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PREFACE

The International Group for the Psychology of Mathematics Education (IGPME)
was founded in 1976 at the 3rd International Congress for Mathematics Edu-
cation in Karlsruhe.

The IGPME organised their first conference in 1977 in the IOW0 in Utrecht
under the chairmanship of Prof. Freudenthal. The Second International Con-
ference for the Psychology of Mathematics Education took place from 4th-9th
September 1978 1in Haus Ohrbeck on the Invitation of the Fachgruppe Dida tik
der Mathematik der Universitit Osnabruck This conference was attended by 70
participants from 11 countries. )
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first an analysis of the special features of mathematical thinking is ne-
cessary. Without a certain amount of explanation of the relationship

- ~ between a philosophical basis of mathematics and central psychological




categories of thinking and learning, a more intensive occupation with the
Tearning processes of mathematics is hardly possible. It appeared that
among the participants the opinions had not been fully thought out and the
discussion remained controversial. That such consideration was necessary
at all was seen in different lights by the participants (Theme 4).

Theme 2 and 5§ were chosen in order to examine the relevance of certain
mathematical thought processes for the learning of mathematics. The empha-
sis on mathematical methods independent of the content makes possible a
general discussion of the psychological problems of learning mathematics.
The constant interchange between productive and reflective mathematical
activity in the solution of problems, mathematising, proving, and gene-
ralising should also be made clear in mathematics education; in order to
attain a profounder understanding of mathematical processes and not merely
technical facility (Theme 2).

Intuition plays an active part in mathematics. This fact ~ as in general
the phenomenon intuition - was until now considered of little account in
psychology, as opposed to philosophy where it is often seen as of funda-
mental importance in mathematical processes. However, not always is its
influence positive. As has frequently been shown both in the forming of new
mathematical concepts and in Tearning mathematics, intuitive perceptions
can lead along false paths. Therefore, especially in mathematics education
the possible effects of intuition must be brought to attention. On the
other hand, mathematics is of general interest in psychology for the fol-
Towing reasons: e

Mathematics seems to the psychologist as a particularly concentrated

example of the functioning of human inte]lligence, hardly concealed by .
falsifying effects. Through the study of the psychology of learning mathe-
matics, in the interplay between intuition and reflection, a more profound

understanding can be attained in this respect for "intelligent learning" in.
general; which in turn allows inferences on the nature and function of .
intelligence itself (Theme 5). .

A concern with central concept-building and scientific methods of mathema-
tics for the improvement of mathematics teaching cannot be separated from
a consideration of the social structures and interactions in the classroom.

In particular in these problems it can be seen that psycho-social phenomena

can be, independent of the content of the instruction, causes of difficulty
for the schoolchildren in understanding and of obstacles to learning. Psy-
chologists as well as mathematicians appear indeed to be aware of this
problem, but as yet only a few papers have been presented, The discussion
in the IGPME has not lead to progress during this conference; but by the
way of the lectures the need for further research in this field was made
clear (Theme 3).

Because of the significance of arithmetical concepts for the learning and
understanding of mathematics, the only topic with actual mathematical con-
tent was that in Theme 1. Psychological research has taken up the examina-
tion of the acquisition of arithmetical concepts with special attention,
because this is of exemplary character for learning mathematical concepts.
Furthermore, the reason for the occurence of difficulties in understanding
"higher mathematics" - and even more in handling it - often lies in precisely
those elementary deficits of knowledge of and facility with calculation pro-
cedure.

Insufficient arithmetical skill, on the other hand, plays a not insignifi-
cant part in the social discussion on poor mathematical ability in school-

children, so this may be why quite a number of papers dealt with this problem.

The present volume contains the final versions of the conference contribu-
tions. Where a contribution was presented in a particular section, the number
of this section is indicated in brackets in the contents list.

Elmar Cohors-Fresenborg
Ipke Wachsmuth
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o 1.1 Discovery Learning

I. DISCOVERING AND PRACTICING

- Discovery Learning has played a major role in recent years in

research and investigation concerning the improvement of mathematics

393 List of Participants

learning. Among the most known propagators of this approach are G. Polya
(1957, 1962) and J. Bruner (1960, 1961). Polya, concentrated mainly on

discovery as a mode and means of problem solving., He even developed a

detailed model for this approach. Bruner expounded the discovery

\
approach as the major means for learning, which, in his opinion, could |

do away with all the ills of school learning. Their teaching found a

discovery approach, as developed by the University of Illinois at
Urbana (U.I.C.S.M).

Other major studies of this approach were summarized by Shulman
and Keisler (1966) and later by Nunnaly and Lemond (1973).

major application in a complete mathematics curriculum, based upon the
In all of these studies (except that of Polya) the major aim

of this mode of learning was the discovery of new concepts and the

acquisition of new material. The major finding supported by most

studies, was that while on tests, given immediately after learning took |

place, expository learning might show better results than discovery

learning, the outcome is reversed on retention tests. All studies also

emphasize the fact that the motivation of the learner is much stronger

in cases of discovery learning than in cases of expository learning.

1.2 Why Exploratory Behavior

Daniel Berlyne (1960) was one of the major researchers to invest-
igate factors which influence exploratory behavior. He considered the

need of arousal balance as a major reason for higher motivation induced *
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by discovery learning. Berlyne also coined the term epistemic curiosity,

a term of great potential for any educator, and particularly for the
mathematics educator. According to this theory the organism attains the
ideal level of arousal at a certain medium level of excitation by a
stimulus. TIf the level is too low the organism might reject the stimulus
altogether and search for other, more exciting sources of arousal. If it
is too high, the organism would reject the stimulus. In the classroom
setting this would mean that a too low level of stimulation would be
rejected as too boring, while too high a level would be rejected as
frustrating. Graphically we could describe the relation between the level
of arousal and the level of excitation generated by stimulus as one of an
inverted U.

1.3 Factors Generating Exploratory Behavior

Most studies dealing with exploratory behavior concentrate on visual
exploration in which the major measure is the amount of time spent on
observation of certain stimuli. In these studies the major stimuli
components which influence the level of arousal and generation of

exploratory behavior are novelty and complexity.

Novelty depends in general upon the amount of change in the stimulus
from the time of the previous encounter by the organism. This change
may be of different natures such as change of periodicity of appearance,
of place of usual appearance, of amount of information usually embodied
in the stimulus, etc.

Complexity is a much more involved concept, particularly difficult
to define and measure in cases of mathematics learning. Researchers
of arousal generated by visual stimuli usually define the level of
complexity as depending upon the number of different dimensions which
can be discerned in the stimulus. 1In cases of mathematical problems,
complexity can perhaps be described by the remoteness of the associations
needed for the solution. This remoteness can perhaps be measured by

free association of subjects exposed to the problem*.

An attempt . by the first author to obtain an equal interval scale
for complexity of a set of mathematical problems by the method of
paired comparison did not produce any reliable outcome.

- 11 -
It is easy to see that in cases of learning by discovery both
of these factors, novelty and complexity, operate at a much stronger

level than in expository learning.

1.4 Retention of Material Learned by Discovery

As mentioned before many studies show that the highest difference
in performance between material learned by expository methods and material
learned by discovery is observed on retention tests. Two different

opinions were forwarded as reasons for this phenomenon. Gagné (1966) is

‘of the opinion that in the case of discovery learning the learner has to

sort out and organize on his own the various concepts that he encounters
in the material, and to embed these in his frame of reference. In this
way he eliminates the interference of other concepts. Kendler, on the
other hand, sees the advantage of the discoverer in the fact that he
organizes the material in his own language, whereas when learning by
exposition it often happens that the material is presented in a language

unsuited to the particular learner.

Bruner (1961) essentially supports the stand taken by Gagné. He
considers the major problem to be the problem of retrieval, and retrieval
is facilitated in cases when the learner plays a major role in embedding

the material in his own frame of reference.

1.5 Process versus Product

As noted above, previous studies investigated the impact of the
discovery approach upon the learning of new material. In this application
of the discovery approach one can argue that the theoretical approach,
as outlined before, doesn't necessarily imply that the discovery approach
will always be superior to the expository one. The reason is that in the
learning of new material the factors of novelty and complexity operate,
independently of the mode used to expose the student to the new material.
One can even argue that essentially all learning is discovery learning,

as while listening to a  ''good" exposition the learner is continuously

"discovering" what will be 'coming next'. On the other hand, one can
argue that it is quite possible that 'learning" in a discovery approach

might operate in a rote non - meaningful mode. If this is so,
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then the amount of learning and retention of new material might not be

a function of the mode of expositions, only of the quality of this
exposition. This attitude has been taken by the greatest opponent of
discovery learning, David Ausubel (1963). It has also been shown by
the first author (Finegold-Avital, 1975) that the rote- discovery mode
can he embedded in a general model of discovery learning. The authors
of this article do not espouse this approach, for the simple reason,
that everything we know about mathematics and human learning tells us
the chances are much higher that a discovery approach will be meaningful
to the 1éarner, than that an expository approach will be '"good". This
has to be so because the amount of involvement of the individual
organism is -~ by definition - much higher in the first type of
learning than in the second, and we know that involvement is the opening

to motivation, and motivation is the lubricant of learning.

But what concerns us here is a better analysis of what one can
expect a student to learn from a discovery approach. We shall limit

our discussion to the learning of mathematics.

In almost all studies of discovery learning the emphasis is on
the final product. The learner is supposed to discover something new,
a concept, a theorem, a proof, and know it ever after. In some cases
(Woerthen 1966), the researchers also tried to find out whether the
student learned something about the process of discovery itself - that
is whether he learned from the attempts to discover. The authors do not
know even one study in which an attempt is made to find out what a student
can possibly learn from the exploratory activity itself - that is from
the fact that while he searches for a solution to a problem, or for a
generalization and creation of a concept from a set of examples, he turns
over in his mind a large number of mathematical facts. If the problem
for exploration is chosen in such a way that while the student is trying
to solve it he has to solve a large number of algorithmic exercises of
a certain nature, these solutions can serve as drill and practice for

the development of the skill in  using the given algorithm.

- algorithm.

1.6 Drill and Practice

The usual procedure used in schools to practice the application
of an algorithm is to ask the learner to solve many isolated exercises,
each of which is an exemplar of the given algorithm. Each of these
exercises is an isolated bit of information, and the only property that
relates them to one another is the fact that they are exemplars of the
same algorithm. This makes this type of practice extremely boring,
and the student is ready to follow suit and perform only because of
the routine acceptance of school discipline. Our theoretical analysis
of arousal due to epistemic curiosity assured as that drill and practice
carried out, not for their own sake, but as a means of gathering inform-
ation for the solutions of an exploratory problem, will increase motiv-
ation, and in this way improve the understanding and usage of the said
This hypothesis is the main subject of this study. The
‘authors think that most human activities are goal directed, and the
drive to satisfy a certain need is a strong motivating factor. 1In
this case epistemic curiosity, the desire to see what is behind the
set of examples that he is generating, will be the driving force, and
the practice will be a side effect. In our statistical analysis we
shall compare the improvement in the ability to carry out arithmetical
computations, of children who did their practice in an exploratory
setting, with the improvement, in the same area, of children who did
the same type of practice in the usual classroom way - 'teacher

assigns -~ I do".

1.7. Formulating Hypotheses and Reinforcement

Even if, for the teacher, the objective of the exploration might

- be practice in the application of an important algorithm, the objective

for the student will be the search for some generalization which will

always take the form of an hypothesis. Reinforcement theory teaches us

kthat to maintain a goal directed activity, some success in the achievement

of the goal must be ascertained. In the case of this study such a

_ success would generally be the formulation of some tenable hypothesis.

JAs elementary school classrooms are usually heterogeneous, it is

desirable that the exploratory problems should be of such a nature that
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they permit a sequence of partial hypotheses, so that every child's
activity can be reinforced. This is not alwéys either easy, or perhaps

even possible, to achieve.

However, the authors think that in most cases the mere collection
of data will sche as reinforcement for many children. We can base this
assumption on the following considerations. We know .that every living
organism, that has achieved a certain level of development, tends to
explore his environment. We assume that for the human being at school
age, intellectual activity is part of his environment, so that
exploration thereof is by itself a reinforcing activity. As with all
secondary drives, these will usually operate if the organism has not
been deprived of some of its basic needs to satisfy primary drives.

The authors base their assumption on the often observed fact that most
people do become involved in an arithmetical puzzle, and if they have
enough leisure time on their hands, and if the puzzle is of such a
nature that they think they can contribute to its solution, will devote
more time to solving of it. The first author has observed this fact,
time and again, while lecturing to soldiers in the field in the various
wars he has lived through in Israel. In this case every piece of
additional data, which fits the problem, serves as a reinforcement

to encourage further activity. Obviously the formulation of a valid
generalization would be considered a better accomplishment, but many
children will continue with the activity for the sake of gathering more
data. This will be particularly true if the data themselves can be
considered by the searcher to be of an hierarchical level of complexity,
as for instance larger integers, fractions, or more representations of

the same number, etc.

1.8 Nature of Exploratory Problems

The analysis, as given until now, shows that if appropriate problems
can be found, these can be used to generate exploratory behavior, in the
form of collection of data, to serve as a basis for the formulation of
hypotheses. While the student is collecting these data he is practicing
the application of a useful algorithm. This practice can serve to

improve the application of the given algorithm. We expect that the
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exploratory nature of the problem will serve as an incentive to the
student, so that the practice of application of the algorithm will be
carried out with higher motivation, and therefore produce better learning,

than the usual type of exercises used in school.

We can now formulate a series of requirements which must be satis-
fied by a mathematical problem, so that it can be considered to be of an
exploratory nature to be used as such an incentive to the student. We
shall list here these requirements and hope that the reader will see
for himself that they are a direct outcome of the mode of suggested

usage of these problems in the classroom.

1., The problem must be ameneable to an inductive investigation -
that is the student should be immediately convinced that the collection

of data is the means to help him reach a solution, or an hypothesis.

2. The solution of the problem must appeal to the student as a goal

for the attainment of which it is worthwhile to strive.

3. The collection of data itself can be of various levels of dif-
ficulty, so as to give the student a feeling of some accomplishment

through the accumulation of more and more data.

4, Subgoals of gradually increasing difficulty can be formulated
so that every child can contribute and obtain reinforcement at his
level of ability.

5. While investigating the problem through the collection of data
the student is practicing an important skill.

6. Some subgoals can he attained in a short time.

We may add one more requirement to ensure that the exploration

will deal with a true problem and not with an isolated puzzle.
7. The problem can be expanded to generate new goals.

The analysis, as carried out in the previous sections, also
provides us with an understanding of the psychological nature of the
factors which will operate when the student is investigating such an
exploratory problem. In the following we summarize this analysis in the

form of four tenets.

1. The novelty and complexity of the problem will arouse the epistemic
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curiosity of the student and increase motivation.

2. The existence of a goal, over and above the immediate task, will
produce goal directed behavior.

3. Reinforcement due to the attainment of some subgoals, or due to
success with the collection of more complex data, will insure per-
sistence and tenacity on the task.

4. The investigatory nature of the practice will produce better
retention than usually achieved with regular practice.

1.9 The Teaching of Exploration

As the usual type of school work is not geared for exploration,
one cannot expect the student to become an efficient explorer unless
the teacher provides some educational hints about ways of good
exploration. Such hints were extensively developed by George Polya
(1958, 1963). We shall list them here in the form of instructions, as
might be given by a teacher, without any additional elaboration.

1. Investigate inductively by collecting examples which are directly
related to the task of your investigation.

2. Vary your examples in some regular way, but here and there,

try some of the out-of-way examples - nobody else might have thought of.

3. Look at your examples and search for a pattern. Formulate a
conjecture about the pattern. Check that all your examples fit the
pattern and the conjecture.

4. If all your data fit the pPattern and satisfy your conjecture,

check with more data - perhaps of a more unusual nature.

5.  Check particularly some special cases such as borderline examples,
etc. Do these fit the pattern?

6. Try to discover patterns which fit some subsets of the data, as
for instance even (or odd) numbers, points at the vertices, etc.

7. If needed revise your conjecture and check again.

8.  Any possible pitfalls? Are your data of a special nature? Did

you overlook some exceptional cases for which your conjecture couldn't
hold?

9 Can you give intuitive reasons for the general truth of your

conjectures? Can you provide a valid proof?

10. Can you expand the problem to generate new questions and open

. U
up new roads for investigation?

1.10 Educational Goals Besides Practice

We have concentrated until now mainly on the practice effect and
on the reinforcement the learner can obtain from the formulation of
valid conjectures. We shall elaborate now, even if shortly, on other
desirable educational outcomes one might expect from students' involve-
ment with exploratory problems. We shall discuss only one such outcome,

namely the ability to carry out an orderly systematic search of data.

In many exploratory problems the task requires the systematic
accounting for a sequence of examples of special cases, or even of
all examples that fit a certain rule. Tasks of this nature are rarely
;;;Eticed in school. Our observations have shown that without special
education, students, even in higher grades, after a few systematic steps,
tend to abandon the system and skip from case to case without any
apparent understanding of the needs for an orderly search of appropriate
data. One can hope that an extensive use of exploratory problems in
school will educate the student to develop some organized way of
systematic exploration, particularly in cases when such an organization
might be helpful.

1.11  Proving Conjectures

It is cunderstood that discovering the existence of a pattern in
a finite set of data is far from being a general proof of the validity
of a conjecture formulated about this pattern. We expect the teacher
to emphasize again and again, that the discovered pattern and the
related conjecture still need a proof of their general validity. Never-
theless, we consider it expedient and desirable to expose children to
exploratory problems even if we know for sure that they will have no
means to prove the conjectures they might formulate., We believe that

the seeds sown at an early age have a good chance to blossom in later




years. Obviously, whenever a proof, even of an heuristic nature, might
be at the level of the student, the teacher should encourage the search
for its discovery. Nevertheless, no harm will be done if the student
who has formulated a valid conjecture is told that only in his later
studies will he acquire means which will help him investigate the

general validity of his conjectures.

II  APPLYING EXPLORATORY PROBLEMS IN ELEMENTARY SCHOOL GRADES

2.1 Theory and Experiment

The theoretical analysis, as carried out in the previous chapter,
leads us to believe that practice in arithmetical computetion, obtained
as a side effect when the student tries to investigate an exploratory
problem, should produce better learning and retention, than the same
practice, carried out by the student as a result of an assignment given
by the teacher. However, educational experience tells us that theoretical
predictions do not always realize in the classroom setting. The number
of factors influencing learning and retention is so large that it is
impossible to take all of them in account, and outcomes are often very
different from what can be predicted on the basis of a theoretical
analysis. A major disturbing factor in our case might be age. We don't
know to what extent children in elementary school can be attracted by
an exploratory problem; or at what age can children see through a
pattern and attempt to formulate a conjecture; or whether novelty and
complexity in an intellectual task - such as mathematics - can arouse
elementary school children and sustain their interest for a lengthy
exploration of a problem and collection of numerical data. One might
also speculate that young children, with no previous experience in
individual exploration, might prefer well defined, teacher assigned,
exercises and learn more from such prescribed exercises than from
individual exploration. All these questions suggest that an experiment
has to be carried out in a field setting to compare the results of
practice through exploration with practice through teacher assigned

exercises.

2.2 Educational Problems Investigated in this Study

The following questions were formulated for investigation in a

controlled experiment in a field setting:

1. In what grades, if any, will elementary school children be attracted
by an exploratory problem and sustain interest to collect numerical

data and search for a pattern?

2. Will practice through exploration:g%rried out by elementary school
children, produce better performance on numerical tasks than teacher

assigned exercises?

(i) On tasks given immediately after instruction (investigation)
took place?
(ii) On retention tasks given a few weeks after instruction

(investigation) was over?

‘3. Will elementary school children prefer practice in the form of

exploration to the usual classroom mode of teacher assigned

exercises?

Another question might concern the optimal age of the elementary

school: learner during which one should introduce exploratory problems.

2.3 Choosing the Sample

It is very difficult to carry out a well controlled experiment

_ with a randomized sample in an educational setting. The nature of the

school prescribes that such a study should be carried out in whole

- undivided classes. As this is a first study of this nature, it was
 decided to limit the sample to two classes, one experimental and one

_control, in each of four grades first, third, fourth and fifth.

To limit as much as possible the influence of the Hawthorn effect

it was decided that:

1. The same teacher should teach both classes, experimental and

control in all grades.

2. As the regular classes are usually taught by different teachers,

it was decided that the second author should take over and sub-

stitute for the regular teachers in all classes and all grades.




3. The control classes should solve exactly the same examples as

generated by the experimental ones during their investigation.

4. As the hypotheses in this study concern practice, and not original
learnings, it was decided to choose topics the children have
learned with their regular classroom teacher, and whenever needed
apply a pretest which should provide a baseline to measure the

differential amount of improvement due to practice.

5. Each grade should explore two problems.

2.4 Choosing the Exploratory Problems

that these satisfy the
following we describe all

We have to choose the problems so
requirements as listed before. In the

problems used in this experiment. The
one used in the classroom, where, for obvious reasons, we had to use

terminology here is not the

a more detailed description adapted to the level of the learners.

Grade 1. Problem 1:

The concept of a mathematical tree, with n nodes and n-1 branches
was introduced. The students were shown how to write the natural
numbers 1 to n at the n nodes of a given tree, one number at each
node, and then to assign to each branch the difference between the

two numbers assigned to its nodes. The exploratory problem was to

find an arrangement of the n integers at the n nodes so that all
to n-1 should appear at the respective branches.

integers from 1

Grade 1. Problem 2:

Students were asked to investigate whether the number of
possibilities to write a given positive integer n as a sum of Xk
addends (without paying attention to order) is always the same as the
number of possibilities of writing the same number n as a sum of
addends so that the number k will be the largest number in each sum.

Purpose: Practice of addition and subtraction of integers.

Grades 3 and 4. Problem 1:

The students were exposed to division lattices of various

7N
N a’/

students were asked to separate positive integers into disjoint classes

integers, For instance

P G N &y D

according to the structure of their division lattice.

Problem 2:

Grades 3 and 4,
 The students were shown a routine in which one assigns to al given

and its prime factors, each factor appearing in

;integer the sum of 1

the sum as many times as it appears as a factor in the integer.

One does then the same to the sum so obtained. For instance starting

~:‘Wikthf1‘8 one gets: 187 1+2+3+3=9>1+34+3=7>1+7=8> 1+ 2+2+2=7.
~The*$tudent5 were asked to investigate whether each number greater than

~6:1éads to the loop 7+ 8.

; pUEEOSe: Practice in factorization of integers and in location of

their divisors.

Grade 5. Problem 1:

Students were introduced to Farey sequences, in which the proper
ive factions, in reduced form, are arranged in rows, in order of
itude, so that the denominators of all fractions in the n-th row
not greater than n. The students were asked to produce sequences
n-10 and discover interesting properties of this arrangement.

‘r¢w begins with 0/1 and ends with 1/1.

e 5. Problem 2:
The students were asked to discover shortcuts to the computation
ums of factions:

1/(1%2) + 1/(2%3)+...+1/(9%10); 1(1x3) + 1/(3x5)+...+1/(17%x19)
Purpose: Practice in the ordering of factions according to size and

addition of fractions.

etc.

One can easily see that all problems satisfy the basic requirements
ulated in Section 1.8. There is also no doubt that each of these problems
the potential to excite the exploratory curiosity of students of appropriate
- One could assume that the problems will be novel to the students, and

heterogeneity of the various steps of the investigation, together




with the large number of items in each step, assured their

complexity. —
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preceeding the experiment.

1. In all grades in which a pretest was administered the mean
score on the immediate test was higher than the mean score on the
pretest, for both groups, experimental and control. This tells us
that the students improved their performance in either mode of

instruction,

2. Even though the mean scores on the retention test dropped in
comparison with the scores on the immediate test, these were always
higher than the comparable scores on the pretest. This tells us
that the improvement due to instruction in either mode was of a more

permanent nature.

control group than for the experimental group.

score was higher for the experimental group than for the control
group on the immediate and on the retention test. This tells us
that in these grades the experimental approach improved immediate,
and retention, learning to a greater extent than the traditional

approach.

4.  The table shows that in grade 5 the mean teacher score and the
mean score on the pretest favored the experimental group as compared
with the control group. An I.Q. test developed in Israel (Milta)
administered to the experimental and control groups showed a similar
advantage of the experimental group, a mean of 117 against 110.
Nevertheless, an analysis of covariance, with teacher and pretest

scores as covariates showed that even when these scores were statist-

ically equaled out the experimental group still showed some slight
the control group (15.05 against 14.45 on the immediate

against 14.20 on the retention test).

advantage over
test and 14.30

5. As mentioned in the description of the design of the experiment,
grades 3 and 4 investigated the same problem, and were tested with

the same tests. The table shows a definite advantage for grade 4
in the experimental and in the control group, even though the regular

teacher of these classes assures us that néither of these classes has

3. In all grades 1,3 and 4 the mean teacher score was higher for the

Nevertheless, the mean

-~ 25 -

ever practiced, before the experiment, the concepts and skills

which were used in the study. It is our opinion that the advantage

of grade 4 is due to both biological maturation and educational

sophistication.

6. A very interesting outcome of the study can be seen in the

‘comparison of the variances of the experimental and

control groups

- on various tests. These variances are always larger for the control

gfoup than for the experimental group. This may support the idea that
an investigatory approach it is easier for the learner to embed

the material in his own frame of reference and such an embedment

~ diminishes individual differences.

7. Measuring Attitudes.

We have mentioned in the design that the second author took

vér and taught both the experimental and the control groups, in

all grades, and solved, as exercises, the examples generated by the
experimental group. This approach should have diminished the
thorn effect and limited the differences between the groups
e instructional mode.

At the end of the experiment a Likert
ype’questionnaire, measuring attitude and preference for the

cular mode of instruction, was administered to both groups in

des 3,4 and 5. The response expressed by the experimental group
efinitely more favorable than the one expressed by the control

We shall give details only about one item.

; Question §
: Did you speak at home about the exercises (in arithmetic)

> at school? The options were (1) Yes, with parents, siblings
ends, (2) Only with parents, (3) Only with friends (4) I did
eak with anybody.

Response (1) was selected by 41.0% of the
 ntal group as against 22.6% of the control group in grade
2.7% against 21.6% in grade 4 and by 40.6% against 17.6%




USE OF GRAPHS FOR CLASSIFICATION

2.8 Suggestions for Further Study OF STUDENT DEMONSTRATIONS

The authors consider this study as a preliminary step in an area of
investigation of significant importance to the teaching of mathematics by M. BALACHEFF*

in elementary school. The limitations of this study stem mainly from

two facts:
(i) The investigations were short termed, a few lessons and two problems This paper aims to give a methodological contribution to the study
in each grade. of students demonstrations, especially on the rwo points ;
(ii) The emphasis was only on practice of algorithms and no attention was ~ analyse of logical structure of a proof,
paid to the ability of elementary school children to formulate hypothese ?~for a set of demonstrations, the classification of proofs relatively to
There is a need for a longterm study which would investigate the ktheir légical structure.
possibility to construct a course of study in which in every topic taught The major part of student solving process remains unapproachable in his mind.
at school the drill and practice will be carried out through the introductio can analyse only what he gets sensible in that process. So, we choose to
of an exploratory problem. Start our study from the data which are constitued by students proof
While replicating this approach attention should also be paid to explanations.

children's capability to formulate hypotheses on the basis of patterns, , OQur work approach is based on two remarks
and to the possibility of educating children to improve their performance The language used changes, from one author to another, and for ome author
in this area. from a demonstration to another. On various modes it is a mixture of the
knatural language and the mathematical one,

REFERENCES The speech which expresses a demonstration is a list of statements, General-
Avital, S., Practice Through Inquiry in Mathematic Learning, Orbit, & 1970, 1y we cannot keep at each step results which could be used again. So, usually

R . tatement i t s t h s i
Berlyne, D.E., Conflict, Arousal and Curiosity, N.Y. McGraw-Hill, 1960. statement 1s not consequent of the one (those) which is (are) preceding

|
|
n the speech. Then, we try to give a standard representation of a demons~ }

Bruner, J.S., The Act of Discovery, Harvard Ed., Rev. 31, 1961. ‘ﬁration, which shows off its logical structure, and such as we can make

Finegold, M. and Avital, S., Ed. Stud. in Maths. comparisons.

, A . . . This we obtain ;
Gagne, R.M., The Learning Requirement for Enquiry, J.Res. Sc. Teaching 1,

1963.

y translating in first predicate calculus language the mathematical state-
) , ments used in the demonstration, Two stat : i

Nunnaly, J.C. and Lemond, L.C., Exploratory Behavior and Human Development; ~ © atton © statements are synonymous if they have

in H.W. Reese (Ed.) Advances in Child Development and Behavior

(Vol. 8), N.Y.: Academic Press, 1973.

the same translation.

By associating to the demonstration a directed bipartite graph, with one

Shulman, L.S. and Keisler, E.R., Learning by Discovery, Chicago, class of vertices (called nodes) represent the mathematical statements and

Rand McNally Co., 1966.

the other class (called stars) representing the inferences which have been

Polya, C., How to Solve it: A new Aspect of Mathematical Method, made clear in the speech,

Garden City, N.Y. Doubleday, 1956.

The graph of demonstration

- Mathematical Discovery, N.Y., John Wiley and Sons, 1962. First we must discern a special kind of starement i the hypothesis,

Because a statement can be an hypothesis in a part of the proof and

tained from others statements in an other part,
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For example : ) , x. € Im{u) E = Ker(u) @ Ker(v)
In_the demonstration of fwl(AnB) = f-I(A) f“I(B)7 the statement
xe f! (apB) is an hypothesis in the proof of f 1(A By f 1(A) £ 1(B), byt

is obtained with the last inference in which of e (A)nf‘kB) =t (AnB) exigts Y ¢ ESuch thatx = u(y) it exists Yy € Ker(u)and it existsy2 e Ker(v,

So, we do not want to merge these two kinds of statements, and we decide to
Such that y = y1 + y2

ve a name to each hypothesis. We now consider, for a demonstration, the set

mathematical statements and names of statements,

For a graph of nodes and stars, we shall call input an edge orien u(y) = uly, + o)

from a node to a star, and output an edge oriented from a star to a node.

We associate to a demonstration a graph as follows :

The nodes of the graph are the mathematical statements and the na uly) = u(yi) " u(yz) yl e Ker(u)
of statements, and the stars represent the inferemces which have been made
clear in the formulation of the demonstration such as
A statement, or name of statement, E and a statement F are»sespeg u(y) = u(yz)
tively contiguous to an input and an output of the same star if and only if
the formulation F is explicitely a direct consequent of a list of statement
where appears E. ;éou = UoV v(x) = vou(y,)
Example : -~“~‘~”*‘“-—~__%
If u and v are two endomorphism E—E such that uev = vou and
E = ker (v) @ker (w) then Im (u) < ker (v). v(x) = uev(y,) ¥, € Ker (v)
Let be x any element of Im(u) ; it ewists y such that x = u(y),
E = ker(v) ®ker (u) hence it exists y,€ ker (u) and it exists y,€ker (v) v(x) U(t)

such as y = y1 + ¥z Thus u(y) = wu(yr + y2), and u is linear hence
u(y) = uly1) + uly2) and uly) = u(y,) because y,€ ker (u). We have

o¥

vlx) = voulys) then v(x) = uv(y2) from hypothesis and y» € ker(v) hence
v(z) = u(3) and v(x) = T or z € ker(v) ; and : Im(v)< ker(v).

x € Ker(v)

%

Im(u) < Ker(v)

We obtain the following graph, which shows off the structure of

the demonstration.

It is not easy to associate a graph to a demonstration as it is for-
"by students » Because in the speech there is not only mathematical sta-
‘ ut also meta~mathematical statements which may be essential to unders-
he proof, Also, students use many different kinds of process to make
an inference. We study those problems, and for some of them we propose

s .
‘To illustrate our approach we use the demonstrations proposed by

of Grenoble University for the next problem :
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-voi er an gssociative multiplic . .
Let be G a non-void set closed under as P We associate to this formulation, the graph :

for which :
For all a€ G and b& G it exists x& G such that ax = b and ‘

¥a ¥b ¥c (ab)c = a(bc)

it exists x'€ G such that x'a = b.
Show that G have for this law a right identity element.

It is only an illustration, there is no statistical results, partic

larly the population is not a representative sample. It is made of :

- 37 students of the Scientific University first year, we name that group : pp

- 38 third year students who are studying mathematics, we name that group:LI(
Je ¥a ¢ G ae

We collect written formulations of the demonstrations,

Structure of the graph and structure of the demonstration =b

The structures property of a graph are directly connected to the fo )
of the demonstration of which it is the representation. Some of them are cha-
racteristic, and others not : b

For example :
- There is a directed circuit in the graph if and only if in the demonstratio

a statement appears among its own antecedents :

If the graph is not connected then in the formulation of the demons—
ansome inferences are not explicit. Either the connected components cor-

nd to some way of solution which the student probes, leaves, but keeps in

ormulation. We have an example of such a graph in our previous example.

S—a' 9—) -e"-e‘:w,b.adw aMa\y 2o e = oo . V ced
: : hat property is not characteristic, clearly it could be that the graph

%‘f”@%«w G O Q‘“"ék“/w -~ o"'f"‘w) A e .= A

Posaces A = o 32 L e A"ﬂ"’f(’,"":‘ asx = b- 14 Q(g/Q e 6.

(am)z_ - b can 2 dDuiieis el T .

nnected and some inferenves are not explicit in the formulation.

arative analysis of the dgmonstrations
' The representation by a graph, of a demonstration formulated by stu-

—>

== "'C"‘C) = b ca £ Lol onb amccind G

., makes clear its logical structure. So, we subsitute for the demonstrations

arison, the comparison of the graphs which represent them.

N oen s O BT }‘9 d al ove = o

. . . . R - The demonstrations comparison interest us from the logical relationms
Aee P <~U6?C an..,— P Lf‘lM drer G & ('/l rnle ]\3.&\-« Py P'/ .
veen the mathematical statements point of view. So, for a graph we consider

et of couple of nodes such as both elements of a couple are respectively

(Deug A 9)

guous to an input and an output of the same star,
‘ If two demonstrations are identical then the set of couple of nodes
heir representations are the same. But if two demonstrations are strangers,
set of couple of nodes of their representations have a void intersection.

other possibilities may occur, and to estimate the proximity of two demons-

ions we define an.Zndex resemblance.




111 : Having produced two expressions consistent with the matrix,

¢ the contents of 0 are identical.

' 1f the quantifiers are implicitly 7
it is not the case for others ; particulary those of the
: the subset of the

Index of Resemblance

Let be G and Gy the graphs with set of couple of nodes A: and A, considered, by ones of the first
respectively associated to the demonstrations D; and D, , We shall call ind
of strategy,

of resemblance the number noted R(D;,D i :
* (P1,D2) and defined by : 1. Inside that group we distinguish two subsets

1

card (A1 A A2) ‘

R(D1,D2) = ¢ who propose a demonstration as

card (A1 A2)

That index verifies :

‘ﬁg;dt ‘?Q? l%»é?gﬁ*&h&%L Que. -
a€G, bet , B 2eb/axn:h

C’émw O c\“@m‘m\m P

sh 4w
@ o b “dovask nosdhe. B e

é§;f@5> S epol e @ (3§~ ;/ e =& .awile & die. .

R(Dl; D2)
R(Dy, D)

I If and only if D; and Dy are identical

0 If and only if Dy and D, are strangers “?.ﬁ)x \'\',@.hé‘-(’e' c}\

It is easy to show that R is an index of similarity in the meaning

of the statisticians.

Index of homogeneity
For a set of demonstrations we shall call index of homogeneity the

arithmetical mean of the index of resemblance associated to each couple of

(LICENCE 21)

graph of representation.

-~ : . . ‘ X . . —B
bemonstration classifying we call it II~A ; other students constitue a subset named II-B,
For the group III also, we can distinguish two subsets

i LI = o!
Those who demonstrate 3 ifare =aand a x e =a thene e'.
1

Those who demonstrate : if a x e =a and bx e' =b then e = e'.

: 1II~A, III<B, Note that only

For a set of demonstrations we can associate to all couple of ele-
ments of that set an index of resemblance. We classify the demonstrations by

constituting classes having the best homogeneity. Hierarchical analysis give
We name respectively those subsets

us tools to do that . An other way to classify demonstrations consists to lo "
’ and one of DEUG, are not classified, because

cate them in a set of reference, using the index of resemblance, o demonstrations of LICENCE,
Now we shall illustrate by an example results which we can obtain dlations are mot enough advanced. o
‘ We give in the following table the demonstration distribution among

by such classifications. We begin by a semantic analysis which allows us to

value the clasgsifications relevance. ¢ differents categories

1 I 11 A T 111

Semantic classification

For a non-void set G which is closed under a single-valued binary DEUG 9| 11|10 21 |3 2‘ 5
operation noted =. '
A right-identity e is defined by :

Vi xze=x LICENCE 15 16) 3|19 |1 1] 2

In fact for that definition students substitute the matrix :

1«0 = [

Then we note three sorts of strategy :

Hierarchical classtification of the demonstrations
For each population we find a very low index of homogeneity :
0,076

I : Fix the content of O, and show that for any content of (] then . LICENCE : 0, 165

the equality is verified.

II : Produce an expression consistent with the matrix.



That allows us to assert directly, a very large diversity of the de
monstrations, particularly for DEUG. To illustrate that point, we give the in
dex of resemblance table of the demonstrations which we have clagsified as st These table shows that for DEUG, we can consider that each student

tegy I. had proposed an original demonstration. For LICENCE there is yet a large di-

L ‘ﬁersity, but some demomstrations can be regrouped in classes not reduced to
13 0 13 one element. For example the set {\0,14,19;31} have an index of homogenity of 0,69.
14 0 0 14 DEUG Classification fer LICENCE

We use a programm of hierarchical analysis to form the classes with

16 0 0 0 16 - .
the best homogenelity [?] . It gives us the following result :

22 0 0 0 0

2913022

40 0 0 0 0 0 \24 513440911
26 0 0 0 0 0 0 B -
3 e 0 e e e e e e XXX o XXX o YXXXAXXXXXXXXXXXXEXXX
— 27 0 0 ] 0 0.09 0 < KX e Xex . X, gxxxxxfxvxxxxvxx:%xxx
0.33 . T TOXKXXX S e e e e XX . XXX XHAXXAXXXAXAKXLXARXX XXX
’ WS XXAAXAX + o KXX o o 02X o XXX X X £ XX NAX X XUORX XK KX X XXX L
e e e s NARKEKXAL o KAX o o 0 RXXHX XXX CYAXXXLLXXXXXKXAXYX XKL
0.28 0,16 e e e e XA KAKAL o XX w0 o ¥VUXK XXX CLALXXKAXLAKYXXKXN X LHK
* LT XA XRKAR KRR o XK XXX LAY R AKX KKK XX AX XAX XXX $3X ¢
e e KRAKNXAKRAAKA . RAE . e KX GO0 KX XL XY XK XX AL XXX L XU
T T T THXXXXAXY XX KA . KAXAX KXRAXCOOOCC LKLY CELARK XXX XL LXK X KA
Ty e e e KUK ARAXXLAXRLA ALXNK XY'\Ax(x/IA\fx(A<<A(XXX<xx<xx(xxxtx;\
,YAK<<xXx<XXAxxA<XAxan)AAaxxxx(xxXXxx\tAxx<1xxxx\x*4x<xx<<xxxrxzvxx;x<<x

We keep classes which have for homogeneity more than 0,4. We repre-

sent them in the following diagramm :

LICENCE

0,33 0,20 0,22 0 0 0 0

0 0 0,07 0 0,20 0 0,15

0,25 0,14 0,18 0 0,22 0 0,27 0,18 0,20 0,36

0 0 0 0 0,80 o 0,71 0,10 0,83 0 0,30 0,33

v 10,22 0,12 0,16 0 0,50 0 0,50 0,07 0,55 0,18 0,20 0,50




We note that the node (g,na)d, , = g2 can be obtained from the

There are two important classes. One we note II on the diagramm and
s - (gaba)daa = gab(adaa> and gab(adaa) = Bupds of the above kernel. The

; and one we note I, which re- -
s {9,26} has for common kernel the graph :

which regroups demonstrations of the class II-A ;

groups demonstrations of the class I.If we state a more detailed analysis, for
ady =P

%

(bdba)dab =b a(bc) = (ab)c

those groups we find a common kernel of inferences,
For the class I, the kernel is the subgraph(x);

bd,, = (9,p2)4,, gab(adaa) = 9ap? (9,p2)d,, = gab(adaa)
B(dgatyy) = ©
9ap? b
| bes = b
bd , =P In fact this graph is the graph associated to LICENCE 9 and it is

‘bgryaph of the graph associated to LICENCE 26 !

The demonstration formulation whose graphs are in the classes
“‘,8,3&} and i4,29} are only outlines of a demonstration. We classify them
the semantic élassification using meta-mathematical statements.

This analyse allows us to classify in a relevant way 22 among the 38

onstrations. The clidsses show off are essentially those of the semantic ana-

Study relatively to a reference set
As a reference set, we have choosen the one of formal demonstration
that algebra theorem. The algorithm used gives demonstrations intrinsically
absurdum. It consists to associate the negation of the theorem to the data
(9aba)daa = , and then demonstrate that we obtain an inconsistent system (33 .

But, as a matter of fact, it is possible to extract a direct demons—
tion from a demonstration which introduces the negation of the theorem at
last step of calculus.
Among the demonstrations formulated by students we do not find demons—
rations ad absurdum. The reason is clear, for such demonstrations it is necegsa-
y.to express the associative law as :
VxVyVzWuVvlVw (xy=udyz=v)Io(uz=wwxyv=w
There fore we limit the reference set to the direct demonstratioms.

t has eight elements, which we can regroup in three subsets Refl, Ref2, Ref3.

is possible to characterize these subsets as follow :

ét)To remove the quantifiers we use functions of Skolem, so g and d are respec

Let be ASS, DIVD, DIVG respectively the associative law,

vely the functions associated to the predicates Ya b Jr =xa = b,
QYb Jx ax =b, VYa¥b Ix xa = b.

Vapb Ix  ax =b.
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The following diagramm illustrates this classification :

Put together

DIVD-DIVG ’ ASS-DIVD AS$-DIVG I
Refll Ref2 (-ﬁeEB

The comparison of DEUG demonstrations with those of the referenc

give no results, due to the very low index of resemblance. So the DEUG demo

trations, and the demonstrations of the reference set are strangers. -
For LICENCE, indexes are still rather low, except for some demons

tions. Those indexes show off a resemblance with the elements of Ref2. To p

mit a more detailed analysis we represent on the same diagramm, the graph o

student demonstration and the one of the demonstration of reference.
A bow is drawed

-~ In continuous line, if it appears only in the reference graph.

-~ In broken line, if it appears only in the student graph.

~ In double line, if it appears in both.

adab =b

a(bc)

1w

(ab)c

icence 25 - R-graphe 2

] b(adaé)

q. a=c
(92¢3)80a = 9ac® Yac
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The main difference between the student demonstration and the refe
a multipl

one,

on left each member of the equality, Each student explicits (ba)%a. = b(adaa

but does not calculate adaa'

* (ab)c = a(bc)

Licence 15 - R-graphe 7

ad

{ab)c = a(bc)

ad

'
= '
aa )
gab(adaa)//'

(9,p2)954 =

\\
(95245, =
- =

7 oo e

Licence 30 - R-grephe 7

a3

is the construction of the statement b(adaa) = ba from adaa

- 41 -

‘~It seems to be clear in these examples that the students do not consi-
associative law as a predicate, but as a syntactical rule on use of the

sis in two ways !
acement of parenthesis

pression of parenthesis.

Wwhith the graph of demonstration we have a tool to give an accurate
nogeneous description of student demonstrations.

In a first way we can use it to study the structure of demonstrations.
In a second way, using -an index of resemblance, we can use it to study
ferents processes of demonstration. It seems, that in the classification
is index, classes will correspond to a pattern of demonstration.

This classification will be relevant if :

hdex of homogeneity is not lower

ormulation of the demonstration is nor significant only by its meta-mathe-
- content.

It may be a good tool to study what kind of demonstrations students

ght or not. Is-it possible, for the demonstrations which are false, to cha-

ze the mistakes ? What kind of strategy is associated to right demonstra-

In our illustration the reference set is obtained using an algorithm
omatic demonstration. Those algorithms are combinatorial. So, gemerally,
6tkpossible to enumerate all the demonstrations. In fact there is a
ifference between the deduction rules of the students and these of mathe-
logic. Thus it might be interesting to consider as reference set the
‘é‘demonstrations as the mathematician would comsider it, or those

d in handbooks. Our approach may allows us to put foreward the demons-

ons students remember more easily, or those which show them difficulties.

les graphes de démonstration : outil pour 1'étude des démons-
trations naturelles.
Thése de 3&me cycle, Grenvble USMG, 1978.

OHNSON S.C. Hierarchical clusterirgschemes
Psychometrika . Vol 32 n°3 Sept. 1967.

BORDE J.M. Un développement algébrique de l'algorithme d'exc lusion et
quelques problémes géométriques en algébre de Boole,

Thése Grenoble USMG 1977.
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‘Students are sble - though on different levels -
r a larger amount of material and are able to

Apdres Bartal, Sarolta P4lfalvi, Jénos Surdnyi

The "Work-textbook" for gecondary-school

mathematics teaching go-called "work-textbook™ based on those experi-

has been prepared. The most important part of it
Exercise=booklet. As problem-solving ability can

¢ developed through practice, we have to provide
1upities for students to gain experience which is
riate for their age. This experience enables them
over individually the most lmportant parts of

ge. To this end methods are required which ensure
nce in the cognitive process of any student in hisg
thm, This can only be reached through the student’s
ual work even durling a lesson.

The exercise~booklet gives a possible guidance of
udents’ individual work. It breaks down theme to be
with into a series of problems, the solution of
leads the students to the discovery of the new

‘dge. The problem of different student abilities is -
| by giving the students tasks, at different levels,
 rning one and the same notion.

e complementary illustrations, questions and
direct the students’ attention to the points of
gt of a certain theme. Not everything is worth
ering nor able to be discovered. These ideas are
icated in the exercise=booklet in the appropriate
. Other texts in the exercise~booklet serve as

ies of the experience of a longer series of tasks,
epening of the individually discovered ideas, etc.
Sometimes the exercise=~booklet compells the student
ape hig discoveries: l.e. give definitions on the

of hig experience, formulate his obgervations, draw
gions, try to prove them, etc. An empty space is

1. Introduction

A secondary school project golng on since 1973
gearches for methods by which the gtudents become active
participants in the acquisition of mathematics and which
turn lessons into more effective opportunities for learning.

Lessons based on the students’ independent work
require enormous planning by the teacher. A potentially
large scope is given to the students® individual work, but
as differences will necessarily appear in their progress,
we have to plan the lessons on different but parallel levels.
O0f course, an adequate manual ig also necessary for it.

At present, the important learning aids are the
| textbooks written 1in a descriptive style, but our experi-~
é ments show that the students bardly use them: they cannot
learn mathematic from their textbooks. We think that one
of the main reasons for this im that the textbooks neither
direct nor guide the learning process.

In the first stage of the project we prepared work-
sheets for some parts of the material which were studied
by the students individually or in small groups.
Accordingly to the experiments done in the first two years
/the worksheets were tried out in 10 classes/ nearly the
whole teaching process can be built on the students’

individual work.
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left on the page for students’ formulations of answers
and on the other part of the page he will find a rectan-
gular shaped frame. The answers will then be discussed

in the class until a correct definition arises. This the
students write in the rectangle. In this way the material
is easy to survey and repeat. The new knowledge is easily
distinguished from the questions leading to it.

In the process of discovery learning based on the
exercise-booklet, students "fill it up", i.e. they write
their answers in the empty spaces, draw the necessary
illustrations, formulate definitions, propositions and
work through the texts appearing in the exercise-booklet.
We may say, with some slight exaggeration, that while
they discover the new material they themselves take part
in the writing of their own textbook.

3. Other Parts of the Work-textbook

A second part of the work-textbook consists of a
series of readings. These are longer texts than those
occurring in the exercise~booklet. They help to deepen
a theme, give a preview of some field of mathematics
connected with the theme under discussion, or present
unsolved problems etc. They serve as enrichment material

and can be used /if desirable/ again in many different ways.
An essential task of mathematics teaching is to teach

the students to read mathematical texts in an efficient
manner, which is not easy at all. These readings provide
opportunity for this too. Some hints on how to do it can

be found in the methodological guide to be described later.

The readings help with the problem of different

student abilities, because a part of them require a rela-
tively higher ability for abstraction apd a deeper under-~

standing of connections,
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A third part of the book 1s a collection of exercises.
ves exercises sultable to differentiation corre-

ing to the chain of thoughts of the exercise-booklet.
The emall encyclopedia completing the work-textbook
children summs up the important definitions, theses and
ﬁcgt frequently used methods of proving. Examples and
trations help the understanding. The small encyclopedia
piled in accordance with the toplcs in the curriculum
ig intended %to replace a manual.

‘The role of the teacher also changes when the teaching
aged on the students’ individual work. He has to with=
uring the lesson and to guide the students® work
fectly. He has to pay attention to the activity of each
p and each student, to observe whether they have under-
a~the exercise or need some further explanation; whether
gtarted by chance, in a completely inappropriate

¢tion; whether they have answered the questions posmed,

d to draw appropriate conclusions, etc. If somebody is

_ the teacher has to give him a new exercise.

fter the individual work a common discussion of

lts is essential. The summing up of experiences does
mean the detailed discussion of each question. If for
ple all gtudents have solved a problem and the diffi-
ies have been cleared up with students individually, it
nnecessary to repeat all these explanations to the

e clags. Similarly, when groups are working on different
lems the teacher has to decide which of them is of

on interest.

- The common work, the discussion of experiences and
tions means that the students draw conclusiona by

ating with each other and correct their former conclu-

» In order to have a real debate among students the

er has to guide it from the background. It is very



important that every student draws the conclusion from
the debate and understands it clearly. The teacher has
to ensure that the students correct themselves, write
down the final conclusions into the frames.
Nevertheless the exercise-booklet is not intended
to tie the teacher®s hand, it attempt to help his work.
He cah use it unchanged or take some parts of it for the
individual work of the students, or for work in small
groups, or he can even discuss the exercises with the
whole class. He can replace some exercises by other ones.
He can also congider the booklet as an example and work
out other series of exercises according to the needs of

the class etc.

4. The Methodological Guide
For the teacher a methodological guide accompanies
the work-textbook. It outlines the work-textbook®’s aim,
gtructure and the posgibilities for its use. It mentions
the different kinds of students’ independent work, the

gtructure of lessons based on the use of the work-textbook,
gives ideas for the organisation of the teaching/learning
process of the lessons and for the differentiation between

studentse.
After the general remarks referring to teaching

methods the methodological guide gives advice for the
teaching of different themes dealt with in the work-
textbooke It describes how the different themes are
connected with each other, where are their places in the
gtructure of the curriculum and the later development of
the themes. It indicates which parts have necessarily fto
be taught and which can be left out if desired. It shows
now aifficult exercises are worth solving in classes
below the average and in classes above 1t. It describes
what types of answers can be expected from students of
different abilities.

- 47 -

inrich Bauersfeld: Interpersonal aspects of classroom communication.
More elaborated and in German the paper has appeared in:
H.Bauersfeld (ed.): Fallstudien und Analysen zum Mathematik-
unterricht. Auswahl Reihe B, Band 95, H.Schroedel Verlag
Hannover 1978,

under the title: Kommunikationsmuster im Mathematikunterricht
pp. 158-170




athematical activity to take place in a community of peers

g. the classroom) and, for at least some of the time, for the

ults under discussion to be new ones arrived at in the course of
THE LEARNING OF PROCESS ASPECTS OF MATHEMATICS '

activity and at other times, to be already known and accepted

ults put which need to be fitted into a previous framework of

A.W. Bell

Shell Centre for Mathematical Education

, . hematisation
University of Nottingham -

yeudenthal (1973) describes mathematical activity as the organisation

1. Introduction fka field by mathematising, that is by forming spatial or numerical

2. Problem-solving other relational concepts within it and by structuring it by

3. Proof cgical relations. Abstraction, generalisation and representation

4, Mathematisation y‘symbols and other models all form a part of this activity.

5 Conclusions tetskii has also attempted to characterise mathematical activity.
»

ome curriculum material has been produced embodying these ideas, but
ittle or no formal evaluative work has been done.
INTRODUCTION

il iew recent research, curriculum innovation and
This paper will review recen v 1 PROBLEM-SOLVING

current thinking related to problem-solving, proof and mathematisation.

Problem-solving is the most 'heavily researched aspect of mathematical our phases are generally identified in the problem-solving process.

activity. It is here that the possibilities of the learning and use Thése are, first, an input or an assimilation phase, in which the

of strategy, and the capability to combine productive and reflective/ _goal and the data are identified; second, an exploration phase

monitoring states of mind have been studied in most detail. The most involving the production of a number of ideas connected with the

recent results suggest that the explicit learning of a structure for data or with the goal and the search for connection points among

the problem-solving process and a fuller awareness of the distinction hese; third, a point of illumination, a Eureka experience, when it

between these two modes Of operation, productive and reflective, is felt that a complete chain exists from data to goal, and fourth

is successful. It also appears that this is more possible with a verification phase in which the various links and connections are

older and abler students, though the research results are not entirely worked through and tested, and the plausibility of the conclusion

consistent in this respect.  checked and alternative solutions sought (Poincare, Polanyi 1957).

(Recent work by Greeno (1975) has shown that it is possible to

The discussion of proof will be conr~rned not simply with the formal . program a computer to approximate pupils' problem-solving in

presentation of arguments but with the student's own activity of geometrical proof problems by providing in the program the capability

arriving at conviction, of making verification, and of communicating to perform the main processes described in this outline, that is to

N : T i
convictions about results to others. Pupils' developing demands for recognise patterns or concepts, to make inferences and to alternate

greater degrees of objectivity are recognised, and their increasing ‘production activiti- s with tests of approach towards the goal.)

recognition of the need to connect a new result with agreedexisting

knowledge. It will be seen to be important, for these developments,




50

The essence of problem-

i data.
reaches a desired conclusion from a set of given or already known

However, the term is usually‘iestxicted to cases where there are at least
r

two stages in the connection process, so that some degree of search is
required, first for implications of the data and secondly, by working
3 ' .

backwards, for pre-implications of the conclusion. The train of

connection is completed when some correspondence is found between the
first set and the second set of generated alternatives (see Figure 1).

(This is the point of illumination.)

Conclusion

b)
(a) ¢

Fig. 1

Tasks requiring only one step of connection are usually referred to as
applications or exercises. The following example (Fig. 2) from an
examination paper will illustrate these points (SMP O level, 1969) .
Here parts (i), (ii) and (iii) each require the recognition, one step‘
at a time, of the relevance of some learned principle and the use of it.
in part (iv) the solution demanding the least insight would presumably
be to calculate. AC from the data given and then to use the standard
method of finding the invexse. The better method is to argue that what
is required is a matrix X, such that ACX = I. No such matrlf hés been
found in the guestion so far, but since we know that CD = I it is
plausible to consider ACD which equals AI, or A. We now have AC at
the beginning of a composite matrix and it only remains to complete it

o as to obtain I. Since AB has been shown to equal I in part (i), B
50 as

- i s
is the fourth matrix required and thus we have ACDB = I, giving DB a

the required inverse. Here the notions of considering ACD and of
subsequently completing it with B both need to be selected from a
number of possibilities to make a route to the solution. This is a

characteristic two-step problem-solving process.

solving is the making of some new connection which
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(3"
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(i) Eralusto AB.

0
)

(i) Find the value of k which mekes CD tho unit
malrig,

(i) Simplily CABD with the vahio of & fonnd ahove,
What decs this show sbout the inverse of CAt

(iv) What is the inveres of AC)

i ——

“solution
_

10

s '(0 1)
1 o
K41 1

CABL = C(AB)D
= CDh
= I

[¢8]

(i1} cp -(2 Which @ I i€ k w ~2. (Requires manipulation

inciuding k)
(111)

l-BD

This showa (CA)™

1

(1v) is

(tac)” not necessarily the mams as (CA)GX)

I
A
AB

Since CD =
ACD =
o ACLB =
- T
Hence (AC)~Ll = pp

R —

Fig. 2

The teachiny of problew-solving

Problem-solving requires attention to the data and the pursuit of the

implications of each of its components. This implies an analytical

approach to the data and is therefore connected with the trait of
field independence.

For example, it could be argued that this is

what is required, in the example above, to resist the urge to use a

direct but long method, for calculating the inverse of AC, but rather

to use the definition AC.X = I.

The other highly important factor is
. the ability to hold and co-ordinate mentally a number of different
“factors simultaneously.

This is related to Pascual-Leone's concept
of the mental space or M-space.

Both field independence and size of
M-space are factors which increase with age and in which there are

considerable individual differences, but which are apparently not

very susceptible to influence by educational factors (Case, 1975).

This suggests caution regarding the traditional assumption that a

diet of hard problems is the best training for a mathematician. Any

beneficial effect from this would depend on the incidental learning



ategies. The conflicts among these results suggest that successful

roblem-solving strategies, rather than a stretch th . g ) .
of problein & g=SSe on retching of the tegy learning depends strongly on the teacher as well as on the

information-processing capacity; it would therefore be more advantageous
to teach the strategies more directly. This is what we shall discuss

next. - )
owski (197¢) conducted an ohservational study with fourteen year
pupils of high ability in the solution of geometrical problems

Attempts to teach problem-solving have mainly centred on the question 3 .
P g Y q he showed a strong relationship between success and the use of goal

of the effectiveness of Polya's heuristic strategies or some variant o s s .,
g ented heurigtics. Thus the ability to come out of the productive

of them in improvin roblem-solving performance. In general the -
9 P P g e of thinking, to reflect and to monitor progress towards the goal
’

most successful of these have been those with students of college ox
‘;o success, However, the strategy of looking back was not improved

university age, while those with younger school pupils have not all been ing the time of the experiment. Kantowski al K
. also remarks that above

successful. Schoenfeld (1978) considered that in order to use ;
asic minimum, the knowledge of heurstics appeared to be more useful

successfully a set of strategies in a general mathematical problem- s ; .
y g g P n further information on specific principles. Ehrenpreis & Scandura (1974)

solving situation, it was necessary to add to particular heuristics onstrate a similar point. Recently, with a group of collaborators
'

a managerial strategy. He replaces a miscellaneous collection of ntoWski has made a more detailed study of problem-solving strategies

heuristics by a flow chart intended to guide the problem-solver right ed by éubjects of various ages and abilities. The results reported

through the process; this is based on the four phases identified above, ve appear to be confirmed, but there is little further relevant
with relevant heuristics attached to each phase. His subjects were formation yet available.
first year university students to whom he taught a full three-month

course of problem-solving using his heuristic scheme. 1In a smaller st of the studies on problem-solving consist of training over a fairly

experiment on the explicit and intensive teaching of a set of five mited period followed by an immediate post-test. More representative

strategies, the experimental students performed very considerably better - the educational situation is a study by Scott (1977) This shows

than the control gorup, who had practice in problem-solving without ) 5ignifiCant positive effect on achievement in geometry and algebra

organised instruction in the heuristic scheme. age 16, related to the experience of at least one year of an inquiry

ogramme at age 1l or 12. This inquiry training was with one of two

Lucas (1974) taught a university calculus course with a successful cific teachers and the method consisted of presenting the students

heuristic orientation. On the other hand Post achieved no significant ,1€h an event requiring explanation, such as the larger of two blocks

improvement in classes of 12 year olds (1967), or fifteen year olds wood floating in liquid while a Smaller sized piece sinks to the

(1976) , when taught by their normal teachers using a predesigned ttom. The student's task was to ask the teacher questions that were

General Problem Solving Program. These results tend to support the aﬁswerable by 'yes' or 'no' until he felt that he could correctly

conclusion that, while older and abler students can recognise and xplain why everything in the experiment happened the way it did

objectify aspects of problem-solving procedure sufficiently well to revious studies (Scott, 1973) had shown that such inquiry training had

exert conscious guidance on their problem-solving processes, younger ‘éignificant positive effect on the analytical aspects of cognitive
and less able students are unable to do this. However, Covington and tyle and that these results persisted at least up to the age of 16,
crutchfield (1965) had success with younger children on general qd the present study extends this result by showing the positive effect
heuristic training, and Resnick and Glaser (1975) have also worked ‘also'on mathematics achievement. In answer to a questionnaire, the

with younger children and report success related to the use of



students attributed their greater success in geometry to the fact that inly there is little or no serious attempt to develop the

the inquiry training had developed logical thought and had helped them ity to solve problems. The question therefore arises whether

to reason "behind the facts”, and that it had helped them in problem- gesearCh evidence on training in problem solving strategies is

solving and proof. Their success in algebra they attributed partly

jcient to recommend that such definite training should foma part

to the latter and partly to the contribution of the training to helping all mathematics courses. There are several reasons why one might

them to develop a strategy for inquiry. An aspect of the inquiry

autious about such a suggestion. First the problem-solving

training which may well be significant for the retention and transfer. scussed is that of well-formulated, fairly hard mathematical problems.

of the thinking skills is that each problem-solving activity was set of strategies required for solving genuine real life problems

followed by a reflective strategy session during which the students

fers in a number of respects. For example the set of behaviour
analysed the questions used and recorded earlier. and categorised them

egories used for the USMES scheme, aimed at developing elementary

according to their information-gathering value. Apparently techniques ool children's skills for solving real life problems (Shann 1975),

suggested in these strategy sessions included thinking of a start, udés defining the problem, defining suh-tasks, relating sub-tasks

middle and end to an experiment, getting all the facts, asking precise

problem, relating the contribution of other people to the problem,

questions. -These were retained during the five years between the quitinq skills and relevant information, planning action,

teaching and the study in guestion, and referred to in the questionnai

formulating the plan in response to obstacles, planning the next
by the students. It may also be significant that the inquiry sessions p[‘organising, analysing and interpreting data, relating results
activity in which all students were dware of the guestions being

group the sub-tasks to the total problem, and communicating findings.

and indeed one of their number himself built up a blackboard display se might be described in general as maintaining an awareness of

of the information being géined. This makes a reflective discussion relation of the immediate task to the overall goal, working in

of the value of the question possible in a way that it would not be if mmunication and co-operation with others, and generally organising

the pupils had been solving mathematical problems on their own. problem-solving process. This represents a more generally useful

Qﬁisition than mathematical problem-solving skills; but still there

problem-solving strategies and the curriculum are even more general thinking skills which education might be expected

develop, for example some awareness about how to arrive at well-

apart from the USMES program (for 10-11 year olds), and a section of
unded opinions on social or moral questions, including a sense of

the Open University first year course, the learning of strategies for.

problem-solving does not appear to form a regular part of any school what is relevant, and the distinction between fact and opinion.

or college curriculum. There exist a number of printed courses which ther useful general awarenesses include that of the value of group

scussion for generating ideas (brainstorming) and the value of

are discovery oriented, which ask‘many questions and attempt to genera

an attitude of enquiry in mathematical learning. Examples are the independent approaches to a problem in providing an overall check.

'he second reason for caution about embracing mathematical problem-

primary school series, Investigating School Mathematics, used widely
lving strategies is that the solving of well-formulated problems

in canada and the United States, and the School Mathematics Project

series in use in many English secondary schools. It is also true that is not even the most characteristic mathematical activity. Problem

formulation, proof, generalisation, representation and mathematical

in traditional courses, particularly in geometry, problems were set on

a regular basis. However, in the newer courses this tendency has traction have more claim to this distinction than does problem

lving as such. However, some attempt to promote the wider training in

declined and problems which are more than direct applications of

_heuristic strategies as part of the curriculum has been made by Kantowski and

jmmediately learnt material tend to be relegated to the 'puzzle corne



her colleagues, who held a problem-solving workshop at the NCTM congy

. . ‘ o

in April 1978. The problems used were of four types: alpha-numeric .
;

‘ Rule 1: Rxy = NRyx
as in the well-known CROSS + ROADS = DANGER problem, logical problemg Rule 2

Rule 2: (Rxy and Ryx) => Rxz
('"Mr. Flute does not play the sackbut ) i

.+.+'), question i
. . ) 4 s requiring Theorem: NR SSO SSSSO
mathematical induction, and arithmetic word problems.
proof: 1. R.See (Axiom)

?. R SSSO SSO (e = SS0O)
3. R 85880 SSSO (e = S§S0)

3. PRO

3. PROOF 4. R SSSSO SSO (3, 2, Rule 1)
5. NR SS0 SSSs0O (4, 1)

Historically this was recognised as an aspect of the mathematical pro

even before problem-solving. However, views about its importance 'ter (1975), following Suppes, uses a similar but simpler system, as

diverge, particularly as between mathematicians and users of mathemat P towards examining "the development of the ability to write a

such as scientists or engineers. In typical English courses, both cct mathematical proof" in pupils aged 9 to 17. Though these may

ancient and modern, proof has appeared only to any great extent in it interesting exercises, they have little or nothing to do with

the context of Euclid's geometry, and although in some countries mode essence of proof as a means of gaining greater certainty of an

mathematical courses have given a much stronger emphasis to proof, Lined result, or of embedding it in accepted mathematical knowledge.
this has often been the least successful aspect of the reform. There
is also very considerable confusion about the nature of proof, and sm(1973) also dissents:
this we shall commence by .discussing. k
"The real problem which confronts mathematics teaching

is not that of rigour, but the problem of the development

of meanlng ., of the ‘existence' of mathematical objects;

.... 'meaning' in mathematics is the fruit of constructive
activity, of an apprenticeship......."

The CSMP (Carbondale} view is that by beginning with detailed cha.ins
of inference using the stated laws of logic, pupils can acquire a fir
foundational knowledge of what a proof is without having to induce

this knowledge from the ordinary proofs they see presented by the .
Development of the understanding and use of proof

teacher (CSMP, 1972). See extracts from pupils' work (Figure 3).
pmue - [pwr, T (0="5), "S*Ii" (P AQ) =R o research of my own (Bell, 1976) I have distinguished three main

‘P? W\OY\ 5& \”q\t I‘O y~\ f\ i q\ L“')}<

e’

'lmenslons of development in the understanding and use of proof. The

1rst concerns the degree of regularity or rationality expected by

- =
K \ (‘3":““9 hn pupil. At the lowest level the pupil does not expect regularity

27T “7(( W) z Assump Fig. 3 ;

2 “'6=57R 3 Asy P n his observations; for example, pupils studying the number of non-

4 ‘(.UJAQ)-DR] <4 P’is:‘-r’ "*f(g crossing diagonals of polygons of different numbers and size, may

-~ =, 130 [ ‘

> (‘)"Q\"‘R o Ces 5 n> 5.) collect a table of values containing mistakes, particularly in regard

- 3 "\\ ™

? PP.‘\Q a & REVYR Si ”\‘:-‘- 1;'"\ to polygons with larger numbers of sides, and may accept this

irreqularity, not checking their work in expectation that some error

pienes (1973) appears to suggest that the final level of proof in has occurred. Another example occurs in responses to a coin-turning

school mathematics is a purely formal system in which strings of problem (given three coins showing tails, obtain three heads by a
symbols are transformed according to stated rules; after sketching a succession of moves each consisting of turning over two coins).
study of Lotally ordered sets, the following proof that 2 comes after

4 is given:




There is a distinction here between pupils who assume that the AUDING A SouanT
Authe A Souayr

continuation of trials must eventually produce success, and those who

I you want to multiply Ly ten, you can add a nouat; for

recognise that this is a rule-governed situation to which there is a

axomply, 243 x 10 « 2430,

definite answer - possible or impossible. The ability to make and use

1. Is thin true for all whole mumbera?

2,  Exploli why your anaver im right,

records of trials is important at this point. Later there grows a

sense of the value of objectivity and of public acceptability of the

© yzA<\k v hoa

knowledge being discovered, and pupils may attempt to verify for Whed eues

themselves a relationship discovered by another. It is then necessary ® becound Wit &kxukq weunloir Qe
to develop the ability to work with statements, treating them literally, * bﬁs ‘o you JUAA' add A &

rather than fuzzily; they need to be sufficiently precise to be capable ceq e loo“+b.>< lo =A kﬁ&ﬁij

of confirmation or refutation. For example, one fifteen year old boy,

' © L6606 N 1o . 47004290
@ 2 o o 21 ‘).".?5‘0

investigating the incidence of junctions or oxders of 3, 4 and 5 in

networks, asserted that "with bigger networks, more 4-junctions were

necessary", and confiymed this by reference to his own somewhat

Thok QUntS U ko Vam ‘xﬁﬁ\&~

idiosyncratic collection of examples. His statement needed to be

made more precise and subjected to check on other pupils' examples.

Related also to this dimension is the developing awareness of the Fig. 4

set of elements for whch a given generalisation holds, with an

increasing attention to defining the boundaries of such a set and

third dimension of development observed was the level of

the properties of special elements such as O and 1. For example, in .
histication of the proof techniques or logical transformations

the coin-turning problem, a clear awareness of what is the set of .
h are available to the pupil. These range from the awareness of

possible moves is the key to recognition of the compellingness of the ,
value of an induction-type argument, seen at the elementary stages

proof. X
a demonstration of how a case for n + 1 arises from a case for n;

er techniques, such as reductio ad absurdum, which involves the

A second dimension refers to what I have called the explanatory quality

ption of the truth of a hypothesis which one in fact knows to be

of the proof response. This implies the recognition that a proof ox L. .
lse, also the distinction between theorem and converse, or implication

explanation of a particular result must go beyond the restatement of

equivalence. These demand considerably more of the quality of

the result itself and must connect it with existing knowledge, avoiding .
;ellectual detachment which Piaget recognises as one of the important

implicit circularities. For example, when asked to explain the

mponents of formal reasoning. For further discussion and illustration

property that the addition of a O to the end of a number had the effec ‘
these developments see Bell, 1976.

of multiplying by 10, some pupils were quite unable to penetrate the

property and simply gave examples of its use and reasserted its truth

Hiele (quoted in Wirszup, 1976) has defined five levels of develop-

(Fig. 4); while others, having more sense of explanation, appealed to
nent in geometry which correspond fiairly well with the stages observed in my

the algorithm for long multiplication, and showed that an application
rk. The work of Piaget, particularly in The Growth of Logical

of this, using the multiplier 10, produced the quoted result, not

inking, also bears closely on the present discussion and indeed in

realising that the algorithm itself depended on the property being

proved.
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content of these theorems was easily understood, and that

the
jor teaching effort required was in expressing the proofs in

our study of this question we draw on many facets of Piaget's general

description of the development of adolescent thinking, particularly se symbolic form. This proved possible in 17 instructional

with these pupils, but one might question its value. It

ons
1d justify itself only if such modes of expression were taken up

the development from egocentrism to the sense of the public nature

of knowledge and the value of public verification.
:sed elsewhere by the pupils.

Another approachto levels of understanding in proof is provided b . . .
PP 9 P p rded by periment with sixth form pupils (aged 17) was conducted by myself

van Dormolen (1977), following van Hiele. He distinguishes three

dmonds (Bell 1976) . The criterion tests in this case required

levels of proof, related to the levels of abstraction at which the

judgement of the validity from complete or incomplete sets of

pupil is working. At the first level the pupil is concerned, say,

es, examples of complete explanatory arguments, of fragmentary
with a particular isosceles trapezium or the rotation about 0 of a ‘

planations and of general restatements of the data containing no

particular point of the plane or the sum of a known number of . . N . s
A —_— jlanatory quality. The teaching included some discussion of these

consecutive odd numbers. At this level the pupil is concerned with

nts in relation to proofs written by the different pupils and passed

the single particular object given, so, for example, his proof that

und the class for discussion of validity. The results showed that

the diagonals of the trapezium are equal consists of measuring them

ability to detect an incomplete set of cases was improved, but

with a ruler. At the second level the object is seen as the

ability to recognise a complete explanation was not significantly

representative of a class of similar objects and an argument is given

écted. For example, one question in the criterion test required

which applies in principle to this whole class. For example, the

judgements of the validity of the following two arguments in a

observation that the trapezium can be reflected in a.line of symmetry, : . .
oblem called 'Add and Take'. 1In this problem it is supposed that

though expressed in particular terms, would apply immediately

umber between 1 and 10 is added to 10 and then taken from 10, and

to the general case. These arguments have been called quasi-general . .
e two results added. The question is whether the result will always

arguments above. The third level is that in which the'particular
the same and why. The responses proposed are as follows:

situation is seen as a facet of a general system of defined constructs

and of propositions describing their relationships. The argument

at this level is expressed in fully generalised terms using the

particular objects merely as illustration. For example, the argument Susan

The result will always be 20. Xf you chose a number between 1
and 10 and add it to 10, then if you take the firet number avway
from 10 it will be whatever is needed to make 20,

about the trapezium begins by giving a definition of such an object,

and that about the rotation deals with the rotation of a general

i ¥
point (a,b) . vonne 1

Always 20. Whatcver you add you always take it away 8o it
cancels out. But as you add 10 and take the nusber fxom 10,
you get double 10 which is 20. -

studies on the learning of proof

Have these pupils proved their answers?

King (1973) reports the development and testing of a unit of instructiol

Susan's: Yea/No . Yvonne's1 Yes/No

on proof for able 11 year olds. The subject matter consisted of six

Give your xeasonss

theorems of the kind suggested by the Cambridge (Mass) Conference on

School Mathematics (1963), for experiment with pupils of this age:

the first theorem was, "if N|A and N|B, then N|(A + B)", while others

extended this to A - B, A + B + C, and converses. It would appear




Although it is clear to us that the second of these arguments contains

the essential points of a valid explanation while the first merely

restates the problem, this judgement was found difficult by the pupils

who tended to demand further justification of the fact that adding and
subtracting the same number gives zero. This perhaps highlights the

fact that in actual proof activities judgement is always required

regarding which aspects of the argument can be assumed as obvious and

which require exposure.

The place of proof in the curriculum

Proof may appear in the curriculum in three distinct ways. First, as.

informal deduction, as when one asks of a newly discovered or displayed

principle, is it always true, or why is this true, and one finds some

general argument or global insight which establishes conviction.

secondly, as deductive exposition; this ranges from explaining why

minus times minus is plus rather than simply asserting it, up to the
presentation of an entire course or a major part of it within an

axiomatic framework., Thirdly, as the activity of systematisation, whe

a collection of already known materials in a particular topic area is

Iy 3 - =3
examined and organised deductively around one or more majox theorems,

the others being shown to be consequences of it or extentions of it.,:

Of these, at the ages under consideration, that is up to about 16, I
think that informal deduction has a big part to play, deductive exposi
is not very important, and the activity of systematisation is a desir

element of the course for the ablest pupils.

An example of the abandonment of an axiomatic framework is seen in the

following extracts from the Scottish course, 1965 and 1975 editions.

i

98 GEOMETAY
F. The circle
From the fact that a circle possesses rotarional symmetry about its
centre, we deduced that:
{1} equat chords, equal ares, and eqaal angles at e centre go to-
gether . )
(i) the length of an arc is proportional to the size of the angle sub-

a_x
tended at the centre P ”)

(i) two chords are equal = the chords are cquidistant from the
centre,
) .
Fia. 6

From the foct that every diameter of a circle is an axis of biluteral
symmelry we deduced that!
(i) a dinmeter perpendicular to a chord bicects the chord
i} a dismeter which bisects a chord is perpendicular to it
(iii) the perpendicular bisector of a chord passes tpmugh the ceatre
of the circle.

162 GEoMETRY
Revision Topic 9 Rotation and Circles

Reminders

! A roracion is 8 transformation of the planc in which sl points are
rolated about a given centre through an angle which is fixed in

magaitude and sense.
Every linc in the plane is rotated through the same angle.
The centre of rottion is an invarine pomt,

2 Rotatianal properties of the circle. In equal circles or in the same

circle,

equal angles at the centre

A
< cqual arcs subtending the angles ‘ 3
< equal chords culting off the arcy 8 4
<= equal sectory A ' \
) Ay B

[

3 Equal chords of a ciscle are equidistant from the centre. Churds of a

~circle which are equidistant from the cenire are equal,

4 Avregular palygon of n sides can be inscribed in a circle by drawing n

equally spaced radii and joining their ends.

5 Properties of the circle by bilateral symmetry.
a The perpendicular from O 1o AR bisects AR,
» Thejoinof U tothe midpointof AB s p rp
to AB.
¢ The perpendicular hisector of AB passes through O, A
We inay use Pyit " theorem or trig i
cal calculations in tciangles ke AOAM.

6 The vquation of u circlz with its centre ot the otigin and rayius r is

xpylapd,

drther discussion of these questions and an example

ity, see Bell (1971-4); also Sawyer in OISE (1967), and Willson

of systematising




an example seen by myself occurred when a student was investigating

_the problem of dividing a given square into various numbers of smaller

A recent hooklet for 15-16 year olds, published by the Leapfrogs group (1
pLrogs group _gquares. She had succeeded in dividing the square into 4, 9, 16 etc.

and entitled, 'Conversations about Pythagoras', contains an excellent :
smaller squares, but could not find other ways of division. The break-

discussion both of the different kinds of proof of this theorem,
through occurred when she recognised that what had been done to the

embedding it in different aspects of other knowledge, and also of the
given square could be done to one of the smaller squares, as shown in

nature of proof itself. ]
_Figure 5a. This was a crucial act of mathematisation: it involved

abstraction and transfer of the mode of division. Moreover it can be

4. MATHEMATISATION repeated indefinitely. A further breakthrough occurred when it was

recognised that the reverse process is possible - a block of small

squares can be made a single square (Figure 5b).
This term embraces the processes of mathematical abstraction, gq 9 g )

generalisation and representation. Its use implies an attempt to

encapsulate the essence of mathematical activity. Wheeler (1978) has

collected papers on this theme from a number of mathematicians and
educators. One of his own examples of mathematisation involves activity

with a set of coloured prisms and cubes. With these it can be seen tha

eight small cubes can be put together to form a certain larger cube,

and this can in fact be done in two ways with size 1 cubes making up

SRS

Fig. 5a

a size 2, and with size 5 cubes making up a size 10. The recognition
that the relationship exists independently of the particular size of

cube is a simple example of mathematical abstraction. Another is when

a set of 10 flat tiles is assembled to make a cube, and then the tiles ‘The two examples just discussed show aspects of mathematical abstraction,

are each pushed to the side a little until each overlaps the one below that is the recognition of some structural concept in a situation. An

by a small amount. The shape is no longer cubical but the volume example showing a different aspect of mathematisation, that of

remains the same. What of the surface area? This has increased; by representation, is the '23 francs' problem used by L. Johannot (1947).

how much? What is the maximum amount by which it can be increased? This states, "We both start with the same amount of money. Then I give

Is there a limit? Suppose thinner tiles had been used to make the cube. _you 23 francs. How much more than I do you have afterwards?". The

What would now be the result for the surface area. And so on. In this problem was posed in this form, and if not solved correctly at first,

example a physical transformation has provoked questions about four variations were offered to see if the subject could use them

abstractions which have soon led to speculation about possibilities successfully. These were (i) a concrete form in which the initial piles

which are beyond those capable of being represented by the concrete of money were representated each by about 3 matches, and one or two

material. Although the normally accepted story about abstraction is matches were transferred, (ii) a diagrammatic form in which the initial

amounts were shown as rectangles or lines and the transferred amount

= ‘a4 ;
marked off = —~p—wq (iii) a numerical particularisation,

that it takes place by observing the common elements in a set of
particular cases, in fact it seems more often to be the case that one
becomes aware while manipulating a single particular situation that
some elements in it are arxbitrary, and thus the particular case
represents a generality. This situation also contains a feature some=
what characteristic of mathematical abstraction, that is of the awarenes

of an infinite set of possibilities.
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alogy. 1In my view this process has a very great part to play in the

for example, starting with 50 francs, and (iv) an algebraic mathematic“l education of the non~specialist student. The existence

representation x + 23, x - 23. The subject was generally first and nature of this aspect of mathematical process is generally well

questioned to see if he could supply the alternative form. Only the understood so we shall proceed immediately to consider its place in the
oldest subjects were able to generate these various representations Cgrriculum (for a description see Hall, 1972).
spontaneously. The most essentially mathematical aspect of the handli;
of this situation rests in the relating of the various representationg

Modelling

rinell has for the last ten years been developing courses with this

one with another. It is the ability easily to make the transition
between them which marks mathematical competence.

spect of mathematics as a basis for pupils aged 17. An example of
ormell's method of "projective modelling" is the following. A possible

Abst tion and Generalisation new method of building high rise flats is considered. Each floor is
strac . 3

built on ground level and on completion of each floor the building is

In the discussion so far mathematisation has not been separated out aised by hydraulic jacks sufficiently to enable the next floor to be

into the strands of abstraction, generalisation and representation. uilt underneath. Estimates are made of the cost of each floor with

It may be useful at this point to draw some distinctions. Crudely, the foundations, of other overheads and of the cost of raising each

generalisation takes place when the set of objects under consideration floor to this position. Questions are asked regarding the average cost

is extended; in abstraction, a set becomes regarded as an element of per flat for buildings of various heights, and whether there is a

a new higher level set. Thus generalisation is related to the limiting cost to this average. The model underlying this example is

3000

inclusion relation, abstraction to the set-element relation. To come £ the form 2.5n + 400 + = , (Knowles, 1971). One aspect of this

a little nearer to reality, generalisation usually involves seeking course is the learning of modelling itself through a number of exercises,

for the limits of the set over which a certain property is true; the starting from hypothetical propesals, such as the installation of ridges

result is a statement of the generalisation with its conditions. The on a road to slow down traffic, or the design of a horizontal transport

prior identification of the property in question is an act of abstractl system from town centre to station in a given town. The other aspect

Thus, for example, starting with the observation that 24 x 63 = 36 x4 of the course is that the study of functions, such as the linear,

an act of concept recognition leads to the question, for what numbers quadratic and other polynomial functions, is conducted in the context

X 0 ved! = 'de! 'ba'. ti . ]
.a, b, ¢, d is it true that-\ab' x 'cd dc' x 'ba Investigation of such a hypothetical model whose properties are explored. The writing

establishes the conditions on the numbers a, b, ¢, d for which this of a modelling essay originally formed part of the examination of this

statement is true and the statement together with the condition then course, but this has recently been discontinued, partly on account of

constitutes a generalisation. Processes such as that by which the sin problems of assessment. Ormell, following Peirce, describes mathematics

of an angle, initially defined in a right-angled triangle, is redefine as "the science of possibility", and this displays the purpose of

"in terms of co-ordinates and a rotating arm so as to provide a definit mathematical modelling as the prediction of the likely effect of changes

for angles of any magnitude, are better described not as generalisatio in a given situation. The strategy most often used at the start of a

but as concept extension, which is an act of abstraction.

modelling activity is to change something in a situation and to observe

_ the consequences of this change. Classification and comparison can
Representation, Symbolisation pnd Modelling

then be made. At this stage is it valuable to have at one's disposal
If generalisation is the characteristic pure mathematical process, thal a range of forms of symbol and graph, such as arrow diagrams, Venn
of applied mathematics is modelling, that is the representation of some diagrams, Cartesian graphs, tree diagrams. A knowledge of the basic
situation via a diagram, a symbolic expression or some other form of _ structures of sets, relations and functions can also be useful in

enabling one to see what kinds of mathematics to apply.



Symbolisation

An example of how different symbolisations are possible in a given

situation, each of which has its own distinct advantages, is provided

by the game of Frogs. 1In this, scme pegs of two colours are arranged
in a row, separated by an empty hole. Red pegs, let us say, move to
the right and blue to the left. They may either slide one space, or
into the hole if adjacent to it, or jump into it over one peg of the
opposite colour. The object is to interchange the colours in the leas
possible number of moves. To pursue this investigation some represen
ation of the game is necessary. The most direct one is that in which
the position of all the pegs is recorded in a row after each move.
However, further study makes it clear that to describe a move it is

sufficient to state which colour is moved since there is always only

one move possible for a peg of a given colour. Thus a whole game can
be recorded as, for example, RBRBR. Alternatively, it is possible to
record simply whether a slide or a jump is made. This also turns out
to describe a move uniquely. These‘briefer forms of representation

enable patterns of moves during a given game to be recognised and to.
be extended to longer games. Also of interest regarding the potentia
of a good symbolisation is the following diagram which displays all

the possible states and moves of the game of Towers of Hanoi with
three pegs and three discs. In this the pegs are coded A, B and C,
and the discs are coded by position. The first letter denotes the pe
on which the largest disc is placed, the next that holding the next
largest disc, and so on. On this diagram it is possible to see exact
what sequences of moves constitute minimal successful games (Jullien

1972) .

TAe fA oLc

question which arises in relation to symbolisation is whether for

e persons the use of a symbol to represent the movement or object in
self yepresents a difficulty. Such slender evidence as we have from
omparison between two groups of children w-rking on reflections and

ns of a hexagon, one using a teacher's symbolism, the other

‘sing their own, suggests that the difficulty resides not in the
~liem itself but in whether or not the concept which the symbol
otes is itself well understood (Lunzer, Bell and Shiu, 1976).

udies by Collis (1975) and kiichemann (1977) also support this
chusion~ It would be interesting however to have further evidence
this question. We display in Figure 9 two questions originally used
ghe Australian Council for Educational Research which might be used

explore pupils' abilities with regard to the adoption and use of a
mbolism.

Ji1l and Fred arrange to play a tannis tournament under the

following rules:

The first person to win 2 games in a row or a total of 3 gamas
wins the tournament. The following diagram shows tha various
ways in which the tournament could occur. (J represents a win
of a game for Jill) F represents a win of a game for Fred.)

;<J<:<,<j

stert
J J
J<:/ J<:: s
3 < £ <
. . F F
* 4. How many ways £an the tournament posaibly occur?

A 4 c 18
B 10 D none of the above

Fred has three clean bottles, one large, cne medium, and one

small, called L, M, S respectively, He also has a large tub
of water.

L can hold 1k times as much as M,
M can hold 14 times as much as S.

An 'f' in front on the name of a bottle meana that it is filled
from the tub. For example, £S5 means S from the tub.

Similarly an 'e' in front of the name of a bottle means it is
emptied into the tub.

A hyphen batween the names of two hottlea means that water is
poured fram the first named bottle into the second until the
first one is emptied or the second one filled.
7. wWhich one of the following wauld leave S half full?

A fH, M-S, eS, M-S .

B fM, M-L, £S5, $-L

C It can be dons, but not by either of the ways
shown above.,

D It can't be done with the means available.

Fig. 9



Krutetskii (1976) has collected sets of exercises which expose the

difference in capability between able mathematical students and others,

Some of these consist of sets of problems where the same mathematical

structure is embodied in a number of different contexts. This Mathematisation in the curriculum

. f common structure is an example of mathematical abstraction The ability ise i y
; to mathematise is undoubtedl i
E a universal human capacity,

but it lacks the unlimited possibility which exists in the examples . .
like the ability to talk or to represent by drawing (ATM, 1977). It

We include here, for comparison, Krutetskii's own list of

given above. ‘ - .
seems likely that if mathematical curricula were focused more sharply

mathematical abilities. :
on the development of this key ability, many people could reach higher
levels of mathematical competence than they do. Little work of this

kind exists at present but we shall assemble such relevant evidence

1. Obtaining mathematical information
as we can.

A. The ability for formalized perception of mathematical
material, for 'grasping the formal structure of a

roblem. '
P A most common type of generalisation is that in which a sequence of

2. Processing mathematical information situations gives rise to a sequence of numbers. For example, a row
I

A. The ability for logical thought in the sphere of of joined triangles may be made and the number of matchsticks required
. e

guantitative and spatial relationships, number and
letter symbols; the ability to think in mathematical
symbols. .

B. The ability for rapid and broad generalization of
mathematical objects, relations, and operations.

related to the number of triangles formed. Wills (1967), using a

number of problems of this general type, taught high-school pupils a strategy of
trying small numbers, then somewhat bigger ones and then by seeing

what operations needed to be performed with the bigger numbers, the

¢. The ability to curtail the process of mathematical
reasoning and the system of corresponding operations;
the ability to think in curtailed structures.

move to the expression of the general formula, both verbally and

symholically. This straéegy was successfully learned.

D. Flexibility of mental processes in mathematical activity.

E. Striving for clarity, simplicity, economy, and rationality In England a number of schools and groups connected with the Association

of solutions. " i
of Teachers of Mathematics have carried such work further and developed

¥. The ability for rapid and free reconstruction of the
direction of a mental process, switching from a direct
to a reverse train of thought (reversibility of the
mental process in mathematical reasoning) .

pupils' abilities to formulate questions, to generate examples, to

seek generalisations and justify them, and to ask further questions
extending the investigation. One schvol has a special O level

examination in which 40% of marks are given for the assessment of four

3. Retaining mathematical information tend . . )
extended investigations of this kind, done in the pupils' own time

A. Mathematical memory (generalized memory for
mathematical relationships, type characteristics,
schemes of arguments and proofs, met hods of problem-
solving, and principles of approach.

As an example, one pupil following this course began with the following
problem:

4. General synthetic component
I have a number of sweets which divided into 4s leaves

remaindexr 2. If divided into 5s, 1 is left. How many

A. Mathematical cast of mind
sweets have 1?




The sequence of possible solutions for this numerical example was first

found, and then the generalisation was formulated and explored for the

¢ the most striking examples of mathematisation activities by

of any divisor and any remainder. A partial but not complete conjectyr,

\ers and pupils are given by Goutard (1968, 1970). The following

rt of a 'free composition' by a six year old, after six months

regarding the differences of the obtained series was formulated and jys

empirically, and a definite procedure was found for deciding the startj

hool, working with Cuisenaire rods.

number of the sequence (this piece of work is contained in the Appendjx
Bell, 1976). .

The Leapfrogs group has produced a series of some 20 small booklets for

pupils aged 9 to 13 which contain many situations starting from games ¢ \l°/f3T = Y47 1VI5L -+ Wige-
1 \m“
cimple structured material or interesting situations, e.y. codes, set up :\XT'X//; S) = 0 + VIt
i - Vet = ¢o =\
for children's explorations and generalisation. The South Nottinghamsh -4- \Xﬁﬁo:‘: — /6;"_:. é -
project has also based its course for 11 to 13 year olds fairly extensiv VIE +/12) =+~ /{L: 4 é:)(
on such activities (Bell, Rooke and Wigley, 1978). /3 8= XaXe=

papert (1972) has exploited the use of the computer with graph plotter ay

also with a mobile artificial turtle for giving quite young pupils experi ;
gure 7 is from one of the Leapfrogs booklets. It shows activities

of characteristic matheamtical activities. They attempt to make the tuxﬁ

wolving the controlled creation of patterns and working with

describe patterns of increasing complexity using sub-routines, iteration

and partial solutions and testing for the cause of errors. presentations -

A group of the Association of Teachers of Mathematics, in preparing propo.

pictures Musical systems

% O o Flve coloured oot . .. | There ere verious kinds of syttems which can be used for meking tunes. Here iy one way:

for new mathematics courses for 16 and 17 year olds, based their course g

- oncepts of generalisation and modelling and tested exami I Choow thres of the ‘whita” noes:
the concep gt n and modelling and tested examination quest B @ O wweshotua | c0.6.£.0.A.8 Itevring with middie c).
: . N E i .G, A.
designed to evaluate pupils' capacity for generalisation (ATM, 1978). eeo Then they wave shufffed agein using the e ations o thess thres note:
1 rule. : l.caa 2.Caad  3.acO  4.AaC  S.aCa  6.aac

. i tin and again, 3tifl using the Now thiow & dice syverst times (o pick a sequence of thess combinations,

The Mathematics for the Majority Continuation Project produced activitie 1t cotild be nated down ike this: % @ ; Suppore the dice cames dowm: 5 ' . P
~ ' i 3 ) i
jess able 14-16 year olds based on games and investigations where simple © Thisgives s string of notes: GcA coa  coA  aco Aac
H-.
mathematical strategies were called into play by situations requiring The pattarns mada by the pegs were copled by aticking lm" . - — — S
coloured squares on papar. dJ o £ k-3 -

decisions (Kaner, 1974).

At the 1979 IGPME Conference, Vermandel and Cohors-Fresenborg identified t ':;'.:':x;:;:::,:,::ﬁ:r“mm'

ond you heve s tune!

thuffles sll the pags ware back where they
1 you want on shuffling with this rute you'd
ound. th 1sma set of patterns 2gain.

process of abstraction and of interrelating a situation and a symbol syste You could make it mara Interesting by changing the timing and Introducing sccents.

B If you know enough sbout music you might try the same system uting tha “black’ notes
i ~ which will probably give you bettsr tunesl And you could try e similer system starting .
! with four notes, Or invent s quite different system,

as constituting the essence of mathematical activity. The latter also
13ts trying to make ‘clreular’ drawings of what

presented activities with 11 year old children involving the desigyn of

Using dice it one way of getting a random sequancy of rumbars, Thepe sre ather ways.
Inside the front cover of this book thera it a pattemn of bleck and white squares meda
uting numbars from & telaphone dirctory.

automatic (e.g. coin operated) machines from bi-stable units. The pupils

Reading down a column Just the fast digit of esch numbar was used: 208
if it wes aven o syyare wes colovred in W18
i it wat 0dd & suiore was left white %818

Jtes

H]lll_l S

had to interrelate descriptions of the machine's operation, the physical

bi-stable units and diagrammatic representations of these. Lowenthal

14ms naed eny ruls for shuffling any nymber of objects.

have 1o choota some wayt of modelling this. You could make drawings like
0ve ar Dihats you can invent, Or you might use string (a1 in plaitingl, or nails snd
red wite, milk strawy, o any other materity that you can find » wey of using.

described work with 8 year old pupils involving the representation of simp.

coin~tossing games by graphs, and here again the emphasis was on the trans

lation between sjituation and representation.



CONCLUSIONS
SR me e

See also the ATM books, Notes on Mathematics in Primary Schools and
Notes on Mathematics for Children. 1t will be clear that the kinds of work reported here differ greatly

s between the three aspects of the mathematics considered. (It

A strategy related to symbolisation which 1s developed by some of the ahould also be admitted that work on the development of algorithmic

_thinking in relation to computers has been neglected entirely.) 1In

South Nottinghamshire Project material is shown in the task illustrateq
problem-solving there has been substantial research, inspired by

below, Figure 8, entitled Table Moves. In this, quarter turns of the
polya's work, on the possibility of teaching Polya's set of heuristic

table anti~-clockwise about the leg A are denoted by the symbol A and
‘Strategies at various ages, but few attempts to study pupils'

thus a word such as ABCDBBD describes a sequence of moves of the table

around the plane. Questions such as whether two different words may _spontaneous problem-solving activities, or to identify levels of

'devalopment,which might assistthe design of more sympathetic
_ gurriculum interventions, to ehhance pupils' problem-solving

TABLE MOVES IIT - ' powers. In proof there was some research to report on developmental

dimensions and levels. In mathematisation (representation, generalisation,

¥ou will need apotey paper nd tracing papes. apstraction) there was experimental curriculum material for various

ages to describe, but as yet no evaluation of its use -~ indeed, little

x & v

. e -

1l
\
i
1
4

relevant test material exists, though some is being developed currently

at Nottingham. My own view is that progress in the development of
pupils' capacities in these general processes of mathematics is most
likely to come from teaching based on pupils' investigation of problem

situation, selected and arranged so as to foster the learning of

Move the table from position X to position Y using quarter

tuxns only. coherent bodies of mathematical ideas, with interactions among pupils

H moves does it take? N . P s
ow many moves dogs in the group, and with the teachers' intervention mainly taking the

Draw and describe 'your maves. . .
form of guiding by general questions which it is intended that the

‘pupil will eventually take over as strategies. For example, 'Make
Fig. 8

up another similar example', 'What happens if you change it in some

way?', 'Is it always true?', 'Look back and note what you have done'.

represent the same displacement of the table arise, including the The key concepts in the three areas we have studied are in problem

possibility of identity movements and of how to Qecide for a given solving the ability to maintain the tension between productive and

displacement what is the shortest sequence of moves which will achieve

reflective modes; in proof, the need for a group in which to communicate

it. Throughout this study the interaction between the geometry and th and defend newly discovered propositions, and in mathematisation, the

algebra is being explored. Each time the question is whether an algeb need for material which promotes work which inter-relates the particular

algorithm can be found to correspond to a given geometrical movement’o and the general and the situation and its representation. Perhaps the
relationship. This principle can be explored also in other areas of greatest challenge is to produce material which fosters these develop-
the curriculum and made explicit. ments and at the same time develops the pupils' knowledge of important
particular mathematical ideas. For, as Gagné has pointed out, effective
action requires not only strategies of thought but also the possession

of a well-organised set of particular intellectual skills.
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Alan J. Bishop, Department of Education, Cambridge Unjiversity, U.K.
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ucational development in Papua New Guinea. I want to describe some of

e data I obtained 'in my research there and tc encourage you to think what

may imply about children learning mathematics in your own cultures and
ountries. Jerome Bruner once said that the last animal to discover water

8 the fish. I think it is most instructive to step outside one's own
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_ The student was asked to make models using plasticine

culture for a while to see what it is about the cultural "water" which

helps to support and sustain the mathematical “"fish" living in it. ncorners"” and cocktail sticks, based on drawings. The

. drawings used were similar to those used by Deregowski

I have another motive. It is all too easy when listening to (1971*)' They concerned the use of cues such as shaping,

dotted lines, etc., to indicate depth.

descriptions of research, to generalise. Particularly so because we,
The representation of a three-dimensional object by means of a two-

being interested in mathematics learning, know about ‘generalising' anq i

importance. It is almost as difficult for us to stop generalising as i ensional diagram demands considerable conventionalising which is by no

jmmediately recognisable by those from non-Western cultures. Two

is for some people in certain culitures to start generalising.
the Highlands students produced perfectly flat, 2D objects when shown

o following diagramss

‘ AN
(0 | L

R

In an International body such as this I feel it is very important %
recognise that as well as sharing a common interest in mathematics learni
there are many differences between us. In particular, what may be the k

case in one country, or culture, may be quite different from that in

another country, or culture. I hope that my data from Papua New Guinea
will be a strong reminder of this.

I was testing there, in great detail, twelve first year University

students, who were therefore already highly selected. Their ages varied
from 16 to 26, and they were from three specifically chosen parts of the

countxry, the Capital, a Highland region and an Island region. They were 4 is clear that these students were unfamiliar with the oblique

onvention where the front (squa,re) of the object (cube) is drawn and the
rest displaced from it. Only the Manus students and two POM students
roduced the same objects that Western students would produce, i.e. part
£ a cube (1) and a triangular prism for (2). Perhaps the best way to
indicate the other students' problem is to say that if (1) is part of a
cube then the plan view should look like this

However, if the plen view is that then the front view will not be as shown

studying a variety of courses, but all were entering a field of technolo,
eg. engineering, agriculture, architecture, cartography, accountancy, et

My research was concerned with the visual and spatial aspects of

mathematics and I usedapproximately forty different tasks. (I have

written two reports about this work, listed at the end). It would be

impossible and inappropriate for me to attempt to give all the details in_
this short paper. So, what I will do is to summarize the main ideas and on the card.

give a few specific examples which will illuminate my general comments.

rvesults will be grouped under five main headings: Picture Conventions, Several students made shapes which had the "correct" front view as on

the card but the plan view was either j or even
a a

Drawing, Visualizing, Language and Cognitive Characteristics.

(a) Picture Conventions It was clear from several tasks that there

existed a general unfamiliarity with many of the conventions and "vocabu‘lf

There is of course no information in the disgram which says how long "a'

of the diagrams commonly used in Western education and vhich are now ente is, merely our visual experience with foreshortening and our practice with

ing PNG schools. Some tasks showed this rather dramatically because they
focus directly on the convention.

the oblique convention.
For example, this one:
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Other tasks, which involve understanding conventions plus other g
were even harder. It has often been repor{ed that studeﬁts from non-Wegy
cultures are poor at spatial skills, but often forgotten is the fact tha
"pictorial" spatial tests invariably involve conventions. We are so
familiar with these that we take their knowledge for granted and assume
universality of understanding which is quite erroneous.

Conventions are of course learnt, as are the reasons for needing i The student was asked to sketch the block as it appeared to him.
and the relationship between the pictures and the reality they ave

conventionalising. The hypothesis is therefore provoked: perhaps much In this task, unlike the first, the student must make the decisions

found difficulty with spatial tasks lies in understanding their conventi 2t to include and what to omit and he must imagine what the "ideal"

and that if these are known by those people, from both non-Western and ure) is that he is trying to reproduce. Several students could not

Western cultures, who are supposedly weak spatislly then perhaps they wo her ever having been taught how to draw real objects. It was possible
tain ;improved drawings by pointing out specific clues like "keep
als vertical™ and "keep parallel lines in the object parallel in the
(v) Drawing Several of the tasks required the students to draw a.n ing". (Tnese are both adequate hints for drawing small objects.)
ing the student to close one eye helped also, emphasizing that we take

not appear ‘to be quite so incapable.

three tasks in particular are illustrative for our purposes here.

hotographer's one-eyed view of the world very much for granted. We
In one task, the student was asked to copy the drawings from a spec 't realise how much it conditions us in our drawings.
set, produced from Plate 1 of Bender (1938). ‘ ;
The drawings use straight and curved lines, dots, closed and Map drawing, whilst by no means appearing simple, did seem to be a
open shapes, geometric and irregular shapes. ore familiar task. The students could have learned this at school of
This task revealed two types of difficulty. Firstly the obvious 1

of expertise at drawing and copying. Much erasing, head-scratching and

ge.or perhaps they find this a more natural and sensible use of visual
resentation than the drawing of objects from strange angles. They

tainly seemed more at ease with the mapping task, and later, when I was
sking them about their village gardens or fishing areas they would
husiastically, and sometimes spontaneously, draw me a sketch map with
details included. I found that the maps the students drew were in the
n adequate for the communication purposes they were meant to serve. They

tongue~clicking was in evidence particularly after the student had drawn
something and was then comparing his effort with the original.

The other difficulty with this task (and with others) was over the
eriteria to be satisfied. Once again "copy" implies to us "identical.
"How accurate is accurate?" seemed to be their unasked question. So, sca ¢ as accurate as they needed to be.
varies, lines bent, angles varied, and curvatures altered.. Of course, if .
VWesterners attempt to draw and copy PNG patterns and designs, they often These tasks, then, point to the skills of drawing, and to the criteria
make similar "mistakes" through ignorance of the criteria to be met. be satisfied, particularly to the reéognition of the purpose to be
is nothing obvious nor logical about criteria like these. They must be 1 filled by the drawing, by which accuracy is Jjudged. This seems to me to
 one of the most important values of drawing - that by doing it one learns
In another task, the student was presented with a small wooden block sbout drawing and one is enabled to read other people's drawings.
made from 1 cm wooden cubes. 19 cubes were used and the student ’ '
viewed the block from across the table -~ this was his view: You can only read this text because you know the conventions employed.

schools reading and writing are usually taught concurrently and the whole

.



complex procedure of forming the letters, writing words, keeping to ous task was very difficult for the student. It was produced using
ngs from Kemnedy and Ross (1975). The drawings showed the outlines

amiliar’' (to these students) objects, e.g. people, animals, birds,

line, writing from left to right, leaving certain spaces, etc., is

learned by having to be a "user" of conventions, by being a writer, ,
— a anes, house, car. Two forms were presented, one with approximately
Bt a reader.

i’ itted, the other with approximately LO¥ omitted. The student .was

vhat the diagrams showed originally.

(¢) YVisualising This ability is, for me, right at the heart ¢

spatial work, and I was interesied to see the quality of visualising
the students I was working with. Reports of other research (Philp’ an
Kelly 1974) suggested that 'ikonic processing' was likely to be the
predominantly used cognitive strategy. Other studies (Lean 1975) sug

The behaviour change from the previous task was fascinating to watch.
cas for the word completion the students often "drew" letters with

' fingers to help them imagine the word, they did not do this with the
mplete line drawings. They merely looked, turned the paper round
onally and guessed very hesitantly.

that students were weak spatially, largely on the basis of group spaf
testing. My first impressions were toward the latter view, but as ¢

progressed and I understood the difficulties more clearly, particulay

those relating to conventions, the following conjecture seemed more learly, even if the "objects" were known to them the representations
m were not. Again, the contrast with the word-completion was marked -
gd been taught the written representation of English words for

1 yea:cs at school, but not the drawings.

VWhen the object is well known and the convention used in represen
it is a famjliar one, then imagining and visualising with regard to

representation is well done.

inally in this section a task which illustrates the strong link
One task which showed this was the sub-test "Matchbox Corners"

hese students, at least) between visual memory and visualising.
from Spatial Test 2, produced by the National Foundation for

Educational Research. A matchbox was drawn with dotted 2 small everyday objects (e.z. coin, key, pin, etc.) were set out on
L rectangular board. The student was given L5 secs to look at the

ement, the objects were then tipped of the board and the student was
to replace them correctly. Only one student made any error. He had

Jacent objects wrong, and was suffering from malaria at the time!

"hidden lines"and a black dot placed on one corner. Four

drawings of the matchbox, rotated in 3D space, were then
presented and the student was asked to draw a black dot on

the corresponding "same'" corner of each. Five different sets

were used and the task was presented here untimed.

lere was concerned attention given to this task by all the students
Very few errors were made and yet the task is known to involve :
degree of spatial ability.

n most cases replaced the materials carefully and deliberately. The

: Westerner attempts this quickly, before the memory fades and it was,
re, interesting to see how long the memory stayed with these students.
- students were presented with the objects again a day later and were
ful at replacing them, a week later (one student 10 out of 12) and
ame student 2 weeks after the initial viewing (all correct = he had,

Another task which illustrates their strength is the sub-test "
Recognition" from the Multi-Aptitude Test, Psychological Corporation

18 typed English words were presented in varying degrees of oblitera
and the student was asked to write the original word. Despite the i

re, corrected his mistake of a week previously!) This delayed request
learly not unreasonable, and most of the students attempted the task as
' Were confident of success.

N that English was each student's second or third language, they did

remarkably well at this task. By contrast, 2 line diagram counterpar
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Other stimuli were ) i
used, with varying degrees of success. Feath, ould be said (that {wo gardens are equal in area) but it would

, debated".
omparing the volume of rock with an equal volume of water, "This

doesn't exist, there being no reason for it", and hence

and playing cards were the two most difficult stimuli, and it w
that no students were using a verbal coding. "I just remember :S c];
was a typical comment. Even some of the Islander students who k:w -
of the shells by name, didn't name them for this task. They ver e
surprised when I suggested that some people might remember the 1e e
of‘ a shell by using its name, The colour, the shape, the texturocath
size, all were used, but not the name. As one student pointeqd . an
the shells had the same name so that wouldn't help - the fact t:ut, .
almost looked the same didn't worry him! . w

~omparison

of course, mevely a matter of teaching the language, because

in not,
only an observable result of some unobservable thinking.

anguage is
ces in language imply differences in thought. So, if you ask

questions as T did of a local anthropologist a différent order of

ce becomes recognisable. As she said (in a2 letter to me) :=
iela (a Highland group) space has some unique properties:

This last ig i
point is important, and supports the reports of other
It is a necessary

researches concerning "ikoni
78 "rkonie processing. In several of my tasks wh is not a container whose contents are objects.
jon of the objects themselves.

oordinate space is two—dimensional. (Here she means things like up or
left or right, above or below, here or there.) Because it is meaning-
o locate difference among three things, three-dimensionality becomes

could have used it, there was no verbal mediation used by the st :
Very little was said at all in fact, unless it was in answer ts -
or bt.acause the task wought an oral response. Much looking (pojn:ezllleg
turning, paper turning, and moving backwards and forwards (as ;if t y"
properly) was in evidence - all suggestive of a "behavioural "
for visual strategies. No words though. e

fcal impossibility.
Space is in no sense objective but is a conception, a product of the

s evaluation of sensory data."

. (a) Language The problems caused by local languages which are not
. 0
esigned for mathematical and scientific use are becdming well known
task which will illustrate part of the difficulty is this one The ;tuon
was asked to translate a list i ; .
St of 70 English worda into his own local Long

language. Many 1
‘overlaps! anguages have some local equivalents but both 'gaps' an its size.
8' occurred for all
students. There are about 750 different ced in proximity to other pigs it is possible to evaluate it large or

languages in Papua New Gui
ne «
&, several of which can now be written. all... The uncompared pig is attributeless or ‘unknown' while the compared
n

has at least one attribute that can be tknown' .

Amongst other things it means that size (for them) would be like value

Value is seen in comparison. Hence she says of pig-exchanges,

as the actual pig has not yet been produéed, it is impossible to
Once the pig is actually given, and once it is actually

uﬁ)~

Many of the languages appear to have no easy conditional mood -~
car‘mot 8ay "ife.eeco.then", The question this provokes is, if it i "
said, is it ever thought? Classification does not appear ;o be hil8 r‘01'1 (
as for us, e.g. there can exist several words for different shapese:i:cn:

With another group, the Kemano-Kafe, in the Eastern Highlands the four
te" of length are 'long', 'like-long', 'like-short', 'short'. Similar

djectival rather than invariant units are also reported from other areas.

wvord for ! hape! Another researcher Jones ]97!” asked local interprete:
oT shape’. ( P! :

to try to translate some math i
athematics tests into the local langusge. Many So our conceptions of space with its items of objective measurement are

ot universal, nor are they "natural", "obvious", or "intuitive". They are
’ » Y

questions vere impossible or very difficult. Some examples of the repli
) replies ‘
: haped by our culture. They are taught, they are learnt.

" 3 +i % i Y A +
p & o y ru £ )
There is no comparative cons ruction ou cannot sag ns faster

than B. Only, A run '
A 8 fast, B runs slow". (e) Cognitive Characteristics I have only talked of spatial ideas herxe

ecause of my particular interest in them, but the statement above need not

"The 1 . . .
e local unit of distance is a day's travel, which is not very prec
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only apply just to 'space'. Our conceptions of our environment, in pap wonder whether we could make a better job of teaching mathematics if

the mathematical way we view the world, is not a universal view. A ¢o) ,entrated less on teaching children to generalise (for example) and

in Papua New Guinea has just completed an analysis of 150 different co rated more on why generalising is an important and worthwhile way to

systems. How many different counting systems do you know?.: (not numbe To do something is different from choosing to do something.

systems, but counting systems). There are apparently many ways of count

So, in general, what were the cognitive characteristics of the stud am not suggesting that the children I study and teach in the UK are

I was working with? The most striking point for me was their concern y
the specific as opposed to the general. Their languages have many spec
terms, few general ones. The taxonomies used in their cultures have fp

pua New Guinea native university students. Nor of course am I

ng that one must treat these PNG students like children.

hierarchies. Generalising is not the obvious mode of operating there as

what I am suggesting is that:
: there is more than one way of viewing the world,

appears to us to be here. There not only seems to be a difficulty with

doing it, there is felt to be no need to do it. the mathematician's view is a particular one,

it is pot an ebvious one,

I asked a student "How do you find the area of this (rectangular) p
of paper?" "Multiply the length by the width" "You have gardens iny
village. How do your people Jjudge the area of their gardens?" "By addi
the length and the width" "Is that difficult to understand?" "No, at h
we add, at schocl we multiply." "But they both refer to area." "Yes,

it is shaped by a particular culture,

it assumes many cultural "supports",

and increasing our own awareness of these cultural supports will

improve the ways we introduce learners to the mathematician's world.

one is about the area of a piece of paper and the other is about a gard
I drew two (rectangular) gardens on the paper, one bigger than the other
"If these were two gardens which would you rather have?" "It depends on

meny things, I cannot say. The soil, the shade...."

It is possible, and usual in their case, to hold many ideas, whic

would consider in conflict. For example one student had five different v

of how the world began: two from missionaries, two from different villag

stories and one from his science teacher. He felt no need to reconcile

accounts.

When this type of thinking operates it seems that many of the teach
strategies which I know about become meaningless. The use of analogy, tl

use of counter-examples, strategies which are designed to foster underst

or the "meaning" of general principles. All of these assume the accepta

of generalising, abstracting, hierarchical and symbolic processing, as

important and worthwhile ways to behave.
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1.1 The ship propeller
1.2 Orca the killer whale

he asks how big is the propeller of a large ship.

v tells him it would not fit into his room (which is about 3 by 4

2. Analysis of the observations
2.1 Mathematical-didactical

2.2 Psychological (ratios in cases of similarity)

moment of silence he jumps to his feet, saying: "It is true. In my

nexrgy there is a propeller like this (a distance of about 3 cm between
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ca,- the killer whale.
n (8;0) and his father pass by a cinema where according to
sters they expect the film "Orca, the killer whale". The spectacular picture

little man who on the back of the terrifying, smashing monster, tries
‘poon the animal:



For the sake of sensation the size of the killer whale as compared with
of the man is exaggerated. Coen and his dad look at the picture:

What is wrong with 1t?

the father asks. The boy replies:
That the whale smashes the boat to pteces.

have aimed at some wrong proportion. The father says:
It has something to do with the size of the objects.

Coen (after a moment of silence):

I know what you mean. That whale should be smaller:
When we were in England we ‘saw an orca and it

was only as tall as three men.

dolphinarium Windsor Park, England)

Four days later, afzgz\izﬁp another visit to a dolphinarium with a killex
(albeit of only a good three meters):

Gudrun, onze {)siandse zwaardwalvis.

Doifinaium

Harderwijk |

His father does not go further into the mattexr, although Coen's remark mig

(Here the boy is alluding to an experience of 21 months previously®(cf, ¢,

-~ 9§ -

ined why he knew the orca in England was as tall as three men:
‘1‘remembered the orca, jumping out of the water and touching

 the orange ball.

d not seen the photograph for at least one year; by the way it is a
ding one, because of the different distances of orca and trainer.)

this experience Coen emphatically wished to change 'the three men' into
e to four men', which indeed corresponds better with the length of both

whales.

w;3£153§—9f the observations.

afhematical~didacticaz.*)

th observations involved four magnitudes (or rather rough magnitude values),
‘Qere pairwise compared.

) In the first example these were

: the propeller of a big ship (bigger than the boy's room),

: the father,

1

1
o the picture of the propeller of a big ship,
Mz; the picture of a man beside P

P
M
P
2"

The pairwisecomparison can be described by

room book on energy

p.o.: M = P, : M

1 1 2 2

The comparison is expressed in a qualitative way.

Qualitative comparison and statement of the equality of ratios
led the boy to accept his father's suggestion about the size of the

_propeller: "It is true..."

(b) The second example also involved four magnitudes (or rather rough values

magnitude), pairwise compared:

: the killer whale on the poster,

: the man on the back of the animal,

rE the orca in Windsor Park,

M2: a man.

- Now the pairwise comparison, on a gqualitative level, may be described by

a disproportion

poster

Windsor Park
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ytterances of 5-8 year~olds seem to be aimed at dealing with similarity
3) - There is, however, a new element involved, since the boy definesl ative equivalence, which is shown by their understanding of, and
numerical ratio for one of the pairs in order to make the comparig about, ratios. These ratios are always object-related within a situation
the pairs easier - "that orca was only as tall as three men". , of situations. The (mental) availability of two or more situations

When comparing the picture on the poster with his experience of typ d is the precondition for comparing ratios. Various kinds of objects

@&ously;the boy accepted, as it were axiomatically, a certain ratio oy _as measures of comparison.
to wit, an orca = three men. This explains the emphasis with which,af y the child bases his judgment on the ratios under consideration and
- I

next experience (Harderwijk},he changed the ratio orca : man into ‘yalence: not on comparing sizes of the same object in different

h to four men s but rather on instances of the same situation pictured on different
three to fo . ‘
There is a striking resemblance in the boy's approach in both obser

In both cases ratio comes up in an eguivalence relation. In both exam?l ild seems to need situations each of which is characterised by the presence

the equivalence or non-equivalence of the underlying pairs of rough mag stinguished objects, in order to come to terms with ratios.

values is decided on at a gqualitative level, though'in the case of the in the case of the propeller and the killer whale this phenomenon' can be

a numerical ratio plays a mediating role.

book on energy room
2.2 Psychological (ratios in cases of similarity). _— _ b, (= reom) : (- fathe)
Both observations prove that the boy knows about ratios. The way of
why in the one case there is equivalence and in the other there is not, poster Windsor Park
that similarity as operational equivalence *) is the background pattern Oi(rca) : M, (an) # Oz(rca) : M,(an)

these are situations where the boy's criterion is similarity or dissimi .

. didactical phenomenology of the concept of ratio ) Freudenthal
Freudenthal says about this ability: I go even as far as saying tha

; hes internal and external ratios: ratios within a magnitude (or the
congruences and similarities are built into the part of our central nerv

R s . values assumed by this magnitude) on the one hand, and between magnitudes
system that processes our visual perceptions. The speed of identificati

longing value systems)on the other .
an object after the object itself or the observer has been rotated, or

. les seem to indicate that the external ratios ossess a
distance from the observer has been changed, presupposes, as it were'.a P P

, . cal counterpart. Let us study this question more closely.
programme in the brain which eliminates this kind of transformation. Wh

. ) tinction of internal and external ratio has a particular meaning in
do not understand at all what such a programme looks like, its mere exi

ere ratios of magnitudes written as quotients or fractions result in
which I do not doubt - is an enigma to me.

the one hand, and ~very often -

ak i1 tat t in new composite magnitudes on the other.
Other authors make similar statements:

s logically this distinction is also relevant to the process of constitution -
"The main point is, that we have here an elaborate and refined syst

in i i . we say making conscious - of ratio, where internal ratio seems to be
coding contour elements which is present in its main essentials at birt

‘built in' a major feature of the visual system." ~the external one. Here at this stage of development external ratio
must therefore be ui in' as .

hildr take in and rem understood as follows: ratio between two or more well distinguished
"(...) it seems very likely, that young chi en can ’

kK n a specified situation which itself is part of a system of such situations.
size ratios (...)" )

athematical point of view such ratios can be considered as internal ones

almost all cases only one kind of magnitude is involved - in the present
*) Terminology of H.Freudenthal in the last version of his Didactical phen

of ratio and proportion. (Internal I0OWO publication)

**)

cf. [3], p.182.

***) cf. [1], p.96.
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However, on viewing magnitude as a physical object or a

od which can contribute to this aim, is creating situations which are

system of objects of the same kind (including its pictures), then the quali - . R . .
prising and conflict provoking,while initial interpretations and

these ratios as external ones can easily be justified.

are subjected to criticism and correction. In the next sections

S

In particular, mapping by similarity appears to be a forceful means of - ) ) ]
i ' % amples from teaching practice will be considered more closely, within

and comparing this kind of ratio. Here we mean similarity in a broad sense:

nd the theoretical frame which has been set up above.
producing object related similar situations where the objects themselves eyep !

might be displaced with respect to each other - a broader meaning than tp

one of similarities as mappings of the plane or the space. . .
jvities concerning ratio and proportion in the lower grades of

A further psychological analysis of both observations shows the following
‘ ary education.

details: U

(a)

Propeller. 'he following sections we shall discuss some classroom activities on

The first pair in room book on energy ‘and proportion) for 6-8 year-olds.

P, : M = P, : M

1 2 , way these classroom activities can be characterised by the term

2
raisal of the direct perception' in order to focus on ratios in the

was not explicitly given. The boy had to construct it from the context. Probap
ive field or 'perceptive accentuation of ratio' as Van Parreren calls

,,(5.11)).

s not only of psychological, but also of mathematical-didactical interest

this happened after he had produced from memory the second pair, which was

neither physically nor visually present.

It appears from the boy's utterance that the mental construction of the

similarity between both situations then led him to state a balanced proportio yve the way in which this 'perceptive emphasis on ratio' might take

The boy's mental activity was aiming at embedding the size of the ship and especially 'why' children are capable of this. Moreover it will be of

t to see whether, or in which aspect; the classroom experiences will

propeller in the field of his experiences on ships. It was not that he doubted
e role of internal and external ratios as described on pag. 5.

of his father's statement.
examples will display the complicated learning process, which is, on the

(b) In the second situation the boy could use the height of a man -
and 'steered by the field' and on the other hand 'steered intentionally',

as a (rough) standard to measure the length of an orca.

. to say "by the child's own plans or by those taken from other
Again he had to draw upon his memory to compare the available pair (orc )

; cen”, (cf.(6.12)), thanks to the inquiring character of the instruction.
and man in the poster) with the mental pair (orca and man in Windsor Park).

cacher tries to confront the children with surprising problem situations

Here the mental activity was initiated through the problem posed by the - .
! ch the children are motivated to feed back their reactions into their

poster. This led him to state inequivalence, in other words the conclusion tha ‘
| tional steering’'.

the orca on the poster was too large in proportion: "The whale should be smal

3. Conclusion. ybe a relative of Lewis Caroll's Alice in Wonderland).

Within the domain of congruence and similarity, as described in the precedi he teacher tells the story of Liz Thumb, the girl that once upon a time

sections, 6~8 year-olds understand the meaning of ratio and proportion. This i

e as small as a thumb:

witnessed by the way they deal with problems in this domain.

As a consequence, teaching this aspect of mathematics should not be directe
exclusively at formalising the concept. It is important to make the children;

conscious of the way they reason about ratios and their characteristics.



Liz Thumb shakes hands with amouse

Liz Thumb is pictured on a worksheet. The pupils are asked to dra

flower, a stone and one of their own shoes at Liz Thumb's side. 7T

results will show -~ according to the classroom experiences - qui

lot of wrong proportions, which lead to an interesting discussion

Ii{z Thumb is not as tall as my thumb ;  she is smaller;
hat sun of yours is too small, the teacher objects.

look here,

. ... that is why it is far away anyhow, 1is an answer.
one of the pupils remarks and he measures Liz Thumb on the sheet hh Y f Y Y s a

£ his thumb. Apparently she has not been drawn full-sized in the schoolyear (cf.section 4.5) the influence of perspective
means O 1s - 2

f s will be taken into account.
two scales are involved, namely the real Liz Thumb and her pictur

the worksheet.This is the first spontaneous observation on ratios

rhead-projector.

there will be more problems demanding an explanation. Quite a

ber of children draw flowers or shoes, which are far too small. r Liz Thumb an overhead-projector trick is played. The teacher asks

ldren to close their eyes. She puts a cuisenaire rod (number two) on

ote: They were supposed to draw one of their own shoes.
m Y PP ojector table. The children are asked to open their eyes. They can

By means of a sequence of questions the teacher tries to lead the bserve the black shadow on the screen. Then the teacher raises an

ible question:
What is the colour of this rod?
puﬁil reacts:

How long is the grass?
How tall will the flower be?
Will the mouse fit into the shoe you have drawn?

 I' don't know. You will have to measure it.

i drawn objects pair-wise (grass and flower; shoe a
By comparing the dra J p g ’ image (not the bar itself) is now measured by means of a green rod:

i ised to discover that their previous . . . . .
mouse) the children are surprise P It fits, so the rod on the projector table is green, isn't it?

the children ask:

were not correct.

That green rod should be put on the projector tuble

enable them to compare both images and after that to make a better choice.



In the same lesson the teacher places a coin on the Projector

The screen shows a black circle:

A little round, a counter, the pupils mean.

This is a coin, the teacher tells, which one is it?

One gutlder, because it is so big.

Ho, the teacher says, this one is a gutlder,

and she puts one on the projector table. The pupils then make anot

guess about the first coin. It is wrong again. The teacheyr puts an,

on the projector table, namely the one of the pupils' guess and it

By comparing the images the pupils determine what kind the first

So it is obvious that the children only used external ratio in
comparing e m—
examples, in the sense that rather thanA?bJectsw1th images they. g

objects with each other and images with each other.

Moreover, one can recognize a certain shift of interpretation an

of abstraction: The children had first to abandon the natural or.

monetary value and colour of sticks, which are just the characterls

asked for by’ the teacher. The children were compelled to take aj

criterion - ratio - into consideration in order to solve the probi

of interpretation). On the other hand replacing monetary value an

by ratio is a special case of abstracting.

The mathematical gist of the previous classroom situation is am

construction based on visual data. In the course of instruction you

children develop a strategy by trial and error which leads to a soli

Probably the children are unable to use the scale factor of enl

the overhead-projector.

Though they knew the images were bigger than the real objects, t

compared the images. Ratios have been treated by the children in the

- 1lo3 -

éher shows a part of a photograph on the screen of an overhead-

The children are asked to indicate their own
height on the picture. First they compare them-
selves with the classroom-door in order to
relate their apparent size to the'door on the

picture.

Notice that the children based their solution

of the problem on external ratios.

It is a big surprise when the remainder of
the picture is uncovered, to see a little girl
standing next to the house as tall as the
height of the house (cf. 7,259-266)):

"I got it, it's a doll's house!"

one of the pupils shouts.

First it was a real house with a real door.
This view defined the choice of the
ratios.

But when the true proportions became
clear, the pupils switched to the opinion
that the house was a doll's house

with a correspondingly little door.

way. But how should one organize experiences concerning the interna

an object and its image.

To do this we have the children looking at photographs.

ts.

| preparation for the concept of scale. They can

So the children discovered that the

internal ratio between the classroom~door

door on the picture was not a given constant.

iscovered it by what we call a "reality~-turn". Reality~turns are

come up in many
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4.5 Perspective. acted to the last question by pointing out the appartment-

Another trick that disorders the internal ratios of an object ich rises high above the school. He says: the appartment-

image, is perspective. 11 become smaller as you come closer to the school,

‘ S ill get bigger then. After that he ¢ ts t 1i
At school all the pupils will receive a "camera" (that is to say t sghool W g 9 ounts the lictle

£ artment-building to be sure.
of a matchbox) in order to make a picture of the teacher. They moy Qf the app g

because they want a picture of the teacher from top to toe. By doi ‘écncept of perspective  in youngy children can be used to

they discover that the cover can also be turned.

_internal ratio: besides the normal pictures of the school we

The pupils learn to interprete ratios from the point of view of a ome '"mad" photographs.

grapher ..... a little bit to the left, going backwards ete,

Ratio will then have been embedded in the setting of perception. Peter says:

The pupils then have a look at some photographs of the school: "The fish 1 caught is twice as tall as me,
; ~ : e isn't it?"

A pupil replied:

"Peter is a liar! He cannot carry a

f£ish like this, or can he?"

Where did the photographer stand when he took these pictures of the
Whichclassroom is this? If you were on the picture, what would be Y

stize then?

Which of the photographs has been taken from a short distance?
How do you see that?
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eferences.

) Brink, F.J.van den, Strokenaanpak I & II (An approach of ratios by bars, I,II)
3 r r

"The elephant is that big, his keeper fits into its trunk".
‘ ( tds . internal IOWO study), IOWO, Utrecht, 197
- . 5.

"How is it possible?"
Bryant, P.: Perception and understanding in young children, London, 1974
s ’ .

Desjardins, M. and J.C.Hétu: L'activité mathématique dans 1'enseignement

4.6 In conclusion. des fractions; Quebec,Canada 1974.

By means of perspective and reality-turn the children grasp the non- Dudwell,P.: Children's perception and their understanding of geometrical

invariance of the internal ratio. ideas, in: "Piagetian cognitive development research and mathematical

education”. National Council of Teachers of Mathematics 1971.

By an open approach, favouring intentional steering, we found a way to

For an extended and thorough didactical~phenomenological analysis of ratio

develop all instructional and research aspects of ratio in agreement with
_and proportion, you are referred to the last sections of:

the child's mental development.

Freudenthal,H.: Weeding and Sowing - Preface to a science of mathematical

This statement is emphasized by the seemingly wroﬁg answers children. giv i
education, Dordrecht,Holland; Boston,USA 1978

the question on the next worksheet
or:

Freudenthal,H.: Lernzielfindung im Mathematikunterricht, in: Zeitschrift
flir Pddagogik, Jahrgang 20,Heft 5, Oktober 1974, p.719-739.

piaget, J.: Understanding causality, New York 1971 (especially Ch.12:
Linearity, proportionality and distributivity).

Parreren,C.F.van: Nipeaus in de ontwikkeling van het abstraheren
Utrecht 1978. |
Five years IOWO - on H.Freudenthal's retirement from the directorship
of I0WO, Educational Studies in Mathematics, volume 7, n.r 3, Dordrecht
Holland; Boston USA, august 1976. '

The shape has been enlarged linearly by a factor 2.
What is the factor of enlargment of the area?

Many pupils answered the area has remained unchanged.

"The grid has grown" they reasoned, or "we have come closer to the house'

In our opinion these "wrong" answers prove the necessity to search for

activities which embody all aspects of ratio and proportion and to make

them conscious to the pupils.
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Elmar Cohors-Fresenborg

Sunmary v sarning Problem-Solving by developing networks of automata

Learning problem solving by developing automata networks.

This is a repport on empirical studies on the employment of the ay
building-kit "Dynamical labyrinth" in a mathematics course for 10-

olds. The kit makes possible by actions the forming of concepts whi,

the understanding of automation and programming. The success of the

on this course was compared with the results of various intelligen rks can be constructed which are comparable with the lines of a model

and personality-variables subtests of a school-performance test. op lway as: Each part of the network is a railway-line, on which only one train

success in this problemorientated course correlated well with the _run, which itself changes all the points automatically on its run. Accor-

the results of the intelligence subtests, and slight with the pers g to their different uses, the points are represented in the kit by two

variables subtests. However, a cluster analysis lent significance fferent bricks; one for use where another rail runs into the main line

to the personality-variables tests for pupils of average intelligen junction), and the other for a rail which branches off it. This last is n

"

points

the other hand, sex difference was of no account. on the brick. To connect junctions and points there are in the kit

I1 s'agit d'observations empiriques concernant 1'utili- aight rails, bends and crossings the same size as the junction. The direc-

sation des jeux de constructions méchaniacues apvoelés on of travel is indicated by tabs on the bricks. All bricks are to be

"labyrinths dynamiques" durant les cours de mathématiqu ;‘Lxed to the appropriate board.

donnés 3 des éléves de 10-11 ans. Les jeux de construcs

iagram of bricks Symbols for bricks
tions permettent grhce 4 un procédé concret. l'assem- ;
blage de données propres & la comprehension de 1'auto- C
matisation et de la programmation. Le succeés des é&ldves y
dans ces séries de cours est comparé aux résultats des points Junctions Points
differents testes d'intelligence de personnalité et aux Fig. 1 Fig. 2

agsnects personnels du rendement scolaire. Il en résulte

Vi L £ 3 by z 3 ‘ 3 )
une étroite corrélation entre le svccés de ces séries de is possible to construct a network on three conceptual levels: by affixing

cours concernant la résolution de problémes et les testes bricks (active), by drawing the bricks (iconic), see fig. 1, and by re-

d'intelligence, et par contre un rapport trés éloiené esentation of the network by symbols on squared paper (symbolic), see fig. 2.

aux testes de versonnalité dans le egroupe d'étude. Il detailed description of the kit and a suggestion for a course of lessons

régulte d'aprés une analvse de cluster que les données 1 be found in COHORS-FRESENBORG 1976 and COHORS-FRESENBORG et al. 1977.
movennes d'intellieence avaient ou'une influence
a few examples will show how this kit can help to illustrate circuits
partielle sur les traits de versonnalité. le sexe des
Tachine. The examples are chosen so that at the same time it can be seen
individus n'avaient nar contre aucune immortance.
@ the ability of children to solve problems is encouraged.
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£ 1 cider bottles. The exercise for the pupils is to recognise that this is the
2. Plan of lesson course

. . sare mathematical problem as before, just in different words, i.e. that the
The course consisted of about 16 lessons. The first few served the p P !

. .- . \ . . sl automata tables can be interchanged merely by changing the names of the in-
of making the pupils familiar with the materials, in particular with ¢

: uts, outputs and states, i.e. they are isomorphic. Only after they have
difference between "junction” and "points": the junction has one entre puts, P ' 3 iae) y Y

) completed this exercise do the pupils learn i:hat there is a brick "flip~flop"
more than exits and one state; the points have one exit more than entr. pup p-flop",

, . 4, and that this can be interpreted as either a 2 x slot-machi or
an two states. In addition, symbols were worked cut for the illustratj fig. % P 2 e

. . . a 2-bottle sorter. The network in fig. 3 and the flip-flop are to be seen
automata networks, and the diagrammatic working-out of exercises was p

; as functionally equivalent concepts. As automata theyare isomorph.
For the organization of the learning-steps and the building of problem- :

strategies, leading to a general "theory" for the solution of certain Lip-Flop
of problems, typical is the sequence of exercises taken fram the middl

the course, the description of which follows.

Exercise: ’ Fig. 4

To develop a network which describes the switch part of a machine that

. . - In the following exercise these two intuitatively different uses are further
stamps when to 2p pieces are put in. The pupils find that this machir = 9 i

. developed: in the first instance to machines with two outputs which issue
have one input (the coin slot), two outputs (more money please, :Lssue‘

stanp) d two states: (ready to operate, 1 x 2p received). The beha g only after several coins have been put in, in the second instance to
S ¢ XX : ’ . :

. sorters (with n outputs) which sort n different bottles. In fig. 5 the
of the machine is described in the following table: puts) n Iig

example is a 3 x 2p slot-machine, in fig. 6 a 3-bottle sorter.

state |inpu’;: || output | new state
ready p more voins| 2p received . T T T
2p reiceved|2p - stamp ready -
Table 1 ‘ _9
Network: ‘article ¢ ) C >more coins 1
Cause issue of stamp ‘ demand for more coins A
Fig. 5 Fig. 6
put in money ‘ This time the bottle sorter is constructed entirely of flip~flops. For this

Fig. 3 : Construction the concept of "feedback" is needed. The pupils should discover
Following this exercise the pupils are set to constructing a network this for themselves and then use it for other related problems.
cribe a machine which does the following: If nurbered bottles are sent through a bottle sorter, it can be seen that the
In a drinks factory beer and cider bottles are on a conveyorbelt in the same network can be comprehended as a machine showing to which class modulo 3

sequence: B C BC B C ... An automatic sorter must separate the beer urber belongs.
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For the pupils, the solution of this problem is related to that . 3 x 2p machine as development of 2 x 2p machine) or by apprcpiate inter-
This is an example that the different description of a problenm J, retation of the problem and consequently a change of terms and presentation

conceptual differentation which cloaks functional equivalents. I g. slot-machine/bottle sorter/class-counter). What was imporant was recog-

lines of association are engendered which arrange the exerciseg to ktj_kon of the unique features of a concept which are invariablé when the
problem areas although the mathematical automaton is the same. Beg aﬁguage and presentation are changed.
the pupils are given problems which are motivated by the situati the course material sketched here is strongly differentiated from the nor—
cation and described in the language of application, the pupils 1 content of an arithmetic course, it was in our own interest to campare the
problems which are directly comnected with automata networks: a ne rformance of the pupils who took part, with that of others and to take into
ven in a table, and this must be built with the bricks (Synthesi nsideration the variables of personality. To this purpose a cambined school-

For example see table 2. formance test KIPT (ROLLETT/BARTRAM 1973) and AVT (ROLLETT/BARIRAM 1977),

Here the network from fig. 5 is described in a table which clearly s set at the beginning of the course, which is related to verbal and mathe-

its functions (r: right, 1l: left). tical intelligence-variables and some personality-variables.

state | input [] output next state THe individual subtests were correlated with two tests, given here as T1 and
Wi I W2 Wl | W2 , on the material of the course, set after 10 and 16 lessons respectively.
1 1 I more coins r 1 e following are short reports of some of the most interesting of the results.
1 r I more coins r r : )
Contrary to expectations (based on the usual sex-specific differences
r |r I article 111 [ . ) .
recorded in performance in mathematics, e.g. STARK 1971, VIET 1977, or
Table 2

because of differences in approach to buildingblocks and varied experience

In addition to this there is the opposite type of exercise: a netw of them), there was found to be no difference in the averages of T1 and

on squared paper and the table to describe it as automaton be found T2 between boys and girls, either in the random sample of the whole or

problem) . Here the difficulty is in recognising the changes of the in the performance quartiles.

and flip-flops (especially by feedback, e.g. fig.6) in the static d
1 and T2 correlate well with the total value of the intelligence variables
tic drawing. .
of KIPI, in particular with that of subtests "word understandig" (SV),
3. Empirical studies ~

nunbersequence completion" (RE), "understanding and following instructions"

course of lessons here briefly described was tried out on about ,
The Yy des ; (VBA), but less well with arithmetical facility and geometry subtests,

£ 10-11 years in two large schools during the school year 1976-77 ; L )
o Y g ng b . Surprisingly slight was the correlation of the random sample with "hope of

taught according to the same plan of lessons. They had to solve
were g g P Y uccess, (HE), "fear of failure" (FM), "avoidance of exertion, (AV), and

problems either in pajrs with the bricks or on their own on squar (PE)
In the discussion of the answers afterwards, especial value was lai
following: the pupils should recognise that the solution of the give

was possible by developing the answers to problems they had alread
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3, After all the subtests of KLPI and AVT a cluster-analysis (see

TANGER 1977) was worked out. Hereby a division into six clus

to be useful. For these six clusters a distribution of the tesj:
T and T2 was calculated. This yielded results as follows: 2 >
defined respectively by high and low values in the intelligeﬁce
the performance on the course was corresponding. 2 clusters wi
telligence quotient were clearly differentiated by the results
In the cluster with low results in AV and FM, few pupils showed
mance in T1 and T2 and more pupils in the upper third of the s
between T1 and T2. Both of the other clusters with just below
performance differently in two geometry subtests and in their
Here the cluster with the higher results in the geometry subte

pace was better than the other in all quartiles of T1 and T2.

To summarize, it can be said of the four personality subtests th;

had the strongest influence on performance in the course where
were of average and lower intelligence.

Individual cbservations made by school psychologists with this n
another school lead to the assumption that through the training
kit the readiness to and capability of trying out and organizi:
solving of problems was promoted. This was also shown by an i
the performance and willingness in the mathematics course which
Tn addition to which, a second trial of the subtests SV, RE and
our course in one of the schools resulted in an improvement in
which was better than was to be expected from a mere repetion o

Experiments in this direction are intended.

4. Summary

This kit makes possible by actions the construction of concepts
suited to the understanding of autamation. By the generation of :

through actions the likehood of remenbering them is better and :

the ability to use them as the basis of further methodical deliber

cerning other network constructions. If we differentiate between

representation (p.e. enactive, iconic, symbolic in the sense of
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¢ impossible to decide to which level a given network of building-blocks
ongs if we do not know the nature of the task. If the network shown in

3 arose from the intention to construct the connection in a stamp-

ine, then it can be seen to be a symbolic representation of the machine
pite of the fact, that it is made from building-blocks. But if it is a
aliéation of table 2 it should be attributed to the enactive level, and
drawing of the same net to the iconic level.

interdependence and peneration of these three levels furthers the acquisi-
‘and structuralization of concepts.

the paths of the networks constructed with building-bricks are actively
ed further research may indicate that the described instruments are

able for nonverbal acguisition of concepts. So it could be helpful for

instruction of deaf-mutes, blind people or children of immigrants.

Dynamische Laybrinthe
in: Didaktik der Mathematik, Heft 1, 1976

Dynamische Labyrinthe, Unterrichtsprogramm
Osnabriick 1977

KLPI-Schulleistungstest, Universitit Osnabriick 1973

AVT Anstrengungsverneidungstest, Verlag Westermann,
Braunschweig 1977

Bringen Leistungskurse "Chancengleichheit"? Eine
empirische Querschnittsuntersuchung mit Hilfe von
lernziellibergreifenden Tests. Deutsches Institut fiir
Internationale Padagogische Forschung, Frankfurt 1971

Clusteranalyse, Berlin 1977

TOR: Test fiir operatives Rechnen, Beltz-Verlag
Weinheim 1977

he box of building-brix "Dynamische Labyrinthe" is produced by

eschiitzende Werkstatt, Industriestr. 7, 4500 Osnabriick-Sutthauser
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SELF APPRAISAL IN THE LEARNING OF MATHEMATICS he teacher. Cultivating his own sense of Jjudgement can be

4i1d both a symptom and a cause of a more balanced view of the
M. Ruth Eagle

University of Keele, U.K.
ere is a sense of satisfaction in the certainty that one is

When you work on a piece of mathematics, how much checking dé which provides motivation to continue working in the field

do? The amount probably depends on the routineness of the work, wh imum concentration. Many teachers advocate getting students

going to use it and feor what purpose, yeur character, and feelings late about the result of a problem before working it out in

the mement, the time available and se on. In addition to whatever the intention being similar, to stimulate personal involvement

deliberate checking is done, I suggest that yeu will automatically e work and the pleasure of achievement. Failure remains a

on the watch for anything which seems to be in confliet with what y ity, but a less damaging one when the learner has epportunity

already know and expect. We, teachers and professienal mathematicisg; e and correct mistakes or to seek help for himself. In an

take for granted that our reasoning and results can and should be nt with calculators in primary schools, Bell, Burkhardt,

checked with appropriate thoroughness. Experience suggests that many n and Moore? found it gignificant that children acould use

children learning mathematics do not perceive self appraisal to have 2 nen-threatening check on their own work', and thig seemed of

any place in what they are doing. This attitude, where it exists, i ar benefit to the less confident children. Feelings of

likely to have a pervasive and damaging effect, as I shall try to sh éﬁce and satisfaction are powerful internal motivators.

by considering four benefits which tend to accrue only when self

appraisal is taken to be an essential part of doing mathematics. for long term retention of what is learned these feelinga alse

ortance. Memories inevitably become overburdened, and cempet-
. one having te use mathematics after they have left the ¢ : s
1 Any g ¢ ¥ las the solutien of particular types of problem tends to be lost.
-room must be able to rely on their results if wasteful mistakes are . s
: ematics which was learned heurs, weeks; or years ago is to be

to be aveoided. The situatien in which answer book and teacher are e . sa s
; y then an ability to reconstruct methods from partial recellect-
present autherities is not a very good preparation for the tackling R
] ecomes essential. The recall and reconstruction process can be
real problems; nor is the notion that 45% correct is a 'pass'. Whi . R
. ] by feelings of inadequacy leading te panic, but supported if a
100% accuracy is unattainable for mest of us, it is vital that we ca . .
. ) : {f mastery was originally asseciated with the tepic. Self
distinguish what is certainly correct from what is doubtful, and in ‘
. al has some bearing on the sense of mastery. Furthermore an
the case of doubt, seek a second opinion. To learn and to apply inde bo find % 1ati n i 1

o o find interrelatienships eveloped for t

-endent checks is an aid tewards achieving this sort of reliability. pes pe © he purpose of
g; also applies to the reconstruction of forgotten parts. The

vacti )
2. At a different level, the making of deliberate checks and bein ractice and concentrated attention entailed in checking should

alert for contradictions helps to fecus attention on the nature of ake for thoroughness of initial learning and thus ease of recall.

mathematics, that it is a consistent system, meaningful rather than

arbitrary. Moreover it emphasizes that a person learning mathematics;

is expected to think, to make and to use the connections that exist. ow can the habit of self appraisal be fostered?

In expounding the importance of the child's own perception of his

main task in mathematics lessons, Buxton? points out that attention Self appraisal is not a battery of checking procedures, although

is too readily focussed on the judgement of his final output which is re obviously useful; it is both an attitude and an arduous

_activity. As such, an environment conducive to the exercise



118 - 119 -

. : etailed solution. This requires versatility, but is of especial
of a student's own judgement is likely te be more influential thap

in arithmetic where people do devise short cuts and methods more
period of concentrated coaching or exhortatien taking place in an

nial to themselves than the standard pencil-and-paper-algorithms3.
environment which otherwise exerts contrary pressures. Willingness

gort of flexibility can be recognised and encouraged. Some of the
of the teacher to make every judgement is a contrary pressure, ang

; pread reluctance to check seems to arise from a fear of not
is the presentation of work too difficult or toe fast to be thorough:

X . ng what to do should an error be detected. Again flexibility of
mastered. Both can be hard to avoid in practice, but if their effs

od must be part of the remedy.
is recognised as damaging, it should be possible to make some moveg
de d a predominant concern with syllabuas
away from teacher dependence an P 1 v us Depending on the circumstances, most teachers give marks for
hasis on self reliance. -
coverage towards an emp od as vwell as answers, in effect emphasising that having some idea
w to tackle a problem is worth credit even if you cannot carry

lution through accurately to the end. On the same basis, why

Actions which positively encourage self appraisal are diffieyl

to isolate because they are embedded in the teacher's personal way of

. : give marks for gelf appraisal? Sound judgement is normally
working with the group and with individuals within the ethos of each -

it i th discussing some pessibilities énced in a number of ways, including requests for help when an
class. However 8 wor sc R

is suspected, which can be encouraged in class but perhaps not

. , ed in a test. It is possible to demand some more artificial
1. Much communication of attitudes and styles of working eccurs b

) ; cations, such as the explicit writing out of checks and a commi tment
example. In this context, the teacher thinking aloud could be the

he candidate to an opinion about his ansvers, which of them he
example, perhaps a dramatised dialogue with himself, That seems odd ,

. g are definitely right and which uncertain. To be wrong and know
.. but if ... it could ... vhy isn't ... we ought ... . This requires :

. is at least some progress and worth a mark? There are potential
mere than a deliberate mistake strategy; it centres on a display of

i + Th itical look at th fits in that what is examined is somehow made legitimate. There
than a rapid correction. e critical ook a e

puzzlement rather a P also dangers. Unless all the children have developed some genuine
for exercising judgement and hopefully begun to enjoy it, the

d for an opinion is pointless, adding excessive strain, and

answer, the casting around that occurs when something seems to be wr
the trial of different methods, can all be demonstrated regularly,

including what is ultimately accepted as satisfactory confirming

. ting attention away from the tasks they can reasonably attempt.
evidence. To see a teacher make errers and then cope with them can b

reassuring. It also emphasises the importance of monitoring your own

If children have acquired a tacit assumption that one cannot
work.

eét to understand mathematics, then self appraisal is a difficult
. | Yet young children have a very pesitive drive to make sense of

2. There are many useful techniques, such as testing a general

rything for themselves. Some of the above actions may help to

i ticular, simple, case or the solutien to an equatien
result in a particu ’ e tore or maintain this drive in the learning of mathematics.

by substitution or checking a multiplicatien by dividing into the
product, and more of these could be taught. Those mentioned come into
the general category of checks by werking back from the answer to see
if it fits known data. DBuxton! suggests going further, ‘The practice L.Buxton. 'What goes on in the mind?' Times Ed. Supp. 7.7.78. ppl8,19.

Bell et al. A calculator experiment in a primary school. Shell Centre,

i t ts have the answer is sensible, and using the answers
of letting studen : ’ : University of Nottingham, 1978,

"

t 's thinking should not be regarded as cheating. In

to correct one & N . : €.g. McIntosh 'Some Subtractions.' Maths. Teaching, no.83 June 1978
some problems, an alternative strategy could be to check by solving

in two different ways, or by making a rough estimate to compare with
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Toward Acculturation between Traditional, Creative, and just two. However, in some sense, there is a more profound

Technological Approaches to Mathematics Education between the specialists and teachers who treat mathematics classes
7. A. Easl 3 pportunity for children to create ideas and systems of measurement
asley, Jr.

Committee on Culture and Cognition

University of I1linois at Urbana/ Champaign 1,c‘u1ation and those who see mathematics teaching and even mathe-

itself as ideally embodied in technological devices such as computers
Introduction ‘ first group, the teacher is a humanist who seizes the opportunity,
There is a growing recognition that teachers and the various ki ps create the opportunities, to encourage children's autonomous
of experts who are supposed to be resources for teachers live in rathé ve thinking and provides them with language and forms to use as
separate worlds. Goodlad et al. (1974) and Goodlad (1975), for examp ced them in their work. In a sense, the re-invention of algorithms,
write of the "culture of the schools' and the "culture of the university’ ental measurement, theorems and proofs are celebrated as, in2a
as quite distinct entities. Paulo Freire (1973) writes of the gnosiolog 1 way, making oneself one with the historical development of mathe~
extengion, challenging the model of the agricultural extension agent w. cs. In this sense, it is backward-looking in its inspiration for the
educational specialists have often championed. During the site visits w ' pment of children. The technologist, and technologically oriented
made to widely scattered and diverse schools (Stake and Easley, 1978 hers, are then forward-looking, intrigued with the power of those
teachers spoke to us quite freely about the disappointment they felt in rse solid-state devices that serve increasingly to carry out our cal-
their college or university training.* ations for us in work and in play.
While I do not want to claim that traditional teachers are ina There is no doubt that we are going to see a very large involvement
separate culture from the "experts," I do want to appeal to the metapho ch devices of all sizes in our daily lives. Linking computers with
of a cultural difference in order to show that differences of this sort in /ision sets, as in many popular games, is surely a realization of
values, rituals, and sanctions can be transcended bit-by-bit if one pays shall McLuhan's media revolution. While some use computer tech-
attention to the life style of the group in which an import from another gy to teach traditional mathematics and logic (e.g., Suppes), others
group can be incorporated--hence I'll say acculturated. the new form of mathematics given in the logic of computer program-
The experts in mathematics education are divided into so many ng (e.g., Papert). There is little doubt, however, that the traditional

perspectives (see Easley, 1975, 1977) that it may seem gratuitous to hool teacher is pushed aside in the designed learning environment, in

* A handful of Texas teachers who disagreed turned out al! to be from on ich the student interacts directly with sophisticated computers and thus

fundamentalistic church college. .
v & ris to speak to them in their language, the otherwise strange language
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o momatics. There o Litte doubt that computers and their languages professxonal pride if they did not employ experts in one way or another.

are increasingly used by mathematicians, but there is a humanistic streak The experts of whatever persuasion are in fact capable of winning a handful

.  ematicians ot potuses to et athematical thought be iden- of converts in most encounfers, many of whom eventually leave the school

tified with computer programx;xing. This is the dividing line between these to find a higher degree of support for their non-traditional ideas in some

_other setting than the classroom. Because of a time delay, experts can
two camps. '

cho traditiona]  thematics teachers, the creative mathematics  sustain the illusion of infusing their ideas into teachers at a steady rate

o chers and ther tooreticians, and the athematical technologists are while the net impact is zero, converted teachers leaving the schools as

well aware of each others' existence, and come in contact at workshops rapidly as new converts are being made. Fortunately the insiduous

and professional cetings and yet close examination reveals that little character of these illusions (the teachers' illusion of keeping up to date

real communication occurs between these three groups about the problems and the experts' illusion of influencing teachers) are beginning to be recog-

of teaching mathematics. They are like the moietiés Wolcott identifies in nized more and more.

1o case study (1977) of the tailure of a systems-oriented group of techno- This situation does not mean that nothing is being done to improve

crats to have any lasting impact on the functioning of a school. Professional mathematics teaching in schools. Traditional teachers are continually

courtesy covers a great deal of contempt in all six of the directions in which changing their methods and materials, although from the perspective of

that relation is possible among these three groups. the creative or technological cliques the changes may seem negligible.

Teachers repeatedly affirmed to the data gatherers in Stake and It is too early to say what effect teacher centers (which often rely on the

Easley's study that they could find no experts who understood their problems regources of the teachers themselves rather than on experts) will have

and could help them solve them. Experts of all persuasions point to the on the rate and effectiveness of changes. However, the problems that

evidence that their programs or devices do work in situations like those teachers are facing in the United States, and in many other countries, are
’

of teachers who claim they are unworkable. Therefore, they conclude, growing faster than they can solve by their own innovations. Primarily

the reason they are not adopted or the reason for failures when teachers there seem to be two sources of these problems. One is the increasing
try them lies with the teachers and not with their innovations. iversity of social cultural background of children in each classroom,
Yet the public gchools of America are committed to an in-service which handicaps the traditional teacher who must draw on some common
training program based on experts (in regidence in the Superintendent’s ool of values and ideas developed at home in order to keep school work
office or imported from a university or R. and D. center). It is clearly oving along. The second is an increase in the skepticism of youth about
a part of American culture to look to expertise, and schools would lack raditional values which affects middle class youth with respect to their



own cultural values perhaps even more than it does some minorities with upward mobility in mathematics. There may be a delicate balance here
respect to theirs. that teachers try to maintain in a largely intuitive way. Clearly, not
The presumption of the governmental agencies mandating r aciali : enough ig known about the mechanisms of classism, racism, and sexism
balancing, heterogeneous classes, mainstreaming the handicapped, and in mathematics although the evidence that these biases exist is becoming
similar programs to guarantee due educational process to every child, nereasingly clear.
seems to be that schools are competent to adjust to the diversity of back- We can, however, point out a number of stabilizing factors in the
grounds of the children. But if there are no experts who understand the relationships between the three groups we are discussing. Traditional
problems teachers face in their terms, * and teachers reject the drastic mathematics teaching is highly defensible in any particular teacher's
recommendations of experts as unworkable with the students they have, ; area of responsibility, given the stability of the other parts of the cur-
there must be a reason for it arising from their perspective of their job. riculum. Many parents and students will complain if a teacher institutes
Furthermore, there is too little being done, even when teachers do adopt change that appears to weaken his/ her students' preparation for sub-
a handful of the hundreds of innovations they are offered, to solve the - equent mathematics classes. Empirical evidence is not needed to argue
problems they face. Therefore, the school condition for all children is - or stability or even, as we say, a return to the basics. The public de-
worsening with no remedy in sight, ‘ ense of traditional teaching of mathematics is growing and schools are

Thi ial foundations of mathematics education cliques stablishing criteria for graduation which depend on mastery of skills at
e social foundati

ed, or population-normed, criteria. As lo th i iti
It seems highly probable that the three cliques we have described ixed, pop med, 1a s long as the universities teach

mathematics to undergraduates in an authoritarian, demanding way (and
are not ephemeral, transient groups but rather have stable roles to play & ng way

_only a few colleges or individual professors have adopted the creative
in the larger educational scene. I shall not attempt here to elaborate what : p

. " roposals of Polya or Moore, or adopted the textbooks of Rothbart and
these roles might be. The tension between traditional mores and innova-

. inger (1976, 1977) based on their ideas ublic schools t be ex-
tions is a general topic of considerable interest, but a more satisfactory ger ) P S § canno x

L . . ‘pected to change their orientation. Likewise, the technological innovations
treatment would require looking into such issues as how school mathemati ‘

‘ n university-level mathematics teaching are extremely limited, although
functions in maintaining or establishing social classes** and what threat y g y ’ g

. . ~ a few colleges have made computer programming a required course for
would be posed to the American economy and social tensions by uncontroll g p prog g qui c

everyone. It doesn't matter apparently whether universities require

* Soviet studies in mathematics teaching and learning suggest that the pfg- specific kinds of math courses for college entrance or not, parental
hologists involved took their problems as traditional teachers defined them ~ . .

o Seeg Mehan, 1978, for a strong suggestion of the mechanism of social | pressure will be high t0 see that college bond students get as close as

class definition in teacher-pupil interactions.



- 126 - - 127 -

} : U.S. preparing to teach mathematics in high school or junior high school
they can to what is going to be taught in university math courses. College o
look upon mathematics as a conventional set of definitions and procedures
rses are thriving. If they succeed, college courses ma
Placement courses & y ’ ¢ v that solve a conventional set of problems. Undoubtedly persons are more
stiffen. which leaves the two expert groups the elementary and junior high j
’ : often motivated to go into teaching because of a positive image of a teacher
schools for their field. However, the effects of the college prep and back :
they liked than because they think teaching should be done differently.
to basics movement are felt there too. ;

This seems especially true of the high school teacher. The specialists
Another reason for the stability of these three groups in mathe-
in creative approaches to mathematics teaching actively recruit adherents
matics education is that mathematics is widely celebrated as, at once,
) of their approach in universities and in schools. They are identified as
a status symbol, an entertaining hobby, and a highly useful skill. However
the better students because of their sensitivity to children's thinking and/ or
concentration on the attainment of one of these three aspects is very likely

i the possibilities for development of mathematical ideas in many different
to make the other two appear more difficult of attainment. Thus, if one ~
situations. Those students who worry about getting pupils to follow standard
seeks high status, advancement along the traditional pathway toward the
~ procedures and obtain standard answers are seen by these teacher educators
calculus is required. The fun of finite mathematics and the applications
~as having limited vision, (The feeling may be mutual.) Likewise in courses
. of computer languages and accounting are seen as distractions. However, .
X or workshops on the technological approaches to mathematics education, it
if one takes pleasure in following Martin Gardner's column in Scientific

. is clear that those who take naturally to this approach will receive highest
American called "Mathematical Games, ' the utility of it all and the progres
A grades and recommendations for advanced study. It appears, in fact, that
along the status track are bound to receive lesser consideration. Mathe-
__teachers faced with growing socialization difficulties in the classroom may
matics, despite being usually organized as a single university department,
increasingly seek to leave the school in favor of graduate study or research
has more to offer the high school student potentially than several of the
programs. It is easy to convince one who wants to leave that a whole new
science departments combined. So, as long as teachers are busy teaching
set of goals and procedures would do wonders for the schools. Those who
one agpect of mathematics, there are opportunities for mathematics educators
are committed to stay are much less likely to want to try such a major
to pick up equally valid pieces of mathematics and advocate their inclusion
overhaul, especially single-handedly.
in the curriculum. In short, the field of mathematics is diverse enough to .
There are undoubtedly some mutal benefits to a three-way polariza~
support these three groups.
tion of the field of mathematics education. Not only can the mis-fits of
The social structure of the three groups is such as to make them
each pole have another place to go within the field, but there is a ready
highly self-sustaining. It seems clear to most observers of the mathe~:
explanation by those left behind of why they left: they weren't able to cope
matics teacher education scene I know that the majority of persons in the
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One thing they might agree, at the outset, not to undertake is a
with the demands of that group. Neither schools, nor centers of research .

- research, development, and dissemination program. At least, this would
and advanced study have an easy time coping with diversity of opinion. .

. be the advice of Les McLean, John Goodlad, J. Myron Atkin, and Lou
Individual opinions are likely to change as one gives up on one perspective

) Rubin. Several projects of the Centre for Applied Research in Education
and tries another. This is perhaps made easier by a physical move than

. ~ (CARE) place the responsibility on school staffs for research decisions.
by trying to get others to accommodate to a person's changed perspective,

One plan that has been proposed to alleviate this kind of polariza-

The problem and a solution tion is a rotation of situations. School people come into the research and

A field like mathematics education which seems to be primarily teacher training situations for a time and experts rotate into the classroom

organized around three poles where the majority of participants are trying for a time. Another plan is sometimes referred to as the "clinical pro-

to achieve a pure development of the ideals of that pole does not lend itself | fessor, ' a person who works in both situations all the time. There was

to helping large numbers of children who have difficulty learning mathe-~ more enthusiasm for these plans a decade ago when student criticism of

matics. While some of my colleagues have argued that every field of the lack of relevance of the University to society's problems was high.

work suffers from tension between the experts and the practitioners, I Perhaps the most serious difficulty with rotational approaches to the

do not know of any outside of education where the actual utilization of the problem is that the nature of the barriers are such that mere situational

best scholarship is so low. Neither do I know of any where the teachers involvement won't create much of a break-through.

of professional workers are s0 blatantly disinterested in ‘the problems One teacher, reported in Stake and Easley (1978) said:

as defined by practitioners in the field. Clearly, those in this field who They must have tricked us. In demonstration teaching they did,

are concerned about the mathematical learning of the majority of children the kids looked like my kids, and they seemed to learn, but

should find a way to pull together in spite of their ideological differences, when I tried it, my students didn't learn.

instead of pulling away from each other. Those who are only concerned to My own experience in learning Max Beberman's method of teaching

develop their personal status in one group may be ignored in this organized ninth grade algebra, which had the attractive feature that no child was left

effort. A few dozen persons, in fact, could mount an organization to ac~- _ out and lost for more than a few minutes, was that it took a full year of

complish something, if they could work together in one place for a time, daily observation in Beberman's two classrooms, interspersed with daily

The question naturally arises what kind of program or policies could they _ conversations with him or with Gertrude Hendrix, who was writing ethno-

advocate ? This is the problem to which the rest of this paper is devoted. graphic field notes on every tactic he employed and their results. That

one year followed a few months of intensive study of the design of his
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textbook, and was followed by a semester in which I had the opportunity their true knowledge. To be popular they must be fool-proof, like the

to do a major share of the teaching of a ninth grade algebra class. The japanese noodles packed in a plastic cup. Just open the plastic package

teacher I worked with then, having had an intensive training with text and of seasoning, dump it in, and fill to the brim with boiling water. Let

films, was doing her apprenticeship with me. She foundered with the sit five minutes and eat. This won't put Japanese restaurants out of

class of borderline students. I took over, and she watched. The class usiness, because there you get the waitress in the kimono. In fact,

recovered miraculously; she did a little follow-up teaching, and eventualj the fool-proof noodles may increase their business.

at the end of the semester, she took over full-time teaching. 1 know that Fool-proof is a positive concept which is quite different from teacher-

Beberman and Vaughan can be taught to border-line students. But when proof , which implies that the teacher is not really interested. Fool-proof

teachers tell me it can't be, I know that their apprenticeship was nowhere food preparations are inventions designed for busy persons who don't have

near sufficient to make it possible for them. Deep involvement is needed the time and patience to learn gourmet cooking but want to enjoy a taste of

not just contact to make converts. another culture. When we visited classrooms in the Case Studies in Science

Acculturation on a massive scale, in which millions of Americans Education (Stake and Easley, 1978) we found boxes of science and mathe-

. int i Yifan :
gradually incorporate into their life-style some features of other cultures matics materials piled up in closets or corridors, unopened. They had

is going on all the time with some assistance from the advertising and peen designed by purists supported by the National Science Foundation who

manufacturing industries. In Japan, it is even more striking because the had discovered striking new ways of teaching children. Hands-on mathe-

Western culture they are incorporating is so different from traditional matics materials like Cuisenaire rods and Dienes base ten blocks sat on

Japanese culture. The cultural purists are not obliterated in the process; shelves in the classroom, having been used once or twice at the beginning

in fact, they are scarcely involved at all, initially. A good example is of the year, while children filled in answers on worksheets or to sets of

the California wine industry. When I first tasted Chablis, twenty years type problems in books

ago, it was a sweet wine. Having grown up in a puritanically dry com- It was extremely difficult to find mathematics teaching devices

munity, I never acquired a taste for dry wines until quite recently. Now, other than textbooks that were being used by large numbers of teachers

that we have wine-tasting clubs all over our country, California Chablis frequently enough to justify their manufacture. There was no lack of

is made closer to the European version, but initially it was sweetened for awareness of innovations, but they were not available in fool-proof models,

American tastes. bnly in the form which required extensive teacher involvement.

The lesson I take for mathematics education is that someone need Publishers have included a few challenging problems in textbooks,

to develop and market popular versions of what the purists acclaim as but teachers often don't assign them. They' are doing traditional teaching,
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which is a different thing altogether, and difficult problems upset the

routine of teaching procedures and providing lots of practice in follow-
1. From the creative to the traditional mathematics educator.

ing them. In fact, given the gross individual differences in learning of i
. Traditional teachers have heard of mathematics games, but worry
a teacher's class, practice could be individualized and each pupil el ¢ the possibility that children will become so involved in the social
copy the appropriate procedures from a worked-out example, This wag competitive aspects of games that they will not really learn any mathe-
a common teacher-made solution to the problem of finding oneself out o ¢s skills. They object to disguising skills so that people learn ef-
one's culture and mores. IPI was a less common version of the same tlessly, since effort is something that has to be learned in order to

solution to the same problem. IPI is almost fool-proof. (See Erlwangé;f ceed in later years of schooling. However, if a game could be found

1973.) I propose that acculturation be promoted between the three pole devised that produced some learning not ordinarily covered in tradi-

of math education via fool-proof devices. To claim this as a plausible nal middle school curricula, I believe a lot of teachers would give it

solution to the tri-polarized paralysis of mathematics education, I mus ry. But it hag to be packaged in a fool-proof way if it is going to have .

either find some such fool-proof devices for exhibit or else invent them sizeable use by teachers.

myself. Furthermore, it must be made plausible that such devices coul Creative mathematics teachers have found children fascinated by

be developed as carriers of the "culture" from each of the three poles ] ing to measure the areas of all kinds of things from the prints of their

talking‘ about to each of the other two. I would not suppose that a single t or bicycle tires to the area of the floor or walls of the school build-

device could be designed that could move in more than one of the six . Traditional teachers, however, are not likely to use more than once

possible directions. For each device must represent something recog: activity that involves children going out to the bicycle rack or creep-

nizable from one pole and carry it with least disturbance into the life all over the school building because they could not resolve and teach

style of persons in another pole eqtly the procedural problems that would arise in remote places.

In the remainder of the paper, I shall present those ideas I have wever, if the estimation of areas of strange shapes could be incorpo-
b

. . ; ed into a game that could be played b o hi i
been able to collect or invent and try to indicate roughly the kind of mark ! & v played by groups of children by pulling

. ir desks together, it might be used a lot because it introduces a concept
research and development that would be necessary before launching an ~ ’ & p

ditional teachers have found trouble with, area measurement. Imagine
advertising campaign and manufacturing. In each case, I shall try to

] ox full of strange plastic shapes that suggest fantastic creatures, a
identify the demand that I believe can be cultivated, the nature of the prod .
of graph paper on which each shape could be traced, a set of rules
i robable effect on mathematics educators an
uet to be 1mport¢d, and the probab m 1at require each child to guess the area in square millimeters (or square

pupils if it is successful. entimeters for younger children) trace the figure and count the squares,
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ething. If acculturation is promoted only in one direction, there will
an individual's guess and the group average of counts of the graph'pa

outlines. Bad errors in counting would affect scores of good guesse
negatively so helping each other with the counting (or estimating) pr

would be an advantage. Designing the plastic shapes would be mos Although criterion reference tests arose from an earlier form of

portant. Short cuts should be possible by suitable alignment with th, ational technology, they are now growing in popularity with traditional

paper, but there should be look-alikes with different short cuts so ematics teachers. I believe that they could be designed in such a way

game would have staying power and gradually invite children's atten eative mathematics educators would show some interest and even

to parallel lines, right triangles, parallelograms, etc. embedded in hem frequently. If this happened, it would provide an important link

shapes. Many traditional teachers would notice children learning th aditional teachers where now there are none. Creative teachers

concepts and formulate rules for them to memorize. _great interest in children's misconceptions. (Such misconceptions

The traditional teacher feels responsible for proper proced een investigated by Davis, 1975,Ginsburg, 1975 and Erlwanger,
they are the essence of what teaching and learning are about. How  Other studies of this sort go back to Buswell, 1926, Brownell, 1928,
teachers in such a perspective to recognize and tolerate a SP°“tf’~'?°, hers. For example, young children often miss the ordinal meaning
discovery of a mathematical principle that is obtained by deviating last number in counting, thinking that it is simply attached to the
standard procedures and which is not yet codified into a standard ject. Older children often miss the general principle for combining
that is the problem. A game format loosens the rigor of teaching les of ten with digits in decimal notation for integers, writing 10007
the substantial practice in arithmetic is the justification appealed thousand and 7, while knowing perfectly well that twenty seven is

ever, it is still a delicate question--requiring trial and skillful de n 27 and not 207.

whether, when they see pupils taking advantage of hidden right angl The link I propose to exploit is that multiple choice test items require
the pieces, traditional teachers will want the rules formulated and ctors that children who understand something incorrectly will choose
which might kill the motivation, or whether they'll let these go as h e they are consistent with their mis-understanding. While traditional
adumbrations of later formulas for area. ; eachers would show little interest in the particular wrong answers
9. From the traditional to the creative mathematics educ

ay be chosen, prefering to concentrate on correct ideas, creative
It is very difficult to think of what the traditional teacher ca

ch mathematics teachers are very likely to be interested in informa-
i i it i i rtant to fi
the convert to creative mathematics, but it is very impo ch tests could give them about mis-conceptions in their class. They
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could then hold a discussion about them or develop inquiries into the e‘g 3. From the technological to the traditional mathematics educator.

tent or origin of such misconceptions. Because they are committed to Wwhile very unsophisticated mathematically, the mini-calculator is

using children's thought, to assume more of the social responsibility of oming cheap enough to consider it as an opening wedge of technology
the traditional teacher, they need to know more about their pupils' tho ‘the traditional classroom. The problem is to introduce it in such a
than they can find out just by conversation with a few at a time. If the y that it does not replace practice in computing algorithms. Checking
children themselves are given the results of criterion reference tests s answers by calculator is too close to just doing them on the machine,
in terms of the misconceptions which their wrong answers suggest, th hecking by hand is good discipline. However, it might be used if it
could initiate discussions with their fellow pupils about the reasons they introduced with a problem that causes great difficulty, such as solving
chose one answer rather than another and whether or not they really b erogeneous collections of story problems of the sort that form mathe-
in the misconceptions suggested. While these uses would, of course, d tics applications tests, where the difficulty is not knowing which opera-
fer partly from the uses made by the traditional teacher, there would to perform on which numbers. Research is needed to determine
an importation of the idea of testing the whole class against the same ether a game format or a more serious problem-solving format would
terion, which otherwise would be neglected, and creative teachers an over better. However, the following procedure could be tried: Have
other mathematics educators would soften their critical attitude towai‘ jils guess the answer to a story problem and write it down. Then they
test-based teaching. There is another approach that could be used o 1d try various calculations on a mini-calculator, recording the pro-
much smaller scale. Called communication among multiple perspect jure and results. Finally, they compare the results to the guessed
(CAMP), it proposes week-long workshops in which each participant | er to see if some procedures could be eliminated. Now a new guess
to explain a different perspective from his own to the satisfaction of a ade and the process is repeated until convergence on a procedure and
expert. ‘ nswer is obtained.

Four more directions require inventions that will fit c0mfort§ The problems for this game or exercise should be carefully designed
into one culture and yet transport an important idea from another cult o fall into type problems of the sort found in text books, but to be as
and must be developed and marketed by persons more dedicated to aé i'ent from each other as possible, while still being comprehensible
tion than to refinement of any one "culture.' I shall briefly sketch fo h to permit some reasonable guess.

possibilities, more to indicate the need than as firm proposals. While purists in the technological approach would not recognize
as a serious application of technology, it might have a good chance

being adopted by many teachers as the least objectionable modernization



- 139 -

available. Furthermore, if the scores on the application sections of

standardized tests are low, and the prime causes are identified as ba iedge of the computer language and the organization of the computer

guessing and ignorance of which operation to use when, a package wit e likely to make such specialists insensitive to specific misconcep-

calculator, work sheets, and problems that could be usea once-a-wee _and student difficulties may be treated as merely requiring careful

with noticeable improvement on standardized tests could make an imp ver the principles, definitions or terms, and making systematic

sion. charts. Errors caught will be corrected, of course, but the possi-

4. From the traditional to the technological mathematics educz of systematic errors due to misconceptions that could be corrected

In some respects the technological (computer) educator and th cognized seems out of place. For one who knows precisely what the

traditional educator have something in common. Both have a faith tha m really is, the question is: How can there be any system in an

correct procedures will keep one out of trouble and incorrect procedure

will sooner or later lead to serious trouble. Another concomitant prin- Several possibilities suggest themselves. Perhaps the simplest

ciple is the belief that rules, definitions and procedures are man-mad. write a debugging package which would print out interview questions

hence merely conventions. Perhaps the philosophy of conventionalism - programmer on each stop the program makes. For example, it

could be expounded in cartoons in such a way as to develop more respec d ask what the programmer intended the computer to do and storing

for conventional teaching by the technologist. eply, along with the program and line number on which the reply was

5. From the creative to the technological mathematics educator e, then asking how the computer was supposed to know to do that, etc.

Many tech nological mathematics educators are interested in hel enough replies are obtained, careful study of them may reveal more

children write, debug, and run computer programs. Some, like Paper ed questions that could be asked in particular identifiable situations,

have developed heuristics for debugging, and most computer languages Did you want the computer to do this? If so, you should realize

have automatic aids to debugging. What seems not to have been studie it doesn't have the information needed, etc. After some years of

are the patterns of errors in writing computer programs. Just as the elopment, a debugging package that ""psyches out" the novice programmer

creative mathematics teacher finds help in studying children's errors a be developed. Another approach might be to develop text material

misconceptions, there should be a way in which educators working with ‘explains what the common mis-conceptions are and gives counter

computers could find help in studying children's errors and misconceptic mples and arguments against them, as well as explaining what appear

related to programming bugs. Some research would be needed to discov e ambiguous terms in the theory. This, of course, would require

how to package this information for maximum probability of use. More e research.
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‘ ublic opinion even as its special problems grow. -of -
6. From the technological to the creative mathematics educat ’ : The out-of-classroom

or of mathematics education is not oriented at all to helpi iti
Here, there is a great deal that can and already is being done. The prol elping traditional

hers solve the problem of socializing children of ma i R
lems Papert poses to students working with LOGO and the turtle are c¢r g n of many different back

ounds and an increasingly skeptical attitude toward -
problems. However, they are not specifically designed to solve some : school through mathe

tics teaching. The schemes for changing this pur
teaching difficulties the creative teacher has. ¥For example, children g ‘ ging purpose to another one

is more creative or more technological in focus (o .
very prone to question such seemingly arbitrary decisions as n X 0 g cus (or any thing else)

not at all likely to be well received b i -
n0=1, ifa=b, thenb=a, etc. Perhaps there are simple compute ved by a teaching force under the kind

pressure and duress our teachers now experie N
in which these decisions make a great deal of sense? If so, perhaps wi perience. Only by joining

: es with them could the "experts' fi i
mastery of a computer language, students could be encouraged to wor i find a common goal with them more

d to expert taste. That is, extensio i inati
these problems out on a simple mechanical or electrical computer. So ’ sion and dissemination have to

ge to dialog and finding new common goa i
computers, on the other hand employ conventions that don't make much J goals, as Freire correctly

. g out for agriculture.
sense, e.g., that ~0 # +0. Perhaps there could be an expansion of co

However, the faculties of education and th
tions in mathematics and computer languages through use of a relativ ’ e research and develop-

laboratories, as well as the superintendents' offi i
simple piece of circuitry, a circuit board of some sort, perhaps. , 196 o not contain

y mathematics educators who would be able to give up their commitment

Summary and conclusion e learner and to learner thinking and begin to try to understand teachers

The picture we have painted in this paper needs a great deal o eacher thinking. Consequently, the job of softening up the rigid bar-

finement, and that can come if it is sharply criticized and if research rs that now separate mathematics educators into three or more cam ps

focussed on the social structure of mathematics education, both in the 0 be undertaken by those few who see the disaster of millions of very

classroom and out. I think, however, that the criticism and researc ly educated children and are willing to drop their own ideal approach

needed to translate my sketch into more reliable knowledge will leave der to bore holes in the dams that stop the flow of thinking and concern

one point unchanged. It will remain clear that most present efforts ai reaching masses of children.
at the improvement of mathematics learning for large numbers of stud
in the U.S. are not producing any noticeable effect, and unless change
drastically current programs will not have any noticeable effect in t‘he‘

next ten years. Traditional teaching is strongly entrenched and Suppo
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xperiment consisted of 22 trials, 11 on each half with a given instrument. The

ANALYSIS OF THE CONCEPT OF PROBABILITY IN YOUNG CHILDREN of the experiment is presented in Table 1. Crossed cells represent impossible
Ruma Falk(l) - The Hebrew University of Jerusalem ‘ . tions. The arrow in each of the examples, points at the subset of the POC in
Various investigators used a decision making technique in order to exp! érrect choice. The trial described at the upper right cell of the table, for
onset of children's understanding of probability. The basic experimental‘un , consisted of 4 elements in the left hand set: 3 of the POC and one of the non-

presented two sets of elements, each of which was subdivided into two categ
i.e., different colors. At each trial, one of the two colors was pointed grrect choice is the left set since 3/4>2/4 = 1/2. The results are, likewise,
the payoff color (POC). The child had to choose the set from which he woui

to draw at random an element of the required color. In order to be maximaj: ¢t responses to trials of that category.

in Table 1. The percentages written lowest in each cell are percentages of

rewarded, his problem was to identify the set with the higher probabilityko Experiment 2. 25 children, within the age limits 4-7, were tested with 32 trials

the desired color. Although the different studies all presented paired cop In this experiment only roulettes were used. The design of the experiment

of binary sets, serious disparities were obtained in authors' conclusions ¢ olled a third quantitative dimension of probability, i.e., the number of elements

e NPOC. All the possible cross-combinations of the three dimensions are presented

ble 1.
The conjunction of the results of the two experiments points to the 'number of

the age of attainment of the probability concept. It seems feasible to hyp
that the apparently contradictory results stemmed from differences in the m
features of the problems presented. A more profound analysis of the conceps

probability indicates that some of the studies included certain components nts of the payoff color" as the variable that accounts for most of the variation in

probability problems while the others overlooked the same elements. hildren's responses. The effect of that dimension was significant in both

The aim of the present experiments was to analyse the concept of probal iments, but more salient in the second one. The level of correct responses when

and thus to find out how children's responses relate to each of the component umber of elements of the POC was smaller on the correct choice approached that of

probability.
The Experiments
Experiment 1. 36 children within the age limits 5-11 (6 Ss in each ye

were tested. Each child was confronted with two out of three kinds of instrum

guesswork for the younger children (52% in Expt. 2). Indeed, the effect of this
ble is highly dependent on age, as one can see in Table 2, where the results are
n down according to years of age. This analysis included only problems in which
orrect choice contained a smaller total number of elements and a smaller number of

a. Pairs of transparent urns with different compositions of blue and yellow nts of the NPOC. The results of Expts 1 § 2 were pooled together for overlapping

each. b. Pairs of roulettes of different radii, each with its own distribu

blue and yellow sectors. c. Pairs of spinning tops of different volumes, 1ik usions

subdivided into the two colors. The probability of the POC in a given set i The experiments showed that starting from age 6 the children tested performed
ratio of the number of elements of the POC to the total number of elements in

ificantly above chance level. Since according to the design of the experiments, no

These two absolute quantities are the two main dimensions composing the propo principle of choice, except selecting the higher probability, would systematically

the target color. Each of these quantities can be either greater or smalle t in correct choices, this means that at about the age of schoclstart children

correct choice than in the other set; the quantities could also be equal in b e capable of discriminating between probabilities. The dominant error among

i . . choolers was choosing the alternative with the 1 est number of target elements.
(1) Parts of this study were carried out in cooperation with Iris Levin from ° & &g ¢ &

University of Tel-Aviv and Raphael Falk from the Hebrew University of Je
The paper is based partly on the author's M.A. thesis which had been supe
Rivka Eifermann, the Hebrew University of Jerusalem. Current research 'is
by a research fund of the Faculty of Social Sciences at the Hebrew Univer
Jerusalem. ‘

ent Research

The following problems are being studied:

Will children who choose according to an absolute principle, persist in applying the
e principle also when going over to complementary events? Consider the following

mparison: (5:3) versus (3:1). The number of elements of both colors is higher on the




Table 1.

of Elements on the Correct Side in Relation to the Incorrect Side
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Examples of Problems of Probability-Comparisons, According to the Comp

(Number of Triéls)

Percentage of Correct Responses

Experiment 1. Age Interval: 5-11; No. of Ss: 36
Number of Total number of elements
elements of
the payoff
color Greater Smaller
Greater (2:6)>(1:5) (4:4)>(3:6)
4) T @
80% 89%
Smaller (2:2)>(3:9)
T
79%
Equal (2:1)>(2:3)
()
87%

Experiment 2.

Age Interval:

4-7; No. of Ss:

25

Total number of elements

Number of
elements of
the payoff Greater Smaller
color No. of elements No. of elements
of the NPOC of the NPOC
G S E G S E
Greater [(2:4)>(1:3) [(5:3)>(3:4) |(3:2)>(2:2) (4:1)>(2:4)
(4) T @ t () T+ @
88% 84% 75% 86%
smaller (2:2)>(4:6)
@
52%
Equal (1:2)>(1:5)
0 (6)
63%
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£t hand set. Let us imagine a child who is choosing consistently the set with a
gher number of elements of the POC. Thetﬁgild would always choose the left h%nd set.
¢ choice would be correct when the POC is,one whose number is written on the right

de in both sets (3/8>1/4), and incorrect when the POC is the one written on the left
/8<3/4) .
e rule stating that if a>b then 1-a<l-b.

To what extent are children integrating the numbers of elements of the two colors by

A consistent choice of the same set, independently of the POC, violates

mputing the difference, rather than the ratio, between them? The following is an
ample of a comparison problem where the choice according to the difference in favor
the POC does not coincide with the correct choice: (4:1)>(10:5); one should choose
e left hand set since 4/5>10/15; however 4-1<10-5 and choice according to the

fference would point at the right hand set.

Percentage of Correct Responses According to Age and to Number of Elements
of the Payoff Color on the Correct Side in Relation to the Other Side.

(No. of Trials - in parenthesis)

Number of elements of the POC on the correct side
Greater Smaller
78% (18) 33% (36)
787 (28) Ly (56)
95% (28) 76% (56)
88% (12) 88% (24)
e (2 7% (24)
- --w";é% (12) ) ”wgé%jm_v(zu) o
o [roes a2 96%  (24)
88%  (122) 68%  (2hk)
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Intuition and Mathematical Education

So, what is intuition? A great number of definitions and

E. Fischbein finterpretations have been offered, each of them generally express-

Tel-Aviv University ing the author's own philosophy. But all these interpretations

) . . oo mention a common feature: Intuition is immediate knowledge.
The concept of intuition

An intuitively accepted truth is self-evident—no arguments
Mathematicians, especially in the last two centuries, h

- appear to be necessary to convince us that the given statement is
been very concerned with the problem of intuition. Striving

. true. For instance, a statement such as: ©“If A>B and B>C then
formalize the different branches of mathematics, they haye be

A>C" would be such an intuitively accepted statement. In the same
faced with the problem of liberating their definitions, theox

manner, we accept as being self-evident statements such as: "The
and proofs from ideas which were not completely controlled b

shortest way between two points is the straight line;" “the whole
logic. As a consequence, they became aware of the enormous p

is greater than each of its parts;" and "only one line parallel
played by intuitions in mathematical invention (and,mathemat; to a given line can pass through a point outside that line."
errors)~-i.e., of the role played by mental attitudes WhiCh’* This fundamental feature of intuitions--i,e., their being
their very nature, are not explicitly justified. self-evident--explains their great impact on the course of think-
Great mathematicians such as Felix Klein and Henry Poinc ing. They have constituted the basic source of mathematical
--though affirming the necessity to always verify intuitive id axioms through their long acceptance as primitive nonanalyzable
--have, at the same time, accepted that intuitions play an a¢ concepts, e.g., the concepts of straight line, number, distance,
role in mathematical invention and mathematical education. continuity, etc. The efforts to find a unique, rigorously deduc-
Unfortunately, psychology has paid little attention to tive, that is axiomatic, setting for an ensemble of related math-
ition, in contrast to philosophers who frequently haye seen ematical concepts and operations have generally followed an ear-
intuition a fundamental .source of knowledge (Descartes, Spi“ lier, less rigorous and more intuitive approach.
Kant, Bergson, etc.) ; On the other hand, some great discoveries have been made in
In this paper, an attempt will be made to analyze intui# mathematics in a time when rigorous proofs were impossible, taking
from a psychological viewpoint and to reveal some of its impl into account the state of mathematical knowledge in that time.
tions for mathematical education. 'Hadamard, in his famous "Essay on the Psychology of Invention"
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that moving points can generate (in a finite time) not only
(1949) quotes some striking examples. One example is Ferma :

m m urves but also entire plane surfaces (H. Hahn, 1968, pp. 184-

well-known theorem: "The relation x + ™ = 2" is impossib
. 86) .
integral numbers (x, y, z different from 0; m is greater tha

. A list of other examples can be given concerning mathemati-
In fact, as Hadamard says, no rigorous proof was possible i

cal truths which contradict intuition: the logical possibility
time of Fermat, owing to the lack of adequate mathematical '

pon-Euclidian and multidimensional geometries, the Cantorian
A second example mentioned by Hadamard (1949, pp. 119-

. . oncept of actual infinity (generating anti-intuitive concepts
is that of a discovery made by Galois concerning a theory o >

X . . \ . such as that of a set being equivalent with some of its subsets)
periods "of a certain kind of integral." This theory could

tc. One conclusion seems to be clear: Intuition has an impor-

understood by scientists who lived at the time of , .
have been 4 tant impact on mathematical thinking, whether positive or nega-

Galois since these periods had no meaning in the state of sc¢

tive. So it cannot be neglected by mathematical education. Both
of that day. The conclusion is that Galois had guessed his |

in trying to use its beneficial gualities and in striving to

ory without being able to give a full, rigorous demonstratio o
Y ! eliminate intuition from the pupils' mathematical reasoning, we

it. ; . . .
have to take into account its possible effects.

On the other hand, the efforts to axiomatize the variou:

A . - The features of i iti
mathematical domains have revealed the limitations and dange e intuition

. . First of all i i i
of intuitive interpretations. Some of the authors simply co t ; we need a better understanding of what intui

cluded that intuitions had to be banished from mathematics. tion is, of its features, sources, and mechanisms. In what fol-
Hans Hahn has stated: "Repeatedly, we have found that in ge lows, we shall try to describe the common features of intuitions.
etry questions, even in very simple and elementary ones, inti 1. The fundamental characteristic already mentioned is of
tion is a wholly unreliable guide, and it is of course impos course that of self-evidence. An intuition is a self-evident
to adopt this discredited aid as the basis of mathematical d representation of facts. Not all mathematical statements, formu-
pline (1968, p. 187). las, etc., which are accepted as being completely clear, have the
Hahn also describesia number of beautiful examples: the _status of intuition. For instance, the well-known formula for
éovery by Weierstrass (1861) of continuous curves which posse ‘Solving quadratic equations:

no tangent at any point; and the discovery made by Peano (18?
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vented, strange to the normal course of sound thinking.

-b + /b% - dac

x
1,2 2a
Here some practical teaching recommendations can be made:

does not possess the inner credibility of an intuitive try ; . .
L The first mathematical proofs must be introduced in connection

is not self-evident. If, instead of -4ac, it would have be - ]
g th non-evident statements; and b) it is useful to analyze elemen-

+4ac, nothing would have been striking or surprising. But
. ry examples of statements which seem to be intuitively evident,

statement "there are as many even numbers as natural numb - .
t are not correct. Pupils have to learn the necessity of de-

sounds, at least at a first glance, absurd. An intuition j ; . L.
ning rigorously and explicitly the terms they use. Let us take

consequently,more than a pure cognition: it is a belief.

he following example: xy and x are two parallel axés and AB

y
. . . s . L 171
explains the role attributed to intuition i1n aesthetic judg and CD are two perpendiculars on them. The distance between AB

in moral convictions, and attitudes in religious revelatio - .
1 nd CD is a. Let us draw two curved lines, EF and HG, in such a

wild, 1938). i
’ anner that the distance between two corresponding points (on

From the educational standpoint, some additional remar . ;
y . parallels to xXy) remains constant and equal to a. Let us ask the

have to be made. The obviousness of various mathematical g 3
- upils to compare the areas ABCD and €EFGH. Generally, the conclu-

ments may help children understand and memorize them. Eleme . ; ‘s
: sion (intuitively drawn) is that the area EFGH is greater than the

geometry makes constant use of such intuitions. , )
area ABCD. But that answer is of course not correct, and it is

At the same time, however, the self-evidence of some m ~

easy to prove that the areas are equivalent (Figure 1).
matical truths can become an obstacle in understanding the
cal structure of mathematics. For most pupils, proofs of g
ently evident statements seem to be arbitrarily and pointle

invented.

als are equal if it is absolutely evident that it is so?
intuitive obviousness of such a statement simply blocks the

tance of the utility of the corresponding logical proof.

Figure 1

pupil, the proof appears to be superfluous, that is, arbitrar



- 155 -

a. Two opposite interpretations may coexist for a long time
2. As a consequence of their self-evidence, intuitionsg [ :

nout the subject being aware of the contradiction. This becomes

a coercive effect on the processes of conjecturing, explaining

ecially evident in conflictive situations. For instance, we asked
interpreting various facts.

_ “ilé in grade 6 (age 12) to compare the number of points of two
When some facts or some scientific interpretations appe

. : ents of different lengths. Some pupils were confused; some
be contrary to our natural intuitions, we have a strong feelin

wered that in both segments there is an infinity of points. One
uneasiness. We tend to reject such facts or interpretations o . .

i _added: "Yes, but the infinity of the longer segment is bigger
look for a scheme of explanation which would be able to concilj, :

. an the infinity of the shorter one."
the contradictory aspects. Concerning Weierstrass's discovery

A more striking example illustrating, in an experimental manner,
there are continuous functions which have no derivatives (and &

;scandalous behavior of the continuum" (see the quotation from
this is the general case!) Hermite, the French mathematician, h

nery) is the following: Pupils from grade 5 to 9 (aged 12 to 15)
written: “Je me détourne avec effroi et horreur de cette plai

. . _been presented with the following: "C is an arbitrary point
lamentable des fonctions continues qui n'ont pas de derivees" (

ewhere on a segment AB. We divide and subdivide the segment AB
LeRoy, 1960, 329). Relevant also, is Tannery's statement that:

two, by four, by eight. We continue dividing in the same manner.
"Je suis trés scandalisé par ces points d'absgisse rationnelles

stion: Will we arrive at a situation such that one of the points
sont aussi rapproches que l'on veyt de n'importe quel point de

. division will coincide with point C?" The great majority of the
l'intervalle (0, 1) et qu'on peut entourer chacun d'un petit segm

. jects (about 80%) affirmed that the point would be reached.
sans. que l'ensemble de tous ces segments recouvrent 1l'intervall

fting from at least grade 7, the pupils have learned about irra-
(cf. LeRoy, 1960, 329).

) . nal numbers; but only a few of them have been really influenced
In the history of science and mathematics, this coercive nat

) that fact. One of my university students (who has a B.A. in math-
of intuitions has frequently contributed to a perpetuation of wro

~ matics), expressed his feelings in the following manner: "Intui-
interpretations and to a reluctance to accept the correct ones e

vely, I feel that the point C will be reached because the process
when they have been logically proved.

. division is infinite. On the other hand, I know, from mathematics,
For the school teaching process, the coercive nature of intu

, hat it is possible that the point should not be reached. Surely it
tion is of essential importance. The following situations may oc

. 1l not be reached if the point is an irrational one."
when the learned truth contradicts intuitive tendencies:
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Intuitively, infinity is equivalent to inexhaustible. sixth grade pupils were asked to mention the factors which

intuitive infinity is roughly eqﬁivalent to the potential i thought would influence the forces of friction in a certain
of the mathematicians. In accordance with that primitive me erimental situation. In front of the subject, there was a
the endless process of dividing the segment will reach, soo den rectangular board, horizontally oriented. To the board was
later every point of the segment. The concept of an hieraré ched a pulley. On the board, a parallel piece of wood was

organized world of infinities has no intuitive background, ced. By the aid of a string, to which a pan with weights could
the above-guoted example, the primitive understanding of in tached (and using the pulley), the piece of wood could be

coexists with the more sophisticated concept of continuum (1, sed to move.

from mathematics). The pupils know that in addition to rat Ten fifth-graders, ten eixth-graders (both groups not having

numbers, there are also irrational numbers. When contrasted éd the laws of friction yet), and 20 sixth-graders (who have
their intuition of infinity, this superstructural knowledge lied the laws of friction) were tested. The first question was
to be forgotten. kfollowing: "We want to keep the object moving with a constant
b. Our above example refers to intuitions coexisting W _on the wooden boardf The weight attached to the string must
opposing scientific concepts. A second case is that of intu ] eater, smaller, or equal to the weight of the object?" The
which are so strong that they generally ébscure or destroy ts (in percentages) appear in Table 1. (Ft = the attached
corresponding conceptual knowledge. Most pupils asked abou£ Fa = the weight of object).

notion of weight would not refer to the force of gravitation

Table 1
them, "weight is weight," though they have been taught the Ft<Fa Ft>Fa Ft=Fa
interpretation. For the naive intuition, the weight of a bod (correct)
an intrinsic, permanent feature, like hardness or taste and 30 40 30
external factor seems to be superfluous. The intuition of we I (before) 10 55 35
as an intrinsic property is so strong, so completely obvious I (after) 25 60 15

self, that the idea of an external factor as the cause of we

will be eliminated sooner or later.
' Bs can be seen, the effect of teaching on that intuition is
Another relatively similar example is the following:
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practically null. The majority of the subjects consider that j nt outside a straight line one and only one parallel line can

order to keep the object moving constantly we need a force grea yawn." The statement is intuitively evident; it does nét seem

than the wieght of the object itself or at least equal (reporte o request additional information or any logical proof. In fact,

in Fischbein, 1975c¢). e statement extrapolates to infinity, in a non-legitimate manner,

A question relevant to our present discussion was the foll very narrow, limited experience. But the apparent obyviousness

ing: The Ss have been asked if the magnitude of the contact sy the statement hides the need (and of course, the impossibility)

face will influence the force of friction. 80% in grade 5, 253 further proof.

grade 6 (before studying) and 55% in grade 6 (after studying) a A second similar example concerns the concept of infinity.

swered affirmatively. This time, a positive effect of teaching re is a fragment of a protocol: Hor Syb (age 13) "A line can be

may be remarked, but, still in this case, 55% of the pupils ma tended to infinity." How do you know this? "I think so."

tained their belief that the magnitude of the contact surface at is the meaning of "to extend to infinity?" "It never ends."

fects the force of friction. w do you know? The child laughs. No answer (Fischbein, 1963,

3. A third essential feature of intuition is the‘ca”a: ﬁX

to extrapolate. Intuition, like thinking, transcends direct, e In fact, the natural concept of infinity is the concept of

potential infinity, the only one which Aristotle admitted as mean-

pirical information. But while logical thinking makes predict

on the basis of rigorously and explicitly established argument ful and which was predominant till Cantor. Mathematicians did

intuition represents a leap which cannot be completely justifi t wonder about the possibility of "larger" and "smaller" infini-

Westcott used that aspect in order to define the act of intuit les. Intuitiyely, there is only one kind of infinity. The appar-

"The event which occurs when an individual reaches a conclusio obyiousness of infinity hides, of course, a lot of inner con-

on the basis of less explicit information than is ordinarily r dictions and a variety of complex and difficult problems., The

quired to reach that conclusion" Westcott (1968, p. 100). ct that the intuitive meaning of infinity includes non-legitimate

This aspect is not always evident, simply because the njectures is hdden by its own natural strong obviousness. It may

apparent obviousness of some intuitions themselves hide‘the‘iﬂ _said that the natural intuition of infinity is the direct ex-

pleteness of the information on which they are based.. For in ssion of the extrapolative capacity of intuition. As LeRoy

stance, consider the famous Euclide's postulate: "Through a g: ys: “L'intuition simple engendre un infini logique" (1960, 337).
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4. s . . . . .
Intuition is also described as a global, synthetic yie ars to be self-evident. The statement that "A straight line
as opposed to analytical thinking, which is discursive in itg o shortest way between two given points" is an example of

Most of the examples described above

vexry nature. LeRoy writes in connection with intuition: £firmatory intuition.

so of this kind.  An anticipatory intuition is the preli-

I1 s'agira toujours d'une vision directe et rapide,

a' Sti s :
une vue synthétique sans analyse préalable....il est global view which precedes the analytical, fully devel-

LeRoy, withoht being so explicit

clair que le discours® qui chemine pas a pas, qui joint solution of a problem.

les notions u a i : N ‘ . . L .
ne a une, qui va lentement d'un point & un orning that dychotomy, writes about the role of intuition in

autre, ne saurait ffi ' i . . . ..
’ suffire a l'establissement de la science orstanding and invention:

Constamment s'y aj 'ori P, X
y ajoute pour l'orienter, pour la vivifier D'abord elle est necessaire pour comprendre parce

une démarc i . LeTad i . ; . . .
he differente: 1'éclair d'illumination subite que elle est perception des ensembles dans leur unite',

la lecture c¢o & ' : . .
C condensee d'un vaste ensemble virtuel dans dans leur coherence intrinseque....A plus forte raison

une breve i - ~
€ image (pp. 327-328). en est-il de meme quant il s'agit non plus seulement de

Being a i g : !
g condensed view, intuition is frequently expressed comprendre mais de construire et d'inventer (p. 337).

a visual symboli i : . -
lization. The related visual image may be a pri 2. A second dychotomy refers to what we have called primary

tive non-elaborated o . e . .
ne or, on the contrary, the result of a This classification concerns mainly

Secondarz intuitions.

highly elaboxr 4 i ; - R . - .
gy ated technique of representation. In both cases firmatory intuitions. Primary intuitions refer to those cogni-

is not the ima itsel i ; . .
ge itself which constitutes the intuition but the e beliefs which develop themselves in human beings, in a nat-

3l way, before and independently of systematic instruction.
Ele~

synthetic intellectual view which it symbolizes.

To summarize t i :
ize then, the following are the essential feature y are common to all those belonging to a given culture.

ntary spatial and temporal intuitions are of this kind. There

of intuitions: self-evidence, coercive efféC£, ekffaééiaéiﬁg
capacity, and globality.

a natural intuition of infinity, of chance, etc. It has been

The classification of intuifibns ‘und for instance that subjects aged 12, possess a correct,

1. Affirmatory and anticipatory intuitions. An affirmato tural intuitive understanding for the following probabilistic

oncepts: the concept of chance and of the quantification of

intuition is the kind of representation or interpretation which
ances as the relationship between the number of favorable and
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n@y pe built, transformed, corrected, or eliminated as a re-

and of all possible equally likely outcomes; the fact thaﬁ the
£ an adequate training. Nobody has checked that statement

ability of a compound event is obtained by summing up the proba
and nobody has systematically followed the ontogenesis of in-

ity of the components; the fact that increasing the number of i
ons. But it is a belief (albeit an intuitive belief) amony
posed conditions to an expected event diminishes its chanceg (w ~
‘ «t some outstanding mathematicians and mathematical educa-

corresponds to the multiplication of probabilities). By contra
sts that intuition may be-—and must be--developed in connec-

there is no natural understanding of the compound character cf
k with mathematical education.

categories of events nor of the necessity to inventory the dif : S o
Feller, the author of the well-known Introduction to Probabil-

ent situations which can constitute the same event (for instanc : .
- Theory and its Applications (1968), has expressed his convic-

when throwing a pair of dice, there is no intuitive understang
‘ that in teaching probabilities, the basic problem is to de-

of the fact that there is a difference between the probabilitie
‘ p adequate intuitions.

of getting the pair 5-5 and the pair 5-6). (Fischbein, 1975b, P
' : Patrick Suppes writes about the importance of developing in-

138-155)
ons for finding and giving mathematical proofs: "Put in an~

Secondary intuitions are those which are developed as a r

r way, what I am saying is that I consider it just as necessary

sult of systematic intellectual training (generally in the sch ,
rain the intuition for finding and writing mathematical proofs

settiﬁg). For instance, for Aristotle, a body will keep movin
: o teach intuitive knowledye of geometry in the real number sys-

a constant direction and velocity as an effect of a force acti
" (1966, 70).

upon it. This is a primary intuition. The same ideas are écce
‘ Hans Hahn, who has sharply criticized the use of intuition in

by common sense nowadays too. By contrast, for a physicist it - }
hematics, writes:

seems natural to affirm that a body keeps moving with constant
o If the use of multidimensional and non-Euclidian geome-

direction and velocity if no force intervenes. In the same mea

tries for the ordering of our experience continues to prove

ing, Felix Klein (1898) used the term "refined intuition" and
itself so that we become more and more accustomed to dealing

F. Severy wrote about "second degree intuition" (1951).
with these logical constructs; if they penetrate into the

This classification implies the following fundamental hypl
curriculum of the schools; if we, so to speak, learn them

thesis: intuitions~—though appearing as given (i.e., as produd
at our mother's knee as we now learn three-dimensional

by some a priori intellectual mechanism)--are, in fact, changeab
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Euclidian geometry, then, it will no longer occur to any e only in the realm of a certain cultural environment. Our

to say that these geometries are contrary to intuition, space intuitions, for instance, are different from those of

They will be considered as deserving of intuition statyg clonging to a different culture.

three-dimensional Euclidian geometry today. (1968Tjj3)r this respect, Alan Bishop quotes some striking examples in

Hahn implicitly admits, in the above-quoted lines, tHat ver devoted to "Visualization and Mathematics in a Pre-tech-

ition can change, that higher order intuitions can be formed cal Culture" (1978). For instance, he writes that for the

adequate instruction and, finally, that correct, scientificy ‘(ah African highland group) "space is not a container whose

validated intuitions are an essential complement to the conge ts are objects. It is a necessary dimension of the objects

framework in science and mathematics education. elyves." For another group, the Kamano-Kafe of the Eastern

It is also important to note that Suppes does not write nds, the four units of length are "long," "like-long," "like~

"teaching the axiomatic method" but rather .on”training the in t and "short." Bishop concludes that "our conceptions of

tion for finding and writing mathematical proofs, etc." He t with its items of objective measurement are not universal nor
implicitly accepts that, in order to build an axiomatic thegxi ey 'natural', 'obvious', or 'intuitive'. They are shaped by
(i.e., a formal, non-intuitive and sometimes anti-intuitive lture. They are taught, they are learnt" (pp. 77). We fully

what we firstly ne with Bishop's affirmation that space conceptions are shaped

a pity that Suppes did not further develop that idea; He ig e dultural environment-—that they are taught, they are learnt.

self, an experimented builder of axiomatic systems. e disagree with the first part of his statement (that space

In short, what Feller, Hahn, and Suppes describe in the sentations are not"obvious,"are not "intuitive"). In fact,

quoted lines is the kind of refined intuition termed here ag context of a certain culture, these "space conceptions" do

dary.intuition. It is the belief of these authors that new, r as being "matural," "obvious," and "intuitive". In the

fic intuitions can be developed--and must be developed-~in ord tional process, we have to take into account the "obviousness"

to complement the conceptual part of science and mathematica hese intuitions. We cannot say that we may neglect the existence

ch intuitions because they are not natural in an absolute man-

cation. It must be emphasized that the terms primary and seco:

intutions have only a relative meaning. Namely, they are rela When I buy 500 g cheese, the weight of the cheese,is, for me,
g Y Y i

to a given cultural environment; the distinction is useful and lity despite the fact that wieght is only relative. The same
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is/her intellectual beliefs. What distinguishes primary

cheese has no weight in an artificial satellite! From an epj ndary intuitions (in the context of a given culture) is

mological standpoint, it is, of course, a fact of fundamenta] that primary intuitions are developed themselves in a

portance that intuitions are not, a priori, genetically built ess spontaneous, natural way, as a result of the everyday

truths. But from a psychological, educational point of view; ¢es of the child, while secondary intuitions are the result

is also of fundamental importance to identify categories of i tematic, long-run, teaching process. In other terms, sec-

pretations (correct or incorrect) which appear as self-eviden tuitions are necessarily constructed in connection with a

imperative (dispite the fact that they are so only in the re elaborated conceptual system which normally cannot be the

a certain culture). f common, non-systematic, everyday experience. It is evi-

A second remark concerning the relativeness of the dich at nowadays a person cannot arrive normally, as a result of

of primary/secondary intuitions refers to the role of age. b liexperience, at such a concept as multidimensional spaces

‘ . . I . .
intuitions are, generally, themselves developmental phenomen tement such as: "The infinite set of points of a straight

- . . P . "
intuitive understanding of such ideas as number, distance, pr equivalent to the infinite set of points of a square. What

tionality, infinity, etc. is the result of the mental evolut

children. (A lot of information can be found in the Piagetia ed as having the property of obviousness, that is the

scriptions). But at a certain age—which depends on the nat f intuitively-accepted truths. They also are intuitions,

and the complexity of the concept—the corresponding represe "y are built on the base of a scientifically elaborated frame-

becomes stabilized, and internally structured. What is then Qnsequently, both categories——primary and secondary intui-

tained is not a pure concept or a pure, formal statement. T te interpretations which are acquired by learning and by

sult is an interpretation of a certain aspect of the reality experience. There is no difference between them as re-

gets the appearance of reality itself. Instead of a learnt elr nature and mechanisms. Hence, any distinction might

tion (and intuition is a "learnt" conception) the respective be superfluous. In our opinion, however, it is not super-—

pretation appears to be absolute, internally and fully accep ecause this distinction emphasizes the following fundamen-

the only interpretation which makes sense. So, the mental de Scientific conceptions, even those which are very far

ment of the child is not merely a history of his/her concepts intuitive understanding, can aspire to be intuitively accep-

conceptual structure. It includes also the generation and
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ach, i.e., as an actual set of elements. When reading

ted as obvious, self-evident truths. If such a transformatio,
' 1y impression is that he genuinely had a feeling of in-

take place, this may constitute an important argument in favo. -
: o the world of infinities, as a real, hierarchically or-

the empirical origin of intuitions in general.

orld of sets of elements. The conclusion of this discus-—
Of course, one can raise the following question: Why ig .

a then be, that adding a direct, intuitive understanding
useful to attach to scientific ideas a feeling of belief? Be : '

,fg}'statementS'and proofs to a formally acquired knowledge
is a religious matter. Intuition is needed when reason must :
ve the productive capacity of mathematical thinking.

up. Why, then, should scientific knowledge be associated yi :
A third classification refers to infra-operational, oper-

emotional rather obscure, dimension of belief, of self-eviden

. and post-operational intuitions.

It is certainly a legitimate question. Essentially the an

a) “Infra-operational (or practical) intuitions are those

.
that given by Poincare. "C'est par la logique gqu'on démontre .
ns which synthesize a certain amount of practical experi-

par l'intuition gu'on invente" (1914, 137). Scientifié éoﬁcg .
- S 5 \s a result of such intuitions, we gain the possibility of
and statements will actually be able to participate in a prod

ng or interpreting a given situation, globally and effici-

thinking process only if they have been deeply 1ntegra£eé in'

AR o L T Spatial intuitions and basic probabilistic intuitions are
person's own mental structure as intuitive accepted truths..

s kind. They generally do not suppose a previous, explicit,

our opinion, Poincaré's statement that "we invent by intuitio
‘ cal search. It is this category of intuitions which char-
has to refer to both anticipatory and affirmatory types of in
zes the intuitive period in Piaget's theory. In fact, such
tion. Of course, when inventing, when creating, when solving
s perational intuitions normally survive even after the emer-
problem, we guess before we are able to get a complete, logic ‘ .

L S £ operational thinking.
valid presentation. But it may also be supposed that a mathem
b) Operational intuitions play a fundamental role in

cal concept or statement will actually participate in a p£odu

. T tical thinking and consequently, in mathematical education.
process of thinking only if we get some direct, sympathetic,

. re intrinsically involved in reasoning and can be either pri-
itive understanding of it. The great revolution in the conce

or secondary intuitions.
infinity took place when Cantor broke with tradition and starte
In a syllogism, the conclusion is determined by the premises.
thinking of infinity not only as a potentiality or as a pure

the validity of the syllogism as a method of deducing a truth
stract construct, but as a reality, something which we can dea ~
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, that conclusion. For instance: On the table in
previously accepted premises, cannot be proved. We mu child, there are four red squares, a yellow triangle,

cept it by intuition (Ewing, 1941, cf. Westcott, 1968, pp, le, a yellow ractangle and a blue circle (all of them
This is an example of operational intuition. The experimenter asks: "What is the shape of the
It is by intuition that we accept the universality of The normal answer is, of course: "All the red fig-
tive inferences. If, in a number of trials, it has been fé ares" (the first premise). The experimenter hides the
iron is electrically conductive, we tend to generalize this ‘;the subject's eyes, removes the non-red figures, and
ing: Iron is,in general electrically conductive. What is  -emaining ones (red) with a grating. Through the grating,
for such a generalization? No explicit proof can be found: £ the figures are no longer visible, but the color can
validity of this operation. The only thing which can be sa The experimenter asks: "What color are the figures
that, frequently, a generalization from a finite number of The normal answer is: "All the figures under the
to a universal statement has&ot been contradicted by facts, ye red." This is the second premise of the syllogism.
universality of an inductive inference has no formal, absol tperimenter asks: "What is the shape of the figures un-
validity. The right f0‘§9nera112e‘ig acéepted‘by'beiiéf;‘b ating?" The subject is asked to answer in two different

ition. a) to verbally formulate the conclusion, and b) to choose,

All that has been said about logical inferences with r written sentences, the correct one (i.e., the figures un-

to empirical facts is also valid for mathematical reasoning ating are squares). In the above example, we referred to

instance, what has been called "mathematical induction" is AAA of the first sylklgistic figure. In the same manner,

on an intuitively accepted conviction that, on some mathema gated all four moods of the first and of the second syllo-
grounds, extrapolation is legitimate. There is also some i The subjects were pupils from grades 2, 3, 4, 6, and

tion available concerning the development of what may be ca pils for each age) .

"logical (i.e., operational) intuition." It has been prove ound that 80% of children of ages 7-8 (grade 2) were able

fy the correct conclusions in an AAA type: In syllogisms

which follows from given premises in a categorical syllogism orm EAE and AII, there were 65% correct answers, while on

the forms AAA and EAE). It is more difficult for them to £ d EIO, for both the first and the second figures, there was



ind automatic intellectual skills corresponding to the
only one (5%) correct answer (which may well have been by ch -

L LT of logical thinking. Such blind rules do not work by
It may be concluded from these data that there is a natural

in an actual problem-solving process. They may work,

A B plind exercises. We can teach a pupil the truth table
in concrete operational children (Fischbein et al. 1875a),

.tion. It does not follow that he will use it naturally
child concludes that under the grating there are squares, eve - . '
, ng process if the corresponding intuitions have not
though he does not see them. It is this kind of belief which
Let us take an example: 1) If quadrilateral A is a
representative of an operational intuition. .
n its diagonals are equal; and 2) A is not a square.
Our point here is that a syllogism, as well as any other s

— d, naturally to conclude that A does not have equal
cal inference, is not a pure conceptual construction. It a
o . - S B Oon the other hand, from the statement: "It has been

expresses a more basic extra-logical attitude which is the b

t the diagonals in figure A are equal," pupils tend to
of the validity of that inference. This will be clearer if

hat A is a square. When using an implication p+q, chil-
gage in the following hypothetical reasoning: 1) If object A ~ ) . '
12-13 do not distinguish naturally between the uncertain
metal than it will conduct electricity; and 2) Object A is . . ——
on which can be drawn by affirming g and the certain re-
(it has been identified for instance, as being sodium); then : ) —

ST S of p when negating q. (See also Carrol, 1975).
Object A conducts electricity. Nothing here is intuitively e

- ; the educational problem is not only that of building
except the validity of the inference. It may be argued tha

mental skills for logical thinking. New intellectual be-
just represents a mental habit. Maybe, but it is not only a : ) )

. . . o T e., intuitions, have to be built. Their role is not only
habit: it is a form of knowledge accompanied by a feeling of .

t or to confirm inferences. Their function is also to

trinsic conviction. The algorithms for multiplying or divid

logically as well as subjectively, the fullness or, on the
numbers are also learned and they finally become mental habits : '
the incompletemess of an argumentation: "I feel that

they do not have the intrinsic evidence of an intuition. : ]
ng is wrong in my argumentation"; "I feel that my argumen-
Generally speaking, we may safely say that the axioms ; o -_
is missing some elements." Such feelings are possible only
thinking are, in fact, based on such fundamental beliefs. The ] .

nd, active, operational intuitions have been built. The in-
stitute the domain of operational intuitions. Mathematical ; o . .
ns for finding and giving mathematical proofs mentioned by
(and generally intellectual education) should not be satisfie
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thé younger ones were given problems which could all be

The initial ideas for items on the test

a group of teachers who interviewed the children they taught

The two papers

ts, one section presented problems and diagrams, the second

The problems in the

parallel computation examples in the second section.

sted of approximately three hundred children from each year
schools were used for each of the four age ranges, the four
:raflected the IQ distribution in the British child population.
was taken from fourteen schools and was representative, both

otal, of the normal IQ range.

12+ and 13+ children were analysed separately from those of

en and then later those items which were common to the two

(In this paper the results for the 12+ and 13+ group
The analysis was designed to try to form a hierarchy of
Problems were deemed to be of the

ame children successfully completed them. Two homogeneity

= bc -~ ad

let

neity occurs when f§ or H is 1.

JCatb)(ctd) (atc) (b+d)

bc - ad (2)

(b+d) (cHd)

ters abcd are obtained from the passlﬁfgl @ﬁtrix of any two

em

,E@il___r29§§,___

|

i 1

’ Pass “ - b ‘
b,c,d number of children I i

Item 2 | _ _,,A,_v%,__-....... i

Fail { c 4 |

Where d < a




For items to be grouped within a certain facility band they had to posse
a f value of a particular level with each other. 1In order to form ak¢h

of groups there also had to be links with items in other facility bandg

l,
i

The "cut-off" point for any group was based predominantly on the differe,
facilities exhibited by the children's respomses to the paper, with somé

interpretation as to mathematical demand. Any items which had low value

1
Lol

of § with other items of similar facility were for the moment discarded,
Finally the technique of Guttman Scalogram Analysis was applied (taking

2/3 pass mark for each group) to see how many children did not perform

ds

according to the hierarchy of stages being postulated.
The hierarchy for the problems given the children aged 12+ to 13+ appear

ir

two th

of this shape

to be as follows:-
[each group is illustrated by a typical item]
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Six per cent of the children obtained a 2/3 mark on a harder group of i

obtaining a similar pass mark on all easier groups.

Analysis gave a coefficient of Reproducibility of .976 and a Coefficjien

Scalability of .915.  When one assigned to a child the hardest level j

he obtained a 2/3 mark we have:-

Not even at Level A 9.4%
Level A 14,67
Level B 8.8%
Level C 11.5%
Level D 29.27%
Level E 20.5%

The computational items were subjected to the same analysis and produced

following:-

Facility %

Tor Addition with same denominator
©  Using OF' with whole numbers
bo -
55 Addition with different
denominators
Multiplication of a fraction
us by a whole number
36| Addition with mixed numbers or
with different denominators and
numerators # 1
Division of 2 whole numbers or
e 2 proper fractioms
. 17
o~ 2 10% = 3=
jo: 40 = 10% 331

There was only one computation item solved by over 72% of the children, th

was 3 x 105 (facility 79%).

Computation n=555

2+3
g 8

2/3 of 12

The Guttman Scalo
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igéd that the computations would be easier but this was

‘?articularly when a diagram was the alternative.

: ;o1

ade in ¢ ¢ the dotted section of the disc.
What fraction of the whole disc have you
shaded? eeceeecacarasonsatetanesnnsaanns

cacility 52.8%

Facility 22,9%

ather better at computation than the 13+ group, whereas
cgmpleted at about the same facility level. It was obvious
voided if another method was available. For example:
How many bicycle spokes 1l0%cm long can be cut from a

_piece of wire 40cm long? i.eeienienn.. Facility 72.1%
What length of wire is left over? Facility 54.87
omputation 40 - 10% 8.8% Facility

A relay race is run in stages of ékm each, Each
runner runs one stage. How many runners would be

required to run a total distance of éKm?

A Creieaaonn

- Facility 45.8%
Computation 7 - g Facility 31.5Y%
e solvable by repeated addition, the method which is presumably
em form but not in the computation form. The symbolisation
on appeared to have prevented the transfer of the method. The
nsfer was starkly displayed in two adjacent questions:-

3 x10% (facility 79%)

40 + 10% (Answers 3%% or 3 remainder 8% facility 21.8%).
wed a lack of ease in handling fractions in that 37% at 12+
eferred the answer 4cm remainder lcm for the question "A piece
ong has to be cut into 4 equal pieces. Tick the answer you
accurate for the length of each piece.

a) 4em remainder 1 piece
b) 4cm remainder lem
c) 4%tm

d) 4em !
17



Similarly 24% of those aged 12+ and 17% of those aged 13+ declared
answer to 15 - 4 was 3 remainder 3. The question "What is 3 < squ W
solved by about 30-35% in each year whether it was in problem or comp
form. The computation form of the question produced 30% at 12+ and
13+ who read the question as 5+ 3 or gave 1% as the answer, demonsty
possibly the lack of acceptance that a small number could be divideg
larger.

By far the most difficult question was:
Mary and John both have pocket money. Mary SPend
zlmof hers, and John spends % of his.
Is it possible for Mary to have spent more than Jo
Why do you think this?

R A R I I I,

¢.-...-...-....o-..-....-.....--.--....--.1......,

The facilities were
12+ 13+ L4+ 15+
1.6% 2.3% 1.9% 3.7%
A common mistake was to state that Mafy could have spent more than Jg
had more to start with, without adding that she should have at least

much.  The percentage of children doing this was:~

12+ 13+ 14+ 15+
32.1% 38.8% 36.7% 46.0%
However a substantial number of children in each year stated that 5w
than 1 :-
4 12 13+ 14+ 15+
41,5% 34.3% 27 .6% 19.1%

It seems likely that the younger children had absorbed a rule "1 > 1"
taking into account the circumstances in which it could be appl%ed.a
also apparent that "rules" had been misremembered or in desperation inv

One question required the number which replaced A in 2=010=10.

[y
answer A = 21 or 28 occurred in 20% of the responses.7 Tlgé child se
have been searching for a number pattern occurring in the denominators
A popular misconception when adding fractions was that the "rule" was

numerators, add denominators" e.g.

3+2= 5 (8.5% at 12+, 19,7% at 13+)

8§88 16
2+3= 5 (18.7% at 12+, 30% at 13+)
7% 11

Note that the younger children who were nearest the teaching of additior

fractions committed this particular error less frequently. In the wo

form of 3/8 + 2/8, the answer %6_ occurred less frequently, 4,99 at 12
7.47 at 13+,

Upsychological Measurement and Prediction'
Wadsworth Pub. Co. 1966 pp.93-95
"A systematic approach to the construction and evaluation
of tests of ability."

Psychol. Momogr. 1947, 61, No.4, pp.36-37.

"The basis for scalogram analysis".
Measurement and and Prediction.

Princeton Univ. Press 1950

"A method of scalogram analysis using summary statistics"
Psychometrika 1956, 21, 77-78.
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In the first class of elementary school, a comstraint is added
POINTS AND ROUHIS qile : "All the points must be on the same line" (horizontal line).
(Abstract) rcises are possible.

Ex : Here is a diagram :

N

by Colette HUG, U.E.R. de Psychologie et des Sciences de 1t'Education
Université des Sciences Sociales de GRENOBLE

This research has been carried out to help school-masters al
teaching operations in a mathematical way beside the usual, practical,
How could they diversify representations for their pupils ? For instap
is possible to introduce brackets ? This experiment has been conduct:ed
three levels : last class of mursery school (age : 5 - 6), first (age

réct ? Children reply : "No 1", Why ? etcCos.

With older children, the rule becomes, for instance :

a may be replaced by
b may be replaced by

and second (age 7 - 8) classes of elementary school.

With the youngest children, the rule has been presented 1ik
" You are allowed to rub one point out. As soon as you do $0, you must
it by a round in which you put two new points"
Ex :

exercises, from suitable diagrams :

= to lengthen what is written
~ to shorten it, etc...

: This experiment brought an interesting possibility to study
s and introduce the use of brackets. But the main interest
s pupils’' mathematical formation,

Then, pupils have been asked to run this rule. If necessary, we gave the
following precision : if the point we rub out is inside a round, the ne
round we draw must be itself inside this round. Various exercises hav
proposed, from suitable diagrams :

~ to put one round or several rounds

~ to place points

-~ to put rounds

~ to correct diagrams, etcC...
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Dietmar Kuchemann
CSMS, Chelsea College,

This paper reports the results of a test,
that was given in the summer term 1977 to
1000 children: 293 2nq year, 449 3rd year
pupils, whosé mean ages
respectively,

The test consists of 16 questions containin
additional 6 trial items, and takes about 1

REFLECTION items.

Figure 1 shows the items from question A]
which asks the children to "reflect in
each mirror line m, and draw your

answers free hand; do not use a ruler',
The facilities shown are the Percentages
of 3rd year pupils answering each item
correctly. (On the whole, the 2nd and

4th year facilities rarely differed

from these by more than 5%.)

From interviews with individual children
and from answers to the written paper,
it would seem possible to divide pupils'
approaches into 4 types, which might be
called

GLOBAL,

SEMI-ANALYTIC,

FULLY-ANALYTIC, and

ANALYTIC~SYNTHETICG,

At the GLOBAL level,
the transformation as
Symmetry between object and image.

to specific parts of the object or
or distances,

The SEMI-ANALYTIC approach differs from the global in
part of the object (the
base-point of the flag, say) but then immediately draws
i stem of the flag),
concentrating more on its slope or its length than on

that the child first reflects

the location of the other end-point,

With the FULLY-ANALYTIC approach,

object to a set of points (2 for a
and then reflects each
lines,
but its limitations can be seen in

but the slope of the stem looks wrong, being

simply joining the image-points without reference to the

University of London,

entitled "Reflection and R
a standardised sample of al

would have been about 13:04, 14:04 and 15:04

g altogether 5¢ items

the object that is to be reflected
is considered as a whole, and the child seems

all-in-one

No reference is made
to specific angles

the child reduces the
flag, 3 for a triangle)
of these before drawing any image.
This is basically a much more successful strategy
the adjacent diagram:
both end-points of the flag have been estimated quite well

90 Lillie Road, Londop Sk lengths, the total image

OPE OF THE OBJECT, and

~ T ROR LINE.
hour to,administer. PE OF THE MIR

Figure 1

ng scheme was devised for the test
llowed for the use of up to L0

ies for classifying the different
\ses to each item. (The response-
jes for item Al.8 are shown in

ach item, the categories were

ed by evaluating the mean seore,'on

st asa whole, of all those pupils
ng responses in a given category.
ories with similar means were then

ed together, thus producing f?r ?ach
limited number of clearly disting-
ble levels of response. (Thus the 10
ries for item Al.8 were grouped into
els, as shown in Figure 2b.)

to regard

or

an scores were then compared across
and in this way it proved possible
ssify the responses to the reflection
s as a whole into 5 levels (with an
tional level for the rotation items

the items involving combinations of
ections and rotations),

e levels of response are illustrated

igure 3 below, using the items from
tion Al, A description of the levels

the result of

j i >oordi i f these two aspects, namely
bject. It is the coordinatinn o c c
£t ?1isbof image-points but at the same .time assessing the‘
o that derives from joining these points,
emonstrated by the ANALYTIC-SYNTHETIC approach.

le the child may successfully reflect the single point iy Al.3
evert to a purely global approach, with no parF of the ?bJec§
rd precisely, when confronted with a flag (2 points) as in Al.4

dition also reinforces the tendency to reflect the vhmle object
ggally or vertically regardless of the slope of the mirror,

e of which of these 4 approaches the child uses seems to vary not
\ itive level but with the complexity (or the sFrength of the
° coﬁ?lof the items. There seem to be 3 important distractors:
gggrSF POINfS to which the object can be reduced,

Figure 2a Fig 2b
1 |cormecr 33
53
VERY S
PRECISE 3 l
2 |CorRECT N
O
S iltepvrsy |
SIWFE OK \ 2 |23
4 {store ok -
fer ok | |
S \imAst f
<er ok | L
1M} wi3 28
6|HOR  or
VERICALL | /oty
SWFE OK
7 |HOR! o LS
VERTIAC | ||
HAGE f | A $ 12
8 ﬁgZ£SL /L//<b/
2§ZZLok 515
q|or+ERS //\ wss | /5
R V7 7%
O\ AANK /
| q {13
0ol @ [ 12
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Figure 3.

m T o ses at this level show at best adequate control over just one
PR \I Vl / iven problem. Thus in item .l the slope of the image may be
1 OR one of the end-points may he correct; in .3 and .7 the
tH T int may be at the correct distance from the mirror (but
) 2 3 + ‘5 & ﬁ“LZL_ﬁ ntally) OR the tendency to reflect horizontally may be
ome (but with no control of distance). Responses to .5 are
3 correct,
§ fequnses show the beginnings of control over two aspects
S| us,with the help of a grid, children cope successfully with
230 %l coRRECT when the mirror line is vertical (.1) and with a single
zZpr v yirror line is at 45° (.3); however, the introduction of a
SLovE v ay reduce the respouses to virtually random efforts (.4).
hildren still cannot cope fully with a slanting mirror,
3pr ing a single point (.7), nor can they overcome the
" Sope x vertical flag (.8 and .9).
N
§ o nses are now successful with a single point and a slanting
ﬂ lections of a flag are likely to be semi-analytical (slanting
1 or vertical mirror without grid) or global if the flag is
45— CORLECT I CORRECT
n can now reflect both points of a flag correctly on a l%rid,
is vertical. They can also cope analytically with the "off
tions that occur in questions A6 and A7, However, their
R 11 be only semi-analytical in .8 and even global in .9 .,
<) (.6) children tend to focus on the points or on the slopes
N thout fully coordinating both aspects. Thus they may establish
5 ly but not one of the slopes, or the slopes correctly but not
level, responses show a successful coordination of position
65 Gt :

he trianmgle (.6) and for the vertical flag in .8, though still
in .9

Figure 4.

L A e

ems involved rotations v__—l .
rees anticlockwise. ]35% %
estion Bl, together
ar facilities, are

4, 7 1 K'/%
tended to reflect - % <187 ’7Zﬁx.

vertically, the
otation is to move the

LEVEL 7

CORRT | CORRELT | CoRRECT

Q ‘across" the centre T L g %
y reflecting or by ml 71 \

3 gh 180°). Or the line aEREN ) .

~a age to the centre is Tr 11T ]

|

y or horizontally NuNh
ts original slope.

LTI

1 A

ore difficult to estimate (the ljines

at right angles, whereas the coryesponding lines to the mirror
irection), and the grid, instead of being of help, may mislead

placing points "symmetrically" with respect to the centre, rather

joining object and image to
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The different levels of response, for a selection of items from questi,
Bl (and one item from B4, which involves locating a centre of rotation
are illustrated below, in Figure 5.

Figure 5.

Bl % 515 BL8. | Bl

LEVEL &5

S
2

(EVEL Y

CORRECT”

45| CORRECT

Bl.5 BlLg | Bl
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her analysis of the test.

et an indication of the degree of consistency of levels of response

ss items, it was trelt necessary to go beyond the comparison of means

‘ed to earlier. To this end, the correlations between all item-pairs

sed on a right-wrong basis) were calculated, using the PHI coefficient.
previdusly been found on other CSMS tests, the resulting PHI values

ed to be higher between items of very similar content (being parts of the
question or from similar questions) than between items from different
jons. However, generally the links between reflection and rotation items
t appear noticeably weaker than the links within reflection and rotation
s. This seemed rather surprising and it was decided to test for the

le existence of separate reflection and totation "factors'".

of a similar content were grouped together into 3 reflection groups
rotation groups (some of the harder rotation and combinations items
nitially left out in order to produce groups with comparable score
butions). These 6 groups were then subjected to a factor analysis
the Principal Factor program, PA2, from SPSS).

ordance with what had been suggested earlier, (from the inspection of

I links across reflection and rotation items), only one factor with

alue greater than 1 was extracted (Figure 6). (The eigenvalue of the

} factor still remained below 1, when the harder itéms were added to some
rotation groups or were used to form new groups -despite the resulting
ity in score distribution between some of the groups.) This one-
jonality of the 6 groups is illustrated by the basic uniformity
_correlations (Pearson's r) in Figure 7.

6. ’ Figure 7.

Eigenvalue % of Variance ref2 ref3 rotl rot2 rot3

3.53 58.8 refl .56 .48
.76 12.6 ref2 .59
.53 8.9 ref3
L47 7.8 rotl
.39 6.6 rot2
.32 5.3

sults of the factor analysis suggested that ic would be justifiable to
items from across the vhole test; it was thus decided to form 5 groups,
tems being chosen to conform to the levels 1 to 5 refered to earlier.
with cxcessively low PHI values werc left out, although it was felt

ble (from the point of view of reliability) to keep the groups as

as possible., The resulting groups each had a mean PHI between all item~
of above .30 . Whether this value can be judged to be sufficiently high
ficult to assess (or perhaps it is a meaningless question); certainly

lue is lower than values obtained with some of the other CSMS tests, but
iy be due in part to the relative unreliability of items that involve
g, as opposed to ''discrete' right or wrong answers.



The 5 groups were subjected to Guttman scalpgram analysis, the
of which are shown below. (The criterion for success on each g
set as near to 2/3 of items correct as was possible.)

The proportion of pupils' responses that do not form a perfect
is about 6.4%. Though this is higher than on some other CSMS t
it would seem nonetheless that the description of pupils' perg
in terms of the levels outlined above is reasonabl

meaningful.
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Some Trends in Research and the Acquisition and Use

of Space and Geometry Concepts

y coherent g Richard Lesh -

— ) Northwestern University
Group 5 [Group 4 Group J |[Group 2 Group 1
pass
rate Y/L3 5/7 5/8 b/e 7/11
mean paper consists of two parts. The first part outlines the results
PHT . 3h. .33 .38 .31 .32 university research program dealing with space and geometry concepts
in 1975. Papers from the research conference which initiated this
. : 6 ublished in a monograph, Space and Geometry: Papers from a Research
ﬁ‘;‘“b"r 5 \\\\ 56 56 56 3 dited by Martin (1977). A second monograph, Recent Cooperative
~a . . cerning the Acquisition of Spatial and Geometric Concepts, (Lesh
“rou‘?z 7 \\\\ Y3 100 Loo 100 wicz, 1978) contains fourteen research reports from projects associ-
basse ~- he above research effort. This later monograph will be available
3 1 10 TS 225 236 296 st time in September, 1978--just in time for the Osnabrlick
\\ . N -
'\\ .
2 . . 34 \\\ 21k 245 econd part of the paper will describe a major new cooperative
\\\ ram that grew out of the space and geometry research described
1 . . 1 16 O~ 222 esearch conference to initate this new effort was held at North-
>o ersity on January 5-7, 1978. Papers from this conference will
monograph titled, Applied Mathematical Problem Solving (Lesh,
o . * : ' Mierkiewicz).  This monograph is scheduled to go to the printers
- _ : r, 1978. A1l three of the above monographs are available from the
total 54 15y hiy 622 895 at Ohio State University.
/ 6 15 40 ol ) .
» - A Cooperative Research Project on Space and Geometr Concepts
errorsg 3 10 32 16 o Y p
o e S spring of 1975, the Georgia Center for the Study of Learning and
REPRODUCLLLLLITY = .97  CUEFFLCLENT OF SCALAULILITY athematics (GCSLTM) sponsored a series of five research workshops
) teaching strategies in mathematics, (b) number and measurement
space and geometry concepts, (d) models for Tearning mathematical
o @ d (e) problem solving. This first part of this paper focuses on
s of the working group that developed from the space and geometry
Group 1 Q‘é mptions Underlying the Work of the Space and Geometry Group:
2 stence of a successful, nonfunded, multi-institutional +_coopera-
Group @ effort is in itself a significant research innovation in
education. Because of the complexity of most of the important
Group 3 @ athematics education, most issues will require intensive study by
Group 4 3
Group 5 CD
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various individuals and long-term commitments and coordinated research
from groups of people. Furthermore, the optimum time to establish conp
among individual research efforts is while project plans are in the form
stages--not a year or two after projects have been completed and the re
are appearing in journals or at conferences. When research projects ar
the planning stages, it is helpful for groups of individuals working to
to (a) identify basic issues that are important to as many people as po
(b) formulate answerable questions related to the basic issues, (c) coo
individual projects so simplistic conclusions can be avoided, and (d) eg
1ish better bases of communication so individuals can profit by (and byij
the work of others. If research is restricted to answering questions ¢
isolated studies, then asking important questions seems almost irreconc
with asking an answerable question; and if the language and underlying
retical constructs are not consistent across studies, the results are d
to interpret or use. i

jon of spatial and geometric concepts. For example, the " "

; ! ¢ ! . > mod

borne, ]976? included Martin's article, "The Er]anér Proqrgme]S

f the Child's Conception of Space," and the "number and measure-

Ji(Lezh, }976) %nc}uded several papers emphasizing the close

n the development of spatial/geometric concepts anc -
/neasurement concepts. P @ the develop

he beginning, the space and geometry group consider

ext to investigate general questions ;boug concept}§2q3$g?i$gﬁ
earch concerning the development of spatial concepts should noi

f interest only to those who want to teach qeometry. For example
madels and diagrams teachers use to introduce arithmetic and number
suppose an understanding of certain spatial/geometric concepts

; :gunderstandwngs about number concepts are often closely ]iﬁked
tandings about the models used to illustrate them. For this
theklongfrange goals of the space and geometry working group
igformat1on to help educators devise "better" instructional
Chlng basic arithmetic and number concepts--and to study some

ng" processes students use to 1ink abstract mathematical conéeptﬁ
- phenomena. )

Papers Presented at the 1975 Space and Geometry Workshop

To review a broad survey of past research, to develop a language
dealing with these problems, and to describe some of the most important
directions for future research, the following papers were presented at

1975 space and geometry workshop. e initial GCSLTM workshons, the space and geometry group main-

ation through a series of meetinas at Northwestern i i

ity Qf Georgia, and a? professional meetings. Asra 32;5$€s;$y,
essions, the following set of 14 coordinated research projects
~and pup]TShed as the monograph, Recent Cooperative Research

e Acquisition of Spatial and Geometric Concepts (Lesh and

‘/8 - The following table of contents gives a fairly clear idea
r themes'considered in these 14 studies. A description of

ill be given in the next section of this paper.

Mathematical Foundations of the Development of Spatial and
Geometrical Concepts....ovcvviiivinnens e e Edith Robing

Piaget's Thinking about the Development of Space Concepts ;
and Geometry....... e i e eeeraeeaaaa vieenaes...Charles D,

Breakthroughs in the Psychology of Le

arning and Teaching
Geometry...coveees e Ceeeeaa v ..

e ....Izaak Wirs

‘ udies Co i - i .
Recent Research on the Child's Conception of Space and ¢ ncerning Pre-Operational Concepts

Geometry in Geneva: Research Work on Spatial Concepts at

. - oh, Imagery, ion. s
the International Center for Genetic Epistemology.......... Jacques Mon L gery, and Conception........ R. Lesh & D. Mierkiewicz

Northwestern University

Needed Research on Space in the Context of the Geneva Group

Memor o P
............. o ieieeieveeiieso......dacques Montangero and Charles kMen Yy Improvement Over Time?!!...R. Lesh

Northwestern University

Cross-Cultural Research on Cencepts of Space and Geometry

.-+....Michael C. Mitchel erception, Construction, and Drawing of Geometric Shapes by

ged Two to Five......ooveveinus. K. Fuson & C. Murray

Transformation Geometry in Elementary School: Some Research Issues Northwestern University

of Motor Activity in Young Children's Understanding of
oneepts. oot i J. Musick

di f th d geometry workshop were publis
The proceecings o e space and g try op ep Northwestern University

book, Space and Geometry: Papers from a Research Workshop (Martin, 1
In addition, several other Georgia workshops included papers pertaini




|
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standing of Frame of Reference in Preservice Teacher Education
Mathematical Foundations for the Development of Spatial Concepts L P C. Dietz & J. Barnett
in Children.......... B, cerevnon 1l Weinzweig Northern [11inois
University of 17 University
Circle Campus L
Inf1uences of Figure Orientation on Concept Formation in

1. §gyd1es Concerning Transitional Stages from Concrete to For 110 S et N. Fisher
Operations . ~ Research Department
Chicago Board of Education
(a) Studies about Rigid Motions

in Ana]ys1s of Past Efforts and Directions for Future Research
e e A. Coxford
" University of Michigan

Understanding of Selected Transformation Geometry Concepts..,
D. Thomas
" Ohio State Unive

dered by the Space and Geometry Group
Variables Influencing the Difficulty of R1g1d Transformations I
K. Schultz

o Georgia State Unj

Conservation of Length: A Function of the Mental Operation Invol
’ R. Kidder

Longwood Colleg

110wing issuesxwere central themes in the 1978 research monograph:

at general principles can be found for anticipating the relative
f mathematical ideas? For example, if a child is operational
etian sense) with regard to one concept, what does this imply
11d s ability to learn other "related" ideas? Van Hiele,

_and several Soviet psychologists (e.g., Yakimanskaya, 1970 and
An Investigation into the Effect of Instruction on the Acquisitio ~]971) have described the way they believe geometric concepts evolve
of Transformation Geometry Concepts in First Grade Children and ~ Yet basic controversies and ambiguities occur in each of these
Subsequent Transfer to General Spatial Ability.............. . descriptions; and the controversies strike at the heart of many
basic issues in developmental psychology. If it is possible to
ues to anticipate the relative difficulty of geometric concepts,
techniques may be useful to organize the sequential presentation
¢ and number ideas--or instructional models leading to arithmetic
oncepts.

University of 111
Circle Campus

(b) Studies about the "Middle" Geometries: Affine Transform
Similarities, and Projections

Even within the category of "concrete materials," some materials are
An Analysis of Research Needs in Projective, Affine, and Similari e than others. Nonetheless, little has been done to investigate
Geometries, Including an Evaluation of Piaget's Results...... rative content of a problem affects the difficulty of the task.
K. Fuson ocused on the operational aspects of tasks and concepts and has
Northwestern Un ed the figurative aspects. The influence of figurative content on
ability is important information for teachers who must devise
The Child's Conception of Rational Distances~-AnLAf;1ne Invaria illustrate mathematical concepts.
. Martin
Missouri Southe
State College

ne of the ingenious aspects of Piaget's theory is that he explicitly
e fact that ideas (as well as children) develop. That is, (a) a

an exist at many different levels of sophistication, (b) this

be traced, and (c) the more primitive levels of a concept have

II1. Studies Concerning Older Subjects or Formal Operational C
h investigated or accurately described. Yet, little is known about

Cognitive Studies Using Euclidean Tmnsformation‘s].,r;l ........ cen f children's early conceptions of many mathematical ideas.
. Moyer
Marquette Unive
H. Johnson

Syracuse Universi
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The first mathematical judgements children learn to make are high
specialized, closely tied to specific content, and involve highly res
"messy" primitive concepts that do not give rise to neat, tidv, elegant
theories. For this reason, mathematicians have not taken the.troub]e t
describe most of the structures children use when they first come to my
a given idea. Nonetheless, to develop effective instructional materia]
important to present ideas in a form that will be most understandable ¢,
children. Therefore, it is useful to formulate acceptable mathematical
descriptions of children's primitive conceptions of important mathemati

noreal problem situations, and it has served to greatly

ne traditional "information processing” models of human learning.
this area includes (a) the representation for visual imagery
cepts {e.g., Schwarts, ) and (b) the influence of attentional

ory load on task performance capabilities( e.g., Pascual-Leone
)

pt development studies based on the work of the Van Hieles.

es in this area were attempted by various members of the space
otp. But, prohibitive problems arose in ohtaining manuscripts
eles' work. Neither of the studies was completed in spite of
everal interesting and well designed studies were considered.
od that the kind of international cooperation this present
intended to encourage should make this a ripe area of future

4. Some of the best resources for describing the nature of child
early number concepts have come from Piagetian studies. Nonetheless, b
Piagetian research has focused on the cognitive processes used by fipst
(i.e., concrete operational groupings) and by sixth-graders (i.e.,
children at intermediate levels of development have been neglected.
more, because psychologists in general (and Piagetian psychologists i
cular) have avoided mathematical ideas that are typically taught in ele
school, it is usually possible ‘to make only relatively crude inferences
about how children's mathematical thinking gradually changes from con
operational concepts to formal operational concepts. It is time for
tics educators to apply Piagetian techniques and theory to concepts ¢
at intermediate Tevels of development--as well as at adult or prescho

em solving studies which focus on geometric content.

of current work in this area include (a) studies based on the

kii and other Soviet theorists (e.g., Kantowski and lLanda),

ased on the work of bolya, (e.g., Schoenfeld), (c) studies focusing on
ocasses and applied problem solving processes {e.g., Lesh).

5. In the past, the space and geometry group focused on "Piage
P g Y group 1age his work will be given in the second part of this paper.

operational analyses of various concepts and on analyses of the figur
contexts in which these concepts were used. However, the availabilit
certain general problem-solving strategies, as well as certain affect
characteristics, also seem to relate to the solvability of a problem,.
research efforts may tend to focus more heavily on basic types of app’
problem-solving processes-~that is, on processes students use to apply
matical ideas to real world situations. These processes will be desc
the second part of this paper.

11: Research on Applied Problem Solving Processes

ginal space and geometry research group has now divided into two
esearch groups--one focusing on the development of space and
epts and the other focusing on applied problem solving processes.

first part of this paper suggested, the distinctions were not
between research aimed at studying (a) the development of spatial
concepts, (b) "embodiments" or "concrete models" for illustrat-
¢ and number concepts, or (¢) problem solving processes. For
en's ( } recent work analyzing various mathematical inter-
corresponding concrete models) for rational numbers is closely
search on "modeling" processes in space and geometry. Or,

) work with measurement concepts deals with figural models
op ideas.  Similarly, regarding problem solving processes, a

ce and geometry studics were unavoidably forced to confront the
it is, beyond having a concept, that allows a normally intelli-

o use the idea to deal with math-related problems in everyday
Piagetian studies have shown that the operational structure of
dmportant factor determining the difficulty of the idea. Geome-
has shown that the figurative content of the task situation can

y influence the difficulty of a given problem situation. And, a

Several Lines of Research Not Represented in the 1978 Monograph:

Several lines of research were considered to be important by me
the space and geometry working group--but were not represented in the
monograph. Examples of such research areas include the following:

1. Computer simulation studies developing out of the work of N
and Simon (e.g.:
One of the best examples of research in this area is represented by t
of Greeno and some of his associates {(e.g.:
Computers have been used to model the geometric construction and prob
ving procedures used by students. In this wayit has been possible to d
strate that a given set of procedures is internally consistent and s
to perform a specified domain of tasks. Computer simulation research
course preceded by a great deal of clinical observation and experimen



- 200 - - 201 -

he d1Ff ety oF faeks.  Houever. the.relevant peooeesen o abg ponrle reninder of this paper, 1 would like to identify some theres
correspond to the typical kinds 0% problems so{ving processes dstEggzzar ve will be important in future research efforts on applied
Polya, Krutetskii and others. . ing processes.

To focus on the kinds of processes that seemed to be involved in jed fﬁgglgm_§gly1ﬂﬂ?
space and geometry studies, and to review and synthesize relevant reseayp
from a variety of related research perspectives, a conference on "App]ieé
Problem Solving" was held at Northwestern University on January 5-7, 1973
Papers from this conference are currently being edited and should be av
from the Ohio State ERIC center by November 1978. A tentative 1ist of py
and authors includes: ‘

t s, beyond having an idea, that allows a normally intelligent
the idea to deal with math-related problems in everyday situations?
onograph is an attempt to clarify a productive scope and focus

on applied problem solving--as well as to identify an agenda of

carch issues. Because the papers for this monograph are still fin
mitive stages, it would be premature to summarize their conclusions
However, the following sections taken from my own papers may serve
some of my biases. I hope they will serve as points to stimulate

+ the Osnabrlick Conference. .

=

1. “ﬁro@lem'501ving“ Versus "Applied Problem Solving": What is th
Distinction? Lesh, Northwestern University. ‘
2. A Survey of Several Psychological Perspectives: What Kind of é
and Processes Do They Consider? Bell, University of Chicago.

\ Processes Needed to Use Mathematical Ideas:

aral, "being able to use a concept" involves something more than
ng the concept." Getting an idea into a student's head does not
he new idea will be integrated with other jdezs that are already
nor does it guarantee the student will be able to use the library-
up" skills that allow the idea to be retrieved when it is needed.
. to use an idea" may also involve problem solving processes that
essary in order to demonstrate the simple attainment of a concept.
o these processe:s? Past research on problem solving seems to have
progress. Perhaps the field is in need of reanalysis. Some

ew directions are described below.

3. Prob]em Solving Projects or Mathematical Abilities Projects Af%
ated with the Georgia Center for Learning and Teaching Mathemat
Hatfield, University of Georgia.

4. Soviet-Style Research on Problem Solving. Kantowski, Universit
Florida.

5. Polya-Based Resarch on Problem Solving: Some New Directions.
Schoenfeld, University of California - Berkeley.

6. Social/Affective Factors Influencing Problem Solving Ability.
Higgins and Trimble, Ohio State University.
 Average Ability Students:
information about problem solving processes has come from situations
Tder students, exceptionally bright students, individual students
isolation (often in artificial laboratory situations), or situations
ghly contrived viord problems, mathematical puzzles, or proofs.
school children, average (or below average) ability students, and
blem solving processes have been neglected. For this reason, the
Jving" processes educators discuss often seem inaccessible to
Tdren or less gifted students, and applied problem solving processes,

ng, have been ignored.

7. Computer Simulation Research on Problem Solving. Heller and Gr
University of Pittsburgh

8. Ma@hema?ica] Learning Disabilities. Lesh and Jones, Northwest
University. :

9. Modeling Processes. Kieren, University of Alberta.

10.  Information Processing Models of Problem Solving. Carpenter,
University of Wisconsin
tionally, a great deal of the research in problem solving has focused
ying and analyzing the abilities and processes used by bright students
problem solvers. The assumption is that average and belaw average
ngsters can be taught to use the processes used by good problem
rutetskii (1966), however, has shown that this assumption may be

11. Routine Problem Solving. Sowder, Barnett, and Vos, University
Northern 111inois

12.  An Analysis of Problem Solving Research Methodology. Nelson,
University of Alberta.
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Unwarranted. That is, many of the abilities and processes used by gifteq
youngsters may be inaccessible to average ability youngsters, If this ¢g
clusion is correct, another fruitful tack for research to take may be to
analyze the disabilities of poor problem solvers or the difficulty-¢
processes "learning disabitities" students--and to investigate the extent & _ [concrete
which these processeses and disabilities also cause difficulties for avera
ability problem solvers. Many assumptions about learning and problem solvi
that seem quite sensible when they are used to describe average ability .
youngsters become obviously absurd when they are applied to exceptional
children--cither "gifted" or "lTearning disabled."”

au

3. Focus on Processes Related to Concept Formation:

The definition of "problems” must take into account the prior exper
cognitive capabilities of the student. A problem for one student may be a
exercise--or a bore--for another. But, more than this, some of the most
important problem solving processes probably also serve to increase the
meaningfulness of available corcepts. If applications are only considers
be appropriate after learning has occurred, then they will (and perhaps
should) be neglected. 1f applications are to find a place in the curricy
they must play an important role on the way to helping students understan

the important ideas we want them to learn.

written

ent 4A) Formalize
= § symbols

Sehematize/Repres

— —
3B) Ldentify

£
4B) Illustrate

It seems questionable to claim that a person can apply a concept before t
concept has been learned, but it seems equally questionable to claim that
concept is known if it cannot be used in simple applications. Perhaps, 3
problem solving processes play an important part in the formation of most
mathematical concepts. Or, perhaps it is naive to think of ideas as bein
either understood completely or else not understood at all. Perhaps it i
more accurate to think of ideas as gradually -becoming more and more meani
as they become more complex and are connected to more and more other idea
and events.

There is a variety of ways to make an idea meaningful--some of which invo
"translation" processes corresponding to the arrows in Figure 1. These

processesses not only play an important role in the development of mathem
concepts, they are also among the most important "modeling" processes sty
use when they try to apply the concepts in real Tife situations.
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4. TFocus on Modeling Processes
Tos 2 ige or below average students can Tearn to use these processes.

pecial education students indicates these problems cause
or many students--and that these difficulties can severely
om solving (or even concept formation) capabilities.

Using mathematics to solve real problems usually involves:

(a) a dive from the world of reality into the world of

mathematics; : - . .
' ’ ‘ chers do not need to wait for large scale curriculum projects

~jal instructional activities to teach these processes. They
nto the kind of Tessons that are already included in many text-
kind of problems that are included in the "applied" sections of

sment tests.

(b) a swim in the world of mathematics;

(c) a climb from the world of mathematics back into the y,
of reality, carrying a prediction in our teeth.

diagnostic questions.indicate a student is having unusual diffi-
ne of the processes in Figure 1, other processes in the diagram
trengthen or bypass the difficulty.

But, the "dive" often requires us to ignore some things about the rea]
in order to focus on others. That is, a series of successive simplifi
are often needed before a situation "fits" a nice mathematical descrip

.

ranglggjon/Representation/Notation Difficulties:

tted, several other important "translation" processes could also

Syin Figure 2. ussed in connection with Figure 1. These include:
¢l = | Concrete Models | —=~L%8d¢,, ~ .
P LRe
?gy,w’ \\Q anslating from one type of model to another,
e
iT\\ ) %f R ~ nslating from one type of picture to another,
The wmu)\r

O ptapgeparichb anslating from one verbal description to another, and

anslating from one written statement to another.

icap with the above translation processes is that they seem
ificant compared with the niore grandiose processes problem solving
ike to discuss--e.g., reason by induction, reason by analogy,
xitiary problem, or work backwards. On the other hand, it

ar that the translation processes are really only simplified

ther familiar problem solving processes--e.g., introduce suitable
k for a similar problem, simplify the problem, or restate the

your. own words.

. <2

(P

Cigeg———.| Mathematical ‘<g¥ﬂﬁgéiic»
Predictions N

The processes in Figures 1 and 2 are important for a variety of reason

e grandiose processes may be quite appropriate for older students
ionally bright youngsters, but Krutetskii's work suggests they
ccessible to average or below average students.

{a) They are simplified versions of the "modeling” processes use
gifted applied problems solvers. They represent some of the most impor
processes students need when they try to use basic geometric, algebraic
number concepts.
Processes Needed to Use "Social/Technological" Amplifiers:

(b) When we say a student “understands" a mathematical concept,.
what we mean is that he/she can use the kind of processes listed in Fig
Yet, students are given few instructional activities that focus direct]
these processes--in spite of the fact they are the kind of processes th
meaning to the ideas teachers are trying to teach. :

ucators talk about problem solving situations, they often ignore
most people work on real world problems when other people and

es are available. People seldom work in isolation using only the
r own minds to solve problems. Instead, good problem solvers
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learn to amplify their own powers through effective use of outside res
For example, when real people solve real problems, one of the most of:
problem solving strategies is to "ask someone who can give the needed
mation." This is not to say that qgood problem solvers soTve most prgh
by asking someone eise to do their work for them. Formulating a prob]
wuch a way that a specific bit of information can be requested is not
trivial skill. In fact, one of the most obvious characteristics of go
problem solvers is that they are good question askers. Once a questig
formulated in a nice way, answer giving is often quite easy.

dividual Stages in the Overall Problem Solving Process:

ople believe that the best way to learn to solve problems is

ng problems--and, afterwards, looking back to reconsider

were most helpful. Unfortunately, if the problem solving
broken into stages, and if students are forced to work entire
colation, the "looking back" technique seldom works. Average

rs seldom solve problems quickly enough to look back on more than
. So, the strategies they notice are often useful for only a
of problems of a particular type, and they do not learn cues to
each strategy might be useful. Furthermore, average problem
have difficulty focusing on processes they use to solve

en when they are able to give correct answers, they are notori-
to give accurate descriptions of steps in the process they used.

Applied problem solving usually involves:
(a) formulating the problem into an answerable question,

(b) devising an appropriate procedure for getting the needed
information, .

tice these skills, a teacher can give students a whole 1ist of
ask them to postpone trying to solve any of the problems until
st gone through the entire list--trying to determine which

1d be "best" for each problem. For example, for computational
nts can "set up" each problem before attempting to actually
rocedures they selected; or the teacher can simply hand out
information. Finally, the group can work together to estimate
eness of the information they receive. Schoenfeld ( ) has
arning a system of strategies or heuristics involves a good deal
ply learning each of the individual processes in isolation. A
trategy" for selecting and evaluating processes is alsc needed.

(c) carrying out the procedure, and

(d) interpreting and evaluating the answer; and "answer giving
involved at stage "c."

When a psychologist gathers information about students solving a
problems in isolated Taboratory situations, the data are usually analy:
using a computer. The psychologist does not use the computer because
too ignorant to calculate the relevant statistics with a pencil and pa
uses the computer because the important aspects of his own problem so]
situation are to select and interpret the appropriate calculations--no
actually go through the drudgery of computation. Furthermore, to deci
the most appropriate computations to make, the psychologist probably also
sulted a statistician before he carried out his analysis. Again, this
not mean that the psychologist is ignorant about statistics; to formul
the problem in such a way that a statistician can help requires "trans
skills like the ones in Figure 1; and a firm understanding of statisti

ing in a group, students can investigate critical parts of more
working on whole sets of problems, one stage at a time,

on "non-answer giving" stages in problem solving. Furthermore,

th other students, average problem solvers often find it easier

rocesses that would otherwise have been internal and more

7. Focus on Information Retrieval Processes:

sing almost exclusively on the answer-giving stage of problem

by treating problem solving as though it is always necessary to
of the problem without any kind of assistance, students are often
/hat most real problem solving is really Tike. Furthermore, when
1g is carried on in isolation, many useful problem solving

come -almost impossible to teach to average or below average

ne examples of these useful but difficult to teach strategies

_in the next section of this paper.

After a problem is interpreted in a meaningful way, relevant inf
must be retrieved from memory or from available resources. Often thes
"Tibrary-type" retrieval skills represent important aspects related to
meaningfulness of the ideas related to a problem. That is, as an idea
related to other ideas; its meaningfulness increases. Yet these proce
of forming relationships among ideas are seldom taught either as conce
formation skills or as problem solving skills. For example, even in t
situations-~-say length concepts and area concepts--preestablished conc
are seldom related to new ideas being taught, and problem solving situ
are seldom designed to help students form related networks of ideas.

'Group” Problem Solving Processes

dividual problem solving strategies are quite difficult for
elow average ability youngsters. But, when these internal pro-
ernalized in the context of small group activities, they are
~ to describe in a form that is understandable to lower ability
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problem solvers. For example, problem solving strategies like "COnside' jays; s0, when one path is blocked, another route can be taken.

simi]ﬁr problem," "cqnsider an auxiliary problem," or "consider a speci
case," can be summarized with the simple advice, "look for a related pp
Yet, to poor problem solvers, this advice often seems quite foolish befo
a];eady have one problem 1 cannot do, [ do not need another." To poorC
solvers, a more sensible suggestion is, "Look at the same pr

different point of view." ’ problen fron

ed alone is not always an accurate measure of problem solving

_For instance, because of the impulsiveness and inflexibility of

king "learning disabilities" subjects may actually solve problems

are able to solve them at all) faster than their normal peers.
pulsivity and inflexibility arc hinderances to good problem solving

be compensated in group problem solving sessions.

In several recent research studies, whére groups of four s
supposed to work together on problems, individuals o?ten worked ?ﬁggggﬁdw
—»eagh congeptug]wz1ng the problem in quite different ways, and each u
of misleading biases inherent in their own point of view. This is onen
why "brainstorming" is often a useful problem solving technique.

above points are not intended to imply that we should explicitly

up problem solving techniques. Rather, group problem solving

s furnish an effective context to teach individual problem solving
s--especially when the problem solver is at a relatively primitive
skill acquisition. In addition to previously mentioned cognitive
tions for small group activities, a number of affective justifications

In group, "brainstorming sessions, students can be bombarded with
apparent.

ety of different ideas and approaches, and can -simul

critical about their own points of view. They can a%ggeggs&gdgeggmgog?y
(a) some people are good talkers while others are good listeners, (b) sop
people are good generalizers while others are better at working out detas
and in general {c) a variety of different roles are beneficial to good
sotving. Good problem solvers must be flexible enough to switch quick]
one role to another while solving a problem.

s on Socia]/AffeCfﬁve Factors:

modern psychology it has become more and more clear that cognitive
n exists in an ecological system with other adaptation-seeking

s, and is influenced by them. Learning, socializing, and adjusting
completely separated. Much that we now call learning is social

) Many other problem solving strategies are greatly simplified in g
situations. Problem solving strategies 1ike "identify the givens," "id
the unknowns," and "eliminate irrelevant information" all having to do
general recommendation, "understand the problem." However, this advice
seems rather useless to poor problem solvers whose superficial understé
of the problem often leads to selecting or eliminating information on
@rtwfyciq1 bases. On the other hand, except for spec%fic recommendatiog
identifying knowns and unknowns, it is difficult for poor problem solve
understand what it means to "understand the problem." It is much easie
"Use your own words to describe the problem to a friend," or “Describe s
o@her problems 1ike this problem." Poor problem solvers sometimes flound
with a problem for a long time before noticing (if asked) that they are y
to give a clear description of the problem to a friend. So, once again,
activities can force students to "understand the problem” and "organize
information given." Eventually, they may become self-critical enough to
on problems and no Jonger need group work to overcome their subjectivity
egocentrism.

aspects of human Tlearning that we have traditionally regarded as
¢ development are specializations of "social" development. The
ssues are not so much about how the child develops knowledge, but
bout how he develops shared or cooperative knowledge.

we look at the moment-to-moment activities of children, we never find
as a separate or isolated human activity. We have bequn thinking
lectical processes, about sharings of reality among people that create
the objective (i.e., intersubjective) reality of science, but also
idual's conception of the self (Mead 1934) and his moral ideology
1963, 1969). Observed changes in cognitive performance are first
ost, assimilated into hypotheses about intellectual competence.

part, learning to be a problem solver means acquiring a problem
ersonality. One of the first characteristics of a good problem

that he interprets an unusual number of daily situations as problems
, as situations where his problem solving skills may be relevant.

he first steps a good problem solver takes is to identify a given

as "do-able" or "un-do-able," and next as "easy" or "difficult."
opriate solution strategies are selected to fit the initial appraisal.
it is quite obvious that people who are good problem solvers in one
in one type of situation, or in one discipline, may be average or
rage problem solvers in another.

When students work in groups to solve problems, they often see tha
problems can be solved in a variety of ways--some of which are "better!
others. In fact, in research with gifted youngsters (e.g., Krutetskii,
the hallmark of outstanding problem solvers is not so much whether answe
right or wrong but whether "clever" procedures were used. "Good" probie
solvers are flexible thinkers who are capable of solving problems in sev
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tar Wars" may be meaningful and interesting to youngsters. Or
ising poker chips, cuisenaire rods, geoboards or other materials
o appropriate for young students. But the problems should not ignore
types of modeling processes, information retrieval processes, resource
n process, etc., that were mentioned in the preceding sections.

Research has shown that children may well. form sever

different situations--family, peer groups{ school. The‘gh?13?25932$sfq
is different at different times, in different situations, in diffeéeﬁgn
and physiological states, as a function of cognitive, social, and emot
Toad, and as a function of his particular agenda of the moment. Cognil
EEVforﬁangg is moved upward and downward by load factors in the child a]

¢ situations--e.g., noise, emotionality, distraction, confusion, shyp cientists we know that real problems seldom fall neatly into disci-
angxe?y. So ch11dren‘fjuctuate'1n’the1r apparent ability depending u%gi gegories. A problem which bggins as a measurement proﬁ]em may turn
and place. Psygho]ogwca] descriptions gf people have for a long time ca bability or statistics problem which may in turn become a social
2rog:d the premise that people have traits, person§1ity_traits and cogni tegal problem.... The same is true at elementary levels. For
C;ﬁ;ézé]thatd?ndu:e and Egggkare map1fest ?n_a]1 s1tuat30ns. This notio hen a sixth grader uses arithmetic to solve problems in everyday

y under strong attack, particularly in personality theory, problems are seldom simply addition or multiplication or division

They often involve combinations or sequences of basic arithmetic

In real problem solving one of the first and most important steps

The above sorts of factors suggest another set of benefits associs
tify the appropriate computational structures to deal with a given

with group problem solving activities. For example, Triandis (1976) i
following points: . . >

eal problem solving, the exact nature of the answer (if one exists)

be clear. Many Tlevels of correctness may be possible, and many paths

n may be appropriate. Or, in many situations; the goal may be to

| a problem, not to solve it. Or, in other situations, what is involved
ke a project than a problem. That is, a sequence of problems may

h each temporary solution leading to new,more sophisticated problems.

(a) Imitation: There is a good deal of learning that takes place
humans see connections between what other people do and rewards they pec
(One of the characteristics related To this factor is the viewpoint tha
behavior is not viewed as beina reliably followed by particular outcomes
or bad. Triandis calls this "ecosystem distrust." ~Seligman (1975) cal]

“learned helplessness." Rowe (19 ) refers to- the factor as "locus of ¢

(b) Groups create satisfactions with certain activities. An actj e constrai

. : v 1 X . N acti e constraints may or may not be a factor. Often, good problem solvers,

ﬁ?;ﬁgrh€§1lgww;ggrlﬂz1§eYi;ge’iWh?” the 1earneg is alone, may acquire a e good runners, know how to pace themselves. They know when to relax
the 1ear;er in e aive arn ? Stl? a group. —uroup norms, or roles ad o ‘exhaust themselves. Many other factors could be mentioned. 1 hope
] . % n social setting, or interpersonal agreements bef ese will be topics of discussion at the Osnabrueck Conference. The
earner and important others, can change the desirability of activities. ctors and others are discussed in greater detail in the upcoming

: h on Applied Problem Solving.

(c) Self-esteem is important. The learner's view of the self, pa
cularly beliefs that certain kinds of learning are possible and desira
1mporFant in learning. Among learners who think that they are not capab
Tearning some material, or who do not see the desirability of learning i
this factor severely reduces learning. A person's self-concept is in pa
formed through interaction with other people. .

jginally, 1 became interested in space and geometry research because I
rested in finding ways to concretize mathematical concepts--any mathe-
concept, not just spatial or geometric ideas. I was interested in
pired research analyzing the development of mathematical ideas, but
nvinced that (especially for formal operational youngsters) Piaget's
the "structure” of concepts did not give an adequate description of
ensions of. meaningfulness" for most mathematical concepts. The

nal or relational structure of a concept did indeed seem to be

t characteristics determining the difficulty of the concept but

ve characteristics also seemed important. Furthermore, certain
_problem solving processes," such as the ones described in this paper,
early important--both when children tried to use mathematical ideas in
uations, and when concepts were in the early stages of development.
seemed to be an ideal context to study modeling processes and the

e of figurative characteristics of ideas.

11. Focus on "Real" Problems:

What makes a problem real as opposed to artificial? In this paper
space limitations do not allow a thorough answer to this question. Seome
attributes which should be considered are apparent from the factors that
mentioned in the preceding sections.

Real problems do not have to be job oriented, and they probably dé
even have to involve real world objects--at least not if the real worild
defined from an adult perspective. A fanciful or imaginary problem havi
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I was also interested in "mathematics laboratory" methods of inst
I was impressed by the fact that so many laboratory theorists claimed {
mathematical concepts developed through interactions with the environme
and that these interactions were of two basic types: (a) interactions
concrete materials (or lower order "concrete" ideas) and (b) interacti
other people.

t of mathematical concepts. To put it very simply: Tearning a
things is usually quite different from learning each of Fhe things
on. That is, the whole is usually more than the sum of its parts.
¢, Schoenfeld confronts precisely th1§ issue when he points out

ing a system of heuristics in iso]at}op. My research Sque§ts
jdea applies caually well to the acquisition of any mathematical
Mathematical judgements or mathematical 3dcas a1most_a1ways require
to master a coordinated system of relations, operat!ons, or trans-
<. This is why "structured learning theorists" as diverse as Piaget
<es on written-concept” structures), and Ausubel, Bruner and Gagne
hom focus on different aspects of “between~concgpts“ structures)
peen particularly relevant to mathematics learning.

en

Some theorists, Tike Dienes,have giwen reasonable explanations of
students are supposed to get out of interactions with concrete materia
But, no one seems to offer a comparably convincing explanation of what
students are supposed to get out of interactions with other people. |
kind of interactions are supposed to be beneficial in laboratory situat
How are these personal interactions related to the interactions with ma

I am pleased to say that some of my recent work in group probjen ri's model is useful because it gives a precise mathema§1ca1‘desgr}pw
settings has helped clarify my thinking on several of thege igsﬁes. 30 pr@vious1y ambiguous terms Tike asswm1lat1on, agcomwodat1on,'1ntu1ﬁ1qn;
is premature to report the results of this work. For the purposes of g {his way it qraws:togeyher §nd coordinate§ useful "structured 1ear21n4
lating discussion at this conference, it seemed preferable to describe ;1 from theories like Piaget's and.Ausubgl s--as wel} as a numbqr 0
the factors I believe are important in applied problem solving. : process” variables from computer s1mu1at10n/1nf0rma@1on Erocesswng
‘Jike Greeno's or Krutetskii's. The model also defines "problems
blem solving processes" in such a way that they are c1os¢]y related
pt formation, to modeling processes, to information retrieval processes,
other factors that were mentioned in this paper.

I would Tike to close this article with a few brief comments ahoy
theoretical model I have been using--and one which I believe is particy
relevant to the kind of research variables described in earlier sectig
this paper.

One of my colleagues, Don Saari, an applied mathematician, has de
a mathematical model for the theoretical perspective I am taking. The |
was originally based on some relatively new ideas in a branch of mathem
called catastrophe theory. Specifics concerning the mathematical model
probably not relevant to mention here. It is sufficient to mention th
catastrophe models are useful:

(a) When several continuously changing variab]es'give rise to
abrupt changes (e.g., insights, etc.) in the behavior of an
organisism or system, ;

(b) when behavior at any given moment depends not only on the
strengths of the control variables but also on the previous
relative strength of the control variables,

Saari's model has the additional characteristic that

(c) problem solving ability (or concept acquisition ability) at «
given moment depends not only on available cognitive structu

also on certain social/affective_structures. .
The above three conditions are typically present in problem solvi

situations.

The model is especially suited to describe the evolution of adaptiv
systems--or structures. Therefore, because the characteristic feature of
mathematics is its "structure,” the model is particularly relevant to t
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LOGIC AND LANGUAGE IN GAME SETTING

FOR CHILDREN AGED 8 TO 10 -

F. LOWENTHAL

And children, teachers and pupils use words to express
eir thoughts; nevertheless they don't always interprete
in the same fashion and they do not always understand
nor do they understand why !

his reason we tried a non-verbal (graphical) technique of
on which allows the children to represent and express what
loing. This method introduces constraints in the children's

on but these constraints are so obviously connected to the

'support that the children are conscious of their existence.
n  compells them to use only terms they know perfectly well,
uss the new terms till these are mastered.

rntroduction
lncroatt - o0

1d can only reach the stage of formal thought, of social
chical organization if he masters a certain logic and a
through which logical operations can be expressed. When

he development of logical abilities in children Piaget
Inhelder, 1966) considered mainly the case of an isolated
ribing verbally the way he manipulates "things". Freudenthal
jected to Piaget's use of verbal language because it intro-
5. Bruner (1966a; 1966b) believes that the cognitive deve-
a child is function of the child's language : Bruner consi-

ly the case of a child in interaction with other people and
ng "things".

lieve that the cognitive development is function of the way
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