correlations 

between the row sums of the scales (cf. Beaujean, 2014). The asterisks here and 

in the following denote the usual significance levels. 

 matcon seff.app seff.alg seff.geo seff.prb 

test 0.36*** 0.55*** 0.53*** 0.55*** 0.30*** 

matcon  0.56*** 0.38*** 0.45*** 0.41*** 
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seff.app   0.66*** 0.87*** 0.69*** 

seff.alg    0.73*** 0.39*** 

seff.geo     0.49*** 

Table 2: Latent correlations (SRMR 0.052, RMSEA 0.059) 

The correlations reported in Table 2 are mostly moderate (maybe except for the 

pair seff.app and seff.geo), which indicates that the underlying concept are 

empirically distinguishable and do in fact measure different aspects of 

mathematics self-efficacy. 

The next focus is set to group differences. Following the PISA framework, 

gender differences are regarded first, and different school levels are the second 

part of this examination. In Switzerland, mathematics is taught from grade 7 to 

9 on three different levels: Level “a” is the lowest, “e” the middle, and “p” the 

highest. 

In PISA 2012, there are some remarks on gender difference concerning 

mathematics self-efficacy: “No gender differences in confidence are observed 

when students are asked about doing tasks that are more abstract and clearly 

match classroom content, such as solving a linear or a quadratic equation. 

However, gender differences are striking when students are asked to report their 

ability to solve applied mathematical tasks.” (OECD, 2013, p. 91). This 

statement is based on analysing the single items of the PISA scale. By doing so, 

the authors implicitly admit that is questionable to combine these items to a 

unidimensional scale. Analysing single items is a questionable method, since 

single self-efficacy items are focussed on just one specific task and are much 

more affected by random measurement errors than a scale based on several 

items. Having the scales introduced here, this issue can now be answered on a 

profound basis. 

Table 3 shows the mean differences between the relevant groups. The 

differences are reported in terms of Cohen’s d (Cohen, 1988), i.e. the mean of 

one group (the “reference group”) is set to zero (in Table 3 the group following 

“vs”, e.g. “male” in case of gender) and the mean of the other group is given as 

the difference to the reference group using the standard deviation as the 

measurement unit. Cohen’s d is usually interpreted as follows (Cohen, 1988): d 

= 0.2 indicates a small effect, d = 0.5 a medium effect, and d = 0.8 a strong 

effect. 

 

 

scale female vs male e vs a p vs a p vs a 

test -0.14*** 1.02*** 0.96*** 1.92*** 
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matcon -0.63*** 0.06* 0.00 0.06* 

seff.app -0.60*** 0.39*** 0.40*** 0.79*** 

seff.alg 0.00 0.56*** 0.57*** 1.13*** 

seff.geo -0.23*** 0.43*** 0.57*** 1.00*** 

seff.prb -0.54*** 0.14*** 0.06* 0.20** 

Table 3: Mean differences concerning gender and school levels 

Table 3 shows some remarkable results: The mean difference between male and 

female students is relatively small (d = -0.14), however, the differences 

concerning self-concept is approximately four times as large (d = -0.63). In 

view of this discrepancy, one can speak of a considerable self-underestimation 

of female students, if they rated themselves on an abstract level of items related 

to their mathematics abilities. This observation does also hold with respect to 

the self-efficacy scale focussed on applied mathematics and probability theory, 

but not on the one related to algebra. Insofar, the conjecture stated in PISA 2012 

can be verified: Female students report a lower ability to solve applied 

mathematical tasks, but this is not the case as far as algebraic topics are 

concerned. If this finding holds beyond algebra and can be extended to tasks 

“that are more abstract and clearly match classroom content” is an open 

question. 

With regard to the different school level, one observation is most striking: There 

are (very) large differences concerning the test outcome, however, mathematics 

self-concept does not reflect these differences to the slightest extend. The self-

efficacy scales reflect this difference at least about half. This suggests the 

hypothesis that self-concept is a measure that does not work across groups, if 

the groups differ substantially in their performance. The self-efficacy scales, 

however, – probably because they are linked to specific mathematical tasks – 

are able to determine cross-group differences. 
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Figure 1: Linear model to predict test outcome (SRMR 0.037, RMSEA 0.052) 

The last part of the analysis is dedicated to linear models (Searle & Gruber, 

2016). In Figure 1, a path diagram is shown that uses all the scales as predictors 

of the test score (the value on top of each arrow expresses the unstandardised 

regression coefficient, the second value (in brackets) is the standard error of this 

coefficient, and the third value (bold) is the corresponding standardised 

regression coefficient; only the latter can be compared between different arrows 

and models). Overall, the variance explained by this model is considerable (R² = 

0.362). However, the impact of the predictors is rather diverse: Geometry is not 

significant; and – very astonishing – probability theory has a negative impact. 

Only self-efficacy concerning algebra and applied mathematics are powerful 

predictors, whereas self-concept has just a very small impact. 

 

Figure 2: Linear models for gender and school levels (SRMR 0.039, RMSEA 

0.053) 

Figure 2 shows two models in which the regression was carried out differently 

for the grouping variables gender and school types (only the standardised 

regression coefficients are reported here, and the insignificant predictor related 
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to geometry is omitted). While the model on the left shows no remarkable 

gender differences, the model on the right reveals informative information about 

self-concept: If you divide the overall sample (Figure 1) into the more 

homogeneous subsamples related to school levels (Figure 2, right side), the self-

concept will become a strong predictor, while the role of self-efficacy in algebra 

will decrease. This supports the hypothesis that was already expressed in the 

context of group differences (Table 3): The self-concept seems to be a scale that 

is only meaningful in relatively homogeneous groups, whereas the self-efficacy 

scales allow a comparison of students even in heterogeneous groups. 

CONCLUSIONS 

The four-dimensional extension of the PISA mathematics self-efficacy scale 

presented here allows deeper insights than the original unidimensional PISA 

model: It provides a valid statistical basis to examine group differences related 

to different subdomains of mathematics. It can be confirmed that gender 

difference do not appear with respect to algebra, while they are remarkable (and 

excessively high) concerning applied mathematics, geometry, and probability 

theory. Both, the group differences related to school levels and the linear 

models, reveal a fundamental difference in the nature of the self-concept and 

self-efficacy scales: The first do only work within relatively homogenous 

groups; the latter are able to determine cross-group differences also within a 

heterogeneous sample. The reason may be the fact that self-efficacy items a 

formulated on the basis of concrete mathematical tasks that seems to work as 

“objective anchors” across groups, whereas the abstractly worded self-efficacy 

items appears to be understood by students as being relative to their classmates 

and their average abilities. Overall and across groups, the two self-efficacy 

scales on applied mathematics and algebra are the most powerful predictors to 

test outcome. 
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In this paper, we try to systematize and to explain different types and sources of 

frustrations which arise in the transition from school to university with 

Pekrun’s control-value theory. Empirical basis are problem-centered interviews 

with 21 mathematics students during their first year of study at university. The 

results show that a low action-outcome control can be considered as the main 

source of frustrations, but also that the importance of certain values should not 

be underestimated. In particular, the consideration of consequences of 

frustrations allows new approaches to explain phenomena known in higher 

mathematics education, such as the copying of exercises or a devaluation of 

mathematical contents, which are discussed. 

FRUSTRATION IN UNIVERSITY MATHEMATICS 

Frustration is a commonly reported emotion of first-year university mathematics 

students (Göller, 2020), and yet, like emotions in general, is relatively rarely 

considered by research in undergraduate mathematics education. Theoretical 

and empirical evidence indicates that frustration as a deactivating negative 

emotion undermines motivation, reduces flow, and is related to task irrelevant 

thinking, shallow information processing, and weaker academic achievement 

(Boekaerts & Pekrun, 2015) and is therefore rather undesirable in academic 

contexts. 

However, studies in undergraduate mathematics education report various 

sources of students’ frustrations in the transition from school to university, such 

as being stuck during problem solving, perceiving limited autonomy, the fast 

pace of the courses, inefficient learning strategies, the need to change 

previously acquired ways of thinking, difficult rapport with truth and reasoning 

in mathematics, insufficient academic and moral support on the part of teachers, 

and poor achievement (Liebendörfer & Hochmuth, 2015; Martínez-Sierra & 

García-González, 2016; Sierpinska, 2006). Such frustrations may differ in their 

duration, intensity, type and genesis. In this paper, we try to systematize and to 

explain these types and sources of frustrations with Pekrun’s (2006) control-

value theory and investigate concrete consequences of such frustrations, which 
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highlight the importance of increased attention to frustration, or emotions in 

general, in teaching and research in undergraduate mathematics and teacher 

education. 

THEORY: CONZEPUTALIZING EMOTIONS 

Emotions, as we consider frustration, are understood as affective episodes 

which constantly mediate between changing events and social contexts and the 

reactions and experiences of the individual (Scherer & Moors, 2019). Such 

emotion episodes comprise various components which include appraisals of the 

situation, action preparation, physiological responses, expressive behavior, and 

subjective feelings (Scherer & Moors, 2019).  

Emotions can be categorized by their valence (positive – negative) and degree 

of activation (Boekaerts & Pekrun, 2015): For example, joy and hope are 

activating positive emotions, whereas contentment and relief are deactivating 

positive emotions. Anger and fear are negative activating emotions, whereas 

hopelessness and frustration are deactivating negative emotions. As mentioned 

above, negative deactivating emotions (and frustration and helplessness in 

particular) negatively interfere with desirable learning processes and 

performance (Boekaerts & Pekrun, 2015). In the following, when we speak of 

frustration, we refer to these deactivating emotions described by words like 

“frustrating”, “helpless”, “despair”, and “depressed”. 

In academic contexts, achievement emotions (e.g. pride, shame, hope, anger, 

anxiety) which refer to achievement activities (e.g. learning or studying) or 

achievement outcomes (e.g. grades), and epistemic emotions (e.g. curiosity, 

surprise, frustration at unsolved problems) which refer to the comprehension 

process of novel information or to problem-solving can be distinguished 

(Boekaerts & Pekrun, 2015). For example, in mathematics problem solving, 

frustration as an epistemic emotion (e. g. at not deriving a correct solution to a 

mathematics problem) can be considered less problematic, as the focus is on the 

cognitive incongruity that resulted from the unsolved problem, than frustration 

as an achievement emotion, where the focus is on personal failure and the 

inability to solve the problem (Muis, Psaradellis, Lajoie, Di Leo, & Chevrier, 

2015). 

Sources of frustration in Pekrun’s control-value theory 

The control-value theory of achievement emotions (Pekrun, 2006) posits that 

achievement emotions are a multiplicative function two groups of appraisals: 

(1) The subjectively perceived control over achievement activities and their 

outcomes and (2) the subjective values of these activities and outcomes. Both, 

subjective control and subjective values can refer prospectively and 

retrospectively to outcomes as well as to activities, and accordingly result in 

prospective outcome emotions (e.g., anticipatory joy, when subjective control 

and value is high, and helplessness, when subjective control is low), 



Göller & Gildehaus 
 

2 -  372 

 

PME 44 -2021 

retrospective outcome emotions (e.g., pride, when subjective control and value 

is high, and anger, when subjective control is low), and activity emotions (e.g., 

enjoyment when subjective control and value is high, and frustration, when 

subjective control is low, Pekrun, 2006). 

The (prospective) total outcome-control expectancy appraises the overall 

controllability and probability of an achievement outcome on the basis of 

situation-outcome, action-control and action-outcome expectancies. Situation-

outcome expectancies are expectancies of (positive or negative) outcomes that 

the situation will produce without self-action, respectively if no 

countermeasures are taken. Action control expectancies are expectancies that 

actions can be initiated and executed autonomously. They are closely related to 

Bandura’s self-efficacy (Bandura, 1997). Action-outcome expectancies are 

expectancies that one’s own actions will produce a positive outcome, or 

prevent, reduce, or end negative outcomes. Retrospectively, perceived outcome 

control attributes the causes of success and failure to one’s own actions, the self, 

external circumstances, or other people. External attributions are related to 

situation-outcome expectancies and internal attributions are related to action-

control and action-outcome expectancies (Pekrun, 2006; Weiner, 1985). Values 

in control-value theory are distinguished in intrinsic and extrinsic values, 

whereby intrinsic values refer to the value of an activity or outcome per se, and 

extrinsic values refer to the instrumental utility of actions or outcomes for 

achieving other goals. Outcomes and activities in control-value theory can be 

negatively valued, e.g., in form of the subjective value (respectively cost) of an 

outcome that is appraised as failure, or when the effort required by an activity is 

experienced as unpleasant (Pekrun, 2006). 

According to the control-value theory, frustration and helplessness can occur as 

prospective and retrospective outcome emotion, as well as activity emotion: As 

a prospective outcome emotion frustration occurs in terms of helplessness when 

outcome control expectancy is low. As a retrospective outcome emotion, 

frustration results from a negatively valued outcome „attribution-independent" 

(Boekaerts & Pekrun, 2015), but especially in the case of a low perceived 

outcome control. As described above, frustration as an activity emotion is 

aroused by low action control (Pekrun, 2006), especially when the subjective, 

intrinsic value of the learning activity is negative, or if a task is perceived as too 

demanding and effortful (Boekaerts & Pekrun, 2015). In sum, frustration is 

expected to appear in different forms of emotions, with low perceived control 

being the main source in each form. It should be noted that due to the 

theoretically assumed multiplicative structure in control-value theory, when the 

perceived control is low, the level of frustration is expected to increase with the 

value. Recapitulating the sources of frustrations of mathematics students 

mentioned at the beginning of this paper, it shows that these sources all refer to 

low perceived control, with different foci in terms of outcomes and activities.  
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Studying mathematics in Germany: institutionally predetermined 

situation-outcome expectancies and values 

Perceived control and value, and thus emotions, are influenced by the academic 

environment. Some recent studies report frustrations of (German) mathematics 

students within the first year at university (Göller, 2020; Liebendörfer & 

Hochmuth, 2015). However, sources and consequences of these reported 

frustrations have not yet been systematically investigated in these studies.  

Mathematics modules of the first semesters at German universities normally 

consist of lectures and related exercises, for several study programs. The 

lectures introduce mathematical theory, i.e., definitions, examples, theorems and 

their proofs are presented. The exercises are handed out weekly and have to be 

worked on by students in self-study. Students’ solutions are submitted, 

corrected and discussed in a separate lesson. In order to pass such a module, 

usually a certain number of exercises (often 50 % of all exercises) has to be 

solved correctly and a written exam has to be passed.  

This institutional setting predetermines some situation-outcome expectancies 

and values: If the exercises are not successfully completed and the written exam 

is not passed, the module will be failed. Hence it can be assumed that (1) 

students’ situation-outcome expectancy is that they will fail these modules if no 

self-action or countermeasures are taken and that (2) the exercises and the 

written exam have a high extrinsic outcome value. 

Research Questions 

In the following, sources and consequences of frustration and helplessness in 

the academic environment just described shall be identified. For this purpose, 

the following research questions will be investigated: 

RQ1: Which sources of frustrations with learning mathematics at university do 

students report? Or more precisely: In which contexts do students use words 

like “frustrating”, “helpless”, “despair”, or “depressing” in self-reports? 

RQ2: Which consequences of frustrations with learning mathematics at 

university do students report? 

METHODS AND DESIGN 

The empirical basis for the results of the present study are problem-centered 

interviews on self-regulated learning (Göller, 2020) with a total of 21 students 

(14 of whom were female) at up to four interview times in their first year of 

study at university. Ten interviewees (9 female) were enrolled in the degree 

program for mathematics teachers at upper secondary level, seven (3 female) in 

the degree program Mathematics B.Sc., two (1 female) in the degree program 

Physics B.Sc., and two (1 female) in the degree program business education. 
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The respective interviews had a duration of about 45 minutes, were audio-

recorded, and completely transcribed.  

To investigate the questions listed above, these transcripts were searched for the 

word fragments “frust”, “hilfl” (German hilflos = helpless), “verzw” (German 

verzweifeln = (to) despair), and “depri” (German deprimiert/deprimierend = 

depressed/depressing), as operationalization of frustration. These words were 

not used by the interviewer, i.e., they were used by the interviewees on their 

own initiative. As context for identifying sources of frustration, the transcript 

segments (between two interview questions) that contained these words were 

analyzed using Grounded Theory coding methods. The Interview excerpts 

presented here were translated from German by the authors.  

RESULTS 

Of the 21 interviewed students, 17 used one of the words like “frustrating”, 

“depressing”, or “despair” at least once in at least one interview. Frustration is 

experienced in varying degrees of intensity and duration and can occur both 

situationally (as epistemic emotion) when working on a specific exercise  

This exercise is just very frustrating, because you see: Fixed point, you recognize 

that, you’re happy and think, okay, then I can just take the lecture and apply it. 

And then you realize that it doesn’t work at all. That’s a mean exercise. 

as well as in form of continuous, recurring frustration as achievement emotion 

that becomes a rather permanent condition: 

It’s the same thing over and over again. You look at the exercise sheet, think you 

don’t understand anything. You’re depressed. You go for a drink. Still don’t 

understand anything. Saturday won’t be any better. 

Table 1 lists the categories found with regard to control and value in the context 

of students’ reports of frustration as achievement emotion.  

Code (N° codes/persons) Example quotations 

Low action-outcome 

expectancy 

understanding (38/12) 

 

… and then at some point you get frustrated, because it’s 

just stuff that you don’t understand anymore. 

It’s depressing when you’re about halfway somewhere in 

the middle of nowhere and you don’t know what to do. 

Low outcome control 

score (16/8) 

 

I expect to get it [the exercise sheet] back and then be 

depressed again. 

Exercise 2 was really frustrating. I really thought: “Cool. 

This is probably right. Definitely 1 and 2 is probably 

correct.” And then I only scored 30 percent on 1.   

Low intrinsic value 

(13/5) 

But in math, I have to say, it has frustrated me more than it 

has cheered me up. And a bit of the fun in mathematics is 
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 already lost. 

… the fun factor is really nil at the moment. 

Low extrinsic value 

profession (5/3) 

I’d rather learn the content for school more intensively 

which I need, instead of learning so much background 

knowledge. 

I don’t need it later in life [as a teacher]. 

(Too) high cost (22/9) 

 

And just this inner voice that keeps saying: “Yes, you still 

have a whole math exercise sheet, which takes forever.” 

That […] somehow already completely destroys me 

psychically, knowing that I still have such a huge amount of 

work ahead of me that I somehow still have to do. So 

somehow that already makes me psychologically totally 

unstable, unhappy, I don’t know. It frustrates me. 

Social comparisons 

(12/7) 

 

It’s really frustrating sometimes when you talk to other 

people and they accomplish some exercises just totally 

easily. 

But of course, it’s depressing when you see people who can 

do it easily. 

Table 1: Codes and example quotations of sources of frustration. In parentheses, 

the number of units coded and persons who used statements assigned to these 

codes. 

Accordingly, the most frequent source of student frustration is a low action-

outcome expectancy in the sense that students try to solve mathematics 

exercises or understand lecture content but fail to do so. For some students, this 

is a rather permanent condition. However, in addition to this understanding-

related outcome-control, frustrations resulting from low outcome-control of 

exercise scores are also reported. 

In terms of values, a low intrinsic value in the form of not enjoying the 

engagement with the mathematical contents is reported in the context of 

frustrations. In addition, some student teachers also reported a low utility 

(extrinsic value) of university mathematics content with regard to school in the 

context of frustrations. As further sources of frustration, (too) high costs in 

terms of time, effort and also psychological cost, as well as social comparisons 

were also identified, which are regarded here as specific forms of values, or as 

influencing them (see discussion). In particular, the social context can both 

frustrate and inhibit frustration, depending on whether or not similar difficulties 

are attributed to others: 

Well, because you’re usually not the only one or the only one in math, who 

despairs, it is actually okay. So as long as you have some kind of contact with 
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your peers, it works. I mean, you’re usually not alone. If an exercise is completely 

difficult, then there are at least five other people you know who can’t do it either. 

And that’s always a little comfort. But of course, it’s depressing when you see 

people who can do it easily. 

Consequences of frustrations (RQ2) can be assigned to these sources and may 

all be interpreted as attempts to avoid or reduce frustration. The most frequent 

consequences are less autonomous strategies (6 codes / 6 persons) and an 

adjustment of values (14/5). Less autonomous strategies, such as searching for 

exercise solutions on the internet or copying the solutions of others aim to 

reduce frustrations caused by low action-outcome expectancy or outcome 

control and may even be supported by exercise scores: 

The second exercise sheet was the most depressing, because I did exercises 1, 2 

and 4 myself. And I only had 30 to 50 percent everywhere. And the exercise I got 

from the internet or from someone else, of course I had 90 [percent], and then I 

thought to myself: Great! Well, hm. 

An adjustment of values usually consists of devaluing activities that are 

perceived as frustrating (e.g., solving exercises autonomously, trying to 

understand lecture contents) or outcomes that are difficult to achieve (being 

good at mathematics, achieving good grades)  

And then you say to yourself, okay, I want to be a teacher, I don't have to be such 

a superb mathematician. 

and instead valorizing other activities (e.g., thinking along with the exercises, 

working on certain types of exercises autonomously) and outcomes (e.g., 

understanding exercise solutions of others, pass exam). The following quotation 

sums up all these considerations quite well: 

I could kind of work more on the exercises or read the lecture notes. I do think it 

is helpful that you know roughly, where which definition is, but I don’t know. 

Actually, I could manage that, but as I said, you are desperate after the two 

lectures where you sit there and take notes. If you then get out and then think, 

okay, let’s sit down somewhere, to understand everything. I think that would just 

frustrate me for the whole semester that I don’t understand it, that I am then 

completely in despair in the end. That’s why, at the moment, I find that I could 

just do more thinking along with the exercises. I think that would be the most 

important thing. Because I really don’t do that at the moment. Some exercises I 

just copy. Calculation exercises are fine, but some proofs or something like that I 

occasionally have the meaning explained to me and stuff like that. But that you 

really know what you’re doing, like last semester, I don’t know anymore. 

DISCUSSION 

Consistent with control-value theory, low subjectively perceived control over 

achievement outcomes was identified as the main source of students’ 
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frustrations in the present study. In particular, low action-outcome expectancies 

(for understanding), but also low outcome control in terms of exercise scores 

were identified as problematic, but not action control. Obviously, this may 

relate to the fact that university students are confident to read lecture notes or 

books and perform outer actions to work on exercises (writing, looking things 

up, etc.). However, there is a high degree of uncertainty about what to do in 

order to achieve the desired outcomes (e.g., understand lecture content, develop 

correct exercise solutions autonomously, cf. Göller, 2020). Copying exercise 

solutions or searching for exercise solutions on the internet, and not re-reading 

lecture notes, which were reported here as consequences, can thus also be seen 

as strategies to avoid frustration by avoiding situations with low perceived 

control (such as working on the exercises autonomously). 

The results also highlight the importance of values for the emergence of 

frustration and suggest a more detailed differentiation of values that includes 

costs and social comparisons (as done e.g. by Wigfield, Rosenzweig, & Eccles, 

2017). It is not clear whether the low intrinsic and extrinsic values reported here 

should be considered a source or a consequence of frustration. On the one hand, 

frustration could emerge because students feel forced to engage with 

intrinsically or extrinsically low-valued mathematical content. On the other 

hand - and this is an advantage of Pekrun’s (2006) approach over Wigfield et 

al.’s (2017) - due to the high extrinsic value of the exercises with simultaneous 

low outcome control, a devaluation of exercises or lecture contents can reduce 

the value of the exercises or lecture contents as a whole and thus also the 

frustration aroused. The consequences described here as adjustments of values 

also illustrate ways of valorizing or devaluing certain activities and outcomes in 

order to achieve a (subjectively) valuable and preferably frustration-free 

(because the valorized activities and outcomes are easier to control) 

participation in university mathematics. 

Limitations and prospect 

When interpreting the results, the institutional characteristics and the interview 

situation, in which students reported emotions and activities either 

retrospectively with knowledge about the outcomes or prospectively with regard 

to their outcome expectancies, must be taken into account. Different and 

possibly additional sources of frustration may occur in other environments. Due 

to the small qualitative sample and due to the rather superficial data analysis 

(keyword search and no systematic analysis of the complete material), the 

categories presented here are not necessarily exhaustive. In particular, the 

numbers given here for units coded and persons are only lower limits, since 

interviewees may refer to these codes in other parts of the interviews which 

were not analyzed for this study. However, the categories are suitable for 

qualitatively illustrating and further differentiating all sources of frustration 

described in Pekrun’s (2006) control value theory. Overall, the approach taken 
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here for a systematic consideration of emotions provides relevant perspectives 

and new explanations for phenomena that are known from practice and research 

(e.g., copying, devaluing mathematical contents) but are not yet sufficiently 

understood. Further research is desirable at this point.  
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Teachers’ mathematical knowledge and beliefs are important components of 

teachers’ professional knowledge. In this work, we compared the primary 

school mathematical knowledge and beliefs of prospective primary school 

teachers and prospective secondary school mathematics teachers at the 

beginning of their first year of undergraduate studies. The school mathematical 

knowledge of prospective secondary math teachers was in general higher than 

that of prospective primary teachers, particularly in Algebra. It was also higher 

across the three TIMSS cognitive domains (Knowing, Applying, Reasoning). 

Prospective teachers’ beliefs about the teaching and learning of mathematics 

were more similar across programs than beliefs about the nature of 

mathematics and about one’s self-concept as learner of mathematics. 

INTRODUCTION 

Different models have established the domains of knowledge and practice that 

an individual should develop to become a mathematics teacher (Shulman, 1987; 

Ball, Thames, & Phelps, 2008). Other authors have enriched these models of 

knowledge by incorporating the individual’s belief system (e.g. Beswick, 

Callingham, & Watson, 2012; Carrillo, Contreras, & Flores, 2013). 

There are many studies aiming at measuring prospective teachers’ and in-

service teachers’ different types of professional knowledge: content knowledge, 

pedagogical content knowledge, and/or beliefs (e.g. Beswick & Goos, 2012; 

Blömeke, Suhl, & Kaiser, 2011; Tatto & Senk, 2011). These studies, however, 

show great variability in the populations considered. For instance, Depaepe et 

al. (2015) contrasted mathematics knowledge in the domain of rational numbers 

between prospective primary school teachers (PST) and secondary school 

mathematics teachers (SSMT), showing that SSMT students have higher 

content knowledge than PST students. However, it should be noted that in some 

countries PST and SSMT programs are not directly comparable, as the former 

tend to be undergraduate programs or programs not offered by universities and 

therefore not leading to an academic degree, whereas the latter may take the 

form of undergraduate or graduate programs.  
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The Chilean Context 

In Chile, legal regulations allow only universities to offer teacher training 

programs of any educational level and modality (early childhood education, 

primary school, special education, secondary school). Moreover, recent legal 

changes require these programs to follow specific guidelines such as the 

application of diagnostic assessments to all enrolled students at the beginning of 

the training programs, and the design and implementation of formative actions 

based on the results. 

Martínez Videla et al. (2019) developed an assessment of mathematics content 

knowledge and beliefs for students enrolled in primary school teacher training 

programs. The knowledge section of the instrument focuses on school 

mathematical knowledge, that is to say mathematical content knowledge 

specific to the primary school levels, as these contents are those that the 

prospective teachers are expected to teach once working in the school system. 

School Mathematical Knowledge and Beliefs 

School Mathematical Knowledge (SMK) is considered as the contents and skills 

that  a school curriculum defines in order to foster greater capacities in a 

country’s citizens, such as the abilities to think abstractly and systematically, to 

experiment and learn to learn, to communicate and work collaboratively, to 

solve problems, to handle uncertainty, and to adapt to change (Kerr, 2002). This 

definition of SMK includes not only mathematical content, but also skills 

related to mathematical activities. Martínez Videla et al.’s (2019) instrument 

conceptualized mathematical skills using the TIMSS framework (Grønmo, 

Lindquist, Arora, & Mullis, 2013), which appears to be more consistent with 

instruments that seek to determine how much a person knows according to a 

prescribed curriculum. 

The second element, beliefs, is understood not only as a verbalization of what is 

believed, but also as the willingness to act in a certain way (Wilson & Cooney, 

2002). It is also considered that beliefs do not operate independently, but rather 

as a belief system that may be understood as a metaphor to represent a possible 

structure of the beliefs of an individual, considering them as understandings and 

premises about the world, perceived as true by who sustains them, that imply 

personal, cognitive, and affective codes and that predispose people towards 

certain forms of action (Lebrija, Flores, & Trejos, 2010; Lester, Garofalo, & 

Kroll, 1989). There are different ways of categorizing beliefs about mathematics 

education, describing different aspects of the mathematical activities and 

interactions that take place in the classroom. Martínez Videla et al. (2019) chose 

to use the following categories, based on the proposal by Op’t Eynde, De Corte, 

and Verschaffel (2002): Beliefs about the nature of mathematics, Beliefs about 

the process of teaching and learning of mathematics, and Beliefs about one’s 

self-concept. 
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The Present Study 

At the beginning of the academic year 2019, our Institution applied the 

aforementioned instrument to all first-year students of its six undergraduate 

teacher training programs. This report focuses on the data collected in the 

primary school teacher (PST) and the secondary school mathematics teacher 

(SSMT) training programs, contrasting their mathematics knowledge and 

beliefs across programs. As a starting hypothesis, we expected SSMT students 

to obtain higher knowledge scores and to exhibit more positive appreciations of 

mathematics and of themselves as mathematics learners than PST students. The 

specific research questions that guided our analyses were the following: [RQ1] 

Do SSMT students obtain higher scores than PST students across all content 

and cognitive domains of mathematics knowledge, or this difference varies 

across domains? [RQ2] In what aspects do the mathematics beliefs of SSMT 

and PST differ the least and the most? [RQ3] Are these answers affected by 

gender composition differences between programs? 

METHODS 

Participants 

The assessment was applied to all first-year students of the six undergraduate 

teacher training programs of Universidad de O’Higgins, before the beginning of 

the academic year. In this report, we analyzed the data from 47 students of the 

primary school teacher (PST) program [40 women, 7 men] and 41 students of 

the secondary school mathematics teacher (SSMT) program [17 women, 24 

men]. Data from additional 5 students (2 from PST and 3 from SSMT) were 

excluded because they omitted more than 25% of the mathematical knowledge 

items. All students gave written consent to use their data for research purposes. 

Instrument 

We applied the Mathematics Knowledge and Beliefs Instrument developed by 

Martínez Videla et al. (2019). The knowledge section contains 40 multiple 

choice items organized into the five content categories of the Chilean primary 

education mathematics curriculum—Number, Geometry, Measurement, Data 

and Chance, and Patterns and Algebra—(MINEDUC, 2012) as well as the three 

cognitive domains of the TIMSS 2015 Mathematics Framework—Knowing, 

Applying, and Reasoning—(Grønmo et al., 2013). The beliefs section contains 

Likert scale items in which students indicate their degree of agreement with 47 

statements about teaching and learning, about their self-concept as learners of 

mathematics, and about the nature of mathematics. The Likert scales had 4 

levels: 1-strongly disagree, 2-somewhat disagree, 3-somewhat agree, 4-strongly 

agree. 
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Data Analysis 

We analyzed students’ knowledge by computing percentages of correct answers 

with respect to non-omitted items, first considering the full instrument and later 

separating items according to their content and cognitive domains. Students’ 

beliefs were compared across programs by looking at the difference between the 

agreement scores indicated by students in each program for each statement. 

RESULTS 

Mathematics Knowledge 

Figure 1 shows the distributions of overall scores in the mathematics knowledge 

section. Pre-service secondary math teachers showed significantly better overall 

knowledge scores than pre-service primary teachers (74% vs. 61% correct). 

Table 1 presents the results by content domains. Geometry was the domain with 

the highest scores, whereas Data exhibited the lowest ones. A direct comparison 

between PST and SSMT showed that, although the SSMT students obtained 

higher scores across all categories, the magnitude of the score differences was 

the smallest for geometry items and the largest for algebra items.  

Beliefs 

We analyzed prospective teachers’ beliefs by contrasting their degrees of 

agreement to the presented statements across the two programs. Table 2 

presents the statements that showed the smallest and largest magnitude 

differences in agreement between PST and SSMT. Interestingly, the statements 

showing the smallest differences between programs were all related to teaching 

and learning, whereas four out of the five items with the largest differences 

were about students’ self-concept as mathematics learners and one was about 

mathematics. 
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Figure 1: Histograms of overall mathematics knowledge scores. 

Vertical dashed lines depict each group’s average score. 

  PST SSMT Overall Difference 

Content 

domains 

Number 61% 73% 67% 12% 

Geometry 79% 83% 81% 4% 

Measurement 64% 79% 71% 15% 

Data 44% 60% 51% 16% 

Algebra 47% 73% 60% 26% 

Cognitive 

domains 

Knowing 63% 77% 69% 14% 

Applying 63% 75% 68% 12% 

Reasoning 49% 63% 55% 14% 

 

 

Table 1. Knowledge scores by mathematics content and cognitive domains 

 PST SSMT Diff. 

Good math teachers are creative.TL 3.37 3.38 -0.01 

Math teachers must know what contents their students 

know, to build their lessons from that information.TL 

3.83 3.82 0.01 

In a good math lesson, the teacher constantly asks their 

students to reflect about the newly acquired knowledge.TL 

3.84 3.82 0.02 

Good math teachers must propose clear and simple 

problems.TL 

2.74 2.77 -0.03 

Math teachers must adapt to their students’ needs and 

work from the abilities of each of them.TL 

3.76 3.73 0.03 

Math is interesting for me.SL 2.87 3.91 -1.04 

Math is mechanical and boring.MA 2.28 1.23 1.05 

Learning math is difficult for me.SL 3.11 1.93 1.18 

I struggle to understand math.SL 3.20 1.87 1.33 

I enjoy doing math.SL 2.46 3.80 -1.34 

Table 2: Statements that show the smallest (top) and largest (bottom) agreement 

differences between students in the PST and SSMT programs. Statement 

categories: TL: Teaching and learning, SL: Self-concept and learning, MA: 

Mathematics. 
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Gender Perspective 

It is possible that our results are affected by gender differences, given the large 

difference in gender composition between both programs: 85% of PST students 

were women, as opposed to 41% of SSMT students. To explore this issue, we 

repeated our previous analyses considering only female students (40 in PST, 17 

in SSMT). Given the smaller sample sizes in the analyses of this section, 

however, our results should be considered as preliminary and investigated in 

more depth in the future. 

Looking at female students across both programs, we observed a similar pattern 

of results to that of the full sample (Table 1) across content domains and 

cognitive domains with one exception: the gap between programs in Reasoning 

grew to 23% mostly driven by a higher Reasoning score of 70% of women in 

SSMT. As for beliefs, the five statements with the largest difference across 

programs remain related to self-concept and mathematics, whereas only three of 

the five statements with the smallest differences across programs remain in the 

teaching and learning category. The two statements eliciting the most similar 

agreement scores were in this case about math (“mathematics establishes a 

single path to solve a given problem”) and about self-concept (“only the most 

capable math students can solve problems requiring multiple steps”), with 

students in both programs highly disagreeing with both statements (ratings of 

1.83-1.82 and of 1.53-1.54 for PST and SSMT students, respectively). 

DISCUSSION 

We have presented the results of a mathematics knowledge and beliefs 

diagnostic assessment applied to prospective primary school and secondary 

school math teachers at the beginning of their undergraduate studies. 

The knowledge section of the test focused on contents of the Chilean primary 

school curriculum, ensuring that the level of difficulty of the mathematics 

involved was appropriate for the students of both programs. Answering RQ1, 

we observed systematic differences in knowledge scores in favor of SSMT 

students with variations across content domains but not across cognitive 

domains. In terms of contents, a large difference was expected to emerge in 

algebraic items because algebra is a traditionally difficult domain for the 

general student population (Stacey & Chick, 2004). On the other hand, the 

content domain with the smallest score difference between PST and SSMT was 

geometry, which could reflect a less marked focus on geometry learning 

objectives in secondary school. Differences between both programs in scores 

across cognitive domains were quite similar. 

Regarding RQ2, it was foreseeable that PST and SSMT students would differ 

importantly in their beliefs about mathematics and about themselves as learners 

of mathematics, but it was surprising that both groups largely agreed on how a 

good math teacher/lesson looks like. 
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We also explored gender differences (RQ3), observing that mathematics content 

knowledge scores were very similar in the full sample and the women 

subsample, with the exception of an increased Reasoning score exhibited by 

female students in the SSMT program that deserves to be further investigated. 

It is relevant to note that results of our assessment are not directly comparable to 

some large-scale studies such as the Teacher Education and Development Study 

in Mathematics (TEDS-M), because this one focuses on the knowledge of PST 

students at the end of their program whereas the present research focuses at the 

beginning. Our results show that PST and SSMT students differ importantly in 

their mathematical knowledge and beliefs already at the beginning of their 

training, meaning that these differences are unlikely to be directly driven by the 

training, but rather indirectly through students’ program selection preferences. 

Further comparative research between PST and SSMT programs may have a 

relevant impact in the quality of school mathematics education. A better 

understanding of the initial state of mathematics knowledge and beliefs of PST 

and SSMT students is essential for institutions to design and implement their 

training programs, and a more comprehensive focus on PST and SSMT 

programs can also contribute in facilitating school students’ transition process 

from primary to secondary school. 
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This research investigated students’ intermediate stages in understanding the 

dense structure of rational numbers. A cross-sectional study with 953 students 

from 5th to 10th grade was performed. After an inductive analysis coding the 

open answers to a question about how many numbers there are between two 

given rational numbers, a TwoStep Cluster Analysis was carried out revealing 

different student reasoning profiles. Results showed that the most naïve natural 

number bias did not disappear at the end of secondary school. Moreover, 

different intermediate stages in the understanding of density were found along 

grades. A characteristic of these stages is that the understanding of infinity was 

reached in decimal numbers earlier than in fractions. 

THEORETICAL AND EMPIRICAL BACKGROUND 

Recent research has focused on natural number knowledge interference as one 

of the main explanations of students’ difficulties in understanding rational 

numbers - a phenomenon called natural number bias (Smith, Salomon, & 

Carey, 2005; Van Hoof, Verschaffel, & Van Dooren, 2015). This phenomenon 

has been studied in three domains: Rational numbers size, arithmetic operations, 

and density (Gómez & Dartnell, 2018; McMullen, Laakkonen, Hannula-

Sormunen, & Lehtinen, 2015). 

In the present research, researchers focus on the domain of density. This has 

been considered the most difficult and natural number biased domain 

(McMullen et al., 2015; Smith et al., 2005). However, studies focusing on 

individual differences over age in this domain are scarce. The natural number 

set is discrete since between two numbers there is a finite (possibly zero) 

number of numbers (e.g., only the number 4 is between the numbers 3 and 5). 

However, the rational number set is dense since there is an infinite number of 

numbers between any two rational numbers (Smith et al., 2005).  

The idea of discreteness, developed through experience with natural numbers is 

considered by Vamvakoussi and Vosniadou (2004) as a “fundamental 

presupposition which constrains students’ understanding of the structure of the 
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set of rational numbers” (p. 457) and causing numerous conceptual difficulties 

in primary and secondary school students (Merenluoto & Lehtinen, 2004; 

Vamvakoussi & Vosniadou, 2004) and even in undergraduates (Tirosh, 

Fischbein, Graeber, & Wilson, 1999). Students believe that between two 

rational numbers there are no other numbers or there is a finite number of 

numbers. For instance, students believe that between the “pseudo-consecutive” 

fractions 5/7 and 6/7 there are no numbers, or that between 1/2 and 1/4 is only 

the number 1/3 (Merenluoto & Lehtinen, 2004; Tirosh et al., 1999). In decimal 

numbers, students think that between the “pseudo-consecutive” decimals 0.59 

and 0.60, it is not possible to find other numbers, or that between 1.22 and 1.24 

is only the number 1.23 (Moss & Case, 1999). 

Rational numbers can be represented as both fractions or decimals numbers 

(e.g., 3/4 and 0.75 are alternative representations of the same rational number) 

(Carpenter, Fennema, & Romberg, 1993). Previous research has shown that 

students sometimes treat fractions and decimals numbers as unrelated sets of 

numbers, rather than as interchangeable representations of the same number 

(Khoury & Zazkis, 1994). Furthermore, regarding the different representations, 

previous research has obtained opposite results. In some studies, students were 

better able to explain the dense nature of decimals numbers than the dense 

nature of fractions (McMullen & Van Hoof, 2019; Tirosh et al., 1999; 

Vamvakoussi & Vosniadou, 2010). Other studies (e.g., Vamvakoussi & 

Vosniadou, 2004) found an opposite result. Moreover, some students tend to 

believe that there are only decimals numbers between two decimals numbers 

and fractions between two fractions (Vamvakoussi & Vosniadou, 2010). 

Vamvakoussi and Vosniadou (2004; 2010) found that understanding the density 

of rational numbers is not an all or nothing issue: They identified some 

intermediate stages in the understanding of density in secondary school 

students. They described several expected students’ answers patterns 

(hypothesised profiles) and then, with interviews (Vamvakoussi & Vosniadou, 

2004) or a test (Vamvakoussi & Vosniadou, 2010), they found examples of 

students’ answers for these hypothesized profiles. The profiles were: Students 

who considered that there is a finite number of numbers between two pseudo-

consecutive rational numbers; students who thought that decimals are dense, 

whereas fractions are discrete, and vice versa; students who were reluctant to 

accept that there may be decimals between two fractions, and vice versa; and 

finally, students who correctly considered that there is an infinite number of 

numbers between any two numbers regardless of their symbolic representation. 

However, no, or very few students could be fit in some of these profiles. 

Therefore, these profiles could not be representative. Furthermore, they 

obtained other students’ answer patterns that differed from the profiles 

hypothesized. 
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Researchers extend previous research by performing a cross-sectional research 

with a large sample of primary and secondary school students (from 5th to 10th 

grade) and by determining profiles after an inductive analysis of students’ 

answers to an open question about how many numbers there are between two 

given rational numbers. Therefore, the aim of this research is to identify and 

characterise intermediate stages in primary and secondary school students’ 

understanding of density. Furthermore, researchers examine the evolution of 

these stages over a large age range, from primary to secondary education. 

METHOD 

Participants were 953 Spanish primary and secondary school students from 5th 

grade (n = 115), 6th grade (n = 139), 7th grade (n = 162), 8th grade (n = 173), 9th 

grade (n = 174), and 10th grade (n = 190). There was approximately the same 

number of boys and girls in each age group. The participating schools were five 

primary schools and five secondary schools, and students were from mixed 

socio-economic backgrounds. 

To design the instrument, researchers adapted the density items of the Rational 

Number Sense Test (RNST), developed and validated by Van Hoof et al. 

(2015). It is a paper-and-pencil test that contains six density items in which 

students had to answer how many numbers there are between two fractions or 

two decimal numbers given. There are three fraction items: 2/5 and 3/5 (pseudo-

consecutive fractions); 2/5 and 4/5 (non-pseudo-consecutive fractions with the 

same denominator); 5/9 and 5/6 (non-pseudo-consecutive fractions with the 

same numerator). There are three decimal items: 1.42 and 1.43 (pseudo-

consecutive decimals); 1.9 and 1.40 (non-pseudo-consecutive decimals); 2.3 

and 2.6 (non-pseudo-consecutive decimals). Students were asked individually to 

solve the test during a mathematics lesson at school. The items were presented 

in random order in eight different versions. No time limit was used, as a time 

limitation could encourage natural number biased reasoning. 

Four researchers inductively analyzed the students’ answers to identify 

categories according to the nature of the answer. Seven categories were 

identified: i) Infinite: Students who answered that there is an infinite number of 

numbers between the two given ones; ii) Difference: Students who calculated 

and reported the difference between the two numbers given (e.g., 0.3 is between 

2.3 and 2.6); iii) Naïve consecutive: Students who answered that there is no 

other number between two pseudo-consecutive numbers (e.g., between 1.42 and 

1.43 or between 2/5 and 3/5, there are no numbers) and between two non-

pseudo-consecutive numbers they gave a finite list of consecutive numbers 

(e.g., the numbers 2.4 and 2.5 are between 2.3 and 2.6 or 3/5 is between 2/5 and 

4/5) or the number of numbers of this list (e.g., there are 2 numbers between 

2.3. and 2.6 or there is 1 number between 2/5 and 4/5); iv) Finite consecutive: 

Students who gave a finite list of consecutive numbers between the numbers 
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after adding a decimal and then counting on in decimal numbers (e.g., the 

numbers 1.421, 1.422, 1,423…, 1.429 are between 1.42 and 1.43) or after 

adding a decimal in the numerator in fractions (e.g., the numbers 2.1/5, 2.2/5, 

2.3/5…, 2.9/5 are between 2/5 and 3/5) or they gave the corresponding number 

of numbers of these lists (e.g., there are 9 numbers between 1.42 and 1.43 or 

there are 9 numbers between 2/5 and 3/5); v) Finite: Students who gave other 

specific numbers included between the numbers given; vi) Rest: Students who 

gave specific numbers not included between the numbers given; vii) Blank 

answers. 

With these categories, a TwoStep Cluster Analysis with categorical data was 

performed to identify groups of students (profiles) with qualitatively similar 

answers patterns. Given the complexity of our coding scheme, many 

intermediate states of understanding could be expected. Therefore, we analyzed 

data separately for age groups, obtaining students’ profiles in 5th and 6th grade, 

in 7th and 8th grade, and in 9th and 10th grade. The statistical software used was 

SPSS version 25. 

RESULTS 

In this section, firstly, researchers determine the number of profiles and describe 

them. Secondly, we show the evolution of these profiles from 5th to 10th grade. 

Determining and Describing the Profiles 

The number of profiles was determined according to a low BIC and from an 

interpretative viewpoint. In 5th and 6th grade, researchers chose the five 

students’ profiles solution. Figure 1 shows the characteristics of the profiles 

identified in 5th and 6th grade. The X-axis consists of the six test items, and the 

Y-axis consists of the percentages of frequency of the largest group(s) 

(categories) identified in the inductive analysis. 
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Figure 1: Characteristics of students’ profiles in 5th and 6th grade 

• Naïve: Students who considered that there is no other number between 

two pseudo-consecutive numbers, and there is a finite number of 

numbers between two non-pseudo-consecutive numbers. 

• Decimal finiters: Students who started to consider that there is a finite 

number of numbers between two pseudo and non-pseudo-consecutive 

decimals (there is a subgroup of students that still considered that 

between two pseudo-consecutive decimals there is no other number). 

However, they considered that there is no other number between two 

pseudo-consecutive fractions. 

• Differencers: Students who calculated the difference between two 

decimals but considered that there is no other number between two 

pseudo-consecutive fractions, and there is a finite number of numbers 

between two non-pseudo-consecutive fractions. Although a subgroup 

of students also calculated the difference in fractions. 

• Infinite decimals: Students who considered that there is an infinite 

number of numbers between two decimals, but there is no other 

number between two pseudo-consecutive fractions, and a finite number 

of numbers between two non-pseudo-consecutive fractions. However, 

there is a subgroup of students who started recognizing that there is an 

infinite number of numbers between fractions. 

• Rest: Students with a low performance in general who solved the items 

without any recognizable pattern. 
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In 7th and 8th grade, we chose the six students’ profiles solution. Figure 2 shows 

the characteristics of each profile identified. 

 

 

Figure 2: Characteristics of students’ profiles in 7th and 8th grade 

In these grades, the same profiles than in 5th and 6th grade were identified and 

we identified a new one: 

• Correct profile: Students who considered that there is an infinite 

number of numbers between two fractions and two decimals. 

In 9th and 10th grade, we chose the 6 students’ profiles solution. Figure 3 shows 

the characteristics of each profile identified. 

Figure 3: Characteristics of students’ profiles in 9th and 10th grade 
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Figure 3: Characteristics of students’ profiles in 9th and 10th grade 

In these grades, the Decimal finiters profile was not identified, but researchers 

identified a new profile: 

• Finiters profile: Students who started to consider that there is a finite 

number of numbers between two pseudo and non-pseudo-consecutive 

decimals and fractions. 

Evolution of the Profiles 

Figure 4 shows the evolution of each profile from 5th to 10th grade. The Naïve 

profile decreased as the grades advanced (29.50% in 5th and 6th grade, and 

11.30% in 9th and 10th grade). However, this result indicates that the most naïve 

natural number bias seems not to disappear in the last grades of the secondary 

school, neither in fractions nor in decimal numbers. 
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Figure 4: Evolution of the profiles from 5th to 10th grade 

The Decimal finiters profile also decreased along grades, disappearing in 9th and 

10th grade, where it got replaced by a Finiters profile. This result seems to show 

that students started to believe that there is a finite number of numbers between 

two decimals and then between two fractions. 

The decrease of the Naïve and Decimal Finiters profiles corresponded to an 

increase of the Correct profile (0.0% in 5th and 6th grade, and 42.60% in 9th and 

10th grade) and of the Infinite decimals profile (5.10% in 5th and 6th grade and 

8.80% in 9th and 10th grade). This result shows that density is first understood 

with decimal numbers and later with fractions. Moreover, decimal infiniteness 

was reached even in some primary school students. Finally, the Differencers 

profile remained stable along grades. 

DISCUSSION AND CONCLUSIONS 

The aim of this research was to identify and characterize intermediate stages in 

students’ density understanding and to examine the evolution of these stages 

from primary to secondary education. Through an inductive and a cluster 

analysis, different profiles were identified showing different stages in students’ 

density understanding.  

The clearest natural number bias, denoted as Naïve profile, was higher in 5th and 

6th grade and decreased along grades, but it did not disappear towards the end of 

the secondary school (Vamvakoussi & Vosniadou, 2010). The following stage 

of discreteness corresponds to the Decimal finiters profile (it was identified 

from 5th to 8th grade). These students had overcome the naïve discreteness in 

decimal numbers. However, this profile was not identified in 9th and 10th grade, 

where the Finiters profile appeared. These last students showed to have 

overcome naïve discreteness both in fractions and decimal numbers. The 

Differencers profile evidenced a group of students who determined the number 

of numbers between the two given by subtracting both numbers.  
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The transition from discreteness to infiniteness in decimal numbers was shown 

by the presence of the Infinite decimals profile. In this profile, students 

considered that there is an infinite number of numbers between two pseudo and 

non-pseudo-consecutive decimals numbers. However, students of this profile 

were still reluctant to recognize the infiniteness in fractions. The last stage was 

reached by the Correct profile –not identified in 5th and 6th grade- and showed 

an understanding of the density concept both in fractions and decimal numbers. 

However, at the end of secondary school, still less than half of the students were 

in this profile. 

Further research could focus on longitudinal designs to examine how learners’ 

individual understanding of rational number density progresses over time. This 

could clarify possible transitions between profiles. 
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Although there is abundant research literature on the difficulties, students face 

in learning derivatives, research on teaching practices is lacking. This paper 

proposes a study of teachers’ practices and use of resources in teaching 

derivatives to better identify the teachers’ decisions and their justifications. Our 

study focuses on Cameroon, a country with strong institutional constraints (a 

single textbook and a national examination). Our study of three teachers reveals 

that these constraints have a very strong influence on their activity, including 

their approach to teaching and their use of resources. 

INTRODUCTION 

Derivatives are one of the most important topics studied in high school (in many 

countries) and in postsecondary mathematics programs. For many students, this 

topic is a prerequisite to university studies and a gateway to other mathematical 

topics in various fields. Research in mathematics education has already reported 

many difficulties linked to the learning of derivatives (e.g., Hitt & González-

Martín, 2016) and of its different aspects (e.g., Zandieh, 2000). This has led to 

experiments in attempting to improve the learning of derivatives (e.g., Giraldo, 

Tall, & Carvalho, 2003). While a number of studies have examined the learning 

of derivatives and have proposed interventions to facilitate this learning, the 

number of studies analyzing teaching practices, or how derivatives are 

presented in textbooks and other resources used by teachers, remains quite low. 

One recent study on the teaching of derivatives is by Park (2015; 2016), who 

analyzed three teachers’ approaches to defining the derivative at a point using 

limits and then transitioning to the derivative of a function on an interval (Park, 

2015). Park (2016) also examined how derivatives are introduced in three 

manuals widely used in the United States. Park’s work shows that both the 

teachers and the textbooks use symbolic notations and graphic illustrations 

without making explicit links between them. Moreover, the teachers used secant 

lines, tangents, and symbolic notation to explain the derivative at a point 

without making the links between these explicit. They also used the symbolic 

notation of the derivative at a point to shift to the derivative over an interval by 

simply changing the coordinates of the point by the variable. Moreover, the 
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teachers presented the properties of the derived function with only a few 

explanatory examples. 

We emphasize again that there is not an abundance of literature on teaching 

practices related to derivatives, or on the introduction of the notion of derivative 

in resources used by teachers. Topics ripe for exploration include teachers’ 

perspectives on their students' prior knowledge; teachers’ visions of the 

important topics to cover when teaching derivatives (Park, 2015); and the 

analysis of resources other than textbooks. Numerous studies have highlighted 

the way in which teachers at different levels make use of resources in their 

teaching (e.g., González-Martín, Nardi, & Biza, 2018; Gueudet, 2017), as well 

as the constraints and opportunities provided by these resources (Gueudet & 

Trouche, 2009). National examinations also have a major impact on teachers’ 

practices, influencing content and course planning (e.g., Rozenwajn & Dumay, 

2014). 

The research described in this paper seeks to contribute to the scant existing 

literature on teaching practices used to introduce derivatives. We seek to study 

the similarity of teachers’ practices and the way derivatives are presented in 

teaching resources, while also considering the various constraints that may 

hinder teachers’ work. In addition, we note that the existing literature on 

derivatives (which mostly focuses on how students learn them) and on 

mathematics teachers’ practices and use of resources primarily concerns studies 

conducted in Europe and North America, with very little mathematics education 

literature reporting on studies conducted in developing countries. To help bridge 

this gap, our study focuses on the African context, and more specifically 

Cameroon, a context with which this paper’s second author is very familiar. We 

hope this study may help to identify issues that may not always be present in 

developed countries, but that may have a significant impact on the teaching and 

learning of mathematics. 

THEORETICAL FRAMEWORK 

Since we are interested in teachers’ practices and their use of resources in 

teaching derivatives, we have applied elements of the anthropological theory of 

the didactic (ATD – Chevallard, 1999) and of the documentational approach 

(DA – Gueudet & Trouche, 2009), following the work of González-Martín et al. 

(2018). 

In analyzing practices, ATD proposes the useful tool of praxeology, which is 

composed of four elements: a task (or type of task) to solve, techniques used to 

carry out the tasks, technologies (or rationales) that justify and explain the 

techniques, and a theory that justifies the technologies. Chevallard (1999) 

distinguishes didactic praxeologies to describe the act of teaching. 

ATD also suggests that teaching institutions, through their official documents 

and guidelines, establish an institutional relationship to the content being taught 
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and learned; in other words, institutions influence what individuals in a given 

position (e.g., teacher or student) can do, and how they relate to the content in 

question. Individuals who have belonged (or who belong simultaneously) to 

different institutions have their own personal relationship to this content. For 

instance, Bronner (1997) showed that some secondary teachers in France have 

ideas concerning irrational and real numbers that are not reflected in France’s 

official national education program. Faced with this situation, some teachers 

restrict their teaching to the program’s requirements (thus their teaching 

conforms to the institutional relationship with real numbers), whereas others 

supplement their teaching with additional details in the hope that their students 

will better grasp the content’s subtleties (thereby making their personal 

relationship include in their teaching items not anticipated by the institutional 

relationship). 

Finally, DA acknowledges that teachers use a variety of resources when 

preparing to teach. These can be either physical (the official program, 

textbooks, etc.) or intangible (a discussion with a colleague, their own training, 

etc.). The various resources used to teach content, together with these resources’ 

schemes of use, are termed a document (Gueudet & Trouche, 2009). González-

Martín et al. (2018) showed that many of these schemes of use are influenced 

by the teachers’ own personal relationship with the content they teach. 

With these tools, we can reformulate the aim of this paper. We wish to study the 

link between the institutional relationship with derivatives on the one hand and 

teachers’ practices and use of various resources in teaching derivatives on the 

other. We also seek to identify specific elements in the African context that may 

be less present in existing literature. 

THE CAMEROONIAN CONTEXT 

In Cameroon, students attend secondary school between the ages of 12 and 18. 

Cameroon calls secondary that which in other countries may be considered as 

pre-university or college-level studies. Derivatives are introduced in the 

penultimate year of this cycle, called première (students are 17 years old), after 

the study of functions, limits, and continuity. The content on derivatives in 

première includes: differentiable function at a point; derivative of a function at a 

point (including left and right derivatives); geometric interpretation of the 

derivative at a point; equation of the tangent of a curve at a point; derivative 

function; derivative of the addition, the product, and the quotient of functions 

and of f(ax + b), with f being differentiable; variation of a function in an interval 

depending on the sign of the derivative; extrema. The Ministère des 

enseignements secondaires [Ministry of Education] asks teachers to introduce 

derivatives at a point by calculating the limit of (f(x) – f(a))/(x – a) when x → a, 

but it does not provide any didactic suggestions on how to make this 
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introduction, or about making the shift from a derivative at a point to a 

derivative function. 

The Ministry provides the public schools with a list of approved textbooks; 

however, as of the 2018-2019 school year, only one approved textbook has been 

available to teach each course, including mathematics (Tegninko, Sielenou, 

Bouda, Pokam, & Boudy, 2014). This means that all public schools use the 

same textbook chosen by the Ministry. Moreover, there are national 

examinations for students in May and June). For students in première, questions 

concerning functions, limits, continuity, derivatives, and sketching the graph of 

a function represent approximately 42% of the examination questions 

concerning derivatives usually concern the derivative of a function and studying 

the variation of a function using the sign of the derivative. 

Finally, the training of secondary teachers falls under the auspices of the 

Ministère de l’enseignement supérieur [Ministry of Higher Education]. 

Teachers’ pre-service training is provided by the Écoles Normales Supérieures 

(ÉNS). When students enter an ÉNS after finishing their secondary studies, they 

must complete a three-year Bachelor of Mathematics (first cycle), followed by 

two more years of training (second cycle). This second cycle includes additional 

courses in university mathematics (approximately 50% of the cycle) along with 

courses in education. Throughout this training, relatively little emphasis is 

placed on the specific aspects of mathematics education. 

METHODS AND ANALYSES 

The research presented in this paper is part of the second author’s doctoral 

thesis, which, under the qualitative paradigm, is developed as a multi-case 

study. Semi-structured interviews, class observations and documents (textbook 

and other resources) were used to collect the data. All three teachers who 

volunteered to participate in the research (T1, T2, T3) are male; all are legally 

qualified, teach in première during the 2019-2020 school year, and work in 

three different schools in Yaoundé. 

In this paper we focus on data from the participants. The data collection was 

structured in three stages: 1) preliminary interviews concerning the teachers’ 

personal relationship to derivatives, their use of resources, and their lesson 

preparations; 2) observations of the teaching of derivatives in class; 3) post-

teaching interviews to compare the teachers’ planning with the actual teaching 

and discuss some episodes. The interviews and observations provided data to 

study the teachers’ adherence to the institutional relationship with derivatives, 

as well as their documentation work in their specific context, with major 

institutional constraints (the imposition of an official textbook, an official 

exam). We note that, for this paper, we have mostly used data from the 

interviews, with some additional details culled from our observations. 
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The analysis of the interviews was performed using the theoretical tools 

provided by ATD and DA. We first examined the teachers’ statements to 

identify elements associated with their personal relationship to derivatives (how 

they define derivatives, what they consider important about them, the exercises 

they value, etc.). We then identified the main techniques they used to teach the 

content (providing definitions, working on exercises, etc.) and their rationales 

(technologies). We also identified the resources they use, as well as their 

schemes of use (mainly, rationales concerning why they used the resources, 

their aims, etc.). The following section summarizes our main results. 

DATA ANALYSIS 

During the preliminary interviews, each of the three participants discussed his 

vision of derivatives – a vision that encompassed many of derivatives’ 

mathematical meanings (Figure 1): 

T1 T2 T3 

The derivative has several meanings […] 

mathematically, it is the slope of the 

tangent line to the curve of the function at a 

point. Practically, it represents a speed […] 

in the Cameroonian context, children must 

master the derivative much more like the 

slope of the tangent line at a given point. 

The derivative for me is a 

mathematical tool […] which 

has many physical 

applications and, therefore, I 

associate it more with a speed. 

For me, the derivative is 

first the result of a limit… 

and so, I see it as the limit 

of the rate of change of a 

function. 

Figure 1: The participants’ views on derivatives 

Their responses show that their personal relationship to derivatives includes 

several aspects of this topic (slope, speed, limit, rate of change). However, 

despite the different elements present in their personal relationship, all three 

teachers follow a similar technique to introduce derivatives using rates of 

change (Figure 2): 

T1 T2 T3 

By calculating the limit of a 

certain rate of change to 

determine the derivative at a 

point. 

First, I wanted to make them 

understand that the notion of derivative 

is linked to rate of change, which they 

have seen in previous years. 

Because of the requirement of the 

program, I restricted myself to 

the limit of the rate of change. 

Figure 2: The participants’ choice to introduce derivatives 

Three of them also stated, at various points in the interviews, that their choices 

are determined by the official guidelines: they follow the Ministry’s instructions 

and begin with the limit of a rate of change because this is what the official 

program dictates. Therefore, their technique for introducing derivatives is 

mainly explained by the rationale (technology) that they had to do what the 

program requires. The teachers also noted that they followed the approach of 

the textbook. We see, therefore, that the introduction students receive to 

derivatives is restricted to an abstract, limit-focused approach, and that the 

teachers do not call for connections with speed or use other more intuitive 
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approaches. Moreover, we can see that the three participants are “good subjects 

of the institution,” doing what the institution expects individuals in their 

position to do (institutional relationship). This may explain why T1, who sees 

derivatives primarily as a slope, introduces them as the limit of a rate of change, 

or why associations with physical meaning (T1 and T2) are not present. Their 

statements are supported by classroom observations: all three teachers start 

introducing derivatives at a point, and they do so by calculating the limit of a 

rate of change. 

Our classroom observations also confirm that the three teachers organize their 

introduction to derivatives by using the textbook as their main guide. In this 

sense, the passage from the derivative at a point to the derivative as a function is 

made in a very immediate way (between the first and second lessons, by simply 

replacing a generic “x0” with “x”), and the teachers move quickly to introduce 

techniques to solve tasks concerning derivatives. In this sense, their approach is 

like the participants in Park’s (2015) study. Our participants’ approaches 

prioritize computational aspects to provide students with a set of rules and 

formulae that will be later applied in the exercises. Despite this, the three stated 

during the interviews that they hoped students would be able to develop a better 

understanding of what they were doing (e.g., T1: “they discover by 

themselves”). 

Our data also indicate that, despite occupying the same position and following 

the same program, the teachers exhibited some differences in their views 

concerning which elements to highlight in the chapter on derivatives (Figure 3): 

T1 T2 T3 

In the Cameroonian context, 

what matters more is the use of 

the derivative to construct 

functions [meaning studying 

functions to later sketch their 

graph] […] to use the tangent 

[meaning calculating the 

equation of the tangent line at a 

point]. 

In the chapter about derivatives, what is 

more important to teach is how to find the 

derivative of polynomial and rational 

functions. I start with the aspects that are 

necessary for the exam […] we must respect 

the institutional guidelines. The State limits 

the way in which we must teach the 

derivative, we do not have a choice to 

change [this approach]. 

What is more important 

in the teaching of the 

derivative are its 

applications […] the 

search for extrema, the 

search for the direction 

of the variation of 

functions. 

Figure 3: The participants’ views about the most important aspects of 

derivatives 

As we can see, even if they hold the same position, the teachers may emphasize 

different aspects of the content in the classroom. This behavior is consistent 

with the results of González-Martín et al. (2018), where five participants using 

the same resource exhibited variations in their teaching. However, in opposition 

to González-Martín et al.’s (2018) results, where the participants had some 

conceptual objectives in their teaching, we may observe here that the three 

participants highlighted operational aspects concerning derivatives as the key 

aspects to be learned. We conjecture that this may be a consequence of the 
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strong influence that the program and the examination (which focus on 

operational aspects) exert on their practices. In the interviews, many of the 

teachers’ rationales for the way in which they organize their teaching were 

reduced to the program and the exam. We also conjecture that their pre-service 

training, with its emphasis on mathematics to the detriment of didactic 

components, may influence their views. 

We note that, in Figures 2 and 3, the program is seen as somehow restricting 

what teachers can do: T3 states that, because of the program, he limits himself 

to introducing derivatives in a certain way, while T2 claims that the State 

(through the program) limits the way in which teachers can teach derivatives. 

We emphasize that the program was mentioned as a factor at several points 

during the interviews. 

We also note that all the elements concerning derivatives mentioned by the 

participants as important for students to learn are aligned with the objectives of 

the official mathematics program. These objectives are usually reflected in the 

questions on the national exams that take place at the end of the school year, 

and this examination has a strong influence on the teachers’ practices and on 

their choice of resources in preparing their courses. In fact, the three participants 

stated that their main resource is the official textbook, since it allows them to 

cover the required content that will appear on the national examinations. We see 

how institutional constraints limit the teachers’ documentation work. They also 

discussed their use of the Internet, particularly their participation in online 

forums for teachers, but they insisted that they use this resource minimally, as a 

complement to the activities provided by their main resource. Figure 4 presents 

some interview excerpts concerning the influence of the national examination 

on the teachers’ practices: 

T1 T2 T3 

The goal of the students is to 

pass their end-of-year exam. So, 

everything related to the 

derivative must be what often 

comes up in the examination or 

what the official examination 

requires […] If you look in the 

official textbook it is the type of 

activity like that […] It is clear, 

that is not open to debate. The 

textbook is much more interested 

in this [type of activity]. 

What seems more important to me is firstly their 

examination because you know that if a student does 

not pass his examination, the parent will say that the 

teacher did a poor job. So, what is important for me 

now is to use the derivative as a mathematical tool for 

the study of functions… For now, derivatives [are 

taught] to help students pass their examination and 

move on to higher studies in [the last year of 

secondary] and later at university. […] I try to stick to 

[the content and activities of] the official textbook. 

When we do problem-solving lessons [travaux 

dirigés], we first do the exercises that are in the 

official textbook. 

Keep in mind 

that these 

students must 

prepare for the 

year-end 

examination; 

this is our 

main objective 

at the moment. 

Figure 4: The role of the national examination in the participants’ practices 

In this case, we can clearly see how the three participants keep the national 

examination in mind, and how they see their role as preparing their students to 

pass this examination. Here, the three teachers are explicit about the constraints 
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to which teachers are subject in the Cameroonian context, namely the 

ministerial evaluations that generally take place at the end of the school year. 

We can see how this examination, together with the official textbook provided 

by the Ministry, strongly directs their documentation work. 

FINAL REMARKS 

Our preliminary results are consistent with previous research: teachers prioritize 

algebraic aspects to the detriment of all other aspects such as graphic tools for 

introducing the derivative. They follow the institutional relationship and 

emphasize the derivative as the limit of a rate of change, which limits their use, 

for example, of the notion of tangent to introduce the derivative. As in Park’s 

(2015) study, they favor symbolic notation and shift quickly from the derivative 

at a point to the derivative function. 

Our data show that the participants’ activity is strongly conditioned by the 

injunctions of the official program, by the official textbook, and by the 

Ministry-imposed evaluations. Although their personal relationship includes 

several aspects of derivatives, these are not present in the teachers’ introduction 

of this content to their students. In this sense, their practice reflects the content 

of the main resource (the textbook), with some possible variations and 

additional exercises. We also note a lack of agency: most of the rationales 

(technologies) they use to justify their teaching techniques are reduced to their 

need to follow the dictates of the program. Another important element 

influencing their resource use and their practices stems from institutional 

constraints: the teachers believe their main goal is to prepare students to pass 

the national examination. They use expressions such as “the goal of the students 

is to pass,” “derivatives [are taught] to help students pass their examination and 

to move on to higher studies,” or “these students must prepare for the year-end 

examination.” Note that these elements are very strong in the Cameroonian 

context. This, in addition to the weaker didactic component in the teachers’ pre-

service training, may lead the teachers to not question the official guidelines. 

Regarding the use of ATD and DA to study these issues, we believe that they 

allow a better understanding of some of the teachers’ practices, both in terms of 

their planning and their use of resources. Even though their personal 

relationship with derivatives encompasses several different aspects, the latter 

are not mobilized. Given the institutional constraints, the main rationales seem 

to be “to follow the program” and “to prepare for the national examination.” In 

this context, we can clearly see how these constraints influence the participants’ 

choices in introducing derivatives, as well as their use of resources, which is 

mostly reduced to a single textbook. 
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Recent literature and engineering reports suggest that the mathematical 

training of engineers should include more applications to help students connect 

mathematical content with professional engineering practices. In this paper, 

using tools from the anthropological theory of the didactic (ATD), we analyse 

data from interviews conducted with five calculus teachers in engineering 

programs, all of whom possess different academic and professional 

backgrounds. Our data suggest that, while they all seek to make their course 

more “engineering-oriented,” the teachers’ practices seem to be quite different. 

Only those teachers with extensive professional engineering experience provide 

realistic applications. 

INTRODUCTION 

The training of engineers is putting increased emphasis on the development of 

mathematical competence to meet industry needs in the 21st century. For 

instance, a document discussed at and drafted by the SEFI Mathematics 

Working Group in 2013 (Alpers, 2013) highlights and exemplifies eight 

mathematical competences required by students: thinking mathematically; 

reasoning mathematically; posing and solving mathematical problems; 

modelling mathematically; representing mathematical entities; handling 

mathematical symbols and formalism; communicating in, with, and about 

mathematics; and making use of aids and tools. More recently, van der Wal, 

Bakker, and Drijvers (2017) also proposed a set of skills (what they call techno-

mathematical literacy) to highlight the fact that 21st-century engineers need to 

go beyond the ability to calculate and estimate, which is now insufficient. In 

addition, Beswick and Fraser (2019) state the following: 

“For mathematics teachers to contribute to STEM and 21st-century competence 

agendas they need knowledge of their discipline and how to teach it as a foundation 

upon which to build their capacity to integrate mathematics with other disciplines 

and to teach 21st century skills beyond discipline knowledge.” (p.963) 

The above authors call for a shift from merely learning mathematical content to 

developing mathematical competence specifically for the workplace. In 

engineering programs, mathematics is usually taught separately, in isolation 

from engineering courses (González-Martín, Gueudet, Barquero, & Romo-
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Vázquez, in press), which may reduce the likelihood that students will develop 

the above competences. Specifically, mathematics courses in engineering tend 

toward a significant level of abstraction, without explicit connections to 

engineering practices (Christensen, 2008). This may result in students failing to 

develop crucial mathematical competences, and is one reason why mathematics 

courses in engineering programs often have high failure and dropout rates 

(González-Martín et al., in press). Indeed, the relationship between calculus and 

engineering’s client disciplines is ripe for research (Rasmussen, Marrongelle, & 

Borba, 2014). 

Modelling activities are usually recommended to bridge the gap between 

mathematical content and engineering practices (e.g., González-Martín et al., in 

press), as well as the use of Project-Based Learning; however, certain modelling 

activities can be unrealistic or artificial. For instance, Alves et al. (2016) 

identified that some calculus teachers in engineering programs believe they 

should focus on simply teaching the course content, without incorporating it 

into “fake” (p.137) projects. One may presume that teachers who have used 

mathematics in non-academic contexts (engineering or other) are more likely—

and better equipped—to offer concrete applications of mathematical content 

than teachers who lack this experience (e.g., Nathan, Tran, Atwood, Prevost, & 

Phelps, 2010; Nicol, 2002), thereby avoiding unrealistic or “fake” modelling 

activities. For instance, Nicol (2002) pointed out that when a teacher has 

experience using mathematics in a non-academic context, this could “[help] 

students connect mathematics, to real life and work” (p.291). This echoes the 

results of Nathan et al. (2010), who argue that “practicing engineers present a 

more nuanced picture of the relationship between mathematics knowledge and 

engineering practice” (p.420). The results of our recent study (González-Martín 

& Hernandes-Gomes, 2020) on two teachers with different backgrounds suggest 

that engineering teachers lean on their professional experience to justify some 

of their teaching practices. It is still uncertain how teachers with different 

backgrounds are likely to tackle the same mathematical content, and what kind 

of applications to engineering they may provide their students. 

To help close this research gap, this paper examines how calculus instructors in 

engineering programs use applications, paying special attention to the 

connections between the teachers’ background and these applications. Despite 

the recommendations to integrate mathematical content with modelling 

activities, the structure of many engineering programs still separates 

mathematics from engineering courses, imposing institutional constraints that 

may hinder the use of modelling. Our research question can be formulated as 

follows: What type of applications do calculus teachers in engineering programs 

provide, and how do these applications relate to their professional and academic 

backgrounds? 
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THEORETICAL FRAMEWORK 

We seek to study one aspect of calculus teachers’ practices (their use of 

applications) in a specific institutional context and relate these practices to their 

background (acquired in other institutions). We therefore have adopted a 

framework that provides tools to study institutionally situated practices: the 

anthropological theory of the didactic (ATD) (Chevallard, 1999). ATD uses the 

construct of “praxeology,” which considers the following: types of tasks (what 

to do); techniques (ways of performing tasks of a given type); technologies 

(rationales that describe, explain and justify techniques); and theories (which 

function as a basis of and support for the rationales). ATD also acknowledges 

that individuals are influenced by their belonging (or having belonged) to 

different institutions. Consequently, they may use techniques and rationales 

acquired in one institution to solve the same task in another institution. For 

more details, see González-Martín & Hernandes-Gomes (2020). 

Our research focuses on calculus teachers in engineering programs. Although 

these individuals occupy the same institution and perform the same general task 

(teach a calculus course), their experience in other institutions may affect the 

way they accomplish this task. For instance, they may choose to engage in the 

sub-task, provide applications of the content, and, in that case, use different 

techniques and rationales to support their techniques. Our aim is to identify 

these techniques and rationales and observe how they relate to the teachers’ 

professional and academic backgrounds. 

METHODOLOGY 

For this paper, we use data from interviews conducted in September 2015. To 

investigate the practices of calculus teachers with different backgrounds, we 

interviewed five university teachers with extensive experience teaching 

mathematics courses in engineering programs (see Hernandes-Gomes & 

González-Martín, 2016). They all had been teaching in São Paulo, Brazil, for at 

least 10 years. At the time of the interviews, Teachers A, C, and D were 

teaching calculus at the same engineering school, Teacher E was teaching at 

another school and Teacher B was teaching at both schools. They each received 

a preliminary survey on their academic and professional backgrounds, which 

allowed us to categorize their profiles (Figure 1). 
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Figure 1: Academic (blue) and professional (green) profile of five participants 

The five semi-structured interviews were conducted and audio recorded in each 

participant’s office (with an average duration of one hour each), and then 

transcribed and coded. For each teacher, we identified the main praxeologies 

(tasks, techniques and rationales) they use to teach calculus by identifying 

points in the interviews where they described specific sub-tasks. For instance, 

for the sub-task involving the presentation of properties and results, a statement 

such as “to understand this or that result, we end up doing some proofs” 

(Teacher A) was seen as evidence of the teacher using the technique “do some 

proofs” to accomplish this sub-task. We then used thematic analysis to describe 

each participant’s praxeology. The transcriptions were analysed separately by 

each researcher and differences were then resolved to arrive at a consensus. We 

created tables for each teacher, identifying the main sub-tasks (e.g., providing 

examples, creating tables, choosing appropriate exercises, etc.), their techniques 

and the rationales given for these techniques. 

In this paper, we focus on interview excerpts in which participants discuss their 

use of applications. We examine their techniques (e.g., the type of applications 

they consider), their justifications for providing these applications, and the 

connection with the participants’ backgrounds and experience. 

RESULTS 

At the beginning of the interviews, the participants were asked to reflect on the 

types of exercises they propose most often in their praxeologies in teaching 

calculus courses. Figure 2 synthesizes the main elements of the participants’ 

practices: 

Teacher Types of exercises 

A 
• “we work more than just practice… Since it’s calculus [we do] exercises concerning 

graphs, those things… […] We don’t do many proofs. But in order to understand this 

or that result, we end up doing some proofs too. So, it’s a mix of everything.” 

B 
• “[The exercises I provide] are more practical. […] Some problems, and, when I have 

problems applicable to engineering, I think it’s quite interesting, this type of exercise, 

which can exemplify the application of this concept in [the student’s] field.” 

C • “[The exercises are] more practical, since we are in engineering. For instance, 
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yesterday [in class], I wanted to justify the first fundamental limit, and I said, ‘now, 

I’m going to provide a justification for engineers.’ […] I made a table, inserted some 

values […] It’s more practical; I believe that in engineering, theory must be minimized 

as much as possible.” 

D 
• “As any teacher, you have a preference for some type [of exercise], some type of 

function, and obviously I end up using things that have more applications for electrical 

engineering.” 

E 

• “The part regarding functions and limits is quite theoretical. So, it goes: calculate this 

limit, find the inverse function […], sketch the graph […]. Later, in derivatives […], 

we explore the determination of maxima and minima, problems concerning rate of 

change. Then, problems of maxima and minima and rate of change — they are more 

practical, they have a practical application. Before that, problems are more conceptual. 

Do this, do that. Later, rate of change, we have… ah… you can have an inverted cone 

with water escaping… it’s being filled at a given rate of cubic meters per minute, what 

is the rate of change of the height in relation to the time […]?" 

Figure 2: The participants’ views on the exercises they propose 

We may observe a variety of approaches. Although the five teachers use the 

rationale that engineering students need more “practice,” we see that their 

techniques vary. Whereas Teachers B and D appear to consider the professional 

profile of their students more directly (“I have problems applicable to 

engineering” or “applications for electrical engineering”), Teachers A, C, and E 

appear to propose more “classic” activities, typical of a mathematics course. 

They see “doing exercises concerning graphs,” creating tables or proposing 

(classic) exercises about maxima and minima as ways to make their course more 

“applied” and better attuned to their students’ profile. 

We then asked participants for concrete examples of applications they provide 

to get a clearer idea of the activities they develop in their praxeologies. Figure 3 

summarizes their answers. 

Teacher Applications provided during the interview 

A 

• Exercises about graphs;  

• “we are actually missing some applications”; 

• “[students being in their first year is a constraint], since they still haven’t seen anything about 

engineering. They are actually seeing basic mathematics.” 

B 

• “Let’s consider a course on maxima and minima, with a two-variable function. So, you can 

[…] calculate the tangent plane to a given point, you can exemplify your surface with a 

spherical surface, calculating the minimal distance. You can provide an example of a satellite 

in orbit, and there you want to calculate the minimal distance […] to the position of the 

antennae. These are examples that you give them […] Then, you obviously get to connect 

theory and some applications. It’s obvious that you make some approximations […] since you 

are talking about satellites, and you cannot consider all those […parameters…] in a simulation 

that you should obviously consider in a real job, but there you provide a practical example 

about that concept.” 

• “We are going to talk about definite integrals. [Students] will use that a lot. Because 

[engineers] want numbers. […] He will have a variation from a value a to a value b, then he 

wants to calculate something. And that thing comes from applications.” 

C 
• “I always found [providing applications] difficult. First, I’m not an engineer, and I don’t have 

the experience of an engineer. And then, students do not yet have that experience, since I start 

with [students in their] first and second semesters, so they haven’t acquired concepts from 
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engineering. So, I always found that very difficult, but when I talk to other engineer 

colleagues, I always try to find out, ‘do you use this?’ […] Then, I say that [in my course]: 

‘this thing here, there is somewhere in engineering, in the professional courses, where you are 

going to use it.’ […] But I think it’s not very helpful for the student.” 

• “It’s easier with physics, since physics and calculus go together […] But I think that, to do that 

type of work, the teacher needs to be a mathematician and a physicist. If not, he won’t do it well 

[…].” 

D 

• “I have a look at the exercise and see where one can apply it. I then give a contextualization in 

addition to the exercise.” 

• “[…] I’m going to do, for instance, an integrator circuit; I need to know what an integrator 

circuit does; I need to know the integral, how I throw a pulse and it starts integrating, the 

curve goes up. Then, I have my differentiating circuit, we model circuits with mathematics. 

With an equation… a second order filter is a polynomial equation of […] second grade. Then, 

I cannot dissociate one thing from the other.” 

•  “I think that engineering is equations, graphs, and tables. If the engineer cannot interpret that, 

he doesn’t know anything. […] So, when I’m teaching to production engineering [students], 

for instance, I provide analogies with examples from the stock market, since they work a lot 

with that. And I ask them how you create a function for interest rates…” 

E 

• “Since [the course] is in the basic cycle [the first years of basic courses], you have diverse 

applications. You have something from production engineering, something more from 

mechanical engineering, something from electric engineering. So, it’s generic. It’s not 

specific, I won’t … give specific applications for a field. They are more generic, more 

towards physics. I’d say that it’s because it’s the first semester, and the student is not yet 

taking professional courses. So, [the activities] are more generic.” 

Figure 3: Applications provided by the participants 

We observe three distinct positions. The first technique does not provide 

specific applications, or provides only classic applications when teaching 

optimization and calculation of areas. This is the case with Teacher A, who uses 

the rationale that first-year students lack experience. A second technique 

provides some applications (mainly using physics or contextualized exercises), 

while also possibly informing students that they will use this content elsewhere; 

we observe this in Teachers C and E, who state the common rationale that 

students are in their first-year (interpreted as “students do not know applications 

yet” or as “there are many different profiles”). A third technique provides more 

realistic applications, directly related to engineering practices. We see this with 

Teachers B and D, who, in justifying their use of this technique, occasionally 

fall back on their experience and their vision of engineers’ preferences (e.g., 

“because [engineers] want numbers”) and professional needs (e.g., “engineering 

is equations, graphs, and tables”). 

First, we note that the only teachers who use realistic applications are Teachers 

B and D. They are also the only ones with experience working as engineers. 

This is consistent with Nicol’s (2002) and Nathan et al.’s (2010) observations. 

Second, we note that Teachers A, C, and D use the fact that their students are in 

their first year as a rationale to justify the teachers’ difficulty in finding suitable 

applications. This correlates with the study conducted by Alves et al. (2016), in 

which only calculus teachers stated that including mathematical content in 

applications in the first year of engineering could be “useless” or “fake.” This 
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perspective could stem from a lack of knowledge of engineering practices. The 

participants also reflected on how their own training and experience influence 

their teaching practices with respect to the kind of applications they offer as 

examples to their students (Figure 4). 

Teacher Types of exercises 

A 

• “since my training is in mathematics, we want to do many proofs, which I think are not 

always suitable for an engineering course […] So, [my training] has an influence in 

that sense. But the good thing is, there’s always a curious student, and they pose the 

question, and then you must do a proof, even if it’s as an aside…” 

• “I think I limited much of my content to mathematics, due to my training. Because we 

hear […] that [students] will need [this content] later.” 

B 

• “[in my training] I had teachers who were mathematicians, also mathematicians with 

an engineering perspective, and also engineers. And I believe that influenced my 

training a lot. I believe that a […] pure mathematician has a different perspective on 

mathematics, on this differential and integral calculus. […] I don’t think you need that 

much rigour. A mathematician teaching calculus, he doesn’t think about application. 

He thinks of mathematics as mathematics. How and where it comes from, how I prove 

it […]—not how the temperature will go up or down, or how you apply air 

conditioning … an engineer is more preoccupied with the latter.” 

• “[my training] contributed a lot, having this perspective for applications. An 

engineering student won’t want much theory; he wants to know how he’ll use these 

concepts in his practical life. […] Therefore, this heterogeneous training that is not just 

linked to thinking and proofs, is very beneficial in an engineering course, I have no 

doubt. Since, when a student asks me, ‘how could I use that?’ […], even the book I use 

can have no practical examples, but […] it takes me five minutes to think and be able 

to tell him: ‘look, in that course you’re going to use this.” 
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C 

• “First, I’m not an engineer, and I don’t have the experience of an engineer.” 

• “In the beginning, I had a lot of difficulty, since most of the time I had to teach a topic 

that I myself didn’t know too well. So, I had to study a lot; I used different books; I 

was always self-taught […] And so books became essential. I always tell [my 

students]: “you cannot be an engineer if you don’t have a book at home; you need to 

have a library.”” 

D 

• “[my training influences me] in how I contextualize, in the application of exercises; it 

influences quite a bit. […] And us, in electrical engineering, let’s say we model 

engineering, circuits, components, through mathematics. So, one thing becomes 

another. […] I have my differentiating circuit; we model circuits with mathematics. 

With an equation … a second order filter is a polynomial equation of […] second 

grade. Then, I cannot dissociate one thing from the other. For me, it’s just one thing.” 

• “My vision of calculus for engineering is that it’s modelling. I see our oscilloscope and 

I see a function, in the same way that I see a function, and I think of the electrical 

signal associated with that function.” 

E 

• “[my training] influences, yes. For instance, when we’re solving a problem later in the 

semester. How do I explain to my students, “you’ll be engineers, what does an 

engineer do?” […] How can we think when analyzing? What are the data of the 

problem? What is being asked? And then I’ll think of a strategy. […] What knowledge 

will I gather and how do I articulate it to get there? Here, my training as an engineer is 

very influential at that point.” 

• “Look, I don’t know the day-to-day practice [of engineers] […], since although I’m an 

engineer, I didn’t work for long in the field; I spent very little time there.” 

Figure 4: The participants’ reflections on their training 

We observe that all participants see their training as an important source of 

justification (rationale) for some practices. Teachers A and C state clearly that 

their training is not in engineering, and that this fact influences some of their 

practices in teaching calculus. We also observe a possible justification for 

Teacher E’s lack of realistic applications: he does not have knowledge of the 

day-to-day practice of engineers. However, he believes his experience allows 

him to come up with a strategy for solving problems. 

FINAL CONSIDERATIONS 

We believe our results provide further insight into Nicol’s (2002) and Nathan et 

al.’s (2010) observations. As we noted in our previous study concerning two 

teachers (González-Martín & Hernandes-Gomes, 2020), teachers’ backgrounds 

and experience may provide important rationales for their teaching practices. In 

the case of engineering programs, it appears that experience in the professional 

workplace may provide teachers with a different way of looking at mathematics 

and of connecting with applications, as seen with Teachers B and D. 

Professional engineering experience also appears to provide teachers with a 

wider repertoire of applications for their calculus courses. In our study, the 

teachers who believe first-year engineering students do not have a solid enough 

background to connect calculus with realistic applications had no experience 

working as professional engineers. 
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As stated above, the data presented in this paper come from interviews 

conducted in 2015 for a more general purpose. However, we believe the 

interviews provide sufficient data concerning the participants’ knowledge of 

realistic applications, and their ability to include this knowledge in their 

techniques. These five teachers, with their different backgrounds and different 

teaching practices, make up an interesting pool of participants. We intend to 

conduct another set of interviews to delve deeper into the participants’ practices 

and gather more information about their praxeologies in their calculus courses. 

This will provide material for future publications. 

Acknowledgments 

The authors wish to thank the five teachers for their participation and for 

sharing their experience. This research was funded by grant 435-2016-0526 of 

the Social Sciences and Humanities Research Council (SSHRC) through 

Canada’s Insight program. 

References 

Alpers, B. (Ed.) (2013). A Framework for Mathematics Curricula in Engineering 

Education (A Report of the Mathematics Working Group). European Society for 

Engineering Education (SEFI). 

Alves, A. C., Sousa, R. M., Fernandes, S., Cardoso, E., Carvalho, M. A., Figueiredo, 

J., & Pereira, R. M. S. (2016). Teacher’s experiences in PBL: implications for 

practice. European Journal of Engineering Education, 41(2), 123–141. 

Beswick, K., & Fraser, S. (2019). Developing mathematics teachers’ 21st century 

competence for teaching in STEM contexts. ZDM Mathematics Education, 51(6), 

955–965. 

Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie 

anthropologique du didactique. Recherches en Didactique des Mathématiques, 19, 

221-266. 

Christensen, O. R. (2008). Closing the gap between formalism and application—PBL 

and mathematical skills in engineering. Teaching Maths. and its Applications, 

27(3), 131–139. 

González-Martín, A. S., Gueudet, G., Barquero, B., & Romo-Vázquez, A. (in press). 

Mathematics and other disciplines, and the role of modelling: advances and 

challenges. In V. Durand-Guerrier, R. Hochmuth, E. Nardi & C. Winsløw (Eds.), 

Research and Development in University Mathematics Education. Routledge 

ERME series. 

González-Martín, A. S., & Hernandes-Gomes, G. (2020). Mathematics in engineering 

programs: what teachers with different academic and professional backgrounds 

bring to the table. An institutional analysis. Research in Mathematics Education, 

22(1), 67–86. 

Hernandes-Gomes, G., & González-Martín, A. S. (2016). An analysis of how 

teachers’ different backgrounds affect their personal relationships with Calculus 



González-Martín & Hernandes-Gomes 

2 -  415 

 

PME 44 -2021 

content in engineering courses. In C. Csíkos, A. Rausch & J. Szitányi (Eds.), Proc. 

40th Conference Int. Group Psychology of Math. Education (vol. 2, pp. 377–384). 

Szeged, Hungary: PME. 

Nathan, M. J., Tran, N. A., Atwood, A. K., Prevost, A., & Phelps, A. (2010). Beliefs 

and expectations about engineering preparation exhibited by high school STEM 

teachers. Journal of Engineering Education, 99(4), 409–426. 

Nicol, C. (2002). Where’s the math? Prospective teachers visit the workplace. 

Educational Studies in Mathematics, 50(3), 289–309. 

Rasmussen, C., Marrongelle, K., & Borba, M. (2014). Research on calculus: what do 

we know and where do we need to go? ZDM Mathematics Education, 46(4), 507–

515. 

van der Wal, N. J., Bakker, A., & Drijvers, P. (2017). Which Techno-mathematical 

Literacies Are Essential for Future Engineers? International Journal of Science and 

Mathematics Education, 15(1), 87–104. 

 

 

  



2 - 416 

2021. In Inprasitha, M., Changsri, N., Boonsena (Eds.). Proceedings of the 44th Conference of the 

International Group for the Psychology of Mathematics Education, Vol. 2, pp. 416-424. Khon Kaen, 

Thailand: PME. 

  

CONCEPTUALIZING EXPERTISE FOR TEACHER 

PROFESSIONAL DEVELOPMENT IN TEACHING 

STOCHASTICS 

Birgit Griese1 

1Paderborn University, Germany 

 

In order to address the intended aims of a professional development (PD) 

intervention adequately, the purported expertise must be conceptualized in 

detail, including a specification of the learning at classroom level. This paper 

utilizes an expertise framework (Prediger, 2019a, following Bromme, 1992) that 

distinguishes between jobs, pedagogical tools, thinking categories, and 

orientations to illustrate the concept-ualization of a PD unit that focuses on 

explanations, interpretation, and understanding when deploying digital tools for 

the teaching of stochastics at secondary level.  

INTRODUCTION: CHALLENGES IN TEACHING STOCHASTICS 

Teaching stochastics (statistics and probability calculation) presents a challenge 

for many teachers, for various reasons (Batanero, Burrill, & Reading, 2011): Some 

have little or no personal experience of being taught stochastics themselves, 

others feel insecure because of the uncertain nature of statements referring to 

probability, and others again deem themselves unprepared for the technological 

demands. All these issues have led to a high demand for PD courses covering 

stochastics in Germany.  

The designers of PD courses on stochastics at the German Center for 

Mathematics Teacher Education, DZLM, intend to address understanding, and 

not (only) procedure (Barzel & Biehler, 2016), at the classroom level as well as 

at the teacher PD level. This is in keeping with the standards of higher 

education, but it presents the challenge for PD designers and facilitators to 

attend to content and didactics. (For other more popular areas of mathematics, 

like calculus or geometry, PD courses can concentrate on didactical and 

methodical consideration alone.) For example, in a DZLM PD course on 

stochastics developed at Paderborn University, only 20% (9 out of 44 

participants) found they had fully attained the goal of learning about the didactic 

value of simulations, although this was an explicit focus. One participant stated 

“sometimes simulations are more confusing than helpful”, another wrote that it 

was “not clear in which situations simulations make sense”, and more than one 

complained that it would not be worth the lesson time to teach students how to 

code the simulations. Consequently, a sound theoretical basis for the expertise 
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in teaching stochastics is indispensable when aiming at a systematic re-design 

of the course. 

THEORETICAL BACKGROUND 

Theory elements for Design Research (van den Akker, 2013) in teacher PD can 

be distinguished as categorical, descriptive, normative, explanatory, or 

predictive, each with different functions and structures (Prediger, 2019b). These 

elements are closely related and help to answer what should be addressed and 

how this can be orchestrated (like in Griese, Rösken-Winter, & Binner, 2020), 

thus offering a perspective of how to re-conceptualize PD design. The idea of 

this paper is to explore a framework (Prediger, 2019a) in regard to describing 

the expertise necessary for teaching stochastics and for conducting PD courses. 

Thus, insights into the structure and interdependencies of teacher expertise (and 

how to promote it) can be obtained.  The objective is to use the framework for 

both the re-design of PD courses and the qualification of facilitators. The idea 

behind this model differs from the approach to describe teacher competence and 

their impact on teaching quality (Kunter, Klusmann, Baumert, Richter, Voss, & 

Hachfeld, 2013) insofar as it focuses is on the development of teaching skills 

and thus seems better suited for the PD perspective. 

Following Bromme (1992), Prediger (2019a) developed a framework for 

conceptualizing content-specific teacher expertise which describes jobs as 

“typical, often complex situational demands of subject-matter teaching that are 

most relevant to the PD content in view” (p. 369) and how teachers cope with 

them. This situated approach allows to disentangle teacher practices by also 

describing their categories for thinking and noticing, the pedagogical tools they 

employ, and their underlying beliefs (orientations) that in their complex 

interplay influence the effect of a PD intervention. The specifications naturally 

relate to the teaching content that is the focus of the PD intervention. By 

utilizing these categorical and descriptive constructs, normative elements can be 

phrased in detail – and explanatory and maybe even predictive statements are to 

be gained. This is worthwhile, so the central question of this paper is: 

Can a framework for content-specific teacher expertise that describes expertise 

in jobs, pedagogical tools, thinking categories, and orientations help to improve 

a PD course on stochastics by offering answers to what and how questions? 

CONTEXT OF THE PD COURSE 

This paper is based on the design of and research around a five-day PD course 

for stochastics at upper secondary level (Oesterhaus & Biehler, 2014) that 

specifically addresses the use of digital tools. In particular, we focus on that part 

of the first day of the course where suggestions are presented on how to 

promote a deeper understanding of distributions, and participants experience 

and discuss various tasks and activities. The evaluation of the PD course 

showed that the intended aim of displaying the advantages of employing digital 
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simulations fell short of expectations. When considering reasons for this 

feedback and pondering options for improvement of the PD course, the question 

how to proceed emerged. One answer was to use a framework for teacher 

expertise in order to comprehend the learning obstacles in this context and find 

approaches to overcome them. 

UTILIZING THE FRAMEWORK FOR CONCEPTUALIZING 

TEACHING EXPERTISE IN STOCHASTICS 

Classroom Level 

Following Prediger (2019a), we start with compiling a learning map for 

stochastics for the classroom level (summarized in Table 1). In analogy to her 

structure of the categories, we describe the content goals, the activities and 

linguistic practices, and the lexical means and resources.  

 Content goals Activity and 

linguistic practice 

Lexical means and 

resources 

Procedural / 

local 

- probabilities  

- characteristic variables  

- accumulation limits 

- … 

calculate apply formulae (e.g. 

binomial distribution, for 

mean or variance) 

Conceptual / 

global 

- interpret probabilities 

- make evidence 

statements 

- vary scenario (e.g. 

increase 𝑛 in a binomial 

distribution) 

use tables, 

calculator, software 

etc. 

elaborate on if-then 

scenarios; 

employ dynamic 

software; 

conduct repeated 

simulations 

Table 1: Learning map for stochastics at classroom level 

Content goals cover what the students are expected to master, in different levels 

of complexity. The basic level comprises goals for stochastics that can be 

classified as procedural or local (middle row in Table 1), where the view is 

quantitative on one specific characteristic or value of a distribution. For students 

to show they have reached these goals, they will apply formulae or rules, and 

use calculators, software, or tables (which we sum up under resources) and do 

calculations (which we term an activity). At this level, no verbal utterances are 

necessary, and therefore no lexical means are employed. Another level of 

content goals refers to conceptual or global aspects (bottom row in Table 1), 

where the view is on a distribution as a whole, on understanding its 

characteristic features, thus on qualitative aspects. Learners are here expected to 

vary scenarios, e.g. change a parameter in a distribution, and come to the 

conclusion that if you increase 𝑛 in a binomial distribution, then the histograms 

of absolute frequencies will become flatter and wider, but the histograms 
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showing relative frequencies will be narrower. In order to show that learners 

have reached these goals, more complex activities are needed which include 

language and will therefore be termed activities and linguistic practice. At this 

goal level, learners will interpret, conclude, explain, and give reasons. The 

resources employed to realize these activities are more complex and are 

therefore extended to lexical means and resources. Learners elaborate on 

conditional deliberations and consider if-then scenarios (like the conclusion 

described above in this paragraph). 

Apart from lexical means to explain the scenarios, learners can also resort to 

technical resources. Dynamic software seems well-suited to represent varying 

scenarios, as it allows to vary parameters, e.g. via sliders. Obviously, in a 

changing scenario, the focus is not on certain values or numbers (as in the 

procedural / local level), as they do not carry potential for explanations in 

themselves but only in comparison to other values or numbers. The same is true 

for simulations, where the specific value of a relative frequency is not very 

informative, but repeating the simulation can reveal both what is characteristic 

of a distribution and what is random. These resources (dynamic software and 

repeated simulations) can support an understanding which is then 

operationalized with the help of the lexical means described above. 

Teacher PD Level 

The learning map described in Table 1 is an essential resource for teachers to 

identify which category, thought pattern, or reference frame is addressed by a 

learning activity. The map supports teachers to make informed decisions when 

planning and performing teaching sequences. It is crucial that students 

experience teaching that covers not only the procedural / local content goals, but 

also the conceptual / global ones (this refers to what should be covered). The 

learning map offers activities and linguistic practices that attend to them 

(suggesting to how to accomplish the intended goals).  

The jobs for teaching stochastics (Table 2) are phrased in analogy to Prediger 

(2019a) as demanding, noticing, developing, and supporting resp. explanations, 

interpretations, and reasoning. They each address different aspects of teacher 

behavior. Demanding explanations, interpretations, and reasoning means 

teachers set tasks and activities that refer to the activities and linguistic practices 

of that level. Noticing stresses that teachers need to have a reference system to 

diagnose which goal is being addressed at a certain moment. Developing and 

supporting emphasize the fact that teachers address the learning process. The 

job of identifying the language and resources relevant for stochastics is another 

basic job which is crucial for all others. This equally means identifying what is 

not relevant – as it is quite easy to get sidetracked by the technical specificities 

of software coding, or by inconsequential language issues like declension. 
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The pedagogical tools for stochastics, that support teachers in how to address 

certain learning goals, comprise, among others, motivating and cognitively 

activating tasks with authentic background, experiments (e.g. throwing coins or 

dice), in particular utilizing equivalent random experiments for authentic 

situations, which is an essential element of stochastics modeling, interactive 

visualization (e.g. with sliders for the parameters of a distribution), pre-coded 

simulations, and language scaffolding. 

Jobs demanding … noticing …  developing …  supporting … 

 … explanations / interpretations / reasoning 

 identifying language and resources (not) relevant for stochastics 

Pedagogical 

tools 

cognitively 

activating 

tasks  

interactive 

visualiz-

ations 

pre-coded 

simulations 

equivalent 

random 

experiments 

language 

scaffolding 

Categories learning map for stochastics at classroom level (Table 1) 

Orientations addressing understanding 

and procedure 

considering digital tools as 

means to a goal 

regarding certain 

language issues as 

relevant  

Table 2: Specification of the framework for teaching stochastics, classroom 

level 

All these aspects refer to what can be observed in a classroom situation. They 

are, however, influenced by the orientations of the teacher who orchestrates the 

classroom activities. The orientations relevant for teaching stochastics are an 

awareness that both procedure and understanding are to be addressed in 

stochastics (as in any other mathematical content area), regarding certain 

language issues as relevant for stochastics (which involves the job of identifying 

these issues), and considering digital tools as means to reach a goal, and not as a 

goal in itself.  

Table 2 summarizes the framework for stochastics-specific teacher expertise. 

Various entries there will help to avoid unsatisfactory feedback on the didactic 

value of simulations, e.g. recommending pre-coded simulations (a tool) or 

considering digital tools as means to a goal (an orientation). The matrix in 

Table 2, however, is not to be read vertically, but horizontally, meaning that the 

jobs are to be understood as one unit, and the pedagogical tools, the categories, 

and the orientations reflect the complex practice. Moreover, the tools and 

orientations are not to be understood as a closed list. The relations between the 

rows in Table 2 are points of interest and further exploration.  

Exemplification: Teaching Sequence for Addressing Distributions 

We will look into these interrelations in more detail, exemplified by a teaching 

sequence for addressing distributions. The sequence starts with the 10/20-test 
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problem (Figure 1), which represents a pedagogical tool, and sets the goal of 

exploring what lies behind it (demanding reasoning, a job). To incorporate 

students’ intuitive thinking, their ideas as to which test is easier to pass and why 

are collected and discussed, without yet revealing if their reasoning is correct 

because the learning goal is to allow them to reflect upon the problem in detail, 

and not to memorize the correct answer. This serves to develop reasoning skills, 

and its realization is based on the teacher’s orientation that understanding is a 

worthwhile learning goal.  

One test has ten questions with two answers each, one correct and one false. Another test has twenty 

questions with two answers each, one correct and one false. You pass each test if you have 60 % or 

more correct answers. 

If you are merely guessing, which test is easier to pass: the test with ten, or the test with 

twenty questions – or are both equally difficult? 

Figure 1: The 10/20-test problem, for addressing distributions 

With experiments of tests with 10 or 20 questions, a first exploration of the 

phenomenon can be created, and students can utter their considerations as to the 

reasons, which relates to the teacher’s job of noticing. In order to systemize the 

observations (i.e. support students’ reasoning, a job), the teacher can introduce 

an equivalent random experiment, e.g. throwing ten or twenty coins and 

counting how often “tail” appears, as a representation of a correct answer. These 

hands-on experiments may lead to an interpretation which test is easier to pass. 

Students’ reasoning can be supported (a job) by guiding and categorizing their 

arguments.  

To get a more reliable basis for conclusions, it seems natural to gather more 

data, i.e. to simulate the experiment with the help of software. The software 

used should allow easy handling and visualization, and some steps of the 

simulation can be prepared in advance, which can be viewed as a pedagogical 

tool, based on the orientation that digital tools (here, at least) are a means to 

reach a goal, and not a learning goal in itself. 

Spreadsheets or other software can be used to create visualizations (a 

pedagogical tool) in the form of histograms that show the distribution of the 

percentages of correct answers for the test with 10 respectively 20 questions. An 

important feature (pedagogical tool) is Excel’s F9 key (or a similar key): 

pressing it results in a new simulation, which the dependent visualizations 

follow. This feature in particular allows the learner to observe what is a 

characteristic of the distribution, and what is random. It helps to focus the 

attention on the characteristics of the distribution (conceptual content goal) and 

not on particular values (procedural content goal).  

It can be observed in the visualizations displaying the relative frequencies of 

correct answers that the “pass” areas for the test with 10 questions is a bigger 
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percentage of the total area of the histogram than the “pass” area for the test 

with 20 questions (certainly students will need help with phrasing a statement 

like this, a job the teacher can fulfil by offering language scaffolding, a 

pedagogical tool), thus yielding the insight that it is easier to pass the test with 

10 questions by merely guessing. How probable it is to pass the tests is not 

relevant at the moment (although the software would easily produce 

approximations for these probabilities), and the teacher identifies this as not 

relevant here, which is another job.  

The general rule that lies behind this phenomenon is that percentages vary less 

when the number of repetitions is increased (n.b. the absolute numbers vary 

more), and therefore are more likely to pass a threshold (in our example, 60%) 

that is not the expected value (here, 50%). At this stage, this generality cannot 

be phrased, but the example of the 10/20-test problem serves as a milestone task 

that is remembered and can be referred to when analogous phenomena are 

considered. Besides, later, when the binomial distribution has been covered, the 

phenomenon observed in this context can be connected to the values of the 

mean and variances of the numbers and percentages of correct answers in a test 

with 10 respectively 20 questions. 

Facilitator PD Level: A Further Perspective 

Conceptualizing the expertise of facilitators, who present PD courses, is also 

possible with an analogous framework that follows the principle of nesting 

teacher expertise in the categories, similarly to the nesting of the learning map 

in the categories of the framework at classroom level.  It can be used to specify 

facilitators’ jobs (e.g. attending to practices or discussions), pedagogical tools 

(e.g. the move of pointing to elements of the learning map), categories, and 

orientations (e.g. an appreciation for the PD course participants). It becomes 

apparent that, apart from the categories, these specifications are not content-

specific, but describe more general characteristics.  

CONCLUSION 

Our analyses show that the first step, specifying the content goals, as well as 

what activities and linguistic practices students follow and which lexical means 

and resources they employ to do so, helps to structure what is to be taught and 

how these teaching goals can be attained. The specifications of how to employ 

software and simulations and why this can promote the conceptual learning 

goals is a major result unveiled by Prediger’s framework. The next step, 

elaborating on the jobs, pedagogical tools, and orientations, shows that these 

are connected in various ways and influence teachers’ classroom actions that 

aim at reaching the learning goals they have decided upon. The pedagogical 

tools are closely related to the lexical means and resources and support teachers 

in attending to their jobs. The orientations represent guidelines that influence or 

even determine which pedagogical tools are chosen, and which content goals 
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are being addressed. They also help to polish the pedagogical tool, in the above 

example in the details to first use hands-on experiments, followed by pre-coded 

simulations that can be repeated, and visualizations showing the distribution and 

not single values. Teachers need not necessarily be aware of their orientations, 

but if they are, this serves to rationalize their choice of tool or move.  

Thus, the framework permits explanations and even predictions, and helps to 

shape the PD intervention by suggesting specific uses of digital tools (repeated 

simulations, dynamic software) and avoiding sidetracks (e.g. the coding of 

simulations). These insights prompt what should be addressed in teacher PD and 

how this can be orchestrated. In sum, the framework for conceptualizing 

content-specific teacher expertise has proved useful for stochastics, as it 

suggests various ways to convince teachers to develop their teaching and offers 

concrete tools and resources for support. 
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Studies showed that even before formal instruction, children can solve some 

arithmetic word problems by using informal solving strategies. The current 

study investigates the processes underlying the use of these informal strategies. 

We propose that the efficiency of the mental simulation of the encoded 

representation influences the difficulty of word problems and the use of formal 

solving strategies that reflect principle-based knowledge. Three experiments, 

two collective classroom experiments and a collection of verbal protocols, with 

383 2nd grade students, revealed that the cost of the mental simulation 

influenced the performance and solving strategies. Principle-based strategies 

are dominant only on high cost mental simulation problems, reflecting a re-

representation process. Theoretical and pedagogical implications are 

discussed. 

INTRODUCTION 

Arithmetic word problems are an important part of mathematics instruction all 

over the world (Verschaffel, Schukajlow, Star, & Van Dooren, 2020). Repeated 

findings have shown that problems which belong to different semantic 

categories but share the same underlying arithmetic structure yield different 

degrees of difficulty and are solved using different solving strategies (De Corte 

& Verschaffel, 1987; Gros, Thibaut, & Sander, 2020; Riley, Greeno, & Heller, 

1983). Numerous research has therefore investigated the processes involved in 

solving such problems and most would agree that an arithmetic word problem 

leads to the construction of a situation model due to its semantic characteristics 

(Reusser, 1990; Verschaffel, Greer, & De Corte, 2000).  

One current approach, the Situation Strategy First framework (Brissiaud & 

Sander, 2010), proposes that the situation depicted in the word problem 

provides the solver with situation-based solving strategies, which will be 

preferentially used when it is efficient. This would be the case on the Change 2 

problem “Luc is playing with 22 marbles at recess. During recess, he loses 4 

marbles. How many marbles does Luc have now?”, since the informal situation-

based solving strategy efficiently leads to the solution. Yet, the numerical 

magnitudes within the word problem can influence the difficulty of the informal 
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situation-based solving strategy. For example, when the problem is turned into 

“Luc is playing with 22 marbles at recess. During recess, he loses 18 marbles. 

How many marbles does Luc have now?”, the informal situation-based solving 

strategy is computationally inefficient. When solvers succeed to find the 

answer, they no longer solve it by relying on the initial representation of the 

problem which led them to use direct subtraction. They actually find the answer 

to this problem by re-representing the problem and using indirect addition. 

This kind of strategy switch is also described in the literature on non-word 

problems (Peters, De Smedt, Torbeyns, Ghesquière, & Verschaffel, 2013). In 

fact, both of these strategies correspond to the arithmetic operation of 

subtraction, yet the arithmetic format is different (Campbell, 2008). In the 

current study we propose that solvers encode the initial representation of a 

problem by relying on a conception of arithmetic that is activated by the 

problem statement. Two encodings compete: the wide-spread conception of 

subtraction as taking away (Fischbein, 1987; Lakoff & Núñez, 2000), aligned 

with the use of direct subtraction and the determining the difference conception 

(van den Heuvel-Panhuizen & Treffers, 2009), aligned with the use of indirect 

addition.  Second, we propose that the process leading to the use of informal 

strategies is the mental simulation of the initial encoded representation of the 

problem. According to Barsalou (1999, p. 586), mental simulation consists of 

the construction of “specific images of entities and events that go beyond 

particular entities and events experienced in the past”. The involvement of 

dynamic and perceptual simulations in text comprehension and the processing 

of abstract concepts also gives great importance to the process of mental 

simulation in contexts where there are no actions involved, such as it would be 

the case on static word problems (Hostetter & Alibali, 2018; Zwaan, Madden, 

Yaxley, & Aveyard, 2004). We propose that in order to go beyond the mental 

simulation of the encoded representation and use a solving strategy based on 

arithmetic principles, a solver needs to recode the initial representation by 

relying on a different arithmetic conception.  

In the current study we created arithmetic word problems whose mental 

simulation of the initial encoded representation would have either high or low 

cost. We predicted that different performance rates and different solving 

strategies will be observed as a function of the cost of the mental simulation of 

the encoded representation. We chose static problems, that do not allow 

straightforward mental simulation because of the absence of actions involved in 

the described situation. Thus, the mental simulation is only made possible due 

to the arithmetic conception evoked, entailing an encoding that triggers either a 

mental direct subtraction (taking away conception) or a mental indirect addition 

(determining the difference conception). On problems where the mental 

simulation of the initial encoding is inefficient and bears a high cost, we first 

expect to find lower performance rates and less formal solving strategies – those 
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that do not reflect the initial encoding. Second, we expected that the process of 

mental simulation will remain prevalent throughout the school year and that we 

will replicate the findings six months later. Third, we expected to observe 

informal solving strategies that reflect the mental simulation of the initial 

encoding of the problem on low cost mental simulation problems, and formal 

strategies reflecting a recoded representation mainly on high cost mental 

simulation problems. 

METHOD 

Participants 

341 second-grade students from 16 classes coming from 11 elementary schools 

from working-class neighbourhoods in France participated in a collective 

classroom study at the beginning of the year. The average age of the children 

was 7.60 years (SD = 0.33, 177 girls). At the second time of testing, six months 

later there were 269 second-grade students from the initial cohort who 

participated (mean age = 8.02 years, SD = 0.33, 138 girls). Lastly, verbal 

protocols were conducted with 42 second grade students who were not part of 

the initial cohorts (mean age = 7.93 years, SD = 0.26, 23 girls).  

Materials 

There were 8 types of subtraction and addition problems belonging to 3 major 

categories corresponding to Compare problems 1, 2, 3, 4, Combine problems 1, 

2, and Equalizing problems 1 and 2 from Riley et al.’s (1983) classification 

(Table 1). The number triplets involved in the data and the solution are (31, 27, 

4), (33, 29, 4), (41,38, 3), and (42, 39, 3). The number triplets were combined in 

order to create high and low cost mental simulation versions of each problem 

category in the same way as it was done in previous studies (Brissiaud & 

Sander, 2010; Gvozdic & Sander, 2020). To control for the impact of position, 

numerical sets and context, 8 different problem sets were created. Another 8 

problem sets were 'mirror' sets in which the low cost version of one problem 

would be presented in its high cost counterpart, while the high cost problem 

would be presented in its low cost counterpart. 
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Problem 

category 
Low cost mental simulation  High cost mental simulation  

Compare 1 

“There are 27 roses and 31 daisies 

in the bouquet. How many daisies 

are there more than roses in the 

bouquet?” 

“There are 4 roses and 31 daisies 

in the bouquet. How many daisies 

are there more than roses in the 

bouquet?” 

Compare 4 

“Anna has 31 euros. Susan has 4 

euros less than Anna. How many 

euros does Susan have?” 

“Anna has 31 euros. Susan has 27 

euros less than Anna. How many 

euros does Susan have?” 

Equalizing 

1 

“There are 27 oranges and 31 

pears in the basket. How many 

oranges should we add to have as 

many oranges as we do pears?”  

“There are 4 oranges and 31 pears 

in the basket. How many oranges 

should we add to have as many 

oranges as we do pears?” 

Combine 1 

“There are 27 blue marbles and 4 

red marbles in Marc's bag. How 

many marbles are there in Marc's 

bag?” 

“There are 4 blue marbles and 27 

red marbles in Marc's bag. How 

many marbles are there in Marc's 

bag?” 

Table 1: Examples of arithmetic word problems in their low and high cost mental 

simulation version for the number triplet (31, 27, 4) 
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Table 2: Classification of solving strategies for different problem categories from 

Riley, Greeno and Heller’s (1983) classification  

Problem 

category 

Cost of 

mental 

simulation 

Informal strategies Formal strategies 

Combine 1 

Low 27 + 4 = □ 4 + 27 = □ 

High 4 + 27 = □ 27 + 4 = □ 

Combine 2  

Low 27 + □ = 31 31 – □ = 27 31 – 27 = □ □ + 27 = 31 

High 4 + □ = 31 31 – □ = 4 31 – 4 = □ □ + 4 = 31 

Compare 1  

Low 27 + □ = 31 31 – □ = 27 31 – 27 = □ □ + 27 = 31 

High 4 + □ = 31 31 – □ = 4 31 – 4 = □ □ + 4 = 31 

Compare 2 

Low 31 – □ = 27 27 + □ = 31 31 – 27 = □ □ + 27 = 31 

High 31 – □ = 4 4 + □ = 31 31 – 4 = □ □ + 4 = 31 

Compare 3 

Low 27 + 4 = □ 4 + 27 = □ 

High 4 + 27 = □ 27 + 4 = □ 

Compare 4 

Low 31 – 4 = □ 4 + □ = 31 31 – □ = 4 

High 31 – 27 = □ 
27 + □ = 

31 
31 – □ = 27 

Equalizing 1 

Low 27 + □ = 31 31 – □ = 27 31 – 27 = □ □ + 27 = 31 

High 4 + □ = 31 31 – 4 = □ □ + 4 = 31 

Equalizing 2 

Low 31 – □ = 27 27 + □ = 31 31 – 27 = □ □ + 27 = 31 

High 31 – □ = 4 4 + □ = 31 31 – 4 = □ □ + 4 = 31 

 

Procedure 

Each student solved 4 low cost mental simulation problems and 4 high cost 

ones. In the collective classroom part of the study, each student received an 8 



Gvozdic & Sander 

2 -  430 

 

PME 44 -2021 

page booklet. Each problem was read aloud twice, and students then had one 

minute to write the number that was the solution. Regarding the collection of 

verbal protocols, students were asked to give an oral explanation of how they 

found the solution after writing down the answers. Their responses were 

recorded and transcribed.  

Scoring 

The solutions noted by the children were scored with 1 point when the 

numerical answer was exact or, in order to allow for mistakes in counting 

procedures, within the range of plus or minus one of the exact values. Any other 

answers received 0 points. On the verbal protocols, the strategy students 

described were also assessed. Two coders evaluated the solving strategies of 10 

students by writing down the number sentence they considered corresponds to 

the descriptions children gave. The initially obtained inter-rater reliability was 

98.75% with the Cohen's kappa score of 0.982, providing an almost perfect 

level of agreement. The informal strategies corresponded to the mental 

simulation of the initial encoding, and the formal strategies corresponded to 

strategies that did not correspond to the initial encoding (Table 2). Two separate 

codings were done, one for the informal strategy and one for the formal 

strategy. When the student provided an informal strategy, this was scored as 1 

point for the informal strategy. When a student described a formal solving 

strategy, this was scored as 1 for the formal strategy.  

RESULTS 

Performance 

We compared students’ success rates on low and high cost mental simulation 

problems. Since the data points for the responses were binary and recorded in a 

repeated design (with low and high cost mental simulation problems), we 

conducted random-effects logistic regressions. We constructed a generalized 

linear mixed model (GLMM) with a binary distribution with the cost of mental 

simulation (low vs. high) as the fixed factors, while participants and problem 

categories were included as the random effects. In accordance with our 

hypotheses, at the first time of testing, the analyses showed a highly significant 

main effect of the cost of mental simulation on performance (β = 1.05, z = 

11.12, p < .001). The low cost mental simulation problems had a 1.69 times 

higher success rate than high cost mental simulation problems (Figure 1A). At 

the second time of testing in the collective classroom study, the effect was 

replicated the analyses revealed a highly significant main effect of the cost of 

mental simulation on performance (β = 1.33, z = 12.22, p < .001). The low cost 

mental simulation problems had a 1.59 times higher success rate than high cost 

ones (Figure 1B). Lastly, the gap in performance on low and high cost mental 

simulation problems was also replicated in the verbal protocols, confirming that 
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low cost mental simulation problems are significantly easier (β = 1.4, z = 789.6, 

p < .001) (Figure 1C). 

Solving Strategies 

Further on, we analysed the strategies used by the students. We aimed to show 

that re-representation leading to the use of arithmetic principles was 

predominant only when mental simulation was inefficient. We conducted two 

GLMMs, one with the informal strategies and one with the formal strategies. 

Both were GLMMs with a binary distribution and the cost of mental simulation 

as the fixed factor and participants and the problem categories as the random 

effects. As predicted, both differences were significant. Informal strategies were 

used significantly more on low cost mental simulation problems than on high 

cost mental simulation problems (β = 3.12, z = 8.04, p < .001). Formal 

strategies were used significantly more on high cost mental simulation problems 

than on low cost ones (β = -3.95, z = -4.99, p < .001) (Table 3).  

 

 Figure 1: Success rates at the three different times 

 

 Problem types 

Low cost mental simulation High cost mental simulation 

Informal strategy 97% 23% 

Formal strategy 3% 77% 

Table 3: Rate of use of informal and formal solving strategies 

 

DISCUSSION 

In the current study we proposed that the cost of the mental simulation of the 

encoded representation would constrain the difficulty of different word 

problems as well as the solving strategies. Problems that do not depict actions in 

their wording were chosen in order to show that mental simulation operates on 
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the encoded representation rather than the depicted situation. By looking at the 

performance rates, we demonstrated that the problems hypothesized to involve a 

low cost for the mental simulation of the encoded representation are and remain 

easier for students throughout the school year. We also provided evidence that 

formal solving strategies that do not reflect the initial encoding are dominant 

only among high cost mental simulation problems, whereas informal solving 

strategies are almost systematic on low cost mental simulation problems. 

Overall, our study provides evidence that behind student’s use of informal 

solving strategies is a non-mathematical mental simulation of the encoded 

representation, while the use of formal arithmetic strategies is dependent on the 

recoding of the initial representation. The processes we propose take place in 

arithmetic problem are illustrated in Figure 2. As this figure displays, the mental 

simulation does not operate directly on the situation described by the problem, 

but on the encoding of this situation, constrained by the arithmetic conception 

evoked by the problem statement. 

 

Figure 2: Modelling the encoding and recoding processes in word problem 

solving 

An essential objective in mathematics education is to provide students with the 

necessary knowledge to select the most appropriate strategy for finding the 

solution to a problem (Verschaffel, Luwel, Torbeyns, & Van Dooren, 2009). 

Our findings provide insights for evaluating the acquisition of such knowledge. 

Indeed, if problems which can be easily simulated mentally are used in school 

evaluations, we are not actually evaluating an adaptive strategy choice but 

merely informal knowledge with which students already come to class. Our 

findings provide insight into what kind of content is better suited for evaluating 

actual learning objectives: it is only when the initial encoding of the content 

makes informal solving strategies difficult to use, that students are actually 

given the opportunity to put their arithmetic knowledge to the test. Furthermore, 
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it has been demonstrated that when teachers are faced with problems that are 

intuition-consistent, they overlook the difficulties that such content poses for 

students (Gvozdic & Sander, 2018). Our current findings therefore also bear 

high pedagogical relevance not only evaluating adaptive expertise, but for 

teaching it, since it could be useful to work on comparing different kinds of low 

and high cost mental simulation problems in order to overcome intuitive 

conceptions and favour the acquisition and use of formal solving strategies. 

References 

Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 

22(4), 577–609 

Brissiaud, R., & Sander, E. (2010). Arithmetic word problem solving: A situation 

strategy first framework. Developmental Science, 13(1), 92–107. 

Campbell, J. I. D. (2008). Subtraction by addition. Memory & Cognition, 36(6), 1094–

1102. 

De Corte, E., & Verschaffel, L. (1987). The effect of semantic structure on first 

graders’ strategies for solving addition and subtraction word problems. Journal for 

Research in Mathematics Education, 18(5), 363–381. 

Fischbein, E. (1987). Intuition in science and mathematics. An educational approach. 

Dordrecht, The Netherlands: Reidel. 

Gros, H., Thibaut, J.-P., & Sander, E. (2020). Semantic congruence in arithmetic: a 

new conceptual model for word problem solving. Educational Psychologist, (in 

press). 

Gvozdic, K., & Sander, E. (2018). When intuitive conceptions overshadow 

pedagogical content knowledge: Teachers’ conceptions of students’ arithmetic 

word problem solving strategies. Educational Studies in Mathematics, 98(2), 157–

175. 

Gvozdic, K., & Sander, E. (2020). Learning to be an opportunistic word problem 

solver: going beyond informal solving strategies. ZDM - Mathematics Education, 

(in press). 

Hostetter, A. B., & Alibali, M. W. (2018). Gesture as simulated action: Revisiting the 

framework. Psychonomic Bulletin & Review. 

Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the 

embodied mind brings mathematics into being. Basic Books. 

Peters, G., De Smedt, B., Torbeyns, J., Ghesquière, P., & Verschaffel, L. (2013). 

Children’s use of addition to solve two-digit subtraction problems. British Journal 

of Psychology, 104(4), 495–511. 

Reusser, K. (1990). From text to situation to equation: cognitive simulation of 

understanding and solving mathematical word problems. Learning and intruction: 

European Research in an international context, pp. 477–498. 



Gvozdic & Sander 

2 -  434 

 

PME 44 -2021 

Riley, M. S., Greeno, J. G., & Heller, J. I. (1983). Development of children’s problem-

solving ability in arithmetic. In H. P. Ginsburg (Ed.), The development of 

mathematical thinking (pp. 153–196). New York: Academic Press. 

van den Heuvel-Panhuizen, M., & Treffers, A. (2009). Mathe-didactical reflections on 

young children’s understanding and application of subtraction-related principles. 

Mathematical Thinking and Learning, 11(1–2), 102–112. 

Verschaffel, L., Greer, B., & De Corte, E. (2000). Making sense of word problems. 

Lisse: Swets & Zeitlinger. 

Verschaffel, L., Luwel, K., Torbeyns, J., & Van Dooren, W. (2009). Conceptualizing, 

investigating, and enhancing adaptive e 

 



2 - 435 PME 44 -2021 

 

 

 

 

 

 

 

 

AUTHOR INDEX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 -  436 PME 44 -2021 

INDEX OF AUTHORS AND CO-AUTHORS (VOLUME 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 - 437 PME 44 -2021 

A 

Alvarado, Hugo…………………..…137 

Anderson, Judy…………………..…….1 

Andrà, Chiara………………..……….10 

Antonini, Samuele……………..……..19 

Ay, Ilja……………………..……..…..29 

Ayalon, Michal…………………….....37 

 

B  

Barton, Daniel………………………155 

Baumanns, Lukas………………….....47 

Beckmann, Sybilla…………………....56  

Bempeni, Maria………………..……..66 

Ben-David Kolikant, Yifat………….120 

Ben-Dor, Naama………………….…..75 

Bergqvist, Ewa……………...………..84  

Bergqvist, Tomas……………………..84 

Billion, Lara…………………………..93  

Blanco, Teresa F. ……………..…….106 

Blomberg, Judith……………...…….111  

Branchetti, Laura……………...102, 310 

Broza, Orit……………………..120,128 

 

C 

Cao, Yiming………………………...155 

Capone, Roberto………………..102,310 

Carrera, Belén……………………....137 

Castillo, Salvador…………………...146 

 

 

 

 

Chan, Man Ching Esther…………....155 

Chia, Hui Min………………………164 

Chorney, Sean………………………172 

Choy, Ban Heng…………………….180 

Clarke, David……………………….155 

Contini, D. .........................................255 

Cooper, Jason……………………….189 

 

D 

Damrau, Milena…………………….155 

Datsogianni, Anastasia……………...199 

Deslis, Dimitrios…………………….209 

Di Tommaso, M.L. ............................255 

Digel, Susanne………………………218 

Dreher, Anika.....................................227 

Dreyfus, Tommy……………………236 

Dvir, Assaf………………………….236 

 

E  

Eichler, Andreas…………………….245 

Erens, Ralf…………………..………..10 

 

F 

Feltes, Paul.........................................227 

Fernández, Ceneida…………….146,387 

Ferrara, F. ..........................................255 

Ferrari, G. ..........................................255 

Ferretti, Federica……………………245 

Friesen, Marita Eva…………………274 

Frid, Staffan…………………………264 

Furuto, Linda H.L…………………..283 

 



1 -  438 PME 44 -2021 

G 

Gabler, Laura...............................292,301 

Gaio, Aaron…………………….102,310 

Geisler, Sebastian……………....320,330 

Gerami, Saba………………………..340 

Gildehaus, Lara...........................350,370 

Girnat, Boris...………………………360 

Göller, Robin......................................370 

Gómez, David Maximiliano………...379 

González Roel, Valeria.......................310  

González-Forte, Juan Manuel………387 

González-Martín, Alejandro S... 397,406 

Greefrath, Gilbert……………….……29 

Griese, Birgit………………………..416 

Gvozdic, Katarina…………………...425 

 

H 

Hernandes-Gomes, Gisela…………..406 

Heyd-Metzuyanim, Einat……...……..75 

Hsieh, Feng-Jui...................................227 

 

I  

Izsák, Andrew…………………….…..56 

  

J 

Jamnik, Mateja ……………………..209 

 

K 

Karsenty, Ronnie……………………189 

Koichu, Boris……………………….189 

Kuntze, Sebastian…………………...274 

 

L  

Levi Gamlieli, Hadas……….……….189 

Liakos, Yannis………………………340 

Liebendörfer, Michael........................350 

Lifshit, Ariel………………………...128 

Liljedahl, Peter…………………..…...10 

Lindmeier, Anke.................................227 

Lugo-Armenta, Jesús G. ………….. 137 

 

M 

Maffia, Andrea……………………...245 

Mahler, Nicole…………..……………29 

Martínez Videla, María Victoria……379 

Mesa, Vilma………………………...340 

 

N  

Nama, Samaher………………..……..37 

Nannini, Bernardo……………..……..19 

Nortvedt, Guri………………………264 

Nseanpa, Casimir Jojo………………397 

 

P 

Pino-Fan, Luis………………………137 

Pinto, Alon………………………….200 

Poulopoulou, Stavroula………………66 

 

R 

Rellensmann, Johanna………………111  

Robutti, O. .........................................255 

Roel, Valeria G. …………………….102 

Roth, Jürgen…………………………218 

 



2 - 439 PME 44 -2021 

 

Rott, Benjamin …………………...…..47 

Rouleau, Annette……………...….…..10 

 

S  

Sander, Emmanuel…………………..425 

Schukajlow, Stanislaw……………...111  

Sinclair, Nathalie……………………172 

Stylianides, Andreas J. ……………..209 

Sumpter, Lovisa…………………….264 

Swanson, Blanca…………….….……..1 

 

T 

Tabach, Michal……………………...236 

 

U 

Ufer, Stefan…………..……199,292,301 

 

V  

Vamvakoussi, Xenia……………...…..66 

Van Dooren, Wim..............................387 

Van Hoof, Jo………………………...387 

Vogel, Rose …………………...……..93 

 

W  

Wang, Chongyang………………….155 

Wang, Ting-Ying...............................227 

 

Z 

Zhang, Qiaoping………………….…164 

 

 

 

 

 

 

 

 

 

 

 

 






