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The International Group for the Psychology of Mathematics Education (PME)
was founded in 1976 at the 3rd International Congress for Mathematics
Education in Karlsruhe, in order to promote international contacts and the
exchange of scientific information in the psychology of mathematical edu-
cation. The objective of the Group is to further a deeper and more correct
understanding of the psychological aspects of teaching and learning mathema-
tics and the implications thereof. PME Conferences were held in Utrecht,
Osnabriick, Warwick, Berkeley, Grenoble and Antwerp during the six subsequent
years. The 7th Conference will take place at the Shoresh guest house in the
Judean Hills near Jerusalem, from July 24 to July 29, 1983.
The scientific program includes plenary lectures on topics of interest to
Lthe Group as a whole, and working group sessions with presentations followed
by discussions. Plenary and contributed papers are collected in these pro-
ceedings. They have been classified under the following headings:

A. PLENARY PAPERS

B. LEARNING THEORIES

C. COGNITIVE STUDIES IN ARITHMETIC

D. COGNITIVE STUDIES IN GEOMETRY

E. COGNITIVE STUDIES IN ALGEBRA AND RELATED DOMAINS

F. COMPUTERS AND MATHEMATICS LEARNING

G. METHODOLOGY

H. TEACHERS AND TEACHING
The order in which the papers will be read at the Conference will not necessa-
rily be identical with the order in which they appear in this volume. Complete
details are given in the Conference Program.
[n order to locate a particular contribution you may use the table of contents
at the begining of the volume or the Tist of contributors at the end.
4“e are grateful to the contributors for their interesting papers and their
cooperation. We also would Tike to thank the staff of the Department of Science
Teaching at the Weizmann Institute of Science for the extensive help in the
process of producing this volume.

The Conference Committee:

T. Dreyfus, T. Eisenberg, E. Fischbein, R. Hershkowitz,

P. Nesher, G. Vergnaud, S. Vinner.
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A. PLENARY PAPERS
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ROLE OF IMPLICIT MODELS IN SOLVING ELEMENTARY
ARITHMETICAL PROBLEMS

E. Fischbein
Tel-Aviv University

The present research has been inspired by some previous findings re-
fering to difficulties children encounter when faced with multiplication
and division problems. Bell, Swan and Taylor (1981) have shown that chil-
dren, presented with a series of problems with the same content, may change

their mind with regard to the solving operation, depending on the specific
numerical data, For instance, the subjects (12-15 years old) were asked
about the price of 0.22 gallons of petrol if one gallon costs § 1.20.
(The subjects were asked to only indicate the operation and not to perform
the computation). The common answer was: 1,20 = 0,22,

Faced with the same question, but using "easy' numbers - like "“§ 2 the
price of a gallon and a 5 gallon can to be filled" - the subjects answered
correctly: 2X5. The pupils interviewed did not consider it incompatible that
the nceded operation should change as the numbers changed. The authors gave the
following explanation for the mistaken reaction to the first problem: the sub-
jects considered, correctly, that the price of 0,22 gallons of petrol must be
smaller than the cost of a gallon - and therefore they suggested division (Bell
et al,, 1981 p. 405).

A second finding related to the present investigation has been reported by
Hart (1981). She mentions that subjects (12-15 years old) avoid systematically
to multiply by fractions when solving a problem, though this would be the sim-
plest way to get the solution. They prefer, instead, more complicated strategies
which help them to avoid multiplication by fractions., Let me quote one example,
Faced with the problem: "A 15 cm eel pget 9 cm food; how much food should be
given to a 25 cm eel 7" No child multiplied 9X5/3. They used instead indirect
strategies, for instance: 10 is 2/3 of 15, two thirds of 9 is 6 and 25 is 15+10,
Therefore one has to add 9+6=15 (Hart, 1981, p. 91).

This research has been carried out with the help of the Didactical Group of the
Plsg University led by Professor Giovanni Prodi and composed of Maria Marino,
Marie Nello, Maria Deri, Alessandra Betini, Paola Cerrai and Paolo Pisaneschi.
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In this problem the result ought to be bigger and, therefore, the
multiplication by 5/3 should have been easily suggested to the subjects,
according to the interpretation of Bell, Swan and Taylor. In fact, this was
not what really happened. Considering these, and other similar findings,
we have set up the following hypothesis. The basic arithmetical operations
remain, generally, attached to certain, implicit, greatly unconscious,
intuitive models. The identification of the operation, supposed to repre-
sent the solution to a binary problem does not take place directly (prob-
legjgziving operation) but through the agency of the model. The model imposes
to the retrieval process its own constraints,

Let us suppose that the concept of multiplication remains intuitively
attached to the repeated addition model. For instance 3 times 5 means 5+5+5,
According to such an interpretationthe operator can only be a whole number.

A multiplication in which the operator is 0.22 or 5/3 has no intuitive mean-
ing (in the repeated addition interpretation). If the numerical data of the
problem do not fit the coﬁﬁraints of the model, the retrieval process may
not reach the adequate operation and the solving endeavor may be diverted or
simply blocked. The subject will resort to other, indirect, ways to solve

the problem, for instance to anologies, to global (sometimes incorrect) gusses,
or will simply not react. This does not imply that he thinks that a multip-
lication by 0.22 or 5.3 has no mathematical meaning., He knows very well that
1.20X0.22 or 9X5/3 are perfectly legitimate mathematical operations. But
having to solve the abOVB“thrufior "eel-food" problem he does not see through

the problem, the solving operation., The way is blocked by the lack of cor-

respondence between the given numerical data and the specific contraints of
the underlying, tacit model, Various factors have been described which
were supposed to be associated with the difficulties children encounter when
facing arithmetical problems. Let me remind some of them.

a, The familiarity of the context and of the type of dimensions employed;

b. The size and type of the numbers used. A certain problem appears to be
more difficult when it contains large whole numbers (hundreds) (Collis 1975);
problems with decimals are more difficult than those with whole numbers (Bell,
Swan and Taylor, 1981); c. The relntiun between the situation refered to and
the solving operation. For instance: multiplicative situations containing
the Carteslan product were said to be more difficult than those reducible to



repeated addition (Hart, 1980); the concordance or the disagreement between
the behavioral meaning suggested by the problem and the corresponding arith-
metical operation. For instance, a problem indicating reduction which is

in fact solved by addition or vice versa (Nesher and Teubal, 1975; NesheT
Grecno and Riley, 1982); d) Effects rigidly attached to specific operations
("multiplication makes bigger'" and "division makes smaller') (Bell, Swan and
Taylor 1981).

As far as we know, no attempt has been made to set up a comprehensive
theory which could be able to explain these various, apparently disconnected
findings. From time to time tentative, ad hoc explanations, are offered.

For instance: it is technically more difficult to handle decimals, than whole
numbers; verbal cues may bias the solving endeavor; a concrete context may
facilitate to finding the solution; pupils remain bound to a particular mean-
ing initially attached to an operation; most of the adolescents do not reach
the formal operational stage, etc.

We suppose that the concept of intervening intuitive mode]l may explain,
in a coherent manner most of the typical difficulties children encounter when
attempting to solve a single operation problem. The main exception is represented
by the familiarity of the text (terms used situations referred to etc.) which
may, by itself affect the difficulty of the problem. With regard to the nature

of the tacit models,a second assumption has been made. One has' supposed that

the models attached to the arithmetical operations are basically of a behav-

ioral nature. In other words: when trying to discover what is the underlying

intuitive model attached tacitly by a person to a certain operation, one has
to consider some practical behavior, which would be the enactive effectively
performable correspondent of the respective operation, This reminds very

much the theory of Piaget according to which every mental operation, including
the arithmetical ones, is developmentally rooted in practical actions. But

in contrast to Piaget, we assume that the enactive prototypes of the arithme-

tical operations may remain rigidly attached to the respective notions long

after these notions have acquired a formal status. As a matter of fact, this

assumption may be true not only for arithmetical operations, but for many
other concepts as well,



A third assumption is that these modci:s act to a great extent uncon-
sciously. They manipulate the solving endeavour of a pérson "from behind
the scenes" and, thus, their impact can hardly be controlled by the person
himself. These models obey their own constraints, imposed by their behav-
ioral nature which evidently may not fit the formal mathematical constraints
of the corresponding operations, Let us summarize the above assumptions.

The retrival process,which is supposcd to lead from a-one-operation-problem

to the solving operation itself is mediated by a certain specific behavioral

model permanently but unconsciously, attached to the respective operation,

In order to test the above group of assumptions we have to first define
hypothetically such potential intuitive models and test specifically,their
effects on the solving procedures used by the subjects.

With respect to addition, one may suppose that the corresponding in-
tuitive model is that of putting together two (or more) sets of objects
in order to obtain a set composed of the elemcnts of both collections. With
respect to subtraction one may consider a priori,at least two behavioral
interpretations: a)''the take away" situation:‘john has 10 marbles , he
gives 4 to Jenny. How many marbles has he keptfub] The '"building up"
situation: 'John has 6 marbles, How many has he to add in order to get 10
marbles?" For an up to date account see Carpenter, Moser & Romberg (ed.)
(1982) .

Let us consider, in more detail, the operations of multiplication and
division which represent the main objectives of the present investigation.
One may assume that the primitive model for multiplication is repeated
addition; collections,containing the same .number of objects are put together.
According to this interpretation 3X5 means either 3+3+3+3+3  or 5+5+5,

From the standpoint of such an interpretation multiplication is not a com-
mutative operation. One factor represents the opcrator ("how many' col-
lections or magnitudes are successivélyadded). The second factor represents
the operand; the magnitudes which are repcatedly summed up., A certain number
of consequencesmay be drawn from the "repeated addition" interpretation: a)
the operator must be a natural number, while the operand may be represented

by every kind of number or magnitude. One cannot,intuitively conceive (in
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the above interpretation) an operation in which a quantity g is taken
0.63 times or 3/7 times, that is g+g -- 0.63 times or: g+g -- 3/7 times.
Instcad, the operand may be everything. Onec may easily conceive the fol-
3 lowing repcated addition (even if one is not able to perform it):
3 times 0,63 = 0.63 + 0.63 + 0.63; b) A second consequence is that multi-
3 plication "makes bigger". According to the repeated addition interpretation
by by multiplying a quantity g (the operand) by n one gets a result which is
necessarily n times bigger than g.

Our hypothesis was that repeated addition represents thé primitive
model generally attached to the concept of multiplication. This does not
or imply that tho teaching of multiplication has to start necessarily this way
or or that the respective model is imposed necessarily by the general character-
or istics of the children's mind. Our hypothesis was only that, as a matter
of of fact, for various reasons - which have to be found - this is the primitive
- model which tacitly affects the meaning and the use of the operation of mul-

tiplication - even in persons with a high training in mathematics

With respect to division we have assumed two possible intuitive cor-
respondents a) Division by partition: an object or a collection of objects

re are divided into a number of equal fragments or sub-collections. b) Division

by by quotition one tries to determine how many times a certain given quantity

may be contained in another bigger quantity,

The first division model would imply the following numerical constraints:
The dividend must be bigger than the divisor; the divisor (the operator) must

be be a whole number; the result must be smaller than the operand. The only

be numerical constraint imposed by the quotition model would be that the divid-

he end should be bigger than the divisor. Clearly enough, it would depend on

‘he the structure of the problem itself which model would be activated in the

he given circumstances. We do not affirm that only these two intuitive inter-

th  pretations may correspond to the operation of division, Certainly there are
any many others, Our hypothesis was that these are, in fact, the primitive
any models of division, i.e. the models through which division is tacitly inter-

use preted since childhood and which continue to influence the evocation and the
use of the operation of division always when an attempt is made to solve a



problem., It has been supposed that problc... which would violate the above
numerical constraints would lead to difficulties expressed in delayed re-

uCtionslin wrong solutions or even in the absence of any answer,

The above group of assumptions, imply some strange consequences (along
with already known relatively trivial ones). For instance: having to solve
a verbal problem in which the solution consists in multiplying 15 X 0.75,
the facility to indicate the correct operation will depend on whether the
decimal is the operator or the operand . Having to solve a problem in which
the devisor is a decimal, the facility of solving it, will deEend on whether
the problem is of a partition, of a quotation or of another type. A division
problem in which the divisor is for instance 1,25 is significantly more dif-
ficult than the same problem in which the divisor is a whole number, though
the division makes smaller effect does not intervene. As far as we know, no

one of the already described factors may predict such curious effects.

Method

Subjects: The subjects were 243 pupils enrolled in 9 different schools in
Pisa (Italy). According to grade levels there were: 98 subjects in grade
5, 102 in grade 7 and 43 in grade 9,

The Questionnaire: In order to check the above hypothesis,a questionnaire

was set up, which contained 12 multiplication and 14 division problems, One
has tried to avoid the interference of other factors than the
numerical relationships themselves. The questions were simple, direct and
refering to situations and magnitudes which were supposed to be very familiar
to the subjects. In order to avoid,as far as possible chance reactions these
items were mixed with addition and substraction problems . Altogether the
questionnaire contained 42 items. The results obtained with these two cate-
gories of items have not been analyzed and consequently will not be presented.
In order to avoid the effects of boredom and fatigue, the questionnaire was
divided in two groups of 21 items each. In turn, each of these two groups

was typed in two different ways by simply reversing the order of the questions.
Consequently we get, finally, four forms., By distributing them at random

in the classrooms we could also eliminate the possibility of the subjects

to crib.



Procedure: The questionnaires were solved in collective sessions. The sub-
jects were instructed to read attentively the questions before writing the
answer. They were asked to indicate only the operation by which the problem

may be solved without performing the calculation, An example was provided.

The Problems

The order in whaich the questions are presented here corresponds to
that in which they appear in Tables 1 and Z. In the original presentation
the various questions were mixed randomly. The arrangement in the tables

is aimed to facilitate the analysis of the data.

The Questionnaire:

1. A car runs on the highway 2 km in one minute. If the speed of the car is
constant, how much will the car run in 15 minutes?
2. One kilo of oranges costs 1500 lira. How much is 3 kilo?
3. From 1 quintal of wheat one obtains 0.75 quintals of flour. Which quantity
of flour may be obtained from 15 quintals of wheat?
4, The volume of 1 quintal of gyps is 15 cm>. What will be the volume of
0.75 quintals?
5. With 1 kilo of a detergent one produces 15 kilo of soap. How much soap
will one produce when using 0.75 kilo of detergent?
6. One meter of suiting costs 15000 lira, How much will cost 0.75 meter?
7. The price of 1 meter of suiting is 15000 lira. What is the price of 0.65
meter?
8. For one cake one needs 1.25hg  of sugar. How much sugar does one need for
15 cakes?
9. For 1 kilo of cake one uses 15 hg of yeats. How much will one use for a
1,25 kilo cake?
10. One piece of chocolate weights 3.25 hg. What is the weight of 15 pieces?
11, A car runs 15 km on one litre of fuel ., How many km will the car run on
3,25 litre of fuel?
12, On 1 ljitre of fuel a car runs 14 kilometers. How many km runs the car
if it uses 3.70 1jitre of fuel?

13. With 75 pinks one makes 5 equal bunches. How many pinks are there in each
bunch?



14,

15.
16,

L.

18,

19..

20.

21,

22N

23,

24,

255

26.

In 8 boxes there are 96 bottles of mineral water. How many bottles are
there in each box?

I have spent 1500 lira for 3 etti of nuts. What is the price of 1 etto?
15 friends have bought together S kg of biscuits, How much did each of
them receive?

12 friends have bought together 5 kg of biscuits, How much did each of
them receive?

For buying one dollar one needs 1400 Italian lira. How many dollars can
one buy with 35000 lira?

The walls of a bathroom are 280 cm high., How many rows of bricks are
necessary for covering the walls if each row is 20 cm width?

For making 5 equal parcels one necds 3.25 m of string, What was the
length of the string used for each parcel?

Five friends have bought together 0.75 kg of chocolate, How much will
each of them get?

Five bottles contain 1,25 litre of beer. How much beer is there in each
bottle?

I have spent 900 lira for buying 0.75 hg of cocoa, What is the price of
1l hgt

The walls of a bathroom are 3m high. How many rows of equal bricks are
there necessary to cover the walls of the bathroom if the width of each
row is 0.15 m?

In order to adorn one handkerchief one needs 1.25 m of lace. How many
handkerchiefs may be adorned using 10 m of lace?

A Taylor has 15 m of suiting. If for one suit he needs 3.25 m, how many
suits can he make from the whole piece of suiting?

The symbol hg stands for 100 gram or an "etto" in italian, This symbol is
very familiar to italian pupils,
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Table 1: Multiplication Problems, Categories of Answers in Percentages

No of Solving rads Catcpgories of Answers most frequent errors
item operation correct No answer errors in %
5 80.00 4.00 16.00 (15:2) 16.00
1 2X15 7 100.00 - - -
9 100.00 - - =
5 95.83 - 4.17 (1500:3) 4,00
2 1500X3 7 89.00 - 11.00 (1500:3) TS
9 95.00 - 5,00 (1500:3) 5.00
5 78 .00 8.00 14,00 {15:0:75) 1199
3 0.75X15 7 76.60 8.13 21,27 (15:0.75) 17.00
9 78.26 4,35 17.38 (15:0.75) 17.5Y
5 58.00 10.00 32,00 (15:0.75) 28.40
4 15X0.75 7 57.45 14 .89 27 .66 (15:0.75) (0.75:15)
14 .89 12 .77
56.59 21,74 21.74 (15:0,75) 16,59
20.83 16.67 62.5 (15:0.75) 41.66
5 15X0,75 7 20,00 25.45 54,55 (15:0.75) (0.75:15)
29.0 14.54
9 40.00 30.00 30.00 (15:0.75) 15
5 54.00 8.00 38.00 (15000:0.75) 27.99
6 15000X0.75 v 57.45 2315 40.42 (15000:0.75) 29.785
9 60.87 13.04 26.09 (15000:0.75) 26.09
5 41.67 14,58 43,75 (15000:0.65) 33,33
7 15000X0.65 fi 38.18 10,91 50,91 (15000:0.65) 49.09
9 45.00 20.00 35.00 (15000:0.65) 29,99
5 84.00 4.00 12.00 (14525:15) 8.00
8 1.25X15 7 93.62 - 6.38 (15:1.25) (1725715)
1,12 2,12
9 100.00 - - -
5 47.92 20.83 3125 (15 :1:25) 18.75
9 15X1.25 7 43 .64 25.45 30.91 (1.25:15) (15:1.25)
12.72 9.09
9 50.00- 40.00 10,00 (15:1.25) 5 (1.25:15)
5 91.67 - 8.33 (3.25:715) 6.24
10 3.25X15 7 96.36 - 3.64 (3.25:15) 1.82
S 95.00 5.00 - - =
5 80.00 §.00 12,00 (15:3.25) 6.00
11 15X3.25 7 89.36 - 10.64 (15:3.95) 4.25



9 95.65 4.35 - - -
5 68.75 6.25 25.00 (3.70:14) 12.50
12 14X3.70 7 76 .36 5.46 18.18 (3.70:14) 7.27 (14%3,70) 53¢
g 80.00 10.00 10.00 (3.70:14) 5.00
Results

Multiplication problems. The results obtained with multiplication problems

appear in Table 1. In the first two problems both the operator and the operand
are whole numbers. Practically almost all the subjects were able to solve
these problems, The fact that in the second, a ""bigg'" number intervened (1500)

did only slightly affect the percentages of correct answers,(Table 1)

The problems 3 and 4 contain the same two numbers but in 3 the operator is
represented by a whole number (15) and in 4 by a decimal (0,75). At cach grade
level there is a difference of about 20% of correct answers between the problems

4 and 3. The grade level did not determine any significant difference.

Problem 5 contains the same two numbers, with 0.75 again as the operator.
Only 20% of the subjects in grades 5 and 7 and only 40% in grade 9 solved the
problem. One may assume that, in this case, the lack of familiarity of the
notions (''detergent', etc.) determined this important drop of correct answers.
One has to observe that while with regard to problem 4 , there is no age (grade)
effect such an effect appears in problem 5. One may suppose that, with age,
the notions used in this problem become more familiar (particularly the notion
of "detergent"). Problem 6 presents almost the same percentages of correct
answers as problem 4 though here, instead of the number 15, the number 1500
intervens as the operand. In both the operator is the same decimal 0.75 and
with regard to both problems there is a drop of about 20% in comparison with
the situation in which 0.7S was the operand (item 3). We have supposed that a
decimal number,less familiar than 0.75 will affect still more the solving cap-
acity. In problem 7 the operator is 0.65, and indeed one observes a drop of
about 15% of corrcec answers compared with item 6 in which the operator was
0.75. Both problems (6 and 7) have exactly the same content! In problems 8
and 9, the same numbers intervene, but with changed roles. If only the "multi-
plication makes bigger" effect had an impact on the solving facility, problem 9
would not have presented any difficulty. On the éther hand if only the presence
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of a decimal would have affected the degree of difficulty, no significant
difference would have appcared between items 8 and 9. As a matter of fact

it is a drop of about 50% of correct answers from question 8, in which 1,25

is the operand to question 9 in which 1.25 is the operator. There is almost
no progress with age. It was even surprising that multiplication by 1.25
(problem 9) appears to be more difficult than a problem in which multiplication
by 0.75 intervenes (item 4 and 6). Problems 10 and 11 also use an identical
couple of numbers, this time - 15 and 3.25. It was supposed that if the whole
part of the decimal will be clearly bigger than the fractional part, the
decimal number will behave almost like a whole number (as if the whole part'
would "mask" or "absorb' the fractional part). This assumption has been
strongly confirmed. At each grade level there were differences of about
45-50% of correct solutions between problem 11 (with 3.25 as the operator)

and problem 9 (with 1.25 as the operator) in both 15 being the operand. The
"absorption" effect (item 11) seems to increase with age (grade) and thus

deternining an increment of the frequencies of correct answers,

In question 12 it is the fractional part of the operator which is dominant
-3.70- and thus the "absorptiof effect of the fraction by the whole part
should not intervene. Indeed,the results obtained with item 12 are better
than those with item 11, One may assume that, this time, the subjects will
"round off" the number (from 3.70 to 4) and this will help them to see the
right solution (multiplication). This effect is strong enough to increase
the frequencies of correct answers with about 20-30% (compared with items 12
and 9) but still weaker than the 'absorption " effect (compared with items
12 and 11),

It has thus been clearly confirmed that the role of the decimal in the
structure of the problem is decisive with regard to the facility to retrieve
the right operation, A multiplication problem becomes difficult if the oper-
ator is a decimal (and this contradicts the repeated addition model). If
the whole part of the decimal number is big enough an "absorption" effect

may take place and the decimal acts, intuitively, as a natural number,
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Table 2: Division Problems. Categories of Answers in Percentages

No of Solving

Categories of answers

item operation grade Corrcct No answer  Errors  Most frequent errors

5 92 - 8 75X%5 8
13 75:5 7 95.75 - 4,25 75X5 4,25

9 100 - -~ =

5 79.17 - 20.83 96X8 18.74
14 96:8 7 90.90 - 9.1 96X8 7.28

9 100 - - -

5 66.66 4,17 29,17 1500X3 20.83
15 1500:3 7 90.90 1,82 7.28 1500X3 3.64

9 100 - - -

5 20 4 76 1545 61,99
16 5:15 7 34.04 - 65.96 155 65.96

9 S - 47.83 F5=S 43 .47

5 8.34 2.08 89.58 TEEh 70,83
17 5:12 7 38.36 - 63.64 AR 52.73

9 40 - 60 1S 60

5 82 4 14 35000X1400 5.99
18 35000:1400 7 BEE 10.64 4.95 35000X1400 2.47

quotition 9 91,3 - 8.7 35000X1400 8.7

5 38,58 12,5 47,92 280X20 39.58

19 280:20 7 81.82 5.45 185 280X20 e d
quotition 9 95 - 5 280X20 5

S 76 4 20 3425XS 12
20 3.25:5 7 76 .6 4.25 19,15 SL25X5 10563 53 ils: &2

) 78.26 - 21.74 543.95 13,04

5 80 2 18 0.75X5" 9,99 5:0.75 7,
21 0.75:5 7 78.72 4.26 17.02 5:;0.75 17.02

9 82.61 - 17.39 5:0.75 13,04

5 60.42 - 39.58 1025X5022 7970551 2516
22 152525 7 74.54 - 25.46 541425 18.18

9 85 - 15 5:1,25 15

5 16.66 22,92 60.42 900X0.75 22.9
23 900:0.75 7 29.09 40 30.91 900-0.75 3.63

9 50 30 20 900X0.75 S




5 20 12 68 0.15X3 59.99
24 3:0.15 7 36.17 6.38  57.45 0.15X3 51,06
quotition 9 65,22 4.35  30.43 0.15X3 30.43
5 29.17 4.17  66.66 1.25X10 3.54 1.25:10 18.66
25 10:1.25 7 7278 1.82  25.45 1.25X10 9.08 1.25:10 7.12
quotition g 85 5 10 1.25X10 10
5 40 4 56 3.24X15 33.99 3.25:15 17,92
26 15:3.25 7 65.96 6.38  27.66 3.25:15 12,76 3.25X15 10.51
quotition 9 82,61 - 17.39 3.25X15 17.39
Division

The data appear in table 2. The first three problems are of a partition
type and are in accordance with the presumed constraints of the model. At
grades 7 and 9 more than 90% of the subjects indicated the correct solution,
It is only at grade 5 that some differences appear among the results obtained
with the three items. Either the presence of a "big" number (1500) or the use
of the symbol hg' in the text (for 100 gr) - or bothlmuy have influenced negatively
the children's decisions (question 15). (Table 2).

Problems 16 and 17 violate one of the model's rule: the dividend must be
bigger than the divisor, This caused a drastic drop in the frequencies of cor-
rect answers at all three age levels., Most of the mistakes consisted 1n an
invéﬁion of the order of the two terms of the division (and thus leading to a
intuitively acceptable operation). It is important to observe that the per-
centages of correct answers increase strongly with age.

The problems 18 and 15 are of a quotation type: they respect the constraints
of the respective model. Despite this there isa decrement in the frequencies
of the correct answers, compared with items 1 and 2, Unfortunately the ques-
tionnaire was not well enough devised in this point and one can not decide
whether the drop was due to the presence of "big" numbers or to the fact
that one has shifted from partition to quotition problems, Nevertheless,
there is an indication. that this shift huas centributed by itself to the drop
in the percentages of correct answers. Problem 15 (partition) also contains a

""big" number but in comparison with this item, the results obtained with items
18 and 19 (quotition) were lower.



Items 20-26 contain decimals. In the first three of them 20, 21, 22
it is the operand which is represented by a decimal while the operator is a
whole number. In respecct to this criterion the problems do not violate the
rules of the presumed (partition) model. In contrast, the rule concerning the
relative magnitude of the two terms of the division is contradicted: the
dividend issmaller than the divisor. Items 16 and 17 presented the same type
of violation and the main tendency of the subjects was toreverse , the role
of the terms., But by resorting to the same strategy for items 20, 210
another difficulty would appear :by reversing the order (respectively the role
of the two terms of the division)thc subjects would get a sitdution in which
the divisor. would have been a decimal! It scems that’blocked by the eventualit
of having to cope with the violation of another constraint (the operatorbecoming
a decimal]}mosc of the subjects have chosen not to reverse the order of the
terms. One,then,obtains the surprising result that for items 20, 21 and 22
one gets higher frequencies of correct answers than those obtained with items
16 and 17.

In item 23 it was the operator which was a decimal and thus a constraint of
the partition model has been violated. Indeed a drastic drop of the percentages
of correct answers appeared. One has assumed that in quotation problems the
operator may be , intuitively'a decimal provided that the dividend is bigger
than the divisor. As a matter of fact this hypothesis has been confirmed
only with regard to Sth grade pupils. The low percentages of correct answers
obtained by 7 and especially 5 grade subjects scem to indicate that for many
of them only the partition model has an effective, intuitive role. (That is to
say that, if the devisor is a decimal it does not make much difference for
these subjects whether the problem is of a partition or of a quotition type).
It is only at grade 9 that quotitionproblems may be easier solved than par-
tition problems. The difference appears clear when comparing the results
obtained with items 25 and 26 (quotition problems) - more than 80% of correct
answers, - with those obtained with item 23 - only 50% of correct answers.

One may consequently assume that initially there is only one intutive model

for division problems. Ono may also suppose that as an effoct of instruction,

puplls acquire, in addition, a second intutive model for division i,e., the
quotition model.




Summary and Discussion

The basic assumption of the present research was that arithmetical
operations are intuitively associated with some primitive behavioral models
on the existence and influence of which the subject himself may not be
aware . Such implicite models, acting to a great extent, beyond any con-
sciou51forma1 control, may sometimes facilitate the course of the solving
process; but very often they may slow down, divert or even block the solving
process whencontradictions emerge between these models and the solving
algorithms. Specificallylin the present investigation it was assumed that:
a, the primitive model of multiplication is repeated addition and b. that
there are two primitive models for division - the partition and the quotation
model, It was assumed that these models impose a number ofintuitive constrae
ints with regard to the numbers used and their respective roles in the structure
of the problem. If the data of the problem lead to a violation of one or more
of these constraints, the subject will face difficulties when trying to indicate
the solving operation. Consequently, two problems may be operationally and
even textually identical and despite this thedr dogreo of difficulty may
vary #3 a function of the types of the numbers uscd and their respective roles
in the structure of the problem, In the repeated addition interpretation of
multiplication the operator must be a whole number and the result must be
bigger than the operand. In the partition interpretation of division, the
divisor must also be a whole number; in addition, thedévisor must be smaller
than the divident and the result must also be smaller than the dividend. In
the quotition interpretation of division there is only one constraint: the
divisor must be smaller than the dividend.

It has also been predicted that if in a decimal the whole part is signifi-
cantly bigger than the fractional part, the whole may '"absorbe" intuitively

the decimal component and thus the respective decimal will act psychologically
as a whole number.

In the case of multiplication all these assumptions have been confirmed.
It has been found that subjects perform sensibly worse when the operator is
& decimdl compared with problems in which the operator is a whole number,
Even if one keeps the same text and the same couple of numbers but one
changes their roles in terms of operand and operator, the capacity of the

subjects to solve is significantly reduced when the operator is a decimal.
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It has also been confirmed that the relation between the whole and the
fractional part influences the degree of difficulty. For instance in grade
9 only 50% of subjects indicated correctly the operation 15X1.25 as the
solution to a problem, while 95% were able to do the same when the correct
solution was 15X3.25 (in both problems, the operator was represented by

a decimal). It has been found that the "multiplication makes bigger" effect,
also predicted by our interpretation acted as a very strong factor of error.

With regard to division problems it has been predicted that two basic
intuitive models may be considered - partition and quotition. This assumption
has been confirmed clearly only for grade 9 but not for grades 5 and 7. One
may assume that, in fact, only one primitive, intuitive model develops init-
ially with the second being elaborated with age, probably via instruction.

Only at the grade 9 level the quotition model becomes a stable and influertial
intuitive factor. One may assume that 7 grade pupils belong to a transitional
stage. They react sometimes to a quotition problem as if the partition con-
straints had affected negatively their decisions (items 23 and 24) and some-
times as if an already acquired quotition model facilitated their choice (item 25
An extremely interesting situation appears when considcring items 20,
21 and 22 compared with items 16 and 17. In items 16 and 17 the devisor is
bigger than the dividend and this fact determined a strong drop in the percen=
tages of correct answers, compared with item 13 and 14 in which the dividend
was bigger than the divisor., Most of the errors consisted, as already mentioned
in reversing the role of the two numbers in terms of operator and operand. In
items 20, 21, 22 the divisor is again bigger than the dividend but, in contrast
to items 16 and 17 the operand is a decimal, A new conflictual, extremely
interesting situation appcars. According to the subjects' reactions to ques-
tions 16 and 17 one could have expected that they will tend to reverse (mis-
takenly) the roles of the two numbers and thus acquiring a "feasible'" division
But most of the subjects did not adopt in this case that mistaken strategy
and in fact one gets 70-80% of correct answers at each age level (with only
one exception). By reversing the order of the numbers they would have indeed
obtained a 'feasible' divigion in tcrms of the dividend being bigger than the
divisor. But in this case, the operator would have become a decimal and this
was also interdicted by the partition model. Consequently, most of the sub-
Jects did not resort to the inversion strategy and, as a next consequonce thoy




gave correct answera, The percentages of correct answers were lower compared with
those obtained tor items 13 and 14 (in which no model rule was violated Jbut

much higher than those obtained with items 16 and 17. The '"operator not

being a decimal" rule of the partition model secms to be a very strong intuitive
factor. One may assume that the 'corrective' mechanism by which a division like
0.75:5, becomes intuitively feasible (in terms of the partition model) consists in

merely neglecting the decimal point (and thus seeing, for instance, 0.75 as 75).

Clearly, the processes described above are what one obtains when one
trys to get an explicit representation of what happens at the intutive, tacit
level. -What one gets is & chain ofconsiderations and transformations which are
formally meaningless and algorithmically incorrect. But when considering the
constraints of thecorresponding primitive models the whole hypotheticul chain of
transformations becomes clear and consistent.
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TELL ME WHAT YOU ARE DOING -
DISCUSSIONS WITH TEACHERS AND CHILDREN

Kathleen Hart, Chelsea College, London University

There are few places in the world where people are satisfied with the
mathematical understanding displayed by their children, whatever the
criteria of success dictated by either the needs or the educational
philosophy of the country.. The fault may lie in the nature of
mathematics (or the nature of the mathématics we choose to teach) or

in the methods we use to teach it. I suggest however that unless we

can somehow match the mathematics to the child very soon, we are in
grave danger of losing mathematics as a school subject, accepted by
educators as a necessary part of every child's education. It may be
replaced by social arithmetic and the use of the calculator for the
majority of children with mathematics reserved for an elite few, as

the study of Greek is today in Britain. Some would consider this a
sensible step but if one's philosophy of education includes the:
desirability of giving all children access to their cultural heritage

and the products of man's rational nature then the suggestion is to be
deplored. The only alternative therefore is to reconsider the way we
teach the subject and how we select material of a suitable level for the
pupil. The suitability depends to a large extent on the level of knowledge
already possessed by the child and a discussion of the methods we might
use to discover this level form the major part of this paper.

THE CHILD'S LEVEL OF KNOWLEDGE

The means by which we ascertain what children understand seem to form a
hierarchy of respectability in the minds of parents, employers and
educators. Test papers which are published and therefore cost money are
deemed superior to those written by the class teacher. Printed matter

is in its very nature thought superior to oral communication although it
is this last that adults rely on in their ordimary daily life. A growing
body of research is now based on data obtained from interviews although
this method of assessment is less popular with teachers. There are a
number of drawbacks to the interview method, as we are reminded by

Carpenter, Blume, Herbert, Anick and Pimm (1982) in their Review of
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Research on Addition and Subtraction

Opper (1977) pointed out some of the procedural difficulties
associated with the individual interview method. Among these
were (a) the possibility that the child would not be at ease and
perform naturally in the cou¥se of dialogue with the interviewer,
(b) the problem of the interviewer maintaining neutrality and
avoiding attempts to elicit "correct" answers, (c) the
misunderstanding of language not adjusted to the child's level,
(d) insufficient time for the child to reflect on the problem
and to develop his/her explanations, and (e) the interviewer's
interpretation of the child's actions and responses on which
subsequent questions are based.

One of the most serious problems with interview data is that
children's explanations of how they solved a problem may not
accurately reflect the processes that they actually used. The
interview procedyre may change how a child solves a problem, or
children may have difficulty articulating the process that they
really used and therefore describe another process that is
easier to explain. Or they may try and second guess what they
think the interviewer is looking for., Another serious problem
is that the inferences drawn from an interview involve a great
deal of subjective judgment on the part of the experimenter.

(pg 54)

Although the list is daunting, the objections can all be made equally
against the method of assessment we have been using for many years -
lists of computations to be completed in a fixed time in a fairly

hostile atmosphere. The greatest disadvantage of a research i,
methodology based on the acquisition of interview data is perhaps the
amount of time that needs to be spent in order to truly listen to a child
and then to transcribe the interview. It is this perhaps which leads
researchers to limit the type of question discussed and the number of
children interviewed or indeed to try to shorten the whole process by
providing "interview' booklets which can be completed by the child with

a pencil and then 'marked' by the researcher, If we limit the means by
which the child can answer we limit the richness of our data. To find out
what children understand we must take into account what they 'get wrong'
and why they fail to function adequately in certain areas. To do this we

need to provide an opportunity for the child to convey his thoughts to us.

We would hope to influence teachers with our research so we must try to
design research that they will believe. This means that our interviews

should be so structured that the teacher can replicate the type of
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discussion and so verify the results we have obtained, besides possibly
adding to his own repertoire of teaching skills by using interview
techniques. Teachers are engaged in working with groups of children
and a class is seen as needing something in common not as a set of
individual needs. The identification of a learning difficulty which is
common to many is of more interest to teachers than the pinpointing of
a unique situation, so anecdotal data which might relate to only one or
two special cases is of less value. To/influence the practice of

teaching, researchers must provide information to which teachers can

relate and act upon.

RESEARCH USING INTERVIEWS

The research carried out at Chelsea College over the last nine years has
been focussed on classroom practice and designed to give information to
teachers, We have employed interviews extensively besides collecting
data in the more formal atmosphere of mathematical tests., The work of
the Concepts in Secondary Mathematics and Science Project (Hart, 1981)
gave us a crude picture of which aspects in eleven different mathematical
topics were easy for secondary age children and which more difficult.

The methodology involved the use of word problems firstly in an interview
schedule and then in paper and pencil format. The latter enabled us to
obtain a broad view of the mathematical performance of children in the
11-16 age range, whilst the 300 interviews enabled us to put forward
tentative reasons for the different levels of difficulty.

From our testing (n = 10,000 children aged 11-16) it seemed that at least
half our secondary population was restricted to the ability to solve

items which required at most two steps for solution, largely involved
whole numbers and could be completed nearly always by the use of the
operations of addition or counting. Counting is one of the most

primitive methods for solving arithmetic problems although for young
children it has the advantage of rythmic naming encouraged by parents

and grandparents and the satisfaction obtained from tapping with a finger.
Easley (1982), impressed by the mathematical attainment in one Japanese
school, suggests that one reason for the greater number dexterity

exhibited by the children there was the absence of counting in Grade One.
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The children in Kitamaeno School did very little counting and concentrated

on partitioning and regrouping

With American teachers in third grade wondering, "How can I
get the children to stop counting?" it was impressive to see
that counting was not necessary. Counting is a terribly
inefficient method but it's the foundation of our curriculum,
So we wanted to see a curriculum in action where counting is
not so central. Counting is one of those procedures which is
very useful at times, but like any procedure, will not get
you what you want, if you want mathematical thinking and
greater confidence in tackling problems. As we have seen, a
set of counting algorithms which children learn sets the tone,
the pace, the attitude, from the first grade.

(pg 23)

The fact that adolescents of 15 years were using counting, was found from
asking them how they attempted to solve the problems, we would not

necessarily have discovered this except through interviews.

Alternative Frameworks

There is a growing body of research in both mathematics and science
education which illustrates how children are employing strategies which
are not teacher taught and which were unrecognised before children were
asked to explain what they were doing. One recent statement on
alternative methods was made by Collis and Romberg (198l), who reported
on the rules used by children aged from four to eight years (of
different 'Cognitive Processing Capabilities' - CPC) when faced with
addition and subtraction problems:

Children at all CPC levels use the taught algorithm infrequently,
between one=fifth and one-fourth of the number of times when it is
appropriate. They appear to prefer to fall back on more 'primitive"
strategies such as counting which they have used successfully
previously...., It is of interest to note that when the children
cease to use inappropriate strategies they do not, in the main,
turn to the algorithm which has been taught as the appropriate
strategy. In fact, for this population, the use of the
algorithm does not increase significantly with increasing CPC
level.

(pg 140)
The CSMS interviews tended to show that secondary school children were
employing strategies in mathematics which were adequate for some of the

questions they were asked to solve but unlike the algorithms they had
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been taught, they were not generalisable. For example, a procedure of
repeated halving is adequate for dealing with ratios 3:2:, 5:2 but does
not generalise to finding an enlargement in the ratio 5:3. Most secondary
school mathematics is concerned with formalisation and generalisation

and if the child is to succeed he must "play this game'. Vergnaud (1983)
states

The formation of a concept, especially when you look at it
through problem=solving behaviour, covers a long period of time,
with many interactions and many decalages. One may not be able
to understand what a l5-year-old does, if one does not know the
primitive conceptions shaped in his mind when he was 8 or 9, or

even 4 or 5, and the different steps by which these conceptions
have been transformed into a mixture of definitions and
interpretations, It is a fact that students try to make new
situations and new concepts meaningful to themselves by
applying and adapting their former conceptions.

(pg 17)
To this I would add - sometimes the adaptation is a renewed allegiance

to a naive version with which they feel comfortable and confident.

The non taught mathematical methods used by children well into their
secondary schooling may be 'naive' strategies they learned when young

and which are assumed by teachers and textbooks to have been replaced, or
they may be invented or 'common sense' techniques. As part of the research
carried out for the British government report on mathematics education
(Committee of Enquiry, 1982), Fitzgerald (University of Bath, 1981) and
Sewell (1981) showed that adults seldom used taught algorithms in the
mathematics they used in everyday life but they cope by using their own

non-standard methods

The notation of fractions appears in some clerical and retail
jobs, for instance 42 o represent 4 weeks and 3 days or 2%_ to
represent 2 dozens and 5 singles. However, school-type manipulation
is rarely found and then only in very simple cases; for instance,
the calculation required to find the charge for 3 days based on a
weekly rate is division by 7 followed by multiplicatiom by 3.

(pg 22)

The needs of the working man and woman of 1982 should not be the guiding.
principles by which we decide on the mathematics to be taught to a child
who will live his life in the 2lst century, so although such common sense

methods prove adequate for many mathematical exercises we require
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children to complete, they prove inadequéte if the problems are complex
or involve non integers and in these circumstances often lead to

error.

Errors

The CSMS data revealed that certain items on individual test papers
produced the same wrong answer very often (40-50 per cent level). These
errors were not restricted to particular schools or text book use and
seemed worthy of further investigation. In 1980 the SSRC financed a
further project at Chelsea called Strategies and Errors in Secondary
Mathematics (SESM), The aims of this research were to investigate the
identified errors more deeply and to try some remediation. We took
errors in the topics of Ratic and Proportion, Algebra, Fractionms,
Measurement and Graphs and based our initial work on interviews with
children who had committed the errors in which we were interested.

The CSMS word problems formed the first interview schedule and we
attempted to find the methods children used correctly as well as the
reasons for the later incorrect answers. The underlying rationale was that
consistent errors in solving a particular type of problem were indicative
of a mode of thinking and not just an example of a momentary lapse in
concentration, About 60 children were interviewed in each topic
investigation. The methodology is illustrated by examples from the Ratio
and Proportion investigation, The error being investigated in this topic
was the incorrect addition strategy (Piaget and Inhelder, 1956% Karplus,
Karplus, Formisanoand Paulsen, 1975) in which one enlarges a diagram by

adding an amount as is shown in figure 1.

Enlargement of the figure on

Zem the left. HNew base of 5ecm
3cm Scm
(CSMS 1976 data) Age .13(n=800) 14(n=767) 15(n=690)
Correct answer 7.9 161550 19.7
Answer 4 47.6 39.4 39.7

per cent

Figure 1  The Incorrect Addition Strategy
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The reasoning of children giving the answer '4' is that 3cm in the
smaller diagram became 5cm in the larger by the addition of 2cm, so

the new upright must also be found by adding 2cm. This same argument
was put forward by those interviewed in the SESM research when the
dimensions were changed so that (1) the base lines were 3cm and 10cm
and (ii) the figures were triangles. The ‘adders' who used this

method on three/four of the hardest CSMS enlargement questions, could
recognise when figures were not similar. Indeed when asked to draw the
triangle resultant from the addition of 7cm to the height their comments

showed their dissatisfaction with the new shape!
"It's too long"
"It's too steep"
"Looks more tilted"
"Not as sloped"
"They're not the same"
"It's close"

The interview sample was taken from classes described as 'average' by their
teachers; they had been taught some aspects of Ratio and Proportion and
were not regarded as in need of remedial help. 'Adders' throughout the
CSMS survey had proved to be children who could cope with a number of

the CSMS items. They could for example enlarge a diagram in the ratio

2:1 and solve questions about a recipe in which the ingredients for eight
people were given and those for four and six people were required (as long
as fraction computation was not involved, i.e. % pint for 8 people. How
much for 6?). The new SESM interview sample similarly gave answers of this
type. In previous papers (Hart, 1981l) I have referred to the correct but
naive use of addition as 'building-up' to an answer. In the recipe
question the ingredients for six people were found by adding the amount

for four persons (the operation of halving) to the amount for two people
(halving again). The 'adders' success then, was imbedded in these naive
methods in which repeated addition replaced multiplication and fractions
(other than '%') were avoided. It was a natural step to seek an additive

method for solving the harder items in which the fraction element played
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a larger part. Fischbein (1983) desgribing some of the CSMS results

comments

And this 1s not only because the notion of multiplication 1is,
intuitively, related to a magnifying effect, but also because the
operation of multiplying by a fraction has no intuitive meaning
at all! Multiplying 2/3 (as a magnitude) by 6 (as a non-dimensional
operator) means, intuitively, 2/3 + 2/3 + 2/3 ..... What is the
intuitive meaning of multiplying 6 (as a magnitude) by 2/3 (as a
non-dimensional operator)?

(pg 3)

INFORMATION FOR TEACHERS

SESM - Ratio and Proportion

The second part of the SESM work entailed intervention and some trials of
materials that teachers could later use with children in their classes.
Thus, having found a number of reasons why a child was giving the wrong
answer we attempted to identify a series of constructs which matched the
gaps in the reasoning of the 'adders', starting with a demomstration of
the outcome of the method they were using and then stressing the operation
of multiplication. The methodology was thus tailored to the error and
-
counter to the suggestions of Gagne (1983) when he referred to rules of
computation
Hypothesis 1 is this: The effects of incorrect rules of

compitation, as exhibited in faulty performance, can most readily

be overcome by deliberate teaching of correct rules. My

interpretation of previous psychological research on "unlearning"

is that it is a matter of extinction. This means that teachers

would best ignore the incorrect performances and set about as

directly as possible teaching the rules for correct ones. An

unpreferable alternative is to make students fully aware of the

nature of their incorrect rules before going on to teach the
correct ones. It seems to me this is very likely a waste of time.

(pg 15)

In Ratio and Proportion I sought to distinguish between a schema and concepts
and the skills needed for a successful demonstration of them within school
mathematics. I took as a matter of educational belief that there were
children within the group of 'adders' who were 'ready' to move their

level of understanding if they were only given the right information at

the time appropriate for their needs. An additional condition was that

ideas for remediation should be in a form that teachers could and would use.
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The module for Ratio and Proportion addressed itself to four areas in

which the adders appeared to be deficient:

1) the recognition of the inaccuracy of the diagram
resulting from the use of the incorrect addition
strategy

ii) the need to see that the crucial arithmetic operation
involved was multiplication

iii) the possession of a skill which would enable the
child to multiply decimals (or fractions). This is
distinguished as a separate entity from the
understanding of what is needed to procure an
enlargement

iv) the possession of a method which would enable one
to find a scale factor, given a dimension and its

enlargement.

The module was tried with small groups of adders, then half classes and
finally by teachers with classes of children whom they considered to be
of 'average' ability. The results for the four teachers who used the
materials for two weeks teaching are shown in figure 2. In figure 2b
we can see that the incorrect addition strategy has completely
disappeared at the immediate post test but some children have reverted
to it by the time of the delayed post test, 11 weeks later. Of the 24
children in the four schools who would have been designated 'adders' on
the CSMS test because they used the incorrect addition strategy on
three/four of the four hardest questions, 23 were no longer in this
category on the delayed post test. Solving the items correctly is

more difficult and as can be seen from figure 2a, although the
performance of every class improved, school four's results show a sharp

decline between immediate and delayed post tests.
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Figure 2 Results for the school trial
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Positive intervention by the teacher, designed to meet a specific
and identified need has been shown to be effective. It would seem
very often that intervention which is too general or too far removed

from the misconception fails to effect any improvement.

Implications

1 have been told by various teachers that the CSMS results mean that
half our population is incapable of doing secondary school mathematics;
that the subject is for an elite; that primary school teachers have
failed or that secondary school teachers have failed; that practical
work and concrete aids/manipulatives need to be used to a much later
age than is currently the practice etc, All of these are of course
matters of opinion and even politics and their generality  hides the
subtlety of the problem of teaching mathematics to children. The statement
"he is not ready because he is at the concrete stage' can be as crude a
diagnosis in its own way as 'he is 14 years of age and so should be able
to do ....". Neither necessarily describe the child and its needs.
Our evidence of the existence of child-methods and alternative frameworks
suggests a picture of a far from smooth transition from the state of
reliance on concrete aids to 'formal' mathematics. We would agree with
the statement by Driver and Easley (1978)
It has been suggested that in designing instructional sequences
attention needs to be given not only to the sequence of operations

or ideas to be taught but to the operations or ideas pupils tend to
apply spontaneously to tasks.

'...until one understands what students do spontaneously
one will not be able to demonstrate the limits of this
approach to them' (Case 1976).

Knowledge of pupils' alternate frameworks has been used in
constructing learning tasks in science.

(pg 78)
The path is littered with the jagged rocks of methods found reliable by
the child when he was young and in which he still places his confidence,
the methods he has invented and which cause him to be talking on a different
level to his teachers and finally, the belief that it is all magic anyway.
The teacher must find out the location of these rocks and without destroying

them lead the child to a higher plane. The division between the higher
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plane or 'formal' mathematics and the level of the child may, to
continue the allegory be rather a large plateau, a huge chasm or a small
step, we have very little information con this. We do for example know
from our CSMS data that the two guestions in figure 3, given tc the same

children on the same day, gave very different results.

There seems to be a large gap between the difficulty of question (i)
which can be solved by counting and adding and the formalisation needed
for question (ii).

Find the area

? (1) ////’ .

HCm

| i RS . 3CM ”
Age 12 13 14 yrs Age 12 13 14 yrs
17,5 0086,9 914 3L cbiReIBE S 4.5
percent correct percent correct

Figure 3 CS5MS area questions

The Path to Formalisation

Teachers in Britain who follow the 'official line' in teaching would
approach a formal mathematical statement through a wealth of practical
experience for the children but there would come a time when they expected
the class to deal with symbols and abstraction without the comcrete aids.
At Chelsea we are currently locking at the transition stage between
practical experience and formal mathematics for children aged 8-13. The
step from one to the other may be too great and experiences which provide
a bridge between them may be called for. I give as an anecdotal
illustration a conversation with a ten year old, Paul, who jas just spent
a month doing practical work relating to volume prior to learning that the

volume of a cuboid is given by "V = lxbxh". The problem used is the well
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known Piagetian example of decomposition of a cuboid as shown in

figure
&,

Block 'C' is made by putting some small cubes together:

C

How many cubes make this block 'C' if there are no gaps inside?

& B B S W

¢) All the cubes from block 'C' are put in a pile:

I am now going to use all these cubes from block 'C' to build a "sky-scraper"

so that the bottom floor is &4 cubes

How many cubes high would this "sky-scraper’ be from the ground?

Figure 4 Volume questions used on interview

(Intexrviewer: I - Paul: P)

I: I have a picture here. That is made like that (showing cuboid) -
that is just the picture. Then I tear it all to pieces, to
get these bricks like that. Then I build it up again. This

time I build it up on top of that (pointing to f ) How high
would it go? (Repeats briefly).
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Can I do it any way, but just find the answer?

I would prefer you not to break it upvbut if you need to break
it up, well go ahead. Can you do it without breaking it up?
It's 3 fours in each layer

Good

So, 1, 2, ... that makes 4 there. Another .. (long pause)

Can I tell you what you said when you worked that out? You said
three fours. Then you wrote that ES L*

3 L

Then you said three fours and you wrote that. What are you going
to do?

Justeaad Arssl2 den e {7

Twelve fours?

Twelve into ...

Twelve is what ...? Is it all the lot. Or is it a layer? Or is
it three fours? Or what?

It's ... kind of how many fours is three times 12 fours.

Could you show me 12 fours, on that, you see that block there.
Where are the fours.

Do you want me to break it up?

No, you didn't break it up to get to that answer. Did you?
There's a four here. You said 3 up, to make it how high.

Are you giving me the answer then, 12.

Yes

So, is it 12 high?

Yes

I don't understand. That is the drawback. Do you think you could
explain to me very slowly, what you were doing.

Alright.

I found that bit I thought you said three fours and that was a
layer, was it not?

This is four, four and four, so it's three. Three ...

I see, three little bits of four

Yes... three time it = sounds a little bit like a table

That is what I thought you were doing, you see. But you are not.
There are 3 fours in that top layer, I agree.

Then there's another four and another four. That's what I've
written here and that all comes up to 12,

Twelve fours?

Yes.

So I see.

And that's the height.

Splendid. Now I understand. So that is the height of our skyscraper?
Yes... Do you understand now?

Yes. I'm not sure I agree but I understand.

Paul has not moved from counting cubes to multiplication but to a collection

of fours ( E;; ), he is not at a formalisation stage but not completely

tied to the concrete either.
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The research design of 'Children's Mathematical Frameworks' involves the
teacher in writing a scheme of work and justifying it to us. Then we
interview six children in the class just prior to the lesson(s) involving
the formalisation, to try to ascertain the nature of the pre-requisite
knowledge (identified in the scheme of work) that they possess. We
listen to and tape record the lesson(s) when the teacher formalises

the idea and then we talk to the six children again, immediately and
after three months have elapsed in order to see whether they utilise the
formalisation and then how the nature of their understanding has changed
in the intervening period. From this we hope to obtain evidence which
sheds light on the source of a number of misconceptions and child methods

shown by secondary school children.

CHILDREN AND TEACHERS

The case has been made that interviews with children enable us to discover

considerably more about the nature of the child's understanding than we
could from his performance on a pencil and paper test. Let us extend

this idea to include other types of verbal interchange.

Discussion and Debate

Adults place particular regard on oral communication; we all attend a
conference because although we can read the papers we value the opportunity
to hear people and to ask them questions. We seem not to think children
might benefit from the same type of interchange. I suggest that children
are expected to ask only the questions the teacher has planned for and to
which the answer is known.

We tend to think that we are protecting children when we omit the awkward
example or slide over the less than satisfactory explanation. It is thought
children are less confused if many of the complexities of a situation are
disguised. For example in lxbxh, is 1 sometimes b and sometimes h or is

the label permanently attached to a side? We essentially leave the child

to discover these inconsistencies when he is alome. We tend to think that
children's opinions are not worth heeding and although we may sometimes
listen to a child explanation, we quickly interject with out interpretation

of the situation. I suggest in fact we should make a positive and
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penetrating effort to find out what the child is doing, as Bauersield
(1978) said

Erlwanger's case studies are related to programs from
individual Prescribed Instruction. His documentation of students'
mathematical misconceptions and deficiencies demonstrate how
mathematics learning can be damaged by restricted teacher-student
communication = a restriction which leads to the nearly total
absence of negotiations over meanings. (pg 5)

Teaching and learning mathematics is realised through
human interaction. It is a kind of mutual influencing, an
interdependance of the actions of both teacher and student
on many levels. It is not a unilateral sender-receiver
relation. Inevitably the student's initial meeting with
mathematics is mediated through parents, playmates, teachers.
The student's reconstruction of mathematical meaning is a
construction via social negotiation about what is meant and
about which performance of meaning gets the teacher's (or the
peer's) sanction.

(pg 19)

The effectiveness of teachers is closely linked to amount of
developmental work (as opposed to practice) they are prepared to intro-

duce into their lessons, Grouws (1982).

Development is a part of most mathematics lessons in which the
teacher actively interacts with pupils. In very general terms,
development can be thought of as that part of the lesson devoted
to the meaningful acquisition of mathematical ideas, in contrast
to other parts of the lesson such as practice or review.

(pg 5)

1f development is viewed in a global way, then teachers'
attention to the meaning of material presented is vitally
important, and development must be understood in terms of
promoting student thought. Future classroom research must
study more extensively the content that is presented to students
rather than instructional time per se.

(pg 17)
Both of these aspects can be achieved, I suggest, if one involves the
children in a discussion of the topic under consideration. Easley (1982)
after his research in Japan has been trying to encourage some Illinois
teachers to build-in debate and discussion as part of their normal

teaching.
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In Kitamaeno School, we had seen teachers urging
students to find as many methods as possible, and urging
students to learn several methods for each kind of problem.
This approach contrasts with that of the teachers we were
working with, who would feel happy if they could teach one
method well for each kind of problem,

(pg 137)

Some further research carried out by Malvern and Bentley (1982)
adds weight to the argument that verbal communication between teacher

and child could be a rewarding experience for both.

The aim of the Project was to augment the routine class
teaching of six to eight year olds with some extra work in
mathematics, increasing the scope for discussion, and paying
particular attention to the use of appropriate, simple,
unambiguous language. The purpose of the evaluation was
to ascertain if any measureable improvement in mathematics
was achieved. To provide the extra teaching six primary
teachers were seconded to the Project for two years. All
six were experienced teachers but none was particularly
specialised in mathematics before the Project hegan.

(pg 1)

On average an extra six hundred minutes mathematics
teaching was provided by the Project teachers to each infant
pupil and six hundred and twenty-five minutes to each junior
pupil. Again on average this means each pupil received 17
or 18 minutes per week extra mathematics taught in a small
group of between 3 and 5 pupils for the most part. Some
pupils received much more, some much less but the bulk of the
pupils received about the average. Fifteen to twenty
minutes a week is a modest amount of time compared to the
normal class time given over to mathematics teaching
estimated at between 5 and 6 hours per week. (pg 2)

We can say without equivocation that the measured
achievement in mathematics was enhanced by the Project.
The enhancement was large in scale, and the results
overall showed a major improvement had been achieved
through this work. (pg 2)

The enhanced performance of the pupils is accounted for by a number of

features of the project, the authors mention four, ome of which is:

Small Groups and Discussion. The Project teachers worked with
small groups. This allowed not only a lot more individual
attention to be given to each child, but also the encouragement
of discussion of mathematics. It was the Project teachers'
intention to promote talk about the work among the children
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both to improve linguistic skills generally and to make
mathematics active and lively. The small size of the groups
was important in creating the circumstances where each pupil
was able to contribute, as well as resulting in the teachers'
guidance being quickly available immediately it was

required, (pg 3)

CONCLUSION
In this paper I have attempted to provide an argument for research which
is based on interviews by illustrating the advantages with results and
insights obtained in the CSMS and SESM research at Chelsea. Children
often use methods for solving mathematical problems that are far removed
from the algorithms they are assumed to be utilising. The process of
teaching children is very complex and we do a disservice to both teachers
and children if we pretend it is straightforward. The subtlety of approach
needed might best be accomplished by greater verbal interchange in the
classroom, including discussion and debate. We must surely learn to
change so that the future is not as David Page (1983) sadly reflected
on the introduction of 'New Math' into American schools:
Teachers treated the new ideas in mathematics as they had
learned to treat other educational innovations: put in the
required time at the workshops and '"wear wide ties while they

are in style'. Then go back to your classroom, close the door,
and do what yocu have been doing.
(pe 1)
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IS HEURISTICS A SINGULAR OR A PLURAL?
Hans Freudenthal - Rijksuniversiteit Utrecht

Your first reaction to this question might be "a p]uralubecause of the
ending '"s" but this would be too rash a reaction. Indeed, '"Mathematics"
is a singular in spite the terminal '"s'", — a virus like particle that
has meanwhile been incorporated into'physics’ "economics’and quite a
few other nouns.

In order to answer the question in the title | first consulted my own
English dictionaries, but | could not even locate the adjective "heuristic'
between '"hetman' and 'hew', and only in a Dutch - English dictionary could
| find this adjective as a translation of its Dutch counterpart. So | went
to our University Library. Neither the adjective nor the noun "heuristic"
were recorded in any English encyclopedia whereas its Dutch, French and
German counterparts occured as early as the oldest encyclopedias | consulted.
With the dictionaries | fared a little bit better but | had to resort to the
biggest to encounter at least the adjective "heuristic'.

What regards the noun, the older ones knew "heuretic', whereas either
heuristic or heuristics as a noun did not occur until the sixties or seventies
of the present century. Needless to say that in the continental vocabularies
the corresponding adjectives and nouns have been terms of good old standing.
Of course the lack of terms does not necessarily imply that of the concepts
covered by those terms. Perhaps vyou would not believe it but it is a fact
that about a quarter of a century ago the geometrical term “"congruent'' did
not yet exist in standard English though it may be taken for granted that
British teachers and students knew as much about congruent triangles as did
their continental peers.

In spite of dictionaries and encyclopedias the adjectives and nouns
"heuristic' and '"heuristics'' have now acquired civil rights in the English
educational — or at least mathematical educational —literature. But you
will understand that the question | asked in the title is not a terminological
one. For a French title | would not have chosen a question but the title
would have simply been "L'heuristique et les heuristiques', in German 'Heuristik
and Heuristiken', but for reasons of uncertainty about the vocabulary | could
not do so in English, which explains the strange title. But even without
this explanation you would have understood that the query in the title is not
a linguistic one but has a more profound meaning.

I should confess that ''heuristic'' and "heuristics' do not belong to my own

educaticnal vocabulary . This might be just the reason why | pay attention to
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these nowadays quite frequent terms.
Everybody in this audience will remember the story about Archimedes, told
by Vitruvius in De Architectura:
Joyfully he jumped out of the bathtub and naked he ran home,
announcing loud that he had found what he had searched for.
Indeed while running he exclaimed: Eureka! Eureka:
nEyreka" means | found it'', but even with Vitruvius' story one can doubt what
Archimedes had searched for and found. Vitruvius tells that Hiero,the king of
Syracuse, had asked Archimedes to find out whether a golden wreath he had
ordered was pure or whether the goldsmith had cheated. Unfortunately it was
not a great discovery like the famous Archimedean principle - as quite a few
people believe - that led Archimedes to act as he did, but it seems to have
been the simple observation that the deeper he stepped into the bath the more
water flew over the edge. Indeed in order to compare the specific weights of
pure gold and of the wreath metal, it suffices to compare the volumes of dis-
placed water. Scientifically this might be a minor observation but as | observed
with a little boy, psychologically it can be a breathtaking discovery.
| started with Atchimedes because he was also the first mathematician, and
for a long time has remained the only one in history,who granted us a look into
his mathematical kitchen; who told us about a series of theorems not only how
to prove them but also how he found out them. This he did in his ''Ephodos'’
(the approach) — a palimpsest discovered as late as 1906. In the introduction
addressed to Eratoshenes he wrote:
For some things, which first became clear to me by the mechanical
method, were afterwards proved geometrically, because their investigation
by the said method does not furnish an actual demonstration. For it is
easier to supply the proof when we have previously acquired by the method
some knowledge of the questions than it is to find it without any pre-
vious knowledge. 4
Archimedes! Ephodos shows that he discovered theorems that we would now
prove by integration, by the method of indivisibles, whereas the official
proofs he published were fashioned according to Eudoxos' epsilontics like
method.
How has the whole of mathematics we can nowadays boast of been invented?
We know a little bit about it from history. That is to say, history tells us how
people simplified proofs devised by their predecessors, how they improved or

generalised old concepts, how they polished unwieldy definitions, how they put

s Translation: E.J.Dijksterhuis, Archimedes,1956.
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whole chapters of mathematics upside”down, how they transformed ideas published
earlier. But what do we know about what happened in the mind of the individual
mathematician who invented something or improved an invention? Even the inventor
couldn't possibly tell us — Van der Waerden's story about Baudet's theorem is

a noteworthy exception. All we can do is advancing conjectures. The inventor
left us a clean copy after destroying the scribblings and the rough drafr.

This, indeed, is how problems are approached: heuristically, by searching, at
random and intentionally, by finding, by serendipity or systematically. This,

then, is heuristics: the scribblings, as opposed to the clean copy as it is

printed.

Since we know nothing about how Euclid (or one of his predecessors) arrived
at the proof that there is an infinity of prime numbers, let us advance a
conjecture. Arrived at the proof? No, at the idea of this infinity, which |
would guess was preceded by a more original one: drawing up a list of all prime
numbers .

You know the sieve of Eratosthenes, a way to sieve out the prime numbers.
Let us think the natural numbers in a row, starting with 2 (since 1 is trivial).
2 is prime, the only even prime number; thus all other even numbers can be
struck out. What is left, is the odd numbers, thus of the form 2n+1. The first
among them, 3, i5 again a prime number, and all its true multiples can be
struck out. What is left? The numbers of the form 2.3*n11. The first of them
is 5. All its true multiples are struck. What is now left? The numbers of the
form 2.3.5.0 + 1,7,11,13 (with after the 4-sign "relative' primes with respect
to 30).

Continuing this way one discovers how for any set of prime numbers Pyse-esP,
a new example can be found: multiplying them and adding 1, one gets a number
that is not divisible by any old prime; thus it is a new one or at least divisi-
ble by a new one. But to get a new prime one could as well have formed from
the different primes PyoesesPpy the expression Py-- Py + Pry1t Py

Is this the way they did it? | do not know. But if | am right it shows the
underlying heuristics, the scribblings they threw away in order to dumbfound
the learner by the definitive proof of ”p1...pn + 1, and so on'.

In instruction "heuristic' is the opposite of "apodictic''. Not: take it
or leave it. But: search and find it. Yet to tell the truth: Besides the learner
there is a teacher. Rather than throwing the learner into a pool, and saying
"swim'', he considers it as his duty to aid his pupil: by means of a query he

utters, a situation in which he puts him, by a slight push, by a hint, and if
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he knows how to organise it, there might be a crowd of pupils who push each

other (or cross each other).

It is what they call a thought experiment. In his mind the teacher has
prepared a clean copy, which he expects the learner to produce, and even a
somewhat vague series of scribblings leading to the clean copy — a plan,
which in the actual experiment must be modified according to the student's
cooperation. This Is what from olden times they called heuristic instruction,
quite unlike the modern "problem solving', which can mean anything from letting
the pupil muddle up to having him tied to leading-strings.

Polya, in a number of books, has illustrated heuristic learning by marvelous
examples but he was also well aware of the fact that there was no Polya stan-
ding behind or at the side of each of his readers in order to intervene at
the just moment in his learning process. An author who knows the right way
(and that is what Polya is) lets his readers take a part in his thought but
he does not take a part in his readers' thoughts — indeed, this is impossible.

The enly thing he can do — and Polya did it marvelously — is to assist the
mathematical problem solver with advices, a collection of advices from which
he can make his choice in order to tackle the problem — advices such as:
consider a special case, try to generalise the problem, suppose you have solved
it, use a drawing, look for a similar problem, and so on.

This kind of advices is now called heuristics, meant as a plural, whereas
Polya as far as | can oversee, if he uses the word "heuristic" (singular}
means that process of searching which | have tried to characterise. What they
call nowadays heuristics (plural), | had the habit to call strategies and tactics
— concepts well distinguished in military science: strategy that is concocted
at headquarters, and tactics that is exercised on the theater of war.

In mathematical activities the borderline between both of them is more
fluent and its course can depend on the circumstances. For the student who
starts with algebraic word problems the advice ''call the unknown thing x'" is
a new strategy, but as soon as he masters this trick it is degraded to a
tactic of more or less automatic action.

Ourlmathumatical instruction is designed for any kind of problem to teach
pupils a system of fitting tactics. These can be quite a lot, for each
particular test item, say, four or five. This kind of instruction functions
more or less in algorithmic arithmetic, that is, sometimes more and some*imes

less. But as long as one stays with algorithmics it means that the pupil is
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told what arithmetical operation to carry out. If confronted with word problems
pupils often find out their own tactics, which may, or may not, be given the
judge's blessing. In algebra textbook authors and teachers try to provide the
learner with a lot of tactics, which unfortunately do not function as automati-
cally as those for algorithmic arithmetic. How many wrong ways there are to
apply these tactics — | need not exemplify it. The literature about it is
enormous and amusing, if it is not distressing — tactics that do not function
because they are not incorporated into strategies.

But what about strategies? Can they be learned? Of course they can. But
- another question - can they be taught? |t depends on what one means by
teaching. A list of strategies to be consulted in a problem situation — crossing
out what does not apply? No, that is of course not what | mean. My idea of
teaching strategies is making the one who solved a problem, afterwards conscious
of the strategy he had followed — so sharply that he stores it in his memory
and still vaguely enough to prevent him from sticking to it. Indeed, strategies
are only valuable if they allcw for flexibility of application. Rather than
apodictically they should be acquired heuristically. And this brings me back
to heuristic learning according to my terminology. To the problem of heuristic
learning — | should say while at the same time confessing that | did not solve
it.

x x X

What is the problem? Let me illustrate it as concretely as | can. After a
straining walk | am sitting with a 12 years old boy in a train but hls mind
is still fresh enough to allow me to shorten the time with a bit of mathematics.

| draw a triangle and ask him how much its angles could be together.
L A

There is no protractor around but apparently he does not feel it as a lack,

Some time in the past, probably not so long ago, he has grasped that such a
question in such a situation does not require other means than thinking.

I like to stress this because this is an attitude that even after many years of
mathematics instruction quite a few adults have not yet acquired: interpreting a
situation appropriately — in the present case the situation of being seated in a
train, with no protractor around and nevertheless asked a question about angles —

a human on top of a mathematical situation.
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Perhaps my query was too sharply focused. Maybe | should have asked him:
''Would there be some remarkable thing to be told about the sum of the angles?"
Or would | not better have drawn different triangles and asked about that with
the biggest sum of angles? Or having him compare that of a triangle and a
quadrilateral?

Anyway he could not answer my question. 5o | tried a nudge. Imagine we would
cut out the triangle - of course we had nc scissors - and make more of this kind.
Could we pave the paper with them?

After a first failure he produced something like.

AN
AN,

(fig.2)

A N N N X

Honestly | must add that he had encountered such a pattern earlier in another
context. | ask him a few questions on uninterrupted straight lines in the

pattern and how many kinds there might be — questions that with a ruler at

hand | would have asked differently. | continued with asking questions about

equal angles, and no wonder he had soon found out that the sum of angles in

any triangle was 180°. Of course we also tackled the equilateral and the isosceles

right triangle.

(fig.3)

Then it was the turn of the quadrilateral, in which he inmediately drew

the diagonal required to get the sum of angles 3600.
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A side-leap to the square and the rectangle, and then the pentagon.

(Fig.h)

Here something went wrong, that is,not according to my thought experiment.
He drew one diagonal only, splitting the pentagon into a quadrilateral and
a triangle, and so he kept it with the hexagon: one diagonal splitting it

into a pentagon and a triangle. Strangely enough | had not expected it and

(fig.5)

so | was ill prepared. How could | now decently pass to the 1000-gon when he
knew nothing about the 999-gon? My reaction was awkard as it often is if my
thought experiment is falsified. | replaced his inductive idea, which looked
clumsy, with my own , and you can imagine how this worked:

in the 3-gon the sum is 1 time 180°,

in the b-gon the sum is 2 times 1300,

in the 5-gon the sum is 3 times 1300,

in the 6-gon the sum is 4 times 180°
(with heavy stresses on the numbers 3,1; 4,2; 5,3; 6,4), thus for instance

in the 1000-gon ...?7
No wonder he grasped it. |t was one of my woest performances. | was even so
insolent to ask him about the n-gon — a question he was right not to under-

stand since he had not yet the linguistic tool of (n-2 ). 360° at his disposal.
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There are more ways to deal with the sum of the angles in a triangle:
Starting with a rectangle where the sum of angles is obvious. (Both the
existence of rectangles and the posibility of paving the plane with congruent
triangles are equivalent with Euclid's postulate on parallel lines.) Then
passing from the rectangle by means of a diagonal to the right triangle. Or
shouldn't one start with the right triangle and hope that the pupil will
complete it to a rectangle? It would be one more cpportunity to let him act
heuristically. If he fails, one can still switch to the rectangle in order to
return to the triangle. Then after the right triangle the general one, hoping
to see it split into two right ones. But | am afraid to achieve this, a kick
rather than a little push is required.

But let us continue with the lesson in the train. | drew a parallelogram
with its diagonals. Do you see things that are equal? He first saw unequal
things only, which in fact are more striking. With little pushes "another pair"

he arrived at stating that the diagonals halve each other,

(fig.6)

How can you see it? | had to appeal to ideas he had already learned at school :
l'congruence'', and '‘how many times does a certain figure fit into its own hole?"
He succeeded. In his mind he turned the parallelogram around. What does happen
with the diagonals and their intersection? Answering this question means solving
the problem. Then spontaneonsly he motivated in the same way why the isosceles

triangle has equal angles at the basis.
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There were circles printed on the sheet of paper we worked on. | inscribed
a triangle upon a horizontal diameter. What do you think about that angle at

the top? Of course he recognised it as a right angle. "Are you sure that it is

(fig.7)

exactly a right angle?' ''Yes'', and | was surprised about the motivation. He
completed the triangle to an inscribed rectangle, and for that matter, an
‘'oblique' one. (He knew before that a rectangle is characterised among the
quadrilaterals by the equality of the diagonal pieces.) It was an instructive
experience. In order to pave the road more smoothly, | could have started with
the inscribed rectangle, and with a diagonal added, obtained the triangle upon
the diameter. It would have been safer but | would have had a heuristic opportuni=
ty let slip.

I had the ccurage to go even further. In one of the printed circles | inscribed

a quadrilateral. To be safe | drew it with the centre M of the circle inside.

0

(fig.8)




(fFig.9)

| let him M connect to all vertices and indicate all pairs of equal angles.
What do you think about the angles A and C?7 He saw inmediately that they were
180° together. And what about B and D7 The same. My next step was D replaced
with D' on the same arc AC. Almost spontaneously he drew from <4B + 4D = 180°
and <B + <0' = 180° the conclusion that the angles D and D' on the same arc

were equal.

With this story | did not solve the problem of heuristic instruction nor did
| make it easier. Maybe | even complicated it, and this was my intention,
indeed: to go to the heart of the matter. One pupil per teacher — it can be a
privilege (for the pupil and the teacher). | do not mean: private lessons,
which are too expensive to have precious minutes wasted by aimless search,

A more realistic setting is heuristic instruction on the blackboard in the
classroom. According to the number of pupils the probability to succeed is
increasing. It would be strange if not at least one of the pupils went along
with your plans and allowed you to transform your thought experiment into
a real one,

It would be a variant to have the pupils work individually and after the
question wbo succeeded to have the - imaginedly - fortunate ones demonstrate
their solution on the blackboard or the overhead projector,

One can also have the pupils divided into groups, parcel out one's
attention as a teacher, and step in to help a particular group at the point
where one feels they have arrived.

On the other hand one can organise the realisation of the thought experiment
beforehand by means of a sequence of worksheets that should lead the workers
to the goal. This sequence can be organised rigidly, with little steps, or more
loosely, with the proviso of white spots where one would intervene if the

learning process stagnated.
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Finally one can charge a computer with the thought experiment, strictly
programmed, or with intermediate references of the pupil to the teacher.

How should it be done? | cannot tell it as | cannot tell how to
compare methods to find out the best. | have seen reports of class discussions
where the teacher refrained from intervening and restricted himself to watch
the discussion and where the result was such that when reading them, one pittled
the pupils and regretted the waste of time. And | know programmed instruction
that the learner has to undergo with eye-flaps. Heuristic instruction as | see
it, is an art of meting out the right dose of constraint and freedom. '

Anyway heuristic instruction is quite another thing than the fashion

of instruction of heuristics (plural).

| am not yet finished. When | was invited to deliver an address, my
first choice of a title was ""PMET", that is, 'psychelegy of mathematics
education'' followed by an interrogation mark. It soon appeared that the
design | had in view, lacked the ring of concreteness | prefer. However,
| did not abandon my original idea; | rather delayed its realisation.
As much as concreteness | like analysis of composite concepts. PME is
such a complex. Let us start at the end. '""Education'' has a lot of meanings.
In 1978 P,Suppes published a book '"Impact of research on education',
consisting of nine ''case studies'. However, education in the sense of
an activity in the classroom is almost absent in this volume. Education as under-
stood by jts authors is educational research, and the impact as felt in it
is one of less educational on more educational research.

Education as understood by myself is about learning and teaching as
processes, taking place in a more or less organised way. | agree it is
not the general view. When scrutinising a few volumes of some research
journal on mathematical education, | could not find anything that matches
my definition. Most of the papers were concerned with states rather than
processes, instantaneous photographs of products of previous education or
non-education. To be sure there were papers among them where two states were
compared with each others, in the way they did it in old-fashioned advertisings:
""before the treatment and after'. What happened in between was indeed a
treatment as they called it rather than a teaching-learning process. There
were catalogues of errors of learners but nothing about the learning and unlear-
ning of errors.

| also scrutinised a few volumes of our PHE proceedings, and | am happy
to tell you that about a third of the contributions were concerned with

what | like to call education, that is learning and teaching as a process.
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After the E of PME let us turn to the M. | will be short about it. Not
because of unconcern but rather because | would not know what to add to the
old controversy about the mathematics that is being taught and the one that
should be taught. Anyway personally | favour innovation above conservation
and | would like PME to share this preference.

Finally the P of PHE. | do not like definitions but | think what people
agree on is that psychology is about behaviour, say, of humans (though | do

not exclude higher animals). Their methodology, however, covers & spectrum
as broad at that of light, from the cool specialist of measurement to the

hot visionary. | think PME is working in a temperate climate. But even a temperate
climate knows temperature gradients.

Psychology is about behaviour — all right. But some time ago they €nriched
"behaviour" with a plural '"behaviours', which in its most extreme version
means knacks and tricks. Studying behaviours can be useful provided one does
not forget about the behaviour behind the behaviours.

You understand how this analysis of the P in PME is related to the title
of my address. It is again the choice between a singular and a plural,
and my own is the singular. Thereis a trend in psychology, as there is in
other social sciences to come to grips with global ideas by subdividing, by
grinding, finally by atomising them. It is not my view on psychology. My
view on global ideas is the paradigm. My search is for paradigms of mathe-
matics development and education, appropriate to better understand learning
and teaching. This, then, was the kernel of my exposition: paradigms of
right or wrong behaviour of learners and teachers.

Where to look for them? In learning processes, of course. Short term ones is
the easy case, the fingering exercise. Long term ones are found in curriculum
development if understood as educational Jevelopment — a promising territory.

How to find them? By focusing on and singling out what looks important.

How do | know what is important? By PME — now with an exclamation mark.

When rereading the last few passages, which were to mark the end of my
address, | felt sorry. Sorry about the wrong | might have done to people that
share alternative ideas about what means PME, among which — strange bedfellow —
my other self. Sorry about having atomise_ PME into its components =— an activity
| dislike if performed by others. But there is no focusing without blurring.

If this is the cause of my wrongdoing, | could not avoid it.

I am going to resume my analysis. "Educational Psychology' is of old standing.
To the "P" and "E'" we added the 'M'', |s it a restrictive or replenishing adjec-
tive? It is the wrong question. Let us think once more about it. "Educational

Psychology'" remains as meaningless as is "Education' as long as | am lacking
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any vision on what is to be learned and taught and in what spirit. The "M"
accounts for the subject matter and the vision on M for the spirit. But M

is only a paradigm and it is worth as much as it is as a paradigm. PME should
prove its right to exist by being the best paradigm of psychology in education.
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B. LEARNING THEORIES

l. GENERALIZATION
2. PSYCHOLOGICAL THEORIES
3. NEUROPSYCHOLOGICAL THEORIES
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AGAINST GENERALISATION: MATHEMATICS, STUDENTS, AND ULTERIOR MOTIVES

David Pimm
Faculty of Mathematics
The Open University

"To generalise is to be an idiot. To particularise is the
alone distinction of merit. General knowledges are those
knowledges that idiots possess,'

William Blake (1757 - 1827)

The starting point from which I want to set out is a very common one in
mathematics, namely that of a teacher giving an example. The question I
wish to explore is what is the purpose of going through an example,
although there are related questions of interest such as what is involved
in recognising a counterexample. The proposals I shall make involve the
balance between the general and the particular, but also how the persuit

of the general can distort the particular.

I was struck by the term 'example', whose common structural useage

requires it to be an example of something. (To refer to a mathematical
situation as an example or a counterexample is a claim for or an award of

a particular status (see Lékatos, 1976 for techniques of resistance against
such claims).) We do examples to illustrate, embody or make concrete the
general theory, thus indicating the subordination of the particular to the
general. This practice also promulgates the view that mathematics is

about general theories rather than particular problems, whence the former
arose in the first place., We are therefore faced with the.fact that we

are doing the example because we are interested in addressing or approaching

the thing of which it is an example, thereby framing figure and ground.

My concern is that students' perceptions of why we are doing examples may
differ. Students have far less experience even with the particular
situation under discussion (and they are often unaware there are others)
which, as a consequence, absorbs all of their attention. The student sees

only the particular (which is still quite general ie. not mastered).

B

————
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For us, many examples are seen as equivalent, as generic instances of a
theory or technique we may be attempting to illustrate. All the while we
are seeing, andperhaps commenting on aloud, the general in the particular
(to use John Mason's telling phrase) which ou;uéEOSeu examﬁigﬂeﬁbodieé for
us., The ulterior motive of our only wishing to exemplify the general
detracts from the individuality, the idiosyncrasy of any particular example.
By always evoking, calling attention to the general, the enduring features,
we miss out on the transitory, the temporary, the unique which may be of

equal surprise and interest.

"There is one universal functioning without which nothing is noticed. This
is the stressing and ignoring process. Without stressing and ignoring, we

cannot see anything" (Gattegno, 1970). He goes on to add, "Nobody has ever
been able to reach the concrete, The concrete ig 'so 'abstract' that nobody

can reach it. We can only function because of abstraction",

In the early seventeenth century many mathematicians worked on discovering
properties of the cycloid (Roberval, Fermat, Galileo, Huyghens, Descartes,
++.+) eg. its arc length, the area under ome arch, its volume of revolution
etc. To us, this is but an example of their interest in questions of
mensuration and the emergence during that period of genmeral methods (eg. the
method of tangents) for dealing with curves. However, it may be that the

locus of interest then lay more with the particular curve in its own right,

as a mathematical object worthy of study for its own sake, rather than as a
particular example of a more general technique. Osserman (1981) replied to
Dieudonné's Berkely claim of the inevitability of the prevailing direction
of mathematics towards greater complexity and generality (contended with
only by greater abstraction) by citing current examples of particular
equations (eg. the Korteweg-de Vries equation), being studied deeply which

can be seen as a modern-day counterpart of the cycloid.

There is also an aesthetic which prefers the tyranny of the general perhaps

as a reaction to the fear of special cases, to the idosyncrasyof the particular
(eg. the initial unease at the 'sporadic' simple groups). The desire is for
general methods and arguments whose power arises from the range of
applicability, which is also therefore a testament to their indiscriminateness.
I have seen an article using Sylow's Theorem to prove Wilson's theorem, which

was rightly described as using a sledgehammer to crack a nut. There may be
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some mathematical interest that it can be q?ne (yet another notch carved

in the ever-widening belt of Sylow) - but again the particular is destroyed,
those unique characteristics of the problem flattened. A question I will
persue at PME is whether it is the steamrollering effect which arises
precisely from the use of algebraic language as an expressor or conveyer

of generality with the resultant loss of meaning.

The general can be seen as a mental template against which putative examples
are found appropriate (?) and the more transparent and close the fit the
more generic the instance. But also the more formless perhaps, devoid of
individuality and interest, in a situation of rampant egalitariansim where
every instance is as good as any other, The actor's face, able to stretch
to take on expressions of different personnae, when relaxed in its natural
state often seems expressionless - the price of its flexibility? The
vacuity of set theory at all levels and, more recently Category Theory as

the proposed agar for mathematical activity testifies to this.

It is possible to take ap alphabetic analysis course where the elements are
all called f and g, and a particular function never enters. Halmos has
elsewhere told of the Ph.D. student oral who was unable to specialise to a
single instance of the class of Banach Algebras on which he had expended

a large amount of study. To specialse from the general requires a knowledge
of the particular as well as the general. If a problem is worth studying,
it is worth doing for its own sake. If text-book examples were justified

on this basis a lot of tivial illustrations (a term we might usefully use to

distinguish strong from weak, or generic from non-generic examples) would

disappear.

The foregoing also raises questions about a particular type of example,

classified by their function, namely. counterexamples.

In a recent article, Desmond McHale (1980) recently drew attention to the
paucity of actual counterexamples offered in mathematics courses, used to
disprove converses of theorems or to show the necessity of certain conditions.
The prime example McHale cites is x + |x| as being the only continuous,
non-differentiable function. What may be happening is that the lecturer

is perceiving the counterexample in a very different way from the student.

To the presenter the counterexample is generic, that is it speaks of a
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whole class of functions, x - k|x + a] + C at the very least. For the
students, however, it is a particular example. They see it not as a
class, but as a single, specific function. (See Mason & Pimm, 1983 for

more details,

Students may frequently be uncertain as to the role and nature of such a
counterexample, Not only is it particular rather than general, but in the
main they are not clear about the general statement it is defeating. Seeing
one strange example often has little effect, and students here are in good
company, It is often claimed that just one courterexample disproves a
conjecture, yet the history of mathematics provides evidence that this is
false. A single counterexample to a putative theorem is often incorporated
into the statement of the theorem as the sole exception. Another approach
is to alter the definition, or in other words to refuse to accord it the
status of a counterexample. Thus the specific function x |x| is excluded
from the scope of the theorem (see Appendix 1) or students deny that it
deserves to be called a function at all, Perhaps due to the air of
artificiality which accompanies many specifically-contrived counterexamples,

many students take this latter view,
There are a number of outstanding questions of note to be persued:

Questions

How can you discern the extent of the generality perceived
by someone else when you are looking at a particular example

together?

How can you expose the genericity of an example to someone
who sees only its specificity? Apart from stressing and
ignoring, and repeating the general statement over and over,
how can the necessary act of perception, that of seeing the

general in the particular, be fostered?

What is involved in recognising a counterexample?
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Appendix 1

A twelve-year old was interviewed working on the area and perimeter
problem at last year's conference involving exploring the validity of

presented generalisations such as:

'For any rectangle there is one with the same area and a

larger perimeter’,

He was invited to come up with a similar generalisation. On the basis of
three examples the result ''the area is always less than the perimeter" was
proposed. Another example wag tried which didn't work, so an extra clause
was tacked on, "when the area and perimeter are less than 20", to exclude

this newcomer from consideration.

Note: I am grateful to John Mason for some of the ideas discussed in

this paper.
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This paper is based on work carried out by a project team at the
University of Klagenfurt. The central topic of this project is
mathematical generalization and the cognitive processes produ-
cing generalized concepts and methods. Formulated as a problem:
Which are the cognitive activities and their means and instru-
ments which result in the collective and/or individual con-
struction of generalizations? Related questions are those con-
cerning transferability and flexibility of knowledge: How do we
learn from our activities? How do we as thinking subjects recog-
nize that a given task has the same type or structure as one
which we have solved already before that?

A process model of mathematical generaldizatdion

The model presented here is based primarily on an analysis of
existing research findings of theoretical and empirical nature
(Rubinstein, Dawydow, Lompscher; Piaget, Aebli; Krutetskii).
Very helpful were also thorough studies of epistemological
properties of mathematical knowledge. The model will be des-
cribed by the use of five states or stages. These not necessarily
are the phases of the process in a chronological order. The
process is rather a complex network of these states. The cogni-
tive activities corresponding to the states should be imagined
not only sequential but also parallel whereby in the course of
time in certain phases different activities are more dominant
than others. So there is a dialectic interdependence between the
stages and only for the sake of clear description and subseguent
empirical investigation each appears here in an isolated form.
we hold the opinion that in the individual some stages (probably
those with higher numbers) might be undeveloped, unconscious and
therefore not resulting in directly observable behavior. This
depends to a great extent on the cognitive means which the indi-
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vidual disposes (linguistic tools for expressing arbitrarineﬁs,
or strategies of thinking). Finally the model does not assert to
describe any kind of innate abilities or a factual, empirically
testable process. Rather it is meant as a general intellectual
method for obtaining generalizations which can be and has to be
acquired and developed like other mental or manipulative tech-
nigues. The five states are the following.

State 1: Recognition and establishment of nefationships

When confronted with the description of a situation which
explicitly or implicitly contains a problem the first state is
analysis of the situation. The goal thereby is the detection or
construction of relationships between numerical (or geometric)
features and magnitudes of the objects given by the descriptioh.
These might be equations, inequalities, relations between sets,
functional relations or limit relations for instance. These
relationships usually will contain also unknown values of the
magnitudes. We have so far only considered numerical magnitudes.
This state results in a concrete model (without using variables)
of certain mathematical aspects of the given situation (which

in itself already might be a mathematical one).

State 2: Finding s4fuations with the same nelfationships

The second state in a sense tests the importance and value of
the relationships detected in the first state by looking for
other situations which give rise to the same or very similar
relationships. This state not yet does make use of the general
structure of the relationships but rather of the character of
the magnitudes connected by the relationships (for instance
additivity of a magnitude like length, .weight or monetary value)
The objects which carry the magnitudes as their features will
vary depending on how flexible the knowledge about the magni-
tudes is. Here activities of state 5 type are relevant but with
respect to other relationships or concepts than those which are
the objects of the actual process.
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State 3: General nepresentation of the nelfationshdips

The relationships (so far between numbers or values of magni-
tudes) are now represented by the use of different kinds of
variables (letters, geometric variables, verbal expressions,
drawings). These variables are of a referential, descriptive

and semantic character in that they denote and stand for the
values of the magnitudes of the former states. Nevertheless

this is the first step of a process which will transform the
found relationships from the description of aspects of a
situation to objects of thinking. The emphasis is shifted from
the analytic character of states 1 and 2 to synthetic activities.

State 4: Fonmal relationships

This is the transition from content to form, from semantic to
syntactic variables. The relationships and their representation
remain essentially unchanged but their meaning is deeply trans-
formed. The representation no longer denotes certain relation-
ships but 1is considered as expression of the general form and

the structure of them. So it is a shift of point of view. It is
possible that this transition applies only to some of the occurring
variables and that others remain semantic ones or even continue

to denote fixed values of magnitudes.

State 5: Operations with the formal struciunre

In this state manipulations with the formal expressions of
state 4 are carried out (e.g. transformations), formal conse-
quences are drawn and the formal structure is applied either
to solve new problems of the same formal type or even to con-
struct problem situations of this type. Especially this is
therefore a "recurrent" state.

Questions posed by the model

The states of the model are characterized by the quality of
the products of the intellectual activities dominating in the
respective stage. This now poses gquestions the answer to which
will make the model an operative one:
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- Which are the intellectual/cognitive techniques and strate-
gies which produce these products? More concrete: Which mental
activities are carried out by the individual in a certain state?
- Which are the tools of the cognitive activities in each state?
These can be for instance: letters as variables, drawings,
imagined manipulations, earlier learned mathematical concepts.

- Which are the means (like verbal, iconic, symbolic) appropriate
for expressing and communicating the results of a state?

Since our work is mainly motivated by didactical interests
further questions to the model are:

- Can the cognitive means and tools necessary for such a process
be taught successfully, and by which methods?

- Which states are exhibited by students educated by existing
teaching methods?

- Does the usual system of school mathematics possibly exert

a detrimental influence on student performance in one or the
other state?

The topic of Zhe intenviews

To find cues for answering these questions interviews were made
with persons of different age but mainly with students in
grades 7 to 9. The content and form of the interviews was changed
and refined stepwise according to obtained results and to new
theoretical hypothesis. The essential tool in all interviews
was a word problem (sometimes not formulated as a problem but
in the form of a story with complete data). The general type of
it is represented for instance by the following (it was moti-
vated by interviews documentated by Krutetskiil): In a tennis
club there are k courts and at a given time p persons want to
play. How many singles and doubles, resp., will there be?

Typical guestions in the interviews are: Can you find relation-
ships between the numbers given in the text? Can you write them
down? Can you describe them verbally? Can you find other numbers
which make the story meaningful? Which numbers can be calculated
from others and in which way? What is the general pattern? Can
you devise other stories with the same pattern? How would you
tell somebody else about this general patterﬁ? Different texts
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of the same formal structure were presented and the subjects
were asked to analyse them in the same way as the first one;
comparisons were urged. In the last version the most effective
guestion was: Imagine you are taking care of the tennis courts,
how would you distribute the players (numerically)?

Empinical §indings nelated to Zhe model

First, it should be remarked that no general or statistical
validity is asserted. It is only reported which phenomena have
been observed in our interviews.

- There are two kinds of relationships between the (explicit

and implicit) numbers in the text: Static ones (like d+s=k,
4d+2s=p, d-number of doubles, s-number of singles) which can be
read off the text by using just the meaning of arithmetic
operations; dynamic ones which usually are detected only by the
use of some manipulation (actually distributing the players in
the most natural way gives p-2k=2d). The static ones numerically
describe the situation, the dynamic ones solve a possible problen
related to it.

- Most of the interviewed subjects by themselves did not devise
or imagine actions possible in the described situation to detect
relationships so that only the static relationships were found
(but these were established in all cases and even with some
degree of generality and recognition of their formal structure).
- The above cited question (putting the subject into the con-
text of the situation!) prompted with great success at the
subjects imagination of actions which usually lead to the
dynamic relationships. So it appears that for the subjects a
mathematical problem by itself does not relate to any actions

to be carried out by the individual himself. But on the other
side even those with poor performance at school were able to

act and to solve thereby the problem. It was also observed that
knowledge of standard mathematical methods (linear equations)
even blocks devising other ways of solving a problem (like
imagined actioﬁs}.

- The interviews were made without any prior instruction so that
the subjects had only training in usual school mathematics. Under
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these conditions they showed successful behavior corresponding
to state 1 (see above), state 2 and partly state 3; state 4 was
missing (and consequently state 5). We had not available any
means to prompt this state (this really is an open problem),
- Having only the static relaticnships at one's disposal (in
the form of linear equations) one rather rarely establishes the
structural equality with contextually different situations before
having derived the equations in the cases to be compared. After
having devised appropriate actions (like distributing) structural
equality is recognized before solving the problems as long as
the form of the action is meaningful or applicable (at least
after some slight modifications). This recognition even supports
the solution of the new problem. One restriction must be made:
the actions sometimes were not recognized consciously in all
their constitutive parts and the essential general form of the
action (or the relationships created by it) was not established.
This led to failure or mistakes in situations with different

numerical (and textual) data. [ ;

Y

[ &/

A hypothesdis ¢ N ' [ i A

But summing up, a hypothesis could be: relationships (like
formulae, equations) have a higher degree of transferability
if they are derived from actions by the individual. Not the
generality or formality of the representation of relationships
in itself is important for flexible transfer but the way in
which the student obtains the representation (linear equations
usually are offered by the teacher and only memorized by rote
learning). Also the chance to detect more implicit relationships

is higher when carrying out appropriate actions.
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About the mental action leading from the special case to
"The General case" (Generalisation: When, Why and How?)

Jan Van Geel & E.Schillemans §& Alfred Vermandel

Universitaire Instelling Antwerpen, Antwerp Belgium.

o

| Generalisation is passing from the consideration of a given
/set of objects to that of a larger set, containing the gilven
one.
In this note generalisation does not étand for the technique
(e.g. removing a restriction, or replacing a constant by a pa-
rameter) but for the mental action behind it. We would like to
understand "When, Why and How'"a profesional mathematician gene-
ralises the concepts subject to his research.
Mathematicians need not answer these questions. For them a ge-
neraligationis the consequence of a deeper understanding of their
subject. The mathematician gets the insight that the problems
he is considering are becoming clear in a more general context
(sometimes generalisation leads to the solution of these pro-
blems).
The difficulty in describing this mental action, lies in the
fact that mathematical theories which generalise known conceptls
are always presented in a final form. A large number of actions
have taken place before this form is obtained.
Therefore we worked out formal principles to distillate from
mathematical theories those concepts and properties which are
the result of "generalisation".
The program of secundary school mathematics is mostly delivered
in a final form. There are no or very little possibillties to
obtain general concepts in the natural way they are found ( at
best the teacher indicates this natural process). It is our ainm
to use the above mentioned principles to point out when, why
and how "generalisations" should be made by the students.

1. Mathematical mental actions.

The study of "generalisation in mathematics" is only one part
of a large research program on mathematical acticns, aiming to
make up an inventory of those mental actions which are both fun-
damental and specific to the creative work of the mathematician.
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In order to obtain a unified approach to study the dirferent
actions occuring in the work of mathematicians, the following
definitions of mathematical action is used:

The subject of activity is situated in a so called "extrapo-
lating sheme". The original objects and problems are ordered
with respect to their properties in such a way that using only
logical rules some of the problems are solved (i.e. Theorems
are proved.). During this proces the properties become more

or less independend of the original objects, of their original
meaning. So we have shematised the subject. However we also
demand that the resulting sheme allows intrinsic reasoning.
Such a sheme is called an extrapolating sheme. At this point

we like to draw attention to an important fact, although, as
we saw, the original meaning of abjects is lost in the extra-
polating sheme, there is some feedback, the results obtained
by the mathematician ( read mathematical action ) do give more
insight in the problems he started sith.

We are now defining mahtematical action as follows:

A mathematical mental action is a mental action on an extra-
polating sheme or between extrapolating shemes. ( -ofmuilden)

2. Generalisation. An example.

We give a rough description of an example which turned out to
be very important in the history of mathematics.

In érder to obtain a solution for Fermat's last theorem , mathe-
maticians where lead to consider the unique factorisation pro-
perty (UFP) of integers for more general numbers as well. Na-
mely for numbers which are combinations of integefs and roots
of unity. It turned out that the UFP did not hold in this
general case. However the work didn't stop at this point. In
two different-ways Kronecker and Dedekind generalised the con-
cept of UF itself.

This was the starting point for a whole new theory. Although
the original problem was not solved completly Kronecker did
obtain a lot of partial results which proves that there is more
insight in the original question. ( efr,(1))

3. Generalisation.

We now try to give a description of what we call generalisation.
We will indicate the corresponding properties in the above men=
tioned example.

We We emple.

tiotioxam.
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In order to say that a mathematical theory A consisting vl ovu-
jects, concepts, theorems is generalised to a theory E we de-
mand :

I. That the different parts of theory A have a meaning in theory
B, Objects and concepts from theory A occure also in B, at least
in an analoguous way.

e.g. Integers, prime numbers become integral complex numbers
(combinations of integers and roots of unity), irreducible num-
bers, prime irreducible numbers in Kronecker's generalisation.
In the theory of Dedekind tey become ideals and prime ideals.
The theorem of unique factorisation of integers is replaced

by the theorem on unique factorisation of ideals in the Dedekind
approach.

II. The original theory A changes after the generalisation (the
feedback). One gets more insight or one solves some problems
posed in theory A. The classification of the objects in A is
easier the theorems in A are obtained as corollaries of theo-
rems in B.

e.g. It is possible to solve some cases of Fermats last theo-
rem using the general theory, although this theorem is stated
completly in theory A.

The difference between prime nimbers and irreducible numbers
gives more insight in the concept of prime numbers.

ITI. Theory B has more ramifications compared with theory A.

A lot of new problems can be considered.

Theory B can be applied to more subjects.

It can be extended in different ways.

e.g. Dedekind's theory was the beginning of what is now called
commutative algebra. This has applications in a lot of areas
also outside number theory, the main example is of course alge-
braic geometry.

Number theory itself is changed to. The main problems of class-
field theory can only be staded in the general context.

The first criterium (I) is close to the technical meaning of
generalisation. It is well known.

The II an the III-th are more important in our view. They are
related to why and how one generalises a theory.

Demanding them is avoiding wild generalisations which do not
add anything essential to mathematics. This leads to theories
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without depth. .

They also show that in order to descripe a generalisaticn pro-
parly, one has to consider what we call " conducting actions ",
Generalisaticn is not pcssible without some other mathematical
mental actions as well.

In terms of the extrapolating shemes we become:

Theory B

condudting i R

defining sction? . L

f
Aﬁii::::;;7 "Generalising"

conductin

- 4 - B
actions speclaliy

Theory A

A more deeper study of these is our main subject of research

at the moment. We hope to report on it at some other occasion.

4. CGeneralicaticn in the classroom.

The above consideration mainly apply to mathematical research.
We can draw some conclusions to what should be done in a class-
room. Although this has to be worked out more carefully we
mention some points already.

" Why " generalising in mathematics. This question is certainly

put forward by the students. The teacher has (at least) to point

out that the problems posed in theory A, but not solved, are
the starting point of & generalisation. Students should be made
clear that getting more insight in what one knows already, is
what you try to do when you make a new tneory.

In the beginning theory A is the most important one, theory B
is only a help.

In the classroom it might be usefull to consider different pos-
sible generalisations. The criteria especially II and III,

can be used to chose between the alternatives. The better they
are forfilled the more usefull the new theory will be.
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CYCLES OF LEARNING AND THE SCHOOL MATHEMATICS CURRICULUM
Kevin F. Collis
The University of Tasmania

Several different groups of researchers (Biggs and Collis, 1982; Marton,
1981; Case, 1980; Fischer, 1980) have put forward similar models for

the development of intellectual functioning in children and young adults.
Basically the models incorporate major stages which are largely determined
by the kind of elements that the individual can use and by the nature and
complexity of the operations which he can apply to those elements. Examples
of the nature of the elements and the kind of manipulations available at
each of the stages are as follows:

Sensori-motor: the elements are the objects in the immediate physical
environment, and the operations involve the management and co-ordination of
motor responses in respect of these objects.

Intuitive/Pre-operational: the elements become signifiers (word, images,

etc.) which stand for objects and events, and the operational side involves
the manipulation of these in oral communication.

Concrete Operational: the elements develop from mere signifiers to concepts

and operations which are manipulated using a logic of classes and equiva-
lences, both elements and manipulations being directly related to the real
world.

Formal operational: the elements are abstract concepts and propositions,
and the operational aspect is concerned with determining actual and deduced

relationships between them; neither the elements nor the operations need a
real world referent.

The structure of the learned responses which occurs within each stage becomes
increasingly complex as the cycle develops. Uni-structural responses re-
present the use of only one relevant aspect of the mode; multi-structural,
several disjoint aspects, usually in a sequence; relational, several aspects
related into an integrated whole; extended abstract takes the whole process
into a new mode of functioning.
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These notions are well summarized in Figure 1:

Figure 1
RESPONSE MODEL OF INTELLECTUAL FUNCTIONING

Mode (Developmental Stage) Response Structure Use of Language
(Learning Cycle)

Sensori-motor Unistructural
(infancy) Multistructural
Relational

Extended Abstract

---------------------------------

Intuitive/Pre-opera- Unistructural Words
tional Multistructural
(early childhood - Relational

pre-school)
Extended Abstract

Concrete Operational Unistructural Sentences
(childhood to Multistructural
adolescence)

Relational

Extended Abstract

----------------------------------

Formal - 1st order Unistructural Propositions
early adult Multistructural
Relational

Extended Abstract

-----------------------------------

Formal - 2nd order Unistructural Propositions of
increasingly
higher order
adult etc. of abstraction

and higher order Multistructural

-----------------------------------
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Three crucial aspects of this model are, (15 within each stage the levels of
functioning develop in an hierarchical fashion with the higher levels sub-
suming the lower levels, (2) the highest level of one stage (or mode of func-
tioning) becomes the lowest level of the cycle for the next stage and (3) the
movement from one stage to the next represents a much more significant and
difficult development than does movement from one level of skill to another
within a given stage.

Schools mathematics is concerned with the cycle of learning in the concrete
operational mode and thus we expect that both the elements and the operations
involved in reasoning will be directly related to the empirical world. This
will be reflected in the need the child has to "close" arithmetical opera-
tions in order to make sure that a unique empirically verifiable result is
available as a result of his reasoning. Elsewhere (Collis, 1975) the writer
has described development through this cycle as a growing ability to hold off
"closing" for longer and longer periods. The sequence may be illustrated by
responses to the following item.

Find the value of A in the statement:
(72 + 36) x 9 = (72 x 9) + (A x 9)

Prestructural responses

"Have not done ones like that before, so I can't do it."

"Don't want to do it."

Both respondents indicate that they are unwilling to engage in the task.

Unistructural responses

"36- because there is no 36 on the other side.”

"2- because 72 + 36 = 2."

Both responses take only one part of the data into account. The first re-
sponse shows a low level "pattern completion" strategy; the second response
shows one closure and then an ignoring of the remainder of the item.

Multistructural response

2 x 9 648 + (A x 9)

= 18 648 + ? = 2 that is, 324
looking for 18 (2 x 9)

Hence 324
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This response incorporates a series of arithmetical closures to reduce the
complexity and to focus on "A". However, the student appears unable to
keep the overall relationship in mind throughout the closure sequences and
ends up getting lost in a "maze" of his own creation.

Relational response

2 x 9 648 + (A x 9)

= 18 648 + 9 = 72
then 72 + 4 = 18

Hence 4
This response also involves a sequence of arithmetical closures but the
student is able to keep the relationships within the statement in mind

and thus successfully solve the problem.

Extended abstract response

First step involves obtaining an overview of the relationships between the
numbers and operations involved, for example:

(72 7+ 36) x 97= (72 x 9) + (A x 9)

The pattern suggests something akin to the "distributive" property - this
hypothesis is tested out thus:

%—x y A tEXy

This immediately solves the problem (without necessity for closure) as
follows:

(72 = 36) x 9
(72 x 9) + 36
(72 x 9) + (4 x 9) Hence 4

This response shows the following characteristics:

1. Focusing on the relationships between the operations and the numbers
rather than regarding the operations as instructions to close;

2. an hypothesis suggested by the data is set up;
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3. avoiding closures wherever poscible as these change the form of the
statement and "hide" the original relationship.

From this example it can be seen that successful achievement at the rela-
tional level is not a low level achievement. Although it involves simply
closure techniques and, on occasions, the ability to use generalized numbers
it does require the student to maintain control of the inter-relationships
within the statement(s) given. In fact achievement of this level is suf-
ficient for most students going on to tertiary level courses (such as
typical Arts subjects, psychology, medicine, law, sociology etc.) where

high level ability to manipulate mathematical symbols per se is not normally
required. It should be noted also that achievement at the relational con-
crete level is a pre-requisite for moving to the formal stage; this is a
necessary but not sufficient condition however. Movement to this new stage
is a vastly more difficult step than the earlier movements through the
levels of the concrete stage because it involves the ability to overview a
total abstract system including its internal relationships and its relation-
ship to other systems.

Let us now turn briefly to the reasons for teaching mathematics to virtually
all children in school and then examine them in the 1ight of the background
set out above.

There appear to be three main reasons why an academic subject such as mathe-
matics is included in school programmes: to socialise students; to develop

logical functioning and to train specialists.

To socialize students. A1l students, regardless of specific interest in

mathematics, need to become acquainted with certain basic mathematical con-
tent in order to function effectively within a society that rests so much
of its decision making on mathematical models and calculations. Citizens
in such a society need mathematics to be able to manage their own affairs
and to be eligible for even semiskilled occupations. At a higher level it
is desirable that they also understand the kind of mathematical modeling
and calculating that lies behind government, business, and trade decisions.

To develop logical functioning. This might be seen as the prime developmental

task of the school-aged child and one which the school is uniquely organized
to foster. Conaldson (1978) sums up an enormous amount of evidence to make
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two points. First, "disembedded" thought, the ability to solve problems in-
volving propositions and structures without dependence upon a concrete real-
ity, is perhaps the most highly prized skill in society. Second, the aim of
teaching certain fundamental skills such as those involved in elementary
mathematics in schools must be seen as fostering the development of the
child's power of logical functioning not, as was supposed in the past, the
acquisition as soon as possible of adult-level skills. Mathematics is
uniquely placed to foster the growth and development of logical functioning
because of its very nature. It encourages and practices the use of "disem-
bedded" thought right from the earliest days in elementary school through to
the end of schooling: the use of numerals to represent numbers of elements
in a set is an example of this idea at the lower elementary school level.
The beauty of mathematics in the context is, of course, that one can see an
hierarchy of abstraction extending from the use of small numbers and con-
crete operations at the lowest level to the use of variables and defined
abstract operations at the higher levels. In addition mathematics has a
Togical structure that can be discerned at a very elementary level, (e.g.,
the relationship between the addition and multiplication operations) or at

a highly sophisticated level (e.g., the application of the field axioms in
solving equations).

It goes without saying that, to have an effect on the child's cognitive de-
velopment, we must be able to give the child practice with a variety of
content that he can understand and manipulate at his current level of func-
tioning. Here again mathematics is uniquely placed. Peel (1967) has clas-
sified the cognitive functioning of the concrete operational child as the
Togic of classes and differences; equivalence and substitution. This means
that these children are able, within the constraints of their empirical real-
ity, to classify and reclassify, to rank order, to see equivalences, and to
make appropriate substitutions. These skills are exactly the ones required
to handle the mathematical ideas associated with the notion of sets and
operations on sets. The author (Collis, 1969, 1975) has shown how virtu-
ally the whole of the elementary-school mathematics course can be based on
this one mathematical notion that is congruent with the child's logical de-
velopment.

In short, if fostering the development of logical thinking is one of the
main aims of education, mathematics is a study fundamental to achieving
that end.
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To prepare mathematics specialist. This intention is meant to include both
those few ctudents who have the ability and interest to become professional
mathematicians and that larger number of students whose future careers are
going to be in fields where manipulating mathematical type relationships to
obtain new insights is more and more forming the basis for decision making.
These students will need to immerse themselves in the content-process as-
pects of mathematics to a much greater depth than those who merely wish to
satisfy the social and intellectual skills aims previously outlined.

If we examine the reasons for teaching mathematics in relation to the model
of intellectual functioning put forward earlier in this paper it would seem
reasonable to deduce that many school systems have been totally unrealistic
in setting leaving expectations in mathematics for the majority of students.
The expectation that all students, by the end of junior high school, would
be able to handle variables and manipulate abstract systems is a typical
example. Two points that are clear from analyses of mathematical material
and achievement in this context. First, the difference between the rela-
tional Tevel of response and the extended abstract response in a mathema-
tical topic is enormous and it requires a prodigious effort on the part of
the individual to achieve the higher level. This implies that the individ-
ual is highly motivated to work with the kind of material, structures, and
logic peculiar to mathematics. Even if we leave aside persons with a Tow
level of general intellectual development and include only those who are well
advanced in this area of development there is no prima facie reason why they
should be so motivated. The second point is that the general population
does not require an ability to respond in mathematics beyond the relational
level in order to be able to manage quite successfully in their adult lives
even if this includes achieving certain tertiary professional qualifications.
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HOW TO PROVE RELATIONAL UNDERSTANDING

Hartwig Meissner
Westfilische Wilhelms-Universitit Miinster
Fliednerstr. 21; D-4400 Minster
West Germany

Abstract. We dietinguish two modes of mathematical activities (syntactical
versus semantical), two levels of skills (instrumental versus conceptual),

and three levels of understanding (instrwmental, relational, communicable).
The matn issue will concentrate on the development of relational understanding
and on possibtlities to prove relational understanding without stressing
"formal" aspects of communication.

1. Syntactical and Semantical Activities

There are at least two possibilities to solve the problem
)

nl

+ = ", Student A remembers "rules" and answers ”g“, because

1
3
he took the wrong rules. Student B remembers pan cakes and ans=
wers “é", because he had a wrong "imagination" of the total
"one half plus one third". (0Of course we also have students who
answer correctly. But incorrect answers give more insight upon

the process cf thinking.)

Student A worked syntactically. He manipulated symbols according
to rules or algorithms. There are manvy examples for syntactical
activities in mathematics education besides computation of frac-
tions: Working in different place value systems, paper-and-pencil
algorithms for the four basic operations, pressing sequences of
calculator buttons, replacing variables by numbers in a formula,
transforming formulae, differentiating, computing integrals, ...
"Reproducing knowledge" also can be done syntactically: Repeating
basic facts of the addition or the multiplication table, Yciting®
definitions or theorems or proofs, "selecting appropriate" for-
mulae or algorithms or procedures, ... Working syntactically

often is the result of a stimulus-response=learning.

Working semantically however needs the knowledge of mathematical
relationships. Semantical activities are arguing, deducing theo-

rems, developping proofs, inventing or deducing rules or proce-
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dures, finding unusual but correct solutions of a problem, iden-
tifying variables or algorithms, ... Working semantically only

is possible if the student "understands" the problem. But!

2. What Does "Understanding" Mean?

According to Skemp [7] we first distinguish instrumental and
relational understanding. A student has "instrumental under-
standing” of the problem if he can select and apply appropriate
rules to solve the problem, but he does not know why (Skemp:
"rules without reasons"). Activities which depend on instrumen-
tal understanding we call "instrumental skills". It is obvious
that many of the syntactical activities mentioned above often

are instrumental skills.

Relational understanding is more: "knowing both what to do and
why" (Skemp). It is "the ability to deduce specific rules or
procedures from more general mathematical relationships"”.
Relational understanding is sufficient for being convinced one-
self, it is less than being able to convince other people.
Relational understanding does not include aspects of why or how
the process of deducing was started or what modes of presenta-
tion or communication are used. Working semantically needs

relational understanding.

It would be too simple identifying instrumental understanding
with syntactical activities and relational understanding with
semantical activities. A student for example, who solves the
multiplication problem 325x417 in the following way without
mistakes and without hesitating or breaks for thinking

325x417
(a) 1300
(b) 325
te) | = 2275

and who is able to do that with similar problems in the same way,

such a student works syntactically. He has the "skill" to multiply.

Analysing this skill we have to distinguish two possibilities.
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It may be that the skill has been® mechanical all the time. The
student can not explain why he worked in that way. He dces not
know if the adding of zeros in the lines (a) or (b) or if per-
mutations of the lines (a)=(c) are allowed. He just has an in-

strumental understanding: his skill is instrumental.

Otherwise that skill also might be the result of a mechanized
ability. The student can - anytime when wanted - explain his
doing and discuss correct or incorrect writings. He understands
the concept of that algorithm, he has the relational knowledge
for his skill. Therefore we will call it "conceptual skill"
(higher skill in [5)) .

Summarizing we can state, that syntactical activities are possible
as instrumental skills (without relational understanding) or as
conceptual skills (based on mechanized relational understanding).
Therefore tests with emphasis on syntactical activities are not
very helpful to prove if the student "understands" the problem.

3. How to Prove "Understanding"?

We defined relational understanding as the ability to deduce
specific rules or procedures from more general mathematical
relationships, excluding aspects of why or how the process of
deducing was started or what modes of presentation or communi-
cation are used. With the words from Greeno [2] relational under-
standing is the well "connected" and "coherent" internal repre-
sentation which "corresponds" to the mathematical problem, theo-
rem, concept, ... Relational understanding in our meaning does
not depend on special performances, on demanded modes of action,
on the usage of general agreed phrases, procedures, algorithms,

or symbolisms.

When we ask explicitly also for certain well defined procedures,
abilities or skills we ask for more than relational understanding.
We then emphasize also the process of communication. Mistakes or
wrong answers may originate in this case also from "misunder-
standings": the student did not understand the question or the
student gave an answer which was not "understood" by the teacher
because it was too individual (far away from mathematical con-
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ventions or agreements or not using the expected mathematical
language at all), We here discuss a higher level of understanding
which we called communicable understanding (see [5]). Formal,
logical, or symbolic understanding (Skemp ([8]) are special aspects

of communicable understanding.

We observe the distinction of relational understanding versus
communicable understanding in "the concept of premathematics"
(Semadeni [6]), in "proving pre-mathematically" (Kirsch [3]), in
working with manipulatives, or in a non-verbal introduction of
mathematical ideas. In all these teaching modes the concept for-
mation is separated from the formal aspects of a mathematical
communication.

The distinction is also necessary for diagnostic purposes.

Almost every teacher remembers situations, where he got "meaning-
less" answers though the student "obviously" has had the appro-
priate understanding.

Mathematics instruction in our country strongly concentrates on
communicable understanding. But many test results show that we
often produce only instrumental understanding. Again, tests with
emphasis on syntactical activities are not very helpful. To

prove "understanding" we need tests on semantical activities. If
the student succeeds he has communicable understanding. If he
fails we may interpret his answers. Often they will tell us if

he at least has a relational understanding. Additional interviews
may help to clarify.

4. How to Develop "Relational Understanding"?

Relational understanding is the entrance key for being success-
ful in the mathematics classroom. Relational understanding is

an inevitable condition for the development of conceptual skills,
for working semantically and for the development of communicable
understanding. But relational understanding mostly is intuitive
and unconscious. There is no easy reflective way to teach it.

Each student must "construct" internally his own relational

understanding. He has to re-invent ideas and relationships. He



needs a strong correspondence between external mathematics
(examples, tasks, problems, concepts, procedures, ...) and his
internal representation. The more feed back he has and the more
frequent the interaction is, the better is the "correspondence"
(Greeno [2]). We see the following possibilities to further

more relational understanding.

O Give many examples and counter examples before any systemati-
zation. Help students to generalize more intuitively.

o Allow trialsas a well accepted mathematical method for
working successfully.

o Let the students "construct" mathematical relationships
systematically by guess-and-test procedures (one-way-principle,

see [4]).
C Stress estimations.

0 Give more freedom in using words and notations. Let the
students invent own formulae, names and notations and let
them discuss which one could be the best. Only lateron inform
them how the mathematicians decided.

o Reduce syntactical working.
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FORMS OF KNOWLEDGE IN THE CHILD'S LEARNING OF MATHEMATICS
HARRY OSSER, QUEEN'S UNIVERSITY

INTRODUCTION

In considering what the pupil has to know to be successful, an
account of schooling expressed solely in terms of the formal
units of the curriculum is conceptually inadequate. An altern-
ative approach to the exploration of school success, or failure,
is to attempt to characterize the critical competencies that
the pupil has to develop and use in order to cope with the de-
mands of school. For example, Mehan (19B0) has proposed that
in order to participate effectively in the classroom pupils
need to syncronize two forms of knowledge, one covering academ-
ic content, the other interactional form. He argues that it is
not merely enough to have mastered some parts of a subject-
matter, the pupil must also, at least, appear to conform to the
rules that govern the presentation of such knowledge in the
classroom.

The following is an account of a part of the information derived
from a study of a Teacher and her pupils in a special class for
children with learning problems. One goal of the study was to
analyze the role of different types of knowledge in children's
mathematical performances. This report will focus principally
on the special role of the child's metacognitive knowledge.

The forms that such knowledge take in mathematical problem-
solving include checking, predicting, and estimating. They re-
fer to the basic characteristics of thinking efficiently in
learning situations (Flavell, 1979 and Brown, 1980). Another
goal was to provide some information on the extent of the
teacher's influence on pupils' performances. For example, the
pupil might on some occasions operate with a "formulaic" strat-
egy in school learning where much of the material is memorized
with minimal understanding. By contrast, the pupil might on
other occasions adopt a "generative" strategy in an attempt to
comprehend the relations between the elements of a classroom
task. The pupil using a formulaic strategy may be taking up (or

have had thrust upon him or her) a dependent learning role, so
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that the pupil simply acts as a reproducer of the teacher's
ideas, values, and problem-solving strategies; whereas the
pupil using the generative strategy is likely to have an in-
dependent learning role, and to be an autonomous producer or,
with the teacher, a co-producer of knowledge.

A STUDY OF METACOGNITIVE KNOWLEDGE

Information on the Teacher and children was obtained by observ-
ing in the classrocm and through interviews. In the following
segment of an interview with the Teacher, the topic of "check-
ing" as an instance of the child's monitoring of work was pur-
sued. She describes how she advises pupils to check work, and

judges their fidelity in following her recommendations.

I: Do they check their work? Are they supposed to check their
work? T: I have taught most of them how to check their own
subtraction questions by adding the bottom number with the an-
swer to get the top one. Basically it's just a visual check.
"Six divided by two. I have six put into groups of twos. I'm
not going to get three, er twenty eight groups. I'm not going
to get eighteen and I'm not going to get twelve. It doesn't
make sense. I have to get a smaller number." Just usually
checking to make sure if it makes sense or not. "If mother

had five cookies and she gave four away, how many is she left?
She can't possibly have nine."

I: You were saying that they do this or they don't do this?

T: They're encouraged to do it.

I: And to what extent do they try to do that? T: I don't
think that many of them do it. They simply get their work done
and hand it in and so on to something else. Get some free time
or whatever have you. It's simply "let's get it done." There
are some that try to get their work right but they won't check
to see if they have them right, or have answered all the ques-
tions. This happens quite often. I'll call them back and say
"You didn't answer this question. You left that one out, you
didn't do this one, what was the lesson?" "Oh, I didn't see
those." So they didn't go back to see if they had everything

down. "Did I have seven questions to copy off the board? Did
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I copy seven down? Did I copy five down?"

I: So there's two kinds of checking that they are not always
doing. One is just to see that you've completed the actual
work, that you've put answers down or copied all the problems
down that you were given, and the other is to see whether
you've done the work properly, when you actually did it?

T: Right. If you allow them they just don't do it. They
think basically "I've got to get my work done and handed in,
let the teacher check it over. Then if I get the work cor-

rected, all right!"

The Teacher's assumptions seem to be that pupils typically:

(1) Do know appropriate checking procedures to allow them to
arrive at an estimate of the right answer, and thus can make
progress toward the right answer.

(2) Do not check to see whether they have copied all of the
work from the black board, or whether they.have answered every
question, but instead, leave it to the Teacher to check their
work.

The following are samples from the interviews with two female
pupils; Terry, 8 years, and Carol, 1l years:

1: Do you ever check your work? 'T: ‘No,"I ‘try te, but I Fjust
make the same math questions more worser, so I just leave them
alone. I: ©Oh, what do you mean that you make them worse?

T: Like if I hand 'em in and I corrected them, right? Then
she says "That one certainly isn't that." Say I handed that
in and it was ten hundred, and she says "That wasn't it." I
was wrong. I: Do you think sometimes you have them right and
then you change them when you check? T: Well, I never check

no more because I used to get them wrong. Now I sort of get
them wrong the same way.
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I: Do you ever check your work? C€: No. I just loock, over it.
Well when you're supposed to, like, um when Mrs. W. was here
we, um did this kind of thing and she would put the answers up
on the board and we would check them by ourselves and that's
fun 'cause I like doing that. I: Oh I see, you mean you

would check to see if your answer was the same as hers?
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C: They would show the real answer, the right answer on the
board. If you check over somebody else's work and you'd give,
we did that last year and we passed over some, You take one
person's work and you check over it to see if you got all your
work right. You would take your own paper and check over.

Terry does not appear to share the values that the teacher at-
taches to checking, nor does she understand the basic proced-
ures for checking. She has apparently tried repeatedly to
arrive at the "right" answer in the past without success, con-
sequently she has given up her mode of checking. Carol on the
other hand, agrees that there is value in checking, but her
definition is very different from the Teacher's. "Checking"
to Carol simply means to compare her answers to the teacher's

"right" answer, or to other pupils' answers.

The Teacher's view that the pupils have been taught and there-
fore know how to check their math work is not supported by the
evidence; however, the Teacher's suggestion that her pupils
leave her to check their work does receive some support in these
two.cases. She appears to underestimate the difficulties in-
volved for pupils in her class when they are asked to check
their math work. Successful checking (or monitoring) presup-
poses that the pupil is competent in basic mathematical opera-
tions such that errors can be detected, and that knowledge of
correction procedures, including estimation and prediction, are
available. These competencies even when developed by "learning
disabled" children are often inaccessible to them, as their
diminished confidence results in the adoption of the strategy
of "playing it safe", exhibited in Terry's abandonment of her
checking procedures and Carol's delight in using others' pre-
sumably "right" answers. The two pupils seem to be operating,
at least in the math class, with a general formulaic strategy
in learning.

THE CONSTITUENTS OF SCHOOL COMPETENCE

In developing a conceptual framework to make sense out of school

experience, pupils operate simultaneously with three kinds of
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knowledge. The first type is academic knowledge, or grasp of

the content of subject matter. The second is social-cognitive

knowledge, which refers to the pupil's ability to make both
meanings and intentions clear to others as well as to under-
stand their meanings and intentions. As Erickson and Shultz
(1981) suggest: "The production of appropriate social behavior
from moment to moment requires knowing what context one is in,
and when contexts change, as well as knowing what behavior is

considered appropriate in those contexts" (p. 147).

The third kind, metacognitive knowledge, relates to the pupil's
skill in monitoring his or her own performance by using feed-
back and corrective procedures. One example of self-monitoring
is the phenomenon of the "retraced false start", where the
speaker detects an "error" in his or her own speech and cor-
rects it by substitution, deletion, or addition of new mater-
ial (MacWhinney and Osser, 1977). Other equally common ex-
amples are Where the pupil might monitor comprehension of a
task by asking such questions as "What is this all about?"
"What is the next step?" and "Did I forget anything?"

INDIVIDUAL DIFFERENCES AND SCHOOL COMPETENCE

Differences among pupils in academic performance can be better
understood by referring not only to variations in academic and
social-cognitive knowledge, as Mehan (1980) appears to suggest,
but by considering also the likelihood of significant effects
of differences in metacognitive knowledge. To return to the
topic of the monitoring of comprehension, it is conceivable
that a pupil who closely monitors his or her understanding of a
mathematical task may select a more appropriate problem-solv-
ing strategy if it appears that progress is not being made. On
the other hand, a pupil who monitors his or her performance in
a casual manner may often miss the clues that indicate he or
she is not on the right track, so that faced with undefined
difficulties the pupil might be inclined to give up, as Terry
did, rather than to persist with the work.

A possible hypothesis is that a pupil who typically employs the
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"close monitoring" strategy for a given set of school mathemat-
ical problems will be more likely to adopt the generative mode
of learning and its associated, self-defined role of producer
or co-producer of knowledge. The corresponding hypothesis is
that a pupil who typically adheres to the "casual monitoring"
strategy for a given set of school mathematical problems will
be directed into the formulaic mode of learning and the role of
reproducer of knowledge. The performances of the two children
discussed earlier seem to fit this latter characterization.
However, it is likely that every pupil will follow a "close
monitoring" strategy for some sub-sets of problems and a
"casual monitoring" strategy for others. If this is the case
the pupil would likely vacillate from independence of the
teacher to dependence on her as a function of the particular
subject matter being taught and the specific context of learn-
ing.

To end this report, it seems likely that the examination of
pupils' school performances in terms of the types of knowledge
necessary for coping with the demands of school, and also the
different conceptions of such demands by Teacher and pupil,
will likely result in increased understanding of the pupil's
school success or failure.
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REPRESENTATICNS IN MATHIMATICS,

Josette ADDA UNIVERSITE PARIS 7
(FRANCE)

The first mathematical representations that everyone encounters

are for objects to count:such as ancient people who enumerated
sheeps by way of little stones,we learn in the first schoolyear
how to use sticks,chips,marbles or' even abacus'balls,each of them

being substituted to one of the other objects about which we have

to count.After that time,the situation begins to be a little less
concrete:we use designs(such as pictograms,on walls,stones or
paper... )more and more schematized(from a figurative representation
of a sheep,to a dash or a point farinstance).In this case,the
action of representating constitutes exactly the one-to-—one cor-
respondance between original objects and their representations,
Then,we begin to regroup sticks or dots and choice a gign
(or even a material object such as balls of another rank for abacus)

to represent now not a first-order object but a set of these objects

to count,With the problem of numeration,of numbers'writing,we

arrive to the representation of numbers as cardinals of sets,comple—

tely omitting the elements of the sets (in ancient textbooks,there
is the distinction "abstract numbers" versus "concrete numbers")

and so0 we begin to represent mathematical concepts instead of

material things,and later on it will not be nonsense to have symbols
even to representt the number zero or the empty set,

We are also initiated to numerical operations through material

and iconic representations of the original objects,for instance

addition by joining packets and multiplication by rectangular
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disposition in lines 'and columns,But ,at the se cond level,we use

a symbolic representation for the numbers and also for the opera-

tion; we go from *se® or il}L_Lj_Li

to I+4 .
When we have to represent equality,symbols are surely nat able
to be considered as substituting objects themselves,specially because
they have to be.seen on each side of the sign "=" .So sparkles the
perfect absurdity of some "modern-maths" representations .of the

following two copies from textbooks:

P Lacon XKWL, Fche Jg

Qn sppalis ~ snwemble de daliniien " d'urt fonction ensembie dey slemenn de
Fanmembie da cepar! gul ont une image par catie foncion, WVud: wie fonctiod d'un

eramide O vers un woimemble . Compléle |'ensemnle C POsil Gua'il FeprdrenLe

Fonsemble da deliniion de catte lone Lion

quoted
by 4,

BARUKin
" Fabrice"

(Seuil)




Supposing that it would be interesting(I am not sure of it!)
to represent a set of boats,it would be better to associate a name
to each of them(for instance:A,B,C,D)and use the names in the repre-

sentation (in order to distinguish each of them). But what aboutthis:

" Paris
Madrid
Londres

of the same style as New-York

The Venn diagram is intended to realize representation by means

of thepoints of the plane,so it seems necessary to mark them like

thia:
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Having decided these coherent directions for use,we see imme-

diately contradictions with others traditional representations Lﬁféla

for instance(ﬁ)for a set of four points without naming them or{:}

for the infinite set N

B

@

Dealing with the points of the plane,we come to what is,in my
opinion,the most complex situation,here,.Everybody knows the
‘MAGRITTE’s picture "ceci n'est pas une pipe" representing a pipe.

Surrealists are not alone to stress the distinction between signified

and signifier and its imporiance for mathematical symbolism is

well-known [3 ].As Wacek ZAWADOWSKI does in his mathematical text-
books,it is very essential to write beside representationsof a cat
and of a triangle:"this is not a cat,this is not a triangle",for
if everybody understands that the picture of a cat will not mew,

on the contrary,nobody knows a true triangle. Surelyjin(:)tha
@ i

inktrace is too thick to be a point,too short to be a straightline
but the most essential fact is that the mathematical points are
not even atoms of inkblot and the mathematical plane is neither

blackboard nor paper;they only stand in brains.Many experiments

with children are now done in this direction but they often
produce confusion(see analysis of the difficulties inherent to
these explanations in[i]}.

For 3}-dimensional geometry,the risk of confusion seems to be

less important but the 2-dimensional representation can be intended
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to be a"photo of the mathematical object"(actually,cakemporary
textbooks are full of photos).
However,though we stress a1straight line on the black-board is

not a mathematical straight line,we do not consider as healthy

the representation of two parallels by (:) !

® E"@’a

Mathematical representations have to be means for visualization

of abstract objects and the best representation is generally the

one with which most properties can be seen.Sometimes,however,we
choice the one which is the best for showing one particular property.
Consider a sguare ABCD,representation{:) is the most frequent;[:)
would be admitted when ABCD is the basis of some cube for instance,
but in many other cases people will not admit it.Prejudices are

so established that () would be called only "rhombus",The little

(§> could be said to "be" the enclosure of a square garden of 50

meters by side.

:\)F——F oy = c :DT‘——SOLTD

| | e ‘
; | e e ? _ Alacs 42 4
5 @ ® @

Actually,more than this geographical mapping role,the geometrical

representation has to be an aid for demonstration and then we know

that geometry is "the art of right reasoing with false figures".
b

seen through lena)is aexcellent to express ]

l_—
(s ) ’“ L-J

So,for graphical representations,we have to distinguimh the

For instance even with bad design (and
Ry e ey a

use for a support to reasonings through mental images versus the

quite physical use of a material object as the ancient "proof"
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about equaltriangles by tracing-paper slipping upon drawn triangles.
The confusion between graphical representations and their signified
is frequent with arrows diagrams;more and more people forget rela-
tions and treat "modern-maths" as study of arrows,and math-questio=
nings are frequently only questionings about drawings more than
about mathematical concepts [ZJ-

All"non verbal communication devices"(expression by F.LOWENTHAL)

raigse this problem:for instance,materiel representationsas“lugic

blocks" are often used in & gquite perverse manner[:i] : to construct
concrete representation of Venn diagrams and to call it "set"! And
in the ultimate level,we arrive to the "dressing" representation

by way of word-problems:for instance,the representationof the addi-

tion of 3 and 4 with the story of a boy receiving 3 candies from
his mother and 4 candies from his father.,I have already written
for the PME-group about various parasiies created by these school-
dressings;here I want to compare this representative relationto the
one of the beginning ofthis paper:they zre guite inverse one of the

other.Are theytogether mathematical representations? I dare to say

that only the first one is"mathematical representationwhile the

second one is “school-maths representation",We often see the two
directions:for instance,when the teachifgks to Peter:'"Jane is 4
years old,his brother is 3 years older than Janejhow old is he?"
and,if Peter answers "4+3=8",the teacher can sayiPeter,you have
4 marbles and I give you 3 more,how many marbles have you?" (without
giving him any marble!)

So two guestions will arise:"if A is a representation of B,is

B a representation of A?","is the representation of a representation

of A,always a representation of A?".I want to say "no" to these two

questions such as to "is A a representation of A 7"
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PAST EXPERIENCE AND MATHEMATICAL PROBLEM SOLVING

Kathryn Crawflord
Canberra College of Advanced Education

This paper examines the relationships of some cognitive
abilities, some personality traits and attitudes to children’s
performance in mathematical problem sclving tasks. The
discussion focusses on the role of past experience, or long
term memory, in the development of some cognitive abilities
and behaviours characteristic of some personality traits.

A. R. Luria's model of problem solving is discussed with
reference to recent Western research based on that author's
model of brain function and the effects of differing school
experiences on the problem solving process.

Hecent research on problem solving in the field of mathematics education
has been most notable for its diversity and inconclusiveness. One

senses an extreme tentativeness about where education is and where
psychology is with regard to mathematical problem solving. Educational
papers describing research into teaching procedures appear inconsistent
onl§ in the conclusion that experience is a key factor in the development
of ability. Psychologists, on the other hand, following the considerable
influence of Piaget (1970) on early instruction in mathematics have
focussed their attention on the assessment of specific cognitive abilities
or traits and their value as predictors of achievement in mathematical

problem solving tasks,

Thus the neo-Piagetian researchers such as Pascual-Leocne (1970) and Case
(1978) have reinterpreted Piaget's descriptions of developmental stages

in terms of measurable quantitive increases in the capacity of subject

"M -space" or "working memory". The model has been less than satisfactory
as the basis for educational procedures partly because "M -space" is
somewhat effected by personality and affective variables (e.g. - anxiety
Eysenck, 1976) and partly because although information processing is
limited at each stage, effective use of "working memory" appears to

depend at least in part on learmed strategies
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Mathematics educators have expressed interest in the role of visual-
ization and visual/spatial information processing in mathematical
problem solving. Again, most research has been directed at establishing
the value of information processing abilities or traits as predictors

of success in mathematical tasks, (e.g. McFarlane-Smith, 1972;
Krutetskii, 1976; Bishop, 1972). In marked contrast to other research
in this field, Ivanova (1980) discusses the processes involved in
developing generalised visual schema as aids to mathematical problem

solving.

The two modes of information processing proposed by A.R. Luria (1973)
have received some attention by western researchers. HResearch by Das
(1972), Das and Molloy (1975), Kirby and Das (1978) and others, has
confirmed the presence of two distineti factors in information precessing
among normal school populations. These may be hypothesised to represent
the separate contributions of simultaneous and successive synthesis/
analysis as described by Luria. A study by Hunt, Randawa and Fitzgerald
(1976) suggests that successive processing may be associated with rote
learning and simultaneous processing with higher order thinking skills
associated with the comprehension and analysis of relationships. Studies
by Green (1979) and Lawson and Kirby (1981) suggest that past experience
(e.g. teaching procedures) is influential in the mode of information
processing used. Research by the authorl suggests that although both
modes of processing are available to five year olds simultaneous
processing is not a potent factor in early school assessment tasks in
mathematics., Western research based on Luria's model of brain function
have also confirmed the apresence of an 'attention' or 'planning' factor
which may be hypothesised to represent the contribution of the functions

of the frontal ideas of the cortex as described by Luria.

Until recently, little attention has been paid to the affective aspects
of mathematics education. However a spate of descriptive ;iterature
(e.g. Tobias and Weisbrod, 1980) has discussed possible ‘relationships
between anxiety, field independence, inpulsivity and other perscnality
tragits, and achievement in mathematies. These studies have in general
done little to explain the phenomencon of 'mathphobia' among otherwise
confident and competent individuals, The description by Davis (1972)
of egalitarian teaching procedures in classrooms where mathematical

problem selving apparently flourishes,is of note. Also the work of
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Elock (1980) and Messer (1976) suggestis that the personality continuum
from impulsivity to reflectivity are important noi only as factors in
goal directed behaviour such as problem solving but also in the process
of the developmenti of conceptual schema. In particular Messer suggests
that reflectivity requires the active involvement of the subject in the
decision making associated with the task at hand. The work of

Skovronski and Carlston (1982) suggests that desire for such participation
and personal control is the result of positive outcomes from past choices
In general the social learning theories of personality as described by
Wright and Mischel (1982), Alloy and Selligman (1979) and Staats and
Burns (1982) appear tc provide a more adequate explanation of some aspects
of the complex process of mathematical problem solving within the school
context. A recent study by Skon et al (1981) suggests that social
learning, in the form of co-operative peer interaction experiences, is
also important for the development of higher order reasoning strategies
among young children.

The discussion so far has emphasised the function  of past experience
(and by inference long term memory) as an important factor in the cognitive
processes and the affective behaviours exhibited by children solving

mathematical problems.

The author's current research project is an attempt to further explore
the problem solving behaviours of children at the upper primhry school
level. To this end two data collecting procedures are being used with

a group of ten-year-old children. Firstly, individual interviews are
conducted using Luria's (1973) model of problem solving as a framework
and a co-cperative interview technique first developed by Ransley (1979).
By using Ransley's method it is possible to collect data on problem
solving behaviour at all stages of the process rather than discontinuing
the interview at the first cause of difficulty. Problems are chosen so
that task demands are within the expected mathematical competence of
this age group but structured so thail reasoned decision making rather

than overlearned strategies are required to achieve a solution.

Secondly, a questionnaire designed to determine attitudes and salient
belief's about the following :

* the value of estimation as part of the problem solving process;

% the consequences of such behaviour;
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¥ the normative pressures from significant others concerning
this behaviour;
* self evaluation of motivation to comply with such pressures.

The selection of estimation as a target behaviour for this survey
resulted from clinical experience which suggests it as an indicator

of a reasoned participatory approach to problem solving tasks. The
questionnaire has been constructed according to the procedures suggested
by Ajzcen and Fishbein (1980) in their theory of reasoned action. At

the time of writing, the results are incomplete but tend to confirm

the ideas expressed in the early parts of this paper, In particular,
problem solving profiles resulting from the individual interviews

appeér to reflect student experience in mathematicel problem solving

as well as ability differences in attention and information processing.
Clasgroom observations and previous research by the author - (1982)
suggest that in addition to differences in experiences caused by
variations in curriculum emphasis and teaching style from classroom to
classroom, most teachers intervene in the problem solving process to
'help' those students who are perceived to be experiencing difficulties,
and expect independence from capable students. Each intervention reduces
the experience of the former students in the processes of decision making
associated with the problem solving process, and as a result reduces
their opportunity to develop effective strategies, take risks, make

choices, analyse relationships and evaluate outcomes.

Notes 1 & 2 : the author has previously published as K.P. Grabham
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MATHEMATICS AND SELF-ACTUALISATION
Eric Schillemans, Universitaire Instelling Antwerpen

I. The TM-Programme and Self-actualisation

In the urge to realize his inner potential, man experiences desires, engages
in action to fulfil those desires, accomplishes his desired goal, and finds
his personnality enriched with the confirmation or reinforcement of a new as-
pect of his potential. From the attained state of satisfaction new desires
arise and the process repeats itself, not merely multiplying experiences on
the same'1eve1, but tending to ascent in intentionality and extentionality.
In this way man explores or constructs the hierarchy of successively genera-
lised structures of his potential. In order that each newly opened aspect
of the personnality is actualised, that is, made operational and leading to
fulfilment of desires, one's actions have to take into account a greater set
of laws of nature at each stage. So the growth in self-actualisation leans
on an increased ability to function in accord with more generalized levels
of natural Taw.

The human nervous system is a sophisticated instrument which is capable of
reflecting on its own processes and to intuit from them the functioning of
the laws of nature. This perception of the laws of nature is the basis for
one's attunement to them in one's actions, which in turn is at the basis of
reaching the desired achievments.

The main blockages hindering an optimal friction-free passage to higher sta-
tes of self-actualisation are stresses accumulated in the nervous system due
to overtension. Like impurities in a mirror telescope they reduce the refi-
nement of discrimination, so that the attunement to structures of natural
laws is arrested at a grosser surface level.

The Transcendental Meditation-technique (TM) is a mental technique in which
the mind transcends the perceptive threshold of this surface level and expe-
riences its activitks in their more refined, general stages. On a physiolo-
gical level this experience is accompanied by a deep state of rest - deeper
than sleep - while wakefulness is maintained or even enhanced. In this deep
state of rest the nervous system frees itself from its material and structu-
ral abnormalities (stresses), thereby eﬁb]ing permanent establishment of the
increased refinement in perception. Regular practice of the technique (2 x
20 mns a day) results in a progressive - and at each stage established -
refinement in perception, leading one's actions more in accord with genera-
lised structures of natural laws. This results in one's daily life in an
easier accomplishment of one's goals, in less time with less energy consumed
and fewer stresses accumulated.
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More than 700 researches in physiological, psychological and sociological
areas have confirmed that this growth in self-actualisation is real, physio-
logically integrated, that it is continued steadily over the months and years
and that it involves all aspects of the personnality. One of the results
which researches have pointed out and which speaks for the reduction of
stress and friction in one's daily activity is a significant reversal of

the ageing process

IT. The Nature of the Mathematical Faculty
Amongst psychologers of mathematical thinking the understanding seems now

quite commonly established that mathematics arises from a kind of reflection
on our interiorised sensori-motor activity. As this interiorisation runs
over a rather continuous scale from material to increasingly mental, we find
that mathematics thematises the structures undér1ying our thinking processes
as well. This is illustrated by the fact that lower-level processes of ma-
thematigal activity are reified, i.e. made into objects of study at higher
levels.

The basic capacity involved in this I would like to evoke with the following
quotes :

"The dive of the eagle on his prey, the spring of the tiger - demand
calculation. Differential and integral calculus, geometrical func-
tions, even though no knowledge of geometry."

"The work of an acting man is a magnificent condensation performance;
the condensed result of a vast quantity of separate calcuTations and
considerations; the mathematician is a man who has a fine capacity
for self-observation of this condensation process"

"The mathematician appears to have a fine self-observation for the
metapsychic (also probably physical) processes and finds formulas
for the operation in the mind of the condensation and separation
functions, projects them, however into the external world, and be-
lieves that he has Tearnt through external experience."”

(S. Ferenczi, quotes taken from The process of Learning Mathematics,
ed. L.R. Chapman, 1972, Oxford)

“An essential element is still lacking in the dialectic synthesis
under consideration : it is an explanation, however vague still,
of the faculty that the mathematical person possesses to produce
and link amongst each other mathematical forms for informational

-purpose. An explanation could be suggested by the picture that
modern biology reveals about ourselves day by day. It could be
that the mathematical person is, up to the least of his celTs
and parts, an informed being of the means which - here T take
up an expression by Jacques Monod - the execution of his project
to exist recquires. The conception and mastery of mathematical
entities is in the same line as the production and practice of
a communication language which itself in in the same line as the
genesis and putting to function of the sensorial figurations etc.
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In this vision on things, the mathematical intuition, even when
exercised on an abstract level, presents itself as maybe the most
evolved form of the necessary contact that man and his species
must undertake with the world of their existence."

(F. Gonseth in Actes du Colloque sur Les Mathématiques et la Realité,
partly taken from "Dialectica", Revue internationale de philosophie
de la connaissance Vol. 29 N° 1 (1975), Bienne (Suisse)).
This conception of the mathematical capacity considered in relation to the
mechanics of self-actualisation described in the first chapter put before
us some questions to be researched and possibilities for mathematics educa-
tion to be considered. We will look more closely into the following points :
(I1I,1V)

III. Parallels between the Enhanced Process of Self-actualisation and the
Processes of Mathematical Thought
For want of space I will here not enter into the mathematical activities on
micro-level, that is to say the mathematical mental actions like conjecturing,
proving, defining ... . Their codrdinated functioning forms networks which
on their own level undergo processes obeying certain regularities. It is on
this latter level that we see hierarchies of structures appearing, the cha-
racteristics of which reflect most appropriately the evolution in self-
actualisation. We will now take a closer look at the evolution through this
hierarchy of structures. Every step or characteristic mentioned can be in-
terpreted as a mathematical move on the formal level or a self-actualising
move on the operational level.

Most strikingly in common between mathematical activity and the process du-
ring the TM-technique is that while the attention is focused on the topic un-
der consideration, certain meta-processes governing the codrdinated functio-
ning of the mental actions guide the mind towards an increasing freedom from
the contingent characteristics of the concepts in the topic. The mind thus
liberated from its 1imited interpretations but remaining focused on the es-
sential information in the topic, is left to its own internal dynamics and
reconstructs this information level after level.

Each structure of knowledge in this chain transcends the previous one whilst
reconstructing and integrating it. The transition from one level to the next
has an aspect of continuity (in the transformatory process) and discreteness
(newness of the attained structure). The dialectic between one's experimen-
tal intuition on the starting level and the new structure in formation modu-
lates on this continuous transformation. The process of verification with
experimental intuition is gradually replaced by intrinsic moves in the new
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structure, and one's reference foundation gradually shifts ontq the new
structure.

The previous level gets reconstructed, its elements are now seen in the

wider framework of the next level which unites more of the diversities of the
former, and the span of which encompasses a wider range of application. One
looks at the world rather through its underlying transformation processes
than its objects, one lives more in the derivative. Problems of the start-
ing level are solved or clarified, and most often one gets the solution for

a whole bunch of problems all at once. One leaves problems behind in levels,
Much energy is saved by moving directly within the new structure, and the
particularisation,onto the starting level, of the results there obtained, is
automatised.

The new structure tends to increase its internal coherence, unnecessary loops
are purified out, paths of relation are curtailed (stress release), it grows
into a more simple, codrdinated whole. This structure of knawledgé obtained
expresses more of the essence of the topic under consideration. The apparent
move away from the real world has led to an inexplicable more evolved contact
with the world (well-known in the case of mathematics; parallelling this
there is an inexplicable increase in the appropriateness of one's spontaneous
actions in daily activity with regular practice of the TM—programm@.

As the new structure approaches a certain closure, its autonomisation is ac-
celerated, its mental moves are reified, i.e. they are made into objects of
attention in their turn. Reflection shifts on to uncover the structures of
their codrdination and the whole cycle starts again.

Basic faculties in this process are the self-reflective ability and a sense
of esthetic sensibility that works as a directional force in the move more
and more autonomously away from real-world situations. This move is not ar-
bitrary, its meaningfulness being nourished from a “"regular return to the
sources” (R. Thom), these sources being of two kinds : new elements of per-
ception either of the outside world situation or of internal mental actions
used unconsciously till then.

IV. Mutual Fertilisations of Mathematics and the TM-programme : Promisses
for a Codrdinated Growth in Self-actualisation

In order to envision a bi-directional fertilisation between mathematical ac-
tivity and the process of self-actualisation, we have to point out their
commonality, their difference and their genetic relatedness, The main idea
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is that we have to do with parallel processes, occuring on different levels
however : mathematical activity operates on the contents of man's awareness
whereas the TM-technique operates directly on the substance of awareness.
The relation between these two is that the latter is prior to the former in
genesis. That is, through the TM-technique a man starts acting from a more
universal basis in his awareness, whether or not he is able to thematise its
structure. With the release of stress this more universal aspect of his in-
ner nature is opened up to become operational. Awakening these layers of
potential one by one prepares for a later thematisation of their structure,
or the recognition of such a thematisation when presented with in education.
Here lies a major possibility for contribution of the TM=-technique in mathe-
matics education.

Moreover, as is clear from chapter I, the TM-technique directly develops the
self-reflective ability of the mind. I would like to limit myself here to
pointing out a relation between reflective intelligence and esthetic sensibi-
lity. In the process of witnessing one's own mental activities on increas-
ingly primordial levels of their emergence during the TM-technique, one co-

mes to a situation where all mental activity is transcended and pure self-
reflectivity remains, i.e. one is alert, awake in a state of pure self-
consciousnéss, unaccompaniéd by mental activity (no thoughts). Now as this
experience is one of a unified state - all diversified experiences reduced
back to their single, common source - it follows that every act of reference
to this state is an act of esthetic verification. One refers a multitude of
diverse experiences back to a coherent whole. Through regular practice the
experience of self-awareness becomes established along with the experience of
mental activity, thereby spontaneously estheticising all thoughts and actions.

There are other results of interest for mathematics education (increased
field independance, increased ability for abstraction, memory shift towards
generalisation mechanisms), but in this summary we restrict attention to the
basic ones.

b. A new role for mathematics education : inform man about the Successiye

It is important to remark here that the TM-technique establishes these ef-
fects directly on an operational level. We can however imagine that thema-

tisations of the structures underlying our evolution, introduced at the right
moment, could reinforce the operational knowledge already functional. Here we
can envision a new role for mathematics education : mathematics could assume
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the role of a reflector, mirroring stage after stage man's structured evolu-
tion to higher states of equilibrium.

For want of space we will have to limit ourselves here to one example of such
a reflection, in the area of Galois'theory. In the history of algebra we see
how the community of mathematicians, in its endeavour to solve equations, has
been led through successive extensions of the number concept. Confronted
with a fragmentation crisis at the end of the 19th century, algebraists were
forced to reflect upon their own mental functionings in solving equations,
and have brought out their codrdinating structures. The resulting Galois'
theory teaches us how to systematically reduce the group of an equation, and
with the information gained from that, expand the field of the equation until
it encompasses the roots. For a practitioner of TM this offers an exact des-
cription of his daily experience of solving problems (operationally) through
the expansion of his awareness. The unattainébi1ity of a solution is due to
the entropy in the metabolic functioning of his nervous system, pushing one's
awareness into the more excited, narrow surface levels of one's mind,

Through a s}stematic reduction of the metabolic level, consciousness is al-
lowed to expand step by step until the solution level of the problem is at
hand. Regular practice accustoms one to the different field extension levels
of one's awareness and their corresponding metabolic states, One thus ob-
tains an "operational feel" for the main theorem of Galois' theory. In due
time, as the perception of our mental processes will refine further, finer
details of Galois' theory will find their meaningful counterpart in one or
other aspect of our problem-solving psychology.

There are other examples, the most interesting of which relate man's expe-
rience of the foundations of his awareness in higher states of self-
actualisation to the foundations of mathematics and algebraic closures.
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"REAL-LIFE" NUMERACY, ARITHMETICAL COMPETENCE
AND PREDICTION FROM A NEUROPSYCHOLOGICAL THEORY

Wayne K. Ransley
University of Tasmania

The work of the Russian neuropsychologist, A.R. Luria, has been attracting
attention from western researchers in many psychological fields. Luria's
theory of brain functioning, arising out of extensive work with brain
damaged patients, has increasingly gained acceptance as having important

significance in studies of individual differences.

To date, attempts to use Luria's theory as a basis for studies of individ-
ual differences have focussed on a particular suggestion he made in 1949
(Luria, 1966, p.577). At that time, Luria postulated the existence of two
general categories of information synthesis which he suggested as a starting
point for investigating the factors of mental processes. The first was con-
cerned with integrating elements into simultaneous groups; the second with
the synthesis of successive, serially constructed processes, or the combin-
ation of elements into series. Psychological analysis of disturbances of
mental processes in patients with local brain lesions revealed that some
sections of the brain are responsible for forming simultaneous, while other
sections are responsible for successive syntheses. The parieto-occipital
areas are responsible for the simultaneous, while the temporo-frontal regions

contribute to the formation of successive synthesis.

Several western researchers have taken up this suggestion of Luria and have
attempted to operationalize the simultaneous/successive (sim/succ) constructs
with psychometric test batteries. Factor analytic techniques have con-
sistently yielded factors labelled as simultaneous and successive processing.
Several investigators have had success in applying the sim/succ psychometric
model to educational settings, notably in the area of Aptitude treatment
interaction (ATI) studies. Green (1977), Grabham (1980) and Walton (1983)
each demonstrated the existence of interaction effects between aptitudes in
sim/succ processing and differing instructional treatments in school

mathematics.
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Ransley (1981) working with 5 and 6 year gld children extended a simple
sim/succ model to encompass a third factor. The new factor was labelled
"sustained selective attention", and its existence was predicted from
Luria's work with patients suffering "frontal" damage to the brain. The
three factor model was found to be educationally relevant by demonstrating
considerable power in accounting for individual differences in classroom
learning. The competency of the children was measured with a representative
range of classroom skills determined by teacher assessment, the application
of standardised achievement tests, and the use of experimenter constructed
achievement tests. Factor scores were generated from the three factor
solution in order to define three variables corresponding to simultaneous
synthesis, successive synthesis and selective attention. These variables
were used as predictor variables in relationship with sets of measures
taken from the classroom competence battery. The use of canonical
correlation analysis and multivariate multiple regression analysis
supported the contention of highly predictive contributions made inde-
pendently by each of the simultaneous, successive and attention variables

(e.g. canonical correlation coefficients as high as 0.74 were obtained).

Given the success of the model in prediction of school achievement for
young children, it is natural to enquire if the same success would be
apparent with older children. 1In particular, the effectiveness of the
model for explanation of differences in mathematics performance could be
of interest. In Australia, as in most other countries, the alleged poor
numeracy skills of many school leavers has been of recent concern in our
community. Psychometric models based on Luria's neuropsychology hold
potential for explanation of mathematical difficulties. BAs a first step,
investigations are needed to test the effectiveness of a model to predict
individual differences in performance among those experiencing difficulties.
The remainder of this paper reports a pilot study which attempts to
explore this question and to reveal something of the nature of the

difficulties experienced by many pupils in the numeracy area.

SELECTION OF SAMPLE

A sample of 122 fifteen year old children was selected from among those who
scored poorly on a standardized basic numeracy test (14N Test)
administered by ‘the Tasmanian Education Department one year ealier. The
pupils were drawn from 7 High Schools in the Hobart city region. The mean

for the sample was 11.72 out of a possible total of 33. S.D. = 3.38.
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TESTS FOR PSYCHOMETRIC MODEL

In the 1981 study the model was initially developed with the aid of a
microprocessor and other electronic hardware in attempts to parallel the
work of Luria. Such techniques are not readily adaptable for ordinary
classroom use and so a second set of tests was devised requiring little
specialised equipment. The second set of tests are readily handled by
teachers, counsellors and other school personnel who are concerned with
individual differences in young children. The measures obtained with the
more complex measures were used to validate those obtained more simply.
In fact, it was demonstrated that for everyday school use a practitioner
could obtain rough estimates of the abilities by administering only one
test from each domain. Consequently in the present study threé of the
tests were admihistered and the appropriate raw scores were taken as
approximations to the relevant abilities. The Dot Figure Memory Test
(DFMT) was used for simultaneous synthesis, the Symbol Tapping Test (STT)
for successive synthesis and a Cancellation Test (CT) for the attention
component. The procedures developed for administration of the tests with
the younger children were found to be suitable for use with the older

sample.

Dot Figure Memory Test (DFMT)

The test apparatus consists of a set of drawings on 3 x 3 dot grids.
Example: g The child is shown each in turn (10 secs)
and required to draw them on blank grids
from memory. In terms of Luria's theory
. this test should measure simultaneous
synthesis at the perceptual/memory level, particularly involving the

visual sphere.

Symbol Tapping Test (STT)

In this test children are shown symbols one at a time on cards. They are
required to indicate by tapping an answer strip the order in which the
symbols were presented. Marks are awarded for each symbol in the correct
position. Four different symbols are employed:

(:) :><: Test items contain between 2 and 5
{! Jirsie

symbol sequences.

Luria's theory suggests the test should measure successive synthesis at

the memory level.
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Cancellation Test (CT)

The test sheet consists of a matrix using four different shapes

-1 1 I l The child is required Eo place a dot in

the centre of each of the shapes identical to the taxget ]l Vi The
subject has to start at the top left hand corner and work left to right
along each row in turn. They must work as quickly and accurately as
possible. The 1981 study indicated that the total time taken to complete
the test is a good rough measure of attention ability. The ability to
differentiate items on the matrix rapidly and accurately involves

focussed selective attention.

NUMERACY MEASURES

"Real-Life" Numeracy

During work concerned with diagnosing difficulpies experienced by child-
ren in solving mathematical problems (Ransley, 1979) it was noted that,
for many children, skill in mechanical computation (symbolic numeracy)
seems to be independent of understanding and application of arithmetical
operations in "real-life" settings. Similar obserﬁations have been
reported from many other sources (e.g. N.C.T.M., 1977). In mathematics
education circles one can discern a sense of agreement that for many
children the traditional group administered tests are inappropriate for
assessing numeracy levels. Many of the skills and understandings
appropriate to younger children (and older ones experiencing difficulties)
cannot be adequately assessed in the paper and pencil format. There is a
growing realization that if "numeracy" is to be fairly assessed a means
must be found to measure performance in more realistic formats. In this
study "Real-life" numeracy was measured by items on the Practical
Understanding and Application of Concepts test (PUAC). The 10 items are
administered individually and attempt to tap practical understanding of
concepts, ability to apply knowledge, and power of explanation of
processes. The items require the use of accompanying concrete materials
and other stimulus items, with a minimum of symbolic representation, in order

to simulate "real-life" settings. Two items relating to fractions are

shown:

3. Requires a jar with 45 counters in it.

Give them the jar and ask: Can you find two thirds of these for me?"
"Tell me how you did it."
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6. Use two identical cut out circles (r=5cm) side by side. Ask:
"These are pizzas, which would you rather have; one fifth of this

ptzza (point) or two tenths of that pizza (point)?"

"Why?" (Allow them to explain - you may need to ask additional
questions e.g. "Would you have more to eat?"). Marked incorrect

if they do not believe equal amounts would be had to eat.

Symbolic Numeracy

This was measured by a Mechanical Arithmetic Test (MAT) also consisting
of 10 items. Each item matches one in the PUAC test. The items matching
the examples are:

"Work out each answer as far as it will go."

2 45
3 5 Stk

5
60

Matching the two tests allows for possible interesting exploration of the
relationship between "real-life" measures and the more usual symbolic

approach.

Test Administration

All testing was administered by two Senior Graduate Research Assistants who
were thoroughly trained to the satisfaction of the researcher. Testing was

spread over two individual sessions, during October 1982, with the

Mechanical Arithmetic Test being given last.

Analysis of Results

The comparison of items between PUAC and MAT could make a fascinating study

on its own account. Cross tabulation for the two examples are shown.

PUAC PUAC
3. Right Wrong 6. Right Wrong
o +
= 16 28 36.1% | 26 34 49.2%
- -~
14 24
MAT MAT
o o)
8 10 68 63.9% g 27 35 50.8%
b Y]
= =

21.3% 78.7% 43.4% 56.6%
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The pupils were significantly bettér at straight mechanical performances
than the corresponding applications. MAT mean = 6.90, PUAC mean = 6.32,
Related T-value is 3.22, df = 121, p = .002. The result is perhaps
indicative of a lack of attention given to the understanding and "real-
life" aspects of basic arithmetic in our schools. The results on both
tests are disturbing, given that the majority of pupils left school within

weeks of testing.

Taking scores on the three psychometric tests as a set of predictors and the
scores on the 14N Test (after a logarithmic transformation) along with the
numeracy tests as criteria variables, a canonical correlation analysis was

performed using the Multivariance VI program (Finn, 1977).

The analysis revealed the existence of one highly significant canonical
correlation coefficient = .60, chi-square = 64.30, d.f. = 9, p < .0001. The
standardised weights and correlation with the canonical variate are shown

for each variable.

Predictor Set  Weights Correlations Criterion Set Weights Correlations

Figure Matrix .67 .38 14N Test .91 .99
Symbol Tapping .16 -.41 MAT 202 .59
Cancellation -1.08 -.75 PUAC by S

Inspection of the correlations for the criterion set indicates that each
test correlates highly with the shared underlying dimension of variation.
The nature of this dimension can justifiably be described as one involving
the assessment of basic numeracy. The correlations of the predictor set
variables with this dimension indicates that the variables measuring simult-
aneous synthesis, successive synthesis and selective attention all contri-
bute significantly to the prediction. Supporting evidence was provided by

a multivariate multiple regression analysis, successively adding the pre-
dictor variables to the prediction of the set of criterion variables, each

addition being highly significant.

Given the restricted range of ability chosen on the 14N Test the results are
an underestimate of the predictive power for the total population of 15 year
olds. As well, the psychometric tests are at best only rough estimates of
the abilities in the Luria model. The findings are encouraging and suggest

that a full study cculd give impressive results indeed.

Luria's theory of brain functioning has led to the development of a simple

psychometric model with obvious relevance to the classroom. Measurement
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of competence in the model can be carried out using tasks which do not re-
quire any special formal knowledge and do not demand any particular higher
order intellectual functioning. The technique described seems to provide a
means for directing research into the basic components of mental processing.
Methods for remediating numeracy skills which are designed to interact with
these basic abilities, should prove useful in helping children overcome their

difficulties.
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LEAREHIHG OF HDH—ST%HDHRD FARITHMETIC

AHO THE HEMIZFHERES OF THE ERAIH

Lr-i Fide lman

Techrmion, Haifz, Israsl
Oepzer-tment of Education in Techrnologw & Sciencs
s

Faculty of Mathematics

1. IHTRODUCT IOH

The relation of ordinal and cardinal mathematical concepts  +o
the left and riabt cerebral hemispheres, respectively, hFas hesn

examined in Fide lman C10. The method of resezrch was to Find

L

+. Tic

i

]

L1

1 correlations between scores on ordinal and cardinal

!ll

macthematical concepts and henispheric tests,

The hemispheric tezts that were applied azre:
10 Counting of tachistoscopically represented dots 25 2 test
far the rigbht hemisphere.

22 Counting of sians  aepearing rapidly one after  zhother as a

+

i

=t For the left hemisphere,

HOH-STAMODARD AMALYSIS

P

The s=tudents of first vear mathemtics at the Techniaon, Haifa,
Izrael, learmed calculus  in two parallel courzes. One course
was the standard approach, o the other was based on the norn-
standard approach. The text kool in the n. =, zpproach nas

kEeizsler 022, The s=tudernts participated in the hemizpheric tests,
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Results of this experiment given in €12 22 in line with the
conjecture  that pPotentizal infinity is related to the left

hemisphere, while actuzal infinity is related to the riakt.

Additional results of this experiment are given inm  table 1.
They z=how that understarnding of of the alaskhraic structures of
the n.=. real numbers (monads saond galaxies) may ke related to

a1 inhikition of the lett hemisphere by the riakt hemisphere.

Me may explain this phenomena by the following condecture:

The cognitive concept of infinite is first introduced by the
left hemisphere Jwhich proceszes discrete details of data one
atter another? asz potential infinity. The right hemisphere
Cuwhiich  creates a new whole from discrete detzils of datad
integrates actual infinite sets, from the elemerts of series
created by infinite potential processes, at & later stage.
This intearation terminates 2 process without a2 last
gter which is created by the left hemisphere. It iz accomlished
by an inhikition of the left hemisphere by the riasht.

Table 1: Correlations ketwssn scares an the alaskhraic paet

of ne.=s. calculus and neuropsvycho logical tests cr=110

Neuropsychological counting test | (e t=]

1> Simultarneous counting of dots
. BET W Cone—=tal led)

by truse/false

22 Averane of all cordinal countinog
Ltwo—tazi led)

1
L]
n
i
L]
.*

by truesfalses

)
5

|

Hemisrheric dominance: |
| =i | ¥ (two—tzi led)

OiFfference betwsern (1) and (2 |
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2. FARADOMES AMHD DIAGOHAL PROCESSES

Arncther exeeriment survewed in C1) sypports the condecture that
lezning of diagonal processes  and  set theoretical paradoxes
are related to the inhikition of the right hemiszpheres by the
lett., MHe sugested that this inkikition 15 part of a2 coanitiove
process in which the right hemisphere intearates the set of ALL
& lements having & certain property, The left hemizphere cresates
arn additional e lement hawing the same propsrts. Thus the left
hemisphers “hreaks  the sat which the right hemisphere has
integrated. The left hemisphers must cvercoms the “okjection”

aof the right hemisphere +o the ‘brealkking” of the set of &ll

& lements having the certain property.

Hotuwal infinitey i= not created by dizgonal processzes. Bt once
the property of keind a2ctusally infinite zet iz defined and not
empety ., more e lements hawirna  this  property s crested by
dizgonal processes.

4, HNOWN STAHOARD ARITHMETIC

Fiwve experiments hawe been conducted szt the Techhnion in which
students of a course on  pehilosophy of mathematics leae-ned
compactress theorems proving the consizstency of the exisztence
of ane of the Following: =2 infinite natural ruanker, a6
infinite real rumker,. an infinitisimal. In 2 of the experiments
the students leared alszo zkout  internal and external sets  in
Fe S ocde ls of aeithnetic, The examinations inc luded a question
on the  compactrniess theorem. MWhEpy the studernts learned =also
2ot internal and external sets, tThe sxamination inc luded a
ouesticon o thiz  topic. The =tudents participated inm the
Femispheric tests. The =scores of the mathematical sed

Femispheric tests were corrs lzathed,.
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fours of the experiments, irmc ludina

external and internal sets. e

([ L=0 g

laraest sanpe le anora them zee in tak les

ads and galaxies. The results

the

=tudents

=

edicd

with learning of

rot lezeern  akbout

of the sxperiment having the

the other three experiments sre simi lar .

infinite matural number

Takle 2: Correlations betueen

SCOres

2 and

2. The results of

bat less significant.

[ oy |

th

e exisztence of

and neuropsvcho logical tests (n=z23)

HMeurcopsvchological counting test

rho

|

15 Simultaneouzs countina of dots |
N NeS. LHtwo—tzi ledd

by truedfalss |

|

23 Awerage of all crdinal counting ]
| it # ¥ Ltwo—tal led)

by truedfalse |

|

23 Hemizpheric dominance: |
| =233 A Chtwo—tai led)

Oifference betusen (1) and (20 |
Takle 3: Correlations betueen scoares on internal and external

i =

sets in n.=s. model of Pearno and neuropsvochological tests (p=290

Neuropsy»cho leaical counting test

i

e

|

15 Simultanecus counting of dots |
i Lo L Mae.Se Lhwo—tzi led)

ke truesfalse |

|

22 Averaxe of 211 ordinal countina |
| = ##¥# L two—tai ledd

by trussfalse |

|

20 Hemispheric dominance: |
| —.S0% ##k Ctwo—tai led)

|

Difference ketweern (1) and 20
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In the Femalrlng exrerimen{ the students 1o zum ] the
compactness theorem skbout the exisztence of  an imtinitizsimal.
After it thew lesrrned about monscds and gz laeies cuwhickh were nok
irc luded in the test)d but not skout internal zed wxhernal seths.,
The results are im kakle 4.

Takle 4: Corre laticons bethneesn SCores o imfiniti=simal

Cwith monads & azxlaxiesd and reurcpescho logical tests (n=170

Meuropsycho lagical counting test | U e

13 Simultareous counting of dots
« BEE %%  Ctwo—tadl ledd

ke bruedfalss

|
29 Awveraoe of 211 ordinzl countina |
| —.35d Fi.=. Ghmo—tai ledd
|

by trusesfalse
|
29 Hemispheric dominsnce: |
| « e # Chwo—tad lecd)
Differwnce khetwesn (15 and (29 |

S. DISCUSSION

There is similarity betwsen the results for dizaonal processes
ard paradoxes in $1)  and the results  for the existence oF
irfinite numbers and infinitisimals, when the students did not
learn akout monads znd galaxies (takle 22. This infers that the
processes inve lved may ke =imilsar.  The cognitive process  may
ine lude intearation of the et of all (finited rumbers a2t first
stage by the right hemisphere. At & later stags o additional
infinite cor infinitisimal? number of the same set  Inatural or
real humkber) is  extracted kv the left hemisphere. Thus the
left hemisphere “breaks’ the set of 21l natural or real numbers

which has keen created by  the right hemisphere. This may be
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dore by am inhikition of the riglht hemisphere ke the left.

The results for internal and external sets  are also sind lare to

€

those of diagonal processes and paradoxes, and mae ke exp lained

2= irdicating s inkhibkition of the right hemiszphee ke the left.
The irhikiticon maw ke related o the cognitive process in which
the 2 lements of an  external set  can not ke intearated b the

rigklt hemisphere into a set of the swstem, and must be treated

2= single elements ke the left hemisphere.

The results of the experiment in which the students lezrned
ahout monads and galaxies after the compactness thecorem ftakle
49 are similar to the results for monads and aalaxies in the
course akout n., =. analvsis (table 10, The explanation ma be
that whi le the students learned the compactress theorem for the
first time, it has keen related *o an inhibition of the right
hemisrhere by the letft. But the learning of aslexies and monads
created 2 mental set theoretical model of the n.s. structure of
hunkbers. The creation of this model iz related to an inhikition
of the left hemisphere by the right because it is actually
infimite. MWkRile answering the ogquestion of the examinaticon, the
students wsed this model +o understand  the concept of the
imfinitisimal, The using of this model is  related o the

irkikition of the left hemiszphere by the riaght.

REFEREMCES

1y Fidelman W, : HMathematics and the hemisepheres of the hbrain,
Froceeding of the Sixth Internaticonal Conference far PHE::
Frtwere, Jule 19232, 211-21%5,

K23 Keisler U.J.: Foundation of Infimitisimal Caloculus,. Prindls

Weker & Schmidt, Boston, 1378,



= =

PRACTI CAL APPLICATIONS OF PSYCHOMATHEMATICS
AND NEUROPSYCHOMATHEMATICS
by
Prof. Shraga Yeshurun

Dept. of Mathematics, Bar-Ilan University, Ramat-Gan, |srael
1. INTRODUCT!ON

Mathematical psychology is the investigation of ¥ by mathematical means,
and psychomathematics (or psychological mathematics, ¥M) is the investi-
gation of mathematics (-learning) by psychological means. Expressed
otherwise: that approach to mathematics, which takes into account not
only the logical connections, but also the human way to reach them. |f
we include in the meaning of the words '"human way'' also the study of the

connection between brain functioning and behavior, then we deal with

neuropsychomathematics (NYM) .

¥YM and NYM are relatively new branches of research. They are in the
juncture of at least four sciences: ¥, mathematics, physiology and
education. For this reason progress is difficult and slow. Neverthe-
less tbere are some resul ts, We want to deal here with their practical

applications only.

2. PSYCHOMATHEMATICAL TEACHING METHOD (yTM)

In case of difficulties in learning to read, Carmon suggests [1]- and
practises - to examine which half of the brain of the child is dominant
and teaches accordingly; sequentially, letters-syllables-words-sentences,
or holistically, ideographically as in Japanese. He even suggested to

try the same kind of treatment with children having difficulties in
arithmetic, but no research has been done till now. Perhaps this would
be possible with elementary school mathematics, where in most of the
topics both sequential and global presentation is possible, But in
secondary school mathematics each branch of mathematics has its own

mode of presentation. Furthermore while elementary school children
still are in the development phase of the concepts necessary to mathema-
tical understanding and generally do not have enough linguistic equip-
ment, this is not the case with secondary schoal students. Accordingly,
for use in the ages from 13 years and onwards, the YTM has been
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developed [2]. |Its principle can be summarized as adapting the teaching

method to the material taught.

Some parts of the mathematics curriculum are conspicuously sequential, i.e.,
composed of steps, each of them follows from the previous one and the whole
set of steps cannot be grasped holistically. Algebraic operations, solu-
tion of equations or their systems, investigation of behaviour of functions
are examples. In order to adapt the teaching method to the material taught,

in sequential material we use algorithmic rules, i.,e., we utilize the

possibilities of the left half-brain. The algorithmic rule comes instead
of formulae. By the way, in most of the cases the algorithmic rules have

the properties of Skemp's schemata [3],[4].

Other parts are global in nature, i.e., the whole problem can and should
be grasped at once. Examples are topology, geometry, set theory, but
also ''great formulae'l, especially in trigonometry, but also in algebra.

To adapt the teaching method to such material we use explanatory rules,

i.e., we utilize the possibilities of the right hal f-brain. The explana-
tory rule may come together with a formul'a, but anyway each part of it

concerns the whole problem.

In the early phase of the ¥YTM we conducted controlled experiments. The
differences between the achievements of the experimental and control
groups were significant in mst of the cases on the .001 level. Now

this is a well-based and successfully practised teaching method.
3. THE COGNITIVE METHOD AND TRANSFORMATION GEOMETRY

Difficulties arise 1in cases, where both halves of the brain are involved
and the usual form of teaching compels the student to transmit the solu-
tion process many times to and fro between.the two halves of the brain.
Two obvious examples of such a situation are the mathematicalhmodel
formation or, in its most elementary form, solution of story problems

and problems in geometry in which the supply of a proof is demanded.

In case of mode! formation the origin of the difficulties is this: the
whole problem is perceived by the right brain globally. Then it is

transmitted to the left brain for further elaboration step by step,

sequentially. During this process each step must be related to the
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whole problem: the conveyance to and fro many times between the two halves

of the brain may cause delay or interference.

The cognitive method [5] solves the problem as follows. The whole problem
is grasped by the right half-brain globally and immediately some global
decisions are made in the same area. Then the processing is transmitted
to the left half-brain, together with the mentioned decisions. Now an
algorithmic rule is used and with its aid the problem will be transformed

step by step into mathematical form.

Again, in the early times of the cognitive method, controlled experiments
revealed significant differences in achievement between the experimental

and control groups. Now this is a well established practise. Even tech-
nical aids have been published for its use [6]. (By the way the publ isher

did not inform me about its publication.)

The success achieved with the cognitive method gave impetus to the conjec-
ture that the problem of problem solving in geometry can be solved in a
similar way. That similar way we can find in teaching transformation
geometry. The problem should be received by the right brain globally.
After some global decisions it should be transmitted into the left brain.
In the case of teaching transformation geometry from the very beginning

of geometry, the left brain will view the problem from the point of view
of transformations, motions, step by step. By an appropriate algorithmic
rule there is a possibility to write down the motions in rigorous

mathematical form,
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ORDER OF MENTION VS.-ORDER OF EVENTS AS
DETERMINING FACTORS IN ADDITIVE WORD
PROBLEMS: A DEVELOPMENTAL APPROACH

Eva Teubal, The Hebrew University
Pearla Nesher, The University of Haifa

The experiment was designed to assess the influence
of the order of mention of events and numerical data
in the text vs. the order of occurrence in real time
of the events alluded to in the text. A developmental
trend was found in which younger children are more
carried away by the order of the text and older ones
are more able to recognize the logico-mathematical
aspects of the text,

The question addressed in the present research is connected to the general
issue of modes of processing written information within a structural text.
The specific question addressed in the present research concerns the
influence of the order of mention of events in the text as compared to

the order of occurrence of the events alluded to in the text, and the
order of numerical data. It was undertaken to try and answer that

question using as a text a simple additive word problem.

This kind of analysis requires taking into account three different
aspects of the text:
a) The logico-mathematical aspect.
b) The '"'real-life' situation described by the text.
c) The order-of-mention in the text of
I. the events

Il. the numerical data

An experiment was designed so that the influence of these three aspects

could be contrasted.
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Procedure

Ss were 100 children of two grade levels (2nd and 6th). The tasks were
six verbal arithmetic problems, four of which were of similar semantic
structure (change problems) and two were of another semantic structure
(combine problems). The word problems were arrived at by manipulating

variables derived from the three aspects of analysis mentioned above:

a) The Logico—mathematical aspect: Presence or absence of the quantities

corresponding to the three possible sets involved. There are two possible
values: 1) presence of the quantities corresponding to the two subsets;
absence of the quantity corresponding to their union (this leads to an
addition sentence if solved canonically). 2) Presence of the quantities
corresponding to the union set and one of the subsets; absence of the
quantity corresponding to the other subset (subtraction sentence if solved

canonically).

b) ""Real-life' situation described by the text: Two values of this variable

were considered here: 1) Combine problems. 2) Change problems.

c) I. The order-of-mention (in the text) of the events: Two values of this

variable were considered here: 1) The order: Time 1; (Tl); Time 2 (TZ);
Time 3 (T3), and 2) The order: T3; Tos Ty

c) Il. The order of mention in the text of the numerical data: Let S

represent the quantity corresponding to a subset; let U represent the
quantity corresponding to the union set; let C) denote the unknown quantity.

The present experiment dealt with the following values:

Buss i@ 3)s O U
2)" UsiiG) DRNO RS

All possible combinations of the above-mentioned variables yield a pool of
possible versions of a given story problem. Here it was decided to include
those versions which allowed to contrast the relative influence of the order

of occurrence of events versus their order of mention in the text.

One should note that the novelty in this study is the attempt to contrast:

two different 'order' variables. One variable (The order of events - OE)
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concerns the child's everyday experience, while the second variable (Order
of numerical data in the text - OND) concerns the child's newly acquired

formal knowledge, the knowledge of arithmetic and its restrictions.

Structure of Word Problems included in the study in terms of the above-

mentioned variables (Order of numerical and order of events):

Problem No. Change Problems were of the following types:
(2) S ® U Order of Numerical Data (OND)
Ty Ty T3 Order of Events (0E)
(5) u s Q® OND
TT T2 T3 OE
(3) U= () OND
T3 T2 T1 0E
(6) §-is OND
T3 T2 T] OE
Problem No. Combine Problems were of the following types:
(1) s® u OND
(4) VEHSE(S) OND

The question of 'change' vs. 'combine' problems was not studied in the
present research. The 'combine' problems, however, were included here in
order to provide a basis for comparing those cases which represent an
interaction between the order of mention of events and the position of the
unknown vs. those cases in which the influence is only that of the position

of the unknown.

The present hypothesis was that combine problems (in which order of events
OE does not apply) would represent a task which from the cognitive point of
view is in between a change problem of T, T2 T3 order and a change problem
of T3 T2 T1 order.

Results

The data presented herein concern two aspects of performance in verbal
arithmetic problem solving: a) percentage of success for each story;

b) type of algorithm chosen for each story.
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Tables I and II represent the above data for grades 2 and 6.

TABLE I - SECOND GRADE

Strategies (in %)
Question 7% of Rearrangement Sequential Reply One
No. Correct of Text Solution of the given
numbers

1 63 2 94 4

2 64 2 91 7

3 35 20 80 0

4 81 39 61 0

5 87 7 90 3

6 35 15 80 5

TABLE II - SIXTH GRADE
Strategies (in 7)
Question 7 of Rearrangement Sequential Reply One
No. Correct of Text Solution of the given
numbers

1 95 48 52 0

2 98 51 49 0

3 31 38 62 0

4 100 2 98 0

5 98 0 98 2

6 86 24 76 0

As seen from Tables | and |l the sample of problems given represent

different degrees of difficulty: the easiest one being the canonical
addition change problem,in which the OND is SS:)and the OE is T1 'y T3.

The most difficult ones being those change problems in which the time

sequence is violated and the events are presented in the inverse order to

that of their occurrence (T, T, T.). Thus,

3 2 el

the order of numerical data

(OND) is seen to affect the degree of difficulty of the problems mostly

for the younger Ss. This difficulty is seen to vanish for the older Ss.

Another developmental trend is readily seen when looking at the type of

algorithm chosen when solving the various types of problems: the younger

Ss are much more carried away by the order of the text.

Whenever

reorganization of the information as presented in the text is performed,

it is done so that it suits the order of the events in real time. Older
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Ss are less influenced by the order of the text and are more able to
reorganize information in order to reach the canonical solution (influence

of the logico-mathematical aspect).

The order of mention of events in the text as contrasted to their order

of occurrence, appears to be the dominant factor affecting information
processing in young children. The direction of the activity as described
in real time (increase or decrease) and its correspondence to a canonical
addition or subtraction, is the easiest case and first learned. When such
a correspondence is violated and two conflicting directions are presented
simultaneously to the child, a further elaboration of the text should be
made to gain agreement between the conflicting pieces of information.

The present study suggests that young children resolve this conflict

differently to older ones.
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COMPREHENSION AND SOLUTION PROCESSES
IN WORD PROBLEM SOLVING
J.F. RICHARD, J.C. ESCARABAJAL
University Paris 8, France.

Many studies have been devoted to word problems but un-
til recently they have not been explicitly related to the work on problem
solving, text comprehension and learning.We present an interpretation which
tries to integrate the main ideas which are thought to be important in tho-
se domains. This effort is in lime with the work by RILEY and al (1981),
RESNICK (1982).

A theory of vord problem solving has to integrate :

- work op procedures, especially counting procedures (CARPENTER, HIEBERT,
MOSER 1981, MOSER 1982, CARPENTER 1983)

- work on the classification of problems (VERGNAUD 1976, 1982, CARPENTER,
MOSER 1981, RILEY and al 1962).

- work on interpretation and representation of a problem (NEWELL, SIMON
1972, ESCARABAJAL, RICHARD 1983).

- work on simulation (RILEY et al 1982, BRIARS, LARKIN 1982)

- Work on analogy and the reference to known situations (GICK, HOLYOAK 1980
- work on text comprehension (KINTSCH, VAN DIJK 1978)

- work on learning and development of procedures (RESNICK, NECHES 1983)

1- General presentation

It is necessary to make a clear distinction between how
the problem is interpreted and how the solution process is built.

Two types of knowledge play a different role in these
two processes :

relational knowledge, that is knowledge about things and relations bet-
ween things,procedural knowledge, that is knowledge about what to do to at-
tain such and such goal 1in such and such context.

The interpretation of the situation depends exclusively
of the relational knowledge. In word problems there are two types of such
<nowledge : general semantic knowledge, the seme as for any text, and spe-
cific mathematical content, necessary to understand expression like more
than, some more...

The solution process involves either procedural knowled-
ge, specific algorithms or general strategies like counting strategies, or
relational knowledge. The solution process obtained through the application
of an existing procedure has to be distinguished from the solution process

expressly designed for a given situation on the basis of relational knowled-
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gCe ubout the situation.

Procedural knowledge is expressed within procedural
schemas of the type of Sacerdoti's (1977) planning nets. Relational
knowledge is expressed within relational schemas of the type of semantic
nets, which define relations between basic concepts.

When there is a schema fitting the situation the solu-
tion is derived form this schema and declarative knowledge associated with
it. When there is no such schema, subject searches among his available
procedures for one fitting the situation,as it has been coded by the in-
terpretation process. In every case he makes the best compromise between
what he understands and what he knows. In case it is impossible to fit all
the aspects of the situation, as it has been encoded, then he may decide
to leave some aside.

2- Basic comporments of the system

2.1 The relational structures

There are two kinds : the concepts which are the
basic objects and the schemas which express relations between concepts.

Concepts ¢

They are concepts which imply only general semantic
knowledge : the concept of set (of course not in the mathematical sense )
and the concept of transfer between sets.The other are mathematical con-
cepts : they are defingd within schemas.

The concept is a set of free slots which have to be
instantiated so that a meaning may be assigned to an object through the
concept, except for some which are optional : if there is no information
fitting the slot, the slot is Meant as irrelevent in the present case.

For instance the concept of set is defined by

1

au object type

au identifier : the owner of the gbjects, the place where they are...

a number (the number of elements)

(optional) & time index(t,, tq) indicating the moment at which the other
specifications of the set are true. This information is & qualifier of the
identifier and of course does not exist for static problems
The concept of transfer is defined by
- a destination set, an origin set or both
- an object type
- a time reference relative to to, b, (vefore, after, past tense...).
— &a number
Schemas

A schema expresses an operation on two sets and its
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resull, which is a sel, wilh o relalion as an identilier.
For instance Lhe Lranstformalbion schema is defined

as follows

first set second setl result set
(initial set) (final set) (change)
object type u t u
identifier X to X 4t} has more (X t1, to)
number ni no nl-n1

We consider the following schemas presented in the

order of acquisition. We give only lor each set the form of the identi-

fier.
first set second set result set
part -whole X ¥ X and X together
more or less comparaison X Y, Who has more(X,Y)
whole-part X et Y together X Less
(or superordinate
of X and Y)
transformation has (X to) has (X t1) how many more(Xt1,
less
X to)
how many more
comparaison X Y how many more (X,Y)
less
composition of
transformations hes more (X t1,Xto) has more (X t2,Xt1)how many more
less (Xt2,Xto)
less
less

We distinguish between part-whole and whole—part sche-
mas because it is easier to infer the supraordinate from the subordinates
(to infer that boys and girls are children) than to infer the subordina-
tes from the supraordinate (to infer that children are either boys or

girls).
2.2 The procedural structures : procedures

The procedures we consider are those described by
CARPENTER and MOSER (CARPENTER and al 1981, MOSER 1982, CARPENTER 1983) -
Three levels are distinguished : procedures applied to objects and modelin g
action, counting procedures, number facts. We describe some of threm as
exemples
Direct modeling procedures counting procedures

Joining : adds n elements counting on : begins with the
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to an existing set of m  elements nuwnber m (or n) and
and counts the number of adds one n (or m ) times

elements in the two sets

adding on : -adds elements to an counting up from giver : begins
existing set until a given total b with m and goes on forward in
is attained and counts the number the counting sequence until
of added elements (n) b as attained, while initiating

a second count from 1. The answer
is the number attained in the se-

cond count

separating from : removes n elements counting down from : counts
from an existing set of m elements backward beginning from m
and counts the. rgemeining elements n times. The answer is the number

attained in the backward sequence.

We retain the idea proposed by CARPENTER (1983) that there is a cor-

respondence between counting strategies and strategies applied to objects.

Moreover we suggest that there is also a parallelism between number facts
and counting sequence, retrieving from memory a number fact being e
shortcut for a counting sequence.

We describe a procedure by a procedural schema which is very close
to the description to SACERDOTI'S planning nets (1977) and to the descrip-
tion adopted by RILEY and al (1981)

A procedure is defined by
- a sequence of actions (body of the procedure)

- a goal : the result of the sequence
- a set of preconditions : the prerequisits which must he present so that
the procedure many be run.

An available procedure is activated when among the elements produced
by the interpretation process are present both its preconditions and a
question corresponding to its goal.

3. The solving process

3.1- interpretation process

At the first level primitive object frames available to the subject
are instantiated from semantic analysis of the ‘text. Then subject tries to
integrate these pieces of information into a schema by matching first-level
interpretation with available schemas. When there is no available schema,
there is no second-level interpretation and the only thing subject can do
is to try to activate a procedure, or make inferences allowing a procedure

to be activated (for instance in a joining/result unknown problem, knowing

that there has been a transfer of n objects to x after to’ he may infer
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that x has i sel of n objects which iy different '"om Lhe firvat set, so

that the joining or counting on procedure may be applied.

At this level misinterpretations may occur if the adequate schema
is not available. For instance for a subjiect having the transformation
schema but not the composition schema a problem such as "Jim gained 8 mar-
bles then lost 5. How many marbles has he gained at the end ?" will be in-
terpreted as "Jim had 8 marbles, he lost 5. llow many the has at the end ?7".
That such misinterpretations are plausible is confirmed by the fact that
when subject is requested to formulate another problem with similar by
changing only the.context, he builds achange start unknown problem. (ESCA-
RABAJAL in preparation) Another exemple of misinterpretation is to inter-

pret the question of a compare nroblem "how many more marbles does John

have than Peter" as ''who has more ? How many does he has ?". This will
be obtained if the subject has not the how many more comparaison schema but
Ouly the who has more comparaison schema : this is the best interpretation
possible in this case.

3.2- solution process

When second level interpretation succeeds a solution
process is built through knoulédge of relations associated with schemas.
When there is no appropriate relation, subject looks for knouwn procedures
fitting the schema.

When the second level interpretation fails, only the
information available at the first level many be used. Then subject search
for a procedure fitting the information about the problem. If one is acti-
vated, a new set is produced and is added to the information about the
problem.

When all possible procedures are applied subject, tries
to match each set present with the set described.in the question. The
set that best mathes is chosen . In this case the solution process is
data driven; when it is derived form a schema, it is structure driven.

L- The learning process.

Learning is supposed to teke place at 3 levels
-modifications of the sequence of actionswithen a procedure
-learning of new procedures

—learning of new schemas

We shall develop this point in the oral presentation.
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YOUNG CHILDREN'S COMPREHENSION OF "MORE"
AND "LESS" IN SIMPLE COMPARISON PROBLEMS.

Evelyn DIEZ-MARTINEZ > and Adela GUERRERO **
ECOLE DES HAUTES ETUDES - Lab. of Psychology

Research on semantic development has provided ‘evidence of the various dif-
ficulties that children undergo before acquiring full comprehension of
relational terminology (Ciark H.H., 1970 ; Mc Neill, 1970 ; Clark E.V,,
1972) . Furthermore relational terms have been at the center of studies con-
cerned with children's development of dimensional and mathematical concepts
when these are evaluated using verbal methods (Mehler and Bever, 1967 ;

Beilin, 1968 ; Siegel, 1977 ; Jones, 1982).

An important example of these terms are the words "more" and "less". The
present work was designed to study young children's comprehension of "more"
and "less" when they are to solve simple comparison problems. Earlier stu-
dies on pre-school children (Donaldson and Balfour, 1968 : Palermc, 1973,
1974 ; Weiner, 1974) have indicated that understanding of "more" and "less"
is acquired gradually. Initially both terms are interpreted by children as
meaning "amount or quantity of". Their comparative sens will be acquired
later with "more" being understood before "less". Finally comparative and

contrastive meanings are grasped.

Most of these semantic studies have tested comprehension of the terms pre-
senting arrays of objects in different number to be compared though little
attention is given to young children's capacities for establishing correct

quantity comparisons.

Number of studies have found regqularities in children's understanding of
guantity dimensions, mainly an increasing ability to differentiate and
coordinate length, density and number (Gelman, 1972 ; Lawson, Baron and

Siegel, 1974 ; Shannon, 1978). Young children's capacity to establish

% Mexican Government fellow (CONACYT)
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correct comparison of quantity is also acquired gradually., Initially chil-
dren use length, extent or visual one to one correspondence when judaing
small numbers. After they are ablé to solve problems where these variables
give no cue to number and.finally solve problems in which number and length

are negatively correlated,

Therefore if children have problems with "more" and "less" and at the same
time their gquantity comparison abiliiies, depend on dimensions they do not
master, problems on performance could relie on one or both aspects. Our
purpose was to determine if the comprehension oﬁ-"more“ and "less" in compa~
rison tasks is related to the complexity of the cognitive operations requi-

red of children.

EXPERIMENT I (DISCRIMINATION TASKS "SMALL QUANTITIES")

Subjects were 45 pre-school children attending 3 groups of public frenc
school. 15 children per age of 3, 4 and 5 years composed each group. Mean

ages were 3.7, 4.7 and 5.6,

Material consisted of 5 cards (10 x 15 cms) . Each card had two linear
arrays of dots, each line of different color arranged in a one to one
correspondance. Number of dots on the sets resulted from all possible com-
binations of numbers 1 through 6 providing numerical differences of 1 to 5

elements.

Interviews were individual. Cards were presented one by one to Ss. During a
first session only "more" questions were proposed. A second session one
month later presented "less" questions.The exp. gave instructions in the
following terms : -Look at the card carefully and "show me the line with

"more" ("less") dots.

RESULTS

An analysis of the percentage of Ss that failed on each numerical difference
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between comparison sets, is shown on table 1. It can be observed that the
number of Ss with error decreases with age for both terms. An important
difference appears on the number of Ss with error comparing performance for
"more" to that of "less" in all age groups. Notice that no significant rela-
tion can be establish among the number of Ss with_error and a certain nume-

rical difference between sets.

TABLE 1 : Percentage of Ss with error for each numerical difference between
sets of comparison on "more" and "less" discrimination tasks

(small quantities).

Elements of difference 1 2 3 4 5
between sets
"more" 20 % S130% 33 % 33 % 26 %
3 years
(n=15)
"less" 80 % 66 % 66 % 30 % 80 %
"more" 20 % 0% 6 % 6 % 6%
4 years
(n=15)
"less" 60 % 53 % 60 % 66 % 66 %
"more" 0% 0% 0% 0% 0%
5 years
(n=15)
"less" 13 % 13 % 13 % 13 % 13 %

EXPERIMENT II (DISCRIMINATION TASKS "BIG QUANTITIES")

Subjects were 40 pre-school children attending two groups of public french
school. 20 children per age 3 and 4 composed each group. Mean ages were

3.4 and 4.5. Material consisted of 6 cards (10 x 15 cms). Each card had two
sets of dots, each group of different color gathered in a bunch. Number of
dots on the sets was established to provided numerical d‘fferences of 10,11,

12, 13, 14 and 15 elements. The small set never depassed 5 elements,
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Interviews were individual. Ss were given "more" or "less" questions at
random, and 4 groups were established. One group of each age level answered
"nore" questions and this was the same for "Jess", Procedure was identical

to that used on Experiment I,

RESULTS

An analysis of the percentage of Ss that failed on each numerical difference
per age group is shown on table 2. It can be observed that (like in Experi-
ment I) an important difference appears on the percentage of Ss with error
when comparing.performance for "more" questidns to that for "less" questiong
in both groups. Specially for "less" age level increases correct responses.
Again no significant relation’'can be establish among Ss with errcr and

a certain numerical difference.

TABLE 2 : Percentage of Ss with error for each numerical difference between
sets of comparison on "more" and "less" discrimination tasks

(big quantities).

Elements of differences 10 11 12 13 14 15
between sets
"more" 10 % 10 % 20 % 10 % 10 % 10 %
(n=10)
3 years ")ess"
e 60 % 80 % 80 % 90 % 80 % | 70 %
(n=10) -
"more" :
(n=10) 10 % 10 & 10 % 10 % 0% 10 %
4 years Sllessll
. : 60 % 60 % 40 % 50 % 50 % 40 %
(n=10)
DISCUSSION

From our results it appears that children's understanding of “more" and
"less" 1in simple comparison tasks increases with age and is acquired gra-
dually. This 1s consistent with earlier findings assessing these in pre-

school childrens (Donaldson and.Balfour, 1968 ; Palermo, 1973, 1974).



- 140 -

The difference on children's performance when comparing "more" tasks with
those for "less", shows that "more" is understood before "less". This
confirms the asymetry phenomenon of acquisition of certain relational terms
observed in other works (Clark, H., 1970 ; Clark, E.V., 1973). Furthermore
children's errors in our study provided evidence of a confusion of the

term "less" with the term "more". This was first reported by Donaldson and
Balfour (1968) and made them suggest a possible period in the acquisition

were "more" and "less" would have a synonimous sens for children,

It has been suggested elsewhere (Siegel, 1977) that discrimination of
dimensions related to quantity can be assumed to provided the basis for

the assigment of meaning for words like "big" and "little". Our results
indicate that children's comprehension of "more" and "less" cannot be
attributed to numerical differences in the arrays to be compared. Still
more even providing children with developmentally important cues (quantity
positively correlated with length or extent, one to one correspondance) con-
cerning comparison.abilities which wé thought would alow early notions of
the terms to emerge, children's performance does not clarify Siegel's

assumption.

Finally, though our results confirm a number of earlier observations, they
still raise the question of which can be the criterial features that
children consider in order to grasp particular meaning of "more" and "less"
in quantity comparison tasks. Further research in this type of knowledge
seems to us of great importance on child's psychological research using

verbal methods and mathematical instruction,
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SOLVING AT 'ELEMENTARY SCHOOL

MARIA LAURA LEITE LOPES

of Rio de Janeiro (IM-UFRJ) and GEPEM.

Lucia Villela

Low High School Belmiro Medeiros

In the year 1981, an experiment was conducted to evaluate
children's ability to related different formulations of a simple
arithmetic problem.

The following pairs of problems were presented to 573
at least 4 years of scholarity, aged 9 to 17, of

students, with
schools nearby

the University Campus:

[A N Y e [:::] is worth 3 (::) and A,
a (::) is worth ZZZEXFhen
Conclude:
aD‘is worth /\
Results
A, Ay — Correct Wrong
1
12 8
Correct (2.1%) (1.,4%)
W 279 150
oRg (48,7%) (261 2%)
Non 33 27
response (5,8%) (4,7%)
324 185
Total (56,5%) (32,8%)

John is three times older than
Mary, and Mary is twice older
than Peter. Peter is two years

Conclude:
John is ..

old.

.. years old.

Non response

0
(0,0%)
37
(6,4%)
27
(4,7%)

64
(22%)

Total

20
(3,5%)

466
(81,3%)

87
(15,2%)

53
(100,0%)
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These results indicate that children were unable:

to understand the symbolic form of the problem A;;
to relate problems A, and A,.

By | The pair of scales is balanced. | B,
|

13 s \20 ;..’
l kg kg | , kg &zﬂ k

Write the missing number on
each plate.

Write the missing numbers to

obtain an equality:

L R R A

Results
B B, — Correct Wrong Non response Total
1
| 109 93 19 221
Correct (19,0%) (16,2%) (3,3%) (38,6%)
58 166 31 255
Wrong (10,1%) (29,0%) (5,4%) (44,5%)
Non 19 54 24 97
Response (3,3%) (9,4%) (4,2%) (16,9%)
189 313 74 573
Total (32,5%) (54,6%) (12,9%) (100,0%)

Many children were unable to choose one out of the possible

solutions.

Nine mathematics teachers at IM/UFRJ have worked at this
experiment.

A randon sample of 186 individuals was selected from the
entire universe of 573 students. The idea was to relate the
performance of these students in problem solving with their age.
We obtained the following distribution.
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Conclusions:

The best performance in solving problem A, was obtained
by the children aged 10 Y, to 11 1Y, .

Problem A, was solved by the majority of children
agedi 02/ S toln2

The majority younger children wich regular performance
at school solved problem B,.
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In order to understand the above results, I asked the help
of a secondary school teacher of mathematics working at a 5th
grade class.

3

FRYE pO PO
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9 9 ORI, T 1y 1 XL M9 4235013 185 s 45 15 2k
9. Y 01006 11 Dt 2 420 13 o h v 1a 1595 16
G107 (8) (a0 iCa0):: (9) () + (300020 () A7) (6 )< i )oie (2) (2 "

* Total of students.

In april 1983, the secondary teacher repeated the experi-
ment at two other 5th grade classes, where questions A, and
A, where presented in the reverse order. This experiments

. has shown that no sensible modifications of the performance of
the students were detected, as the above distribution suggests.
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“WHO ‘S GOT THE HIGHEST NUMBER?"
THE CONSTRUCTION OF A DIDACTIC SITUATION IN FIRST

YEAR ELEMENTARY CLASS

Claude Comiti, Equipe de Recherche en Didactique et
Pédagogie des Mathématiques, Université Scientifique et

Médicale de Grenoble

This study is part of research being carried out,
in collaboration with Annie Bessot, into mathematical
didactics and whose aim is to clarify the conditions under
which the learner constructs and interiorizes the concept
ot natural number, and to show the learner’s different
conceptions <functioning at a given time and within a given
situation.

Having already spent a long time on the design,
implementation and analysis of one—-to—one interviews (cf.
bPibliography) it was decided to adopt a different approach;
namely to intervene in the class itself and to construct
didactic situations in order to explore , via specified
learning tasks, conceptual fields which were of interest to
us.

The learning task for which we were responsible,

and which is pregented below, was to establish and make
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operational the 1link existing between writing numbers
within the decimal system and the number order. The
situation which the present paper describes is 2nd year
elementary class (7-8 year-olds) at time of the school year
when the teacher had already carried out revision of
comparison - of numbers via the written form. The learners,
therefore, had already had to solve problems of comparison
of two or more numbers.

The situation in which we put them consists in
the comparison of two numbers, one of which is Known and

the other unknown.

1. DESCRIPTION OF THE PROBLEM SITUATION.

- The teacher chooses two numbers (NI!) and
(N2>, She writes each number on seperate cards.

- (A plays <((against)) (B). A is given a
card on which ¢(Ni)> is written. (B) is given the card (N2).
A and B are mutually unaware of the number on fhe other’s
card.

= The game consists in finding out, in the
shortest possible time, whether A or B has the highest
number .

(1) A asks B a (written) question. B poses a
(written) question to A; The questions are exchanged only
when A and B are both satisfied wifﬁ their question,

(2) A gives a (written) answer to B and
this is reciprocated. The exchange of answers is

simul taneous.



»

- 148 -

(3) After examining the answers that they
have received A and B ask, when necessary, a further
question... and so on until one claims to kKnow "who has the
higtest number".

4 He then explains to his partner in
writing ¢and in the presence of the teacher) the grounds
for his claim.

(5) A and B may then reciprocally show their
numbers on their cards and check whether the claim is well
founded.

() The game is plaved (N) times.

Remark.

This situation differs <from conventional
situations of comparison in several ways.

The learner is obliged to search for
information about the unknown number. In order to do this
he is obliged to make hypotheses about it in order to be
able to ask pertinent questions in the light of his present
conception of number. This obliges him to formulate a
series of questions which enable him to compare the unknown
number to his own. This series itself becomes an object of
reflection as the game goes on, as the aim is to find the
highest number as quickly as possible.

The learner is in a position to organize his
own time as the exchange of questions between A and B

occurs only when both are satisfied with the question that
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they have written. Each game comes to an end when

either A or B claims to have the highest number.

13 443 VARIABLES OF THE PROBLEME SITUATION. (Didactic
variables)

2.1 In the description that has been made the
words between brackets can be considered as variables.
certain of these have been fixed (double brackets =(( ))-
) for the following reasons @

a) A is made to play against B (and not with) in
order to eliminate questions which would reveal too much
information to the partner concerning the unknown number.
The learner is thus forced to think the question he will
ask.

b A situation of written communication (not
oral) between A and B has been chosen. Thus,

- The questions and answers are
recuperable.

= There is interaction be tween the
strateqgies of A and B as each must read the other’s
question in order to answer it.

- each learner can recap, thus facilitating
insights, restructuring and the elaboration of new

questions.

The wvaiables (single brackets = ¢ ) - ) have been

given different values in order to obtain different
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strategies, ways of adapting and controlling. That is to
say, learning. These are the didactic wvariables of the
situation and they enable us to set up a series of

situations to lead toc the defined learning goal.

2.2 A priori study of different possible

strategies and their relationships to the different values

attributed to the variables (N1) and (N2).

There are two major strategies.

a. Those where the learner attempts to find the
unknown number in order to compare it with his own. In
other words, the learner tries to return to the situation
of the comparison of two given numbers. All strategies of
this type will be coded T <(first letter of the word
"trouver®" in French).

b. The other strategy is where the learner asks
questions whose answers will enable certain features of the
unknown number to be ascertained. The comparison of the two
numbers can be deduced from this without the hidden number

being Known.

A certain number of strategies l1inK up with these
two main types., Their efficiency and reliability vary, both
according to the wvalues given to the variables NI and N2,
but also in function of the Knowledge system of the

learner. In particular, it seems reasonable to suppose that
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the change in the numerical field may, by increasing the
difficulties of type T strategies, lead the learner to
resort to different properties of numbers, if he is in a
position to do so, and to the elaboration of more efficient

and more reliable strategies.

2.3, Role of interaction variables.
We have, it will be remembered, defined the type
of interaction between two competitors. However, one may

choose either, to make one learner compete against another
etc... In this way, one can either constrain or encourage
another type of interaction, namely, learner cooperation
within a group in order to attain general agreement on the
choice of a satisfactory question,

Thus, the selection for A and B of a group of
learners cooperating will diversify the interaction and
this will encourage the generation of different questions,
their confrontation and thus the elaboration of a group
strateqgy.

If, on the other hand, the game is between two
learners, the interaction of A against B, will not in itself
encourage the elaboration and development of strategies
unless it creates a conflict between two differing points
of view. This means therefore, that a choice of pairs must
be based on prior analysis of the Knowledge structures of

each competitor.
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It should be added that the advantage of this

approach is that it leaves each learner master of his own

strateqgy.

2.4. Role of N,

As to the variable N, that is to say, the number -
of games played, clearly, the greater the number is, the
greater the opportunities afforded to the learner to
envisage, to encounter and thus to develop new strategies
are. The teacher can determine this number herself, but she

can also leave it to A and B to decide whether to replay or

not.

DURING THE ORAL PRESENTATION OF THIS PAPER I WILL
SHOW THE DIFFERENT APPROACHES TO BE FOUND IN A SECOND YEAR
ELEMENTARY CLASS AND I WILL ATTEMPT TO SHOW THE EFFECT OF

THE DIFFERENT TYPES OF INTERACTIONS AND WHAT WAS LEARNT.
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SPECIAL DIFFICULTIES OF ARAB PUPILS

WITH NUMBERS RESULTING FROM THE RULES OF THE ARABIC

Nassif Francis
Ministry of Education, Nazareth and the Weizmann Institute, Rehovot.

INTRODUCTION
Counting methods and the concept of number are the basis of elementary school

arithmetic. They form an important part of the curriculum and much time and
effort are devoted to them. Nevertheless, young children have difficulties in
writing and reading numbers. This is because of the complexity of the decimal
structure on one hand and the children's inability of systematic thought on
the other hand. Errors in writing and reading numbers are widely spread all
over the world. Ginsburg, 1977, claims that children "write numbers as they
hear them" and thus they write "402" when hearing “forty two" (p. 89). This
is claimed about children in the western culture. But Arab children face more
difficulties than western children because of the special structure of the
Arab language. Not only that it is written from the right to the left (this
is also true about the Hebrew) but there are also systematic disagreements
between the number name in Arabic and the decimal structure. For instance,
345 is read in Arabic: three hundreds and five and forty; 68273 is read:
eight and sixty-thousand and two hundreds and three and seventy. As a result
of that Arab pupils in the fourth grade have difficulties in writing numbers
in the decimal form. Also, they have difficulties in writing numbers in the
decimal form when given to them in Arabic.

IDENTIFYING NUMBERS

The following questions were given to 344 pupils in grade 4. (We write the
number names in the order the words appear in Arabic.)
1. Which of the following numbers is "four hundred, one and thirty"

A. 31400 B. 314 C. 431 D. 40031
2. Which of the following numbers js "seven hundred and nine"

A. 7009 B. 9700 €. 7907 D. 709

The results are given in the following two tables.



SIS AN

Table 1 - Distribution of the answers to question 1 (N = 344)

} A. 31400 l B. 314 ' C. 431 D. 40031 ‘ No answer |

| |
‘ 10% 1 149 ‘ 55% i 15% ' 6% l

Table 2 - Distribution of answers to question 2 (N = 344)

. B. 9700 ‘ C. 907 ' D. 709 | A. 7009 l No answer
| |

l 19 [ 19% | 50% t 149 i 6% J

We changed the order of the distractors in question 2 so that they will fit
the order of the distractors in question 1. When analysing the errors one can
see that each of them has its own logic. In 1A and 2B the pupil identifies the
hundreds correctly (400 or 700) and then goes from thé right to the left and
identifies the rest of the number as expressed in Arabic (one and thirty or just
nine). Thus a lack of understanding of the decimal structure together with the
influence of the order of words in Arabic are active in the formation of this
error. A lack of understanding of the decimal structure in this case means that
the pupil identifies (or writes) the number exactly as he hears it and this is
the mistake in Ginsburg 1977 mentioned above.

In 1B and 2C the pupil is probably aware of the decimal structure but he
identifies the digits from the right to the left in the order they appear in the
Arabic number name (four hundreds, one and thirty).

In 1D and 2A the pupil has overcome the order problem but he is still lacking
the understanding of the decimal structure.

Note that in both questions the pupil was asked to identify a number and not
to write down a number. This can explain some "inconsistencies" in the distractors.
For instance, if the pupil writes from the right to the left "four hundred, one
and thirty" he might write 301400. Howevyer, since questions 1 and 2 were
identification tasks it might be wrong to conclude that all the pupils will
necessarily write the numbers 431 or 709 in one of the four ways given in each
question.
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The difficulty in identifying numbers increases when more digits are involved.
The following question was given bath to 4 and 6 graders.

3. Which of the following numbers is "seven and fifty thousands and five hundred

and seven.
A. 57507 B. 57000507 C 570757 D. 575007
The results are in table 3.

Table 3 - Distribution of answers to question 3

A. 57507 | B, 57000507 | C. 50757 | D. 575007 | No answer

344) 40% 23% 10% 16% 14%

4th graders (N

286) 62% 16% 4% 12% 4%

6th graders (N

Here a new type of error is introduced in C. The pupil changes the right order
twice. He identifies "seven and fifty thousand" as 57 at the right side (probably
he reads it from the right to the left). Then he goes to the left side and reads
from left to right "five hundred and seven" as 507. This is demonstrated by the
following arrow diagram:

I1 I
e X
507 57
R e

So, contrary to the western culture, the Arab children are not only confused
with the decimal structure, they are confused also with the writing and reading
directions and sometimes they change the reading direction twice in the same
number,

ARITHMETICAL OPERATIONS

The above confusion has an enormous effect on the ability to carry on correctly
arithmetical operations. Two examples for that. The 344 fourth graders in the
above sample got the following exercise: Add the following numbers: 3, 42, 100,
51. Only 54% added the numbers correctly. The most common errors were:

(a) 51 (b) 3 ket o 51
100 42 42
42 100 100
3 51 3

1330 223 1060



= 1567 -

Although western children also make similar mistakes the percentage here is
much higher. This can be explained by the following:
The analysis of 3C in § 2 suggested that some Arab children lack a "reference
point" when reading or writing a number (since they can start from the right to
the left and then go all the way through and start from the left to the right).
This fact might cause them inconsistencies when writing numbers in columns.
The column (a) above is incorrect but at least it is systematic. Columns (b)
and (c) are both incorrect and not systematic and perhaps the above lack of
reference point is a cause for that. Although also Ginsburg, 1977, reported
about non-systematic performance of the above type (p.113) it seems that it
occurs more often in Arab children.

Another example which demonstrates the confusion mentioned in § 2 is the
following: 255 fourth graders were asked to divide 256 by 16. Only 38% did
it right. About 20% did the following mistake: They used the long division
algorithm and divided 25 by 16. They wrote 1, multiplied, subtracted and
transferred the 6 as required; then they divided 96 by 16 and wrote down
the result (6) at the left side of the 1. Thus they got:

61
16[ 256
16
96
9%

§4. THE DECIMAL STRUCTURE
The two following two questions are related directly to the decimal structure.
4. What will happen to the number 237 if we write down in front of it 4 (and thus
obtain 4237)?
A. The number will increase by 4.

B. The number will be multiplied by 4.
C. The number will be increased by 4,000.
D. The number will be multiplied by 10.

5. What is the value of the digit 2 in the number 182506?
A2 B. 2000 C. 200 D. 20000

The results are given in tables 4 and 5.
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A B C D No answer
4th graders (N = 344) 17% 9% 48% 12% 14%
6th graders (N = 286) 8% 5% 75% 7% 5%

Table 5 - Distribution of answers to question 5

A B C D No answer
4th graders (N = 344) 13% 55% 12% 9% 11%
6th graders (N = 286) 6% 73% 6% 13% 2%

§5. SUMMARY

We have discussed some difficulties of Arab children in arithmetic.
The trouble is
are unaware of these specific difficulties and this fact
Although we do not yet have a solution
to the above difficulties we believe that teacher awareness to the problem
will be a first step in the right direction.

difficulties are specific to the children as Arabic speakers.
that many teachers
does not help to solve the problem.

References:

Ginsburg, Herbert, Children's Arithmetic:

Company, 1977.
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the learning process, Van Nostraud
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NUMBERS IN CONTEXTUAL FRAMEWORKS*

F.J. van den Brink
oW & 0OC
Utrecht, The Netherlands

Summory

This contribution consisis of & report on research into the use
of the bus-context (boarding and leaving the bus) when introducing
addition and subtraction in the first-grade.

Other contexis are taken into sccount &s well, such aes skittles,
magic iricks, birthday candles, rides in & "cart", distribution of
passengers on & double-decker bus, number-cards and ages.,

These contexts influence the use of numbers and operations. This
implies that numbers used for instance within the bus-context will
have other properties from numbers used to describe skittles.

Apart from the sound, bus-numbers are not the same thing as
skittles-numbers, Therefore. it makes sense to speak of numbers in
a contextual framewvork.. It is suggested that these contexts first
be offered to the children separately before making comparisons be-
tween them.

Finally, an outline is made of misconceptions which can &rise
regarding the bus-numbers or due to a lack of context.

I. INTRODUCTION
a. OSituations and contexts

Numbers and operations are connected to various arithmetical
situations and contexts. These situations and contexts determine
the limitations in the use of the numbers,

Examples:

A six year old girl blurted out: "I'm six, dbut in the train

LY

I'm three."

Ikos, an 11 year old boy came in furiously, saying: "That's
not fair; together they're 22." He meant the two 11 year old
boys vho were fighting with another boy who was "only" twelve.

Evidently, we must keep the numbers closely connected . %0 the con-
text and situation in which we use them in order to determine what
one can do with the numbers. In any case, it does not go without
saying that one can add, for example, ages together, just because
one can add up numbers,

* A more extended paper will be available at the conference.
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Along side the use of numbers in specific arithmetical situations

(nwnber-cards, number-line, counting-frame, abacus, basic sums
such as 2+2=4, etc.), various contexts huve been devised for math-
ematical activities. The now defunct I.0.%W.0. (Institute for De-
velopment of Mathematics Education) had developed a number of such
contexts (see Freudenthal (1976); van den Brink (1980)),

The contexts have in common the fact that they are not simply
illustrative of the operations to be learned. A.giveh context has
its own structure which sets limitations on the use of numbers
wvhich are specific for that context.

c. Education

In traditional mathematics @ducation however, this viewpoint is
of secondery importance. Contexts are purely illustrative; one
after the other, dots, squares, dashes, strawberries, etc. are
used. indiscriminately, as if they were interchangeable. This is
done in order o give the children the opportunity to see the num-
bers and their operations as abstractions. The children, however,
often find it a joke:

The mother of 6 year old Kikkie recalls, "There were 6 of us at
nome: uncle Wim, Gerrit, Eef and Piet, aunt Alie and myself."

6?2 There were 6?7 That's funny", says Kikkie, with a 'vhere've-
I-neard-that-vefore' face. "oh, I know: I'm 6, hahahaha! Funny,
heh?!"

The contexts we choose should not be purely illustrative. They
need to have been already experienced by children; things like
magic tricks, ages, games of marbles or skittles, etc, In brief,
all sorts of cobperative and play situations. First-grede.arith-,
retic should consist of play activities: play-acting, gawes, etc,
(Van den Brink, 1980). These contexts can be used later for refer-
ence in the clarification of algorithms,

Te context -~ that is, the meaningful associetion in
which the number is used - determines whether the substitution of
one number Tor another can be allowed. On the other hand, the sub-
stitution of contexts around & specific number or operation is a
possible manner of leading up to abstractions.

Both abstraction and substitution have their drawbacks: abstrac-
tion can lead children to blindly adding up apples and orangesj
substitution'can give children the wrong idea mathematically by
using & too limited context. We must therefore set reguirements
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Tfor the coniexi1s and make sure of appropriate contexis for intro-
ducing and ay ,lying mathematical situations. I.e. we must examine
the contexts to see what limitations they may impose upon context-
free numbers and operations.

d. Numbers

The consequences of this point of view are found in numbers and
operations and even in the description of them.

In literature, the use of numbers is described with terminology
borrowed from mathematics: cardinal and ordinal numbers, measuring
numbers, numerals, etc., This assumes implicitly that research is
being done exclusively in tinis area of number use, even though
everyone knows that children and mathematicians deal with numbers
in a much more complex fashion.

In order to gain psychological lmowledge and insight into &
child's view of the concept of numbers, I prefer to speak of age-—
nubbers, bus-nvmbers, skittles-numbers, marbles-numbers, number-
cards, magic-nunbers, the number "2+2=4", all of which are connec-
ted with specific contexts or situations.

I1I. BUS-CONTEXT and BUS-NUMBERS

Bus-context

One of the contexts which was developed by the I.0.¥%.0. and

which is now being recearched further by the OW & OC department
of the University of Utrecht is that of the bus. The bus can be put
to good use in introducing addition and subtraction. A-'simple illus-

tration is enough to give an idea:

LODN GO [+ 4 | RODEG ST
L‘fi}igjingdfijhilg,*‘“1__* (‘Efg$j?h_‘-‘<:>

This simple bus-sum consists of only one bus-stop, as opposed to
"chain-sums" which show a complete bus-ride,

In similar problems
three numbers are mentioned which we shall call:

the starter - the number of passengers on the.bus before the bus-
stop (in this example: 3).

" the operator — the + or - sign followed by & number on the signpost
at the bus-stop ( +4 ) and an arrow pointing in the diredtion of
the bus.

" the resultant - the number of passengers left on the bus after the
bus-stop.
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The first mention of ihe bus-model wiés in 1974 (Van den Brink).

There were various reusons Tor the introduction of this model:

Firstly, the designer required a model for introducing addition

and subtiraction. The bus-model satisfies ihis requirement.
® Children's informal sums cuall more for resultant operating (as in

the bus-model) than for comparitive operating
(Ginsburg (1977); Hercovics et Bergeron (1982)),
“ The use of arrow-notation refers to actual bus situations; that is,

che situation 1s always recognizeable in the notation
(Vergnaud (1982) (Kolb and Clay (1982)),

* Arrovi-notation gives the opportunity to record information about
events in other contexts than that of the bus, for instance infor-

pation sbout & game of skittles or marbles outside of school. Not
only is the social function of arrow-notation conteined here, but

also the possibility of suhstituting contexts.
“ A.large variety of practice forms are possible with arrow-

[ ]
notation.

» Etc.

b. Bus-numbers

¥ith regard to context-free numbers, bus-numbers have a few spe-
cific characteristics:
a, no negative numbers
b. no unlimitedly large numbers
c. simultaneous addition and subtraction
d. repetitive addition and/or subtraction
e. non-commutative for addition
f. directional problems in reading and bus-travel
g. relation between starter, operator and resultant
h. the driver
i. the fixed route
j. other contexts and number-systems, but only one arrow-notation

hn extended explanation will be given at the conference.

I1I, HYPOTHESES FORMED BY RESEARCH INTO THE BUS WITH KINDERGARTENERS

We first wished to find out whether young children - 4 to 6 -
were familiar with the bus-context as we see it. One of the bus's
charadteristics is that it makes continuous stops whereby the num-
ber of pessengers it is carrying varies. This is similar to a
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train.for instance; or to the results in & game of skittles which
also vary continually. Children however, are not alvays aware of
this changing structure regarding the bus. They aie more &pt to
think up & variety of other emotionally tinged stories and ideas
about the bus, the truin, skittles, or the "cart" in which they ride
around the playground.

Yie shall lict some of these ideas, and emphasize
the elements which cen be important in mathematics instruction.
Under discussion are: reéal buses (destinations and intermediate
stops, buying tickets and. transfering) and the bus as a toy and as
B -game,

The following remarks compare the models which were discussed
a, The bus makes intermediate stops:

This is unlike the schoolbus which only stops at the destination
and at traffic-lights. It is also unlike bowling. On the other hand,
the toy train is similarly repetitive, as is skittles.

b. There is only one driver on the bus; this ik unlike the cart,
where the drivers take turns.

c. The bus's fixed route is shared by the toy train but not by
the cart.

d. At every bus-stop the bus can be boarded as well as left.
This is not the case with skittles; <there the pins are only Jmocked

down with each throw, corresponding to only one of the main oper-

ations: either addition (of points) or subtraction (the number of
fallen pins).

It is clear that the above models differ considerably from each
other; so much that, in the eyess of kindergarteners, they may even
have nothing in common.

But that is true as well for the numbers involved. They differ
too, as what is allowed with numbers in one context is not possible
vwith numbers in another context. This is for that matter charac-
teristic of "doing maths".

But it should also be characteristic of kindergarten and first-
grade instruction to let children play with numbers in various
separated contexts in the form of ascorted gimee, without always
prefering to work abstractly by insistently pointing to the simi-
larities in the names of the numbers.

At this age, arithmetic should be a playing of social games, the
results of which can be recorded in arrow-notation. In doing so,
we should however be aware that one context approaches the desired
object of the instruction better than another.
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v HYPOTHESES FORMED BY RESEARCH INTO THE BUS IN RIRSGT_CRADE
Graphic bus in first-grade

Introduction

Along with children's stories and ideas about the bus, important
réles in this subject in first-grade are played by series of dravi-
ings of buses and by arrow=notation.

Maj,r mistakes or misconceplions regierding the graphic bus are
ihe {ollowing:
1. Extremes in occupancy: & completely filled or an empty bus as
starting-point.

2, The result used as the operator

3. Boarding and leaving at one &nd the same bus-stop.

4. The exchange mistake: the bus is seen as bus-stop sign and

viece-verssa,

5. Mistake by doing the sum

Ve reviewed the kind of instruction the children were receiving
at the moment that we noticed these mistakes. By this means could
vie determine the following:
* during the bus-games in January (skittles, marbles, play-acting
the bus, etc), the children had the impossible problemf in:hend.
*  MWowever, 2s soon as notation was brought up during the bus-stories
in February, the foliowing mistakes appeared:
the resultant used es an operator

buses exchanged for bus-stops

mistakes in doing the sum
A It is striking that these three types of mistakes disappeared
during the phase where various arrow-sums were introduced for prac-
tice in larch.

~ But the exchange mistake reappeared some months later - in June -
vhen the children were busy doing sums without utilizing the con-
texts. This led to misconceptions which could again be resolved

by refering to the contexts.

REFERENCES

See the paper available at the conference.
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CHILDREN'S PERCEPTION OF FRACTIONS AND RATIOS IN GRADE 5

Ipke Wachsmuth Merlyn J. Behr
Northern I11inois University

Thomas R. Post
University of Minnesota

THE PROBLEM OF BEGINNING FRACTION INSTRUCTION WITH EMBGDIMENTS

Common methods of fraction instruction use models that embody the idea of
fraction; for example, regional models support fractions as parts of an
equipartitioned whole, or counting models view fractions as a subset of a
given whole set of counting items, Advantages of such approaches are that
fractional ideas are based on concrete, imaginal representations which are
related to the child's reality (e.g., pizza models). The disadvantage is
that the conception of fraction derived from such models relies on a speci-
fied whole unit. Rather than thinking of 2/3 as a number, that is, of a
quantity 1ike, 1 or 2, children would 1ikely think of 2/3 of a whole
unit, Likewise, in the context of fractions children tend to speak of whole
numbers as 1 whole, 2 wholes, etc, The question emerges whether an instruc-
tion what uses part-whole embodiments really can provide a foundation for a
concept of (positive) rational number, Current curricula very early call
for application of rational number concepts, for examnle, in proportional
reasoning, Proportional situations require an understanding of fraction
which is independent of fixed units. An instruction aimed toward developing
an understanding of rational number thus needs to deal with the question of
how to achieve students' independence of fixed units for fractions,

THE EXPERTMENTAL INSTRUCTION IN THE RATIONAL NUMBER PROJECT

The Rational Number Project is a multi-site effort funded by the National
Science Foundation from 1979 through 1983. Instruction in a 30-week teaching
experiment in 1982-83 was based on the multiple-embodiment principle (Dienes,
1971) and.included the use of several types of manipulative materials, repre-
sentational modes, and rational-number constructs (Behr et al., 1980). An
important aspect was that translations between different modes of representa-
tion which subjects frequenfiy were to make during instruction would facilitate
the abstraction of rational-number ideas ( Lesh et al., 1980), One focus of
the project is to investigate the development of the number concept of frac-
tion in children. The Study presented in this paper is part of a larger set
of studies aimed at assessing children's quantitative notion of (positiye)
rational number (see also Wachsmuth et al., 1983),
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RATIO AND PROPORTION IN THE STUDIES OF NOELTING AND KARPLUS

The Orange Juice Tasks (Moelting, 1980) and Lemonade Puzzles (Karplus et al.,
1980) were experiments aimed at assessing the development uf proportional
reasoning in children and early adolescents. Noelting's study differentiated
developmental stages for subjects from aqes 6-16 years with respect to
problem types that he hypothesized to depend on the development of ideas of
ratio and proportion in children. We are interested in the cited studies
since a subject's ability to deal with a nroportional situation might be an
indicator for the quantitative concept s/he has developed of the ratios
involved. The concentration of a mixture resulting from, say, 4 parts orange
juice and 2 parts water in some sense embodies the quantitative aspect of the
ratio 4:2 -- it is a concentration of "4/6 orangy" (i.e. 4 parts sirup per

6 parts 1liquid; note that only a transformation of the part-part ratio to the
part-whole ratio will yield a measure for the concentration). The compar-
ison of the concentrations, for example, of a 4:2 and a 2:1 mixture
requires that children realize that these rat%os, though different in
quantity, have the same value (are equivalent). At Stage Il A in Noelting's
hierarchy (1980) children begin to realize that there is an internal relation
between the two terms of a ratio (or between numerator and denominator of a
fraction) whose value is independent of the total quantity of liquid.

Consequently, an assessment of children's performance on mixture tasks could
elicit to what an extent they employ strategies that are based on the "within
relation" (Noelting) of terms, in other words, exhibit children's quantita-
tive understanding of ratio or fraction,

CAN MIXTURE TASKS GIVE INSIGHTS INTO SIZE PERCEPTION?

Several reasons suggest an ambiguity over whether children's performance on
the quoted mixture tasks adequately documents their understanding of pro-
portion and rational-number ideas. (1) According to Karplus et al. (1980,

p. 141) there is evidence that "consistent use of pronortional reasoning

is not a developmental outcome, but depends instead on overcoming task
related obstacles.” (2) Noelting and Gagné (1980) contrasted the orange
juice tasks with the "Sharing Cookies" experiment which suggests the
comparison of fractions rather than ratios, and with comparisons of numerical
fractions, with identical numbers from one experiment to the other, They
found Jow correlation between subjects, and differences between these and
the ratio situations which they explain "by the greater importance of 'between'
relations in ratio and of 'within' relations in fraction” (p. 132). This
suggests that children's performance might depend on the problem representa-
tion. (3) Comparative items (i.e., "which of two mixtures is stronger?") do
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not explicitely assess children's perEeption of the size of a single fraction
or ratio. (4) It is unclear to what an extent a child's reasoning is based
on visual perception rather than perception of the size of the involved ratios.
Perhaps the failed answer of one of Noelting's subjects (1280 , p. 225):
"Because there is less water in A (4:2) than in B (5:3)" was based on the
right impression, namely, that there is relatively less water in A than

in B (Figure 1 suggests that there are water parts for only half of the

orange parts in A but for more than half of them in B).

A B

rigwre 1 @ EIERICIC) AREREOC0

(56) Another subject's answer to the item just mentioned: "A gives two

wholes and B: 1 2/3" was passed, but is based on a wrong perception of
the concentrations (two wholesis not the concentration of the orange mixture
but it is 4/6 of 2/3). Although mathematically correct in a comparative
situation, since a/b <c/d & a/athb <c/ctd, the subject's reasoning
presumably was not based on this insight, (6) In general, pictures as in
Figure 1 can be interpreted in various ways: as fractions (i.e,, 4/6 vs 5/8),
or as ratios (i.,e., 4:2 vs 5:3, with the possibility of reading them as four-
halves and five-thirds), Thus, we cannot be sure to what an extent observa-
tions of children's perception of the size of ratios and fractions in mixture
tasks are distorted by task-related variables.

THE INK-MIXTURE AND THE GRAY-LEVELS STUDIES

In video-taped clinical interview settings close to and at the end of the
30-week teaching experiment in the Rational Number Project, two studies

were conducted to get further insights into children's quantitative under-
standing of ratios and fractions, Subjects were 16 fifth-graders, eight from
each of two experimental groups in elementary schools in DeKalb, I1linois,
and a suburb of Minneapolis, Minnesota.

The ink-mixture study was done after 27 weeks of instruction. Each of 9

separate tasks was concerned with the comparative darkness of two ink mixtures,
similar to the mixture tasks of Noelting and Karplus, but was presented twice
contrasting a "ratio format" with a "fraction format": Having different
pictures and wordings, one version suggested a part-to-part while the other
suggested a part-whole interpretation of the same problem (see Figure 2).
Before answering the questions, subjects had been shown possible results of
mixing black ink and water in different ratios in form of gray-colored cards.
One card was pointed out to represent a mixture where "2 parts is black ink



Figure 2

Mixture A has

2 parts black Ink and ) parts water:

O
B O
® O

(2

>

wWhich minture 15 darker?

Mixture A7 Wixture 87 ____

Mixture B has

3 parts black Ink and 4 parts water:

O

B O
B O
B O
I 1
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Thay are squally dark, _____

In Mixture A

2 0f 5 parts 13 black ink:

ODOUER

SR

Mixturs A7

< Which mixture 13 darker?

In Mistuie 2

3 of 7 parts 13 black ink:

003

LI

Kiature §7 Thay are wqually dark,

and 2 parts is water" (or, "2 of 4 parts is black ink," respectively) and

named "half-way between clear and black,"

Subjects were then to rate three

ratios (fractions) in their darknessvalues, requiring discrimination between

five different gray

size notion of the ratios (fractions) involved.

levels.

More than 90% of all responses were correct,
showing that subjects (1) understood the problem setting and (2) had a rough

In both versions, the numer-

ical relationships between the ratio (or fraction) components in the 9 tasks
covered the full range of Noelting's developmental stages, with three cases
where both ratio and fraction version were in the highest stage, III.

The gray-levels study was done after completing the 30 weeks of experimental

instruction, The aim was to obtain a more fine-tuned record of subjects'
perception of fraction and ratio size than the one given with the gray-color-

cards experiment preceding the ink mixture study,

Embedded in an ink-mixing

situation, gray-color cards were to be associated with the 'values of fractions

with a scale of 11 distinct gray levels increasing in darkness from 0% (white)

to 100% (black) in stages of 10%,

Twelve cards with fraction symbols repre-

senting ink mixtures were to be ordered from lightest to darkest and, based
on their darknessvalues, to be associated with gray levels in the scale
(see Figure 3). In the parallel version, 12 cards with ratio symbols were

";9*’_:’__ Tl

gi P
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used representing ink mixtures of the same darknessvalues as the fraction
cards (i.e., 4:2 in place of 4/6, etc.).
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RESULTS OF THE INK MIXTURE STUDY

(a) Assessment of ratio comparison

In the presentation of results, items that meet Noelting's stage III (i.e.,
general non-equivalent ratios) are distinguished from those below Stage III
(i.e., equivalent ratios and ratios that either have equal first or equal
second components)., Response explanations were categorized to discriminate
between perceptually-based responses, responses which used ratios and pro-
portional reasoning, and responses which used fraction thinking on a ratio
task. In no case was the comparison of ratios based on the corresponding
part-whole fractions expressing the concentration of ink in water (e.g.,
4/6 for 4:2, etc.).

From the items that reoresented stages below III,72% (69) of all (96)
responses were passed; among these: 46%-(32) of all passed responses were
based on consideration of ratios, 32% (22) of all passed responses were based
on visual perception, 22% (15) of all passed responses were based on ratios
read as fractions (e.g., 4/2 for 4:2, i.e. did no longer deal with the actual
concentrations).

From the items represented Stage III, 33% (16) of all (48) responses were
passed; among these: 25%(4) of all passed responses were based on consider-
ation of ratios, 44% (7) of all passed responses were based on visual percep-
tion, 31% (5) of all passed responses were based on ratios read as fractions.
Besides, 28% (9) of all failed responses (19% of all responses) to Stage-III
items were rated as "perceptually based, right answer, wrong explanation.”

(b) Assessment of fraction comparison

From the items representing stages below III, 58% (46) of all (80) responses
were passed; among these: 61% (28) of all passed responses were based on
consideration of fractions, 24% (11) of all passed responses were based on
visual perception, 15% (7) of all passed responses were based on the corres-
ponding part-part ratio (e.g., 4:2 for 4/6). In one case an item was failed
in the category "perceptually based, right answer, wrong explanation."

From the items representing Stage III, 30% (19) of all (64) responses were
passed; among these: 68% (13) of all passed responses were based on consid-
eration of fractions, 21% (4) of all passed responses were based on visual
perception, 11% (2) of all passed responses were based on the corresponding
part-part ratio, Besides, 24% (11) of all failed responses (17% of all
responses) to Stage-III items were rated as "perceptually based, right
answer, wrong explanation."
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Observations

Overall, performance on ratio comparisons was better than on fraction com-
parisons (72% vs 58% success frequency for below-Stage-III items and 33%

vs 30% for Stage-III items), In both formats, about twice as many responses
of the (fifth-grade) subjects were passed on below-Stage-III items than on
Stage-III items, In both formats, about one-fourth of all failed responses
with right answers had wrong explanations which indicated that the answer

was based on perception. This suggests that the pictorial presentation of
mixture items helps subjects to give a right answer which they might not

have obtained in a purely symbolical problem setting. In‘'the fraction format,
more than 60% of passed responses on items of all stages were based on fraction
reasoning. This is in contrast to the ratio fromat: In particular for
Stage-III items, only one-fourth of passed responses were based on ratios
representing the true darkness value of ink mixtures while for nearly half

of all responses an explanation was given which was based on yisual percep-
tion. About one-third of all passed responses on Stage-III ratio items was
based on fractions that did not represent the true ink concentration (or, the
true value of the original ratio), Though mathematically legitimate for
comparison situations these answers do not contribute to insights about
children's quantitative understanding of ratio.

Results of the gray-levels study, as well as further comments on the ik
mixture study, will be presented in the session,
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THE DEVELOPMENT OF RATIONAL NUMBER CONCEPTS

Beth Southwell
Nepean College of Advanced Education

Fractional number ideas historically have been and continue to be
difficult for students in mathematics. Yet, fractional numbers
are critically important because they represent a means by which
a person can deal numerically with continuous phenomena in the
same way counting ideas can be applied to discrete phenomena.

One reason for this difficulty is the complexity of fractional
numbers. Kieren (1979) has posited the existence of five sub-—
constructs which appear necessary for a fully functional
fractional number construct. These are part—whole, ratio,
quotient, measure, and operator. There is still no clarity

as to how these sub—constructs develop, though previous research
by Noelting (1978, 1980 ),Kieren and Southwell (1979), Karplus
(1980 ), Noelting and Gagné (1980) and Southwell (1980, 1981,

and 1982) on the operator and ratio sub—constructs have given
some indications.

In order to develop a fully functional construct of rational
number, the development of each sub—construct needs to be
examined. Does the quality of each sub-—construct change with
age? If so, how does each growth point compare across the
sub—constructs? How do observable mechanisms used affect the
growth of sub—constructs? How do the representations used
affect the student's learning? What curricular approach will
be most effective for students at different levels and in
different situations?

PREVIOUS STUDIES

The study by Kieren and Southwell (1978) resulted in the following
conclusions in relation to the operator sub—construct:

(i) A subject who mastered the direct fractional number
task was likely to master the related inverse task.
It appears that it is the nature of the operator that
determines performance rather than the aspect of
inverse within an operator.

(ii) A pattern of growth over time is indicated in the operator
sub—construct of rational number. Three major levels of
development seem to occur, the "%" operator level, the
unit operator level and the general operator level.

(iii) The difference between male and female performance on
the machine mode was found to be significant at the
0.01 level.

(iv) Children in the elementary school appear to be able to
handle composition of two functions provided they already
have mastery of the two original component parts.
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(v) There appears to be a delay of two years between mastery
of the tasks using the two different representations,
machine and pattern, the latter being a more abstract
approach.

A further study by Southwell with a sample of Papua New Guinean
students, in which the machine representation was again used,
as well as the orange juice test (Noelting, 1978) resulted in
similar conclusions in relation to inverse tasks, a general
pattern of achievement by age but with a greater delay than
with the Canadian sample, and sex differences.

At the same time the data analysed indicate that the stages

of proportional reasoning identified by Noelting (1978) do

hold with the Papua New Guinean sample with some variations.

The similarity between two samples appears to increase as the
stages develop. Differentiation in these stages does not appear
to be determined by grade.

The strategies adopted by Papua New Guineans are similar to those

of Canadian subjects at the pre—operational and concrete operational
levels. No clear statement of strategies within the formal
operational level is possible.

A study (Southwell, 1982) using an Australian sample indicates

that Australian students develop the operator sub-construct of
rational number in three general stages with a delay of
approximately one year on Canadian students. Findings regarding
inverse functions and composition reflect the Canadian results.

THE PURPOSE OF THE STUDY

In order to extend the findings of previous studies and in
pursuance of an ultimate goal of determining the most effective
approach to the teaching of fractional numbers, a further study
was undertaken. The purpose of this most recent study was:

{z1) to trace the development of the various sub-constructs
with grade,

(ii) to compare performance on different modes of representation
of the rational number sub-—constructs

(iii) to analyse the mechanisms used by subjects in handling
fractional number situations, and

(iv) to examine implications for teaching rational numbers.

SAMPLE

The sample consisted of 522 subjects from Grades 6, 8 and 10 in
four schools in Lae, Papua New Guinea. The secondary subjects
were from two different Provincial High Schools, both of which

are mainly boarding schools. The sample distribution is given

in Table 1.



=172 =

Table 1
Sample Distribution
Grades
Sex 6 8 10 Totals
Female 76 1.5 67 258
Male 81 101 82 264
Totals | 15 216 149 522

INSTRUMENTS AND PROCEDURES
The first test administered was the Rational Number Thinking Test
developed by Kieren who gave the investigator permission to use
the test. Because of the relative unfamiliarity of Papua New
Guinea students with pizzas, this was changed to "pie".
Kieren's test falls into four sections:

Items 1 to 6 have to do with mixing chocolate drink and is a form

of Noelting's orange juice test. Items 7 to 14 involve sharing
of pizzas (pies), giving a different representation of proportional
reasoning. Items 15-18 involve the operator sub-construct and

is a pencil and paper version of the concrete machine mode used
by Kieren and Southwell previously. The remaining items 19-24,
present various problem situations in which the subjects are
asked to perform rational number tasks. These emphasised the
part—whole and quotient sub-—constructs.

The second test used was a much shorter test, devised by the
investigator to test the subjects' acquisition of the measurement
sub-—construct. Items 1 and 2 involve the division of a length
into a number of equal parts and the designation of each division
point by some fractional name. Items 3 and 4 involve the
comparison of two fractions, while items 5 to 8 test the marking
and reading of scales.

RESULTS

(i) Achievement By Grade

To trace the development of the various sub—constructs by grade,
the means for each sex in each grade for each sub—test were
computed. These are shown in Table 2.

On the Drinks, Share, Operator, Inverse and Scale sub-tests,
there appears to be a gain in achievement by grade for both
males and females. This pattern does not occur for males in
grades 6 and 8 on the Problems sub—test nor with males and
females on the measurement sub—test. Females in grade 8 and
10 on the inequalities test do not follow the pattern either.
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Table 2
Means on Eight Sub—tests by Six and Grade
Sub—tests
Meas- Inequ-
Grade Sex Drinks Share Operator Inverse| Problems | urement alities Scale Total
6 M 20067 2,88 bk .01 [2.06 |2.88 +18 0060 5::70:4
F Y850 2 ;47 B L7 203 12 T2 .5 04| 6.1852
8 M 252037567 .63 220 Al 892 074 s 0R ] 12059 .59 6.2667
F 205275 3,508 2 .17 |2.45 | 4.66 | 1.08 .40 | 6.5625
10 M 2,82 4.23 ] 1.5 usa e a3 Tl 2l 10 5855 750100
F 2.42 ] 3.9 <97 J2e g a0 2. 671090 15015079 558750
Tot l-M 2.38( 3.60 .74 225:.420.200.] 13:..40 .84 .51 5.9778
s BonllEaion | les Ml UG s RbE saTt 3 lie e 96 0] |46 72549
Total 2.29| 3.34 WO TER W X e S ) e T M R . 80 .45 | 6.1250

An SPSS crosstabs analysis, however, revealed significant differences
between grade and male and female performance on some sub—tests.
This is shown in Table 3.

Table 3
Crosstabulation of Sub—tests by Grade Controlled by Sex
Sub—tests
Drinks Share Operator Inverse Problems |Measurement [Inequalities Scale
Male
x? 17566715943 121 i 10-04 7] 51 0.1 19.44| 65.64|23.09 | 65.82
df. 10 14 8 6 10 14 4 10
sig. 06 0001 21336 .985 .0350 .0000 (00071 1 £742'6
Female
x? 22.25 :52 .07 2.451 2 .49 18.39| 44.296 9.11 | 3.83
afn 10 14 6 4 10 14 2 8
sig. 01 .0000 .8746| .6469| .0488 .0001 .0105 8723

This indicates that thedifferences in mean performances between
grades shown in Table 3 are not significant for both males and
females on the Operator, inverse and scale sub—tests.

Tests of significance show that the differences between the total
means of grades 6 and 8 and grades 6 and 10 are -highly significant,
while the difference between the total means of grades 8 and 10

is also significant, though less so.

The significance of the gain between grades 6 and 8, however,
needs to be treated with some caution since, in Papua New Guinea,
only 60% of Grade 6 students proceed to secondary school. Grade
8 students, therefore, may well be of a higher standard because
of the selective processes involved.



L

(ii) Comparison of performarice on different modes of representation

A correlation analysis was carried out to measure the strength of
the relationship between the eight sub—tests. Significances are
shown in Table 4.

Table 4

Significances of Correlations between Sub—tests

St Drinks Share Operator | laverse | Problems | Measurement] Inequalities |
Share 001 —

Operator .001 .001 -

Inverse 001 001 001 -

Problems 001 .001 .001 .019 —

Measurement .054 .293 .00 7 .046 .001 -
Inequalities | .001 .001 001 001 .001 001 —
Scale .055 016 001 001 .003 .00 4 001

The relationship between most sub—-tests seems to be strong with
the exception of the measurement and share sub—tests. Analysis
of correlations by sex and grade does not yield such clear
significances.

(iii) Sex Differences

The previous result is supported by the fact that there were no
significant differences between the total scores for males and
females.

Further analysis is needed to ascertain differences in performance
on each sub—test.

DISCUSSION AND INITIAL CONCLUSIONS

As this study was commenced in February, 1983, final results are
not available at the time of writing. A comparison of the level
at which mastery is achieved on each sub—construct has not been
completed, nor has a detailed investigation of mechanisms used
by the subjects. Until these are completed, no implications for
teaching fractional numbers can be considered.

From the data presented, however, it seems that there is an
increase in performance by grade, though no information is yet
available as to the precise nature of that increase. Also, there
appears to be a strong correlation between performance in the
sub—constructs measured by the tests administered.

NOTE: Detailed reports of this study will appear in the
Mathematics Education Centre Report series of the Papua New
Guinea University of Technology, Lae.
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HOW CHILDREN ACCOUNT FOR FRACTION EQUIVALENCEl

Robert P Hunting
Western Australian Institute of Technology

Knowledge of fraction equivalence is necessary for a mature
understanding of rational number. If our task as mathematics teachers
is to "reduce the degree to which students view mathematics as a bag of
tricks containing several "magical" procedures which miraculously
produce answers in narrowly defined situations" (Post, 1981, p30), then
we need to teach our students meaningful bases for thinking about
fraction equivalence. Observation of student problem solving behaviour
is a sensible source of such information. Research conducted recently
in Australia, Europe and the United States shows that the key concept of
fraction equivalence is not learned well in Western school systems.

Nine Year 4, 10 Year 6, and 10 Year 8 students from two elementary
schools and one middle school in Clarke and Walton Counties, Georgia,
were interviewed in the spring of 1979. Sets of problems designed to
expose students' thought processes in discrete quantity partition
contexts, and fractional number contexts were used (Hunting, 1981).

Data from students' responses to Task F9: Solving Equivalence
Expressions is reported here. For this task, students were individually
shown a fraction written on a sheet of paper, and asked to complete an
equivalent fraction whose denominator was given. Then, using a supply
of counters, they were asked to verify that the two fractions were
equivalent. Problems given included 1/2 = /4; 1/4 = /8; 1/4 = /12; 2/6
= /3; 6/15 = /5; and 3/12 = /8. An adaptation of the clinical method
was used to obtain the data. Of interest in this study were the kinds
of strategies used to produce and to verify solutions to the equivalence
problems. Production strategies will be described first, followed by an
example of verification behaviour from the first equivalence problem,
172 = /4.

RESULTS
Types of production strategies displayed by students in completing the

equivalence expressions in Task F9 were these:
1. Common factorisation. In this strategy arithmetic procedures

1 An expanded version of this paper is available upon request.
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directed towards the identification of a common factor in both
numerator and denominator were employed. For example, MK(12;1)
reported solving the problem 2/6 = /3 this way: "In order to get
that, you had to divide six by two times, and so you had to divide
two by two and you got one." This strategy worked for problems
where one denominator was a multiple of the other.
Cross-multiplication. For the problem 3/12 = /8, KB (12;3)
multiplied 3 by 8 to get 24, then divided 24 by 12 to find the
required numerator.

Recalled knowledge. LL(9;11) stated that she knew two-fourths was
equivalent to one half because she remembered this fact from the
previous year's instruction.

Invented algorithm. With the problem 2/6 = /3, DD(9;10) multiplied
the numerator of the fraction 2/6 with its denominator, and obtained
12, He then found that numerator which, when multiplied by three,
would also give 12.

Use of ratios. CP(10;3) explained his solution to 1/4 = /8 by
saying that since the denominator four was increased by four to make
eight, the numerator one should increase by one to make two.

Intermediate fraction. LN(14;3) successfully completed the
expression 1/4 = /8 saying: "I figured four-eighths is one-half and

one-fourth is one-half of one-half."
Guess and see. Students would typically offer a solution in the
expectation of receiving further information from the investigator.
For example, SR(10;0) chose three as the number of fourths
equivalent to one-half.

I : "Why did you decide to write three?"

SR : "Because two plus one is three I guess."

I S e Oican

SR : "I know that's not right."

Occurrences of these strategies across all the children interviewed can
be seen in Table 1. Not surprisingly, the older children completed more

problems. Several Year 4 students who did not respond, or guessed
solutions to the first problem, 1/2 = /4, were able to successfully

produce solutions by constructing representations for the fraction 2/4
using the available counters. Since such physical experiment was not a

spontaneous response to the problem given it was not categorised as a
production strategy. Overall, the most popular strategy (46%) was
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YEAR 4 STUDENTS (N = 9)

AD(9;11) BH(10;4) CP(l0;3) DD(9;10) EF(10;2) HP(9;8) LL(9;11) MC(10;5) $R(10;0)
Equivalence
'roblems
1/2 = [4 NR 7 NE 4 NR 7 3 1 7
/4 = /B NE NE 5 4 - 7 4 1 7
/4 = [12 4 - NE ] = = NR - 4
26 = /3 - - 4 4 - = 4 - 4
6/15= /5 - - - = = = = = =
Jiz= /8 - s o 2 14 = > ’ X
YEAR 6 STUDENTS (N =10)
KB(12;3) TB(12;5) CC(11;8) MK(l2;1) KL(11l;10) TM(12;9) AR(11;5) TR(13;4) DS(11;10) MW(l1;9)
Equivalence
Preblems
/2 = [4 2 4 1 l 5 1 1 EO 4 1
/s = /8 2 4 NE 1 NE 1 1 EO 4 1
How many - - You could I don't About 10 About 8 There's a = - Could go
fractions go on and know. of them lot of on and on.
equivalent on,There's There'd them
to 1/47 probably be an
no telling awful
lot,
2/6 = /3 1 NR 1 1 5 1 NE 4 4 1
§l5= /5 1 1 1 NE 4 4 1 4 4 1
¥Yiz= /8 2 NR 4 NR NR 4 NR NR - NR
YEAR 8 STUDENTS (N =10)
CB(13;5) JB(14;7) MG(13;10) SM(14;8) LN(14;3) AO(l4;1) JP(L13;8) MS(l4;4) DW(13;11) VW(l4;6)
Equivalence
Problems
/2 = /4 5 1 1 1 3 5 1 1 1 5
/4 = /8 4 1 NE 1 6 5 1 1 1 1
How many You cango I don't You can All of Theywould Awhole An infin- - A lot Since there's
fraccions on and on about keep on them be infin- lot of ite numb- no end in
equivalent 10 or going as ite them er numbers, you
to 1/47 12 long as because could mosc
you want numbers probably
to are four times
infinite any number
2/6 = /3 1 1 1 NE 1 5 1 NE 4 1
&15= /5 NE 1 1 4 NE - NE 1 4 1
yi2= /8 4 [ 6 2 4 - 4 NR 4 1
Key: 1. common factorisation 7. guess and see
2. cross mulciplicacion - problem not given
3. recalled knowledge NR no response
4, dinvented algorithm NE no explanation
5. wuse of ratios E0 explanaction obscure
6. intermediate fraction
TABLE 1 : PRODUCTION STRATEGIES
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common factorisation, followed by invented algorithm (31%). Ffrequencies
of other strategies were: use of ratios (8%); guess and see (5%); cross
multiplication (4%); intermediate fraction (3%); and recalled knowledge
(2%). In the second most frequently occurring strategy, invented
algorithm, several students appeared to attempt common factorisation,
but were unsuccessful. For example, TM(12;9) explained her solution to
2/6 = /3: "Cause you can reduce two-sixths into one-third." But in
the following problem, 6/15 = /5, she wrote three because: "I said
three can go into six and 15."

Many children were prevented from verifying solutions because of their
inability to represent a fraction using a given set of counters.
Moreover, very little evidence was found for a connection in the
children's minds between strategies used to produce equivalent
fractions, and strategies for verifying these expressions. An excerpt
from a working transcript of a Year 8 student is provided as an example.

MG (13,10) reported using common factorisation to find the solution to
the problem 1/2 = /4. He used a pie analogy to explain the equivalence
of one-half and two-fourths: '
"Well, because one-half, let's say you had a pie, and
one-half of a pie (draws a circle and marks in a diameter)
like this, this is one-half. Make it two-fourths (draws
another diameter orthogonal to the first), two of those
fourths make it the same as one-half. Do you understand?"
When asked if he could explain with counters MG took four counters and
offered a similar argument as before. But doing so with 12 counters
proved difficult for MG. He placed the counters in a 6 x 2 array.
TS 2 Wi R gh et
MG : That's one-half there (takes a column of six and rearranges
them into a 2 x 3 array), that's two-fourths - I don't
understand what you're talking about."
I : "Can you show me one-half of 12 squares?"
MG : "One-half of 12 is what. Oh, 0.K. (counts out six
counters). That there."
I : "0.K. Now can you show me two-fourths of the 12 squares?"
MG : "Two-fourths of the 12 squares. Right there (pointing to
the six counters arranged for one-half)."
I : "How is that two-fourths?"
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MG s S MoK

I : "It looks like one-half 1o me."

MG : "But see, two-fourths will go into 12 (picks up pen and
writes 2/4) four will go into 12 three times, and that
will give you six. (writes /12 and then six over the
numeral 12). This is six over here and that will give
you the same thing.

I ¢ "Yeah. Why don't you make those 12 squares into fourths

for me."
MG : Into four?"
1 : Into fourths."

MG : (Makes three groups of four) "Here."
Jeohes o listkhat- fourths T

MG s et Yedh i

I : "How many equal groups are there?"

MG : "Three"

I : "Yeah (pause) What does one-fourth mean?"
MG.. R ROh Rt

I : "What does one-fourth mean?"

MG : "Oh, one-fourth of 12? It would be that right there
(indicating group of four)."

MG used a common factor strategy to complete the given equivalence
expression. His justification rested on a continuous quantity object:
that of a pie. MG could take four discrete elements and provide an
analogous rationale. But 12 counters revealed the brittleness of MG's
conception of fourths. He resorted to numerical algorithms to argue the
equivalence of one-half and two-fourths of 12 objects. When pressed to
show two-fourths with discrete elements MG seemed unable to bring to
bear a satisfactory action strategy. MG's knowledge of fraction
equivalence in this context was not adequate.

DISCUSSION

Fraction equivalence is a key idea in elementary mathematics. Data
provided in this paper shows that students use a variety of strategies
for producing solutions to equivalent fraction problems. Surprisingly,
the most universal procedure for solving the problems given,
cross-multiplication, was used in only 4% of the strategies classified.
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Discontinuities were observed between strategies students used for
producing solutions and supporting knowledge grounded in physical
reality. Even the most successful students interviewed adopted
different procedures for obtaining solutions and verifying their
results. A number of students were prevented from successfully
demonstrating equivalence between physical representations of two
fractions because they could not represent individual fractions using
the discrete quantities available. The example given highlights the
dependence of equivalence knowledge on possessing general action
strategies for constructing physical representations for fractions.
There is an urgent need for mathematics teachers to reconsider their
methods of teaching fractions in the light of these results. In
particular, when teaching fraction equivalence students should be
expected to verify their solutions to equivalence problems using
physical materials. If students experience difficulty finding
equivalent fractions, then inexpensive resources such as counters,
blocks, popsticks, and the like can be used to find solutions. Teachers
should ensure that representations of fractions are constructed from

sets whose cardinality is some convenient multiple of the denominators
under consideration so that literal interpretations of fractions, like,
for example, one-fourth means "one out of four things," can be broadened
and extended.
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THE LONG TERM LEARNING PROCESS FOR RATlO‘
L. Streefland
Oow&oC

Utrecht, The Netherlands.

SUMMARY

In the proper contribution some remarks are made on the
manifestations of ratio and proportion in actual mathematics programmes.

Next some global results of the consultation of an international panel of
experts will be reported with respect to their judgements about the way one
should deal with ratio and proportion in mathematics education. To serve that
aim an instructional text was submitted to the panel.

In the closing sections the author reflects on some important features
concerning the long term learning process for ratio, to wit (on ratio)
anticipatory activities, modeling and schematising.

1) INTRODUCTION

In mathematics programmes for elementary instruction, one is often struck

by the poverty and brevity of the approach of ratio.

The poverty of the approach to ratio is more generally characterised by

- concept building, exercised with mathematical objects;

- virtual lack of real applications;

- isolation of the subject 'ratio', which is hardly connected to any other
subject;

The intended connection, - if there is any - is imposed a posteriond,
conceived in an advanced stage of abstraction.

- ignorance of the visual world as a source of ratio and the lack of
visualisation in the approach of ratio; for instance no exploration of the
phenomenon stick-sun-shadow, which is a most efficient model for ratio
invariance. %

= virtual lack of schemas for the numerical processing of ratio problems;

2) 'THE GIANT'S REGARDS' FOR AN INTERNATIONAL PANEL.

The IOWO-theme 'With the giant's regards' (De Jong, 1978, p. 23-43) has
been re-edited with a view on a research study. The original version was
centered around area as a basis for ratio.

In the new version it has been tried to approach ratio in a more variegated
way.
More justice had to be done to the phenomenon 'ratio' as it appears in the

world of and for children. It had been my intention to submit the theme to

*A more extended paper will be available at the conference.
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an international panel of expert colleagues in order to 1lc .rn what they

think about ratio and to confront their views with my own. The group that had
been invited, consisted of curriculum developers, teacher trainers,
researchers (psychologists and educationalists), mathematicians,and subject
matter didacticians (mathematics, physics, chemistry).

They numberxred 68. (40 from abroad, 2B from my country). 32 reacted (from each
group 16), and 29 responses ‘could be used for the present research.

A text containing a description of the theme,close to actual instruction and
illustrated by pictures and drawings had been submitted to the panel. A
lesson plan had been added, from which the various objectives could be
globally derived.

For instance:

- ratio and measuring length (lesson 1);

- .measuring and increasing in two directions (lesson 5).

These objectives had been specified by descriptions of lessons and suggestions
for mathematical activities.

The panel was informed that the lessons were meant for third graders (8-9

years old). The working sheets for the pupils were part of the material
submitted to the panel.

The panel were asked questions like: 'Do you judge that in the theme' 'With the
giant;s regards'' full justice has been done to the phenomenon 'ratio'? and’

'Does ratio in all its aspects occur in the proposed activities?'
3) MAIN TRENDS IN THE RESPONSE RECEIVED

A quarter of the respondents who explicitly dealt with the first question,
judged that justice had been done to the phenomenon 'ratio' albeit within a
restricted context.

It may be concluded that the embodiment of mathematical activities into
contexts was judged to be essential for learning mathematics with a view on a
many sided approach (and embedding) of ratio and the applicability of the
learned subject matter.

In general one might conclude that the views brought forward in the responses
of the panel were as it were the opposite of each of the characteristics of
actual mathematics programmes as mentioned in our introduction.

Indeed they stressed such aims as the following:

= respecting the aspects and manifestations.of ratio; comparing all kinds of
magnitudes; considering mixtures of continuous quantities; distinguishing

internal and external ratios (that is ratios within and between magnitudes;

cp. Freudenthal, 1983, ch. 6) stressing ratio in the operator;
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- providing ratio a meaning by problem ;ituations in a context, that is to
say the use of reality both as a source (for concept building) and domain
0f application;

- recommending the use of schemas and visual models to support the learning
process;

According to the opinion of the panel the necessity of long term learning
processes was beyond doubt. It was characterised by such qualities as the
following:

- from intuitive notions via abstracting to concepts;

- applicability of the learned subject-matter;

~ many sided approach tc ratio;

- consciousness about the learned subject matter acquired among others by

conflicts and reflection.

In the long term learning process the mental status of 'ratio' moves from
intuitive notion to . fullfledged concept. A primarily qualitative approach
and activities of estimating can play an important part. (cp. Streefland,
1982).

In the plea for coherence in the curriculum,fraction and similarity were
mentioned as obvious examples.
The long term learning process played a part in many responses though it was
ﬁeither elucidated by arguments of content nor by examples.
By means of an analysis .of some phencmenon, - which can only be referred to
in a general way within this framework - and with a view on activities that
are related to, or anticipate on ratio, much more subtle connections can be

shown within the curriculum.

4) ACTIVITIES ANTICIPATING ON RATIO AND THE FIRM EMBEDDING OF RATIO IN THE
CURRICULUM

In our view the keypoint for a solid embedding in the curriculum is the
mathematical material on which ratio is based:
In order to explain for the very moment . what I mean, I consider the example
of population density.
In this 'composite magnitude' a result of counting is connected with a
result of measuning.
The evolving construct is that of equipartition of inhabitants per unit of
area in order to facilitate comparing such a situation with similar ones:
more or less populated areas.
In general taking the stand of 'ratio' means relativating the results of what
might be called basical mathematical or physical operations such as

measuring, counting, estimating, reckoning and their composites.
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The Logical status of rhatio is more complex than that of such elementary

ideas as length, mass, area, volume, number, adding, substracting,
multiplying, dividing (cp. Freudenthal, 1983; p. 179, 181; Streefland, 1982,
p. 194).

Examples, to be elaborated in detail at the conference are density,
multiplication and probability.

'Counting large quantities' .and 'measuring areas' - among others - are
together the very cognitive and ﬁumerical sources of ratio.

The various separate learning sequences meet each other in the learning
sequence for ratio. It is a key question in which stage the separate

learning processes, should be Antertwined to prepare ratio. Or - seen from the
viewpoint of ratio ~: How early are Lnfoanmal approaches to functional bonds
between magnitudes to be explored in order in a later stage of the learning
process to be recognised as similarities, linear mappings, linear functions,
and so on.

Objections against too late intertwining and forced formalising might be
derived from research results. (preposterous abstraction, premature
algorithmisation; cp. Hart, 1980, 1981). What is proposed here is intertwining
of such learning sequences in a quite early stage while linking up with
children's intuitive, informal solving methods rather than forcing up
algorithms and badly fitting models. Intertwining should attribute to the
constitution of menéal objects within the particular learning sequences as well
as to that of ratio as its product.

The kind of activities at junctions of learning sequences will be called
anticdpating:

This choice requires more complicated problem situations. In particular with
respect to ratio this greater concepfual complexity is indispensable.
(Vergnaud, 1982, p. 53).

As the learning process progresses the aim of anticipating activities moves on
too.

The long term learning process was implicit to many reactions I received,
although such considerations as brought forward in the present subsection were
at most globally indicated.

Sofar radical interventions in the prevailing mathematics programmes for 6-13
years olds as the proposed one have not been considered. On the contrary one
has yielded to the temptation to delay ratio even more because of difficulties

experienced in the teaching practice.
5) MATHEMATICAL TOOLS TO SUPPORT THE LONG TERM LEARNING PROCESS

The features of modeling and schematising played an important part in my

reflection on the long term learning process.
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Modeling

The models at issue are visual ones which support the learning process and
broaden the applicability of the acquired knowledge. Starting point will be

model buifding within the Learning phocess.

A sequence for the sector diagram for instance, which outlines the long term

learning process, might be:

- exploring and producing (coocking) recipes;

- visualising cakes in circle diagrams what regards the ingredients of the
recipe and their part in the whole;

- transition from a variable to a fixed representation: the diagram is going
to function as a modef, the sector diagram;

- translating (other) recipes, mixtures, alloys.in sector diagrams (in order

- to facilitate questions of comparison, for instance);

- more examples of divisions and distributions put into sector diagrams, for
instance:
time tables of activities of a counter clerk (stamp sales, money matters,
advising, ....) or of a policeteam (service, traffic regulations, crime
Eighting, ..

- interpreting given sector diagrams, comparing and ordering them according

to one or more criteria;

applying sectordiagrams in general

Schematising

DISTANCE (m)| 5 | 10 ‘ 121;{ 15| I | |
The ratio table :

TIME (see) | 1 i 2 I 2%‘ 3 1 | | I

can play a decisive part in the learning process with respect to the
development of algorithmic procedures for the comparison of ratios.

As we will show at the conference, the ratio table schematises in a well-
organised way the spontaneous problem-solving strategies of children,
without cutting off possibilities.

Specifying the part played by the ratio table in the long term learning

process, we arrive at

- support given to the concept building (ratio as an equivalence relation,
the concept of variable);

- contribution to the detachment from the context (the ratio table as a
unifying model) ;

- contribution to discovering, making conscious and applying all
properties which characterise ratio preserving mappings and to their use

.

in numerical problems;
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Finally:

- serving the process of algorithmisation of ratio (and fractions,

6)

percentage, ...) via shortcuts adapted to the solving process of problems

(cp. Streefland), 1982)
CONCLUSION

Learning ratio should start from genuine problems in the reality of and
for children as a 4ource (for the acquisition of the concept) and domain
of application.

The visual perceptive reality of children serves as a start. Justice
should be done to the various manifestations of ratio.

The learning process should be designed with anticipating activities that
account for connections with other learning sequences. To this aim schemas
and visual models should be developed to support the long term learning
process and therein general cognitive processes such as abstracting,
generalising and unifying. Stress must be laid on the mathematical
activity by which schemas, models and procedures of problem solving will
be constructed by the children themselves in order to bring about adequate
concept budilding.

Abstractions, generalisations and models are to be developed from the
spontaneous informal solving strategies, rather than‘tc be forced on the
learners in order the learned subject to be made applicable.

Those are the germs of an instruction theory with respect to learning

ratio and proportion.
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PROBLEMS OF REPRESENTATION OF AN OPERATION IN
ELEMENTARY SCHOOL ARITHMETIC

Nadine BEDNARZ and Maurice BELANGER

Université du Québec a Montréal

PROBLEM

Our previous research on the understanding of numeration in elementary

school children (1) and work with children in classrooms has led us:

1) to observe that different representations of the same concept were
interpreted or used by children in various ways, and often not in the
expected or desire sense;

2) to the analysis of multiple forms of symbolization with which children
are confronted in schools texts, tests and other curriculum materials.

3) to observe that in a learning context children construct their own

representations of concepts and modify them gradually over time.

The following questions concerning the importance of representation have

been posed:

1) Are children imposed prematurally to representations in mathematics that
are inaccessable or not useful? In such cases they cannot react other
than by ignoring them, or by the mechanical application of a rule.

2) To what degree are these representations a support for the understanding
or solution of a problem?

3) What interpretations do children give to multiple forms of representation?

4) Do they see in these representations what the adult would like them to
see?

5) Are there representations that are altogether useless or create learning
problems?

6) What spontaneous representations do children use when a problem is

presented?
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CURRENT RESEARCH
In our analysis of childrens' textbooks concerning representatious related

to operations in arithmetic, we have encountered symbolic representations of

two general types: a) those purely symbolic (e.g. equations) and b) those

which are symbolic plus another representation to serve as a support

(drawings, set diagrams, number line, machines, etc.). In the case of
symbolic representations with support, we distinguished three sub-categories

of supports:

1) "supengfluous supports': Those that are intended to serve as a support,
but in fact bear no relation to the symbolic representation and do not
help the pupils to solve the symbolic form.

2) "solution suppornts': They focus on the association expected from the
child between the symbolic (equation) and the support. Despite, a total
one-to-one correspondance between the symbols and the support is
presented and no mental activity or solution process is promoted. It is
actually short-circuited. |

3) "necomstruction suppornts'': They require the same strategy either on the

support or on the symbolic form.

Examples will be provided at the conference. We also find forms of
representation without symbolic equations, which are intended to help

children see different aspects of operations: machines, set, diagrams, etc.

Moreover, we use representations which are not met in textbooks and which
come out on one hand from the spontaneous creation of pupils in learning
situations or on the other hand from a special search (depending on context)

for representation more evocative of actions.

REPRESENTATIONS
[ [ 1
Textbooks representations Other
! | e [ 1

Purely symbolic Symbolic with Representations Representations:
support such as: cartoons, etc.

machine, diagrams,

number lines...

Superfluous Solution Reconstruction

support support support
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EXPERIMENTATION

Different situations were constructed, in accordance with the various

questions previously identified.
Six types of situations were devised up to now:

1) Free discussion with the children concerning the different representa-
tions identified previously.

2) Symbolic equation with supports. Children resolve the equation and then,
from memory are asked to describe the support they had seen. This was
intended to study if in fact the children actually used the support
presented.

3) Different representations were presented (drawings, machines, cartoons,
etc.) and children were asked to invent a problem starting from this
representation.

4) Different representations were presented and children were asked to write
the corresponding equation.

5) Problems corresponding to different contexts of the four arithmetic
operations (e.g. for multiplication context of repeated action and
context of rate) are presented to the children and we note which supports
they use in the solution. In the case of word problems relative to
different contexts of operations, there are two types of problems: for
certain problems children should see an action over time, for other
problems children should see static states.

6) Different representations are introduced (in textbooks or otherwise) and

children are asked to solve problems using this representation.

Some of the situations were experimented in the form of an interview (1, 2
and 6 above) with six to nine years old children. Other situations were
experimented in written form (3, 4, 5 and 6 above) with children from six
to twelve years old. In the written form, approximately fifty children
participated at each grade level.

RESULTS
In the three sub-categories previously identified, we verified if the

selected classifications proved adequate and identify the representations

which 1) are superfluous, 2) stress more efficiently than others certain
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features of arithmetic operations, 3) represent actions more adequately
(Can a representation on paper reproduce the dynamical nature of an
operation?) and 4) are being developed'by children in learning situations

can be as well used by other children.

Moreover, we verified if children use the same sort of representations in

various contexts: those involving actions or those more static in nature.

We hypothesized that children will not take the same type of representation
in these two types of problems. Furthermore, the children have more
difficulty to represent a problem where there is an action than in static
contexts. '
Since this is work now in progress the results of our studies will be

communicated at the PME meeting in July.
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A CRITIQUE OF PIAGET'S ANALYSIS OF MULTIPLICATION

Nicolas Herscovics, Concordia University
Jacques C. Bergeron, Université de Montréal
Carolyn Kieran, Université de Montréal

Nowadays, teachers use many different models in their presentation of mul-
tiplication. Some textbooks introduce this operation by counting the num-
ber of jumps on the number line, others refer to the Cartesian product
(number of blouses x number of skirts = number of outfits), while still
others are based on problems involving the concept of ratio. This host

of presentations reflects the large number of situations which can be
represented by multiplication. But the question arises whether such
models constitute a good intuitive basis for the initial construction of
this arithmetical operation or, if on the contrary, they involve more com-

plex notions than that of the quantification of sets of discrete objects.

Quite obviously, jumps on the number line necessarily involve the concept
of measure of length which proves to be more complex than that of number
used as a measure of discrete quantities. The illustration of the Carte-
sian product brings about a fairly abstract element of combinatorics, that
of choice. Moreover, such a concretization is quite relative for in the
given example, it is the number of different pairs of blouses and skirts
that needs to be counted. In fact, all the possible outfits cannot exist
simultaneously at the concrete level since any given outfit needs to be
broken up in order to construct further pairs. As reported by Suydam and
Weaver (1970), Hervey (1966) has found that the Cartesian product model

was more difficult for second graders than the equal addend model. As far
as using the concept of ratio as a basis for multiplication, it is not at
all evident that this is valid in the case of discrete objects, nor that
such an approach might not constitute an inversion of the natural order

of the child's constructions. This brief analysis seems to indicate that
it i1s still the traditional model, that is the quantification of equivalent
sets of discrete objects, which represents the most primitive of all multi-

plicative situations.

A review of the literature on the learning of multiplication of natural
numbers shows that most of the studies dealt with the multiplication al-

gorithm involving multi-digit numbers. Regarding the multiplication of

Research funded by the Quebec Ministry of Education (FCAC,grant EQ-1741)
and the Université de Montréal (Fonds FDR).
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numbers smaller then 10, many teachers tend to focus on the memorization
of number facts without asking themselves questions such as 'What does

it mean to understand multiplication?'", '"How does the child construct
this arithmetical operation?'. Answers to these questions require an
analysis of the multiplication concept which cannot be reduced to a simple
task analysis, but needs to be carried out in an epistemological perspec-

tive.

Multiplication having been taught for ages, it is rather surprising to

find how little attention these questions have received. Only a few
researchers have tackled them. In fact, if a teacher or any adult is asked
the first of these questions, the answer is likely to be '"Multiplication is
repeated addition'. However, such an answer reveals an emphasis on the
formal definition of the arithmetical operation, a definition whose nature
is far mcre procedural than conceptual. It seems very difficult at first
sight to identify a concrete action specific to the idea of multiplication.
This is, in sharp contrast with division which, although defined as the in-
verse of multiplication, is associated with the act of sharing.

A DEFINITION OF MULTIPLICATION

Within the context of the quantification of sets of concrete objects, it
seems nearly impossible to perceive a multiplicative situation indepen-
dently of the idea of division. Indeed, if the latter raises the question
of sharing the whole into equal parts, the relation of the parts to the
whole involves multiplication. It does not seem possible to generate a
multiplicative situation which could be dissociated from a prior appro-
priate partitioning:

An arithmetical multiplication is an equi-distribu-
tion: m x n is m sets of n terms or n sets of m
terms which correspond one to one

(Piaget & Szeminska,1941/1967,p.253)

Of course, this definition does not describe the arithmetical operation
but rather that which characterizes a multiplicative situation. If at
first sight it seems to define multiplication on the basis of division,
one must however keep in mind that equi-distribution does not necessarily
imply that all the elements of the initial set have to be used. And it

is this criterion, that of a non-exhaustive distribution which can be
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used to distinguish a multiplicative situation from a situation involving
division. 1In the latter case, the complete distribution of the initial

set would be required.

Although Piaget and Szeminska include commutativity in their definition of
multiplication, this property is far from being accepted by all primary
school teachers. In an experiment dealing with the training of teachers
in the analysis of mathematical concepts (Bergeron et al, 1981), many of
them insisted on a unique interpretation of 6 x 9 restricting it to '"six
sets of nine'" and mentioned that this was the only answer they would ac-
cept from their pupils. But far from being a sign of ignorance on their
part, this rejection of a double interpretation (nine sets of six) was

due to their desire to model a multiplicative situation. That the same
answer resulted from both interpretations was not considered a good enough
reason and they gave as example that "working for six hours at nine dol=-
lars per hour" was not at all the same as 'working nine hours at six dol-
lars per hour". Their single interpretation of 6 x 9 was reinforced by

a natural tendency to read from left to right, a tendency observed in

other arithmetical contexts by Kieran (1979).
THE CHILD'S CONSTRUCTION ACCORDING TO PIAGET

In their book La Genése du Nombre chez l1'Enfant, Piaget and Szeminska
(1941/1967) devote a whole chapter to the child's construction of the mul-
tiplication concept. According to them, this construction is elaborated

on the basis of one-to-one correspondances between several sets (more

than two), which involves a composition of the equivalence relations, com-

position which eventually brings about arithmetical multiplication.

Moreover, arithmetical multiplication being an equi-
distribution, the equivalence based on one-to-one
correspondances between 2 or n collections A is thus
an equivalence of a multiplicative nature whose mean-
ing is that one of these collections A is multiplied
by 2 or by n; Ae—=sA... thus means 2A or nA, just
as conversely, nA implies the term-by-term correspon-
dance between n collections. From a psychological
point of view, this simply means that setting up a
one-to-one correspondance is an implicit multiplica-
tion: hence, such a correspondance established bet-
ween several collections, and not only between two of
them, will sooner or later lead the subject to become
aware of this multiplication and establish it as an

SR by P e R R LR DY bat s s eminaka 1067 D 60)
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Piaget and Szeminska have described the construction of multiplication on
the basis of the following experiment:

The child is asked to construct first a set of red flowers (R) and then

a set of blue flowers (B), both sets to be equivalent to a given set of
ten vases (V). He is then questioned about the equivalence of sets R and
B. Following this, he is asked how many flowers will be in each vase if
all the flowers are distributed evenly in the vases. Finally, in order to
verify if the child perceives the number of flowers as being twice the
number of vases, he is asked to fetch enough tubes for all the flowers

(each tube containing but one flower),

By interviewing children aged four to seven, the authors of this experiment
found that the perception of this situation as being multiplicative depen-
ded on a conservation of the equivalence of the sets based on one-to-one
correspondence. Indeed, the child who held on to the equivalence of the
two sets of flowers in spite of changes in their configuration, could spon-
taneously generalize this equivalence to more than two sets. Moreover, he
could predict the number of flowers in each vase and, in contrast with the
non-conserver, he could fetch without hesitation the .quantity of needed
tubes (10 and 10) thus indicating his awareness that the number of required
tubes was twice the number of vases. He could also extend this to other

multiples of 10.

Piaget and Szeminska use the term '"multiple correspondence'" to describe
the generalization to n sets of the composition of equivalences based on
one-to-one correspondences. Perhaps the degree of sophistication of
"multiple correspondence' may be overlooked unless one recalls that
according to them, composition of one-to-one correspondences also implies
conservation of this equivalence. These authors claim that such a "multi-
ple correspondence'" leads to both the one-to-many relation as well as to
the multiplication schema. But is this necessarily so? , Are there not

easier alternative constructions?

In their expériment, the one-to-many relation is based on the repetition of
the one-to-one correspondence. It is only when the child constructs two
equivalent sets of red and blue flowers with respect to the 10 vases,that
the question about the relation '"two flowers in each vase' is raised. But
could not the one-to-many relation prove to be more primitive than

multiple correspondence?
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If this was the case, the one-to-many relation would not be stemming from
a repetition of one-to-one correspondences. In fact, well before he con-
serves one-to-one correspondences, a five-year-old child might not only

recognize equivalent sets but also generate them. This could be verified
with some very simple tasks involving the selection of pictures in which

"each cat has the same number of kittens" or in "making five packages of
four cards in each package'. This would imply that the one-to-many rela-
tion built on '"multiple correspondence'" is far more advanced than the one

built on numerosity.

Rather than describing the child's construction of multiplication, Piaget
and Szeminska's explanation based on '"multiple correspondence' could be
more a reflection of the constraints inherent to the tasks selected for
their experiment. Indeed, the equi-distribution of flowers in the vases
requires initially one-to-one correspondences from which the one-to-two
relation and the notion of "twice'" must be derived. On the other hand, as
indicated in the example 'five packages of four cards', one can generate

a multiplicative situation on the basis of equivalent groupings. In such
a case, the multiplicative nature of the task does not stem from a repeti-
tion of one-to-one correspondences but from a repetition of the one-to-

many relation implied in the generation of equivalent sets.

There are some indications that the repetition of a one-to-many relation
is a more primitive construction than '"'multiple correspondence'. The first
evidence is based on a simple task of equi-distribution. When children
are given a set of more than 12 cards and asked '"Can you make four packa-
ges of three cards in each package?', very rarely can one find subjects
who will use a one-to-one correspondence by constructing simultaneously
the four packages, one card at a time. If the first twelve cards were
numbered from 1 to 12, such a distribution would follow the pattern

1,559 2,6,10 % Py b L 4,8,12. Instead, the great majority of
children will generate these packages one at a time:

1,2,3 4,5,6 78,9 10,11,12 indicating that the construction
of this multiplicative situation is based on the repetition of the one-to-

many relation. "p package of three cards' is iterated four times.

A second indication can be found in the results of prior research.
Gunderson (1953) and Zweng (1964), as reported by Suydam and Weaver (1970),

have found in studying division that problems in which the number of parts
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was given and the number of elemengs in each part had to be found proved to
be more difficult than problems in which the number of elements per part
was given and the number of parts had to be found. In this latter class

of problems the child withdraws from the initial set one part at a time

and then counts the number of parts. In the other class of problems, the
child does not know ahead of time how many elements are to be selected

for each part and thus has no choice but to fall back on a distribution of
the elements one at a time for each part, that is using a one-to-one cor-
respondence repeatedly. A plausible explanation of this difference in

the level of difficulty between the two types of problems is that one class
of problems can be solved by using the '"one-to-many' relation in the selec-

tion of the parts, whereas the other class of problems requires the repea-

ted use of one-to-one correspondences.
CONCLUSION

The arguments presented here have put into question Piaget and Szeminska's
interpretation of multiplication as being constructed on the basis of '"multi-
ple correspondence". Instead, an alternate model, using the iteration of

a '"one-to-many'" relation as a basis for generating multiplicative situationms,
has been suggested. Various models involving intensive and extensive quan-

tities, or the notion of ratio, are discussed in a companion paper.
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MODELS OF MULTIPLICATION BASED ON THE CONCEPT OF RATIO

Jacques C. Bergeron, Université de Montréal
Nicolas Herscovics, Concordia University

Multiplication being one of the most fundamental schemas in arithmetic, it
is important to identify the simplest and easiest situations leading the
child to its initial construction. In a companion paper (Herscovics et al,
1983), we investigated Piaget's suggested construction based on '"multiple
correspondence', that is a generalization to n sets of the composition of
equivalences based on one-to-one correspondences. In that paper, we
presented arguments which suggested that multiplicative situations could

be constructed in a much simpler way by an iteration of a one-to-many
relation. Two other important studies have dealt with the concept: of
multiplication, the first one distinguishing between intensive and extensive
quantities (Schwartz,1976), the second one basing multiplication on the
concept of ratio (Vergnaud,1983). The present communication examines whe-
ther or not these last two models could in fact represent the simplest and most

primitive multiplicative situation.

SCHWARTZ'S ANALYSIS

In his study of the semantic aspects of quantity, Schwartz distinguishes
between the use of number as a noun (e.g. the sum of two and three is five)
and the use of number as an adjective (e.g. two apples and three apples

are five apples). Even if it may have some interesting implications for
arithmetical operations, one must nevertheless examine the merits of such a
distinction. Indeed, can we really perceive number as merely a noun, that
is, without referent? Even for the adult, is the word "three" simply a
noun? 1In fact, when we use it without tying }t explicitly to,a concrete
referent, we implicitly identify it with the class of all possible triplets.
Hence the referent is an equivalence class which is independent of the
nature of the objects, a class which is the outcome of a long process of
generalization of the referent. This construction of number shows clearly
that it cannot exist without referent but that on the contrary, it results
from a process of abstraction through which we detach ourselves from any

example in particular.

Research funded by the Quebec Ministry of Education (FCAC,grant EQ-1741)
and the Université de Montréal (Fonds FDR).
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Going back to one of Lebesgue's ideas,” Schwartz also distinguishes between
"intensive attributes" (chemical composition, density, temperature, etc.)
and "extensive attributes'" (volume, surface, total mass, etc.) of contin-
uous quantities and notes that "extensive quantities' can be added whereas
"intensive quantities' cannot. However, another feature distinguishing the
two types of quantities is whether their measure is global or local:
assuming a homogeneous composition, the measure of an intensive quantity
can be obtained from any part whatsoever of the object, whereas in the case
of an extensive quantity, the whole object in its entirety must be consi-
dered. Without any doubt, such a differentiation is important in the case
of continuous quantities, but the question must be raised as to whether or

not it applies to the quantification of discrete objects.

In his analysis of the multiplicative situation constituted X

b
L
KoK oM
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by the following set of twelve points, Schwartz perceives
the factors {4, points{row} and {3, rdws} as intensive and
extensive duantities respectively. However, the interpretation of points/
row as an intensive quantity does not satisfy the criterion suggested
above, whereby any portion of the object in question could be used to mea-
sure it. Indeed, a row or column do not constitute arbitrary portions of
the set. And to select them as factors presumes a prior awareness of the
presence of equivalent groupings. Thus, the notion of grouping necessarily

precedes that of intensive quantity within the context of discrete objects.

Schwartz argues that the expression 3 X {&,points} 2 {12,pointé} cannot
be used to represent the preceding twelve points since, according to him,
the numeral 3 in this expression is but a noun without any referent. This
view seems particularly mistaken since,in the present context, the numeral
3 represents the number of rows. In his attempt to apply a model based on
continuous quantities to discrete ones, Schwartz's interpretation of mul-
tiplication has proved to be deficient. Nevertheless, this analysis has
brought out the prevalence and precedence of the notion of equivalent

groupings to that of intensive quantity, in the context of discrete

-.objects.

Using Schwartz's distinction between intensive and extensive quantities,
Quintero (1981) has investigated the semantic understanding of word problems
involving multiplication problems of the intensive x extensive type. Her

results and conclusions are in line with those of other researchers studying



- 201 -

problem solving to the effect that the modeling of word problems constitu-
tes a major cognitive obstacle. Even if she did not study the multiplica-
tion operation per se, her choice of word problems is most interesting.
Although she considers 12 doll dresses in each box, 22 hits per baseball
game, 22 children per classroom, to be '"intensive quantities', within the
context of multiplication these quantities can equally well be considered
as "equivalent sets'. But these examples bring out the varied contexts
(spatial, temporal, social) in which these groupings occur.l And it would
be most interesting to study how the different contexts affect the notion
of equivalent groupings for the young child.

Quintero also includes problems such as "22 candies per quarter" and '22
lollypops for a dollar'". She considers these to be intensive quantities
but of a more abstract level. However, the nature of these problems seems
to be somewhat different from the previous ones since they involve the con-
cept of ratio. This concept of ratio has been the basis of Vergnaud's

classification of various multiplicative situations.
VERGNAUD'S ANALYSIS

Vergnaud perceives multiplicative structures and situations as a concep-

tual field involving many interconnected concepts (fraction, ratio, linear
function, vector space, etc.) whose acquisition takes many years. While
his studies have dealt with students aged-11 to 15, the question arises as
to whether or not his models, based on the notion of ratio, are applicable
to a simple multiplicative situation involving the quantification of a set

of equivalent groupings.

Let us examine his most elementary model of multiplication Ml M2
viewed as an isomorphism of measures, that is as a direct 1 a
proportion between two measure spaces Ml and M2 illustrated b X

by the example 'Richard buys 4 cakes, 15 cents each. How
much does he have to pay?'" where a=15, b = 4, Ml :-{number of cakes} 5
MZ = { costs} .

According to Vergnaud, there are four ways of solving such problems. The

first one, which he calls a "binary law of composition'" (a x b = x, where

a and b are perceived as numbers, and not as quantities), the next two,

b

"unary operations', involve either a '"scalar operator" (a --X23 x) or a



"functional operator" \(b'—-ﬁew) x ).
) )
l——> a
Xa
b — x
xa
The fourth way would be an iteration of addition, a + a + a +....(b terms)

which he does not consider to be a multiplicative procedure.

Of course, this iteration of addition can be interpreted as a perception of
a multiplicative situation as soon as it is viewed as " '"b times a'". On the
other hand, his binary law of composition is subject to the same criticism
as Schwartz's '"number as a noun'". For indeed, in the case of natural num-
bers a and b, a x b implies a number a of sets of b elements each

(or b sets of a elements). And in this context, the validity of Vergnaud's

model based on ratio is questionable.

Does the 'child who perceives a multiplicative situation when generating
"four packages of three cards each' resort to the concept of ratio? Not
necessarily, since he can use a much more elementary notion, that of equiv-
alent sets. One can argue that the notion of ratio is present implicitly
since the construction of such sets calls on the one-to-many or the many-
to-one relation (3 cards in each package). But does this relation coincide
with the concept of ratio? Ratio is a comparison of two quantities which
is expressed as the quotient of their two measures (e.g. 12 candies for

3 children yields a ratio of 12:3; John's 5 flowers compared with Paul's

7 flowers yields a ratio of 5:7). The one-to-many or many-to-one relation
can be considered a particular case of ratio, in which one of the terms is

1, only when comparison is intended and two measure spaces are present.

One can of course claim that there is always the ratio between a set and
the number of its elements. In fact, one can also, in the extreme, see a
ratio in an even simpler task such as ‘'give me three cards" if it is
perceived as a set of three cards. But why does one feel uncomfortable to
accept this as a ratio? It is precisely because in such situations no
comparison is intended, and we do not have two distinct measure spaces.

In fact, in such a situation, the package of three cards is but another
unit of measure in the quantification of the set of cards. 'There is here
only one measure space, that of the number of cards, and these are measured

either in simple units (a card), or in larger units (a package).
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THE QUANTIFICATION OF EQUIVALENT SETS

The generation of a multiplicative situation based on equivalent sets of
identical objects does not necessitate the use of ratio. The construction
of equivalent sets involves the one-to-many relation as for instance in

the task "Can you make three rows of seven cards' which requires the use of
this relation in setting up the three rows. The child can use three main
procedures: 1) count out three rows of seven; 2) count out the first row
and then proceed by one-to-one correspondence for the other two; 3) count
out the first row and then proceed to complete the columns using a one-to-
two correspondence. Of course, such a situation tends towards becoming a
multiplicative one only when it is perceived as three times seven. And
with such an objective, the three procedures are not equivalent since it

is only the first one which explicitly preserves and iterates the '"row of
seven', while in the other two procedures the "row of seven" could possibly

be lost from sight when setting up the various correspondences.

Quite cautiously, we used the expression '"tends to become a multiplicative"
situation since even if the child expresses it as '"three times seven' he
may but verbalize the number of times he has gathered seven cards. And

we would not consider this a perception of a multiplicative situation.

The word "times' is used very early by the child in the process of counting
actions as for instance in skipping rope. And the counting of the number of
equivalent sets may only represent a counting of actions. It is only when
the focus shifts from actions to the equivalent sets produced by such ac-
tions and that these equivalent sets are perceived as parts of a whole

that we can truly refer to a multiplicative situation. And this is what we

would consider an intuitive understanding of multiplication.

Of course we do not know how this shift from actions to equivalent sets oc-
curs. We don't even know how the child constructs equivalent sets. As
mentioned earlier, this construction involves the one-to-mary relation.

But clearly there is more to it than that. Equivalent sets also involve
one-to-one correspondences just as they involve a minimal concept of num-
ber when counting the number of groupings in a multiplicative situation.

But are conservation of number and conservation of one-to-one correspondence
(in the Piagetian sense) essential for an initial construction of multipli-
cation? Piaget's model based on "multiple correspondence (see companion pa-

per) is much too sophisticated to be taken as an initial construction.
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CONCLUSION

In our attempt to describe the child's construction of multiplication, we
asked ourselves what would constitute an intuitive level of understanding
of this conceptual schema. An examination of Piaget's pioneer work has
made us aware that such a construction is not independant of the multipli-
cative situation presented to the subject. In Piaget's case he provided
the child with a situation whose multiplicative nature coula-only be ex-
tracted through ”muitiple correspondence'. We thus tried to identify the
most primitive multiplicative situation likely to lead the child to the
simplest possible construction. The traditional quantification of equiva-
lent sets of discrete objects seemed to provide the most primitive situa-
tion. Nevertheless, in order to assert this, it had to be confronted with
the other two existing models, Schwartz's model based on intensive/exten-

sive quantities and Vergnaud's model based on ratio.

Although we have concluded that the quantification of equivalent sets is
indeed the most primitive sitﬁation, it has proved to be far from a simple
one. And we may have raised more questions than found answers. In the
last four months we have been working with Carolyn Kieran and Bernadette
Ska on exploratory studies investigating some of these problems. But we
have found it most difficuit to design the appropriate tasks and to find
the questions which would reveal the child's thinking without feeding him
the sought for answers. However such difficulties are unavoidable when
studying intuitive understanding for it cannot be uncovered by a mere

analysis of arithmetical skills.
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DIAGNOSTIC TEACHING OF ADDITIVE AND MULTIPLICATIVE PROBLEMS

Alan Bell, Shell Centre for Mathematical Education, University of Nottingham

This paper forms an introduction to the two following. The three papers
link with last year's paper to PME (Bell, 1982) and describe further

experiments in designing teaching to deal with diagnosed misconceptions.
Two experiments will be referred to in some depth (by my two colleagues),

and some aspects of two others will be commented upon here.

Our main field of interest is that of the learning of additive and multipli-
cative structures and their application to everyday situations. In previous
years we have studied additive relationships with directed numbers, and
decimal numbers with particular emphasis on multiplicative relationships.

This defines our field from the mathematical standpoint. From the psychologi-
cal point of view, we are studying the teaching design variables of structure,

context, feedback and cognitive conflict.
ADDITIVE PROBLEMS - TEACHING EXPERIMENT

The experiment on Additive Problems focussed on the ability to identify and
perform the correct operation (addition or subtraction) in verbally
presented problems in situations such as usual price, discount and sale
price, starting and finishing times (of a TV programme) and length, and a

number of other everyday situations.
We were interested in the relationship between ability to identify the
operation with the numbers given in the problem, and the awareness of the

general relationship among the quantities, as expressed in a verbal

generalisation. An example of one of the test questions is given.

Programme Timas

[. Julie's TV programme starts at 8.15 and finishes at 8.50.

How long is it?

% *
2 Her brother's programme is 25 minutes long and finishes at 9.45,

When does it start?

B e
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. How do you work out the starting time from the length and the

(V)

finishing time? Fill the gaps.
(from/to)
You the the

4. Fill the boxes with +, -, =, to make different true statements;

when no more are possible, write N in the boxes.

FINISH TIME LENGTH START TIME
FINISH TIME LENGTH | START TIME
START TIME FINISH TIME LENGTH
START TIME FINISH TIME LENGTH

* 45 mins and 9.55 in post test

The mean success rate on this and a similar question was approximately 507
for the numerical question (no 2), 20% for the word formulae and 10% for
the verbal statement. (The class was a low-attaining group of 13 year

olds.)

Some of the difficulties concerned the order of subtraction; others appeared
to derive from the need to reverse the direction of thought to recover the
starting time from the other data. The hypothesis on which the teaching was
based was that improvement would result from awareness of the three forms of
relation existing in this and similar problems - S + L =F (Start time +
length = finish time), F - S = L and F - L =_S; with identification of which
quantity (F) was the sum of the other two. This hypothesis amounts to

teaching the key concepts and generalisations which relate to the task.

Intrinsic feedback was built into the learning tasks, by relating each
numerical problem to its corresponding formula, and checking that the three
correct formulae were the ones being used; conflict was to lead to

correction.
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The teaching covered a number of contexts, in each of which the three forms

of the add/subtract formulae were emphasised.

Several interesting observations were made. Often in the attempt to give a
verbal statement, pupils had to use specific rather than general labels;
they could not say 'I'd take the length from the finishing time' but said,
for example, 'L'd take, like, the 25 from the 45'. The programme times
questions were much harder than similar ones concerning usual price, sale
price and discount. In interviews several pupils showed much difficulty in
visualising or reasoning with clock faces. But it may be that the important
difference is that the programme times situation contains two kinds of
quantity, the times, which are position markers, and the duration, which is

an extensive quantity.

The results showed improvements in the production and identification of the
verbal formulae and generalisations, but not in the numerical questions.

The checks were partly successful; some pupils failed to appreciate the need
for independent derivation of the two answers if the check was to be valid.

A full account of this experiment is given in Bell and Low (1983).

TRANSFER EFFECTS IN THE TEACHING OF DECIMALS

Of the two experiments performed in this mathematical field, the first

concerned the teaching of the four operations, with attention to
multiplication and division by small numbers and the estimation of results.
This was an experiment with a single middle-ability class aged about 14,
where interest focussed on the relation between the teaching and the test
gains, in particular on the extent to which 'transfer' gains took place on

items not directly covered in the teaching.
In this experiment, the main findings were

1 that fairly intensive teaching, focussed sharply on known misconceptions
was successful in improving performance, but
2 there was very little transfer to points not so strongly focussed upon,

even though they were dependent on the same general concepts of place Vvalue.

For example, the error of counting scale spaces without regard to whether
they represent tenths, so labelling 5.4 on a scale orf fifths as 5.2,

received explicit attention and was substantially improved, but that of
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omitting zero, labelling 2.03 as 2.3, was hardly affected. Similarly, the
error of giving 6.2 x 10 as 6.20 was not shifted at all, in spite of a
strong emphasis on estimating sizes of answers, which made a very
substantial improvement to items such as 19.5 x 5.4 = ,1053 / 1.053 / 10.53
/ 105.3 / 1053; these were superficially quite similar to the tasks used in
the teaching. It is of interest to consider further experiments based on
some of these items to study whether changes in the teaching can produce
greater transfer. One might try greater linking of the necessary specific
teaching on the misconceptions with the general idea of place value, and a
more general emphasis on checking the sizes of results against expectations

in all situations.

The second decimal teaching experiment which is reported more fully in
Swan's paper below, did, in fact, produce somewhat greater transfer effects
under one of the two teaching methods which it compared. (These were a
conflict-discussion teaching method and a 'positive-only' approach. The
latter method was 'diagnostic' in that it focussed on the known
misconceptions, but it taught procedures which avoided rather than exposed

them).

The transfer effects observed were to items asking for the amounts shaded on
squared paper diagrams on which 100 small squares made one large unit
square. Improvement in the ability to recognise, for example, a diagram
representing 1.08 units, and resist the distraction of counting small
squares and giving 1.8, was considerably greater in the conflict than in the
positive-only group. In both groups the teaching had been confined to the
number line, area not being considered, so this is a transfer, from line to

area, of success in overcoming the 'zero as a placeholder' misconception.
P

The main result of this experiment, however, was of considerable gains by
both groups, with a significantly greater gain in the 'conflict' group. In
both cases, the gains were closely related to the specific content of the
teaching; transfer across even minor perceptual or structural differences
was not observable. The differential transfer commented upon above was the

exception.
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A COMPARISON OF CONFLICT-DISCUSSION AND POSITIVE-ONLY
DIAGNOSTIC TEACHING METHODS

The transfer effects in this experiment have been discussed above. However,
this was not its main aim, which was to make a direct comparison of two
variants of our diagnostic teaching. Both of these were diagnostic, in that
the lessons each focussed on one known misconception, such as treating the
decimal point as a separator of two integers, counting marks in scale
reading, ignoring whether they were tenths, and so on. In the positive only
method, correct procedures were immediately taught for avoiding the errors,
while in the conflict discussion method, the pupils were first placed in a
situation which gave rise to the misconception, thus provoking a conflict
which was then discussed. This experiment gave positive evidence of the

value of the conflict approach to diagnostic teaching.

DETERMINANTS OF RELATIVE DIFFICULTY IN CHOICE OF OPERATION PROBLEMS

The experiment to be reported by Greer is a more intensive study of
multiplicative problems with decimals, involving choice of operation. These
were target problems in some of the research of the previous project, but it
proved that difficulties in understanding decimal notation and operations
had to be investigated, and teaching materials designed, before methods for
choice of operation could be given full attention. The present experiment
is a study of pupils' difficulties with choice of operation, and was a

preliminary to the design of teaching material.

In this experiment, 12 and 13-year-olds were tested with two types of task:

(i) writing down calculations required to solve verbal problems
(ii) making up stories to fit given calculations, to test their

understanding of multiplication and division of positive numbers.

Selected puplls were interviewed to investigate further the thinking

processes involved. The results indicate

(a) the pervasive nature of certain numerical misconceptions
(b) the effects of structual differences among the items; particularly
whether multiplication can be conceived as repeated addition or not, and

whuether division has the structure of partition, quotition or rate, and
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(c) specific effects of context, attributable to such aspects as relative
familiarity, as well as a number of interactions between these three sets of

factors. These studies are reported in the paper by Greer.
TEACHING PACKAGES

The material used in the Decimal teaching experiments has been collected
into a Teachers' Handbook. This contains extensive teachers' notes, pupils'
worksheets for duplication, the diagnostic test and a markscheme designed
for extracting information regarding the misconceptions held by the pupils.
A video tape showing pupils who do and do not hold the misconceptions

accompanies the pack.
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TEACHING DECIMAL PLACE VALUE
A COMPARATIVE STUDY QE "CONFLICT" AND "POSITIVE ONLY" APPROACHES
Malcolm Swan, Shell Centre for Mathematical Education

Recent large scale surveys (see Hart (1981), APU (1980, 1981) and our own
research, for example, Bell et al (1981)) have revealed that many children
possess fundamental misconceptions concerning the nature and use of decimal
numbers, and that these misconceptions appear to remain largely unaffected
by traditional arithmetic-based courses. At the Shell Centre, we have been
trying to produce and evaluate principles for the design and use of teaching
materials which enable children to overcome such misconceptions. This paper
will describe one experiment which illustrates the value of a diagnostic
teaching approach which focusses sharply on known misconceptions and makes
these explicit to the children. (It has been more fully written up in Swan
(1983).) Two teaching styles were examined. The first of these, the
conflict teaching approach, was intended to involve the pupils in discussion
and reflection of their own misconceptions and errors, thus creating an
awareness that new modified concepts and methods were needed. There was
therefore, a 'destructive' phase, in which o0ld ideas were shown to be
insufficient and inaccurate, before new concepts and methods were

introduced. The second teaching style, the positive only approacﬁ, made no

attempt to examine errors, and in fact avoided them wherever possible by
teaching the pupils to use simple and efficient methods from the start.
These methods were then practised intensively. So far as was possible
within the constraints imposed by this dichotomy, the same teaching material
was used with both groups. The relative effectiveness of the two teaching
methods was monitored by a pre-test, an immediate post-test and a delayed

post-test (3 months later) together with observations made during lessons.
IDENTIFYING THE COMMON MISCONCEPTIONS AND ERRORS

The following (abbreviated) list of common misconceptions was evolved from
previous research (our own and that of the CSMS and the APU), and formed the
basis for our diagnostic test.

1 Verbalising a decimal Many children read decimals incorrectly. Some

appear to ignore the decimal point altogether, while others read the
number as if it were composed of two independent integers separated by a
mere 'dot' (Thus 12.62 is read as 'twelve point sixty two'). Such

children are often unable to relate the digits before and after the
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decimal point and produce such answers as 0.8 + 0.2 = 0.10, 3.1 x 10 =
30.10 and 0.3 + 2 = 0.14. Others reveal that they do not recognise the
denary nature of decimal numbers when they confuse the decimal point with
other 'separators' such as the 'r' in 9 r 2 (nine remainder 2) or the
fraction bar in 3/5. (It is also important to realise that children may
be merely mimicking undestanding when they recite the correct fractional
place headings.)

Comparing Decimals In one pilot study, we invited 98 mixed ability 12

and 13 year old pupils to select the largest of the three numbers 0.62,
0.236 and 0.4, 17% chose 0.62, 50% chose 0.236, and a surprising 28%

chose 0.4 (because "it only goes back as far as tenths, while the others

go back as far as hundredths and thousandths'" or, more rarely, because'ﬁ>£1
and -%;E). Many children appeared to feel that they could correctly
compare decimals by simply examining their 'lengths'. Thus either

'longer' (more digits) or 'shorter' numbers were always greater in value.

Using Zero as a Place Holder Only 51% of 15 year old pupils could

correctly complete the following APU item:

73.45 = 70 + 3 + 0.4 + [

The most common errors, 5 (16%), 0.5 (8%), and 0.41 (5%) reveal that the
misconceptions stated above were at least partly to blame.

Scale Reading As well as being an important skill in its own right,

scale reading discriminates very clearly between pupils who have a deep,
genuine understanding of decimals and those who do not. Frequently, in
our interviews, pupils ignored the number or value of the intervals

between marked calibrations, and produced such contradictory answers as

these:

tlllllilll?l!lll!lllf

The '"Denseness' of Decimals The CSMS research revealed the difficulty

that children have in producing a decimal which lies within a given
interval, and in appreciating that there exist an infinite number of
possible choices. (Only between 12% (12 year g¢lds) and 20% (15 year
olds) recognised that there exist 'lots', 'hundreds' or an 'infinite'

number of decimals between 0.41 and 0.42.)
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6 Application'gi Decimals The CSMS research invited children to embody

decimals in stories which could accompany given calculations (eg, 6.4 +
2.3 = 8.7). It was interesting to note that only between 33% (12 year
olds) and 41Z (15 year olds) could produce satisfactory stories, and many
appeared to be influenced by artificial stereotyped text-book questions,
which had little to do with the real world. These stories often

included quantities (eg, sweets) which are not, in practice, subdivided.
THE ORGANISATION OF THE TEACHING EXPERIMENT

Two parallel classes of second year (12 and 13 year olds) pupils were chosen
from a suburban comprehensive school in Nottingham. These classes were from
the upper ablility band of one half of a year group, and were chosen so that
their performances on the pre-test were reasonably comparable, both
contained a wide spread of ability, and both included just a few pupils who
were competent in the area of place value with decimals.The same teacher
(the author) taught both classes for eight one-hour lessons using the two
teaching approaches. The content of the lessons in both groups can be
roughly divided into three areas:

1) Completing Sequences This section attempted to provide the pupils with a

'‘concrete' model for decimal place value (the number line), and encourage
the children to visualise this line when performing simple additions and
subtractions. The correct verbalisation of decimals was emphasised.

2) Reading Scales These lessons attempted to enable the pupils to read a

scale which had been subdivided into tenths, fifths or twentieths, and to
interpolate successfully between marked calibrations.

3) Comparing Decimals Number lines were provided to enable pupils to

correctly compare decimal numbers containing different numbers of digits.
The pupils were then encouraged to formulate their own rules for

comparing decimals without using the number lines.

As this list makes clear, the teaching styles in both groups were
essentially 'diagnostic' in that they focussed on the known areas of
difficulty discovered by the pre-test, but only the 'conflict' group were
asked to examine and reflect on the misconceptions and errors exposed by
that test. Let us illustrate how this was done using the lessons on

"completing sequences".
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Each lesson sequence involved 4 phases:

Cl

c2

c3

C4

The 'Intuitive' phase The pupils were asked to perform a task

intuitively, either orally or by means of a worksheet, in order to expose

their misconceptions (which had been revealed by the pre-test). No

attempt was made to correct any errors at this stage. For example, they'
were given a worksheet containing ten sequences to be completed, such as
0.2, 0.4, 0.6, eeep eeey oo «» Many produced answers like 0.8, 0.10,
0.12 (verbalising them as 'nought point ten' ete).

The ‘'conflict' phase Pupils were then given the same tasks again, but

this time were also equipped with an easy alternative and understandable
method, suggested by the teacher. This usually involved using a number
line, together with a calculator check. In our example, the pupils were
shown how the 'sequences' situation may be viewed as 'bouncing' along a

number line:

Prrrrrrryrerrerrrrryrrrerrrrrmy
(0] 1 2 3

They then repeated many of their earlier questions, and were encouraged
to reflect on, debate, write down, and resolve the inconsistences
revealed by their two sets of answers.

The 'Resolution' Phase A discussion was then held to make children aware

of the errors and misconceptions exposed by the previus phase. In one
discussion, pupils stated that:

"There 1s no such number as nought point ten"

"Nought point ten can be exchanged for a whole number"

"Nought point one nought is the same as nought point ten"

(This latter comment was made by a pupil who had been exploring the
sequence 0.05, 0.10, 0.15, ...... with his calculator).

The 'Reinforcement' Phase Correct concepts and methods were then

reinforced and practised using carefully constructed exercises. Near the
end of each section of work, pupils were asked to-hdopt the role of a
teacher and mark an exercise which was full of mistakes (made by a

fictitious 'pupil') and diagnose errors themselves.

The 'Positive Only' Lessons

Each lesson sequence only consisted of two phases:

Pl

P2

The 'Teaching a Method' phase The class were taught methods for

producing correct answers, based on understanding. (They were the same
methods as those adopted in phase C2 with the 'conflict' group.)

The 'Reinforcement' phase These methods were then reinforced and

practiced using similar exercises as those adopted in C4, except that



pupils were never asked to mark work or diagnose errors.
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This group

covered the work much faster than their 'conflict' counterparts, and so

supplementary material was also provided.

RESULTS AND CONCLUSIONS

The overall performance of the two groups on the 48 test items is given

below: Conflict Group (n = 22)! Positive Only Group (n = 25)
Mean sd : Mean sd
Pre-test 44.3% 1.7 i 52.0% 11.52
Post-test 77.7% 6.2 74.5% 8,33
Delayed post-test 80.2% 6.54 76.2% 7.08

L

It can be seen that both groups made substantial gains during the teaching,

and these gains were retained until the delayed post-test.
35.9%,
24.2%, but before these gains can be reliably

by the 'conflict' group,

'positive only' group,

The overall gain

was much greater than that made by the

compared, account must be taken of the initial superiority of the 'positive

only' group.

used for this purpose.

1976) was then applied to these residual scores to detect differences.

The multiple regression program PMMD*SMLR (Youngman 1976) was

A correlational analysis (program PMMD*CATT, Youngman

The

results showed that the pre - post-test results were significantly different

at the 10% level and the pre - delayed results were significantly different at

the 5% level.

The scattergraphs below illustrate the results:
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These results enable us to draw the following conclusions:

Both the 'conflict' and 'positive only' teaching styles were very

effective at enabling children to understand decimal place value, given

that the teaching material was essentially diagnostic in both cases.

The 'conflict' style was significantly more effective at 'permanently'

removing and correcting most of the misconceptions that we described.

The 'ccnflict' style did not appear to cause pupils who were already
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competent to become confused and regress when they were introduced to

misconceptions that they themselves did not possess.

Additional, more tentative hypotheses also emerged from a closer analysis of
individual test items:
A 'conflict' approach may lead to a deeper conceptual understanding. By
discussing what a decimal is not, for example, our pupils seemed to have
come to a deeper realisation of what a decimal is.
'Positive only' teaching is perhaps more likely to result in mechanical,
rule based learning. For example, some 'positive only' pupils regressed
on the item where they were asked to compare 5436, 547 and 56, and stated
that 56 was the largest. Presumably, they were using a rule for
comparing decimals digit by digit from left to right, as they would when
comparing 0.5436, 0.547 and 0.56.
Both teat¢hing approaches may lead to some learning which transfers to an
untaught context. (One question contained such a context, where the
decimal numbers were embodied as areas. The 'conflict' group achieved a
greater improvement on the item which involved using zero as a place
holder.)
Conflict lessons may make greater managerial demands on the teacher, not
least because of the considerable debate (and noise) that is created when

pupils are actively encouraged to make and verbalise errors.

We conclude by emphasising that although 'conflict' teaching is difficult to
design, and time consuming to perform, it appears to have a considerable

pay-off in terms of a deeper understnading and a greater awareness of errors
to avoid.
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SOME PERCEPTUAL INFLUENCES IN LEARNING GEOMETRY

Naomi D, Fisher, Ph.D.

Mathematics Education Consultant

INTRODUCTION

Learning geometry usually begins with the perception of geometric figures.
The visual system is very adept at recognizing geometric figures and dis-

tinguishing details of geometric importance. However, what one sees can

sometimes distort a mathematical concept.

Often some features of a figure are more visually compelling than others.
For example, the visual impact of each of the squares in Figure 1 is quite
different.

(a) (b)

Figure 1

In Figure la, the right angles, equal sides and parallel opposite sides are
clear, but symmetry about the implicit diagonals is not obvious. On the
other hand, in Figure 1lb, symmetry about the implicit diagonals is clear, but
the features of right angles, equal sides and parallel opposite sides is not
prominent. "Thus, there is a trade-off; any particular representation makes
certain information explicit at the expense of information that is pushed
into the background and may be quite hard to recover. This is important,
because how information is represented can greatly affect how easy it is to
do different things with it," (Marr, David 1982).

Orientation of figures and/or vertical symmetry of figures are important
visual features for identifying, classifying and grouping figures in percep-
tual tasks (for example, Brown, Hitchcock and Michels 1962, Goldmeier 1937,
Takala 1941, Zusne and Michels 1962). Some work suggests that in coding

figures subjects conceive an upright prototype together with information
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about recognizing the prototype in a tilted position (for example,

Attneave 1968, Steinfeld 1970). Other times the upright orientation of the
conceived prototype may be so important to the subject that he has difficulty
working with the prototype figure in another orientation, (Braine 1973).
Similar difficulties can arise in doing mathematical work. Some students
have difficulties recognizing perpendicular lines embedded within a complex
figure if the lines are not in the vertical-horizontal position, even though

the students are told that the lines are perpendicular, (Zykova 1969).

The perceptual role of orientation in recognizing figures suggests several
questions about the influence of figure orientation in learning a geometric
concept. For example, is it best to present upright figures first since they
are more easily recognized? Is a bias for upright‘figures due to insuffi-
cient examples of tilted figures? Can students deduce upright prototypes if
they are shown only tilted figures for a concept?

THE STUDY, RESULTS AND OBSERVATIONS

The present study was concerned with some of the questions of how the
orientation of illustrative figures in teaching a geometric concept influ-
ence the learning of the concept. Three different concepts were taught:

an altitude of a triangle from a vertex to the opposite side, an angle of
incidence from a point to a line and its corresponding angle of reflectionm,
and a complete 4-point and its three diagonal points. Four types of in-
structional booklets were used for each concept. Type a booklets contained
all upright figures, type b booklets contained all tilted figures, type C
booklets contained upright figures in the first half and tilted figures in
the second half, and type d booklets contained tilted figures in the first
half and upright figures in the second half. All the booklets for one con-
cept contained the same written material and the same sixteen figures in the
same order. Each student was instructed in only one concept. Immediately
after studying the instructional booklets, students were given test booklets.
Students had to identify correct illustrations and complete figures of the
concept. Half of the test figures were upright and half were tilted. The
students were 36 6-th graders, 65 9-th graders and 67 college students in a

pre-Calculus, Algebra and Trigonometry class.

Combined scores for the 9-th graders and'college students were analyzed

using a grade X concept x instructional format repeated measures ANOVA. The
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The analysis showed no. significant differenées among the instructional

formats. However, students scored significantly better on upright test fig-
ures than on tilted test figures. Further, not only were the three concepts
significantly different to learn but also the interaction of figure orienta-

tion and the concepts was significantly different,

For the combined group of 9-th graders and college students the highest mean
was the altitude of a triangle, the next highest mean was the angle of in-
cidence and the lowest mean was the complete 4-point. The bias in favor of
upright figures was strongest for the altitude of a triangle concept and
weakest for the complete 4-point concept. Thus the bias in favor of upright
figures was greatest for the concept that was learned best. For the 6-th
graders, the highest mean was the angle of incidence, the next highest mean
was the complete 4-point and the lowest mean was the altitude of a triangle.
The means for the complete 4-point concept of the 6-th graders and of the

combined 9-th graders and college students were very close.

It is worthwhile to note learning patterns that were observed from studying
the individual test booklets. For each concept there was a type of figure
that was particularly difficult to learn. For the altitude of a triangle
concept, exterior altitudes from acute vertices in an obtuse triange were
difficult for some students. For the angle of incidence concept, a 90° angle
of incidence, where the angle of incidence and the angle of reflection have

a common side, was difficult for some students. For the complete 4-point
concept, some students had difficulty incorporating the two general types of
figures into the concept. Some students had difficulty learning the three
pointed star figures, as shown in Figure 2a, whereas others had difficulty

learning the triangular figures, as shown in Figure 2b.

(a) (b)

Figure 2
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DISCUSSION

The perceptual model of coding upright prototype figures is relevant to
learning geometric concepts. It is suggested that it can be beneficial for
a student to have a good upright prototype of a class of figures and some
strategy for recognizing the prototype in a tilted configuration. If fig-
ures have good visual clues for uprightness or vertical symmetry, the
figures may be coded more easily than figures with weak upright clues. Thus
a concept may be difficult because illustrative figures present visual
coding problems. For example, the complete 4-point concept is the simplest
geometric concept of the three in the study, (it uses only the ideas of point,
straight line and incidence of points and lines), but it was the most dif-

ficult concept for the 9-th graders and college students.

In addition, sometimes a visual property is so compelling to the viewer that
the property is maintained even when it contradicts the stated mathematical
concept. The erroneous construction of "altitudes'" which were not perpen-
dicular to a side of a triangle but were in the interior of the triangle is
an example of this problem,

It is also difficult to bridge visual categories. For example, the star
figures and the triangular figures for the complete 4-point concept are
visually different types of figures. The power of the geometric concept is

that it creates conceptual unity where there is visual diversity,

Perception is a powerful tool in learning geometry, but it also creates
problems when visual learning conflicts with mathematical learning. This
conflict can be a real obstacle for students and it deserves serious con-

siderations from educators,
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THE ROLE OF CRITICAL AND NON-CRITICAL ATTRIBUTES
IN THE CONCEPT IMAGE OF GEOMETRICAL CONCEPTS

Rina Hershkowitz - The Weizmann Institute of Science

Shiomo Vinner - The Hebrew University Jerusalem
INTRODUCTION

This study is a continuation of our research on the formation of geometrical

concepts (Vinner and Hershkowitz 1980, Hershkowitz and Vinner 1982, and Vinner
and Hershkowitz 1983). We used the term concept image(i.e. the concept as it is
reflected in the student's mind), which may be dffferent from the concept itself
(i.e. the concept as it follows from its mathematical definition).

We found that:

1. The concept image has a definite structure (the C.C.P.) which is common to the |

whole of the population we examined. This is true for concepts which have
been part of the student's experience for many years, as well as for concepts
newly formed. At least one important question was left for further research:
does this C.C.P. describe the development of the concept image with age?

2. The verbal definition followed by some related activity, is a powerful tool
in the concept formation of new concepts. On the other hand, for familiar
concepts the verbal definition has only a small effect on the performance of
certain tasks concerning certain "types" of concepts.

In this study we examined a larger population using a questionnaire similar
to the one in previous studies. The subsequent analysis took into account such
variables as age (grades 5, 6, 7 and 8), home background (culturally different
students and others), ability levels in mathematics and sex. Here we will bring
a few examples of the analysis with respect to age. By these examples we wish
to add a somewhat deeper dimension to these studies, and this by using concept
analysis (Herron 1983). What we mean by concept analysis will be explained in
the examples.

ANALYSIS OF RESULTS AND DISCUSSION

Example 1
The following item was given to the whole population.

Item I. Among the following shapes indicate those which are quadrilaterals:
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For each shape that is not a quadrilateral explain why.

The concept examined here is gquadrilateral.

CONCEPT ANALYSIS. Critical attributes Of the concept are those attributes which
“must be present in order for an instance to be an example" of the concept
(Herron). Suppose we define a quadrilateral as a closed four-sided figure, then
“closed" or "four sided", are critical attributes included in the given defini-
tion of a quadrilateral. Other critical attributes "four vertices", "four angles",
“two diagonals", follow from the definition, although they are not included in it.

In this item we have 3 examples of the concept (shapes i, ii, and v). One

shape (iii) is a non-example because it lacks the critical attribute of closure,
for example. The remaining shape (iv) is either an example, if we choose to
“define quadrilateral as above, or a non-example if we choose the definition:

A closed four-sided figure whose sides do not intersect.

(For the sake of mathematical exactness, we should state that our definitions

are "school geometry" definitions. At a more advanced level, for exémple, when

the quadrilateral is taken as the "complete quadrilateral" there are other

critical attributes.) Non-critical attributes are those "which vary across
examples" of the concept. For instance: the square (shape i) has some attributes,
e.g. “four equal sides" or "four J

\
right- angles", which other 100} *“"““~1_“~1‘_*_____4 [:]
- i

.quadrilaterals do not have. The 90

1
percentage of students in the g so}
different grades who indicated § 70}
an example as a quadrilateral is ; ol
given in Figure 1. u sof
There is clearly a great improve- % s
ment in identifying shape v w
(convex quad.) and shape ii g o
(concave quad.) with age, from o j2e
=
grade 5 to grade 7, and then 7
effectively no change from ‘ ; .
. _ 5 6 7 8 grade”
grade 7 to 8. (This behayior nzW2  N=153  n=60 n=147

of no change or even slight
Figure 1



decline from grade 7 to 8 was found in the responses to most of the items, and
demands some further research.) On the other hand, at all ages, most of the
students identify a square as a quadrilateral. "Constant behavior" is also
found in the identification of the "non-closed" shape (iii) and of shape iv,
which has intersecting sides. For most of the students, in the different ages,
these two shapes are non-examples. Does this mean that students in all the
examined ages have the same cognitive or thought pattern concerning these two
shapes? We can answer this question by analysing the different reasons which
students gave when they decided that a given shape is not quadrilateral.

: &—A NOT CLO
In figure 2 we see the change LOSED

with age in the percentage 100k o-+—0 OTHER ATTRIBUTES OF QUAD.
frequency of the different gol == DOES NOT HAVE ATTRIBUTES OF
reasons for the two shapes. SQUARE
There are two kinds of 8or iii I
reason which have an opposite _ 10} Lo ! A;§§71V
pattern of change. For g ol l
shape iii we have a sharp o |
increase in the frequency Sl I
i >
of reasons like "The shape e 4o | ‘jkku\
@ &
is not closed and therefore Comp et I i
ol N I ”‘-\ i
is not quadrilateral” T "R | Sy
9 20"' -
(which is correct), from e \\ i \\ 7
grade 5 to grade 7 (from lop Nl J (i
34% to 76%), and a small A SO e S
; R iRy Uiy BEAT6 8
decline from 7 grade to 8. grade grade

On the other hand, we have

wrong reasons, based on Figure 2

non-critical attributes -

in this case, square attributes, like: "The four sides are not equal" or "The
four angles are not right angles" or “The shape is not square", which decrease
with age (from 36% in grade 5 to 7% in grade 7 and a small increase in grade 8).

For shape iv, reasons based on other attributes of the quadrilateral, like:
"The shape has more than four vertices"or "more than four angles", increase with
age (from 17% of reasons given in grade 5 to 45% in grade 7 and again a slight
decrease from 7 to 8). As for shape iv the percentage of reasons based on the
square's attributes decrease with age (except for grade 7 to 8). (It is worth
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noting that only 5% - 10% in each grade ‘give reasons like: "It is not a quadri-
lateral because the two sides intersecty which is a critical attribute according
to the second definition above, which sees this shape as non-example.)

We can sum up these results using Van Hiele theory. The number of students
who judge an instance as an example or non-example of a concept, using critical
attributes as criteria, increases with age. In other words the number of students
who see the concept as the "bearers of their properties and recognise figures
by their properties", (Wirzup 1976, the second Van Hiele's level), increases with
age. On the other hand, the number of students who judge an instance as an
example or non-example of a concept, by making a comparison with a prototype
example existing in their concept image, decreases with age. In other words,
the number of students who "judge figures according to their appearance" (Van
Hiele's first level) decreases with age. If we look at the distribution of
students on the GuttmanScale in each grade (figure 3), we see that

image consisting of the
square only, and an increa-
sing number have at least

1) The distribution of i

students at different stages ‘42557/4:>*~ ‘::::]L'

of the scale moves upwards I B 0 I SR8 I BRSSO

from grade 5 to grade 7; o | P_i;;; ;523 255 I 200K

that is, a decreasing number :;45 gg?g ffﬁ’ ggéé

of students have a concept 0 0 t P*' éééé _ é%%é
1

three shapes in their

A

concept image of a quadri-
lateral.

2) For each grade level

there is a highly structu-
red C.C.P. - Coefficients 0~ doas rotkio |
of Reproducibility (C.R.) grade— 5 6 g

are very high. n=1l0 n=142 n=145 n=140
C.R.=0.99I1 0964l 09560 09762

I = knows

Figure 3
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This example (and other examples with very similar results) show that the
Common Cognitive Path (C.C.P.) found in preyious studies, describes faithfully
the development of concept image with age.

Example 2 - The following item was distributed in two versions.

The item in version 1 was
Definition: A polygon 1s a closed shape bounded by line segments. Indicate
which of the following figures are polygons. (There were 15 figures of

polygons and non-polygons.)

The item in version 2 was the same but without the polygon definition.

The 15 different shapes can be classified into several categories: "regular"
polygons (concave or convex), polygons which have a dominant non-critical
attribute (e.g. triangle, rectangle), figures which are not closed, and figures
which are closed but not bounded by line segments, e.g. the "cloud" (see figure 4)
We found different response patterns for these categories. In figure 4 we bring

only one example from each

5 shapes
category, since the response SN verzn s e TR T (::)
pattern for other examples 80T o
from the same category is o
similar. ) ks Sivepay & 4 shapes

904 = N /__," —_—
It can be seen that a ; 2 | é:j:t)
ver
definition helps (if at all) '

only in the identification
of figures which are not
closed, and even then only
the younger children.

90 ve \ P
- 9,

In the case of closed non-
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attributes, the definition
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no impact. Unfortunately,
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reasons.

Figure 4
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There are some concept examples, mainly very simple geometrical shapes,
which students identify correctly at sight (first level), without considering
critical attributes. This does not prevent the same students, for other less
simple examples, making their identification using critical attributes (second
level). The "regular polygon" is such a simple example, and therefore the
definition, as a reminder of critical attributes, has no effect. Two critical
attributes "closed" and "bounded by line-segments" appear in the definition.
It appears that "closed" is more dominant and therefore helps in the identifi-
cation of non-closed shapes, and disturbs in the "closed but not bounded by
line segments" category. In the identification of the rectangle there is the
disturbing effect of the non-critical attributes. Even students that naturally
identify the rectangle (square, triangle etc. ) as a polygon, in the presence of
the definition (which, of course, makes no mention of non-critical attributes so
evident in the given shape), they become confused and regard the non-critical
attribute as infringing the definition.

CONCLUSION

The examples presented in this paper (the study contained other interesting
examples) indicate that the student concept image matures with age and that
different individuals have the same path through the different examples of the
concept. In other words, the C.C.P. is a "mirror" of concept formation with
age.

The concept analysis of student responses,using critical and non-critical
attributes and Van Hiele theory, helps in the understanding of factors which
effect student concept formation. The influence of definition on identification
of concept examples also receives a new dimension in the light of such an
analysis.

REFERENCES
Herron, D. Concept Learning - Unpublished manuscript, 1983.

Hershkowitz, R. and Vinner, S. Basic geometric concepts - definitions and images.
Proceedings of the 6th P.M.E. Conference Antwerp, 1982,

Vinner, S. and Hershkowitz, R. Concept Images and Common Cognitive Paths in the
Development of Some Simple Geometrical Concepts. Proceedings of the 4th P.M.E.
Conference, Berkeley, 1980.

Vinner, S. and Hershkowitz, R. On Concept Formation in Geometry  ZDM, 83/1,
pp. 20-25, 1983.

Wirzup, I. Breakthroughs in the psychology of learning and teaching geometry.
In: Martin L. (Ed) Space and geometry, Eric Clearinghouse, Ohio, 1976, pp.75-91.



=.229¢=

ANALYSIS OF CHILDREN'S DISCUSSIONS OF GEOMETRICAL PROBLEMS
WITH THE FRAME-MODEL

Klaus Hasemann

Universitdat Hannover, Germany

In a classroom experiment primary school children (aged 9 - 10)
were asked to find - with the help of some materials - all the
possible cube nets. Our primary aim was not to discover whether
these pupils were able to solve this problem or not (some of
them were); the experiment was part of a project concerned with
the description of pupils' mathematical behaviour in terms of
models of Cognitive Science. In earlier experiments we had come
to the conclusion that the "hypothetical mechanisms" presented
by Davis and McKnight (1979), especially the frame-model (Davis
1980), seem to be useful for the analysis of mathematical thin-
king processes (cf. Hasemann 1981, 1983). But whereas formerly
pupils worked out well known tasks (they just had to apply con-
cepts and procedures which they had learnt earlier), in this
new experiment they were confronted with a completely new pro-
blem.

The Experiment

In this experiment we presented cubes and cube nets to primary
school children. In a first step the children learnt what "cu-
bes" and "cube nets" are. Then they had to find more and more
different cube nets. In 2 third step - when the children be-
lieved that they had already found all of them - they were
asked to explain why the cube nets which they had found were
"5311". The experiment was extended over four lessons; it took
place in three primary schools in Osnabriick. The lessons were
video-taped (by two cameras).

The third lesson was the most interesting for the experiment:
Pairs of pupils were asked first to find "all cube nets with
four squares in a row". To help solve this problem they recel-
ved two types of materials: (i) Six wooden squares by the help
of which they could look for more and more figures with six co-
herent squares; and (ii) cardboard models of cube nets (which

they got when they T .d confirmed th 'selves that a i.gure in
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fact is a cube net). These cardboard models not only served for
the comparison of new nets with those which had already been
found, but also marked the number of cube nets which a pair of
pupils had found.

In each class several pairs of pupils were supervised (inter-
viewed) by a teacher and video-taped during their problem-sol-
ving process; later on we transcribed the main parts of their
discussions, especially their arguments and reasons why their
cube nets were "all". (In the fourth lesson the children
_searched for the remaining nets; for more details of the expe-
riment see: Hasemann 1982.)

In this paper I shall restrict myself to some results taken
from the third lesson. In fact, nearly all the pairs of pupils
found all six cube nets of this type in a very short time (in
about 5 to 10 minutes):

| 7 0 e [ 0 R 8 [
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Most of them now argued: "There are no more cube nets because

- for a long period we tried to find more, but we could not; or
- the other pairs found six nets just as we did; or

- the teacher seems to have no more cardboards."

But nearly all the pupils realized the weakness of these argu-
ments. Most of them now changed the guestion and demonstrated
that they could re-construct by use of the wooden squares all

the cube nets which they had already found (and which were re-
presented by the cardboards) . Soﬁé pupils actually believed
they had found a final solution to the problem by this proce-
dure. But others tried to show in a systematic way that they
had taken into account all the figures which can ever be ar-
ranged by six coherent squares (with four squares in a row);
i.e. they tried to establish their six cube nets as "all which
are possible". For exampl:, let us look at "Marion and Ute'":

These two girls had very ron found the six nets, and they
worked hard to explain wi these nets were "all":

Ute: "It's so hard to e> n."



Teacher: "But that's what you should do." (The girls groau.)
Marion: "First, here we have this ladder down..."

Ute picked up this idea immediately, and some time later the
girls demonstrated what was meant: By the word "ladder" they
meant this order of figures:

(] E ] ] ] [0
B o A ] & 2
B ol B S e B W mam e

The girls did not realize at first that two nets (;{F and %% )

- whose cardboard models were on their desk - are missing 1in
this arrangement. But later on they expanded their system in
such a manner that the "ladder" was part of it (and, in fact,
by the help of their new system one can prove that there are
not more than six cube nets!).

Discussion

On the video tapes the pupils' "mathematical behaviour" (Erl-
wanger 1975) is manifested. But we cannot by description alone
explain this behaviour, there remain a lot of questions, for
example: Which criteria lead the pupils to believe that they
have found "all" cube nets? What are the implications of words
like "ladder" for problem-solving processes? Another aspect
(which was not mentioned yet): Why are there so many misunder-
standings between teachers and pupils even in interview situ-
ations? To give some answers to these questions, I shall first
consider the frame model:

In 1979 Davis and McKnight presented their model of "Hypothe-
tical Mechanisms in Mathematical Thought", especially - with
reference to Minsky (1975) - their model of "frames": "The
word frame, as we use it here, means a specific information-
representation structure that a person can build up in his or
her memory and can subsequently retrieve from memory when 1t
is needed" (Davis 1980, p. 170). But Davis concedes that this
description "is hardly a definition in any usual sense". In
addition, most of the examples and explications given by Davis,
McKnight, or Minsky are just as vague. Hayes (1980, p.46)
even found that "it is not at all clear now what frames are,



or were ever intended to be."

But Hayes gives a new definition. Frames are "representations
of concepts": "A frame representing the concept C, with rela-

tionships R,,...,R becomes the assertion

n’
Vx (c(x) < 3 Yqseees ¥y [ R1(xv3’1)h ...ARn(x,yn))"

(Hayes 1980, p. 49). Unfortunately, one central intuition be-
hind frames gets lost in this approach, "namely the idea of
seeing one thing as though it were another, or of specifying
an object by comparison with a known prototype ... This is the
basic analogical reasoning ... which Minsky cites as a major
influence" (p. 51; by the way: this aspect of "seeing as" seems

to have been the first meaning of frames when this notion was
introduced in Gestalt Psychology, cf. e.g. Koffka 1935, p. 185:
"Orientation, as a factor which determines the shape of our
figure, is, then, not an absolute matter, but relative with re-
gard to the frame").

In this paper, I shall use the frame notion as follows: Each
person forms his or her own concepts; in the case of mathema-
tical concepts these individual concepts (or "concept images",
cf. Vinner and Hershkowitz 1983) might be quite different from
the concept definition given for example in the textbook. These
individual concepts are represented in frames, i.e. knowing his

frames, we are able to speak about a pupil's concepts. Like
mathematical concepts, a pupil's individual concepts may be
described by a collection of relations or properties; to be
precise: The notation of a pupil's frame is an assumption about
his individual concept. As the pupil's mathematical behaviour
comes from the application of this individual concept, the as-
sumption of specific frames can be tested by comparing his ac-
tual mathematical behaviour with the hypothetical behaviour
which would result from his hypothized frame.

As an example of a frame let us look at the teachers' frames

for solving the problem: "Find all cube nets with four squares
in a row": We know that cube nets consist of six squares,

whereby there must be one square on each side of the row (it's
evident from trying that one cannot form a cube anywhere else).

Given these facts, there remain precisely 16 figures which
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must be tested to see whether they are .cube nets or not:

TToL| 4 84
T#8s Foéd

In fact, all these figures are cube nets, but just six are

LIl

different (those framed, see above Fig. 1). I.e., the teachers'
frames might be described by a combinatorial arrangement of
figures (which may also be regarded as a sequence of actions
varying the figures from 1? to J% ; and of course there are

other ways to represent such a system so that it is clear that
all possible figures have been taken into account).

from the girls' expressions we learnt that their frames were
quite different: Corresponding to the teachers' frames, there
is the basic idea of ordering all figures of six coherent squa-
res systematically. But in their frame the figures are order-
ed in a way which looks like a ladder of descending steps (see
Pigao )

The word "ladder" and the meaning of this word in every day
1ife seem to have had a strong influence on the construction
of this frame in the girls' minds: 1. They saw that there is a
relation between their cube nets (represented by the card-
boards); 2. they named this relationship, using the word "lad-
der"; and 3. they generated by use of the ladder-descending-
idea all possible figures with six squares. For a moment they

were sure they had solved the problem by this procedure, only
when the teacher pointed out that two cube nets were missing
did they realize that their system was incomplete.

The word "ladder" was used in different ways by the girls and
by the teacher, resp.: The teacher denoted by this word a se-

quence of four figures (? ,EBJ,?:, lﬂ]) which belongs to his

frame (whereas Ute understood Marion's idea immediately). From
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the transcript it becomes clear that the girls on the vie nand
and the teacher on the other were misunderstanding each other
for a long period. But they did not realize this because they
translated the other's expressions according to their own frame

(in real classroom situations one can observe misunderstandings
like this very often).

Summary

It seems possible to explain parts of pupils' mathematical be-
haviour with the help of the frame model in a very plausible
way. 1f we are more sucessful in the analysis of pupils' frames,
it should also be possible to re-construct their mathematical
thought in problem-solving or concept formation processes; i.e.
more knowledge about pupils' frames in different fields of
mathematics might be a step towards more insight into the
structures of pupils' mathematical thought.
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SPATIAL VISUALIZATION
SEX AND GRADE LEVEL DIFFERENCES IN GRADES FIVE THROUGH E1GHT

David Ben-Haim
Haifa University - Oranim

Spatial visualization is considered to be one of the two major factors of spatial
ability. Spatial visualization is an aptitude that deals with the mental mani-
pulation of rigid figures. Investigating spatial visualization is important
because of its relationship to most technical-scientific occupations (Harris,
1981) and especially to study of mathematics, science, art and engineering
(Bishop, 1978; Harris, 1981). The spatial visualization aptitude emerges as a
component of mathematics ability in most factor analytic studies (Schonberger,
1976), and it shows about the same magnitude of correlation with mathematics
achievement as the verbal component does (Fennema and Sherman, 1977). An
additional indication that this aptitude is an important consideration is the
finding of sex-related differences in spatial visualization. Fennema (1975)
indicates that even though the existence of many sex-related differences is
currently being challenged, the evidence is still persuasive that in the American
culture, male superiority in tasks that require spatial visualization is evident
beginning during adolescence. Surprisingly, studies of training programs to
increase spatial visualization are very few. Of the existing studies, most have
been done with adults and the results are inconclusive. No large-scale study

to implement a unit of instruction in spatial visualization for a wide range of
grade levels was found. This provided motivation for the study of spatial
visualization in grades five through eight reported below (Ben-Haim, 1982).

_PURPOSE
The study had two related purposes. The first was to determine existing differ-
ences in spatial visualization abilities and in attitudes toward mathematics of

fifth through eighth grade students by sex and grade level prior to an instruction
al intervention. Research on cognitive variables shows close relationship of the

cognitive and affective components, thus investigating performance and attitudes
simultaneously seems appropriate. The second purpose was to analyze the effects
of instruction in activities involving spatial visualization tasks on the skills
and attitudes toward mathematics of a sample of sixth, seventh, and eighth grade
students by sex and grade level.
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METHODOLOGY

The study was conducted during winter 1982. Data was collected from January 20,
to April 20 and included general information on the students and pre-post and
retention test scores on spatial visualization tests and attitude scales. There
were 1327 fifth through eighth grade students from three sites, urban, suburban,
and rural in and around Lansing, Michigan, who participated in the assessment of
differences prior to the instruction. Of these, 430 sixth, seventh, and eighth
graders (only from site 3 - the rural) participated in the evaluation of the
effects of the instruction; of the 430 students, 238 took part in the evaluation
of the persistence of the effects (four weeks after the end of the instruction).

The instruments used included a semantic differential attitudes scale (Shumway

et al, 1981) and a spatial visualization performance test designed by the Middle
Grades Mathematics Project (MGMP), Department of Mathematics, Michigan State
University*. The spatial visualization test comprises ten item types relating

to different aspects of spatial visualization ability. The Cronbach a reliability
coefficients of the test for the various groups of students ranged from .72 to
.86, With a sample of 73 students the test-retest reliability coefficient was
TR

The spatial visualization instructional material included ten sequenced activi-
ties which required two to three weeks of instructional time. The activities
involve representing three-dimensional objects (buildings made from cubes) in two-
dimensional drawings and vice versa, constructing three-dimensional objects from
their two-dimensional representation. Two different representation schemes are
used for the two dimensional drawings. First an "architectural” scheme involving
three flat views of the building-base, front view and right view. After students
are comfortable with this scheme, they are introduced to isometric dot paper and
hence to a representation consisting of a drawing of what one sees looking at a
building from a corner. Similarities, differences, strengths and inadequacies

of the two schemes are explored.

The math teachers who taught the unit were provided with the instructional material,
a teacher gquide and a two-hour workshop. The tests and attitude scales were
administered during the regular school day by the classroom teachers. The
statistical analyses included multivariate and univariate analysis of variance

and repeated measures.

* The MGMP is a curriculum development project funded by NSF-DISE (National Science
Foundation Development in Science Education) to develop units of high quality
mathematics instruction for grades five through eight. The staff of the project:
Glenda Lappen, Director; William M. Fitzgerald; Elizabeth Phillips; Mary Jean
Winter; Pat Yarbrough; and David Ben-Haim.
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RESULTS AND CONCLUSIONS
Table 1 provides means of the Spatial Visualization Test (SVT, range 0-.¢; uid
the Mathematics Attitude Scale (MAT, range 1-5) pretest scores for the entire
sample by site by grade by sex. Table 2 includes the P values resulted from the
multivariate and univariate analysis of variance for each site. Three planned
comparisons were used for the grade main effects at site 3 -- G]=(5,6) vs (7,8),
GE=5 vs. 6, and G3=? vs. 8. No significant interaction was found at sites 1 and
2; at site 3 the only significant interaction was for GS by Sex. In addition
to the above analyses, a comparison of the data across sites was investigated to
determine differences in spatial visualization by site and by sex for students in
in grade six.

TABLE 1
Pretest Means of SVT and MAT Scores by Site, by Grade, and by Sex
BOYS GIRLS
SVT MAT SVT MAT SVT MAT
N M M N M M N M M
Site 1 (urban)
Grade 5 [0 SUs 33 RN3L560 5  T:25 0 13:450 49 7.43 3.667
Grade 6 115 B8.85 3.099 b8 9,05 2.950 57 8.66 3.249
Total 219 B3t 3314 EE3T B8 w3093 106 8.08 3.442
Site 2 (suburban)
Grade 6 274 12.15 3.200 | 150 12.91 3.259 | 124 11.23 3.343
Grade 7 153 M 2ER0NSs 027 7 S i B 0 3.039 82 "11.88. 3,017
Total 427 l12.42 Fo297 vi[227 11328 i Bu T8 206 890 323
Site 3 (rural)
Grade 5 94 8.8] 3.685 489,58 +3.788:° 460 8,00 3:577
Grade 6 ?08 10.17 3.044 | 104 11.31 3.064 104 9.03 3.024
Grade 7. 170 A1.070 © 2.858 0 b T S e 80 10.50 3.061
Grade 8 209 29l 802 96 15.27 2.836 TS il dges 2 77 a
Total R8T LDEEN S, 0764 13381 23355135007 343 9.8 3.025

It was concluded from the analysis of the data gathered prior to the instructional

intervention that there were: :

* Grade level differences in spatial visualization performance (increasing with
age) and in attitudes toward mathematics (decreasing with age).

* Sex differences in spatial visualization performance (favoring boys), but no
sex differences in attitudes toward mathematics.

* Site differences in spatial visualization performance; as the socio-economic
status rose, the performance increased.
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TABLE 2
Multivariate and Univariate Analysis of Variance for each Site -
P Values for Grade and Sex Differences

Source of Multivariate Univariate
variation SVT MAT
L P< P< P<
Site 1
Grade .0003 .0225 .0007
Sex .1393 .8447 L0483
Site 2
Grade .0020 .2050 .0029
Sex .0026 .0013  .5924
Site 3
G]=(5,6)U5.(?,8} .0001 .0001  .0001
G2= b, ¥sy. 6 .0001 .0235 0007
G3= T NS B .0012 .0006 L4879
Sex L0001 .0001 .6897

Table 3 provides means of the pre-and post-test of SVT and MAT scores for the
instruction subsample from site 3 by grade and by sex. Table 4 includes the
univariate P values resulted from the multivariate and univariate analysis of
repeated measures. Two planned comparisons were used for the grade main effects-
(7,8) vs. 6 and 7 vs. 8. Table 5 provides means of the post-and retention-test
of SVT scores for the retention subsample by grade and by sex.

TABLE 3

Pre-and Post-test Means of SVT and MAT Scores for the Instruction Subsample
by Grade and by Sex

SVT MAT
Pretest Posttest Pretest Posttest
N M M M M

Grade 6 108 11.04 16.96 3.094 3.153
Bays 54 12.48 18.83 3.156 3.265
Girls 54 9.58 15.09 3.032 3.040
Grade 7 142 11.22 20.02 2.918 2.947
Boys 74 11.74 21.00 2.761 2.815
Girls 68 10.64 18.96 3.089 3.091
Grade 8 180 1323 20.56 2.779 2.737
Boys 79 15.98 23.06 2.816 2.753
Girls 101 12.11 18.60 2.742 2.725
Total 430 12.01 19.48 2.904 2.911
Boys 207 13.48 21.12 2.889 2.909
Girls 223 10.65 17.86 2.918 2.913
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TABLE 4
Analysis of Repeated Measures - P Values
Grade by Ry by Grade by Time Time effect
Sex b ¢
??mey Time (7,8)vs.6 7 vs.8
P< P< p< P< P<
SVT .5388 .2927 .0002 .0057 .0001
MAT .5508 7415 .3160 . 3150 .8195
TABLE 5

Post- and Retention-test Means of SVT Scores for the Retention Subsample
By grade and by sex

Posttest Retention
N M M
Grade 6 52 Tl 18.65
Boys 26 18.85 19.50
Girls 26 15.70 17.81
Grade 7 79 20.06 20.71
Boys 41 20.93 21.46
Girls 38 19.13 19.89
Grade 8 107 21.73 22.36
Boys 45 24.40 25.02
Girls 62 18.94 20.42
Total 238 19.95 - 21.00
Boys 112 21.77 22.44
Girls 126 18.33 19.72

It was concluded from the analysis of the pre-post data that after the instruction:

* Sixth, seventh, and eighth grade boys and girls performed significantly higher
on the spatial visualization test; however, no change in attitudes toward
mathematics occured.

* Boys and girls gained similarly from the instruction, in spite of initial sex
differences.

* Seventh grade students, regardless of sex, gained more from the instruction
than sixth and eighth graders.

In addition, the retention of the effects of the instruction persisted; after a

four-week period, boys and girls performed higher on the spatial visualization

test than on the posttest.
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SPATIAL REASONING: STAGES OF DEVELOPMENT

Tommy Dreyfus Thecdore Eisenberg >
Center for ; Department of Mathematics
Technological Education Ben Gurion University
Holon, Israel Beer Sheva, Israel

Having the ability to visualize in three-dimensional space is a
desirable asset for studying mathematics, but we have only the vaguest
notions and understandings of how this ability develops. Indeed, even
though researchers feel that they know what spatial ability is, and even
though spatial ability has been the subject of literally hundreds of
research studies

1. no factor analytic characterization of spatial abilities has yet
been found (Guay, MeDaniel and Angelo, 1978);
2. we have no idea why boys, as a whole, perform better on spatial
reasoning tasks than girls (Fennema and Sherman, 1977);
3. we do not know why races, as a whole, perform differently from one
another (Mitchelmore, 1980); and
4, we can not even answer with certainty whether spatial ability is
inborn or learned (Vladimirskii, 1971).
Although several excellent reviews of the literature have recently been
given by McGee (1979), Bishop (1930), Eliot and Hauptman (1981) and
Clements (1983), the bottom line remains: we really do not know much about
spatial reasoning ability, but we consider it a desirable trait to
posSsess,

Being educators, we take as an underlying hypothesis that spatial
reasoning, loosely defined as the ability to formulate and manipulate
mental images (Hebb, 1972), can be fostered in a serious way. We can,
through teaching, nurture in students the ability to visualize objects
and, more specifically, to visualize mentally three-dimensional object
which are presented to them by means of two-dimensional graphical

representations.
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When presented with the drawing in figure 1, for example, a person
can either see a plane triangle with three
lines emanating from its vertices meeting in
point P, or he can immediately see a
three-dimensional pyramid of which P 1s the
vertex. The context in which the figure
appears should dictate to the person, which Figure 1
interpretation to use, but both should be absolutely natural to him. The
mental flexibility implied by the choice between the two interpretations
is a central aspect of spatial ability. We believe this ability is
important to possess, not only for its own right, but because the type of
mental processes involved in effecting such visualizations are necessary
for and can transfer to other areas of mathematics and science. To mention
only a few examples: Linear algebra, real functions of two real variables,
propagation of plane or spherical waves, atomic or molecular structure,
and 30 on. Because of this central role which spatial visualization plays
in our culture, a program has been designed which is expected to
eventually lead to materials for schools.

OVERVIEW
The program is planned in several distinct phases. Phase I is

concerned with ascertaining the status of children's spatial ability and
determining how this ability develops over time. Of interest here is a
careful assessment of the type of skills the children possess. Two types
of tasks have been chosen as representative for a large class of spatial
abilities: Counting analyses of spatial structures given by plane
representations and tasks requiring mental folding or unfolding of
surfaces. Children of various ages and academic levels are being tested on
these tasks by questionnaires and in structured interviews. The aims of
the testing are twofold:

1. to get bench-mark data on these question types for a reasonably

large section of the student population and

2. to identify cognitive difficulties students have with such
questions.
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A first impression of the development of spatial reasoning vis-a-vis
maturation can be gained oh the basis of the data obtained from the
questionnaire. But in order to provide a more solid foundation for
examining stages of development of spatial reasoning, the same children
will be tested each year over the next several years. It will be
determined what progress children make in spatial reasoning without
specific intervention, since they are not taught spatial topics
explicitly.

On the basis of the results from phase I, an instructional sequence
will be developed in phase IIL of the program. The sequence will be
composed of several small units. Each unit will consist of an
instructional part in which models will be used and a structured series of
exercises. One of the goals, for example, will be to enable the students
to see and draw intersections of bodies such as the orthogonal
intérsection of two right circular cylinders of equal radius.

As an earlier study showed (Dreyfus and Eisenberg, 1983), some
mathematics teachers are not sufficiently proficient in spatial reasoning
to teach it in a serious way. The teachers who participated in that study
were junior high school mathematics teachers, but there are indications
that their ability on these tasks is representative of the ability of
mathematics teachers in general. It is therefore planned to involve a
sizable number of teachers in the development phase for two purposes:
Build up the teacher's background in the area and get feedback based on
their experience with the materials in development.

Phase II will be linked to Phase I insofar as the units will be
carefully adapted to the stages of development identified in Phase I and
will systematically take into account the cognitive difficulties which
appear to be common to a large section of the population. Phase III will
be concerned with the implementation and the evaluation of the resulting
materials.
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THE LONGITUDINAL ASSESSMENT
The first stage of the longitudinal study referred to above as Phase

I will be deseribed here in detail.

Questionnaire

Two different versions of a questionnaire were written. Each version
contained 17 exercises, each question belonging to one of the five
question types illustrated in Figure 2. More specifically there were 3
questions of type 1, 3 questions of type 2, 4 questions of type 3, 4
questions of type 4 and 3 questions of type 5.

e e e e e o e o e e e o B +
: : | i
| Type 1. | | Type 2, |
i i ' i
| i i i
i i | |
I i i How many !
i  How many | i faces/edges/ i
i  blocks touch the one i i wvertices does !
| with the x? ! i  the body have? :
1 ] i |
| ] ] b
e —————————— s ———— e e e o e +
o e e + o e e e - +
I 1 | ]
| 1 | ]
i Type 3 | | Type 4 — |
| i | i
| | | | !
| Draw what you ! ! i ;
| get when you : ! 5 ]
| cut along the : | Can the given e I
| dotted line 1 |  shape be folded into a !
| and unfold, | | cube? i
| i I I
e e + o e e e e e +
e e e e e e e o e e e +

Fig. 2: Typical Problems
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Questions of type 1 and 2 belong to the category of counting analyses in
three-dimensional bodies given by two-dimensional drawings and questions
of types 3, 4 and 5 belong to the category of mental folding or unfolding
of two-dimensional surfaces in three-dimensional space. These question
t.vpes were chosen because it was felt that they represented two
visualization skills representative for a very large class of such skills,
Socioclogical and personal data as well as questions on the students'
self-perceived abilities in school mathematics and in spatial ability
completed the questionnaire.

Population
The questionnaires were distributed to 244 individuals in two

geographically different areas in Israel. They were administered in group
and in individual settings. The distribution of the population by grade
and sex is shown in table 1.

| |
I TABLE 1 |
I Population by Grade and Sex _ E
| |
I |
I |
I

Grade 4 6 g 10 Univ. Total
Sex |
e e e 2 T N Rt e ot o e T b |
Female 1 24 12 8 4
| Male 6 3 5, L T 15 |
gl S5 e TR 24y |
i |
e e - - o -

The University students in the study were all taking an intermediate level
course in beginning caleculus. Each had passed a nationwide University
matriculation exam or its equivalent. For each group the questionnaires
required 30 - 40 minutes to complete.

The findings and interpretations of the data collected will be
presented at the conference. Particular attention will be paid to
pinpointing areas in the data which suggest specific pedagogic
intervention.
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CAN WE TEACH HEURISTIC STRATEGIES ?

Gerhard Becker, University of Bremen

A lot of research work in the field of problem solving has
been done during the last years, The explored domain turned

out to be the more complex, the more intensively it has been
invaded.

It is extremely dubious whether general heuristic strategies
can be trained. We know that every sufficiently specified
strategy, useful in typical tasks, does not lead to success
in other situations, which are specific, too. What seems to
be possible, and what is necessary at any rate, is training
specific strategies, i.e. strategies to solve problems be-
longing to a relatively narrow topi¢ field and fitting to
certain task types, however avoiding restriction to mere
routine tasks. After having made experiences with rather
narrow strategies, pupils may combine them to more extended
strategies, and to generate superordinated strategies; that
means those selecting strategies of lower order and estimat-
ing them at their efficiency in more complex problem situa-
tions.

Parts of an instructional sequence shall be sketched, in
which training of content-specific and problem type-specific
strategies was attempted, and a report shall be given about
difficulties and success in applying them, and about forma-
tion of higher strategies, Since the beginning of the term
1981/82 1 have been giving mathematics lessons in two grade
7, now grade 8 classes of a junior high school (a german Gyﬁ-
nasium). By several reasons only a swall amount of lesson
time could be used for the subject in question. So, it was
indispensable to concentrate upon topics easily to be incor-
porated into the curriculum, and admitting an expansion to-
wards the intended aims. Under these conditions geometry
seems to be the most adequate subject area in junior high
school curriculum to realise the wentioned purpose. The com-



[

peting area, namely arithmetic and algebra, mediates mainly
technigues, and the few problems in which these are applied
are too inhowogenious as to train content-specific strate-
gies. In geometry we can distinguish between several types of
problems or tasks, above all computation problems, construc-
tion problems, and demonstration problems (c¢f. Holland, 1982,
pp. 190-253). Roughly spocken computation problems have the
most unique solving techniques, and we will find a nearly un-
limited number of exercises of the same type. The latter per-
tains to'construction problems, too, whereas solution tech-
niques vary in grade of difficulty. Demonstration problems
allow a tolerably unique solution technique only by a certain
kind of selection and grouping of the theorems to be dealt
with, Besides that, proving and making demonstrations need
non-routine elements to a higher extent than the other men-
tioned task types, at least with respect to junior high
school. Therefore, demonstration problems particularly sug-
gest the inquiry of formation and stabilisation of problem
solving strategies, This process must be based upon the ac-
quisition of a "schema" by the pupils, which can be developed
further, expanded, and refined (cf. Skemp, 1979).

Such a "schema" may consist in the awareness that a new link-
ing idea has to be added to the premise and the conclusion of
a theorem, connecting them logically, and, at the same time,
to get at least a rough idea of how that can be done, and
whether an invented proof or a given one is sufficient. Such
a general and basic pattern might be formed by analysing
given demonstrations or those worked out together with class-
room fellows, reflecting upon its parts, and upon what it
fulfils.

In order to understand demonstrations, and even more, to
learn to design demonstrations on their own, pupils need

1. a stock of elements or "bricks", that means parts of for-
merly studied demonstrations, stored in memory and available
to be combined to new demonstrations,

2. an estimation of whether a given or a found demonstration
is correct, or whether it contains gaps.
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The strategies to be learnt consist of the acquaintance with
an instrument and at the same time of a method for its use,
fal.

- the knowledge that a figure can be decomposed by adding one
or several auxiliary lines, and together with this the attain-
ments of the properties of special auxiliary lines,

such as angle bisector or perpendicular bisector of a line
segment,

- the knowledge that equal measure of two line segments or
two angles can be demonstrated by using a pair of congruent
triangles, and together with this the attainments of the con-
gruence theorems,

Communication demands a formulation of the strategies in lan-
guage medium., A check-list consists of the following questi-
ons:

Which auxiliary lines are under consideration ?

Which partial figures are generated by drawing these line(s) *?
Can I find a pair of congruent triangles ?

How can I point out the congruence of the triangles in ques-
tion 7

Geometric proofs being based upon congruence transformations
might be regarded as an alternative to the method using con-
gruent triangles. There is no doubt that in many a case trans-
formations make visible a deeper ground for a geometric state-
ment. But with respect to uniformity of proof techniques the
method of congruent triangles geems to be superior to the
transformation method. A stock of stipulated skills must Dbe
the basis upon which higher strategies of a hierarchically
structured system of heuristic instruments might arise.

The congruence theorems themselves can be interpreted as sum-
marizing conditions for the solvability of construction tasks.
They form, together with some properties of the rectangle,

the deductive base for the further theorems. It should be men-
tioned that, from an axiomatic point of view, this base is
quite incomplete; in the above mentioned sequence no existence
theorems (f.i. for the midpoint of a line segment), no theo-
rems about measurement (f.i. in the case of decomposing an
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angle or a line segment), no theorems about betweenness or
linear order upon a straight line, no theorems about unique=-
ness have been formulated.

Angle sum theorems and theorems about special types of tri-
angles were taken as an opportunity to speak about proving

and about the form of deduction. Above all, properties of dif-
ferent types of quadrilaterals were used to apply and to train
the learned strategies.

The report about the outcomes shall be arranged in two parts.
At first impediments and difficu%ties which occured shall be
shown by examples. They make obvious lack in mastery of the
strategies to be attained. As the main reasons for not find-
ing the solution of a demonstration problem or for giving a
wrong solution there can be identified:

1. insufficient treatment of the topics necessary for under-
standing or solving the problem, or lack in exercise,
such as

- using unsuitable auxiliary lines

- attributing too many properties to an auxiliary line, f.i.
regarding the bisector of an angle also as the bisector of
another one (without proving the latter),

regarding the bisector of an angle also as the perpendicular
bisector of a line segment

- applying an auxiliary theorem without checking whether it
can be applied in a special situation

- not proving a required property of a given figure generally,
but only for a special case

- measuring instead of proving, or confusing parts consisting
in measuring with parts consisting of dewmonstrations

- circular procedure

certain properties of a geometric figure being mentioned or
formulated twice within a proof, i.e. enumerated without any
proof and, shortly after, deduced

- non-separating a theorem from its converse
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the pupils denying the necessity to prove the converse of an
established statement at all, or not recognizing that in a
certain context the converse of a theorem has to be applied,
and not the theorem itself

- misunderstanding the weaning of a wvariable

f.i. confounding the use of a symbol such as "a&" to denote
angles of equal measure with the use of the same symbol to de-
note the angle at the bottom on the left;

2. lack of transfer or generalisation, interference by com-
peting principles or strategies,
such as

- decomposing a quadrilateral into two partial triangles in-
stead of four, the decomposition into two triangles having
been repeatedly a suitable strategy in the past

- using permanently symmetric parts of a figure even in cases
when only one part is sufficient or the two symmetric parts
are not congruent to one another;

3. inadequate structuring of the field of perception, or fixa-
tion upon certain elements of the problem situation,

such as

- hesitating to formulate the congruence of two triangles, if
these overlap, or if they have a common side, so that this
side should be used twice

- favouring or even being fixated upon horizontal and vertical
auxiliary lines.

Secondly some spontaneous attempts - i.e. not explicitly re-
quired attempts - towards the formulation of "higher" strate-
gies are reported., One field of exercise which might challenge
the rise f.i., of backward strategies is the treatment of pro-
perties of different guadrilateral types. Here, trying to
prove not directly the defining property of a figure is near
at hand, and to aim at proving such a property, from which the
defining property follows. It was not intended to deal ex-
plicitly with higher strategies before the pupils would have
ample experiences with the mentioned basic strategies. Yet, in
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some pupils' remarks explaining their own procedure backward
strategies are recognizable very distinctly.

REFERENCES

BECKER, G., Difficulties and errors in geometric proofs by
grade T pupils. In: Proceedings of the Sixth In-
ternational Conference for the Psychology of Ma-
thematical Education, Antwerpen, 1982, pp. 123 -
127

DORNER, D., Problemlésen als Informationsverarbeitung. Stutt-
gart, 1979 (2% Edition)

HOLLAND, G., Didaktik der Geometrie, Typescript. GieBen, 1982

HORTON, D.L., TURNAGE, T.W., Human Learning. Englewood Cliffs,
1976

NEWELL, A., SIMON, H.A., Human Problem Solving. Englewood
ClLTEEsEE92

RADDATZ, H., Fehleranalysen im Mathematikunterricht. Braun-
schweig, 1979

SCANDURA, J.M., Problem Solving. New York, 1977

SKEMP, R.R., Intelligence, Learning, and Action. New York,
1979

WITZEL, W., Lehren des Beweisens im Mathematikunterricht.
Freiburg, 1981



— 50—

EUCLIDEAN GEOMETRY FOR AVERAGE ABILITY CHILDREN

Nurit Hadas, Tommy Dreyfus and Alex Friedlander
Department of Science Teaching
Tne Weizmann Institute of Science

The controversy about geometry in (junior) high school has been going
on for tens of years (Fletcher, 1971). Indeed, if students don't even
grasp the nature of proof (Fischbein and Kedem, 1982), why teach them
Euclidean geometry? As a result of the 'Eueclid must go' syndrome a wealth
of ideas for alternative geometry courses has been proposed (see, for
instance, Freudenthal, 1973, chapter 16). Another opinion holds that,
because of its intrinsic value, Euclidean geometry should continue to be
taught, and it apparently does continue to be taught in a majority of
geometry courses (Gattegno, 1980). It is therefore imperative to analyze
the cognitive difficulties of children learning Euclidean geometry and to
develop teaching strategies designed specifically to deal with these
difficulties. One attempt to do this is described in the present paper.

COGNITIVE DIFFICULTIES

Texts for Israeli junior high school mathematics courses are prepared
in three parallel series, corresponding to three ability levels: high
ability (A), medium ability (B) and low ability (C). Junior high school
mathematics curricula typically contain approximately 100 lessons of
geometry (out of a total of approximately 400 mathematics lessons).
Usually geometry is taught in grade 9. The aim of the geometry curriculum
is to acguaint the students with a deductive mathematical structure, a
sacondary goal being the knowledge of the properties of plane geometrical
shapes, which the children know from elementary school. This geometry
course builds a deductive chain of axioms and theorems. The accomnpanying
problems deal with bullding proofs, computations in geometrical figures
and constructions with compass and straight edge. This course will be

called the 'Standard Course' in the sequel.
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Classroom observations during the standard course revealed that its
approach does not correspond to the capabilities of average ability
students. By this we mean B-level students generally as well as A-level
students in schools with a high percentage of socially disadvantaged
children. Each student in Israel is labelled by the Ministry of Education
as to whether he is socially disadvantaged or not. This labelling is based
on a socioeconomic formula that takes into account a variety of factors in
the child's environment. Characterisic difficulties of these children in
the cognitive and affective domains have been described by Hershkowitz
(1980). Some difficulties relevant to the learning of geometry are the
language problem, the need for constant success and the inability to
organize a complex task. In fact, in order to prove a statement given in a
verbal fomulation, the student has to identify assumptions and conclusion,
translate from verbal into mathematical language, and find a chain of
logical steps leading from the assumptions to the conclusion, whereby the
logical order may be different from the order in which he found the steps.
The need for translation and the complexity of the task will usually
prevent immediate success, and students may therefore fail at such
problems or not attempt their solution at all.

At the end of the standard course most B-level students and socially
disadvantaged A-level students were unable to independently carry out even
simple proofs and largely failed to understand the basic logical
principles underlying the deductive structure they were taught. Since it
appears that teaching an explicit unit on logic is not an effective remedy
(Deer, 1969), it was decided to carry out a detailed analysis of student's
difficulties in organizing their thoughts and in building the logical
arguments. This analysis revealed that the difficulties were due to a lack
of understanding of the following fundamental features:

1. Even 'obvious' statements have to be proved.
. A statement is correct only if it is correct in every case.

. Concluding results from given data.

2
3
4, Distinguishing the assumptions from the conclusion.
5. Difference between a theorem and its converse.

6

Identification of basic shapes in complex figures.
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STRATEGIES

On the basis of this analysis, a revised version of the geometry
course was written. The principles guiding the writing were that no
essential change in content should be made, but that the approach would be
completely changed so as to acquaint the students uith the structure of
proofs (without demanding them to carry out proofs independently) and, at
the same time, to stress the six fundamental features listed above.
Methods were developed to deal with each one of them and were carefully
and systematically implemented in the text. Two of these methods are
described here in detail.

Even 'obvious' statements have to be proved

The principle to be discussed is that it is not allowed, in a proof, to
rely on figures but that each statement has to be based on statements
proved earlier. This principle is implemented in two ways:
a) A statement is presented to the student together with a figure which
either misleads or does not allow any conclusion with respect to the
statement.

Example: Determine whether the two triangles are congruent:

5 ¢cm 5 cm A
Example: Given AB = AC
and BD _L AC ¥
can you conclude that AD=DC ? g :

Remark: Many mistakes occur because the students draw a more regular
figure than the given one and draw conclusions from it.

b) Statements which are neither obvious nor easily accessible to
intuitive reasoning are emphasized. In such statements the proof is
the only basis for believing that the statement is true.

Example: The sum of the external angles of a polygon equals 360 .

A theorem has no exceptions

The principle to be discussed is that a mathematical statement is
said to be correct if and only if it is correct in each and every
conceivable case in which the assumptions are satisfied. To drive the
point home students have to correctly complete statements such as
Example: A quadrilateral with four right angles is a
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Remark: Many students - and quite a few of their teachers - are hard to
convince that 'square' is an incorrect completion.

From the principle it follows that a proof has to be general, whereas for

a refutation an example suffices. This point is stressed with exercises

such as

Example: Determine whether it is warranted to conclude that £ BPC TEPD

and choose an appropriate way to confirm your claim.

Given: ABCD parallelogram

DR ==PC
£

Proof Reason Counterexample
S o s i
L rdy S R |
TN Co i |

A EA .

Remarks: - Such an example would typically be accompanied by a similar

one, in which the givens don't warrant the conclusion (replace,
for instance, '"DP=PC' by 'BP bisects angle ABC').

- The frame provided for filling in the proof helps to prevent
frequent mistakes in proving: The illicit use of the conclusion
in the argument and the addition of irrelevant information.

EVALUATION
The team writing the new text was interested to receive feedback from
the field about the following question: Do average ability students using
the new text answer more correctly than those using the standard text to
questions pertaining to the deductive structure of geometry? It was
hypothesized that such an effect would be observed because of the stress
on logical principles in the new text. Additional points of interest were
whether differences would be observed on:
1. the facts of geometry (Hypothesis: no difference),
2. general logical reasoning (Hypothesis: no difference),
3. the attitudes to geometry as a school topic (Hypothesis: There will
be a difference).
It was decided to carry out both, a formative and, independantly, a
summative evaluation of the text.
A draft version was taught, in a first stage, in 6 classes with
select teachers, all of them collaborating to some extent with the writing
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team. A regular feedback mechanism was set up and provided one part of the
formative evaluation of the text, the other part being provided by a set
of common geometry questionnaires to all classes. As a result of this
formative evaluation a series of improvements were introduced in the text
yielding the experimental version. In a second stage, an independent
evaluator was added to the team and, in a controlled experiment, the
experimental version was taught to 23 grade 9 classes, distributed in 15
different schools. Most of these classes (15) were B-level classes in
schools whose percentage of soecially disadvantaged pupils was medium to
low. The remainder were A-level classes in schools with a high percentage
of socially disadvantaged pupils. A similar set of 13 classes, being
taught with the standard text, served as control group. Except for an
initial meeting, in which the principles of the approach and the goals of
the evaluation were explained to them, the teachers worked independantly
of the developing and evaluating teams.

Six questionnaires were given to the classes in the course of the
school year:

a) A geometry pretest checking knowledge on basic notions such as types
of angles, triangles and quadrilaterals, as well as simple area
calculations.

b) A pretest checking logical abilities on non mathematical topics. A
sample question from this test was:

It is known that 'firehand' is a particular kind of coral.
éZér??agg‘cggggaggdm%ﬂggaéflfgg?algeagggfb minerals from the sea?
Answer 'yes' or 'no' and explain your answer.

c) A midyear geometry questionnaire containing ten problems on the
curriculum., The problems were carefully formulated in order not to
introduce any bias in favour of either group. The majority of the
problems required identifying the correct conclusion (4x),
justifying a given conclusion (4x), or doing a geometric
computation. Some questions also dealt with negation (4x),
counterexamples (2x) and a converse theorem (1x).

d) A semantic differential type attitude questionnaire comparing
attitudes to geometry with those to algebra (same teacher) and bible
studies.

e) A logic posttest, analoguous to (b).

f) A geometry posttest, analoguous to (c).
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RESULTS

The results of the evaluation essentially confirmed the hypotheses
stated above. They showed that the experimental group, using the new text
improved much faster than the control group. Most of this advantage of the
experimental over the control group was stable. The areas in which the
experimental group performed better than the control group were the
justification of conclusions, the identification of false statements and
their refutation by counter examples. No difference was found in the
logical abilities of the students outside of geometry. More detailed
findings will be presented at the conference.
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WORKING BACKWARDS IN SOLVING GEOMETRIC
CALCULATION PROBLEMS

Gerhard Holland
University of Giessen,Germany

1.PRELIMINARY REMARKS
In 1980 at the University of Giessen a project was
initiated,in cooperation with some nearby Secondary Schocls,to
investigate the possibilities of problem-solving training uéing
geometrical calculation problems.’
The first teaching experiment was conducted in 1980 with 113
grade 8 students of levels A to C.(In German Comprehensive
Schools the students are usually classified according to their
performances in mathematics in courses of level A,B and C with
decreasing standards from A to C.)
Under normal classroom conditions the students worked for two
weeks on calculation problems concerned with the measurement of

angles. The two examples in Fig.1 are taken from the post test.

&
oz
Gz =
B:-
. 65 A:84%
Fig.1 o= 2 -'I

With help of some examples the students learned how to solve
problems by working forwards but they did not get any
systematic instruction regarding strategy. The findings of
the experiment are discussed in full detail in Holland (1980).

But to attack a calculation problem the strategy of working

forwards is certainly not always the appropriate method.

We therefore initiated a further classroom experiment to get

answers to following questions:

(1)To what degree is the method of working backwards in solving
calculation problems teachable to students of grade 7 to 107
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(2)Is a transfer observable from the trained problem class to
other classes of geometric calculation problems?

(3)How much do students make use of the method of working
backwards if they have learned this method before as well
as the method of working forwards? '

(4)What special difficulties arise if students try to solve
a calculation problem by working backwards? What kind of

errors can be observed?

To give the empirical investigations a theoretical background

a computer-simulation model has been constructed which is
capable of simulating the strategicai aspects of the problem-
solving process, namely the strategies of working forwards and
working backwards. In contrast to J.G.Greeno's sophisticated
and comprehensive computer model PERDIX (c.f.Greeno 1978) our
model does not simulate pattern recognition and propositional
inference. This ommission is justified because our model is

- to use Greeno's words -more prescriptive and developmental
than descriptive and analytiec. The computer,which solves a find-
problem by working forwards or working backwards, is a valuable
model of those procedures which are necessary to perform

the task. It informs the teacher of possible errors and
difficulties which are to be expected and supplies him with
instructional remedies.

A short outline of the model 1s given in 4.

2.THE EXPERIMENTAL DESIGN
The experiment was conducted during the first half of "1983 with
grade 8 students from two Secondary Schools near Giessen.
From the total of 95 students who took part in the experiment
50 were in an A-course and 45 in a B-course. During the first
two weeks subject and setting were similar to those in our
first experiment. The students solved calculation problems
concerning measurement of angles by working forwards.
Subsequent to a test and during a further period of two weeks
the students were trained in working backwards with calcula-
tion problems concerning measurement of polygons. A typical
example together with a standard solution is given in Fig.2.
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< i J given: a=zldcm
sl Tl b=6em
B Az12cm?
¢ 2
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The students had been instructed to fill in

using a sequence of three procedures:

the two tables

1.Fill in the table on the left using a sequence of

working backward steps.

2.Transfer the table on the left to the first two columns

of the table on the right, but the rows now ordered in a

working forward manner.

3.For each row of the table on the right note down the formula

which serves to calculate the unknown measure from the

already known measures.

Carry out the calculation.
While the two last procedures have a simple
the first procedure is the real core of the
process. With help of examples the students

to perform a backward step according to the

algorithmic eharacter,
problem-solving
had been instructed

following procedure:

(1)Select a variable as the new goal and write it down in the

first column of the left table,

(2)Look for a set of variables which determinate the goal-

variable by applying a known formula to the given geometric
figure. If you have found such a set write it down into the

second column of the table.

3.POSTTEST AND PRELIMINARY

RESULTS

The post test consisted of four problems (Fig,4).Unfortunately to
date only the results of 15 students of level A are available.
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d=8cm A=15em A=12em
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solution by working backwards |11 (73) 5 (33) 4 (2 3 (20)
solution by working forwards 280 ¥30 L (a7 (“7) ek
solution by a mixed strategy 1=t 2R - -
false or not tried RGO Gl DR AR

The students had been asked to find solutions for the first
two problems by working backwards. For the remaining two

The first
problem of medium difficulty was selected to assess the ability

of the students

problems they could choose their favorite method.

to apply the method of working backwards to

new problems of the trained problem class. The second problem

of the method to
result is problably due to

was selected to assess the transfer

another problem class. The negative
the fact that the problem belongs to a problem class to which
the method of working forwards had been applied in a preceeding
training. The third and fourth problem should give information
concerning the degree to which the students prefer the method
of working backwards (when they had been trained in this method

with problems of the same problem class).

4.A COMPUTER MODEL OF THE PROBLEMSOLVING PROCESS
In our experiment,to obtain the solution of a calculation prob-
lem by working backwards the student is expected to fill in the
two given tables. As we have seen this task may be accomplished
by a sequence of three procedures.Because only the first entails
the strategic aspects of the problem-solving process we confine
the description of the model in the following to the first
procedure. But in filling in the table we allow forward steps

as well as backward steps.
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We describe the problem-solving process using a state-operator
representation. Goalstate is the completed table as a sequence
of forward steps or backward steps. The initial state is the
empty table. In each step of the problem-solving process a new
row is added to the table.Therefore we identify the rows of the
table with the operators in our state-operator representation.
Since each operator op is an ordered pair of two components we
write op=(op.goal;op.arg). The first component op.goal is a
single variable whereas the second component is a set of
variables. For the human problem solver each operator is itself
the result of a process in which an abstract geometric theorem
or formuia 1s applied to the given geometric configuration.

For example in Fig.2 the three operators (A;b,x),(b;x,A) and
(x;b,A) are the result of applying the formula for the area of
a triangie to the triangle with length b,altitude x and area A.
As Greeno has demonstrated with his computer simulation model
PERDIX this process may be considered as a process of visual
pattern recognition and propositional inference(Greeno 1978).
In our model the operators are immediately derived from what we
call "atomic bricks" of the given geometric configuration.

Each atomic brick is the concretization of an abstract formula
within the geometric configuration . We represent it by an
ordered set of variables. For example in Fig.2 the ordered set
(T,d,b,c) is an atomic brick which is generated by applying the
formula for the area of a trapezium to the given configuration.
Because of Tz1/2 d(b+c) each of the four quantities T,d,b,c is
determinated by the remaining three. Therefore four operators
can be derived from the atomic brieck (T,d,b,c).

The set of atomic bricks, which represents the given geometric
configuration is stored in the computer from the beginning and
supplies the operators for the probleﬁ-solution. It must be
extensive enough to guarantee at least one soclution. Also it is
evident that the number of possible solutions which can be
found grows with the number of available atomic bricks.

In each step of the solution a new operator is added to the
current problem state. This may be done as a step of working
forwards or as a step of working backwards. Here we can give
only a rough descripton of the procedure for working backwards:
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(1)Select the new actual goal from the set of possible goals.
(2)Determinate the set of all b-applicable operators which
comply with the condition: op.goal=new actual goal;

(3)If the set is not empty then select at random one operator
and add it to the problem state, else try a backtrack.
(The concept b -applicable covers several conditions which an

operator must meet to be applicable in a backward step.)
The following is a computer solution of the problem in Fig.Z.

Atomic bricks: Solution by working backwards
Additivity of area: nr |op.goal | op.arg
(Rl BE GRS 1 E A B~G,R
(Tch B AR 2 R CAiT
(R LT 3 it b,c,d
Additivity of length: 4 @ a, b
G o) 5 d ANCH ¥
(c,a,b) _ 6 d Xy
Area of a rectangle: T X b,A
(R,c,d) 8 y c,B
Area of a triangle: g ¢ a,d
(A,b,x)

(B,c,y)
(Caad)

In step 5 the star "*¥" indicates that this row is invalid
as a consequence of a backtrack in step 6. Here the actual goal
originally was the variable C. But because no operator was

available a backtrack is the conseguence.
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E. COGNITIVE STUDIES IN ALGEBRA
AND RELATED DOMAINS

1. FUNCTIONS
2. STUDENT CONCEPTIONS AND
MISCONCEPTIONS



- 266 -

REPRESENTATION AND UNDERSTANDING:
THE NOTION OF FUNCTION AS AN EXAMPLE

par Claude JANVIER
Université du Québec a4 Montréal

We rarely mention the word "understanding" in our work since it encompasses
so much that like an "iceberg" it conceals more than it shows. In order to
relate understanding to representation, we shall give a few features of

understanding.

UNDERSTANDING

a) Understanding can be checked by the realization of definite mental acts.

It implies a series of complex activities.

b) It presupposes automatic (or automatized) actions monitored by reflexion
and planning mental processes. Therefore, understanding cannot be exclusively

identified with reflected mental activities on concepts.

c) Understanding is an on-going process. The construction of a ramified
system of concepts in the brain is what brings in understanding. Mathematics
concepts do not start building up from the moment they are introduced in
class by the teacher. This well-known tenet is not easily nor often put

into practice in day-to-day teaching.

d) Several researchers attempt to determine stages in understanding. We incline
to believe that understanding is a cumulative process mainly based upon the
capacity of dealing with an "ever-entiching" set of representations. The idea

of stages involves a uni-dimensional ordering contrary to observations.

REPRESENTATIONS

We think it is worth making a distinction between representation on the one

hand and symbolism or illustration on the other. Let us use DAVIS (1982)
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definition which exemplifies what we mean.

A representation may be a combination of something written on
paper, something existing in the form of physical objects and
a carefully constructed arrangement of idea in one's mind.

A representation can be considered as a combination of three components:

1) symbols (written) 2) real objects and 3) mental images. We believe however
that verbal or language features are equally predominant since they are the
links in between those elements. We assume also that one can find representatio
without a real object component. In order to show that such a subtle and
intricate distinction brings about some pay-off we shall use it with the

concept of function.
WHAT IS A FUNCTION?

Can a single definition encompass the rich meaning of such a notion. In
order to simplify the algebraic or formal treatment of this concept In an
axiomatic framework, contemporary mathematics has divided definitions of
function based on the notion of cartesian product. For example, it can be
viewed as a triple of sets (A, B, C) where CCA xB such that if (a; , by)
and (a; , by ) belongs to C than by = bj.

SEMANTIC DOMAIN

The idea of representation helps us in distinguishing several facets of the
concept of function. With FREUDENTHAL (1982), we believe that behind the
general idea of function lies many basically different objects. Freudenthal
uses a term equivalent. to phenomenological status while we prefer the expression
semantic domain. In fact, we both claim that even though we can define
transformation, variable, sequence, permutation, isomorphism within the frame-
work of function. Those notions remain substantially different in the sense
that most forms of reasonning involving each of them are substantially

different.

Let us scrutinize two semantic domains. (The size of the paper commands not

to go farther). When a function is envisaged as a variable, the role of

the domain is often played down if not totally disregarded. The domain is
implicitgly used, necessarily ordered and very often dense. The nature of the

variation is stressed. Mental images related to it and typical wverbal
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descriptions are closely connected to the primitive notion of variation and
continuity . In fact, we see a variable changing and our concept of variable

1s this capacity of the mind to characterize this change. The continuous

cartesian graph is then the natural illustration of a variable. As History
tells us (see YOUSCHKEVITCH (1979)) , the use of a curve seems to be
pre-requisite for the construction of this semantic domain and also that it
seems to branch out from a rejection of the proportional change as the unlque

model of variacion.

Functions as a transformation require more "intellectual efforts" to deal with
because they cannot be conceived without some reference to the domain*. Mental
images of the representation of this semantic domain must involve at the same
time the domain* and co-domain* (source and image*). Any illustration must
suggest the typilcal essence of a transformation showing initial and resulting
objects. The idea of invariant seems to be intrinsically linked with this
semantic domain. Ceometric transformation other than simple translations or

rotations are good examples.

SEMANTIC DOMAIN AND REPRESENTATION

We introduced in JANVIER (1980) the translation skill table which shows
translation in between two of the following modes of illustration: graphs,
formula, table, verbal description. We insisted on the need for direct

translations which are rarely taught in class.

We now believe that this conception must be widened. We think that it is
becter to use the word "&chematisation' (which sometimes may be an illustration)
and use the word representation with its more general meaning (as im DAVIS (1980)).

A translation between schematisation is then performed within a representation.

By analogy, a representation would be

a sort of star-like 1iceberg which

would show one point at a time, S

* mathematics meaning
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A translation would consist in going from one point to another. ‘I'his descriptis
of a representation has the advantage of insisting on the global and "inseparab.

character of a set of schematisations.

At the conference we shall introduce the idea of predominant schematisation and

examine how it relates representation and intuition.

A MAJOR DIFFICULTY:
THE CONTAMINATION COMING FROM CLOSE SCHEMATISATIONS

A usual mistake when working within a semantic domain consists in transfering
features of one schematisation to another. We shall give three examples related

to the idea of wvariables.

a) Contamination: verbal —> formula

CLEMENT and KAPUT (1979) tells us about students in difficulty with the
following problem: "At a certain university, there are six times as many

students as there are professors'.

As they write: ''257 to 30% of freshman engineering students write 6§5=P. This
percentage go to over 50Z when a non-trivial ratioc is used." In addition to
the wrong transfer of the linguistic form "Six times more students" to "6S",
it is worth mentioning how "S" becomes student rather thamn the number of

T

students as 'g" is usually used for gram

b) Contamination: graph —— picture.

Let us recall briefly the racing-car test item which we introduced in JANVIER
(1978). It showed that often pupils tend to see into a graph a total or

partial picture of some situation involving the variables with which they deal.

c) Contamination: verbal —> graph
We very often noted that children have difficulty in "expurgating" the expressior

"grow fast" from the idea of being tall it insidiously contains.
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CONCLUSION

At the conference, we ghall look at other difficulties which can be described
within this framework. We shall conclude this paper in suggesting the
formidable distance between the richness of the concept of variable and the

idea of function as too often presented in textbook.

Here 1s a function
1‘IIIIIIIIIIII'r >
- 7

a) Give its domain, co-demain and range
b) What is the image of b?

¢) Draw its cartesian graph

It seems that someone has forgotten something somewhere |

Université du Québec 3 Montreal
May 1983
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FUNCTIONS - LIMNEARITY UMCONSTRAINED

Ivia Markovits, Bat-Sheva Eylon and Maxim Bruckheimer
Weizmann Institute, Rehovot, Israel

Introductian
The function concept, one of the basic concepts of mathematics, constitutes
a major part of the school curriculum in many contemporary programs. "The
development of a sound understanding of the function concept provides a solid
cornerstaone on which to build additional mathematical concepts in later courses"
{CUPM 1969 in Buck, 1970).

Undoubtedly, a “sound understanding” of the function concept involves many
aspects, from familiarity with the various concepts in its set definition (domain,
range and rule of correspondence), to a conceptualization of the function as a
relationship between variables., These various aspects and the relationsnip
between them can be found in the historical development of the concept and its
definition (Boyer, 1946).

In Israel students first encounter the concept formally in ninth grade mathe-
matics. In the Rehovot program, which 1s widely used in lsrael, they are
introduced to a set definition of the function as a many-one correspondence
between elements of a domain and a range. The definition and most of the Rehovot
program on functions is similar to SMSG and SMP. [In parallel, the concept is
also used in the study of science, where it is mainly conceptualized as a relation-
ship between variables.

The studies reported here are part of a larger investigation of the understand-
ing of various aspects of the function concept by ninth grade students (Markovits,
1982). In particular this investigation examined student understanding of the
set definition in the algebraic and graphical representations, and some aspects
of conceptualizing the function as a relationship between variables - the
subject of this paper.

Many of the functions that students meet or will meet in their study of science
and mathematics, are not defined completely with a domain, range and rule of
correspondence, but are given implicitly by constraints the functfon has to
satisfy. These constraints usually do not define a unique function, but an
infinite family of functions, For example, in science, the student performs
several measurements in the laboratory and attempts to determine the functional
relationship between the variables. Even after ignoring measurement errors, it
is essential that the student realizes, that in spite of the fact that by some
interpolation and extrapolation method, he or she decides upon a certain function,
mathematically this is one of many other possible functiens. To what extent are
students aware of this fact? What kinds of functions will students construct to
satisfy given constraints? It is conceivable that the functions they will
construct will he strongly influenced by the images they associate with the
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concept. Thus by asking students to give exam;1es of functions that satisfy
certain constraints one can learn both about their understanding of the assump-
tions behind this important task, and about their image of functions. In
particular the prototypical image that the student holds of functions will
become apparent (Rosch, 1975).

The first study
The study included about forty items. In each of them, the students were

asked to give an example of a function satisfying some given constraints, and
to specify how many different such functions exist, The items differ from each
other in the following factors, which we thought might influence student responses,

a) Type of representation

In some items the students were asked to give an example in a graphical
representation, while in the others (with similar constraints) in algebraic
representation.

Examples

: . /Y ] ]
1) In the given coordinate | 2) Give an example of a function, in
system, draw a graph of algebraic form, which increases
a function, which throughout the domain.

increases throughout
the domain.

b) Type of constraints

The given constraints were of three kinds:
- discrete constraints - i.e. "points" through which the function has to
Ilpassﬂ.

Ejﬂﬂ@]e 3) give an example of a function {in algebraic form) for which
f(3) = 5 and f{s6} = 8.

- properties that the function has to satisfy. h

Example 4) rn the given coordinate system, draw a graph
e — r ] y § i i
of a function, which in parc of the demain
increases, and 1s constant in the other part,
|
—_———y
- domain and range of the function. ]
Example 5) Give an example of a function (in algebraic form) from
the real numbers to the positive numbers.

c) Number of constraints
In some items the function was restricted by one constraint only, while in

others by a number of constraints.

Examples
f) In the given coordinate system, 7) In the given coordinate syscem,
draw a graph of a function such draw a graph of a function, such
that the coordinates of each of that the coordinates orf each of
the points A, B represent a thea point A, B, i Dy EGF
preimage and the corresponding represent a preimage and the
image of the function. corresponding image of the function.
¥l ¥ A
| |
wi |
ot
! e ey
I |
‘—:[—""__"":ll. =1 TR,
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A1l the items had an identical second part:

The number of (different) functicns which satisfy the above condition(s) is

(1) o,
(<) 1,
(3) 2.

{d) more than 2 but less than 10,
(5) more than 10 but not infinite,
(6) infinite

explanation:

Results

Linearity

Most of the responsgs were restricted to linear functions, and only very few
students appreciated the fact that the number of different functicns that
could satisfy the given constraints is infinite. In the graphical represent-
ation almost all functions given were composed of straight line-segments. In
the algebraic representation the given rules of correspondence were linear.

The following exémp]es from the responses illustrate the students adherence
to the linear function concept. In the third item above, all the students

(n = 17) who gave a correct function gave the linear rule f(x) = x + 2,
Although it may be argued that, in this case, the given constraints "suggest"
the linear function, we suspect that the reason is more profound since only
about a third of the students said that the number of different functions is
infinite, while about half said that there is only one function, The linear
image is further emphasized when three constraints were given f(3) = 4,

f(6) = 7 and f(8) = 13, where it was impossible to give a linear function.
Only one student out of fifty gave a correct function, using the Venn diagram
representation, while about half of the students claimed that a function
satisfying all three constraints does not exist,

Constraints

In almost all problems, neither the type of representation, nor the kind, nor
the number of constraints, had any influence upon the linear feature of student
answers, but rather the number of correct answers. In either of the two
representations, students did not have many difficulties when the constraints
were specified as properties the function had to satisfy. Constraints upon

the range and/or domain of the function caused some difficulties, especially

in the algebraic representation. However, major difficulties were manifested
in both representations, when the constraints were given by "points" through
which the function hdd to "pass", and the number of correct responses decreased
as the number of given constraints increased. Although students had
difficulties in both representations, the graphical form was relatively easier,.
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The Second Study

The results of the study regarding students "linear" function images, accord
with the results of Karplus (1979). In a more restricted investication of
functionality but with a larger sample (age range 11-18) he also identified the
predominance of a "linear" conception of functions., However, the items in his
study had a scientific context rather than a pure mathematical one. The question
arises how the context of the problems influences student responses in this
area. This question was investigated in a second study which examined the effect

of context in problems where the constraints were given by "points™ on a graph,
through which the function had to "pass". This topic was chosen because it was
identified as most difficult in the first study. Two questionnaires, which
differed in the problem context only (pure-mathematical vs. scientific) were

written.

Examples

pure_mathematical context scientific_context

a) In the given coordinate A Weizmann Institute scientist performed experiments
system, draw a graph with bacteria culture. "In each culture there ware
of a function such that cartaln types of bacteria.
the coordinates of each The number of bacteria in a culture depends on
of the points A, B, C cemperature and the bacteria type. The sclientist
represant a prelmage and parformed 4 experiments, sach with a different
the corresponding image culture composition.

f the function. ? ; :
g ! & The points in the figure

¥ describe the number of mgﬁaﬂlf
¢ bacteria counted in a iﬂhﬂ i
' culture at three temper- ¢ f[ ’
. o atures. o
L] hl
- : ; I
" a) Draw a graph which, in 2 .
b) The number of different your opinion, describes i .
functiqas, that can be the relationship bet“_"ee”_! 5 015 20 2530 3540 45 tempra’ire
drawn 1s5: the number of bacteria ¢
(1) a and the temperature.
(2} 1 b) The number of different possible graphs that
ANEIL D can be drawn 1s:
4) more than 2 but less
(1) o
than 10 [:E:I 1
(5) more than 10 but not (3) 5
(6) .l?flgitﬂ (4} more than 2 but less than 10
St iy {5) more than 10 but not infinite
(6) infinite.

The questionnaire included items with 2, 3 and 6 constraints, and a fourth item
in which the students had to interpolate and extrapolate. We also wished to
investigate the effect of ability on student responses, so the questionnaires
were given to high ability students (A stream) and to lower ability students

(B stream) in Grade 9,

Results

Independent of the context, the students' concept remained "linear". Most of
the functions they drew were composed of straight line-segments, and a few
understood that the constraints define an infinite family of functions. The
results for the first three items are given in the following two tables.
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High ability students
Percentage of 'non linear'' Percentage of "infinite"

examples and of correct - responses
| examples
number of | I ! : 1
L;;:Egitxaccnstraints! BT e r ¢ j 3 6
| pure mathematical | 19.5  19.5 | 19.5 1 40 . | g
| =) C(98) | (88) ' (73)
| i .
| scientific I agiadl e g an ]
15 (e 42) | (93) | (79) | (57 v 33 3

Lower ability students

[Percentage of "non Tinear"!
lexamples and of correct
{examples

)

Percentage of "infinjte"
responses

! | ] T T

| number of . -
! : Fa2 3 [“ 16 E | £
icontext —kanstraints ¢ | . - .

(4% ]

| pure mathematical |12.5 | 12.5 | 6.3 T R

- (n=32) [(81) | (50) JI (34) | | ! !
j scientific i 6.7 6.7 f 3.3 ' ! 5
| (n=30) |(90) : (83) | (75) | i Ll 8 | -y

In the fourth problem, most students used linear interpolation and extra-
polation and overall, in both guestionnaires, only 10% of the high ability
students and 2% of the lower ability gave a correct answer.

numoer af'-‘
W nd & pial 7 Daclers
In the "scientific" problem the dominance mitigh
£Cr &)
of the linear image is demonstrated since sl e
LN
linear extrapolation leads to an unreason- 3}
g ra "
able (negative) answer. ol
There were students who resolved the .1 5 0522530364045 lemprelire
by
dilemma in some manner (see below), -2

.31'
but many students used linear extra- WHAE YR TOI e Eaton Lt s

polation blindly. number of bacteria at 459C ?

The distribution of student responses for the numher of bacteria is given in

i i
the following table. AR | B s brea
n=41) | (=300 |
r T 'I i
| One cannot know ' 124 i B |
| L |
: lero | 27% i 324
| . . '
Wrote -2 ﬁl%lﬁﬂ , but said that !
| the number is zero, because a §
negative number of bacteria cannot i :
exist 29% (" 24%
! ) million : 15% | 289 :

ol i
| something else, incorrect 1 17% | 8%
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The previous tables indicate that the context had an effect on student
responses, Overall, the high-ability- students performed better in the pure-
mathematical context. A t-test run on a generd]l score which was computed for
the three problems yielded a statistically sionificant difference {« = 0.C3).
The lower ability students performed better in the scientific context, and a

t-test run on the same general score, yielded also a statistically significant
difference (o = 0.01}).

The results for the low-ability students are not surprising. They had not
encountered problems of this type in matnematics, but had some familiarity with such
problems fn'the scientific context. Low-ability students are known to have
difficulty in dealing with completely unfamiliar problems. In fact, those
students in this group who received the mathematical problems indicated that
they were not clear as to what was required of them,

The high ability students seem to have related the mathematical problems with
their mathematical experience and to have used this information effectively. It
is possible that such a link was not formed for problems with a scientific context
and thus performance was not upgraded by their study of functions in mathematics.

In both ability groups, the context had no effect on the number of students
who realized that there is an infinite number of possible functions which satisfy
the constraints. In both questionnaires and both ability groups and as in the
first study, the more constraints given, the lower the number of correct answers.

As in the first study, this study suggests that students have a mostly linear
image of functions, which {s not influenced, either by the type of representation,
or by the kind or by the number of constraints, and also not by the context.

Summary
Two major results emerge from this study. First, many ninth grade students

hold a linear prototypical image of functions. Second, many do not appreciate
that there may be an infinite number of functions which satisfy a given set of
discrete constraints.

The source of the l1inear prototypical image is guite obvious. This is the
simplest function (disregarding the constant function which is not regarded as
a function by many students since it does not involve variation). Also, at this

stage, the students experience in mathematics and science involves mainly
linear functions,

As to the belief that there is only one function which satisfies a given set
of discrete constraints, there may be several explanations: (1) Students are
used to 9iving unique answers to problems and have difficulty in accepting lack
of closure (Wollman et al, 1979). (2} The linear image that students have,
reinforced by their study of geometry (where two points "define" a line and
there are many lines through a single point), leads to the unique function
satisfying two or more discrete constraints, and an infinite number of possible

functions in the case of one "point" through which the function must pass
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(“there is an infinite number of straight lines through a single point"). The
linear-geometric conception influences also the responses to the algebraic items,
since there is evidence in student answers that, in many cases, they translate
the problems into graphical form.

In addition to the explicit use of geometrical explanations in their answers,
there are other facts which support our interpretation. A1l students who drew
curves in the graphical representations, also realdzed that there are an infinite
nunber of functions and gave a correct explanation., Also, the following type

of function (sic), indicating a geometrica) approach, was quite frequent.
4

These results have implications for instruction both in mathematics and in
science. Students should be introduced to a larger variety of functions, and
the use of the linear function should be de-emphasised. Furthermore, the role
of constraints in determining the nature and number of functions should be
discussed, both in mathematics and in science, together with an emphasis on inter-
polation and extrapolation. This is especially important since many teachers are
unaware of the predominance of the linear image of functions (Zehavi, 1983).
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INTUITION AND LEARNING OF THE FUNCTION CONCEPT

Albrecht Abele
Pddagogische Hochschule Heidelberg

THE PROBLEM

A teacher assigns his 10 to 11 year-old 4th-grade pupils
the following problem:

A piece ef land is 288 meters long and 72 meters wide.
The owner wants to put a fence around it and wants to
farm two-thirds of the ground. On each of two sides of
the land a gate of 3 meters each is to be (nstalled.

Why did the teacher choose this task?

Are there clear didactical reasons which caused the teacher
te opt for this problem?

Which specific solving process - and what learning process -
was intended to be initiated in the pupils?

Which is the mathematical structure hidden behind the task
which should be discovered intuitively by the pupils?

The didactical analysis shows immediately that there are
soze complex problem areas:
- the combination of perimeter calculation and area calcu-

lation,
- perimeter calculation:

(1) perimeter (2) considaration of the gates
- area calculation:

(1) total area (2) one third of this tatal.

It is obviously expected from the pupils that they are able

to solve this complex set of tasks. Two questions, which we

will have to deal with, are therefore:

1) How must mathematics courses in the first four years of
school practice be structured from a didactical and a
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methodological point of view, in order for the children
to acquire the capability of doing the necessary analysis
of the problem to be solved and arriving at a reasonable
structuring of the problem-solving process?

2) Which (cognitive) abilities of the child are challenged
when he or she tries to solve such a task and how can
these abilities be enhanced and advanced through mathe-
matical instruction in such a way that the children may
discover the typical attributes of the function concept?

In answering these questions we will try to analyze the
actual, perceivable activity scope of pupils, who have
spent a total of about 90 minutes on this task. The actual
instruction is recorded on tape and the overall results

of the pupils: have formed the basis of the following
evaluation.

THE PERIMETER CALCULATION AND THE FUNCTION y-x= 720

The pupils found 17 different paths of solution for the
first aspect of the task - the calculation of the length

of the fence. Each individual solution is composed of from
2 up to 7 individual steps. Altogether, 54 arithmetic
operations were carried out, i. e. (specifically) 13 addi-
tions, 10 subtmractions, 22 multiplications and 9 divisions.
The pupils suggested - when working without the help of

the teacher - three different kinds of solution strategies,
which may be characterized as follows:

First group
Standard solution by applying the ®lationsship

perimeter = twice the length + twice the width

Second group
Solution strategies with the help of using half the
perimeter
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Third group
Solution strategies with the help of using a common divider
for length and width

For the solutions of this group a very interesting viewpoint
is characteristic. No longer are the figures 'perimeter"
or '"'half the perimeter'" - figures derived from the factual
situation - the guiding principle for the solution. The
solution strategy is here largely determined by the
connection between length and width of the described
rectangle, which is obvious to the pupils.

The length is four times the

width. The fence thus consists r__'_!

of 10 such pieces and one .

piece of these is reduced by

the length of the two gates

(ém ), since the total reduction for the gates can be
effected from only one such part of the pieces. This
solution is already considerably far from the 'reality',
the factual situation of this task, according to which

the gates are to be placed at different sides of the piece
of land.

A further differentiation within this solution approach
comes from the following idea: one could also allocate
that part of the perimeter which accounts for the two
gates, to the ten individual pieces at an equal share,

Then ,~ each part is reduced by %ﬂi. As a solution, we then

arrive at
L0 = 2L o4 M w1

Two other solutions represent

a variation of this solution. II-H-H-'-'-’
They use the common divider !

36 or 1l2 of length and width

instead of 72.

For the common divider 36, there are 8 sections for the
long side of the rectangle, two sections for each short

side, i. e. 20 sections per 36 meters each in total.
The next solution arrives at 60 sections (6 at each width,
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24 at each length side), each measuring 12 meters. In order
to account for the gates, the pupil argues:

" 60 times 12 meters, that would be 720 meters; and there
I thought: if I take half of a section away from there, and
calculate 59,5 times 12 meters, then the gates are sub-
tracted in equal sections (because 12 mtimes 1/2 are a
total of 6 m)'.
Thus,the striking aspect of this solution is that the
search for number proximity (common dividers or multiples)
is not limited to length and width, but is also extended
to the length of the gates.
Remarkable variations of this solution ‘approach with number
proximities are 'two solutions, which use as a refence
figure twice the width, which, at the same time, represents
half of the length. The s
perimeter consists of
five such sections.

If one summarizes the variety of soclutions in one table,
one can arrive at the following synopsis:

common divider |[number of |consideration comments
or multiple sections |of gates
72 10 a) -6 corresponds to
factual situa-
tion (c.)
b) distribution|does not
over 10 correspond to
sections factual si=-
tuation (n.c.)
12 60 a; -6 (c.)
b) gates are
' 1/2 section (n.c.)
144 5 a) -6 (c.)
b) distribution
over 5
sections (ns.cs)

Further solutions with natural numbers would be possible

for all dividers of 72
divider |(144)/72 436424 |18 [124 9| 8|6 |43 |21
number | 5 |10 [20 |30 [40 |60 [80 |90 [L20p8 cR4opsOP20
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These solutions, however, are certainly not obvious. They
cannot be seen intuitively and would only be accessible
to the pupils after they had been formalized further.They
all refer to the function
number of sections - common[divi@er J = 720
multiple

and the next step would bring all natural number solutions
(x, y) of the equation y-x=720 with no correspondence to
the factual situation.
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solutions of the children

THE AREA CALCULATION AND THE FUNCTION y-x=20736

The second aspect, too, offers a great variety of solutions.
It is apparent that the pupils who were allowed to work
without an interference from their teacher, show no uniform
approach. Principally, there are two different solution
strategies. With one of these solution strategies,the total
area is calculated first, then a third of this number. Apart
from the standard solution

(length » width) : 3

there was a plethora of solutions, which all proceeded from
the possibility of area transformation.
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The total area remains unchanged
if (for example) the width is doubled
and the length is halved (in return).

This would result in a square, It is

typical for the behavior of the

pupils that they are not content once they have found a

solution, but are always eager to find new solutions, This

attitude of the pupils is remarkable in a number of ways:

1) In each case they have the possibility of controlling
themselves (since they have long known how large the area
is). Thus the pupils obtain a direct feedback from the
factual situation as to whether their sclution is '"right"
or 'wWrong''.

2) The pupils obviously enjoyed finding ever new solutions.,

3) In so doing, the search for new possibilities becomes an

end unto itself. The distance from the original problem

becomes bigger and bigger, and the known solution - through

reversing the problem - becomes the originating point and
the key to the solution. For example, if the pupil wants
to solve the following task:

The new width is to be 9 meters

He uses the total area (20 736 squ.m.) and arrives through
division by 9 at the new length of 2 304 m.,

4) The activities .of the pupils have shifted emphasis: away
from solving a simple practical task - towards investi-
- gating a mathematical context - irrespective of what the
original problem might have been.
Notably, this here is the function y+:x = ¢

The generalization process is being put into action through
such questions as

- are there other solution possibilities?

- are there any more solution possibilities?

- how many solution possibilities do we find?
- how many solution possibilities are there?

With the method of area transformation (y»x::ky-% or
y-x=r%-kx) the pupils constructed 29 product configurations.
By so doing they got an idea of the interdependence of y and
x and of the great variety of possible solutions.
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GRAPHIC & ALGEBRAIC PRESENTATION OF FUNCTIONS -
CAN THE STUDENT RELATE FROM ONE TO THE OTHER ?

Abram Kreimer, Naomi Taizi
Weizmann Institute, Rehovot, Israel

Exploring the graphs and algebraic presentations of functions is a good topic
for the application of diverse working methods in the classroom. While high
school students can apply their knowledge of calculus, junior high school students
have no calculus techniques at their disposal. This situation can lead to look
for new methods in teaching graphs of functions, methods which stress discovery
and may help develop fruitful thinking of students. The conventional method,
which is calculating the coordinates of points, is inefficient and can sometimes
lead to misconceptions in understanding the graphic presentation of functions and
is sometimes prohibitive. A suggested approach to overcome the difficulties by
applying "elementary methods" (with no calculus), was presented in PME 1981* in
connection with the "quadratic function". The students were encouraged to
explore the algebraic form of the quadratic function, get enough information
about the "behaviour of the graph" to be able to construct it.

Students usually do not tend by themselves to relate the graph of a function
to its algebraic presentation. We shall demonstrate an approach of exploration,
which is not common in algebra but is found in geometry when solving certain
problems. One can look upon a given geometric concept from different points of
view. A segment can be a diagonal in a parallelogram, a side of a triangle or
a segment that cuts through parallel lines, (transversal).

We shall here demonstrate how to bring out the different aspects of presentation
of functions and relate from one to another. Two examples will be presented
(they do not form an algorithm). The examples deal with graph exploration and
can be solved by good 9th graders and on, assuming they had proper preparation
(Such as learning the guadratic function as demonstrated in the PME Proceedings
1981, in the paper of R. Hershkowitz and M. Bruckheimer mentioned above.)
Such examples are meant to influence the student's ways of thought, approach and
flexibility in search of information by unconventional methods.

*
R. Hershkowitz & M. Bruckheimer
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The problems used as examples were chosen from a collection of suggested
problems for teaching the graph of a function. Some were tried successfully
with students and some with teachers.

Example 1 :
Given the algebraic form of the function y = (x
required to construct the graph. They can approach the problem only because
they are familiar with the graph of y = x2 - x = 2. They can construct the
graph by squaring the value of y of
each given point on the graph (see
figure.) The squared graph is non
negative in the whole domain. To
construct the graph we start from
the given points on the graph.
i) Point A is the vertex of the
parabola and its minimum will
be A', the maximum of the

2 _ X - 2)2 the students are

Ay
|
|
f

required function.

ii) Additional points that will
help to construct the required
graph are the fixed points,
where y = 1 or y = 0 (as 12 =
and 02 = 0). These are the
points B, C, D and E.

iii) Additional points are those with
y = -1 which are G and F and
their images G' and F' which are
a reflection of G and F in x .

In the domain left of B and to the
right of C the student can be
assisted by the reasoning that

yg <y when y <1 and yz > y when
V>t L

The required graph will be below
the parabola from B to D and
above the parabola after D.
Similarly we can get the graph
to the right of C.
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Example 2 :
Given the function y = —EE——— Construct the graph.
Kt
We shall start out from the graphs of
the functions:

Vikizaa
y=x2+]

As xz + 1 >0 for every x, the above

given quotient is defined for all R.
The quotient will be zero for x = 0
and hence the point (0, 0) is on the
wanted graph.

To the right of zero x > 0 and there-
fore the quotient is positive. It

is quite obvious from the figure

that if we move "enough" to the
right, the values x2 + 1 will grow
"much faster" than y = x and the
quotient will grow smaller and
approach zero.

To the left of zero the quotient is
negative, but the absolute value is
symmetric to the right part.

In order to identify the point with
largest y (or smallest), the follow-
ing reasoning is used: xz < x when
x < 1 and x2 > X when x> 1. In the
domain between 0 and 1 (or -1 and 0) we
can see that y = x2 + 1 will grow

"slower" than x = y and therefore the
quotient will grow. From the point
(1, 1) and on (or(-1, -1)) the
process will be the opposite and the

quotient will decrease. Hence, we
‘shall have a maximum for x = 1 or
minimum for x = -1 .



= AT

Our starting point in the examples above was from the algebraic presentation
of the function to its graph. It is of course interesting to see the opposite
direction. This brought us to an 11th grade, of mathematics oriented students.
The function explored was the parabola. The obvious thing one observes is that
unless treated properly, the students usually do not do what we expected of them.
Treatment is a necessity!

20 students participated in the experiment. The given function was

2d x > 0
f(x) =i 1):
ORI

and the students were expected to give answers to the following:
a) construct the graph of the function A
b) is the graph a parabola? explain! Y

We would like to point out that the
function f(x) resembles a parabola (see
Figure)

5 out of the 20 students gave the
right answer and explanation.
14 gave the wrong answer, stating
that the graph was a parabola.
1 did not answer. 0o X

It is interesting to follow the explanations given by the students. The starting
point of those who gave the correct answer was choosing pairs of numbers that
belong to the algebraic formula given above, and proving algebraically that they
cannot belong to any quadratic function.

The students that presented wrong answers claimed one of the following reasonings:
a) The symmetry of the given function (6 students).
b) Symmetry and the exponent without connection of the place of the unknown
and the value of the exponent (3 students).
¢) Some properties of the function similar to those of the quadratic function,
such as symmetry, minimum, decline to minimum and increase after the
minimum (5 students).
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It is interesting to point out that 3 students who knew and mentioned that
y = 2X and y =(%— are exponential functions said the graph was a parabola.

In this work we pointed to a way to help develop the thinking of students in
relating the algebraic presentation of a function to its graphic presentation.
The importance of this topic is mainly because of 3 reasons:

a) Presenting a method independent of calculus in treating functions and hence
suitable for younger students.

b) Educating students to be flexible in using different presentations of a
mathematical concept.

¢) The "function" is a basic concept in mathematics and is a part of modern
education for several years. This is why using this concept to broaden the
angle of approach to problems treating functions is of special importance.
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THE NOTION OF PROOF — SOME ASPECTS OF
STUDENTS' VIEWS AT THE SENIOR HIGH LEVEL

Shlomo Vinner

Israel Science Teaching Centre,

Hebrew University, Jerusalem, lsrael

§ 1. The Problem and the Method
In Fischbein and Kedem, 1982, it was claimed that the majority of

high school students do not understand that ''a formal proof of a mathe-
matical statement confers on it the attribute of a priori, uhiversal
validity and thus excludes the need for any further checks'" (p. 128).

In this paper we will deal with a different aspect of a mathematical
proof related to the following question: given a sequence of mathema-
tical arguments, what makes it a mathematical proof in the eyes of the
students? Two classroom impressions preceded this inquiry: (1) A com-
putation is not considered a proof., (2) Many students when asked to
prove a certain mathematical statement about a particular case repeat
the general proof in terms of the particular case. This, instead of
applying the general statement (which was previously proved) to the par-
ticular case.

In order to answer the above question we presented to our students
an algebraic statement and its proof, then told them a '"little story"
and finally we asked them two questions about the ''story'. The algebraic
statement and its proof were taken from Fischbein's questionnaire, 1982.
The ""little story' and the two questions which followed it were ours.
Here is our full questionnaire:

Part A: In an algebra class the teacher proved that every whole number
of the form n®-n is divisible by 6. The proof was the following: n’-n

= n(n%-1), Using the formula a?-b? = (a+b)(a-b) we can write: n?-1 =
n?-1% = (n+1)(n=1). Thus n® = n(n+1)(n=1). But (n-1)n(n+1) is a product
of three consecutive whole numbers. Therefore, one of them should be
divisible by 2, one of them (not necessarily a different one) should be
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divisible by 3. Thus, their product should be divisible by 2-3, namely,
by 6.

(a) | understand all the details of the proof and the proof seems
to me correct,

(b) There are some details in the proof that | did not understand.
They are the following:
Part B: A day after that the following exercise was given in a homework
assignment: Prove that 59°-59 Is divisible by 6. Here are three an-
swers which were given by three students:

1. | computed 59°-59 and found out that it is equal to 205,320.
| divided it by 6 and | got 34,220 (the remainder was zero). Hence the
number is divisible by 6. Also, when using divisibility criteria we see
immediately that the number is divisible both by 2 and by 3. Therefore
it is also divisible by 6.

2. One can write 59°-59 = 53(59%-1). But 59°-1 = 59%-1% = (59+1) (59-1)
(according to a well known formula). Thus: 59°-59 = 59(59+1)(59-1).

We've got a number which is a product of three consecutive numbers,
One of them is divisible by 2 (58 in this case) and one of them is divis-

ible by 3 (60 in this case). Therefore, their product is divisible both
by 2 and by 3, thus also by 2.3, namely by 6.

3. In a previous lesson we learned that every whole number of the
form n-n is divisible by-é, thus 59°-59 is divisible by 6.

|. Write down which answer you prefer and explain why.

Il. |If there is no answer that you prefer or there are two answers
that seem to you the same please specify and explain.
§ 2. A Mathematical Analysis

From the mathematician's point of view all the answers in the gues-
tionnaire are correct. Each of them is a proof of the statement that
59°-59 is divisible by 6. Answer 1 is a direct proof — in this case a
computation or a check., In answer 3 the general statement previously
proved is used and therefore, at this particular context, it is the one
which should be preferred. Answer 2, although correct looks silly at
this particular context. |If the general statement is proved it is to-

tally unnecessary to repeat it in terms of the particular number 59%-59,
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Moreover, in our particular context also answer 1 would not be consid-
ered as a good answer and most mathematicians and mathematics teachers
will prefer answer 3 to the other two answers., This was our impression
from conversations we had with some mathematicians and mathematics
teachers,

§ 3. The Sample and the Results

The questionnaire was administered to 365 high school students in
the tenth and the eleventh grades. Part of the students were in high
level mathematics courses and part of them were in low level mathema-
tics courses. In the rest of the students, differentiation had not
taken place yet. Thus, in our table we will relate to 5 groups: Group
1 oy the whole sample (N = 365). Group 2 — the low level mathematics
students (N = 109). Group 3 — the high level mathematics students
(N =287). Group 4 — the 10-th graders (N = 227). Group 5 — the 11-th
graders (N = 138).

But before reporting the results of these 5 groups we would like to
relate to two additional subgroups: students who claimed they understood
the given proof — Group (a) (N = 310), and students who did not under-
stand at least one detail of the proof — Group (b) (N = 55).

Table 1 — Distribution of Preferences in Groups (a) and (b)

Answer 1 Answer 2 Answer 3 No preference
Group (a) (N = 310) 9% 37% 46% 7%
Group (b) (N = 55) 40% 24% 25% 1%

The difference is significant at 0.005 level and it is not surprising.
If, at all, something is surprising it is the fact that of those stu-
dents who did not understand the proof (at least to a certain extent)
only 40% preferred answer 1 to the other two answers.

In their explanations some students expressed rejection to certain
answers. This is shown in Table 2,

Table 2 — Distribution.of Rejections ir Group (a) and (b)

Answer 1 Answer 2 Answer 3 No rejection

expressed
Group (a) (N = 310) 15% (DT 9% 66%
Group (b) (N = 55) 7% L% 5% 84%
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Since half of the cells in Table 2 were too small we avoided a sig-
nificance test. Also, note that students were not asked to reject an-
swers, they were asked only to express their preferences. In spite of
these, one can see a clear tendency in the table, a tendency which is
consistent with the impression mentioned in § 1, namely, a computation

or a check are not a proof.

Table 3 — Distribution of Preferences in Groups 1-5
Answer 1 Answer 2 Answer 3 No preference
Group 1 (N = 365) 14% 35% L3% 8%
Group 2 (N = 109) 18% 32% 35% 15%
Group 3 (N = 87) 9% 39% 52% 0%
Group 4 (N = 227) 14% 34% L4% 8%
Group 5 (N = 138) 14% 41% b1% 5%

The only significant difference here (at the level of 0.005) is between
low level mathematics students and high level mathematics students. Age
does not make a difference.

§ 4, Categories of Reasons and thelr Distribution

The fact that a student prefers a certain answer is, of course, not
the only fact that counts. We are interested also in the reasons for
his preference. Hence, we classified the reasons students gave for their
preferences. For each answer we found several categories of reasons for
preferring it. The k-th catebory of reasons for preferring the i-th
answer will be denoted by category i, k. |f no reason is given by the
student or the reason is not classifiable we will denote it by (*).

Category 1,1: The answer is simple, short, clear and natural.

Category 1,2: The answer does not rely on previous proof. It does
not include formulae.

Category 1,3: The answer confirms the formula. It shows that the
formula Is correct.

Since no significant difference was found between the subgroups of
groups 1-5 who preferred answers 1, 2 or 3 we will bring only the dis-

tributions in the entire sample (N = 365).
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Table 4 — Distribution of Reasons for Preferring Answer 1
Category 1,1 Category 1,2 Category 1,3 (%)
(N = 51) 51% 29% 6% 7%

Category 2,1: The substitution confirms the general formula; it
makes it concrete; it explains the general proof, Answer 2 is a recon-
struction of the general proof; the studént who gave it showed under-
standing of the general formula. By this method one can easily solve
many similar exercises, It shows how the student got the answer. It
contains the method of the proof. It has steps, This was an exercise
and in exercises it is desirable to repeat the general procedure.

Category 2,2: The answer is general, clear, simple and short.

Table 5 — Distribution of Reasons for Preferring Answer 2
Category 2,1 Category 2,2 (%)
(N = 127) 65% 28% 8%

Note that 28% of the students who preferred answer 2 to the other answers
justified it by irrelevant reasons, since how can one claim that answer
2 is general, clear, simple or short?

Category 3,1: The answer relies on a formula which has been proved.
It relies on a general proof. One can substitute letters for numbers.
It is enough to prove a mathematical formula once, in a general way. It
is safe because there is a general formula in which there are no mistakes
(like in computations).

Category 3,2: The answer is simple, clear, short, less complicated

than other answers and easy to remember,

Table 6 — Distribution of Reasons for Preferring Answer 3
Category 3,1 Category 3,2 (*)
(N = 158) 76% 13% 1%

§ 5. Discussion

From a mathematical point of view the surprising part of the re-
sults was that a relatively high percentage of the students, in the con-

text of the given questionnaire preferred answer 2 to the other answers.
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It certainly shows that at least one third of the students in our sample
(academic high school students) does not understand the nature of math-
ematical proof. (This does not mean that the other two thirds do under-
stand it, It only means that on the ground of their reaction to this
questionnaire it cannot be claimed that they do not understand Fte)  The
question is whether, on the ground of this questionnaire, we can say
something about the way that at least this one third of the students
does view mathematical proofs. We must say immediately that any sugges-
tion we will make will have a speculative nature. But when implicit
views are considered, speculation is the only way (of course, any spec-
ulation should be examined later on against new and old data). |t seems
to us that category 2,1 is more than a hint to the following interpreta-
tion:

(1) The general proof is a method to examine and to prove a partic-
ular case (this view is deeply related to the understanding of variables
and substitution in mathematics which requires a special research as
well).

(2) A mathematical proof has to have a certain form; it has certain
features. To verify and to prove are not necessarily the same. A veri-
fication is not necessarily a proof. Thus, a proof has a certain cere-
monial aspects,

It is clear that this interpretation needs more evidence to confirm
it. At this stage we can only point out that it is consistent with
Fischbein's findings (1982)., Even the percentages are close. Between
16% to 31% of the students in Fischbein's sample are ''consistently em-
pirical" (namely, they systematically do not think that ''a formal proof
can guarantee the general validity of a statement" (p. 130)). This
thought can be the reason or the result of the views expressed in cate-
gory 2,1, shareable by 23% of the students in our sample.

References:
Fischbein, E. and Kedem, |., Proof and Certitude in the Development of

Mathematical Thinking, The Proceeding of the 6th Conference of the

PME, Antwerp, 1982, Edited by A. Vermandel, pp. 128-131.
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LINGUISTIC BARRIERS TO STUDENTS' UNDERSTANDING OF DEFINITIONS
Hadas Rin%*

College of Notre Dame

A study was conduéted of students' understanding of defined concepts in

a first course involving deductive mathematics. At UC, Berkeley, there

is a sophomore course on linear algebra where, for the first time,
students must grapple seriously with definitions. In contrast to compu-
tational courses, few explicit procedures for problem-solving are provided,
and these apply only to a small portion of the exercises. In most cases,
students are called upon to write proofs based on formal definitians,
axloms, and other theoretical statements. The procedural information
requisite for theorem-proving is to be extracted from these formal
statements, which students encounter routinely, both on the classroom
blackboard and in the course textbook., Students, however, typically arrive
in such courses altogether ignorant of many subtle conventions of
mathematical writing and entirely inexperienced in the kinds of analyses
necessary for extracting information adequately from mathematical text.
Further difficulties are posed to beginning students by the need to use
mathematical language actively in communicating their ideas. Indeed,

a quantum leap in difficulty is experienced by most students at this point
in the mathematics curriculum. The present study concentrated, in
paticular, on students' difficulties in coping with the formal definitions
by which concepts are introduced. These difficulties hamper students in
contending with all aspects of the course, but they surface most clearly
when exercises require the ability to construct proofs by 'working

literally from'" definitionms.

The present report is based on dissertation work completed in the Group
in Science and Mathematics Education (SESAME), UC, Berkeley, 1982.
Assistance was provided by NSF Grant NSF/SED 74-21653 and by CHEM Study,
which the author gratefully acknowledges.
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OUTLINE OF RFSEARCH METHODS
Analyses were performed in two broad areas for the purposes of this
study. One major focus was on students' linguistic (mis)behaviors with
defined terms. This aspect of the research utilized "ready-made" data,
provided by students' spontaneous writing on regular homework assign-
ments. Additional data were provided by students' written work on tasks
especially designed to probe for the presence of certain aspects of
understanding singled out for investigation, as well as by the written
transcripts obtained from extensive interviews conducted with individual
students. These interviews concentrated om students' performance of these
tasks, on course concepts, and on passages of the course textbook. A
second focus of the study was on the course exercises themselves and,
in turn, on the textual passages from which the information requisite for
the solution of these exercises is to be derived. Findings based on

these coordinated undertakings are briefly summarized below.

MAJOR FINDINGS ABOUT STUDENTS
The written work submitted by students on regular homework assignments
reveals the extent to which the writing of mathematical prose is a new
and foreign activity to them. 1In the first place, students often fail to
acquire correct usage of course terminology. This information is implic-
itly prescribed by definitions, but students apparently miss it., 1In
addition, they are not yet facile with the introduction and handling of
symbols, a basic activity in proof writing. Their errors in this activity
result in writing which is at best ambiguous. Indeed, the writing of the
overwhelming majority of students is pervaded by abuse of syntax, usage,
and grammar, and by various sorts of unclear expression. 1In particular,
students employ linguistic constructs which are syntactically inappropri-
ate (and often ambiguous or meaningless) for referring to the objects

investigated in the course. Thus, for example, their writing often fails to
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distinguish a set from its members. Also, it juxtaposes terms that do not
belong together, because they denote objects of wrong categories. As
communicators, then, students do not participate in many normal conventions
of mathematical writing, and their utterances are abundantly flawed. Based
on their prose, it is often very difficult to assess to what extent these
students are communicating good ideas poorly, and to what extent, and in
what ways, the linguistic abuse is indiciative of poor understanding of

the concepts on their part. Subsequent interviews with the authors of this
garbled prose often helped to identify cases in which students' misman-
agement of language can be linked to interference with understanding of
course concepts or to flawed apprehension of the mathematical entities

investigated in the course.

As various deficiencies were identified in students' spontaneous writing,
further, mofe systematic documentation of their behaviors was sought. Such
data were elicited by the study's test items. One such task revealed

that late into the term, students cannot adequately articulate the precise
denotation of a standard course symbol such as “RS”, used consistently
throughout the course for referring to a very specific vector space. Most
students failed to indicate precisely what kind of object is denoted by the
particular symbol, or did so incorrectly. Among those who indicated that a
certain set is involved, there was fallure to specify its precise member-
ship. 1In fact, in one class, only 2 of 19 responses elicited were deemed
to be adequate both in content and in language, while 3 of the 19 responses

failed totally to suggest the correct denotation of the symbol.

These and other data suggest that these students have no clear, consistent,
unambiguous meaning associated with a symbol such as "R as an entity unto
itself, encountered outside an immediate problem-solving context. This
inability to articulate the denotation of standard course symbols, even

late into the term,is striking, as is students' own idiosyncratic use of
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these symbols, Indeed, they seem to lack the idea, basic in mathematical
writing (and elsewhere, of course) that symbols acquire a meaning through
conventions agreed upon by a community.

TEXTBOOK TREATMENTS AND INSTRUCTIONAL PRACTICES RELATED TO

STUDENTS' DIFFICULTIES

In analyzing students' flawed utterances, the researcher bore in mind that
this linear algebra course is a natural point in the mathematics curricu-
lum where students have to increase sharply their use of mathematical
language; it is to be expected, then, that their communication at this
stage will be flawed and awkward. At the same time, a detailed examination
of certain features of written mathematical communication, and of the kinds
of exercises which students are routinely assigned, helps to shed light

on students' difficulties.

The difficulties cited above with respect to the course's standard symbols,
for example, can be linked to the fact that some of the definitions which
introduce them are actually "buried" in the course textbook, at times in

the context of exemplifying some newly-introduced concept. Thus, the
symbols "RPM, "M’ and ”Pn” == denoting certain specific vector spaces

to which reference is frequently made in the book's subsequent discussion --
are introduced in the text seemingly in passing, each under the.caption,
"Example" (of a vector space), It is not explicitly made clear that each

of the symbols introduced in these examples is to retain the game denota-
tion for the remainder of the book. (The subtle cues to this effect, which

are picked up by the skilled reader, are notnoticed by students.)

The same textbook buries its definition of the symbol "0", as it is used in
some contexts for denoting a matrix all of whose entries are the number
zero, within a proposition concerning matrices; "Proposition A + (-4) =

-A + A= 0, where 0 denotes the matrix of the same order as A, all of whose

entries are 0." One difficulty with this passage is that the same
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symbol "0" refers both to a number and to a matrix, Numerous other
{nstances were found which bring to light the complexities entailed in
clearly associating a symbol with its correct referent, as intended by

a mathematics author. A further, more significant difficulty illustrated
in the passage cited above is its implicit universal quantifier, and the
implicit range of the variable which it employs. The proposition may be
reformulated as follows, to bring out more explicitly its intended meaning:
"Let A be any nxm matrix. Then each of the matrices A + (-A) and -A + A
equals the nxm matrix all of whose entries are 0." These interpretations
must be assumed in order tamake sense of the statement of the proposition.
Similar kinds of interpretations are needed in order to comprehend the
intended meanings of exercises. One such example is the following. Suppose
that A is a matrix for which Ax = 0 for all x. Show that A =0, Many
students are totally puzzled as to the intended meaning of this task. They
are not yet skilled in furnishing for themselves the information which is

only implicitly conveyed by the text,

Indeed, mathematical writing is greatly abbreviated, a practice which
certainly makes communication among "insiders'" more efficient; but it
becomes a stumbling block to communication when some of the participants
are uninformed about the conventions employed. Such is the case at hand.
The students are found to be uninformed, and the instructors uninformative,
perhaps because they are unaware of the large gap in linguistic conventions
which separates them from their students. Nothing in the instructional
design explicitly addresses the kinds of difficulties to which this study
points, so that certain understandings related to mathematical language

and concepts are acquired with difficulty, if at all, as a by=-product of

students' routine participation in the course.
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SUMMARY
The research reported here points to a significant gap in the communication
system which prevails between students and their instructors in a first
deductive course. As communicators, students do not participate in many
normal conventions of mathematical writing, and the interpretation of their
flawed utterances is frequently left to the imagination of the sympathetic
instructor. As recipients of communication, they do not extract from
mathematical text, and from the formal statements of_definitinns. in
particular, that information which is intended by the author. Moreover,
this study's attempts to locate sources of these various deficiencies
makes clear that students do not share with thei? instructors various
understandings concerning the interrelation of mathematical objects,
symbols, and definitions, They are particularly hampered thereby in

contending with the assigned theorem-proving.

The problems described here are of significant import to pedagogy, perhaps
at earlier points in the mathematics curriculum as wel}. They need to be
widely recognized, both by instructors and by the authors of mathematics

textbooks which are addressed to beginning students.

MATERIALS TO BE MADE AVAILABLE AT THE CONFERENCE
--- samples of students' written work, exemplifying categories of linguistiec
misbehavior
--- sample interview transcripts

--- recommendations for addressing problems outlined here
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RAT | ONAL NUMBERS AND DECIMALS AT THE

SENIOR HIGH LEVEL — DENSITY AND COMPARISON

Ivy Kidron and Shlomo Vinner

Israel Science Teaching Centre,

Hebrew University, Jerusalem, lsrael

§ 1. Introduction

This paper is a part of a broader study which examines some stu-
dents' views about real numbers at the senior high level (ages 15-17).
A questionnaire was compiled and administered and the results concerning
two of its questions are brought and analysed here. All the students of
our sample studied at the same high school, which is academically selec-
tive. Hence, our results will not reflect the general level of mathe-
matics students in the entire country. It is probably lower, but we
cannot say how much. Nevertheless, the results will reflect the mathe-
matical level of students in academically selective high schools.

§ 2. The Density Aspect of the Rational Numbers

This aspect is examined in K.M. Hart, 1981, in two. specific cases
with age groups 12-15 (students were asked to write down a fraction that
comes between % and 2/3 (p. 73) and to tell how many different numbers
there are between 0.41 and 0.42 (p. 55)). The success percentages for
all age groups were 36 and 12, respectively). We examine this aspect by
the following general question:

Students were told that in an algebra lesson on rational numbers a
teacher had written down two rational numbers and had asked his students
whether there were more rational numbers between them and if they were
— how many. One of the students to whom this was told claimed that the
answer depends on the two given numbers. A second student claimed that
there are always numbers between two given rationals but the number of
these numbers depends on the two given numbers. A third student claimed
that there are always numbers between two given rationals and the number

of these numbers does not depend on the given numbers. Who is right and
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why1?

Four categories of answers were found.

Category |: Between two given rationals there is a finite number
(sometimes zero) of rationals which depends on the two given numbers.

Category |l: Between two given rationals there is always another
rational. This is said without relating to the question how many.
Thus, it is impossible to tell whether the student knows that there are
infinitely many such numbers. (In the context of the questionnaire,
such an answer is considered by us weak since the students had enough
stimulus to say all they knew about the question.)

Category Ill: Between two given rationals there is an infinite
number of rationals which depends on the two given numbers.

Category IV: Between two given rationals there is an infinite num-
ber of rationals which does not depend on the two given numbers.

The answer distribution is given in Table 1.

Table 1 — Answer Distribution

Category | Category |l Category |1l Category IV No answer

Grade 10
N = 91 18% 19% 2% 59% 2%
Grade 11
N = 85 22% 11% 0% 61% 6%

Here are also some answer examples which demonstrate the students'
thoughts.

Category |: 1. I think the first student is right because if the

two numbers are consecutive then it 18 impossible to write down numbers
which lie between them. For instance % and 2/3.

2, The second student is vight because it 18 impossible to claim
that there are infinitely many numbers between two given numbers. The
amount of such numbers depends on the given numbers and even if there
are many of them they have an end.

Category |l: For any two rationals, even very close to each other,
it is possible to find numbers between them. For instance, 1/29 and
1/30. There are numbers between them like 59/1740.

Category I1l: 1. Between any two rationals there are infinitely
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many rationals (for instance the mean of the two rationals). buc wa
spite of that, there is a difference between the infinity levels.

2. . . . between 5 and 10 there are more numbers than between 6
and 7.

(Note that the view expressed in this category is typical to views
about infinity reported in Fischbein et al-,1979.)

Category IV: It is always possible to divide by 2 the difference
between two rationals and to add the result to the smaller number. The
result is again a rational number. One can go on and divide by 2 the
difference between the smaller number and the new number. The sum and
the difference of rationals are always rational.

In addition to the above examples we would like to draw the reader's
attention to some additional points which were found in the analysis and
are worthwhile to mention.

(a) The role of the irrationals in arguments about density.

Most students did not mention at all the irrational numbers. From
the mathematical point of view they are irrelevant. However, a few stu-
dents related to them in spite of that. This was done in a way that
indicated a beginning of an accommodation process; namely, quite often
the ideas were wrong but some ties between the concept of the irrationals
and the concept of the rationals were formed, For instance: 1., The
student who claimed that the answer depends on the numbers is right,
since it 18 possible that the two given numbers are consecutive and
there are no rational numbers between them; for example: two numbers
between which lies the number n which is irrational.

2. Between % and 1/3 there are no rational numbers because 1/2.5
8 not rational since it is not presented as an integer over an integer.

3. The third student is right since between any two numbers there
are infinitely many numbers and therefore probably some of them are
rational.

(b) Abstract thinking versus concrete thinking.

This is a general issue not necessarily related to our particular

topic. Some students carry out their mathematical arguments in terms of

specific numbers while others are capable of carrying them out in terms
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of semantic variables; namely, they use general arguments. This is
beautifully demonstrated by the answers representing categories Il and
IV above.

(c) The role of the number line in students' thinking about the
density aspect.

Several students established their answers on number-1ine arguments.
This is interesting because it happened spontaneously and thus shows
that the number line is spontaneously used to help students' thinking
about numbers, Here are two examples:

1. The distance on the number line determines the number of num-
bers between two given numbers; if the distance is greater there are
more numbers.

2. Always between two points one can denote another point and I
assume that this law 18 true also about rational numbers.

§ 3. The Comparison Between Decimals

The students' ability to compare decimals was examined by the fol-
lowing question:

Here are some decimals. Write down all the numbers which are equal
to each other and arrange all the different numbers in an increasing
order.

(a) 0.33333; 0.33; 0.298; 0.4; 0.299; 0.333.
(b) 0.999; U.é; 2; 1.001; 1; 1.0000001,

Please, explain your answers., (The notation 0.33, etc. was taught
to the students and also re-explained to them in the questionnaire.)

We will discuss first two strategies of decimal comparison explicitly
expressed in students' answers.

Strategy | (explicitly expressed by 33% of the 10th gréders (N = 91)
and by 13% of the 11th graders (N = 85)): It is based on the belief
that the more digits a number has after the decimal point the smaller is
the number. Thus: 0.333 < 0.33333, 0.9 < 0.999, 1.001 < 1,0000001,
1,001 < 1. (This was surprising but the fact that students were systema-
tic together with their written explanations rule out the interpretation
that students just ignored the upper dot denoting the decimal period
and thus by writing 0.9 < 0.999 they really meant 0.9 < 0.999.) An an-
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swer demonstrating this strategy is the following: As much as the
decimal has more numbers after the deeimal point — it is smaller since
the denominator is increasing.

This phenomena can be explained by the inability to simultaneously
relate to more than one factor involved in the situation, Piaget
claimed it about children in the beginning of the concrete operation
stage, but perhaps this inability is not a question of age and it is
typical to relatively complicated situations with a factor that seems
to be dominant (1ike the height in the Piagetian experiment and like the
claim that the greater is the denominator the smaller is the number
which is, of course, true as long as the numerator remains the same) .

Strategy |1 (explicitly expressed by 19% of the 10th graders and
by 34% of the 11th graders): One should compare the decimals digit by
- digit (this is of course a correct strategy in case the two decimals
compared are both infinite or both finite. It does not always work in
case one decimal is finite and the second one is infinite., Thus, some
students who used it successfully with 0.29é and 0.299 failed in the
comparison of 0.9 and 1 claiming that 0.9 < 1 (see also Tall, 1976)).

A typical description of strategy |l is the following: I go through
the digits from left to right. The first digit which is different, if
it 18 greater in the number A than in the number B then A > B.

It is worthwhile to mention that more than half of the students did
not describe their strategies for decimal comparison.

In addition to the above strategies also two interesting percep-
tions of the infinite decimal were expressed in the students' answers.

Perception | (explicityly expressed by 20% of the 10th graders and

18% of the 11th graders): The infinite decimal is perceived as one of
its finite approximations.

Thus about 17% of the students suggested that 0.3333 = 0.335 = D.3j
or 0.9 = 0.999. This was justified by arguments like the following:
1. The difference is so small that it is hardly noticed. Therefore, one
can say that the things are equal.

2. It is possible to write 0.999 = 0.9 since three digits after

the decimal point are sufficient, otherwise it is not practieal,
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Perception Il: The infinite decimal is perceived as a process, not

as a product. This can be also characterized by the term: the dynamic
perception of the infinite decimal.
In the answers expressing this perception the infinite decimal is
considered as something which grows and has tendencies.
1. An infinite decimal increases a little bit all the time.
2. 0.9 < 1 because it will never reach 1.
3. 0.298 is smaller than 0.299 because all the time it wants to
reach the finite number 0,299 which is also the closest number to 0.298.
Note that the last perception can be considered as a starting point
for a correct mathematical concept. Mathematicians associate tenden-
cles to sequences, not to single numbers. However, there are students
who have the feeling that a single infinite decimal itself tends to
something. This is, perhaps, a first step toward the concept of the in-
finite decimal as a limit of an infinite sequence of finite decimals.
References:
Fischbein, E., Tirosh, D. and Hess, P., The Intuition of Infinity, Edu-
cational Studies in Mathematics, 10, 1979, 3-40.
Hart, K., Children's Understanding of Mathematics: 11 ~ 16, John Murray
Publishers, Lohdon, 1981.
Tall, D., Conflicts and Catastrophies in the Learning of Mathematics,
A Publication of the Mathematics Institute, University of Warwick,
Coventry 1976.
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A DIAGNOSTIC TEACHING PROGRAMME IN ELEMENTARY ALGEBRA:
RESULTS AND IMPLICATIONS

Lesley R. Booth, Chelsea College

This paper presents an overview of the work done in elementary algebra
(generalised arithmetic) by the Strategies and Errors in Secondary
Mathematics project, a project funded by the Social Science Research
Council and based at Chelsea College from 1980 to 1982, This project
aimed to investigate the causes of certain commonly made errors in
elementary algebra, and to uge this information in order to develop a

teaching programme aimed at helping children to avoid making these errors.

ANALYSIS OF ERRORS

By conducting a series of individual interviews with children identified

as making particular errors in elementary algebra, the project was able
to describe several areas of difficulty which appeared to underlie these
errors., These areas of difficulty have been described more fully

elsewhere (e.g. Booth, 1982, 1983a, b) and are summarised as follows:

(1) Interpretation of letters. Children often (a) confuse-letters as

representing a number with letters as representing an object
(Klchemann, 1980) and (b) think a letter always represents a single
unknown value (Collis, 1975).

(2) Notation and convention. Some errors are due to misconceptions

concerning algebraic notation such as (a) conjoining in algebraic
addition, (Davies, 1978; Matz, 1980), (at+b —>» ab), (b) not
appreciating the need for brackets (see also Kieran, 1979).

(3) Formalization and symbolisation of method. Children often (i) do mnot

make explicit the procedures used in arithmetic, and (ii) in fact
often use informal or 'invented' (cf. Ginsburg, 1977) procedures which
are not readily represented in an arithmetic (and hence algebraic)
manner. Even when an appropriate formal method is used, children
(iii) may not be able to symbolise it correctly, or (iv) may not

realise that such symbolisation is what is required.

These areas of difficulty can be accounted for in terms of the Piagetian
differentiation between concrete and formal operational thinking (see

Collis, 1975), or in terms of the child's continuing to work
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(innappropriately) within an arithmeti¢ 'framework of reference' (see
Hatz’ 1980)-

THE TEACHING EXPERIMENT

Using this information as a basis, a shof; teaching programme aimed at

structuring children's thinking so as to enable them to avoid making the
errors in question was developed by means of a series of small-group

teaching experiments,

This teaching programme was based upon the need, identified from the

interviews, to help children to:

(1) obtain a conception of letters as genmeralised number, i.e.
representing a range of values;

(2) focus on the formal method required to solve a given problem;

(3) symbolise such methods correctly and unambiguously;

(4) appreciate that unclosed statements such as e+2 can represent
'answers';

(5) discriminate between expressions of the kind "e+2' and 'ex2' in
terms of the abbreviated symbol '2e';

(6) appreciate the need to use brackets.

number storage locations

L_’“I L“Y ﬂi b |y [____1
Instruction ] Priz;nout
Leaad Eady Processing Unit

| | Start . ] I
Button f % ! .\ i:{
A teaching framework appropriate to these aims was provided by setting the

instruction within the context of a 'mathematics nachine' (Figure 1) which

was to be 'programmed' to solve given classes of problem, The teaching
thus emphasised both the need to analyse problems in terms of their formal
structure, and to represent this structure in a concise and unambiguous
manner, using the appropriate mathematical notation, and using letter as

generalised number'.

Since it was hoped that the teaching sequence would be useful both in the
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initial teaching of algebra, and for remedial purposes, the effectiveness
of the programme was investigated with groups of children who had not yet
learned algebra, as well as with older groups containing children who
were known to be making the relevant errors., The teaching programme

covered a period of six to seven, 35 minute lessons, and was taught by:

(a) the researcher, using one group of 'novices' in algebra (aged 12)
and three groups of children aged 13, 14 and 15 years respectively,

who had been identified as making the errors in question.

(b) volunteer class teachers, using one group of 14 year old 'novices',
and 3 groups of 13 year olds, 2 groups of 14 year olds and 1 group
of 15 year olds., These latter groups were whole classes and
therefore included children who were not making the identified
errors, as well as a proportion (usually 40 percent or more) who

were making the errors under study.

In each case, parallel forms of an algebra test designed to asses the
occurence of errors relating to the areas of difficulty described above,
and taken from the CSMS Algebra test, were given as pretest, as immediate
posttest following the teaching programme, and as delayed posttest

administered two to four months later,

RESULTS OF THE TEACHING EXPERIMENT

In general, the teaching programme was effective in promoting an improved
performance, in terms of total score (max = 21), and this was maintained
on the delayed posttest., Average gain scores between pre- and delayed
posttests were in the order of 8-12 for groups of children identified as
making the errors, and 3=7 for 'mixed' whole classes, i.e. groups also

containing children who were not making the errors under study.

Analysis of individual or groups of items particularly relevant to each of
the areas of difficulty outlined above, indicated that improvement was

obtained primarily in the followine areas:

(1) Conjoining in algebraic addition. All groups made notable gains,

regardless of age or level of mathematical ability (as indicated by
position of class in year-group). (See Figure 2).
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Fig.2 Proportion of correct answers on pretest, immediate
posttest (P1], and delayed posttest (Pz).

(2) Formalization of method. Notable gains were likewise made for all

groups (see Figure 3a). One exception to this was noted in the

case of the item represented in Figure 3b. However, since this

item was symbolically more complex, involving as it may the use of
brackets, it is suggested that the lack in improvement on this

item was due more to problems of symbolisation than formalization.
This is supported by the marked decrease in error (i.e. the giving of
a numerical or algebraic 'code' answer) on this item, suggesting

that children were moving towards a mnon-numerical representation

of the problem but were as yet unable to symbolise it correctly.

The nature of the test did not permit the separation of the

formalization and symbolisation aspect of the problem.

Area: 5[;]
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(a) Item: each length 2 units (b) Item;
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Fig.3 Proportion of correct answers (item (a)) and correct and

tgrror' answers (item (b)) on pre- and posttests.
Improvement with regard to the following areca was observed only in the
case of selected groups, namely the older children (L5 years old) and

younger 'top stream' children (aged 13 years) (see Figure 4):
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Fig.4 Proportian of correct answers on pre- and posttests: Compar-

Also

(1)

ison of groups.

Letter as generalised number. Of particular interest in this respect

was the observed improvement over time between the immediate and
delayed posttests. An improvement in performance of this kind might
be expected if children had not found the ideas embodied in the
items readily assimilable, but needed time in which to construct an
appropriate cognitive viewpoint with regard to the ideas concerned.
The observation that only the older or mathematically more able
children showed this improvement also suggests that there may be
maturation-linked factors contributing to the child's likelihood of

assimilating the notion of generalised number (see Figure 4 above).
of interest were the following observations:

Many of the errors in elementary algebra investigated in the present

research were also made by naive (in the sense of lacking previous exposure

to algebra) pupils. The proportion of naive pupils making these errors was

in many instances comparable to that observed for older 'more experienced'

pupils,

(2)

Children may respond correctly to items requiring the use of certain

notation or convention (such as the use of brackets or the writing of an

algebraic sum), and yet be unable to discriminate between correct and

incorrect representation, i.e. be unable to select the correct and incorrect

alternatives. This suggests that the issue of symbolisation is itself a

complex one, and that understanding of notation may itself proceed via

stages.

SUMMARY

The difference in effectiveness of the teaching programme with regard to the
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areas of difficulty identified suggests that these areas may not be of the
same level of difficulty. This may mitigate against the employment of a
strictly Piagetian interpretation of these difficulties. Particular
problems do seem to be related to the notion of generalised number,
however, and the findings indicate the possible involvement of a 'cognitive
readiness' factor in accepting this idea. However, the observation that
the (pretest) incidence of errors studied was of a similar magnitude in
groups of children from first year (age 12) to fourth year (age 15)
suggests that the fact of cognitive growth does mnot initself ensure the
growth of understanding in these areas. Attention must perhaps also be
paid to the 'framework of reference' or 'knowledge' which the child
constructs with respect to the topic in question. More research is needed
in order to clarify this point,
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STUDENTS' MISCONCEPTIONS OF THE EQUIVALENCE RELATIONSHIP
Zemira R Mevarech and Dostis Yitschak

Bar-Ilan University, Israel

The equivalence relationship is ene of the mest fundamental cencepts
in mathematics, Yet, recent studies (e.g. Kieran, 1981) have peinted
out that "the concept eof eguivalence is an elusive one net only for
elementary scheel students but for high scheolers as well" (p. 324). It
seems that children at varieus age levels interpret the symbel ef
equivalence, the equal sign, as an eperatien rather than a relatien
symbel. As a result, children at first and secend grades have
difficulties in reading arithmetic sentences net including eperatiens
(e.g. 5=5), er net reflecting the erder of eperatiens (e.g. |[_I= 2+3)
(Ginsburg , 1977). Children at sixth grade tend te change reflexive
expressiens te transitive ones invelving mathematical eperatiens (Behr

et al,, 1976). Even high scheel students still pessess the thread of

interpreting the equal sign as a "de something signal" (Italic in
source) as indicated by errers they make in writing dewn expressiens
like the felleowing:

a+b+c+dzarbzx=x+czy=y+d=e
In all these studies the equal sign was mistakenly viewed as a symbel
which separates a preblem and its answer with slight awareness for the

netien ef equivalence.

These findings raise the questien as to the extent te which cellege

students are able te everceme the miscenceptiens asseciated with the
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equivalence relatienship. De coilege students alse interpret the equal
sign as an eoperatien symbel? De students at this age level have
difficulties in cemprehending the three equivalence laws ef Reflexive,
Symmetriec and Transitive? Do these miscenceptiens result frem lew
achievement in mathematics, er frem weak skills in selving equatiens?
The purpese ef the present study was te investigate these questiens

evaluating the underlying netiens ef equivalence ameng college students.

METHOD
Subjects
Participants were 150 cellege students majering in educapiun. They

all passed the Matriculation Examinatien (Bagruth) in mathematics with
an average scere af Tb, Appreximately B80% of the subjects had studied
high scheel ceurses in algebra, geometry and trigenemetry, and the

reminder (N=33) had taken alse an intreductery ceurse in calculus.

Measurements

A fifteen-item algebra test was administered te all subjects at the
beginning ef their freshman year. The test was censtructed as fallows:
elght multiple-cheice items assessed miscenceptiens assecliated with the
three equivalence laws, two open questiens invelved interpretation ef
the 'equal' and 'greater than' signs, and five linear equatiens dealt
with ene variable were teo be selved. In ene epen questien, fer example,
students were given a definitian fer mathematical eperatiens and anether

for relatiens, A row of symbels was presented, and the students were
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asked te identify these representing eperatiens and these representing

relatiens,

In additien, students' sceres in the High Scheel Mathematical

Matriculatien Examinatien were analyzed.

RESULTS AND DISCUSSION

Interpretation of the Equal Sign

Only 56% ef the students gave respense indicating that the equal sign
is relation symbel. Hewever, students had less difficulty 1in
interpreting the meaning ef the symbol '<' than the symbel '=', While
19 4 of the students indicated that '<' is an eperatienal symbel, Ui} ef

them viewed 's' as a "de semething signal", This difference 1is

statistically significant (chi-square =10,08; p<,005).

Why did the sign '=' mislead mere students than the sign '<'?
Clearly, in erder te determine whether a is greater than b, students use
a two-step precedure in which they first subtract the twe elements and
than judge accerding te the result ebtained. The symbel '<{' 13 used
enly after the secend step when the subject has te present the relatien
between the elements,. In centrast, the symbel '=' is usually used to
obtain the answer, net te relate the elements presented in the preblem.
Thus, students tend te extend the set of mathematical aperatien symbels

te include the equal sign but net the "greater than" sign,
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Comprehension ef Equivalence Laws

Mest students (B0%) were able te identify the identity ef expressions
presented in parallel forms (e.g. 2X+3=-5X+10 and -5X+10=2X+3).
However, many students (appreximately 52%) have difficulties in
identifying a selutien set satisfying the equatioen t+15=t which was used
te assess the understanding eof the Reflexive Law. The cemmen error was
"any pair ef numbers their difference equal 15", Prebably, being unable
te cempare t+15 and t, students assigned different values to the two L's
presented in the equatien, This respense clesely resembles that ef
elementary scheel children whe interpreted the equality 3=3 as means

6-3=3 er T-U4=3 (Behr et al. 1976).

Many students (appreximately 60%) alse have difficulties 1in
identifying identical expressiens presented in transitive forms. Fer
example, students were given twe sets of equalities, 2a+3=5a+7 and 5a+7=
3Ja+1 and were asked te judge whether 2a+3=3a+l. Apparently, subjects
could net assign any meaning te indeterminate ferms such as '5a+T' and

thus leocked for a number which satisfies the given equalities.

Miscenceptiens assaciated with the equivalence relatienship were
manifested alse in the translation ef verﬁal exr-essiens inte algebraic
sentences and vice versa. Only 30% ef the subjects were.able te
translate the sentence "fer each five tanks there are two airplanes" er
to assign the cerrect meaning te the expressioen 5a=2t where a presents
the number of airplanes and t presents the number of tanks. In beth
cases students used a "word erder matching strategy" reperted alse by

Resnick and Clement (1980) in which students translate direétly frem the
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preblem te an equatien and vice versa witheut due regard for the
semantics ef the problems eor for the mathematical meaning ef the equal
sign. The same difficulty was manifested alse when students were asked
te identify the larger variable in the equlity 3k=m, Appreximately 381
of the students mistakenly answered that k>m prebably because the
misleading netien that three k is greater than one m. Evidently, if
students woeuld have censider the equal sign as a symbel ef equivaienoe

they would net make such mistakes,.

Mathematical Achievement and Equivalence Misconceptions

In erder te examine whether the equivalence miscenceptiens resulted
frem weak mathematical skillaJ students’' ability te selve linear
equatiens as well as their Matriculatien Exam sceres in mathematiecs were
assessed in regard te their ability te cemprehend the equivalence laws
and the equal sign, Since more than 90% ef the Ss succeeded in selving
all the linear equatioens presented except the ene invelving fractiens,
it dees net appear that their peer understanding ef equivalence derived
frem a lack of skill er acquaintance with linear equations, Maereever,
the Matriculatien Exam scores in mathematics were enly weakly cerrelated
{r= .04} with success en the ten items assessing equivalence

understanding.

SUMMARY

The results ef this study shew that seme eof the miscenceptiens of

equivalence manifested in children remain throughout adul theed,
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Eventually, many cellege students grasp the equivalence laws, but could
net overceme the thread that the equal sign is a "de something signal"”.
The findings that these miscenceptiens are weakly related te mathematics
achievement raise the questien ef how de students pessess these
miscenceptions, and mere impertantly, how ceuld they be erradicated.

This issue merits further censideratien in future research.
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EXPERIMENTAL MODELS FOR RESOLVING PROEABILISTIC AMBIGUITIES.

Ruma Falk = The llebrew University of Jerusalem.

Some of the apparently most clementary probability problems can beccme
quite intriguing when assumptions that have to be uncquivocally spelled
sul remain unspecified. One way to expose such implicit assumptions, would
be te actually perfnrﬁ the ''experiment' that gencrated the problem. In
this talk I wish to analyze a few puzzling problems in probability by
wffering experimental models that should clear all doubts concerning the

interpretation of the problems,

Causal Reasoning versus Probabilistic Inference
The first prablem requires ne construction of an isamorphic 'urn model',
since it is an urn problem, first presented in the PME conference at
Warwick (Falk, 1979): An urn contains two white balls and two black balls.
We shake the urn thoroughly, and blindly draw two balls, one after the
otker, without replacement.
First wce ask for the probability that LLQ second ball is white, given that
the first ball is white. Students have no difficulty inferring from the
in‘ormation that the first ball was white that P(w11|w1)=l}3; The main
part of the problem comes now, when we ask for P(NIINII)' The modal answer,
rcpeatedly given by a little more than half the students in introductory
ccurses, is P(NIINII)=1f2. They reason as follows: Since the sccond draw
cannot affect the first one, the knowledge of its outcome is irrelevant to
the question about the outcome of the first draw. llence the required proba=-
bility depends only on the urn's composition at the ocutset of the experiment.
Thkis answer is, of course, wrong. The problem was one of probabilistic
inference, for which end all the information at one's disposal should be
utilized. Thus, the knowledge that the second draw resulted in a white ball
is relevant, because it removes one white ball out-of.the possible outcomes
of the first draw and leaves us with threec equiprobable outcomes, one white
and two black. Therefore, the correct answer is P(HIFWII)=lI3, just like
P(HIIIHI). Students often tend intuilively to think causally. They typical-
ly argue: "At that stage (before the first draw), the secend draw had not
yet bcen carried out". Furthermore, they insist: "The first ball doesn't
care whether the second ball was white or black"; to which one may reply:
"Indeed the first ball doesn't care, but we do, and mind you: We are no

lenger 'at that stage', we have advanced beyond it when we acquired the

information concerning the outcome of the second draw". This exchange
illuminates the distinction between two attributions of uncertainty, one
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to the extcrnal world and one to our state of knowledge (Kahncman & Tversky,
19€%). When rcal world outcomes like these of tossing a coin, playing a
fcoitball game, or the behavior of a volcano, are considered, the locus of
tle uncertainty is usually perceived as cxternal. This kind of uncertainty
is anelyzed causally, hence the disposition of the physical setting to pro-
duce the uncertain ecvent is considered. Urns are often effective at produc=-
ing that type of interpretation (Einhorn & Hogarth, 1981). The subjects'
verbal responscs, especially their refusal te consider evidence occurring
later than the judped event, reflect Lheir reasoning alcng the time axis.
It is congrucnt with viewing probability as a mcasure of some fecature of
the objective urn situation, while the heart of the problem lies in its
being addressed to our internal locus of uncertainty. One is asked here to
revise one's current state of knowledge in the light of new evidence and to
infer backwards, That kind of task could be labeled ''diagnoustic', rather
than "prediclive'", since cne is asked to perform the same kind of judgment
as when inferring from symploms to the underlying disease (Einhorn &
Hogarth, 1981). Apparently, those subjecis who erred fcund it difficult to
view probability as a surmary mcasure of their own internal state of

uncertainty.

A simple way to convince a class of the correct answer, prior to turning

to psychological analysis or to problematic concepts like objective vs.
subjective probability, is to carry out the cxperiment. We repcat the basic
trial composed of two blind drawings without replacement from an urn, com=-
poscd as above . We carefully record the outcomes of the first and the second
draw. Then we consider all those trials where the second draw resulted in

a white ball. Let N(HII) be the number of such trials. We count how many of

these trials resulted also in white on the first draw. Denodte that number

N{wlnwn)
N(NIIS

P(HIIHII). The greater the total number of trials, the closer that ratio

n(wf\HlI). Wow one computes the ratio as an estimate of

would be to one third.

Problems with Sons and Daughters.
Mrs F. is known to be the mother of two. We meet her in town with a boy
whom she introduces as her son. What is the probability that Mrs F. has two
sons? Is it 1/2 because we saw one boy and hence the event in question is
that the other childbirth was also that of a male? or is it 1/3, since we

learned that Mrs F. has '"at least one boy' and hence three cquiprobable

family structures (BB, BG, GB) are possible, of which our target event (BB)
is but one? (Falk, 1978).
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Here we have a typical problem where the way by which we obtained the infor-
mation plays a crucial role. One has to go back to the statistical 'icmperi-
ment" that generated our data to be able to exactly define the conditicning
event, It turns out that we met Mrs F. in town with & son. Does this mean

that a randomly selected child of the two-children-family was found to be a
boy? or does it tell us that the family has pot at least one son? The answer
depends upon further assumptions regarding that woman's habits. Suppose she
randomly selects one child out of the two to accompany her when going out

to town (this is the fairest assumption, lacking any other informaticn). In
such a case a BB family is twice as likely to yield our ocbhservation than is

cither BG or GB, and a simple Dayesian calculation shows that the probabi-

lity that the woman hae two sons is 1/2 (Bar-Hillel & Falk 1982). Most real
life situations from which we learn that a given woman has a son are simi-
larly structured (we either call the house and a son answers the phone, or
we come to visit and catch a glimpse of a boy): In all these cases the
grecater .the ratio of sons to daughters in the family, the mcre probable is
the event "a randomly encountered child in the family is a son'.

I1f, however, one interprets the conditioning cvent as ''the family has at
least one son', then '"two sons" is indeed one outcome of three equiprobable
ones, and the required conditional probability is 1/3. Various authors have
altempted toc invent reascnable "stories" that will fit the latter interpr-
tation of the problem. Gardner (1959, p. 51) simply makes his Mr Smith tell
us: "I have two children and at least onec of them is a boy'". This can be
understood as an explicit instruction to treat the subset {BB,GB,BG} as our
conditional uniform sample-space (as dene in many textbooks, where condi-
tioning events are "given"). Loyer (1983) suggests that we observe the par-
ent at a boy scout meeting, furthermore, in his elaborate story there is a
law requiring the parents to attend the boy scout meeting if and only if
they have at least one male child. Bar-llillel & Falk (1982) describe a
meceting with a father and son in a male chauvinistic scciety, where a fath-
er autcmatically selects a son (rather than a daughter) tc accompany him,
if he has only got one.

The two different imterpretations of the problem lend themselves easily to
experimental simulation. Carrying out the experiments (or even only the
"{thought experiments") may illuminate the implicit assumptions, better

than the elaborate slories.

lLet us prepare four cards:; one - blue on both sides - will be denoted BB,

where B represents both "blue' and "boy". Another card, GG, will be green

on both sides (G - for "green" as well as for "girl"). Two additional
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cards will be mixed, i.e., blue on one side and green on the reverse one
(BG).

In Experiment 1 we shuffle the four cards and blindly draw one of them.

Then we randomly put it on the table. Suppose we cbserve a blue side facing
up, what is the probability that the other side of that card is also blue?
The experiment can be repeated as many times as one wishes. The proportion
of times one turns the card over and finds a blue face on the reverse side,
out of the cascs with blue face up, will undoubtedly approach 1/2. That is
because four blue sides are equally likely candidates to appear as upper
faces on the table: The two sides of the BB card and one of each of the two
BG cards. In the two former cases the reverse side will be blue, and in the
twvo latter ones - grecen. This is a perfect model for the story of meeting
the lady (who randomly picks one child for going out) with a son.

In Experiment 2 we start by removing the GG card. We shuffle the three

cards BB,BG,BG, randomly choose one of them, and observe how many blue
faces it has. Now clearly the probability of BB is 1/3. That was a model
for the problem stories about the male chauvinistic father, or the parent

at the boy scout meecting.

The major distinction between the two interpretations of the problem stems
from different sampling procedures. One should carefully note whether we
sampled one family of those having at least one son, or one son of a random

two-children-family.

Glickman (1982) devised an illustrative urn-model for simylating such
problems: Take a family with an older girl and a younger boy as an example.

G
b Bl° The

8
urn represents the family. Each token represents one child. The token with

It will be represented by an urn with two tokens, as follows:

G, written on it stands for a girl (G) and indicates that she has a younger
brother (subscript b to the right of G). Similarly,gB represents her bro-

ther, a boy with an older sister. The sample space can be written as

follows: Hb ' Bg Gb Gs
G B G
b b 24 g
random urn of the four (family F. is a random two-children-family), next we

] ]

B

} « Now we first sample one

sample one token of that urn and notice it is a B token (we met Mrs F. with
a son). Note that the experimental procedure guarantees that our B token is
equally likely to be cne of the four: pb’ bB’ Bg or gB.In.twu, of the four
cases, that boy has a brother. According to the second interpretation (the
boy scout meeting), the family is known to have a boy and the sample space

is reduced to the three left hand urns. The probability that the family has
two boys is immediately seen to be 1/3.
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An allied probability problem proved quite perplexing. Suppose you collect
in your class, for males and females scparately, the number of brothers and
the number of sisters each student has. Who will have more sisters, the men
or the women? (Mosteller, 1980).

It may scem, at first, that, because ''on the average!" families have an
cqual number of sons and daughters, choosing male students for questioning
will result in an excess of sisters over brothers, since each respondent
docs not consider himself. The converse would seem to be true for female
subjects. This indeed is usually the prevalent answer intuitively given
by subjects (Falk, 1982). However, one of the basic properties believed to

gevern the mechanism of sex determination is that of independence of the

scxes in different bieths, whether those of siblings or others. Hence,
picking ome child from a family of n children and recording the number of
brothers and sisters he or she has, is equivalent to picking a family of
n-1 children and recording the number of sons and daughters in that family.
Thus, the expected outcome of the above class experiment would be men and
wemen having equal numbers of brothers and sisters. It is an casy experi-
ment to perform.

1f we limit the discussion to families with two children, it can be analy-
zcd in terms of Glickman's (1982) urn device. The unit being sampled now is
no longer a family (urn) but a child (token) who belongs to that population.
There are eight possible outcomes corresponding to the 7 different types of
tokens comprising the urns' contents. If the random respondent turned out
to be male he is one of the four types: B, B, Bg or EB' we see that these
fcur men have exactly two brothers and two sisters. The same considerations
(and technique) may apply to larger families. Still, some students remain
skeptical, Typical doubts were expressed in the words of one of my students
(Falk, 1982): “"Suppose we were a thousand women in class. Consider all of
us together with our brothers and sisters. That large group should consist
¢{ approximately equal numbers of males and females. Now, exclude us, 1000
pirls, and we'll be left with some more brothers than sisters'. She was of
course wrong in claiming that the female students plus their brothers and
sisters will be equally divided between the two sexes. That group should
include more females than males, since daughterless families are not repre-
sented among those 1000 families, and furthermore, families abundant with
daughters are overrepresented. This kind of bias was introduced by sampling
families via their daughters. To demonstrate this we turn again to the urn
device (limited to two-children-families), suppose all the daughters (G's)

in the four equiprobable families (urns) come to a party, and bring with
them their brothers and sisters. Each letter in the following list now
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represents one individual, a capital letter, G, denotes a girl from the
class  1gwer case subscripts denote siblings (older or younger) of these
girls: Gy Gy, gG; Gg' Altcgether, eight individuals are listed in that
group, six girls and two boys. These numbers seriously deviate from equal-

ity, and the sampling bias is obvious.

Conclusion
Tmportant psychological insights into the core of probability problems may
be gained by experimental simulation. Once one carries out the experiment
that generated the problem, there is no room for any hidden assumptions.
When one actually samples one item out of a set, one cannot bypass the
question whethier to randomly choose one family of a specific class of fami-
lics, or to sample one randow child out of a randomly selected family. The
different interpretations of the problem are materialized in different
sampling procedures. The concept of the '"statistical experiment", the out=-
comes of which define our sample space, becomes meaningful. It is no more
just a thecretical comstruct, to which one eventually pays lip service, but
it assumes a crucial role, since it determines the structure of the possible

events and their probabilities.

When one gets abscrbed in elaborate probability problems, one tends to for-
get all about the foundations. This is what occasionally leads to miscon-
ceptions and paradoxical results. Experimental modeling forces us to newly

examine our building blocks, and sheds light on our fundamental concepts.
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Problem Solving: A Correspondence Course

Ruhama Even & Abram Kreimer
Weizmann Institute, Israel

"I do believe that problems are the heart of mathematics, and I hope that

as teachers ... we will train our students to be better problem-posers

and problem-solvers than we are." (B.R. Halmos)

As part of the extra curricular activities of the Youth Activities section
at the Department of Science Teaching in the Weizmann Institute, a correspond-
ence course in mathematical problem-solving was set up.. The course is meant
for pupils in grades 4 to 9.

The main objectives of this course are to develop problem solving skills,
and mathematical thinking through problem solving, to widen and deepen mathema-
tical knowledge, and to search for talented children and encourage them.

Announcement of the course was made in the newspapers. In this way children
heard about it and wrote to us about their willingness to participate. Therefore
we can say that the main characteristic of this student population was their
high motivation and keen interest in mathematics.

Problem sheets were sent to the participants, according to their cognitive
level. They sent their solutions to us and received their papers back which
had been checked, as well as complete solutions and notes to all problems of
their level, and a new problem sheet. After three stages a competition between
the best participants was held.

In this paper we explain how the problem sheets were constructed, we
demonstrate the difficulties encountered by the pupils, and we take a look at
the influence the course has had on the participants.

The Problem sheets

According to Lester: A problem is a situation in which an individual or
group is called upon to perform a task for which there is no readily accessible
algorithm which determines completely the method of solution (Lester, 1978) and
It should be added that this definition assumes a desire on the part of the
individual or group to perform the task. Otherwise the situation cannot be

considered a problem (Lester, 1980).
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Problems were chosen so as to be challenging at the proper cognitive level,
and which require original thinking and the use of non-routine methods for
their solution. The mathematical contents include: number bases, percentages,
sets, open phrases and open sentences, translation, functions, geometry,
tessellations, and topics from number theory.

A lot of problems were given for which the pupil had to "guess" the answer,
and then prove that that was really the solution. For example:
1. Do there exist three consecutive numbers whose product equals 111111111111222

If there are, then write them; if not, explain why?
2. Is it possible to express the number 1982 as a difference between two perfect

squares? Explain.

The Construction of a Complex of Problems
One of the guidelines in choosing the problems was to take a set of problems

connected either by subject matter or by method of solution. Problems of such
a complex were given in several stages. Thus the participants could learn from
the comments given on former solutions and from those solutions sent to them.
The subjects of the complexes were ghosen after examining the difficulties and
the needs of the pupils. Below are some examples of complexes.

Problems whose solution by means of functional language is easier than by
means of open sentences.

A preliminary examination of 9th & 10th qrade pupils showed that many do not
see the connection between open sentences and functions, although very often

the use of the properties of functions and their graphs make the solution of
problems easier. In order to develop such an approach we constructed the
following complex of problems for grade 9:

! 2 7
l. Given the function y = (x = 1)(x + 1) - (x + 4)x - ¥, find the vertex of

the parabola and construct its graph.

2. The eguation axg + bx + ¢ = 0 is given. It is known that the coefficients
satisfy the condition (a + b + c)Jc < 0. Prove that there are two real

solutions to this eguation. y

3. The graph which appears to the right represents the function

2 :
y = f(x) = ax~ + bx + ¢. Determine whether a, b, and ¢ are

positive, negative or zero. FExplain your answer.
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4. It is known that there ar= no real solutions for the egquation

axz + bx + ¢ = 0 and that a + b + ¢ < 0. Is ¢ pocsitive or negative? Explain.

5. Prove that if a, b, and ¢ are rational numbers which satisfy the eguation
la + ¢| = |b| , then there are two rational roots for the egquation

axz + bx + c = 0.

It is hard to solve, for example, the second problem, by means of open

sentences. But if we use functional language, we can consider the function

f(x) = ax2 + bx + ¢. From the data we conclude that (a + b + c)c = f(1)-f(0) < 0.
From here it is easy to complete the argument.

Problems connected with tessellations
Most pupils are not acquainted with the subject of tessellation and are not

used to relating to geometric properties by means of tessellations. Therefore
we created the following system of problems:

l. We want to cover a surface with congruent regular polygons in such a manner
that vertices only touch other vertices and sides only touch other sides.

What kind of congruent regular polygons can be used?

2, The Rehovot municipality wants to tile a large public area. It has a great
many tiles of two kinds: squares and equilateral triangles. All the tiles
of the same kind are exactly the same. Also, the side of the sgquare is the
same length as the side of the triangle. For technical reasons it was
decided that the vertex of one tile would touch ancother tile only at its
vertex; that is, the tiles would touch each other thus: vertex to vertex
and side to side. In order for the pavement to be aesthetic, it was decided
that the order of the tiles around each meeting point would be the same.
That is, the number of tiles at each meeting point would be the same, as
well as the order in which they are laid. The tile-layers could use one
kind of tiles or both kinds together. In how many different ways could the

area be paved, according to the above conditions?

3. As guestion number 2, but, in addition to the squares and the triangles,

there are also tiles which are regular hexagons.

4. In a plane there are three regular polygons of x, y, and z sides, having
a common vertex. Around this vertex they fill the plane without leaving
any empty space. Prove that for each x, y, z that fulfils the above

1

) i) 1 ; )
conditions, + ; + 7 1% constant. Find the sum.

X
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Other complexes dealt with word problems leading to systems of equations 1n
which the number of unknowns is greater than the number of equations and

set problems whose solution is easiest by means of Venn diagrams.

Pupils' Difficulties

a)

Problems that have no solution

In ordinary classroom instruction, pupils usually do not come up against
problems that cannot be solved. Besides the educational value of learning
that not every problem has a solution, we saw importance in the fact that
checking the result obtained is not only in order to find possible mistakes
in calculations, but is an integral part of the solution. Here is an
example of such a problem that was given to pupils in grade 7.

A group of children went out on a 4=km hike. They walked 3 km/h for the
first 2 km. How fast do they have to walk the other 2 km, so that they
would average & km/h for the 4 km? Explain.

Many pupils gave 9 km/h as an answer ignoring some of the data. A number
of pupils suggested that the children walk the last 2 km. in zero time or
with infinite speed. About a third of the 34 pupils stated correctly that
there was no solution.

Problems including transfer from an everyday problem to a mathematical one.

The problems in the course were such that their solution strategies were
not evident from their formulation, so high-level thinking was required
to solve them. Here are two examples of problems formulated as everyday
situations, in which the main difficulty is their reformulation as mathema-
tical problems, that is, the construction of a suitable mathematical model.

Problem A:

In honor of Israel's Independence Day, each city sent greetings to its
nearest neighboring city. Supposing that the distances between cities are
different, prove that each city got no more than 5 such greetings for

Independence Day.
Problem B:

A baker who owns 2 bakeries decided to build a flour storeroom to be used
for both. Where should the storeroom be built so that transporting the
sacks of flour from the storeroom daily will be cheapest? (Suppose that

the daily requirement of flour for each bakery is constant.)
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The first difficulty in such prob1éms is the construction of a suitable
mathematical model for the problem which is expressed as an everyday situation.
Problem A can be expressed as a geometric problem, and Problem B can be
expressed as a problem of finding a minimum of a function in one variable.

One of the difficulties which arises for pupils who try to solve the problem
without first giving it mathematical expression, is that they base themselves
on arguments which are eijther not exact mathematically or unsuitable for the
given situation. For example, in Problem B, it was argued that if the
relation between the consumption of flour by the bakeries is 1:2 then the
storeroom should be built 1/3 of the distance between them, closer to the

one that uses the most flour. This phenomenon of giving an irrelevant
argument appeared in Problem A as well.

In Problem B there is an additional difficulty - the "missing data". Pupils
that tried to solve the problem without transferring to an exact mathematical
formulation ignored the problem of the location of the storeroom and made
additional suggestions for reductions in cost, such as paying less to the
drivers, building a cheaper storeroom etc.

Effect

One of the aims of the course was to encourage pupils to occupy themselves,
un their own, with mathematics. From the letters received from participants,
it seems that many tended to involve others in their immediate environment

(parents, teachers, neighbours etc.) in solving the problems. Some of them
ask for bibliographical references so they could find more extensive material
on the subjects presented in the problems.

Another way of judging the effect is by the feedback from checking their
answers and from sending them our answers. For instance, let us analyze the
effect of the complex of problems and solutions on the subject of set problems
whose solution is easiest by means of Venn diagrams.

In the first stage in grade 4 the first problem we gave had as its main
difficulty the finding of the number of elements of a sub-test when two sets
are given whose intersection is not empty. In the next stage we sent the
participants the solution of the problem and the second problem, in which the
degree of difficulty was much greater than in the first. In this second
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problem, not only were there three sets instead of two, but the second sub-
traction stage was to be done on the first subtraction. In order to check
whether there is an effect of the feedback that the pupils got from us, we
gave, in the first stage of grade 5 a problem equivalent to the one in the
second stage of grade 4. This question was given without any preparation.

It seems to us that the simplest method of solution is by Venn diagrams, and
in fact 42% of the 36 grade 5 pupils who solved this problem (got at least

8 out of 10 points) used Venn diagrams for the solutions and 94% of those who
chose to use Venn diagrams solved the problems. For this reason, we added

a solution using Venn diagram to the solution for stage one of grade 4. In
their answers to the second problem, involving 3 sets, we found that it had
influenced the pupils. Whereas among the 118 grade 5 pupils (who had not
received,quidance) only 14% used Venn diagrams, 46% of the 79 grade 4 pupils
used this method. (In the first stage not one of them had used Venn diagrams).
Furthermore, 81% of the grade 4 pupils who succeeded in solving the above
problem used Venn diagrams.

Conclusion

From our experience, the course enables pupils from all over the country
to occupy themselves in a field that interests them. The personal contact,
by means of checking each and every solution, with comments made for each
answer helps to create effective feedback for the participants. The gradual
construction of problems such as those shown here seems effective and helps
to achieve the aims of the course. The difficulties encountered by the pupils
must be followed in order to construct the systems of problems for the years
to come in the most beneficial manner.
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COGNITIVE STYLES IN THE FIELD OF COMPUTER PROGRAMMING
Elmar Cohors-Fresenborg, Universitidt Osnabriick

1. Introduction
Since many years we are dealing with the problem of the utilization of

different representative levels (enactive, iconic, symbolic) for the forma-
tion of algorithmic concepts for pupils, needed in the field of camputer pro-
graming - first we did this through the development of didactic materials
and lessons (Cohors-Fresenborg et. al 197%a, 1979b, 1982a). The success of
these didactical efforts has led us to the intention to develop the original
ideas of them into an empirical didactical research oriented on a cognitive
psychology. First of all we had to define the role of representative levels
in forming algorithmic concepts. Further if there are different cognitive
styles in the construction of algorithms, and if the pupils generally have a
preference for different techniques in constructing algorithms. Moreover our
experiences in teaching showed that pupils are differently talented for the
performance in constructing and analysing algorithms. Herein we parted from
the premonition, which we thought to be teoretically plausible, that such
performances depend on the knowledge of logical and elementary actions. There-
fore the enactive representations are especially important in the field of
algorithmic elaborations.

The didactical materials which we elaborated enable even young pupils without
any knowledge to deal with difficult mathematical problems in algorithms with-
in a short period of time. The computing machine "Regisfemnmaschine" for
demonstration purposes, was especially desighed for the mathematical aspect
of algorithms, after a short introduction it is very easy to handle by the
pupils. For that reason we didn't choose one of the usual calculators basing
on known programmation languages.

As we intended with our researches to recognize, to explain, and therewith

to understand the thinking processes of the pupils, a design of pretest-
posttest oriented on behavior seemed to us not to be helpful. On the other
side, we thought that the simple observation of an open problem-solving si-
tuation and its following interpretation could complicate the evaluation and
last not least the camparison of such a free relation between pupils and tea-
cher. Furthermore it must be questioned, in which way the results of the ana-
lysis of a single case might be generalized to obtain a theory for other cases.

But in this paper we will not discuss the general prablems of methodology in
empirical research in the field of mathematical didactics (see Cohors-Fresen-
borg 1983).
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In spring of 1981 we startet an investigation with the following questions:
Is it possible to classify pupils accarding to their performance in con-
structing algorithmic concepts? 14 pupils of grade 7 in a secondary school
participated in the experiment, where they had to elaborate algorithms on
different representative levels. They did not have any knowledge in this
field before. Separately they worked in 6 units of 45 min. each, on two
different kinds of problems, which we named as constructive and analytic
problems (The reader may find a report of the investigation and different
examples for the problems in Cohors-Fresenborg 1982b) .

The questioning of the problem, its strategy of solving and the result are
quite different in case of constructive and analytic problems, for the sol-
ving of which we suppose different cognitive styles of thinking. The construc-
tive problems can be camenced on different representative levels: by deve-
loping a sequence of basic activities with sticks, by developing a calculation
network and by detemminating a suitable programword for "Registemmaschine”.

We observed those different levels of treating the problems, which could be

a hint for the different types of representative perceptive faculty. Two
types can be differentiated in the so—called analytic problems: the determi-
nation of a suitable termm of function, calculated by the given word of "Re-
gistermaschine", presupposes a semantic camprehension of the programming word
can be proved by the pupil giving a suitable function of the mumber of steps.

2. Critical reflection of the first pilot study

We had the target to document the process of thinking of pupils by the re-
lation between teacher and pupil. Primary this should be shown by the given
hints and the reaction of the pupils thereon.

The analysis of the videos after the examination showed clearly the following
debilities:

1. The presupposed aids where insufficient. The analysis of the videos shows
more dialogues between teacher and pupil than originally planned. That
means that only a very small share of the real difficulties was supposed
t0 emanate while planning.

2. The given aids directed the pupils close to a very programmed method of
solving the problems. As the videos showed, same pupils had other ideas
for the solution than the presupposed. The aids given by the teacher same—
times distanced the pupils fram their own ideas and led them to the plan-
ned process.

3. The teachers reacted differently in the case of each pupil. Apart fram
the aids counting for the analysis, the teachers gave instructions, which
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were at most different fram case to case.
4. All aids were valued equally and listed in the analysis. The needed aids
had different characters,.e.qg.:
emotional hints, which should encourage the pupils to begin a task,
- hints, correcting mistakes,
hints, showing analogies to already solved probleams,
units reminding already known but forgotten facts.

1

I

The above mentioned critics let us change the design of the main investiga-
tion in order to increase the quality of the same. Although, we wanted to
keep the idea of constructing a network of aids for each problem with the
aim of documenting the thinking process of the pupil by given i. e. not
given aids.

The structure of aids we should select had to enable the teacher much more
than before to a classification into categories during the test: i.e. the
decision whether an aim has been reached; moreover, to assume the mamenta-
necus thinking of the pupil and to decide whether an aid is necessary. These
decisions have to be possible for the teacher, even if during the analysis

the canparison of the different aids, given by the teachers is more diffi-
cult.

3. Second pilot study

Our reflections show that the aids to be given depend on the following con-

ditions:

1. condition: The aids shall reflect the fLearning process of the pupils and
not that of the teachers. Therefore the different strategies of solution
of the pupils should be taken into account. The aids shall not oblige to
use a programmed method.

2. condition: The aids should make possible a diagnosis about the learning
process.

3. condition: The different aids should be given by all teachers in all tests
for the same reason.

The second question we discussed was: Is it possible to use a camputer, pro-
grammed to react on a code-word given by the pupils by searching the corres-
ponding aid and transmits it to the pupil? We thought this proposition use-

less because of the following:

A canputer is only able to choose an aid according to sintactical points of

view. An instructed teacher, who is able to guess hypothetically what is in
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the pupils mind decides, however, following semantical points of view. The
following decision results fram the mentioned conditions:

An aid has the following form:
(number, diagnosis, comment, aim, formulation)

The numbers of the single steps of aid makes it easier for the teacher to
take into account the different strategies of solution of the pupils, because
he is not forced to follow their order.

The diagnos{s enables the teacher during the test to decide whether, when
ard how to help the pupil.

The comment is closely connected with the diagnosis. The aid to be choosen
shall result clearly fram the pair aim/diagnosis. Herein the diagnosis and
the aim to be reached have priority over the foamulation.

We thought that such a system could help to hammonize the aids in its posi-
tion and efficiency with the supposed thinking process of the pupils. By
this way it is largely possible to prevent the teacher forcing a certain way
of solution.

For the analysis there were fixed in advance some points of diagnosis in
the supposed way of solution, which should serve as qualitative evaluation
of the solution style.

In the relation between teacher and pupil exists a strongcomponent of non-
verbal comunication due to the quantity of activities to be observed. The
non-verbal commnication can be determined as a development of the propo-

sals given by SCHWANK (1979) for the imecrovement of the method of thinking
aloud.

Even if we achieve to document as close as possible the process of solution
of a pupil in this way, there still remains the problem of comparirg the per-
formance according to the enumeration of the needed aids. Nevertheless not
all the aids are to be valued equaly, but due to its large number (up to 40
in one problem) there results a campensation, enabling a rough classifica-
tion of the quality of performance.

4. Resuve and prospect

We decided to solve our problem, to find a satisfying description of the
handling of concepts in the field of camputer programming, by using a
"structure of aids". The first simple applications showed to be usefull in
order to achieve a certain standardization of the pupils way of solving
problems,

Cne of our next aims is to satisfy a higher demand of precision. Furthermore
it must be prooven in how far theories of structurized networks, developed
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in the field of an automatic grammatical analysis, can be used for a suita-
ble description of the different steps of the processes of understanding
and solving problems. In the case of an existing "diagnose" and‘"aim" it is
possible that the teacher, gives an "aid" to the pupil, by indicating him

a change in his network of thoughts and e.g. showing a new line of relation-

ship. From the experience with certain underdefined expressions results a "pre-
judice", which is ever tested in the reality, the corresponding network of

expressions is reduced, changing its structure.

We want to point out, that it is not our main task to formalize structures
of knowledge and its handling, but particularly to include into the net-
work our points of view about the specific nature of processes and perfor-
mances of thinking (see VERMANDEL et.al. 1979). A typical way of mathema-
tical thinking is the transformation of products of thinking processes

into objects of reflection. Thereon, the following possibility is requested:
to follow up this idea, so that after finishing a process of understanding
and abstracting, an object is only present as a knot in a further network
etc.; perhaps with a dynamic network. So we would dispose of a possibility of
expression, which would not only be useful in the field of camputer program-
ming, but also be applicable to other mathematical branches and guide to
further consequences.
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USING A MICROCOMPUTER 710 TEACH REPRESENTATIONAL SKILLS

James M. MOSER

Wisconsin Center for Education ilesearch (on leave)

Centre d'Etude des Processus Cognitifs et du Langage

Paris, France

ABSTRACT

A program has been developed that allows children to use a
microcomputer rather than physical objects to solve word
problems. They produce pictorial sets of objects one at a
time and can make a single set, or make two sets, or remove
elements from a set they have constructed. The connection
between informal modeling processes and the formal mathema-
tical symbolic representations is made by teaching the
children that they do not have to contruct sets one element
at a time ; they can construct them by writing number
sentences. Results of a pilot study carried out with four
first-grade children indicate that the program is effective

in teaching representational and problem solving skills,

BACKGROUND

In the last few years a substantial body of research has
focused on the learning of addition and subtraction
concepts in general and on the solution of addition and
subtraction word problems in particular (Carpenter, Blume,
Hiebert, Anick & Pimm, 1982 ; Carpenter, Moser & Romberg,
1982 ; Riley, Greeno & Heller, 1983). Currently there is
good agreement regarding the basic characterization of

addition and subtraction word problems, and there is a
reasonably consistent picture of the difficulty level of

different types of problems and the informal problem-
solving strategies children invent independently of

instruction. However, relatively little is known regarding



- 340 -

the transition from these informalrstrategies to the formal

addition and subtraction skills taught in school.

A key aspect of the transition from solving problems using
informal procedures based upon simple representational
skills to a formal mathematics approach is writing mathema-
tical symbols to represent the problem and its components.
At the time children are first introduced to writing
mathematical sentences to help solve word problems, their
informal strategies and procedures make more sense to them.
As a consequence, they see no connection between the two
activities. The operations represented by the number
sentences are often inconsistent with the modeling and
counting strategies used to solve the problem. Writing a
number sentence is something that young children do for the
teacher, something they often perceive as unerelated to the
solution of the problem.

In a study investigating the effects of initial instruction

on the processes children used to solve basic addition and
subtraction verbal problems, Carpenter, Hoser and Hiebert

(1981) considered the role of writing number sentences in
the solution process. Prior to instruction 43 first-grade

children were individually tested on a variety of addition
and subtraction word problems. After a two-month introduc-
tory unit on addition and subtraction, the children were
retested. On the posttest most children could write number
sentences to represent addition and subtraction problems.
However, very few recognized that the arithmetic sentence
was a mechanism that they might use to help them solve the
problem. Once they had written a sentence, most children

appeared to ignore it and used the semantic structure to
decide on a solution strategy. The fact that sentence

writing did not influence children's solution processes

suggests a lack of coordination by them between the two
processes.

DESCRIPTION OF THE COMPUTER PROGRAM

The major feature of the program is the ability to enter
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onto a video display pictorial and symbolic configurations.
The display is arranged in three adjacent sectors which can

be thought of as corresponding to the elements of the
number sentence A b asl'e For a -b = c. Pictorial
configurations consist of small squares arranged in a
pattern resembling the TILE configurations used in Japanese
elementary education (Hatano, 1982). See Figure 1 for an
example of the configuration. Entry of the pictorial confi-
guration occurs in two ways -- a one-by-one incremental
entry effected by depression of the key or by a
depression of appropriate numeral key(s). Space limitations
confined the number of squares in a sector to a maximum of
3U. Squares appear only in sectors a and b, Removal of
squares from a sector is cerried out by depression of
the key. The "take-away" action can be simulated by
entry of squares into sector a and then movement of a
subset of those squares to sector Jb such movement being
effected by initial depression of the - (minus) key
followed by depression of the IEEI key as many times as

required or by depression of the numeral key.

Standard mathematical symbols for numbers, operations,
equality, and an unknown quantity ( E:]} can be produced by

depression of the appropriate keys as needed. These symbols

C BB B BV ENED

L e i ol o e
B [ g s
B i ] e Y
ENEEBRLEEE
9 0 G

Figure 1. Video screen display after entry of 7 + 28 = 0
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appear in the lower one-third of the video display as
indicated in fFigure 1. The program calls for the production
of only numerals, or for a complete number sentence that is
essentially correct in form. Incomplete sentences such as

Ry O 23 s 7= would not appear. Sentences that
are impossible to solve within the domain of whole numbers
such as 13 - 15 = (O ori.9 +iE) =03 would not be
accepted by the computer. Sentences, either open or closed,
of the form a8 +b =c may be entered. A complete descrip-

tion of, as well as listing of the program may be found in

Moser and Carpenter (1982).

THE TEACHING EXPERIMENT

Four first-grade children, two male and two female, of
middle range of ability participated in a five-week
teaching experiment in April and MHay, 1982. Individual
interviews were conducted with each subject in which the
child was asked to solve the following 10 verbal problems :
Join, Separate (2), Compare (add), Compare -- find the
difference (2), Join -- missing addend (3), and Separate --
missing minuend. For one each of the Separate, Join =--
missing addend, and Compare -- find the difference, the
child was also asked to write a number sentence prior to
solving. Several tasks were also administered to assess
each child's ability to use counting-forward procedures.

Each child received nine individual lessons conducted by a
researcher. A second adult observer/recorder was present
during all lessons. Initial lessons involved an introduc-
tion to the computer and production and manipulation of
pictorial sets without any accompaniment of appropriate
symbolism., Next came the production of sets by means of
depression of numerical keys. The third step in the lear-
ning sequence dealt with the production of complete closed
sentences as representations of solution procedures. The
final step involved the "writing" of open sentences with
a as a representation for the missing quantity. Part
of each lesson included a presentation of a variety of
verbal addition and subtraction problems to be solved by

the student with the aid of the microcomputer. Essentially
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the student was asked to use the features of the computer
program that were currently being taught. On the day
following the last lesson, a follow-up individual interview
was conducted with each student as a posttest. Six problem
tasks were presented with the computer available to assist
in sentence writing and solution. An additional six
problems with the same semantic structure as the first six
were given with paper/pencil and physical manipulatives to
help with sentence writing and solution.

RESULTS AND DISCUSSION

Prior to instruction, all of the four experimental subjects
wrote inappropriate number sentences for all but the most
straightforward addition and subtraction problems., Further-
more, they generally viewed the number sentences as unre-
lated to their solution processes and ignored the sentences
they wrote when solving the problem, arriving at a solution
by directly modeling the action or relationships described
in the problem.

Following instruction all four subjects could write number
sentences to represent most problem situations and
successfully wused this ability to solve a variety of
problems using the computer. Three of the four subjects
transferred this ability to problems without the computer.
To solve a simple word problem, they would first write a
number sentence and then use a solution process that
modeled the number sentence not the structure of the
problem. .

One of the factors that significantly facilitated
children's ability to represent and solve certain word
problems was instruction on writing noncanonical open
sentences (e.g., 5 + [CJ =13 and [ + 5 13). These

sentences allow children to write number sentences that are
consistent with the semantic structure of missing addend

1]

problems. It has been clearly documented that young
children solve missing addend problems using an adding on

or counting up process which is most closely represented by
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an open sentence of the form a + [ = b (Carpenter &
Moser, 1982). During and following instruction, all four
subjects consistently wrote noncanonical sentences to

represent missing addend word problems. In fact, they alsao
wrote sentences like T B s B represent missing

minuend problems, even though they received very little
instruction in this type of number sentence. Research
suggests that initial instruction on addition and subtrac-
tion should include noncanonical sentences. The results of

the pilot study strongly support this conclusion.

The improvement in reprecsentational skills, however, was
not totally a function of learning about noncanonical num-
ber sentences. Following instruction, the children were
also generally more consistent in writing appropriate cano-
nical sentences for a variety of problems and using these
sentences as a basis for solving problems. Students'
performance during the lessons also supports the conclusion
that the instruction was successful in developing represen-
tational skills and helping the children understand the
relationship between their informal strategies and the
formal mathematical representations, Children quickly gras-
ped the concepts presented to them and were almost immedia-
tely able to use them to solve problems. With regard to the
mechanical aspects of the children's interaction with the
computer, the results can be characterized unambiguously as
positive. All four first graders demonstrated their ability
to work with an unfamiliar machine without any difficulty.
No mechanical or motor coordination problems were detected.

In conclusion, the computer appears to allow children to

rely upon their informal mathematics in an area of formal
mathematics such as sentence writing. The use of verbal
problems does seem natural to young children because they
are able to solve them in their own informal ways. The
present experiment demonstrates that the computer may allow
them to represent those problems in a formal way, even
though they have not yet completely learned the formal
algorithms and number facts. These findings suggest that

instruction could be changed to make better use aof
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children's natural ability to solve verbal problems in

learning the formal mathematics of addition and subtrac-
tion. This pilot investigation suggests that the microcom-

puter can have an important role in that instruction.
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SOME PROBLEMS IN CHILDREN'S LOGO LEARNING

Uri Leron
University of Haifa, Israel

1. INTRODUCTION

This talk is an informal, personal summary of three years' experience of
working, and observing other people's work, with children and computers in
the Logo method., (By the 'Logo method" I mean the whole learning environ-
ment, including the computer language as well as the educational philosophy
and practice, as described in Papert, 1980.) While I basically remain enthu-
siastic about Logo's vision of children's interaction with the computer, and
the potential of this approach to foster deep and meaningful learning, I am
now also aware of some fundamental difficulties on the child's route to
acquiring the "powerful ideas' as envisioned by Papert. The current litera-
ture contains excellent books about Logo's educational vision (Papert, 1980)
and aspects of the computer language (Abelson, 1981), and most subsequent
writings elaborate on the same themes (e.g., Byte, 1982). In contrast,
little has been explicitly written on difficulties in the method, even less
on attempts to overcome them, (The Brookline Project Report (Papert et al.,
1979) occasionally touches on some of these themes, especially in the de-
tailed reports of the children's work.) If we are to realize the great
potential that the Logo method holds, it is urgent, in my opinion, that the
Logo community turns its full attention to studying these difficulties and

the educational problems they pose,

Invoking Logo's central theme that a complex project cannot be expected to
run perfectly the first time around, nor should it be abandoned because it
has been found to contain 'bugs', my suggestion is that the time has come to
start a careful "debugging" of some aspects of the Logo method. We do not
know much at present about how to actually fix the bugs — this task needs
much more research. My talk will remain mainly within the first stage of
the debugging activity, that of identifying the bugs. The remarks in the
rest of this abstract relate mainly to children in the sixth grade (about
twelve years old), but since the observations include some rather bright
students, one can expect some of these problems to occur with older children

as well,

NOTE. Since the literature about Logo mainly elaborates on the merits of

the method, this exposition stresses the difficulties encountered, thus
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running the risk of painting an unbalanced picture (especially for readers
with no prior acquaintance with Logo). The reader should therefore bear in
mind that the following observations are meant as suggestions for further
research in Logo rather than criticism. In fact, it is my belief that, with
more research, one can devise ingenious educational means to solve many of

these problems.

ACKNOWLEDGEMENT. It is a pleasure for me to acknowledge the profitable and
pleasant collaboration with Pearla Nesher ana Rina Zazkis.

2. "PIAGETIAN LEARNING" AND POWERFUL IDEAS

Perhaps .the most basic difficulty I have encountered is the apparent conflict
between the ideal of spontaneous, non-directed, 'piagetian" interaction with
the computer, and the acquisition of some of the 'powerful ideas" envisioned
by Papert. (The terms "Piagetian learning" and "powerful ideas" have special
meaning in Logo. See Papert, 1980.) Many Logo teachers interpret Papert's
writings as discouraging any direct intervention (such as prescribing certain
tasks chosen by the teacher, or other curriculum-type activities), except for
responding to the child's initiatives. However, my observations indicate
that under such conditions, most children tend to fall into a 'hacking" kind
of programming which does not 'seem to be conducive to learning deep and
sophisticated ideas. This style is characterized by a great amount of trial-
and-error activity accompanied by little planning or reflection; and it
often enables children working on turtle-graphics projects to achieve their
goals, or change them in the middle, without fully understanding the nature
of the bugs they have encountered and how they were eventually eliminated.
Programming in this style may be justified, perhaps even recommended, in the
case of students with special learning difficulties; but we see it happen-
ing even in cases where relatively bright twelve-year old children are

taught Logo for several months by relatively bright, sensitive and responsive
teachers. Learning powerful ideas requires the development of sophisticated
new intelectual structures in the child's mind, with the necessary concurrent
elevation in level of understanding and reflection. Could it be, then, that
in order to achieve this goal the child needs a bigger 'push" (perhaps in

the form of more planning and directing of her activity) than we are usually
willing to excercise in Logo? If this turns out to be the case, then we

must face the educational challenge of finding more active ways of helping
the child, without sacrificing the spirit of meaningful and exploratory

learning.
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NOTE. Papert's vision of 'Piagetian" acquisition of powerful ideas is very
appealing. It is based on an analogy with the way young children learn their
natural language and early mathematical concepts. If this kind of learning
does not quite happen in the Logo environment, as the preceding observations
seem to indicate, it should be very interesting to speculate on the differ-

ences between the two situations,

3. SUBPROCEDURES AND MODULARITY

Most children seem to pick up quite easily and naturally the first steps of
Logo programming ~ navigating the turtle and writing simple procedures (that
is, entering the editor, writing text, exiting the editor and running the
procedure). The next major step, however, already poses serious problems.

I am referring to the use of subprocedures, modularity, and the whole cluster
of intelectual tools that go under the name of "structured programming'.

When talking about learning the use of subprocedures, one must distinguish
two levels of such learning. Superficially, the child is simply learning a
set of syntactical rules (for instance, the knowledge that child-defined
procedures can legally 'call' each other). This seems to pose no special
learning difficulties. The deeper aspect has to do with the creation of a
conceptual framework that brings the child to actually use these tools will-
ingly and successfully on her own; it requires the ability to conceive of a
complex procedure as a hierarchy of subprocedures with "interfaces! between
them, as well as the tendency to do so spontaneously, This ability appears
to be more sophisticated and difficult to achieve than we have previously
suspected. In fact most six-graders I have seen tend to write long, step-by-
step, unstructured procedures. Moreover, even when explicitly prompted to
use subprocedures they seem to 'resist'" the suggestion and return to their
"linear' style as soon as they are left alone. An ongoing research {(with
Nesher and Zazkis) indicates that one major source of difficulties is the
lack of a clear concept of the interface between any two subprocedures, and
the related importance of the turtle state before and after each subprocedure.
(Further explanations and examples will be given in the conference talk.)

The difficult educational question is, again, how to help the development of

this conceptual framework in the child's mind.

NOTE, In the Brookline Project Report (Papert et al., 1979) there seems to
be no clear distinction between these two levels of learning to use sub-
procedures. The deeper level is probably meant when this skill is considered

one of the conditions for saying that the students 'have 'learned to program'
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in any significant sense' (p. 1.14), while the more superficial level is
probably meant in the following quote from the Summary of Findings (ibid):
"Which students learned to program? (...) all students except those in the
lowest quartile of school performance did reach our criteria." (My conclusion
is drawn from the detaileu descriptions of the students' work. The relevant

criterion is (A3) on p. 1.5).
4. MATHUEMATICS

The issue of learning mathematics in Logo is very complex, and I shall not
go into it at any length, While an expert watching the kids work in Logo
can clearly see a lot of mathematics going on, it is not clear how much of
it is actually learnt by the children. In other words, the turtle may be a
"math-speaking creature', but we cannot automatically assume that the
children always listen to what it is sayiﬁg. As in the case of other power-
ful ideas, it is possible that a more structured environment is needed if
the children are to acquire these mathematical contents. In any case, it is
important that when reporting on children's learning of mathematics in Logo,
a clear distinction be maintained between the mathematics observed by us,
and the mathematics actually acquired by the child. For example, while
"there is a lot of group theory going on' in children's Logo work (Leron,
1982), one could not sensibly claim that they have actually learnt group
theory. The mathematics we see in the Logo environment is mathematics
potentially learnable by the children; making them actually learn it is

again a major educational challange for Logo.
5. OTHER ISSUES

In this section I shall briefly review some more topics whose degree of
sophistication seems to require a more structured learning environment than
is usually associated with Logo. As in the case of subprocedures (Section
2), the learning of each of these topics has both shallow and deep aspects.
The deeper aspect is the one associated with "powerful ideas', and is the

one that will concern me here.

5.1. VARIABLES, RECURSION. A non-trivial understanding of these topics
requires a degree of formal thinking that is not easy for sixth-graders, and
good concrete models, such as Mail Boxes for variables and Little People for
recursion, are very helpful. Variables appear most naturally as inputs to

procedures, where they control easily observed graphic properties, and should
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probably be introduced this way. (The assignment command MAKE can and should
be postponed till much later.) However, issues concerning outputs, scoping
and the passing of variables between procedures are complex and possibly too
difficult for most sixth-graders. Recursion should be approached with par-
ticular care, as it conceals very sophisticated and complex structures
behind simple and innocent appearances. Many of the children I have taught
or observed, tend in such cases to learn by rote certain "idioms' and the
effects they produce, without really understanding how they work. While this
may be a natural state in the first stages of a new topic, it makes good
planning and debugging almost impossible, so its persistence may later in-
hibit progress.

5.2. DEBUGGING. It is well known that long, unstructured. procedures are
hard to understand and debug. Somewhat unexpectedly, many of our beginning
sixth-graders seem to find modularized, '"structured" programming just as
hard. 'This is important, as it makes the task of ''converting' them to the
latter style of programming harder for us. One possible explanation is that
the well known advantages of structured programming depend on a fuller under-
standing of the process than our children usually possess. Simple step-by-
step programs, on the other hand, may be easier to debug (at this early
stage) by mere "hacking". In addition, the above-mentioned research (with
Nesher and Zazkis) have underlined two specific debugging-related difficul-
ties: One (already mentioned), a lack of clear concept of the interface
between subprocedures, and the role of the turtle-state in determining this
interface. Two, the difficulty children find in formally and rigorously
""playing turtle" (that is, tracing the steps of the procedure precisely as
written, without interference from the child's intentions and intuitions),
In fact, one of the topics under study in that research is the possibility
of specifically training the children in these skills through interesting

and carefully thought o't assignments.

5.3. BEYOND TURTLE GRAPHICS. The non-graphic parts of the Logo computer
language are, in my experience, mostly too difficult for sixth-graders.

While they can learn some of the commands regarding list-, text-, or music-
processing, most interesting projects would pose serious difficulties. How-
ever, graphics programming in Logo, and the ideas that can be learnt with it,
are rich enough to easily occupy the children for a whole year's course, by

which time they may be ready to move on.
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6. CONCLUSIONS

I wish to conclude with an optimistic note. The problems described in this
article have all been observed in cases where teacher intervention had been
minimal, with very little planning or directing of the child's activity.
Just as significantly, the time span of the children's Logo work had been
rather short: wusually no more than four months, or equivalently, about
thirty-to-forty hours at the computer. In contrast, one envisions a well-
planned, spiral course extending over perhaps several years, based on a
fuller and more detailed understanding of children's learning in the Logo

environment, and accompanied by well-written learning guidebooks. The

development of such a course is a non-trivial task if we are to preserve the
spirit of exploratory and personally meaningful learning. But it is quite
reasonable to expect that such a course will have successfully dealt with
these problems, thus greatly increasing the intellectual benefits children

derive from their Logo work.
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LEARNING STATISTICS WITH
THE HELP OF THE COMPUTER

Annie VIDAL-MADJAR
Laboratoire de Psychologie du Travail,
Conservatoire National des Arts et Métiers,

Paris, France.

1/ The Conservatoire National des Arts et Métiers is a
University devoted to research and teaching in the field of
technology and Sciences as applied to work situations.
Students are already engaged in professional life and attend
evening classes. On the average they are about 30 years old
and their previous education ranges from Secondary School
level to the Master's degree. About 120 students in Human
Sciences attend each year an optional Course in Fundamental
Statistics, followed by an optional training session of
exercices and problem solving done with the help of
microcomputers. The computers are used for practicing
statistical calculations and statistical reasoning in many

different situations.

A research team called "Didactique de la Statistique" has
been created in the Laboratory of Work Psychology with the

aims of :

First, analysing the specific difficulties of adults
in learning statistics and in using statistics for a
more general reasoning process that includes both the
analysis of experimental data and decision making ;
Second, initiating more fundamental research on the
epistemology of statistics ;
Third, developing teaching and learning aids of
different kinds : programmed learning booklets, case

studies, games, and computer programs with their



hA R

pedagogical handbooks.

This presentation will deal only with the computer programs.

2/ Description of the learning situation

For this experiment we used the computer facilities which
are available in french secondary schools : 1 mini computer
T 1600 Télémécanique connected with eight terminals (alpha
numeric displays) ; and since 1982 : eight microcomputers
with alphanumeric and graphic display (micral 8022 G, RZ2E
Company) .

The programming langage is L.S.E. (Langage symboligue
d'Enseignement).

Twelve programs have been proposed each year to about 100
students, allowing 60 hours of interactive learning, with no
need for anykind of knowledge in the area of computer
systems or progamming languages. A Three hours period each
week are devoted to work with the computer,

Two or Three students work together on each microcomputer
and this small-group situation appears toc play an important
role.

The teacher is present in the computer classroom and is at

the students'disposal for any request, exploration, or help.

Of the twelve programs, seven deal in statistical
description :

., class distributicns and histograms (with equal or unegual
intervals : HISTE and HISTI) :

. relevant statistics for the different types of variables
OPERA s

'
. estimation of median, mean and regression valué : MEMOR :
. bivariate freguency tables : TABLO ;

. practicing the estimation of the correlation coefficient :
CORRE :

. calculation of the Bravais Pearson coefficient : CORRU :

’
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The other five deal in statistical inference :

. sampling distribution of the mean : DIMOY ;

. sampling distribution of a frequency : DIFRE ;

. the confidence internal (of a mean, of a frequency, of the

difference between two means or two frequencies) : CONFI ;
chi-squarred test for a discrete variable : comparison of

an observed distribution with a theoretical distribution

KHI2D

-

. chi-squarred test for a numeric variable : comparison of
an observed distribution with the normal distribution :
KHIZ2N.

3/ Different types of interactive learning dialogs

None of the programs was conceived on the basis of
programmed learning or questionnaries, but they play various
cognitive roles depending on each specific topic. For
exemple, some dialogs help the student to acquire intuition
of specific statistical concepts without having to
understand the mathematical demonstration (MEMOR), or to
make all the necessary calculations, tables or graphs, which
is an easy but long and repetitive work (CORRE, TABLO).

Other dialogs make clear some subjective aspects of data
analysis, like class distribution (HISTE, HISTI), and still
others help the student in making relevant choices when

analysing data for one or several variables (OPERA, TABLO)

Simulation games give students the opportunity of "playing"
with a model (DIMOY, DIFRE and CORRE) : they put data and
parameters into the machine, the program performs
calculations which couldn't be done by the student. Then the
student is presented with the results of his choices, makes
the relevant interpretation, and tries again until he has

obtained a precise representation of the model.

Additional dialogs provide students with guidance in solving
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complex problem (KHI2D, KHI2N) : they help the student to

learn the operations and sequence of an elaborate algorithm,
Finally, one dialog provides the student with display and

calculation, but reguires him to estimate the computerized
value of the statistics himself before it gives the result.

4/ Each dialog has been designed so as to adapt to the

teacher's and to the learner's needs :

Fach dialog comes with a manual containing one or several
specific problem(s) to be solved.

Also included with each problem are the aim of the
experiment or inquiry,

the data collected for that purpose,

a list of questions on the data and for each question
precise indications on how to use the program to answer
them.,

The teacher can use the program with the manual as it is, or
use it for many different purposes depending on the problem
he gives to the students and the type of questions he asks
about the data.

Furthermore, the training session with the computer can be
organized and directed in a more or less precise way,
depending on the autonomy of the student (and usually in

such a way to increase this autonomy).

For exemples the first time he is using the program, the
student generally uses the manual or another document made
by the teacher : later on he is asked to solve a given
problem with given data but he is supposed to define
relevant questions and to find out the appropriate
program(s) to use ; finally the students use the programs

for analysing their own experimental data.
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5/ The results of the 5 year experiment and conclusians

About 80 students per year took part in the computer
sessions, although they were optional, and very few of them
gave up. Most of them said they enjoyed working on the

computer very much,

The work done by each student on the computer was not
recorded, but the students were asked to write down a report
for each session.

The analysis of the reports led to the conlusion that using
the dialogs makes the students perform better in the general
procedure of data analysis, as well as in the use of complex
algorithms. It also provides them with a deeper
comprehension of the meaning of statistics and procedures

(compared to the "no-computer situation"),

Finally solving problems in small groups gives students the
opportunity for discussing the questions, justifying their
choices and interpreting results.

Working with the computer generally decreases anxiety and
increases performance ; learning originates in both types of
dialog : those with the computer and with other students.



=0 Ul

VISUALIZING HIGHER LEVEL MATHEMATICAL CONCEPTS USING COMPUTER GRAPHICS
David Tall
Mathematics Education Research Centre, Warwick University, U.K.
Geoff Sheath
Polytechnic of the South Bank, London, U.K.

ABSTRACT
The computer is going to revolutionize mathematical education, not least
with its ability to calculate quickly and display moving graphics.
These facilities have been utilized in interactive programs to demonstrate

the ideas in differentiation and integration, evoking new dynamic concept images.

THEORETICAL BACKGROUND
The work described in this paper is the result of a happy accident of history.
Over a number of years mathematics educators have studied the concept imagery
generated by students when learning the calculus and now microcomputers have
become available which can draw moving pictures to provide powerful cognitive
support for this imagery. Though by no means a total solution, it is hoped
that interactive work on the conputer can give fruitful insight into the

calculus that is potentially more meaningful.

The research of Orton [3] confirmed that a group of students taught by
current methods in the U.K. had great difficulty with a number of ideas in
the calculus requiring relational undergtanding. These included the idea of
rate of change between two points on a graph with all the possible signs
involved, the notion of the derivative as a limit, the idea of the area as

the limit of a sum and the meaning of positive and negative areas.

Other authors have noted interference in mathematical meaning through the
use of words that have different colloquial connotations. For instance, the
idea of a "limit" being unreachable (Cornu [1]) or the term "gets close to"
carrying the implication "not coincident with" (Schwarzenberger & Tall [4]).
Ervynck [2] has also documented problems with limits and suggests the value
of pictures to visualize the processes involved. Standard pictures found in
text-books have two major problems: they are static, and so fail to fully
convey the dynamic nature of many of the concepts, and they also tend to be
limited in variety, leading to a restricted concept image being developed
from too few exemplars. For instance, the classical differential triangle
is usually drawn as in figure 1, with the increments &x, 8y both positive

and the graph sitting neatly in the first quadrant. As Orton has observed,
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figure |

§x

a significant proportion of his students interpreted the symbolism

Sy/éx + dy/dx
to mean "8y/0x gets smaller until it becomes dy/dx". In an example such as
figure 1, the gradient Oy/0x does get smaller until, to all intents and
purposes, it is indistinguishable from dy/dx. By simplifying the examples
presented to students in this way, hoping to help them in the initial stages,
the net result may be a restricted concept image in the student's mind which

later conflicts with the formal theory (Tall & Vinner [6]).

THE COMPUTER PROGRAMS

To combat the conceptual limitations of the kind just described, a suite of
three computer programs were written by the first-named author to help
generate more appropriate concept images: GRADIENT, AREA and BLANCMANGE.
GRADIENT draws moving pictures of the gradient of a graph, leading to ideas
of differentiation, BLANCMANGE draws an everywhere continuous, nowhere
differentiable function [5] to prevent too limited a set of exemplars being
encountered, and AREA computes and displays the area under a graph in

various ways, leading to ideas in integration.

GRADIENT and AREA both allow the input of a function in normal analytic

1:/2

notation (e.g. f(x)=sin2x or f(x)=(x2—l) ) and draw the graph over a chosen
range, indicated places where the function becomes undefined or has an
asymptote. GRADIENT offers two main routines, the first simulating the limiting
process at a point in which the chord is drawn between two chosen points
(a,f(a)), (b,£(b)) and then b moves in steps to a as the gradient is displayed
numerically on the screen. On one computer (the 380Z) arithmetic accuracy is
such that the gradient can only be obtained to about three figures, seriously
prejudicing the concept image of the limiting process, but on another (the BBC)

five digit accuracy allows a much more successful simulation. Both computers



= 359 F =

are markedly better in the second routine, displaying the gradient as a
function g(x)=(f(x+c)-£f(x))/c, for fixed (non-zero) ¢ and variable x. To
simulate this dynamically the program draws a sequence of chords from x to

X+c as X increases by steps, simultaneously plotting the gradient of the chord
as a point (x,g(x)). The static picture in figure 2 (a computer printout)

fails to convey the impact of this idea, but the moving picture on the screen,
with the function and the step c¢ specified by the user, leaves an unforgettable
impression so that the graph of g(x) is visibly seen to be the gradient of

the graph f(x),
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As one student put it, "I never understood what it meant to say that the

derivative of sinx was cosx until I saw it grow on the computer".

The program AREA also has two major routines, one to display the approximate
area under the graph as computed by various methods, the other to draw the
"area-so—far function" from a to x as a function of x. Positive and negative
areas are displayed in different colours and the reasons for the signs become
more obvious when it is realized that the area is calculated as the product
of two signed lengths drawn on the screen. For instance, calculating the area
from right to left has negative step times the signed ordinate, giving a

negative area above the axis and positive area below.

The programs are designed both for demonstration purposes and for student
investigations, allowing students the freedom to explore and enrich their
concept images in a more personal way. It is interesting to see the students

regarding the computer as an authority which does not present the same threat
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to them as the teacher. Indeed, they seem far more willing to discuss
conceptual difficulties thrown up by the computer than they would difficulties

in understanding a teacher's explanation.

RESEARCH
The second-named author has initiated two research studies using the programs.
A cross—-sectional study is being conducted on a group of about 30 A-level
(=senior high school) students. The group is being divided so that some use
the GRADIENT program, some the AREA program and some both, A questionnaire
is being administered to all the students to assess their understanding on
about 30 different concepts, including a number pinpointed by the Orton
study. The data is being analysed in an attempt to identify those concepts
that appear affected by the activities., It is hoped to present the results

available at the PME conference.

A longitudinal study is also being conducted on a group of twelve adults
attending a one year, two-evenings-a-week class designed to take them to
degree standard in mathematics. The continuous assessment and teaching style
of the small group discussion make this expecially suitable for a study that
relies on interpreting written work and contributions to the class. They
have recently begun work on the calculus and used the programs in groups of
about six students each. Though the full analysis must await the end of the

course, preliminary impressions show some interesting reactioms.

In the first session the students used the computer to study the gradient of
the graph of sinx at a number of individual points. Initially they were
invited to choose points a,b quite far apart and to see that as the step
between the points decreased the gradients of the chords formed no obvious
pattern., They readily appreciated that the step had to be relatively small
before the sequence of values for the gradient converged. There was interest
and scepticism when for very small steps the gradient began to wander again
after having appeared to converge. (This was the 380Z computer with limited
accuracy.) They investigated positive and negative steps and one group became
interested in the number of stages it took before the gradient stabilized,

concluding that it depended on the curvature of the graph at the point.

In the next session the students were introduced to the gradient function,
drawing sinx, cosx, then powers of x, and guessing the formula for the
derived function which was drawn and compared with the gradient graph. They

were very familiar with the graphs of standard functions and correctly
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conjectured the derivatives in every case. Exponential functiuvns provided
the first instance of student generated work. The graph of 2* was drawn on
the screen and the gradient function plotted. The two curves were clearly
related and it was discovered by trial and error that the derived function
was about yaZX, a quite reasonable approximation. The graph of 3% was
similarly examined and then e®. It became apparent that e was the number
which, when raised to the power x and differentiated, had a derivative which
equalled the original function. Further student investigations initiated by
the group led to various other conjectures, the pidce de résistance being

the conjecture that the derivative of arctan(x) was l!(!+x2) !

The first session devoted to integration was noticeable for the large amount
of discussion around the idea of negative area. With many other groups this
has created no problems, but this time, principally among students who were
primary teachers, there was some resistance to accepting the idea of
negative area at all, The program was invaluable in that it could focus the
discussion on a picture where the students could see why the area of a strip
came out negative in a variety of cases, and that integrating from a higher
limit to a lower one gave the same answer.as the other way round, but with

a change in sign. One group using the program decided to find the '"paintable
area" between the curve and the axis by dividing the calculations into
segments above and below the axis and taking the absolute value before
adding. It was then realized that the whole calculation could be done in
one go by taking the original function, squaring, then square-rooting before
calculating the area, The second group came to similar conclusions but

used the abs function instead.

The drawing of the "area-so-far function" from various arbitrary points has
naturally given a meaning to the constant of integration and highlighted
once more the importance of the change in sign when integrating from high

to low rather than vice versa.

It is too early to say what effect the conputer has had on the students'
responses to assessment questions, however, it is already noticeable that
graph-oriented questions submitted so far have been very well done. More

details should emerge when the study is considered as a whole.

Most student reaction has been positive. One student remarked "It was
helpful, fantastic, just being able to draw the graphs ... it would have

been such a hassle any other way." Another said after the very first
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session, "It's interesting that it's only looking at the graph that it's

made any sense. You know I said I didn't understand what the derived

function was all about - I could do all the odd things before but until now

I didn't have a clue what it meant."
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STRATEGY GAMES, WINNING STRATEGIES AND NON-VERBAL COMMUNICATION
DEVICES (at the age of 8)

F. LOWENTHAL University of Mons

Nous avons prlsenitt antérieuhrement Les résultazts ob-
tenus, & L'aide de Dispositifs Non-Venrbaux de Com-
muni{cation, par des enpants agés de & ans (PME 5},
puis ceux obtenus par Les memes enfants un an plus
tand (PME 6). Nous décnivons Lcd comment cerntadins de
ces enfants ont abordé A L'age de & ans des jfeux de
Athattgdie et coment if£8 ont diécouvert centaines
sdtnatégies gagnantesd.

BASIS OF THE TECHNIQUE

We call NVCD any non-verbal device which can be used in such a way that it
is non ambiguous, simple, flexible ; it should be used in the frame of

games and it must have built-in technical constraints which suggest a logi-
cal structure. The use of NVCDs seems to favour the development of language

and thought in children.

This year, we used NVCDs to study 8-year olds’reactions to strategy games.

MATERIAL AND TECHNIQUE

We worked with 16 children in third grade (B8-year olds). 14 of these chil-
dren had used NVCDs since the age of 6 (LOWENTHAL, F. & MARCQ, J., 1981,
1982a, 1982b).

For the sake of clarity we chose to describe in this paper only the first
game and the first device we used. The game is and extension of the NIM-
game, the device consists of magnetic pawns put on linesdrawn on the

blackboard.

We introduced the rules of the game to the children in the following way :
"Two players, Rose and Marc, sSee some pawns on horizontal lines drawn on
the blackboard. They play alternately but Rose is always the first to
play. Each player takes as many pawns as he wants, providad that they are
all on éhe same horizontal line ; he must take at least one pawn. The

player who takes the last pawn loses".

We let the children play by pairs on the blackboard with actual pawns, the

rest of the class could make suggestions or discuss the value of the moves.
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In orxrder to help them to discover the regularities and strategies we asked

for a technique "to help the teacher keep track of what was happening",

There were 10 lessons of 90 minutes each.

RESULTS
The children learned very quickly how to play this game, They created a
notation system during the first session, using n-tuples as shown in fi-

gure 1. At this stage an n-tuple represented for the children the number of

N O T
e L +
figure 1la : situation figure 1b : situation
coded by (2, 3) coded by (3, 1)

lines at the start of the game, the number of pawns on each line at the
moment the n-tuple was written down, and the respective position of these-
lines : (2, 3) meant "2 pawns on the first line and three on the second')
this was considered as totally different from (3, 2). A "O" was used to
indicate that a line was empty. During the 7th session, after long dis-
cussions, the children agreed to skip the zeros and use only the relevant
information (empty lines have no relevance on all further possible woves) ;
they also said that, although (3, 5) is not (5, 3), both define the same

game-situation.

Since the 2nd session the pupils used arrows to connect the n-tuples in

order to describe the succession of moves during a given game.

During the 3rd session, one pupils described what the situation coded by
(1, O) meant : "The player who has to play loses", he also gave the
correct winning strategy for (n , O) games, with np 1. 4 other pupils
understood this. They started to study winning situations and were able to

make short term predictions.

The importance of the situation coded by (2, 2) was discovered during the
4th session. This situation is important because 1°) the second player has
a winning strategy , and 2°) all the strategies for 2-lines games can be

reduced to this one. This was explicitly used and verbally formulated

during the 5th session, when one pupil gave the general strategy for games
of the form (2 , n) with n% 2 and another pupil, for games of the form

(1 , n) with njyl. 3-lines games were introduced as homework.
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During the 6th session, 4 pupils sclved correctly the game (1, 2, 3) and
the game (2, 2, 2) by trying to come back to (2, 2) or to (1, O).They dis-
covered and explained to the other pupils the importance of the situation
coded by (1, 1, 1) : "the player who must play is sure to lose".

Finally, during the 9th session, 4 pupils showed that they were able to
analyze all possible moves for 2- and 3-lines games, and to use their ana-
lysis to state that for (n, n) games, the sacond player has a winning stra-
tefy, while for (n, m) games, with m» n) 1, the first player has a winning
strategy (although they did not use exactly the same words as we do 1).
During the 10th session, these pupils explained verbally what is the stra-
tegy for the 2-lines games, using the following words : "If they are the
same, you do the same (as the §{nst player), but if they are different you
make it the same". All pupils accepted these "cooking recipe" and were able
to play adequately, but we do not know whether all of them understood why
they had to play this way.

DISCUSS ION
Horizontal lines were drawn on the blackboard and pawns put on them to
represent the different situations : this is a weak form of NVCD (there
are no mechanical internal constraints), but our pupils were used to con-
cretely ménipulate NVCDs and use these manipulations to introduce repre-
sentations. They reacted positively to this new device which required

manipulations of representations. We do not know what untrained children

would have done. According to their teacher, these children, who worked
previously during two years with NVCDs, seem to do better, as far as dis-
cussion and reasoning are concerned, than children who had studied since
first grade with the same teachers as our pupils but had not been exposed

to NVCDs.

The device described here, and the one we used during the second part of
the schoolyear , enabled us to let children discover that in certain games
there is a winning strategy for one of the players, but not always for the
same player : this depends upon the starting situation chosen by these
players . But, anyway, B pupils (out of 16) are convinced that it is al-
ways possible to compute in advance who has a winning strategy , once the
situation is given. These 8 pupils were able to discover winning strate-
gies in particular cases, but only 4 of them were able to synthetize all

the informations discovered by different pupils about different situations,
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to generalize all this and formulate the correct strategy for the general
case. These 4 pupils were even able to formulate their strategy in a verbal
and practical way which made it understandable for the 4 other "bright"
pupils and usable by all the 16 pupils.

The use of this technique enabled .some pupils (8) to discover a need for
some kind of reasoning by induction : "We must go back to simpler and
already fully explored situations".

The pupils used notations which had been suggested by one of them and not
by us. This use of n-tuples corresponds to a notation system we had intro-
duced when the children were 6 years old (in the framework of geoboards) :
we did not use this notation system while they were in second grade

(7 years o6l1d) although some tried to use it then.

Obviously, the presence of semi-concrete material (real pawns which had to
be physically removed in order to play) helped the children to visualise
the situation, and later to express verbally whatever they had to say about
it. This seems to confirm some of our previous observations (LOWENTHAL, F.
& SEVERS, R., 1979, 1980).

CONCLUSION
The results summarized in this paper tend to support the hypothesis we
formulated about NVCDs : "The use of a Non-Verbal Communication Device,
firstly in a purely concrete fashion, later in a more symbolic way, can
favour the develomment of language and thought in children ; the introduc-
tion of an NVCD helps a child to structure his perceptive field (by hel-
Ping him to process data)". In doing so, an NVCD initiates a complex
cognitive process which could not have starded earlier because of problems
caused by the processing of complex data : the logical structure suggested
by an NVCD helps a child to sort, and thus to simplify complex data. On the
other hand, the complexity of the task involved does not seem to cause si-
milar problems : although our pupils do not always say what should be done

in the general case, they move their pawns adequately.
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CHILDREN'S LEARNING STRATEGIES IN MATHEMATICS:
A PRODUCTION RULE ANALYSIS

Ann Floyd
Open University
United Kingdom

Glven a degree of autonomy when learning a mathematical topic, what
strategies do children employ? Can they organise themselves to learn
effectively? What developmental trends are there? These were the questions

that prompted the research outlined in this paper.

The method chosen to explore these questions was developed to investigate
adult learning strategiles by Gordon Pask (Pask, 1976). The would-be learner
is provided with a set of teaching materials, each element of which deals
with a particular aspect of the topic involved. These materials could take
the form of work cards, computer-administered tutorials, or any other
appropriate style of presentation. Typlcally the set of materials embodies
a great deal of redundancy, so that no learner needs to study each element,
though he is free to do so if He wishes. The relationships between the
elements are made clear to the learner, for he is provided with an
'entailment structure', a kind of concept map, implicit in which is a
multiplicity of routes towards the overall goal of mastery of the topic
under consideration. The route an individual selects 1s an overt expression

of his learning strategy with regard to that topic.
THE STORY PROELEM MATERIALS

The children involved in this study ranged from nine to twelve years old, so
an appropriate topic for them was story problems, such as:
Susan went shopping after Christmas to spend some of the money she had
been given. She had £5.23 in her purse when she started, but then bought
a book costing £2.99 and some felt-tips costing £1.59. How much money
did she have left?
The overall goal for the children in this study was therefore to learn how
to solve such problems. Successful solution of the example above depends
upon two skills. One is the ability to decide what calculation is the
appropriate one to perform, and the other is the ability to execute it. An
entailment structure representing this initial analysis is shown in Figure 1

If this were as far as it was necessary to go, the only further preparation

pre:r pn
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[ MONEY PROBLEMS]

WHAT MONEY SUM ONEY|
IDO I NEED TO DO? SUMS

Fig 1: A simple entailment structure
required would have been to create three sets of learning materials, one for
each node in the structure. Of course it was necessary to go a great deal
further, but there is no space here to describe the gradual process of
elaboration that occurred. Suffice it to say that the final result was an
entallment structure with 42 nodes, whieh is shown in Figure 2. The nodes
are numbered for ease of reference, the three nodes shown in figure 1
featuring as numbers 38, 33 and 28. The other difference between figure 1
and figure 2 is that the relationships between the nodes in figure 1 are
indicated by arrows, whereas those in figure 2 are expressed in terms of
inputs and outputs for each node, purely in the interests of clarity. The
inputs represent the pre-requisite knowledge required for a given node, and
the outputs are a shorthand for the knowledge deemed to have been acquired
when the teaching materials for that node have been mastered. For example,
node 38, MONEY PROBLEMS, has as its inputs. M is a shorthand for
MONEY and its MEASUREMENT. D is a shorthand for DECIMAL ARITHMETIC. MS is
a shorthand for WHAT MONEY SUM DO I NEED TO DO? If a learner knows about
pounds and pence (M), can do calculations with decimals (D), and can
identify what calculation is the appropriate one to perform in money
problems (MS), there is a reasonable expectation that he will be able to put
all those together and successfully master node 38. If he actually does
study the teaching material for node 38, he will have demonstrated the
ability to solve at least some story problems. The output(:)frOm that node
is a shorthand for this. Outputs from one node are inputs for others and in
this way the pre-requisite relationships between the nodes are made
explicit. There are analogical relationships too. For example, D is the
output from five distinct nodes - numbers 28 -32 inclusive. Thus in this
structure there are five analogous ways to acquire a facility with decimal
arithmetic, differing only in that one Involves pounds and pence, another

metres and centimetres, and so on.

The teaching material for each node was a computer-administered tutorial
written in the Open University's CICERQO author language and implemented on
its DEC-20. A terminal was installed in the primary school involved, for
the nine month period of the study. Each of the 43 children who took part
had his own copy of the entailment structure, which was called a chart.

Before a child began his work the chart was explained to him and he was
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provided with a brief description of each tutorial, which he could counsult
to help him make his decisions, if he wished. Each child recorded his
progress and his current plans on his chart. Any reasons he gave for his
decisions were noted. The next section consists of summaries of the

protocols of three of the children, to illustrate the kind of data obtained.
THREE PROTOCOLS

Paul: began with tutorial 8, VOLUME AND ITS MEASUREMENT, because it had no
prerequisites (inputs), but failed. Then chose another tutorial with no
inputs, LENGTQ AND ITS MEASUREMENT, and succeeded. Scanned the chart and
decided he knew about money and adding, so tutorial 12, ADDING MONEY, should
be manageable. He therefore attempted it, and succeeded. Commented that he
now thought he should be able to do the other adding ones, and attempted
tutorial 16, ADDING LENGTH, successfully. Scanned the chart again and
decided to do tutorial 9, WHAT WHOLE NUMBER SUM DO I NEED TO DO?, again
because it had no inputs. Commented that he now thought he should be able
to do 'the other ones like that' and picked on tutorial 33, WHAT MONEY SUM
DO I NEED TO DO? Failed at this one, but repeated it immediately, this time
with success. Continued with another analogous tutorial, number 35, WHAT
WEIGHT SUM DO I NEED TO DO? and succeeded. Scanned the chart again and
picked on tutorial 4, DIVIDING WHOLE NUMBERS, because it had no inputs. He
failed on his first attempt, but repeated it immediately, and succeeded.
Scanned the chart again, settling on another adding tutorial, number 20,
ADDING WEIGHT, and succeeded. There was no more time available so he had to

stop there.

Christopher: Began by scanning the chart, looking for something he thought
he ought be able to do. Decided that all the single operation arithmetic
tutorials should be manageable. Picked tutorial 24, ADDING VOLUME at random
from these and succeeded. Next he chose tutorial 25, SUBTRACTING VOLUME,
for similar reasons, and Succeeded.'bbserved he'd now acquired a ot and a DT
Said 'I need to do a multiply and a divide'. Attempted tutorial 19,
MULTIPLYING LENGTH, and then tutorial 20, DIVIDING LENGTH, succeeding with
both. Noticed that he now had all the inputs for tutorial 29, and that it
would yield him an output (D) he hadn't yet obtained. Attempted tutorial 29,
LENGTH SUMS, and succeeded. Scanned the chart again, looking for something
manageable which would also yield him something new. Eventually chose 32,
MONEY LENGTH WEIGHT AND VOLUME SUMS, because of its similarity to the one
he'd just done and the chance it provided to do something with money and



- 373 -

weight. This was successful. Scanned the chart again, still looking ror
something manageable and which would yield him something new, and noticed
that tutorial 37,WHAT MONEY, LENGTH, WEIGHT AND VOLUME SUM DO I NEED TO DO?
would provide 4 new outﬁuts at once. Attempted it successfully. In a
similar way he decided he should then do one of the problems tutorials.
Chose tutorial 38, MONEY PROBLEMS and succeeded. Now the only tutorial that
would yield something new was the final one, tutorial 42, MONEY, LENGTH,
WEIGHT AND VOLUME PROBLEMS. Successful with this, so 'completing' the chart.

Joanne: 'I'll try one of the bottom ones first. They should be easier than
the ones higher up'. Attempted tutorial 8, VOLUME AND ITS MEASUREMENT, and
succeeded. 'That was easy, I don't need to do any more of those (5,6,7) L
know I can do all those (1,2,3,4). I think I should be able to do all these
ones (12-27) but I1'll try one to see'. Attempted tutorial 24, ADDING VOLUME
and succeeded. Scanned the chart and focussed on the WHAT SUM DO I NEED TO
D0? tutorials. 'I wonder what those are like?'’ Atiempted tutorial 33, WHAT
MONEY SUM DO I NEED TO DO? and succeeded. 'That was fun. I'll do another
like that'. Scanned the chart to identify the others and 'I can get lots of
things at once if I do that one!' (tutorial 37, WHAT MONEY, LENGTH, WEIGHT
AND VOLUME SUM DO I NEED TO DO?) Completed it successfully. Scanned chart
to see what she could do now. Dismissed 34-36 because none would give her
any new output. Noticed how near she was to having all the prerequisites
for the top tutorial. 'I only need a D and a P'. looked to see where D
could be obtained. 'I could do any of those (28-32) I'll do 28'. Attempted
tutorial 28, MONEY SUMS, and succeeds. 'Now I only need a P'. looked to see
where P could be obtained and identified the five possibilities (11, 38-41).
Attempted tutorial 38, MONEY PROBLEMS and failed. Didn't want to repeat it,
preferring to try another of the possibilities. Attempts tutorial 39, LENGTH
PROBLEMS, and succeeded. 'Now I can do the top one, I've got all the
things'. Attempted tutorial 42, MONEY, LENGTH, WEIGHT AND VOLUME PROBLEMS

and succeeded, soc 'completing' the chart.
PROTOCOL ANALYSIS

These protocols are being analysed within an information processing model
known as a 'production system'. A production-system model has three
fundamental components. The first component is a working memory, which
contains a limited number of pieces of information, in the order which they
were added to the memory. In this study elements regularly found in working
memory would be SUCCESS and FAILURE, referring to the most recent tutorial
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attempted. The second, and principal;Omponent is a set of production rules,
which are all statements of the form

IF conditions A, B... obtain, THEN actions X,Y...are appropriate.
An example relevant to the protocols in the previous section would be

IF a new tutorial is needed, THEN search the chart for something achievable.
Very often, more than one rule is applicable at any one time, so there has
to be a mechanism for deciding which one to implement. This is not a trivial
problem, for implementing any rule may change the conditions obtaining,
with the result that a rule passed over at one point may never be applicable
again. Thus the third important component of a production system is a set
of criteria for assigning priorities to rules. These are usually known as
conflict resolution principles and the ones used in this study are those
suggested in McDermott and Forgy (1978). These are:

(a) refractoriness: no rule is ever fired (implemented) more than once

in response to the same set of conditioms. (This prevents
the system being caught in a closed loop).

(b) recency in working memory: the more recent the addition to working

memory of its conditions, the higher the priority of a rule.

(c) special case: if the conditions for one rule are a subset of the

conditions for another rule, the first rule is removed from the set
of currently applicable rules.
(d) if there is still a conflict, the newest rule is used: if there is
' more than one such the rule to apply (fire) is chosen at random.
Production systems of this kind have been used to model human problem
solving (Newell and Simon, 1972) and the Piagetian tasks of seriation
(Young, 1976), and number conservation (Klahr and Wallace, 1976). They have
also been used to model subtraction algorithms (0'Shea and Young, 1978) and
are currently being used to model physics problem solving and fraction
algorithms at the Open University. They are also the stuff of which 'expert
systemg' are made, and are a key tool in artificial intelligence work.
Gradual improvements In performance on tasks are readily modelled by adding
further rules to an existing set, by modifying those already present, or

sometimes deleting them completely.

I have used this preliminary paper to provide the background for the
application of production-rule analysis to the protocols produced by the
children working with the story problem chart. In my presentation I shall
give actual examples.of sets of production rules which produce behaviours

like those shown in the protocols.
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A NEW APPROACH TO MATHEMATICS TESTING
Susan Pirie and Jenny Tuson
University of Oxford - England

INTRODUCTORY KWOTE
This paper provides the setting for a new research project on alternative
forms of mathematics assessment in Secondary Schcols. In the session at
PME I will present and discuss our continuing attempts to devise valid
and reliable mathematics tests for a national system of examinations,

in the areas of problem solving, investigations and group work.

BACKGROUN
In general, British secondary schools are organised,in their later years
at least, to lead pupils towards national public examinations at age 16+,
following five years of secondary schéoling. There are well-documented
reasons why and how this position has been reached, but for a number of
years there has been a growing feelirg that an alternative approach to
assessment in our schools is needed. This concern arises from the
premiss that the present system is inadequate to cope with both the
academic needs of the majority of pupils and thelr personal development.
For most pupils the record of their entire secondary schooling is based
on their degree of failure in one forrwal examination which is seen as

largely irrelevant to their futures.

It is in this context that an educational certificate, designed to be
markedly more free from the perceived constraints referred to, has been
proposed. The ideas had been arcund for some time but were highlighted
by the continuing indecision over the proposed new system of examining at
16+. The provision of alternative written examinations at 16+ may be
seen only to preserve the existing problems of educating pupils in
schools and to do little to provide incentives for pupils, particularly

the less able.

Yow can pupils be better motivated end helped to gain more from school in

a soctety clouded by unemploument?
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0.C.E.A.
The Oxford Certificate of Educational Achievement (0.C.E.A.) has been
crcposed as a means of tackling some of these problems, and the aim is to
provide information which matches the needs of schools and the employment
market in its fullest sense. (Higher Education, Further Education,

Industry, etc.)

The Certificate will be divided into three parts: a personal profile,

records of the graded levels of assessment attained, and details of existing
gqualifications. The intention is that there be no formal link between the
Certificate and any particular year of schooling. It is with the second of o
these items - the assessments levels - that I am concerned in this paper.

At present four broad areas of the curriculum have been designated for

testing: English, Mathematics, Science and Yodern Languages.

Tollowing a review of the implications for the mathematics curriculum, a
system of "Graded Objectives Assessment Levels'", or GOALS will be devised,
which will allow pupils' performances in areas of the secéndary school
curriculum to be assessed in a number of finite steps. furdamental to the
thirking on OCEA is the notion, endorsed by the Cockcroft Report(a). that
children should be judged by their successes, not their failures. Each
GOAL test will either be passed or not. The individual tests will rot be
graded. Tests at each of the various GOALS will be made available two or
three times a year, and pupils will be able to attempt each GCAL as and
when judged to be ready to do so by the teacher in the school. The
assessment levels will be designed to cater for the whole ability range and

the intention is that pupils would not be entered for a particular GOAL

test without a good expectation of success.

3y breaking down the curriculum into GOALS, pupils' motivation may be
maintained by the provision of discrete steps of success to te achieved and
built upon btefore the end of the fifth year when most pupils now take
public examinations. The Certificate is thus intended to provide a useful

stimulus to pupils of all abilities.

THOSE CONCER!ED
[he work is teing undertaken by a partnership of four local Zducation
Autnorities, "Oxford University lepartment of Educational Studies and the

‘xford Public Examination Zoard. To te of value in the outside world the
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Certificate must obviously have supporf arnd validation from a public
examination body, but it also has to reflect what is needed in schools, and
for this reascn teachers form a large proportion of those concerned in its
development. Once the GOAL tests and personal report element become
available, in-service training for those concerned with the Certificate,
both from the production side (the mathematics teachers) and from the

interpretation side | employers) will be needed.

THE IMPLICATIONS FOR MATHEMATICS TEACHING
Examinations undeniably have a profound, some might say overwhelming,
influence on the curriculum. Those of us involved with OCEA therefore
feel that this is the moment to re-think the approach to the teaching of
mathematics. Two fields of influence are open to us: the curriculum and

the methods of assessment.

The approach taken to the construction of the various levels is that of
"bottom up" rather than "top down'. That is to say that a basic core of
essential mathematical attainment will initially be defined and succeeding
levels built up appropriately on this foundation. The basic core will
take account of Cockcroft's foundation list(b) and the expectation is that
it will be mastered by 90% of all pupils by the time they leave school.
The system at present in existence is more likely to engender a school
syllabus based on O-level requirements and watered down for younger or

less able pupils.

It is, however, probably in the area of assessment that most can be done to
encourage the good practices suggested by the Cockcroft Report(a). If we
want mathematical activities such as group work, investigations, problem
solving and discussion to go on in the classroom then its value must be
seen to be reflected in the examination system. The traditional paper and
pencil test will no longer be appropriate as the sole means of testing

mathematical understanding and achievement.

New attitudes to pupils working together at an assessable project must be
fostered.  Reliable methods of testing problem soluing skills rust be
designed. We must ecreate probes to expose the real thinking of a child

working on an investigation.
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It is ir the abtove mentioned areas that the mathematics steering group is
now working, and I shall appreciate any contributions which members can

offer to this largely unexplored field of research.

The skeleton of OCEA has been constructed, but much research is needed

l:.efore the bones can be covered in flesh.
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A TASK-ORIENTED METHOD OF PROTOCOL ANALYSIS*
Joel Hillel
Concordia University, Montreal, Canada

1. INTRODUCTION
The technigue of protocol analysis is, in fact, a combination
of analysis and synthesis. As the protocol usually exhibits
a partial and idiosyncratic record of the solver’®s solution
process, part of the researcher’s analytic task is to remove the
idiosyncratic flavour by describing the process in alternative
language. Furthermore, the researcher tries to fill the omissions
in the protocol by making inferences in the contexts in which
gaps occur. However, the main task in protocol analysis is to
make some pertinent generalisations about problem solving
behaviour-of subjects across a set of experimental problems,
wvhich means that the protocol must be analysed according to some
"synthetic" categories.

There are several variables which may influence the choice of such
categories and which, in turn, limit the applicability of a
particular model of problem solving in another experimental
setting. Among these variables are included:

i) Choice of tasks - either requiring substantial domain-specific
knowledge ("semantically rich domains") or little (most of the so-
called "non-standard" problems)

'ii) Choice of subjects - varying both in the extent and kind of
problem solving training as well as the degree of domain-knowledge
expertise that they posess.

iii] Choice of methodology - even when the "think aloud" technique
is the main source of data collection, there are many variations
within the technique. These include; intial instruction to the

sub jects, degree of interviewer interventions, individual or
group solution effort,

*The research was jointly undertaken by the author and Professor
D. Wheeler. It was funded by the Quebec Government, F.C.A.C
Grant EQ. 1261°
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We elaborate on the above points by briefly discussing two models
of problem solving, one of Information Processing and one
snggested by Schoenfeld. We then comment on the applicability

of these models to our own experimental situation.

Information Processing (I.P.) psychologists generally model the
>ehaviour of subjects, both '"naive" and "experts", solving "well
structured" problems such as the Tower of Hanol (i.e. problems in
which the intial state, goal state and the admissible operations
are explicit). Since the solver’s main task 1is to construct a goal
oriented sequence of admissible operations, I.P. models emphasize
the solver's solution process ("solution path") within a given
"solution space'., Thus the models favour strategic categories:
such as "selection of subgoals" and '"means-end analysis" to

account for the solver's behaviour (see Simon, 1978).

Schoenfeld (1982) considers the solution of geometrical problems
by college students. He argues that a protocol analysis must be
based on three general categories which he calls "tactical"
knowledge (e.g. facts, procedures and domain-specific knowledge),
"control" knowledge (e.g. "managerial" behaviour and self-
monitoring) and "belief systems" of the solver (about mathematics,
about the experimental-setting and about himself). Schoenfeld
suggests that each of the above categories may dominate in a
particular experimental setting. For example, a protocol analysis
based on the solver's beliefs about mathematics may, in some

cases, provide the best explanation of his solution behaviour.

In our research, the subjects ("naive" solvers, age 13-15) were
given "non-standard" tasks (both in the sense of being unfamiliar
and of requiring little domain-specific Knowledge) which were not
"well structured" in the I.P. sense. Neither of the above models
fitted very well the behavioural items of our solvers. We saw
little evidence of means-end analysis since the experimental tasks
were not always amenable to the selection of subgoals nor was the

goal state sufficiently known in advance. (In spite of the more
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clastic interpretation of means-end analysis offered by Simon
(1978), we feel that his suggestion (1979) that it is an invariant
of human cognition must be substantially qualified). On the other
hand, Schoenfeld’s categories, though clearly more comprehensive
than those of the I.P. models, seem more appropriate to domains
that are "semantically rich". There was little in our subjects’
behaviour that we could characterize as "managerial decisions"
nor did it seem that their "tactical" behaviour was "strategically"
driven, as suggested by Schoenfeld’s model.

Both of- the above models fail to account for the most striking
aspect of the protocols that we analyzed, namely, the existence

of a temporal and psychological "lag" between the intial perception

of a problem and the point at which the subjects knew what the

problem required. In Schoenfeld's case, the sub jects were familiar

with the tasks while I.P. models "assume that an intial under-
standing process has previously run to completion " (Simon, 1979).
(We should add that Simon (1978) gives a much more flexible model
of problem solving in which the "process of understanding" has a
prominent part.)

2, DEMANDS OF A TASK
The fact that achieving the necessary clarity about the problem
often takes the solver a disproportionate amount of the total
solution time is not suprising. The solver must extract from the
problem statement all the overt and covert information it contains
about the given, the means, and the goal; he must be guite clear
about the distinctions between these three categories of information
and yet keep a view of the problem "as a whole" in which the three
components interact. This is a considerable analytic-synthetic task

for a solver in the presence of an entirely unfamiliar problem,

We try to categorize the multiplicity of demands that a problem
makes on the solver in the following way:

(a) Mathematical demands These include the mathematical knowledge

necessary to understand the problem statement, as well as the

"tactical” knowledge required for the soluticn,
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(b) Structural demands These depend on several components, namely:

-relations embedded in the problem statement (both explicit
and implicit)

—-the nature of goal-definition (either open-ended or explicit,
containing the goal state or only a criterion to determined
that it has been attained)

-the nature of operations (prescribed or needed to be clarified
and constructed by the solver)

-sequencing of operations (goal may be reached in a single
operation or by a sequence of several operations)

(c) Psychological demands The obstacles to an immediate solution

may be caused by a tendency of the problem to create a "set"
or fixation, to induce a particular "problem representation",
or by making some unusual logical or perceptual demand.

(d) General demands These involve factual (non mathematical)

knowledge, as well as affectivity of the solver.

We follow by applying the task-analysis to one of the problems:

Square Cutting Problem: Can you cut a given square into n square
pieces? (intially n=4,7 . In some cases also n=10, 11 )
Mathematical demands Knowledge of meaning of square; how to

divide into squares using a uniform grid.
w

Structural demands

Embedded relations: Relations between cuts and the resulting
number of squares; Smaller squares need not be congruent;
Operations can be applied to smaller squares.

Nature of goal definition: Goal is explicit; cut a square into
a specified number of pieces. The goal state is not given
but there is a criterion by which a goal can be recognized
when it is reached.

Nature of operatior.s: Vague notion of a "cut” must be clarified
as well as the procedure for counting the total number
of squares. The solver must then construct different

operations such as: grid, bordering, clustering, etc.
Sequencing of operations: n=7, 10, 1l requires a sequence of

operations (e.g. grid followed by clustering).
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Psychological demands:The main obstacle to a solution is the '"set"

that the smaller squares must all be congruent (possibly

i because "square" has strong association with "equal”, i.e.
i equal sides, equal angles, egual diagonals). The solver must
¥ also distinguish conceptual from perceptual notions of a
|

|

|
|
|
|

square in deciding which operations are legitimate.

We note that while the psychological demands are obstacles '"created"
by the solver because of his perception of a part of the problem
situation, both the mathematical and the structural demands are
intrinsic to the task. Furthermore, since the mathematical demands
of our "non-standard" problems were light, we expect the "weight of
difficulty" of the problems to be found among the structural demands,
For example, in the above Square Cutting problem, the weight of

difficulty lies in the construction and the sequencing of operations.

While the weight of each problem resides in different components of

the structural demands, it is possible to account for each by

stressing one or more of the following stages, viz.

Stage 1l: Uncovering the embedded relations contained in the task (R).

Stage 2: Identifying and/or constructing appropriate operations (0).

Stage 3: Sequencing the operations and coordinating them with the
problem relations (S).

3. A BRIDGE BETWEEN TASK ANALYSIS AND PROTOCOL ANALYSIS
The threce-stage model which we have used to determine where the
weight of difficulty of a problem lies- ie. the main demands which a
solver must meet - can now be used as a framework for looking at what
What solvers actually do. The protocols are analyzed by looKing for
the different R (relations), O (operations) and S (sequencing) items,
and then arranging the items in separate R, 0, and S clusters (and
chronologically within each cluster).
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In carrying out an analysis using the ROS framework, it becomes
cvident that the solvers verbalize most clearly about the S-items
since they correspond to what is percieved to be the most important
part of their activity. Thus, S-items are easier to locate and

identify than the R- and O-items which, often, need to be inferred,

The separate R, 0, and S clusters bring out dramatically the overlaps

in time between these categories. There is ample evidence that most

solvers do not produce all the R-items, then the O-items and then the
S-items in strict logical order. Rather, the occurrence of unsucess-
ful S-items ("trials") is followed by the addition of some R- or
O-items (further specification of the problem space).

In summary, we would say that the ROS-analysis emphasizes the seclver's

construction of the problem space rather than the solver's solution

path. A study of the R- and O-items in each protocol appears to give

a reliable picture of the solver's developing perceptions of the
problem. The positions of these items in the protocol show the steps
in the construction and allow us to tell in what "problem space"

the subject is working at each moment. The analysis seems to give a
meaningful account of the problem solving behaviour of "naive" solvers

attempting '"non standard" tasks.
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MATHEMATICAL MODELS
A HELPFULL INSTRUMENT FOR EMPIRICAL INVESTIGATIONS ?

Gisela Heink, Cornelia Wichrowski, Freie Universitat Berlin

collaborating in a team with U.Lehnert, G.LeBner and W.Reitberger

Most of the investigations concerning effects of transfer of learning don't
show convincing results mainly because the problem to define exactly the
dimensions of difficulty of the test-items.Are those dimensions to be
defined by the mathematical structure of the items - or by psychology
operations needed for solving the items?

We tried to find a mathematical model to measure the dimensions of difficulty
of the test-items - in quality and quantity.
Non-metric-multidimensional-scaling (NMDS) may help us.We only have to
estimate similarities concerning the difficulty of the items.The result of
NMDS is a placing of items in a n-dimensional space - similar items near by
each other, dissimilar items far of each other.The n dimensions may be
interpreted by dimensions of difficulty.

But how to estimate the similarities?

And how to interprete the coordinates of the n-dimensional space?

In order to test the mathematical model "Non-metric-multidimensional-scaling"
(NMDS) as an instrument to define different dimensions of difficulty in
solving problems of school - mathematics we decided to choose geometrical
problems as "tangram" .A differntiated description is given in the abstract
of the presentation:Heink, Lehnert, Reitberger "Dimensions of difficulty in
solving geometrical problems" published in the "Proceedings of the Sixth
International Conference for the Psychology of Mathematical Education".

The task was to cover completely given geometrical figures by elements of

the MATEMA - material : special triangles, squares and rectangles, using at
each step elements as large as possible.Each step we called an item,
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e.qg. l

figure (item) i elements * solution

We want to descripe the further development of our empirical investigation
and discuss some problems.

In the last version we tested 60 pupils with 27 items.

The "Non-metric-multidimensional-scaling" based on the estimation of simi-
larities or dissimilarities.

One of our problems was to define such similarities without wasting infor-
mation .

Qur first definition: A pair of items is similar (code:0) if both of the
items are solved correctly or incorrectly otherwise it is not similar
(code: 1).0ur second definition considered the information we had received
by registering the mistakes : we didn't consider only correct and incorrect
solutions - we discriminated between the mistakes

a) using a scale with the scores :0, 1, 2, 3

b) using a scale with the scores :0, 1, 2, 3, 4, 5, 6

Thus a pair of items was only similar (code: 0) if they were conform con-
cerning the method of solving or making mistakes.

In order to find a matrix of dissimilarities we added the codes of the com-
pared items (21X 2; il pairs ) of all pupils.
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Another problem : We wanted to find out diménsions of difficulty concerning
the items.There was no problem to define a scale for the "global difficulty"
of the items.We only had to pay regard to the number of pupils who were
unable to solve the items.But can we expect to find the same dimensions of
difficulty concerning items very extreme in the "global difficulty" ? Isn't
there the possibility that with items of very high "global difficulty" we
have to pay attention to other dimensions than with items of very low "global
difficulty"?

We therefore decided only compare items for which the "global difficulty"
didn't differ too much.

Thus we compared items in special "windows".We first arranged the items with
respect to the "global difficulty”, then we compared the conformity of the
pairs constructed by the first 10 items (1 - 10), then the conformity of the
pairs constructed by the items 2 - 11 , etc.

We got final matrix of dissimilarities by considering the arithmetic medium.
We tried this method with "windows" of different width.

For all these different versions we tried EDV - programs of NMDS in order to
find a distribution of the items in a space - with dimensions we were able
to interprete.After having run programs with one to nine dimensions, we came
to assume a solution with two or three dimensions because of the stress.But
the interpretation of the dimensions was as difficult as in former versions
mentioned in the presentation last year.

The next step was to cluster the pupils (Lehnert).

We found three groups of pupils when companing the mistakes on a scale with
6 scores.We could assume that the probands of each group had tried similar
solutions for the items, that they had seen similar aspects in the problems.
The NMDS - program was run for each group separately.

Two dimensions seemed to be essential for the mistakes of all the probands,
the other dimensions could be interpreted in different ways for each group.

Then we tried another method (Reitberger).

We reflected once more on the EDV- program of NMDS.The first step for the
computer is to use the matrix of dissimilarities of the items in order to
make out distances between the items regarding them as points in a space.
When using the "method of gradients" by Kruskal there is the danger to find
"local minima" dependent on the start.

We therefore tried to help the computer in finding starting-constellation
that made sense.At first we devided the pupils in two groups, with low and
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high "global difficulty".

Within each group we tried to pay regard only to the different ways of
solving concerning scores 0, 1; we counted for each pair of items the
inconformity of the solutions, neglecting the "global difficulty".

bn P] P2 P3 P4 P5 P6 P? P8 P9 P]D
Items

I 1 0 1 0 0 1 0 0 0 ]

r

I ] 1 0 1 1 0 1 0 1 0

LA

: : : . oL AL - )

The inconformity of the solutions of the pair Ir / Iq 130 Sore = 0,8

n - 3 [} ' 4 =
Ir has a "global difficulty"” : T 0,4
Iq has a "global difficulty" : T - 0,6

The difference concerning "global difficulty" is : 0,2

The difference between the types of difficulty is the inconformity of the

solutions of the pair minus the difference between the "7lobal difficulties":
0,8 - 0,2 = 0,6

We only considered the difference between the types of difficulty to find a

measure for the matrix of dissimilarities.

We made up our minds to look for a solution in a space with two dimensions.

We constructed a reticulation of points.
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We considered the dissimilarities of two items with medium "global difficulty"
and tried by special computer program to represent them by two points of the
reticulation.In order to place the third item we tried the other points of

the reticulation.The program accepted the best fitting, three further fittings
were stored.The program then made a translation of the solution to the origin.
The fourth item was considered; distances to the three placed items were
calculated, the best fitting selected etc.Thus, the program built up a star-

ting - constellation beginning with items of medium "global difficulty" in
a reticulation.
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This starting - constellation was the input for the normal NMDS -program.

The solution was an arrangement of the items in a space with two dimensions.

We could interprete the dimensions as follows:

1.dimension : Degree of possibility to see a structure in the figure

2.dimension : Degree of possibility to identify the sides of the given
figure ( in the subjektive view of the pupil )

These interpretations made sense for most of the items, but for some items

they didn't.

For one of these items we compared the suggested coordinates in the first

computer-program ( the program that placed the items in a reticulation).We

selected other coordinates with good fittings stored by the program that

made more sense concerning the interpretation of the dimensions and ran the

program once more.

The result was a better one.We repeated the same procedure for the other

items and became more and more satisfied with the solution by the NMDS.

We are full of optimism that there will be a real chance to use the procedure
of NMDS - till now used as an exellent instrument in social-sciences and in
marketing - also for effective research in mathematics education.Additional
reflections, variations and further development will be necessary to make
this instrument applicable for our intention.

The presentation will describe in detail our empirical investigation and

our reflections and we hope that there will follow an interesting discussion.
For the next year we plan a new empirical investigation.We will try to find
dimensions of difficulty for problems concerning the mathematical topic
“proportion".

References : S.S.Schiffmann, M.L.Reynolds, F.W.Young
INTRODUCKTION TO MULTIDIMENSIONAL SCALING
Academic Press 1981

Ingwer Berg
ANWENDUNGSORIENTIERTE MULTIDIMENSIONALE SKALIERUNG
Springer Verlag 1981
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ON THE CORRECTNESS OF MATHEMATICAL CONTENT IN TEXTS

Joop van Dormolen, Institute for Teacher Training, University of Utrecht

The presentation shall be concerned with a model of characteristics of mathe-
natics that has been developed on order to make the analysis of texts pos-
sible., It is part of a research on the possibility of the analysis of learning
texts.
Teachers, authors, student teachers, teacher educators, who are profes-
sionally engaged in the teaching of mathematics, require a method to ana-
lyse learning texts in order to be able to evaluate them in a rational way .
By a learning text I mean a relatively small entity in which a certain sub-
ject is covered, the entity being a paragraph or a chapter from a textbook,
a learning module or any other text to be used in schools for secondary
education.
There are three stages in which the analysis can be (and should be) made:
- a priort, that is before the text is being used during a learning-
teaching process;
- on the basis of observations on the way. The text is being used during
that process;
- a posteriori, i.e. after the process, if one wants to consider in what
way the text has contributed to the learning results.
The method that has been developed in my research, refers to the a
priort analysis in such a way that professionals, like those menticned
above, will find a practical support in it for their decision whether and
in what way the text in question can be used in the teaching-learning si-
tuation they have in mind.
To this end the method has been split up in groups of focuses, viz.
- corvectness of the contents;
- preparation of the student by earlier and future learning tasks within
the curriculum;
- adaptation of the text to the abilities of the students.
The focuses are not criteria for evaluation, because a priori evaluation
depends on the way the analyst thinks how the text is to be used in the

classroam and on the weight he intends to attribute to the various focuses.

In describing the characteristics of mathematics, I distinguish two 'dimen=-
sions', viz. in the first place that of problem situation and kemels and
their relations, and secondly that of aspects of mathematics and their re-
lations. Activities that are focussed on these relationships give mathe-

matics a dynamic nature.
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Kernels and problem situations .

- Kernels

Those parts of mathematics that have traditionally been called "contents"
are called kermels. They are mathematical statements like theorems, defini-
tions, rules, axiams, working methods, algorithms and conventional agree-
nents.

- troblem situation

Kermels are either the results of activities starting fram problem situa=-
tions, or are being used to solve prablem situations. In the former case
these prablem situatians are called starting points, in the latter they are
applications. Problem situations can either be of a purely mathematical or
of a non-mathematical nature. Kernels can be new prablem situations.

Kelations

Activities relating prablem situations with kernels may have many forms,
like generalizing, abstracting, giving concrete form to a generalization,
devising analogies, drawing, computing, formalizing, quantifying, ordering,
etc.

Avpects of mathemattes

- The theoretical-structural aspect consists of kernels that are part of a
mathematical theory or structure, or of prablem situations aiming at dis-
covering or exploring such kernels. Exanples of such kemmels are a theorem,
an axiom, an axiam system, the definitions of a mathematical concept, a set
of rules that lay down a mathematical structure.

- The algorithmic aspect refers to kernels describing an algorithmical pro-
cess, or problem situations that aim at finding or applying such a process.
Included are drawing procedures like the construction of a line going
through a certain point and perpendicular to a certain line.

- The methodical aspect concerns non-algorithmic working methods, like
heuristics. If one has enough routine, same of these may eventually develop
into algorithms.

= The communicative aspect consists of mva'n£ims about notation, symbols,
diagrams and other pictures, modelling schemes for writing down proofs, etc.
- The logical aspect consists of kernels describing the formal relations

or formal structures of statements, of ways of reasoning, of kinds of proofs,
ete., and of prablem situations that aim at finding such kernels or applying

Lhem.

hielations between aspects
A kernel may have several aspects. A formula for instance may serve as a

buildingbrick for a theory, as a description of an algorithmic procedure,
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as a means of camunication and as a prcblem situation aiming at finding
a logical structure. It depends on the context which aspect will be accen-
tuated at a certain moment. Eventually an insight into the several aspects
of one kernel will establish the relationship between these aspects.

Dynamical mathematics

In my opinion mathematics should be of a dynamic nature. This can be pro-
moted in education by paying explicit attention to the above-mentioned
characteristics, in particular to both kinds of relations. There is no need,
however, to reject a text which does not contain all these characteristics.
There are two reasons for that.

Firstly, because some of the characteristics may arise in education by
other means than through texts. In some cases this is even a must (cf.
di lemmas) .

Secondly, there may be reasons of a psychological nature why certain
kernels cannot be presented as such to or by students, while yet the aspect
is implicitly included in the learning activity. This is particularly the
case with the logical and methodical aspects, because these often require
a relatively high level of cognitive understanding.

In the presentation I want to show the analysis of several parts of learning
texts for secondary schools.
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H. TEACHERS AND TEACHING
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A CASE STUDY OF TEACHER THINKING AND STUDENT DIFFICULTIES

Nurit Zehavi and Maxim Bruckheimer
Weizmann Institute, Rehovot, Israel

Teacher awareness of student cognitive ability determines, to a certain exten:
teaching strategies. Clark and Yinger (1979) emphasize that what teachers do, i:
affected by what they think and thus one of the main concerns in research on

teaching is teacher judgement. From the small number of studies on judgement
(Hook and Rosenshine, 1979) it is clear that teachers vary as to the accuracy
of their prediction of student achievement.

In a previous study (Zehavi and Bruckheimer, 1981) a method of analyzing test:
using the teacher prediction was introduced. The method provides information
about student-teacher-program interaction. Items and topics for which a fairly
consistent mismatch occurred, where further investigated for causes (Zehavi and
Bruckheimer, 1983). Yet for several items, dealing with the application of
equation solving to the notion of function, serious inconsistent discrepancies
were found between teacher expectation and student performance. As a result
another study was carried out, in which we tried to "remove" the inconsistencies
by looking at different groups of teachers and prospective teachers, and seeing
if teacher expectations, in this topic at least, had some connection with teache
education and experience. Since teacher expectations are also based upon his
view of student difficulties, we included in the study a request to teachers to

justify their expectations in the light of possible student difficulties.

The Study
Student_population

The Rehovot junior high school mathematics program has been developed for
three ability levels. Seven top stream ninth grade classes (n = 225) in "good"
schools participated in the study.

Teacher_population

Four groups of teachers and student teachers (n = 55) participated. Breadth
of teaching experience and type of mathematical education are specified in the
following table.
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Breadth of ;
Group teaching mazhemi$;§a1
experience S
high school teachers (n = 15) 7 - 12 grades | university

]
o

junior high school teachers (n 7 - 9 grades college

n
—
o

university student-teachers (n none university

college student-teachers (n = 14) none college

Note: It would have been interesting to include a group of junior high teachers
with a mathematics degree, since this would allow a comparison with the
group of high school teachers, in which breadth of teaching experience
if the major variable. Unfortunately, there are not many such teachers
and we could not form a group for this study.

o e i e i eV e e

The students were given the questionnaire, Functions: calculations and
substitutions consisting of six items. They were asked to write a "plan" for
solving each item and a detailed solution.

The four groups of teachers were asked to consider the following three of the
six items.

I

v =13 and ¥ (a) e 2ot e
axz - 15 and f(3) + f(4) = 120, find a.

(1) Given that f(x)

({2) Given that f(x)

(3 Gigan ChaE iE(x) Ay by R IE G and = e e sl b

I

The teachers were told that the items had been given to top stream ninth grade
classes, immediately after they had learned about linear functions and before
quadratic functions. For each item the teachers were asked to estimate the
percentage of students' success.

They were also asked to justify their expectation by estimation of possible
difficulties in the following four categories: unable to get started, use of
irrelevant procedure, mistakes in the use of function notation and technical
algebraic mistakes.
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Student performance versus teacher expectation

Actual student success percentages on the three items and teacher expectation
are given below

\ Item 1 | Item 2 | Item 3
Students n = 225 64 % 43% 38%

| high school teachers 60% 47% 499
junior high teachers 84% 62% 609
university student-teachers 16% 13% 104
college student-teachers 25% 33% 179

In item 1 for example, the actual and expected difficulties were as follows:

( (0) means overestimation and (U) means underestimation)

mistakes in Technical
unable to get irrelevant the use of algebraic
started procedure function notation mistakes
Students | ax 16% 12% 4 | 36%
High school teachers 9% (U) 4% (0) 22% 5% 40%
Junior high teachers 8% () 3% () 21 1 3% 16%
University student-
VeSS iegcﬁer (0) 3% (u) 62 (0) 33% 10% B4Y
College student-
IR e N 82 (U) 5% (0) 36% | (0) 26% 75%
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The high school teachers are more or less realistic in their expectations.
Junior high teachers underestimated student achievement in using the knowledge
which they themselves had taught. On the other hand, college student-teachers
overestimated and university student-teachers completely underestimated student
ability to even start working on such problems ("it is above and beyond junior
high school mathematics"). A discussion of actual student difficulties compared
with the teachers' view of these difficulties can provide explanation for these
discrepancies in teacher expectation.

Discussion
Note: Because of the limitation on space, examples given here relate to items 1
and 3 only.

When students are faced with a "new" problem", for which they do not have
an algorithmic solution at their disposal, they can try first to understand
the structure of the problem and then decide which of the known techniques to
apply. However, even without full comprehension of the problem they can, and
usually do, use a well-known procedure relevant or irrelevant, as the case may
be, and by doing so may come closer both to the solution and to understanding
the problem.

In the three items above the student needs to find parameters of quadratic
functions. Substitution of the given data in the functions yields equations
which, when solved, give the parameters. The concept of parameter is difficult
because of its ambiguous nature as neither a constant nor a variable (Wagner,
1981). On the other hand, the trained mathematician may tend to see in the
problem all the implications of the use of parameters and hence conclude that
the problem demands a cognitive level beyond the students' ability. Students

just recently trained to substitute in functions (in this case, linear functions),

can start working and complete the solution, even if they cannot at first (or
even at the end) analyse the problem. Although item 3 is more complex to
analyse (and to actually solve) than item 1, we see from the results that about
the same (high) percentage of students did attempt to solve both of them.

About half of the 64% that achieved the correct answer on item 1, did not write
a plan, which is some indication of their comprehension of the problem, yet it
does not prove that they did not understand. A few wrote comments like,

"At first I did not know what to do at all, and it really seemed to be
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difficult, but after substituting £¢2), I could find a from an equation and
could proceed to f(6) easily." The other half wrote a clear plan; most of
them explained and solyed the third question as well.

And what did teachers think about students attempting the problem?

The university student teachers analysed the problems from their highly
mathematical point of view and thought that all three of them were too complex
for the students. At the same time, college student teachers connected the
problems with the immediate substitution in functions and did not expect
students to be unable to start.

These *wo groups lack experience and their different opinion probably
reflects their educational background. On the other hand, junior teachers with
teaching experience, expected that fewer students would attempt the third item
as compared with the first., The reason they gave is that studenis would not
see the connection with the solution of two linear equations, and thus would
avoid the problem completely. The wider experience of high school teachers
probably helped them to see that this would not be a serious obstacle.

Irrelevani_procedures

A11 four groups of teachers and student teachers underestimated the impact
of linearity, in the immediate past experience of the students, which caused
the use of irrelevant procedures (Carry et al, 1980).

Examples for item 1:

- A proportional solution: f(6) = 3*£(2) = 329 = 87

Some of the students who gave this solution were not "comfortable" and in their
plan described it as a "simple" solution.

- A linear solution: finding a linear function through the two points (0, -3},
(2, 29).
One student was very "devoted" to linear functions and even after finding a = 8,

went on
f(x)

29

8x + b
8*2 + b

- %]

For item 3 about 18% of the students simply found the linear function through
the two given points.

Mistakes_io_the._use.of_function._notation

Examples for item 1:
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- Wrong substitution: 2 = 2923 - 3; 29 = 2&2 -3

While the first mistake is an expected confusion of x and f£(x), the second
one indicates a complete non-understanding of the meaning of the notation
(Dreyfus & Eisenberg, 1982). The latter mistake occurred frequently in a
pilot study with lower ability students and needs to be investigated further.

- Partial substitutions: 29 = ax2 el M s 2 o a'22 - 3 F(6) = 36a = 3
Partial substitution can suggest that the student does not completely under-
stand the process. In fact, in several cases, partial substitution yields
the wrong solution. For example
starting with £(2) = a*2° - 3
4a - 3
and then, 4a - 3

B o

a =

The influence of teacher education and experience is clear in this issue.
High school teachers slightly overestimated these difficulties which they
consider as ‘'serious mathematics, while junior high teachers underestimated
the difficulties. (This replicates findings in Zehavi and Bruckheimer, 1983).

Both groups of student teachers strongly overestimated difficulties
related to function notation, but from different points of view. The more
mathematically trained had doubts about student understanding of the substi-
tution process itself, and expected that students would substitute 2 for a,
a mistake not found for this top stream population. The college student
teachers expected more confusion between x and f(x) than occurred, and also
were not sure if students would see the connection between f(6) and the
function. Maybe that they themselves feel uneasy with the mathematics and
also lack the class experience with such items.

. Technical_algebraic_mistakes

Some mistakes in "order of operation" where found in student papers.
In item 1, for example: 29 = 4ities
College students teachers predicted that such mistakes would be very popular.

A technical algebraic difficulty occurred in item 3. Students (66%) who
substituted correctly obtained a system of two linear equations
léa + 4b = 8

a+ b= -7
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Only 38% achieved the correct answer. About half of the rest stopped at the
equations not knowing how to proceed and the other half made ineffectual
attempts. The most popular was a naive linear combination i15a + 3b = 15.

Here again, junior high teachers slightly underestimated this obstacle and
college student teachers highly overestimated it.

Conclusion

The significance of this study is that it can help teachers not only to be
aware of student cognitive difficulties, but also to be aware of issues where
their own conception of those difficulties does not correspond to their
reality. In this case study we tried to go even further toward an awareness
of some specific reasons for certain misconceptions.
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THE MATHEMATICS TEACHING PROJECT (T.M.T.P.)
CELIA HOYLES POLYTECHNIC OF NORTII LONDON

This paper outlines the background, aims and research method-
ology of the Mathematics Teaching Project, a three year invest-
igation based at the Polytechnic of North Londgn. Work started
on the Project in September 1982 and the results of the pre-

liminary study will be presented at the conference.

The Mathematics Teaching Project set out to provide insight
into the range of configurations of teacher characteristics
which seem to go together to create good practice in secondary
school mathematics classrooms. Good practice was originally
conceived as that which stimulates mathematical involvement in
pupils (that is, a focus on 'task' and not on 'self' Hoyles
1982, Bishop 1981) and which also provokes positive affective

response from pupils,
The Project involves the detailed study of 'good' malLhematics

teachers from three perspectives:- their own, their pupils and

from observation and analysis of their classroom practice,

GENERAL BACKGROUND

The incentive to try to characterise mathematics teachers arose
from the finding (Hoyles 1980) that in the view of pupils, the
teacher in the mathematics classroom had a considerable infliuence
on their feelings about the subject and in particular on their
confidence and autonomy. In addition, it seemed that such
characterisations would be invaluable in teacher education as
vehicles for the facilitation of discourse about practice and

the incentive for development and change.

There is not at present any comprehensive theory of teaching

mathematics so an eclectic approach is adopted in this research
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which draws on appropriate ideas from psychology, sociology and
interaction studies. It is however a belief of the Project

that pupil expectations, teacher judgements and classroom inter-
actions are affected by the concern with mathematics, as opposed
to another subject area. The Project aims to provide an aware=
ness of what it means to be a good mathematics teacher which is
authentic and real. An enhanced understanding of a range of
'particularities' was felt to be the most appropriate means of
achieving such an awareness. In addition two further bench-
marks have guided the choice of research methodology:- the
importance of the individual's own perspective; and the need

to bridge the ‘'gap' between theory and practice;that is,firstly,
to identify teacher perceptions that.do appear to affect their
practice and secondly, to investigate in more detail how these
teacher perceptions together with those of the pupil are mediated

in and illuminated by actual classroom episodes.

THE THREE PERSPECTIVES

(a) The Teacher Perspective

Despite the controversy over the extent of the influence of
teacher expectation on pupil learning (see Hoyles 1973 for
review), it would appear, from naturalistic studies,that a
teacher's real expectations of their pupils do affect their
classroom behaviour. These expectations have also been found
to affect the personal qualities and source of motivation a
teacher attributes to a pupil (Johnson et al 1963) and that
pupils can be affected by such attributions (Brookover 1965,
Meyer 1979).

Attribution Theory suggests three dimensions on which the
perceived causality of success or failure on a particular
task may be classified; that is locus, stability and
controllability (Weiner 1979, 1980). Lorenz (1980) suggests
that the distribution of teacher explanations of the



- 404 -

achievement results of their pupils according to these

dimensions can be seen to affect classroom practice.

In the exploratory work undertaken prior to the Project

(Hoyles and Bishop 1982) the Rheinberg test was used to
investigate differences in reference norm between teachers.

The basis of this test (Rheinberg 1977) is that teachers assess
pupils achievements as 'good' or 'bad' according to either

the average level of the class (social reference norm NO) or

to the pupils prior performance (individual reference norm TO)
or to a combination of the two., After empirical investigation,
Lorenz (1982) reported that differences in reference norm were
related to different teacher strategies in the classroom, in
particular in the distribution of actions concerned with
'helping' the pupils. Hoyles and Bishop (1982) also found

that data from this test (modified for use with English
mathematics teacher) produced quite striking differences between

teachers which were deemed worthy of further investigation.

A teacher's classroom practice will also be affected by the
general frame of reference used as a basis from which pupils
are perceived and classified. The study of a teacher's constructs
of his or her pupils is a means of probing +this frame of
reference as it is applied in the context of a mathematics
classroom. In the Mathematics Teaching Project a triadic
elicitation technique, by means of an interactive computer
programme PEGASUS (Shaw 1980), is used. This programme allows
flexibility and has the advantage of providing ongoing feed-
back and analysis, although it is the view of the Project team
that for effective use the elicitation by PEGASUS must be

accompanied by in depth interview for discussion and reflection.

(b) The Pupil Perspective

Many research studies which have focussed on the teacher have
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tended to neglect the views and perceptions of pupils and
their interpretation of classroom events. The way a pupil
responds to the teacher will in part be affected by his/her
expectations of and judgements of that teacher. 1In line with
the overall stance of the Project, it is intended not only to
elicit the pupil views of what a mathematics teacher should
be like and to find out how their teacher compares with this
ideal, but also to discover the ways these teacher character-
istics are manifested in the pupil's view) in the classroom;
that is actual episodes recalled by the pupil to exomplify

a certain 'good' teacher characteristic, will be collected and
examined. It is through this means that it is intended that
pupil data will illuminate and be illuminated by observational

data.

(c) The Mathematics Classroom

The problems associated with the analysis of classroom practice
has been widely documented. Classroom talk is by its very
nature multiple and indefinite.It is however fundamental to the
Project that any attempt to characterise mathematics teachers
tries to get to grips with the 'we-relation' between teachers
and pupils in the classroom (Hargreaves 1977 P282). The
theoretical stance of the Project is to develop and make public
the parameters within which observations are made and the

rationale for any choice of illustrative extracts,

PRELIMINARY STUDY

With this background in mind a preliminary study of two teachers
was carried out during 1982-83, Classes singled out for part-
icular attention were of 13 - 14 year old pupils top and middle/

low sets. The following investigations were undertaken:-
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The Teacher Perspective

- Elicitation of the personal constructs of their mathematics
pupils
- Cluster analysis of these constructs
- Reflection and discussion on the nature of the constructs
and clusters
- Elicitation of the teachers' attributions of success or
failure in a mathematical task for each individual pupil
- Analysis of these attributions in terms of the three
dimensions of perceived causality
- Test of the reference norm and calculation of the teacher

typification on the ideographic/mormative continuum,

The Pupil Perspective

- Elicitation from all the pupils in the experimental
classes of written descriptions of an 'ideal' mathematics
teacher

- Extraction from these descriptions of up to ten of the
most frequently mentioned factors

- Ranking of the above factors by the use of a paired-
comparison test completed by all the pupils

- Grading of the teachers by each of their pupils on a numeric
scale for each of the factors

- Individual interview of each pupil in order to obtain a
description of classroom events chosen by the pupil as
practical manifestations of one or more of the positive

characteristics which they had attributed to their teacher.

The Mathematics Classroom

- Weekly observation and audio-taping of the two teachers over

a period of two terms

-'Reconstruction' of a selection of lessons in which observational
notes of teacher comment (prior and post lesson), actions or
non-verbal gestures are co-ordinated with sections of transcript

in order to 'bring the lesson to life'.



= 407 -

- Analysis of the reconstructions in terms of the following

ten categories:-

Mode of teaching: - Instructional or interactionaly Type of
questionsy Influences on content and pacing, Assumptions
made by the teacher, Repetitionsj; Vocabulary of the lesson,
Pupils' language; Teacher's use of praise; Distribution of
teacheris interaction between pupils4y Identification and
analysis of episodes of mathematical communication and
development.

- Comparison of the two teachers in terms of the above

categories.

The first stage of the main study is being undertaken in the
summer term 1983, in three mixed London comprehensive schools
well known for their enthusiastic and competent Mathematics
Departments., The teacher sample for the main study consists

of nine teachers highly regarded within their schools and by
the staff of the Polytechnic of North London. Two fourth year
classes are to be studied for each teacher, one of high ability
and one of middle/low ability. A further similar round of

data collection will be undertaken in the summer of 1984 with

the same teachers and types of classes.
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MATHEIATICS INSERVICE THAT WORKS:
A RESEARCH-BASED MODEL
Dr. Fredda J. Friederwitzer Dr . Barbara Bearman
Flucarional Support Systems, Inc.

In the current U.S5, educational milicu mathematics and science inservice
education is receiving greater attention than ever. Although staff de-
velopment programs are expensive in terms of money and time, the mzed for
them has increased because of the loss of gqualified teachers to industry
and the stabilization of teaching staffs., The decrease in the number of
new teachers entering the system with up-to-date knowledge of subject mat-
ter and/or technicgues (McLaughlin & Berman, 1977; Buder, 1977) adds to tle
problem. The cost of inservice programs may ke justified to a critical

public only if they result in demonstrated student improvement.

Researchers have analyzed staff development programs from all parts of the
country with great care. Those programs which were considered successful
were found to possess similar characteristics. This paper will detail
these characteristics and then describe a nationally-validated mathematics

inservice program based upon them.

EFFECTS OF INSERVICE ON STUDENT ACHIEVEMENT: Studies of the effects of in-
service education on student achievement show that a positive relationship
does exist. Statistically significant student inmprovement has been found
to occur as a result of teacher inservice, irrespective of grade level or

subject area (Berman, 1981; Fitzmaurice, 1976; Good & Grouws, 1979).

One frequently-used method of conducting staff dewelopment is the multi-
plier or turnkey approach. This strategy is considered highly appropriate
for use in areas where many teachers from different buildings (or districts)
require the same inservice training. It involves the training of selected
teachers in a particular topic and their subsequent employment as inservice
workshop leaders for others in their school or district. The mltiplier
strategy has the potential of providing for staff development, utilizing
local resources, to train a large number of personnel within a relatively

short period of time (Tobin & Dye, 1977; Wirtz, 1974).

Researchers evaluating student achievement as a result of teacher inservice
based on a turnkey approach found that statistically significant growth in
knowledge occurred in students of both the original trainers and their
trainees (Berman, 1981; Dilworth & Warren, 1973; Lawson, 1978). The mul-
tiplier strategy thus appears to be an efficient, cost-effective staff de=

velopment technique. It provides an opportunity to key inservice training
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to the needs of the individual school building and may be directed by a
teacher from that building who understands the unique problems faced by
his/her colleagues,

FEFPECTIVE INSERVICE ‘IHROUGH BEXPERLIENTIAL LEAKNING

Cognitive psychologists assert that learning takes place through the inter=-
action of the individual with materials, peers and the instructor. Learning
is described as a developmental process, with each new concept built upon
previously-existing knowledge. Individuals learn by manipulating objects in

their environment, then by reacting to representations of these objects and,

finally, operating with the abstractions that result from these experiences.

Empirical data on adult cognitive development is still rather sparSe. How-
ever, some researchers have documented evidence which supports the need for
experiential learning at the adult level (Bender & Milakofsky, 1982; Joyce
& Showers, 1980; Oja, 1980; Wood & Neill, 1978). Apparently, a large pro-
portion of adults are operating at the concrete operational, not the formal,
stage of intellectual development. A disccver y-oriented, problem-solving
approach to learning thus appears to be as important for adults as it
is for children. This assumption is supported by Richard Skemp in his
book on the psychology of learning mathematics.

We all have to go, perhaps mure rapdily then the growing child, through siatlar stages in each new

topic which we encounter . . . . [Ihe sode of thinking available 1s partly & function of Lhe degree

to which the concepts have been developed 1n the primary systea, One can hardly be expected to

retlect on concepts which have nat yet been formed, however well-developed one’s reflective systea
(Skenp, 1971, p. bal.

What the foregoing suggests is that teachers should learn new concepts and
skills in an active learning environment using concrete materials when needed.
Inasmuch as teachers tend to teach the way they were taught (Dilworth &
Warren, 1973; Fuson, 1975) as well as what they were tawht TCbodlad, 1983)
the experiential approach to staff development assumes great significance.
Appropriately-designed inservice education can beccme the model for increased
use of hands-on activity-oriented programs which introduce new subject matter
to elementary students.

CHARACTERLSTICS OF EFFECTIVE INSERVICE: As a rule, effective inservice pro-
grams involve a continuous theme, over a period of time, interspersed with
classroom tryouts. The successful programs have immediate applicability in
the classroom; they combine subject-matter content with teaching methodology.
hctivities for teachers that parallel those to be used with children are em-
ployed, thus creating a model for subsequent classraom application (Berman,

198]1; FPriederwitzer, 1981; Nicholson, er al, 1976).

The goals of inservice education must be carefully considered before the
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program begins. Teachers should be prévided with the time, the opportunity,
the means and the materials for improving prolessional compe tence. They
should receive assistanve with the development of creative instructional ap-
proaches that are meaningful and approprliate to theilr students. Training in
Lthe implementation ol lnnovative currviculu or instructional practices and
help in applying new lnsights into the learning process to themselves and

thelr pupils must also be available (McCormick, 1979; Tye & Benham, 1978).

PROJECT SITE, AN EXEMPLARY STAFF DEVELOPMENT PROGRAM. The Mational Diffus-
ion Network is a nationwide system established to assist schools, post-
secondary institutions, and others to improve their educational programs
through the adoption of already developed, rigorously evaluated, exemplary
education programs. The Network consists of ower one hundred programs for
all grade levels and serving all disciplines. Project SITE: (Successful In-
service through Turnkey Bducation) was nationally validated by the U.S, De-
partment of Education and has been part of the National Diffusion Network

Singe 1982,

The puwrpose of Project SITE is to provide inservice training in mathematics
content and appropriate methodology to elementary teachers (grades 2-6).
Since elementary teachers are often poorly prepared and/or uncomfortable in
mathematics, they frequently "resist" inservice that is designed to teach
them mathematical content. They may resent the implication that they "don't
know" the subject and need more training, even though it is true. Research
shows that measurement is one of the most poorly taught areas of math, us-
ually left for the end of the school year. Therefore, Project SITE uses meas-

urement as the vehicle of instruction for teaching many mathematical concepts,

Participants interact with manipulative materials, taking an active role in
their own concept development and learning of mathematical skills. A wmnified,
cohesive program is created out of normally disparate components through the
integration of mathematical content and teaching strategies based on learning
theory with practical classroom applications. This type of course has not tra-
ditionally been part of the preservice or inservice training of a-majoricy of
elementary school teachers. Thus, the dissemination and implementation of the
SITE program becomes the means For providing instruction in mathematics con-

tent and appropriate methodology to elementary teachers in an innovative, non-

threatening way.

Background: Project SITE is an outgrowth of a program originally developed at
the Rutgers University Graduate School of Education, New Brunswick, NJ from
1976-80. The Rutgers program responded to a U.S. Office of Flucation initiative

for mecric education programs, As metrics was unfamiliar to most United States
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elementary school teachers, an in-depth staff development proycam was needed

!
before implementation of metric aetivities could begin with pupils. The mul-
tiplier (or turnkey) strategy was the basis for an inservice interventional
plan which operated successfully in urban and suburban school districts span-

ning a variety of sociowmconomic levels. Since 1950, the program has been dis-
seminated nationally by Educational Support Systems, Inc.

Design: The SITE program was designed to incorporate the characteristics of
effective inservice programs described above, The inservice guide, Measurement

in the Elementary School, was written specifically for this program. It was

based on developmental theories of learning espoused by cognitive psycholog-
ists. The theoretical framwork of the program also includes recent findings
on teaching/learning styles, experiential learning for adults and research by
mathematics educators on appropriate models of instruction for teaching new

mathematical ideas.

METHODOLOGY AND CONTENT: The methodology focuses on problem-solving through
guided discovery with manipulative materials. Each new section of mathematics
and measurement builds upon concepts developed in preceding sections to evolve

an integrated, systematic understanding of the mathematics included.

Effective measurement instruction incorporates a nunber of mathematics con-
cepts and skills i.e, estimation, place value, decimals, and geometry. The
Project SITE cuwriculum includes these as well as a number of ather topics such
as graphing, statistics, ratio and proportion, which are freguently omitted
from elementary mathematics instruction. Emphasis is placed on in-depth de-
velopment of area, perimeter and volume, sections of the geometry curriculum
freguently misunderstood by many elementary school teachers. Activities are se-

quenced to develop basic concepts of covering and filling through the discovery

and application of formulas.

Since teachers tend to teach the way they were taught, as well as the way they
learn, the program incorporates activities for teachers which parallel those
suggested for children, The teaching methods used by the project trainers, the
manipulative materials employed at the workshops and the printed matter distri-

buted, are all intended to serve as models for subsequent use by participants.

The SITE program: Participants receive four full days of mathematics instruc-
tion. Each district or school is requested to send at least one supervisor to
attend the training series alongside their teachers. The participation of prin-
cipals and/or district supervisors is considered crucial. Their presence and in-
wlvement in the inservice sessions is an indication to their teachers of the

impor tance placed on the training. Fur thermore, their attendance enables them
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to develop a working understanding of the cantent,gnd methodolegy of the pro-
gram so that assistance and support can be provided during the implementation
phase of the program, As the Rand report aptly states, principals are "the
gatekeepers of change" (Berman & McLawhlin, 1978), who can enhance or des-

troy a new project.

Upon completion of the initial training sessions, the second phase of the in-
service program begins. This phase involves training the other teachers in
each participating school building or district via the multiplier approach.
The original participants; or turnkey teachers, conduct inservice programs
for their colleagues using a detailed "Script for wWorkshop Leaders" which
parallels the activities used by the original workshops. This strategy allows
the program to multiply the benefits of the original inservice experience,

without a concomitant increase in cost.

The presence of turnkey trainers in each participating building permits the

program to respond to imdividual school needs, The turnkey teacher is able to
tailor inservice to the particular needs of his/her colleagues. All teachers,
turnkeys and colleagues, are expected to implement the program with students

using the easily-replicable activities through whiich they themselves learned.

EVALUATION: All participating teachers and students are pre- posttested.

The criterion-referenced tests employed were developed for the project and
have been found valid and reliable. The efficacy of the SITE project has
been measured by the growth in knowledge (i.e. increased achievement) of
teachers and students. During each year of operation, all participants
showed statistically significant gains from pre- té posttest at a minimum

of the 5% level. This staff development program has thus proven to be an ef-
ficient means of providing mathematics instruction to thousands of teachers

and, through them, to tens-of-thousands of children.

IMPLICATIONS FOR STAFF DEVELOPMENT: The rationale underlying the develop-
ment of the instructional mﬁterials and procedures used by Project SITE was
derived from theories advocated by cognitive psychologists as to how learn-
ing occurs. The successful implementation of the program over a period of
several years suggests that instructional formats for adult learners which
follow developmental, sequential patterns, incorporating activity-oriented

approaches, can increase subject matter knowledge while simultaneously model-

ling future behavior. Through their participation in the SITE inservice
workshops, the turnkey teachers learn mathematics and measurement content
as well as appropriate teaching strategies. The new knowledge and instruc-

tional techniques are utilized subsequently for training colleagues and
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teaching students.

Aside from the positive results described, this approach to staff develop-
ment offers residual benefits to participating school districts., Through the
training of personnel already on the job, a cadre of staff developers avail-
able for future service is created. The presence of residual resource per-
sonnel in each school building also ﬁermits "individualization" of the pro-
gram, The resource personnel can tailor the contents and methodology of in-
service sessions to the particular needs of the school. Additionally, they
are available to provide immediate assistance and advise colleagues as prob-

lems arise.

Utilization of the multiplier strategy thus becomes a cost-effective tool
enabling school districts to provide expanded staff development programs
without a concomitant increase in funds. The initial training costs incur-
red in developing a cadre of resource personnel are more than repaid in fu-
ture years as the trainers are called upon by their districts to condict ad-
ditional staff development programs, Furthermore, the benefits of this re-
sidual inservice cadre will be multiplied year after year, as the trained

teachers continue to implement classroom programs with their students.

The project format, with its multiplier strategy, is adaptable to a variety
of content areas, further enhancing the utility of this ﬁodel a5 an instruc-
tional vehicle for teachers and, subsequently, for students. Adaptation of
this inservice model would permit school districts to implement cost-

ef fective staff development programs with the reasonable expectation that
student achievement would increase as teachers gained knowledge of new sub-

ject areas and appropriate teaching strategies.
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DIDACTICAL INFORMATION SERVICE FOR MATHEMATICS
tN scHooL ( 5 Mgrade - 10°Mgrade)
Bernhard Andelfinger, Landesinstitut Nordrhein-

Westfalen (FRG), Neuss

WHY A DIDACTICAL INFORMATION® SERVICE?

In the mathematical classroom teachers and pupils have a lot
of problems with math and with one another, W.Breidenbach,
an old experienced teacher trainer and book writer, says:
" we have tried to do nearly all things for better teaching
of math, but it didn't help, Therefore the causes for the
n'math gap' in the classroom must be deeper than we had
thougkt up to now."

An increasing minority of teachers has the same feeling as
Breidenbach, but they can't find any help in their methodic
books and in the frames given by the administration, There-
fore a new sort of information about the teaching-learning-
processes seems to be necessary,

In 1979 a small team of the Landesinstitut Nordrhein-West-
falen Neuss (FRG) started the DIDACTICAL INFORMATION SERVICE
FOR MATHEMATICS IN SCHOOL (DID-M), It is a series of text-
books and documentation books referring to the most impor-
tant topics of math for about Sthgrade to lOthgrade. The
project will be ended in 1986; afterwards a supplementary

service is planned,

POSITION OF DID=M
Most of 'math makers' in school and for school do this on the
background of their own experience, and their scientific
knowledge, During the teacher training periods the subjects
being discussed often only are " how can teaching be made
more effective, more interesting etc?l"
But in classroom reality teachers often are getting dis-
appointed because the pupils' problems have nothing at all
to do with what the teachers had learned. Teachers then
say: "pupils are not interested, they are against me,
school politics are too liberal etc,"

DID-M tries to objectivate the situation for teachers,
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Firstly it informs about the communicational view of teaching
(Bauersfeld 1983): on one side there are the texchers' concepts
and on the other side the concepts of the learners. Every so
often there are gaps between these concepts; teachers and
learners '"speak about the same but do not mean the same" (Krumm=-
heuer 1983),

Secondly DID-M informs about the attitudes and contents of
teachers' concepts and learners' concepts as known up to now,
Thirdly DID-M gives hints for the teachers how to bridge the
gaps and for administrators how to renew the curriculum for

better bridging the gaps,

DESIGN OF DID=M
Teaching concepts (related to the FRG schools) are described
in the textbooks in view of historical tradition, scientific
influences, administrational frames, and didactical transfor=-
mations, By questioning teachers and searching for results
of classroom research the actual teaching situation is de-
seribed (Andelfinger,1981),
You will get some information about learning concepts by
questioning teachers, Most information results from material
of educational research, DID-M makes systematical searches
for such material in national and international information
pools (ERIC, Psychinfo, FIZ,..,) and by contacts with re-
searchers, Comparing these results gives us an imagination
of important learning concepts,
In a third step the teaching-learning situation can be shown
by comparing the teaching and the learning concepts and by
analyzing connections between them, This step includes also
hints for teaching (in a somewhat hypothetical form),
All this information is given in the textbooks of DID-M,
The background materials (questioning) and references (i,e,
abstracts) are given in the documentation books, as well as

the results of evaluating the DID=-M=-books (see later),
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PILOT STUDY "PROPORTION"

Design and products of DID-M have been tested in a pilot study

for the topic "ratio/proportion" and its surroundings in

school mathematics (see references), Some results:

The teaching concepts show a great difference between theory

and practice, Ratio and proportion - didacticians say - have

to be a headline and an important topic., Practice in schools
is very different from this., Here ratio and proportion are
nearly isolated in geometry (similarity); fractions are ope-
rators or regional sets; rule of three is a part of linear
function theory or of equation theory; probability and sta-
tistics have not yet got a real place in the classroom,

About 5% of the pupils overtake these teaching concepts.

A majority of pupils has other concepts:

- "yule of three"-problems are solved by isomorphic strate-
gies, additive or multiplicative, avoiding fractions,
Functional and/or proportional strategies are very seldom
and unstable,

- pupils make a difference between 'basic' fractions (e.g.
1/2, 1/4) and 'artificial fractions' (e,g.7/13), For pupils
basic fractions are instinctively numbers, artificial frac-
tions are puzzles with vertically written pairs of numbers
or tasks without results, Formal cognitive concepts play
an outstanding role in computing with fractions,

- pupils have an unreflected imagination of 'ratios', There
are hierarchical s¢ages to come from 'ratio' to 'propor-
tiop'. How pupils climb these stages is not yet known
enough, Only few pupils reach the higher stages, Concrete
models and experiments can help to climb the stages; in-
formation processing strategies are also helpful,

- similarity has three main aspects: parallels, angles, pro-
portion, The proportional aspects of a pair of figures
are not the most important thing to recognize similarity,

The pilot study shows that proportional concepts do mnot

grow without impulses nor do grow in the field of artifi-

cial fractions., Proportional concepts often correlate with

the age of the pupils and their intelligence, Proportionali-

ty as a linear function is a very complex concept; anti-pro-
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portionality has nearly no connection with proportionality.

EVALUATION OF THE PILOT STUDY
The textbook "proportion" has been evaluated by a scaled
questionnaire, The testgroup agreed with the content of the
book and mentioned the high correlation with their own (often
secret) experience in the classroom, Most of the persons said
that the book will influence their teaching and their role as
teachers,
The reactions of administrations were very different, Some used
the book for their planning, others blocked the spreading of
the DID-M=-books in their district.
Educational researchers were very happy with the documentation
books of DID-M,
The DID-M project initiated a controversavy discussion in

groups of teacher trainers,

THE STUDY " ARITHMETICS/ALGEBRA/FUNCTIONS"

In 1982 DID-M started the second step of its work, related to

the non-geometrical topies of school mathematics from Sthto

IOth grade,

The analysis of teaching concepts again shows a great diffe-

rence between theory and practice. The administrational and

didactical frames are characterized by the long time line

'constructing number areas from IN over IQ to IR' and by

'constructing a logical building of open statement algebra'.

Teachers' practice in school is characterized by fighting

against difficulties with numbers and with manipulative

algebra, What a stupid situationl!

So far DID-M does not give any ready learning concepts but

suggests some working hypothesis:

- There seems to exist a big pool of fundamental attitudes,
strategies,and concepts, containing formal/cognitive ele-
ments, information processing elements and kinds of under-
standing variables and numbers,

- the area of numbers seems to be splitted in an area of
numbers written in ciphers, basic fractions, and artifi-
cial fractions,

- algebra seems to be splitted in a hierarchy of three alge-
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bras, the 'number-operation-algebra', the 'try-and-put-in=-al-
gebra', and the 'formal-syntactic-manipulative-algebra',

- the theory of functions seems also to be splitted , some
parts being combined with the upper mentioned algebras,

= sharp boundaries seem to exist between some parts of arith=-
metics and some parts of the algebras and no sharp boundaries
between other parts of these two,.

The results of the second step of DID-M will be published in

1984, The last step of DID-M will be done in the field of geo-

metTy.

REFERENCES

Andelfinger, B, Provocative texts and spontaneous reactions
of teachers - a method for recognizing
teaching and learning of mathematics, In:
PME Proceedings, Grenoble, 198!, p,381-386

Bauersfeld, H, Subjektive Erfahrungsbereiche als Grundlage
einer Interaktionstheorie des Mathematik-
lernens und =lehrens, In: Bauersfeld u,a,,
Lernen und Lehren von Mathematik, K&ln,1983

Didaktischer Informationsdienst Mathematik, Thema: Propor-
tion, Curriculum Heft 22, Neuss, 19822

Didaktischer Informationsdienst Mathematik, Quellensammlung,
Thema: Proportion,

Dokumentation!: Literaturnachweise 3, Neuss,
1982

Krummheuer, G, Das Arbeitsinterim im Mathematikunterricht.

In;: Bauersfeld u.a.,, Lernen und Lehren von

Mathematik, K&6ln, 1983,



- 421 -

DOES THE GROUPING OF STUDENTS MAKE A DIFFERENCE -

ON THE PSYCHOLOGY OF TEACHER-STUDENT INTERACTIONS IN MATHEMATICS
EDUCATION

Matthias Reiss, Ph. D., University of Bielefeld (West Germany)

Usually, the basic assumption is that changes in the educational system cannot
be brought about without the active cooperation of the teachers. 10 years ago, a
reform of Sekundarstufe Il (ages 16 to 19) was decided upon in the Federal
Republic of Germany by an administrative body which intends to establish rules
for all matters of education in the country. Since that time, students belonging
lo the age group 16 to 19 have had the choice between a basic and a talent
course in mathematics, These courses differed, in the first place, simply by the
number of lessons per week the subject was taught. Thus, students belonging to
the basic course received three, students of the talent course five or six
lessons per week

There is no clearly defined educational conception for the various types of cour-
ses. The question, therefore, is how the teachers react to, and cope with this
situation. A project conceived three years ago set itself the following three main
tasks in investigating these questions :

= analyzing the content of textbooks, regulations and syllabi with the objective
of finding out whether these documents, which are pertinent for mathematics
education, offer different paths for teaching mathematics in basic and talent
courses;

= doing representative surveys of teaching styles and atlitudes of the teachers
affected by the reform, with the objective of establishing interactions between
teaching styles and attitudes on the one hand, and course type on the other,

= carrying out case studies in selected schools with the objective of establishing
the inleractions between the individuals involved in mathematics education, i,
‘e. case studies oriented towards an ecological perspective of teaching re-
search,

My contribution to this conference shall merel} be concerned with the second of
these tasks, as presenting all three would exceed the time limit set. It must be
emphasized, however, that all three parts of the project are interconnected: it

is only the content analyses of the documents pertinent for mathematics edu-
cation which permit us to delimit the frame conditions within which the teachers'
teaching styles and attitudes develop. And only classroom studies make
teachers' and pupils' concrete behaviour the object of observation,
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Hence, our representative survey's objects were vteaching styles and attitudes, in
particular among mathematics teachers of Skundarstufe Il. Our interest, in that
conlext, was in the social organization of learning, so we took up an approach
which was originally developed by British educational sociology (BERNSTEIN,
1977) and has since been transformed for the purposes of mathematics
education by PFEIFFER (1981). According to that approach, both the cognitive
and the social organization of knowledge are subject to principles which are
acquired by the individuals concerned, and according to which the latter behave
in the classroom.

BERNSTEIN characterizes these principles by a pair of idealized opposites, the
collection code and the integrated code, which can be briefly described as fol-
lows:

The collection code implies strict hierarchies, boundaries and little control exer-
cised by all individuals concerned over type, structure, temporal order of know=
ledge and leaching organization,

The inlegrated code implies abolition of hierarchies, crossing boundaries, and a
high degree of control exercised by teachers and learners over type, structure,
and lemporal order of knowledge and teaching organization,

The ilemns of lhese two codes assist us in listing the characteristics of know-
ledge taughl in an organized, specific, and more concrete form. The best
slructlure of lhese characteristics was obtained by introducing the following
dimensions (beginning with those referring mainly to the knowledge side of
teaching and terminating with those whose emphasis is on the organization of
teaching) :

(1) Type and structure of the knowledge to be taught (the collection code's
hierarchical organization and strict boundaries versus the integrated code's
tentative organization of knowledge and integration of knowledge and sub-
jects);

(2) Relationships of teachers and learners towards the knowledge acquired and
to be acquired (strong involvement with the subject and a conception of
knowledge as an object of teaching in the case of the collection code ver-
sus less pronounced involvement with the subject and a conception of know-
ledge as of something which can be used and applied in the case of the
integrated code);

(3) Organization of teaching with regard to subject matter (schoolmasterly
teaching and relatively little control exercised by teachers and learners over
seleclion, organization, pace, and temporal order of subject matter in the
case ol the collection code versus an emphasis on self-organized acquisition
of knowledge and a high degree of control of teachers and learners over
selection, organization, pace and temporal crder of subject matter in the
case of the integrated code);
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(4) Organization of teaching with regard to the pedagogic principles applied in
the classroom (a hierarchical order of relations of authority and very
ntuahzed relations between teachers and learners in the case of the col-
lection code versus an egalitary structure of the relations of authority and
lhe intenlion to enable teachers and learners to develop new social re-
lalionships in the case of the integrated code);

(5) Institutional and material frame conditions (strongly structured concept of
classroom arrangements, together with exact boundaries and delimitatio ns
ot the subject and detailed instruction from outside (rules, regulations) in
the case of the collection code versus a fixed, variable conception of class-
room arrangements and few instruction from outside in the case of the
integrated code) ,

Discussions within the Bielefeld working group '"'Mathematics Education in the
Sekundarstufe II'' at the Institute for the Didactics of Mathematics were con-
cerned with specifying this theory ot codes with regard to mathematics
education, The following representation is a brief summary of this attempt:

Three questions can be considered important for distinguishing between various
types of mathematics teaching :

= s the emphasis on training mathematical methods and exercising calculating
skills, or on developing mathematical problems?

- Is teaching alligned to traditional school mathematics (i. e mostly intrama-
thematical), or is there an attempt to develop a comprehensive orientation in
students which stresses both crosslinks between the various fields of mathe-
matics and mathematics' richness in relationships in application situations?

- Is the emphasis of the teacher's activities on the process of learning, or on
the product of learning?

If we atlempt to locate BERNSTEINs codes of the knowledge taught in school,
the collection code is characterized by an crientation toward the product of
learning and a restricted alignment to school mathematics. As opposed to that,
the integrated code in school mathematics can be described as a comprehensive
orientation towards a mathematics rich in relationships, towards developmment
of mathematical knowledge, and towards the process of learning,

If we now resyme the initially described differentiation according to basic and
talent courses, a first hypothesis could be stated :

The basic course praclises a type of teaching which can be characterized by
the aliributes of the collection code. While the talent course is notl delermined
by the atiributes of the integrated code, it shows statistically significant de-

vialions lowards the inlegrated code in all of the three dimensions described.
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In the trame of the representative survey of te:a\ching styles and attitudes per-
tinent for mathematics education, we developed a questionnaire which was ad-
apted as closely as possible to the mathematics teacher's classroom activities,
This was meant to reduce the danger of having the teachers merely respond in
an manner they imagined we thought they should respond, In this matter, HOPF
(1980) gave us some important ideas,

The questionnaire was revised several times, a pretest was carried out in 10
tederal states, and the final version was posted to all schools within the Federal
Republic having Sekundarstufe Il (a total of 2419 schools) at the beginning of
lhe school year 1981/1982 An extensive system of reminders helped us to get
back the questionnaires from 2063 schools. This is a response rate ot 853 per-
cenl. The sample can be considered as representative for the population we had
adressed (see REISS, 1983)

The mathematics teachers were asked to answer ail items with reference to the
course they had held in the second term of 1980/81. Besides some items con-
cerning the person of the respondent and his or her general image of mathe-
matics and mathematics education (presage variables according to DUNKIN &
BIDDLE), most of the approximately 300 items refer to classroom activities within
the course. These belonged to the following fields :

- establishing subject matter

- exercise tasks and problem tasks in the classroom
- revision

- homework

- organizalion of teaching and students participation
= assessing performance, and

- ftrequency of the use of teaching aids,

There are two versions of the questionnaire: one for the basic, and one for the
talent course. The sole difference is that the term of "basic course" in the
former was substituted by "talent course' in' the latter. This specification of the
type of course occurs very frequently among the items in order to keep the
muathemalics teacher from answering the questions in a general way instead of
referring to the specific classroom activity in his own course.

As most items were concened with concrete classroom acivities, our interest was
how Irequently Lhese occurred within the entire halfyear surveyed. For this, we
presented a scale containing six categories, with the extremes of "always" and
"never',

The results were first broken down according to individual items; after that
queslions ot establishing scales and of factor structures were discussed, To state
the most surprising result first: with regard to the aspect of the teaching styles
investigated, the fact whether the students are given three or six lessons per
week seems to make little difference. Merely with regard to the dimension of
"'development versus standardidization of mathematical knowledge", there were
clear-cut differences between basic and talent courses, Some possible conclu-
sions for mathematics education shall be given in the oral contribution.
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EXPERIENCES COMCERNING MATHEMATICAL EDUCATION IN AFRICA

G. Ervynck
Catholic University of Leuven

Campus Kortriik, Relqgium

The author had the occasion to snend as a visiting professor,
in the years 1982 and 1983, some time at an african univer-
sity ( Kisangani, Zaire ) and believes that it is worth while
to report about his exneriences on mathematics instruction in
an african country. Scientific life in Africa is very diffe-
rent from ours in Eurone, most problems arise from the fact
that material conditions of 1ife and means of communication
are much more intricate than in Europe.

The educational system in Zaire ressembles very much the
belgian system. Primary and secondary level instruction both
take six years, from 6-12 and 12-18 respectively. After se-
condary instruction, a restricted number of students is se-
lected for entering university. Due to material conditions,
the number of available places at the universities is always
inferior to the number of applicants. Hence, a selection is un-
avoidable. My experiences concern first year students in bio-
logy and agronomy on a course of Introductory Mathematics,
nreparing for statistics and anplications of mathematics in
biology and agriculture. The content of this course was a very
classical one : elementary geometry, linear alaebra and calculus.
Althouqh the basis on which imnressions and conclusions are
qrounded, is rather small, it is justifiable to say that it is
a caracteristic sample out of a neneral situation.

The learning difficulties the students have to face can be
classified in two major cateaories : difficulties due to exter-
nal factors such as social life and nedaqoqical situations and
others due to internal factors, which are mostly related to some
unacouaintance with classical features of our euronean way of
thinking and cnncention of scientific culture. The first cate-
qgory seems to he nrenaonderant, to such an extent that it is
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sometimes impossible to decide wether a lack of knowledge is
due to a failure of understandina mathematical reasoninn or to
a lack of familiarity with verbal exnressions and with real
life examples that often go together with mathematics teaching.

1. Conditions deriving from the facts of social 1life.

Becoming a university student in an african country means
to be thrown to one's own resources. In fact, students came
from all over the country, some of them had their home about
thousand kilometers away from the university. They are in the
impossibility to return to their family more than once a
year. Lodging and board is supplied by the university; inevi-
tably, all this is very uniform in character and the small
financial means of most students do not allow any exceptio-
nal expense. A student's day is rather monotonous and mate-
rial problems, together with the effects of the climate,
often prevent from intellectual efforts.

In the same context, it is worth while to note that tea-
ching makes use of a foreign language. Although French is the
official language, and most students accomplish the task to
master it rather well, it is not their native lanquage and it
occurs that they have some difficulties to grasp all subtle-
ties of a complicated paragraph, e.g. commenting a mathema-
tical formula in a verbal form requires an effort to avoid
an all too intricate terminology.

2. Pedagogical situation : far from optimum.

The most crucial problem is how to qget qualified teachers
at the university level. There are not enouch native profes-
sors available in order to assume all teaching charges. The
open places are taken by foreigners, mostly from Europe, some
are full-time members of the local staff, others are visi-
ting professors, coming for a short time and teaching a course
at high rate. It is not exceptional that a visiting has two
hours of lecturing, followed by two hours of exercises a day,
finishing his course in this way in four or five weeks.

In the meantime the other courses are reduced or stopped. From
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a didactical viewnoint, this is a rather unsatisfactory
situation. Long coemmunication lines are responsible for heavy
restrictions on the availability of teachinag aids, didacti-
cal equipment and books. A1l this has te be imnorted over
lonag distances; especially the constitution of a suitable 11-
brary is an unsolved nroblem.Books are expensive and ¢nfor-
mation about new volumes comes in at slow rate, As a result
of this conditions, students often have nothing else but
their classroom notes in order to prepare the examination.

3. Internal factors.

It will not be surprising that sudents showed an unfa-
miliarity and even opposition towards abstraction and forma-
lism. This is a common feature of all courses for non-pro-
fessional mathematicians and there is no need to go further
into this subject here. It suffices to realise that african
students are educated in a society which tends almost exclu-
sively towards pragmatism.

Related to the foreqoing is a definite nreference to ver-
bal expression versus formal and concise statements by means
nf a formula. Let us recall that students are linguistically
well aifted, speaking several lanaouaqes; the tendency to
convert anstract definitions into litterary sentences is pro-
bably another aspect of this ability., The real problem is to
explain why the content of a verbal statement may differ from
the meaninag (concent imace) incorporated in the formal
(mathematical) exnression.

In a general setting, the teacher has tn take care of re-
fering to situations that are part of the qeneral euronean
background, but that are often unknown in Africa. An example
of an unsuccessful attempt to explain the notion and the
fundamental laws of bprobability theory, was the use of card
playing., It turned out that several students were unfamiliar
with card nlayinag, and that the distribution choosen as a star-
ting noint for calculations didn't mean anything to them.

Nevertheless all this problems, some nositive facts have
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to be mentioned. Students are aware of the fact that they are
lucky to have an onnortunity to narticinate in hioher education,
they are very obliging and eaner to accomplish their tasks.
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RESERRCH AND CURRICULUM DEVELOPMENT: THE DEVELOPMENI
OF DIAGNOSTIC ASSESSMENTS AND TEACHING/SELF-LERRNING

MATERIALS IN MATHEMATICS FOR ADULTS.

GECORGE BARR, BRUNEL UNIVERSITY

INTRODUCTION
This paper outlines the results and procedures of a project concerned with
the development of parallel diagnostic assessments in basic mathematics
together with complementary teaching/self-learning materials for TOPS
trainees. TOPS trainees are adults on Training Opportunity Schemes which
are organized by the Manpower Services Commission (MSC), a British Govern-
ment Agency, which offers more than 500 courses nationwide "from brick-
laying to electronics for people 19 years of age or older. The vast
majority of these courses take place in establishments called Skill

Centres.

There is concern in Britain about the mathematical difficulties and needs
of adults. Researchers over the past decade have addressed a number of
releévant aspects dealing with:

(i) Mathematical difficulties experienced by a variety of groups of people,
e.g. Sewell (19Bl), Reys (1976) have considered adults in general; Rees
(1973}, Hitch (1978), Barr {1980) have considered apprentices;

(ii) the mathematical requirements of adults, i.e. the work of Freshwater
(198l1) , Howie (198l), Lindsay (1977), Fitzgerald (1976) and
(iii) the methods of teaching numeracy to adults, e.g. ALBSU (1982), BSU
(1982) , Riley and Riley (1978).

Many of the ideas and findings of the works referenced above were utilized

in the project.

Staff within the MSC were not satisfied with the resources available for the
selection of TOPS trainees for revision of basic mathematics. They wanted
an assessment that would highlight the concepts and skills that needed
revision and they wanted teaching materials that could be used for

revision.

The teaching/self-learning materials consist of eight written units/
sections with a brief instructors' guide, tocgether with seven Audio Visual

packages.

PROCEDURE

The procedure is best summarized in a crude flowchart.
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THE RESULTS OF TESTING

We shall consider these results in two ways:

(a) from the trainees' view-

point (i.e. difficulties experienced) and (b) from the test statistics

standpoint (means, reliabilities, etc.).

a) From the Trainees' Viewpoint

The difficulties experienced by trainees in both tests are summarized in the

table below.

TOPIC

DIFFICULTY

Place Value:

Knowing the meaning/value of the digits to
right of the decimal point.

Division:

If there is a zero embedded in the answer this
tends to be omitted.

Squares and Square Roots:

a) Of integers (i) Confusion of the term
square and square roots. (ii) Lack of
understanding of the magnitude of a
square root,

b) Of numbers less than one.

Adding of Common
Fractions:

Adding tops and adding bottoms is a popular
method used.

Conversion of Common
Fractions to Decimal
Fractions (to 2 decimal
places) :

(1) Misunderstanding the meaning of "correct
to 2 decimal places". (ii) Giving the top
number, decimal point, bottom number as the
conversion.

Multiplication and
Division of Numbers
than One:

Less

Confusion of methods of addition/subtraction
with multiplication/division (i.e. decimal
point alignment).

Solution of Equations where
the Unknown is the
Denominator of a Fraction.

Substitution:

x’y appears to read as x2y or x° + y.

Use of Scales from a Map.

Ratio

Area o dimension?; volume a dimension?.

Conversion of Square Metres
to Square Millimetres.

Finding the Circumference
and Area of a Circle.
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b) From the Test Statistics Viewpoint

Briefly, the information collected suggests that the two samples of 169 and
153 trainees respectively, were from similar backgrounds with respect to age
of trainees, trades, mathematical background, etc. Further that their
performance in the tests was comparable in terms of mean scores and extent

of difficulty experienced on specific items.

The statistical reliability of the two tests using KR20 was 0.92 of both
tests which is acceptable and consistent with results from previous studies,

as are the reliabilities for the component topic areas within the test.

THE RESULTS OF PILOTING THE WRITTEN MATERIALS
The materials were developed in topic sections,each topic forming a unit,so
that they could be used as a source book for class instruction or as self-
learning materials., There are eight units in all: Place Value; Multiplication
and Division of Natural Numbers; Multiplication and Division of Decimal
Fractions; the four arithmetic operations on Common Fractions; Ratio; Algebra;
Squares and Square Roots; Shape, Perimeters, Area and Volume. The structure of
a unit is: example and exercise, example and exercise, ......, end of unit

exercise.

Teaching in general appears to involve either class teaching or self-
learning using programmed texts. The method of instruction used at the Skill
Centre where the materials were piloted was a tutored self-learning approach.
It was decided to conform to the Skill Centre practice, so that the

materials were plloted as self-learning materials.

It was clear that the researcher would only be dealing with small numbers and
be in an unrealistic situation if he only dealt with one intake of trainees,
It was decided that two consecutive weeks intake should be used for the pilot
study. All trainees entering during this pericd were given Diagnostic
Assessment I. If they scored 50% or below they were candidates for revision.

Five trainees were selected from the first intake and four from the second.

The whole set of materials was used for the standard 20 hours revision time

on all the trainees over a period of 6 weeks. It was important that the
trainees were exposed to all the materials since there were so few of them

and information would be lost on the optional units if they were allowed to

be optional(!) The Skill Centre time-tabled three sessions of revision a week.

They lasted for an hour to an hour and a half.

The materials appeared to be well received. The trainees worked through the
units at their own pace. Some took work home for homework. Comments that

arose during the course of our sessions together were noted and changes were
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scmetimes made. Once all the materials had been worked through the trainees

attempted Diagnostic Assessment II since Diagnostic Assessment II was by
then established as a parallel test to Diagnostic Assessment I. This meant

that the assessments were used within around five weeks of each other.

Below is the table of pre-revision scores on Diagnostic Assessment I and

post-revision scores on Diagnostic Assessment II,

Pre Post Gain
Revision

% % %
48 60 12
22 58 36
le 50 34
44 70 26
14 50 36
34 72 38
42 68 26
46 70 24
22 62 40

From this table it can be seen that significant gains appear to have been

achieved.

The trainees were asked to comment about the work they had been doing
during the course of their revision and were also interviewed on their
feelings about it. One very pertinent point was made: "You didn't make

anyone. feel like a dummy because they were experiencing difficulty with

learning the subject."

One aspect of teaching basic mathematics to adults who have been "through
the mill" before is that their confidence must be built up. To this end

we need to be aware of the emotional as well as the conceptual domain of

mathematics,

PRODUCTICN AND RESULTS OF PILOTING THE AUDIC VISUAL MATERIALS
Considerable discussion took place about the content and style of
presentation bearing in mind the particular needs of Skill Centre trainees.
The production of such materials is costly. It was therefore decided to

produce one programme and pilot it to evaluate how effective it was.

A programme "Multiplying Decimals" was produced and shown to a group of
seven trainees who had been selected for revision but who had not received

any revision at the time of seeing the programme.

At the end of the programme the trainees were given a questionnaire on the
presentation, length, tempo, etc. of the programme. This information was

supplemented by comments gained when the trainees were interviewed.
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As a result it was decided that the most effective style of presentation
was an informal one. The method of presentation was designed to encourage
confidence in the trainees and to minimise any feeling of inadegquacy with
mathematics that so many of the trainees chosen for revision appear to

experience.

Seven programmes were produced which were based on the first four units of
the written materials (i.e. the core materials). All units, except unit 1,

were split in two for the production of the programmes.

The Series is called "Working with Numbers" and the programme titles are:
l. Thinking of Numbers. 2., Multiplying Whole Numbexs. 3., Dividing Whole
Numbers. 4. Multiplying Decimals. 5. Dividing Decimals. 6. Adding and

Subtracting Fractions. 7. Multiplying and Dividing Fractions.

IMPLICATIONS OF THE RESULTS

As a result of the study we have developed a set of parallel diagnostic
assessments together with sets of complementary written teaching/self-

learning packages and Audio Visual packages.

A small scale evaluation of the materials, made by the researcher, indicates
that the tests used in conjunction with the written materials helps trainees

revise and develop their basic mathematical concepts and skills.

The materials developed now need te be exposed to at least a small selection
of Skill Centres to determine whether or not they can be used efficiently

to help trainees revise basic mathematical concepts and skills. An evaluation

study is clearly the next step.
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DRA-MATH ;

by
Nitsa Movshovitz-Hadar & Tamar Reiner
Technion, Dept of Education Israel Instructional Television
in Science & Technology Center
Haifa, Israel Tel-Aviv, Israel
INTRODUCTION

Dra-math is a new series of sixteen 25-minute video programs in elementary

mathematics, produced by the Israel Instructional Television Center. The

series serves as the backbone of the country's fourth grade math curriculum.

The series consists of the following titles:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

Multiples and Divisibility,
Why Shouldn't You Divide by Zero.
Prime and Composite Numbers.
Geometry 1.

Factorizatidn,

Powers,

The Decimal System,

Geometry 2,

The Arithmetical Operations,
Divisibility Tests,
Estimation and Rounding
Geometry 3,

Long Division,

Negative Numbers,

Diagrams and Graphs

Geometry 4,
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GOALS

The development of the series capitalized on knowledge gained from studies
in five psychological aspects of mathematics education: motivation, math-
anxiety, logical reasoning, communication and retention. Consequently, the

series is aimed at achieving the following goals.

A. In the affective domain:
(1) To increase motivation for studying mathematics,

(2) To lower the level of fear of mathematics,

B. In the cognitive domain:
(1) To provide for the development of mathematical-logical reasoning,
(2) To encourage retention of basic concepts and principles.
(3) To improve the assimilation of mathematical language into the
natural speech of students.

The remainder of this paper shall analyze the way these goals are translated

into operational terms. The last section contains details of a sample
script.

MATHEMATICAL DRAMA

Drama is (assumed to be) a good tool for serving the goals in both the affec-

tive and the cognitive domains.

The programs present mathematics as an enjoyable experience through drama
which,in most cases, serves as an integral part of the treatment of the

mathematical topic.

The drama stems from surprising mathematical facts, patterns or puzzles.
Typical errors, known to occur commonly, are treated in the programs by form-
ing around them a conflict-situation, or by bringing them to an absurd point.

Here are a few examples of mathematical triggers of drama:

(1) The uniqueness of prime decomposition of a number is surprising, partic-
ularly in light of the numerous ways it can be decomposed when factors
are not restricted to primes.

(2) The pattern of finding the quotient of an integer divided by a non-zero
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integer,by changing the problem into a missing factor problem, becomes
nonsensical when applied to zero as a divisor,
(3) Surprisingly, it is possible to know whether or not a number is divis-
ible by 4 without knowing all its digits!

(4) What do we get by multiplying 2 by itself 16 times? Is it 2 x 16 or
16
297

The broad potential of television is utilized to stimulate personal student
involvement in the drama, and to turn mathematical challenges into intellec-

tual recreation.
A WELCOMING ATMOSPHERE

Several decisions were made in order to create a friendly environment, thus

aiming at the goals in the affective domain.

1) There is no one mathematical authority who teaches. A young actor whose
hobby is math and excells in telling strange stories is the main adult
character.

2) The cast includes children, allowing for identification of the audience
with the screen action.

3) Girls do not play the traditional role of mathematical inferiors, and
mathematics is not conveyed as a male role occupation,

4) Various segments of Israeli society are represented through the charac-
ters, and any stereotypical role of mathematical failure is eliminated,
"I catch on too'" is the desired classroom students' reaction to be gath-
ered from viewing the programs.

5) Humor is not neglected as a way of enhancing familiarity. The same pur-
pose is served also by mime-acting, magic tricks, science fiction, dreams,

sports, outings, parties and games.
MATHEMATICAL EXPOSITION

With reference to the goals in the cognitive domain, the development of math-
ematical contents in the programs attempts to take into account the needs and
limitations of the cognitive development level of the target population (ages
9 - 10) without relaxing the requirement of mathematical rigor.

The unfolding of the program content proceeds from concrete experience and

the examinaticn of particular cases, based upon analogies where appropriate,
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through intuitive generalization resulting from an analysis of examples and.
counter-examples, to finally observation of patterns and rules. As far as
possible, new knowledge is not presented without accompanying explanation.
The introduction of new subject matter is carefully based upon reasons

anchored in logical arguments. However, formal proofs are not presented.

Mathematical language is kept as accurate as possible compromising only when
it interferes with the natural communication ability of the target popula-
tion (ages 9 - 10).

Shart mathematical rhymes, often musical, provide means for retention of
basic concepts and principles. They appear several times in each program,
and subdivide it into a chain of short items.

ITEMARY STRUCTURE

Every program is composed of several items, each communicating a certain
mathematical message. All items in one program treat the same topic, relat-
ing to various aspects of it, or to different levels of generalization in

hierarchical order,.

The itemary structure also enables audience attention renewal on one hand,

and it facilitates diversity in production means on the other hand.

Let us now examine, for example, the itemary structure of one program:
"Prime and Composite Numbers".
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