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ALAN |. BISHOP

THE SOCIAL PSYCHOLOGY OF MATHEMATICS EDUCATION

1 would like to begin my talk by presenting to you three items of data
from different pieces of research into the learning of mathematics. I have
wlected these because between them they seem to be to ‘cateh’ the essence
of mv title. [ hope also thar these items will relate to your own personal
Jore of evidence, so that you will be able to see their significance in a
wider context than that within which I shall present them.

I'he first concerns a secondary mathematics teacher, Alec, (MacPher-
o, 1973) who was deliberately trying to affect what we called the ‘work-
me relationship® between himself and certain of his pupils (is was a
amilar idea 1o that of the ‘didactical contract’” developed by Brousseau
{1981). although it was not «o directly concerned with negotiating the
conditions of classwork). In this case Alee had set himself some tasks to
improve the working relationship with a few of his pupils with whom he
felt he had not got a good relationship, ¢.¢. he was finding out more
about their hobbies, tatking to them every lesson, and only asking them
a question publicly when he already felt sure that they knew the answer.
In his school there were class-orders kept in cach subject, and these were
reviewed each half-term, so that he was able to see if his behaviour had
any effect on the puptils” order in class. With all pupils his behaviour had
important effects and with one girl a surprising fact was revealed — not
only did she change here class-order from 20th place to the 4th place in
mathematics, but also her best friend, who sat next to her, moved up as
well.

In some way Alec’s influence was communicated to another pupil than
just the one he was trving to influence. [ was reminded of Jacob Kounin’s
(1970) study of discipline and group management, where he explored
what he called the ‘ripple effect” of various ‘desist technigues’.

The second piece of reported data is from Lorenz’ (1982} study where
he described particularly the ways in which mathematics teachers
thouvht about their pupils and how these views manifested themselves in
the classroom. Amongst various fascinating findings was one which
stood out for me, because it was a paradigmatic example of a phenom-
cnon [ had seen in many classrooms of both beginning and experienced
teachers. He found that teachers’ behaviours which were designed to be
‘helpful” were in fact directed more often towards the more-able pupils
than to their less-able, but presumably more needy, peers.

]
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The third item of phenomena is one which 1 have reported before
{Bishap, 1979). 1 make 1o apalogy for reporting it again because it con-
tinues to fascinate me. The fact that I was directly involved is also impor-
tant because it illustrates the point that it has for me a social, and indeed
an cmotional significance, as well as a cognitive significance.

it concerns me interviewing a university student in Papua New Guinea
and trying 1o understand more about his ‘local’ or ‘folk’ mathematics.
1 asked him how he would find the area of a rectangular piece of paper.
He replied:

“Muliiply the length by the width’’. *“You have gardens in your village. How do your peo-
ple judge the area of their gardens?”” ““‘By adding the length and the width’, **Is that dif-
ficult to understand?’’ ““Nn, at home | add, at school I multiply’’. “‘But they both refer
to area’ 'Yes, but one is about the arca of a piece of paper and the other is about a
worden’’. So I drew two (rectangular) gardens on the paper, one bigger than the other *‘If
these were two pardens which would you rather have?" “‘it depends on many thinus, Tean-
not say. The soil, the shade . . .*" 1 was then about 10 ask the next question *“Yes, but if
they had the same soil, shade . . ."" when [ realised how silly that would sound in that
vontext.

Now it would be relatively easy to dismiss the first item as some sort
of accidental coincidence. The second item would be harder to dismiss
but could be explained by criticising the accuracy of teachers’ knowledge

of who were the more- and less-able pupils in their classes. The third item
seems sct up for a perfect piece of resolution by the teacher of 2 learner’s
cognitive conflict.

However 1 do nor want 1o dismiss themy, nor do 1 want to 1ry 1o find
essentially cognitive explanations for them. They interest me because
they are typical of many situations which have a strong social/ compo-
nent, and which I feel have been relatively ignored by researchers, In the
context of this talk they represent phenomena and problems in the arca
of the social psychology of mathematics education. I hope also, as 1 said
carlier, that these three items have some personal meanings for you as
well because whilst describing my ideas about social psychology | am also
trying to influence you. I can only do that if you are socially involved
with these problems as well as being intellectually motivated to attend to
them.

A learning cxpericnce like this, and 1 hope this is a learning experience
for you, is as much a social experience as it is a cognitive one. For exam-
ple, learning from other people is different {rom learning from texts and
a context such as this does have a social dimension to it. 1 know that
listening to me talking today is a different experience from reading the
printed text. I am not suggesting or implying that one is a better ex-
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perience than the other but I hope we can agree that they are certainly
different experiences. Therefore, if the aim of rescarch into the learning
and teaching of mathematics is to understand more how these happen,
we must attend to this social dimension, since mathemaucs learning in
classrooms, by definition, takes place in a social context. Mathematics
classrooms are very ‘public’ places in which it is impossible to achicve
privacy. Every act is performed in a social situation even if it involves
pupils using their own individual text materials. Every interaction be-
tween a pupil and some mathematics in the classroom is sc :ally me-
diated. As with the classic research of Asch (1951) even if an individual
pupil believes a certain mathematical proposition to be true, the social
and interpersonal influences operating in the classroom can prevent the
pupil expressing that proposition ‘publicly’, and can also make the pupil
think she is wrong.

Fortunately rescarch in this social area is growing and it is not as
deserted a terrain as once it was. We have seen developments in research
on topics like the fear of mathematics, sex-role stereotyping, pupils’ at-
titudes and attributions, teachers’ perceptions and epistemologies, and
collaborative learning, ali of which can increase our awareness and
understanding of social phenomena in the learning of mathematics.
What I should like to do today is to help increase the momentum of this
research, to help coordinate and connect some of the developments and
to help identify the significant aspects from the perspective of teacher
training and teacher cducation.

Firstly 1 think it 1s necessary for today’s talk to set the ‘‘social
psychology’” emphasis in context of my general views on the social
dimension in mathematics educaticn Research into this dimension is
significant, for me, at five levels. At the cultural level research can in-
form us about the history and development of mathematical ideas and
their relationshi,. with one’s culture (e.g. Kline, 1954). Also cross
cultural studies like Lancy’s (1983) and analyses like Ellul's (1980) and
Weizenbaum's (1976) sensitise us to more complex aspects of this
relationship.

Al the socretal level, the rescarch concerns the various institutions in
society and the political and ideological influences which they bring to
bear on the mathematics education of our chiliren (see tor example Grif-
tiths and Howson, 1974; Swetz, 1978). Some of these institutions are for-
mally concerned with education of course but many are not and accounts

like Fasheh’s (1982) illustrate wel the tensions and conflicts which exist
between them.
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At the institutional level research is about for example the within-
school mfluences which help to shape the intended and the implemented
mathematics curriculum for the pupils (see for example, Stake and
Easley, 1978). Donovan’s (1983) study also concerns these influences and
shows how the values andideologics of the dominant cultural group filter
into the mstitution of school. Marrett and Gates (1983) describe how
such values determine which pupils study mathematics in which tracks
(or sets) and thereby indicates another institutional mechanism for con-
trolling the pupils’ matnematical education.

At the pedagogical level we at last enter the classroom and find
research some of which relates specifically to our topic today. I have add-
ed another level to the social dimension though which [ call the individual
level, because there 1s a growing amount of research which focusses on
the learner from a social perspective. This again { shall say more about.

1 hope this briet overview serves to demonstrate that the social and in-
terpersonal influences on the learner in the mathematics classroom have
strong connections with values and ideologies emerging from interac-
tions taking place far from the classroom. An awareness of the whole
social dimension reminds us 1 hope of these connections. If there is one
thing to be learned from research into social aspects of mathematics

cducation it is that the context, and the sitwarion, arc all important.
Concentrating now on social psychology, | want to look at three
aspects today: social motivation, social cognition and social interaction.

1. SOCIAL MOTIVATION

Let us begin with a topic which has stimulated a great deal of research
activity world-wide — namely, the fear of mathematics. It is a topic
which has been fruitfully analysed by Buxton (1981) amongst others and
which contains many ideas of importance to teachers and teacher
educators. Of particular interest here is the fact that both Buxton and
Skemp (1979) use the wdea of goals and anti-goals (to be avoided by the
learner) and their discussions of anxiety, frustration and other emotions
are very helpful to our understanding of how the classroom
mathematical experience appears (o pupils.

Another anti-goal identified in the literature i1s the ‘fear of success’
construct found to be of great valuc by Leder (1980) in understanding
why bright girls in mathematics deliberately avoid success and achieve-
ment in order to retain the respect and acceptance of their peers. This is
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of course not just a phenomenon to be seen with bright girls. It will be
noticed by any teacher of mathematics particularly of adolescent
children, who will apparently prefer not to succeed and indeed, not to
try to succeed for fear of losing the respect of their friends. At the adoles-
cent stage, well noted for being a time of questioning and challenging
authority, goals promoted by the teacher may well be perceived as anti-
goals by some pupils (hopefully not all!).

Whether the teacher-mediated goals are accepted by the pupils as
eoals, or converted into anti-goals, will be determined by various factors.
In particular the role of Significant Others must be recognised. Although
this ider (S.0.) was developed by Sullivan (1940) within the psychiatric
field it does have value for us also. You do not require much observation
time in mathematics classrooms to begin to identify which individuals in
the group significantly affect the behaviour and the motivations of
others. The situation presented at the start of the talk illustrates this. The
pupil whom Alec was trying to influence was also clecarly a Significant
Other for her neighbour and the change in motivation and achievement
in one had a very strong affect on the other pupil.

Of course it is likely that for many pupils the teacher will have the
status of a Significant Other. But it is also true that for some pupils this
will not be the case. Likewise there will often be some pupils who will
become 5.0. for the teacher, and will have a significant shaping effect
on the teacher’s motivation and behaviour. This point reminds us that
teachers can also have goals and anti-goals, with e.g. the ‘‘development
of mathematical understanding’’ being a clear goal and the ‘‘fear of con-
frontation’” being a strong anti-goal for many teachers. Again we can
understand how individual pupils, acting as Significant Others for the
teacher, can affect the relative strength of the teacher’s goal/anti-goal
tension.

In an earlier paper (Bishop, 1981), I presented some ideas concerning
mathematical involvement, a construct designed to describe affect-in-
action, l.e. the observable realisation of a positive attitude towards
mathematics. It concerns the extent to which pupils demonstrate their
willingness to engage in a class’ mathematical activity. Given the goal of
the teacher to try to increase the mathematical involvement of as many
pupils as possible, it would also be an indicator of the extent to which
any one pupil related to the teacher as Significant Other. Furthermore
the teacher as a leader, or as a model, would also clearly be an important
factor in creating mathematical involvement.
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Finally in the section 1 should like to mention exchange thcory ~ a
motivation theory which zssentially proposes that individuals engage in
interactions which offer them more as rewards than they are giving out
as costs {(Homans, 1961). In these terms it is unrealistic of the teacher to
imagine that ‘motivation’ is a once and for all problem, e.g. that once
the child is motivated to do well at mathematics that motivation will
carry on through the year and through the school. Equally it offers an
alternative view of motivation from that of the verb ‘to motivate’. It um
plies instead that teachers recognise that pupils will only become involved
in a inathematical activity if the perceived ‘rewards’ are greater that the
perceived costs (potential loss of friendships, mental strain, fear of
fatlure, etc.). Furthermore it predicts that once the costs exceed the
rewards, the involvement will cease. Despite this theory’s simple and
perhaps ‘too-mercenary’ view of human nature, it does nevertheless help
to explain and predict many of the paradigmatic problems of social
motivation.

Perhaps we necd more research which looks at pupils’ gnals (and anti-
goals) in relation to Significant Others? Perhaps we need to resuscitate
the old ideas of sociometrics and sociograms, but instead of looking
merely for friendship groupings and for isolates, we should look more
for the S.0.’s who influcnce choices of goals or anti-goals? Finally,
perceptions of the ‘rewards’ and ‘costs’ of mathematical involvement by
different pupils would also bc of importance together with the relevant
perceptions of their S.0.’s, one of whom may be the tcacher. Once again
this kind of analysis shows us that research which considers only the
teacher as the influence on the pupil will probably miss the real
influcnces,

2. SOCIAL COGNITION

This section concerns the ways in which people ‘know’ other people, and
in relation to mathematics classrooms we are particulerly interested in
the ways the pupils are known. Teachers’ perceptions about their pupils
has been a fertile ground for research for many years and their impor-
tance was well demonstrated by studies of their ‘self-fulfilling prophecy’
— whereby pupil’s live up to, or live down to, the perceptions and expec-
tations of them by their teachers. It seems to me morcover that what is
pedagogically significant about any psychological pupil construct is how
that phenomenon is perceived by the teacher. Even if a rescarcher
‘establishes that, for example, a pupil has a preference for using visual
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imagery in mathematics, what really matters is the teacher’s perception
of that situation. As another example, I found it interesting to analyse
teachers’ responses to pupils’ errors by using the idea of teachers’
perceived error (Bishop, 1976).

Mention of the word ‘construct’ above requires that | give due recogni
tion 10 Kelly’s (1955) Personal Construct Thecry, a theory which many
researchers now use implicitly to guide their work. At the heart of the
theory lies our individual system of bi-polar constructs and one construct
which, in my experience, many mathematics teachers use, both implicitly
and explicitly to shape their constructions of their pupils, is that of
‘mathematical ability’. Teachers’ behaviours seem to be strongly af-
fected by their perceptions of the more-able/less-able ‘dimension’ and |
would like us to be clear that when we are discussing aspects of teaching
like this with teachers, we call it perceived mathematical abiiity. Labels
like ‘mathematical ability’ have a way of becoming very fixed and stable
classifications in many teacher’s minds, and they need reminding that
they are only talking about ‘perceptions’ which one can, and should, be
prepared to change.

If we link this idea with another we can see some important conse-
qucnces. Various researchers have considered the particular problems
faced by girls in learning mathematics, and amongst other ideas which
have been explored is that of sex-role stereotyping. This label is put on
the behaviours of teachers and others which seem to restrain girls’
behaviours so that they stay close to a certain role-modei for girls.
Researchers like Becker (1981) have identified the obvious and not so ob-
vious ways in which teachers do this.

If however we consider the general idea of role-stereotype, we can sec
how other groups of learners are made to become disadvantaged in the
same way as some girls are. For example, there are undoubtedly many
instances of ability-role stereotyping, whereby teachers’ behaviours
towards more-able pupils are markedly different from their behaviours
towards less-able pupils. One would naively assume that these different
behaviours are designed to improve the performance of the less-able
pupils, but this (as the data from Lorenz’ study shows) is nof what hap-
pens. The way to understand this phenomenon is to treat it as role-
stereotyping, whereby the more-able pupils are encouraged to be more-
able and the less-able pupils are encouraged to continue to be less-able.

One has of course also seen many instances of class-role stereotyping
(upper, middle, and working classes) and of race-role stereotyping but
I have come across another situation which also surprised me. 1 call it

iv
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handicap-role stereotyping which | have scen with both blind and deaf
children who are kept playing a dependent and ‘appropriate’ handicap-
ped role. It is, furthermore, very difficult for any mathematics teacher
who wants to break away from the stultifying effects of any of this
stereotyping if the cducational system continues to support it. In the
U.K., for cxample, *sctting’ the pupils into so-called homogeneous abiti-
ty groups for mathematics occurs in almost all secondary schootls. Such
an institutionalised system clearly reinforces the ability-role stereotyping
which many teachers adopt. In my personal view this is a far more serious
and widespread problem than scx-role stereotyping nowadays.

Onc way to get beyond merc stereotyping is perhaps to make teachers
more aware about how their behaviours and expections shape pupils’ as-
tributions. The interest in attribution theory has grown in recent ycars
and there is a well-developed literature (sec Weiner, 1972, for example).
One strand of the research looks at children’s perceived causes of their
performance and whether these causes are internal or external to the
pupil. Another strand considers teachers’ attributions of pupils’ perfor-
mance. For example, Johnson er al. (1964) taught pairs of 10 year old
children some arithmetic procedures. For each pair it was organised that
onc child (4) would do wcll at the first asscssment whilc the other (B)
would do poorly. The teachers then taught each pair again and this time,
while A continued to do well, it was arranged that half of the B pupils
improved and the other half declincd. Amongst other findings was the
interesting one that the teachers attributed the tmproving B’s perfor-
mance to their teaching, but they attributed the declining B’s perfor-
mance to the pupils themselves.

Clearly attribution theory could help teachers to understand more
about their role in pupils’ development of their own self-concept. What
would be important to know more about is how, and under what condi-
tions, attributions can change. Once again Alec’s story, from earlier,
gives us some indications, but if all of us are not to remain trapped by
our own attributions we must try to interpret this idea much more
dynamically. Kelly discusses a treatment he calls ‘fixed-role therapy’
which I applied to the idea of teachers doing more of their own research
and investigations (see Bishop, 1972). That was the context from Alec’s
story arose. It was clear to me, and to him, that the ‘therapy’ of playing
a ‘fixed-role’ (the researcher) for a period of time, had the effect of
changing dramatically his perceptions, his constructions and his attribu-
tions. It would be useful to have more evidence of such changes.

And why not make an imaginative analogue here? If that strategy
helped to change a teacher’s attributions, could a similar strategy affect

11
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a pupil’s attributions? But what could such a strategy ook like?

1. SOCIAL INTERACTION

We now turn to research and ideas which focus more explicitly on the
processes of social interaction. All the time we have been discussing
motivation and cognition the social interaction processes have had an im-
plicd presence and ceffect, but now we should consider some aspects a lit-
ke more directly.

First of all we find that the literaturc sensitizes us 1o the distinction bet-
ween ‘communication’ and ‘influence’. I feel also that it is important to
distinguish between these because the relative position of the interactors
implied by the two is different, and has therefore different consequences
for the teacher. For example, many teachers having asked a pupil a ques-
tion, then only prepare to evaluate and judge the answer received. Indeed
the position of ‘evaluator’ also predisposes teachers to ask certain kinds
of questions rather than others. The difference between communication
and influence is illustrated well by this extract from Harvey et al. (1982)
mn their study of language in mathematics:

D. 15's odd and a 2’s even.

RH. 15's odd and a A’s even? Is it?
D. Yes.

RH. Whyisa ¥ cven?

D. Because erm, Y4’s odd and > must be even.
RH. Why is %“ odd?

D. Because it's only 3.

RH. What’s only 3?

D. A Vi,

RH. A Vva’s only 3?

D That’s what I did in my division.

AL this point another child joined in to explain to the teacher:

R. Yes, there’s three parts in a quarter like on a clock. T
goes 5, 10, 15.
Oh, I see.
There’s only three parts in it.
Ah, so you’ve got three lots of 5 minutes makes a
quarter of an hour.
Yes. No. Yes, yes, yes.

(Harvey et al., 1982, p. 28)

13
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The teacher could have evaluated the pupil’s response at various
points, which would then probably have led to attempts to change the
pupil’s view - that is the shift from communication to influence. There
is a danger, 1 fecl, in the teacher only using the influential mode rather
than appropriately (as in the case above) using the communication mode.
I have chosen this cxample because, in my experience, such examples ot
communication in mathematics classrooms are rare. They nced to be bet-
ter documented in research, | feel.

But communication is not only verbal, as many studies and our own
experience tell us. It is also a two-way process in that both transmitter
and receiver must play a part if communication is to occur. Morcover it
is not always intentional on the part of the transmitter, and unintentional
‘messages’ are conveyed around the classroom by gesture, bodily posi-
tion, facial reactions and by words. Such messages are the ‘fabric’ of
social interaction from which we weave our constructions of others, and
our views of ourselves as others see us. Unintentional messages convey
1o pupils the teacher’s perceptions of them as much as do the intentional
messages, and some would say more so.

It is sometimes a matter of what is not communicated, as Webb’s
(1982) research shows. She studied heterogenous small groups working
on mathematical problems and found that one frequent occurrence was
that questions to the rest of the group by the less-able pupils were more
often ignored than accepted. One can easily predict the meanings con-
veyed by that message.

Moving now to the area of social and interpersonal influence, the
report of Perret - Clermont and her colleagucs (1984) must be quoted
here. It provides us with an excellent summary of rescarch and ideas con-
cerning the role of other people in children’s intellectual development.
As well as containing many ideas of interest and value to teachers it
should also provide a warning to any interviewer of any child no¢ to ig-
nore the social relationship between them. (My story from Papua New
Guinea at the start of the talk should not just be interpreted from a
cognitive standpoint either. The interactors had markedly different
values and sets of cultural assumptions which clearly affected the inter-
view.) Time and again we learn of children assessing the social situation
and context of the interview in their interpretation of the task, in their
responses and in their judgement of the way their responses are received,
Clearly, too, in a mathematics classroom, a mathematical activity is as
much a social activity as it is an intellectual one, and this awarencss is

critical for the teacher in interpreting problems of both motivation and
cognition, ]
i3
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Whereas Piagetian interviewers may not be intentionally influencing
the child, the teacher usuaily is, and correctly so in my opinion. But the
power given to the teacher by society, and usually achieved also in the
classroom, docs not necessarily dictate the kind of influence exerted by
the tecacher. My own analysis based on Barnes’ ideas (1976) and others
is that, in terms of the pupils’ mathematical development we can sec an
‘influence’ dimension varying from ‘imposition’ to ‘negotiation’. An im-
position interaction pattern is characterised by the teacher maintaining
tight controls over rules of procedure, over the kinds of acceptable con-
tributions (unusually of a very limited nature) over the amount of talk
(teacher maximumy}, over meanings of terms and over the methods of
solution. The mathematics teacher together with the textbook would
represent the mathematical authority for the validity of solutions and the
transmission of ideas and meaning from teacher to pupils would be
emphasised.

In a negation interaction pattern on the other hand, the rules of pro-
cedure are discussed and agreed on rather than imposed, the kinds of
contributions from pupils will vary, there will be more equal amounts of
teacher and pupil talk, and there will be discussions over meanings and
over methods of solution. The mathematical context itself will offer the
criteria for judging the acceptability and validity of solutions wherever
possible, and in other cases the nature of the conventional criteria will
be made explicit. In comparison with the transmission of ideas in the im-
position pattern, here we would expect to find more of an emphasis on
communication of ideas between teacher and pupils, and on establishing
and developing shared meanings.

Once again it would be usefu: to have ideas from research about
changes in interaction patterns and to know what conditions surrounded
a change from imposition to negotiation, or vice versa. However, from
the unintentional messages contained in my descriptions above, [ am sure
that you will correctly infer that my preference would be for more
negotiation and less imposition!

There is much more one could say about social interaction but space
only permits this brief reflection on what 1 feel are the most promising
research developments for us in mathematics education.

POSTSCRIPT

Here then are some preliminary thoughts about what 1 think of as the
social psychology of mathematics education. I hope my reasons for my
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interest have also been communicated in the talk and | hope that I have
persuaded others of the validity of these reasons.

I would certainly like to see this organisation take a lead in developing
this area of research and 1 look forward to seeing more papers on this
arca presented in subsequent conferences. | would be pleased to convene
a meeting during this conference 1o try to involve more people in the
development of this research.

University of Cambridge, Department of Education
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Mathematics is the majestic structure con-
ceived by man 1o grant him the comprehen-
sion of the universe.

1 F CORBUSIER

He said to me one dav in the second week
of July . **Asher Lev, there are two ways of
pamting the world. In the whole history ot
art, there are only these two ways. One is
the way of Greece and Africa, which sees
the worid as a geometrnic design. The other
is the way of Persia and India and China,
which «ces the world as a flower. Ingres,
Cézanne, Picasso paint the world a,
ecometrv. Van Gogh. Renorr, Kandinsky,
Chagall paint the world as a flower. Lam a
peometrician. [ sculpt cylinders, cubes,
triangles, and cones. The world is struc-
ture, and structure o e is peometry, |
seulpt geometry. I 2¢ the world as hard

edeed, filled with hines and angles. And |
see 1t as wild and raging and hideous, and
onhy occasionally beautiful. The world fills
me with disgust more often than ¢ fills me
with Jjoy. Are you listening (0 me, Asher
Lev? The world is a terrible place. 1 do nat
sculpt and paint to make the world sacred.
[ seulptand paint to pive permanence to m
fedlings about how terrible this world truly
.

CHAIM POTOK
(My namic s Asher Tew)

Kunst gibt mcht das Sichtbare wicder,
sondern macht sichtbar.

PAUL KR! EE
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Cemic strip is a form of serial drawing in
which incidents are separated by a frame or
a space. The means is simple yet it can sug-
gest time passing.

Although my drawings have no funny
people in them, they are related to the com-
ic strip by their means of presentation.
They are also related to the Bayeux
Tapestry, Trajan’s Column and much of
Hogarth's work. They all present events in
chronological order where something is
finally resolved; a battle is won, a marriage
ends in disaster, etc. My drawings however
constitute a logical order. The marks in my
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C’est un cheval, n'est-ce pas?

Oui, ow,

Mais non, ¢'est un oiscau.
= Qui, oui.
Ainst repond Miro, toujours poli, guand
on lui demande une explication.

PIERRE LOEB

A substantial number of arusts are now
working in such a way that the syntactic
content of their work can be exhaustively
notated. This method makes possible the
establishinent of a coherent corpus of work
with clear internal and external relation-
ships.  In  his 1949  essay *‘*Dic
mathematische Denkweise in der Kunst
unserer  Zeit’”’ Max  Bill provided a
definitive refutation of the criticisms that
works befonging to this category are, on the
onc hand, mere illustravons of the
mathematical principles or, on the other
hand, that their mathematical content 1s a
mere pretext for formalist aesthetics.

JEFFRLEY STELLE

serial do not refer to any set of events actual
or imagined. Instead the spectator is asked
to look at them for what they are.

Because abstract art is free of narrative it
may draw our attention to structural ideas
which are often obscured in figurative art
by the power of its images. My drawings arc
a series within a series, an eight part one
within a five part one. The linecr square
around cach drawing both separates events
and is part ol them. It compresses a scale of
intervals which progressively expands. The
scale  of intervals is based on
1+2+3+4+54+46+7+8.

Because these add up to 36, it fits the
following areas exactly: 1 x 36, 2 x 18,
3x 12, 4x9, 6x6. In the first drawing
the scale is simply placed against an edge of
the squarc. In subscquent drawings it ex-
pands and folds against :tself till the final
drawing where i1 completely fills the
square.

(1976)
PETER LOWE
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MATHEMATICS AND THE VISUAL APTS

In this lecture I’'ll try to investigate some relations between two features
of our culture, mathematics and the visual art. I'll restrict myself, with
a few exceptions, to the art of the last century. Much could be said and
is already said of the role of mathematics in the visual arts in former
times. One may think of the theory of symmetry and ornaments’, the
theory of perspective? and so on.

s

There are many, many ways to deal with our subject. | give a list of
some viewpoints and I make a personal choice on which of these details
[ give more or less emphasis.

1. Cubism

Long before the birth of cubism as an -ism, the use of single geometric
approximci1ons of still-live objects was well-known in the education of
coming artists., But in cubism there is a theory to see the world as a set
of geometrical forms, as it was remarked by Chaim Potok. There is no

2
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neced to recall the paintings of Cezanne, Braque, and Picasso of their
cubistic period, they are well-known.

Although the use of geometrical forms, cubes, cones, and so on give
some of the cubist paintings a geometrical aspect, some of the paintings
of Leger and Malevich give us more an industrial or technical impression.

2. Golden section and special ratio’s

The use of special simple ratio’s, such as I : 2, 2 : 2, known from the
theory of Larmony, in drawings, paintings and architecture has a long
tradition. The painter Richard Paul Lohse uses these ratio’s in many
ways, e.g. in “‘Progressiv gestufte Gruppen mit gleicher Farbzahl’*. The
theory of Vitruvius is a classical example.

But also irrational ratio’s play an important rdle in aesthetic theory.
Ratio’s derived from the square and the regular triangle such as 1 : /2
and 1:J3 are examples. But the golden section, the ratio
1 : (- Y2+ 2]5), derived from the regular pentagon, and also from the
dodecaéder has been object of many books and papers.® To make an ar-
bitrary choice, I found a catalogue of the Belgian artist Amédée Cortier
i which he writes: ‘‘Je veux exprimer dans mes peintures un équiiibre
de surfaces colorées qui doit donner aux spectateurs le sentiment de bien-
étre”’. And Saskia Bos writes in this catalogue a note: **Recherches sur
[*usage de la section d’or dans I’oeuvre d’ Amédée Cortier’’. But there are
many other examples to be given. In the time of the “Stijl” there was a
group of artists working under the name ““La Section d’Or’’ and there
was a famous exhibition with the same title. It 1ooks like that the most
famous painter of the **StjjI’’ Piet Mondriaan did not use the golden sec-
tion at all, however.
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3. Mathematical vobjects as a source of inspiration for the artist

Stll thinking about the golden section and the pentagon, 1 give a
reproduction of a painting of Jean Gorin entitled: ‘‘Etude d’une com-

position ¢manant du pentagone inscrit et circonscrit d’un cercle’’. Max
Bill made a lot of sculptures using simple geometrical forms, such oy
demi-spheres, but his “Endless Ribbon’’ is just a Mdbius strip.
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- In quite another way the painter (and famous photographer) Man Ray
uses tor some of his pictures that bear names of plays of Shakespeare,
- objects to be found in the cabinets of old mathematical institutes, used
in the beginning of this century by courses in complex functionthcory.
These models of plaster, made in the style of the illustrations in the

Jahnke-Emde tables, deal with elliptic functions and can also be found
in several science-musea. Man Ray used one of these models in his pain-
ting: ““The merry wives of Windsor”’. And still in another way G. de
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Chirico used mathematical objects
Trovatore™’,

in_ his metaphysical painting:

We can compare this work with a portrait of Euclid by the surrealistic
painter Max Ernst. In this portrait the relation between the title and the
subject of the painting is obvious. But | cannol understand the meaning

of the titles of some paintings of . Vantongerloo, such as
“Y=a + by 1R
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4. The fourth dimension

Atthe end of the 19th cenury and the beginning of the 20th century there
wis (quite a commotion concerning the mathematical construction of
geometrical objects in the fourth dimension. These were studies about
regular polytopes, more special about the generalisation of the square
and the cube, which is called hypercube or tesseract. A broader public
became interested in the fourth dimension. Partially by popular books,
like Flatland, on the subject, but also since the notion was used in
theories o explain *Creatio ¢x nihilo’’ in spiritism and so on (Z6llner).
Afterwards the use of the fourth dimension in the physical theory of
relativity, brought in the time as the fourth dimension. And although the
painter G. Severinit warned his brothers in the “*Stijl”” that there is still
a - | connected with the time as fourth dimension, many artists tried

to bring in time as fourth dimension in their painting. We recall that M.
Duchampin “‘Nude descending a staircase’” used in 1912 already cinema-
tographic theories in order to express *‘time”’ in a painting.

Quite a lot of pictures and sculptures of the fourth dimension werc
constructed. We give some examples. First a ‘‘Construction Spatiale aux
3¢ et 4° dimension’” of Antoine Pevsner; further a drawing of a cube and
a hypercube by Th. van Doesburg, one of the members of the “Stijl’’,
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o




FREDERICK VAN DER BLIJ

and the use of such a picture of 3 hypercube by Salvador Dali in s pain-
ting: *“‘Corpus Hypercubicius’’. Quite another representation of the

fourth dimension can be found in a picture of Max Weber: “‘Interior of
the fourth Dimension’’.
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There is a very complete study of the use of the fourth dimension in
art by Linda Dalrymple Henderson in her book: ‘‘The Fourth Dimension
and Non-Euclidean Geometry in Modern Art’ (Princeton, 1983). In this
study of more than 400 pages there are hundreds and hundreds of items
in the bibliography on this subject.

5. The use of abstraction

Is it a sheer coincidence that the notions abstract mathematics and
abstract art became popular in the beginning of this century? There was
always abstract music, but the new dodecaphony, the twelve tone com-
positions, had its roots in the same time as the beginning of abstract pain-
ting by Kandinsky (there is a correspondence between Kandinsky and
Schonbery). Pierre Boulez, a well known composer and conductor of our
rime, writes about Kandinsky: “‘For me, the emancipation of tonality
was cquivalent to the emancipation of the object — or the subject. These
two adventures stimuiated a considerable growth of thought and crea-
tion in their respective fields’'. And I propose that we can use the notion
abstraction for this emancipation, and that we can describe abstract
mathematics with the same motions. Potok states that Kandinsky saw
the world as a flower but Kandinsky wrote a book with the title: “*Point
and Line to Plane’’ and another ‘“‘Concerning the Spiritual in Art’’ in
which we find rather abstract theories in stead of flowers.

In the development in the style of several artists we can recognize a
trend towards more abstraction. Well known are series of pictures of P.
Meondriaan (The tree, picr and ocean) of Malevitz (from cubism towards
suprematism) and others. We choose here as an illustration some ex-
amples from the ‘oeuvre’ of B, Nicholson, who is very explicit in the
demonstration of the process of abstraction.
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An essential featurc of abstraction in mathematics is the fact that an
abstract theory has many, quite different applications and interpreta-
tions as well in mathematics as in other fields. Abstraction in art
sometimes leads also to polyinterpretability; we recall Miro’s polite
answers!

6. Structure

According to modern views, mathematics is no longer the science of
number and space but nowadays it is the art of structures. Not only in
philosophy but also in the visual arts we can recognize a trend that we
can call structuralism.* The design of Peter Lowe |, 2, 3, 4, ... at the head
of this note can be called a work of structure. And there is structure in
the space contrapositions of E. Hilgerman.
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In the work of Roskam, there is the structure of the dyadic number
svstem. The whole work of art is only a visualisation of the dyadic coun-
ting 1.10, 11, 100, 101, 110, 111, and so on!
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Almost all computer art® uses recursive structures, and it tells us stories
of recursieve nature. We could distinct between art generated by a com-
puter and art made¢ by using a computer as aid in the process of the
design. Of course there is a close connection between this structural art
and the design of ornaments.

One of the most consequent structuralistic artists of our time is Sol
1.eWitt. His incomplete open cubes are just a mathematical problem.
Construct all connected subsets of the edges of a cube. The problem is
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identification under congruence. Sol LeWitt not only makes a list of
these, but he also constructs these out of wooden sticks. So there is need
for a whole room in the exhibition for onc piece of art. And the catalogue
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of these incomplete open cubes s quite a book with photographs of all
of them.

7. Srochastic art

In modern art stochastics is used, too. It is obvious that it vou can use
recursive structures, you can also use stochastic structures. You can do
it in the way the Dutch artist Herman de Vries does. He mentions ex-
pheitly ina catalogue that he uses the tables of random numbers of R. AL
Fisher and F. Yates (Statistical tables for biological, agricultural and
medical research). Peter Struycken uses both recursive structures
and stochastic processcs. We give an illustration of a painting of Jean
Arp: “Constellation according to the Laws of Change’’. In 1930 when

this painting was made one could not use random generators in com-
puters. Morellet used a telephone directory as a source for a random pro-
cess in: CRépartition aléatoire de 40.000 carrés suivant les chiffres pairs
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ct impairs d’un annuaire de téléphone’ . Another painting of Morellet is
called: ““Quatre répartitions aléatoires de deux carrés suivant les chiffres
31 41 -59-26-53-58-97 -93"". The kinetic objects and the draw-
ings of G. v. Graevenits also use a stochastic ideom, but we only made
an arburary selection in this ficld.

8. Still more possibilities
In this paragraph I mention some other possible headings for other
chapters in this story. We had to come to an end, and then we remarked
that we did not mention Vasarely, we did not give enough details on
M. C. Escher, we should have given attention to the American artists like
Noland, what about Kelly, and so on.

Still worse we gave no attention to the kinctic art,” to the art of
cquilibrium in the work of Kenneth Sncelson. We did not use moirée, the
wonderful phenomena of two pairs of silk stockings over a female leg.

We only give a photograph of a sculpture that demonstrates as well
mathematical structure as the effect of moirée, it can be found on the
beach in Ouchy, near Lausanne and was made by Duarte.

9. Psychology
Since we are together in a conference of the PME, we ought to give a lot
of attention to the mathematical aspects of the theory of perception. But
time has passed away. So there is no opportunity to discuss perspective
in the light of the mathematical theory of visual perception. Neither
much time is left to discuss the scientific background of the socalled *‘im-

G
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possible figures”” (Penrose). In the exhibition you can see work of the ar-
tist Reutersvard created, long before the Penrose paper. Work of Escher
using the impossible figure in his graphical work, and works of some
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other artists using this phenomenon of human perception of objects, im-
possible according the mathematical laws with which we describe our
surroundings. And still we can see them, although we know they cannot
exist!

In the notes we give only a very restrizted number of references:

H. Weyl: Symmetry, Princeton.

A. V. Shubnikov and V. A. Koptsik: Symumetry in Science and Art, New York, 1974,

Pierre Descargues: Perspective, Paris, 1976.

Jean Francois Nicéron: La perspective curieuse ou magic artificielle des effects
merveilleux de I'aptique par la vision directe, la catoprique par la réflexion des
miroirs plats, cylindriques et coniques ..., Paris, 1638,

H ¥ Timmerding: Der Goldene Schnitt, Leipzig, 1923.

[.uca Pacioli: De divina Proportione, Wien, 1889.
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George Rickey: Constructivism, New York, 1967.

Abstraction, création: 1931-1936, Musée de ' Art Moderne de la Vitle de Panis, 1978,
Systems, Arts Council, London, 1972,

Cybernetic Serendipity: Swudio International, London, 1968.

H. W. Franke: Computer Graphics, Computer Art, London, 1971,

M. L. Prueitt: Computer Graphics, New York, 1975

F. J. Malina: Kinetic Art: Theory and Practice, New York, 1974,

Frank Popper: Die Kinetische Kunst, Koln, 1975
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THE INTERPLAY BETWEEN DIFFERENT SETTINGS.TOOL-
OBJECT DIALECTIC IN THE EXTENSION OF MATHEMATICAL
ABILITY

Examples from Elementary School Teaching

INTRODUCTION

We are concerned with the process which leads to the acquisition of
mathematical knowledge 1n class situations.

As an experimental field we have choser the five years of French
elenientary school! (age 6 to 11). Twenty pupils have been observed
throughout the course of 5 years, others for part of this course.

We shall make some hypotheses concerning the acquisition process.
These hypotheses take a meaning only in their realization through
specific teaching projects. Therefore, we had to design and implement a
teaching organization in accordance with our hypotheses, and test its im-
pact during the actual process.

For the content, the project is centered on the measure of length and
arca (mainly of rectangles). It includes the learning of decimal numbers.
We emiphasize the intricate though distinct roles ¢ measure and number
by introducing functions, in both their algebraic setting and the graphic
. setting. These act as auxiliary settings, interaction with geometry and
R numbers.

“ Some conditions were particular:
3 - the teachers could follow their pupils one for the first 3 years, one
tfor the two last ones. They were particularly good.

— the pupils had 40 minutes of study after class to do their homework
(French and mathematics) under the control of the teacher.

~ the classroom opened directly on the gymcourt, and this allowed
] some freedom with schedules.

However, the school was located in a standard suburban area and the
pupils were recruited according to their residence only (as always in
France). The school was ‘école d’application’ without special experimen-
tal status. Taking into account the usual practice, the project was initially
planned for 4 or § years. Actually, most objectives were completed at the
end of the third year, including the learning of decimal numbers,
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Thanks to this unexpected timing, during the two last years, we could
test the robustness of the learning and the evolution of the pupils’
conceptions,

This acceleration of the learning cannot be explained only by the good
working conditions. We think that we have acted on some control
variables of the learning process.

OUR PROPOSALS

Usual pedagogy uses mainly the ‘learn-apply’ method, we note two
points to be contested:

(1) Problemsseldom involve the properties of concepts which actually
justify their use in science. For instance, rarcly in elementary school are
decimal numbers used to designate, with an arbitrary goo 1 approxima-
tion, a measure which cannot be designated exactly by a number.

(2) Usually, concepts are presented in one setting and the application
required stay in it.

We propose another way of organizing the teaching. It relies on the
Tool-Object-Dialectic to recover the meaning, and on Interplay between
different Settings to induce ‘déséquilibres-rééquilibration’, defined later.
There, Problems will play an essential role.

Theoretical Frame

Our proposals depend on an outlook on mathematics, and rely on many
prcvious studics concerning learning process; both are described below.

Concerning the Learning Process

From the works of Piage(, Vergnaud, the Geneva Schooi of Social
Psychology we remember the importance of the action, the role of ‘dés-
équilibres-rééquilibration’, the role of socic-cognitive conflicts. Con-
cerning the importance of formulation and proof we refer to G.
Brousseau, C. Laborde, and N. Balacheff.

We also take in account the necessary existence of a didactical con-
tract, a phenomenon well studied by G. Brousscau.

Concerning Mathematics

In their research, mathematicians generally fa- ~ problems nobody knows
how to solve (on the other hand, pupils face problems which they believe
their teacher can solve). To solve their problems, mathematicians are led
to create concepts as tools. In order to be conveyed to the scientific com-

35
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munity, these tools are taken out of their context and assume the
characteristic of an object. It also happens that mathematicians create
object directly in the process of organizing a branch ¢f mathematics.

Thus, we say that a mathematical concept is a too/ when our interest
is focussed on the use to which it is put in solving problems. By object
we mcan the cultural object which has a place in the body of scientific
knowledge, at a given time, and which is socially recognized. We con-
sider as an object every mathematical notion presented by its definition,
and possibly examples, counterexamples, structural description.

A concept is used as a tool by a pupil if it allows him to tackle prob-
lems. It may be either implicit or explicit. It is implicit if the pupil cannot
justify his procedure without rcferring to notions he is actually not able
to formulate (or he may formulate only in terms of action in a particuiar
context). It is explicit when the pupils formulate and justify the notions
they use. As an example of a concept used as a tool, consider the follow-
ing problem — Is there a square with area 12 cm® ? — and this answer
from a pupil: ““for a square of side 3 cm the area is 9 cm?, for 4 cm it’s
16 cm?, when the side goes from 3 cm to 4 cm there is a moment where
the area is 12 cm?”’. We recognize the relation 3 cm — 9 cm?, 4 cm —
16 cm? as an explicit tool. Moreover, the numerical function x — x2, its
continuity, the intermediate value theorem are all needed to make argu-
ment precise. All that is used as implicit tools.

Tool-Object Dialectic (T.0.D.)

We call Tool-Object Dialectic the following process, where we can
distinguish six phases: '

A problem is given to the pupils, which has a meaning for them. With
their knowledge, they can begin to tackle it, but they cannot solve it com-
plctc. The concepts which the learning process is aimed at are *he tools
suitable for the question.

Examrres: (1) How to determine and calculate the area of various rec-
tangles which have the same perimeter?

This 1s an interesting problem for pupils who know how to answer if
the mcasures are integers, who are convinced that every rectangle has an
area, but who do not know what to do when measures are not integers.

(2) Partition: colouring a grid in 3 colours.

A point with coordinates (a, b) represents a rectangle R with sides of
lengths @ and b. The problem is to compare the measure of the area A(P)
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36 REGINE DOUADY

with a chosen value &. More precisely the rule is, for k = 24:
- if A(R) < 24 colour the corresponding point in blue;
- if A(R) > 24 colour it in red;
- if A(R) = 24 colour it in black.
Is there a square among the rectangles?

7.0.D. phase a: ‘The Explicit Old ...’

Mathematical concepts are implemented as explicit tools to begin to solve
the problem.

In the examples mentioned above, pupils may suggest several rec-
tangles and calculate the area using only integers (it depends ¢n the
numerical values involved). In the second problem, they can pick a point
on the grid, read the coordinates, a, 6, multiply ¢ x bcompare to 24 and
colour it.

T.0.D. Phase b: Research ‘The Implicit New’

Difficulties are met in solving the problem completely either because the
primitive strategy is too laborious (many operations, possibly errors...)
or it no longer works. Pupils must look for other means better adapted
to the c'tuation.
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We come back on the first example above. If the perimeter 1s 16 ¢cm,
pupils must find two numbers a and b so that a + b = 8. Among these
rectanges, they find the square (side of length 4 cm, area 16 cm?). If the
perimeter is 14 cm, pupilsmay find (3 + 2) + (3 + Y2) = 7 and meet
a difficulty to determine the area of the square with sides of length
(3 + Y2) cm. In this situation, a phase of research begins for the pupils
faced with this problemi. They are led to modify their practice (which was
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to make a multiplication of integers) and adapt their knowledge. Here,
they refer implicitly to additivity of areas and thus reduce the problem
to the following: How to find the area of the small square? Pupils are
led 1o name the different pieces, consider D as a part of the unit square
and exploit the fact that they can pave the square with four copies of D.
Transferring this remark to a numerical formulation they obtain
4 x g =1, The answerisa = 'a.

More generally they are led to work the situation to extend the cor-
respondence length — area to non integer measures. Numerically, they
are led to extend the multiplication to rational numbers. The question is:
how and with which meaning? Pupils will answer by doing an interplay
between the geometrical setting and the numerical one as we have sug-
gested above. We will come back on this later.

In the colouring problem, the procedure described (in phase a) allows
to colour a few points (10 or 20). However pupils must find an economic
algorithm to colour all the grid {thousand points or more). Actually they
use the compatibility between order and multiplication to progress. This
property is an implicit tool. It is implemented with integers, and it is ex-
tended to ‘measures between integers’ which pupils do not know how to
designate. They declare:

— “Ared point, more than 24, above ared point and on theright, even
more, Red points”’.

— ‘““Below a blue point and on the left, blue points”.

— ““‘Below a black point, blue points; above a black point, red points.
Black points are more interesting than the others’’.

These are only the striking steps. Actually in the classes, they ar¢
separated by intense wading periods which vary a lot with the pupils and
with the numerical values involved.

Later, pupils will look for the ‘square 24’ (that means the square with
area 24 cm?) either ““at the crossing between rectangles with area 24 cm?
and the squares” or numerically: what is the number x so that
x X x = 247 is-it possible to find such an x?

The problem is how to choose, designate, calculate with number near
the cross, closer and closer. This research leads to decimal fractions to
approach such an x.

T.0.D. Phase c: Making Explicit and Locally Institutionalized.

Some elements have had an important role in the previous phase and can
be appropriate now by the pupils. They foimulate thes clements in terms
of practice with their local use, or the teacher formulates them in terms

J&
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of objects. We call these ‘new explicit tools’ with which pupils may
become familiar.

Thus, the first problem above leads pupils to extend the multiplication
to the fractions they know. For instance:

‘.

X o= x 4 x x =1 x =Y

"/yg X 5/;-(

i

(3 X 5)x (8 x 8)x = ! x = V4

"/3 X 5/3 = 15 x l/M = lS/M

This computation results from an interplay with the geometrical
setting,

The second problem, involving the three geometrical, numerical,
graphic settings, leads to another problem: how to find the black points?

This problem ind::ces the pupils to give a meaning to a/b (where g and
b are numbers, integers or no integers) through an interplay between the
three above settings: that is the x such that b X x = a.

This moment is convenient for developing the process of division.
& The research of the square with given area 24 cm? or 27 cm? ... involves
computation and comparison wiih various numbers and privilege
decimal fraction P/10, P/100, P/1000 .... At that moment, an
cconomical writing is necded. Pupils may propose several codes adapted
to this need.
In this third phase, the works and the proposals of the pupils arc
' discussed collectively. Sometimes, they solve the problem together. In
‘situations de communication’, knowledge diffuses in various ways
depending on the pupils. Each one is not involved in the same way in the
solution of the problem and in the use of the tools. That is necessary to
S ¢stablish a common understanding within the class. It will aliow each
) pupil to have reference points in his mathematical knowledge. That is the
. aim of the following phase.

T.0.D. Phase d: Institutionalization — Status of Object

The teacher presents what it is new and is to be retained, with the usual

- conventions. He ‘gives the course’ presenting well organized definitions,
theorems with proofs if necessary, emphasizing what is important in con-

trast to what is secondary. In our examples, that is the writing of decimal

numbers, computation with them, comparison, their property to ap-

' proach every measure as near as wished.

Tnus, the teacher gives a status of object to the concepts used previous-
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ly as tools. This new knowledge will work later as an old one, but the time
has not come vet. Indeed, internalising the structure is extremely impor-
tant in mathematics so that the knowledge is available. This internalisa-
tion has already begun in the former phases. To complete it, the pupil
needs to test his (or her) knowledge working on his own in different situa-
tions. This is the aim of the following phases.

T.0.D. Phase e: Becoming Accustomed — Applying

The teacher asks the pupils to solve various problems or exercises which
acquaint them with explicit tools recently institutionalized. In doing this,
they may develop good habits and integrate common social knowledge
with their own particular knowledge.

These problems, simple or complex, involve only acquired competence.

1.0.D. Phase f = a: Sophistication of the Task or New Problem

New knowledge 1s used in a more complex situation involving other con-

cepts which may be known (but separately learned) or may need to be
learned.

EXAMPLE: Could you find a rectangle such that:

— The half pcrimeter is 41 ¢m and the area 402 cm?.

— The half perimeter is 39 cm and the area 402 cm?.

From now on, the new knowledge becomes ‘ofd” and a new T.Q.D. ¢y-
cle can begin.

Remarks:

(1) Sometimes more than one cycle (a, b, ¢, e = a) is necessary before
a complete T.O.D. cycle (a, b, ¢, d, ¢, f) could be developed.

(2) It happens that mathematical habits become concepts as objects
only after a considerable time (even several years). 1t is the case of func-
tions and graphical representations.

(3) Provided that enough knowledge is developed by T.0.D., other
mathematical notions may be introduced in other ways: directly by the
teacher or in textbooks.

Interplay Between Settings (1.B.S.)

As a tool, a concept seldom stands alone, but rather it is part of a net-
work of interrelated concepts. Mathematicians while researching for a
solution to a problem spend a lot of time and encrgy interpreting their
problems, looking for another formulation, transferring from one set-
ting to another. Mathematicians use previously elaborated concepts as

40
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¢xperimental tools. Here, sciting has its usual meaning as in the expres-
sions arithmetic setting, algebraic setting, geometric setting, graphical
setting ... . Let us consider 4 setting as formed by mathematical objects,
the relations between them, their different formulatior:ss and also by the
mental images which are associated with these objects and relations.

By changing setting, different formulations can be obtained for one
problem. The new formulations are not necessarily exactly similar, and
so they offer a new approach to the difficulties of the problem and sug-
gest the use of tools and techniques not available in the first formulation.
This occurs if the signifiers involved in the problem are embodied as
elements of a space provided with some structure. Graphic representa-
tion is an example. We will further discuss this point in the context of
the learning process in school. In the transfer process, the mathematician
is looking for reasonable conjectures and for staging points to build a
framework for the proof of conjectures. It happens that counterex-
amples emphasizing obstructions oblige him or her to movc intermediate
points and even to discard the original conjecture. The translation from
one setting to another often leads to unknown results, to new techniques
and ultimately to the enrichment of the original setting as well as the aux-
iliary settings.

We Think That We Can Create a Similar Situation with Pupils in School

|
/
L

I 2 3 4 5 6 7 8 9 10 11 12

Here, k - 24,

Let us return to the colouring of the grid. The problem is stated in
graphic terms. Each point of the grid stands for a rectangle, To colour
a few points the procedure:

rcad the coordinates (@, b) calculatee x & comparc with &

41
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is good and requires only working with numbers. To colour all the
points, it is convenient for the pupils to remember the geometric meaning
of the problem. In this setting they know that, if a rectangle is included
in another, its area is smaller. They can put this conviction to work to
colour many points without computation. In doing this, they reduce the
zonc of uncertainty.

The black points are particularly interesting. Problem: How to find and
locate them on the grid?

Recall that we discussed this problem said above (T.Q.D. phase ¢). For
a given numerical a, the other coordinate b is such thata x b = 24. To
locate the points (for various values of @) on the grid (graduated in 10th,
even in 100th), pupils have to compare fractions 24/a with P/10’s or
P/100’s. The division process has started.

Vice versa, by choosing a point on the uncoloured part of the grid bet-
ween two black points, a pupil may read approximately the coordinates
and is led to calculate with numbers he would not have chosen by
himself, to make precise the colouring and the shape of the boundary.
As they investigate the shape of the boundary, pupils are developing their
knowledge and their competence about old and new numbers. They are
developing also topological conceptions: neighbouring points, boundary
points, boundary curve between two sets, subsets of the plane. Note that
at the beginning, points of the plane were just stanu-ins, symbols for rec-
tangles. They have become the object of a geometric study. Their status
has changed from signifiers to signified.

Thus, pupils may realize that even if they cannot produce exact solu-
tions, it may be very reasonabile to look for approximate ones, at the
same time becoming conscious than an approximation is a reasonable
answer. They will need several years to conceive of a real number as an
infinite sequence of approximations. In their research of a square with
area 24, by changing setting they are approximating /24.

By Interplay Between Settings, we mean changes of setting brought
about by the teacher, within suitably chosen problems. In this process,
we can distinguish three phases.

(1) Transfer and Interpretation

Pupils face a problem which is stated in one setting and which they can-
not solve completely within this setting. But, thanks to their background
and training, their analysis of the problem leads them to translate it in
whole or in part into another setting, creating links between the various
settings involved (between objects and between relations).

4
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(2) Imperfect Links

However, the links between the settings are imperfect either for
mathematical reasons (¢ + b = 8 admits negative solutions which do
not represent measures of rectangles) or because the pupils knowledge is
inadequate. This situation is a source of imbalance. As an example a
pupil may be able to draw several rectangles with perimeter P (by defor-
ming or compensating); however because they do not know enough
numbers they cannot designate the measure of their sides, unless this
measure is integer or a half integer. Moreover, conceptions and abilities
of pupils vary not only from one setting to another but also {from one
pupil to another. One pupil may consider a square with arbitrary side-
length from 3 ¢m to 4 cm, another will admit only those whose sides he
can measure. One pupil will be able to calculate with halves and quarters,
another will not. The correspondence with the numerical setting is defin-
ed only for some rectangles which are not the same for all the pupils in
the class. These pupils who enjoy a strong conviction of the existence of
rectangles regardless of their ability to designate the length of their sides
will be imbalanced between their geometric conviction and their
knowledge about numbers.

(3) Improving the Links and Extending Knowledge

The communication between settings allows the reequilibration. We have
scen examples above: the colouring problem, the research of a square
with arca 24. Take another example: the research of the area of the rec-
tangle (3 + */g) cm, (3 + */3) cm.

Most of the pupils distinguish four pieces in this rectangle. They are
convinced that the area of the rectangle is the sum of the areas of the 4
pieces. This is clear geometrically. They can compute easily one of these
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areas (3cm X 3cm = 9cm?®). They have to compute the others. The pro-
plem is the following: how to determine the area of the rectangles (1 cm,
36 cm), (1 cm, /g cm), (*/z cm, */5 cm).

— Actually, they need the arca B + C. They may join together the

corresponding rectangles and obtain 8 + C without computation.
They cannot avoid the analysis ot the drawing to obtain the last
area D.

Pupils are led to look for a small piece to have both D and the unit
square. The square with side-length '/g cm answers to the question. The
unit square requires 64 copies of them to be paved. Paving is a geometric
operation. The numerical translation of the adequate pavings provides
the desired areas through the numerical solution of equations (64 X x =
1,8 X x = 1).

Remark: we have tried to describe separately the T.O.D. and Interplay
Between Setting. Actually, we saw how they are intimately related.

To illustrate T.O.D. and I.B.S. we chose examples {rom the learning
process of decimal numbers we have elaborated. In the next paragraph,
we give the main mathematical points on which it relies and the diagram
of the various settings (with relations between them) required. We give
also a possible diagram for designing a problem, and finally the standard
planning of a session. Then, we will develop an example of ‘didactic

engineering’ in the first year of curriculum (6 year olds) which lasted
three weeks.

DIDACTIC ENGINEERING

(1) Decimal Numbers: Various Points of View

— From a topological point of view, problem-situations are studies
within interplay between geometrical and numerical settings. Estimates
from above and below, progressively improved, are the suitable tool.

— From an algebraic point of view, the euclidean division is practiced
in problems where the quotient and/or the remainder are to be used, also
in isolated exercises either under the algebraic formulations
a ~ (b X q) + rwith r < & or just as an operation

aib
rlq

— From a strictly numerical point of view, oral computation is prac-
ticed daily. It involves explanations, justifying or possibly rejecting the
various computing methods.
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— Computation is involved in problems. There is no systematical
training to written operations. However evaluation tests may require
some of them.

-~ Functions appear in problems, as tools to work mainly with
graphics involved in a double relay signified-signifiers-signified. Among
them, linecar tunctions are identified. Numbers, and particutarly frac-
tions or decimal numbers, are used to label linear functions and
transforms computation with linear functions (addition, compaosition,
comparison of functions) into computation with numbers (addition,

multiplication, comparison of numbers). Nothing of that is
mstitutionalized.
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(2) Stundard Planning or a Session

— Oral computation including cxplanation of results (about 10
minutes).

Review of previous sessions on the same theme, if any (10 minutes
again, possibly more).

— New work of the day: it includes three stages.

(1) The teacher gives the instructions. A collective discussion about
them (not about method of solution) will clear up any ambiguity and
must allow the pupils to appropriate the problem,

(2) Pupils work (personally or by team). A taking stock may occur if
several pupils are faced with the same difficulty.

(3) There is a collective taking stock of the results presented through
a representative sample of individual work or by each team. The class
compares the various productions and agrees on which is best, or at least
agrees to disagree and to further study the problem.

A session ususally lasts 142, The conclusion should not be skipped;
it can be postponed till after a recess, eventhough that might imply the
next session is shortened.

As an example of didactic engineering, we present the striking points
of the situation called ‘the target-game’ completely analysed in ([2]
Chapter 111, Douady, R.).

(3) The Target-Game
The aim:

(a) Use numbers, order and addition as tools. In interaction with that,
extend the domain of numbers on which they can operate and make more
precise the meaning of their writing,

(b) Increase the complexity of the problems they can deal with. Link-
ed with that, construct an algebraic language and design representations
(numerical-tables, sticks, graphics ...) to deal with a great flow of infor-
mation and solve problems for which they are necessary.

(¢) Encourage the use of multiples and divisors in a simple situation.
These notions are involved in numeration and their learning takes several
VCArS.

The Situation

It includes two types of games, with the same target.
— In the first type, players have to mark as many points as they can.
- In the second type, the game is to mark a number of points equal
to a given number or as close to it as possible.
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~ The target has 4 zones marked 0. 3, 6, and 9 for the smallest.
— Every player receives a ball. He can throw it three times.

-- The winner is the one who has the highest score.

Question: Arrange the players from highest scorer to fowest scorer.

17.0.D. Phase u: the Explicit Old ...

Pupils knew that to find their score, they had to add their marks, i.e. each
had to add three numbers smaller than 9. They had the technical com-
petence to do that. Then together they had to arrange 28 numbers (from
28 players) smaller than 27 from the highest to the smallest. They were
..ble to do that. The only problem was to know how to be sure that they
hiad the right informarion. After discussing it, they decided to cach write
his 3 marks beside his name.

T.0.D. Phase b: ... and the Implicit New (Research)

Players are grouped in tcams of 4. Each one can throw the ball three
times. The score of a team is obtained from the points of all the players
of the team. The team who has the highest score wins.

Question: Arrange the teams from highest to lowest.

Pupils know they have to add marks of each player from the team. But
even if they played badly, twelve numbers is to many for most of them
to add. So, to compare scores they have to use another procedure.

Evolving new encodings of the scorc:

To have the right information about the game, teams need a written
record of their marks. They decide to write them in a table with 4 lines
(4 players by team) and 3 columns (3 balls per plaver).

45
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Question: How to compare (wo such tables? How to recognize tied

teams?

Contingency and uncertainty: if we want pupils to be active in their
research, we must so arrange things that they need to analyse in detail
the table of their team. This is possible if pupiis may ask various qucs-
tions about the game, the marks, the players, the rules of the game ...
betore the teacher asks them to order the teams. In the classroom observ-
ed, pupils rearranged the players of a same team, looked for the tied

REGINE DOUADY

players, players who had three times the same mark ... .

This phase is important: the pupils need the freedom of action 1o have

a real choice of a procedure and to put implicit tools to work.
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Later, to compare the tables, they focussed on the number of 0’s in a
team und the number of 9’s. They convinced themseives that they could
change the numbers within a table without changing the value of the
table, i.e. the score: they argued that6 + 3 = 90r3 + 3 + 3 =
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stead of one 6 and one 3 or three 3's they put one 9 and one or two zeros
G+3=9+0,3+3+3 =9+ 0+ 0)to have always a table
with twelve places. They would have been able as well to put two 9's in-
stead of three 6’s, but they never had to do it.

Pupils® claim: the team which has the most 9’s wins.

New problem: For cach team, count the 9’s.

Some 9's are already there, but others need to be ‘made’. In this con-
iexton, @ misunderstanding arose between the pupils and the teacher.
The pupils faced with the following table:

9 6
6 9
0 0
3 6

W O e

said “withtwo 6’s wemake a9’ . For the teacher, 6's and 9°s are numbers
and 6 + 6 = 9 + 3. She was trying to extract this answer from the
pupils. She knew they had the competence and she did not want to give
them the answer. Various pupils suggested some modifications in 6¢ in
order for a9 to appear. The situation stayed jammed twenty minutes un-
til a pupil understood that the teacher wanted a numerical equality. He
said **l have thought a little bit”* and wrote 6 = 3 + 3. After that, all
the required 9°s were obtained quickly.

We interprete this jam in the following way: both the teacher and the
pupils work in two seitings: the pupils in the game and in the code (the
situation did not require more, at this point), the teacher thinking of her
teaching in the code and in numbers; but they share only the encoding
sctting. The unjamming occurs only when ane pupil enters the numerical
sctting. A sign of this is that he is immediately followed by the entire
class.

New formulation: pupils consider couples (17 . 9, r). Orally they speak
about “packs of 9’s and remainder’’. They write (after various proposals
and discussion) # L 9 + r(‘{J° means packs). This new writing is a pro-
gress only if it helps them 1o order the couples. In terms of the game they
have convinced themselves that the team with the most of 9°s won,
withoul considering the remainder. Actually, we observe that they usc
the following algorithm:

if m<n md9+rn<mii9+
if ni =
and n <

1
=
y

j 979 +
ry

1

u



50 REGINE DOUADY

This discovery on alphabetic order of couples is meaningful for the
pupils only in terms of the game. It is an implicit tool and will become
a practice to compare numbers written n (11 9 + r.

T.0.D. Phuse ¢ Making Explicit

Question: in another classroom, they played at the same game. One team
had 39 points. Where is this score located among ours?

Pupils had to compare scores writtensuch as n {1 9 + rand 39. They
had two possibilities:

— write39asn ‘(19 + .

— Compute the score of the various teams.

In both cases, they must use the meaning of the writing:
39 = 31110 + 9.

Remark: at this point, we do not institutionalize anything, Pupils work
to become acquainted with numbers written in this form.

T.0.D. Phase e: Becoming Accustomed with Scores Written
(n 119 + r,in Particular Additions and Comparisons of such Scores

SITUATION. Each team plays a second game.

(1) Order the teams from loser to winner.

(2) Each team compares its score in the first and second game, and tries
to discover how much better or worse it did.

The first task only involves previously acquired knowledge. It is
«nalogous to a problem which has already been solved.

For some teams, the second task will involve subtractions with carries:
if necessary, they will use sticks to solve the problem.

T.0.D. Phase f = a: Order All the Scores, and Find Ou: How Many
Points Each Team Got in the First Game, the Second Game, and in All

The object is to reuse the tools the pupils have already developed, in a
more complica.ed situation.

The first task is to find the total score of cach team. The algorithm ac-
tually used by the pupils is:

scoresn (19 + rand n’ t1 9 + r' total score
n+ n) + (r+r"
yougetanextra9ifr + r' > 9,

Using this rule they can order the total scores.
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7.0.D. Phase b and c: The Second Task is to Transform Score into
Numbers

The pupils say ‘“‘to count the points, we add up the 9’s and the re-
mainder’’. This means “‘group the poinis by 10 rather than 9", Severai
methods are suggested and explicited.

T.0.D. Phase d: Institutionalization

(1) Writing numbers requiring 2 or 3 digits in base 10, including the
table:
hundreds | tens | units

(2) WA < Bthen youcan find Csuchthat 4 + C = B.

T.0.D. Phase e: Becoming Accustomed
With (2) above, for various numerical examples; in each case, calculate
C.
T.0.D. Phase f: New Situation

Reuse of substraction as above, now as an explicit tool. This will be done
in the context of a new game, played with the same teams, using the
following rule:

(1) Each player throws the ball once.
Team which gets 18 points wins.
{(2) Each player throws three times.

Any team which gets 50 points or a number as near as possible wins.

Conclusion

Our project was to test cognitive hypothescs about the tearning of ma-
thematics in the classroom. In order to do this, we have reconsidered the
way the mathematical knowledge we had to teach was cut up, and its
organization in learning sequences. The long period of time available to
us gave us the freedom required to implement interplay between settings,
to use the mathematical tools to be learned with their implicit-explicit
character, and also to create habits. Note that computers provide a new
frame of work which may turn out to be efficient if it is actually involved
in interplays of settings, but not if it stays aside without interaction with
the other settings.

However, in order for the dialectic process we propose to be set in mo-
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ton, thresholds of the two following types must be respected:

— Pupils nced to have a ‘critical mass® of knowledge, different in
various settings

— Pupils should be asked serious problems: there is a threshold in
questioning beneath which problems do not set off the process which leads
to lasting knowledge.

Morcover, Tool-Object Dialectic and Interplav Between Settings may
allow teachers and even more those who teach teachers io ciaborate
teaching methods and analyse the problems they encounter.

There is still the crucial point of how to organize the teaching in time.
Indeed, the time spent floundering seems a waste of tiine in the short
tecrm. However, in the long run, the knowledge thus acquired has a more
stable foundation and is better adapted to turther use and modification.

The pupils neced not acguire the whole of their mathematical
knowledge through this dialectic process; however, the basic framework
should be acquired in this way. This basic {frame work can only be
claborated over several yecars. To carry out this teaching over manv
vears, curriculum will need to be adapted (as is actually happening in
France) and teachers will need to coordinate their teaching much more
carefully than at present. Perhaps the introduction of computers, which
is it any casc bringing new flexibility, is a good occasion for such
changes.

LI.R.EM., Université Paris 7
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THE NEED FOR EMPHASIZING VARIOUS GRAPHICAL
REPRESENTATIONS OF 3-DIMENSIONAL SHAPES AND
RELATIONS

INTRODUCTION

From 1978 to 1980, materials were developed at Laval University (Gaulin
et al., 1980) to serve as a basis tor two courses called ‘Explorations
Géométriques’ which have been offered since as part of an important
distance in-service teacher education program in mathematics (PPMM)
for elementary teachers of the Greater Québec area. Following guidelines
the author had suggested earlier (Gaulin, 1974), a particular emphasis
was put in those materials on activities intended to foster the develop-
ment of spatial visualization and geometrical intuition. Several units
were also devoted to the exploration of various types of (iwo-
dimensional) graphical representations of polycubical solids. A few ex-
amples are sketched below.

EXAMPLE 1: As is well known, the following seven polycubical shapes
can be put together to forma 3 x 3 x 3 cube (SOMA cube puzzle, in-

vented by Piet Hein),
cu f%

After a few exploratory activities, students are shown SOMA cubes
alrcady constructed and asked: Suppose that after long pains you have
Sfinally succeeded in assembling the seven pieces into a cube. How could
you record your solution on a sheet of paper so that you may easily
reconstruct the cube at any time you wish in the future? This problem

53 e
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always stimulates the production of a great diversity of types of plane
representations of the SOMA cube. Here are a few examples (some draw-
ings are reproduced from Wilson, 1973).

2 2 2 4 1 7 4 7

4 1 2 4 1 5 6 6

3 3 3 6 3 15 ] 5

Bottom layer Middle fayer Top layer
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#1 21,2 22,2 122

#2 11,1 1,1,2 11,3 1,23
#3 1,3.1 1.3.2 133 232
#4 1,21 221 211 3
#5 223 233 333 33,2
#6 2,3,1 331 32,1 3.2.2
@7 3,1.2 3.1.3 313 323

. o Prece 1: -5
Stories | L2 Piece 2: -1
coded T e Piece 3: -3
(RIN1L} t -

718

o Piece 4. 1-8
from “1 T| 1

6
819 Piece 5: I1-2
bottom

Coding on Piece 6.: li-9
each story Piece 7: -1

EXAMPLE 2: Students are given the topographical map of a famihar
area near Quebec City (see page 57). Various questions are asked which
require the visualization of peaks, valleys, steep portions of some trails,
etc. by means of countour lines and other codes. One of the questions
rcads: Imagine that you take a walk from LA DETENTE and that you
suddently discover water springing from the ground at the location
marked X. Try te draw on the map the path followed by the water. Com-
puare your answers with those of your neighbours and (try to agree with
them about the path which is the most likely ... (Subsequently, students
arc asked to answer the samc qucstion supposing that water springs at
location O instead of X.)

EXAMPLL 3: A whole unit is devoted to the representation of
polycubicial solids by mceans of orthogonal projections. In order to inake
the representation univocal, it is generally necessary to supplement the
front or top or side views with more information conveyed via some
code. Instead of readily introducing the well known standard code using
continuous and dotted lines, we let the students first interpret various
non-conventional codes and create their own! For example, using a set
of congruent material cubes, they have to try and build the solid cor-
responding to the two given coded orthogonal views.
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Legend
.. . sl 8 the cube you can see here
- S e is the second row
- ]
Legend
7] there is nothing behind
///‘ the cube you can see here
Legend
o there is at least one cube
. o o somewhere behind the one
you can see here
Legend
A there is a cube immedia-
tety behind the one you
A A can see here
Legend
x the cube you can see here
touches at least two other
x % cubes

oy |
an
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Of course, numerical codes are also used. Students also have a few op-
portunities to invent their own codes for representing other polycubical
shapes by means of two or three orthogonal views. Subsequently, they
hecome acquainted with the use of dotted lines in this type of representa-
tion via the use of the very interesting French game called STRUC-
TURO. However, no attempt i: ever made to systematically develop

techniques usually taught in techinical drawing courses.
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Although such activities involved actual experiments with physical
materials, many teachers taking the courses experienced great difficulties
in making and interpreting such graphical representations, which of
course tended to hinder their ability to visualize the corresponding three-
dimensional shapes and relations. Notwithstanding several attempts to
improve those units, such difficulties persisted. This aroused the interest
of a few PPMM collaborators, who decided to more closely investigate
some problems related to the use of plane representations to com-
municate spatial information.

SPONTANEOUS REPRESENTATIONS ON PAPER OF 3-D SHAPES BY PUPILS

As a preliminary step, two cxploratory studies (Gaulin and Puchalska,
1983) were conducted during 1982 — 83, with a number of about 500
pupils about equally distributed among 4th grade(10-11 years old), 6th
grade (12 — 13 years old), 7th grade (13 — 14 years old), 9th grade (15 - 16

vears old) and 11th grade (17 — 18 years old). The following task was ad-
ministered in each of the 21 classes.

Every subject received one geometrical solid made of congruent plastic
cubes glued together. The six shapes illustrated above werc distributed
about equally among the pupils of each class.

In addition to one plastic shape, each subject was given a sheet of
paper with a brief instruction and plenty of space to answer. Half of the
pupils got the following (‘algorithmic’) instruction:

6o
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Imagine that one of your friends lives in France and that he has got a whole box of plastic
cubes, all of the same size. Now you would like your friend to build a shape like the one
you have in front of you. Prepare a message you could send him so that he can build it.
You may give your explanations using words or drawings, as you wish.

whilc the other half got the following (‘descriptive’) instruction:

[magine that one of your friends lives in Ottawa. Near his home, there is a store selling all
kinds of shapes made of plastic cubes. Now you wouid like your fricnds to po to that store
and buy you onc shape like the one you have in front of you. Prepaie a message you could
sentd him 50 that he can recognize that shape You may give your explanations using words
or drawings, as you wish.

The type of communication task used (preparation of a ‘message’) had
been inspired from the work of Guy Brousseau.

One of the objectives of the study was to obscrve the types of produc-
rion (verbal or graphical or mixed) spontaneously given by the subjects.
The first stinking observation was the great variety of types of produc-
tions obtained at all ages. (The other major observation — rhe
predominance of ‘coded orthogonal views” — will be commented during
the oral presentation, if time allows.) Here are¢ a few cxamples.

VERBAL DESCRIPTIONS

l.a figure que je vais décrire a 4 cubes, 24 faces, 36 arétes, 21 coins et elle

¢st rouge.
(10-vear old Shape A)

Place un cube a droite. Place un autre cube a gauche ¢t un autre cube au

centre, Place un autre en haut du centre.
(10-year old Shape B)

Tu dois avoir une croix, avec un bloc sur le dessus au milieu. I1y a aussi
un bloc sur 'autre face de la croix, mais il est placé par en-haut.
(9-year old Shape F)

SIDE VIEWS

de dessuss <
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]

yF

$F

1 F

1

6F

—J (9-year old Shape F)

DESCRIPTIONS BY LAYERS

oy
(12-year old Shape A) } (13-year old Shape I')

“CODED ORTHOGONAL VIEWS”

Ry g o wn cbe par .
doaaash Lai

Placton 4fcnbe pon dattms cohi qui aat indif-i dlun @

(12-year old Shapc A) (14-year old Shape A)

(13.ycar 0old Shape A) {13-vear old  Shape A)
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mon Aochwil 1 et dng qullat e st que o culicn

e pold chifgre [ dopre Q’%}ane P&h -

4 grm cRiftae [T) donne f omivie de cubes clfés trsemble
Rackurs [ veuddice quit est s Lo que e outies

(16-year old Shape F)

ATTEMPTS AT PERSPECTIVE DRAWINGS

{9-ycar old Shape A) (13-year old Shape A)

(13-year old Shape A) (13-year old Shape A)

(10-year old Shape F)

% &%

(14-year old Shape F)
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OTHER TYPES OF MESSAGES

At premds B cubes ot tu formes une plate fr e

fa)e
Y
\
\ \
N

e
\ &'ﬂ AL e poses a \‘r'pt" .
.« . O e e
Cb_) (‘} g
7 % ]
i

(14-year old  Shape A)
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Remuark: At the time the above exploratory studies were about to be
completed, we were informed that a communication 1ask of a similar
type had been used, although with a different methcdology, during ex-
periments conducted by Bessot and Ebcrhard (1982a, b) in Grenoblc.
These French researchers also found a great variety of types of messages
spontaneoulsy produced by elementary pupils. Francht and de AzeveDo
(1983) later made a similar observation in Sao Paulo.

The main contention of this presentation is that in mathematics education much more em-
phasis should be put on various types of plane representations of three-dimensional shapes

and relations, both in the curricula of a majority of countries and in research and
development.

REASONS FOR EMPHASIZING A VARIETY OF GRAPHICAL
REPRESENTATIONS OF SPATIAL SHAPES AND RELATIONS

1. Graphicacy as a Basic Educational Objective

The ability to use various types of graphical representations is one aspect,
among others, of what is sometimes called “‘graphicacy’ in England, i.¢.
‘‘the communication of spatial information that cannot he conveyved
adequately by verbai or numerical means’’ (Balchin, 1972).

‘‘Balchin and Coleman describe literacy, numeracy, articulacy (subsequently superseded
by oracy) and graphicacy as the four ‘acies’, or ‘aces’ for short [...] Neither words nor
numbers are superior or inferior as modes of communication. They are only more suitable
or less suitable for particular purposes, and each ranges from the very simple to the ex-
tremely complex. They complement cach other and achieve their highest level of com-
munication when properly integrated. |...] Balchin argued that the discussion ought to be
more concerned with modes of communication and that the three Rs should be replaced
by the *four aces’. He also noted that in France a similar discussion was taking place around
the concept of ‘four languages' in communication skills and the need to teach them to all

64
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pupils. These four languages corresponded exactly with the four modes of communication
distinguished in Britain.

Meanwhile it has been argued by Boardman (1976) Lhat geography teachers share with
their colleagues in other subjects, especially English and Mathematics, responsability for
ensuring that graphicacy is developed by all pupils before they leave school ..."
(Boardman, 1983, preface)

As a geography cducator, Boardman speaks of graphicacy insisting
particularly on maps (of all kinds) and photographs. However we feel
that his arguments apply equally. perhaps even with greater strength and
more relevance, when ‘graphicacy’ is defined in a more general way so
as (1) to include the communication of nonfigural informdtion by means
of diagrams, schemas and graphs having a low degree of ‘iconicity’, i.e.
representing abstract relationships (cf. Bertin, 1967, 1977; Herdeg,
1981); and (2) to take also into account the non-social instrumental role
of graphical representations for concept formation, problem solving and
more generally organizing thought (cf. Van Sommers, 1984; Biechler,
1982; Chernoff, 1978).

Developing graphicacy as a basic educational objective is clearly a
multidisciplinary enterprise in which mathematics education has an im-
portant contribution to make, just like geography education, art educa-
tion, language education, etc. Providing all pupils with opportunities to
explore a variety of types of graphical representations of spatial and
geometrical — as well as numerical, logical, statistical, etc. — informa-
tion appears one of the features of such a contribution.

LANGUAGE

PRIVATE “THINKING
SPEECH IN
sohiloquy. WOROS

Srgenti, atugn Systeme de percepten tatung 1a nternat
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2. The Ever increasing Practical Importance of Such Representations

Graphical representations of various types are commonly used in a great
number of practical situations and disciplines for conveying spatial in-
formation. Here are a few examples:

maps, plans and sketches: topographical, geographical, geological, meteorological, ar-
chitectural, for finding directions (e.g. in a shopping center), for trains / buses / subway
/ airlines networks, elc.

diagrams and flowcharts giving instructions: for assembling (e.g. a piece of furniture or

parts of a construction kit), for operating a machine, for sewing or knitting or crocheting,
etc.

scienlific or technicval descriptive drawings: in anatomy, botany, mechanics, engineering,
..., models of atoms and molecules, etc.

Taking into account the pervasiveness of computerized graphical
displays in today’s society, the ability to communicate with (as a
minimum to interpret) such graphical representations is likely to be more
and more needed in the near future, more particularly the ability to use
‘coded graphical representations’ (Gaulin and Puchalska, 1985).

3. The Need of Re-Establishing the Development of Spatial Intuition
as One Major Goal for Teaching Geometry

For years mathematics educators like Bishop, Clements, Mitchelmore,
Tahta and others have been advocating that one major goal for teaching
geometry that has been overlooked during the ‘new math’ wave and
ought to be re-esiablished is the development of students’ spatial intui-
tion, including their ability to visualize and to communicate spatial infor-
mation by various means. Taking into account the real mess existing con-
cerning the definition of terms like ‘spatial ability’, ‘spatial intuition’,
and ‘visualization’, we prefer to think of such an objective with reference
to the two types of ability constructs that have been proposed by Alan
Bishop (1980) in order ‘“to help mathematics educators focus on relevant
training and teaching research...”:

(1) The ability for interpreting figural information (1F1). This ability involves understan-
ding the visual representations and spatial vocabulary used in geometry works, graphs,
charts, and diagrams of all types. Mathematics abounds with such forms and IF1 concerns
the reading, understanding, and interpreting of such information. [...]

(2) The ability for visual processing (VP). This ability involves visualization and the
translation of abstract relationships and nonfigural informat:~n into visual terms. it also
includes the manipulation and transformation of visual representations and visual
imagery.

(Bishop, 1983, p. 184)
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Some familiarization and experience (at the exploratory level, but not
necessarily at the technical level!) with various types of graphical
representations of three-dimensional shapes and relations is a necessary
condition for the development of IFI and most probably for the develop-
ment of some aspects of VP,

4. The Need for Diversity of Such Representations

With all duc respect to many art educators and to psychologists who stick
to the Piagetian tradition for explaining the genesis of the representation
of space by individuals, we wish to strongly support the point argued by
Josiane Caron-Pargue (1979, ch. 1) that perspective drawing is just one
among many modes of graphical representation, each one having its
characteristics and its merits. The results obtained by L. Paez Sanches
(1980) with adults having little formal schooling as well as some conclu-
sions of the work of Caron-IParguc let us hypothesize the development
of ‘simultaneous, but inequally accessible’ abilities corresponding to dif-
ferent modes of graphical representation: perspective or isometric draw-
ings, coded orthogonal views (like in cartography or in technical draw-
ing), representations by means of layers or sections, ect. Obviously our
hypothesis implies the importance of exploratory activities of encoding
and decoding of spatial information by means of various types of
fepresentations.

EXAMPLES OF ACTIVITIES FOR SCHOOI. USE

We are now going to examine a few sclected examples of activities for
school use, taken from existing projects or publications; IOWQ
(Holland), DIME PROIJECT (Scotland), SCHOOL MATHEMATICS
PROJECT (Great Britain), MIDDLE GRADES MATHEMATICS
PROJECT (U.S.A)), ctc. A few guidelines for action will be suggested,
with emphasis on what could be done at the middle school level.

>123. Cubehouses do exist. In different towns in Holland (Rotterdam, Helmond)
you can find them.
Some inmates of these houses suffer from balance-problems, but otherwise
these houses are very comfortable and cozy.
a. Draw the top-view of such a house.
b. As you can see: there are three floors.
Draw the top-view of the floor of the cube at the A-level.

¢. The arca of this floor 15 60 m?.
How long is the edge of the cube?

v o
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Cubehouses
architect P. Blomy)

tevel 4

d. How does the area of this floor change when you move the floor upwards
a bit (downwards a bit)?

¢. The floor of the top-level (B) has the shape of a hexagen. The proot is
found in the picture below.
What would the shape of this floor be if it reached to the root?

1. The height of the living-room is 2.40 m.
What is the height of the attic?

LActivities from [essons in Space Geometry” (OW & OC). Utrecht, 198
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» S Ou the following page you see the earth from above. The short arrows in-
dicate the journey which the moon covers every 29 days. Cut out the eight
faces of the moon from the next age and fold them as shown in the drawing.
Pick a spot in the moon’s journey and place there the correct moon-face as
seen from the carth. Do this carefully for all eight moon-faces. Show it to the
teacher and then glue them in place.

“Activities fram Shadow and Depth” (OW & UC). Utrecht, 1v80.
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School Mathematics Project, Book B2, ¢

ambridge University Press, 1985. (Reproduced
with permission of the publisher.)
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with the permission of the publisher.)

BESTC oV i




THE NEED FOR EMPHASIZING VARIOUS GRAPHICAL REPRESENTATIONS 69

Ford tme paurs 8

12
or el cwbey 8 <>! M e of Uk ade Uz tahd
~ wedges ara rdrer e oo D

wri Tre wedas
o

ST

2, AN
,om a4 crene \}/ //"
.’_——f'— - R . :~_y
. R v P

(noose Lo ana draw whal ‘e
would Wok LRe ;f ey wUe Wwgiad
about the deotded une.

G. Giles, 3-D Sketching Series. DIME Projects. University of Stirling/Oliver & Bovd,
Scotland.

BIBLIOGRAPHY

A.T. M.: 1982, Geumetric Images, Derby, England, Assouviation of Teachers of
Mathcmatics.

Bertin, J.: 1967, Sémiologie graphique ~ les diagrammes, les réseaux, les cartes, Paris,
Gauthiers Villars. )

Bertin, J.: 1977, La Graphic et le Traitement Graphigue de !’information, Paris, Flam-
marion. English version: 1981, Graphics and Graphic Informanon-Processing, New
York, W. de Gruyter.

Bessot, A. and Eberhard, M.: 1982a, ‘Représentations d’assemblages de cubes au C. M.,
Grand N, mars 1982. IREM, Université de Grenoble.

Bessot, A. and Eberhard, M.: 1982b, ‘Représentations d’assemblages de cubes au C.L ",
Grand N, déc. 1982. IREM, Université de Grenoble.

Bichler, R.: 1982, Explorative Datenanalyse -- eine Untersuchung aus der Perspektive
einer deskriptiv-empirischen Wissenschqftstheorie, Institut fiir Didaktik der
Mathematik, Universitit Bielefeld, West Germany.

Bishop, A.: 1974, Visual Mathematics, in Proceedings of the ICMI - IDM Regional Con-
ference on the Teaching of Geometry, Institut fiir Didaktik der Mathematik, Univer-
sitiit Bielefeld, West Germany.

] . Ry
, BEST CPY A




70 CLAUDE GAULIN

Brhop, A 198G, Sputial and Mathernatical Abilities: A Reconciliation, Paper presented
at the Conference on Mathematical Abilities at the University ot Georgia at Adhens,
US.A.

Bishop, A [982, *Towaids Relevance in the Teaching of Geometry’, in G. Noel (ed.), Pro-
ceedings of the International Colloquium on Geometry Teaching. Université de 1" Etat
a Mons, Belpium.

Bichiop, AL 1981, "Space and Geometry’, in K. Lesh and M. Landau (eds.), Acquisition
of Mathematics Concepts and Pracesses, New York, Academic Press.

Boardman, D.: 1983, Graphicacy and Geography Teaching, London, Croom Helm.

Bocro, P.: 1981, La geometria per la conoscenza del territorio, Istituto di Matematica,
Universita di Genova.

Bowman, W. }.: 1968, Graphic Communication, New York, Wiley.

Caron-Pargue, Y. 1979, Etude sur les représentations du cube chez des enfants de 3 a 11
ans — La représentation et le codage de proprietés spatiates, These de doctorat de le
cvele en psychologie, Université de Paris.

Caron-Pargue, J.: 1985, Le dessin du cube chez l'enfant — Organisations et rearganisations
de codes graphiyues, Berne, Peter Lang.

Chernott, H.: 1978, ‘Graphical Representation as a Discipling’, in P. P, C. Wang (ed.),
Graphical Represenitation of Multivariate Data, New York, Academic Press.

CIEAEM (Commission taternationale pour 'Etude et 'Amélioration de I'Enscignement
des Mathématiques): 1981, Actes de la 33e renccntre internationale organisée &
Pallanze, ltalie sur le theme "Processus de géométrisation et de visualisation', publics
sous la direction de M. Pellery.

De Lange, 1.: 1984, ‘Gcometry for All: No Geometry at All7", Zentralblutt fiir Didak tik
der Mathematik 84(3).

Dreyfus, T. and Eisenberg, T.: On Spatial Reasoning: [mplications for Teacher Educa-
tion, unpublished, Hulen and Beer Sheva, Israel.

Dubery, . and Willats, J.: 1983, Perspective and Other Drawing Svstems, (Kev. ed.), Lon-
don, The Herbert Piess.

Franchi, A. and dc Azevedo, M. V. R.: 1983, ‘Relatdrio de uma cxperiéncia’, unpublish-
ed, Pontifica Universidade Catolica, S3o Paulo.

Freetnan, N. H.: 1980, Strategies of Representation in Young Children, New York,
Academic Press.

Gaulin, C.: 1974, *Genuine Geometrical Activities for Elementary Schools’, in Proceedings
of the ICME - JSME Regional Conference on Curriculum and Teacher Training for
Mathematical Education, Tokyo, Japan Socicty of Mathematical Education.

Gaulin, C. er al.: 1980, Explorations Géométrigues, Tomes 1 et 11. Québec, P.P.M.M.,
département de didactique, Université Laval.

Gaulin, C. and Puchalska, E.: 1983, ‘Representations on Paper of Three-Dimenstonal
Shapes’, in J. Bergeron and N. Herscovics (eds.), Proceedings of the 5th Annual
Meeting of PME-North American Chapter, Yolume 1, Université de Mountréal,

Gaulin, C., Noelting, G., and Puchalska, E.: 1984, ‘The Communication of Spatial Infor-
mation by means of Coded Orthogonal Views', in T. Carpenter (ed.), Proceedings of
the 6th Annual Meeting of PME-North American Chapter, University of Madison,
Wisconsin.

Gaulin, C. and Puchalska, E.: 1985, Coded Graphical Representations. A Valuable but
Neglected Means of Communicating Spatial [nformation in Geometry, Paper
presented during the University of Chicago School Mathematics Project (UCSMP) In-
ternational Confercnce on Mathematics Education held in Chicago, March 28 — 30.

Giles, G.: 1979, 3-D Sketching Series, DIME Projects. University of Stirling/Oliver and
Boyd, Scotland,

Goddiin, A.: 1980, Shadow and Depth, OW & OC, Utrecht.




THI' NEED FOR EMPHASIZING VARIOUS GRAPHICAL REPRESFNTATIONS 71

Herdeg, W.: 1981, Diagrams — The Graphic Visualization of Abstract Dara, (4th ed.),
Zurich, Graphis Press Corp.

Instituut voor de Gntwikkeling van het Wiskunde Onderwijs; 1976, ‘Five Years IOWO -
10WO Snapshot’, Educational Studies in Mathematics 7, No. 3.

Kindt, M. and J. de Lange, Jzn.: 1982, Lessons in Space Geometry, OW & QOC, Utrecht.

1.esh, R. and Mierkiewicz, D. (eds.): 1978, Recent Research Concerning the Development
of Spatial and Geometric Concepts, Columbus, Ohio, ERIC/SMEAC.

l.iben, L. S., Patterson, A. H., and Newcombe, N. {eds.): 1981, Spatial Represenration
and Behavior Across the Life Span, New York, Academic Press.

Martin, }. L. (ed.): 1976, Space and Geometry, Columbus, Ohio, ERIC/SMEAC.

Middle Grades Mathematics Project; 1982, Spatial Visualization Unit, Department of
Mathematics, Michigan Stiate University.

Mitchelmore, M. C.: 1980a, ‘Prediction of Development Stages in the Represeniation of
Regular Space Figures’, Journal for Research in Mathematics Education 11, 83 —93.

Mitchelmore, M. C.: 1980b, ‘Three-Dimensional Geometrical Drawings in Three
Cultures’, Educational Studies in Mathematics 11, 205 - 216.

Muller, P.: 1981, ‘Raumgeometriec in der Schule und fiir die Schule’, Mathemaiica
didaktika, 155 —168.

Paez Sanchez, L.: 1980, Lo représentation graphique de 'espace chez l'enfant et che:
I"adulte peu scolarisé, Thése de doctorat de 3e cycle en didactique des mathématiques.
Université Paris V1I.

Piaget, J. and Inhelder, B.: 1948a, La représeniation de l'espace chez U'enfant, Parnis.
Presses Universitaires de France.

Piaget, J., Inhelder, B., and Szeminska, A.: 1948h, L.a géométrie spontanée de l'enfant.
Paris, Presses Universitaires de France.

Schmidt, C. F. and Schmid, S. E.: 1979, Handbook of Graphic Presentation, (2nd ed.),
New York, Wiley.

School Mathematics Project: 1985, SMP 11 - 16 (series of booklets), Cambridge, Cam-
bridge University Press.

Southworth, M. and S.: 1982, Maps - A Visual Survey and Design Guide, Boston, Little,
Brown & Co.

Van Sommers, P.: 1984, Drawing and Cognition, Cambridge, Cambridge University
Press.

Visual Education Curriculum Project: 1981, Do You See Whar I Mean? Learning Through
Charts, Graphs, Maps, and Diagrars, Canberra, Australia, The Curriculum Develop-
ment Centre.

Wilson, M.: 1973, Soma Puzzle Solutions, Palo Alto, Creative Publications, Inc.




RICHARD LESH

CONCEPTUAL ANALYSES OF MATHEMATICAL IDEAS AND
PROBLEM SOLVING PROCESSES*

1 have been asked to address the topic, conceptual analyses of
mathematical ideas and problem solving processes, and to give examples

& from: (1) my recent project on Applied Mathematical Problem Solving
(AMPS), (2) research with Merlyn Behr and Tom Post on our Rational
Number (RN) and Proportional Reasoning (PR) projects, and (3) cur-
rent computer-based instruction projects at the World Institute for Com-
puter Assisted Teaching (WICAT).

The topic may be particularly interesting to PME members because
conceptual analysis techniques are common in the resecarch of members
of this group, whereas such a theorctical orientation seldom characterize
the work of psychologists who lack mathematical expertise, or

mathematics educators who lack psychological expertise.

CONCEPTUAL ANALYSES

What i1s a conceptual analysis? 1 will begin by describing three refated
analysis types: task analyses, idea analyses, and analyses of student’s
cognitive characteristics.

[ will claim that: (a) idea analyses represent a major subset of a more
general class, conceptual analyses, (b) conceptual analyses require and
* emphasize the kinds of knowledge that mathematics educators uniquely

are able to contribute to research on learning and problem solving, and
(c) currently, some of the most promising research relevant to
mathematical learning and problem solving is moving in the direction of
conceptual analyscs from either a task analysis or analysis of students
perspective.

Essentially, deciding to use a task analysis, an idea analysis, or an
analysis of students’ cognitive characteristics means choosing a unit of
analysis that will be ‘most useful’ for the kinds of practical or theoretical
decisions one is trying to make: it is a choice of “*how far down to crank
the microscope’’ when e<amining mathematical learning or problem
solving performance.

(a) Analyses of students’ cognitive characteristics lead to generaliza-
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tions about students. Consequently, they tend to generate labels (e.g.,
concrete operational, impulsive, field dependent, spatial/geometric
thinker, gifted, etc.) which are: (i) associated with a given student, (i)
assumed (0 be invariant across content topics, tasks, and time, and (iii)
assumed to be difficult or impossible to influence through instruction,

(2) Ideca analyses lead 1o generalizations about various conceptualiza-
tions of particular ideas. They focus on cognitive processes and
capabilitics that are linked to specific content understandings, and
variability across content and context is explained in terms of conceptual
understandings. It also is assumed that learning and problem solving per-
formance characteristics can be modified through instruction, and that
content-dependent learning and problem solving processes are more im-
portant than general heuristics.

(¢) Task analyses go one step further than idea analyses concerning
the issue of variability. Compared with idea analyses, litile attempt is
made to explain similarities in behavior across tasks characterized by the
same i1dea. Compared with analyses of students’ characteristics, task
analyses assume that variability within an individual across tasks is more
important than variability within tasks across individuals (Hayes and
Simon, 1977; Newell and Simon, 1972). Task variables are of prime in-
terest {Anderson e¢ al., 1981; Kulm, 1979; Golding and McClintock,
1979; Hayes, 1981; Simon, 1979).

CONCEPTUAL ANALYSES OF PROBLEM SOLVING, STRATEGIES, AND
HEURISTICS

In the past decade, somc of the most productive areas of mathematics
education research have aimed at clarifying the nature of students’
primitive conceptualizations of a vari=ty of mathematical ideas, e.g.,

early number concepts, rational number concepts, or spatial/geometric
concepts.

THE ACQUISITION AND USE OF MATHEMATICAL CONCEPTS AND
PROCESSES

Lesh and Landau (1983) inciudes chapters by many PME members: e.g.,
Behr, Bishop, Carpenter, Moscr, Post, Vergnaud. Recently, some of
these idea analyses have begun to evolve into studies of problem solving
processes, heuristics, and student characteristics (¢.g., Carpenter ez al.,
1982; Lesh, note |; Lester, 1983; Schoenfeld, 1985).
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The evolution has taken two forms:

(1) While investigating the evolution of a basic mathematical concept,
interdependencies between content-understanding and process-use
emerge as important. For example, many ‘modcling’ and representa-
tional processes contribute both the underlying meaning of basic
mathematical ideas, as well as to their usability.

Freudenthal’s emphasis on ‘teaching mathematics so as to be useful’
refleets this approach, as does the work of Behr, Post, and myself in the
area of proportional reasoning and rational number concepts. Freuden-
thal’s perspective is very different from those who support ‘teaching pro-
blem solving’ or even ‘applied problem solving’.

(2) Techniques that have been used effectively to investigate what it
means to ‘understand’ given ideas are applied directly to problem solving
processes, heuristics, and understandings.

The Applied Mathematical Problem Solving (AMPS) project has used
this second approach. In the AMPS project, we assume that as students’
mathematical concepts are developing, the processes, heuristics, and
strategies associated with these concepts also are developing. Conse-
quently, we investigate primitive conceptions of problem solving pro-
cesses and heuristics using ‘idea analysis’ techniques similar to those we
have used to investigate primitive conceptualizations of rational number
or proportional reasoning concepts (Behr er af., 1983) or
spatial/geometric concepts (Lesh and Mierkiewicz, 1978).

Schoenfeld (1955), Lester (1983), and Silver (1985) are three other
mathematics educators whose research tends to use this general ap-
proach. Schoenfeld’s metacognitive understandings (1983a), managerial
functions (1983b), and belief systems (1983a) are components of
heuristic understanding. Or, the research of Landau (1983), Lester
(1983), and others has made it clear that ‘understanding’ a given heuristic
or process, like ‘draw a picture’, means: (i) knowing when it should be
used, (ii) knowing Aow it is related to other heurisiics, (iii) knowing which
of a variety of pictures best fit a particular idea, situation, or set of rela-
tionships, and (iv) knowing that the heuristic may serve different func-
tions at different stages in a problem’s solution (e.g., interpretation
stages versus verification stages, etc.).

One of the first assumptions that an ‘idea analysis’ perspective tends
to impart on problem solving rescarch is that ideas develop; they do not
go from ‘not known’ to ‘understood’ in a single step. This ideca-
developmental assumption has important and far-reaching implications

for problem solving research. For example,.in the AMPS project, when
(O
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our students used mathematical ideas to solve problems, their ideas tend-
ed to be at intermediate stages of development, their conceptualizations
of the underlying ideas(s) (or sets of ideas) had to be refined and adapted
to fit the problem situation; the underlying conceptualizations actually
developed (locally) during forty minute problem solving episodes. Con-
scquently, the problem solving mechanisms (e.g., processes, skills, and
understandings) that were helpful were those that facilitated local idea
development. Conversely, many heuristics that other researchers have
reported to perform productive functions in the presence of mature
understandings actually tended to be counter-productive in the presence
of primitive conceptualizations.

Later in this paper, more will be said about these ard other implica-
tions of an idea-development perspective on problem solving research
and instruction. First, it is useful to identify several more important
similarities and differences between child development rescarch and idea
development research.

IDEA ANALYSES VERSUS ANALYSES OF STUDENTS' COGNITIVE
CHARACTERISTICS

Because human development so often is described in terms of conceptual
capahilities related to pardcular logical/mathematical 1deas, idea
development research frequently appears to be indistinguishable from

child development research. The differences may be subtile, but they arc
important.

Human development rescarch results in generalizations about students
rather than about students’ ideas. [dea development research results in
generalizations about behaviors that can be expected from a student who
has acquired a particular conceptualization of given ideas (or set of
idcas).

Research on individual differences or cognitive style illustrates the
distinction between idea analyses and analyses of students’ cognitive
characteristics. ‘Individual difference’ research is founded on the obser-
vations that different students respond differently to identical problems
or stimuli. The additional assumption also usually is made, however,
that useful (?!!!) characteristics must be invariant across large content
domains, and across diverse sets of tasks and situations. The emphasis
is on demonstrating and explaining similarities in behavior across seem-
ingly unrelated situations; variability across tasks has been of less in-
terest. Instructional goals consist largely of finding ways to assign labels
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to students which will allow them to be sorted into groups, perhaps for
the purpose of providing differentiated educational experiences (Gould,
1981). Idea analyses, on the other hand, assume that the students’
tendencies can be influenced through instruction; it is not necessary
simply to compensate for characteristic ‘givens’.

When comparisons are made between ‘gifted’ students and ‘average
ability’ students, or between ‘good problem solvers’ and ‘average pro-
blem solvers’, an ‘analysis of students’ cognitive characteristics’ perspec-
tive implicitly tends to be taken; the content-independent nature of pro-
cesses, heuristics, and characteristics tends to be emphasized.

‘Idea analyses’ assume that ‘giftedness’ varies across subject matter
domains, and that a problem solver who is ‘good’ at problems related to
one topic may be ‘not so good’ at others. Idea analyses anticipate that
most productive heuristics and strategies will be content-dependent. For
example, in a number of recent research studies focusing on problems in-
volving the application of substantive content understandings, the utility
of all-purpose, content-independent processes has been challenged (e.g.,
Elstein er al., 1978; Rogoff and Lave, 1983; Lave, 1984). Research in
conceptually rich problem solving situations has suggested that it often
is poor problem solvers in the relevant content domain who use general-
but-weak strategies such as ‘working backwards’, ‘hill climbing’, or
other ‘means-ends analysis’ technigues; good problem solvers in the do-
main tend to use powerful content-related processcs (e.g. Larkin ef al.,
1978).

Results from our AMPS project yield similar conclusions: (a) Students
who have substantive ideas to bring to bear on a problem tend to use
them, together with powerful content-related processes; (b) Students
who do not have relevant ideas in a particular domain are, in general,
poor problem solvers in that domain, even if they have had extensive
training in the use of general, conteni-independent heuristics and
strategies (Lesh, note 1),

Sometimes problem solving research assumes content-independence in
subtle ways. For example, heuristics often are assumed to provide
answers to the question, ‘““What should I do when I am stuck?’’ This
question transforms easily into, ‘“What should I do when I have no
substantive ideas to bring to bare on the problem?’’ Research relevant
to this later issue can focus on problems in which no substantive ideas
(and consequently no contcnt-related processes) are needed.

The results, however, may have little relevance to conceptually rich

problem solving situations. 75
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In our AMPS project, because of the nature of the problems and sub-
jects that we investigate, we have seen virtually no conscious or overt uses
of commonly discussed heuristics. We Aave however seen many instances
of behaviors which appear to be based on primitive versions of heuristics
and strategies. At this stage of our research, it is by no means clear that
these behaviors reflect first steps in the direction of mature strategic or
heuristic understandings. Furthermore, even if developmental links can
be rraced, it is not clear that instruction should parallel development,
However, it does scem seusible that instructional considerations should
be informed by developmental knowledge. As a later section of this
paper will explain, many heuristics and strategies appear to require
significant reconceptualization to prevent them from yielding counter-
productive results when they are used by students with unstable concep-
tual systems (a term 1 will discuss later in this paper). In the same way
that idea analysis research has shown that it is naive to speak of students
‘having’ or ‘not having’ particular ideas, it seems reasonable 10 assume
that problem solving processes, heuristics, and characteristics should be
submitted to developmentally-oriented conceptual analyses. What is the
nature of students’ primitive conceptualizations of particular processes
or heuristics, and what factors hindcr or facilitate their evolution?

NATURAL DEVELOPMENT VERSUS DEVELOPMENT IN MATHEMATICALLY
RICH ENVIRONMENTS

2

Another distinctive characteristic of human development research is that
it tends to focus on very general ideas that develop ‘naturally’; whereas
idea development research often focus on ideas that are unlikely to
evolve outside artificial (perhaps instructional) settings.

Whereas naturalistic observations can be used to trace the develop-
ment of ideas that cvolve naturally, many mathematical ideas are unlike-
ly to evolve outside of mathematically rich instructional environments.
Furthermore, mathematics educators tend to be less interested in what
students can do ‘naturally’, than with what they can do using ‘conceptual
amplifiers’ like powerful and economical representational systems, or
language and symbol systems (Vygotski, 1978). For these reasons, idea
development research in mathematics education often must rely on in-

terventionist ‘teaching experiments’ or longitudinal development studies
" in artificial but mathematically rich environments. A major goal of idea
development research is to describe the impact of ‘capability amplifiers’
on the development and use of particular ideas. The focus is on ideas and
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the role of powertul and economical amplifiers, not necessarily on
‘natural’ development or behavior.

These emphases are becoming even morc important due to the
availability of powerful new technological tools. For example, with
computer-driven utilitics, like WICAT’s algebraic ‘symbol manipulator,
function plotter’ or geometric ‘proof checker, graphics editor’ (or even
familiar tools like VisiCalc), problem solving in the presence of such
‘conceptual amplifiers’ is becoming as important as thar in their absence.
In fact, for mathematically 1alented students who should be encouraged
to pursue careers in mathematics, science, and engineering, these em-
phases are even more significant. The learner or problem solver no longer
can be assumed to be a student working alone with only a pencil and
paper for tools.

I'rom the point of view of theory development, assumptions that are
relevant to an ‘amplified organism’ may need to be considerably dif-
ferent from thosc common in past cognitive science studies.

From the point of view of instructional development, traditional
wisdom also mayv need to be revised. For example, using powerful new
computer utilities, realistic applications can be used to infroduce a wide
variety of mmathematical topics. Then, we can gradually guide students to
build their own conceptualizations ot the underlying idea (Fey, 1984).

By minimizing the tediousness of answer-giving procedures, we can
focus a student’s attention on non-answer-giving phases of problem solv-
ing, where activities like information filtering, data gathering and
organizing, problem formulation, and trial solution evaluation are in-
volved. By focusing attention on the underlying conceptualizations of
problem situations, and on the sensibility of products of thought, sub-
tiltics about the meanings of the underlying ideas become apparent.
Also, by reducing the conceptual energies devoted to “first order think-
ing’, higher order ‘thinking about thinking’ bccomes possible. Other-
wisg, students frequently become so embroiled in ‘doing’ a problem that
they are unable to think about what they are doing, and why. Using
utilities, on the other hand, we can provide students with *ledger sheets’
of their solution paths, so they can explicitly examine and modify and
refine their thinking processes. !

At WICAT, we have compared groups of students receiving a tradi-
tional ‘teach first, apply later’ instructional approach to groups receiving
a computer-utibities-based ‘applications first, conceptualization refine-
ment’ approach. The results have shown that, for comparable amounts
of instructional time-on-task, the qui{t}ics groups consistently have
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outperformed the control groups; and they have done so not on ‘applica-
tions’ or ‘problem solving’ post-test items, and on items focusing on the
meanings of the underlying concepts, bu’ also on ‘computation’ items
associated with the topics — even though the utilities groups had no prac-
tice at all on the pencil-and-paper computations.

IDEA ANALYSES VERSUS TASK ANALYSES

Recently, some of the most theoretically interesting types of task
analyses have been accompanied by attempts to create artificial-
intelligence (Al) based information-processing (1P) models to simulate
students’ problem solving performance (Briars, 1982; Greeno, 1980;
Heller and Greeno, 1979; Mayer, 1983). Compared with strict task

. analyses, which are intentionally naive with respect to internal processes,
 IP task analyses are midway between idea analyses and task analyses. Al-

based IP models assume that students’ interpretations of a given task are
influenced as much by internal ‘programs’ or representations as by exter-
nal task variables. Still, it is one thing to create a program which behaves
similarly to humans on a given task, and quite another to create a pro-
gram simulating the way students’ substantive ideas influence behavior
on the task. Sufficiency in the former sense is considerably different
from sufficiency in the latter. Teaching a student to perform a task is not
at all the same as introducing the student to a conept which can be ap-
plied to an unbounded cluster of tasks (Greeno, 1983}, and which is
related in non-arbitrary and substantive ways to other concepts
(A asubel, 1963; Lesh, 1976).

Both idea analyses and Al-based task analyses assume that the
organizational/relational systems that mathematicians use to interpret a
task may not correspond to the ones used by youngsters {Hayes and
Simon, 1977). This is why task analyses begin with a set of tasks, and
then demonstrate task relatedness based on detailed observations of stu-
dent behaviors; that is, they begin with a set of tasks, and then create a
model (note: the model is the researcher’s) to explain the student’s
capabilities and understandings by simulating behaviors. In contrast,
idea analysis begin with models (i.e., hypotheses about the structures
that characterize students’ mathematical ideas), and then create tasks to
test these hypothescs.

In our RN and AMPS projects, theoretical perspectives have been in-
fluenced strongly by biases about the nature of mathematics and what
it means to do mathematics. The following two hypotheses are central
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-




CONCEPTUAL ANALYSES OF MATHEMATICAL IDEAS SD

to our perspective, and they tend to be distinguishing characteristics of
a ‘conceptual analysis’ approach to problem solving.

(1) In real situations, for students to make judgements involving
mathematical ideas, they must ‘read in’ some organizational/relational
system in order to ‘read out’ mathematics-relevant information,
Mathematics isn’t in things, it is the study of structures that are imposed
on things; that is, the content of mathematics consists of structures, and
to do mathematics is to create and manipulate structures. These struc-
tures, whether they are embedded in pictures, spoken language, real ob-
jects, or written symbols, are skeletons of the ‘conceptual models’ that
mathematicians and mathemartrics students use to interpret and solve
problems.

A major goal of our RN projects has been to describe in detail the
nature of students’ primitive conceptualizations of a series of central ra-
tional numbers and/or proportional reasonin, ideas. We also attempt to
describe the evolution of the underlying ‘‘conceptual models’’ associated
with these ideas.

(1) Our second hypothesis is that many of the most important factors
influencing learning and problem solving capabilities are directly related
to the stability (e.g., wholeness or degree of coordination, internal con-
sistency, consistency with the modeled world) of the relevant conceptual
models. In particular, this view assumes that one can investigate
mechanisms influencing the evolution of conceptual models without
necessarily knowing all of the details about the exact structural
characteristics of the underlying idea(s). This has been the general ap-
proach adopted by our AMPS research.

In both our RN and AMPS projects, we are not simply interested in
describing ‘states’ of knowledge, we are interested in the way transitions
are made from one state to another. Our goal is to model students’
modeling behaviors (Lesh, 1983). Like Al-based [P models of problem
solving, we consider the student to be an adaptive organism whose inter-
pretations of problems are influenced by internal models as well as by ex-
ternal stimuli. However, our student is a ‘modeler’ more than a ‘pro-
cessor’, and mathematics furnishes the ‘conceptual models’ for inter-
preting and transforming problem situations.

In the past, most mathematics-relevant Al-based IP models had only
attempted to simulate various states of knowledge. More recently, some
models are attempting to describe the way transitions are made from one
state to another (Chi, 1978; Klahr and Wallace, 1976; Larkin, 1982;
Resnick, 1983; Riley et al., 1983; Siegler, 1981, 1984). Still, these descrip-
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tions tend to treat cognitive growth as incremental and quantitative, i.e.,
as process of adding and deleting specific productions. This restricted
view of cognitive adaptation is not an inherent property of Al systems;
rather, it appears Lo result from the tendency of certain types of Al
models to represent mathematical ideas as node-like entities with little or
no internal structure (Newell, 1972).

In mathematics learning and problem solving research, studies which
de-emphasize the internal complexity and ‘holistic’ character of concep-
tual structures tend to hypothesize relatively powerful processes; whereas
studies hypothesizing the existence of powerful relational/organiza-

, tional structures need only relatively weak processes.

" When research is based on a ‘weak structure, powerful process’
perspective, cognitive growth tends to be described in terms of incremen-
tal and cumulative changes; (quantitative) additions and deletions of
procedures are emphasized rather than (qualitative) reorganizations of

- structured wholes. A ‘powerful structure, weak process’ perspective, on
the other hand, predisposes researchers to confront and explain insights,
intuitions, and other conceptual discontinuities (Fischbein, 1983).

In both our AMPS and RN research, the development of conceptual
models has been characterized by both incremental quantitative growth
and by discrete qualitative discontinuities. Models of cognition which en-
counter difficulties reconciling continuous changes with discrete jumps
often do so because mathematical concept development and probiem
solving are described using models which do not allow a whole system
to be more than the sum of its parts — as though psychological units
(analogous to chemical units of, say, hydrogen and oxvgen) can never be
combined to form something with new properties (like water), and as
though continuous or incremental quantitative changes imposed on the
system can never give rise to qualitative structural changes (as when
changes in temperature turn water into ice or steam).

Mathematics is a domain of knowledge in which form and content not
only are inter-related, to a large extents, conent is form. Many ideas are
characterized by structures which are virtually non-“decomposable; that
is, the mathematical meaning of the parts are derived entirely from the
system in which they are elements. In past articles, 1 have discussed this
phenomenon using the rubric of ‘structual integration’; Piaget (Piaget
and Beth, 1966) refers to the phenomenon as ‘rcflective abstraction’.
Relevant analogies from non-mathematics disciplines are less like
hydrogen and oxygen molecules in water (which is perhaps no more than

‘a neatly decomposable system) than they are like ‘renormalized particles’
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or quarks in quantum physics. Inside a proton or neutron, quarks not
only cannot be scen as clearly identifiable parts, they cannot even be
isclated and pulled out. Virtually all of their ‘meaning’ derives from the
svstems in which thev are ‘embedded’.

A decade ago, Newell (1973) stated, **Qur task in psychology is first
to discover that structure which is fixed and invaniant (underlying a set
of tasks) so that we can theoretically infer the method (used to perform
the task) — Without such a framework within which to work, the genera-
tion of new explanations wiil go on ad nauseum. There will be no
discipline for it, as there is none now.”’ (p. 296). Today current research
at the interface of mathematics and psychology is only beginning to ad-
dress Newell’s challenge.

Clearly, some of the best Al-based |P models are beginning to take in-
to account some important structural properties of mathematical idezas,
and some of the best conceptually-focused mathematics education
ro carch is beginning to achieve a degree of specificity comparable to that
which once was attainable only in the context of exiremely restricted task
domain in these trends continue, both vague idea analyses and naive task
analysis move progressively closer toward a form of conceptual analysis.

FINAL THEORETICAL CONSIDERATIONS

Unlike a great deal of the best cuirent problem solving research in
substantive content domains, the theoretical descriptions and mathematical
models we use do not fit the characterization of ‘information processing
systems’. Qur explanations of problem solving and concept formation
tend to be inore ‘organismic’ than ‘mechanistic’. Our theoretical con-
structs bear closer resemblances to many of Piaget’s ideas than to ar-
tificial intelligence models. We do treat the learner as an adaptive system
whose interpretation of problems is influenced by internal models, a:
well as by external stimuli, but we do not treat mathematics as informa-
tion to be processed, nor mathematicians as processors. For us, the
mathematician or mathematics student is considered to be a ‘situation in-
terpreter and transformer’, and mathematics furnishes the ‘conceptual
models’ for making interpretations and transformations.

If information processing was going on in our sessions, the informa-
tion was not simply raw data, or even multiple attributes associated with
raw data; it was the imposed organizational/relational systems that were

- being transformed. That is, it was primarily the conceptual models
‘themselves that were being ‘processed’ during solution attempts (Lesh,

1983). 54
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During solution attempts, the most beneficial decisions were seldom
procedural; ‘*What shall 1 do next?”’ Students who seemed preoccupied
with doing typically did not do well compared with their peers. Beneficial
considerations tended to be conceptual in nature, focusing on thinking
about ways to think about the situation (i.e., relationships among
‘givens’, or interpretations of ‘givens’ or ‘goals’), rather than about ways
to do it, or get from ‘givens’ to ‘goals’. This ‘conceptual versus pro-
cedural’ distinction was especially important during early stages of solu-
tion attemrpts when students’ conceptual models were most unstable
(Lesh and Zawojewski, 1983).

The most appropriate general characterization of most of our AMPS
problem solving sessions 1s that our students constructed solutions by
gradually organizing, integrating, and differentiating unstable concep-
tual structures (e.g., conceptual models) more than by linking together
stable procedural sysiems (e.g., production systems associated with Al-
based IP theories).

If problem solving is characterized as a process of linking together
stable procedural systems, then the most important heuristics and
strategics may appear to be those which help the problem solver select
and sequence their activities. That is, they serve ‘managerial’ or ‘ex-
ccutive’ functions governing the use of more powerful, iess general, and
more content-dependent processes. However, if (as in most of our
AMPS sessions) solutions are constructed by gradually refining, in-
tegrating, and differentiating unstable conceptual systems (i.e., concep-
tual models), then the most important heuristics and strategies are those
dealing with: (a) how deficiencies in various models are detected, (b) how
to minimize the debilitating influences associated with the use of unstable
conceptual models, (c) how successively more complex and refined
models are gradually constructed, and (d) how competing interpretations
are differentiated, reconciled, and/or intcgrated. In our sessions, many
of the most effective activities facilitating solution attempts functioned
not so much to help the problem solver amplify his/her problem solving,
abilities as they did to help the problem solver minimize cognitive
charactceristics associated with the use of unstable conceptual models.

Several years ago, when ‘Piagetians’ attempted to specify implications
for classroom practice, the question, *‘Can cognitive development be ac-
celerated?’® was referred to as the ‘American question’. Qur AMPS
research is showing that Piaget’s theory, as well as several other
‘developmental’ perspectives (e.g., Vygotskii in psychology, Gould in
biology, Lakatos (1963) in the history and plrglpsophy of science) arc ap-
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pearing to have new relevance. The new relevance results from the nature
of the problems that we address, and because of the ‘local conceptual
development’ character of typical solution attempts. The new ‘American
question’, appears to be *“How can we minimize cognitive deterioration
(or conceptual difficulties that arc naturally associated with unstable
problem conceptualizations)?”’ ,

In our problem solving sessions, we frequently found students doing
poorly because of things that they had learned in their mathematics
classes about the nature of mathematics and mathematical problem solv-
ing. Or, activities (heuristic, strategies, processes, etc.) which were
beneficial at one stage of problem solving were counter-productive at
others. Beneficial activities varied across problems, and across stages in
the solution of individual problemns. Our ‘conceptual analyses’ of
students’ modeling will continue to explore parallels between:

(a) Mechanisms that influence in our ‘local conceptual development’
sessions and mechanisms that facilitate or hinder general (or ‘natural’)
cognitive development. For example, Piaget (1971) and Vygotskii (1978)
have different explanauons for roles that peer group interactions can
play to help students acquire certain problem solving skills.

(b) The ‘local’ evolution of adaptive conceptual systems and the
evolution of biological organisms (e.g., Gould, 1980; Piaget, 1971). For
example, biologists have described some of the most important
mechanisms that propel evolution, and they have described cir-
cumstances in which evolution is not likely to lead to ‘higher order’
organisms. The popular picture of evolution as a continuous sequence of
ancestors and decendents is misleading. Biological evolutionists in
general see periods of rapid change followed by long periods of tranquili-
1y; several lineages frequently coexist, none clearly derived from
another. Gould states:

The ‘sudden’ appearance of species — is the proper prediction of ¢volu-
tionary theory as we .inderstand it. Evolution usually proceeds by (local)
‘speciation’ — the splitting of onc lincage from a parental stock — not by
the slow and steacy transformation of the large (central) parental stock.
Repeated episodes of speciation produce a bush. Evolutionary ‘sequences’
are not like rungs on a ladder (Gould, 1980, p. 61).

(c) ‘Idea development’ in the context of particular problem solving
situations and ‘knowledge development’ as it is interpreted in recent
‘history of science’ perspectives (Gould, 1980; Kuhn, 1971; Lakatos,
1970, Suppes, 1977 eg). Early development stages frequently are
characterized by the coexistence of a number of distinct (in retrospect)
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vet relatively undifterentiated (at that time) world views. Development-
by-accumulation often fails to explain important aspects of conceptual
cevolution; conceptual reorganizations often radically alter perceptions
of what 1s ‘intuitive’ or ‘obvious’, etc.

Each of the above three suggestions are ripe with notions that run
counter to traditional theoretical perspectives in mathematics learning
and problem solving, but which are very consistent with the ‘local con-
ceptual development’ character of our AMPS sessions.

CONCEPTUAIL ANALYSES OF MATHEMATICAL PROBLEM SOLVING:
AN EXAMPLE

The AMPS project diftered from most problem solving projects in
mathematics education because it evolved out of ‘idea analyses’ aimed
at clarify the nature of youngsters’ primitive conceptualizations of ra-

. tional number concepts, spatial/geometric conceptg or early number or

measurement concepts. It has not been the goal of the AMPS project to
study problem solving per se; rather our goal is to enrick what educators
mean when they say a student understands a mathematical idea. We have
investigated the processes, skills, and understandings that average ability
students necd in order to adapt their mathematical ideas to model every-
day situations. Our ultimate instructional objective is to help average
ability students use ideas that they do hAave, not to function better in
situations in which they have none, or in puzzle or game-like situations
in which no substantive ideas are relevant.

A surprisingly small percentage of the problem solving research is
more that tangentially relevant to questions about using mathematics in
realistic settings. Burkhardt’s research is a notable exception (1983).

AMPS research has shown that seemingly realistic ‘word problems’
often differ significantly from their real-world counterparts with respect
to difficulty, processes most often needed in solutions, and error types
most frequently committed (Lesh er al., 1983). Furthermore, if one iden-
tifies salient characteristics of everyday situations in which mathematics
is used, many of the most important problem types are not represented
at all in most textbooks (Bell, 1979).

At the 1978 PME meeting in Osnabrick, I argued that research on

+ mathematical problem solving would be significantly different if the

following were nut neglected: (a) real mathematics, (b) rcalistic situa-
tions, and (c) real (i.c. average ability) students. These rationale, in fact,
led to the AMPS project. Consequently, after six years of s.udy, it seems
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appropriate that I re-examine my claims and modify or extend them in
the light of AMPS results.

(1) Frcus on Real Mathemuatics

The problems we have investivated involve casy-to-identity elementary
mathematics concepts (i.c.. basic arithmetic, measurement, and number
ideas). Consequently, like others whose research has focused on pro-
blems involving the application of substantive content understandings,
we have found that successtul problem solvers tend to usc powerful
content-dependent processes rather than general content-independent
processes (e.¢., Simon, 1981; Elstein ef a/l., 1978). The processes that we
have found to be most beneficial to our students contribute to boih the
meaningfulness as well as the usabifity of the relevant mathematical con-
cepts. They are integral parts of the underlying conceptual models.

in our problems, alternative ways of conceptualizing problem situa-
tions required different organizational/relational systems ot be imposed
on the problem solving situations, and these distinct systems resulted in
different ways of filtering, organizing, and interpreting ‘givens’ and
‘goals’. Students’ initial problem conceptualizations tended to be barren
and distorted compared with final conceptualizations, and ‘stages’ in the
development of a given conceptualization could be identified depending
on the complexity and refinement of the undcrlying systems.

T'he preceding kinds of observations led us to recognize one of the
most fascinating and potentially powerful conclusions of our research;
that is, many of our forty-minute sessions resembled compact versions
of phenomena that developmental psychologists have observed over time

- periods of scveral ycars (c.g., concerning the evolution of particular

* mathematical ideas).

We have characterized our problem solving sessions as ‘local concep-
tual development” episodes. For example, in our ‘inflation’ problem
{1.csh, 1983), a problem that involves proportional-reasoning, the se-
guence of stages that our students went through were remarkably similar
to accounts of the ‘natural’ development of proportional-reasoning
capabilities given by Piaget (1966), Noelting (1979), Karplus er a/. (1983)
and others. The students moved from conceptualizations that focused on
only the most salient or superficial characteristics, and that dealt with
facts (or relationships, or information) one at a time, to dealing with sets
of variables, several at a time, and in well organized systems.

Primitive versions of given conceptualizations (i.e., conceptual
models) were based on relatively unstable {e.g.. poorly coordinated) rela-
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tional/organizational systems; and these poorly coordinated systems
tended to:

(a) notice only the most salient relationships and information in the
problem situation, filtering out other important but less striking
characteristics; and/or

(b) neglect to notice model-reality mismatches, thus imposing subjec-
tive and unwarrented relationships or interpretations based on ‘a priori’
assumptions. Progressively more stable versions of given conceptualiza-
tions took into account more information (and more different kinds of
information), and to impose fewer irrelevant or debilitating restrictions,
or subjective false assumptions. An initial interpretation (i.e., model)
selected, organized, and interpreted a subset of the available informa-
tion; this interpreted information then required certain aspects of the
model to be refined or elaborated; and the refined or ¢laborated model
allowed new information and relationships to be noticed, thus giving rise
to a new ‘modeling’ cycle.

Conclusions Reiated to Emphasizing Substantive Muthemutical Ideds

Although AMPS transcripts illustrate many mathematical skills and
understanding that are distressingly deficient in most students, our
students did prove to be fairly able modelers if they are given the oppor-
tunity to exhibit these capabilities. Theffroutinely ‘invented’ new ideas,
or significant extensions of familiar ideas. Furthermore, it was easy to
identify processes, skills, and understandings that (a) are not taught in
school, (b) are important sources of difficulty as students try to use their
mathematical ideas in everyday situations, (c) are not difficult to teach,
(d) would make students significantly better ‘real world’ problem
solvers, and (e) would fit Freudenthal’s emphasis on teaching
mathematics — but teaching it so as to be useful.?

(2) Focus on Realistic Situations

AMPS problems are simulations of realistic problem solving situations
that might reasonably occur in the everyday lives of our students or their
families. They have dealt with shopping, sports teams, .cwspaper inf\

mation, planning a summer job or party or trip, e.c. Many of these pro-
blems and their characteristics have been described elsewhere (e.g., Lesh,
1981; Lesh and Akerstom, 1981; Lesh and Zawojcwskii, 1985; Nesher,
1980). Most of our problems required at least 15 —40 minutes to com-
plete, and rcalistic ‘tools' were available (e.g., calculators, rulers, graph
paper, reference books, etc.). A variety of solutions and solution paths
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also were available, so ¢valuating the usefulness or quality of trial solu-
tions or solution paths was important. The project had shown that a
characteristic of good everyday applied problem solvers is their ability,
upon confronting a problem, to quickly and accurately assess problem
difficulty, needed resources, and time required for an adequate solution.
A 30 second solution attempt is very different from a 5 minute attempt
or 30 minute attempt,

Our problems seldom could be characterized as situations in which
students needed to get from explicit ‘givens’ to well defined *‘goals’’ us-
ing clearly specified procedures. The definitions of problems, givens,
goals, and acceptable solution paths, all required input from students.
Unlike textbook word problems in which either ‘too much’ or ‘not
enough’ information is given, many of our problems involved an over-
whelming amount of information, all of which was relevant, and the
main dif ficulty was to select and organize the information that was ‘most
useful’ in order to find an answer that is ‘g od enough’; or, not enough
information was available, but a useable answer had to be given anyway.
In other cases, additional information had to be generated or gathered
during the solution process; all of the relevant information was not given
at the start.

For most of our problems, non-answer-giving stages (e.g., problem
formulation, trial solution evaluation, etc.) were critical. The goal was
not simply to airive at a mathematical answer; mathematics was a means
to anend, not an end in itself (Lesh and Akerstrom, 1981), and acceptible
solutions varied in both type and sophistication.

All of the above characteristics of realistic situations are related to the
use of mathematical ideas as models that select, filter, and *fill in holes’
within information that is given in a problem solving situation. Conse-
quently, investigating the usefulness or adequacy of trial models was an
important activity.

We found that the most appropriate characierization of most of our
AMPS sessions was that the students alternated among 2 — 4 distinct in-
terpretations or models of the situation (including goals and givens), with
different conceptualizations often recurring at several distinct stages of
complexity, refinement, and stability, We have examples of sessions in
which students want through as many as ten ‘modeling cycles’ during a
forty minute session (Lesh, 1982). Differences between model types, or
between different forms of a given model type, were based on: (i) dif-
ferent data being selected or filtered, (ii) different types of rela-
tional/organizational systems being imposed on th: dala, or (iii) dif-
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ferent ways of simplifying, combining, or synthesizing the data.
During early stages of many of our scssions, scveral half-formulated
(often logically incompatible) . conceptualizations  operated
simultancously, each suggesting half-formulated solution procedures
and/or alternative ways to select, tilter, interpret, relate, organize, or
synthesize information. Students often moved from one conceptualiza-
tion to another in the following general way. First, a particular type of
relationship was noticed which was associated with a given concep-
tualization. Then, as attention shifted away from the overall concep-
tualization, the relationship began to be treated as part of an entirely dif-
ferent conceptualization. The phenomenon resembled a repeating cycle
of ‘losing the forest when looking at the trees’ and ‘losing the trees when
looking at the forest’. This sort of ‘mutation’ from wholes, to parts, to
new wholes, to new parts, sometimes led to new productive ideas or inter-
pretations; in other cases, it derailed promising solution efforts.?

Conclusions Related to Emphasizing Relastic Situations

Because of the nature of our students and problems, we have had to
reconceptualize or redefine many popular heuristics and strategies 10
make them suitable for: (a) non-answer-giving stages of problem solving,
(b) processes that are content-dependent, (¢) solution paths involving
multiple ‘modeling cycles’, where the first conceptualizations can be ex-
pected to be barren and distorted, and (d) conceptual models based on
unstable organizational/relational (as well as procedural) systems,

We have thown that a given heuristic or strategy may have either
positive or necgative consequences depending on: (i) its content-
relatedness, (i) its conceptual versus procedural focus (a distinction that
I will make in a moment), (iii) the function it is to serve at a particular
‘stage’ in which it is used, and (1v) the stability of the underlying concep-
tual model. Stage-dependent, content-dependent. conceptually-focused
techniques tend to be most beneficial when their main function is to heip
problem solvers ‘minimize the negative influences of unstable conceptual
systems’ more than to ‘maximize the effectiveness ot stable procedural
systems’ (Lesh, 1983).

Our research has made us sensitive (o the tendency of educators to turn
a ‘means to an end’ into an ‘end in itself’. Heuristics should be taught
in 2 way that does not conceal the goals that give rise to them (Noddings,
1983). For example, in problem solving situations, one does not ‘look for
a similar problem’ as an end in itself; the goal usually is to ‘look for a
similar problem in arder to better understand tne *'given’’ problem’. One
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does not draw a picture as an end in itsclf; the picture is drawn for somc
purpose — and the most useful purposes facilitate one or more of the ;
Sunctions that are critical to ‘local conceptual development’. A major
goal of our rescarch is to identify some of the most important of these
‘local conceptual development’ functions or mechanisms. To identify
these functions we trcat both substantive mathematical ideas and pro-
blem solving processes (or heuristics) developmentally.

(3) Focus on Real Students

AMPS research has not found it uscful to compare high ability (or
‘gifted’) students with average ability students, nor have we compared
‘experts’ with ‘novices’. In fact, we have found that the strategies and i
techniques that ‘good problem solvers’ use to attack problems when they
are ‘stuck’ (i.e., when they have no substantive ideas (o bruig to bear on
the situation) often are counterproductive to average abilitv students,
who are attempting to use ideas that they do have but which are based
on ‘unstable understanding’ {a term 1 will describe below). |
The most relevant comparisons for our concerns have been between r"
‘avcrage ability novices who succeed’ and ‘average ability novices who l.
fail’ on a given problem. Or, because the productivity of a student’s ac- Il
tivities often vary con<iderably within a 40 minute session, it is even more ’ |
accurate to say that our comparisons havc been between beneficial versus
non-beneficial bechaviors of average ability students as they attcampt to ]
use elenientary mathematical concepts in everyday situations. .
In our AMPS projcct, a problem has been defined 1o be a meaningtu!
situation in which a stable conceptual model is nof available to the stu-
dent (or group). Problems, according to our restricted definition, cannot
be solved simply by linking together stable systems. Experts, on the other
hand, are precisely those people who have acquired stable and accessible
conceptual models for interpreting and manipulating information in a
given problem domain. Therefore, even when these individuals do not
have an immcdiate respouse 1o a question, thev do have well organized
conceptual and procedural systems for producing a response. Thus, the
situation is not really a problem at all for these individuals; it 15 just a
(perhaps com,.'ex) exercise. Behaviors of ‘experts’ in a given problem do- b
main therefore can be expected to be qualitatively different from that of
novices. :
According to our definition, a ‘problem:” 1s not characterized as an in- f
ability to get from A to B. So, for example, a mountain climber’s ‘pro- s
blem’ is not so much to get from the bottom of a cliff to the top, as it "'f'- :
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is to ‘understand the terrain’. Once the terrain is understood, the activity \
of getting to the top of the cliff is an exercise, not a problem. .

The problem solving behaviors of ‘gifted’ studcats also can &< cx-
pected to be qualitatively different from those of average ability
students. For example, gifted students ‘see’ connections among pro-
blems (or situations, or ideas) which average ability students do not
recognize (Krutetskii, 1976); and ‘learning disabilities’ students fre-
quently fail to recognize connections among problems (or situations, or
ideas) which appear obvious to average ability students (Lesh, 1980).
Qualitative differences in problem solving capabilities are analogous to
those that distinguish Piaget’s preoperational levels of thought from for-
mal operational levels.

CONCLUSIONS RELATED TO EMPHASIZING AVERAGL ABILITY STUDENTS

Identitfying heuristics, skills, and strategies that are used by either ‘ex-
perts’ or ‘gifted’ students, and attempting to teach them (in isolation,
and in an unmodificd form) to average ability novices may vield
negligable, or even negative, results. it seems plausible that childrens’
conceptions of problem solving processes, strategies, and heuristics must
develop in a ruanner similar to the way other mathematical ideas (e.g.,
counting, whole number arithmetics, rational number concepts) are
known to develop. Yet, research has seldom viewed heuristics
develepmentally. Conceptual analyses of problem solving performance

rc based on the notion that, to help students’ heuristic/strategic concep-
tions evolve toward mature understandings, educators must be
knowledgeable about intermediate stages of the development
mathematical ideas and problem solving mechanisms — stages in which
problem solving understandings, skills, heuristics are linked to unstable
conceptual systems.

Northwestern University & WICAT Inst. Muih/Science Division Director

NOTES

* The Applied Mathematical Problem Solving project, and the Rational Numoer and Pro-
portional Reasoning projccts, referred to in this paper werc supported in part by the Na-
tional Science Foundation grants SED-79-20591, SCD-80-17771, and SED-81-12643. Any
opinions, {indings, and conclusions expressed in this paper are those of the author and do
not necessarily reflect the views of the National Science Foundation.
" To avoid confusion for readers who do not share my prejudices about the nature of
mathematics, and about what it means to do mat(hqr_natics. perhaps [ should state another



1d

b

CONCEPTUAI ANALYSES OF MATHEMATICAL IDEAS ‘93

of my biases. That is,in my opinion, althoughmost mathematical ideashave computational
procedures associated with them “‘doing the procedure’’ frequently has little to do with
“‘doing mathematics’’, nor is it necessarily a good indicator of depth of understanding
about the underlying ideas. For example, in calculus or statistics, the procedures needed
1o compulte a given derivative or integral or statistic typically bears little resemblance to the
network of relationships that underly (i.c., psychologically and mathematically define) the
underlying ideas. - Similar staterents are true for elementary school mathematics,
although they are less obvious.

2 All models have some properties that the modeled world does not have, and/or they filter
out soine properties that the modeled world does have. If this were not true, the model
would not represert the modeled world, it would be indistinguishable from the modeled
worid (Bender, 1978, Burghes, Huntley, & McDonald, 1982).

In conceptual evolution, a ‘good’ model is one that fits the modeled reality; ‘better’
models tend to account for more information with more complex relation/organizational
systems, with less distortion. ‘Stable’ models are internally consistent and ‘well co-
ordinated’ in the sense that (for example) the ‘forest’ and the ‘trees’ do not lead to conflic-
ting views.

In this paper, for simphcity, I will describe the evolution of conceptual models using
language which suggests that "stable’ (i.e., well adapted) models is a term synonymous with
‘good’ (c.g., suphisticated, complex) models. In general, in most of our AMPS problem
solving sessions, this siinplifying assumption was justified. However, conceptual evolution
can lead to models that oversimplify or distort reality in much the same way that biological
evolution does not always iead to ‘higher order' organisms (Gould, 1978). Adaptation may
not lead to increasing complexity and differentiation. A cockroach, for example, is a
remarkably well adapted organism. - Sadly, many students’s mathematical concepts
resemble conceptual cockroaches hecause of the educational environment to which they
learn to adapt.

' The above description refers to unstable refational sub-systems within students concep-
tual models. Similar phenomena also occur for operational or procedural sub-systems. For
example, unstable procedurai systems are characterized by: (a) losing cognizance of overall
goals (or the subsum:i.z network of procedures) when attention is focused on individual
subprocedures, or (b) mis-executing ‘easy’ subprocedures when attention is focused on
overall goals (or the subsuming network of procedures).
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ADRI TREFFERS AND FRED GOFFREE

RATIONAL ANALYSIS OF REALISTIC MATHEMATICS
EDUCATION - THE WISKOGBAS PROGRAM

What are the characteristics of the Dutch Wiskobas program and the
textbook secries grafted onto it?

What is the architecture of partial courses such as column arithmetic,
fractions, ratio, measuring, what instructional theoretic frame do they
fit into?

Before answering these questions let us give some information on the
Wiskobas project!

Wiskobas started about 1970. In 1975 the Wiskobasteam of IOWQO
(Institute for the Development of Mathematics Education) published an
experimental curriculum for mathematics instruction in the primary
school (six grades, age bracket 6 —12). Upto 1980 the curriculum was
elaborated in a number of publications. Since the abolition of IOWQ the
developmental work and the rescarch have been continued in a way albeit
at separate institutes. Now, in 1983, the influence of Wiskobas on the
commercially available textbooks appears to have been considerable:
four out of five schools in our country that have in mind to change text-
books, choose now one of the (five) series that have to a considerable
degree been influenced by the Wiskobas-work.

The most conspicious characteristics with regard to contents of the
new programs are:

(1) Much attention 1s paid to basic abilities, elementary mental
arithmetic, and estimating.

(2) The basic algorithms, among which long division, are taught and
learned as kind of clever calculating.

(3) Thesubject ‘ratio’ appears on many spots in the program as an im-
portant binding agent between mathematical subjects in the reality; in
particular, if relations between quantitics and magnitudes are being com-
pared, the proportionality table is an important tool as it is in
percentages.

(4) Theinstruction of fractions and decimals is less formal than it used
to be, and the final objectives have been revised.

(5) There is more attention paid to measurement and geometry than it
used to be,

The didactical conception, however, is a more essential feature of the
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new programs. This, then, will be the target of our analysis, and for this
reason we shall consider the new realistic instruction against the
background of other important ways of thought which can international-
ly be distinguished in textbook series, viz. the mechanistic, the empiricist,
and the structuralist views. These four views, or rather, these four
tcaching theorctic frames into which the textbooks and teacher manuels
can be fitted in an ideal typical sense, also retlect globally the basic in-
structional ideas of teachers (see for instance Thompson, 1984). But this
phenomenon will be disregarded herc: we are concerned with the global
approach of realistic programs and textbook series.

1. A FIRST ORIENTATION ON WAYS OF THOUGHT IN MATHEMATICS
INSTRUCTION

Consider the tollowing dircction in a fun cataloguc of remarkable ob-
jects:

This canvas covered with a thin reflecting layer is a marvelous aid for
making selfportraits (sce Figure 1).

Figure 1.

What went fundamentally wrong when this reflecting canvas situation was
drawn?

This question can in principle be put into a geometrical context. The
way this would be done according to the various ways of thought in
mathematics instruction is an excellent means to charactertise them, as
appears from the following. 95
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In the mechanistic approach to the reflecting canvas this query, rather
than a starting problem, would be at most an application of previous
theory. To start with the rule would be taught, connecting the mirror im-
age and the image perceived upon the mirror. Then the pupils would be
allowed to verity the rule and to apply it to appropriate problems such
as the reflecting cloth problem.

The structuralist approach yearns for morc insight. Atter having been
offered the reflecting cloth problem is schematised and presented to the
pupils anew in its geometrical context. This involves that the pupils
get little, if any, opportunity to organise themselves the situation
mathematically. Much attention is paid to the geometrical elabora-
tion, that is the similarity relation between the images. By means of a new
example (how large should a dressing mirror be in which you can see
yourseif totally?) the pupils can show they have understood the proof.

Both the empiricist and the realistic approach pay much attention to
the premilimaries of schematising the reflecting canvas situation. To start
with the children are asked to formulate hypotheses on the relation be-
tween the images without actually measuring. Natural naive presump-
tions on this relation will emerge such as that they are equally big, but
ai>o that there does not exist any fixed ratio because tar-away things
become smaller (Schoemaker, 1984). The hypotheses will be discussed
and tested or experimentally refuted. The experiment, however, is the
source of a new hypothesis: the mirror image and the image on the mirror
are as 2 : 1. At this point empiricists and realists have arrived where the
structuralists started. Or have they? The schematisation has not been of-
fered but has been developed by the pupils themselves. ‘Draw the head
of your mate on this panc of glass by looking through’. ‘How do you ex-
plain the small size of the projection image?’ By suchlike draw and aim
tasks the attention is fixed on the eye as the centre of the profiling vision
rays and eventually they acquire the schematisation of the reflecting
canvas problem (Goddijn 1983, Schoemaker 1984), As a matter of faci em-
piricists and realists differ with respect to the attention paid by the latter
ones to the mathematical finishing touch: similarity as the key to
understanding the discovered regularity.

The difference between the approaches can also be illustrated by
mcans of the notions of horizontal and vertical mathematising. Horizon-
tal mathematising means in the present case that the problem is
schematised in order to be manipulated by mathematical tools. Vertical
mathematisation means the mathematical processing and refurbishing of
the real world problem transformed into mathematics, that is in the pre-
sent case proving the relation betweef B‘rﬁage and selfportrait.
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In the realistic approach care is bestowed on both components, in the
mechanistic approach on neither, whereas the structuralist stresses the
vertical component, and the empiricist the horizontal one.

I.et us consider this as a first sketch of the ways of thought we have
in view. The sketch is illuminating but can also be misleading although
not primarily because the typical features of kinds of mathematical in-
struction have been exaggerated and have produced together a
caricature. In fact such procedure is illuminating as long as we are awarc
of the exaggeration. The proper reason why this example is misleading
is the reduction of the fundamental differences to the level of local pro-
blem solving. Of course the various global views have their local conse-
quences, which in turn can serve to illustrate the global views by the way
of local problem solving examples. Qur target, however, is the more
global view, problem fields, courses, fundamental long term learning
processes, complete curricula. We are aiming at the macroscopic pro-
blem solving model, at the global, rather than the local, structure of the
solving process. Thus the reflecting cloth problem is not meant as an
isolated problem but viewed within a problem field extending from the
looking box at the lower grades, via ratio and aiming problems at the
higher grades of the primary school to the mirror problems of secondary
instruction. Or even more: it is a model for mathematising in its totality.

2. GRADUALLY PROGRESSIVE MATHEMATISATION

We will now illustrate the foregoing sketch of mathematisation, and in
particular the horizontal and vertical mathematisation by means of an
example of course character. We choose the activity of fair sharing as the
red thread through a sequence of well-known subjects: dividing in the
lower grades, long division in the intermediate grades, fractions in the
higher grades of primary instruction. We will try to uncover the fun-
damental processes of mathematising in these difficult, controversial,
and seemingly worn-out subjects.

The chosen cxamples have been taken from the Wiskobas work. This
means a realistic viewpoint, which is not a monopoly of Wiskobas: fair
sharing might be used in this way in any realistic mathematics
instruction,

2.1 Fair Sharing and the Division Tables

As everybody knows, fair sharing is 2 real and motivating activity in
childrens’ life. What use is made of it in initial mathematics instruction?

101




RATIONAL ANALYSIS OF REALISTIC MATHEMATICS EDUCATION 101

What opportunities are created by fair sharing? These are characteristic
questions for both the empiricist and realistic thought: looking for start-
ing points in the spheres of interest of children rather than delaying such
questions up to the moment when after adding, substracting, and
multiplying the art ot division gets its turn.

Fair sharing among two participants is an expression of the relations
‘more’, ‘less’, and ‘equal’. Shares can be compared by one-one-
connections, by counting, and by grouping. In addition problems shar-
ing can serve the structuring of numbers below
20:5 +7 =6 + 6 = 12,itisawell-known fact that doubling is early
memorised. Even and odd are related subjects, ‘one half’ emerges, ob-
jects of varying size, value, shape can be cut into equal parts. In brief,
as early as the first phase of intitial instruction can fair sharing anticipate
on important concepts and structures, though not with the view on
operations within arithmetic and formalising division as an operation.
This approach is characteristic both of the empiricist and realistic way
of didactic thought as compared with the mechanistic and structuralist
ones.

Memorising the division tables between the lower and the intermediate
grades also happens according to the various ways of thought in a
characteristic manner.

In the realistic (and empiricist) approach the division is comfortably
embedded in simple context problems where again fair sharing plays its
part. As a consequence the bare field of division tables is explored, struc-
tured and gradually memorised while using various kinds of arithmetical
strategies, where special properties are exploited with the support of
formerly memorised facts. When division with remainder is at issue, at-
tention is paid from the veginning onwards to the context dependency of
the answers.

What is the use of connecting context problems to learning division
(and multiplication) tables?

The children often don’t recognise the division operation in the con-
text problem. In order to solve them they use additive or mixed up ad-
ditive and multiplicative methods. If context problems are chosen as
source for acquiring the division concept, the division is, formally view-
ed, tied to continued adding, continued "ubtracting, and multiplying. In
other words, this integration and association of operations prepares the
constitution of the division concept from the other basic operations
through progressive schematising and shortening. Division develops
from the ‘more primitive’ operations via informal strategies applied in
context dependent manipulations, tl'jequresponding bare’ arithmetic of
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aiming' multiplications, and aiming estimations. On the other hand,
when structuring the field of the division tables, the pupils get the oppor-
tunity to take their bearings on the real phenomena of fair sharing, which
is particularly important if special properties are to be applied.

This, then, is the way how horizontal mathematisation, that is,
gradually ltearning to tdentify the division in appropriate context situa-
tions, and vertical mathematisation in the sense of ever more skilful and
shorter calculating, progress together.

As a matter of fact, the separation of mathematising in these two com-
ponents is somewhat artificial because of their strong interdependence.
But as a means of description the separation is valuable because of its use
in characterising textbooks according to the various types — this was
clear in the reflecting canvas problem and it wili anew show up in the
following analyses.

[n initial arithmetic instruction the empiricist approach globally
equals the realistic onc. Only with regard to the vertical mathematisation
does a divergence develop, which later on will broaden more and more.
Considerably less attention is paid in the empiricist, approach to structuring
and memorising the field of division tables, and considerably less time is
devoted to keeping up the basic abilities.

The structuralist approach distinguishes itself from the realistic one in
the horizontal component of mathematising, which is restricted to the
complex of a posteriori applications of the subject matter learned within
the formal /stem. From the structuralist view-point context problems
rather than being the source of the division concept are exclusively, or
at least mainly a domain of application. As a consequence context pro-
blems cannot function as models for operating in the formal system, nor
are the formal operations anchored in the informal methods used by
children when solving context problems — a disadvantage to applica-
tion, at least according to our rational analysis.

The mechanist approach differs from the realistic one on all points.
Context problems play a minor part, a~d memorising is not based on
structuring and shortening. As a consequence learning and applying the
division tables causes serious problems.

It will be discussed later on how this rational analysis is supported by
empiricial evidence. Meanwhile it may be posited that the differences
touched in the mirror cloth problem manifest themselves equally in the
intitial phase of the division course.
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2.2. Long Division

The realistic course of long division displays a progression of clever
calculating in more or less elementary fair sharing situations.
Let the start be

342 stickers are fairly distributed among 5 children; how
many docs each of them get?”’

This at first sight hardiy perspicuous situation asks for an organisation
of the distribution. In the first phase the stickers are piece-wise being
distributed, but soon bigger shares are being dispensed. The process is
recorded in a distribution pattern, which keeps up with the distributive
activity and supports the next mental steps. Interaction improves and the
progress in mathematisation becomes visible (Figure 2).

Asalyn W K0 O 09

i
A

40 (8 18 W8 +F

1
g

Figure 2.

In the second phase the children are soon satisfied with noting down
one column only -~ ‘all get the same, indeed’, Other contexts are being
introduced, among which that of grouping. After about 15 lessons the
children work on different levels (Figure 3).

In the third phase the connection is made to decimals and fractions.
Estimating according to powers of 1/10 becomes central but the pro-
cedure does not change essentially. Context dependent answers on divi-
sions with remainder are not neglected. Again and again the opportunity
is given to invent problems, among which illustrations of bare numerical

divisions.
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Figure 3.

Anexample: Given6394 : 12, invent stories belonging to this sum such
that the result is, respectively

532

533

532 rem. 10
532 5/6
532,84 rem. 4
532.833333
about 530

At crucial points in the covsse it is asked to invent problems and to solve
them by a slow longwinded manner as well as by a quick and short one
— the pupils should learn to reflect on their learning process and to an-
ticipate on even shorter procedures.

The characteristics of such a course in column arithmetic are: (1) in-
tegration of clever calculating in context problems, (2) the progressive
mathematisation of the calculating methods, that is, in the present case,
schematising and shortening the procedures.

How are courses in long division didactically organised according to
the other views?

The empiricist approach equals the realistic one with respect to
horizontal matkematisation. The vertical aspect is neglected, that is, the
learning process is less directed to the standard procedure as in teaching
multiplication less attention is paid to memorising the tables.

The mechanistic view differs in almost every respect from the realistic
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one. Column arithmetic is isolated from clever calculating and
estimating. Simple context problems are not employed as a concrete
orientation basis for the learning of the procedural acts. In stead of in-
creasing schematisation and shortening we notice stepwise complication
of the problems — ever larger numbers, more zeroes in the quotient, and
so on. In each particular case the definitive standard method is aspired
to. A more complex case is not tackled until the less complex one is en-
tirely mastered. Applications are of the a posteriori kind. Automatising
the procedural acts is predominant. Insight into algorithmising is of
secondary importance and only appreciated as far as it efficiently con-
tributes to the process of automatising.

The structuralist approach, is an insightful variant of this isolated
course for long division according to progressive complication. From the
start onwards they use position material in order to lay insightful fun-
daments for the procedural acts. As a consequence much less partial
cases shall be distinguished and dealt with as separate problems. In other
words: the teaching-learning process can be better structured — at least
in principle, though the connection between the materialised procedural
acts and the mental ones is a bit problematic. As another weakness the
formal procedure is virtually separated from the informal manners
preferred by children in solving context problems. This means that
horizontal and vertical aspects of mathematisation do not support each
other — adrawback of artihmetic is to be applied. These are rational ob-
jections against the structuralist approach — we delay once more the em-
pirical analysis. Again in the case of long division the differences between
the various ways of thought are manifest.

2.3. Fair Sharing and Fractions

Finally we present three Wiskobas activities around fair sharing at the
upper level of our primary school dealing with the subject ‘fractions’.
The first concerns fair table arrangements:

‘There are 24 pancakces for 36 children. Make fair ar-
rangements such as 2 tables with 12 pancakes each for 16
children...’

The pupils are given a sequence of suchlike tasks. The organising and
structuring activities together with the mapping of the situation are again

leading the perspicuous schemes, which facilitate communicating and
support thinking.

Such schemes allow for extensions and shortcuts. Questions can be
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asked such as ‘is it a fair distribution?’, ‘who is getting more’ :@ol@, ‘how
much more? @and®, ‘how many times?’ ‘What does a tables arrange-
ment look like where everybody gets two thirds of what he gets al@?’
‘how can you sce by tables arrangements that /2 + Y3 # %57’

This opens the road to equivalent fractions, order of tractions; dif-
ferences of fractions, and it also prepares multiplying fractions. Propor-
tionality tables, with which the pupils are familiar also get a part in tables
arrangements.

The second activity of fair sharing in closely connected to the first,
although now the division is in fact performed with rcctangles, circles,
and strips. For instance:

‘Divide 3 bars among 4 children, draw and describe the parts
by means of fractions’.

(The children have already be in touch with fractions — it is stepping
somewhere into the course.) We obtain a large variety of denoted and
drawn solutions. Some examples 74 + 74 + Y433 x Y433 x Yaof Yoy V2
+ Y1 — Y. The problem to distribute 6 bars among 8 children can,
if the tables arrangements are remembered, be solved in the same way,
but besides these other descriptions are possible: 6 x Y ¥V + 2/3.', and
so on. The results of these partitions can be put upon the number line.
Circles, rectangles, strips as well as drawings thereof serve as material to
be divided.

The third activity continues the second: the pupils are invited to per-
form productions on the symbolic level if the partition result is given. For
instance: g = Y4 + Yo + YaorYs = Y2 + Vaor ¥ =1 = Y. More
complex partitions can be generated as follows 7 = Y% + Yo + Y +
Ve + Y a standard procedure when each particular object is divided
among 6 persons. Then it might follow % = % + % and
finally % — ¥» + V3. If Vs is to be transformed into its alias ¥, the
tables arrangement can serve as a model:@matches@, which guarantees
the equality of the shares, ¥s = ¥;. The same insight is obtained by a rec-
tangular partition. Every fraction gets, as it were, its monograph, com-
posed with increasing subtlety, while in principle all basic operations are
used. At acertain moment the starting fraction is omitted or covered with
ablot: ... = ¥, + Y. The pupils find aliases and look for the original.
Then, for instance, might emerge 7> X Y%, then %> x Y3 and so on.

These were three fragments of a course on fractions, which arise from
fair sharing. We have restricted ourselves: the operator aspect could be
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added, for instance by assigning prices or weights to the pancakes or the
geometrical patterns (rectangles, strips, and so on). We preferred to give
an impression of a few typically realistic activities connected with fair
sharing and fractions, rather than sketching a complete course on
fractions.

In the empiricist approach less attention is paid to activities on the
formal symbolic level than we did in the fraction monographs of the third
example, nor do the tables arrangement patterns fit into the empirist
approach.

The structuralist procedure stresses the importance of models like
strips, rectangles, ‘machines’, but does not use context problems as situa-
tion models of the kind of the tables arrangement problems, nor are open
measuring and distributing tasks, such as described in our second exam-
ple, in the structuralist vein.

The mechanist method for fractions is formalistic and dominated by
prescribing rules; none of the three activities above, would fit it.

Thus summarizing; fair sharing connected with fractions again un-
covers the differences between the four ways of didactic thought.

2.4. Empirical Analysis

We must refrain from showing and explaining the manifestations of
these ways of didactic thought in the textbooks all over the world. For
the Netherlands this has been done but the scope of these data is too
restricted to be meaningful. Neither s it feasible to illustrate or validate
the preceding rational analyses with respect to division tables, long divi-
sion, and fractions by means of research results in the various domains.

We have, however, indicated in the bibliography a few tens of research
studies, from which the following global picture arises, rclated to the
preceding subjects:

() Structured learning of tables is more efficient than blind and
isolated memorising (see e.g. Brownell, 1935; Baroody, 1985).
(2) Learning long division according to progressive schematisa-

tion connected with clever calculating and context problems is
more efficient and improves applicability of the procedural
actions better than the approach by progressive complication
(see e.g. Teule-Sensacq and Vinrich, 1982; Rengerink, 1983).
3) The tables arrangement, distribution and production activities
are useful didactical tools for establishing the equivalence of
fractions, developing a fractions language and initiating into
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the operations on fractions at the symbolic level (Streefland,
to appear).
As a cautious conclusion we may assert that the — still relatively rare
— data on the results of realistic instruction in the domains, dealt with
above, seem to support the rational analysis. But at the same time let us
add the warning that many more data are needed in order to honour the
didactical promises of the realistic approach. There are more things at
issue than the didactical ‘purity’ — the teacher and her instruction
theoretic frame must fit the method. We have to eliminate these factors
for a while from the investigation of the didactic structural
characteristics of textbook series and curricula.

2.5. Generalising and Summarising

To be sure it has not been our aim 1o illustrate progressive mathematisa-
tion by spectacular specimens of curricular materials. We meant to ex-
plain the realistic conception by means of such examples as we eventually
adduced. However, progressive mathematising is also characteristic for
curricula in the domains of ratio, measuring, and geometry. Let us
make a few remarks on these subjects.

Ratio primarily serves to compare geometrical situations or situations
with measurement or arithmetical aspects. It starts visually, qualitative-
ly, informally to become more and more numerical. All kind of models,
among which the proportionality table, promote both the perspicuity of
the relation and its numerical processing. Gradually the calculations with
regard to connections between all kinds of magnitudes are schematised,
shortened and subjected to numerical precision.

On the other hand, measuring, for instance of area, shows suchlike
phases: fair sharing with qualitative means, comparing by estimates,
transforming figures, and finally measuring proper. Measuring by
natural units, standard units, refined partial units, by the use of formulas
and mappings.

Geometry instruction is similar. No concepts translated from higher
lcvel geometry - point, line, plane, planar figures, angles, angle
measurement, symmetry, translations, rotations, reflections, vectors -
but natural phenomcna observed in the spatial environment are at the
centre of the instruction. Initially geometric ideas are developed by look-
ing and experimenting — the looking box, photographs, which also serve
localising, light and shadow, block buildings. Reasoning and reckoning
emerges — views, perspective, the cube, networks of spatial figures, and
so on. Fundamental geometric entities such as point, line, and plane are
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not defined a priori, they arise from activities with light, shadow-
light source, aiming, shadow shapes, and projections. In brief, the
gradually progressive mathematisation is 2 general characteristic of cur-
ricula according to the realistic conception. This holds not only for
primary but also for secondary instruction.

The HEWET project of OW & OC for the upper grades of secondary
education is an outspoken example of gradual mathematisation, realised
by such subjects exponential growth, differential calcuius, matrices (De
Lange and Kindt, 1984).

Summarising the characteristics of mathematising on various domains
we may say in general: Mathematising is an organising and structuring
activity by which acquired knowledge and abilities are called upon to
find out still unknown regularities, connections, and structures. The dif-
ficulties of mathematising can be of various origin, dependent on the
level of the activity. Sometimes the trouble, when organising the problem
situation, is finding out the corresponding mathematical aspect (for in-
stance if mirror images are the issue or fair division shall be realised).
Another time the mathematical operation itself is the stumbling stone.

Mathematising is a dynamical process: new problem fields must be ex-
plored (by anticipating). Then it can happen that the lower ones are used
as models of algorithmic character to reach the higher level. The activity
of transforming a problem ficld into a mathematical problem question
is called horizontal mathematisation — the problem field is approached
with mathematical methods. The activities of processing within the
mathematical system are vertical mathematisations. In the horizontal
component the road to mathematics is paved by means of model forma-
tion, schematising, and shortcutting. The vertical component acts by
mathematical processing, raising the structure level in the corresponding
problem field. No doubt the separating clusters of activities in the two
components looks somewhat actificial. In particular in the realistic way
of thought the distinction is difficult to be manipulated, because the
transformation and the mathematical processing and structuring strong-
ly depend on each other. Nevertheless the distinction has some descriptive
value because of the possibility it creates to typify the global structure of
textbooks according to the various ways of thought.

In the realistic curricula much attention is paid, as we explained, both
to the horizontal and to the vertical component of mathematising. In
other words: the phenomena underlying mathematical concepts and
structures in the reality are used both as source and as application. This
creates the possibility to orient oneself in the acquisition of mathematical
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insight and structure within the mathematical system on the real
phenomena. In the structuralist view the vertical component is
dominating: operating within the mathematical system is the main part
of the mathematical activity. The horizontal component is represented
by the totality of a posteriori applications of the subject matter learned
within the formal system. For this reason real phenomena cannot func-
tion as models, to svnport thinking and operating within the
mathematical system. Instead one is working with embodiments of
materialised mathematical concepts and structures or with structure
stories as concrete orientation bases for the formal operations. In the em-
piricist curricula, however, the horizontal component determines the
global structure. The mechanistic approach is characterised by the
weakness both of the horizontal and the vertical component of mathe-
matising. In actual instruction and textbooks ‘pure’ ways of didactical
thought may occasionally be realised but the most usual is mixtures of
the four types. Rather than the presence or absence of some component
of mathematising we observe the variable stress laid on it. Qualitative
descriptions of curricula grafted upon the rational analysis are able to
uncover shades and gradations.

3. FIVE CHARACTERISTICS OF REALISTIC CURRICULA

Realistic curricula are distinguished from non-realistic ones on the
following points:

(D the dominating place occupied by context problems, serving
both as source and as field of application of mathematical
concepts;

(2) the broad attention paid to (the development of) situation
models, schemas and symbolising;

(3) the large contribution children make to the course by their

own productions and constructions, which lead them from the
informal to the formal methods;

(4) the interactive character of the learning process;

(5) the firm intertwining of (related) learning strands

3.1. Context Problems

Context problems have specific forms, contents, and functions. They
can be edited in pure arithmetic language, as word and text problems but
they can as well be presented by games, plays (dramatisation), stories,
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newspaper-cuttings, models, graphs, or by a combination of such infor-
mation bearers, clustered in themes or projects. By which criteria should
a traditional wordproblem mecct to become a context problem?

‘Our car drives 1 to 10 — so we say in Dutch — which means
I litre of gasoline for 10 kilometers. How much 1s used tor a
travel of 234 km?’

It depends on the way this problem is used in instruction whether
it is to be considered as a context problem or not. The criterion is whether
the intended context is involved in the reasoning and the calcula-
tion. Problems in realistic (and empiricist) instruction are intended to be
natural and motivating rather than to present varnished preconceived
bare arithmetic. Anyway the context must be meaningful: the children
are not compelled to forget about their personal experience and
knowledge (for instance, | to 10 is only an approximate average and in
no way precise, driving on the highway is less expensive than in the city,
and so on - on the contrary the experiental basis is intentionally used.

Context problems in realistic instruction fulfill a number of
functions, to wit that of:

— concept forming: in the first phase of the course they allow the
pupils a natural and motivating access to mathematics,

-- model forming: they supply a firm hold for learning the formal
operations, procedures, notations, rules, and they do so together with
other palpable and visual models, which have an important function as
supports for thinking,

—~ applicability: they uncover reality as source and domain of
application,

— exercise of specific arithmetical abilities in applicd situations.

To stay with fair sharing: a simple distribution task can be the start
problem to learn a division tabel or long division. Conversely it can be
used as a concrete orientation point if a bare arithmetic problem is to he
tigured out or a specific property of division as such is to be understood.
In both cases the context provides significance, and then to such a degree
that eventually the procedure and operation themselves become mean-
ingful and rich context within the formal system. Besides this such a
distribution task can function as the application of a previously learned
table or of the long division procedure, and as a specific exercise, for in-
stance, in the applied situation of money arithmetic.

In brief, context problems have both a horizontal and a vertical func-
tion. On the one hand they serve to make mathematical knowledge and
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abilities applicable, on the other hand they lend meaning to formal
operating and prevent it from becoming formalistic. In other words; they
create the possibility to fill the formal system meaningfully and with
riches of context. This explains why we asserted that even bare
arithmetical problems can be understood as context problems, namely if
their symbol and signal character is strong enough a reference to situa-
tions that are meaningfu! to the pupils. This, however, can more often
be realised at the end rather than at the start of the learning course.
Mechanistic and structuralist instruction on the contrary, starts with
working within the formal system or concrete materialisation thereof
(that is, after a short concrete introduction period); word problems are
often preconceived, pedantic, stereotyped. This does not mean disquali-
fying traditional bare sums, word and text problems as such. Even in
realistic and empiricist teaching they play a part as mentioned above. If,
however, mathematics instruction almost exclusively consists of this type
of problems, it misses, to our view, the aim of applicable concepts, it
lacks motivation, and it suffers of a terrifying poverty of meaning. As
a consequence for many pupils formal operations within the

mathematical system remain as poor of context as the informal opera-
tions outside.

3.2. Models and So On

We noticed that simple context problems can function as models - situa-
tion models as we called them. In general it may be asserted that
character and function of models according to the various ways of didac-
tical thought depend on the relative stress laid on horizontal and vertical
mathematising. This explains the use of, among others, situation models
in realistic and empiricist-instruction, the virtual absence of models in
the mechanistic approach and their relatively one-sided use in the
structuralist methods, where they function only vertically, that is, as
artificially constructed materialisations of mathematical concepts and
structures. They are not primarily bridges between the specific oceur-
rences of mathematics in the physical, social, and imagined reality on the
one side and the formal system on the other — take as an example, in
the case of division, the MAB material, in the case of fractions, the so-
called machines, which arc mainly functioning within the mathematical
system. Our three examples in teaching fractions show, on the contrary,
the sublety of the rclation between context problem (situation model),
schema, and symbol. The usual mistakes with respect to the order of
fractions, which are not at all eliminated by matcrialisations, are
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virtually excluded by the approach sketched above, as appears from
Streefland’s investigations. The power of a symbolism fitting a situation
model is obvious in the example of the tables arrangement. A similar
remark can be made with respect to learning long division. In both cases
the situation models function both horizontally and vertically. Actually
the same holds for many other models, in particular, these related to
measuring such as the number line and the strips, which are also used in
other approaches than the realistic one.

3.3. The Pupils’ Own Production and Construction

In our examples adduced above the pupils’ contribution to the teaching
course was considerable. In the case of long division the pupils’ informal
methods in solving context problems of distributing and dividing were
the direction posts on the road of gradual construction of the algorithm.
Likewise notation patterns and shortcuts are pupils’ invention, for in-
stance estimating the number of tens and hundreds in what becomes the
result of the division. Moreover there are a great many open construction
tasks, such as composing stories for a division problem that is proposed
with several resuits; the analogue in the case of fractions is producing
various partitions if the result is given, variegated tables arrangements,
fraction monographs and so on. To and fro pupils produce simple,
average, and difficult problems for the teacher to be used as test
problems, This, then, means reflecting on their own learning process,
and as far as the difticult ones are concerned; sometimes anticipating on
concepts and procedures to be acquired in a near future, Constructing,
reflecting, anticipating and integrating are fundamental functions of the
pupils’ own production. Scen through the teacher’s eyes they are
diagnostically valuable.

In structuralist didactics production is no essential element. On the
contrary after a preparatory, maybe playful, phase there is little room
lefl for informal methods and their gradual transformation into format

ones: it is instruction in a straicht jacket. This is even more true of
mechanistic instruction.

3.4. Interactive Instruction

The constructive character of mechanistic mathematics is embodied by
textbooks for solitary arithmetical work and paper guided instruction.
Realistic and empiricist instruction, however, because of their search
oriented approach, ask for active contribution of the pupils as stated
above. To say it more forcefully, the pupils informal methods are used
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as a lever to attain the formal ones. Such a method requires explicit
negotiation, tntervention, discussion, co-operation and evaluation
(Bacomet, 1985), thus a specific didactical shaping of interactive instruc-
tion. In programs and textbook serics espousing the realistic thought the
differentiation pattern is adjusted to the necessity of co-operation. The

reacher manuals contain practical suggestions to shape interactive
mstruction,

3.5. Intertwining of Learning Strands

Only brietly shall we tackle the intertwining of learning strands with a
view on the preceding. In the initial instruction fair sharing was connec-
ting to counting, adding, memorising and much more. Learning long
division took place through context problems, clever calculating and
estimating. Parts of instruction of fractions were intertwined with ratio
and measuring. We indicated ratio as an important binding agent be-
tween numerous subjects and domains and the reality. Mcasuring offers
a natural access to calculating and models (among which the number
line) covering a broad field. Geometry yields problems that connect
almost all subjects of arithmetic and measuring.
This, then, was the fifth characteristic of realistic curricula.

4. THE INSTRUCTION THEORETIC FRAME

With this sketch of the macro structure of curricula organising the long
term learning process we also intend to discern sharply the theoretical
frames in which the various programs are embedded.

Now we shall pay some attention to thc constructs that arc the most
important, from the viewpoint of teaching theory, the structuralist, and
the realistic ways of didactical thought.

First we consider the two views under which mathematics as such is
scen by both of them. Then we pass to corresponding instruction
theoretic frames. After a look to the conncection with general cognitive
theories we shall conclude with recommendations.

4.]1. What Is Muathematics (Instruction)?

Under a structuralist teaching view mathematics as a school subject is a
compendium of acquired structures, concepts, and procedures of think-
ing. It is a preconceived structure, a completed building, something that
is given and nceds no exploration on the teaching level.

Within structuralist instruction on¢ could globally distinguish three
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variants. In the first symbols are assigned a ‘meaning’. After a concrete
introduction they soon acquire a meaning for the pupils: the formal
systemn is a syntactic system. Gagné in his more recent work (1983) could
be considered as a representative of this interpretation, although
mechanistic features are not lacking in his position. According to the se-
cond variant the formal system is materialised by embodiments of the
mathematical structure. Dienes and his more moderate followers
are representatives of this variant. The third variant tries to make the for-
mal system accessibie by structure stories: Frédérique Papy has lines
singing, number pairs dancing, arrows tying relations, and symbols per-
forming mathematical operations.

The main realist objection against the structuralist interpretation of
mathematics is its start from acquired insights and concepts rather than
considering structures and concepts as goals that are to be acquired.
Real: .~ .ew mathematics mainly as a human activity, which at each age
and level may lead to (un-)valuable mathematical pertormances and
(wrong) products. They knock mathematics off its pedestal. They -
these are among others mathematicians of big renown: Thom, Hiiton,
Whitney, Lakatos, and Freudenthal. Thom attacks the formalism, the
premature introduction of mathematical concepts; he is pieading for
geometry. Hilton stresses the constructive and productive element and
long term learning processes. At the same time he draws the attention of
the rescarchers in the field of mathematics instruction to the nccessity
lively to understand the dynamical process of learning mathematics, thus
to cxperience the very nucleus of the mathematical activity. Whitney too
stresses these clements as well as the selfconstraint the teacher should
observe when explaining problems. At the same time he stresses the
necessity of meaningful teaching, meaningful and motivating problems,
non-pedantic and non-formalist. Lakatos fights the dogmatics view on
mathematics as eternal and unassailable truth, which suffocates search,
failure and adventure. According to him textbooks should be rewritten
in order to reflect the dialectics and the growth of mathematics. Heuristic
instruction need not follow precisely the historical course of the intended
concepts; it is rather a rational reconstruction of the historical process
with the view on the learner, Lakatos claims. Freudenthal in his ‘Didac-
tical Phcnomenology of Mathematical Structurces® says: ‘... that the
young learncs is entitled to recapitulate in a fashion the learning process
of mankind’. Here again we notice the historical orientation completely
lacking in the structuralist thought. Rather than from material and
materialised ‘embodiments’ Freudenthal starts from phenomenal em-
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bodiments, the real phenomena behind the mathematical structures in
order to have the concepts or, as he says ‘mental objects’ constituted
(Freudenthal, 1983).

4.2. Specific Insiruction Theoretic Framework

One might consider Van Hiele’s level theory as the first example of a
specific instruction theoretic framework of realistic mathematics instruc-
tivn (Van Hiele — Geldof and Van Hiele, 1955). There the didactical
necessity of phenomenological exploration at the ground level s
stipulate, where it should precede the formal rnathematical operations on
the first and sccond level. Certain instructional phases are required to at-
tain higher levels.

It is a remarkable fact that, formally viewed, this level theory agrees
with the first specific instruction theory of the structuralist kind, to wit
Dienes’ tasc theory of the learning cycles. ‘Formally viewed’, 1 said,
because the material differences are considerable. At Dienes’ ground
level the pupils get in touch with geometrised mathematical structures,
with ‘embodiments’ of concepts in the form of games in artificially con-
structured environments, whereas Van Hiele’s ground level the pupils in-
vestigate the aspects of reality for which the mathematical concepts and
structures (can) serve as means of organisation. ‘Embodiment’ is here
‘embeddedness’; the sbject of organisation is here a natural rather than
an artificial stuff; ra:her than mathematics translated to a lower level in
an artificially created environment it is in Van Hiele’s case the natural-
fysical, social and imagined world that provokes an activity which aims
at structuring — that seems a reasonable interpretation of his level
theory. We shall not 1ackle the problems we meet in this theoretic frame
if we step outside traditional gcometry instruction. Nor shall we discuss
the trouble Dienes himself had with his learning cycles, for instance, in
instruction of fractions. The only thing we had in mind was *he uncover
the carly roots both of the realistic and structuralist instruction theory
trees. Let us, however, add that recent signals indicate a growing intercst
in specitic instruction theoretic frames, after the calim seventie. ‘Steiner,
1985).

From the preceding one might conclude that in order to construct an
instruction theoretic frame we must view primarily progressive mathe-
matisation in long term learning processes, and connected with it, the
structuring and sequencing of courses in textbooks series, particularly of
rcalistic signature.

Of course one may ask whether in actual tcaching the contrast between
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the structuralist and the realistic organisation of instruction is as sharp
as skeiched above. Anyway a comparison of textbooks published in The
Netherlands linguistic area (Dutch and Flemish) reveals enormous dif-
ferences: two fundamentally different views on and realisation of
mathematical instruction. In other words: two enormously different in-
struction theoretic frames (a picture which becomes even more confusing
if we add the empiricist and mechanistic view). This is also reflected by
instruction psychological research, in particular with respect to its two
pilars (Skemp, 1984), that is diagnostic interviews and teaching ex-
periments. However, more often than not does the specific instruction
theoretic frame remain implicit; it is neither discussed nor even un-
covered. A most interesting example for this case is ‘The psychology of
mathematics for instruction’ by Resnick and Ford (1981), and the com-
ments on it, which vary from ‘this is the true shape of mathematics in-
struction to be envisaged’ to ‘this is a travesty’. Of course this has much
to do with the respective choice of instruction theoretic frames such as
we tried to sketch specifically for mathematics.

4.3. General Instruction Theoretic Frames

Our last remarks were meant as a transition to the question of what is
the relation between the specific and the more general learning theories,
such as the activity psychology and the cognitive information processing
theories. Well, at a cioser look both the basical conceptions of
structuralism and rcalism can be fitted in both of these theories.
Elsewhere we signaled the same phenomenon with respect to Gal’perin’s
theory of the stepwise formation of mental acts, but the same may be
claimed with respect to other general theories. Obviously these theories
lecave much open space, though of course there might be limits. For
instance, Gagné’s former cumulative learning theory can hardly be
reconciled with the basical ideas of structuralism — and certainly not in
its concrete realisation — and in no way with the empiristic and realistic
vicw. This, however, does not hold for the cognitive learning theories.
Indeed, they can include both frames specific for mathematical
instruction.

Conversely this means that starting with a general learning theoretical
framework such as the ‘information processing learning theory’ or
Galperin’s activity theory about the stepwise formation of mental
actions, or Davydov’s conception of learning theoretic concepts, one can
arrive at completely different constructions of instruction. In brief, thesc
general theories are no construction theories, because no specific rules of
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action or prescriptions can be borrowed from them for the construction
of instruction, and in particular of courses. They alonc cannot be a basis
for developing textbooks and the design of teaching experiments. There
is more toit, and this lacking element should also rationally be accounted
for. For instance, why in psychological research one relies on the
‘sequence of mental activity’, or the relation between material, verbal
and mental actions, or the ‘semantics’ of manipulating structured
material; and why little attention is paid to conceptions like ‘meaning’
and ‘intention’ (Carpenter, 1985) — particularly neglected in the
information processing theoretic fraines — whereas in general cognitive
rescarch the crucial importance of meaningfull situations, experiences,
tntuttive notions and context has emerged for the retaining of facts,
procedures, of logical reasoning and of concept formation (Anderson,
1980).

[t is remarkable that research on initital instruction often shows
realistic teaturcs (Carpenter and Moser, 1982, Ginsburg, 1983).

The realistic instruction theoretic frame is, as it were, cast in the same
mould as the first phase of intitial instruction itself, and based on the
same ideas. In other words, the realistic approach towards fractions is
similar to that towards number in its first stage -~ broad phenom-
enological exploration, stepwise mathematisation, consisting of
schematising, shortening, structuring and increasing numerical
precision. As a matter of fact this also holds for other subjects. It is the
very nucleus of the instruction theoretic frame of realistic mathematics
instruction, quite simple as a theory but quite complex with regard to its
realisation, as experienced by Wiskobas. But for sure, a theory with vast
practical perspectives.

4.4. Recommendations

To our view it would be recommandable if in research on mathematics
instruction in general:

(1) More attention would be paid to ranonal analysis where in par-
ticular the viewpoints and arguments from the four instruction theoretic
frames arc being confronted with, and weighed, against each other.

(2) More comparative empirical analyses would be undertaken to
match these rational analyses.

(3) The scientific efforts would not be focussed on micro cognitive
processes but long term learning processes, as taking place in courses,
would be included in the research.

As a consequence one should influence the analysis and development
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of textbooks. In our country this has been done systematically on the
primary level. There are now textbook series cultivating more or less
realistic mathematics instruction on the primary level. It should be add-
ed, however, that at the present moment the conditions to realise the
most recent programs such as intended are far from optimal. Also in this
respect we should be realists and abstain from drawing Wiskobas’
selfportrait twice as large uas it really is on the reflecting canvas at
Noordwijkerhout.

NOTES

Poihe torma IOWO mcluded adso the projects for secondary mstruction, Wiskivon

(12 - 16) and Hewet (16 - 18), which will virtually disregarded here, although thev too in-
fluenced mathematics instruction in the Netherlands considerably.

 This problem fits inta secondary instruction. It has been borrowed from work of A. God-
dijnand G. Schoemaker, collaborators of the former Wiskivon-project, now at OW & OC.
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HASSLER WHITNEY Cedr,

TAKING RESPONSIBILITY IN SCHOOL MATHEMATICS
EDUCATION

For several decades we have been seeing increasing failure in school
mathematics education, in spite of intensive efforts in many directions
toimprove matters. It should be very clear that we are missing something
fundamental about the schooling process. But we do not even seem to
be sincerely intcrested in this; we push for ‘excellence’ without regard for
causes of failure or side effecis of interventions; we try to cure symptoms
in place of finding the underlying disease, and we focus on the passing
of tests instead of on meaningful goals.

This is true in particular with the two national commission reports of
1983; both call for raising standards, taking more mathematics in high
school, and increasing the school day and year. In 4 Nation ar Risk (1]
we read ‘‘Students in high schools should be assigned far more
homework than is now the case’’. And later, *“To Students: You forfeit
vour chance for life at its fullest when you withhold your hest efforts in
learning...”” I will show below how these students arc unable to under-
stand what school math is all about (with very realcause); they are now
wrongly judged as ‘“withholding...efforts’’ and are demanded to do far
more of the same work. This cannot but throw great numbers, already
with great math anxicty, into severe crisis, with increasing drop outs,
delinquency, crime and suicide resulting; compare Albrecht {2].

There is also great pressure to start teaching children at an carlicr age
(in Minneapolis 11% of the kindergartners failed their tests and were re-
quired to take remedial work in the summer of 1983) [3]. No reeard
seems to be paid to the possible destructive consequences to the beautiful
natural growth of the children {4.5].

In brief, caused in good part by the present difficult times, I see our
children having an cxtremely ineffective experience, and am calling for
an armistice, 1o enable local school districts to look for better ways in
more peace; this is the present pressing need. Next, moving to truly better
mathematics education requires a full and proper study of all the com-
plexitics of the situation, socio-political as well as intellectual; I give the
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main parts of such a study here. It will include a natural type of cure that
requires a change in attitudes but 1s perfectly feasible in the classroom,
it we can Just allow it to take place.

CONTRASTS IN LEARNING

What is school tor? There is a strong call for discipline. Is it for the mo-
ment, or to extend to the future? In the latter case, it must be meaningtul
in cach student; it must finally come from within, growing into real
responsibility. And if this student is to help the U.S.A. technologically,
his or her real human powers must grow through the school years. In
mathematics, this imeans lcarning to find his or her own way through pro-
blems of new sorts, and taking responsibility for the results!

In most schools, this has been pretty completely forgotten; the
pressure is now to pass standardized tests. This means simply to
remember the rules for a certain number of scandard exercises, at the mo-
ment of the test, and thus ‘show achievement’. This is the lowest form
of ‘learning’, of no use in the outside world. For an example, the exercise
(stimulus) 6)608 rcquires the response 101 R2,

I shall show the reality ot these statements, partly from results ot the
second mathematics assessment of the Natienal Assessment of Educa-
tional Progress (NAEP) [6]. 1 wish to compare school learning with fear-
ning from iife (as apprentices did in carlier times). First, take an example
trom life.

Joan and Lewis are helping plan a garden in the country, rectangular
in shape, 10 feet long and 6 feet wide. Because of rabbaits, they wish to
put a fence around it. How many fect ot fencing do they need? Of course
they can think ‘10 ft and 6 ft and 10 {t and 6 ft’’. But the garden being
real, they look at where the posts should go, and realize that the fence
must be away from the edge of the garden so that they can walk inside
it. Then they also laugh to think they had forgotten the need of a gate!

In the NAED, the question ‘‘how many feet of fencing’’ are needed to
zo “‘all the way around the garden'” was asked of 9-year olds and 13-year
olds. Three answers and the percents of children choosing these answers
are shown in the table.

32 feet 9 31
16 feet age 9 59 age 13 38
60 feet 14 21
Qo
[ e |




TAKING RESPONSIBILITY IN SCHOOL MATHEMATICS EDUCATION 125

Why did not all the children get the ‘correct answer’? If they were in-
terested, involved in it as a real problem, they of course could have drawn
a picture or made it real in some way, and looked to find the answer. But
that more popular answer, 16 ft, shows the main reason: In a school pro-
blem, you just guess what operation to use with the given numbers. For
adding, you get 16 feet; for multiplying, 60 feet. In other words, in
school, you don’t look at meanings; you know the problems are not real.
(And, in contrast, Joan and Lewis noticed that 32 ft was not ccrrect.)

That so few of each age group got the ‘answer’, in the broad national
sample, shows strikingly how schooling does not serve to help children
see reality.

Suppose you are a high school student, making arrangements for a
tournament of a bowling league. There are six teams, each to play each
other team just once. So, calling the tcams A, B, ..., F, you list the games
to be played. Can you let several games be played at the same time? Pro-
bably yes. By the way, how many games are there? You count them in
a jiffy.

This is real life. And school? ‘‘How many games’’ was asked of
17-year olds in the first two mathematics assessments. Just 4% and 5%
respectively of the students got the right answer. This was school, and
they had not been raught how to do it, hence ‘could not’ do it! (Very like-
ly many thought: 6 teams, each playing five games, makes 30 games. This
is making a stab at it, but definitely is not taking responsibility for getting
the right answer.)

How about those ‘skills’ taught in school? The NAEP editors say [6],
p. 145, “‘Students demonstrated a high level of mastery of computational

skills, especially those involving whole numbers’’. Let us look at some

of the NAEP evidence.

The exercise gé was given to 9- and 13-year olds; 10% and 2%

respectively missed it. In the form ‘‘what is the sum of 21 and 54?"’ the
percents of failure were 31% and 9%. What should be made of this?
Did these children not know (even at age 13) that the ‘sum’ was the result
of adding (in school terms) the two numbers? Were they not taught that
they were the same? Or does teaching not give learning? Whatever the
cause (see taboos, below), the ‘skill’ is only partly usable, so certainly
by many students not with responsibility.

In most schools, you are taught algorithms, never with the suggestion
that you try thinking through to an answer. And the result? All three age
groups (9, 13, 17) were asked to ‘‘Subtract 237 from 504", Correct
answers were given by 28%, 73%, and 84%, respectively.
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Mental arithmetic used to be common in schools. Here, you could
think: ‘Take away 7, brings you down through 500 to 497; take away 30
leaves 467; take away 200 leaves 267", Or, tfrom 237 through 240, 300,
and 500 to 504 gives the answer quickly.

The exercise 6)608 had the success rates 69% nd 65% trom the 13-
and 17-year olds, respectively. Ot course, to divide six $ 100°s and ¢ight
$ I's among six people, with two § 1's left over, 1y wholly trivial; but that
is lite, not schoot.

I do not call this mastery; I eall it taillure. These questions are in the
very elements, and all school children should be able to think them
through with case and solid confidence. Schooling has definitely broken
down, even on those skills that are constantly emphasized.

EARLY CHILDHOOD

We know that very young children explore their environment and lcarn
in manifold ways, at a rate that will never be equalled in later life; and
this with no tormal teaching. It is through their play that they experi-
ment, see interrelationships, get some control over their surroundings.
Learning to walk, manipulate things, sense parents’ feelings, com-
municate verbally and non-verbally, are all quite complex and often sub-
tle. Two-way verbal communication is especially complex; hearing a suc-
cession of sounds, decoding it into a message, considering one's wishes
in regard to it, putting a return message into verbal form in proper order
and expressing it are all done in a flash. Anything taught in a school
classroom is extremely simple in comparison. Yet these same children
seem unable to learn most of thosc trivial things, especially when taught.

Preschool children know a lot about small numbers that we are quite
unaware of. Laura has five kittens; she knows well the varying patterns
as some or all of them move about, though she does not think conscious-
ly about these patterns. Coming into the room and seeing three kittens,
her immediate thought may be ““find another kitten, then find the other
one’’. She has two quick equivalent thoughts which we might express as
seeing Sas3 + 2and as 3 + 1 + 1.

The broadness of their learning is certainly largely due to their com-
plete freedom to think in any direction at any moment; curiosity, im-
agination and flexibility are keys to their rapid progress. They learn flex-
ibility; things move, chianging apparent size and shape, words take on

new meanings, things happen one way one time and different ways other
times.
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I told Jonathan, age 52, a story (1o be quoted later) about twenty-six
children going on a trip. There will be cars to take them, each car holding-
tour children. How many cars are needed? 1 first suggested fingers as
children, He started bunching his fingers into groups of four; but there
were no cars handy. So 1drew him a rectangle for a car, and put a circle
(a child) inside. e put in three more, and counted all four. Now he drew
another car, put in four children and counted all eight, and continued,
putting two children in the last car and counting all 26. But the cars must
vo (he apparently thought), so he put four wheels on (one side of) each
car, then linked them together, forming a train. He had brought the story
to life, forgetting my original question of ‘‘how many cars?’’ But when
asked, he counted them, finding seven.

Numbers becomes a tool when you use them for a purpose. In a class
ot six-year olds (in Brazil) the teacher was explaining how to find 3 + 5
by drawing ducks on the board, not noticing a boy in the back of the
rocm saying to another ‘‘yesterday | gave you ten cards; now you have
given me seven, so you still owe me three’’.

Children process information far beyond what we realize. In the early
sixties, some mathematicians tried teaching third graders about the tran-
sitive [aw: If A 1s more than B and B is more than C, then A is more than
C. The results were somewhat dubicus. The children were ahead of the
teacher at the start, as found by Trabasso later. He tried testing children,
age 4 and higher, on their use of the ‘law’. A typical form of the experi-
ment was as follows [7]. The child first learns “he names of six children
from pictures, which show head and shoulders only. The experiment has
the pictures (hidden) arranged in order of decreasing *height’, 4, B, C,
D, E, F. The child is now shown, in random order, just the five adjacent
pairs A — B, B— (., ..., E— F; for each pair, the child is told which is the
taller and which the shorter. When the child has learned these well, he
or sheis tested on all fifteen pairs, being asked which is taller (or shorter).
The time taken for the child to respond to each pair is recorded.

To respond to the pair B— D for instance, onc knows: B taller than C,
Caller than D; so B is taller than D. Pairs far apart in the sequence take
more uses of the transitive law.

Thus the pairs far apart can be expected to take the child longer than
those close in the sequence. Did this happen? No, just the opposite. In
tact, the original adjacent pairs tended to be the hardest of ail! What this
shows is that the children did not (in general) just learn what they were
taught; they used the information to get a sense of the whole group in
order of height; hence those far apart in the sequence were thought of
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as far apart in height, hence casy to see as such. This is fine sharp reason-
ing, done without any suggestion.

Many examples of how young children think about numbers on their
own can be found in Ginsburg [8]. This natural talent and learning is
something valuable o be further nurtured, then the children can grow
with joy and speed. We will see how these powers get more and more sup-
pressed in school.

HOW THE PROBLEMS ARISE

How can it be that when preschool children think so naturally and suc-
cessfully, in school they get pulled into dropping such thoughts and try-
ing to think only as they are told? We will see that this is basically through
an interaction of attitudes between teacher and child, leading inexorably
to this result in the present climate of schooling. Because of this, the
childrens’ natural thinking, with looking for meanings, becomes
gradually replaced by attempts at rote learning, with disaster as a result.
And the more the pressures are applied to enforce learning, the more its
rote character is fixed, resulting in further failure. The attitudes are firm-
ly fixed in high school; and for this reason, attempts to improve high
school learning are essentially doomed, if the changing of attitudes is not
undertaken in a basic manner.

Entering first grade is pretty sure to bring deep-seated feelings to most
children (even if these feelings remain hidden). ‘““Now I am in a real
school, and must learn the right way’’ is a natural thought. Thus the
children are at risk at the start.

The early experiences with simple stories with mathematical elements
normally go well, and with exercises like2 + 33 = [J, thechildren find
easily how to write in a number. Eut because the exercises below are on
standardized tests (since they kno:k out a large percent of the children
casily), the vestiges of the ‘new math’ like

1 =543 4="11-7

remain. The first is commonly thought of by the children as ““written
backwards’’, with the answer on the wrong side. The second is totally in-
comprehensible to them; they can only guess what you do with the two
numbers. This forces the teacher to try explanations: ‘‘The equal sign
means...”” which is jibberisj to the children (especially since they had
always done their own thinking and can’t comprehend ‘think this way’).
(The mathematicians had intended such exercises merely as exploration
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and hence better understanding of the equal sign; but this misses both the
world of the young child and of the publishers; the latter must tell the
teachers how (o teach and test everything.) The failure of explanations
1s beginning, and with it the attitude, “*just try to lcarn the rules for the
day’".

The failure of the traditional teaching process begins with addition and
subtraction of two-digit numbers. As a typical example, the teacher may
begin a problem with ““The farmer has 37 baby chicks, and sells 14 of
them. How many does he have ieft?”” Then comes “*W¢ write the 14
under the 37, like this, and work first with the units. Whatis 4 from 77’

The message to the children is: Now you drop the rmeanings of
numbers, and just look at the patiern of the digits. Morcover, you shifi
your point of view from one problem to two,

from 37to 3 7
-_l_é} -1 4.

Both the new problems are done ecasily. So the teacher feels good, and
gives lots of problems of this sort to do, to drill the children well; at least
one part of the curriculum is ‘mastered’. The teacher is of course follow-
ing the standard practice, time honored and followed everywhere.

Next comes a rude shock. ‘““Now [ will teach you how to do subtraction
with borrowing’’ . With apples, there were 42 to start, and 18 were sold.
Again the children see the problem broken into two,

ffom 42 to 4 2

-16 -1 g8 .

But now the teacher continues with, *Can we take 8 from 2?"’ ‘“‘No!”’
in a chorus (you take 2 from 8). But the teacher says. ‘‘We must borrow
from the 4. What does this 4 mean?’’ The children arc in a quandary;
the old way, 2 trom 8 is 6 and | from 4 1s 3, is easy and nice, but now
you must do a funning thing that is hard to learn.

To the teacher, there is a different stimulus: now the 8 1s bigger than
the 2. But to the children, the stimulus is the same: a pattern of 4 digits,
just as casy to do by the old method. There is now not only complexity,
but conflict besides, and this is a sure start towards math anxiety.

I must explain those words ‘rude shock’ above. It does not show on
the faces of the children. It is a message to most of them that they are
in for hard times ahead, with changing rules; school math will not be so
easy and pleasant. They foresee a lot of failure; and this becomes a fact,
as we know. I will speak more of this later.
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Children (or adults) commonly say they liked math to a certain point,
when they started losing out; perhaps with long division, with fractions,
or with algebra (or calculus ...). That was probably the time when they
- completely gave up on meanings. The stage of learning mostly by rote
usually began much earlier; however, they could still sense that they were
getting along and could pass tests (but would not be able to explain mean-
ings). Since my moving into intensive work in classrooms (and out) in
1967, the majority of studente<  have had contact with (in the thousands)
were quite clearly in this imermediate stage. A very critical point is the
shift from seeing meanings to learning the rules fcr the day.

With increasingly complex situations, long division and fractions in
particular, the gap grows larger, the pressure from the teacher to do
many problems increases, and with the added time pressure, rote learn-
ing becomes the only way out.

There is at present great pressure to teach problem solving. How is this
going? In elementary school, this translates into ‘word problems’. Using
these in the simplest stories was fine in first grade. But later, when rote
teaching and learning is well underway, it no longer works; both teacher
and child dislike them, and they are mostly skipped.

The cause is fairly easy to see. Take an example above, where the
6-year old had given ten cards, gotten seven in return, and said, ‘‘You
still owe me three’’. The only complexity is in the several elements, giving
and receiving, before and now, having and owing. How can the teacher
teach all this? This will involve conside: :ble explaining of the different
elements. By third grade, those children learning by rote will largely re-
ject explanations, only wanting to know ‘‘how to do it’’. The teacher
knows this, and knows that the explanations will be only partially suc-
cessful; being under time pressure, she would much rather leave it to
those children who can work it out. Of course true problem solving is
looking at a new situation, exploring it, organizing preliminary findings
and so on; teaching this misses the basic fact that in real life, the stimulus
to the worker is the situation itself, with no teacher present. The normal
high school attitude, ‘‘Just tell me which formula to use’’, can never lead
to problem solving.

Can children solve ‘problems’ on their own? Of course, if allowed and
encouraged, as Jonathan was with the ‘26 children, four per car’’. But
as a school problem it is far away from the normal rote learning in later
. grades. The question, how many cars are needed, was asked of 9-year
olds with calculators in the NAEP. One out of an average class of 30 - 35
children (3%) got the correct answer, 7 cars. For more information, 12%
chose the answer 6.5, and 7% chose 65.

-
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For one more example, take the problem, ‘“‘One rabbit eats 2 pounds
of food each week. There are 52 weeks in a year. How much food will
5 rabbits cat in a week?”’ Correct answers were given by 47% and 56%
of the 9- and 13-year olds respectively. This is clear irresponsibility, not
looking to sce what was asked. '

These examples furnish further evidence that, right through the
clementary school years, the attitude that ‘‘school math is something for
itself, not for life outside school” is becoming entrenched. In high
school, algebra is the srincipal mathematics topic; it is too abstract and
unused (in spite of pictures of bridges, etc., in the texts) to change the
impression that it is just for school purposes. The resulting attitude,
“‘Just tell me which formula to use (don’t ask me to think)”’ is well-
knewn as the norm. Of course learning algebra with this attitude is slow
and difficult, and usecless for applications; only for the best st::dents is
algebra a sane course to take (unless attitudes are changed). Being told
to *‘take more mathematics in high school; your futurc depends on it”’
15 a false and harmful message to give the failing students; only with
sharply changed attitudes can mathematics regain its proper place.

PRESSURES ON TEACHERS AND STUDENTS

Teachers are commonly blamed for the failure of their students. This is
an unwarrented attack on teachers; they are caught in the ‘system’, in the
elementary school in ways which we describe further, and by the con-
tinuation of attitudes in high school. The demand for ‘‘better teachers
and teacher training’’, by most professionals, will make little dent in the
system or in students’ progress if the system remains basically
unchanged.

We have seen how teaching begins to fail in eariy grades. Beyond the
first grade or two teachers become used to teaching and reteaching the
same topic; they come to believe that most children cannot learn except
by continuing this indefinitely. (And each new teacher must reteach what
the last teacher failed in.) The real difficulty is simply that most children
get mixed up in and forget the rules for the particular day; but practically
no one realizes to the full this stark fact, or simply hides from it. (It is
too threatening to think that teaching for meaning. which teachers try to
do, is failing completely for most students.)

The obvious result of this =reat time loss is continual pressure on the
teacher to “‘cover the matenal’’. Under this pressure, more drill and
more homework (or class work) is given, and the children, undcr this in-
creased pressure, naturally react by focusing still more directly on the
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rules for the moment; this may result in immediate gains, but also in
repeated forgetting as the different rules get piled on top of each other
in a jumble. The resulting further failures puts still more pressure on the
teacher, and the vicious circle is in full swing.

The present demand for accountability, with increase focus on passing
tests and monitoring the students constantly, build up the same pressure
further; meanings get thoroughly dropped from view (under behaviorism
they play no role anyway), school math becomes nothing but a giant mass
of meaningless splinters, and there 1s intellectual chaos. For instance, 1
have seen countless hours of teaching addition and subtraction of ‘‘mix-
ed numbers’’, in later elementary school and into high school, with
momentary success and extended failure. I.eka, in a high school remedial
program, learned how to do 6 — 2V4, but was stuck on 82 — 8. When egg-
ed on (by me) to find the answer through money (‘*Now take away that
$ 8’") she found the answer, V2, but did not dare write it without the as-
sent of the teacher. And another NAEP exercise, 2°/s + 5, was done by
43% of the 13-year olds and by 65% of the [7-year olds; yet it requires
mcrely knowing the meaning of a mixed number. It is a common profes-
sional attitude that if the teacher can get the student to write a correct
answer, the job of the moment is done (there 1s ‘achievement’, as re
quired under behaviorism). Is this learning for future use?

The pressure on the teachers naturally pass onto the students. The
chimate becomes more strict. ‘Do what 1 say, and nothing else’ is a
general message. Taboos arise easily, for instance: ‘‘Don’t use your
fingers””. “*Don’t guess”. ““Don’t try things to see how they work’’.
‘*Write nothing but the answer’’. “*Don’t speak to your neighbor, that’s
cheating!”’ Along with ‘‘Pay atiention constantly to the teacher’, the
general message is **No thinking on your own!”’ Thus attempting to
assimilate what is taught or discussed is ruled out; the stucants isn’t given
the chance.

The demand for constant monitoring of the students by the teacher has
further effects. She (or he) must reach as many students as possible each
day: hence must ask only rather trivial questions, and wait at most a se-
cond for an answer before turning to another student; and only the right
answer is listened to. This effectively rules out thinking before speaking,
further solidifying the system.

Thus the main effect of present-day pressures for student achievement
is to stop thoroughly any meaningful learning; ‘‘problem solving™* is left
far out of the picture. Students and teachers are all victims; math anxiety
and teacher burnout are inevitable consequences. Thus the effe t of the
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recommendations from the two naticnal commissions of 1983 about
more math and more work will be the opposite of what was intended.
And it is the superficial character of the reports that allows such happen-
ings. As I'sceit, this country, on the highest level, is not yet taking proper
responsibility for the growth of its youth, its most important assct. This
shows up starkly in the passivity and dullness of high school students, so
usual at present [9] .

COMING ALIVE

We have seen how preschool children are surpassing us all in their way
of exploring and learning as a natural process, including reasoning in
logical and mathematical directions; also how the demands for long and
tiresome work to show a myriad of isolated bits of knowledge has reduc-
ed the school population, right into high school, to skeletons without
tlesh or blood to render them human. No wonder this country is begin-
ning to “‘lose . ut technologically’’; high order progress requires live
human powers, going in many kinds of directions and gaining control
over varied domains and their interrelations.

Under Benezet (Superintendent of Schools in Manchester, New
Hampshire) in the thirties, whereas children in regular early to middle
grade classes were not ready to admit they might have read anything,
those in the experimental classes, where open discussion for the improve-
ment of language skills and promotion of reasoning skills was the order
of the day, were alive with descriptions of what they had read. And
though they were taught no formal arithmetic at all, the experimental
classes surpassed the others in both mathematical problem solving and
writing skills. Should we mention that these children were mostly from
the immigrant district [10]?

One can go beyond Benezet by also promoting natural discoveries
about numbers and related matters. A good number sense renders the
usual school math with its ‘computations’ a rather simple and small do-
main of knowiledge in contrast.

As a natural extension of preschool learning, one can explore in many
ways the beauties and complexities of our decimal number system. At
first, sets of things are explored (not taught!). Looking in the egg box,
[our eggs are gone. Look; there are two fours left! You see the thirds of
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twelve, so in learning the word ‘third’, the meaning comes first, the
language after, which is the natural! and proper order. You ne¢ed never
forget ‘thirds’ again. Moreover, you see sixths also (each one is half of
a third; language: V2 . Y4 = Yeor V2 x Vi = '/, etc.).

With money, two nickels make a dime. Five nickels (252 dimes) make
a quarter, and four quarters make a dollar. (So ‘quarter’ and ‘fourth’
have a common meaning.) Putting down a nickel and a penny, and below
them a nickel and two pennies, shows a dime and three pennies (in value);
6 + 7 = 13. Similarly 7 + 7 = 14, etc. Also, 8 + 9, in pennies, is two
dimes minus three pennies, 17 (cents).

In schools where colored beads are a natural part of the equipment
(less expensive than a computer!), after making necklaces and so on,
bead strings, with color changing after each five beads (or after each ten
for longer ones) give the best and quickest way of learning all sorts of
number relatons. Best is for two children to play together; learning is
very rapid, and they expand the difficulty as they progress. (And the
teacher is freed; the games spread.) The first games can be ‘Show six’
(put a toothpick down after the first bead of the second group), and
““What number is this?”’ (asked after putting down a toothpick).

The diagram illustrates the result of ‘“Show eight; now show four
more; how many is that?”” Or equally, show twelve, and now four less.
Doing and seeing is understanding and remembering,

Remember that question of 26 children, four per car, how many cars,
which 3% of the 9-year olds with calculators did? Ask 7-year olds who
have used bead strings as a tool. Each bead 1s a child; put a toothpick
after 26. Lay out fours with toothpicks, and the answer is there in about
fifteen seconds. (Later it is thought through, still faster.)

Lay out sixes with toothpicks; a simple pattern appears (like a nickel-
plus-penny repeated but with the nickels first). With color changes after
cach five, multiples of seven have a pattern like that of twos; studying,
playing with thesc patterns gives the *‘times tables’’ beautiful meaning,
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soon to be good friends, in place of the long duil meaningless driit with
great failure that is so common.

What s 42, take away 18?7 You can rhunk of a bead string (i.c., the
decimal system) and (taking away the first cighteen) think: 18 to 20 to
40 to 42: 2 and 20 and 2, 24; or, eighteen to thirty-cight to thirty-twelve,
twenty-four. (Did you play with such ““funny languauze’’ with children,
or say that *“‘thirty-twelve’ was wrong?)

Children working with mreanings will not fali into confusion between
4 x 0,4 x 1,4 + 0, a standard trap for most school children.

With large numbers, ‘‘But they don’t understand place value!”’ is a
perennial cry of the teachers. It is not that: the children simply are not
using meanings, and may even get anxiety if asked to. “‘Emphasize
estimation!”’ 15 the demand of the experts. But they arc expert in
technology, not in school- teaching this fails miserably, again since no
meanings are used by the students.

The true solution is to become familiar with numbers of all sizes. And
this can be done through discussions, in school and out, of all kinds of
costs and prices; then writing and reading them. Here, one must give
amounts of money in pennies, dimes, § !’s, $§ 10’s, etc. *‘Cost of a car
and a ticycle? But the insurance on the car is alrcady tar more than the
cost of a new bike!”” Estimation is coming in by itself. Separating the
places in writing numbers by vertical lines (with all four operations)
makes the working of the decimal system very clear (see an example
below).

CONQUERING THE PROBLEM

It 15 the common belief, and strong belicf of many or most research pro-
fesstonals, that many children cannot lcarn subtraction well and {few can
learn long division or fractions. But as preschoolers they learned far
more complex things, without being taught. The trouble is simply that
we have been trving to feach them instead of challenging them to find
out. The aclual learning is quite easy; the crucial step is to get them to
drop their attitude of just trying to learn the right rules.

So Johnny (or a small group of people of any age) is with you, and you
pick on the question 42 — 18, putting it in terms of money. ‘‘Here is some
money you have’ (lcaving out preliminarics here); ‘‘these two plains
(popsicle sticks) are dollars, and these (four) reds are tens. How much
money do you have?’' ‘“‘Forty-two dollars’’. If there is trouble here,
more play for familiarity with money is in order.
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“Here 15 a nice picture, for eighteen dollars. Would you like to buy
it?”’ Assent. “*Can you say how much money you will have left?”’ This
is to get him to think some; an answer is not needed.

“Well, if you want to buy the picture, you must pay tor it’’. He hands
you two reds. The numbers involved are understood. Now comes the
challenge. ‘1 am sorry, I have no change in this store’’.

The essential point is to leave it to Johnny. Instcad of telling all,
especially the “*difficult’” points, you tell nothing. He must lecarn to take
responsibility. {f there is an impasse, you could say ‘‘Let this be real.
What might you then do?”’ When he has eyed the bag of money, show
subtly that you let him choose what to do. A red is exchanged for a bun-
dle of ten plains, and the picture can be bought and the change counted.
(A teacher may at first fecl impelled to give hints or explanations at the
critical point. This is a half-way procedure that can develop soon enough
into the tull challenge which is much the best for long-term results.)

Next, ask him to repeat the experience, seeing just what is happening,
and recording. When the recording, perhaps in improved form, shows
the tens and onges, present at each stage, the algorithm

$10 $1

have 4 2

get change 3 12
pay 1 8

have left 2 4

appears. Now let him do another problem, recording in full himself. The
next step is to have, say, § 504 and pay § 87. There will be no difficulty
imchanging a$ 100 to ten $ 10’s; then one of these tens must be exchane-
cd for ten ones. The rest is now easy.

In school, whether for remedial work or right at the start, different
groups may do different problems, and record. Other groups then read
the recording, and reconstruct that experience. Thus wusing mathematicai
reasoning comes first, seeing the results and thus understanding comes
next, then writing results, and finally reading. This natural order cor-
responds to true learning through meanings. Oncc the process is carried
out in full and practiced some, it is known.

A final step is through self-tests. ‘Do you know that you can do these
problems, and be sure your results are correct?’’ An answer must come
Jurst. **Then pick a hard one, and take what time you need; then show
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mc or someone exactly what you did”’. When this is done successfully,
the student can take responsibility for that type of question, and one can
20 on to other topics. The pressure to cover the material can quickly
disappear. Moreover the students, with knowledge that tney can think
and do, will find standardized tests (if they can be undersiood) easy. And
this applies to all students, not just the ‘gifted’.

The same basic method, giving the students the responsibility, works
cenerally. For long division, let a group of say six people share some
money, say  $ 2183  (with  popsicle  sticks,  blue = $ 100,
yvellow = $ 1000). A ‘Treasurer’ may give cach person a red at first, but
soon they must find a way to share the thousands; so one of these wiil
be exchanged for ten hundreds. The rest is generally quickly accomplish-
ed. Next, ask them to structure the work, using at each step all the biggest
moneyv first. On recording, they see the algorithm appear. The effect can
be electric: ““We used no math rules!”” Reading comes next, as in the last
example. The same method applied to decimals (to start, use dollars and
cents).

For fractions, finding what various simple fractions of a dollar are,
and putting them in order, is good; getting familiarity is the keynote. For
instance, since 5 of $ 115 33% ¢, % of $ 115 66%c¢, and half a quarter
is 12%¢, s0 >/z of $ 1 is 62%4c, less than % of $ 1. Or, three times % is
2 and 3 times °/s is '°/g which is less than 2, giving the same result.

In the NALEP [6], all three age groups were asked to put the fractions
Y74, oy /s, Va, Y4, V4 in order. The success rates were

age 9: 0%; age 13: 2%; age 17: 12%.

It these students had had freedom to explore and get a good number
sense. the results would have been radically different.

ISSULS

What I have been expressing above isin great conflict with certain beliefs
coming especially from the research community. | find it essennal to
compare all these views and work to resolve the conflicts; for 1 see the
recommendations 1 so deplore as coming naturally from those other
views,

[ quote especially the following:

(1) All learning comes from the teacher; all material is presented by
the teacher.
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(2) Only the gifted can learn school mathematics well and easily.

(3) Students (omitting the gifted) cannot solve problems involving two
or more steps.

(4) Time on task is what counts. More specifically, ““A firm
generalization arising from research on learning ot skills is that acquiring
significant competence in domains of any difficulty requires large
amounts of guided practice — much more than is provided for most
pupils 1n schools or most adults who try to prepare for new technical
jobs™ [11].

(5) Slow learners, the disadvantaged in particular, cannot be expected
ot get control over school mathematics.

No. 1, I find expressed continually in various articles. It scems to be
an qititude: The teachers are there for the job of teaching and they must
carry on the job; and teaching means presenting the material. (I regret
that most mathematicians also fall partly into this trap; 1 did in my
younger days.)

About the quoted beliefs, let me first say that I believe they represent
fairly well what we see in the school situation normally and what we see
in standardized tests. But ‘can’ and ‘cannot’ should be replaced by ‘do’
and ‘do not’, with the phrases added ‘in the school situation’. Only in
this way do the statements become objective and true, The reseachers
seem ot hide from counterexamples. For instance, in the SEED program
under W. F. Johntz, hundreds of mathematicians and users of
mathematics have been leading regular daily classes, typically of fourth
of fifth grade disadvantaged children. The subject i1s usually absiract
algcbra. Through questioning, the children are led into real
mathematical discoveries with competence and joy. The work has been
funded by several states and the USOE for years.

In ‘time on task’ the principal message seems to be that if students are
showing essentially no learning day by day, it just requires years of work
rather than days. The continued failure is clear, the learning is not. Just
as likely, that later catching onto concepts comes from some moments
of free time to ponder various rclationships in one’s own way, allowing
them at last to emergc.

The divergence with what I am prescnting is extreme; I see the con-
tinual tcaching, i.e. presenting material, as a major cause of the disaster
for the students. Thus, in fact, the researchers and I are examining in
large part totally diffcrent worlds; one where the students are controlled
and taught, and thc other where, with less pressure and more respon-
sibility, they grow in their own powers. We will be on our way to
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beautiful results when the rescarchers enter the latter world (compare the
last two sections) and find these powers in the students. This will, of
course, require radically new attitudes; letting the student explore and
search, without pressure (and increasingly without hints). This may at
first seem careless and abandoning (to many researchers and teachers),
but becomes supportive and relaxing.

Most striking and illuminating is the work quoted by Benezet [10],
which explodes all the beliefs at once; and his methods involved essential-
ly no teacher training, just somc general instructions. His report is very
interesting and illuminating, and should be made available to the general
reader.

The greatest harm in the beliefs, to my mind, is that they are picked
up and believed in the highest circles, thus, for instance, allowing the na-
tional commission recommendations about requiring more mathematics
and work. This is my reason for stressing the need to examine the beliefs
deeply. They also lead to the lowest of goals, passing standardized tests,
which is associated with remembering piles of rules, a far cry from gain-
ing control with responsibility over domains of thought, the essential for
true progress in science, technology and elsewhere.

They also lead to the call for starting teaching earlier, with the great
dangers I have spoken of. Benezet started simply by cutting out all for-
mal arithmetic from the first two grades; the children caught up rapidly
in gradc 3, and the improvement was very clear (the children were then
not held back in these grades, for instance).

WHAT CAN BE DONE?

The most pressing need I see s for us to face fully the consequences of
interventions we make, and hold up on those with bad results. I speak,
of course, of mandating more work in mathematics for failing students,
raising standards for these without helping them toward meceting the
standards, and starting mathematics teaching at an earlier age. It 1s un-
thinkable to market drugs without a thorough study of all eftects; in
education I see no concern.

All the states have published goals for education, but these goals seem
ot be mostly disregarded in practice. Urgently n>eded is a clear goal for
mathematics education, with clear school methods for working toward
the goal. I suggest the following simple statements.

Goal for the future of mathematics students: Be able to study deeply
into situations with mathematical elements, drawing and organizing con-
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clusions, and to carry on oral and written communication about them
with clarity; also to take full responsibility as to their correctness and
refevance, and to look into various possible relationships with outside
matters.

From this, a school goal is clear: Have plenty of practice in exploring
such situations, with initiative and concentration, keeping all purposes
in mind; and carrying on thoughtful discussions with growing
responsibility.

Most teachers cannot be expected to institute such miethods at once.
But with support from others, letting the students start some explora-
tions and seeing and discussing the needed changes in attitude, both
teachers and students can sense the new growth and gradually get more
involved; this will already case up on the pressures to accomplish. Break-
ing the class into groups and individuals will naturally being, and motiva-
tion will become intrinsic. With some natural choices of situations, the
standard curriculum will appear from being used (discovered) and hence
be well understood; the usual tests become easy to pass. And the proof
will be there that all students have high capability and can learn relatively
quickly.

The presently designated ‘effective schools’ may show better climate
for learning, which is of great importance; but with the present teaching
methods, whether this learning is usable in practical situations is open to
question (see the NAEP results).

The great problem is that the needed goals do not have priority, and
the possibiiity of progress as described is not faced. There is a great need
to get a national focus onto the basic questions of teaching and learning
and how schooling can be changed to fit. For this, some central body 15
urgently needed to kecp the top priority, coordinate and publicize. It
could naturally be located in the National Science Foundation, especially
for the scientific aspects, and would coordinate with professional
societies, The actual studies can be carried out by present and newly
formed groups, and in part be extensions of present work. | recommend
making an informal start in this direction as soon as possible.

I end with a few remarks on particular topics.

Remedial work is now very common, from early grades into college.
Unfortunately, it is mostly more of the same, leaving the rule-following
attitudes untouched. Just as in original learning, it is these attitudes that
must change for cffective work: then one can start with simple ideas and
work rapidly up. Thus a real cure is no different from original Icarning;
see the section ‘‘Conquering the problem’’.
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The diagnose-prescribe movement expresses a proper way to go about
remediation; but so far I have not scen much beyond working at symp-

toms instcad of the disease underncath, with correspondingly poor
results likely.

Individualized instruction and mastery learning arc fine sounding
terms, but used mostly i programs governed by pre- and posttests.
When run mechanically in large part, the student tends to get lost from
view; he and she can get into a morass of misconceptions without its be-
ing discovered. Compare Erlwanger {12]. Like any program based on
testing, the goals are most likely to be far removed from what is truly

needed. And I see 80% correct as 20% wrong, thus without the solidity
needed for real life.

Of course | can only give some general trends | have seen; any in-
dividual case must be judged on its own merits. Finally, a great long-term
need 1s for mathematics and science professionals to work with local
schools, helping the understanding of true long-term goals, helping
teachers become comfortable with these goals and move the teaching
methods in that direction. They can help the whole community recognize
the importance of changed attitudes and methods and hence support im-
provement for all the students as the work gets underway.
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