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AMODEL OF UNDERSTANDING TWO-DIGIT
NUMERATION AND COMPUTATION

tHanlie Murray and Alwyn Olivier
University of Stellenbosch

This paper suggests that a full understanding of place value is not a prerequisite

Jor many powerful, pliable computational strategics; that these strategies are
formulated and widely used by voung students; and that the use of these
computational strategies facilitates a full understanding of pluce value. Bused
on an analysis of the computational strategies employed by young children, a
model is proposed for the development of children’s understanding of two-digit
numbers. This model holds serious implications for both when and how to
introduce two-digit numbers, and also for the role assigned to stundard wniten
algorithms in the junior school.

INTRODUCTION

Various models have been proposed to describe the development of young children’s un-
derstanding of place value, e.g. Resnick (1983), Kamii (1985), Ross (1985). The general
consensus among these researchers and also authors such as Richards and Carter (1982)
seems to be that a full understanding of place value necessitates the conceptualization of
ten as a new abstracted repeatable (iterable) unit which can be used as a unit to construct
other numbers. It is also clear that this abstraction is quite difficult and that many third
and fourth grade children have not attained this understanding in spite of many years of
intensive teaching about place value.

We have available taped and transcribed protocols of interviews conducted at the stast of
the school year in 1987 with all 140 third grade pupils (aged eight to nine) of two fairly
representative white schools. During each interview the student was presented with con-
text-free addition problems involving whole numbers of increasing size, first orally, then
set out horizontally, and finally set out vertically with the digits correctly aligned. The stu-
dentwas encouraged to solve each problem in whatever way he chose to, and asked to de-
scribe his solution strategy for every problem. These students had all had at least nine
months’ intensive instruction in place value and the standard vertical algorithm for addi-
tion. Analysis of the protocols shows, however, that these children use the taught algo-
rithm infrequently, but rather prefer informal (untaught) computational strategics. The
data also show vast quahitative ditferences i understanding of two-digit numbers, that is
evidenced by the different types of computational strategies utilized by different students.
The data have led us to postulate four levels of understanding of two-digit numbers, each
level easily identificd by the computational strategies employed to perform context-free
computations. The levels that precede a full understanding of place value are probably
more important and far more useful than has been realized before, and function as vital
developmental stepping stones towards the place value coneept.
o



DIFFERENT RANGES OF NUMBERS

Steffe, Von Glasersfeld, Richards and Cobb (1983) describe children’s understanding of
the single-digit numbers as progressing through different levels of abstraction until the
number is constituted as an abstract unit item with a meaning independent.of physical ob-
jects or counting acts. This implies acquiring the numerosities (“how-manyness”) of the
numbers. Whereas children who have not yet acquired the numerosities of the range of
numbers with which they have to perform computations must necessarily utilize pre-nu-
merical strategies like counting all, children who have acquired the numerosities of the
numbers have the canacity to use numerical strategies like counting on from first, count-
ing on from larger, etc.

One could expect, maybe, that children’s use of numerical strategies in computations with
small numbers will transfer to computations with larger numbers. It has, however, fre-
quently been documented that children find problems involving smaller numbers easier
than those involving larger numbers (e.g. Carpenter and Moser, 1982), and that children
change their behaviour when the sizes of the numbers in a given situation change (Cooper,
1984). The following are clear examples from our research showing children regressing
to more primitive strategies or completely senseless juggling of symbols when they have
to compute with larger numbers. (These problems were all presented orally. A summary
of the child’s strategy is given next to the problem.)

Elsa — a regression to the pre-numerical strategy of counting all
T+5=12 S5+6=11andadd 1

9+2=11 9+1=10;+1=11
but
11 + 17 =27 draws 11 small circles, then 17 smali circles, then counts all
37+5=42 draws 37 small circles, then 5 small circles, then counts alt

Marlene — a regression to meaningless manipulation of digits

9+2=11 9+1=10;9+2=11
9+6=1§ 9+1=10,+5=15
but
29 +4 =90 wrilcs 29 + 4,then: 2 + 4 = 6 and puts 9 next to the 6
234 12 = S3 writes 23 + 12, then:2 + 3 = Sand1 + 2 =3
25 + 8 =87 writes 25 + 8, then: 2 + S = 7 and puts the 8 next to the 7

We argue that this regression is explained by the fact that these numbers are dutside the
children’s range of constructed numerosities (and in Marlene's case, coupled with a per-
spective of mathematics as meaningless manipulation of meaningless symbols). When a
child has acquired the numerosities of the smaller numbers, e.g. up to nine or twelve, he
has not necessarily acquired the numerosities of the two-digit numbers as well, e.g. it is
clear that Elsa’s lack of “feeling” for 37 forces her to recreate 37 by means of circles which
can be counted from the beginning. Although a child may therefore be able to caploy nu-
merical strategies within a certain range of numbers, the numerosities of numbers beyond
this range have also to be acquired before he is capable of using numerical strategies when
computing in a range of larger numlwg.
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DIFFERENT TYPES OF COMPUTATIONAL STRATEGIES

When children work with smaller numbers, their computational strategies fall into two
broad classes: the pre-numerical strategies where the child has to count all because he has
not yet acquired the numerosities of the numbers he is using, and the numerical strategies
like counting on or bridging through ten. In computations with two-digit numbers, the
pre-numerical/numerical distinction between strategies of course still exists. We can also
distinguish different types of numerical strategies.

One type of numerical strategy is counting on. Another type, not based on counting, Car-
penter (1980) calls heuristic strategies. Heuristic strategies often involve the decomposi-
tion of one or more of the numbers in a problem in order to transform the given problem
to an easier problem or series of problems, e.g.

30427 =30+4+23 =404 23 = 40+ 204+ 3 =004 3.

Petersolves 36 + 27 as: “Three tens and two teny gives fifty, and six and then seven, which
gives 63, whereas Marictjie solves the same problem by saying “Thirty and twenry gives
fifty, then add six and seven.” Although seemingly the same strategy, we see the different
naming as manifestation of different understandings of two-digit numeration.

THE MODEL

We hypothesize that there is a relationship between children’s under:..anding of two-digit
numbers and the computational strategies that they use. It is not necessarily a linear re-
lationship, because children do not consistently use their optimal computational
strategics; at best we can say that the use of a certain type of computational strategy
“defines” a certain minimal understanding of number and numeration. Based on our re-
search data and a theoretical conceptual analysis, we have formulated a theoretical model
describing four increasingly abstract levels of types of computational strategies with two-
digit numbers in a given range, cach type associated with its prerequisite understanding
of number and numeration.

The first level

At the first level the child has not yet acquired the numerosities of two-digit numbers in
a given range, and can therefore only use the pre-numerical strategy of counting all for
computations in this range. The child knows the number names of the two-digit numbers
and their associated numerals, and associates the whole numeral with the number it re-
presents, but assigns no mcaning to the individual digits. At this level the symbol group
63 can be regarded as a way of “spelling” the number name. A common error is to inter-
change the digits (e.g. writing 36 for sixty-three), yet often this has no adverse effect on
the child’s understanding of the number itselt, as evidenced by Johan. To solve 30 + 4

(presented orally) he writes: , R
te ¢
OtL=3L

and says “thirty plus four is thinty-four.” His incorrect use of the tand e symbols (for “tens™
and*units™ in Afrikaans) in noway affects his computation, because the “tens”™ and “units”
have no meaning for lum vet.
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Results of previous rescarch support the conclusion that the understanding of the whole
numeral precedes understanding of the individual digits (e.g. Barr, 1978; Kamii, 19806).

The second level

At this level the child has acquired the numerosities of the two-digit numbers in a given
range, which implies that he can utilize numerical computational strategies like counting
on for computations in that range.

Whereas it is sufficient for a child to use only counting on strategies for smaller numbers,
counting on becomes very tedious and also prone to error when used with larger two-digit
addends.

The third level

At this level the child sees a two-digit number as a composite unit, and can decompose or
partition the number into other numbers that are more convenient to compute with, e.g.
to replace 34 with 30 and 4. This provides the child with the conceptual basis to use heur-
istic strategies.

The heuristic strategies used by students in our research are almost always based on de-
cimal decomposition, i.e. a decomposition into a multiple of ten and some units, e.g. 67
as 60 + 7. But the tens are most emphatically not treated as “so many tens”; they are called
by their full number names, e.g. sixty-seven becomes “a sixty and a seven”, not “six tens
and seven units.” Students then use their knowledge of adding multiples of ten to obtain
answers, e.g. Chris does 23 + 12 by saying: “Take the three away, add the twelve to the
twenty, then add the three again”, partitioning 23 into twenty and three. If both numbers
are large, he partitions both: 36 + 27 is solved as “take the six and the seven away, thirty
plus twenty is fifty; now add six, then add seven.”

We have identified ten different heuristic strategies based on decimal decomposition.
These strategies are very powerful and completely trustworthy: we have not found child-
ren applying them incorrectly. If the answer is incorrect, it has always been because the
child has failed to add the units correctly.

The fourth level

At this level the child is truly able to think of a two-digit number as consisting of groups
of tens and some units, i.c. the child can conceptualize ten as a new iterable unit, without
losing the meaning of the number as a number. Whereas at level 3 the child works with
ten as a number, that is no different than any other number, at level 4 he is able to work
with ten as an iterable unit, a thing that can be counted as a unit, so that e.g. the number
23 is conceptualized as “two tens and three ones.” Richards and Carter (1982) make this
distinction clear:

“Seeing tenas iterable is distinet form (sic) being, able, say, to add ten and ten
to make twenty. Secing twenty as built up out of two units of ten is concep-
tually different from simply being able to add ten and ten to get twenty. In this
sense, “Ten and Ten' are distinet from “T'wo Tens'. The former is not differem
from taking any pair of numbers..." (p. 61)

8
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Concerning computation, level 4 understanding of numeration facilitates a progressive
schematization (“shortening”) and abstraction of the level 3 heuristic strategies. Here are
some examples of this type of “groups of ten” thinking as opposed to the “tens part as a
complete number” thinking of the previous level: Annemarie solves 26 + 37 (presented
vertically) by saying: “Six plus seven is thirteen. Five tens plus one ten is sixty. Sixty plus
three is sixty-three.” For 36 + 27 she says: “Thirty plus two tens, that’s fifty. Six plus seven
is thirteen, that's sixty-three.” Very few of the children we interviewed use this concep-
tualization of ten as a new “unit™; even Annemuaric frequently prefers the level 3 method:

G+ 1430+ 10=40:4 +9 = 1340+ 10 + 3 =53,
Level 4 understanding of rumeraticn is a prevequisite for the meaningful execution of the
standard written algorithms. A further abstraction allows one to operate on the digits of
numbers —e.g. in the number 56, the meaning of the five as fifty or five tens can tempo-

rarily be suspended to work with S as a digit for the sake of convenience and the further
progressive schematization of computational strategies

When executing the standard algorithm has become automatic, it is difficult to deduce
from the child’s behaviour his understanding of the procedure and the underlying numer-
ation concepts. However, it is clear from our research that many children seem to think
of “groups of tens™ in the correct (meaningful) way, because they talk about tens and units
while they are computing, yet closer examination reveals completely superficial use of the
terms “tens” and “units”, with no possible evaluation of the numbers involved and the ac-
ceptability of the answers obtained. Sonja shows a proficiency with the standard algorithm
for vertical addition, which is yet not based on a true understanding of the number sym-
bols. She computes 34 + 17 and even 26 + 37 successfully by means of the standard ver-
tical addition al orithm, but 5 + 37 (also written vertically with the digits aligned
correctly)asS + 3 + 7 = 15,and S + 23 becomes 55 (the first S becomes the tens of the
answer, and the units of the answer are the sum of 2 and 3). A superficial facility in exccu-
ting the standard written algorithms may therefore hide serious deficiencies in the under-
standing of numbers and place value.

We have not come across a single child who operates with level 3 strategies (“the tens part
as a number,” e.g. “sixty”) showing confusion of the above kind, probably becausc the
mathematics underlying the level 3 strategies can never be hidden from the child: it is im-
possible to employ a level 3 strategy without understanding what you are doing, but it is
extremely easy to implement astandard written algorithmin rote fashion. When the stand-
ard written atgorithm is routinely employed, one operates on the syntactic level, manipu-
lating the symbolsdirectly as ‘concrete’ objects of thought according to certainrules, totally
removed from their meanings as numbers. The level 3 and 4 heuristic strategies are, how-
ever, onthe semantic level: One deals with the symbols by referring back to their meaning,
re i 23 the 2refers to X0 or two tens. Many students who talter ustng the standard algo
rithm either do not have the necessary level 3 semantic knowledge to monitor their sva-
tactic rules, or their syntactic and semantic knowledge appear to co-exist completely
unconnected.
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SOME RESULTS

The following table represents a summary of a preliminary analysis of the protocols of a
few selected computations:

Percentage of students using types of strategies® b

o T Levels 1 &2 Levels 38T ] Standaid ]

Computation Counting strategies | Heuristic strategies | algovitinn
234+ 8 (set orallv) 39 (65) 1 (N) O ()
2008 (s horzontally) 31 (67) 1 (82) Ee)
2T 4 6 (set vertically) 31 (81) 36 (92) 22 (16)
314 21 (sclorally) ' 16 (22) 19 (77) 6 (5) |
31+ 23 {set horizonially) 1 (27) a6 (90) 19 (63) |
36+ 27 (set orally) TG T2 (13) 2 (19)
|26 4+ 37 (set vertically) 4 (17 31 (87) 21 (31

9Students not wecluded in this summary either *did not know’, “guessed’, "knew’, or were it
asked, because they failed or persevered with similar strategies in similar problems.

PNunibers i parenthesis represent the percentage of students who used a particular tve of
strategy that solved the problem correctly.

“A student was coded as using the standard algorithmy if he gave direct written or verbal evidence
of computing ones and tens separately as digits, from right to left.

The data clearly show to what extent students prefer heuristic strategies, and the highsuc-
cess rate of these strategies. In contrast, the data also show how few students actuatly em-
ploy the standard taught algorithm, as well as the low success rate in using the algorithm.
The data also show, however, that a large number of students could not cope with the
computations at all (e.g. in the last two categories a maximum of 26% and 41%¢ respec-
tively).

DISCUSSION

If our model provides an accurate description of the development of children’s under-
standing of two-digit numeration, and if one believes that instruction should be based on
the developmental sequences observed in children, then the model and our data have seri-
ous implications for the teaching of two-digit numeration and computation.

We stress that our subjects have had intensive instruction in “tens and units” place value
and in the standard written algorithm for addition. While it is acknowledged that this type
of instruction had contributed to the facility of many students with heuristic strategies
(that were not explicitly taught, and that they preferred to the standard algon 'wm). this
type of instruction also contributed to some students regressing to primitive (but to them
meaningtul) counting strategies for computing with larger numbers, to stadents” pocss
grasp of the standard algorithm when they chose to use it, and the helplessness of mam

others. 1 O
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The near universal method of introducing two-digit numeration is by quantifying sets of
objects by groupings of tens and ones and learning the numeral and number name asso-
ciated with the sets of tens and ones. This approach is based on an a prion logical analysis
of the concepts and has a great deal of intuitive appeal (to teachers) because of the un-
derstanding that (supposedly) precedes the symbolization. Yet, this approach does not
consider the psychological nature of children’s learning: understanding of two-digit num-
bers as groups of tens and ones is at level 4 and can therefore be expected to be too ab-
stract for students who are operating at level 1, 2, or 3. We have ample evidence that it is
not successful to teach children about the tens and ones meaning of the symbols in the
symbol groups before they have become uccustomed to a symbol group as representing a
single number (level 1). The child has to work with 63 as a way of writing “sixty-three” for
along time before he becomes ready to understand 63 as 6 tens and 3 ones. Similarly, level
2 and level 3 thinking are necessary prerequisites for children to understand the sophis-
tication of two-digit numeration and computation (cf. Murray, 1988).

There is some evidence that the compositional structure of numbers arises first in the con-
text of oral counting. Kamii (1985, 1986) attributes children’s difficulty with place-value
partly to the teaching of standard procedures and outlines 2 teaching sequence based on
counting, and reading and writing numerals without groups of tens, and on children in-
venting their own procedures 10 add 2-, 3- and 4-dipit numbers. In a teaching experiment
Barr (1978) found that kindergarten children who were introduced to two-digit numera-
tion through counting, and reading and writing numerals before grouping exercises de-
signed to provide understanding, did better than those who did the grouping exercises
first.

Itit seems that when students’ level 1 and 2 counting strategies become too cumbersome
for computation with larger numbers, teachers “help” children by introducing the stan-
dard algorithms as necessary (the only) computational tools. Some teachers may try to
build a conceptual basis for the algorithms (level 4), but such efforts seem ili-fated if level
2 and 3 understandings are bypassed. Other teachers introduce the standard algorithms
at the syntactic level, thereby undermining the development of adequate number con-
cepts and fostering a perspective of mathematics as instrumental understanding. Rather
than trying to discourage counting, teachers should help children to become efficient and
accurate counters, and help develop level 3 understanding of numeration and computa-
tion, i.e. give much more emphasis to the first three levels of understanding. Level 3 un-
derstanding provides sufficiently powerful computational strategies, so that the
introduction of the standard written algorithms may be delayed, if they should be taught
at all.

The influence of computing technology necessitates a re-orientation of goals of elemen-
tary school mathematics, especially regarding the role of pencil-and-paper computation.
There is a call for de-emphasizing standard written algorithms and integrating the calcu-
lator into the curriculum as the primary computational tool, accompanied by an increased
emphasis on mental methods, estimation, understanding of number and algorithmic
thinking as a mathematical process (eg. Olivier, 1988). It seems that the level 1 to 3 un-
derstanding of numbers and computational strategies are exactly those that are necessary
for developing the skills of mental methods, estimation, and flexible computational pro-
cedures and the understanding of number and numeration. It must be stressed that the
heuristic strategies are not necessarily mental methods, because some children prefer 1o

i1
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record at least some portions of their computations. However, the types of strategies for-
mulated by these third graders themselves correspond very closely to the “mental me-
thods” and “street mathematics” described by authors such as Plunkett (1979) and
Carraher (1988).

We have outlined a model describing the development of children’s understanding of two-
digit numeration and computation. Such a model should be complemented by a teaching
program to facilitate transition through the different levels of understanding. We are at
present implementing an experimental syllabus based on these ideas in eight schools. We
shall report the results of the experiment in due course.
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THE COMPUTER PRODUCES A SFECIAL GRAFHIC SITUATION OF

LEARNING THE CHANGE OF COORDINATE SYSTEM.
Suzon NADOT
CRECO DIDACTIQUE - PARIS

Summary: Articulated by the visual, this research is
situated at the junction of informatic and mathématics. It
takes 1its roots both in a technical conjuncture where the
picture and the informatic develop a new communication and a
social conjuncture where the didactic comes back to improve the
pedagogy by analysing the knowledge and the rules which run the
transmissiaon of situations. The working on the computer
introduces a real problematic which will make second form pupils
think about the change of coordinate system and the change of

variable.

INTROLUCTION

A lesson af maths about functions also deals with the
outline of a curve so as to illustrate, explain and give a
solution. This drawing, both géométrical and schématic is
distinctly defined as an activity which must occupy an important
place in the different parts of analysis programm, being
specified by its langquage and its representative process; it’s
a real significant which can lead to a direct vision of things.

On the overland, the deve'®opment of the graphic
possibilities of the computer, must seduce the authors of
didacticiels who conceived automatic graphic treatments: the
imagiciels. As an autamatic treatment, the imagiciel gives to
the wutilizer a real short cut in the executive tasks, it gives
the possibility of going beyond the conventionnal and singular
visions thanks to ways of Jjuxtaposition, superposition and
transformation. In a parallel direction, the learning of
informatic language joins the mathematics notions linked to the
functions. The writing of a simple imagiciel, the tracer, is
based already 1nn its conception upon the notion of function and
rises all the guedtions of coordinate system.

By studing both contraint of nowadays ways of teaching

13
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in our second form and the possibility offered by the computer.

ve've looked for an original situation of learning which also

allowed us to see the procedures developped by the pupils.

TODAY’'S WAYS OF TEACHING

After analysing different school books, the graphic
activities have been divided into four categories of aims:

- the learning of qraphic language where the accent is
put on the explicitation of the translaticn algebra graphic.

- the writing of graphics where the student must give
in a diagramm all the informations he has got by studying the
function.

~- the reading of graphics, the aim of which is to
verify, conjecture, even solve in extremes cases, that is to say
cases the pupils can’t solve in another way. Contrary to the
previous activity, the pupil must sketch what he perceives
visually in an algebric way.

- Combined activity where graphics and algebra are

mixed to give and treat infarmation.

{ | 1

|learning writing

| |

| | reading |combined '
| 11% | 847 ] 23% | 16% l

1 §e

t ] ]

The main activity is indoubtly the writing of the
curve, the final point of the algorithm of the study from which
it stands as the instrument of coherence. We can also state the
permanence in all the exercices of the "given coordinate
system". The graphic representations refers on a triple
(coordinate system, function, drawing ), one of the elements
being fixed, we must interpret the relation existing between the
two others:

Ist cage: Qiven the conrdinate system, then we worl
on the relation function - drawing; it’s the normal  situation.

2nd case:given the function, we worl on the relation
conrdinate system - drawing, by modifying the system, we can see
difterent caracters of the function.

Ird  cane: given the drawing: woe worlh on the

14
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% caardinate system - {function, by modifying the coordinate
system, we represent another function, it’s the change of

coordinate system.

THE KNOWLEDGE QF THE PUPILS

Following a double set of questians given ¢to four
secand form last february then june, we should knaow the
abilities aof the pupils.

The item c-1 (february) refered to the interpretation
of the graphic; a drawing being given to him, can the pupil
read the adequate pieces of information in it about the function
1t represents.

c—1: By using the graphic representation of the g
function below determine by explaining what you do, g(1), then
the values of x as g(x)=27 g((x)<2?

T;e item c-2 (june) resumed the same question.

Parallel to the item c-~1 was asked the item c¢c’-1 in
which the same problem was proposed ta the pupils in a different
language.

We consider the function f definited by f(x) = x2+ 1.

Compute f(2). Determine x so as f{x)=10 ? 4F(x) <10 ? Justify
your answer.

7% for the pupils who complete this item successfully:

[ T T T T 1
[item | £¢a) | 4 (B) |f(fc,dD| T |
Je’=1 | 88,3% | 79,6% | b,6% | 137 |
fc -1 | L] 12,4% | 3,6% | 137 |
e =2 | S6,2% | 48,27 | 38,7% | 137 |
L 1 1 i i J

The reading of a graphic and its interpretation in
another system of signs is not completely unterstand by all the
pupils, even of we can see progress all along the school year.

The way of of interpreting graphic infarmations is
less unterstan than treating them algebrically.

The three guestions we asked belong to the same field
nf competence,  however  thore’s a hierarchy between them which

romainsg aftoer thoe familrar ioation,
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The items b—-1 and b-2 refer to the simultaneity of the
coordinate system: a naturel, the one of the squared piece of
paper where the unities are spontaneously related to the square
and so the one of the mathematics universe in which have to be
represented clearly.

b-1 and b-2: 1f you can use a big size small squared
piece of paper to situate the points, the coordinate of which
are given below, how would you choose the units 7 Situate the
points is not ashed.

% |- 67|-60| - S52|- 37|-30f- 15} O | 153} 30| 37 | 52 | 60 | 67 |
y |70,7] 1 | 0,71 0,7 v | @ | 1 | O] 1] Q. 7] O,7| 1 -0.7)
For each of the two items,.the percentages give the

right, unfinished, wrong and the missing answers.

(. T : T T { I 1
l item ] right lunfinish | wrong |missing| £ |
| b-1 | 22,67 | 13,17 | 21,274 | 43,17 | 137 |
[ b-2 | 354 “ | 10,24 | 23,47 [ 12, 4% l 137 l
L 1 g 1 L 1 J

The success remains feeble about this activity which
seems elementary. The choice of the unities refers a numeric
problem and a theorical problem: the one of the double
coordinate system. Observations made in other time showed that
the change of coordinate system 1is a blind point among the
majority of students, it stands in all cases as a senseless
point.

We have chosen among a lot of possibilities to set a

didactic situation to introduce the change of coordinate system.

THE DIDACTIC SITUATION

Dur situation being settled on an experimental
approach, the computer created the problem and allowed an
observation of the procedures of individual resolution.

N Description of the situation

We asbed the pupils to set out a part of curve on the
soreen of the computer by logo graphic programming.  For the
programmat ion of a setting out the curve. the confrontation of

the two  coordinate qyatem i continuousy;  on one hand the loago
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graphic universe set, always the same: the origin is ino  the
centre of a squaring, the 64000 points of which are coded from
-160 to 159 and from -100 to 99, the instruction point (x,y)
lights a point on the screen having (x,y) as coordinates; On
the other hand the mathematic universe conditioned by the part
of the sisnusoid to reproduce on the screen.

2) The population

We have experimented pupils in a second form learning
informatics, for four weeks ( four times two hours).

c) The develapment

The pupils had to write a logo programm which drew a
part of a curve representing the cosine function on the
successive intervalgs: [-160°, 159°3; [-320, 318B1; [-60,25%9];
[-140, 3181.

The holding of the problem was immediate, the pupils
had a reproduction of the sisusaid settled by them during a
previous work, they had already used imagiciels and therefare
know what a computer could produce. They know the aim to reach
and could caontrol the rightness of the facts all along the
working of the machine.

d) The procedures

Immediately in the case equality, they have programmed
the algorithm of construction: point (x,cosx) far x which
varies from 1 to 1 between -160 and 159. The reaction was one
of perplexity, waiting was not successfull (d-1), so they came
back to the programm, changed it but failed, then called us and
facing our behaviour, no syntactic mistake, they have tried to
find and they have seen the illeqibility of the logo unity af:er

several simulations, have pointed (x, BOcosx) (d-2).

(d—l)r~ - (d_Q)[m__——ﬂ~—~m~———q
I .-
| | o l
| | I A
| I | -7 R
v R
| I I l
t e t -]
In the case of the foom, the {first operation heing
done  was that of change tnterval of o, modifying - 160 inta - 320

17
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and facing a error messagoe, two procedures emerged:

lrst type: point (:x/2,80cosx) with #  varying from

X18. The procedure which developped itself as saon as

-320 to
the discovery of the relation of the amplitudes of the intervals

and which proved its rightness by showing the right shape of the

curved.

2nd type: point (i, B80cos2x) with » varying from
-160 to 159.

To solve [-60,259] has been the most difficult case.

The pupils saying: "we see what 1s happening, we can see why 1¢
doesn’t work right, but we don’t know how demarrage, we
shouldn’t find the origin in the middle. At last the two
previous procedures reappeared.
Success of the group (two or three pupils in a group)
among the 7 groups of the form.
{ T | | { ]
|1st week l2nd week |3rd week l4th week | item |
l l | | | drawing on l
l 677 I 7/7 l | | [-160,159] I
( 83, 7% | 100% ( I l equality |
| | l l | drawing on |
| 477 | /7 | 777 I | £-320,3181 |
| 57,17 | 83,774 | 1007 | i zoom {
{ | | | | drawing on |
| ©0/7 | /7 | 2/7 | 5/7 | £-60,2591 |
[ o7 | 14,37 | 28,67 | 71,4% | travelling |
| | | ! | drawing on |
[ 077 | 177 { 2/7 | 3/7 | £-320,3183 |
| | 14,37 | 28, 6% | 42,97 | combined |
N SRS NS SRS IR y
AROQUT  THE OBSERVATIONS
a) from a mathematical point of view, two main

quest tanys have been railoed. We have put the accent on dirfferent

croordinate oyatom: "wo can assert we change of function but we

Cany alao qay we change of (nordinate osystem”. Tt change  of

var1able: the ordered  pair (:/2,  coax) COGIR) ar e
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different and however we get the same graph 7 The answer has
been more undecided, but it’s precising numerically, the data in
every cases that the pupils have been convinced that caosx and
cos2x can be the result of the same process of calculus owing to
the change of variables.

b) From a cognitive point of view the problem of the
treatment of  change of reference mar bl rovealed itself vory
difficult particulary the case of a travelling, the decentring
raises a bigger difficulty, the treatment of the simultaneity
add - substract is less under control than that of multiply
divid, and the visual signs which helped to make the extending
are helpness when there is & decentring.‘
schema

c) From a point of view of the didactic situation, the
decontextualisation 1is not easy. If the experimental generates
some efficient practises and basic questions, a passage remains
to be accomplished; It remains the passage leading to the
decontextualisation. That* s on this particular point we

nowadays continue our work.

BERTIN (J) - Sémiologie graphique. - Gauthier
Villars, Mouton - 1947

CENTRE DE DOCUMIENTATION RECHERCHE DE (’INRP -
Perspectives Documentaires en Sciences de 1’Education N7
(Repéres  bibliographiques:la scheé¢matisation par JF VEZIN page
23-52) ~ 1985

DENIS (M.) - Lea images mentales - Presses
universitaires de France - 1979

NADOT (S) - Actes du caolloque organisé par le CNAM -
Ordinateurs dans 1’enseignement secondaire - Etude didactique
sur l1’apport du dessin en mathématiques - 1986 -

VEZIN (JF.) - Complementarité du verbal et du non
voerbal dans 1’acguisition de connatssances - Monographiens
frangaises de poychalogie 50 - Dditions dua CHNRS - 192830
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Epistemological analysis of early multiplication

Nicole Nantais, Université de Sherbrooke
Nicolas Herscovics, Concordia University

Prior to launching a three-year study on the understanding of early
multiplication in primary schools, an epistemological analysis of this conceptual
scheme is essential. The approach used in this paper relies on criteria identified
in the elaboration of a two-tier model of understanding, the first tier describing
the understanding of preliminary physical concepts, the second tier describing
the understanding of the emerging mathematical concept. At the physical level,
a situation is perceived as being multiplicative when the whole is viewed as
resulting from the repeated iteration of a one-to-one or a one-to-many
correspondence. Three distinct levels of understanding can be identified with
multiplicative situations. The emerging concept of arithmetic multiplication can
also be described in terms of three complementary aspects of understanding.

In the last fifteen years, research on additive structures has been quite extensive and
the results have been rather significant. More recently, several PME and PME-NA
papers have dealt with the concept of multiplication of real numbers. However, hardly
any studies have been concerned with the early beginnings of multiplication of natural
numbers. An investigation of the acquisition of this conceptual scheme by primary
school children will be carried out over a three year period at the University of
Sherbrooke. The objective of the present communication is to open the discussion on
the proposed conceptual framework used in this project.

The ditferent meanings of multiplication in N
It we ask any teacher what is the meaning of multiplication of natural numbers, one
usually gets as a response: "multiplication is repeated addition". The description here
refers essentially to the arithmetic procedure needed to find the answer. Curiously, the
other three arithmetic operations can be identified as the arithmetic reflection and
quantification of physical procedures : addition refers to the quantification of 2ither

Research funded by the Quebec Ministry of Education (FCAR Grant EQ-
2923)
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augmenting a given set or of putting together two given sets; subtraction usually
refers to the quantification of the set remaining after some elements have been taken
away from an initial set; division refers to the quantification of the result of
exhaustive equi-partitioning giving either the number of parts, or the number of
elements per part. But when it comes to multiplication, one is hard put to identify a
physical action corresponding to it.

In a survey of the different meanings used for the introduction of muitiplication at the
primary level, Herscovics et al. (1983) found that some textbooks presented it by
counting jumps on the number line, while others referred to the notion of a Cartesian
product ( number of blouses x number of skirts = number of outfits). In their critique of
these different models, Herscovics et al. showed that they involved concept more
advanced than the quantification of discrete sets and thus, that they did not constitute a
good intuitive basis for the initial construction of multiplication. They were unlikely to
tap the natural emergence of the multiplication scheme in the young child.

Piaget and Szeminska (1941/1967) are the ones who came closest to identifying
multiplication with a physical operation when they described it as the iteration of a one-
to-one correspondence between several sets: "From a psychological point of view, this
simply means that setting up a one-to-one correspondence is an implicit multiplication:
hence, such a correspondence established between several collections, and not only
between two of them, will sooner or later lead the subject to become aware of this
multiplication and establish it as an explicit operation” (Piaget &Szeminska,1967,
p.262). In their evaluation of Piaget's model, Herscovics et al.(1983) pointed out that
preliminary results obtained when young children are asked to use a deck of cards to
make four piles of three cards, they are more more likely to achieve this through the
iteration of a one-to-many correspondence than through the more difficult iteration of a
one-to-one correspondence. However, both procedures are possible and hence must
be accepted as actions corresponding to the generation of a multiplicative situation.

That children can generate quite early various multiplicative situations is not too
surprising. But can one claim that by iterating a one-to-one or a one-to-many
correspondence they are actually aware of the situation as being multiplicative? Of
course not. This claim can only be made when they perceive the whole set as resulting
from the iteration of such correspondences. Using this last criterion as a working
definition of multiplication, one is then in a position to perform an epistemological
analysis of this notion. The term ‘epistemological analysis' refers to the analysis of a
conceptual scheme along likely patterns of construction by the learner. The particular
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method of analysis that is proposed here is based on criteria developed by Herscovics
& Bergeron (1988) in the elaboration of their Extended Mode! of Understanding.

An Extended Model of Understanding.

At the last meeting of PME-NA, Herscovics & Bergeron (1988) have suggested that the
construction of some mathematical concepts might be well described within a
framework of a two-tier model of understanding, the first tier describing the
understanding of preliminary physical concepts, and the second tier identifying the
understanding of the emerging mathematical concept. In this model, the
understanding of preliminary physical concepts involves three levels of
understanding:

intuitive understanding which refers to a global perception of the notion at
hand; it results from a type of thinking based essentially on visual perception; it
provides rough non-numerical approximations;

procedural understanding refers to the acquisition of logico-physical
procedures (dealing with physical objects) which the learners can relate to their
intuitive knowledge and use appropriately;

logico-physical abstraction refers to the construction of logico-physical
invanants, the reversibility and composition of logico-physical transformations
and generalzations about them.

The understanding of the emerging mathematical concept can be cescribed in
terms of three components of understanding:

procedural understanding refers to the acquisition of explicit logico-
mathematical procedures which the learner can relate to the underlying
preliminary physical concepts and use appropriately;

logico-mathematical abstraction refers to the construction of logico-
mathematical invariants together with the relevant logico-physical invariants, the
reversibility and composition of logico-mathematical transformations and
operations, and their generalization;

formalization refers to its usual ir.terpretations, that of axiomatization and
formal proof which at the elementary level could be viewed as the discovery of
axioms and the elaboration of logical mathematical justifications. Two additional
meaning are assigned to formalization: that of enclosing a mathematical notion
into a formal definition, and that of using mathematical symbolization for notions
for which prior procedural understanding or abstraction already exist to some
degree.

This model suggests a distinction between on one hand logico-physical understanding
which results from thinking about procedures applied to physical objects and abcut

22
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spatio-physical transformations of these objects, and on the other hand logico-
mathematical understanding which results from thinking applied to procedures and
transformations dealing with mathematical objects. In this framework, one can contend
with reflective abstraction of actions operating in the physical realm without necessarily
describing it as somehow having to be mathematical. We will now use this model to
describe the understanding of early multiplication, that is, products of numbers not
exceeding 9, for any discussion of the larger products would also require
consideration of the multiplication algorithms.

The understanding of preliminary physical concepts.

Let us recall that we are identifying conceptualization at the preliminary physical tier
according to the following criterion: A situation Is perceived as being
multiplicative when the whole Is viewed as resulting from the repeated
iteration of a one-to-one or a one-to-many correspondence. Using this as a
working definition, one can then attempt to classify various knowledge related to this
conceptual scheme according to the different levels of understanding.

Intuitive understanding. A first criterion of intuitive understanding might be the
ability to perceive visually the difference between a situation that is multiplicative and
a situation that is not . For instance a set consisting of several equal subsets might be
compared to a set consisting of unequal subsets. Since rectangular arrays are so
useful in illustrating multiplicative situations, a second criterion might establish if the
rows or columns can be viewed as equal subsets. A third criterion might involve the
visual comparison of two multiplicative situations in which cne of the “factors” is
different. For instance, without knowing the total number of objects present, one could
compare 4 sets of 5 chips with 4 sets of 6 chips or 4 sets of 5 chips with 3 sets of §
chips and decide where there are more. A fourth task might involve various
configurations of 9 subsets of 7 objects. The total number would be large enough to
discourage enumeration but bring out the fact that if the number of subsets and the

number of elements in the subsets are the same, the whole sets must have the same
cardinality.

Procedural understanding. We are looking here for the generation of multiplicative
situations calling on logico-physical procedures based on the iteration of 1:1 and 1:n
correspondences. A first criterion might the child's ability to transform a additive
situation (in which all the subsets are not equal) into a multiplicative one, by &
redistribution of some of the elements. Another task might involve the covering of
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rectangle by equal strips which would correspond to either columns or rows. A third
task might verify if the child is able to relate a multipicative situation generated by a 1:n
correspondence to a multiplicative situation based on a 1:1 correspondence. A fourth
task might assess the the child's awareness of the fact that some quantities of chips
can be arranged into rectangular arrays of two or more rows whereas some quantities
cannot. This type of activity leads to the eventual notions of prime and composite
numbers.

Logico-physical abstraction. The initial problems we are looking for involve the
invariance of the whole with respect to some irrelevant spatio-physical transformations.
A first criterion of logico-physical abstraction might be the invarance of the whole with
respect to various configuration. For instance, a set of 12 chips can be arranged into
subsets of 2, 3, 4 and 6 elements respectively. A second criterion might involve notion
of commutatitvity. This can easily be established by rotating a rectangular array
through 90°. A third task might aim at verifying the equivalence of certain factors
thrcugh a redistribution of the elements. For instance, a set subdivided into 4 subsets
of 3 might be transformed into 2 subsets of 6. This is somewhat different from the first
activity since it starts from an existing multiplicative configuration. A fourth criterion
might involve the noticn of distributivity. For instance, a 4 by § array and a 4 by 6 array
both represent two multiplicative situations. However, when they are combined along
the rows, the resulting 4 by 11 array is again a multiplicative situation which illustrates
the distributivity axiom.

The understanding of the emerging mathematical concept

Procedural understanding. By procedural understanding we mean the appropriate use
of explicit anthmetical procedures. Initially, when young children in grade 2 are asked
"How much is three times four?", many will respond by saying that they have not
learned it yet. Some will model the problem by making three sets of four and count
them starting from 1. While simple enumeration provides an answer, it cannot be
considered as a multiplicative procedure since it does not take into account the
existence of the subsets. The most p-imitive procedure that can be considered as
being somewhat multiplicative must provide such evidence. This is reflected when the
child manages to skip count on a number line: 4,8,...12. If no number line is available,
the child may remember the first part and produce "4,.....8,9,10,11,12. A more
advanced procedure involves repcated addition: 4 + 4 = 8 and 8 + 4 = 12. Gradually,
by grades 4 and 5, children l2arn to memonze some number facts which they can use
in deriving larger products as for example the product
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4 x 6 which may be obtained by the smaller product 2 x 6 =12 and then the sum 12+12
= 24,

Logico-mathematical abstraction. Gradually, as the child's procedural knowledge
evolves, the reversibilily of the operations and the perception of some mathematical
invariants becomes possible. For instance, the child no longer needs concrete material
to break a number down to its factors. This inevitably leads to the perception of these
factors as also being divisors and thus the operation becomes reversible. Knowledge
of the muitiplication table also enables the child to perceive the equivalence of varous
products with respect to a given number without having to depend on their different
configurations. In terms of axiomatizations and generalizations, the commutativity of
multiplication becomes self-evident and somewhat later, so does the dis:ributivity of
multiplication over addition.

Formalization. Interpreting formalization in terms of the symbolic representation of
the learner's previously acquired knowledge, children first learn the usual notation for
mutltiplication and can interpret 4 x 3 as meaning four sets of three objects. They also
can recognize an appropriate additive situation as being multiplicative by expressing
the sum as a product (e.g. 3 +3 + 3 + 3 = 4 x 3 ). On the other hand, when this
arithmetic equation is read from right to left, it expresses a form of procedural
understanding since it symbolizes repeated addition. Interpreting formalizaticn in terms
of axiomatization, the axioms of commutativity and distributivity can be crystallized in
various notations, a simple one beingCIx O =0 xOand A{Qd+O0)=Ax0O+ AxO.
The use of letters might create some difficulties initially.

By way of conclusion.

it should be noted that the three levels of understanding included in the first tier are
linear. Without prior intuitive understanding, the acquisition of concrete procedures
could hardly qualify as understanding. Similarly, one cannot expect the child to
achieve any logico-physical abstraction without being able to reflect on the procedures
used to generate multiplicative situations. Neveretheless, the modei as a whole is not
linear. The aspects of understanding identified in the second tier need not await the
completion of the physical tier. Well before they achieve logico-physical abstraction,
children can start acquiring the various relevant arithmetic f-ocedures by the
quantification of problems introduced in the first tier. The formalization of muttiplication
need not await the completion of logico-mathematical abstraction; the formalization of
the arithmetic procedures will occur much earlier than formalization of the axioms. The
following diagram illustrates this non-linearity:
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Understanding of preliminary physical concepts

Intuitive ‘ Procedural Logico-physical
understanding understanding abstraction

Procedural Logico-mathematical —
Formaliza
understanding l abstraction P Formalization |

\ Understanding of emerging mathematical con@

This wcrk has some interesting pedagogical implications. It suggests an alternative to
the age-oldt tendency of introducing multiplication merely as repeated addition.
Instead, it suggests that prior to the introduction of this arithmetic operation, one might
present children with didac:ical situations in which they could recognize and generate
a great variety of multiplicative problems. Indeed, corresponding to the difterent criteria
used for the different levels of understanding in the first tier, one can develop a broad
sequence of activities. The stress on work at the concrete level should not be
interpreted as an attempt to diminish the importance of the traditional work on explicit
arithmetic procedures. But the prior introduction of multiplicative situations will provide
some motivation and relevance.
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ARE THE VAN HIELE LEVELS APPLICABLE TO TRANSFORMATION GEOMETRY?
Lilian Nasser*
[nstituto de Matematica - Universidade Federal de Rio de Janeiro - Brazil

King's College - University of London

Abstract  To improve the taaching of Geamelry in Brazt], & study 2as boen
Slarted Lo 1nvesligate possible changes. TRis arikile reports a2 attempt lo 20alyse
Schoo! Transformation Geomelry axcording to the vap Hisle levels of thinking.
Vao Hote fo v;nls were established for Translormation reometrp and & pilot study
Was carriad out to check thetr valrdity, as well as the relation betwaen the van

Hiele fevels in traditions! Fudlidaan Geometry and in Transformation reomalry.

The teaching and learning of Geometry in Brazilian secondary schools is
problematic. It has not changed for many years, having a Euclidean approach,

based on axioms, theorems and proofs. Whenever teacher training courses are
offered, the most popular subject is Geometry, suggesting how insecure teachers
feel about it. On the other hand, the students do not like Geometry, since they

cannot grasp its abstraction and the meaning of the demonstrations.

An overview of the most used textbooks in Brazilian secondary schools shows

that:

- the study of Geometry starts with point, line and plane, treated as concepts
that do not admit definitions;

- almost no concrete materials are used,

- the Geometry content is concentrated in the final parts of the two most
advanced books. As the time is often not enough to completely cover the
books, a great part of the geometry is missed.

*This study is part of a Ph D degree at King's College, University of London,
supervised by Professor K Hart.
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A change in the teaching of Geometry is, then, urgent, both in its content and in
the way it is taught. To be effective, this "new" Geometry teaching must be based
on research evidence. But there is a lack of research about the teaching and
learning of Geometry, as pointed out by Bishop (1983). Most of the research
papers on Geometry presented at the last PME meetings have been about the van

Hiele levels of thinking.

The van Hiele Levels of Thinking:

In the late 50's, Pierre van Hiele and his wife Dina van Hiele-Geldof, worried
about their secondary students’ performance in geometry in The Netheriands and
so, dedicated their Ph D studies to this problem. In 1957, P van Hiele presented
his paper: "La pensee de l'enfant et la geometrie” (van Hiele, 1959) at a
Mathematics Education conference in Sevres, France. In this article, van Hiele
established a model of thinking in Geometry based on five levels and on five

phases.

The van Hiele levels are summarized by Hoffer (1981, 1983) as:

Level 0 (Recognition) : students recognize figures by their global appearance,
but they do not explicitly identify their properties;

Level 1 (Analysis) : students analyse properties of figures, but they do not
explicitly interrelate figures or properties;

Level 2 (Ordering) : students relate figures and their properties, but they do not
organize sequences of statements to justify observations,

Level 3 (Deduction) : students develop sequences of statements to deduce oge
statement from another, but they do not recognize the need for rigor;

Level 4 (Rigor) : students understand the importance of precision in

demonstrations and analyse various deductive systems
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To progress from one level to the next, students must experience the following
‘Phases’ : inquiry, direct orientation, explanation, free orientation and integration
(van Hiele, 1959).

The main characteristics of the van Hiele model were summarized by Fuys,

Geddes and Tischier (1938) as follows:

(a) the fevels are sequential;

(b) each level has its own language, set of symbols and network of relations;

(c) what is implicit at one tevel becomes explicit at the next level;

(d) material taught to students above their level is subject to a reduction of level;

(e) progress from one level to the next is more dependent on instructional
experience than on age or maturation; and

(f) one goes through various ‘phases’ in proceeding from one level to the next.

itis L
An attempt to improve the teaching of Geometry was made in Great Britain in the
late 60's, replacing Euclidean geometry by Transformation Geometry in the
secondary school syllabus. According to Kichemann (1981), the reasons for this
change were:
(a) the fact that Euclidean geometry was not appropriate for the majority of the
students; it was taught in a deductive way and learned by rote;
(b) the hope that students would discover general rules about the combination of
transformations, providing insights into mathematicat structure,
(¢) the belief that Transformation Geometry would provide a coherent

embodiment of matrix algebra, giving the students an idea of the unity of

Mathematics.

After more than ten years of school use and influenced by the resuits of the CSMS
project (Hart, 1981), Kichemann (1980) stated: Unfortunately, it has become
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increasingly clear that these aims (of the introduction of Transformation
Geometry) are as inaccessible to many children as was the deductive geometry
that the transformations replaced, and it is doubtful whether their central role in
courses for 11 - 16 year olds can any longer be justified”.

This suggests the need for further research to find out whether Transformation
Geometry can really be a sofution to the challenge of reforming the teaching of
Geometry.

The Present Research:

In this work, levels corresponding to those established by van Hiele for Euclidean
Geometry are suggested for Transformation Geometry. Further, an investigation
was carried out in order to:

(a) check the validity of these levels, {.e, if they form a hierarchy; and

(b) find out if there is a relation between the levels attained in traditional

Geometry and in Transformation Geometry.

The levels considered for Transformation Geometry are:

Basic level : students recognize and identify the transformations (reflection,
rotation, translation and enlargement);

Level 1 . students identify and analyse the properties of the transformations,
as: mirror-line (reflection), centre and angle of turning (rotation),
scale factor of enlargement;

Level 2 :  students recognize combinations and inverses of transformations;

Level 3 ©  students understand the significance of deduction, the converse of a
theorem and the necessary and sufficient conditions;

Level 4 students make formal demonstrations of properties and establish

transformations in different systems.
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According to van Hiele, it is very difficult to achieve level 4 in secondary school.
Actually, Usiskin (1982) stated that “level 4 either does not exist or is not
testable”. For this reason, this investigation concerns only the levels below level
4. A test on Transformation Geometry was devised, to the same pattern as
sickin’s van Hiele test for traditional Geometry i e, sets of multiple-choice
qu=stions, each set corresponding to a van Hiele level  So, five questions were
selected from each set of Usiskin's test (excluding set five), to match with the

five quastions 1 eactt ang of the four ¢ots in the Transformation Geometry test

poorrssponding totevsl: Ease, 1 2 and 3)
&3 palot study, Doth tests ware given to 24 15 - year old British students from

3 comprehensive school. The tests were matked according to the tollowing
criteron: if the student scored thres or morein a set of five, s/lie was considered

as attainng the corresponding level

It can be stated that the Transformation Geometry levels form a hierarchy, since
only two students (§.3%) attained a higher level without attaining a lower one
(both of them attained level 2 and not level 1). These two students were
excluded from the sample, as well as another student whose response showed the

same type of discrepancy in the traditional Geometry test.

Fot the zample of 21 students) the relation betwaen the lavels obtained 1< showr
1 Table | Tabile & howes the numbar of students that attained different tevels

1 the tevts

There poa cotperpondence botween the van Hiele levels in traditional Geomety v
and Transtormnation Geometey, o shoewn by tis small sample Howewer 1t 12 nat

Anostrony At ore mioht hopes A1 the chitldren in the sample have learned the
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Geometry mainly through transformations. It is interesting to observe that
Mayberry (1983) and Gutierrez & Jaime (1987) have found no correlation

between children’s van Hiele levels on different geometric concepts such as

tnangles, quadrilaterals, angles, etc.

[yl Hoof students Level in Leve]l in
By O Transformation | Traditional | No «f
1 9 Geometry Geomelry | students
o 2 3 2 !
g 1 3 I 2
{ 3 1 E)
1 2 1
Table 1 Zame levelin
botly teects (57 1) Table 2: Dufferent levels

The analveis of the traditional Geometry test (adapted from Usiskin) showsd that,
whett the questeon at the Basie Level required that a square be recognizid o
rectanale, all the satnple failed  When a similar question was asked at Lawel 2
ontr thres stedents out of the six who otherwise attained this leve] sucowed.-2
O the othier hand, i the Transformation Geometry test only one student cowrmad
b i the meeatang of “congrusnt triangles™ In question 2.5, 13 studerits have
bcked the st and the third options, showang the knowledge of the propatti- of
franslations . Nevertheleen they did not tick the option that mentioned conarent
triang e

ce Tek wineh are troe for a translation
(1 The ttnacs of o flag 15 & 132 of the same lenath
() The tnage of a horizontal flag 1s a vertical flap

E) The ttirges of o horizontal floy 12 @ hotizontal o
U3 The e of a trannlbs 15 a oonpruent triansls

() Hetee of theseas ue

Py, b 0 f

S Trastormateon ceoneetry Toeot
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From these observations, it can be seen that there is a gap in the knowiedge of
some concepts and properties of shapes. One possible reason for this could be the
fact that these children had a Transformation Geometry approach, with no

emphasis on Euclidean Geometry. But this is a point that requires further
research.

The fact that the majority of those shown in Table 2 attained a higher level in
Transformation Geometry can be explained by their greater familiarity with the
terms and pictures in this, rather than with those in traditional Geometry.

The pilot study has demonstrated that it is possible to categorize transformation
geometric concepts according to van Hiele levels and that these levels appear to
be hierarchical.

The continuation of the research will be concerned with the most effective ways

of teaching Geometry in the classroom.
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Intuitive and Formal learning of Ratio Concepts
Pearla Nesher & Michal Sukenik
The University of Haifla

The effect of the formal presentation of blue and yellow color

mixtures as rational numbers on students’ ability to solve ratio

problems of comparing these mixtures was examined. Children in

grades 7, 8, and 9 were first given comparison of mixtures

problems with an opportunity to watch the actual outcome and

check their predictions (Task 1). They were then asked to solve

similar problems, after being introduced to the representation of

the mixtures as rational numbers (Task 2), and finally tested

about their ability to reach a general solution to problems of the

same nature (Task 3). Overall results’ analysis showed that a

substantial number of students had benefited from both tasks 1

and 2, but the actual contribution of each one of them still

remains to be tested.
The concepts of ratio and proportion and their development and acquisition in children of different
ages have been the target of many research studics. (See Tourniaire and Pulos, 1985 for a partial
review of the literaturc). Most of these studices have manipulated one or more of the following
variables: The context of the problem (e.g. balance beam, fish and food sugar and waler, ete.), the
numerical values appearing in the problems,(¢.g. presence of an integer ratio, prescnce of 1, ete.), and
the kind of task (comparison or missing value problems). The procedure was usually consisted of
administering a test of ratio problems, (given with or without illustrations, presented either in
written or oral form), and analyzing the subjects’ responses in terms of the strategics used to answer
these problems. The results of most of these studices have revealed that a substantial number of
sccondary school students did not usc proportion successfully to solve even simple ratio tasks. One of
the dominant erroncous steategics used by children of alf ages is the additive strategy, that is,
viewing the relationship within the ratios as the difference between terms, instead of realizing that it
is a multiplicative one (c.g. Karplus ct al., 1974; Hart,1978; Quintero, 1987).

The tmain focus of the present rescarch was not on the way children solve problems involving,

ratios, but on the tension between the intuitive judpement as demonstrated in the experimentation of

RFST COPY AVAILABLE



34

somcthing that calls for ratio and its formal representation in the form of a/b. We were interested in
the question whether children perccive those problems as oncs involving ratios al all. If not, then we
were interested in the clfect of concrele expericncing with the problems, accompanicd by, and
explicitly relating (o formal preseatation of ratios. Would this expericnce make the childrea realize
the need for using correct strategics, and improve their performance on those problems.

This study differs from previous ones in scveral aspects: (1) The ratios used were intensive
quantitics (mixtures of blue and yellow colors that result in a green color shade), which could be
objectively perecived and judged by the studeats, thus coabling them o make conerete comparisons
between pairs of ratios. (2) The exact numerical values of the ratios were not controlled, however
they were obtained so as to inducc either a multiplicative or an additive strategy. (3) In order to see
if the intensive quantitics were perceived by the children as ratios, Ss were asked while solving the
problems, (o write down the quantitics they dealt with. We were interested to find out how many of
the Ss will spontancously use the ratio formal notation. (4) Subjects were getting immediate feedback
to their responscs, by confronting their judgments with actual results, thus giving them the
opportunity to chauge strategics accordingly. (5) After concrete and iatuitive expericncing with the
intensive quantitics, their formal representation was presented to the students prior Lo their
judgement. This was done in order to examine the effect of the formal representation on their
strategies. The subjects’ ability to generalize their learning, in terms of comparing any pair of
intcnsive quantitics, as a result of the formal representation, was also tested. The major hypothesis

was that formal representation enhances the understanding of ratio and propartion conceplts.

Method
64} subjects participated in the experiment, 20 of cach grade 7, 8, and 9 sclected randomly from i
junior high school in Haifa. They were all individually interviewed for a period of about thirty
minutes cach, The subjects were told they are going to take part in an experiment which deals with
children’s knowledpe about mixing, colors, Each sesston consisted of three main tasks: (1) Ss had o

compare and predict the resutting shade of two mixtures of different paint quantitics in terms of

36
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samc or different color-shade, and then observe the result, (2) Ss were introduced to the formal
presentation of the paint quantitics as rational numbcers (ratios), and then had to compare and predict
as in task onc. (3) Ss were given a short written test involving gencralizations about mixing colors.

Following is a detailed description of each task:

Task 1: Intuitive Judgement

The experimenter presented two containers filled with blue and yellow colored water, and pourced
with a pipctte a specificd number of blue drops (B1) into a cup (cup 1). The subject was lirst asked
to predict the shade of color if a specificd number of yellow drops (Y1) was added to the same cup.
After observing the results, another empty cup (cup 2) was introduced. The subject was told that a
specificd number of blue drops (B2) and of yellow drops (Y2) would be added into  '» 2 and was
asked to judge whether the color of both cups {cup 1 and cup 2) would be the same or different, He
was also asked to explain his answer. The experimenter then made the mixture of cup 2, and let the
student watch the result, and judge whether his prediction was realized. The color obtained in all
mixtures was demonstrated by dipping a cotton swab into the mixture, so that the judgement of the
color in each cup would not be influcnced or biased by the totsl amount of liquid in it, and so that
the difference or samencss of color in both cups could be clearly seen. If the subject’s judgement,
after watching the results, about the actual colors obtained, did not coincide with his former
prediction, he was asked to try to explain the discrepancy. All the above procedure was repeated
seven times with varying valucs for B1, Y1, B2, and Y2. Thesc values were selected so as to induce
cither a multiplicative or additive judgement strategy. For example, the pair B1=7 Y1=2 (incup 1),
and B2=14 Y2=4 (in cup 2) was assumed to induce a multiplicative strategy, while, on the other hand,
the pair BI=7 Y1:2, and B2+17 Y2+ 12, would call for an additive strategy. In addition, the quantitics
were checked experimentally to make sure that the comparison between the two mixtures’ shades
would not be ambiguous. (See appendix A for the exact quantitics). All subjects received the same
quantitics in the same order, except for the first two pairs of mixtures, in which the order was

interchanged between subjects. The proceduore of the last pair did not include the actual mixing, and
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the subjects had only to predict the outcome. Before cach prediction of the outcome was given, and

the pair of mixtures was made, the subject was encouraged to write down the quantitics specificd by

the experimenter, in any way he wishes to do so, for future comparisons of tryouts.

Task 2: Formal Representation

Aflter predicting and observing the results of seven pairs of color mixturces, the subject was
introduced to a way of representing the specificd quantitices in the form of rational numbers (or
ratios), i.c. BI/Y1in cup 1 and B2/Y2 in cup 2. The valucs of B, Y1, B2 and Y2 were obtained as
deseribed in task 1 (Sce appendix A for the exact quantitics). He was then asked to judge whether
the color-shade of both mixtures would be the same or different and to justily his judgement by
supplying rcasons, All children were given the same quantitics in the same order. In some cases the
experimenter made the actual mixing, but usually this task did not involve observing the outcome.

Each student had to make three to five judgments , depending on his initial responses.

Task 3: Generalization

A short wrilten test was administered at the end of the session consisted of five items. The subject
was first presented with a given miature of 2 yellow drops to 3 blue drops presented as 2/3, and
was asked to suggest the number of yeliow and blue drops needed in order to get a mixture with
lighter color than the reference, and a mixture with the same color but in larger quantitics. Anothes
question asked for the number of yellow drops needed to get the same color (2/3) if 12 blue drops
were used. Finally, the student had to suggest a general rule that would specily the conditions for
obtaining diffcrent mixtures that have the same color. The last item asked whether the whole

experiment reminded the subject of anything related to mathematics.
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Results and Discussion

The Ss’ performance in each oi the three tasks described above, was analyzed, considering mainly
the strategies used to answer cach of the mixturc problems, rather than the corrsctness per sc. After
analyzing these stratcgics, onc of the following scorcs was given: In task 1 (Expericnee), a plus (+)
indicated the usc of correct strategics on all problems, a minus-plus (- +) was given to those who
during the conercte experiencing used both correct and incorrect strategics, and a minus (-)
indicated the use of incorrect stratcgics on all problems. In tasks 2 and 3 (Formalism and
Generalization), which included less steps, only two scores weie given, cither a plus (+), when the
formalism was rcalized and used correctly by the subject, or a minus (-), when tlas was not the case.

According to these scores, 12 patterns of performance were possible, as described in table 1

Table 1: Possible patterns of replies:

Task 1 Task 2 Task 3
Concrete Activiuy Formalism Generalization

1) + +
2) 4 + -
3) + ¢
4) + -
5) - +
6) -4 -
73 -+ - +
8) -+ - -
9) + :
10) +

11) - +
129 - -

The aumber of children extubiting cach of the above patterns would suggest the answer to the main
question raised in this studv. Children falling in the patterns (1) and (12) were not affected by the
experiment. Children falling in category (9) improved their performance as manifested by correct
generalizations, due to the formal presentation. Pattern (8) includes ehildren who had improved in the

middle of the concrete expenmentation, supparted by the Tormal tasks. We should emphasize that the

o
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concrele experimentation had also a formal touch. While working on the mixing colors task, the
children wrote down the numbers involved with each mixture which probably increased their tendency
1o reason about the numbers. Ss’ performance on patterns (4), and (8) show decrease in the children’s
performance duc to the formal representation and will contradict the major hypothesis of this study.
Patterns (2) and (6) show no achicvement on the more genceral level. All other patterns would indicate
inconsistent and unrcasonable performance, and would require special attention. Each subject was
assigned onc of the above patterns, according to his overall performance. Table 2 presents a summary
of the number of subjects of each age level, manifesting the various patterns (The empty patterns

were omitted):

Tuble 2: Distribution of Ss among the patterns:

Pattern Grade 7 Crade 8§ Grade 9 Total

1) + ot 4 2 5 7 14
5) R 10 6 10 26
8) -+ - - 2 2 0 4
9) ) 0 2 3 5
11) - -4 0 2 0 ?
12) - - - 6 3 0 9
20 20 20 60

To summarize these results even further, it can be seen that patterns 1 and 12 which are irrelevant
tor the present analysis, include 23 children distributed as expected among the age groups and
demonstiating a developmental trend of learning. As for patterns that support the hypothesis about
the contribution of the formal component, pattern (9) consists of only 5 Ss while pattern (5) which
consists of some learning at the concrete experimentation as well as in the formal task includes 26
Ss. Four ¢hildren in pattern (8) indicate a situation in which their performance was hindered by the
formal activity, We cannot cxplain Pattern 11 (2 Ss). In the limitation of the present study we could
not cxamine the peneralization achieved without being exposed to the formal learning (task 2). This
temained to be studied next,

A questian rared by our experiment s, how can children know that the misture of colors s g
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specific application of satio and proportion? As noted in previous studics many of the children started

with qualitative reasoning about colors and with additive strategy. It was interesting to note that

since the children received immediate feedback they could revise their prior hypotheses, as in the
following protocol: "It looks as though only if the ratio is in multiplication, then the colors are the
samc. That is, if it's twice between the bluc and the bluc, and the yellow to the yellow is also twice,
then the colors will be the same, but if it is in addition - then it is not” (as he thought before).

The struggle between the intuitions about colors and the relevant formal model, caused in many cases
some (ension as evideaced {rom the followiag protocol. In this case the student was not convinced by
the formalism. She was givea in task 2 both mixtures (a) and (b) in their formal representation:
a=1/4,b=3/12, and when asked to decide if their color shades were the same or different, she replicd:
" B will be darker. (Why?) Oh, no. It will be the same color. Because 3/12 equals a quarter if we
reduce (ractions”. The examincr then makes the actual mixtures and the student says: “They look the
same. On second thought, it’s not so related, the reducing of the fractions and the drops mixture™
(Why?) "Because here (with the drops) you don't ask to reduce, you simply say there are 3 bluc and

12 yellow, and if you will reduce you won't put 1 drop of blue and 3 of yellow. So the reason is

wrong, but the result is right.”

This experiment has demonstrated to some extent the effect of the formal representation of ratio
in an intuitive based experiment. 1t should be noted, however, that the present experiment did not
cenable to control separately and independently the impact of the two variables -- concrete activity
and formal presentation. Therefore it is difficuit to infer about the unique influence of cach onc of

these variables on the final performance.

1S
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Appendix A:

The Quantities of Blue and Yellow Drops Used in Tasks 1 and 2

Bl Y1 B2 Y2
1) 1 3 7 9
2) 1 3 6 18
3) 7 2 17 12
4) 7 2 14 4
5) 2 8 4 16
6) 2 8 10 16
7) 2 5 3 7
8) 1 4 3 12
9) 1 4 4 7
10) 2 5 6 15
11) 2 5 5 8
12) 2 4 3 6

Bl = Number of bluec drops in cup 1.
Y1 = Numbecr of yellow drops in cup 1.
B2 = Number of blue drops ii1 cup 2.
Y2 = Number of yellow drops in cup 2.
Steps 1-7 were administered in task 1.
Steps 8-12 were administered in task 2.
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EARLY CONCEPTIONS OF SUBTRACTION
Dagmar Neuman
The University of Gothenburg, Department of Education
Abstract

In a phenomenographic study 105 Swedish school starters vere interviewved in
order to map out, among other conceptions, the conceptions of how to grasp
the number in the unknown part in subtraction tasks vithin the number range
1-10. The children wvere given some easy word problems immedately after
school start, before any teaching in addition and subtraction yet had
started and vere observed when they solved the problems, and interviewved
about the ways in which they had done this. It was possible to categorize
even very early conceptions. These are the ones that will be in focus in
this presentation.
BACKGRQUND

Phenomenographic investigations aim at mapping out existing
conceptions of different phenomena in the world around us (Marton, 1988). In
a phenomenographic study (Neuman, 1987) 105 7-year-old Swedish school
starters wvere intervieved in order to find out about their different
conceptions of numbers and of how they get hold of the number asked for in
verbally given problems. One of several intentions with the study was to
find out if there might be some logic in unusual ansvers to simple addition
and subtraction tasks which had been observed among children in special
education lessons in the first grades. The part of the study which concerned
early conceptions ot subtraction ending up in those answers will be
in focus in this presentation.
METHOD

82 of the 105 school starters whn were interviewved were all of
the pupils from four classes, while 73 wvere chosen from five nther clacses,
13 of these 23 pupils vere interviewed because they seemed to have very
rudamental assumptions of how to get hold of the number asked for in
quantitative problems, according to a preliminaty test given to all childien
before the interviews vere carried out. Nearly as many of the pupils in the
four classes where all vere intervieved scemed to have as little
understanding of counting as these 13 children,

one of the interviev questions vas a game, whote the child vas asked

to put up as many buttons as a tigure 9 wvritten on a card. All the
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pupils vere able to do that. The interviewer then hid the 9 bLuttons in two
boxes, and asked the child to guess how many of them were hidden in each
box. The pupils were allowed to make five guesses.

Beside the guessing game two addition tasks and four subtraction tasks
vere given. Only two of the latter were given to all pupils. Of these the
first vas a missing addend task and the second a take awvay task:

Q 1. If you have 3 kronor and you want to buy a comic for 7 kronor,

have you got enough money? - (No!) - How many mare kronor do you need?

Q 2. If you have 10 kronor in your purse and lose 7 of them, how many

have you got left?

These two tasks together with the guessing game were the ones that best
elucidated the early ccnceptions of subtraction.

In a phenomenographic study you first separate the answers from the
individuals who answered, categorizing the answers per se according to some
characteristic, After that you again relate them to the individuals looking
for if a group of individuals giving a specific answer to one question gave
an answver illustrating the same kind of thinking to some of the other
questions, The findings in these two analyses are after that interpreted and
the conceptions they are thought to be expressions of are "labelled" and
described.

In the present study a quantitative evaluation was also carried out in
order to have some idea of the background knowledge existing among children
expressing different conceptions. In this study the following kinds of task
were given: "How far can you count?"; "Can you add one to eight (subtract
one from seven)?"; "Can you count backwards from 10 to 17"; "How many
fingers do you have altogether on your two hands?". Beside that the pupils
vere given some Piaget inspired problems, e g to put up as many bricks as
the 17 which were placed in a row on the table, to answver the question if
these bricks were more or less or as many as before when the interviewer Ly
chance had pushed the bricks in one vow 5o they were spread out, and to
seriate 15 sticks of different lengths. One or more points vere given to

each of the tasks (e g two if the pupils could count to 30, 1 if they could
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count to 25, and none {f they could not even do that). Beside that one point
vas given for any correct ansver to the eleven analysed tasks (the guessing
game and the six questions). Together it was possible to obtain 26 points in
this evaluation. The median for the children i{n the four classes vhere all
pupils vere intervieved was 21.5.

FINDINGS

Five different conceptions, one of them expressed through two
different strategies, vere mapped out. The two earliest conceptions of how
to find an answver to a quantitative problem could rarely be viewed as
realated to conceptions of addition, subtraction or even oi nuamber.

Howvever, the third conception observed seemed to be a conception of early
ordinal, and the fourth one of early cardinal kind. In the fifth conception
the early ordinal and cardinal qualities of number finally had become
integrated. The five conceptions will be described below.

1. Movements. The most unusual ansvers to the guessing game were that
there vere 9+11, 11413, 13418, 10411 etc buttons in the two boxes. 11 such
ansvers vere given altogether by 6 pupils. These answers were nbserved only
in the guessing game. One of the children who guessed so three times had no
points in the quantitative study, and the other two vho guessed so more than
once had 7 and 9 points respectively. These two children also expressed some
other early conceptions.

The concrete counting wvhich was carried out when the buttons were
placed on the card by these children, at least by the one vho had O p in the
quantitative evaluation, seemed to have been carried out as a script where
the counting words rather were related to the movements in a movement game
than to the buttons placed on the card. In the guesses she just seemed to
choose a couple of number words by chance. This conception only seemed to be
a conception of "how to behave" in the way the adult expects when the
question "How many" occurs.

2. Fair shares. Another kind of odd guesses were that there "had to be
the half" or "the same" in each box as two of the children explained it. 16
pupils gave altogether 35 ansvers of this kind. In the guessing game they
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guessed e g "6+6, 9+9, 2+2 or even 1+1, and to q 2 three of them ansvered

"7*, (Only one of the 89 children who did not express this conception in the

guessing game gave this answer to q 2.) These answers seemed to reflect an
experience of "fair sharing" and the belief that the unknown part must be
one of the equal parts. In this conception the counting words seemed to have
been related to the objects counted. The counting words used were within the
number range 1-9. However, the parts vere not yet related to the whole. This
is easy to understand if it reflects an experience of fair sharing. The
wvhole is rarely counted before a fair sharing is carried out (cf Miller,
1984). This conception cannot be viewed as related to a conception of number
since no part-whole relations seem to exist.

The median in the quantitative study for the 8 pupils who expressed
this conception twice or more was 8.

3. Names. In the third conception mapped out the guesses wvere of the

kind "349, 549, 749 or 149". 67 answers of this kind were given by 32

children. The answer to q 1 was "7" (given by 12 children in this group but
only by 2 of the other 73 children) and the answer to q 2 "0" or "1" (given
by 3 children in this group but only by one of the other children). The
median in the quantitative evaluation for the 14 children who had answerd in
this way at least tvice was 7. The children who had given such answers might
in some situation, e g in a "fair sharing", have been aware of partly that
each object got its own numerical "name" in the sharing procedure, partly
that the further in the sequence the number name of the last distiibuted
object is situated, the larger the number of sweets, marbles etc, delivered.
The counting word sequence seemed to have become a kind of "felt" o
imagined "measuring tape" (cf "the mental number line" described by Resnick,
1983). The children seemed to describe the figure on their imagined
"measuring tape" to which the buttons in the boxes teached, if each button
vould be related to one of its numerals. The buttons in the last box then
alvays must end vith the button rtelated to the numeral "9". This "limit

name" was used to communicate the number of the last part as well as of the

vhole. Here the parts seemed to constitute the whole. In take avay tasks, i
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e in q 2, and sometimes in guesses (where the children either could think
of the buttons in the last box as taken away from the vhole or as a missing

addend added to the first part) the pupils further seemed to express the

conception that take avay tasks should be thought of backwards (cf Carpenter
and Mosers, 1982, findings pointing to that small children use different
strategies for problems they experience as additive and subtractive
respectively). Thus they seemed to set out from ten and to think backwaids
down to "7" on their imagined "measuring tape® and after that to think also
of the last part backwards to the last limit name, stating that there wvere
"O" or "1" left if seven were dropped.

Hovever, there was also another strategy related to this conception, a
strategy vhere the inner limit names were used to describe the size of the
parts. The children using this strategy guessed e g "2+3, 7+8, 3+4 or 1+2.
Four of them answered "6" to q 2. (Only three children outside this group
gave that answer to q 2.) 24 children have used this strategy 44 times. The
median in the group ansvering in this vay at least twice (n=14) was 15, thus

much higher than the median for the group of children who used the earlier

strategy related to the conception "Names". Also the children who used this
latter strategy seemed to point to figurs on their "minds measuring tape”.
And they seemed to experience take avay as something which should be carried
out through thinking backwards, exactly as the children answering "0" or "1*
to q 2 had done. It was possible to interpret these strategies e g from the
vay in which a couple of pupils enumerated the “names" of the coins in the
"left part" in q ?: “"Seven dropped ... then there are six, five, four,
three, two, one ... six left". The coins "named" "10, 9, 8, 7", thus the
coins down to and including "7 on the "measuring tape", seemed to be the
"dropped" ones. One child used this strategy in a very eluridating wvay in a
folloving up task vhere five buttons vere hidden in the two boxes. First he
guecssed that there vere thiee in one box and twe in the other, explaining
that he knev hecause, a< he said, "it can’t be four", When the interviever

pointed out that she of course might have hidden four in that box, and ashked
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how many it then could be in the other, he ansvered: "Well, then there’s

three", explaining further: "I knew ... you just take awvay one" (fig 1).

—
@@ @ “"Three and two"
310)] @ "Four and three" Fig 1.

If the button named "four" would be the last one thought to be in the
second box, where the buttons were taken awvay from the whole, and thought of
backwards, then the "3-button” must have been "taken away" from this box and
moved to the first one, where it then would have become the last button
thought of forwards. Thus there had to be three in this box (fig 1).

In these two strategies the children seemed to use an early ordinal
conception of the counting words only: the limit names, which described
vhere parts and vhole ended, thought of either forvards or backwards. They
seemed to measure the number, not to count the units.

4, Extensjons. In the next kind of ansvers on the other hand, an early
cardinal conception solely seemed to be used and the counting words seemed
to mean "a little", "much/many" or "something inbetween". One child e g
ansvered q 2 by saying: "Then I've got four left .. or two .. four or two
... you can’t be sure ..". Vhen the interviewer asked if there couldn’t be
eight left the child ansvered: "Eight left!? ... if you lost that much, it
can’t possibly be that much!™ "A little +« “rather much" could be "much", but
not "much" + "rather much". However, if all the words "two, three and four™
means just "a little", "you can’t be sure" of which one you should use. The
extension covered by a number of units on the "measuring tape" seemed to be
what the children expressing this conception had in mind when they estimated
the unknown part, while the separate units vithin this extension did not
seom to be of any interest.

60 ehildten gave topether 109 answers ot this kind, 13 of theqe
children gave the answer "3 o1 4 or 5" (or only one of the counting word:,

"2Y or "4") to q 1. Only one child vutside this group gave this answer. /[ of
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them gave the answer "2 or 3 ot 4" (ov only one of the counting vords "2" or
“4")) to q 2. Only 2 other children answvered so.
The median for the children answering twice in this way was 16.

5. Finger numbers and Counted numbers. First in the last of the early

conceptions the children seemed to divide up the extension into units,
representing them by one finger each or with one counting word each only,
counting e g "1,2 ... 3,4,5,6,7,8,9 ... 7 or 8 missing .." (q 1). Here the
early ordinal and the early cardinal aspects of numbers had become
integrated. Yet, the children still had to estimate the number in the part
which wvas thought to be added or subtracted it it wvas larger than three.
However, now it was the number of units which wvas estimated, not an
"extension" only. When the conception "Extension™ was expressed no fingers
were used and no countingwords wvere enumerated.

Even when "Finger numbers and "Counted numbers" were used it was
possible to observe how the strategies used in q 1 and q 2 vere the same as
the ones used in the guessing game and the other guestions. 23 children
expressed altogether 3B times the conception that the numbers should be
"Finger numbers" ot "Counted numbers", but had not yet developed strategies
allowing them to find the correct number in the added or subtracted part if
it was larger than 3. The median among the childten expressing the
conception more than once (n-9) wvas 18.

DISCUSSION

One after the other the different aspects of numbers seemed to be
separated from the whole for closer investigation, and after that integrared
again, changing the gquality of the vonception and making it more and more
functional. In the quantitative evaluation it was possible to sece how the
median became higher in the proups of childien expressing more develaperd
conceptions or the more developed ctiratepy within the conception "Names".

The children qeemed 1o exprecs one of these conceptions in many
ancwers, even if they mipght "fall back™ to earlicr conceptions in difticult
Situations. This to illuctrated by the wvaye in which the ansvers to g 1 oand

q 7 were rtelated to the goecsen and the ather questions i the ionterview,
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The conceptions following these earlier ones in the map of conceptions

created through the analyses, vevealed the ways in which these early
conceptions gradually changed into more functional ones. The fingers used in
a way where the numbers became simultaneously ordinal and cardinal "Finger
numbers" seemed to play the most important role in this developmental
process. Used for "keeping track", hovever, the fingers seemed to obstruct
the wvay towards abstract avithmetic thinking.

The children who used their fingers in the first way did not divide up
the first hand if one of the parts was five or bigger. Thus they could solve
a "missing addend™ of the kind 2+ =9 by taking away the two last fingers,
and a take avay task of the kind 9-7=_ by folding the seven first cnes. The
strategy “"Choice" (Resnick, 1983) seemed to be concretely created in this
way.

If the two parts were less than five the thumb - or the thumb and the

forefinger of the first hand - was moved over to the second hand. In this

wvay a "Transformation" strategy (Neuman, 1987) changing the parts within the
wvhole (e g 5+2 to 4+3) was concretely created.

The conception that "finger numbers” could be used in these ways in
order to grasp the unknown part in subtraction tasks, was the most
frequently expressed conception in the study. Gradually these ten "finger
numbers" with their strategies became visualized, or just "felt"™ - "body-
anchored™. In the end they seemed to become thinking strategies related to
abstract numbers. 9 pupils illustrated in different vays how they “thought
wvith tieir hands" and about 174 of the 105 pupil used the strategy
"Transformation" and/or "Choice" as thinking stiategies.
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COMPUTATIONAL ESTIMATION PERFORMANCE ANDY STRATEGIES USED BY
SELECT FIFTH AND EIGHTH GRADE JAPANESE STUDENTS
_Notuhiko NOHDA, J. Ishida, K. Shimizu; University of Tsukuba
Shigeo Yoshikawa, Joetsu University of Education
Robert E. Reys, Barbara J. Reys; University of Missouri-Columbia
(Abstract)

Identification and characterization of the computational estimation skills
and strategies possessed by Japanese students were primary purposes of this
project. Second purpose was to contribute further to the successful developament
of @ general framework charactering the thinking processes of student's
computational estimation. More specifically, this research was designed to
identify and describe computational estimation processes used by the best
astimators in grade © and 8, and tc characterize their thinking strategies and
tachniques. Twclve different Japanesc schools (7 elementary and 5 junior high)
and a total of 273 fifth graders and 187 eighth graders participated in this
rasearch.

The mathematics currizulum plaen released by the Japanse Ministry cf
Education identifies estimaticn a3 a topic that should be gpecifically taught
within schosl wathematics programs (Course of Study, Arithmetic, 1689). Ths
report issued by the Japanese Ministry of Education ic certain Lo promote change
o new mathomatics tedtbooks written for Jdopanese students. Thus some progress
foobalng made to fonus cunrcicular and instructional attention towanrd
computational ectimation.

conputsticnal estioation b pot recelved ouch attention an Japanese oboe?

sothematics corciculum bat vt has boen dnocluded i come of national as-essmonto.

Yoroecample, the pecotion poportedd bn Table Dowas ancluded vnoe Jupuness
b ol o aend et (Y o mend v Moo e T T
soninsment W e b ebtian thie Mendoolntion™ (oo, ot hod ) el by Sty

ctudents Lo arvive ot theie answor in obhition to the anwer jvaedf,
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Table 1

Japanese Nalional Assesswent ¢ 5-B-7 Itom on Estimation of Arithmetic

There is a nuaber which was rounded to an integer after the calculation of
304 X 18.73.

Do rough calculation to find a correct answer, and choose a correct one

from following items; 1. 570 2. 5697 3. 56967 4. 569673

And write how to do rough calculation:

Although 62 percent of students chose the correct answer, only 19 percent
actually estimated. The majority reported calcultating the exact answer than
matching it tc the closest cortesponding foil. Although the students were “vory
good at solving straight computation problems”, this assessment reported that
they were “rather poor at doing estimation protlems”.

Previous research has provided the beginning for a theory about how good
estimators in grades 7 through 12 as well as adults actually make estimates
(Reys, Bastgen, Rybolt and Wyatt, 1981). Three global cognitive preces:es
identified among these good estimators (Reys, et al, 1380) These processes are
translation (changing the equation or mathematical structure of the problea to a
more mentally manageable form); reformulation (changing the numerical duta inte
3 more mentally manageable foram); and compensation (adjustments made in the
intial or intermediate estimate to exact answer).

Purpose
Tdentification and characterizaticn of the computational astimaticn skills

d nteateglen possessed by Japanese students wore primnvy purposes of fhie

project. Second purpose was Lo contribute further toward the development .- g
scneral framework charactering the thinbine procosses suncessfully une bty
student s dotng computational estimation. More cpecifionlly, thio ronoaret o

doniened Lo ntlenti Ty g daseribe comput ¢ fonal estimation proconses ueed by e

Lost estimators io peade 5 and 8, and to charastorize the thinking strineas
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atd techniquesz e studonts used when et bmating.
Sample

Twolve different Japanese ohools {7 olementary and & Junioe bigh) and a

total of 279 fifth geaders and 187 cighth grader: participoated in this vescarch,

Tuo school:s ware salected to ropresent a runge of school and economia

~F
~.

backgrounde, Sight of the sohools wore nglected within Touhaba, o eity
approsimutely 136,800 popuration 120ited about 60 ka from Tokye. In order to
rnsere o obroader veprescentation o schooles, tour paval schooly outside of

within 80 b to Toukieka wara alss iy’ ade Gna Fifth and elghth cende 2lass in

woch schosl wun selectas by tho prinmpal to be tected. The

from 33 to U7 students in bLoth the £ifth and eighth grade ola:

all classes weore heterceanesus)y groupct oo o the traditsonal custom in

The Screening T

The 37 open-ended item soresning test usad in this rascarch cortained 2%

jters from the ACE (Acses

./:

cing Computational Estimation ) test (Ruoye,

&

fylolt and Waty, !'3481), Same iters from the ACE were modificd siightly to aske
thim appropriste Jor Jopanrsace atudonts and raveral other 1taes were adoed whi~e
the researchers thought might be particcelarly interesting, such as the 12712 -

T8 Hlems Crom tha Thivd Notions] Assesoment of Educutionnl Progre

w23 lter Wl orecducoed on s Ahem o silde with fhe rters shown

camentially nedme = ocorvonncl clrd o proooctors Toin furmint Gl lowend o s
Sminlstration wrd ooy el ted e anount b e s famen (B0 e e b T e
e Wems Theo tont ot ude s D osteadeht cnapntat o 1o Tah e et aynyy -
Cly o namerionl datd and U anr Dreatann Dtoae Dtho e conbaitne nameoen g
stded 1o oo phychoal oont ety DD donyr o b te o tevant te el Dt
T L AT T REPRI A I TR R TR S L S L R
TN R AR B o It ot Coy v N [
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st of anstructions for tho sereening test wera used in each

Papy

52hool by the test sdminiutratorn.

Students waere told that (his wis an estimaticn

test. Since there iz not a direct Japanese translation for a2stimate, the term
"rough calculation"” was used in the directions. They were told that each

pechlen would ba timed, and that they would have betwean 10 and 16 seconds to

she and reccrd thair estimate. The students wera also told “Not to copy the
rprm by

crocbler but to ¢o the work in your haad".

Theointerview

L indiy grviow wis done with 21 (10 fifth and 11 elighth graders) of

i

an effort to learn what strategies and processes cach of

e subjects used in solving differentz estimation problems. Studente were

2

3 > - ” - 12%4 ~ .-
pies and tnought precesses

2y

P

, usually cne class geriad,

g~ estimation problens could be posed. Since the researchers ware

interested i1n learning how consistent students were {n the estimates

coreening test were also used in the interview. A total for 13

wvrtiugtlon problacs, L ostralght computation and 7 applied computation involving

(9}

n probles wvas used with the eighth grade

3

I by o o4 b P b
procey waetd acveloped LS

Levide conyistonsy arnuny thae Tour Japanese interviewers as well us to fosun
e carefolly onospeilio chareoteristic hypcthesized Lo Lo Comuon @tong gond
tonstorT. A Lummiary pacweet which highlignted these strategies and processer
Shostudantn might uve, wan oprepared foroeach interdiew praotlen. Tralning
Lens o wane Reld o amane Uho o Japanes.e o ponrr dulng Ues untorvie s
SR A S T S O S I S S N NN V0 B S R L AR EANEL P AL P S AR SRR VLot anteny Lew
Do ot to T CE I I A A
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reenttd Toot
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done reupectively. A5 the results, the scoras were widely cistributed, ranging
from O to 24 fov [ifth and 0 to 26 for eighth grage, with T.4L und 11,16 being
the mean number of acceptable estimates on the screening test for £ifth ana
elghth grades respectively

At the conclusion of the screening test, all students wire asked “Are you a
good éstxmator?“ and thoir responses suggast an Interesting paradon. Tadble U
reports that whereas about three-fourths ¢f stucents at each grade level said
nastimation is important, only g few of thea (12 percent of {1fth anc & percent
of tho elghth) rated tnemselves ac a good estimateor. It L1s alc
about twe-thirgds of the students said they were not & good estimalos, ant th
self assessment parallels very closely the generally low porformance on the

computational estimation test.

-
Table 2
‘. 3 - o + . Vet Ch o~ e
Japanese Students Self Assessaant on twc Estimaticn Statenonte
qt temant S, 8§ s Q
i Slatenant vt b TN
i
N . - o ™. N N DR - s -~ -
bhuzver o7 ¥ b, Tl Numter UM 3 Lot
\ R LR ~ 17 ~ (OB L]
AT@ you 3 good estlizater 18 S o ¥ & o5
o} « ~ 7 v ~ &
Yes 180 a4 024 R P
y ~ J— ~ L e ; - - ~.
[Rfe] 7.3 gLlon £€2.8 4 A 2 £ RN .
> -~ ¢ ~N oy ¢ ’
Not Sure L7 28,2 ° f L 4
‘ . s by ety - o~ o
| To you think estinnt {o important?
|
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|
!
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interviow. Althourh there was consideratle variability omory; students within
each of the participating schools there was at least one student in each schosl
who scored high enough to be interviewsd.

An examination of the screening tests for the good estimators showed that 2
of the fifth graders and 4 of the eighth graders made an acceptable estimate on
the screening test, whereas Table 7 shows that nearly all of them answered it
correctly during the interview. Although a majority of the students a% each
grade level recognized “12/13" and “7/8" as being close to one, this observation
was not always immediate. For example, one fifth grade student first found a
common denominatotr of 108 and then after one minute observed that each fracticn
“was near cre". On the other hand another fifth grader responded in two second
that the sum was about two. She said, *12/13 is only 1/3 smailer than one an

7/8 is coly 1/€ smaller than 3, =o their sum is almost 2.

Suneary of Strategies Used on Exercise Involving
Estimating the Sum of Two Fractions

Feercine 10/134 7/8 Frequency
Stratecies Gr. 5 Cr. 8
- Racorgnition that each fraction is near cne,

COOSUM 1T nenr one “ &

< Hesoof Common Denomlnatop

! . 4 ~ . : -

i #oao/ 1e ahant 910, /8 1o abeot 0710, w0 1810 1 o
i

{ (1008 1 Oh/06, TR s 21/84, w0 the sum is aboul

}

{ . - .

i .‘L"/v\llx‘ .\1'/:\‘) o “[‘/“'[.\ 1

|

f fo VS e bt 100, T/E 1 abeat BRANO, s VB J 1
|

‘ ot/ bt 100, I8 b atant (A0, so 1610 & !
[ <o lmpntet vt answer weany @ental alvarithe !

Au oxamination of the strategies bighliphted 1o Table 4 shown o by
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reliance on algorithms. Most of the students at each level tried to perfora a
wiritten algorithm on this problew, and in the process provided some interesting

insights 1nto their thinking. Zome students were successful in using

algorithmic techniques to produce an acceptable estimate. For example, one fifth
grade girl was able to perform the exacl coputation mentally and produce an
“octimate of 124/114" in less than half @ minute. This is another reainder of
the challenge of getting a valid measura of estimation, and it also gives some
indication as to her wbliity to do mental computation verv guickly and
accurately. another rifth grader produced an acceptatle estimate, by reporting
that each fraction is about G/10 and then added them together and reported an
“estimate of 18/1C". However, this siudent gave no indication that he understood
that his estimate cf 18/10 was near 2. Although some studen's wore succaessful
using the addition algorithm wentally, cther were unsuccessful. For exanple, a
fifth grade Loy added numerators and got 19. He then sald “'2 X2:=0C and 3% 8=24,

and the aversge of 26 and 24 is 76, <c oy estimate iz 15/0U".

Discussion

Interviews with tha bighest scoring studentc led to the identificaticon cf
some spesific estimnticn techniguen und strategics. Students at both grnde
levels, but the Fifth graders in paticular, tended to apply learned
slegorithenic computaticnal procedures. Their tendency to use puaper/pencil
procaedures santally often tended to 1nterfere with the estizaticn process and
mude 1t mere o mentsl coemputation tuck. Such procedores were not ocoaly

thappropriate bob fuofriciont ae welly

Ayt s owia el tarde b e b creeneth wrth the Jnpanoe Ll W el
FLOWLOE Y a0 plen vnigo Yeentiggn Fow order-oll moarn s Uebt errorn at
Paarved dnohe dntorovicws when laveve numbioreo (oo valuoo prenter e ten
' ) it V! vt Thre o moy ot | pant ot e A TR o
" 5" LW o ! N | 1 4 b oty ] l; ¢ b Ay
Pt ; ‘ R ‘ o ret R FINE : . . -
peeviades e ottt For warking with e W e el
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Model building is important. Our hope is that research into how students
estimate will lead to a learning model that not only helps describe the
learning process but can provide direction for the development of appropriate
instructional experiences which help all children their computational
estimation skills. We fell that this research contributes further toward the
development of a general framework which describes the estimation processes used
by good estimatcrs. This study has confirmed that despite the tendency of many
students to mentally apply previously learned paper/pencil algorithamic
teckniques, the earlier hypotheseized cognitive processes of translation,
reformation and compensation were evident among Jupanese students. Not aill
students used all the processes all the time. However, we found that each of
students used one or morc of these processes during the interview. Similarly,
not all of the characteristics of good estimators were evident in any one

student, but each was frequently found among the Japanese students interviewed.
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ASSOCIATIONS AMONG HIGH SCHOOL STUDENTS' INTERACTIONS WITH LOGO AND
MATHEMATICAL THINKING

John Olive
University of Georgia

Even though many claims have been made for the potential of Logo there is still a critical need to demonstrate
what, if any, impact students' interaction with Logo has on their mathematical thinking. Three years ago we began
an investigation fo determine such impact. This investigation was based on current models of mathematical
thinking which led to the development of Qualitative measurement strategies for assessing students' interactions
with Logo, their geomelric understanding and related thought processes. It is evident that an integrated review
of results from each qualitative measurement strategy and from measures of mathematical achievement can serve
lo strengthen knowledge of how students construct their understandings. Therefore, this paper explores the
associations among the models and related dala sources.

Design of the Study

A course in Turtle geometry was developed and implemented for ninth grade students in two inner-City high
schools during the 1985-86 academic year. The focus of the course was or informal explorations of topics such
as polygons, circles, and transformations. High school mathematics teachers were trained to implement a Logo
learning environment, based on a guided discovery approach. The Turtle geometry course was taught to one
class each semester (eighteen weeks per dass). Students were enrolled in Algebra |, and were on track to take
geometry in tenth grade. Atone school the students were all black, at the other they were evenly distributed,
black and white. Each dass was held in a lab setting with fourteen microcomputers, and students generally
worked in pairs. Students' interactions with Logo were recorded in dribble files on disk.

This report documents an analysis of the complexity of students' responses, mode of working, and general
problem solving approaches across a sequence of four tasks given to all students in the second semester Logo
classes held in the Spring of 1986 (n=30). The results of this analysis are then compared with individual
students' math grades. A simple method of hypothesis testing has been employed which enables the
investigator to pose and answer guestions concerning refationships among the different measures.

Analyses of Students’ Dribble Files

Data on students' interaction with the Logo environment were collected via dribble files on disk and classroom
observation notes. Students’ dribble files were analyzed for the following four Logo tasks:

1. CHECKPOQINT 2 assessed students’ facility with debugging simple shape procedures. This was basically a
| cn0 prograniming actwity given atter four weeks of work with Logo

2. MIDTERM was a more complicaled debugging task involving the use of super and sub procedures m a
1i3USE design. This task was also focussed on the programming siructure.

2 PARALLELCGHAMS, explorations with a generahzed parallelogram procedure, was focussed on the

oY
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geometric properties of parallelograms, especially dass inclusion of special parallelograms. Students were also
challenged to create a three-dimensional box structure using the paralielogram procedure.

4. RHOMBUS MADNESS, the final exam project, required students 1o creale paris of a flower structure using a
generalized rhombus procedure, and then put the parts together to form the flower. This was both a
programming and geometric challenge for the students.

Teacher instructions and student handouts for the four tasks can be found in the Final Report of the
Atlanta-Emory Logo Project (Olive, Lankenau and Scally, 1988).

The focus of the dribble file analysis was on the structural complexity of a student's response to the Logo tasks
and indications of relational or instrumental understanding of refationships (both Logo and geometric) which may
have emerged from this analysis. The criteria for this complex analysis procedure was based on a synthesis of the
SOLO taxonomy with Skemp's (1379} model of mathematical understanding (Olive, 1985 & 1986).

The SOLO Taxonomy (Biggs & Collis, 1982) was designed primarily as a tool for the evaluation of the quality of
student responses to a task. The Taxonomy consists of five levels: Prestructural, Unistructural, Multistructural,
Refating and Extended Abstract which can describe how a student uses different kinds of Logo objects (primitive
commands, fixed procedures, variable procedures, etc.) with respect to both the Logo task and the internal
structure of the object itself. Tha following general guidelines were used for assigning SOLO levels to students’
Logo responses:

Brestryctural (P): The Logo object is not used appropriately or the student does not use an available object
when it would be appropriate to do so.

Unistryctural (U): The object is used by itself. Immediate feedback is required on the effects of its use before
any other Logo commands are used (inability to withhold closure).

Multistructyral (M): Objects are used in combination with other objects or commands on the same line or within
a procedure (ability to withhold closure), but the objects are not refated correctly (with respect to the task).

Re'ating (R): The objects are related together in order to accomplish the task. The relating operations
{retationships) are dependent on the nature of the task and the structure of the objects. The Logo objects are
used as building blocks.

Extended Absiract (E): Objects are related together to create a new object which is more generalized, more
abstract than its pans; or a generalized procedure is used effectively 10 create specific objects with which to builc
ang accomplish a task.

By applying these cnteria fo the dribble records of each student's work on the four Logo tasks, patterns emergec
which often determined the quality of learning: instrumental or relational {Skemp, 1376), and which (in some
cases) gave some indication of the student's van Hiele level of thinking (van Hiele, 1986). A student was
assigned "visual” if s/he appeared to make decisions based on the visual feedback from the screen and was
drpendent on the visual feedback, while ignoring the syntactic structure of the Logo commands. A student wa-
aoaned "descrptive™ if s/he appeared to work primarly with the syntactic siructure, often not requiring
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immediate visual feedback in order to make programming decisions. H should be noted that one of the attractions
of Logo is its appeal 1o a visua! mode of working and thinking. [A prior report on relationships among students’
van Hiele levels of geometric thinking (determined through clinical interviews) and experience in the Logo
classes has been given by Scally, 1987.) The detailed results of the dribble file analyses across the four tasks for
each school can be found in the Final Report of the Project (Olive et al, 1988).

The first two Logo tasks (CHECKPOINT 2 and MIDTERM,) dealt primarily with facility with Logo programming
concepts (debugging and structured procedures), whereas the tast two tasks (PARALLELOGRAMS and
RHOMBUS MADNESS} invoived work with geometric concepts as well as some programming facility. A summary
of the dribble analyses was performed based on all four tasks, but categonzed in terms of a student's responses
to Logo PROGRAMMING challenges and the GEOMETRIC CONCEPTS invo' sed in the tasks. This summary
categorized responses in terms of the SOLO taxonomy, van Hiele leve! of approach to a task (visual or
descriptive) and Skemp's quality of understanding (refational or instrumental).

Relationships Among the Different Measures

The summary data from the dribble analysis were combined in a simple data base with the math grades of ali 30
Logo students. These data were used to test hypotheses concerning relationships among the different
measures. By simply selecting cases on the basis of stated criteria concerning the measures, or simply arranging
the data on the basis of one particular measure, questions concerning these measures could be posed and (in
many cases) answered. No statistical tests were applied to the following hypotheses. The supporting evidence
can be obtained by inspection of selected subsets of the data or by rearranging the data. The Tables generated
from Table 1 for each hypathesis can be found in the Final Report (cited). They have been omitted from this
paper because of lack of space. The datain Table 1 have been amanged by students’ grades in their final math
course.

Relationships emerging from the dribble data

1. Most students who approached the geometric tasks with some gescriptive level thought (van Hiele contains
d) also approached the programming tasks with some descriptive level thought, but the converse dic not appear
10 be true.

2. Most students who achieved Relating SOLO Ievel responses to the geometric tasks also achieved Belating
SCL O level responses to the programming tasks, but the converce did not appear to be true.

These first two results suggest the tollowing hypothesis- sophistication in Logo programming 1s necessary but
not sufficient for success in Logo geometric tasks

3 Lack of Relaung SOL.O tevel responses on geometric tasks ¢orresponds to a viaudl approach to the

quomaeing concepts for most of the Lego students (vati Hecie - v)
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4. Instrumental understanding of either programming or geomelric concepts {Skemp = I) appears 1o
correspond 1o yisua] fevel thinking (van Hiele = v).

5. Relational understanding of either programming or geometric concepts (Skemp = R} corresponds to
Relating SOLO level responses (SOLO contains R) but not necessarily lo decriptive level thinking (van Hiele
contains d).

TABLE 1: SOLO, van Hiele and Skemp categories of response with math grades

LOGO PROGRAMMING GEOMETRIC CONCEPTS GRADES

STUDENT SCH SOLO VANH  SKEMP SOLO VANH SKEMP ALG11 ALG12 GEOMY GEOM?2
VH 1 UMR d R MRE d R 8 A A B
SF 1 UMR R MR R A 8 8 B
0s 1 UMR R UMR R B8 B B8 8
(374 2 UMR v R M v B B B B
DS 1 UMR R uM v 8 B C B
JY 2  UMR v R MR v R o o C B
CH 2 R vd R MR va R B B 8 C
DB 1 UMR vd UM v | o B B C
™ i UMR v R UMR v R C C B o
KY 1 UMR v | M v 1 C o B8 o
KR 1 UMR R MR R B8 o C o
AF 1 MR M C o C Cc
S3 2 UMMAR, vd R MR vd R c C C C
Lo 1 UMR v ! UMR v o o D (o
AR 2 UM nved m/ed med mved m/ed med C F D C
AD 2 UM v ] M vd ) C o o D
M 1 UMR vd R UM v c B D D
QA 1 PUM v { UM v ! C Cc D D
JR 2 M(nved) mved nved M(nved) mved med C o D D
SH 1 UMR v uM v | C F D D
RT 1 UM UM C F D D
RG 2 MRRE vd R MR vd R A C F 0]
™ 2 MR v PUM v ! A A C £
AJ 2 UMR v R M v | 8 2} Cc F
™ 1 UM v i PMR v I C F c F
SC 1 UM | PUM v ! C F F F
SW 2 MR | M v J A F N N
Lc 1 UMR UMR C F N N
SL 1 MR v<d UM v ! C B C w

1 UM vd uM C c 1Y W

BM

NCTE: "mved”indicates that work in the Logo editor was missing from these dribble files An "N” grade incicat:s
that the student did not take the course. A "W"indicates that the student withdrew from schoo!
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1. ALG11: Algebra 1, par 1 {pre-Logo)
Almost all students with grades better than "C” in this pre-Logo course appeared to have Relational
understanding of Logo programming and (to a lesser extent) of the geomelric concepts (both SKEMP categories
show “R"). Also, all students with grades of “A" or “B" oblained Relaling level SOLO responses on the
programming tasks. Most students with a "C® grade appeared to have only instrumental understanding of
geometric concepts (SKEMP = 1). There appears to be no refationship between Algebra | grades pre Logo and
students preferred van Hiele level of working in Logo.

2. ALG12: Algebra 1, pant 2 (concurrent with Logo)
All students with grades better than a "C” in this course obtained Relating level SOLO reponses and appeared to
have Relational understanding of the programming concepts. Also, six out of the eight students who were
assigned a van Hiele leve! indicated at least a transition towards a descriptive level of working with Logo. Itis also
important to note that no student who failed the Algebra course was assessed as having relational understanding
of either programming or geometric concepts, nor working at even a transitional descriptive fevel.

3. GEOM1; First Semester Geometry
Again, the strongest relationship emerging from the data on this course concerns students' guality of
ynderstanding of both Logo programming and geometric concepts. All except one of the students with grades
better than "C* on first semester geometry were assessed as having relational understanding. Most of the
students with grades lower than a “B" were assessed as having Instrumental understanding of the geometric
concepts on the Logo tasks.

it is interesting to note that one of the students {RG) who faied this course was assessed as having refational
understanding of both programming and geometric concepts, reached a transition towards extended abstract
responses on the programming tasks and relating SOLO levels on the geometric tasks, and appeared to work
somewnhat descriptively on both programming and geomelric tasks. He also obtained an "A” on the first algebra
course. As can be seen in the Table, RG stayed in the geometry sequence and passed the second semester
course!

4 GEQM2: Second Semester Gegmetry
The relationship between relational understanding of both programming and geometric concepts and success in
the geometry course also holds for the second semester course. All students with better than a "C*” grade in this
course had relatonal understanding of programming, and no student was assessed as having instrumental
understanding of geometric concepts; whereas, orlly one student (RG) with a grade less than "C” was assesseC
as having refational understanding of the geometric concepts. No student who failed the course had refatona
understanding of the geometric concepts, and only cne anpeared to have relatonal understinding of Log?

pregramming
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The above comparisons locked at each math course separately. The following three Tables pose questions
concerning students’ grades across all three math dasses post Logo. They were generated from the data in
Table 1 by specilying certain selection critena.

Table 2 indicates that five students obtained consistently low grades post Logo. All failed algebra at the end of
ninth grade, even though one (SW) obtained an A" in the first algetra course. None of these students were
assessed as having relational understanding of either Logo programming or geometric concepts. None
indicated work at even a transition toward descriptive level thinking on either programming or geometric
conicepts. However, three of the five students did obtain relating SOLO levels on programming tasks.

TABLE 2: Which Logo students obtained consistently low grades post Logo?
Selection: ALG12, GEOM1 and GEOM2 are greater than C

LOGO PROGRAMMING GEOMETRIC CONCEPTS GRADES
STUDENT SCH SOLO VANH  SKEMP SOLO VANH SKEMP ALG11 ALG12 GEOM1 GEOM2
SH 1 UMR v UM v 1 Cc F D D
RT 1 UM UM o F D D
SC 1 UM v | PUM v | C F F F
SwW 2 MR ! M v ] A F N N
Lc 1 UMR UMR o F N N
TABLE 3: Which Logo students obtained consistently good grades post Logo?

Selection: ALG12, GEOM1 and GEOM2 is less than D

LOGO PROGRAMMING GEOMETRIC CONCEPTS GRADES
STUDENT SCH SOLO VANH  SKEMP SOLO VANH SKEMP ALG!1 ALGI12 GEOMt1 GEOM?2
VH 1 UMR d R MRE d R 8 A A B
SF 1 UMR R MR R A B B B
0S 1 UMR R UMR R B B B 2]
0z 2 UMR v R M v B B B B
DS 1 UMR R uM v B8 B C B
JY 2  UMR v R MR v R c C C B
CH 2 R va R MR vd R B 8 B C
0B 1 UMR v4d UM v 1 c B B C
™ 1 UMR v R UMR v R C C B C
KY 1 UMR v I M v | C C B C
KR 1 UMR R MR R B c C C
AF 1 MR M C C C C
SB 2 C C C C

UMMR, vd R MR v4 R

All stugents in Table 3 obtamed at least a transition towards a relating SOLO level on Logo programming. Only
two students were assessed as havinganstrumental understanding of programmung or geomelric concepts

The tast Table providus fuither evicence for the refationship between Relational Understarnding and suceess i

the math courses which has emeraed reem all of the compansons in this se!
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TABLE 4. Selection: both SKEMP categories contain R
LOGO PROGRAMMING GEOMETRIC CONCEPTS GRADES

STUDENT SCH SOLO VANH  SKEMP SOLO VANH SKEMP ALG11 ALG12 GEOM1 GEOM2
VH 1 UMR d R MRE d R B A A B8
SF 1 UMR R MR R A B B B8
0S 1 UMR R UMR R B B B B8
Jy 2 UMR v R MR v R C C c B8
CH 2 R vd R MR vd R B B B c
™ 1 UMR v R UMR v R C c B C
KR 1 UMR R MR R B C c C
SB 2 UMMR, vd R MR vg R c c c c
RG 2 MRRE vd R MR vd R A Cc F D

With one exception (RG) all students assessed as having refational understanding of both Logo programming
and geometric concepts obtained a grade of “C*" or better in all of the math courses.

Conclusions and recommendations

A most important outcome of this study is the refinement and synthesis of the three major theoretical mode!s
which were used as a basis for the design of the study and the analyses of qualitative data. The links established
among students’ levels of thinking (van Hiele model), the structural complexity of student responses to Logo
tasks (SOLO taxonomy), and the quality of understanding (Skemp's model), have laid the ground work for an
integrated model of Teaching and Learning. Some initial development of this integrated model has emerged
from two detailed case studies (Olive and Scally, 1987) which looked at the refationship between students’
learning processes in the Logo environment and their progress in geometric thinking as determined via the van
Higle interviews.

This current report demonstrates that relaticnal understanding of both Lago programming concepis and
geometric concepts is linked to success in math courses. 1t also suggests that the more successtul math
students pre-Logo were more likely to reach that leve! of understanding within the Logo course.

Although some students did appear to achieve reigtional understanding while working at a predominantly visual
level of thinking, a transition towards cescriptive level thinking appears 1o be indicative of success in algebra bul
naot necessarily in geometry courses Ferhaps this result 1s evidence that the Lego environment can help
students whose predominant level of thinking Is visual, to effectively use a visua approach to solving geomeinc
problems. On the other hand, the ability 1o use Loga in a purely visual way may have nhibited some siudente’

mavement towards a cescrnpive level of thinking and working
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mathematical exploration. The above resuilts indicate that success in the programming experiences was
necessary in order 10 grasp the geometric concepts. However, some students who were successful with the
programming tasks did not appear to grasp the geometric concepts, thus programming success was not
sufficient for understanding the mathematics. This result strongly suggests that, for some students, a
non-programming use of Logo may be more beneficial for exploring and constructing mathematical concepts.
The use of Logo microworids, specifically designed for the exploration of particular mathematical concepts,
integrated into the regular math classes, is a major recommendation of the Project.
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GRAPHIC CONSTRUCTIONS WITHH COMPUTER TO
LEARN 3D REFERENCE SYSTEM

I. OSTA
Equipe de Didactique des Mathématiques et de P'Informatique de Grenoble

Can computer help to overcome problems raised by representations of spatial
configurations, in the context of 3D geometry teaching 7 can it contribute to restate
the meaning link between spatial and nuymerical frameworks in leaming 3D analytic
geometry ?

Adopting the hypothesis of an interaction between the mastery of graphic
representations and the construction of 3D geometric knowledge, we constructed a
teaching sequence having the 3D reference system as object, based on the
production and transformation of plane representations of 3D configurations, by
using computer (two CAD softwares) as a tool. The dynamic treatment of graphic
representations must use specific geomelric knowledge, it must, also, extend and
make evolve this knowledge.

By observing the school-books and the teaching practice, we can notice that the
reference system notion is introduced, since the complementary level, as an established

fact. It isn't constructed as a solution to specific problems necessitating to organize and to

structure physical space.

As this npotion is introduced, pupils are suddenly projected in analytic geometry . A
new language, a new system of svmbolic representations are used, fixed by the teacher, but
not constructed by the pupils, on the base of their geometric knowledge. Algebraic
relations are defined and used 1o replace geometric relations between the elements of 2
spatial configuration. Then, the geometric activity is transformed into a calculatory activity .
in which the interpretation at the geometric level is neglected. With this modification of the
nature of “"geometric” activity, graphic representations almost disappear. The meaning ii~-
between spatial and algebraic framewarks risks then to be suddenly broken.

In 30 geometry , such a prohlem is even more accurate: there 18 a strict separation
between concrete activities of manipulation and observation on one hand, and activities
using abstractions, theorizations and concepts on the other. One of the main reasons of suck
an aggravation is the difficult access to spatial situations. It can essentially be done through
plane graphic representations; some ot the characterisues of the spanal contiguration ane
then absent or modified: Ty necessany 1o muake explicie a code of mterpretatron and
production of representations. Althouph at s necessary, such o code 1y not suttuoent

overcome difficultics related to coordimation of viewpomis or conctruction of retations

6/

hetween praphweal and phyvacal spaces
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We suppose that using computer as aid tool permits a new approach of the above
problems. Situated in the frame of a constructivist theory of knowledge, our method is to
construct several "situations” linked to each other, aiming to a learning process, and based
on using graphic softwares. Computer intervenes in these situations as an aid tooi in
teaching. Teaching computer science is riot our aim, neither is training to use softwares.
Nevertheless, we adopt the hypothesis that there exists a close interaction between the
acquisition by the pupils of the concemed geometric knowledge and their construction of
the functioning mode of used softwares. Our research aims to study, in the context of
resolution of problems with specific softwares, the processes of adaptation and evolution of
pupils' strategies, taking in account their confrontation to the constraints of these
softwares, based or. different systems of information treatment.

Teaching sequences have been constructed and realized, in the context of a computer
workshop in a french school, wiih pupils of the forth complementary class (14-16 ycars).
pupils work by pairs. During this experizace, we recorded the steps of pupils’ work (as
computer files);, we recorded also their dialogues; we used this data for a clinical analysis

of the evolution of their strategies.

In this paper, we present one of the situations of this teaching sequence (for more
details about the other situations of the sequence, see Osta 1988, chap.I). The problem
consists in constructing the graphic representation of a spatial configuration, by using Mac

Space.

(Conceptual analysis of Mac Space :

Mac Space is a conversational graphic editor, it works on Macintosh. It helps user 1o
construct represcntations of 3D objects by constructing the threc views (top, face and side
views). Treatmeat is possivle in the three windows of orthogonal views; the representation
in perspective appears progressively in the 3D window that is only a control window.
During the treatment, modifications on one of the three views dre translated on the other, as
well as on the perspective which translates spatial transformations on the represented
object. In the spree of Mac Space, the basic geometric element is the polygonal fucer: anv
treatment of a representation (creation, elimination or transformation) can only be executed

on facets, 30 then mmpossibile to tace sepments o solated poimnts
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Analysis of the sujacent reference system: The space of [ Y
the software is controlled by an implicit orthonormal
rcference system, composed by three non-materialized
axes, two by two perpendicular: Ox, Oy, Oz. Here's a |
simulation, in the 3D window, of the three virtual axes of e h

this system.

In the interface, the coordinates system is apparent in a communication window
where, since the selection of a graphical tool, are displayed the coordinates of the current
point represented by the cursor. The space is represented in all windows. It is considered, in
each one of them, as an addition of a privileged direction, perpendicular to a privileged
plane. It is isomorph in ecach window to a non-associative product of three unidimensional
spaces: (Ox.0y).Oz in the window of the top view, Ox.(Oy.Oz) in that of the side view and
(02.0x).Oy in that of the face view.

One point of the space is characterized, in each window, by:

* its coordinate along the privileged direction of this window. At the practical level, this
coordinate is communicated to the machine in a static way, by using the command "3°
coord.” of the menu “curseur”. In default of such an operation, this coordinate is equal to
zero.

* the coordinates of its projection on the privileged plane of this window. At the practical
level, these coordinates are communicated to the machine in a dynamic way, by moving
the cursor in the window.

When introduced, the
3°coord. with respect to one

window won't be influenced,

as the two other coordinates,

by the displacement of the

C‘,lrgor o .. yoirm Fedl.] I AR X1 LLY ] YoM XY ] [ X%Y ]

Proposed task and objectives :

At this moment of the teaching sequence, pupils had acquired some aspects of the
reference system controlling the software: the bidimensional system of the privileged plane
in each window. They had, also, constructed comrespondances between the displacements of
the cursor along the principal directions of each window on one hand, and the variations of

the coordonates values on the other.

This task aims to overcome and extend this knowledge, towarg R cference
I'his task 10 overcon 1d extend this Kk ledge, t { the 3D reference

systeny. In cach of the reatment windows, pupils hiave to constriret the functioning mode of
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referring along a 3° dimension; they have also to coordinate it with the bidimensional
reference system in the privileged plane of the corresponding window. Without such a
construction, it's impossible to realize the task.

Assignment: By using the software Mac Space, construct the graphic
representation of a surface in steps, having the following
characteristics: the dimensions of one step are 10 and 7 units of

measure, the height of one counter-step is 5 units.

A priori analysis of the task :

T'o construct a rectangle with Mag Space: The rectangular facet is the fundamental object in

this task. This analysis will only take in account the rectangular facets parallel to the planes
of the rectangular trihedron of Mac Space.

A rectangle constructed with Mac Space is determined,
in the corresponding window, by:
* the value of the "3°coord.", coordinate of the plane of

this rectangle with respect to the priv™" ,:d plane of the
window; this "refercnce-value” determinates the

adequate processing level for the facet construction;

* the absolute coordinates of the first validated vertex;

* the dimensions of the rectangle that are relative 7
. 01 . (7
coordinates of the 2° validated vertex with respect to the
first one.
At the practical level, the value of the "3° coord.”
having been introduced, the rectangle is constructed in 2 T MY T

the corresponding window by the validation of two
opposite vertices.

As longer as the graphism takes place in one window, the three other views of the
rectangle (between which the perspective one) are reproduced in the other windows. The
displacement of the cursor is accompanicd by a dynamic dislay of the coordinates (x,y,z) of
the current point it represents.

Peticular structuration_of space: The objects concerned by this situation are sufficiently

known by the pupils; their familiar structure makes possible to the pupils to have for these
ohjects an internal representation according to the ditferent principal observation
directions. The planes of the component facets are separated by a constant “step™ which 1s

not necessarily the same in the three directions,
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Constructing the reference system of the software: To construct each one of the consecutive

o facets, pupils have to communicate to the machine the right values of the parameters

defining this facet. At every operation, they have to re-invest the value of the
corresponding "step” to determine the position of the new component; then, they have to
explicitely communicate to the machine the numeric value that determines this position, by
using a mode of representation fixed by the machine.

If the pupil didn't explicitate this value, he obtains an undesired graphic result; there
is then awareness that it is necessary to communicate to the machine an adequate numeric
value, that of the “step” between two successive facets. So, he is engaged in a research

process, searching for a function or a command that permits to communicaie this value.

Some resylts :

In the following, we most present results about the important interaction we elucidated
between the spatial and numeric frames. We care about the two following exigencies of the
task:

* to communicate to the machine the numeric data of the problem: using which mode of
representation? by affectation to which parameters?....

* to assure, between the component facets of the scale, adequate geometric relations

(especially connexity and relative positions), to construct one peticular facet: what position
parameters have to be determined? with respect to which other facet? with respect to

which system?.....

The following results demonstrate the importance of experimentation possibility given by
the computer; they show the retroactions in the pupils' intellectual activity: an undesired
graphic result incites to a research for the reason of error, this reason can induce an other
representation of the solution, based on other conceptions. The realization of the new
representation infers a new experience and a new graphic result, which consolidates or

devaluates these conceptions... and so on.

During the pupils’ activity, we noticed a close interaction between the evolution of their
construction of reference system and that of the significations they progressively attributed
to the "3°oo0rd.". The motors of such an evolution arc: the exigencies of the task, the
interaction with the reference system of the software, and the interaction between spatal,

numeric and graphic frames.

The "3%oord.” as "3 measure™. This sipmhication appeared atter the constroction of the

first step. Two given numeric vilues (10 and 7, dimensions of the step) having been
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communicated to the machine, the pupils’ main preoccupation was to find a means o
communicate the third given value (S, height of a counter-step): "we've got (o tetl him that the
height is 5". Such a signification reveals that the aspect "measure” of the "3° coord.” is

predominant with regard to the aspect “reference”.

The "3°%oo0rd."” as a "reference-value” to situate the departure point of the new facet: Some
pupils showed this signification at the moment they wanted to construct the 2° step which,

without any indication, was situated at the same level as the first one.

For them, there is problem "because we've got to 'say’ to
the computer where we want to put the step . After B

a4

scveral trials, they found that the "3°coord.” is the way to

do it. Such a signification was accompanicd by a

dynamic conception of referring. Having obtained a

graphical result as that of this fig., pupils searched for a

means to "push ', or to "pull " the 2° step.
The "3°oord." as_the permanent value of the "displacement step”: Such a signification

appeared after the pupils discovered the command "3°coord.” as a solution; 1It's related to a
specific representation of the functionning mode. This signification appeared at the moment
pupils wanted to construct the 3° step: "no, we don't have to type the 3° coord., it's already

there...”

This significcation supposes that the effect of an
affectation of a value to the "3°coord." stays valid for

g

every later operation. It seems that the "3°coord.” is more

considered as a parameter for the whole problem than a
parameter for the construction of one facet. The fig.

gives the resulting drawing.

The "3°coord.” as a temporary value of the "displacement step”: The undesired graphic result

destroys the last conception, about the functioning mode of the software: “it returns to the
same place! ". Pupils discover that the value of the "3°%oord." returns o zero at the end of
cach operation; nevertheless, they don't give up the meaning of “3°oo0rd " as the

"displacement step”, between two consecutive parallel facets. Again, they affect the value 5.

This signification is related to an intermal representation

of the construction as a continuous process, working by l /7

connexity, and based on a principle postulating that: "a ; _______

new construction begms where the last one reached ™,

72

":‘.\')‘\' EYep Ty s

09Y Ry AL s



71

The "3°%o0ord." as a value determining the position with respect to the first facet of the same

window: This new signification shows an important evolution in the process of discovering
and constructing the refernce system of the software: at least in the current processing
window, it reveals an awareness of the existence of a inique referential, with respect to
which are referred all the components to construct in this window; this referential is linked to
the object . On the other hand, it consolidates the conception of the "3°coord."” as a reference-
value and eliminates all remainers of its conception as a measure-value. With this
signification, pupils overcome the exclusive relation between "3°coord.” and the value 5, by
affecting to it other values.

The "3°oord." as a value determining the position with respect to a referential independant

from the object: We'll develop the evolution toward this signification by using the example
of the pair O.&S., one of the rare who reached this signification.

After the steps were constructed in the top view window, pupils chose the window of the top
view, for the construction of the counter-steps. With this first window changing, the
exclusive relation pupils constructed between "3°coord.” and the top view window had to be
broken. The exigencies of the task and the constraints of the software occasioned an
evolution of this relation toward its extension. Recognizing this command as a solution to
the same problem into an other window hasn't been aatomatic. It's been preceded by several
strategies, revealing an opposition to generalize its effect. In this paper, we cannot develop
these strategies (voir Osta 1988).

To construct the first counter-step, pupils tried the value -— cl'yj ]
7 as "3°coord.". But the departure point of the first step j g

had initial coordinates unequal to zero; they obtained a ) =
non-accepted graphic result. In fact, their trial reveals a - o
representation of the solution based on the relations:(R1: El J___

v0 =7 and R2: vi = vi-1+7): the first value of "3°coord.”

is 7, each one of the following values being obtained by

adding 7 to the previous value.

A conflict is created by the contradiction between this _—_—{Z]—]j— ]

mental construction and the result of experience; the

graphic result is not compatible with R1, at least. They

decide to approach the right position of the facet by

adequately maodifying the value of "3%coord.”, at cach

trial. To validate their result, their means of control is
perception. After several rials, the value 11.5 assures

the connexity.
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For the pupils, it's the value 7 that gives all their meaning g
to relations R1 & R2. For them, this value instates, in g

fact, a relation between the relations R1 & R2. When the
value 7 was devaluated, this relation between R1&R2 — —
stayed valid. It's assured by the value 11.5. The two S T
relations become:

(vO=11.5) & (vi = vi-1 + 11.5).
So, for the 2° counter-step, value of 3°coord. = 11.5 + 11.5 = 23. The graphic result being

not acceptable, they try again to approach the right position:

S....Letstry 21 & a hall, now
O: no, it's clearly less.... you try.... 18
S:18& ahalt?

7
gg

After several trials, experience showed that the value — o

18.5 is the right one. B _J_J'

O: since it's 18.5, we had to know that we have to add seven

at each time...
S. oh yes,7... that's obvious, the width is 7.... don't you think it's logical, you?... it will be 7 by 7,
because the width is7.... it grows 7 by 7.

The two relations become: (R1: v0 = 11.5 & R2: vi = vi-1 + 7). The relation R2 takes

again its meaning as assuring the "displacement step” pupils have to add, at cach step, to the

previous value.

Having found this intelligible relation between all the clements implicated in this
problem, pupils have even succeded in interpreting the meaning of the numeric relation R1,
and in linking it to its correspondant in the geometric framework:

O: we've got to look, from the beginning, at the coordinates

S: or simply begin at zero... | think we understand now.... we've got to begin in the corner... at
2e10... S0 we couldn'’t have problems

‘This dialogue reveals the acquisition by the pupils of the whole logic controlling the

functioning of the software for this problem (and for all those of the same type).

Conclusion

By the pupils' activity, this situation gave us informations that helped us w elucidate
the processes of construction of their knowledge, in the context of the used software. The
pupils’ activity (esecially at the end) showed an evolution toward an organtzation il a
structuration of the software space. Such a structuration is surely based on a non-1sotape
representation of space, considering the construction of one peticular facet, because the
communication to the machine of informations concerning its position cannot be done 1 the

same way for all these informanons But, from a global point of view, this situation infers an
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isotrope representation of space, which means that a perfectly analogue treatment must be
done in the two windows: that of the top view and that of the face view.

This situation also gave to the analysis some phenomena conceming the evolution of
the construction, by the pupils, of the reference system controlling the space of the software.
The analysis showed an interaction and a concomitancy between such a construction and the
evolution of the signification of "3°coord.”. This evolution is related to progressive
abstraction and generalization of the meaning of "3°coord.”, and of its status with respect to
the space of each window. From the "3°coord." as a practical method to fix the position of a
facet in a one window, by using peticular values, there is evolution toward the "3°coord.” as
a concept, independant from a peticular window, value or direction.

On the other hand, the important interaction that took place between geometric and
numeric frameworks was a guaranty for the construction of the meaning of analytic
knowledge as a link between these two frameworks: pupils constructed correspondances
between successive positions of facets into one window and the numeric values attributed to
"3°oord.". Even more, we found indicia of construction of correspondances between the
displacements of a facet in one orientation or another and the algebraic operations
(augmentation or diminuton of the value of "3°coord.").
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APPLIED PROBLEM SOLVING IN INTUITIVE GEOMETRY
John P. Pace

Essex County College, Rutgers University

A recent study with 67 adult community college
developmental arithmetic students has established a
well-defined model for teaching and learning the basic
concepts of area and perimeter. A pedagogical
perspective, some theoretical background, the research

design and a sketch of the results are described.

If thinking does not imply a purpose or goal,
discovery would be a blind guess, commnunication
a miracle and a twice told tale the shattered
accents of an echo. (Hook, 1927, p. 56)

In the million year gap between hominid and present human,
the conscious development of abstract ideas that can be
characterized as mathematical in nature is a relatively new
phenomenon. Primoridal man, overburdened by the difficulties of
surviving the harshness of a world marked by irrepressible

scarcity, could ill-afford sustained abstract speculation

concerning shape or quantity. Even in most of the ancient
dagrarian civilizations ot more recent. millenia, we find
mat hematic notions so intertwined with a human struggle to
survive as to make them emerge more as an aspect of broader
cultural development than as some separate well-defined
collection of ideas. The ultimate disassociation of
mat hematical ideas; their objectification from the broader
cultural context, per se, is an exceedingly modern
interpretation of what is in the nature of mathematical subject
matter. This objectification of mathematics, especially in the
nmust recent of times, has helped lead to a8 vast development of
our advanced mathematical knowledae. However, whether in the
name of deductive e¢fficiency or otherwise, the ahistorical
precipitation of mathemat ical concepts out of any apparent
crultural context. can nearly erase any association of mathematics
o human interest and pursait. bBspecially to new learners, the
cxtraction of mathemat tcal concepts from a suitanhle identifiable
humin context can seem to sacrifice all sense of logical purpose

A direct ion within mathematical studies.  Surpiisingly, one
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example of a mathematical subject that, from the learners' point
of view, can seem to make such a sacrifice concerns the study of
area and perimeter with simple polygons; work preliminary to the
study of Euclidean geometry.

The edifice of logic that is today's school geometry rests
upon a firm but obscured foundation that has beeen poured by
ages of human experience. 1In fact, geometry represents an
informed and concisely symbolic casting of one part of mans’
knowledge. To borrow the sense and terminology of John Dewey,
like any subject, gecometry is a curricular "reconstruction®
(1966, p. 76) of some various parts of the human experience.

But this reconstruction at which we have arrived; this geometry,

is not only a logical set of axioms and theorems; the

assumptions and the derived rules and requlations by which
deductions may be correctly realized, it is also a formal
product; one devoid of all but the faintest hint of the
centuries of historical process by which, or any of the variety
of intended purposes for which, it came to be created and

developed.

1n classes where topics such as area and perimeter; topics

preliminary to the study of Euclidean geometry, are being

developed, there may bhe little recognition by students of the
possible purposes or ultimate consequences of such studies.

They could not be expacted to be aware of the historical context
of the development of such activity, may often question the
intended purposes of their work and, .t times, even doubt that
the results of their labors signify anytu.. at all.

In an attempt to explicitly address what can be seen as the
purposcefulness of such geometric topics, and in conjunction with
what is an axiom that describes humans essentially as creatures
secking meaning in their actions, we designed an applied problem
solving research study. The purpose of the study was to develop
and realize a well-defined applied problem soiving model for
learning and teaching the concepts of area and perimeter by

adnlt students in an arithmetic class.

Populat inn

The @7 paverbarinagt oly ilack and Hispanic adults students who
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participated in this study were enrolled in 4 sections of a
remedial mathematics course, (2 sections during Fall and 2
during Spring of 1987-88) at Essex County College; located in

New Jersey's largest city, Newark.

Design of the Study

Tine

To —2.5 weeks n 2.5 weeks ———

AGT Pretest
Lxpecinental— yysT -——.EIB!::;G"-q AGT Posttest, Elﬂs:zauu
(Clasa 1) BICBST Nodel ,*" Godel

»

AGT Pretest S

r
YH l-r r
Cmtro]._..___"xnﬂ__g Arithmetic . AGT Posttest’
{Class B) Dnits

“vArithmetic
Unita

B2
-
o
.
o

T2 2.5 veeks — T3 2.5 wveeks-™

rinental— AGT Posttest — jritimetic —* AGT Delaved -y Video 4
oo [(tglea:: l!)“1 Pnsttest Interviews

O (continued)
—

AGT Delayed
L','i Control ————— Posttest ——rArithmetic — Video -
{Class A) Interviews

Figure 1. Outline of the experimental design.

Th.. reseach design is given in Figure 1. Briefly, at time
Tge students in each of two classes were administered two

assessment tests, the Van Hiele Geometry Test (VHT) (Usiskin,
1982), and the New Jersey College Basic Skills Placement Test
(NJCBSPT); and a content specific pretest, entitled the Applied
Geometry Test (AGT). Following the testing, for a 2 1/2 week
period, the first class (Class A) participated in a classroom
inquiry model; one primarily involving applied geometry problem
solving situations. Meanwhile, the seccond class (Class B) was

taught basic topics of arithmetic computation; topics unrelated

to geometry. At time Ty, the classes were then retested with a
different form of the AGT. During the next 2 1/2 weeks, the

treatments were reversed for each ¢lass, and at time Ty, a third

form of the AGT was administered. During the next 2 1/2 week
period, both classes were taught. arathmetic. At time T4,
videotaped interviews were conducted with randomly selected

78
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students from Class A, while students in Class B were tested
again with the AGT. Finally, at time Tg, randomly selected

students from the Class B were video-interviewed.

Some Theory

Knowledge is constructed when human minds are actively

¢ngaged in some persuit.

The roots of thought must be sought in
action, and operational schemata derive
directly from action schemata. . .Generally
speaking, logico-mathematical structures are
extracted from the general cocrdinations cof
action. . . (Piaget, 1971, p. 181)

It requires little valor to agree with Jean Plaget.
Nonetheless, in our research, it was still required that we
operationalize that agreement. We had to consider the serious
and thorny problem of just what student "action" would provide
the fertile ground for "the roots of thought™. It was action we
sought to incorporate, but not just any action would do.
Activity, in and of ituelf, is motion; sheer sensory motor
dynamics, and,

"Mere engagement in activities will not facilitate learning,
of course, if those activities are not appropriate to the
students' needs" (Brophy, 1986, p. 227).

And the "needs" that we saw for stadents were precisely those
which would be met. by the kinds of actai - .t would most
likely lead to the "general coordinations" that Piaget describes
above. These actions are typically not so easily specified.
Thus, while Piaget's epistemology of constructivism may provide
a viable model for the genesis of human thought, there yet secems
an nnanswered question as to a specified mechanism thar will
cause an engagement of the constructive process. For Piaaet
(1971), thig "engagement" issue may be moot.

"Life s essentially antoregulation” (p. 26), and while the

poandom o exists, the process of equillibration actively
"oompensates adgatn:st oot side perturbat ions™ (1.
croonism o an oo whole preserves fts aumtonomy and, ot the soan

time, rtesists entropie decay™ (p.13).
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Thus, it seems, for Piaget, "Cogito ergo sum" (I think
therefore I am) is a biconditional statement; i.e., "Sum ergo

cogito", as well. However, while life itself may imply the

autoregulated functioning of thought, it does not necessarily
imply that the content of that thought will be mathematically
rich. Thus, after even so compelling a description fo the
epigencsis of knowledge as Piaget demonstrates, for the
mathcmatics educator, there still must always remain the
question of how to engage students' constructive processes in
mathematically significant concepts. For one answer we turned

to John Dewey (1980) .

The weakness of ordinary lessons in
obsexrvation, calculated to train the senses,
is that they have no outlet beyond
themselves, and hence no necessary motive.
Now in the natural 1li‘e of the individual and
the race there 1s always a reason for
sense-obeervation. There is always some
need, coming from an end to be reached, that
makes one look about to discover and
discriminate whatever will assist him.

Normal sensations operate as cluves, as aids,
as stimuli, in directing activity in what has
to be done; they are not ends in themselves.
Separated from real needs and motives,
se¢nse-training becomes a mere gymnastic and
casily degenerates into acquiring what are
hardly more thepr knacks or tricks in
observation. . . (p.93)

Dewey's comments imply the notion of purposeful inguiry on
the learner’'s part. RBriefly, it is a subject's actions, on the
basis her/hic self-felt purposes, within mathematically and
conceptually rich domaing that were the ensembles that this
research gsought Lo promete.  On» way of providing purpose, or
"nececsary motive”, g othreuah the noe of applied problems

(Levrhy, 1981)

o]

Conerally aod brdetly, cur osmndel tiied to blend to

constructivism of Praget, the jurposeful instrumentalicm of

Drewsos g the ol aronp o applied peoblem solving of Lesh.
AT et ront gl
Parinag *he experinent o1 treatment, student o were asked o
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1 consider a variety of applied problems. These applied problems
(Lesh, 1982) were constructed as lifelike situations in which
mathematics was used as a major element in the resolution of

some difficulty; or might have assisted in making some

evaluative judgement between a variety of alternatives.

North s0 ~_— walkway

$20,000 —— 60 bt

€8

I $20,500
T //
it East |45

lots -
already
purchased \i

Fisin $20,250

ZET 65 Sot:_t_:_-:o
T ~—

(all Yot measurements in feet)
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[k}
]
=

the figure yocu see three possible alternati--  and parcel

selectiona, labeled North, Fast and South, and the price ¢f
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developing area and perimeter concepts, sought to actively
involve students in a problem situation where geometrical
concepts were "lurking close by" in a fairly natural and

inescapable manner. '
Results Sketched

The full technical results of this resecarch are detailed in a
tortheoming publication (Pace, 1989). However, briefly, through
s number of single and multivariate, stepwise, linear regression
mnidels whose parameters were estimated by the computer program,
Reagress I1 (Madigan & lawrence, 1983), we established that, by
the measure of geometric achievement utilized, the experimental
pravivam of teaching was susccecessful in both short and ilong term
cares.  Summaries of the videotaped interviews supplemented the
aquantitative findings with both critical support for and dissent
from the major find'nas.

itomay be neither surprising nor particularly impressive that
students were taught and therefore they demonstrated achievement
and retained growth. After alil, this research makes no c¢laim
that this particuiar experimental model is significantly better
than cther methods of teaching arca and perimeter concepts.  Any
such claims of pedangi-al superiority ultimately require a
dilooassion of how one defines supericrity; in terms of explicit
cducational values (Face, 1988) and goals. On the other hand,
what 15 claimed irc that this research offers a well-defined
model; one theoreticully justified and operationalized, one that
exinsts and can be known 25 a possible alternative to whatever
other approaches maoy exist.  Following the traditional
rethedalogy of mathematical reseach, this research has
et b Tighed thromats fvn o realra, the exdistence of a partienlar
methoode Any Ademonst catidd uniquencse of resulte of that method;

e, dn o the cence ot supertority to o other methods, remains to
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Abstract

First, we discuss the basis of a new typology for classifying the
spatial abilities. Next, we present the results obtained from interviews
with 10- and 11-year-old children, functioning in various types of space.
Some Interesting contrasts arise from these findings, allowing us to
question some elements of Piaget's theory and the interventional model
used actually for the teaching of geometry in schnoic
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Introduction

Aprés avoir identifié les facteurs composant I'habileté a percevoir
I'espace et examiné divers moyens de la développer, NOUS NOUS SOMMES
Intéresseés a I'apport de I'environnement dans le développement organisé
des habiletés perceptives et représentatives d'objets géomeétriques, situés
dans un micro-espace. A cette fin, nous avons ¢laboré une typologie des
habtletés spatiaies, que nous présentons dans les paragraphes qui suivent.

L'objet de l'expérimentation relatée ci-aprés treite des relations
entre ces habiletés spatiales et les types d'espace qui environne le sujet.
L'intérét de cette démarche est de provoquer éventuellement une
diversification des Interventions didactiques dans Venseignement de 1a
géométrie et de toutes autres disciplines touchant a la maitrise de
'environnement, comme les arts graphiques, qui tiendrait compte des
types d'espace qul environne les sujets.

La perception structurale de l'espace

Pilaget avait mis en iumiére 1a nécessité de dissocier Vespace
percept!f de I'espace représentatif, aftn de bien comprendre 1'ordre dans
I'appropriation des propriétés géométriques: 1a notion de voisinage
intervenant avant les autres axiomes euclidiens, 1'intuition des dimensions
fondée sur I'intériorité et I'extériorité intervenant avant l'abstraction d'un
volume euclidien..? L'espace peut auss! se caractériser de plusieurs points
de vue: physique, soclal, géometrique, etc. Notre recherche s'est intéressée
a la perception d'un espace géométrique. Cette perception peut enfin
s'examiner sous un angle formel ou structural.
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Alors qu'une perception formelle consiste en l'intériorisation2
quantitative dun modéle spatial par l'analyse et la syntheése de ses
propriétés en termes de rapports, de oroportions, de mesures et de
coordonnées, 1a perception structurale considére plutét I'intériorisation
qualitative d'un modéle spatial par l'analyse et la synthése de ses
propriétés topologiques, projectives, affines et métriques. Nous
prévilégions dans notre étude cette derniére approche. “La représentation
spatiale est une action intériorisée et non pas simplement 1'imagination
d'un donné extérieur quelconque.”3

La typologie des habiletés spatiales

La typologfe que nous avons développée (Baracs, Pallascio,
Mongeau), est définie sur 1a base d'un tableau a triple entrée. Une de ces
entrées est définie par cing (5) habileteés hiérarchisées, une deuxiéme
entrée est définie sur les quatre (4) niveaux géometriques, alors qu'une
dernfére entrée distingue les deux (2) plans, perceptif et opéeratoire (ou
représentatif). Le f{ableau contient donc quarante (ou S x4 x2)
intersections, correspondant potentiellement a autant de degrés d'habileté
spatiale ou pourrait se sftuer un individu.

Les habiletés spatiales sont respectivement la transposition, la
structuration, la détermination, 1a classification et la génération. La
transposition est Vhabileté & établir les correspondances, les
équivalences, et a effectuer le passage entre les différents modes de
représentation (physique, linguistique, algébrique et géométrique) et
niveaux géomeétriques. La structuration est I'habileté 3 identifier les
propriétés et la combinatoire géométriques d'une structure spatiale. La
détermination est I'habileté & délimiter les éléments ou les parameétres
definis par des contraintes géométriques sur une structure spatiale. La
classification est I'habileté d grouper des structures spatiales selon un
chotx de propriétés cu paramétres géomeétriques communs
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Enfin 12 génération est I'habileté a produire ou modifier une
structure spatiale de facon & ce que cette structure réponde 3 certains
critéres géométriques prédétermines.

Les niveaux géométriques sont les niveaux topologique, projectif,
affine et métrique. Le niveau topologlique correspond principalement 2
I'etude des propriétés d'adjacence et de connexité des structures
spatiales, propriétés qut sont conservées suite @ une ou des déformations
continues, telles que l'étirement, le rétrécissement, le pliage ou la
torsfon. Le niveau projectif correspond principalement a l'étude des
propriétés d'incidence et de platitude, qui sont conservées suite 3 une
projection centrale. Le niveau affine correspond principalement a l'étude
des propriétés de parallélisme et de convexité, qui sont conservées suite a
une projection paratléle. Enfin le niveau métrique correspond
principalement a I'étude des propriétés de distance et d'anqulation.

En derniére analyse, le plan perceptif est constitutif dune
action mentale de reconnaissance des formes, alors que le plan
représentatif est constitutif d'une action concréte de transformation
des formes.

Les types d'espace

Alors que le micro-espace est le lieu de 13 manipulation de
petits objets ou 1l est facile pour le sujet de changer de points de vue par
rapport a I'objet, et que le méso-espace est l'espace des déplacements du
sujet dans un domaine contrdlé par la vue et qui s'obtient par le
recollement de micro-espaces connexes, le macro-espace est celui qu
nécessite une représentation implicite des mouvements relatifs de
plusieurs systémes de références, que l'on pourrait imager par un
‘recollement de cartes”, selon V'expression de Guy Brousseau (1386).
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Nous avons cherché a déterminer les relations et les incidences
qu'il pouvalt y avoir entre un environnement donné et les habiletés
perceptives el opératoires appliquées & un micro-espace, comme celui des
formes géométriques utllisées dans un test-entrevue élaboré
antérieurement pour valider partieliement notre typologie. Pour ce faire,
nous avons choisi et comparé deux groupes de sujets, dont l'environnement
spatial est radicalement différent: un groupe d'enfants vivant dans un
environnement rural du sud du Québec et un groupe du méme age vivant
dans un village Inuit du nord cu Québec.

Au niveau du micro-espace, les enfants du sud, en milieu rural
ou urbain, sont davantage initiés au dessin imaginatif ou figuratif, plutét
qu'au modelage de formes tridimensionnelles, alors que les enfants Inuit
sont inftiés trés jeunes a 13 sculpture dans la pierre a savon, tandis que le
papier demeure une denrée plus rare (les arbres sont loint)

Au niveau méso-spatial, l'environnement visuel varie
sensiblement d'un milieu a l'autre. Alors qu'en milieu rural, les habitations
sont des prismes rectangulaires allongés, étendus ou pyramidés (fermes,
demeures isolées..) et quen milieu wurbain les édifices sont
essentiellement des prismes  rectangulaires, les  habitations
traditionnelles des Inuit, les tgloo (qui signifie "maison” en inuttitut), que
les enfants apprennent encore a construire lors de sorties familiales pour
la chasse ou la péche, sont formées de pyramides tronquées, ou le
parallélisme ne domine pas.

Enfin, au niveau macro-spatial, alors que les dénivellations sont
variables enmilieu rural et fortes en milieu urbain {(métro, stationnement
souterrain, édifices a plusieurs étages.), cest plutdt un espace
bidimensionnel qui s'ouvre & I'horizon de 1'inuit qui doit comipter sur des
accidents de terrain épars pour se repéerer dans 1a toundra
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La méthodologie

Le test utilisé, administré par entrevue individuelle, était
composé dune douzaine de taches ou problémes a résoudre, couvrant
nécessairement une partie seulement de 1a typologie, a savoir sept (7) des
(40) modules, correspondant & F'un ou V'autre des niveaux topologique ou
projectif, & I'une ou I'autre des habiletés et dans l'ordre du plan perceptif,
constitutif dune a:tton mentale de reconnaissance des formes, ou du plan
opératoire (représentatif), constitutif dun action concréte de
transformation des formes.4

Les deux groupes déléves comparés etaient composes de 16
enfants. Un premier groupe (du sud) était formé de 8 gargons et 8 filles,
alors que le second groupe (du nord) était formé de 12 gargens et 4 filles,
tous et toutes des Inuits, sauf un jeune Amérindien du peupie Cree. Le test,
iIimité & 13 taches, a été admintstré au printemps 1988.

Les résultats

Nous cbservons que les deux groupes s'opposent radicalement au
niveau des plans percepttf et renrésentatif, au niveau des
propriétés géometriques, topologiques e. projectives, et au niveau des
habiletés perceptives et représentatives qui domin~ier’ soit les activités
du début de la typologle, soit celles de la fin. Le sexe des sujets
nintervient pas, ni 3 I'intérieur des groupes, ni globalement.

Tableau - Comparaison globale

Groupe du sud Groupe av nord

Plan perceptif Plen représentstif

Reconnaissance des formes Transformation des formes

Géometrie topologique Geometrie projective
Transposition,structur etion Génération, détermination et classification
Débul ée 1a typolagie Fin de la typolwie
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Bien s(r, les espaces différents qut définissent les
environnements des deux groupes de sujets ne sont probablement pas la
cause unique des différences observées dans la perception et la
représentation des objets géométriques micro-spatiaux. Au niveau méso-
spatial, par exemple, certaines constructions coutumiéres chez les Inuit
leur font manipuler des objets aux propriétés davantage projectives
quaffines (p.e.: les blocs de neige servant a l1a construction d'un igloo sont
des pyramtdes quadrilatérales tronquées et disposées en spirale, et non
des parallélipipédes). Mais les relations et les incidences que nous avons
identifiées sont suffisantes pour nous questionner sur 13 nécessité
detablir des parcours différentiés dans le développement des habiletés
spatiales, objet de nos prochaines recherches.

Notes

1 e représentation de V'espace chez 1'enfant, Piaget, J. et B. inhelder, PUF, 1948, p 535
2 Per intériorisation, nous entendons un détachement gradue! de a réalité
permettant aux états de devenir des représentations de classes
d'objets et permetlant aux actions de se {ransformer en opérations mentales
biaget, J |, Id, p. 539
Le validation de I'ensemble de la typologie (40 modules) se poursuit actuellement suprés de
greupes de sujets plus nombreux el d'age divers environ 200 sujets, enfants,
adlescents, étudiants universitaires et edultes
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RESUME

Nos travaux de recherche sont orieniés vers li prise en compie d'un enseignemeni de la progranmalion en
LOGO graphique afin d'en constaicr U'efficacité lors de transferts ¢t d'interactions avec d'autres domaines de con-
naissance. Dans cet article, les résuliats obtenus d 'issue de trois Tests rendent compte de {'évalution des compé-
tences lors de mesures d'angles pour dewx groupes apparcillés. Lewr analyse apporte des éléments sur la structura-
tion du concept d angle gréce ¢ la comparaison de deux traitements pédagogiques wiilisant des supports de repré-

sentation différents; avec écran versus sans écran.

INTRODUCTION

Depuis les intuitions de S. Papert, de norabreux travaux ont é1é conduits sur les rapports entre le concept ¢'angle
et sor. approche en LOGO graphique. L'analyse des champs conceptuels menée par A. Rouchicr <1>, J. Hillel <2>
ou les recherches concemant la structuration de ces notions auprés d'éléves menées par C. Hoyles <3> n'en sont
que d'eaccllents excmples. 11 convient toutefois, pour comprendre les résultats présentés d'ajouter deux précisions ¢
- Logo cstun systdme sansunité ou les ordres sont conférés ainsi: AV 30 TD  30.L'¢levedoitassimiler quel’or-
dre comprend en tui méme 1a notion d'unité. Le plus petit élément géomériquement traitable sur feuille est le poine,
sur écran c¢’est Ic pixel. Les différentes dénnitions d'écran déterminent alors 1a valeur réelle de 'unité ce qut
constituc un référent complexc pour un ¢léve, ¢t conduit par exemple a pouvoir éuablir la distinction a priori entre

une figure représentant un polyrone de 25 cotés ot un cercle en fonction de ta surface et de 1a qualité de 'éran.

- Le systeme de mesure des anples Logo ca bhasé sar ta division du cercle en 3607, 11 suppose done une ceraime
représentation de la division que n'ont pas tous tes éleves en début de cyele moyen Enfir, les effets de ta pamtrve
TOURNE peuvent se combuner, pas operatons, dans un systeme de base 360, dans leguel, O et 360 ont un ef e
ientique. Stectie Jogique rappetie colie du cadran horare, elie constitue tomelons un SysIeme asses pouvedy peur

lee Eleves au ddbut du evele monven

Pour ceite recheeche, des épreirves Gri ¢ constewntes et vénhiées aupres d'un cchanullon représentatd elics

permettent de rendee compre de érat des compéiences lars du_caleul de pénmcts ou de mesures dangles Par
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aillcurs, cllcs vérifient I'évolution de certains pré-requis concemant aptitude 3 itérer une sune ou 3 discriminer
droite et gauche sur un plan oriemé. Enfin, cllcs évaluent cerwins esavoir-faire-faire» en Logo. A la suite d'une
premiére passation, deux classes de CM 1 sont respectivement scindées en 2 groupes rendus homogenes : A et B.
1Is vont alors découvrir concepts ct outils en suivant simultanément deux progressions peéalablement définics de
12h. A I'issuc de chacunc, ils repassent les épreuves. Les résultats otxenus par 24 éleves découvrant impliciiement
certains concepts grice A P'apprentissage de la programmation en Logo graphique, puis exphicitement sans ordina-
tcur, sont comparés & ceux des 24 autres découvrant ces mémes concepts dans un ordre inversé sclon le plan

Susvant:

Test } | entrainement | Test 2 | entrainement Test 3

groupe A LOGO géométric

groupe B péométrie 1.OGO

L.a misc en place des progressions s'inscrit dans le cadre général de I'enseignement des mathématiques et plus
particulérement de la géométric i I'éeole élémentaire. A ce sujet, M. Blanc, <4> dépage uois périodes dans ensei-
gnement des mathématiques a 1'école et au coilege :

- de 1945 a 1970 : Les problemes de mesurage sont au centre des préoccupations,
-de 197021977 : Mathématiques modemnes; les angles ne figurent plus au programme;
- depuis 1977 ¢ L'idée de stwation probleme s'impose. L angle apparait comme un élément perunent ¢ans 13 cons-

truction de figures ¢t comme un invanant tors de certunes transformations géométnigues.

Résolument axés sur les acquis de notre époque, les cancepiions issucs do Ly troisicme période ont marqué
I'¢laboration des progressions construites en équipe alin de s'inscrire o... « cadre scolaire. L.a progression utilisant
le LOGO grarhigue propose apets 2 sfances de découverte des primitives fondumentales de faire dessiner sur
I'écran des figures choisies dans un corpus ordonné sclon des difficultés croissantes. L'agencement de celles-¢
permet, Facquisinon de itération, puis, 11 défininon de procédures. Les figures proposées sont des polygones, des
frpures composées de polygones, de sepments, d'angles droils ou non-droits, Des difficuliés pédagogigues st
soulevees pas b mise enocuvre de cette progression <S>0 La progression de géomdtne sany ordinateur, conduit
les éleves d découvrir Pangic pour intégrer conune ¢lément bors de situabions de desenpnon. Ce desenipteur e
A retenu et combind b dlaatres afin d'élaborer une classibicanon des polygones of fipares imsorites au pro

SrnTe
Pecresoliore obtenus P esue des trons Tests s TH T TR o Vobjet de travtements statistiques échards o complé

s par Fanalyee des gustifications apponées par chaque eleve Debasant momentace neng Les reanltats coneemast

e valent du pénmete que om dega en partie fat Pobyen de presentations « 8 Jes readiare rapportés concernent
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mesurce d’angles.

EPREUVE DES ANGLES (cf. annexe)

Lors du rodage des épreuvces ¢t des progressions, nous avons fait passcr cette éprcuve 4 85 éléves, en début de
cycle moyen, répartis sur plusicurs classes dont celles des enscignants qui ont participé A 1'expérience 1'année
sutvante. A deux exceptions prés les éléves n'ont rien répondu. De ce fait cetle épreuve n'a pas €1¢ passée au Ti

les résuliats nuls élant considérés conune acquis.

Al'issue du T2

Préalablement 3 toute consiatation pastant des résultats, Uobservation des réactions des ¢leves lors de la passation
de cette épreuve est riche d'enscignemenis. Elle permiet de remarquer que plusicurs individus du groupe A
demandent a aller chercher leur regle alors que cerwains du groupe B réclament leur rapporteur. Poursuivant cette
piste, nous constatons a la lecture des résultats que 8 éleves du groupe A foumnissent toutes leurs réponses sans
unité. Sculs 2 éleves du groupe B réagissent ainst. Ces différences relevées peuvent en partie s’expliquer par le
statut déja mentionné qu'occupe 'unité dans la géotmctriec LOGO. 1. ubsence de référent explicite ¢ d'unité discn
minante en géoméuic LOGO ne peninet pas, aussi facilement qu* pour la progression non-Logo, 2 1'éléve débutant,

de dissocier 'assimilation souvent constatée entre longueur ct écartement des cotés.,

Sur le tableau suivant ob sont suceessivement représente en ligne @ b somme (SX) des réponses justes oblenues
puis la movenne (MQOY) pour chacun des groupes A et B, fa valeur calculée au «T de Student» pour la conipraison
des ces deux moyennes, eafin le scuil de signification de celle<i en considérant 46 d.d.1. ¢t ne retenant comme si-
grificatives que les valeurs infédeures i .10. En colonne, chaque item est représenté par la réponse attendue, et la

dermicre colonne représentée par un «T» est le résultat en ligne tous items confondus.

ANT2 0 907 180 o0 3200 439 45° 607 307 60° 120 T
_S?,\'-—_ ‘";‘_]‘*_";'(')“""2(""'"' 22 —]()_ 13 ___("»_ ?.—_.—“ 2 1 164
MOY A0,79 054 0,50 042 042 042 0,25 Ce e e L3080
MOY BOTS 005070 00 025 0,12 coe | 333
teal 1A 3T 14T 056 121 238 076 0,25
SEUIL NS 00 < 10 NS NS - 05 « 0 NS

On obtient T4 riromses vies sur 480 aendues sat 3% g bonnes reponses Ces reponses sont également

roparhies sur les deus proupes donnant de. nmgmdx presque dentiques O peat déga considérer que du pons
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' de vuc des angles, les é1@ves du Groupe BB ont appris quelque chuse, on pouvait 'y attendre;mais ccux du Groupe
A ont également progressé... et ailleurs qu'en LOGO). lem par stem La comparaison des moyennes peimet de savoir

st un groupe progresse plus que |'autre.

N n’y a pas de dilférence significative entre les deux groupes pour Fitem concernant Fangle de 90°. Clest 1'item I
micux réussit aloss que 1'angle de 90° ost ici intégré Jans unc figure probleéme. Ceci inontre en outre que les élévey

ont pu lirc, rester attentifs jusqu'au 5° item et repérer dans Cette situation unc CONNAISSANCE acyuisc.

Le groupe B réussit micux leg items 2 ¢t 3 (180 ¢t 607). [ addition d'angle. pour obienir 1807 est I'itern qui marque
te plus la différence entre les deux groupes. Les éleves tu groupe B justifient les résultats obtenus a Pitern 180 par
unc addition de méme & 'itent 607 ils utilisent souvent L soustraction : 180 - 120 : 60, $'i1 y a une réelle influence de
1a méthode sur ces deux items, ce qu'il ne sera possible de vérifier qu'au T3, alors unc recherche des causes sera

entreprise afin de jusiifier cc constat.

Pour I'nnem 1 de 320° (complément 2 360 de 407) la différence enuc les deux groupes est non-significative.
Toutefois cet item ¢st mois bien téussi que ceux concernant i'angle plat. On peut penser que la disposition des inems
sur la feuille induil quelques bonnes réponses en séric pour les items 2 et 3. [l convient toutefois de remarquer que
lc concept d’angle semble se construire 2 partir de §'angle de 90° pour s'¢largir a 'angle de 180° puis a I'anglc de

360°. 11 s"agit pour des €léves ne maitrisant pas encore Ie mécanisme opératoire de la division d'unc approche par

fraction (moiti¢, quan). Cette observation, sera délailice par I'analyse du protocole de Farid,

Lobservaton des résultats ottenus aux items 5-A ¢t 5-B oos deux angles de 457 ¢u demu-carré monire, que (ous
les éléves du Groupe A réussissant un item réussissent Vautre, Il en n'est pas de méme pour je groupe B : trois
él2ves réussissent un item ct pas Hautre. Pous cux ccs deux items ne .. ~lentiques. [l s*agit 1a d’un mauvais re-

pérage des invariants loes de la constitution de 1a représentation d'unc classe d'équivalence.

Les éleves du groupe A réussissant aux trots items du rectangle § ne sont capables de justificr de leut réponse ny

GU7¢entaade d'une opération, ni méme i Uotal,

Llangle de Uhexagone de Uitem 4 est pour Vensemble des ¢eves encore inaceessible, Aucun transfent ne < fait

poacle proupe A arnr di « Phéoreme du Traget Total do La Torues (- 1)

’

Famesure do Lidispersion simpose cosdite, Ble permet dfobteni une volew o0 D6 poar Vécant type da
Gronpe A contre 1,60 pour celic du groupe B Le gronpe A est de w beancoup phas disperse, Iy a une miiuence
do b méthode sur cetindsce. Toutefois, o comviendra d'attiner ot eventuellement de confanier (o consat d une part

prce dodes observations sumilanes mendes o saoe dic T3 daure part enanadysant L repartinon des bonnes
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répanses suivant les individus.

Enfin, quclques cxplications relevées parmi celles foumics par des éléves corroborent cenaines observations:
- Farid (groupe A) justific toutes scs bonnes réponses par des affirmations utilisant des fractions connues : le quart
ou la moitié. Ainsi & 1'item 3 il proposc : PARCE QUE : «120 cst les trois quart de 180» ct A I'item 5-B concemant un
angle de 45°: PARCE QUE : «45° est lc demi quart de 360°s. Cetie logique basée sur des fractions connucs ne lui
permet alors d'accéder ni A |'hexagone ni au rectangle de L'item 6. Elle montre toutefois comment un éléve encore
incapable de poser une division i relié cette opération au concept d’angle. L'utilisation de la division lors de
conjcctures sur les angles devrait permettre & Farid de passer de Fangle droit, traitable, comme il le (ait, par les frac-
tions de quart ¢t de moitié a I'angle de 907, 11 pourrait, en intégrant toutes les divisions du cercle de 360°, améliorer
ses performances.
- Tagati (groupe B) justific sa bonne réponse de 90° au 5-A ainsi : PARCE QUE : «c’cst un angle droit alors 'angle
droit mesure 90°». La liaison logique qu'clle établit par 1'utilisation de «alors» montre que la corrélation entre unc

classe d'équivalence ct son signifié n'est pas cucore éuablie de fagon ues logique ct sure.
Si I'on rapproche les conclusions de cette observation de celle du protocole précédent alors on constate que

I'association : angle droit, angle de 90° sc construit ¢t & unc signification. Elle marque le passage d’une représenta-

tion rendue fonctionnelle par I'utitisation de fractions A une représentation devenue fonctionnelle et opérationnali-

sable,

Alissucdu T3

Les résultats obtenus sont présentés sur ic tableau suivant dont la présentation est identique au précéden:.

AN.T3 90° 180 60° 320 45°¢ 45° 60° 3¢° 60° 120 T
SX 490 44 33 37 27 25 4 ] 1 4 22
MOY A 0,83 0,88 0,67 0,79 0,54 0,46 0,04 0,08 0,00 0,041 4,3¢
MOY B 0,83 0,96 0,71 0,79 0,% 0,5 0,13 0,13 0,04 0,13/ 4,82
Lt cal ron 1,03 0,38 0,36 0,33 0,19 0,1% 0,32 1,00 0,15] 0,7:
SEUTIL N.8 N.S N.S N.S N.S N.S N.S N.S N.G N.S N.S

Tout d'abord, 221 répanses exactes, soit 46 % de bonnes réponses, sont obtenues, Cela correspond 3 une
progression de 12 ponts par rappart au pourcentage obtenu au T2 (36 ). Ce progeds est moms imponant que

celur constaté entre fe T et le T2 Cela semble logrquee st 1%on estime que Tes notons fes phas faciles d'aceés sont

QCGUISCS N priontd
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Les deux groupes n'étaient plus homogdnes apeés 1e T2, Leur permutation 3 ew pour conségquence de niveler
les différences révéldes par les résultats. La répétition des effets vient done, confitmer les hypothéses présentées 3
"issuc du T2. La plus générale était issuc de I'observation des écarts types. Au T3 on reléve une valeur de 2,00
pour 1'écant type du groupe A ¢t de 2,25 paur celle du groupe B. Compte tenu qu'il y a progression ct rattrapage
des différences aprds inversion des traitements pédagogiques, on est maintenant en mesure daffirmer que du point
de vuc des résultats obtenus a épreuve des angles, 1a géoméuric LOGO elle qu'cllc a éié pratiquée engendre
plus d'écart cntre les éléves. Lanalyse des flux entre les deux Tests permet méme de monirer que la géométrie

non-LOGO mise en place est plus démocratisante. [ convient a nouveau de conduire 1'analyse item par item.

Pour I'angle de 90° il n'y 3 aucunc différence significative cnure les deux groupes. Mais, 1ordre des réussites
s*est modifié : Les éleves, au T3, réussissent micux !'item 3 concemant 1'addition des valeurs pour arriver 2 180°, que
cclui de 90°. Additionner des valeurs représentant des angies cst devenu plus simple qu'identifier un angle de 90°

sur unc figure.

Aux items 180 et 60° une différence significative entre les deux groupes 3 I'issue du T2 a éié constaée. Puisque
cette différence n'est plus significative aprés 1'inversion des raitements pédagogiques, on peut conclure 3 un
meilleur cffet de la progression non-LOGO pour ces deux items. Les éleves doivent, pour réussir ces deua items
dévclopper des conjectures utibisant la supplémentarité. Celles-ci sont liées dans un cas 2 I'addition dans "autre 3 la
soustraction. L’acquisition de ¢ces mécanismes en LOGO a déja éié éwdiée par D. Mendcelson <7>. Par la progres-
sion non-L.ogo la découverte de 1a complémentarité et de 12 supplémentarité avait ¢té abordée par 1'observation de
plans symbolisant des ouvertures de portes dans {a ligne des travaux proposés par ERMEL concemant les fausses
équerres ¢l faux comypas <8>. Les situantons évoquées par les nortes correspondent trés exactement a ces deux
items, La medieure efficacité d'une progression s’explique alors par la nature de la méaphore cmployée gu pe: ot

plus facilement e transfert des compéiences opératoires.

Pour les deuv angles de 457, on constate & nouveau Pinversion des tendances décrites, concernant la répartition
des résultats entre les deux groupes a 'issue du T2, Maintenan, tous les ¢1eves du Groupe B répondant juste 3 H'un
des stems concernant angle de 45° répondent juste 3 1'autre. Deux éleves du groupe A présentent un pattern de
réponse différent pour ces deun atems Le travait en 1LOGO favorise la constitution des invananis nécessaires 2 s

formation de classes d'équivalence pour es angles

Four les s 6, Ly difference entre des groupes est nons sigmificative. A 1issue du T2 elle n'avait pu Ctre testee
;
puisqutancun éeve du groupe Bone répondant i ces items. Toutelois 'observation des distubutions par groupe des
crrcurs avant conduit & constater que les ¢leves du groupe A essayaient plus factlement ces items. Cetie teadance

SHNVCESe ) nouvew
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L angle de hexagone n'est plus Pitem e plus dilficife & réussir. 2 éleves ayant débuté par e LOGO sont capa-

bles de répondre justement.

CONCLUSIONS

L.a premiére conclusion qui s'impose conceme {'efficacité de 'épreuve construite qui permet unc discrimination
asscr fine des éléves en cnregistrant tout de méme des ceffets plafonds (90°) et planchers (rectanglc). 11 manque

toutefois A cc corpus quelques items conduisant 2 comparer des angles. Par un plan expérimental adapté, les résul-

tats obtenus a P'issue de traitements pédagogiques différents montrent que les éigves ayant utilisé LOGO omt non
sculement appris ce langage mais Qu'ils ont également acquis des connaissances sur les objets manipulés. Ce constat
n'autorisc toutefois pas a plaidoyer cn faveur de I’apprentissage de 1a programmation a 1'école sans qu'unc ré-
flexion pédagogique soit entreprise a pantir de Pensemble des conclusions. En effet, les représentations du concepe
d’angle éablies A partir de la progression LOGQ sont moins fiables que celies établies a partir de la progression
non-Logo. Par ailleurs, si Logo a développé un esprit d’analyse parfois performant pour des figures complexes, sa
portée, expérimentée en dehors de tout cadre conceptuel a été restreinie lorsqu'une conceptualisation modélisante
a éi¢ entreprisc a posteriori. Enfin et surtout, 13 progression utilisant LOGO, introduite sans distinction aupeés dec
tous les ¢iéves de deux classes de CM 1, comparée a partir de critéres institutionnels 3 unc progression n’employant

pas cct outil, a cu, sur cette réussite, des cffets élitisies.
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INTHRACTION BY OPEN DISCUSSTON AND “SCLENTIFIC DEBATE" IN A

Rescarch group on Didactics of Mathematics of the Section of
Pedagogy, History and Philosophy of Mathematics
Department of Mathematics

University of Patras, Greace

Presentation: T. Patronis

Summary: This paper is a report and analysis of an experience
which is an instance from one yecar of experimentation with a
class of 12-13 yecars old pupils. The general object of study
is the development of thought in solving "open-ended genera-
ting problems" and the corresponding interaction between
solvers. In the cexperience reported here there was a problem
given, where it was asked from the pupils to compare the num-
bers of treces planted in three different ways in rectangular
fields of same dimensions. 1In analysing the results of this
experimentation, we discuss the role of a socio-cognitive
conflict during the development of the process of solving the
above problem in the classrcocom, in a situation of open discus:
sion and debate.

1. The general context of the research

The expoerience that {ollows is only an instance in one
yvear of experimentation with a c¢lass of 30 young pupils of
12-13 years of age. The general object of study is the deve-
lopment of thought in solving "open-ended gencrating problems
and the corresponding interaction, between the solvers, n a
situation of open discussion in the classroom.

By an open-ended generating problem we mean a problem,
formulated not an the usual mathemat ical language, but in oa
natwral Tanaguaae familiar to the solvers, which Teads poten-
tially to o gpecifio mathemat ical concepts (or model:),

provided that, eather these conceopts or the way of theyr ap-
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plication to the solution of the problem are not known in
advance to the solvers.

By open discussion in the classroom we mean any discus-

sion on some problem and/or the process of the problem's
solution, the formulation, the models used etc., provided

that in this discussion the following conditions are satisfied
- every student (or pupil) has already obtain some autonomy
of action, and he (she) keeps this autonomy;

- any point of view, any ideas or conceptions are respectable
and can be expressed in the discussion;

~ there are several intentions in the discussion, but none of
them (in particular neither those of the tcacher) is
considered as dominant a priori.

Interaction by open discussion may give risec to psycho-

logical and conceptual (socio-cognitive) conflicts which are
important for the construction and eclaboration of mathematical
concepts and ideas, but it corresponds to a "didactical con-
tract" - in the sense of G. BROUSSEAU (1986) - which, in
gencral, cannot be casily realized in practice (see for exam-
ple M. LEGRAND and his group (198, * . an organization of
"scientific debate”" in classes at the university level).
Although situations leading to interaction by open discussicn
and "scientific debate" in the classroom can be provoked and
stimulated by suitable (open-ended) generating problems,
actually the larger part of such a discussion is spontancous
and the whole process cannot be predicted in advance, neither
1t can be evaluated by tests etc.

Starting from these remarks, wo adopted the follewin:
organication of the discussion and method of observation:

The clasas is divided into small groups, with 3-6 pupils in
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cach one of them. Discussion of a problem in these groups,

developing of an idea (or plan) and carrying it out constitute

the first phase of the process of interaction. The second pha

comprises communication of results, open discussion and critic
in the classroom. In case of a lasting debate (as the one re-
ported below) there is also a third phase, in which representa
tives from "opponent" groups are called to form a new group
where the discussion continues. During all these phases each
member of our research group undertakes a role of participant
observer in one of the groups of the pupils and gives a report
at the end of each meeting. Mcanwhile all discussions have be
tape-recorded; the tapés are compared to the children's note
or drawings and to the "local" reports of the observers, so th

an analysis from a "global" viewpoint becomes possible.
Yy

2. The experience and its analysis

A problem was given in the form of a dialogue between a

father-farmer and his three sons, as follows,

FATHER: Boys, I have to go to the city this morning.
I've just started planting those olive trees
in the three fields you saw yesterday. You
must continue now; each of you will take care
of one field...

SON A : I'11 get the smallest one!

FATHER: But they are all the same, you know that.
Come and see them once more!

SON B : (Sceing the fields and the trees already
planted-Fig.1): The threc fields may be the
same, but as you have put the trees in each-
onc of them, father, it seems to me that
there are more trees to be planted in one
of the fields and less in the others.

SON C ¢ Oh, we have to check this by paper and
pencil...
Son A @ Okey.,..(whispering:) Anyway, 1'11 plant
the fewest trees myself!. ..
It was asked f{rom the pupils to continuce this dialogue anc hel

the three brothers in their trouble.
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During the first phase (interaction in small groups) ar
also for a long time during the next phases, a group of 6
Pupils - which from now on will be called "ggggg_ﬁ" - was try
ing to apply the formula of the area of = rectangle

Area = Basc x Altitude
to the given figures, in order to evaluate from this the tota
number of trees that would finally exist in each rectanqular
fiold.‘ The same approach has been followed also for a while
by some isolated pPupils outside of Group A. But these pupils
were soon discouraged by th: reaction of the rest members of
their groups.

Mecanwhile, the rest of the ciass {about the 4/5 cf it,
as it results from the children's Own notes and drawings) had
broceeded in a mere direct and natural way: In ecach field ther
would be a final number of trees equal to

8 rows x 11 trees/row = 88 trees.
Subtracting the number of trees already planted (which is ¢czm-
mon {or the three fields: 24) one aets 64 trees that have te b
Planted in cach fin'id. We o shall consider the pupils who fol-
Lowed bt hig dPProach o belonging to "Qxiqu_;:)_ RARN

On the otherp hand, the result obtajned by some ¢f (he
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pupils of Group A at the beginning of their efforts was dif-
torent: The final number of trees in ecach ficld was evaluated
as 7 x 10 instcad of 8 x 11. This result follows from a con-
ception of the problem according to a scheme that appeared in
the drawings of Group A (Fig. 2a). According to this scheme,
the external rows of trees form a rectangle (with 4 trees at
its vertices); if the distance between two consecutive trees ir
a row is, say, 2 units, then the areca of the rectangle is
(7 x 2) x (10 x 2) area units.
Let us call this scheme "Scheme AI". Later this scheme

changed and developed into "Scheme AII" (Fig. 2b).

Fig. 2a Fig. 2b
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In the sccond phase of interaction (open discussion in

the classroom) thore was a strong opposition between Groups A

and B, but 1in fact only a part of Group B was engaged in this

debate (unfortunately most of the girls were not). The criti-

cism of Group B was directed mainly against the method used by
Group A. The main arqgument against this method was the fol-

lowing, as exproscaod by a boy of Group R
"How much 1o the distance hetween two trees?
Feo ot Ty It cannot be so, for if woe have
anoarea af, aay, 284m7, then we need not have
268 trees!  PFor the same reason the distance

\

cannot be Jmoor im, L L
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In replying to this argument, the members of Group A
produced their answer according to Scheme AII, which they
defended by the following words:

"Each trec corresponds to a unit of area. If the
distance between two (consecutive) trees was bigger,
then this area unit would be bigger too. The
distance of trees determines the unit of area."

"Let x be the distance between two consecutive trces
in a row. I take this as a unit of length and I call
it "tree-unit" (!). Then the area of the rectangular
field will Le equal to

(8 » x) - (11 - x). "

But then a new objection was raised:

“The distance between two consecutive trees need not

be the same with the distance of extreme trees from

the edge of the field (Fig. 1). So the true area of
the field is different from that you are talking
about ."

(The boy was addressed to Group A.)

As it has already been mentioned in the introduction,
there was also a third phase in this experience. Some represen
tatives of the two opponent "parties" were called to form a new
group and continue the discussion. In this last phase a boy
from “roup A explained his point of view with the following
wordn e

"Look here...in order to unac...and cf what I am

talking about: May be the area is not convenient,

but I have used it in order to make things ecasier

for me and for you ...because the area of the field

and the number of the trees which will be p»lanted

1n it may be related a little: the field contains

as many trees as much is its surface areca, and vice-

versa; finally it's the same thing."

In replying to this, the children of Group B repeated
their argument s, without anything new,

Foroan analysia and an interpretation of the reaults
cxpocod above we tool into consideration the views of eocial
denetic praychology and epistemology, according o which the
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socio-cognitive conflict is a conflict of communication rather
than an internal conflict of the individual; it is by the inte-
raction and common activity of partners that the'subject is led
to the construction {or co-claboration with some partner) of new
operational schemes during the cognitive development (F.CARUGATI
and G. MUGNY, 1985). On the other hand, according to G. BROUS-
SEAU (1988), in a situation of cognitive conflict the subject
has either to choose among two alternative schemes of actioa or
models of formulation that are (or appear to the subject to be)
incompatible, or to make these two alternatives compatible by
modifying one of them.

In our casc the formula for the area of a rectangle,
which was known to subjects of Group A from the elementary

school, offered to them a mathematical context, a model of for-

mulation {in the sense of G. BROUSSEAU) for the solution of the
problem. However, at the beginning this model was not well
adapted to the problem itseltl.,

In the present experience, as well as in many other ins-
tances of our experimentation, this kind of behavior was tvpical
In solving a problem, some pupils tend to apply those mathema-
tical methods and tools (familiar to them from the previous
"successful” mathematical school experience) which apparently
"fit" the situation. Usually these pupils do not examine
whother their method ie relevant to the given problem. tinéar
the conditions of the usual didactical contract, this behavior
bocomes casily stereotyped and it is generally accepted without

any corments or reaction from o the teacher and the other pugtils.

Fuat in a si1tuathron of open drscussion there is some reacticn,
whicii may Lo exprensed in several ways.  In our case this reac-
tion was eoxprescod at the cognitive level, o0 the mat hematical
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content and method used; thus it took the form of a "scientif
dcbate”.

This debate is not superficial. The initial approach o

Group A to the given problem evoked a conflict, which has two
principal, complementary aspects:

(1) It is an "internal® conflict for the subjects of
Group A: The model they used being not well adapted to the pn
blem, the solution initially obtained does not agrec with tha
expected from experience (Scheme AI}.

(ii) (Social aspect of the conflict:) The rest of the

pupils of the class, having solved the problem in a more dire
and natural way, do not accept the method used by Group A and
some of them produce arguments against it. This situation ha:
an immediate effect on the subjects f Group A, because these
subjects are now led to justify their approach; but in doing s

they need to revise and reorganize it according to a new schen

(besides, this was necessary from (i), since their sclution di
net aagree with empirical facts).

From this debate emerg.~d a new tormulation of thc proble

by a suitable modification of the initial scheme. The crucial
step was to establish a natural cour..spondence between trees a

units of area (Scheme AII) .
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FORMAL AND INFORMAL SOURCES OF MENTAL MODELS
FOR NEGATIVE NUMBERS

Irit Peled', Swapna Mukhopadhyay, and Lauren B. Resnick

Learning Research and Development Center
University of Pittsburgh, USA

Summary

Interviews with children prior to instruction on negative numbers reveal a progression
from a model of number without negatives to models in which all of the integers, positive
and negative, are ordered in a "mental number line.” In the Divided Number Line model,
two symmetric strings of numbers are joined at zero; children compute in terms of moves
toward and away from zero, using special partitioning procedures to cross zero. In the
more mathematically coherent Continuous Number Line model. they compute as it the
number line were continuous, going "up” for addition and "down" for subtraction. These
models are abstract and do not reter to practical situations such as debts and assets. They
appear to be elaborations of children's knowledge of positive integers, which have become
mental objects in their own right, without necessary external reterence.

Introduction

Children’s concepts of the positive integers can be shown to develop out of their
early experience with the ways in which the physical material of the world composes and
decomposes, together with their mastery of the formalism of counting (Resnick, in press).
From the fact that physical matenal adds in systematic ways, and from their experience in
quantitying amounts of material through counting, children arrive at a basic mathematical
principle of additive composition of number. This, in turn, entails properties such as
commutativity of addition and comnlementarity of addition and subtraction.

Beyond the positive integers, it is not so clear that mathematical knowledge can be
directly rooted in physical experience. When negative numbers are added to the integer
system, for example, there is no way that children can experience the quantification (e.g.,
through counting) of a "negative set.” Does this mean that negative numbers can be
learned only as a formal system? Or dc children develop intuitions prior to formal instruction
that they can use in understanding the formal system, much as younger children use their
intuitions about physical quantity as they learn about the integer number system? Put
another way, what mental models of negative numbers and of operations on them do
chitdren have prior to formal instruction?

‘Now at Schooal of Education, Hata Univeraty. tsraal
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Method
To address this question, we studied children in a private girls’ school. In this schoc
negative numbers were first formally introduced in Grades six and seven. Children in firs
thir., fith, seventh, and ninth grades were given a written test of negative numbe
knowledge. Following this, six children in each grade were interviewed using a clinicz
interview method that probed for their explanations and justifications of problems.

Summary of Test Results

Results of the test showed a clear effect of both age and instruction. First graders were¢
totally unable to do arnthmetic on signed numbers. For example, only one of them
recognized that -4 is a larger number than -6. In third and fifth grades, up to half of the
children were able to solve many of the operation problems, and almost ail fifth graders
knew that -4 is larger than -6, suggesting that they had constructed a mental number line
that included negative numbers. By seventh grade, a year after instruction on the negative
number system began, almast ali students could do all of the problems; and by ninth grade,
perfarmance was perfect. Typical errors on the arithmetic operations problems among the
first graders suggested that they had no conception that negative numbers might exist. Their
answers were always positive integers. To arrive at these answers, they inverted numbers
freely (e.9., 5 - 7 was treated as 7 - 5) or ignored signs (e.g., -5 +8 was treated as 5 + 8).
Several made it clear that they thought there were na negative numbers by saying that a
small number minus a larger one (e.g., 5 - 7) yielded zero. Third and fifth graders were
more likely to generate negative numbers as answers, showing that they believed in their
existence. Howevnr, they applied idiosyncratic rules that did not respect the conventions of

negative number notation. For examnle, they treated -5+8 as if it were -(5+8), yielding -13
as an answer.

Interview Rc.
Mental Models of Negative Number

Interview results provide a view of the mental models underlying the children’s test
performances. Gererally, we saw a progression from a model of number in which negative
numbers (numbers falling below zero) essentially do not exist to a model in which all of the
integers, positive and negative, are ordered in a "mental number line” with a symmetrical
organization ot numbers around zero. Based on their numbszi ordering performances.
several first and third graders could be seen to have no representation of negatives as
taling below zero. They either placed negatives next to the corresponding positives or
treated them as all equivalent to zero. At the next level of development, one first grader
knew that negatives foll "on the other side” of zero, but did not reprasent the symmaetry of
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the numbers around zero. Most third graders and all fifth graders did represent this
symmetry and showed an ordering consonant with the number line.

Studying the children's responses to the general question of what they knew about
negative numbaers and their responses to the aporations problems reveads that theroe are two
torms of number line representation. In the most advanced (the Continuous Number Line or
CNL model), children represent the numbers as ordered along a single continuum trom
smaller (the negatives) to larger (the positives):

Larger S
3 2 -1 0 +#1 +2 +3
Children with this CNL model need no special rules for “counting across" zero. Children
with this model might mention a division of the number line at zero, but they mostly
computed as if the number line were continuous, going “up” for addition and “down® for
subtraction.

A less mathematically coherent number line model joins two symmetric strings of
numbers at zero and stresses movements toward and away from zero rather than just up
and down. We call this a Divided Number Line (or DNL) model:

Smaller

.. ‘Larger
3 -2 -1 0 4+t 42 43

This model requires special rules for crossing zero, usually in the form ot a parition of the
number to be added or subtracted. The typical child using this model would parition the
number to be added or subtracted into the amount needed to reach zero and then continue
counting off “the rest” on the other side of zero. It is charactenstic of children using a DNL
model that, on problems in which it is not necessary to cross zero, they talked of doing
addition or subtraction "on the negative side.”

Constructing this mental number line model is not an all-or-none or an alf-at-once
matter tor children. Several children could describe number line models but not use them
effectively. Interwoven with problems of constructing a coherent mental model that includes
negative numbers is the problem children face of learning the conventions of signed number
notation. Several errors in the protocols seem to derive from not knowing how to encode
centain notations. This occurs especially when plus signs are understood but not shown. it
also occurs, however, when a chid's mental model cannot handle a problem that is
presented. This is the case when a negative number must be subtracted from a positive
number (e.g.. [+4]-[-2]). Neither the CNL nor the DNL mode! can coherently represent this
problem A typical response is  either to mentally delete one of the minus signs (yielding
the answer [+2] to our example problem) or to mentally exchange the positions of the plus
sian and the negativie operator sign (converting the problem to [4]4( 2] and yielding the
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answer {-6]).

Conclusion
This study, aithough only exploratory in nature, provides clear evidence that many
children construct mental models that include negative numbers before school instruction on
this topic is offered. Some become quite facile in doing arithmetic operations on the basis of
this model, clearly drawing on their models of the positive numbers to do this. This is most
apparent in the partitioning strategies (go to zera, then finish the rest on the other side) that
children with the DNL model use.

it is striking that the two number line models that our subjects developed were quite
abstract. We had expected to find them thinking about debts and assets--having numbers of
things and owing amounts to others. A few children mentioned such conceptions: for
example, one child said she had seen her mother's budget sheets at work and knew that
negative numbers stood for how many more hours someone had to work to get paid;
another said negative numbers were "bad marks" that balanced good ones. Debts and
assets are thought to have played a role in the historical introduction of negative numbers
in Western mathematics; negatives were needed for the bookkeeping systems that
developed as commerce expanded in the Renaissance. Yet, although they mentioned them,
none of our children actually used debts and assets in their reasoning. if they could reason
about negative numbers at all, they did so in terms of the mental number line models we
have described.

What are the possible origins of the mental number line model? First of all, there is
good evidence that a mental number line for ‘he positive numbers is established by most
children even belfore school entry (Resnick, 1983). They initially use this representation to
compare the relative sizes of numbers. it is reasunable ‘o ppose that over the first years
of school they gradually relate this number line reoreseination to the operations of addition
and subtraction. Children's general experience with symmetry (some even mentioned mirrors
in discussing what negative numbers might be) is a likely source of the divided number line
idea. once the existence of numbers with minus signs have been noticed and thought
about. What would remain would be to find a means of crossing the zero when doing
calculations on the mental number line. Here it seems that children were applying well-
developed ideas of additive composition (cf. Resnick, 1986) to produce the partitioning
strategy that we observed among many children. In sum, children seem able to develog
pre-instructional intuitions about purely mathematical entities (the negative numbers) by
elaborating previously developed ideas about number (additive composition and partitioning:
that were onginally rooted in physical experience but have, through practice. become «o
familiar as to become intutions i tt\ow own naht.
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INVERGE PROCEDUREG: THE INFLUENCE OF A DIDACTIC PROPOSAL ON
PUPILE®' STRATEGIES ¢« (==

Angela Pesci, Dept. of Mathematics, University of Pavia, [taly

GUMARY

With this research we intend to study the influence of a didac-
tic proposal for the ages 11-12 on pupils' strategies to solve
problems with inverse procedures.

The didactic proposal includes the concepts of relation between
two sets, inverse relation, composition of relation and inverse
of a composite relation; both in and out of mathematical con-
texts and with the aid of visualisation with arrows.

The proposal was presented to an experimental group of 33
pupils. The experimental group and another of control « 21
pupils) were tested by 3 questionnaires, the results of which

are described.

1. Introductjion

One of the principle aims of mathematics teaching to stu-
dentea 12-14 years old 1is the acqQuisition of proportional
reasoning. But, every teacher notes that such acquisition is
still wvery unstable in students of upper secondary schools.
Moreover, ! would also say that for many adults, lacking the
help of scholastic habits, the solution, for example, of in-
verse multiplicative problemse still constitutes an  insurmount-
able obstacle.

This Jjustifies the vast amount of literature on the theme

In question.

In particular, referring to inverse procedures, 1t has
been observed by Mariotti et al. (see Ref. 7) that errars can
be due to the fact that, in common didactic practice, addition

and subtraction, but even moreso multiplication and division,
are not considered as twao aspects aof the same  structure
(additive and multiplicative respectively).

AL the fairst presentation of these operation:, at the

’

(») This research supported by the C.N.R. and the ™M.P LT
(),

(#e) The paycologist MG, Gross) collaborated in this research.
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elementary level, the difference of meaning between addition

and subtraction and respectively multiplication and division is
underlined. But, after, the unified vision of these operations
is not given.

In this perspective it seems important to us to build the
more general idea of relation and inverse relation between two
numerical sets.

Again in agreement with them, we maintain that, in
reference to difficulties linked to the dimensional aspect, it
is important to progressively lead the students to "free" them-
selves from the chain of dimension, so that they can work, more
easily, with pure numbers, It is therefore essential to under-
line the structural analoqgies of the various situations.

The most favourable period for working towards these goals
seems to be from 11 to 14 years old. With these premises we
elaborated a didactic proposal for the ages 11-12 and we are
studying its influence on the strategies used by the same stu-

dents to face problems with inverse procedures.

2. The Didactic Proposal
The didactic plan, discussed with the teachers of our

group, has the following order:

- examples suitable to emphasize the concept of relation
(with expressions like "...was born in the month of...",
"...is a fan of...", "...is preceded by...", “...is the
double of...")}

- discussion of the various types of representation of a
relation (tables, graphs, list of pairs, etc.);

- the four arithmetic operations as relations;

- the importance of the order between two elements linked by
a relation (ordered pair) and the concept of inverse
relation;

- the choice of the language of arrows as the most powerful;

- the operations addition and subtraction (and respectively

multiplication and division) as 1nverse relations of each

other;

- the composition of relations in real situations (“,...15
the son of the son of...", ".v.i5 the son of the daughter
of...") and in ari1thmetic type situations ("add 2 and mul-

tiply by 37, "add 1| and subtract 7", etc.) with the aic¢ of

114
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the lanquaqe of arrowst
the problem of vetuarnrng ta the ot Laing poant o the com
positinn of two or more arithmetic operations: the inver-
sion of the composition of relations.
The main objective is to use the concept and the visualisation
of relation and inverse relation for facing the wusual inverse

problems in arithmetic, geometry and daily life.

3. The Questionnaires

The first questionnaire with 8 problems (4 direct as
"distractors” and 4 inverse) was presented in three classes
(pupils aged 11-12). Two of these classes are experimental (S,
and Se) in the sense that, after the first questionnaire, the
didactic proposal described above was presented. The third
class ( C ) is a cantrol group.

The problems on the questionnaires are the following:

1. A pencil, which is 14.35cm long, measures 2.4cm less than
another. How long is the second pencil?

c. Consider the following game.
A number is chosen and then 8 is subtracted, the result is
divided by S and to that result 18 is added. Alessandra‘'s
answer was 30. With which number did she begin?

3. Im of fabric costs £it 15000. How much does 0.65m cost?

4, A TV program lasts 90 minutes and 1/3 of it is publicity.
How much time is dedicated tno the proar-am?

3. Marco calculates 3/4 of a number, then he adds S4 ta the
recsult and hi1s anaswer is 144,
With which number did he begin?

b In an art book of 630 pages, &2/5 are illustrated; 173 of
these are in colour.
How many 1llustrated pages are in colour?

7. With a calculator I did 2/5 of a number and then [ mult:-
plied the result by 7, getting 266,
With which numbor did [ begin?

t, On a cheashoard there are two pleces, e and ® , that can

be moved only an the following wayn:

the move of ® 1O sruares up ( 1) and then 1 SQUAT e to

the right ( —= )

the maove of = : 1 aquare down ( ‘) and 3 ¢quares to the

115
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right ( — ).

Look at the following situation:

You know that the pieces e and m HAVE ALREADY DONE three
moves each.

Trace their routes till you find where they began.

Problems 1, 3, 4 and & are direct. Problems 1 and 3 were
selected from those given in the experience described by Deri
et al.(see Ref.4). Moreover, problem 3 turned out to be dif-
ficult enough not only for the ages 11-12 but for the ages 14-
15, too.

Inverse problems 2, S and 7 deal with the inversion of the
composition of two or three arithmetic operations. Inverse
problem 8, which turned out to be the most difficult, requires
the successive application of the inverse of a composite
relation.

It must be noticed that the problematic situations in 2, 5
At ar i Lo L Lhis o e et by Ul Lo bve e e
didactic activity. But, the context is different.

Ag far as problem 8 1s concerned, it deals with the more
complex situation described above, which has never been
presented in the class. But, also the context is unusual. The
resulte of thas gquestionnarre are 1n section 4.,

After the administration of the first questionnaire, the
tecacher developed the established didactic proposal (for a to-
tal of 12-13 hours per class) 1n each of the two experimental
classes G, and G... The developing of the work was recorded, by
hand, by two final -year undergraduates in Mathematics (one 1n
each class).,

Just after the conclusion of the didactic unmit previously

described, anothor quejfionnaxrn was Proposed in the three

6
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classes S,, Sea and C. It also consists of 8 problems, almost

identical to those of the first one, however, problem 8 is
identical. This second test gives the initial indications of

the influence of the proposed activity.

The results and the comparison to those of the first ques-
tionnaire are in section 4.

The plan for classes S8, and Se included the recalling of
the concepts and the resolving strategies; not systematically,
but when it is necessary. So we want to consolidate and
develop what has been given in the didactic plan.

A final questionnaire (with the same 8 problems as the
first one) will be proposed, in the three classes, at the con-
clusien of the schoiastic year. We think it could be indica-

tive of the consolidation reached.

4. The Results

The experimental classes S, and Sa are composed of 16 and
17 pupils respectively. The control class C has 21 pupils.
The questionnaire was evaluated attributing O points for every
wrong or omitted problem and | point for correct problems. The

calculation errors were not considered.

In Table | the percentages of the correct inverse probleas
and the average scores obtained, for all three classes, in the
first and second questionnaires respectively are reported.

In Table 3 there are the percentage variations of the
average scores of the second questionnaire with respect to the
first for all three classes. These ar - _.lative to the direct

and inverse problems.

Table 1

S = 8§, + Sp Inverse Problems

2 + S t+ 7 1+ B8 1 _Average Score
1st Q. 1L S | 36%4 1 184 | 18%4 | o) ) 0.73
I C | 48% t 2uY% § 33% | o) 1 1.05
2nd Q. LS 1 51% t 30% | 30% | % | 1.18
e I C 1 48% | 28% 1 33% 1 S% | 1.1&6
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Table 2 Direct Problems
1 I3 1 4 1 & t+ Averaqge Score
1st Q. 1 S | St%4 | 36% | S4% | 39% 1 1.82
L Ct 21% 1 _21%  S2% 1 _48% | 2.43
2nd Q. |_S | S4% | 24% | 574 | 394 1 1.79
| C | S2% | S7% 1 S7% 1 62% 1 2.28
Table 3 Il Direct Prob. | Inverse Prob.
[ l
S 1 -2% | +62%
! l
Cc f -&% ! +9%

It is interesting to analyse the protocols and to examine
the typology of the errors in the incorrect problems. But,
here we will limit ourselves to some general observations.

It seems to us that the numerical data, especially in
Table 3, 4«ahow the positive influence of the didactic unit on
the solution of the proposed inverse problems. On the other
hand, as already observed, problems 2, S5 and 7 repropaose
problematic s tuations encountered in the didactic proposal.

Problem 8 meri1ts a separate discussion, As Table 1 shows,
thi1s problem was revealed to be the most difficult. First of
all, we recall that its context, of a non-arithmetic type, was
not presented during the didactic activity. Moreover, it not
orly requires that the procedure of inversion of a composite
operation 1s known but also that such procedure 1i1s applied
three times in a consecutive wiy, If the procedure of inver-
s1on is5 not internalised, the successive application becomes
difficutlt. To internalise a procedure means not only to under-
stand its significance but, also to have placed its formal and
generalisabie scheme i1nto long-term memory (see Ref.3).

In this sense we maintain that problem 8 can be considered
indicative of the eftective internalisation of the proposed 1n-

veOer e pror‘.edures .

3. Einal Observations

- First of all, 1t should be noted that the results obtained
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are to be held only as indicative, taking account of the
scarce number of pupils tested.
- The most significant contexts for the inverse procedures
(proportionality in problems of similitude, percentages,

etc.) cannot yet be proposed to pupils aged 11-12 because

they are not included in the Government Programs.

- It should be said that the teachers were presenting the
didactic unit for the first time. For that reason, their
didactic procedure was not very well consclidated or

efficacious.
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i THROUGH THE RECURSIVE EYE: MATHEMATICAL
UNDERSTANDING AS A DYNAMIC PHENOMENON

Susan Pirie, University of Warwick
Tom Kieren, University of Alberta

ABSTRACT

Over the last couple of decades, attempts have been made
to categorize different kinds of understanding. Rather
than considering understanding as a single (or multiple)
acquisition we offer here an overview of a new theory of
understanding as a complex, dynamic process. It can be
characterised as a levelled but non-linear, recursive
phenomemon, each level being self-referencing but not the
same as the preceeding level. This view of understanding
as TRANCENDENT RECURSION allows us to see the way in which
any given level is both dependent on the previous level
for its initiating conditions and constrained by the
nature of the succeeding level. Clearly this has
implications for the teaching of mathenatics.

"Everything said is said by an observer’, Maturana,b1980

The experiencing organism now turns into a builder of
cognitive structures intended to solve such problems as
the organism perceives or conceives.. among which is the
never ending problem of consistent organization (of such
structures) that we call understanding.

von Glasersfeld, 1987.

Over the past 20 years or so there has been a
continuing dialog, much of it through PME, on what it
means for a person to understaind mathematics. Onec of the
features of this dialogue has been the theoretical
identification of different kinds of v Jderstanding
principally instrumental and relational understanding but
also concrete, procedural, symbolic and formal
understanding. Pirie (1988) has suggested that thus
describing different kinds of understanding is inadequate
as a means of differentiating children’s performances
exhibiting mathematical understanding. She claims, and
illustrates from extensive taped interactions of ‘:hildren
doing mathematics, that mathematical understanding is a

complex phenomenon for the child doing it. A single
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category does not well describe it nor do such categories
capture understanding as a process rather than as a single
acquisition. What is needed is an incisive way of viewing
the whole process of gaining understanding.

There have indeed been recent efforts to go beyond a
cataloging of kinds of understanding or thinking of
mathematical understanding as a singular acquisition.
Ohlsson (1988) performed a detailed mathematical and
applicational analysis of fraction-related concepts.

From this elaborated example, he suggests that
mathematical understanding entails three things:; knowledge
of the mathematical construct and related theory; the
class of situations to which this theory can be applied;
and a referential mapping between the theory and the
situations. He does not however, suggest how this mapping
is developed or grows. He infers but does not give a
process model.

Herscovics and Bergeron (1988) give a two tiered
model of understanding and illustrate it using the
understanding of number and pre-number in young children.
The first tier involves three levels of physical
understanding: intuitive, (perceptual awareness),
procedural (e.qg. 1-1 correspondence) and logico-physical
abstraction (e.g. physical invariance). The second tier
is non-levelled and entails as components of understanding
the use of mathematical procedures (e.g. counting) to make
mathematical abstractions reflected through the use of a
notational system.

Both of thesec models of understanding above involve
levels or components which appear to have predicate
quality - they define complexes of components in unique
categorical terms. In that sense they give a picture of
the components which might be involved in the process of

understanding. Von Glasersfeld (1987), however sees

- o
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understanding as a CONTINUING PROBLEM-SOLVING PROCESS of
consistently organizing one’s mathematical structures.
Let us consider the following example drawn from a
study of 7-9 year old working in groups doing fraction
comparison tasks (Wales,1984; Kieren & Pirie,
forthcoming). 1In the task children were asked to compare
the amount of pizza a person A would get if sharing 3
pizzas among 7 persons with the amount person B would
get sharing 1 pizza among 3 persons. Here is
commentary by Hanne working with 2 friends (all aged 7).

Hanne A is hard -~ let’s skip it.

Hanne B is easy, you ‘Y’ it
(Draws ‘Y’ and explains her process to her
friends).

Hanne (I) Let’s use ’‘Ys’ on A. @
(Action 1, draws: 639
i.e., Hanne cuts the three pizzas
into vfair shares" in order to give one
third each). @ @ %

(I1) (Action 2,

i.e., she cuts the remaining two thirds
into seven smaller pieces).

Hanne (III) Oh, I see! A 17Jets a2 third and a bite.
A gets more.

What has happened here? Hanne starts by not
understanding how to divide 3 among 7. It is clear
from the complete tape that she can divide 1 among n
for n small and in particular has formalized this act
for 1 +# 3 ('Y it’). In I and II we see her now
successfully divide 3 among 7 using the result of 3
replicates of dividing 1 among 3. At ‘III’ she marks
the fact that she realizes that she has a successful new
organization of sharing or division.
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This leads us to ask what does Hanne’s understanding
entajil? How is it a growing process? Our answer can be
summarized as follows:

Mathematical understanding can be characterized as a
levelled but non-linear. It is a recursive
phenomenon and recursion is seen to ococur as thinking
moves between levels of sophistication (as with Hanne
above). Indeed each level of understanding is
contained with in succeeding levels. Any particular
level is dependent on the forms and processes within
and, further, is constrained by those without.

While it is beyond the scope of this paper to
completely delineate this theory of mathematical
understanding which we call TRANSCENDENT RECURSION, or to
fully connect it to data on children’s mathematical
behaviour gathered in England and Canada, some major
tenets of the theory are highlighted below. Of course it
should be understood that we are not saying that the
observed action sequence above exhibits these tenets per
se. It is the underlying consistent organization or
personal mathematical understanding, which we are trying
to typify.

In saying that mathematical understanding is levelled
and recursive we are trying to observe it as a complex
levelled phenomenon defined by Vitale (1988) which is
recursive if each level is in some way defined in terms of
itself (self referenced, self similar), yet each level is
not the same as the previous level (level-stepping). To
this definition we have added an idea taken from
Margenau’s (1987) notion of growth of scientific
constructs. New constructs transcend but are compatible
with old ones (they are not simple extensions).

124
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In trying to use recursion to describe understanding
we also use the concept of thinking drawn from Maturana
and Tomm (1986). Thinking is seen to be a recursive
phenomenon - a distinction among distinctions of
languaging and languaging is itself recursive. It entails
the consensual coordination of consensual coordination of
actions. Thus thinking, means having a consistent
levelled structure leading back to, or calling, processes
from lower levels potentially all the way back to action.
Growth of this structure, however, can occur in a
non-linear fashion. This view of recursion is useful in
considering the personal ’‘transfer’ of understanding.
‘Transfer’ to a new situation means using ones current
understanding to reconstruct or reformulate ones Kknowledge
to accommodate the new situation. Thus, recursion can be
used as a tool to "see" the organization underlying this
reconstruction. This recursive reconstruction,
organization or understanding is seen as Hanne above
‘calls’ the form of her previous level of dividing
knowledge as a basis for her new understanding of dividing
up.

What are inter-relationships among levels? If one
focuses on any one particular level then understanding at
this level depends upon the level below to provide
necessary initiating conditions, and on the level above to
provide the environmental constiaints * ich "call out®
forms or processes at the focus leve. ([Salthe, 1985). For
example, Hanne’s ‘1/3 understanding’ level provides an
initiating condition for her ‘3/7 dividing process.’ As
arqgued below a recursive, dynamic notion of understanding
can provide a description of personal mathematical
knowledge building. Wwhile it is beyond the scope of this
brief paper, this theory can also provide an account of
mathematical probler solving.
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To illustrate one aspect of our theory in less
general terms, we turn to the example of fractions, and
focus on fractional knowledge about and built through
symbolic manipulation. Such knowledge can play several
roles in the recursive structure of understanding
fractions or rational numbers. It can be called as a
particular example while building, validating or
reconstructing knowledge at the "higher" level of quotient
groups or fields. On the other hand work on a symbolic
task should be able to "call" intuitive knowledge of
fractions as quotients or even the action of dividing up
equally as a basis to reconstruct or to validate symbolic
level activity. Rational number understanding is seen as
a dynamic growing whole consisting of sub-levels which are
self similar in that they are about fractional knowledge.
These levels are not reducible to one another however:
knowledge of quotient fields is distinct from
computational knowledge of fractions which it organizes,
which in turn is distinct from the intuitive knowledge
below it.

Nonetheless, these levels of knowing are
inter-dependent. One can look at the fractions as
quotients and the act of dividing up equally as providing
initiating conditions for knowledge gained through
symbolically multiplying or dividing fractions. The level
above, ’'rationals as a multiplicative group’ constrains

such symbolic knowing. This constraint is environmental;
the mathematics jtself "calls out" certain symbolic acts

as correct. Thus a person’s symbolic understanding is
environmentally constrained by the normal structure of
that domain of mathematical knowledge, in this case that
of the rational numbers.

No mention has yet been made as to the relevance of
this model of the process of understanding to the teaching

of mathematics. We offer here a brief glimpse of how
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schooling can affect the environmental levels surrounding
symbolic fractional understanding. 1In this case knowing
may be constrained by what the teacher considers to be
mathematics. The teacher may see computations as a set of
procedures to be learned, which would call forth certain
behaviors in a child. The level below subsumed by
symbolic knowing under such circumstances, might then
provide as initiating conditions all strategies the
student has found successful for survival in school or

with that teacher, such as the blind memorization of
algorithms. Thus a child’s understanding of school
mathematics can be environmentally constrained by the
teacher’s (or text’s) mathematics and might call as
initiating conditions non-mathematical structures or
behaviours.

Summary and Concluding Remarks

This viewing of mathematical understanding as a
dynamic process allows us to see a person’s current state
as containing other levels which are different, but

compatible, ways of understanding the mathematics,

which allow the person to validate upper level knowledge
or provide a basis for facing unknown but related
mathematics.

Considering mathematica' understanding as a recursive
phenomenon is not meant to replace t! » contemporary views
of understanding suggested by Ohls..n or Herscovics and
Bergeron. It is meant to provide insight into how such
understanding grows and how the elements these authors
describe are integrated into a whole. As such the theory
sketched above should allow for the dynamic levelled
analysis of mathematical understanding. In particular, it
should allow one to see the self similarity but
transcendence in the levels, to see the process of

validation of personal knowledge and to comprehend
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transfer as recursive reconstruction. It enables one to
identify the roles of form (language, symbolism) and
process both at any level and in the growth between

levels.
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COGNITIVE ASPECTS OF THE LEARNING OF MATHEMATICS
IN A MULTICULTURAL SCHOOL

e

Norma Presmeg and Anita Frank

University of Durban-Westville

Rescarch results are reported which indicate that when
ianguage-related learning difficulties are discounted,
cognitive differences between pupils from three different
cultural groups learning mathematics together in the

same school are far less evident than are differences
between pupils in different achievement groups or in
different years. This research suggests that it 1s

viable to use a common curriculum when pupils from differ-
ent cultural groups learn mathematics together i1n the

same classrooms.

The full title of the project on which this paper is based 1is

as follows: "An investigation of the role of culturally

conditioned thinking in the learning of mathematics by pupils
in multicultural and in culturally scgregated schools: a
longitudinal study". The research carried out in 1988 at
Uthongathi, a multicultural school in Kwazulu/Natal, addressed
the first part of this title. The projc. 1s ongoing and in
1989 1t will be possible to compare the Uthongathi data with
data collected similarly in schools in three culturally seg-
regated school systems. It 1s possible, in fact likely, that
the findings in these schools will be dif{f{eront. This paper
deals only with the cognitive aspects of the interview and
teot data collected at Uthongathid., A socond paper, by Manjul

Pobarie and Yanum Natdoo, reports on the atioctive apeci e of

the Whongathy tecearch, In both paper o allutrations o

drawn {rom the data of all four researchers
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Theoretical framework and rationale for the methodology

Evidence ot the cultural basis of mathematics which has trad-
itionally been considered culture-free has been drawn from
countries as diverse as China, U.S.A., Jordan, Mozambique and
Australia (Bishop, 1988). Uthongathi, the first of the New Era
Schools Trust (NEST) schools 1in South Africa, with its policy
of nonracial education and balance of numbers, is a natural
laboratory in which to study, firstly, the effects (if any) of
family cultural background and home language on the learning
of mathematics, and secondly, any modification to these
effects which may result from prolonged multicultural school-
ing. Hence the study is longitudinal, and a qualitative,
hermeneutic rescarch methodology ‘nvolving audiotaped inter-
views was considered appropriate to the exploratory nature of

the research.

The pupils

The three mathematics teachers at Uthongathi were given the
task of selecting pupils who were paradigm cases inasmuch as
they represented the following categories in a "3-dimensional"”
model: in each of standards 5, 6 and 7 (i.e., grades 7, 8 and
9), pupils of the Indian , Black and White race groups were
cheosen such that cach of three achicvement levels was repre-
sented, viz., high, medium and low. In view of the complex
clements invelved in the choice of suitable pupils, it was
considered that theltr mathomat 1eos teachers, who had known them
o operiods ranginag from three to fifteen months, would be
e competent than the researchers to make the selection. In
proactice 2h papa s owere selected rather than the 27 required

1 the mode ], bocayee theore wore only 30 std 5 papils at the

130
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school and no pupils could be found to fill the categorics

high achievement Black and low achievement White in this yecar.

All other categqories were filled without difficulty. For
interviews, these pupils were allocated to researchers as
follows:

Norma : std 5 pupils (7 pupils)
Manjul high achievers in std 6 and 7 (6 pupils)
Anita : medium achievers, std 6 and 7 (6 pupils)

Ydanum : low dachlevers in std 6 and 7 (6 pupils).

The “cognitive" interviews

Three of the six interviews with each pupil were concerned
largely with cognitive aspects of the pupil's learning of
mathematics. These interviews were based on the fellowing

tasks.

(1) “Matchsticks". Three series of mathematical problems
involving matchsticks were solved by all pupils in the
project. The understanding of these problems required
minimal verbal input, and all colutions were obtainable

using spatial ability and logic.

(2) "Verbal problems". Section A (6 proi s) from Presmeq's
(1985) test for mathematical visuality was given to pupils
tu solve aloud. Pupils had the choice of recading the

problems 1n Zulu or English or both languages.

(31 "dchool problems". Pupills solved aloud problems trom

their school mathematics textbooks.
Language
The data from these three interviews revealed that, where
ditterences in the problem solving portormances of pupils f1om
e threoe cultural Jronps were evident o an oo partaoular ot andoar

and achievement group, these differences wore largely attraibyg-

table to lanquage. The 17 Indian and White pupils all named
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English, the medium of instruction at Uthongathi, as their
home language (even if Hindi, Tamil or Gujarati were also
spoken at home). In contrast, of the 8 Black pupils, only two
named English as their home language, although a further two
indicated that English was a second language (after Zulu)
spoken at home. Even when prohlems were understood and solved,
some pupils (and especially those new to the school) could not
explain their thought processes in English. Some evidence was
found that there are two types of language-related learning
difficultices in school mathematics (Berry's 1985 types A and B),
but the type A (fluency) difficulties were largely masking the
subtler type B {(culturally determined) difficulties in the

present rescarch. The following protocols are illustrative.

NOMBU (std 7, home language Zulu/English): "We are doing word
problems and 1'm not enjoying it."

INTERVIEWER: "Why not?"

NOMBU: "I don't understand what the sentence means. Sometimes

1 mix 1t up or misunderstand the sentence." (Anita's data.)

NONHLANHLA (std 5, home language Zulu): "Yes but I don't
understand this thing" (after reading word problem in
English, then its Zulu translation). Only three of the
six word problems were attempted, and each of these three
required exteonsive cxplanation by the researcher

(Norma's data.)

XKOLANT (std 5, home language Zulu), read word problem A-1 for
four minutes 1n English and in Zulu, then pointed out that
the Zulu wording did not mean exactly the same as the
English: "John miss one day, then go, miasses one, then go.
Peter micsces two days, and then go, two days then go.
Atter tour days L0 no." Then he wpeaks in Zulu,

(Norma's data.,

The problem, an English, reads, "One day John ar Peter visit a

Vibrary together. After that, John visit: the | cary regularley

cvery two days, gt noan, Peter visite tne ity . cvery three
f
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days, also at noon. If the library is open every day, how many

days after the first visit will it be before they are, once

again, in the library together?"

Xolani shows here the possible type B difficultices which under-
lie even the translation of mathematical problems into Zulu.
Phyllis Zungu (lecturer in the Zulu Department, Unilversity of
Durban-Westville), who did the translation, confirmed this
difficulty, pointing out that it was necessary sometimes to
“talk around" English mathematical terms when translating them
into Zulu, ecither because a direct translation was not possible

or bhecause the Zulu terms were not well known even to Zulu

speakers.,

One encouraging finding in the Uthongathi research was that

prolonged schooling at Uthongathi tended to reducc the

differences between English home language pupils and those for
whom English is not a mother tongue. Manjul, whose interviewees
were of above average achiecvement, reported as follows:

"All participants were fluent in Figlish, and could understand
the language and terms of mathematics ! .essed through
English redium). The Black students who have problems with
English attend extra Fnglish tutorial classcs. The two Black
pupils in my group sometimes had problems in expressing
themselves but they basically understood the various concepts
ind terminology 1n mathematics.

THAMD (std 7) found that learning was more 'enjoyable, becaune
Tast year I Jearned my Fnglish background' (mceaning the
Tangquage), “and this year 1 understand the feacher .

Pttty O

TABO (std 6) also pointed out that "My B oespecially, tendn
to emphasise on Black student s reading hookhs every day o

that they become fluent with the English Tanguaage, but ]

;;‘,; ahe 1 E}:}
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think this is also good.'"
Manjul'pointed out that "these pupils are socialised in part
with a western culture (i.e., they are expoused to the fruits of
technology - calculators, computers, T.V., scientific and mathe-
matical toys and puzzles, chemistry scts and so on). In addition
their parents take a positive interest in their children's

learning, especially in mathematics."”

By way of contrast, Yanum also found little difference between
cultural groups amongst her below average pupils (std 6 and 7)
because these pupils all experienced difficulty at times in
understanding the language and concepts of mathematics.

CINDY (std 6, White) made the following comment about her text-
book: "It's okay if you want to lecarn from it; it's a bit
difficult to understand. They got the writing saying how

to do it, how to explain it ... but I can't ... I can't

properly understand it."
she indicated that it was the language that she "can't properly

understand”.
Matchsticks
The problems in the "matchsticks" interview were as follows.

!. Make the following numbers of identical squares, using all

24 matchsticks each time: 1; 2; 3; 6; 7; 8; 9.

2. How many squarces?

S R
(a)[] (b)l_J_j () L ' L"! (d) Predict for 4 X 4.
0] T (¢) Predict for 5 X 5.
3. (-\ r (¢) Move 2 matches to make tive sguares.
Lo __i (b} Move 3 matches to make {ive squares.
(¢) Move 4 matches to make five squares.
Atter analysarg pupri-' protocols, all toar rosearchers reported

that there were far greater differences in the performances of

puparls trom diftferent achievement levels and o ar

L. 134
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there were between pupils from the different cultural groups. In
fact we had to conclude that no culturally determined differen-
ces were cevident for these tasks. The second series of problems
("How many squares?") was of particular interest in this regard
because it allowed for a possible generalisation to the nxn
rase. In std 5 no interviewee was able to generalise and only
the two high achievers correctly predicted the 5x5 case (Norma's
data). Manjul found that only one std & pupil (Tebo, Black) in
her high-achieving group correctly predicted the solution for
the 100 X 100 case, in which task all of her std 7 interviewees
succeeded. Only Marc (std 7, Indian) gave an intuitive gene:ali-
sation to the nxn casc by polnting out the pattern involved
(1.e., 174274374 ... .4n% ). Nonc »f Anita's pupils went beyond
the 5x5 case, which was solved only by Natasha (std 6, Indian),
Nombu (std 7, Black) and Zarina (std 7, Indian). Even the 4x4
case wan solved by only one of Yanum's low achicevers (Lisa, std
7, White), and no pupil 1n her group attempted the 5x5 case.
Visualisation
Section B (12 problems) of Presmeg's 1 ; test tor mathematic-
al visunality was administered in group mode to all mathematics
pupils in standards 5, 6 and 7 at Uthongathi. The rcasons for
examining mathematical visunlisation were twofold:
(1) visualisation may provide a possible bridge to understanding
when language difficulties exist;
(o) 1L wan posaible that eultural differences would he feund in

the need tor vicualicdtion in mathemat oo,
Atta byt ot the tont neoren of the 136 pupils who wroto ect pon
B orevealed no agnifaircant difterences betweon the three 1ace
qroups oan terr ob o pedian Leores or tregquency distryibut jon
135
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graphs. (Al}l pupils were given the choice of reading the prob-
lems in Zulu or 1n English,) 1t was concluded that therc were
no cultural differences in neced for visualisation in mathematics

among these Uthongathi pupils.

Conclusion

Lawton (1975, p.5) wrote, "One view is that a common curriculum
must be derived from a common culture. But this in turn raiscs
other difficult issues. What is meant by a common culture? Is
it meaningful to talk of a common culture in a pluralistic
society?" The Uthongathi research suggests that a shared school
experience provides sufficient elements of a common culture to
make 1t possible to use a common mathematics curriculum under

these circumstances.
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QUALITATIVE AND QUANTITATIVE PREDICTIONS AS
DETERMINANTS OF SYSTEM CONTROL

Matthias Reiss
Johannes Gutenberg-Universitit, Mainz, W. Germany

Summary: We investigated the influence of qualitative and quantitative predictions for the
effectiveness of system control using a simulation of a biological system, the fishing pond. In an
experimental paradigm one group of subjects had to give numerical predictions for the optimum of
the propagation function, another group had tc apply qualitative reasoning by answering a
qualitative gquestion. The control group had none of these tasks, but simply played the fishing
conflict game. The qualitative group did not perform better than the control group, but the
quantitative group was more successful than the other two groups. Explanations are given regarding
the function concept for each of the three groups.

1 The role of qualitative reasoning in problem solving

It is obvious that quantitative reasoning seems to be helpful in solving numerical
problems. But qualitative predictions can be useful for the solution of quantita-
tive tasks, too (DEKLEER & BROWN, 1984; BOBROW, 1984; HRON, 1988). The authors
use the term qualitative reasoning in tasks where one is asked to predict the
direction of a quantitative change rather than its absolute value. In such tasks one
has to indicate whether the predicted value is going to stay constant, to become
greater, or less than the current value.

In our study we investigated the influence of qualitative and quantitative predic-
tions on the effectiveness of control of a biolk a system. Inferences which
merely predict the direction of change shall be called qualitative reasoning; those
which result in a numerical value shall be called quantitative reasoning. In some
studies qualitative reasoning has been particularly efficient. The authors investi-
gated experts and novices in order to distinguish efficient and non-efficient cog-
nitive processes. A number of studies about processes of qualitative reasoning,
while solving mathematics or  science problems (BEHR, RE1SS, HARREL, POST &
LESTT, 1980; BRIARS & LARKIN, 1984; GREENO, 1983; LARKIN, 1983; REISS, BEHR,
POST & LESH, 1987 SIMON & PAIGE, 1979) deal with the question of how expert.

(persons with a developed schema for a given task) and novices (persons with a
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schema lacking components and relations between components) can be distin-
guished. CHI & GLASER (1982) report that experts classified problems according to
structural relations within the text. They first dealt with the problem components
and its relations in a qualitative manner and then tried to describe the compo-
nents and their relations in quantitative terms. Their knowledge about structural
relations enabled them to choose adequate procedures for a given task. In con-
trast, novices seemed to associate the solution with surface properties of the
problem. Often they concentrated on irrelevant properties which took additional
time or did not lead to the solution. Experts started on a top level and worked
down to the procedures (top-down approach). Novices started at a low level of
the problem and worked to the top by using known procedures until the solution
was found (bottom-up approach).

Thus experts and novices could be distinguished according to their starting point
and according to the direction of search for a solution. Experts as well as novices
used some kind of qualitative reasoning but experts used structural components
as a basis for qualitative reasoning, whereas novices used surface properties
which were chosen randomly. All the studies emphasize that experts have better
problem representation because they make intensive use of qualitative reasoning
about problem components and their relations (CHI, FELTOVICH & GLASER, 1981;
CHI & GLASER, 1982; CHHI, GLASER & REES, 1983). The problem representation en-
ables the expert to determine when qualitative reasoning is adequate and when
quantitative reasoning is necessary. Novices, on the other hand, scem to search
for formulas, procedures, and equations in an algorithmic manner. They do not
take a long time to consider when certain formal structures are useful and whichk
results can be anticipated by using them.

Mast of the studies cited deal with physics problems. We want to study the
effectiveness of qualil:ltivc reasoning within the context of a biological system
SPADA, OPWIS & DONNEN (198%) have developed the fishing conflict game

(SPADA, OPWIS, DONNEN & ERNST, 1983, ERNST, 1988). This is a simulation of &
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fishing pond. When a fisherman harvests fish from the pool the number of fish
decreases. But at the same time the number of fish increases again because of nat-

ural propagation. The fisherman is faced with a dilemma: He wants to catch as

many fish as possible but in order to be able to have fish on a long term basis he
has to refrain from fishing too much.

The propagation can be described by a nonlinear function (cf. the theoretical
function in table 2). If the fisherman does not extract too many the increase of fish
by propagation is greater than the amount harvested. Therefore, the result is an
increase of fish in the pool. If the fisherman catches more than the natural in-
crease of fish within a given period of time then the number of fish in the pool
decreases. There is also a point of equilibrium where harvest and propagation are
the same. In this case the number of fish in the pool stays constant. This propa-
gation function has to be recognized by the subjects in order to reach the ecologi-

cal equilibrium. Qualitative reasoning should help in understanding the propa-

gation function.

The fishing conflict game has been used for a number of different questions: The
social psychological influence in a game with a number of participants (KNAPP,
1987a, 1988; REISS, 1988), the effect of a t'me lag of propagation in reaction to
harvesting (KNAPP, 1987b). In the current st :dy we also used this experimental
paradigm and focussed on the effect of experime..:  induced quantitative and
qualitative reasoning on the effectiveness of system control (control of the
harvest condition in the pool). It was hypothesized that the qualitative
experimental group would be most successful because it had to store only a
limited number of values in memory and could concentrate on the direction of
change (ELLIS & ASHBROOK, 1987, NEUMANN, 1985). It was expected that this
nioup had the clearest understanding for the propagation function (the increase
of tish depending on the number of fish in the pool). To a smaller extent we
should also find this kind of function concept in the quantitative experimental

proup and less soin the control group.
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2 Method used in the study

The fishing conflict game was given to 79 university students. They took part in
the experiment to carn some money, performed the experiment as single per-
sons, started with 120 tons of fish in the pool, and had to indicate how many tons
of fish they wanted to withdraw from the pool. The experimenter then reported
how many tons of fish was in the pool the next season and the subjects again had
to indicate how many tons of fish they would fish. This went on for 25 trials.

In order to investigate our hypotheses experimentally we had to induce the two
kinds of reasoning. One experimental group had to focus its attention on qualita-
tive reasoning: On three different occasions during the game we presented the
{iollowing sentence:

"The less T take from the pool (1) the less the number of fish in the pool decreases

(2) the mote the number of fish in the pool increases (3) neither of the two.”

Our subjects had to indicate which of the three choices was correct. It was not
important for us which of the three choices was preferred by the subjects, but the
fact that qualitative reasoning was induced by this question. In fact, none of the
three answers alone is correct. Depending on the subject's behavior in previous
trials both of the first two answers are simultancously correct. It was our aim to
initiate qualitative reasoning by presenting this question.
The other experimental group received a text during the same three occasions in
the game, too:

With how many tons of fish in the pools does the biggest increase occur?

With __ tons of fish in the pool.

How many tons of increase are there?

_ tons of increase.

Our procedure was guided by the following theoretical considerations (REISS,
1988): Quantitative predictions lead to the storage of previous predictions in

memory. Memory capacity s used to its hmits. The memory load prevents am
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optimal performance in the game. There was a third group of subjects, the control
group, which took part in the game without any additional questions.

The three groups can be distinguished in respect to their performance in the fish-
ing conflict dilemma. More specifically, one could say that the group under the
qualitative condition is going to keep a greater amount of fish in the pool and to
harvest more. And the group under the quantitative condition is going to have

greater success than the control group.

3 Results

One can draw a graph for the two experimental and for the control group indicat-
ing how successful the subjects were in the game. Success was measured by the
sum of harvest and resource (tons of fish in the pool). In contrast to our hypothe-
sis the qualitative experimental group did not perform much different from the
other two groups. On the contrary, the quantitative experimental group per-

formed much better, there is a significant effect of this kind of induction.
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®- control group
60 -O- qualitative group pom e
40 M- quantitativegroup {___
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12 3 4 S 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 A DYy
© nals
Table 1 Success in the fishing game (sum of harvest and resource) per trial
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There was definitely a difference in the function concept between the quantitative
and the other two groups. In order to analyze more clearly where this difference
comes from after the game we asked the subjects about the expected increase for a
given resource (propagation without interference by a fisherman). The results can

be seen in table 2.

45

a
[ |
‘0 / OO
07 o
as / / I
/ ./ \ \
30 /,.'
Y /a
expected % 07
increase ® ..
in tors ] Ea— control group
15 4 -0- qualitative group
L)
8- quantitative grou
10 F, q group
‘0- employed
5 theoretical function
) ; . A . :
25 50 ¢ 75 100 125 150

resource in tons

Table 2: Propagation function as used in the game (theoretical function) and as estimated by
the three groups

It is evident that the control group and the qualitative experimental group con-
sidered the propagation function as a monotonically increasing function, i.e. they
thought the number of fish would not stop increasing the more fish there were
in the pool. In contrast, the quantitative experimental group estimated a propa-
gation function similar to the one underlying the game (the theoretical function).

The highest increase was ot 100 tons but the increase did not reach 0 tons as soon

as expected.
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4 Discussion

Our hypothesis that the qualitative experimental group would perform most
successfully in the fishing conflict game could not be verified. The qualitative
experimental condition had no effect. The studies cited deal with qualitative
reasoning in physics or mathematics problems. GREENO (1973) emphasizes the
domain specificity of problem solving. This may have been one factor
influencing the results of our study. One could also argue that the experimental
condition was too weak; the subjects had to respond to one simple sentence. But
this argument would also apply to the quantitative experimental condition.
These subjects had to react to one simple sentence, too. But this sentence had its
effect. The qualitative condition might also not have been successful because the
sentence did not induce this kind of reasoning, whereas the quantitative condi-
tion fostered the understanding of the propagation function. It may have been
that the task was too casy to overload memory by storing numbers, so that quan-
titative reasoning in this case was superior but not in general. Another experi-

ment is planned to test the influence of qualitative recasoning with another task.
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TRANSFER BETWEEN FUNCTION REPRESENTATIONS:
A COMPUTATIONAL MODEL

Baruch Schwarz and Tommy l)rcyfus‘

Weizmann Institute of Science, Rehovot, Israel

This paper deseribes a framework within which it 18 possible to build
computational madels for problem solving processes tn a function
curriculum. One such model 1s described in detail [t serves to measure
fransfer of information between function representations during a problem
solving process. The model has been used in a study with ninth graders
who were taught a function curriculum specifically designed (o encourage
the use of methods from diffcrent representations in an integrated
manner.  While 1t was found that the computational model does reflect
the cognitive aspects of transfer of information, it carries the risk of

tsoluting (ransfer from other, parallel cognitive processes.

Are computational models an appropriate rescarch tool for investigating cognmitive
processes  in mathematies  education?  Although  this  methodological  question s
legitimate, not enough experience has been accumulated to date in order to discuss
i full generality. Relevant work has been done by Anderson and his group (Anderson,
Boyle & Yost, 1685} They combined compnuter modelling and cognitive psychology
order to design and construct intelligent tutoring systems. The aim of this paper 1s to
further contribute to the discussion of the above question by reporting on the use of a
computational model for studying transfer betweon don representations  In line
with this am, the relationship between the methodological and the cognitive aspeets

has Deen stressed rather than the actual cognitive results of the study

Function representations

The  convept of  function s usually  introduced  1n several  settings.  either
simubtancousty o oan short suceessiofn The same funetion 15 represented by different
means mocach of these settings The question then naturally arises whether students

cctablish wpproprmte Tinks hetween the different representations of the same function

.
Pevmanent adidec s Cowter for Tochnologyead Feducation, Thton, Taael
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Inoa study with average abidity onmth graders Markovits, Fylon and Bruckbenner
(1986} found that after stadying the relevant puart of the curnculum, students had
difficulties to find the algebraie rule for a Tunctions given in Cartesian graph form and
vice  versa. (Algebra-to-graph was  casier when  the  function  was famihar,  both
directions were cqually difficult when it was unfamihar)  ‘Pypically, less than a third
of the studeats n the study were able to find the algebraie form of a hnear function

given o Cartestan graph forn.

Smiuth (1972} studied minth graders with high apttude v mathematies and high
mental ability, who were taught functions in arrow diagram and in algebraic rule
setting e investpgated whethier they were able to solve standard exercises, on which
thev had shown competence in these settings, also m ordered pairs and Cartesian graph
settines  He found that they performed well, better in the ordered pairs than in the

Cartestan graph setting.
Transfer

Both of these studies use the term “transfer” for students’ passage between
representations.  According to Gagné (1970}, horizontal traunsfer s the process of taking
a concept from one sctting and applving the same concept in a different setting
Although both discussed studies are concerned  with  the link  between function
representations and both provide relevant and valuable results on students’ learning of
functions, neither study clearly defines what the transferred concepts are.  (Simiar
claims can be made for other studies of transfer bLetween function representations )
Smith checks what s usually called transfer of learning:  Does performance i one
setting imply performance in the other setting” In order for this to happen, something
must be transferred; it could be a mechanism, copied by analogy.  Markovits et a!
look at the ability to translate, rather than transfer.  In translation, it is even less
clear what exactly is transferred.  The method of observation used in the two studies,
wis to compare student performances, this method is too coarse to atlow a refined

study of what 1s transferred between function representations

We o propeose o give a more resttietive, but precise definition of  transfer This
deluntion :tpphos' specifically to trunsfer between  function  representations  during  a
problem Slving process. Suppose that while solving a given problem, a student works
snecessivelv in the representations R], H‘_" ., I{L:' Hk{l' . The work of the
sindent an Rk will be called stage k of s solution process and we will say that ths
student used transfer at the transition from stage kK to stage ko1 if e weork
hicachont stare M takes mmto account ol the mformation gathered durnng s work
vioctaves bothiough b We stress that th defimition s extiemely pednetive simee the

pebentowill onty be considered to fave used trnsfor imtos representation Ryl he b

et ot all the formation parhered Gace @l B peevion vork on the bl

vt b doe thae at wdll rome threne g b o weah I, W gl e i
» -

tron ter e here conadered darmg o probdem aolvine process T aostnteant e
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of transfer because it oceurs during a natural process. 6 s also content related: The
student who uses transfer knows how to interpret information gleaned from previous
representations in the present representation.

We will now turn to the description of a framework which makes it possible to
measure in which representation a student works at any time, what information is
available to him from previous stages of his work, and whether he uses this
informatian

The triple representation model

The triple representation model (TRM) is a computer environment which has been
designed as the core of a problem based functions curriculum (Schwarz & Bruckheimer,
1988).  Work with TRM is possible in one of three modes: T(able), G(raph) or
A(lgebra), each mode corresponds to a functional representation. The link between the
representations is realized by operations named Read — Read A{lgebra), Read G(raph),
and Read T(able} — which allow the student to consult results previously obtained in
one mode while working in another.

The work within any mode is operational; that is, it is organized in operations
thut the student has to perform.  The most important operations are Scarch, Compute,
Draw, Plot, and Findimage. For the purpose of this paper, we will assume that a
function has been defined algebraically. The Search operation {Algebraic mode, AS)
then enables the student to check algebraic conditions for a large number of
cquidistant values such as in

I'rom a to b step & 1 f{x) -C then print ()
where the student has to fix the lower bound a and the upper bound b of the search,
the step 6 the type of companson (>, <!, == or ), and the goal value C. The

Search operation prints on the screen the values of x for which (1) is satisfied; the
values of f(x) can be printed as an option. The Compute operation (Algebraic mode,
ACY enables the student to compute automatically the value of a function for any
given element of the domain. The Draw operation (Graphical mode, GD) enables the
student to draw, magnily, stretch or shrink the graph of a function delined
algebraically.  The Plot operation (Graphical mode, GP) allows the student to put the
cursor on any given point of the graph and read its coordinates.  The Findimage
operation (Tabular mode, TF) enables the student to obtain the value of f(x) in a
table by specilying the value of v These operations will be denoted by  their
abbreviations AS, AC, GD, GI', and T

The TRM has been designed  with the intent to stress parallels between  the
operations o the three representations, eg AC, GP. and TF. It enables the student
to use methods from different representations o conjunetion during problem solving,
because they have been antegrated 1o a laree extent A problem typically solved with
TRM is the Open Box problem
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An open box is constructed by removing a small square from cach corner

of a square tin sheet (20em x 20cm) and folding up the sides. What s

the largest possible volume of such a box (to an accuracy of 10'4)?
For the solution of this problem the student is forced to wuse the algebraic
representation since the maximal accuracy in the tabular representation is 102 and the
maximal accuracy in the graphical representation is 1073, Therefore, if he ever uses

another representation, he has to carry out at least one passage between representations
during the solution process.

The computational model for transfer

Although the computational model is conceivable within a much wider framework,
it will be deseribed here within the solution process of the Open Box problem with
I'RM.  The aim of the computational model is to formalize the analysis needed to

decide whether a student has used transfer at the passage from stage k to stage k+1.

This analysis will be based on the notion of solution domain. The solution domain
of a student at a given moment of the solution process is the interval within which an
expert would locate the solution, given that all information collected by the student
previously was available to the expert. The information available will be in form of a
set of mumber pairs (x,f(x)) which are known to belong to the function. These number
pairs may have been obtained directly through use of the AC, GP or TF operation or
they may have been printed by running an AS operation or they may have been read
from a graph obtained via GD. In the latter case, only pairs whose x-value is marked
o the seade of e vans will be taken mto account. The solution domain can now
be computed formally as follows:  Assume that n such number pairs are available, and
thut after ordering them according to inercasing value of x they are (xq.f(x;)).
(o f(xa)) oy (o f(xp D), oy (xpf(xp)). Assume further that the index m gives the
maximum among these points, ie. f(x)<f(x,,) for all k, 1<k<n. Then the solution
domain will be the interval Pa(x o yxp0q) Shght we' ther obvious modifications
huave to be made to this definition in some speclal cases: . g, if m-=1 or m=:n, onc
of the end-points of I° will be infinite.  Since the set of ordered pairs available after a
given operation includes the set available before that operation the solution domain will

never terease during a solution process.

For determining whether transfer occurred at the passage from stuge k to stage
kil the solution domamn after the last operation of stage k 15 relevant, because 1t
coptatns all the wlformation about the solution collected up to and including stage k

Accumie that the solution domam s the interval Po{ab)  Bach operation at stage

Bt owill now bhe esapmed a0 fransfer ander v or 0 ax follows The operations AC
GPoand TF nse g osimele value of \‘ the mdex will be ¢ af this value of x o P

ctherwpeae o the opendons AS and  GD, the student needs o specify o entere
mterval (the antonval to be searchied for and the domamn to be graphed for Gyt

for w paven aperation, toe |||l'1.4 8”” of 1) the transfer nden of this operation
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will be 4, otherwise —. \We will say that a student has used transfer from stage k to

stage h+1 if the transfer indices of all his operations at stage k+1 arc positive.

As an example consider a student who first defined a function algebraically, in the
domain 0<x<10, then drew its graph in the same domain, built a table of values for
some values of x, and finally used the Search operation to find a sufficiently precise

vilue of the maximum

His work is illustrated in the following figure:

A [ 3 3.5 2.1
1% —_———
vy | <=es.ce | s9t.me | =9o.3¢
w
FROM 2 0% STEP @.1
i) ———
W IF FOO > 530
./ \ X - 3,30
3 / %= 3.40
X =  3.50
Ty T > x=  3.%0 f(x)= 591.%0
L ) ! f ! o GDAL= 593.00
The details of this student’s operations are given in the following table:
Operation Solution Transfer
Domain Index
IOAD f{x)=:x(20-2x)", 0<x<10 (0,10) .
2 GD 0<x<10, 0<y <1000 (2,4) 3
3 OTF f(3)--588 (2.4) 4
1 TF {{3.5) -:501 50 (3,4) i
h TEF f(3.1) -590.306 (3.1,4) i
6 AS From 2 w 5 step 01, 1F T{x) - 500 (3.2,3.4)
TOAS From 33 to 34 step 000140 f{x} -Ha2 (3.332,3.334) !
NOAS From 3,332 to 5334 step 00001, 0 1) a82 5029 (3.3332,3.3334)

The student’s work thus comprised four stages

Stage O (nperation

Stage 1 (operation

Stage 2 {operations

Stage 3 {operations

1)
2)

2

I,

Alrebrare mode
Graploead mode
1.5)

TN

Tabuban

Alvehrae
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The solution domains in the table were computed, according to the above rule, from
the information the student received as a result of his actions. For example after
operation 5 (TF at 3.1) the following values were available: The values at f(0), f(1),
f(2), £(3), (4), (5), (6), €(7), f(8), {(9), and f(10) from the graph and f(3), f(3.5), and
f(3.1) from the table of the function. Among these, {(3.5) is the largest. The solution
domain is now (3.1,4) becausc an cxpert can conclude that the maximum of the
function lies between the two known neighbors of 3.5: 3.1 and 4. (Note that when
drawing this conclusion, ihe expert makes some assumptions aboui the shape of the
curve; these assumptions may be justified on the basis of the geometry of the problem
or on the basis of the algebraic form of the function). Similarly, operation 7 prints on
the screen alt those among the 101 pairs (x,f(x)), x==3.300, 3.301, 3.302, ..., 3.399,
3400, for which f(x)>592. The maximal one among these is {(3.333)=592.5925..
Thus the solution domain after operation 7 is (3.332,3.334), the interval between the
two closest known neighbors of x,, =3.333.

All but one of the student’s transfer indices arc positive. For cxample, 1n
operation 5, which is part of stage 2, the student asks for tabulation of x==3.5, which
1s in the interval P==(2,4), the final solution domain of stage 1. Similarly, the interval
3.332<x<3.331 of operation 7 (stage 3) is a sub-interval of P=(3.1,4), the final
solution domain of stage 2. The interval 2<x<5 of operation 6, however, is not
contained in P==(3.1,4); therefore the transfer index of operation 6 is negative.
According to the given definition of transfer, the example student used transfer at the
transition from stage O to stage 1 and at the transition from stage 1 to stage 2. He
did not use transfer at the transition form stage 2 to stage 3.

Remark: The mode! which was actually used in the research is somewhat 1nore
complicated than the one described here. The main reason for this is that a student
using AS or GD in an interval that is slightly larger than P may well be using
transfer, because the choice of the interval is determined by cognitive style as well as
knowledge; for instance, if our example student hud - . the interval 3<x<1 in

operation 6, this operation would have been assigned a positive transfer index.

Experiment

The rescarch reported here 1s part of a larger project for which three nminth grade
viwsses have been taught the TRM curriculum for about four months. The computer
cuvironment was an integral part of the classroom activity, there was no separation
Lerween  work  with  or  without  computer.  Activity with the environment was

i minantly problemy solving  Usually such activity was followed towards the end of

tho chiss perted by ow teacher-led disenssion,
At the end of the anstenetional period all students (N -55) were given the by
problem, and ther solution path was recorded in dribble files  Fifteen of the stndeats

solved  the problem in an interview situation with an expenimenter present  Their
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aclivity was also recorded by the computer; in addition they were asked questions
which assessed why they used a particular operation, especially when this operation was
used just after a passage to a new representation. '

Results and discussion

All of the interviewed students solved the problem in either a single stage
(algebraic mode) or in four or five stages. We classified them into four categories:
1. Single stage students.
2, Students who used transfer at all transitions.
3. Students who used transfer at atl but one transitions

4. Other students,

The model thus enabled us to classify students into those who used transfer of
imformation, and those who did not. This does not, however, imply anything about the
copnitive  vahlidity  of  the model.  This  cognitive validity  wus  cheeked in two
imdependent ways. First, three experts were ashed to classify several students on the
busts of a0 summary version of the drbble files, into those who use transfer always,
often or not often.  Second, students’ cognitive behavior was further investigated with
respect to their problem solving tactics. This was done by another index, the quality
tnder. This index was also based on the solution domain and expressed the rate at
which the solution domain decreased. Strong correlations were found between students
who used transfer and those who had a high quality index, even if in some cases the
rapid  convergence did not oceur at the passage between representations but during
work within one representation.  The interpretation of the results showed that transfer
of information alone is not very valuable i a problem solving situation. The
combination of both indices, however, wus very uscful in the assessments of students’
cogmtive behavior. For instance, studeunts who transferred well but showed moderate
convergence behavior were interpreted as using representations at a level of significants
and not at a level of signiliers. More speeifically, these students, when solving a
problem, do not sce or use the representation of a function as a link to the unified
meaning of a function (in the sense of wunifying the meaning its different
representations) In  addition., interesting  observations  were obtained from the
interaction between the two indices:  there were students whose quality index improved
as a result of making successfal  transfer between  representations.  The cognitive
mterpretation adopted i this case s that such students see the umfied meaning of

function through the fens of sts different representations

The detatled  copmtive results obtaned  from the computational  model will be
presented  elaewhere Broefly stated, it was possible 1o study  stodents”  dynamy
wpderstanding, of  the function coneept by exoomming the relationship between  the
ciccessve andices during the probbem solving oo Alsos mastery of  the software
foned s expression an the consisteney of the mdices Aecordingly, students who had

et mantered TRN s o too) had unstable sodiees and then data conld therefore nnt
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he nterpreted. I summary, the discriminating power of the computationul model was
prominent in the analysis of the interviews and led to insight about students' cognitive
processes when solving problems about functions.

Conclusion

The computational model was found to reflect the cognitive aspects of transfer of
information. This may partly be due to the fact that building the model foreed us to
think through the cognitive processes at a level of detail usually not attended to.
There are also disudvantages to computational models for cognitive processes. They are
connected to the same reasons as the advantages, namely to the level of detail
necessary. Tlis level of detail leads to a separation of component cognitive processes
which in reality are closely connected.  Models that describe such interconnections lave
to be very sophisticated. Building computational models for cognitive processes may be
one way to make mathematics education a more scientific disciphine, bhut we are still at

the very beginning of this undertaking
References

Anderson, J., C. Boyle, & (. Yost (1985). The geometry tutor. In Pruceedings of the
International Joint Conference on Arlificial Inlelligence (pp. 1-7) Los Angeles,
CA

Gupné, M (1970). The conditions of learning (20d ed.). New York. Holto Rinelan
& Winston.

Markovits, 7., B. Eylon, & M. Bruckheimer (1986) Functions - Today and Yesterdav
FFor the Learning of Mathematics 6(2), 18-24.

Schwarz, B., & M. Bruckheimer (1988). Representations of functions and analogies o
A Borbas (L)) Proceedings of the Twelfth International Conference for the
Paychology of Mathematics Fducation (pp 352-559) Veszprem, Hungany  OOR

Smith, W. Do (1973).  An investigation of the ability of students in the secondary
schoul mathematies improvement study te to en - lize their knowledge of
function concepts to other stimuli settings (Docue. o dissertation, Unmiversity  of
Marvland, 1972)  Dissertation Abstracts International 8511}, 6078A  Universaty
Microfilm 73.9722

152 BEST COPY AVAILABLE




151
TEANSITION FROM OPERATIONAL TO STEUCTURAL CONCEPTION:
THE NOTION OF FUNCTION REVISITED

Anna Sfard

The Hebrew Universitv ¢f Jerusalem

The studv reported in this opaper is a continuation of our
research on the role of aloorithms in formation of mathematical
concents ((S). {61, 1In [S) we suogested that many mathematical
notions can be conceived both ocoerationallv (as processes) and
structurallv (as abstract obiects), and that in most cases the
cperational conception is the first to develoco. In the present
paper we take a closer lcck at the phenomenon of reification --
converting a prcocess intc abstract cbject. Our thearetical claime
are illustrated bv experimental findings regarding seccndary-
schaol students’ understandina cof the concept of tunction. The
mist important conclusion from the case studv is that reification
16 an intricate and difficult process which., at certain levels,
can be practicallv cut of reach for some students.

When analvzing the oprocess of learning mathematics. cne shculd be aware
¢f the crucial rcle nlaved by such epistemclcgical issues as students’
implicit beliefs about the nature of mathematics on the whole. and cf
mathematical entities 1n particular.

In [5] and (61 1t was suqgested that the majarity of mathematical notions

can be conceived 1in two fundamentallv different wavys: as static constructs

(structural concepticni ¢r ac processes icperational conceoticn)., Faor
example, functicns can be regarded structurallv acs aggregates cf ordered
pairs, or operaticnally -- ac certain computational procedures. These twe
approaches, cstensibly  inccmpatible (haw can anvthing be a process and an
cbrect at the same time™) are 1in fact complementarv. The idea of
complementarity is not new: 1n phvsics. entities at subatomic level must be
reqarded both as oparticles and acs waves to enable a full descripticn and
explanaticn of cbserved phencmena (see alsc {8)). Similarlv, the abilitv af
seeing a functican or a number beth as a process and as an cbject seems tc be
indispensable fcr sclving advanced mathematical problems,

In the oprocess of conceot formetion, the operaticnal concepticn 1s

vften the first to develop., COut of 1t, the structural aporcach would
gradually evelve, In (5] we arqued that these claims apolv to historicel
cevelcpment as well as  to individual  learning. Indeed., certain parts of
mathematice can be recarded &t a kind «f hierarchv., 1n which what :s
crncelved purelv cperaticnally at one level should be concelved structurally

at a higher level, I another worde, preocecses have to be converted 1neo

cempatt static wholes., or reified, to become basic units ¢f a hiaher-level
thenry,
Twee ampartant didactro princioles can be inferred ¢rom the above claime.
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PRINCIPLE I: The opropcsed mcodel of concept formation implies that it

would be of little cr no avail to introduce a new mathematical notion by

means of its structural description. The structural appreoach is much mcre
abstract than the cperaticnal: in order to speak about mathematical objects
one must be able to focus on input-cutput relations ignering the intervening
transformations. Thus, to expect that the student would understand a
structural definition without some previous experience with underlving
processes seems as unreascnable as hoping that he or she would comprehend
the twc-dimensicnal scheme of cube without being acquainted with its “real
life* 3-D mcdel. In the classroom, therefore, the cperaticnal apprcach
should precede the structural. Some well-known difficulties cbserved in
seccndary-schools may be due to the coemmen practice of reversing this crder.

FRINCIFLE 1I: Structural apprcach shculd not be assumed untill an actual

step was made toward a higher-level thecrv, for which this aoprcach is
indispensable. Indeed. to out un with the "existence" cf a new kind of
intangible mathematical c<bjects, the student must be highlv motivated. The
reguired effort of amind would procbablv not be made unfll the cperaticnal
appreoach proves insufficient and reification of the civen orocess beccmes @
necessarv condition for further learning. Such a situaticn arises cnlv when
scme higher-level oprocecsses are operformed on the conceot in aguestion. Fer
example, as lcng as the notion of functicon aopears nowhere but 1n the
context of basic calculus, the student can do ouite well with cperaticnal
conception c¢f function alone, Converting computaticnal orccesses regarded as
functicns into cbjects becomes necessarv anly when the perscn comee across
preblems 1n which several functione have tc be manipulated simultanecuslv.
sc that each cne of them mucst be treate! as self-contained static whale.
Such treatment «f  functic is peculiar to manv branches of modern
mathematics., functional analvsis, topoleogy, ana o~ iegic ameng them.

The above twe reguirements should be understood as necessarv conditicns
for reification (which means that if thev are not fulfilled, the reificaticn
is rather unlikelv), Whether thev are also sufficient, namelv. whether thev
actually help in transiticn from coeraticnal to structural concepticn, wac
the main questicn addresced 1n the studv which will be repcrted now. In this
research we revisited the conceot of functior cur first investigation cf

which was presented 1n (51,

The oresent studv was carried cut i1n the Centre for FPre-academic Studiec
(Hebrew Universityv), among <-2% vears old participants c<f a reaular
course on  elementary mathematxés (secondarv-sgchaeal level), Our fircet steo
was tr. collect as much informaticn as poesible about the concepticns which

develzn 1n studente when principles 1 and 11 are not checerved. In tnis
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repcrt, cur cown findings, coming from classrcom cbservaticns and from a
special questicnnaire con functicns, wWill be combined with the results
obtained bv several cther researchers. At the second stage of the study, the
concept of function was taught to a group of students bv an experimental

method based on cur two orinciples. The results cbtained in the experimental

group were then compared tc the background findings.

WHAT HAPPENS WHEN THE CONCEPT OF FUNCTION IS5 TAUGHT STRUCTURALLY

Being cne of the central 1deas of mcdern mathematics. the conceot cf
functien is aqiven much attenticn all acrcss the secondarv-schoel curricula.
In most cases. however. the way it is tauaht contradicts our model of
concept acquisitian., Indeed. te oput it intc Malik's words ({43, o0.189).
“functicn course [1s usuallv] laced with cset-thecretic nctations” (which
almost alwave means that cur first principle is not cbserved). while "the

receesitvy of teaching the modern definiticn cf functicn at schocl level 1¢

not at all cobvious® (ec the second orinciple is viclated either). It 15 1n
line with cur former claims, therefcre. that the general agreement abcut the
importance of the conceot o©f function is accompanied bv ancther concsencus
(013, 033, 43, (S1, (61, [73, L9): in a class, the eract meanina of thie

cstensibly innccent notion invariably turns cut tc be surorisinglv elusive

and problematic,

1. Qur former ctudien ({5), [61) showed that in spite of the "cbiect-
criented” wav «f teachino, the fully f{ledged structural ccnceotion of
functicn 1s rather rare 1n high-schoel students. In cur present investiga-
tion scme new findinge reinfarced this cenclusion. Firstlv, in response tc
the first item in the auesticnnaire presented in the box below, onlv 19% cf
the pupils (see "caontreol group®) agreed that funci - is a static construct
cemposed of (infinitelv manv) parts, Secandlv, the student’s inability to
consalidate multitude of cordered pairs intc cne entitv could be responsible
for the difficulties cbserved in the classracm when orcbhlems invalving sets
of functicns were dealt with., Ffor examole., when faced with functicnal
equations (such as fix+ev) = §f{x)+f(v)), the students usuallv were confused
as tc the nature and the number of the sgoluticns. It 1s algo werth
mentioning that the opupils had some sericus difficulty with the cet-
thearetic notione underling the structural version of the concept ¢f
function. The student' ¢ conception of abstract entities such as domain,
range, 1mage and npre-i1mage wasjusuallv 50 fuzzv, that general conducst N was
the most common reastion  to probleme  reaulring  identificatian  of  the

different components ¢ a given {function, Several phencmena nresented 1n

yo
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cther papers (e.g. studenits’ inattenticn to domain when comparing twe
functicns. [4). or ecme persistent mistakes in svmbclic representation of
sets, [71) indicate the same prcblem: thev show that verv often the learner

can not distinquish between sets and their members. It is prcbably the

student’s inability c¢f “"seeing" even these basic entities as fullv fledged
objects, which makes such distinctions quite meaningless.

2. We shall argue now that the main difficulty with the structural
definition of function stems not sc much from what is actuallv included in
it, as froem what is missing. Indeed, in spite cof the fact that in the
definiticn no mathematical coperations are menticned., the responses to cur
first questicn (cee box) i1ndicate that cverwhelming maijoritv of puoils (BLA)
associlate functions with cemputational processes., We can conclude.
therefore. that contrary to the curricula desianers’ 1ntenticons the
student’s_conception  of _ functien is cleser tc cperaticnal than to
structural. Other studies abcund in additicnal evidence., Vinner and Drevfus.
[9]. emphasize the 1mpartance of the c¢oerational aspect by saving that
acccrding to the <ctudent: “one has to do something to » 1n crder to obtaan
the corresoondirng v, In cur cwn fcrmer investigation ([(61). sume students
refuced to applv the adiectives ‘"eoual" and "the <came" tc a ccuple of
functions which assumed i1dentical values but were defined bv different

computaticnal orccesses. "General difficulty ... with the censtant functicn”

(C41, p.24: (7)) may be interpreted as an evidence for the pupil’'s imolicat
belies that 1n corder tco speak about functicon. a change i1n the i1ndependent
variable must bhe 4fcllowed bv a3 change 1n the dependent variable. [t ¢
interesting to note that the dvnamical dimension of the conceot was
emphasized in 2 similar wav by Euler: according tc him, "a quantitv" shculd
be called functicn conlv if it deoends on other ouantitv "in such a wav that
i¥ the latter is changed the former undergces changes itsel+$" (1753, {(2D).
The histcrical analcgy will go even further 1f we analvze studente’
beliefs about the nature of the computaticnal orocesses falling i1ntc the
categorv ¢f functicons, In the response to our second auesticn (see box)., F4%
of the opupi.s evaluated s true at least cne of the following statements:
"Everv functicn e:spresses certain regularitv'. "Everv ¢functicn can be
expressed bv & certain computaticnal  formula”. For all their fuzzinecss,
these descriptinne come  strikinglv clese to the (eguallv 1naccurate’
"defimitione” of duncticen used bv mathematicians for nearly a centurv (since
Euler and hie "analvtical expressicon" ({748) until Dirichlet s revellicr
againet the "alacrathmic” aporcach (1837): cee [(23), Maorecver. the <tude~t 't
recpoc ses to the gterm A ogn auestion I (see alsa (4], [7], (9)) ehow that,

l1ve many mathematincians hefcre them. the tcdav' s studente -an not put uc
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THE OQUESTIONNAIRE o
1., Which one of the following sentences is, in vceur ooinion, a better
description of the concept of function? .
A. Function is a computational process which produces scme value of
one variable (v) 4rom any given value of another varjable (x).
B. Function is a kind of (possibly infinite) table in which to each
value of one variable corresponds a certain value of another var.
2, True or false?
A, Every function expresses a certain reqgularitv (the values of x
and y can not be matched in a completely arbitrary manner).
B. Every function can be expressed by a certain computational
formula (c.?. y=2x+1 or v=3sin(w+x)), ,
3. Which of the following propositions describe functione?
(» and v are natural numbers)
A. 1f » is an even number then v = 2x+5:
Otherwise (x is an odd number) v = {-3»x.
BE. 14 x=0 then v=3,
1+ x>0 then to find the corresponding value of v we add 2 te the
the value «f v cerresoonding to x-1. )
C. For everv value of x we choose the correspoending value of v in an
arbitrarv wav (e.q. bv throwing a dite). ;

RESULTS cantrol exoer.
N=48 N=28
[ 1. perc. of s's who chose item A 81 50
perc. of s's who chose item Lt | 19 50
2. perc, ¢f €'s whose ans., to A & B were | |
ves. ves L) 3
ves., Nno 2 18
no. ves 2 | 3
noe, ne 6 | 47
3. perc. ¢f s's wha said 1t was function i ! - |
item A 90 | 93 |
item B 73 | 93 |
item C 17 | S50 |
________________________ —_— [ & L ]
Lo - e —

Wwith the so called “"spolit demain" functions, This attitude is reminiscent ¢
the cpinion exoressed by d’'Alembert in his response to the Euler’'s idea o
"discontinuous” function (by "discontinucus" Euler meant a function given b
different analvtic expression in various parts of its domain). Finally, ou
respondents’ almost univocal rejection of the "arbitrarilv" defined functic

(item C) brings to mind the long and heated historical disoute cver th
Dirichlet’'s definiticon (122, [3)).

3. In the light of our own ¢findings combined with those of cther
researchers, the pupil’'s tendency ta asscciate functicns with algebraic
tarmulae seems to be strong and common encugh tc deserve special attention.
Although this tendency ctan be indicative of coeraticnal conception (the
student mav perceive a 4fcrmula as a short description ¢f a camputaticnal
algerithm) as well as of a structural (the $écrmula mav be interpreted as a

static relaticn between cordered pairs). scmetimes it is prcbablv neither

this nor that. Such tendency may signalize a "mutilated". quasi-structural

concepticon, the deficiency of which weuld come te light in eany different
contexts., Indeed. wunlike Euler. for whom the “analvtic exprescion” was <ne
cf twe possible manifestaticons «4f an i1ndependert abstract entitv (a curve
was the cther cnel), the tcdav’'s student often seemc to regard a formula as a

thing in 1tgself, not standina for anvthinag else. This appears to be the most
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' plausible explanation for such well-known phenomena as the students’

inability to build a reascnable bridge between algebraic and graphic
representations of functions ({1)), or the common tendency te interpret
functicnal equalities as nothing but a preduct of symbol manipulaticns
({6,

Both operational and quasi-structural conceptions are deviations from the
efficial “"structural™ approach. But while the former is a healthv, natural
stage in concept development. the latter should be regarded as
unsatisfactory and potentially harmful. It seems, however, that the
quasi-structural cencepoticns can hardly be avcided within the usual
structural wav of teachina. The data summarized above confirm that the idea
«f the set of ordered pairs, when introcduced tco earlv. is decomed to remain
bevend the comprehensicn of many students. In such case. the cbiect-criented
langquage used bv the teacher forces the pupil to lcok for a more tangible
entitv which may serve as a reascnable substitute. Being the most natural
choice. an algebraic expression turns intc the thing it was onlv meant to

symbolize (in a different context the same wculd hapben tc a graoh. (91).

AND WHAT HAFPENS WHEN THE OPERATIONAL AFPROACH IS APFLIED

In the experiment performed at the second stage of our studv. the conceot

of function was taught to a groun of students as a part of a course on
algorithms and computability. This time the apprcach was coeraticnal, namelv
the princioles I and Il were faithfullv cbserved. The space limitations
prevent us frum giving the full descriot:<n c¢f the teaching material., sc we
shall confine curgelves tc scme general rern:-rks,

The ceurse (60 teaching hours) was devoted to the idea of algorithm and
the concept of functien was intrcduced as 3 - s for dealing with the
semantics ¢f alghorithmic languages. At that time the noticn was almcst
completelv new to all cur students,

According te princinle I, the cperational apprcach was the first to be
applied. Initiallv, the term “functicn" was used almost syncnvmously with
alcerithm, and then explained as being a name for “the orcduct” of an
algerithm, Although it was described alsc 1n structural terms fas "the set
¢f all input-cutput pairs"), cur first structural definiticn cnlv emphasizec
the connecticon between functicons and computaticnal nrocesses.

frinciple Il was implemented as well: the structural appreaach had net
been oiven much attenticn until it beceme trulv necessarv. The firct attempt
at serarating  functions  from alooritpms was made only after the set of the

already known aloorithms  and the resulting set cf functicns were broadened
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several times, to include reCuélive and "solx{ domain® calculations, amon
others. Different methodes of constructing functions from cther functicns (b
composition, bv recursion or by minimizaticn) were discussed., thus the vie
of function as a self-contained entitv which can serve as a building blcc
for other entities was graduallvy promoted. for représentinq functions, th
usual algebraic notation was used and the students exercised translatin
explicit and recursive expressions into computer programs. and vice versa.

The "input-cutput" description of functicon was replaced bv the abstrac:
Bourbaki's definition only after a long period during which the student’s
attenticn was foccused on the static “oroducts" of different alqorithme
rather than on the algorithme themselves. This final qeneralizaticn led tc
the question of existence of a noncomputable (not "algorithmic”) functien,
This last problem was expected tc be the ultimate trigqer for reification.
Indeed, withcut the fullv ¢ledoed structural conception. the procblem was
docmed tc remain meaningless (ta a perscn who identifies functicns with
algorithmic orocesses, the idea ¢f noncomputable functicn must be as abeurd.
ac the noticn of a circle which is not reound),

Classroom cbservaticns were carried cout during the entire course.
Initiallyv, almost all the ohencmena described in the focrmer cecticn as
indicative ¢f cperaticnal concepticn cculd be witnecssed again (not
surprisingly s¢, since at the earlv stages of learning the cperaticnal
cencepticn was deliberately fostered). The first attempts at transiticn to
the structural approach were met with resistance and lack ¢f understanding:
many students cculd net cope either with sets of functione or with general
definiticns of coeraticns performed on functicne, The difficultv diminished
with time but it did not disappeared completelv. When the studentcs were
asked to describe the set o«f the recursive functicng (the definition of
which had been taught and discussed befcre), almost hal$¢ cf the arouo gave
faultv answers., indicating a difficultv with treating functions as building
blecks for  wther functions. Not surorisinglv, the idea of ncncemputable
function, when menticned explicitly., evclhed astcnishment and cppesiticon,

Bur ouesticnnaire cn functicn was administered to the participants at the
end ¢f the cocurse, Although manv answers stil] 1ndicated coeraticnal rather
then structural concepticn, the results f(cee box., "experimental group”) did
show a substantial progress toward the latter. at least 1n comparieon te the
control qQroup,  Morecver, even though the structural apprcach was nct fully
adeooted by the students, we have good reascns to believe that the danger of
“mutiiated" concepticns considerablv diminished. Indeed. judging froe the
answers to the third questicn, there were onlv few students left who wouls

still regarg a term “function” as svnonvmous with "formula” cor "equation®.
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DISCUSSION AND CONCLUSIONS

Judqging from our resulte. cneraticnal aporcach does stimulate
reification, at least to some degree. Soecial attention shculd be given.
however. tc the fact that for all the orogress made bv the students, cur
attempt to promote the structural concesticn can not be regarded as fully
successful. This result mav be much more significant than all the others.

One mav claim. of course. that it was scme deficiencv «f the teaching
methsd which interfered with cur cbiectives. thus limiting@ cur success. Even
if partially true. thie explanation dces ncot seem to tell all the starv. The
Qap oetween the efferts 1nvested and the prcarecss made 15 so big, 1t oromots
us to risk anather coniecture, according to which reification 1s 1nherently
st difficult that there mav be students for whom the structural conception
will remain practicallv cut c¢f reach whatever the teachina method.

Apart from the ample empirical evidence. there are some thecretical
considerations pointing 1n this direction., Closer look at the process of
reirficaticn reveale that 1t mav lead to a osvychcalogical vicioue circle -- an
obstacle which seems almost unaveoidasle. and for manv pecole would remain
insurmountable, Indeed. according to cur  former argumentat:on (orainciple
[N, reificaticn of a conceot would not cccur until some higher-level
coeratiens tce be nperdcrmed at this concept are intreduced: on the other
hand. conceiving a concent as an chject seeme to be prereauisite for dealing
(meaningfullv) with such hiagher-level «c¢peraticns., To cape with these
apparentiv i1ncompatible reauirements. cone must be able to crchestrate the
lower-level reificaticn with the higher-level manioulaticns 1n a subtle.
painless manner, Judaina from cur resulte, this ability zeems to be rather
rare. Such histerical examples ac the tirbulent -torv of the concept of
functicn and the three century lcng dispute .., the elusive ncticns of
negative and coumplex numbers scshow that breaking the wviciocus circle cof
reificaticn can be auite difficult even fcr mathematicians,

LA R
(1] Even, F., Pre-service teachers’ concepticn of the relationshic betwees
functicns and eauations, Praceedings of PME X11, Veszorem. 1988, Z04-11,

(21 Kleiner, l., Eveluticn of “the "Furcticn "Cenrcepot: A Brief Survev., 1n
press.

(3] Malik, M.A,, Historical and opedagegical aspects of the definition of
functicn, Int. J. Math, Educ. Sci. Techncl.. 1980, 11.4, 489-92,

{4) Markevitz, 7.7t al., Functicns Todav and Yesterdav. For the Learning ¢4
Mathematics. 1986, 6.2, 18-24, T e

[S] 5fard. A, Twe concepticns of mathematical noticns: ceeraticnal an:
structural, Froceedings of FME X1, Mcntreal, 1987, 147-9.

{e] Sfard, A,, DBEratTcdnal 'vs. sStructural method of teaching mathermatics -
a case studv, Proceedinage of PME XIl. Veszprem, 1988, S&0-7,

{71 Stard, A.. Teathing Theorv ©of "Algorithme in HMigh-School.
Fh.D. dicsertation., 1988, ’ ’

[8) Steiner, H.-G., Thecrv cf Mathematice Educaticn: an Introductyor, For
the Learning of Mathematics, 19085, 5.2, 11-17

4.

T91 Yinner, S. “ang Dreviuc., 1., Images and deflniticns tcr the concent of

functicon, 1n precs,
160

unoublighiz

BEST COPY AVAILABLE



e ——————————————————

159
Supercalculators and Rescarch on Learning

Richard Shumway
Ohio State University, Columbus, Ot

Centro de Investigacion en Matematicas, Guanajuato, México

The new technology of hand-held graphics computers with symbol
manipulation capabilities (supercalculators) can have a significant impact on
the learning research in mathematics education. Technological impacts on
curricula often take 10 years (Burkhardt, 1986). However, mathematics
learning researchers can respond more quickly to the capabilities of
supercalculators. The purpose s to a) describe the capabilities of hand-held
graphics compulters; b) argue for the expansion, initiation, and elimination of
various rescarch arcas; and, ¢) suggest directions for possible future efforts.
The remarks, althowugh founded in research on learning, are inductive,

speculative, and invite conument and debate.

Capabilities. Reading reports regarding machines such as the Hewlett Packard HP-28S
(e.g., Hewlett Packard, 1988; Michel, 1987, 1988; Nicevergeldt, 1987, Tucker, 1987, 1988, Wicks.
198R), or supercalculators (A 1a Tucker, 1988), lcad one to conclude enormous changes in both

fundamental school mathematics topics and fundamental ways of doing mathematics are upon us.

Before examining the impact such changes may have on leaming research, consider a few
examples of the capabilitics of the supercalculators. Some single-key-stroke capabilities of a
“personalized” machine include: a) two dimensional graphs and zooms; b) vector and matrix
computations; ¢) numcrical equation solving; d) symbolic manipulation commands and tests; and e)
structured programs in RPL (Reverse Polish Lisp)y or FORTH—, PASCAL~, BASIC—, or LIS P-like
languages.

With the help of a few references, single-key-stroke capabilities of a2 "personalized” machine
also include: f) symbolic differentiation and simplification (Wicks, 1988), g) keys labeled. say
SARX, that, given a function and an interval, return the proper integral for surface area of the solid
of revolution about the x- axis set up in symbolic form, together with the numerical value for the
surface area to the nearest 0.01; h) keys labeled PDIV or PROOT that give, respectively, the
symbolic result of the division of two polynomials or the algebraically computed real and complex
roots of up to a fourth degree polynomial (Hewlett Packard, 1988). 1) CEQN gives the characteristic

cquation of a matrix (Wicks, 19883, or §) symbolic and numeric solutions 1o classes of differential
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equations and curve fitting routines (Hewlett Packard, 1988).

Mathematics texts that place major emphasis on numeric or symbolic computations with, say,
numbers (including complex numbers), graphs, polynomials, vectors, matrices, derivatives,
integrals, Taylor series, trigonometric identities, or zeros of functions, are essentially measures of
supercalulator capabilities, not student leaming. Random samples of exercises from textbooks used
for K-14 mathematics in the United States reveal few exercises that should remain with
supercalculators in the hands of teachers and students. Perhaps as much as 90% of the exercises and
explanations should be removed.

Since the early 1950s, numerical computations, structured programming, and symbolic
manipulations have been available on computers (Hamming, 1980). Mathematicians have called for
mathematical programming (Kemeny, 1966) and computer mathematics systems (Birkhoff, 1972) in
mathematics courses for some time. Today, the addition of user-friendly, graphics capabilities and
the psychological impact of a hand-held, personal carrier of mathematical ideas (a supercalculator)

make curricular changes mandatory (Steen, 1988).

Changes in Learning Rescarch. Past leaming rescarch has made progress in many areas.
Research based in concepts and problem solving may be the most robust with regard to technological
advances such a supercalculators. One may be tempted to conclude research on leaming with
computers would be some of the most useful research for drawing inferences about learing
mathematics with supercalculators. However, there 1s an order of magnitude difference between
former uses of computers and the new supercalculators.

Supercateulators are designed and ready to carry out comput+tions with & single keystroke,
whereas, former uses of computers required significant exchanges of data and coding for similar
computations. Supercalculators are designed to be personal tools to be used regularly and in almost
any sectting, whereas. former uses of computers required infrequent, shared use in special settings.
Supercalculators are designed to allow special tailoring of key commands for personal mathematical
needs, whereas, former uses of computers involved general procedures and programs designed for
seneral use by many users. Supercalculators are designed to be symbolic, personal carriers of
mathematics, whereds former uses of computers, whife capable of dramatic symbol manipulation
gt MACSYMA), were, nevertheless, designed for gencral mathematics users, and not ay

ndividual, personal carners of mathematics. The supercaleulator represents a substantial extension
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of human capabilities in mathematics.

Few mathematics leaming researchers would consider conducting research with subjects
without devices for recording mathematical communications. In the past, these devices have
involved written symbolic communication, verbal (and nonverbal) communication, spatial
communication, and the manipulation of devices in which mathematical ideas have been embedded.
The supercalculator enhances all of these forms of communication.

Pollak, in prophetic articles about calculators and computers (Pollak, 1977, 1982), noted
substantial changes were needed in two partial orderings of the curriculum (i.e., those based on
mathematical prerequisites and those based on social importance) and that fundamental changes were
needed in the curriculum. Leaming research must face equally dramatic: a) expansion of certain
research areas, b) initiation of new research areas, and ¢) the elimination or deemphasis of other
research areas.

Expansion. Leaming rescarch which can be expanded and modified to reflect supercalculators
centers about the use and meaning of variables, computer coding to define and relate mathematical
concepts and principles, representational systems, and cognitive development.

Significant work has heen done on the meaning of variable (e.g., Chomsky, 1988; Clement,
Lockhead, & Soloway, 1982; Dubinsky, Elterman, & Gong, 1988; Kiichemann, 1981; Krutetskii,
1976; Oprea, 1988; Shumway, 1989; Wagner, 1981) with children ranging from age 5 to age 20.
However promising this work has been, we need to extend the universe of the concept of variable to
include variables defined over objects such as: real numbers, complex numbers, strings, vectors, real
arrays, complex arrays, lists, global names, local names, programs, algebraic objects, and binary
integer numbers. Supercalculators take a unified approach to these objects; calculator operations
apply whenever meaningful, and all such objects can be inputs to programs, including programs
themselves. Consequently there are dramatic, mathematical generalizations of the meaning of variable
available on supercalculators. Systematically exploration of the development of such generalized
concepts of variable is needed.

Computer coding and its impact on mathematics leaming has been studied and seems to be most
related to concept development and problem solving (¢.g.. Blume & Schoen, 1988; Suydam, 1986).
Arguments regarding relative merits of computer languages are often made on the basis of structured
programming, recursion, global and local vanables, graphics, and the ease of naming and writing

procedures, Supercaleulators offering flexibility of programming such as graphics, procedures,
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lisis, symbolic manipulation and recursion can put to rest many arguments. Computer coding on a
supercalculator becomes much more procedure-oricnted and seems to encourage those programming
habits most admired by computer scientists and mathematicians. Again, the personalization of the
supercalculator seems to be an important psychological factor. Computer programs are coded and
then executed by a single keystroke. They beconw: a part of the supercalculator capabilities and are
always available. Algorithm design becomes highly personal but also very important for repeated
application by the author. Systematic study of the impact of such availability of authored programs
for use, modification, and refinement is needed.

Representational systems have gained deserved attention (e.g., Janvier, 1986) and many
interests of this line of research are directly applicable to supercalculators as supercalculators provide
access to many of the representational systems being studied. One can only endorse continued
efforts in repiesentational systems and encourage their investigation on supercalculators.

Cognitive development research needs to direct some long-term efforts towards study of
fundamental concepts of mathematics, their representations, and their development in children in the
context of supercalculators as a regular tool for exploring mathematics. The advantages for the
supercalculator for such efforts are cost, size, personalizaiion, and generalized mathematical power
provided for subjects.

Initiation. Teaching experiments and clinical studies exploring supercalculator representations
of many important concepts of mathematics rarely studied with young subjects (ages 3-20) are
nceded. Research has begun with efforts such as Dick's project to revise and test calculus materials
designed for students using supercalculators building on prior experiences with younger subjects
(Dick & Shaughnessy, 1988) and Michel's year-long teaching « vperiment with 15 year-olds
studying mathematics, physics, and science for 13 hours per week using supercalculators (Michel,
1988). Significant study of generalized variables, complex variables, matrix representations,
differentiation, integration, probability distributions, zcros of functions, Taylor series, computer
arithmetic, and theorems such as those of De Moivre, Bolzano, Galois, Euler, Gauss, Cauchy, and
Gadel are called for by some and the concept of proof is consider basic mathematics (Shumway, in
press). Estimation concepts must be developed for algebraic computations as well as numeric
computations. Further identification and expioration of fundamental mathematics is needed.

Flimination. Most analyses of the ih\puct of caleulators and computers call for a deemphasis of

many tradittonal computational skills (equ, Poliak, 1982). Leaming rescarch that involves skill
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: development associated with graphing, solving simultancous equations, finding roots of functions
(e.g., factoring or simplifying). polynomial arithmetic, differentiation, integration, matrix arithmetic,
differential equations, characteristic equations of matrices, and hypothesis testing without the use or

knowledge of supercalculators should be terminated. Substantial collections of research efforts have

become moot because of supercalculator capabilities.

Directions for Future Work. Researchers themselves must use supercalculators to do
mathematics. High priorities are the required use of supercalculators for all mathematics, the
treatment of concepts and proofs as basic mathematics, the earlier, deeper treatment of fundamental
conceptual learmming, and the deemphasis of many forms of skill leaming. Philosophical analyses
leads one 10 such conclusions. Researchers must raise questions, study the associated implications,

study feasibilities. identify limitations, and agitate for change based on research and best wisdom.

Discussion. Require supercalculators for all mathematics? One could argue there must
certainly be times when one might not want 1o require the use a supercalculator. Perhaps, but the
more likely error is to use the "when appropriate phrase” to fail to explore less obvious but

appropriate uses. In fact, it may be impossible to find a mathematical situation for which no

supercalculator activity would be appropriate.

Concepts and proofs are basic mathematics because, rclieved of the computational burdens,
conceptual understanding and proofs of the correctness of results are the remaining essential
clements of doing mathematics.

Deeper treatment of fundamental conceptual leaming is necessary for effective use of
supercalculators. History suggests, when computational power is increased, mathematical
understandings are ultimately increased as well.

Deemphasis of many forms of skill leaming once thought to be essential for mathematical
development seem important and likely. Researchers must test the premise that supercalculator
computations will produce the number sense and symbolic intuitions thought to develop from
computations.

Finally, researchers are obligated (o lead, offer evidence, and help make best evidence

decisions.
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HOW & WHEN ATTITUDES 'TOWARDS MATHIMATICS & INFINITY
BECOME CONSTITUTED INTO ORSTACLES IN STUDENTS?

Anna Sierpinska, Polish Academy of Sciences

Monika Viwegier, Warsaw University

Summany. 1t wan conjectuned n 5&anpin4ﬁa {1987) that aouncea
of epirtemodogical vbataclea nelated to Limita can be found
in atudenta' attitudesr towands mathematica and infinity. The
aim of the present neaeanch (4 to undenstand conditiona (n
whick aome childnen's conceptionn of infinity and ( implicit)
phidosophies of muthematica become conatituted into obataclea
as the chiddnen develop from the concrete to iﬁcd/onmal opena-
tional atagea. The reaeanch haa only juat atanted. In thia
papen we exhibit behavional & conceptual diffenences betuween
two ginda (Agnéa, (0 & Mantha, 14) & we fornmulate aome hypo-
thesea aa to the above mentioned conditiona.

In the sequel we shall use the following abbreviations: "M" - mathema-
tics, "INF" - infinity, "EO" - epistemological obstacle.
I.- INTRODUCTION

1.- Genesis of rescarch. It was conjectured in Sierpinska (1987)

that sources of EO related to limits in 16-17 years old students may lie

in their attitudes towards M and INF.

2.- Aims of rescarch. We were interested to know when & how, in

the course of their development, students come to construct these obstacles,
i.e. in what conditions students' conceptions of INF and attitudes twrds M
start functioning as EO (cf. Sierpinshi, 1989).

3.- General assumptions. We heve assumed that this happens sometime

in the transition period from the concrete t «> formal operational stages
and taken children between 10 and 14 years of age. We assumed it highly im-
probable that any attitude twrds M as scientific knowledge develops in youn-
ger children. As far as conceptions of INF are concerned, Piaget & Inhelder
(1948) & Tischhein et al. (1979) conclude that at concrote op'rationél stage
children are unable to.understand, o.q. the infinite nature of continuous
divisions of a geometrical fiqure. This does not mean, however, that they
do ot dovelop some less sophisticatod concoptions of INF such as "very
big, undetermined numbor™ (which may well occur in mach older studente, toog
cf . Sierpinska, 1988),

A0 Mothods of recoarch. The mathymatical contest we naed dnoor

interyviows e that of oquipotont. geotor we hove studied chideent s roges jory

o | 1 )3
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Lo our attempts to make them accopt the condition of existance of a 1-1- cor-
respondonce botween elements of two infinite sots as a criterion of their
having “as many" elements. We did not use the term "equipotent sets®. The
bolish term for it refers to "counting" and "number". We wantéd to avoid

the suggestion that "there are as many clements in set A as in set B if num-
bers of their elements are equal". The Polish expression for "as many" (which
is not distinguished from "as much") - "tyle samo" - can better be translated
with the French expression “autant que”.

Why this context of equipotent sets? The 1-1 correspondence criterion
is known for its being used by Galileo to solve the paradox of natural & e-
ven numbers. It was proposed by Bolzano (1831) to deal with infinite sets,
and Dedekind based on it his definition of an infinite set (1888). It further
became the corner stone of Cantor's Mengenlehre. The notions of equipotent
sets and cardinal number have shown to be elegant solutions to many paradoxes
and problems in M. But the choice to extend the notion of number in this
way testifies for the change in mathematicians' attitudes twrds M the XiXth
century was witness of . INF has a rich meaning outside M: it is a part of our
culture, of our beliefs concerning the structure of matter, size of Universe,
time ... {cf. Sierpinska, 1989). Now, one cannot accept this notion be redu-
cad to the 1-1 - correspondence criterion without coming to think that,
maybe, M is not a discipline describing some kind of reality (be it the
reality of our thoughts). To use this criterion with consequence one has to
b able to reason against one's intuitions, discoursively and formally,
and to accept it.

Certain befiefs about INF and cortain attitudes twrds M can, therefore,
function as obstacles against a ready and unproblematic acceptance of the
1-1 - correspondence criterion for comparison of infinite sets.

If the criterion is accepted without difficulty and used consistently
in comparing sets then, of course, it is possible that these obstacles are
overcome. However, this is little probable in 10 or even 14 years old child-
ren: Rather, this may mean that those obstacles have not been constructed yeo-
and children perform deductive ressoning in much the same way they observe
rules yhile playing games,

And this is how we come Lo our working hypothesis: let us observe in
vhat. conditinns the 1.0 - correspondence critorion ceases to be acceptable
for children,

We o shall stody in detadl andividaa] hictorion of children durin: tiw

expericence, Tooking tor reasons of changes or staqnat ton o in their concoption:

medbbrying to pick up bebovroral o wel g concoptual dif feroncos et uoon
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children of difterenbl age.

The rescarch has only just started and all we arc able to give here
is presentation of some behavioral and conceptual differences between two
girls (Agnés, 10 & Martha, 14) and formulation of some hypotheses.

I1.- ORGANISATION OF THE EXPERIENCE

There were 4 sessions, each with 4 children of one age group: 10, 11,
12, 14. The 4 children in each group were divided into 2 subgroups of 2 and
there were 2 subsessions in each session.

In the first subsession, one subgroup of 2 children was interviewed b
us; in the second, these two were asked to interview the other two children.

Here are more details on the first subsession. There werc several stej
in it:
Step 1. Interviewers suggest the following definition: two sets have as
many clement.s one as the other if their elements can be paired off, that is
if every element from the first of these sets has a pair in the second,
and every element from the second has a pair in the first. The suggestion i
made by using collections of green and yellow counters and asking: " how
can we check that there are as many green as yellow counters?”. We start
with small collections and go on to larger and larger stopping whenever the
children propose to pair off (cf. Brousseau, 1977). Then we negotiate the
definition.
Step 2. Children are shown a drawing like: —2 , and asked: "would you
agree with us that if two segments are of equal length then there are as
many poinus in one of them as there are in the other?".
Step 3. "Are there as many points in one as there are in the other of such
two lines?": :::
Step 4. The same question with:
Step 5. The same question with:
Step (. "Arce there as many natural numbers as there are even numbers?”
Step 7. "What do you think INF is? How do you imagine it?n

TIT.- COMPARISON OF AGNES (10) & MARTHA (14) BFHAVIOUR & CONCEPTTIONS

1. Ivhavioral differences

First o answers in stops 2 thru 6: Agnds: "Yes" in-—_— & @
Martha: a conditional “Yes" in one step only: <:>
Coneral reaction to Intervievers' arquments: Amdo: positive; Mirtiase
TR AUAN
Pinab answerns Amdvs YesT dn all S steps from Jothr b, et
X oo ey (7)) pather forecd by an Interviewer, non croepital
tnothyoo .

S et arve s one ey,
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Tetow are some oxcorpls from the detatled analysis of difforences
betweon Aquos' and Martha's bohaviour.
step 2. The rirst reaction to the gquestion (2”7 ), for both girls, con-
sists in saying that there is no univocal answer. The reason given by Agnés
is that the number of points on a scgment depends upon its width. Martha's
reason is that it is impossible to "really" check it, once can only do it
‘theoretically" by aqreceing upon some unit of measure as being the size
of a point. Final answers: Agnés explicitely formulates a positive answer
and method of proof. Martha formulates explicitely a method of pairing off
but declares impossibility of actually performing the procedure (becausc of
the infinity of points on the segments). She gives an answer in a conditional
form: if, by joining points that correspond one gets lines that are all pa-
rallel then there are as many points on one as there arce on the other segment
Step 4. First reaction to the question (____ ) is "Yes" in Agnés who starts
looking for a pairing off procedurce. Martha says "No" and starts showing
that there exists an assignment of points which is not one-to-one. Inter-
viewers intervene with criticism. Martha attempts to refute the arguments
but fails. Finally states that if we admit that there is an INF of points
in a segment and that the notion of next point doesn't make sense then it is
impossible to compare, to assign points to points. She tries to give another
proof refuting the theorem. After Interviewers' criticism of the proof Martha
says: "1 give up, because 1 cannot imagine ...". She criticises proof given
by Interviewers: "but no one can over draw all the lines, either".
Step 6 (natural and even numbers). Agnos first answer is: "No, because there
are the odd numbers, still™. Martha: in theory it is assumed that there is
an infinity of natural as well as even numbers, but, as we imagine these
sots, then we see that there should be more natural numbers. Agnés accepts
Intervioewvers' arguments. Martha repeats her argument with force, looks
for proofs of the negation of the theorem, refutes arguments given by 1.,

says she doubts whether existonce of a 1-1 correspondence indeed proves

that there as many natural as there are even numbers. After further interven

tions, becomes aware of the assumption ohe has been taking all the time:"I'm
considering only bounded sets of numbers, 1osee", gives up, says: Mall
this 15 a mattor of convention”, and doesn't soom pleased with it.
2o Concoptual difforonces
Mainoprobloms in steps 2 othra 5 were the notions of sogqment aned poine .
Conceptions that we obsorved an the gqirla can be deseribed o tollow

S bine cavmend dna pencil o stroke; aopaint isoa ot numbxer of Pl

Thoa segment. depends upon it width, tenath and Give ol
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S7: line segments have no width (or are of the same tiny width that can

be ignored): points are small, it may be convened how big they are, say, Inm.
S3: segment is a line bounded by two points; thore are only two points in a
line segment, namely its onds; the line is composed of little segments

S4: [same as above cxcept for:] the line is composcd of small points

S5: line segment is a line composed od very tiny points which are ordered in
a row (drawing illustrating this ideca by Agnés: «----o- ]
Sg: line segment is a mental object composed of an infinity of consocntive
points which is represented by a line drawn with the help of a ruler; points
have no dimensions but are represented with dots or little segments that
have dimensions
S7: {same as above without: "which is represented ... "]
Sg: [same as S7 vithout “consecutive" ]

Diagram brlow shows the cvolution of these conceptions in Agnés and

Martha during steps 2 thru 5.
tConceptions of line segment

Sg ¢ R
‘z' 1 e e g ,I \\ }(})'O HA%“}.S
———5':,"— A ’I 1% oo Martha

Concrata
o n
B o £
\
//,J
o<

Topr = T Tl a8k

Martha's conception of a mathematical object is characterized by a cer-

o
»

tain duality: on the one hand, there is the ideal mathematical object, abs-
tract, existing only in one's mind, and on the other - there is its more .
or less concrete representation: sure, we "assume" that there is an INF of e
tural numbers, but "as we imagine this sot” . . think but of a finite, be it
very large,set of numbers. Agnés does not seem to have problems of this kind.§
At the beginning she displayed a very “concrete! conception of line segment.

Later she started to make abstraction of the width and points became "inima-

ginably” tiny dots. But she never started thinking of there being somethin:
like the "idea of line segment".

The 1-1 correspondence criterion was conceived of operaticnally (1.e.
in torms of operations to be actually performed, of. Bridgman, 1934) by Marth
all along the oxporience; by Agnes - in steps 2 & 3 only. In further steps
Aqnos found it sufficient to give verbally and/or iconically the rule for
pairing off in()prw»L:In Martha, hor operational conception of the pairire
ol procedure together with her "dual” conceptions of mathomat ical Gt gects

wore constantly souarces of mental conflict: it is impossiblo to actusliv per
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form the procedure on ideal, mathemitical line segments (Sg). these being in-
finite sets of points (and then it is impossible to compare two sets in
this sense); it can only be performed on their concrete representations -
dravings (where a point is identified with a unit of measure). But then -
there is no 1-1 correspondence between points of two line segments of unequal
length, so there are not as many points on two such line segments.

This kind of operationalism and "dual® character of mathematical con-
copts may be characteristic of conceptions in the transition period from con-
crete to formal operational stages.

From step 4 on Aqnés is very Keen on precise formulations and proofs.
She seems to have now understood what is expected of her and this is how she
interprets the rules of the game. She is quite happy with it.

Martha, in step 3 ( =, says she hates formalism as being completely
arbitrary, unnecessarily pedantic & contrary to her intuitions. But, in her
atlempts to refute Interviewers' arguments, she makes big efforts to use "ma-
thematical proofs" (althouagh her logic is sometimes rather strange; e.g. she
usns something like 3RcA x B (R is not 1-1) as a sufficient condition for:
A 1s not cquipotent with R).

Agnés had accepted the 1-1 correspondence criterion as soon as she un-
derstood that it defines the term "as many as". Martha had understood it so
At the very beqinning but. in stop 6 she refused this theoretical choier as
being absolutely against "what should bet.

IV.- SOME CONJECTURES
1. "Concrete" conceptions of mathematical objects do not prevent one from be-
ing able to perform precise deductive reasonings based on assumptions not ne-
cessarily conform to one's intuitions.

2. One reason for this may be that, at the concrete operational stage, these
intuitions are very superficial: they need not touch the deep conceptual dif-
ficulties inherent in a mathemitical concept (e¢.g. problems of density or con-
tinuity had to b discussed with Mirtha but not with Agnos). Younqger children
miy not even "soo' the difficulty.

3. Another reason can be that these intuitions are not linked vith emotions.

A 10 years old child 1s emotionally open to change of conceptions: she has
only started organisinvg her knowledge and she accepts learning from adults.
othe course of maturation of porsonality, the child may start identifying
Berself witn hor knowledge. This miy bocome part. of hor worldviow, and an in
artion may tarn into o conviction or bolicf, Now linkel with strona cmotions,
1E starts to function an e obstacle. This might oxplain Martha's rosistance

aranct the proposed theoret veal solut jon:.
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Piaget's theory of intellectual development is not particularly inte-
rested in maturation. "Our thinking doesn't become more intellectual just
because we are getting more mature (Donaldson., 1978)". Mut there may be a
link between maturation of personality & constitution of conceptions into
obstacles.

4. Both Agnés & Martha accepted reasonings in M as being hypothetico-deduc-
tive. The difference between them lies in their attitudes towards the rele-

vance of theories thus obtained. Agnés does not care if these theories are

absurd: M is a game and it is fun to obtain surprising results. Martha's
views are quite opposite: if one of the statements we obtain by deduction is
“false", i.e. contrary to what we think there should be, then Axioms, defini-
tions, criteria assumed beforehand must be changed or the whole theory blown
up. This difference is analoguous to that between points of view of Russel -
(formalism) and Lakatos (discoursive empiricism, 1978). However, there scems
to be still another difference (perhaps more serious, even) between Agnés'

and Martha's attitudes: Martha's attitude may be a result of a conscious re-
flection on what scientific knowledge is there for, what is scientific and
what is not (& "why should 1 learn it???"). Agnés may just be trying to parrot
her Math teacher or the Interviewers. Therefore it may be easy to make her
change her attitude. It has shown to be an impossible task with Martha. This
difference again seems to be linked with maturation of personality.

5. The difficulty to overcome obstacles in Martha can be linked, also, with

her “"dual" conceptions of mathematical objects ("ideas" - representations)
and operation>. attitude towards mathematics (Bridgman, 1934) which may be

characteristichf the transition period between concrete and formal operational
stages.

!
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Learning Y-Intercept: Assembling the pieces of an "atomic” concept

Jack Smith, University of California at Berkeley, U.S.A.
Abraham Arcavi, Weizmann Institute of Science, Israel.
Alan H. Schoenfeld, University of California at Berkeley, U.S.A.

In this paper, we report data indicating that some commonly-held assumptions
about teaching and learning may be inaccurate. For example, concepts such
as y-intercept that are taken to be the unproblematic building blocks of higher-
order knowledge of linear functions may be much more complex than they
appear. Our analysis emphasizes that "pieces"” of y-intercept can be acquired
without full conceptual understanding and that concept acquisition is a
gradual process, which extends context-bound knowledge to more general
fields of application.

Introduction

There are many core concepts in the secondary schoo!l curriculum that are
generally assumed to require very little instructional development. Concepts such
as slope, variable, equality, parabola, and y-intercept are understood to have a
simple internal structure and they are taken to be the “atoms™ out of which more
complex concepts such as function are built. We present some compelling
evidence from one student's (named IN) efforts to learn one concept (y-intercept)
that questions the simple, all or nothing, "atomic" nature of these concepts. Our
results suggest that students acquire pieces of the concept (in the case of
y-intercept, graphical and algebraic pieces) before their knowledge becomes
atomic, and that learning even these individua! pieces can be a highly
contextualized, gradual process.

Our analysis focuses specifically on 'N's gradual acquisition of 11e concept of
y-intercept across five distinct graphica contexts in a computer-based graphing
environment. If a significant proportion of our st 4¢ s learn "atomic” concepts in a
similar way (and we will argue that they do), then instruction must do much more to
support the assembling of atomic concepts than is typically the case.

Background to the Analysis

The data for this case study were the result of the pilot-testing of a computer
graphing environment called GRAPHER. IN was a 16 year old high school stugen:
enrolled in a summer calculus class for high school students on the Berkaley
campus who volunteered to experiment with the software. Our initial backgreunc
questions revealed that IN was highly motivated and articulate, that she had soms
deficits in her basic algebra instructicn, and yet had overcome these debois
successfully enough to succeed in advanced high school mathematics classes
Her companion in her explorations of GRAPHER was a graduate student, Js Hio
function was to provide a loose structure for her activity by explaining the bas:
functionahty of the software, suggesting tasks, and posing chinical-style questonz
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when appropriate. IN liked the system, attending 4 separate sessions averaging
1.5 hours in length. These sessions were videotaped and the entire corpus of 7
hours of interactions was available for analysis. The case study of IN's learning of
y-intercept is part of a larger study of her learning in this context (Schoenfeld,
Arcavi, & Smith, in preparation).

GRAPHER consists of three separate microworlids, and was designed to assist
students in learning polynomial functions. One of these microworlds, "Black Blobs®,
is a game patterned after "Green Globs" (Dugdale, 1984), in which students
choose equations to "shoot at” randomly located sets of squares on a Cartesian
graph. The data presented below consists of various situations that IN confronted
in Black Blobs and some of the discussions with JS that resulted. (See Schoenfeld
(in press) for a more detailed description of GRAPHER.)

A Sketch of IN's Initial Knowledge of Linear Functions

From IN's answers to our preliminary tasks and questions, we concluded that she
knew that linear functions can take the form, "y= mx + b", and that "m" was called
the slope and "b" the y-intercept. She could construct a table of values to generate
the graph of a line. She could also compute the slope from the coordinates of two
points, although her understanding of the concept and its properties was faulty. Her
knowledge of y-intercept was also a mixture of strengths and weaknesses. On the
one hand, she knew that the "b" slot was where the y-intercept was represented in
the equation, and she indicated indirectly that intercepts were locations where the
graph crossed axes. On the other hand, the graphical and the algebraic pieces of
y-intercept were not connected. She did not show any understanding that a "b"
value of "1" meant that the line crossed the axis at (0,1). Our subsequent analysis
indicates that this missing Cartesian connection between the graphical and
algebraié meanings of y-intercept (i.e. that "b" is the y-intercept because (0,b) is a
solution of y=mx + b and (0,b) lies on the y-axis) was a fundamental part of IN's
struggles to learn y-intercept as a single conceptual atom.

Game situation #1: "Recalling the Graphical Meaning"
Working on her first "Black Blobs" screen (Figure 1 below), IN sought a linear
function that would hit the 2 blobs (P2 and P3) centered at {-0.5, 2.5) and (0.5, 3.5)

respectively. After calculating the slope to be "17, she turned her attention to the
intercepts.

IN: OK, let me see. Do we hnow what the yantercept is? The y-intercept is..
JS: What is the y-intercept ?
IN: The y-intercept 1s where the point touches y...oh. OK, s then. but then it could

be either 3.50r 2.5
177
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JS: Well, 3.5 is where the line is on one side of the y-axis, and 2.5 is where it is on
the other.

IN: So which one should | use?

JS: So, if the line passes through this point and this point [points to the two
selected blobs], then where is..., does that give you an idea where the y-intercept ‘s
gonna be?

IN: [no response]

JS: Ok, is going to be going like this [shows the line with a pen on the screen] so
Jjust knowing that's gonna go like this, can you tell where the y-intercept is

IN: Oh, Oh, Oh!! [gestures with both hands], it's going to be at ...3?

Although she indicated before playing the game that she knew the graphical
meaning of y-intercept, that knowledge was not stable enough to apply in a new
setting. Instead, she suggested to herself the association of the nearby
y-coordinates and y-intercept. This temporary alternative meaning of y-intercept
was strong enough to withstand JS's mild prompts to focus on the line through P
and Pz not the blob themselves. When he was driven to the stronger intervention
of representing the line with a pen, she immediately saw the light and determined
the correct value "3". This game episode affirmed what our earlier assessment of
IN's knowledge had indicated. IN knew pieces of the concept of y-intercept, but
these pieces were highly unstable. From the next episode, it is clear that this
interchange helped IN to stabilize her graphical meaning, but only in a local sense.
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Game situation #2: “Local Competence"

Bolstered by her success at hitting P2 and P3 with "y = x + 37, IN turned her
attention to 3 other nearby blobs, P4, Ps, and Pg centered at (-4.8), (-1.6.5) ard
(3,5) respectively (see Figure 2 above). IN correctly calculated the value of the
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slope to be -0.5 and turned to find the y-intercept.  Her first estimate of the
y-intaercept ("6") was exactly correct. Unfortunately for IN, JS offered her a folded
paper as a means to represent the line and check her estimate. She then changed
her estimate to "5.5", perhaps as a result of the parallax of the computer screen,
and entered the equation "y = -0.5x + 5.5". She was perturbed by the miss that
resulted but proceeded to adjust the value in two steps ("5.75" then “6" again) to hit
all three targets.

Her performance in this episode would tend to indicate that she had consolidated
her graphical meaning of y-intercept and would have no more problems with that
issue. In short, it looks as if she "has the concept”. As will be apparent from latter
episodes, this assessment was clearly incorrect. The competence that she had
gained was limited to a narrow graphical context: those situations in which blobs
bracketed and were close o the positive y-axis. Game situations that did not fit
those conditions presented new and substantial difficulties. As the data from
Situation #3 and 4 below will show, the extension of the graphical meaning of
y-intercept from the limited context of application of Situations #1 and 2, to other
more general contexts was anything but automatic and effortless.

Game situation #3: "What Should Have Been Easy Was Not"

Six days after what had been an enjoyable first round with GRAPHER, [N returned
for a second round of work. On her first game screen (illustrated below in Figure 3)
she selected 3 blobs, Py, P2, and P3, centered at (0,7). (-1,5) and (-2,3)
respectively. She spontaneously asserted that they looked like the ones that she
had shot at in her previous session. She then miscaiculated the slope to be "-1.5"
(the correct value was "1.5") and declared the y-intercept to be “zero®, typing in the
equation "y = -1.5x + 0". When the resulting line was off-{arget in slope and location
on the y-axis, IN was quite taken aback. In response, JS put both the slope and the
y-intercept values up for discussion.

JS: OK, did either of them come out the way that you wanted, or is, are thiey both
wrong?

IN: Well, the y-intercept should be zero, shouldn't it, because tha: third dot on the
top is zero, isn't it?

JS: This one? [pointing to Py)

IN: Yes.

JS: Ah, well, lat's see, it has two coordinates, right, an x and a y?

IN. Yes.

JS: And one of the coordinates 1s zero.

IN Yes, the x, and the yis 1,2, 3, 4,5 6, 7, zero 7.
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JS: So if we need to include the y-intercept...

IN: Aha.

JS: Which one of those numbers, zero or 7, is the y-intercept?
IN: Oh, 7! Oh, | didn't know that.
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If there was any doubt before, her final comment indicated quite clearly that her
difficulty in this situation was rooted in a matter of substance and was not just in a
slip of the tongue. This collection of blobs would be the easiest of all possibie
game situations for someone who understood y-intercept. With a blob located on
the y-axis, the y-intercept of the desired line is the y-coordinate of that blob. But
this "easy" situation was anything but straightforward for IN. She knew the
ccordinates of Py but did not know that the y-coordinate of P since it was located
on the y-axis was the y-intercept. Instead, she used the salient x-coordinate. We
take this as strong evidence that the graphical and the algebraic meanings of y-
intercept were isolated from each other. She lart . the knowledge that "b” is the
y-intercept value, precisely and necessarily because the ordered pair (0,b) was a
solution to the equation "y= mx + b" and (0,b) lies on the y-axis. In the absence o!
this unifying "Cartesian" connection the situation of a blob on the y-axis presentec
a new context for IN's limited notion of y-intercept, one that required an extensior
of what she had just learned.

Game situation #4: "Success in a New Contex{"

About 15 minutes later in Session 2, IN decided to shoot at two blobs that were
distant from the y-axis -- P4 &nd Py centered at (6,-5.5) and (7,-6.5) (see Figure ¢
above). After incorrectly calculating the slepe to be "1" (the correct value was ™ *7)
she turned to JG with a question,

IN: fwriting "y = 1y« "on hor scrateh paper] How do | ind the yantercept™
s
15
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JS: What is the y-intercept?

IN: Yeah, or how do | find it?

JS: L know, ...what can we, what can we remember from just the word, y-intercept?
IN: Where it touches the y-axis.

JS: OK, um...

IN: But it would be far away, see, and so I'd have, I'd probably make a mistake if |
Just guessed at it.

JS: Well, let's be a little experimental. Let's see if we can guess.

IN: Oh. It'd probably be here [tracing a line with the mouse out of the graph window
near (0,10)] if we can guess.

This episode indicated that IN's knowledge of y-intercept had advanced in a
number of ways. First, she was able to successful handie a new situation -- two
blobs which did not straddle the y-axis and were quite distant from it. Secondly, her
difficulties were due to the limitations of her ability to visualize the line and
therefore its y-intercept, not to any difficulty wiih the graphical meaning itself. In fact,
she was able to give a reasonable graphical definition, despite the use of
language ("touches") that was involved in her previous confusions with y-
coordinate. Finally, her empirical success in estimating the y-intercept had pushed
her to seek a more direct and deterministic method for finding the y-intercept
values for given blobs. (She asked JS for a "shortcut™ after bemoaning the vagaries
of "guessing”.) It we measure along these micro-dimensions, IN learned a great
deal in her interactions with GRAPHER. But, as the final episode we present
indicates, there were still definite limitations to her understanding.

Game situation #5: "A New Kind of Context-Dependence"

On a new game screen later on in Session 2, IN experimented with different slope
values to get lines of different inclination through the same y-intercept, "-2". JS
suggested that she find a linear equation that would hit the blob Ps centered at (-

8.5,-4.5) and went through the same y-intercept she had been using (see Figure &
helow).

IN: This one [pointing to Fs] and what other point? Shouldn't | have two points
before | can solve it?

JS: o what | meant was whether you could draw a point through this blob that wer::
through the y-intercept, -2

IN:- Ok, ah, but what other point would it reach?.... there 15 no point thiat | can redct
that would make me qo through that ax, through that intercept.

JS: Right, OK, so the problem there s what” We only have one point”
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IN: Ah, yes.

JS: OK, is there anything else on the screen that we could treat as another point?
IN: That would make this, that would be straight here [tracing the line]? No. See.
There's nothing else here.

Figure 5

At this point, JS gave up and told her to use the y-intercept as if it was a blob. She
needed 3 attempts to guess the slope, "-.5", "-.1", and "-.3". and then typed in the
equation, "y = -.3x - 2". Then watching attentively as the line approached the y-axis,
she declared with pride and exhilaration, "Exactly!" - 5 the line crossed the y-axis.
We take this final episode to indicate that IN's knowledge of y-intercept was very
dependent on the particular constraints of the game and was not situated in the
ideal Cartesian plane. Her reiteration of the need to start with 2 or more blobs and
her expression of exultation when the line crossed at (0,-2) indicates that she had
failed to abstract that blobs were sloppy approximations of points in the plane. As a
result she tailed to see that a y-intercept and a blob were sufficient to determine a
line. When JS asked her to simply treat the y-intercept as a blob, she accepted kis
suggestion as simply an amendment to the rules of the game. (We here note that
her requests to find another point were not driven by the need {o compute tme
slope, as the careful reader might think. In this sequence she was estimatng tme
values of the slope.) IN had learned as much as she could about y-intercept from
shooting at coliections of 2 or 3 blobs in the game. She knew that every coliine e
set had an associated y-intercept and became quite skilled at estimating its vale.
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Her learning led her toward the deep connection between the value of "b" in the
equation and its graphical meaning, but she never grasped it. Perhaps for this
reason, she failed to abstract her knowledge from the game to the mote general
context of the Cartesian plane.

Discussion

We have presented resuits from a single case study that indicate that learning
simple "atomic" concepts is a much more contextualized and gradual process than
is commonly understood. Despite having learned enough mathematics to get
herself placed in the calculus class for advanced high school students, IN still had
to learn (or relearn) the concept of y-intercept one graphical context at a time. Local
competence (as demonstrated in Situation #2 and then again in Situation #4) did
not at all imply a general and robust understanding.

This research indicates that some ostensibly simple notions are quite complex and
subtle for students and that the appearance of mastery may hide, in fact, only the
barest understanding. These results have implications for mathematics curricula
whose goal is that students build deep and meaningful understandings of
mathematical concepts rather than the superficial and fragile ability to repeat only
the procedures they have been taught.
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COMPUTERS, VIDEQ, BOTH OR NEITHER.
WHICH 15 BETTER FOR TEACHING GEOMETRY?

Nurit Snir and Zemira Mevarech, Bar-ilan University
Ni1tsa Movshovitz-Hadar, Technion-lsrael Institue of Technalogy

This study was designed to assess the impact of instruction wvia
computers, video, both or neither on learning processes and achievement in
geometry. A 2X2 (TV by Computer ) factorial design was employed.
Participants were 268 fifth grade students who studied the same contents
for the same duration of time. Results showed that more media does not
necessarily imply better math learning. in fact, the no-media and multi-
media yielded similar low learning outcomes, while the video by itself
exerted the highest achievement scores, even higher than those oobtained in

the computer environment A similar pattern of differences were found on
Time On Task

Five years after Bloom (1684) phrased "the two sigma problem”, the

solution is still far away  Bloom argued that “optimal learning conditicns’
can prornote cognitive outcomes by approximately two standard deviations

(sigma) above what can pe achieved under "conventional conditions™ The

problem, of course, Is how to define “"optirnal learning conditions” Blooms
(1976, 1984) maintained that to be effective, educ. . .nal environments raust
adequately provide for the four elements of the qualhity of instruction

appropriate cues, reinforcement, participation, and feedback-correctives In

this view, the four elernents are additively related to achieverent, 'f one 13
missing, achievement witl be lower. Therefore, Bloom (1984) suggested to
combine instructional methods tﬁat emphasize different elernents of the
quality of instruction

in the ast decads, severa) atternpts have been made to expiols trw
impact of combined maethnds on achievernent  For example, [levarecn 1435

found that combirang proorams emphasizing cues with proqram . ermnnasizing
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feedback-correctives enhanced achievement more than each program by
itself Bloom (1984) reviewed a number of studies showing effect-sizes
higher than one standard deviation of combined methods compared to control
groups that did not employ any specific method Finally, Tenenbaum (1986)
reported strong impact of an instructional method consisted of the four
elernents of the quality of instruction

what are the implications of Bloom's theory (1984) to technology
assisted instruction? Does the exposure to two instructional media imply
better math learning than the exposure to one or to none? Moreover, does the
use of one medium improve achievement more than "conventional™ instruction
with no technology? Undoubtedly, video programs have the potential to
enhance different types of cues including verbal, visual, and vocal As a
result, the exposure to new vigeo programs has tended to facilitate learning
(Clark, 1983) On the other hand, considerable research has indicated that
computer assisted instruction (CAl) that provides immediate feedback-
correctives yielded significant better acadenically oriented achievement
and affective outcomes than learning with no computers (Kulik and Kulik,
1387, Mevarech et al, 1985a 1985b, 1987,1988) Based upon Bloom's
theory (1984) and these findings 1t was hypothesized that instruction aided
by multi-media consisted of computers and TV would promote academically
oriented outcomes more than would be expected on the basis of each medium
separately or instruction which 15 not aided by any technology

Although the cognitive outcornes arising from CAl and nstructional
videg programs have been the focus of systematic research, relatively hittle
research has been directed to other outcomes In particular, very hittle 1s
bnown on earmng processes that take place i computer or TV environments

Beoearch has indicated that both Tv and cornputers have heen viewed as
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having important roles in increasing attention and time-on-task (TOT) (Clark
and Salomon, 1986). Thus, it was hypothesized that instruction via multi-
media (TV and computers) would increase TOT more than each medium by
itself.

The purpose of this study was to investigate the roles of instruction via
computers, video, both, or neither on learning processes and achievernent in
geometry. To examine the study hypotheses, a 2X2 (TV by Computer) factorial
design was employed. The four resuiting treatments were: multi-media (TV
and computers), TV, Computer, and absence of technological devices The
research design holds constant quality and content of instruction, as well as
allocated time; the' only differences between the treatments were related to

the different media as will be described below

METHOD

Participants

Participants were 268 fifth grade students, 126 boys and 142 qirls, who
studied in eight classrooms in four Israeli elementary schools. Classrooms
were comparable in terms of students' SES, previous exposure to computers
and TV educational programs, and teachers > of experience Intact
classes in the four schools were assigned randomly to the four treatrrents

As a result, the size of the groups were. multi-media (N=74), TV (N=63),

Computer (N=55), and neither TV nor Computer (N=59).

Treatment Groups
All classrooms studied the same unit in geometry Tiles and Corners,

for equal amount of time (four weeks) with the same geometry book

“Ohacham, Smir, ana Movshiovitz-Hadar, 1987) This unit 15 & new part of the
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Israeh elementary school curriculum n geornetry and thus none of the
ctasses had been exposed to its contents prior to the beginning of the study
indeed, knowledge pre-assessment showed an average grade of less than 20%
correct answers. All teachers were told that they were experimenting a new
unit  They received the same training and used the same instructional
method introducing a new concept or skill to the whole class followed by
indwvidualized practice and apphication sessions based on the same student
wOrk ook

The difference among the treatment groups was In the exposure to the
media The "TV group” learned the prerequisites concepts related to the unit
1n the first four sessions as described atove and then watched a 25-minute
video program called "Tiles and Corners” of the Dra-MMath sertes produced by
the lIsraeli Instructional Television (Rewner and tMovshovitz-Hadar, 1986)
watcning was followed by augrented activities designed by the film
designers At the end of the study, the video program was played once again
to ensure that understanding had been attained (For more information about
the Dra-Math series, see Movshovitz-Hadar and Reiner, i1983)

The "computer group” used LOGO or BASIC to practice skills and to apply
the concepts introduced during the whole class instruction At each session,
after the teacher introduced the new concepts, groups of six students
practiced individuaily at the computers The rest of the class continued ta
practice with the student workboox Trnus, similarly to the TV group, aiso in
the Computer group, about 25% of the time was spent at the media

The multi-media group watched the pr egrarm az did the "TV group and
they practiced the skalic ang gpqlied the concepts using LOGO or BaSIC a0 dir
fre senmpyter group”  Banally  at was mensioned above, the 'no technotony

Qrone mnent an equivatient amaunt o Yime tearning with the aorkbook only
187
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Instruments

Mathematics achievement were assessed by two instruments:
Standardized Mathematics Achievement Test developed by the Israeli
Ministry of Education (Kudar-Richardson reliability coefficient = 86) and
geometry achievement test developed by the unit designers (Alpha-Cronbach
reliability coefficient= 79). The geometry test was administered prior to-
and at the end of the study; the Mathematics Achievement Test was
administered prior to the beginning of the study and its results were used as
a covariate in all analyses. In addition, students Time On Task (TOT) was
assessed at the beginning, in the middie, and at the end of the study by a
short questionnaire designed by us for the purposes of the present study
(Kudar-Richardson reliability coefficient= 80 )

RESULTS AND DISCUSSION

To assess the effects of the different media on achievement in
geometry, a one way analysis of covariance (ANCOVA) was ernployed with the
ore measures used as a covariate A test ¢f the homogeneity of the slopes
indicated that the reqrecsinn alnpes were e al for = fagr celle and thoe
the usual analysis of covariance mogel could be applied

Significant differences were found between treatment groups on the
post geometry test controtling for initial differences in mathematics and
rre-geometry achievement tests (F(3, 262)=3581, p<001) However, 1In
contrast to our hypothesis, the multi-media grouo did not attarn tne highest
rnean scores Evidertly, Duncan comparisons indicated that the "TV group”
alttained the highest achievement mean score  Their mean score was
approximately one standard deviation lgher than the "Cornputer aroup” which

I turn was approximately half standard deviation higher than the reylt:-
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media and the "no technology” groups; no significant differences were found
between the last two groups.

Analyses of students’ TOT indicated that although no significant
differences were found among the four treatment groups at the beginning of
the study, significant differences among groups were manifested at the
middle and at the end of the study. Generally speaking, TOT data supported
the results reported above. Duncan coreparisons showed that TOT of the "no
technology™ group remained stable during the time of the study. The TV
group™ consistently increased TOT and so did the "Computer group™ In
contrast, however, the multi-media group increased TOT between the first
and the second measures, but than a sharp decrease was manifested

The results will be discussed at the conference from three perspectives
First, Bloom's model (1976, 1984) will be applied to illustrate the roles of
the elements of the quality of instruction. Second, theories in metacognition
will be used to explain the small impact of the multi-media on achievement.
Finally, the implications of the findings to actual classroom teaching will be

presented:. what to do and what not to do.
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VOC. MATHS R.Strasser- R lromine iDM Bielefeld

VOCATIONAL MATHEMATICS

Teachers' Cognition of Mathematical and Vocational Knowledge

The paper reports on an empirical study of the way. teachers in vocational
colleges perceive the relation of mathematical and vocational knowledge. A
content analysis of 40 interviews shows that the majority of the teachers
think of the relation in terms of examples from both domains. Only few of them
come up with descriptions relating these domains as a whole. When asked about
the purpose of mathematics in their teaching, half of them call r.2.hematics a
helpful tool (and nothing else), whereas a third also mentions the conceptual

help of mathematies for understanding professional situations.
1 Research Question
Research on teacher cognition analyses the concepts and decision processes of

teachers (cf. BROMME & BROPHY 1586, CLARK & PETERSON 1986, HOFER 1986), but

did not pay too much attention to the ‘professional knowledge' of teachers -

taken as the mixture of pedagogical, didactical and matter knowledpe, routines
and experience including the emotions related to the teaching practice,
Teachers' professional knowledge is based on preservice teacher-training and

develops during the teacher's actual teaching.

Only  recently, empirical research in the professional knowledge of teachers
started (cf. SHULMAN 1086) and has to specify the teachers' professional
knowledge apainst the knowledge of different professions - e.g. managers of &
company or lawyers. The research reported helow starts from the assumption
that the professional knowledge of teachers is characterized by an integration
of knowledpe from two domains, namely curricular, subject-matter knowledge and

pedagogical knowledye (¢f. BROMME 1987, BROMME 10 appear).

The  professional knowledsge of teachers is aoalyvsed in a specific sotting -
namedy technical and vocational colleges in the FR Germany. This is a part
time classroom=-type education of normally rwo davs per week complomented by
three days vocational training in companins (the west-German ‘¢ il system’ of
vocational training, for a detailed deseription of STRASSUH 1985)  This type

of initta]l voeational traaning would last three years and offers 4 vaeationa)
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certificate as qualified worker (‘'Facharbeiter') to the successful student. In
the college part of the training, the 'Berufsschule', mathematics would be
taught for two or three hours per week wlth the alm of a numerical foundation
and interpretation of vocational phenomena, underpinning vocational knowledge
by numerical analysis ("zahienmifige Deutung und Durchdring ... von berufli-
chen Erscheinungen”, "Untermauerung der Fachkunde durch rechnerische Durch-
dringung", cf. GRONER 19565, p. 477, and WOLFF 1958). The use of metaphors in
the widely accepted descriptions of goals of the mathematics teaching may be
taken as a hint that there is no explicitly consented didactics for this

teaching and only little research in vocational mathematics education.

Analysing the professional knowledge of teachers in vocational colleges, these
teachers' curricular knowledge should be additionally subdivided into mathema-
tical knowledge and knowledge related to the vocation they train the students
for ('vocational knowledge'). From the point of view of the related discipli-
nes (mathematics, pedagogy and e.g. engineering), the threce domains of
kowledge differ widely and may be even taken as different cultures (cf. SNOW
1959). The research reported below concentrates on a pair of the triple
pedagogical -vocational-mathematical knowledge and analyses the way teachers
think of the relation between mathematical and vocational knowledge (for an
empirical analysis of the relation of curricular and pedagogical knowledge in
general education ¢f. BROMME & JUHL 1988). The relation of mathematical and
vocational knowledge here is a particular revealing case of an integration of
different domains of knowledge because ¢! tt -y ‘fic task these teachers
have to fulfil.

2 Methodology

Professional knowledge is not directly accessible and differences occur
between the knowledge used and the knowledpe which is talked about - even in
professions which neced use of speech when being practiced (cf. ARGYRIS & SCHON
1974). For an empirical analysis, one should gencrate occasions to observe the

use of professional Kknowledge - e.g. ask for a description of [essons in

mathematics recently taught.

In 1981 and 1983, 40 teachers of vocational colleges were interviewed to learn
about the teachers’ concepts on the relation of mathematics and the correspon-

ding vocational domalin. The teachers were trained in the vocational domain
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(e.g. metalwork or business) and trained teachers, nol tralned mathematiclans,
who had to teach vocatlonal mathematles In "Berufsschule”. At the beglnning of
the interview. They were asked to relate their answer to a specific course
they had taught last year. The Iinterview started wlth a detalled description
of this course (number of students/distribution of sexes/school leaving
certificates etc.) in order to secure a relatively narrow relatlon to the
teaching reality of the interviewee. They were also asked to describe
difficulties the students had with mathematics, the toplcs taught to the
course, their teaching methodology and the manuals used. At the end of the
interview, data on the biography of the interviewee (age, type of vocational
training, academic training, teacher training, vears of active teaching etc.)

were gathered.

In the 1981 and 1983, in total 40 teachers from a whole range of vocations
(from business-administration to electricity and tailoring) were interviewed.
The interviews lasted from | to 2 hours. A comparison of data on the courses
and teachers interviewed with data available on vocational teachers and
classes in the FR Germany shows that average full-time vocational teachers
were in the sample, teaching courses with relatively good school leaving
certificates and the usual competencies (for details cf. STRASSER 1982, p.
60ff)

The teachers' perception of the relation of mathematical and vocational
knowledge was reconstructed by a content analysis relving on categor °s
modelling the two-domain-approach (mathematical vs. vocational knowledge). Two
independent raters had to search the interview-parts on the topics and
methodology of teaching in order to identify those sentences directly speaking
of the function mathematics has in the vocational training of the students.
These passages were classified into mathematics (1) for communication purpo-
ses, (2) as operative help for wvocational problems, as tool, (3) as
description of a vocational situation and (4) mathematics in other functions.
In a second step, the raters identified passages directly speaking on the
relation of mathematical and vocational knowledge. analysing these passages as
binary relations (mathematical vocational topic) by classifying their degree
of abstractness (example vs. whole disciplinessubject for bath carriers of the
relation) and the way, mathematical and vocational knowledpe are described to
act upon cach other (e.g. related mathematics taught before vs. taught after

the related vocational knowledpoe).
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3 Resulits

The 6 female and 34 male teachers (with average age of 42 when interviewed)
had all (except two) gone through a preservice teacher training. 16 of them
mentioned speclal studies in mathematics during their teacher training. As a
mean, they had seven years of active teaching. They had been teaching courses
in business/administration (14 teachers), technical domains (22 teachers) and
others (4 teachers, e.g. courses for future florists) with higher <chool
leaving certificates and more female students in the business/administration
courses than in the other courses (business/administration: 66.5 % -average

female students against 21.8 % average female students in the technical
courses).

Oonly half of the tecachers remembered teaching mathematics more than four
consecutive lessons in isolation from vocational contexts. Less than half of
the topics of mathematics lessons can clearly be labelled mathematics. The
teachers gave examples like "rule of three" and “equations" as well as "torque
and power" and “calculating investment" as topics of their lessons. Most of
the teachers described their teaching method in the following way. A lesson
would begin with a description of a situation or a technical or scientific
experiment specifically prepared for teaching vocational mathematics. Having
developed a scolution in terms of a formula or a calculation rule, the teachers
seem to underestimate the re-interpretation of the mathematical solution in
terms of the vocational contexts (for details cf. STRASSER 1985a, for a
description of this teaching method cf. BLUM 1¢

To learn about the three domains in the professional knowledge of the
teachers, they were asked to distribute 100 points to three descriptions of
themselves: "educator”/"specialist in mathematics"/"specialist in the vocatio-
nal domain they trained for". 87 tecachers answered with the distribution shown
in the graph (see next page). As can be seen from the answers, the teachers’
self-concept was rather beinyg an educator or a specialist in the vacational
domgin, not in mathematies,

As for the function(s) of mathematics, half of the teachers call mathematiss a

helpful tool for vocational contexts (and nothing else). A third also mentions
the help of mathematics for understanding vocational sltuations (see talie

next page, both raters had only a 50-%-agreement on both the identificativz
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"able 1: Functions of Mathematics for Vocational Contexts

none ONLY ONLY under| tool AND other
tool standing underst.

nunber of teachers 8 16 7 3 6

and classification of interview-parts). "Other” functions of teaching mathema-

tics were e.g. 'fostering loglcal thinking', and 'general education’.

The detalled analysis of passages relating mathematics and vocational contexts
is summarized in table 2 (sce next page; both raters show an accordance of .78
for both the identification and classification of the relation). Obviously,
the majority of the teachers think of the relation between these two domains
in terms of examples from both domains, only few of them come up with

descriptions relating these domains as a whole.
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Table 2: Relations of Mathematics and Vocational Contexts

Contents of Relation
Degree of maths helps | voc. knowl. | mutual
Abstract- vocational helpful for | help other
ness knowledge maths
ONLY
examples 18 0 1 1 20
maths ONLY
as disci- 5 0 1 3 9
pline
other 4 2 1 3 10
27 2 3 7 39

Statistical tests show no connection between the self-description of the
teachers and the function of mathematics for vocational contexts or the
relation between mathematical and vocational knowledge. Teachers with mathema-
tical studles tend to give significantly more points for the “"specialist in
mathematics” than the others. Teachers having more years of active teaching
seem to put more stress on the 'understanding'-function than those with less
teaching experience. There Is no correlation between age, mathematical
studies, characteristics of the courses and their cognition of the function of

mathematics or the relation mathematical/vocational knowledge (for details see
BROMME & STRASSER in press).

4 Interpretation

An interpretation of the results presented should start with the fact that the
‘communication'-functions of mathematics for vocational contexts Is not at all
mentioned by the teachers. The teachers only perceive the 'tool'- and the
'understanding'~function, which may be taken as a redeflnition of the
descriptive function. This more or less pragmatic view on mathematics comes up
also in the widespread use of examples rather than whole disciplines/subjects
when the relation of mathematical and vocational knowledge is mentioned In the
interviews. Mathematics has its fundamental purpose in helping with vocational
problems, serving as an operative tool. It is taught Integrated with
vocatlonal contexts and has nearly no role in itself (cf. the few teachers
mentioning the underpinning of mathematics by vocational knowledge). The most
striking result Is the overall agreement on the relation of mathematical and

136
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vocational knowledge in the interviews. A majority of interviewees only

mentions the ‘tool'-function of mathematics. An ‘objective' Interpretation

could take this perception as so dominant and widespread that different views
can only rarely be found In the wvocational colleges. A ‘'measurement’
interpretation could take this as an indication for the inappropriateness of
interviews to empirlcally analyse such cognitive structures. Interviews and
content analysis might be not sensitive enough to really mlrror delicate
differences.. A ‘'subjective' interpretation could mention the difficuities to
speak about the relation of mathematical and vocational knowledge. Even within
mathematics education as an emerging discipline, there is an obvious concep-
tual deficit on the way in which mathematics and domains of its application
relate to each other. A dccision which interpretation should be favoured has

to wait for additional empirical and conceptual work in the ficld.
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o TRAINING ELEMENTARY TEACHERS IN PROBLEM SOLVING
R STRATEGIES: IMPACT ON THEIR STUDENTS’ PERFORMANCE
S Jerry K. Stonewater
Department of Mathematics and Statistics
Miami University, Oxford, OH

This paper descibes a course in mathematical problem
solving strategies for elementary school teachers and the
results of this training on the teachers’ students’
performance on select problem solving items from the
fourth National Assessment of Educational Progress in
mathematics. Overall, students of teachers participating
in the course outperformed the students whose teachers
did not take the course.

Results from the Fourth National Assessment of Educational
Progress document that the mathematical performance of
elementary and middle school students in this country is
alarmingly poor (Dossey, et al, 1988). For example, NAEP
results indicate that over seventy percent of third graders
cannot correctly solve a problem involving two or more steps,
or that over one-half of the seventh grade students have
difficulty with problems involving logical reasoning based on

simple syllogisms. Other research in teacher knowledge of

mathematics makes a strong case that efforts to improve
children’s mathematics learning might first begin with
enhancing teachers’ knowledge about mathematics. Ball (1988)
pcints out, for example, that only twenty percent of a group of
pre-serivce teachers could definitely say that the statement,
"as the perimeter of a closed figure increases, the area also
increases," was incorrect. Others have found that a group of
pre-service teachers could answer correctly only slightly more
than one-half of a set of problems that could be solved using a

variety of strategies (Oprea and Stonewater, 1988).

—— e - - - -
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Yet the question of whether or not direct inservice
training of teachers is an effective means of improving their
students’ learning is still open. Wheately (1983) found
substantial student gains in subtest scores on the Iowa Test
of Basic Skills after their teachers received training.
Szetela and Super (1987) found gains in student performance
due to teacher training on only two of five problem solving
tests. It appears that the effects of inservice teacher
training on subsequent student performance are unclear, at
least with respect to mathematical problem solving ability.

Partly in response to these research findings, The Ohio
Problem Solving Consortium has received funding to form a
cooperative venture between public school teachers end
university personnel. (Stonewater and Kullman, 1985;
Stonewater and Oprea, 1988). The Consortium trains elementary
and middle school teachers in problem solving strategies and
assists the teachers in using their newly-learned knowledge of
problem solving as a basis for redesigning their own
instruction to improve children’s problem solving abilities.
The purpose of this article is to describe a problem solving
course and to report the results of i - Jvements in the proble
solv.ng abilities of the teachers’ students as measured by
select problem solving items from the fourth National
Assessment for Educational Progress in mathematics.

Methodology To assess the effectiveness of the course on
the participating teachers’ students, Consortium teachers and
six teachers not involved in the project administered select

items from the NAEP in’'October and again six months later.
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Eight items were chosen from tLZ?fourth mathematics assessment
and were selected to represent problems which could be solved
using at least one of the strategies learned by the teachers.
A total of 516 experimental students and 122 control students
completed all testing. Data were analyzed using a multiple
analysis of covariance, with pre-test scores as the covariate.
A Wilks’ Criterion F-value was computed, as well as adjusted
post-test scores, providing a post-~test statistic that could be
used to compare groups with possible pre-test differences
controlled. For a statistically significant F-value, post-hoc
analyses of variance were computed for each of the eight test

items separately.

Problem Solving Course Teachers were expected to learn

and be able to use seven different problem solving strategies:
Guess and Check; Patterns; Simpler Problem; Elimination;
Working Backwards; and Simulation. Project data indicate
that elementary school students do fairly poorly applying
these problem sulvirg strategies (Stonewater, 1988).

Teachers were also exprected to reorient their own teaching to
include units on each of the problem solving strategies.

A typical class began with a review of assigned problems and a
discussion of the teachers’ experiences applying the strategy
to their own teaching, followed by a short lecture introducing
the next strategy. Once an example problem was worked by the
professor, the class worked a problem in Agroups of four to
five teachers. After solutions and solution methods were
discussed with the entire class, homework was assigned for the
next week. The problem solving course was designed on the

basis of the Instructional Model for Problem Solving
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.; (Stonewater, Stonewater, & Perry, 1988), a model grounded in
cognitive developmental theory and intended to key in to the

teachers’ cognitive developmental levels as a means of

ehnhancing understanding. The model includes three categories
of instructional approaches which, on the one hand provide
support for the learner to engage in complex and difficult
learning tasks, and, on the other, create what Piaget (1952)
termed disequilibrium, or an upsetting of how teachers
traditionally think about problem solving so that new and more
sophisticated ways can be accommodated. These catagories are
structure, d!rect experience, and diversity.

Structure -- The IMPS model suggests that in order to
enable students to attend to difficult and complex problem
solving, the course should provide a high degree of structure
as a support for engaging in difficult learning tasks. One

method used to provide structure was to develop a task analysis

or a list of heuristics and guidelines that described how to
carry out the strategy. For example, a task analysis was
written for the Working Backwards strategy and includes a
sequence of steps that the teacher or student could use in
applying the strategy.

Direct Experience -- The IMPS model also suggests that
activities which engage teachers in direct application of what
they are learning will enhance learning. A number of methods
were used to do this. First, in conjunction with the local
public broadcasting television station, a series of four video

tapes, entitled Problem Solving in the Middle School, were

developed as examples of what "master teachers" do when
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teaching problem solving. These were viewed by the class. One

patlicular uselul puition ot the Lapes shows widdle schoul
teachers actually using various problem solving strategies in
their classes and teachers could often relate their own
students’ reactions and problems to what they saw on the tape.

As another direct experience method, teachers were asked
to apply each of the strategies in their own classes and to
keep a journal of their experiences. While this activity did
not engage the teachers directly in actual problem solving, it
helped them build confidence in their abilities to teach
problem solving. As one junior high teacher commented, "I can
give a class a problem now without making sure I ‘know’ the
answer first. What I do know is that I‘)1l figure out the
problem by day’s end!® Teachers also siw in their own
students’ problem solving many of their own difficulties with
mathematical problem solving.

Diversity -- Another approach used in the IMPS model is
that students must realistically engage in the complexities of
what is to be learned in order for them to experience
disequilibrium. Presenting diverse situation for the
teachers to engage with is a method of doing this. Thus,
problems that required the teachers to generalize beyond their
current levels of mathematical knowledge and thinking ability
were presented. For example, teachers rarely had difficulty
with pattern problems like predicting the next term in the
sequence 1/(1%2), 1/(2*3), 1/(3%4),.... But in order to
challenge them and create the required disequilibrium, we
introduced a sccond level of pattern problems that required

generalization beyond the mathematics they knew. Such a
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problem extension would be to predict the sum of the series,
1/(1%2) + 1/(2%3) + ... + 1/(n*{n+l]}). This variution was

much more difficult, but after some struggling, most teachers

began the process of making generalizations. Thus, in addition
to learning the basics of each strategy, the teachers went
beyond what they might need to teach elementary or middle
school into important mathematical thinking skills,

Another method of introducing diversity was to show the
teachers that more than one strategy or approach to a problem
was often appropriate. By using diverse problem solving
approaches, teachers had to confront the often-held belief
that there is "only one solution to a mathematics problem".

Results Results of this study indicate that the students
of particiating teachers performed significantly better on the

post-test than did the students of control teachers (F(8,621)

= 3.82; p< .0002). Adjusted post-test scores for the
experimental group were 5.20 items out of 8 correct (65%),
compared to 4.56 items out of 8 correct for the control group
(57%) . In addition, the experimcatal group’s adjusted post-
test means for each of the eight it ms separately were higher
than the control group’s adjusted post-test means. Of these
differences, five of the eight items were statistically
significant in favor of the experimental group. These data
are reported in Table 1.

The five items in which the experimental students
outperformed the contrul students were catagorized as problems
that could be solved using silulation, elimination, patterns,

or guess and check. Note that in every case, the experimental
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students gains are substantially greater than those of the

control group. For example, the increase from pre- to post-
test in the percent of students in the control group who
answered one of the guess and check items correctly was only
2.5%, while it was almost 15% for the experimental students.
Discussion The results of the NAEP study utilized in
conjunction with the problem solving course as well as the
feedback receivad from teachers indicate that the major
objective of enhancing children’s problem solving abilities by
way of training their teachers was accomplished. Teachers’
self-reports indicate they felt more confident at doing as well
as teaching mathematical problem solving. In general, it
appears that efforts by universities to offer subject matter
coursework to teachers can be an effective catalyst for
bringing about changes in curricular content in the schools and

for positively influencing children’s learning.
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Table 1
Percent Correct and F-Values on NAEP Items

ITEM PRE POST Percent Gain Adjusted F p<

Pre to Post Post

1. Guess & Check E 324 40.7 8.3 40.8
C 336 352 1.6 35.0 1.45 .23

2. Simulation E 547 754 20.7 74.8
C 459 598 13.9 62.3 9.19 .01

3. Elimination E 413 605 19.2 59.4
C 262 410 14.8 45.6 893 .01

4. Patterns E 419 558 13.9 55.7
C 377 40.2 2.5 40.7 9.20 .01

5. Elimination E 866 950 8.4 94.8
C 820 852 3.2 85.8 13.23 .01

6. Elimination E 663 798 13.5 79.4
C 508 721 21.3 73.9 1.83 18

7. Guess & Check FE 589 69.2 10.3 68.8
C 418 615 19.7 62.9 1.56 21

8. Guess & Check E 355 500 14.5 49.6
C 270 295 2.5 31.1 14 .57 01
TOTAL TEST E 522 658 13.6 64.9 382 .01

C 431 531 10.0 56.8
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DEVELOPING ALGEBRAIC UNDERSTANDING: THE POTENTIAL OF A
COMPUTER BASED ENVIRONMENT

Rosamund Sutherland
Institute of Education University of London

This paper will discuss the potential of a Logo environment for developing pupils’
algebraic understanding. Results from a three year longitudinal study of pupils
(aged 11-14) programming in Logo indicate that Logo experience does enhance
pupils' understanding of variable in an algebra context, but the links which pupils
make between variable in Logo and variable in algebra depend very much on the
nature and extent of their Logo experience. The algebraic understandings which
pupils are likely to develop are described and related to categories of variable use
outlined in the paper. Although the focus of the paper is predominantly on Logo
there will be discussion within the presentation of preliminary results from pupils’
work with a spreadsheet (Excel). Studies with Logo and with spreadsheets indicate
that for some pupils interaction with the computer plays a crucial role in their
developing understanding of a general method.

BACKGROUND

This paper will discuss the potential of a computer-based environment for
developing pupils' algebraic understanding. The focus in the paper will be
predominantly on Logo programming, although there will be some discussion in
the presentation of preliminary resuits from pupils' work with a spreadsheet (Excel).
The paper derives mainly from a "Longitudinal Study of Pupils' Algebraic Thinking
in a Logo Environment” (Appendix 1). The ideas and results presented are also
informed by an ongoing study "The Role of Peer Group Discussion in a Computer
Environment” (Appendix 2).

Algebra as a mathematical language has developed over the centuries from its
first introduction as a tool to solve equations in which a letter or symbol
represented a particular but unknown number, to classical generalised anthmetic
in which symbols were used to represent relationships between variables to what
we now know as modern algebra. Modern algebra can be thought of as a
language which enables the similarities in structure between different mathematical
systems to be made explicit. Algebra has played a central role in school
mathematics for many years and although more recently the teaching ot algebra
has been given less emphasis Byers and Erlwanger stress that "we can no more
dispense with teaching algebraic symbolism than teaching place-value notation.
Symbolic expressions are transformed more easily than their verbal conterparts so
that they not only save time and labour but they also aid the understanding of
content” (Byers & Erlwanger, 1984, p.265). Vygotsky believed that "the new higher
concepts in turn transform their meaning of the lower. The adolescent who has
mastered algebraic concepts has gained a vantage from which he sees arithmetic
concepts in a broader perspactive” (Vyqgotsky, 1934, p.115).
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We must also recognise that "school algbera” is not a uniform practice. In Bntain
there exists a wide range of mathematics curriculae, all reflecting differing
emphases on "school algebra”. Pupils are now introduced to algebraic ideas with
more caution and in some curricula (for example SMILE?) there are many pupils
who are no longer introduced to aigebra within schoo! mathematics. We are now
approaching a new era in Britain with the introduction of a national curriculum for
mathematics and here again the emphasis on "school algebra” is likely to change.

Despite these differences one general trend is that pupils’ first introduction to
algebra is now more likely to be in the context of generalising mathematical
relationships resulting from practical or psuedo practical activity. Previously pupils’
first introduction to algebra was more likely to be in the context of manipulating
algebraic symbols derived from generalised arithmetic.

PREVIOUS RESEARCH ON PUPILS" UNDERSTANDING OF ALGEBRA

Before considering the computer context, it is important to take into account
previous research related to pupils' understanding of algebra. One important
research finding is that there is a gap between arithmetical and algebraic thinking
which relates to pupils' use of informal methods in arithmetic (Booth, 1984). This
means for example that pupils might find it difficult to express the area of a
rectangle in the form A = W x L (where A, L and W are the respective area, length
and width of the rectangle) because their informal method ior solving area of
rectangle problems in arithmetic is counting the number of squares in a rectangle.

There has also been considerable res ~arch identifying pupils' misconceptions
when dealing with algebraic objects, focussing mainly on pupils’ use and
understanding of variable (Collis, 1974; Boo. 1, 1984; Kiichemann, 1981; Wagner,
1981). This research suggests that many pupils lau:. ...derstanding that a letter can
represent a range of values (Collis, 1974; Booth, 1984; Kichemann,1981) and lack
understanding that different letters can represent the same. value (Wagner, 1981).
They find it difficult to accept an "unclosed" expression in algebra (for example a +
6) which relates to their difficulty in operating on these expressions (Booth, 1984;
Coliis, 1974). They also find it difficult to understand that a systematic relationship
exists between two variable dependent expressions (Klichemann, 1981).

There is also considerable literature related to pupils' difficulties with the
manipulation of algebraic objects, but our research has not yet addressed these
issues within a computer context.

! Secondary Mathematics Individualised earning fxperiment
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FRAMEWORK FOR CATEGORISING PUPILS' USE OF VARIABLE I[N
LOGO

By carrying out an ongoing analysis of the situations in which pupils use
variable to define a general procedure in Logo categories of variable use have
been identified (Sutherland, 1988a). We use them to provide a framework for
analysing pupils' understanding of algebra related ideas.

(1) One variable input to a procedure. When pupils use one vanable input
they are using variable as a place holder for a range of numbers.

(S) Variable as scale factor. In this situation the variable input is used to
scale all the distance commands in a turtle graphics procedure. This type 0!
variable input can be used by pupils as a way of generalising a fixed procedure
(Fig 1a) without making explicit the geometrical relationships within the procedure.

(N) More than one variable input to a procedure. This category is
concerned with situations in which pupils use more than one variable input to their
procedure often as a means of avoiding expressing a general relationship
between variables within a procedure ( Fig. 1.b).

(O) Variable input operated on within a procedure. In this category any
general relationship between variables within a procedure is made explicit by
operating on one or more variable inputs within the procedure (Fig 1¢).

TO TOM SCALE TOKITE YT HT TO SQUAN NUM
LT 90 RT 45 LT 135

PU FD YT REPEAT 4 [FD :NUM RT 90)

BK :SCALE * 60 RT 90 LT 135

PD FD YT FD NUM*3

FD :SCALE * 60 RT 90 END

LT 45 FD YT

FD :SCALE * 20 RT 90

RT 90 FD YT

FD :SCALE * 20 BK YT

RT 90 RT 90

FD :SCALE * 20 FD YT

RT 90 RT 45

FD :SCALE * 20 FO T

END END

Fig.1 a) Variable as Scale Factor b) More than One input ¢ ) Variable Operated On

(F) Variable input to define a mathematical function in Logo. In this
category variable is input to a procedure, which acts like a mathematical function,
that is it is operated on within the procedure and the result is output from the
procedure to be used by another Logo function or command
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TO FUNC X equivalentto F(x)= X +4
OUTPUT X +4
END

FRAMEWORK FOR ANALYSING ALGEBRAIC UNDERSTANDING
Our work has primarily been concerned with investigating pupils'

1) Use of a formal language to represent a generalisation
2) Understandings associated with the use of variable

These understandings have been categorised as follows, with reference to the
previously discussed literature:

+ Understanding that a variable name can represent a range of numbers

+ Understanding that any variable name can be used

« Understanding that ditterent variable names can represent the same value

+ Acceptance of "lack of closure” in a variable dependent expression

* Understanding the nature of the second order relationship between two
variable dependent expressions

Using this framework we will now discuss the potential of a computer based
environment on pupils' developing algebraic understanding.

1) Use of a Formal Language to Represent a Generalisation

The review of literature suggests that pupils often use informal methods which
cannot easily be generalised and formalised. "If children do not have that structure
available in the arithmetic case, they are unlikely to produce (or understand) it in
the algebra case" (Booth, 1984, p.102). In the Logo environment pupils are abie
to interact with the computer and negotiate with t - . peers so that their intuitive
understanding of pattern and structure is developed to the point where they can
make a generalisation and formalise this generalisation in Logo. There is evidence
that in many cases pupils could not do this without both "hands on” interaction with
the computer and discussion with their peers (Sutherland, 1988b).

Our studies indicate that pupils' ability to use Logo to represent a genera!l method
is linked to their experience of using variable in the category of "(O) Vanable
operated on". It is suggested that it is only when pupils are able to use variable in
this category that they have made the break from arithmetical to algebraic thought
(Filloy and Rojano, 1987). Work with pupils who have had no previous experience
of "paper and pencil” algebra suggests that these pupils can use variable 1
category (O)  but that they are unlikely to do so without specific teaching
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sequences directed at this idea. In our more recent work with 12-13 year olds
(Appendix 2) we have presented pupils with problems which specifically need
variable in the category (O) as part of their first experience of variable in Logo.
These pupils are more confidently able to use variable in this category than pupils
of a similar age group who were part of our previous study (The Logo Maths
Project) and who were not subject to such extensive direction.

Our more recent work with spreadsheets (Healy & Sutherland, 1988) suggests that
this computer environment provides another context for expressing a
generalisation, but one which appears to be substantially different from the Logo
programming context. Naming and declaring the variable is no longer a focus and
within a "mouse driven" spreadsheet environment the generalisation can be
encapsulated withaut reference to a formal language.

Expressing a generalisation in either a spreadsheet or Logo language t..Ips to
convince pupils of the validity of their generalisation. We now need to study more
carefully what would constitute a proof for pupils that this computer generated
generalisation is valid and the related implications for the learning of Mathematics.

2) Understandings Associated With the Use of Variable

Perhaps the most important result from our studies is that the algebraic
understandings which pupils develop are closely related to the particular computer
environment and the types of problem situations with which the pupils have been
engaging. This means that the role of the teacher is crucial in both provoking
pupils to work on problems for which the use of variable is an essential problem
solving tool and in providing pupils with information about the constraints on using
variable within the relevant programming context. Within this section we will
discuss the variable related understandings which pupils derive from working with
Logo.

Understanding that a variable name can be used to represent a range
of numbers. Pupils who have used variable in the category of "(l) One variable
input to a procedure” are likely to have developed an understanding that a variable
can represent a range of numbers. However pupils understanding of "range of
numbers” is likely to be restricted to positive whole numbers unless they have
worked on problems in which it is necessary to use both decimal and negative
numbers. We have found that when pupils use variable in the category of "(S)
Variable as scale factor” they are provoked to use decimal numbers as input.
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Understanding that any variable name can be used. In a computer
programming context pupils are often introduced to variables with meaningful
variable names (e.g. SIDE or SCALE). Our Logo studies indicate that when pupils
are first introduced to variables they attach too much significance to these
meaningful names and think for example that the name SIDE for the length of a
square conveys some meaning to the computer. We have found that if pupils are
encouraged to use a range of variable names, including "nonsense” names (which
they know have no meaning) and abstract and single letter names (which they will
use in their algebra work) they come to understand that any name can be used.

Understanding that Different Variable Names Can Represent the Same
Value. Pupils overinterpret the constraints on the variable name itself. Algebra
research has shown that pupils do not understand that different variable names can
represent the same value (Kiichemann, 1981). Our studies indicate that if pupils
have within their Logo programming experience, defined a procedure with at least
two variables (using variable in the category of "(N) More than one variable input")
and then in the context of using this procedure assigned both inputs the same
value they are likely to develop an understanding that different variable names can
represent the same value in Logo.

Acceptance of "Lack of closure” in a Variable Dependent Expression.
Our studies indicate that pupils who have used "unclosed” expressions in Logo
either within the context of defining simple functions (see Fig. 2), or within the
context of operaing on a variable have no difficiulty in accepting "lack of closure”
in variable dependent expressions.

Understanding the nature of the second Or . Relationship Between
two variable dependent expressions. None of the eight 13-14 year old
pupils who were part of the Logo Maths Project (Hoyles & Sutherland, 1989)
developed an understanding of the nature of the second order relationship
between two variable dependent expressions. Analysis of their Logo experience
indicates that they had never used this idea in Logo. Subsequently a task was
developed for a group of five 10-11 year old pre-algebra pupils (Appendix 1) in
which they were specifically confronted with this idea. Three of these pupils
showed, by their response to Logo structured interview questions (identical to
those given to the 13-14 year oids) that they had developed an understanding of
this idea. This suggests that it is possible for pupils, if they use this idea during
their "hands on” Logo programming sessions, to develop a related understanding.
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This provides evidence that a crucial factor in learning is first the use of an idea
within a problem solving situation.

LINKS WITH "PAPER AND PENCIL" ALGEBRA

As part of the "Longitudinal Study of the Development of Pupils' Algebraic
Thinking in a Logo Environment" (Appendix 1) eight case study pupils worked on
materials which were aimed at helping them make links between their Logo work
and "paper and pencil* algebra. These materials were based on the similarity
between using variable to define a function in Logo and on using variable to define
a function in algebra. These pupils were presented with items from the C.S5.M.S2
study in the form of 2 structured interview in order to probe whether or not they had
made any links to a "paper and pencil" algebra context. The results of these
interviews indicate that pupils can make links betwen the two contexts, but the links
which they make are as much related to their particular experiences in Logo as to
the specifically designed linking materials. More research needs to be carried out
in this area with specific attempts made to integrate the computer based and the
"paper and pencil* algebra curriculum.

CONCLUSION

Our studies indicate that within a computer-based environment there does not
have to be a gap between pupils' informal methods and the formal representation
of this method. Pupils, through interacting with the computer and discussion with
their peers are able to develop their intuitive understanding of pattern and structure
to the point where they can make a generalisation and formalise this generalisation
in Logb. For some p'upils in particular the interaction with the computer appears to
play a crucial role in their developing understanding of a general method.

We have found that Logo experience does enhance pupils' understanding of
variable in an algebra context, but the links which pupils make between variable in
Logo and variable in algebra depend very much on the nature and extent of their
Logo experience.This suggests that it is the using of an idea which is the crucial
factor influencing understanding. We need to carry out more research both to
understand more about the mathematical processes in which the pupils are
engaged when working in a computer-based environment and to discover how
best to integrate pupils' computer based experiences with a developing
mathematics curriculum.

2 As part of the research programme “Concepts in Secondary mathematics :» d Science” just under
1000 pupils aged 14+ were tested on their understanding of algebra (kGch: 1ann, 1981)
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Appendix 1: A Longitudinal Study of Pupils' Algebraic Thinking in a Logo
Environment

This research was carried out by the author for her Phd thesis (Sutherland, 1988).
It was both part of and an extension of the Logo Maths Project (Hoyles &
Sutherland, 1989). The research consisted predominantly of a three year
longitudinal case study of four pairs of pupils programming in Logo during their
"normal"” mathematics lessons. The data collected consisted of video recordings of
alt their Logo sessions. In addition pupils were individually presented with
structured Logo programming tasks and individually interviewed to probe their
developing understanding in both a Logo and a "paper and pencil” algebra
context. A subsidiary one year study was carried out with a group of eight pre-
algebra 10-11 year old primary school pupils.

Appendix 2: The Role of Peer Group Discussion in a Computer Environment
(1988-1989)

This is an ongoing project funded by the Leverhulme Trust and carried out by the
author in conjunction with Lulu Healy and Celia Hoyles. One of the aims of the
project is to investige the relationship between pupils' negotiation of a
generalis ation in natural language and their formal representation of this
generalisation. Pupils (aged 12-13) work in Logo, a spreadsheet and a "paper
and pencil® mathematics environment. The data collected consists of video tapes
of four pairs of pupils working in all three environments.
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Verbal Evidence for Versatile Understanding of Variables

in a Computer Environment

Michael Thomas & David Tall
University of Warwick
UK.

We have previously reported (Thomas and Tall, 1986, 1988) on experiments
demonstrating the value of a computer-based pre-algebra module of work in aiding
11 and 12 year-old pupils to reach a higher level of understanding of the use of
letters in algebra than that found in a more traditional approach. We have also put
forward the hypothesis that one reason for this success is the way “cognitive
integration” (Thomas 1988) of the child's globaliholistic and serialist/analytic
cognitive abilities leads to versatile thinking. Further, this may be actively promoted
using the “enhanced Socratic mode” of teaching (Tall 1986) using the cornputer as a
resource for teacher demonstration, pupil exploration and discussi.\n 1o develop
appropriate concept imagery. This paper considers evidence in support of the theory
from interviews with the students involved, taken six months after the computer
treatment.

Some Theoretical Considerations

When algebra is perceived, and hence taught, as an essentially logical, serialist activity with
little or no recourse to either its inherent structure or its underlying concepts - such as the use of
letters as generalized numbers or variables - one would expect this view of algebra to prevail
among pupils. A substantial body of research points to just such a lack of understanding as
contributing to poor performance in algebra throughout secondary school and beyond
(e.g.Rosnick and Clement 1980, Matz 1980, Kiichemann 1981, Wagner, Rachlin and Jensen
1984). The results of our work have suggested differential effects between the computer-based
approach to algebra, with its emphasis on lctters as generalized numbers and the traditional
skill-based type of module with its enphasis on acquiring manipulative skills. It seems that the
computer work promoted a deep conceptual understanding better, while the other work, as
expected, initially facilitated better surface skills. However, when the computer module was
combined with the skill-based one then it led to a superior overall performance without
detrimental effect on skills. It is our view that the computer is providing an environment in
which pupil' cquire a global/holistic view of algebraic concepts - relating the symbols on paper

to meaningful ideas such as the mental picture of a iciter representing a variable number - in
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contrast to the more serialist/analytic view nurtured by emphasizing the operation on symbols.
An illustration of this is the following type of question, with which many will be familiar:

Factorize (2x + 1)2 - 3x(2x + 1).

Many pupils faced with this type of question seem locked into a sequential/operational mode of
working where they “multiply out the brackets”,“collect together like terms™ and factorize the
resulting quadratic function. Few are able to apply the versatility of thought to switch from an
analytical approach to a global/holistic one which “chunks™ together the symbols 2x+1 as a
single conceptual entity, allowing them to move more directly to the answer. We believe that the
activities carried out in the computer context encourages flexible mental constructs more likely
to lead to this global/holistic view.

Evidence For Versatility and Conceptual Understanding

Conceptual understanding in algebra is not evidenced by test performance alone. Correct
answers to routine problems may be produced by incorrect understanding and incorrect
responses to non-routine problems may have a sensible foundation. In order to examine pupil’s
understanding of algebra beyond the test performances indicated in Tall and Thomas (1988), we
conducted a number of interviews with selected students and administered a broadly based

questionnaire to see if certain phenomena which occurred in the interviews were replicated on a
wider scale.

The Interviews

The teaching experiment (Tall & Thomas 1988) had comprised two groups of 13 year-old
secondary-school children taken from six mixed ability fon .ranged into 57 matched pairs.
The experimental group used the computers for three weeks, following a module of
investigational activities, while the controls followed their traditional algebra course. Six
months later, all the pupils were given the same traditional module for a two week period, the
controls as revision, the others for the first time.

After the post-test in this experiment a cre.s-section of 11 experimental and 7 control pupils (of
comparable performance on the post-test), were given a ser;ﬁ-stmclurcd interview lasting about
twenty minutes. During the interviews, which were recorded, the pupils were required to
attempt certain key questions and to explain their thinking and strategies. The following
examples taken from the transcripts of the interviews show a marked difference between the
experimental pupils, who often attemipted to give a relational explanation for their reasoning.
and control pupils, who were more likely to be concerned simply with carrying out routine
algebraic processes.
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Question : Solve 2p - 1 = 5,

The following response from a control pupil illustrates the confusion that may arise from
mechanically carrying out routine processes:

Pupil 11 : 2p minus 1 equals 5. if you add the 1 to the § that's 6 so, because there's no
other minus p, 1 forget the p and do the 2p minus 1 equals. If you add the 1 1o the 5
which is 6 and then you take 1 from the 6... No, | don't get that. | know I've done it but...

Interviewer : What would the value of p be did you say?
pupil 11 : Six.

Here the explanation is solely in terms of the operations with no reasons for their use being
cited. This may be compared with the following reasoning from one of the experimental group
pupils :

Pupil 2 : Well find out what minus 1 so you would add 1 1o that so you get rid of the 1,
so that would be 6 and then its obvious that 2 times 3 equals 6, so p would be 3.

The pupils in the interviews were also asked to compare the above equation with

25-1=5,

This was in order to see if they were able to conserve equation (Wagner 1977) under a change
of variable. A distinct difference in the type of comment between the two groups shows the
superior understanding in this area of those pupils who had used the computer.

Contro!l group :
Those unsure of the relationship :
Pupil 10 : s could be 3 as well.
Pupil 12 : So s could be 3 as well.
Pupil 13 : They could both equal 4
Those who needed to solve both equations:
Pupil 11 Well what | have put is 2p equals 6 and 2s equals 6.

Pupil 14 : 2s..add the 1 and 5, 6 er 2 and 2, 6, 3 times, so s is 3 as well,

{ xpenmental (computer) group .
Pupil 1.1 can say that p and 5 have the same value..it's the same sum
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Pupil 2 : Well they are both the same...Yes, because they are both the same but
difterent letters.

Pupil 3 : They are both...p and s both equal 3.
Pupil 4 : It's just a different letter but it would have to be 2 times 3 minus 1 equalto 5.
Pupil & : The same. Just using a dilferent letter.

Pupil 8 : It is 3 the p and s...because they are basically the same sum, but are ditferent
letters.

Pupil 9 : They are both the same. It's the same apart from the letters exactly the sarme
except the letters.

These pupils offer verbal evidence of a global/holistic view of the equations enabling them 10
develop the understanding of conservation of equation by seeing the common structure of the
equations. This concept of conservation of equation under a change of variable was further
tested with several of the children by the use of an extension to the first question above to :

Sotve 2(p+ 1)-1=5.

The insight of the computer group pupils is shown by their comments:
Pupil 1: Yes, p equals 2.

Interviewer : How did you work that out then?
Pupil 1 : Well its the same, but its plus 1, so minus 1 add 3.

Pupil 2 : Oh it would be 2.
interviewer : Can you teil me why?
Pupil 2 ;: Because p plus 1 it that's 3 its the same as the last one oniy the p is less
because you've got to add 1 1o the sum.
Deep and powerful insights such as these, which are facilitated by a global/holistic view leading

to the structure of the equations was not matched by the cou.uis. Instead we have:

Pupil 15 : Say p plus 1, there is already 1 plus p plus another one, I'd say that was 2p,
and then outside plus another 2 that is 4 minus 1 is 3 | wouid say.

Interviewer : So what is the answer?
Pupil 15 : p equals 1 | would say.

Fxtension of algebraic ideas

Research has indicated that the type of algebraic equation where there are vanables on both
sides of the equation 1s censiderably more difficult, since 1t involves algebraic manipulation (of
variavles) rather than arithmetic (e.g. Herseeo vies and Kieran 1980). Neither experimental or
control puptls in the the experimient had been taught to solve this type of equation. Tt was

hypothesized that the relational understanding of the experimental pupils would lead to thei-
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greater ability in handling such equations. Several interviewees were asked to tackle the
question:

Soive3x -5 =2x + 1.

The replies again gave evidence of superior understanding on the part of those who had used
the computer.

Controls :
Pupil 15 : I'd say # was minus 2x and here you've got 3x, 2x plus 1x,50 I'd put that as 1x
(Writes 3x -5 =2x + 1 = 1x]
Interviewer : And is that the answer?
Pupil 15 : Yes

Hence, although the surface opcration of subtracting 2x is carried out it does not seem 10 be in
the context of any understanding of an overall purpose in the question, and no reasons for the
operation are given. One of the pupils in this group had lost sight of the objective altogether:

Pupil 12 : I'm trying to work out how you could take 5 from that to leave that.
Interviewer ; Can you see any way of doing it?
Pupil 12 : You would have o tind the value of x before you could start.

In contrast, the experimental group pupils given this question responded more purposefully :

Pupil 1 : Well the value of x must be the same because it's in the same sum... I'm
thinking that maybe take x some number away from both sides. That wouldnt leave

anything in there to go on. You'd have nothing there it you take 2x away and 1x minus
5 equals plus 1,

[Writes x - 5 = +1]
Interviewer : So how might you do it now?

Pupil 1 : 1 was thinking maybe get rid of this and forget about that 4 by putting, adding
5 to both sides - that should do it - so it would be 3x equals 2x plus 6...try to take x
away.

[Writes 3x = 2x + 6]

Shortly after this he solved the equation.

Pupil 2 : You would add 5 to that to get rid of the minus 5 and then that plus 6 so i
would be 3x equals 2x plus 6...Well that plus 6 has got a bigger x because 2x plus 6
equals 3x, thut means another 6 would be equal to x, so0 make that 3x as well.. Well x
equals 6.

We can see that this pupil starts off with a sertalist/analytical approach, but accompanied by
clear reasons for the steps taken. However, in the middle of the question the pupil is versaiile
enough to change viewpoint to a global/holistic one and see the equation in terms of ity

balancing structure, enabling the equating of an extra x with 6.
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The Questionnaire

A questionnaire given to 147 pupils, whilst not giving the opportunity to follow up answers as
in an interview, gave evidence of a wider dispersal of the phenomena found in the interviews. It
included three 1ypes of questions; one where they were required to explain, with reasons,
whether two algebraic expressions were equal or not; one where they had to explain to an
imaginary visitor from Mars the meaning of some algebraic notation and the third where harder
algebraic questions, beyond the level they had studied, were to be attempted.

Experimental| Control
Question Proportion | Proportion 2 p
Correct Correct

152 the same as 6+7 7 0.76 0.44 338 | <0.0005
Is 2+3¢ the same as 5¢ ? 0.41 0.31 1.24 n.s.
Is 2(a+b) the same as2a+2} ? 0.57 0.31 2.6S <0.0005
Solve 13-y=2y+7 0.43 0.27 1.83 <0.05
Simplity 5h-(3g+2h) 0.24 0.08 2.16 <0.025
Solve 17-3e>2 0.31 0.13 2.37 <0.01

Table 1 - A comparison of some questionnaire tacilities

Experimental| Contro!
Error Proportion | Proportion b4 p
Making Error | Making Error
3+Ma3m 0.09 0.27 2.54 <0.01
ab=a+b 0.06 0.13 1.77 <0.05
b-2xc=(b-2)c 0.08 0.23 1.77 <0.05
3+2m=5m 0.04 0.13 1.57 n.s.

Table 2 - A comparison of some questionnaire errors

The results in tables 1 and 2 from selected, and the fact that the controls did not perform
significantly better than the experimental group on any question, support the hypothesis that the
experimental students have a better understanding of algebraic notation. Moreover, it also seemns
that one of the main failings of the controls is that the traditional skill-based module has
encouraged a predominantly left-to-right sequential method of processing algebraic notation. In
contrast to this, the computer group, seem to have a better, more global, view of the notation
which in turn has reduced the occurrence of some of the more common notational errors such as
conjoining in addition and the wrong use of brackets. An interesting example of this, although
arithmetic rather than algebraic, is the first question in table 1, where many of the controls did
not consider the two notations as the equivalent because

* g— is a fraction. 6+7 is a sum”

This is a good example of a response which is based on sound conceptual reasoning, but one
that is limited because it implies the inability to encapsulate the process 6+7, as a single
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conceptual entity. The encapsulation occurred far more often amongst the computer group,
again underlying what we believe is a more flexible global view.

The difficulties that pupils had with the question
Is 2(a+b) the same as 2a+2b ?

again revealed the difference between the symbols representing a process and the result of that
process as a conceptual entity. So firmly had it been ingrained in them that “calculations inside
brackets must be done first™ that the symbol 2(a+b) is read as “first add a and b, then multiply
by 2" whilst 2a+2b requires both multiplications to be carried out before the addition, that they
saw the processes as being different rather than the results being the same. Even so, the
experimental group were once again more likely to attempt to surmount this conceptual obstacle,
one student proposing an interesting way out of his dilemma:

Pupil 1 : Well its brackets, so you've got to add these two numbers betfore you times it

(-]
Interviewer : You can't see any way round that problem?

Pupil 1 : 1 know there is one, but | can't find #. {...] Unless you went along and put a+b
equals ¢ and then put 2 times ¢, but that's a long way round.

Conclusions and further research

Through interviews it is manifestly clear that the students involved in the enhanced Socratic
approach had developed a more versatile understanding of the concept of variable, in which
they were able to encapsulate the algebraic processes as objects and to chunk information in
expressions in a way which enabled them to take a more versatile approach to solving algebraic
problems. However, it should be noted that it has not proved possible to follow up the initial
three week algebra module with further algebraic experiences using the computer and,
subsequently, the classes have been recrganized in a way which has led to a variety of different
experiences for pupils matched in pairs during the experiment. Some eighteen months after the
delayed post-test, a similar test has revealed that the difference between the experimental and
control groups is no longer statistically significant. We have still to administer interviews to see
if there remain differences detectable by these means. This suggests that, although computer
experiences may be able provoke different kinds of understanding in the short and medium
term, if these experiences are not continued then their effect may wane in the face of the
overwhelming influence of more rece it experiences.
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CONCEPTUAL ADJUSTMENTS IN PROGRESSING

FROM REAL TO COMPLEX NUMBERS

Dina Tirosh Nava Almog
Tel-Aviv University Beit Berl College
and Kibbutzim College

This study assesses the difficulties that high school students experience when
progressing from real to complex numbers. It was found that students are reluctant
to accept complex numbers as numbers, and that students incorrectly attribute to
complex numbers the ordering relation which holds for real numbers. The paper
presents some sources of these difficulties and suggests ways fo help students

overcome them.

One of the main concepts in mathematics is that of number. Students learn various num
ber systems starting with the natura!l numbers, and progressing through integers, rational,
real and complex numbers.

The transition from one realm of numbers to an extended one requires a major adjust:
ment in each student's concept of number. One major difficulty for students is realizing that
the new elements in the extended domains are numbers even though these numbers often
differ in appearance and properties fromn those in the less-extended domains. Another
problem for students is their tendency to incorrectly attribute properties of the less-extended
domains to the more general ones.

The difficulties that children and adolescents encounter when progressing from natural
to rational numbers have been extensively investigated. Researchers found that many stu-
dents do not accept rational numbers as numbers (Kerslake, 1986), also, students tend to in-
correctly attribute propenrtics of operations with natural numbers (such as that multiplication
never makes smaller) to all rational numbers (Bell, 1982; Hart, 1981, Fischbein, Deri, Netlo,
& Marino, 1985). These attributions influence the students’ beliefs about numbers and arith
metic operations, and thercby limit their ability to solve certain kinds of word problems involv
ing rational numbers.

However, the difficulties that students encounter in other extensions of the number sys
tem are rarely discussed in the research fiterature. We found only one study (Vinner, 1988)

thatdeals with the extension fromreal to complex numbers. Vinner's study shows that many
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students find it extremely difficult to accept complex numbers, such as the non-digit number

i, as numbers. The present study explores this issue. The two principal questions addressed
are:

1. Do students accept complex numbers as numbers?

2. Do they incorrectly attribute properties of the real number system to the complex one ?

METHOD

Subjects: Seventy-eight eleventh-grade students from three high schools in Israel par-
ticipated in this study. The students had just finished eight lessons on complex numbers, and
completed a summative test which included calculation examples and equations involving
complex variables. Ninety-six percent of them passed, getting at least 60% of the answers
correct.

The three mathematics teachers introduced complex numbers as an extension of the
field of real numbers. The solution of the equation x?=-1 was dencted by the imaginary num-
beri, and other imaginary numbers were obtained by multiplying i by real numbers. Complex
numbers were shown in the general form a+bi, where a arid b are real numbers. Equality of
two complex numbers and arithmetical operations with complex numbers were defined. The
geometrical representation of complex numbers in the Gauss plane was introduced. Most of
the class time was spent on practicing the operations and solving equations involving com-
plex variables.

Instruments: Post-test and detayed post-test questionnaires were developed to examine
the students’ perception:; of complex numbers. The post-test questionnaire included the fol-
lowing four items:

1. Circle the numbers in the following list:

20 3 0 0.25 V-3  -0.434334333
N asb 34 3420 023 5V3.
2. Solve the following equations:
a. x2+x+2=0 b. x2+9=0
3. Answer "true” or "false"” and explain your choice of answer:

For every two given numbers p and q, one of the following relationships holds:

p<q P>q P=q
4. For each of the following pairs of numbers, write >, <, or = (only if possible):
23i 2 03  0.333 016 -0.166 i 44

The delayed post test included similar items. For example, the equation x”42x+6-0 in

the delayed post-test is similar to equition 2a above.
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Interviews: Semi-structured individual interviews of about an hour each were conducted

4
‘
i
t

with 14 of the students in order to obtain more information about their concepts of complex
numbers. Students were encouraged to explain their answers to the questionnaire, and to
answer other related questions such as: "When you key V-3 into a calculator, you get an error
message. Why?* The interviewees were asked for their criteria for determining whether a

given entity is a number, and for their opinions on the existence of ordering relation among
numbers.

Procedure:The post-test questionnaire was administered to the students at their regular
classes immediately after they had finished their studies of complex numbers. A delayed post-
test was given two months later. The individual interviews were conducted a few days after
the students had responded to the delayed post-test. The interviews were tape recorded and
transcribed. Systematic data on the taped interviews are not presented here; excermpts il
lustrating the students’ reasoning are included.

RESULTS
1. Identifying complex numbers as numbers
Table 1 shows that immediately after instruction, most students recognized complex

numbers of the form a+bi (a0, b»0) as numbers. They were less willing to accept pure im-

aginary numbers as numbers. Two months later, there was a significant decrease in the num-

ber of students who responded that complex numbers and pure imaginary numbers are

numbers.
Table 1: Recognition of complex numbers as numbers (%)
Item Post-test Delayed post-test
Yes No Yes No
ts V-3 anumber? 69 3% 50 50
Is -V-4 a number? 69 31 49 51
Is 3+2i @a number? 87 13 65 35
The students’ solutions to quadratic equations with negative discriminants (item 2) abho

showed a signiticant decrease in correct responses from post-test to delayed post test; Im

mediately after instruction, 84% of the students sofved the quadratic equations correctly, 4%
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of them correctly claimed that theare is no real solution, 6% argued that these equations have

no solution, and 6% did not respond. Two months later, however, only 17% of the students
solved these equations correctly. Most of them (83%) claimed that quadratic equations with
negative discriminants have no solutions.

Students’ decisions on whether complex numbers are numbers stem from their concepts
of what numbers are. Those who perceived complex numbers as numbers described a num-
ber as an entity that one can do mathematics with (calculate, solve equations, etc.) or as an
entity that is represented by a point on a real line or on a plane.

Students who did not perceive complex numbers as numbers claimed that numbers are
entities which are written with numerical digits, entities which are represented by points on
the real line, or entities which describe positive or negative quantities. Some of these stu-
dents viewed complex numbers as operations rather than as numbers. These students ar
gued that the expressions 3+2i and V-3 describe operations that still need to be executed.

Other arguments used by students to counteract the statement that complex numbers
are numbers reflect their uneasiness about the non-digit number i, and their confusion over
the terms real, imaginary and complex numbers. Some of them claimed that i was a variable
and not a number. Others volunteered that the term “imaginary numbers” implies something
that does not exist, is not real, is something strange, is not @ number. They reasoned that

complex numbers are composed from a real part, which is a number, and an imaginary part

which is not a number -- hence complex numbers are not numbers.

The error sign displayed by a calculator when numbers such as V-3 are keyed in was a
source of support to the claim thatimaginary numbers are not numbers. Students argued that
since the error was the same as for 2/0, which is not a number, it foliowed that ¥-3 is not a
number either.

2. Understanding that the ordering relation "less than" does not hold for the complex num-
ber system.

The students were taught that the ordering relation "iess than,” which holds for the real
number system, does not hold for the complex number system. However, only a small per-
centage of the students realized that some unequal complex numbers are incomparable ac-
cording to the ordering relation “less than" (see Table 2).

Some students explained that the gcometrical representation of complex numbers as
points on a plane illustrates that it is impossible to determine which of two given unequal com-
plcx numbersis greater than the other. Others claimed that complex numbers do not describe

quantitics and therefore are incomparable.
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Table 2: Responses to the statement: “For every two glven numbers p and q,

one of the following relationshipsexists:p=q; p>q; p<q" (%)

Post-test Delayed post-test
True 88 95
False 12 5

Most students argued that the ordering retation "less than™ holds for ali numbers. Com-
mon justifications were that the three conditions p > q, p < q. and p=q described the entire
range of possibilities; and that numbers describe quantities, so any given number must be
equal to, greater than, or smaller than any other given number.

The information in Table 3 is consistent with that in Table 2. Few students understood,
that the given numbers are incomparable by “less than®. Students who claimed thati<i+4 per-
ceived the symbol "+" as signifying addition in its usual sense, and argued that when a posi-
tive number is added to another number, the sum is greater than the first number. Those who
claimed that 2-3i>2 said that i is a negative number because it is related to -1, so -3iis a posi-

tive number.

Table 3: Responses to the Item: Write <, >, or = whenever possible (%)

i 44 23 2
Post-test Delayed post-test Post-test  Delayed post-test
iandi+4 are 2-3iand 2 are
incomparable 4 4 incomparable 8 5
i> 4+ 0 0 2-3i>2 12 12
i < 44i 85 96 2-3i<2 78 82
i = 44i 0 0 2-3i=2 1 1
244 1 0 2-3iz2 1 0
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CONCLUSIONS AND IMPLICATIONS

This study pointed out two major difficulties that students encounter when progressing
from real to complex numbers: reluctance to accept complex numbers as numbers, and aten-
dency to incorrectly attribute to complex numbers the ordering relation "less than® which holds
for real numbers.

These are due largely to the students' perceptions of numbers as (1) entities which are
written with numerical digits, {2) entities which are represented as points on the real line, or
(3) entities which describe quantities. These perceptions are anchored in the students’ rela-
tively long experience with numbers : therefore, the students find it difficult to assimilate imagi-
nary and complex numbers into their scheme of number.

Another major cause for these problems is that some students view complex numbers
as operations that need to be executed. The fact that a calculator does not differentiate be-
tween complex numbers and expressions which are not numbers contributes to the students’
reluctance to integrate these numbers.

Mathematics educators should be aware that complex numbers do not fit readily into
their students’ notion of what a number is. They should attempt to help the students over-
come this obstacle. Some ways of increasing the students' acquaintance with complex num-
bers are:

(1) Relate the extension of the real number system to previous extensions of the con-
cept of number, starting with the natural numbers and progressing through integers, rational
and real numbers.

(2) Debate the gains and losses which accompany each of these extensions (e.g., gain-
ing closure under subtraction and losing the existence of the smallest number when prc gress-
ing from natural numbers to integers; gaining the ability to solve every polynomial equation
and losing the ordering relation when progressing from real to complex numbers).

(3) Encourage students to reflect on the development of their own concepts of numbers.

(4) Represent other views of complex numbers (e.g., as ordered pairs of real nuinbers).

(5) Demonstrate practical uses of complex numbers in mathematics and in other domains
such as electronics.

The difficulties that students face when progressing from real to complex numbers are
similar to those found during extensions of other number systems. Therefore, beyond the
issue of compiex numbers, we suggest that teachers use the concept of extended systems
as a formal mathematical tool at the middle and high-school levels. This concept may help
students grasp the idea of complex number by taking entities which look different and group-

ing them under a single handle: "number”,
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When discussing this concept with students, it can also be benetficial to describe the dif-
ficulties that mathematicians had experienced when extending number systems. Such en-
lightment may help students develop a perception of mathematics as a man-made domain
(see Kleiners' paper, 1988).

A final comment, not directly connectedto the main theme of this paper: some students
interpret a calculator's error sign, which appears when imaginary numbers are keyed in, as
an indicator that these entities are not numbers. It is important to discuss the limitations of
calculators, and to explain that there are numbers that calculators cannot represent. It should
be stressed that a calculator does not determine whether a certain entity is a number; that

decision is a theoretical, purely mathematical one.
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DOES THE SEMANTIC STRUCTURE OF WORD PROBLEMS AFFECT

i
!

SECOND GRADERS' EYE-MOVEMENTS?

L. Verschaffel (1), E. De Corte and A. Pauwels

Center for Instructional Psychology

University of Leuven, Belgium

In the present study eye-movement registration was used to examine the
influence of the semantic structure of one-step addition and
subtraction word problems (simple versus’ complex) on the eye-fixation
patterns of high-ability and low-ability second graders. Semantic
complexity had a significant effect on the partition of the total
fixation time over the words and the numbers in the problem: the
proportion of time spent on the words was higher for complex problems
than for simple ones. This result provides additional support for the
hypothesis that semantic processing is a crucial component in a
skilled solution process. On the other hand, the effect of the pupils'
ability level w s not significant. Those findings are interpreted
taking into account the available theory on word problem solving.

INTRODUCTION
During the past decade children's solution processes for one-step

addition and subtraction word problems have been extensively

investigated using techniques such as paper-and-pencil tests,
individual interviews, and computer simulation. Recently, we started to
apply eye-movement regictration as a new data-gathering technique. In a
first exploratory eye-movement study we analyzed the eye-movement
behavior of nine high-ability and eleven low-ability first graders
while reading and solving a series of eleven elementary addition and
subtraction word problems (bDe Corte & Verschaffel, 1987). wWhile the
main goal of that pioneering study was to explore the usefulness and
the limitations of eye-movement data as access to young children's
solutions of word problems, 1t vyielded already some remarkable

empirical findingn. First, 1t was found that the high-ability children

looked more and longer at the non-numerical elements in the problem
text than the low ability children., Second, our data supported the
frequently heard statement that errors on word problems are due to
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inattentively reading the problem; in fact, pupils sometimes answered
without even casting a glance at some crucial parts of the problem
text. Due to several technical and methodological problems encountered
during the gathering and the analysis of the eye-movement data, the
results of that pioneering study "could not be considered as strong
evidence in favor of those conclusions; however, these findings
suggested hypotheses for further study. Therefore, the main goal of the
present investigation was to test several hypotheses concerning the
processes underlying skilled and unskilled word problem solving in a

more controlled and systematic way.
THEORETICAL FRAMEWORK
Solving one-step arithmetic word problems

In the late seventies, Gieeno and his associates introduced
theoretical model of skill in solving elementary arithmetic word
problems (Riley, Greeno & Heller, 1983). Two basic assumptions
underlied their approach: (1) word problems that require the same
formal arithmetic operation can be described in terms of different
semantic structures underlying the problem, and (2) the construction of
an appropriate representation of that semantic structure is a crucial
aspect of a skilled solution process.

Concerning the first assumption, Greeno <c.s. constructed a
classification scheme for elementary addition and subtraction word
problems based on  their underlying semantic relations. Thesy

distinguished three main categories of problems (Change, Combine, and

Compare), and within each of the three problem types, further
distinctions are made depending on  the identity of the unknown
qrantity. Furthermore, Change and Compare problems are also cubdivided
depending on the direction of the event (increase or decrease) or
relationship (more or less) respectively.
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: Referring to the second assumption, Greeno c.s. developed a

theoretical model in which semantic processing is considered to be the

most important component of a skilled solution process. According to
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that model, one first constructs a global, internal representation of
the problem in terms of sets and set relations using semantic problem
schemata. On the basis of this internal representation, the problem
solver then selects and executes an arithmetic operation to find the
unknown quantity in the problem.

Furthermore, Greeno c.s. (1983) identified three different levels
of problem-solving skill, each associated with a distinct pattern of
correct answers and errors on the problem types within the three main
categories. They also developed computer models that simulate these
levels of performance. The main difference between those levels relates
to the way in which problem information is represented. Mcdels with

more detailed semantic knowledge refer to more advanced levels of

problem-~solving skill, and therefore, they can solve mcre problems of a
certain categorie.

It is important to remark that according to Greeno c.s., the main
difference between good and pcoor problems solvers does not lie in the
presence or the absence of semartic processing respectively; poor
problem solvers try to construct a semantic problem representation too,
but due to their less-developed schemata, they do not succeed in
building an appropriate one. This view contrasts with another possible
explanation for the errors of poor problem solvers, namely that they
are mainly due to the absence of a semantic processing stage. According
to this latter view those children apply a rash and impulsive style of
respending, 11 which the selection of the arithmetic operation is not
based on a careful reading and a thorough analysis of the semantic
redations between the known and the unknown element: ot the problen,

but on superficial strateqies soch as always adding the two given
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numbers or looking for keywords in the problem text (see e.q.

Goodstein, Cawley, Gordon & Helfgott, 1971).

Eye-movements and cognitive processes

The use of eye-movement registration to unravel children's internal
processes when solving math problems, is a recent development. In our
research we took as a starting point the two fundamental assumptiong
formulated by Just and Carpenter (1987) as a result of their work in
the area of reading, namely the immediacy and the eye-mind hypothesis.
In terms of children's word problem solving, the immediacy hypothesis
implies that a pupil does not postpone the interpretation of a word or
a sentence until he has read the whole problem, but instead tends to
process each element from the first time when the cognitive system has
access to it. The eye-mind assumption implies for example that when a
pupil is fixating words we assume that he is mentally processing them,
and that when he is fixating the numbers, he is ‘doing' scmething with

those numbers (e.g. calculating).

METHOD AND HYPOTHESES

Subjects, tasks and procedure

Twenty second graders (10 high and 10 low-ability pupils) participated
in our study. These children were selected among the whole sample of
second graders of a local school, on the basis of their scores on a
paper-and-pencil test consisting of a series of one-step addition and
subtraction word problems. They were also administered tost  for
toechniesl reading and computational skills.

buring the eyc-movement session each child had to solve 16 one-
step addition and subtraction word problems: hal{ of the problems had a
simple semantic structure; the other half a complex one. The simple

problems woere Change 2 ot Combine 1 problems; the complex tasks had a
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Change 5 or a Compare 6 structure (Riley e.a., 1983). These 16 iteams
were formulated and presented in a way that allowed us to control for
all possible task variables that were not central to the present
investigation, such as the amount of sentences, words and characters in
the problem, the complexity of the grammatical structures, the
technical reading difficulty of the names of the persons and the
objects in the problem, and the size of the given numbers.

The word problems were presented on a tv-screen. While the pupils
read and solved the problems, their eye-movements were registered with
DEBIC 80, a system that uses the "pupil center-corneal reflection"
method as its measurement principle. Every 20 milliseconds the system
registrates the X- and Y-coordinates of the subject's point of regard.
This raw material was subjected to a reduction program, that
transforms these data into a series of consecutive fixations with a
particular duration and location. These fixation data were the basis
for calculating the dependent variables, the most important ones being
the proportion of the total fixation time spent on the words and on the
numbers in the problem, and on those parts of the visual field that did
not contain any problem information. However, as the fixation time
spent on those "empty" fields was less than 5% of the total fixation
time, we will reglect those fixations. Conseguently, we will describe
our hypotheses and our results as if the total fixation time was the
sum of the fixations on the words and on the numbers, the latter being

the complement of the former.
Hypotheses

The first hypothesis was  that problems  with_a  complex  scomantic
structure _will _elicit a lavrger proportion of the total fixation time
on o words _than  saimple problems. The arqgumentation underlying this
hypothesis can be summarized as follows: problems with a more complex
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semantic structure elicit more complex understanding and reasoning
processes before the computational activities with the given numbers;
this is reflected in more and longer fixations on the non-numerical
elements of the problem text.

Second, we expected that high-ability children will spend a larger

proportion of their total fixation time on words than their low-ability

peers. The basic assumption underlying this hypothesis 1is that
constructing and manipulating a global problem representation is a
major characteristic of a skillful solution process; low-ability
children, on the other hand, will immediatly jump into calculations
without trying to really understand the problem situation, or even
without reading the whole problem. This latter assumption is based on
the available literature on children's use of superficial solution
strategies on the one hand (see e.g. Goodstein et al., 1971) and on the
results of our own exploratory study on the other (De Corte &
Verschaffel, 1987). As said before, this hypothesis is incongruent with
Riley et al.'s (1983) theoretical analysis of skilled and unskilled
word-problem solving.

Finally, we also expected an interaction between problem
complexity and problem-solving ability. More precisely, it was

predicted that the difference between the simple and the complex

problems in the proportion of the total fixation time on words, will bhe

greater in the high-ability than in the low-ability group. This

interaction hypothesis is argued as follows. As high-ability children's
solutions are assumed to be "semantic" in nature, the complexity of the
semantic structure will strongly determine the speed at which they
succeed 1n building an appropriate problem representation. If low-
ability children's choices of an arithmetic operation are based on
stercotyped, superfircral strategies that do not take into account the

semantic structure of the problem, their eye-movement patterns for
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simple and complex problems will be much more alike.

To test the hypotheses mentioned above, the dependent variable was
subjected to an analysis of variance with the semantic complexity of
the problem and the pupil's problem-solving ability as independent
variables (2*2 split-plot design). Because significant correlations
were found between the pupils' scores on the word-problem-solving
pretest on the one hand and their reading ability (r=0.46, p»0.05) and
computational ability (r=0.67, p»>0.0%) on the other, we also carried
out analyses of covariance with reading or computational scores as

covariates.
RESULTS

First, analysis of variance revealed a significant effect of problem
structure on the proportion of fixation time on words (F(1,18}=5.35,
p<0.05). While 56 % of the fixation time was spent on the words in
simple problems, this percentage increased till 61% for complex ones.
This is in accordance with our hypothesis.

Second, high-ability pupils tended to lock proportionally more at
the words (61%) in the problems than their low-ability peers (56%).
Although these percentages were in line with our second hypothesis,
the effect of problem-solving ability did not reach the 5% significance
level, neither with reading scores, nor with computational scores as

covariate. Finally, we did not find an interaction effect.
CONCLUSTIONS

The hypotheses of our study were only partially confirmed. Problem
complexity had a significant effect on the proportion of fixation time
on words. Since the simple and the complex problems in our study
differed only with respest to their semantic structure this finding

provides additional support for the hypothesis that the construction of
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an appropriate problem representation is a crucial component of skilled
word problem solving. On the other hand, we did not find a significant
effect of problem-solving ability. This finding is incongruent with the
frequently heard statement that low-ability children's bad performances
on word problems are mainly due to the application of superficial
strategies, such as always adding the given numbers or looking for
particular keywords. An alternative explanation that fits better with
the present eye-movement data, is that the 1low-ability children's
failures are not the result of the absence of a semantic processing
stage, but of their faulty semantic analysis, which in turn can
probably be attributed to a lack of sophisticated conceptual knowledge
such as semantic problem schemata. This latter explanation is in
accordance with the theoretical analysis of skill in word problem

solving by Riley et al. (1983).

NOTE

(1) L. Verschaffel is a Research Associate of the National Fund for
Scientific Research, Belgium
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The lesson - A preconceptional Stage

Shlomo Vinner
Israel Science Teaching Center

Hebrew University, Jerusalem

The notions of preconceptional and conceptional stages are discussed.
It is claimed that many students while learning mathematics are in a
preconceptional stage. Namely, it is not that they have wrong ideas
about the mathematical notions. They have no idea at all, In spite of
that, they have to perform on mathematical tasks and to react to
their teachers' questions. Thus, they are involved in a meaningless
communication. This common behavior gets almost no attention in the
mathematical education research which focuses mainly on
misconceptions. The preconceptional stage deserves research efforts.
Before clearing the misconceptions, which are part of the
conceptional stage, we should clarify to ourselves what makes the
transition from the preconceptional stage to the conceptional stage
possible.

On February 20th, 1951, a lesson was given to a young girl by a
middle aged professor. The lesson ended with a homocide. The teacher
assassinated the student. This was unavoidable. The quality of
communication between the teacher and the student was unbearable. The

only way to save the profession of teaching was to kill the student.

Fortunately enough, this happened only on the stage of the pocket
theater in a play by Eugene Ionesco. However, the phenomena of that
lesson occur every day, in every school in almost every mathematics
class. Teachers and students are engaged in a meaningless

communication.
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There are several ways to explain why communication is so bad. 0f
course, there is lIonesco's view that meaningful communication between
human beings is impossible, Mathematics educators, as such, cannot
accept this. They believe that meaningful communicaton, at least at
the domain of mathematics, is possible and if it does not occur then
there are reasons for it. The reasons that mathematics educators
point at in order to explain communication failures are of two kinds:
1. Misconceptions. 2. Unappropriate mathematical level of the
student.
The last approach can be considered as the level theory (Sce for
instance van Hiele, 1987). As to misconceptions, the assumption is
that the student handles meaningfully the mathematical tasks imposed
on him, By "meaningful” we mean that the student associates certain
meaning to the mathematical notions involved in the task. This
meaning is not necessarily the correct meaning but can be considered
as reasonable if you are tolerant and sensitive enough. This is
contrary to the situation where the student does not associate any
meaning to the notions involved. On the other hand, he does not
refrain himself from reacting to the task. This we call a meaningless
behavior. When misconceptions are involved, the student associates to
the mathematical notions a meaning which is different from the
meaning associated to them by the mathematical community. Thus, the
task of the mathematics educator is to explore the misconceptions, to
understand why they were formed and to suggest ways to overcome them.
Comparing now the misconception theory to the level theory, it is not
clear how they are related. Assume a student at the k-th level of a
certain mathematical domain performing on a k+j-th level task (j>0).
The level theory predicts that a success at such a situation can be
only incidental. But how should we interpret the students' behavior?
Is it a meaningful behaviour resulting from misconceptions or is it a
meaningless behaviour determined by unknown factors which should be
investigated? HWe are not sure that level theory has made itself
clear about this point. Our impression is that both meaningful and
meaningless behaviors can occur when'you are not at the appropriate
mathematical level of the task. For instance, assume that a student
is at the first level in geometry according to van Hiele theory (van
Hiele, 1987) and he has to deal with rectangles. For him the concept

of the rectangle is a collection of pictures that he saw in the past.
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These are usually pictures of quadrilaterals that have four right
angles and their adjacent sides are not congruent, At the second or
third level of van Hiele theory, a rectangle is by definition a
parallelogram with a right angle. From the first level student's
point of view, a square is not a rectangle. From the teachers point
of view, a square is & rectangle. The meaning the teacher assigns to
"rectangle" is different from the meaning the student assigns to it.
Hence, this is a misconception. On the other hand, if a student is
in the first van Hiele level in peometry and he has to prove a
certain geometric claim then his behavior will probably be

meaningless.

The general impression is that the main focus of the psychological
research in mathematics education is on misconceptions and not on
meaningless behavior., This is quite natural. First, misconceptions
explaim many of the students' mistakes and difficulties. Second, the
stage of misconceptions is a stage where there is a good chance of
learning. The fact that you understand your student's behavior, that
you can discuss it with him and that you know what modifications in
his thought are needed in order to reach the correct concept, all
this is a good starting point for learning. On the other hand, when
somebody is in the meaningless stage, the situation is much harder.
You see somebody who acts in a meaningless way, but you cannot tell
what makes him act the way he acts. In addition to that, you do not
know what to do in order to make him understand the notions involved.
Usually, you repeat almost the same words you uttered to him earlier,
perhaps more slowly. Nevertheless, it is impossible to ignore the
meaningless stage. Let us consider as one the stage of misconceptions
and the correct conceptions and call it the conceptional stage (or
the meaningful stage). The other stage will be called the
preconceptional stage (or the meaningless stage). Our question is
the following: at a given moment of a common mathematics lesson, what
percentage of the students is in the conceptional stage and what
percentage of them is in the preconceptional stage? For a mathematics
teacher the answer to this question is critical, It is an invaluable
information. Unfortunatelly, there is no satisfactory method to
answer this question., Of course, one can use quizzes. But quizzes
show knowledge or lack of knowledge about a certain restricted topic.
From common quizzes it is very hard to tell whether a student is or

is not at the conceptional stage.
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Interviews are a very effective means, but you cannot intrview the
entire class., Thus, the above information is usually non-available,
especially in big classes where the teacher talks most of the time
and after that the students are asked to solve probleas similar to
those which were solved on the blackboard. It seems that many
teachers believe that a good percentage of their students is in the
conceptional stage. Otherwise, how can they teach?

However, the moment you start interviewing the students you realize
how many of them are not in the conceptional stage. In this paper we
would like to illustrate this. As we explained above, this cannot be
proved statistically. Our claim is that the quality of communication
we have in the following interview is typical to many mathematics
lessons and many teacher-student interactions.

We have documented and analysed over twenty long interviews with
college students but finally we decided that fiction is more
convincing than reality. Fiction has all the elements of reality but
in a clear concentrated form. Thus, we have chosen lonesco's lesson
mentioned above and we will use it in order to characterize the
teacher-student cowmunication the way we see it. We are using
Watson's translation (Ionesco, 1958) where we replaced "pupil” by
"student". The teacher is a middle aged professor and the student is
an eighteen year old girl. After posing some addition exercises to
the student which were solved correctly, the teacher assumes that she
is ready for the subtraction exercises. (p.11 - p.12).

Professor: Let's try subtraction. Just tell me, that if you are not
too tired, what is left when you take three from four? Student: Three
from four?...three from four? Professor:Yes, that's it. I mean to
say, what is four minus three? Student: That makes...Seven?
Professor: I am extremely sorry to have to contradict you, but three
from four does not make seven. You're muddling it up. Three plus four
makes seven, take three away from four and that makes?...It's not a
question of adding up, now you have to subtract. Student: (struggling
to understand) Yes...I see... Professor: Three from four, that
makes...How many...how many? Student: Four? Professor: No,
Mademoiselle. That's not the answer. Student: Three then? Professor:
That is not right either, Mademoiselle...I really do beg your
pardon...It does not make three...l am terribly sorry...Student: Four
minus three,..three away from four...four minus three? 1 suppose it

wouldn't make ten?
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Professor: Oh, dear me, no Mademoiselle. But you mustn't rely on
guesswork. You must reason it out...
The above dialogue might sound absurd to the common ear but a
mathematics educator can see here some typical elements. The student
has no idea about subtraction. For her, "to take three from four" is
a meaningless expression. However, she must react to the question. A
common reaction is an attempt to gain time by repeating the question.
By this, she might gain also some hints. The professor realizes this
and he is ready to give such a hint. His method is rephrasing the
question. The result is quite typical: a phrase which is harder to
understand than the original question. This is because it uses a new
notion ("minus") which is unfamiliar to the student. At this stage,
although the question is still meaningless for her, the student has
no alternative but answering the question. A common way of doing it
in such a situation is regressing to a previous familiar situaticn in
which she was successful, to ignore the differences and to act as if
the present situation were the previous situation. This can be,
undoubtedly, considered as a preconceptional stage. The teacher is
quite sensible to the student's behavior. He explains to her what
caused her mistake and hopes that this will help. But of course, it
doesn't because the question is still meaningless for the student. At
the same time, the pressure to answer does not stop and therefore the
only alternative now is guessing (note that to this student it never
occurs that she could have said "I do not know". She is not the only
one it never occurs to her). Guessing is very common practice in
mathematics learning and it is typical to the preconceptional stage.
Guessing has its own rules and it deserves a special study in
mathematics education research.
Here, for instance, the student is trying first to repeat one of the
numbers mentioned in the question. When this fails she tries the
second one. Only after that she tries a wild guess ("ten") and then
.he is stopped by the teacher. Note that the strategy of repeating
the numbers mentioned in the question could have been successful if
the question were: which number is the greater? three or four? (a
question which is posed to the student a little bit later, on p. 12).
Our professor, being aware of the student's guessing, tries to
construct in her some meaning for subtraction. In order to do that,
he invites her to perform some mental acts, Elsewhere these were
called imagination acts (see Vinner & Tall, 1982). Here another major
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The feacher believes that the student is capable of performing these
imagination acts, but this is not necessarily the case. In geometry,
for instance, we very often say “continue this segment infinitely to
both sides in your mind” or "think of a point which has no width and
no length”. How do we check whether our students can do it? There is
a good chance that our student won't be able to do it as illustrated
by the following dialogue

(p.14 - p.15).

Professor: ...If you had two noses and I'd plucked one off, how many
would you have left? Student: None. Professor: What do you mean,
none? Student: Well, it's just because you haven't plucked me off
that I've still got one now. If you had plucked it off, it wouldn't
be there ary more. Professor: You did not quite understand my
example. Suppose you had only one ear. Student: Yes, and then?
Professor: I stick on another one, how many would you have? Student:
two. Professor: Good. I stick yet another one on. How many would you
have? Student: Three ears. Professor: I take one of them away...how
many ears,..do you have left? Student: two. Professor: Good. I take
another one away. How many do you have left? Student: Two.

Professor: No. You have two ears. I take away one. I nibble one off.
How many do you have left? Student: Two. Professor: I nibble one of
them off. One of them...Student: Two. Professor: One! Student: Two!
Professor: One!! Student: Two!! Professor: One!! Student: Two!!
Professor: One!! Student: Two!!

As we said above, the student is asked here to perform some
imagination acts. In some of them she succeeds and in some of them
she fails. It is even hard to characterize those in which she fails
versus those in which she succeeds.

It seems that she specially fails to imagine strong counter reality
situations. She cannot imagine herself with two noses. Therefore, she
fails to answer the question about the two noses and the one being
plucked off. On the other hand, she is able to imagine herself with
one ear, sticking on another one and another one. But she is
uncapable of performing in her mind the inverse procedure. This looks
strange but mathematics teachers are familiar with the phenomena. The
inability to perform imagination acts is another characteritic of the
preconceptional stage. This is related somehow to hypothetical
thinking required very often from mathematics students, an impossible
mission in many cases (Professor:...You have ten fingers. Student:

Yes, Sir. Professor: How many would you have if you had five of them?
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Student: Ten, Sir. (p.15))

All the above examples can be considered as examples from the
preconceptional stage. Ionesco's lesson does not lack interesting
examples that can be considered as examples from the misconceptional
stage. Because of space problem, we will not discuss them here. We
would only like to note that not always there is a clear distinction
between the preconceptional stage and the misconceptional stage
(which is part of the conceptional stage). This fact does not have to
be a reason to reject the distinction. There are many distinctions
that do not have clear cuts, like the distinction between good and
bad, clever and stupid etc., yet they are very useful distinctions in

most of the cases.

The fact that a student is in a preconceptional or misconceptional
stage does not enable him or her a meaningful learning. The only
alternative left to him is rote learning. This is illustrated by the
following (p.17 - p.18): Professor:...How much is three billion,
seven hundred and fifty five million, nine hundred and ninety-eight
thousand two hundred and fifty one, multiplied by five billion, one
hundred and sixty-two million, three hundred thousand, five hundred
and eight? Student: (very rapidly) That makes nineteen quintillion,
three hundred and ninety quadrillion, two billion, eight hundred and
forty-four billion, two hundred and nineteen million, a hundred and
sixty-four thousand, five hundred and eight...

Professor: (astonished) No. I don't think so. That must make
nineteen quintillion, three hundred and ninety quadrillion, two
trillion, eight hundred and forty-four billion, two hundred and
nineteen million, a hundred and sixty-four thousand, five hundred and
nine...Student: No...five hundred and eight...Professor: (growing
more and more astonished and calculating in the head) Yes...you are
right, by Jove...Yours is the correct product...(Muttering
unintelligibly)...quintillion, quadrillion, trillion, billion,
million,.,(distinctly)...a hundrad and sixty-four thousand five
hundred and eight...(stupefied) but how did you arrive at that, if
you don't understand the principles of arithmetical calculation?
Student: Oh, it is quite ecasy, really. As I can't depend on reasoning
out, I learnt of by heart all the possible combinations in

multiplication. Professor: But the conbinations are infinite,
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Student: I managed to do it, anyway.

As we claimed above, lonesco's fictious lesson is almost an accurate
mirror image of s great deal of the practice in asthematics
education. We know wery little about the preconceptional stage.
Therefore, we also know very little about the methods of carrying

forvard our students from the preconceptional stage to the
conceptional stage. On the other hand, we do not believe in miracles.
The current situations in mathematics teaching is not only a result
of bad pedagogy. It is also a result of posing too many mathematical
topics which are beyond the mathematical abilities of great
percentage of the students. Being more aware of the preconceptional
stage and of the fact that so many students are stuck there might

have some influence on the curriculum as well,
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AN ANALYSIS OF THE EMOTIONAL ACTS OF YOUNG CHILDREN
WHILE LEARNING MATHEMATICS

Erna Yackel Paul Cobb, Terry Wood
Purdue University Calumet Purdue University

Emotion acts of children as they engage in mathematical
activity are analyzed in terms of the children's cognitive
appraisals of situations which, in turn, are based on the
classroom social norms. In the classroom we observed, the
teacher and children mutually constructed social norms that
fostered generally favorable emotional acts which, in turn,
sustained and perpetuated the operative social norms.
Examples from the classroom illustrate the relationship
between the social norms and the children's emotion acts.

Introduction

During a teaching experiment in a second grade
mathematics classroom we observed an unusually positive
emotional tone which seemed to contribute substantially to the
children's learning of mathematics. Since doing mathematics
is thought by many, including many mathematics educators, to
be associated with negative emotion (MclLeod, 1985), we set out
to analyze our observations, The discrepancy between our
observations and the commonly expressed view is heightened
since negative emotion is associated especially with those
mathematical activities that involve problem solving (MclLeod,
1985) and in the project classroom our approach, which was
based on the constructivist theory of learning, was that all
mathematics, including the so~called basics such as
arithmetical computation, was taught through problem solving.
The primary instructional strategies wused in the project
classroom were small group problem solving and whole class
discussion. (For a clarification of what we mean by problem

solving see Cobb, Wood, and Yackel, in press, and Cobb,

Yackel, and Wood, in press.)
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Our analysis focuses on that aspect of emotional
experience which involves cognitive appraisal of a situation,
emotional act, as opposed to the physiological arousal,
emotional state. Since they involve cognitive appraisal,
emotional acts have an underlying rationale which, in turn, is
based on the social order within which the mathematical
activity takes place. Accordingly, our analysis necessarily
includes an analysis of the social norms that were operative
in the classroom and how they were mutually constructed by the
children and the teacher. We argue that it was because the
teacher and children established social norms that constrast
sharply with those of typical classrooms that we observed
generally desirable emotional acts.

Theoretical Framework

The theoretical framework that forms the basis for our
analysis is that of the constructivist approach to emotion.
According to this approach emotions are viewed as
“socioculturally constituted* (Armon-Jones, 1986a) and involve
cognitive appraisal or interpretation (Bedford, 1986; Armon-
Jones, 1986a). In this approach attention is not focused on
physiological states of the individual(s) involved but on the
interpretation the individual gives to the situation that
causes him/her to judge it as desirable or undesirable. In
this sense emotion acts involve cognitive appraisal "in that
thoy depend wupon the agent’'s knowledge and his capacity to
judge and compare* (Armon-Jones, 1986a, p. 42). The cognitive
appraisal, in turn, 1s based on what is and is not acceptable
or appropriate in the given culture. From this perspective
“our capacity to experience certain emotions 1is contingent
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upon learning to make certain kinds of appraisals and
evaluations ... 1]t is learning to interpret and appraise
matters in terms of norms, standards, principles and ends or
goals judged desirable or undesirable® (Pritchard, 1976,
p.219). For example, for an individual to feel embarrassment
he/she must interpret the situation as one in which he/she has
failed to act in accordance with the expectations of the local
social order. Specifically, if, in a classroom it i3 expectad
that when a child responds to a question the only acceptable
responce is a correct answer to the question posed, then it is
appropriate for a child to feel embarrassed when he/she gives
an incorrect answer. In contrast, if incorrect answers are
routinely given and discussed along with correct answers, it
is not appropriate for a child to feel embarrassed when he/she
given an incorrect answer. As this example illustrates, the
emotion acts of children while engaged in learning mathematics
are influenced by the social norms that are operative in the
classroom.

This is not to say that children enter a classroom that
has a ready-made, pre-existing set of established social
norms. Social norms are not static prescriptions or rules to
be followed but are instead regularities 1in the process of
social interaction (Voigt, 1985). These regularities are
mutually constructed by the participants in the course of
their interaction. In this view, meaning is negotiated by the

teacher and the students 1in the course of their social

interactions. In this regard we follow Blumer (1969) when he
said that * ... human beings act toward things on the basis of
the meanings that the things have for them. ... the meoaning of

243

2EST COPY AVAILABLE



247

such things 1is derived from, or arises out of, the social
interactions that one has with one's fellows® (Blumer, 1969,
p.6). The norms are, from the observer's perspective,
continuilly reconstructed in concrete situations and do not
exist apart from the interactions that give rise to them. As
in any collective body *"there is one group or individual who
is empowered to assess the operating situation and map out a
line of action® (Blumer, 1969, p.56). In our ca o it was the
classroom teacher who guided and directed the construction of
the norms.

From the psychological perspective, the norms come into
being through the expectations that the teacher and children
have for each other and the largely implicit obligations that
they have for themselves in specific situations (Voigt, 1985).
Emotion acts, because they involve interpretations based on
the social norms, serve the function, therefore, of sustaining
and endorsing the norms from which they derive (Armon-Jones,
1986b}). Conversely, socially inappropriate emotional acts
indicate either that the student has misconstrued the
situation or that the student’'s beliefs are incompatible with
social norms that are acceptable to the teacher and other
students. Because emotion acts are cognition-based these acts
are open to_criticism by reference to the norms. Further,
there does not have to be evidence of a specific emotion
before that emotion can be ascribed (Armon-Jones, 1986b). For
example, a student can be told that he “ought to" feel a
certain way 1in a given situation, such as, that he ought to
feol pleased whon he has persisted 1in solving a challenging

problom. In this way interpretations that are deemed
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appropriate in light of the social norms can be brought to the

attention of participants in the local society and can serve

to sustain the norms as well as to endorse certain emotion
acts as appropriate.

Children’s beliefs about the nature of mathematics, and
their own and the teacher's role also influence their
interpretations of situations and hence their emotion acts.
These are, in turn, influenced by the social norms. For a
detailed discussion of the relationship of beliefs to emotion
acts and social norms see Cobb, Yackel, and Wood, in press.

Examples of the Relationship of
Children’s Emotional Acts to Social Norms

In the project classroom social norms included that

students cooperate to solve problems, that meaningful activity

was valued over <correct answers, that persistence on a

personally challenging problem was more important than
completing a large number of activities, and that while
working in pairs students should reach consensus as they
completed the instructional activities. The mutual
construction of the meaning of each of these through
interaction of the <children with each other and of the
children with the teacher served at the same time to indicate
whether or not an emotion act was appropriate. As an
illustration consider the following example.

The following episode occurred at the beginning of a
class discussion that followed small group work. One pair of
children volunteered that they had spent the entire twenty
minutes allocated to group wrok on a single problem.

Kara and Julie: Because at first we didn’'t understand.

A60
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Teacher: How did you feel when you finally got your
solution?

Kara and Julie: Good.
Kara and Julie’'s excitement at having solved the problem was
indicated by the way in which they jumped up and down as they
talked with the teacher. By calling the attention of the
entire class to this incident the teacher endorsed the girls’
construal of the situation as one warranting excitement and
simultaneously perpetuated the social norm that persistence on
a personally challenging problem is more important than
completing a large number of activities.

In the same way, when one child displaysd anger because a
child from a neighboring group told him the answer to a
problem he was trying to figure out for himself, the teacher
affirmed the rationale for his anger. In this way she
indicated that his interpretation of the situation was
warranted and 1in doing so simultaneously reaffirmed that in
this classroom meaningful activity was valued over correct
answers.,

In the first few weeks of the school year children often
interpreted situations in ways that were consistent with their
prior school experience but were not compatible with the
toacher's expectations for the children’'s activity in this
classroom. She then initiated a conversation in which she
talked with the children about her expectations and how she as
a specially empowered member of the group (Blumer, 1969)
assessed the situation. For example, during one lesson at the
beginning of the school year Peter went to the front of tne

class to explain his solution to a problem. In the course of
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his explanation he realized that his answer was wrong, looked
down at the floor and then quickly returned to his seat. The
teacher, realizing that peter construed this as a situation
that warranted embarrassment said, “That's okay Peter. It’'s
all right. Boys and girls even if your answer is not correct,
I am most interested in having you think. That's the
important part. We are not always going to get answers right,
but we want to try." By telling the <children how she
interpreted the situation the teacher expressed her
expectations for the children. Simultaneously she expressed
her belief that it was more important in this class to think
about mathematics than to get correct answers.

We have presented examples which illustrate how emotions
are socially constituted through interpretations of situations
and how they function to sustain and perpetuate the local
social order, in particular the social norms that operated in
the project classroom. The social norms that were established
in the project classroom differ sharply from those of typical
classrooms. It was for this reason that children were able to
interpret situations when they were engaged i« mathematical
activity in ways that made positive emotion acts the standard
rather than the exception.

The implication of this work is that teachers can promote
positive emotional experiences for children when they engage
in mathematical activity by guiding the construction of
classroom social norms which are conducive to mathematical

problems solving.
0 foen ‘,
Kod &
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THE USE OF GRAPHS AS VISUAL JINTERACTIVE
FEEDBACK WHILE CARRYING OUT ALGEBRAIC
TRANSFORMATIONS

Michal Yerushalmy
The University of Haifa
Frrors in performince of algebraic trunsfornations by algebra beginners
are a camn phenanenon. Among many reasons for the difficulties there
is one which had been investigated and described’in this work: the
absence of meaninpful feedback mechanism that could not only immediate-
ly identify a mistaken process but could also reflect the algebraic
situation and the student's action. The RESOLVER, a conputer environ-
rent had been used with algbera beginners of different ability to
identify the impact of visual linked multiple representations while
procedurally performing algebraic simplifications and transformations.
The article concentrates on the effect of a feedback mechanism, on the
effect of the visualization of algebraic expressions on the performance
and on the ways in which students amalyze their own mistakes.
A major part of the learning of algebra for beginners is devoted to the learning of techniques to

transform expressions. The literature reports on difficulties in carrying out algebraic transfor-
mition; difficultics that are rooted in the misinterpretation of the major essences of alpebra
(Booth, Davis et. al 1978, Matz 1982, Thompson 1987). An obstacle blocking the way to carry
transtformations 1s the lack of checking mechunism to use as a feedback while simplifying. The
onlv available nechunisn 1s the namerical checking: students may substitute numbers and camare
the values of transformid expressions (Lee & Wheeler 1985), Most students even do not bother to
do that. The introduction of computers into the sccondary school algebra curriculum could affect
the learning to transform expressions in several wavs. A Camputer's uses range fram a tutor which
helps students to carry the right sinmplification (Brown 1985), through camputerized tools which
direct students to understand the deep structure of algebraic expressions (Thampson 1987) to the
use of programs  tnat could carry svmbolic transtormtions for the user @wh as MMath (Fey
14, Hetd 163%). In paral 1ed, several studieg Bove boen carried our to ohserve the ingret of

conputers on another togne i the algebra cureicahom: the investiption of fuxtions, As put of

atevent study (Yot hotey e propa), we todeed the offoct of  Pinked maltsple ropredantat ion
attware on student ! prerbornene e ludine therr techmeal performux e withan the traditaonal
Alpebra Tourrroadim, tne ol the renultn daggeec s tat students presented o tach topertonne of

vienl arpeenats, bat o they deb oot Tink thees to pealeel results reached by synbolye and nuar

cal procedutes, The prctwre one wn deaw tran the studies mentioned above and others is that
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multiple representation touls could adequately and successtully serve algebra students and help
them understand major concepts; however, methods of using such tools to enforce procedural alge-
braic understanding and performance are yet to be established. The questions investigated in
this work were (1) How do learmers handle immediate identification of a false or coriect step by
the camuter, while transforming algebraic expressions? Do they need the judémntal feedbach to
verify their action or do they use the computerized feedback to try and understand why thev 2t
the truth or the false action? (2) What are possible roles of graphs serving is an autamtic
display of qualitative feedback while transforming alaebraic expressions!

USING THE RESOLVER: HOW DOES THE SOFTWARE WORK?

The RESOIVIT, the softwire wsed in the experiment 13 an covitonment that prantes otudent s
experimentation and verification while transforming algebraic expressions. The program allows
the user to carry out a process of transformations between two expressions and allows the user
to indicate the effect of each transformarion on the expression. The RESOLVER (designed by
Scinartz and Yerushalmy) is mainly an alsebraic notepad which allows the input of any espres-
sion wnose syntax is acceptable in alpebra. It provides in parallel three graphs for exch
transformation: one graph displays the original expression, one displays the current trans-
formed expression and one presents the difference between the two expressions. Since anv
legitumte operation of transformed expressions does not affect the graph ol the expression,

the gruph of dificrences provides qualitative and quantitative informution about the cortedt-
ness of each step. Here is an exasple of two transtformations: one is cortect and the other is

ncorrect.

GIVEN: 13-2(x-2)5-3(x-2) le4.

13-2¢(x-2)3-3(x-2)
13-18(x-2)=3(x-2)
) )13-191029-3!06
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1) 7x(Sx-2x-2)440 , -
P Y A l\P 4 A
-218, Sa—
-28.89 20.69
119 :
-218,
TRRCETT AxE
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There are multiple goals to the difference graph. First it allows an easier diagnosis of the

camparison between the two graphs; second, and more inmportant, the graph of the difference is an
indicator of possible terms that are not correct. Yor exarple: a parabola in the difference
window points to a mistake in at least the X°2 term.

SAMPLE AND METHOD

Seven students participated in an experiment, each received about five howrs of work. The partic-
ipants were: A seventh grader of average ability in mithematics who had recently first learned to
transform and simplify expressions; four eizhth griders, average and above average ability, ww
had concluded the topic of functions and graphs wsiny the Function Amalyzer (Schwartz & Yeru-
shalny 1988); two ninth graders fron the very low tmck in their school. All students volunteered
to purticipate and to stay after school hours for tw experinent.  [Fach of the three different
populations worked separately with a researcher. During each of the meetings students were awieed
to transform a file of expressions, either on  puper or using the REOLVER. Each file included
expressions fram various levels of camplexity. The level of difficulty had been mitced to tie
provions kinowledoe of eachr group and each file e Tuded tonstormnt tons whuneh had boeen Larnest 1
the classrons (suweh as cagutations and srouping) o others which wore anaresd be pesw sy !

rultielication of binaatads wd Doctormg) s Tre exconient dod not dne lade tea

[/ U PR R

ot any kil B session wes asdiotaped and all te otoebrae actions were tecotded on e,

r3its
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TUHE IMPACT OF QUALITATIVE FLEEDBACK

The data gathered fran the experiment were amalyzed with three aspects: the use of feedbacl: of
any kind while transforming expressions; the visualization of the expression using the graph, and
the linkage between the analysis of tie differences between graphs and butween the expressions.
Here are a few descriptions from this work.

The case of S: an experiment with a seventh grader.

S tud learnad graphic representation of nunerical informution 'in an introductory chapter to
statistics. With the RESOLVER, there are two options to check the correctness of simplified
fona. First, by conparing the result to the tarqget expression and second by using tiw interactive
feedback to each siep of the transformation process. S did not use the tarset feedback to check
his answers. In all cases he was very careful to tiv and correct each error immediately and was
not bothered at all to reach the certain format specified as a target. However, the exstence of
an aucamtic constant feedback timt informs of mistakes affected S, both positively and nega-
tively. Since he was so anxious to get the "sood" feedback ar each step he frequently gave up on
solving while he could not get rid of ristalkes. On tie other hand, the existence of an interac-
tive uwrediate feecback encourazed S to conjecture and experirent while sumglitying. Facing o
problug he often saad:"I'11 write what [ think is true and then we will see''. On anotier occmion

o

S evaiuated the diension of his mistake by an evaluation of tiw nunerical values.

EXPRESSION DIFFERENCE GRAIM
84.8 \\
L8 x43) T
?
[
-23. [
-19.08
2. 19.08

OO E N

\»
At ) b
b

S

-236.&,L ¢ >

-80.0q
diff AN

-240. L

Sl have dove an ol szt oothe mbers on the dafference graph are so lar e!
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He then tried another transfonmtion: -236.4 ¢
-19.99 18.906
".W\ 9
4-8x-30 L. \ ——
>
-23%. L
S: That is better, the numbers are smller now. 80.88 ™\

di”'“.ﬂb_J

At other times he used the sraph to analyze his next step and ‘here are two exanples. In the first
instance S was able to correct a mistake, causeu by an incorrect multiplication, by the analvsis
of the direction of the graph.

EXPRESSION CURRENT EXPRESSION'S GRAPH

3-7(9-2x)-5 NG
AN

-203.4
-18.00 18.69
g

. -
3-63--14x-5 [ /]

-263,

S: I watched the graphs and they looked as in the opposite directions. It rennnds me that when
you open parentiesis with a negative sy the expression gets the oppposite signs so 1 choneed
the expression to: 3-03+14x-5,

In the following cose, S mde a technical error again and was able to locate it by olserving tie
difference graan. In all couses, S mvaluntad tie difierence window as an entity and not as a
product or difference between the two sraplu. Por hig, 1t was an independent entity and, despite
all his enthusiis, to understand the praphs, v nover awed hov exactly the differece growh is

comected to tie Lo mmin graphs.
(1) 30x) = (3x-1)4 + Sexe)

() Ox = 2% = 12x 4 T i e

Ch ) 4 (=19)
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S simplified the expression on paper and then checked his answer using the RESXVIR:

EXPRESSION DIFFERENCE GRAPH
. .

(-x) + 3

S: T know that [ have to add 3 but wrere does 1t cax iran?

An experiment with experienced eighth graders.
The special purpose of the work with that group was to study if and how the previous experi-
ence with functions and graphs affected the performance in algebraic transformation. Also it
was necessary to explore if above-average students have any need to get feedback on their
technical performance or whether such feedback is a waste for advanced students. The mn
difference in the work between this group and the other three students was that this oroup
made extensive use of the graphs of all kinds; most of the excerpts include both: dizmosis of
the property of tie graph itself and diagnosis of differences. They amalvzed the difference
graph geamtrically (as opposed to S who muinly paid attention to the nurerical data). here :s

a description ot their attempts to sinplify an expression (organized chronologically):

(1) The given is a cubic expression.

They expanded the expression while perforring two rmstakes
(2) The ditference graph s a paravola, Should we try (<)
v oot rad of one mustake; the difference graph shows a constant difterence.

(4) Tt ook better now, but the difference graph is -0, The wnteception i

anove the eaxis oad 1t b to e below the axis,
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dift difr

Doc(x+-4(042)3 Qox+27-120040 Oox+27-1220¢-6 Qoo 27xx~-12xx40  Doi+27xx-12x¢=-24
They observed the complexity of che ziven task by the shape of the graph. They assumed that
the more coplex the ereph, the more difficult the transformtion. A similar reaction had heen
already observed while working with S, However, the graphic displav did not help tham te
identify o mistake caused by a repeated talse stracegy. In such cnses, students made many
attamts that brought them closer to the answer, but they could not reach the requested tarpet

expression. The feedback motivated them to define criteria of the quality of estimation of an

an

aloebraie result.

CONCLUSIONS

The results cont i e vpothesis that crndents do oot waally develop and use any stratees

to evaluate their alypebraee transfomotions and that the camputer could be ot belp. Drrors of

difforent typoes appeared 1n the work of all particianrs, at all levels of abilaty, but they

drd not expeet iy fovdbick winde suplify e expressions, The work with the RINIVIR de—

veoied et o Poesdbacks this nosd, however, varied witis abrbrty and knowledoe of arapie

el Bt ions, e ver stdonte were ook moae Lor Jedmaental foeodlncks thoy tended to e
i

Phe b e o et ol o Tht or wnono qieaeerss,

wo hoad watched an dncreasine tendeney of all particy ants to spend time in conpecturing abers
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the process instead of aiming for "the single right answer'. Several occurrences lad us to
this conclusion; they did not hesitate to write a transformation even if they suspected that
samething aight be wrong. Students usially did not use the Target answer, they were concerned
more about the process and less about *he exact format of the answer. We are able to show that
there are advantages that even beginners could benefit with the integration of visual under-
standing and analysis of praphs with the procedural action of transforming. Beginners have
developed estimation processes to evaluate the camplexity of the task by the shape of the
araph, usod the amph interceptions to evaluate factors at the given expressions and they were
able to identify the type of their error, even if they could not find the reason.
During the last few months we carried a continuous study of a group of seventh graders, using
graph feedback as well as other types of feedback. The full data had not been analyzed yet,
however, we find clear evidence about the willingness of students to correct their mistakes
once they find that they are able to reflect on their own actions.
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IMAGES OF GEOMETRICAL TRANSFORMATIONS :
FROM EUCLID TO THE TURTLE AND BACK

Rina Zazkis and Uri Leron
Department of Science Education
Technion - Israel Institute of Technology
Haifa 32 000, Israel

Abslracl The relationship belween turlle geomelry: and fv-
clhidean geametry: 1S investigated through their grouyps of trans-
rormatians.  In spite or @ strong inturtive Kmship between the two
geameliries, they are sl ditterent enough ror each to illuminate non-
lrivial aspects ol the alher. From a psychological and educalional
perspeclives, the comparisan belween the (wo geomelries allaws an
examination of” the mental Images associated wilh each and, in par-
bcular, § comparison al” airterent 7avels” of hinking shoul transior-
mations. as moving a phisical olyect, @ poind, a particular shape in
the plane, or the whale plane.

Introduction.  Ever since Klein's Erlanger Program, which
described the various geometries through their transformation
groups, there have been attempts to use transformations in the
teaching of geometry (e.g. Coxford 73). Formally, geometrical
transformations are defined as maps of the whole plane. This,
however, is hard for novices to visualize, especially when
composition of transformations is involved. Hence the effect of
transformations is sometime introduced by its effect on a single
point. But a single point is not enough to determine the
transformation: By a well-known theorem, three non-collinear points
(that 1s, a triangle) will be required. We can thus visuahze
transformations by considering their effect on a fixed triangle.
Furthermore, we can represent the group operations of composition
and inverse of transformalions by their composite effect on the
triangle.

The device of representing a transformation by its effect on a
triangle, helps in bridging the gap between the rigorous mathematical

2 ¢
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definition of transformations as maps of the whole plane, and their
more intuitive representation as operations on a physical (or mental)
object.

The motions of the triangle in the plane under the ‘various
transformations bring to mind the motions of the Logo turtle on the
computer scrzen (e.g. Abelson and diSessa 81). Most of the people we
have asked in an informal survey to relate turtle operations to
Euclidean plane transformations, tended to identify FORWARD with
translations and RIGHT with rotations. While these intuitions are
quite natural, they are not, as we shali see, entirely correct.

Even though the precise nature of the relationship between
turtle gecmetry and Euclidean geometry has not been hitherto
“articulated, there are quite a few projects and ‘microworlds’ in
transformation geometry, based on this relation (e.g. Thompson 85,
Goldstein 86, Edwards 88). The research reported in this article
attempts to put the relations between these two geometries on sound
foundations by comparing their groups of transformations. In
particular, it will be shown that the group of turtle operations is
isomorphic to the group of airect isometries (i.e. translations and
rotations but no reflections). The intriguing question of what in the
turtie world corresponds to ref7ections will also be discussed. Some
of the psychological and educational implications of these results
will be considered.

The Group of the Turtle. Intuitively, the elements of the
turtie group are the turtie operations FORWARD (FD) and RIGHT (RT)
with all possible inputs, and sequences thereof. For example, the
sequence [FD SO RT 90 FD 36 RT 14 FD -70 RT -561] is such an
element. The group operation is composition of functions. Note that
the turtle operations LEFT and BACK are also included via D and RT
with negative inputs. In this intuitive view, turtle operations are just
that - physical (or computational, or mental) actions on a physical
(computational, mental) object - the turtle, and their mathematical
nature is unspecified. To make this intuilive approach more rigorous,
we need several changes in the way we view turtie operations First,
we need to view FORWARD and RIGHT as operating on the turtle stgfe
rather than the turtle itself Second, we need to view these

264
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operations as acting on the whole (infinite) se/ of turtle states
rather than on a single state.

The (lurtle state then, consists of the turtle’s position and
heading. Analytically, we define the turtle state to be the triple (.x; 4./
), where (.x,4-) are the coordinates of the turtle's position in a
Cartesian system, and /4 is its heading, measured in degrees
clockwise from the north. We denote by S the set of all turtle states
and call it ¢he turtle plane. Given real numbers ¢ and 4 RT 2 and FD 4
are transformations of the turtle plane, defined for all (&, ), A)in &
as follows.

RT a: (x,pw.h)—>(y, 1, h+3)

FD & (w0, A) - (vt bsin p, w+bcosh)

bsin

fig. V- D £ zx « slate-change operator

As mentioned above, the turtle group consists of all finite
sequences of FDs and RTs. Having formally defined FD and RT as
transformations of the turtle plane, we now define the (wrile group
to be the group of transformations of the turtle plane generated hy
the set {FD #,RT &1 2,4 real numbers]). We shall denote the turtle
group by G.

From the definition of the turtle group, it follows that the group
operation 1s the composition of maps, the unit element is the 1dentity
transformation, the inverse of FD 2 is BK & (which is the same as FD
- ) and the inverse of RT & is LT 4 (which is the same as RT -4}
Twou elements /7 and ¢ of & are considered equal if they are equal as
tunctions, 1 e af sUe) = 2(<) for all turtle states s1n

The Two Geometries Compared We now proceed to
establish the fundamental correspondence between the two
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geomelries; namely, we construct an isomorphism (a one-to-one
structure~-preserving map) from the turtle group onto the group of
direct isometries of the Euclidean plane.

The intuitive idea is simple: We correspond to the turtle a
particular isosceles triangle in the Euclidean plane, and to turtle
motions triangle motions. However, to make this idea precise we
need to move from the correspondence between motions to a
correspondence between transformations. This we do with the aid of
the following two theorems:

(a) Given two turtle states, there 1s a unique element in the
turtle group carrying one to the other.

(b) given two congruent triangles with corresponding vertices,
there is a unique plane isometry carrying one to the other {(Coxeter
61) (wWhat we shall actually need is a variant of this last theorem,
namely that given two congruent /sosce/es triangles, there is a
unique irect isometry that does the job.)

We can now describe the correspondence as consisting of three
steps, the middle of which is the intuitive idea mentioned above.
First, we fix an arbitrary turtle state, say the HOME state (0,0,0), and
view elements of the turtle group as acting on a smgle turtle (in its
HOME state) via theorem (a). Second. we view turtle motions as
motions of the corresponding isosceles triangle as described above
Third, we view motions of the isosceles triangle as plane isometries
by theorem (b). Inverting this three-step process, we can find turtle
operations corresponding to each transliation and rotation. Thus our
map 1S one—to-one and onfe

Note: For a more formal definition of this map and a proof that
it is indeed an isomorphism between the tvo groups, see (Zazkis 89).

A Turtle View on Plane Isometries. We now apply the
above scheme to find explicit interpretations of plane translations
and rotations in turtle terms, and vice versa. for a start, we work out
the plane isometry corresponding to the element FD SO of the turtle
group. First we view the effect of FD 50 on the turtle in its HOME
pnattion Second, we view the same picture as a maotion of a trangle
in the Euclidean plane.

<66
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Fig. 2: Viewing FD SO asg a translation of the plane.

Finally, we determine the plane isometry that performs this motion.
in this case, the resulting isometry is the translation of 50 units
along the (positive) y-axis. Thus, the above isomorphism, carries FD
SO to this plane translation. Similarly, we see that the isomorphism
maps all turtle operations of the form FD & onto the translations
along the y-axis.

Applying next the same scheme to RT 90, we find that the
isomorphism carries it to a 90-degree rotation about the origin.
Similarly, the isomorphism carries all the operations of the form RT &
onto the rotations of the plane about the origin.

Since the elements of the form (FD #] and RT & generate the
turtle group, we are now in the position to easily calculate the plane
isometry corresponding to each element of the turtle group. However,
it is not yet clear what the rewverse correspondence 1s. In particular,
what turtle operation corresponds to an arbitrary translation? To
answer, ve ook at a particular translation, say the SO-unit
transiation in the direction of 45 degrees clockwise from the positive
y-axi1s, and consider its effect on our chosen triangle.

As can be seen from fig. 3 below, the turtle operation that
accomplishes the same effect on the turtle is [ RT 4SFD SO LI 45 ]
Since translation shifts the triangle parallel to itseif, we can
expect the same trom the corresponding turtle operation In turtle
terms this means that the transformation should be Aeading
preserving, 1.e. the initial and final headings should be the same.
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///
JAN . lavg
! 7
/// ‘. _/\ //
C g t pold
Fig. 3: (a) A plane translation (b) Translation as turtle operation

In general, there is a one-to-one correspondence between
translations and heading-preserving turtle transformations. Since the
turtle can only move in the direction it is facing, in order to execute a
heading preserving transformations, it needs to first Zur» towards
its destination, then mawve there and, finally, furn back the same
amount (to keep the heading invariant). Thus, these transformations
are characterized by their special form [RT & FD 4 LT &}.

While the equivalence between these two definitions of heading
preserving transformations is obvious in turtie terms, interpreting it
back in" the group of isometries yields an interesting insight, namely,
that every transiation can be obtained by conjugating a translation
along the y-axis by an appropriate rotation. (Recall that the conjugate
of & by A4 is the transformation 444 -1 As can be seen from this
example, this is a formal way to express the intuitive notion of “doing
the same thing in a different place” (Leron 86). )

By a similar line of reasoning, one can show that the turtle
analog of a genera/ rotation (not necessarily about the origin), is a
cojugate of a RIGHT by a suitable heading preserving operation.
Interpreting this back in the Euclidean plane yields a decomposition of
a general rotation as conjugate of a rotation about the origin by a
transiation.

This is a typical demonstration of how such isomorphism can be
useful: Properties which are quite obvious in one system, can yield

=68
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interesting insights whenr interpreted through the isomorphism in the
other system.

Turtle Reflections. We have now found (through the
isomorphism) turtle interpretations for two of the fundamental types
of plane isometries - translations and rotations. A natural guestion at
this point is, what in the turtie world corresponds to re/7ections?
More formally we ask, how can we extend the turtle group to a group
isomorphic to the enfire group of plane isometries?

In search for an answer, we turn back to our isosceles triangle -
the Euclidean object analogous of the turtle — and consider the effect
of a reflection on the triangle. A natural mental image of this
operation is that of physically lifting the triangle out of the plane,
inverting it, then putting it back into the plane. Since this operation
interchanqges left and right, it 1s called an mairect 1\sometry. But the
above physical description of the triangle under reflection, iends
itself easily to formulation in turtle terms. We call the corresponding
new turtle operation FLIP. Intuitively, FLIP can be described as
“turning the turtie on its back” or, equivalently, switching its right
and left. Formally, we extend the turtie state to include a fourth
component - the flip-state - which can take on two values: face-down
and face-up. The FLIP operation switches the values of the flip-state,
leaving all other components of the state invariant. A closer look
shows that FLIP actually corresponds to reflection in the y-axis, and
all other reflections can be obtained from it by appropriate
conjugalions. We conclude thal the exflended turtle group, the one
generated by FDs, RTs and FLIP, is isomorphic to the entire group of
plane isometries.

Conclusion. This article gives a fresh outlook on tuclidearn
geometry in two ways. Mathematically, turtie geometry can be
considered to give an mirinsic view of Euclidean geometry (Abelson
and diSessa 81, p. 13). Psychologically, turtle geometry gives us new
mental images with which to view plane isometries. Viewing
isometries as turtle operations (through the isomorphism) brings back

and Jegitimates our ormginal intuitions of acting on a physical object,
intuitions that are all but lost when working with transformations of
the whole plane. In the Logo hiterature turtle geometry is often
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" considered as alternative to Euclidean geometry. Our discussion of the
isomorphism betvween the two groups establishes a different
relationship belween the two geometries: Turtle geometry as adding
another, perhaps more intuitive view of Euclidean geometry, rather
than replacing it. The words of Abelson and diSessa (81, p.185) are
appropriate here:

“... whenever we have two different representations of the same
thing we can learn a great deal by comparing representations and
translating descriptions from one representation into the other.
Shifting descriptions back and forth between representations can
often lead to insights that are not inherent in either of the
representations alone.”
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A knowledge-base of student reasoning about
characteristics of functions

NURIT ZEHAVI and BARUCH SCHWARZ

Weizmann_Institute of Science, Israel

The present paper describes an incorporation of ezperience in mathematics teaching,
cognitive research, and logic programming techniques. It snvolues abstract high level
aclivities in secondary mathematics in relation to representation systems of functions.
The paper presents an approach to the development of @ computerized component which
will be the core of the *knowledge model® and the “student model® of an intelligent
tu.ton'ng system. DBased on data gathered from nearly “perfect students™ and “actual
sludents’, a two par? ezpert system was constructed. The algebraic ezpert can derive the
properties of @ function and ezhibit the inference chains of perfect students. It attempts
to try to analyze student reasoning by matching the actual and perfect answers. The

graphical ezpert takes into account student visual thinking in graphical presentation of

functions by software,

The general shift in the area of curriculum development towards the emphasis of cogni-

tive issues in the process of developing instructional systems, is the general background
for the dream of intelligent tutoring systems (ITS) which have diagnostic/predictive
possibilities, ITS should in principle, enable a better interaction between student and
system and lead to better instruction. The first attempts in this direction are described
in Slceman and Brown (1982) and discussed in many papers and reviews. Among the
strengths of these systems are the well-articulated curriculum embodicd in the domain
expertise and an explicit theory of instruction represented by its tutoring strategies.
The weaknesses against these strengths, are inadequate models of what the student
knows and how the student learns new knowledge {Wenger, 1987; Lawler and Yazdani,
1987). It scems that for several years rescarchers and developers have been reflecting
on the first attempts. At the same time advanced techniques and theories (Kearsiey,
1987; Holland, 1987) were developed, and more recently a second generation of systems

is being designed and investigated with focus on the student model.
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Methodology

A starting point of research and development of an intelligent computer tutor is the

choice of a pedagogical problem which is suited for a computational diagnostic model.
Based on experience in mathematics teaching, educational studies, and research and
development of instructional software, we identified three main criteria for choosing

such an appropriate problem:

(a) The solution of the problem requires processes of an inferential nature rather
than associations. The cognitive behavior can be hypothesized to be a knowledge-
based process that is built of simple inferential processes.

(b) The required cognitive processes are not dealt explicitly l;y the curriculum. They
involve aspects of reflective abstraction (Piaget's notion) such as generalization,
interiorization, encapsulation and coordination (Ayers et al., 1988).

(¢) * The problem should be interesting and comprehensive, but at the same time its
manageability must be ensured.

These criteria are found in the basic tutorial activities that we investigate. The

tutorial activity we started with reflects our belief of eflective pedagogy, and is as

follows. The student is presented with a certain algebraic expression of a function and
the graph of another function of the same type. For example, the algebraic expression
isy=1— 4z ~1 and the graph is:

The student has to propose and justily a function characteristic which proves the non-
equivalence of the graph and the algebraically presented function. The characteristics

which we introduced are:
e intersection points with the axes;
¢ quadrants through which the graph passes;,
e maximum possible domain of the function;

o range (image-set) of the function.
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In the example both algebraic rule and graph have the same intersection point with
the axes (2,0), same domain z > 1, and pass through quadrants 1 and 4. They differ in
their range. (There may be more than one distinguishing characteristic.)

Dealing with such problems invokes some “mathematical maturity” and we believe
that the development of transfer skills between the two representations can enhance the
learning process. In order to develop a prototype of a computerized component which
will be the core of the “knowledge model” and the “student model” we decided to gather
data from nearly “perfect students” and from “actual students”. A questionnaire was
applied to 12th grade students (n=26) at the top level of 5 credit points in mathematics,
and to 10th grade students (n=32) at the level of 4 credit points.

Knowledge Representation: Perfect Student

Introduction

The questionnaire was designed to examine how students handle problems of find-
ing characteristics of functions given in each of the two representations, algebraic and
graphical. The specific choice of items was intended to provide information on the in-
trinsic difficulties of students within each representation and on the role of the type of
function and the complexity of a particular function relative to its type. As expected we
found, for example, that the concept image-set causes difficulties across representation
and type of function, and that the greatcst-integer function which is constant piecewtse
is “pathologic” regarding all four characteristics.

The analysis of students’ responses to the questionnaire gave much more than that.

It stressed some salient conclusions:

¢ Students’ recasoning is generally logre, that is, students can generally explain their
actions by a succession of rules.
e Students’ knowledge tends to be conststent, that is, it is possible to carry out a
cross-examination of the various answers and to understand student behavior.
o Students’ answers reveal a partly hicrarchical system of levels in relation to char-
acteristics of functions.
These conclusions will be illustrated by means of one example taken fromn the ques-
tionnaire. In the algebraic part of the questionnaire, the students have to justify their
answers and we will see how some of their explanations {which were clarified during in-

terviews) constituted the basis of the algebraic perfect-student-ezpert. For example when
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asked about the range of the function y = —/4 — z — 2, student A (a high achiever in
Grade 12) gave the following argument:

1. There is a square root, and I know that the square root function of £ has always
positive values.

2. So the square root of everything is always positive,

3. There is a sign “."” before the square root, 89 the term —/0c is negative,

4. —,/o is negative, o the term —/o ~ 2 is less than -2,

Student B (another “perfect” student) answered the same problem as follows:

1. as above,

2. as above,

3. So +,/o+2is greater or lesser than +2,

4.  So —\/u—2ic less than -2,

The results of the analysis of the questionnaire led us to construct an ezpert system
as a first approrimatioc of the knowledge-base of students in the reaim of the fonr
characteristics of functions. This expert system will be referred to as “The Perfect
Student Expert”. The currently developed expert is divided into two parts: an algebraic

expert and a graphical expert. Each part can be considered as a separate student

modeling implementation.

The Algebraic Expert

The algebraic expert deals with families of functions £ f(+z  a) £ b where f(z) is
1/z,4/z, or |z]. Our main concern in the construction of the algebraic expert, was to
build a system prescrving the cognitive structures revealed by the questionnaire. To
achicve this, we represented the functions in symbolic list structures which reflect the
syntactics of the expression as observed by the student:

(E1,0P,L, E2, B} (or some permutation of this list).

OP is one of the operators: division.sign, square.sign, integer sign.

L is a list |13, z, F4, A] (or some permutation of this list).

EY are variables, whose values are 11, related to unary or binary plus and minus.

A, 3 take the values of the parameters of the function.
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For the previous example, y = —/4 — z — 2, the algebraic expert records the function
in its list form: [-1,s¢r,[1,4, -1, 2], ~1,2]. The rules formulated for deciding the char-
acteristics translate easily into Prolog clauses. The interpreter can be used directly for
deriving the properties of a function. A user-interface presents the output of the expert

as illustrated in the following for finding the image-set of y = —/4 — z — 2.
Please enler a function I' » {—1,sqr,{1,4,-1,2],-1,2].

Enter a characteristic (d(omain), r(ange), i(ntersection), g(uadrants), h(elp))> r.

Ezxpert answer:
(1) |- sqr,...z,_,.] applies range VT 18 |0,in f(inity)]
(2) |, 597,|- -» - ), -, -] implies range /Ez £ A is |0, inf] .
(8) [-1,sqr, [ - -, z], -, -] implies range (—\/Ez £ A) is [inf,0]
(4) [-1,sqr,[5 - -, z], Eq, B} implics range (—/Xz £ A + E( # B) islinf, E(* B|

ar -
\

(1) -, s9r,...xz,., .| applies range \/z is [0,inf(inity))

(2) [ sqrl-, -, -, 2], -, ] implies range /Ez £ A 15 [0,inf]

(8) |-, sqry{-s - 2|, -, B] implies range (:i:\/m—z:t B) is {+B,inf] or [inf, £ B]
(4) (~1,sqr, | - -, 2], Eq, B] imgplies range (—\/"{E?Z + E(+ B) is {inf, E(+ B|.
This output exhibits precisely the inference chains of the “perfect” students A and

B. Applies stands for *I know” and implies stands for “so”. Aflter instanciation of the

variables the expert's response is [inf, —2].

The expert can do more than that: it locates students’ answers relative to the perfect
student by matching the actual and perfect answers. For example, if a student answers
that the range of the function is y < 0, the expert will try to match the answer and

present the following output for the student’s answer:
(1) ., sqr,...z,., ) applies range \/z is [0,in f]
(2) [.,sqrsl-s -2}y -, ) implies range /2 A 15 [0,inf]
(3) [-1,sqr,{., ., 2], -, ) implies range (-v/*z X A) is |inf,0
or
(5)1 Vsgrl, o x), b, | onplies range (/Y i A B) is |inf,0)
The expert provides two alternative explanations: Rule 4 is missing or an incorrect rule
(“The range of the terin - /o s y < 0 because of the two “7 sipus) was applied.

How could the expert produce such a rule? A system of meta-rules which reflects some

275
BEST COPY AVAILABI.F



274

most common errors of students has been inserted to the expert. The analysis of student
reasoning, such as searching for missing or incorrect rules, can be done using techniques
of meta-programming. Prolog is especially suited for meta-programming since Prolog

clauses are themselves terms in Prolog.

The Graphical Expert

The development process of this expert was based on the application of the question:
naire to the 10th grade class. The aim of the graphical expert is to restore the fou
characteristics of a function given in its graphical representation.
~ The nature of the processes needed for this task is very different from the processe
involved in the algebraic representation: the students “see” the “graphing” and hawv
only to translate it in a formal way. Thus, in the questionnaire, we could not ask fo
explanations of the visual answers. This fact influenced the construction of the graphica
expert; while the algebraic expert has been based on the explanations of perfect students

the graphical expert has been based on classification of actual students’ answers.

Let us clarify this point by means of an example taken from the questionnaire. Th
student is presented with the following graph (without being told that the graph belong

to a square-root function):

B T GNP LANGY S —

A typical answer for the domain and the range of the function i
~8< z< —1, —-2<y < 1. Students who gave this answer did not process the visu
information they received; they just answered what they saw. It is difficult here to s:
that the students were wrong, but of course we hope that they will implicitly transla
the visual information to: z < =1, y < 1. The answer y < 1 is associated with sor

familiarity with the graph of a square-root function.

Another source of problems is connected with the limitations of the resolution of t
computer screen. Some students gave the following result to the intersection with t

r-axis: (z,0) where - 2.2 <z~ 1.8, llere again, there exists a gap between t
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implicit information and the visible; the student grasps the visible. It is also found that
many studeats do not cope successfully with reading points when non-integer coordi-
nates occur. Based on the actual students’ answers to the graphical tasks the following
aspects in the solving process were identified:

(a) Objective mathematical skills for interpreting graphs (e.g., linking “range™ with

the y-axis).

(b) Association with familiar graphs.

(c) Linking the visible “graphing” with the implicit graph.

(d) Concern with the accuracy of the graphics, and reading points on a graph.

We illustrate how the graphical expert acts in the last example. The “graphing”
presented to the student is symbolized by the list:
[features (|-8,~—1},[{-2,1]), inter ({—2.2, —1.8],none), quads ({none, 2, 3, nonej}}
Legend;
features ([—8,—1],{—2,1]): the visible part of the graph is constituted by the z part
—8<z< ~1and by theypart -2<y<1.
inter ([~2.2, —1.8],none): The intersection point with the z-axis is “spread” over the
interval [—2.2, —-1.8]; there is no intersection of the graph with the y-axis.
quads ([none, 2,3, none|): The graph passes through quadrants 2 and 3.
Note: while the “inter” and “quads™ functors have the same format for all these types
of functions in the system, the “features” format, features ([Lz,Ly}), is different for
the three types. The length of the sublists Lz, Ly is determined by the “graphirg” of
VT,1/z and [z].
The expert finds the characteristics by applying hierarchic | rules expressed as logic

clauses. For example, the rules for deciding the range of the current example are:

1. length Ly == 2 implies that the range is |, |

2. length Ly = 2 applies the range is |, inf]| or [inf, |

$. Lz = [-8,--1] and Ly = [—2,1| implies that the range 1s [inf,1].
The user interface exhibits the inference chain of the expert and the matehing of correct
rules when an actual student answer is entered  As for the alpebraic expert the inference
chains enable to capture actual student knowledge (i.e., failure in rules 1, 2, 3 reflect

difficulties related to aspect (a), (b)), (¢) respectively).
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Next Steps

We started the construction of the “studeat model”™ by gathering information fra
perfect and actual students. Empirical data and clinical observations contribut
rescarcher-defined rules that simulate student reasoning. In the present paper, we ha
not described the tutorial component. Roughly, it chooses a triplet: algebraic re
resentation, graph, and characteristict, and asks whether the the given characteris!
discriminates between the two presented functions. The Perfect Student Expert (the d
main expertise) simulates students’ correct responses and determines the level requir

for solution. The process can be reversed by logical programming techniques, i.e.

certain level can ‘determine’ possible tasks. Data collected by the questionnaire ai

analyzed by the student model provide diagnostic information about students’ knov
edge. The tutorial nceds to sclect tasks at the level of the student in order to gencra
learning. Experiments with the pilot version of the tutorial showed that the tasks m.
provide suflicient challenge for learning and progress. In case it is not sufficient, t
expert may present the “rules” invoked for the situation. The tutorial is designed to"

used not only for treatment and evaluation, but also to sharpen the diagnosis.

References

Ayers, T., Davis, G., Dubinsky, E., Lewin, P. (1988). Computer experiences in lear
ing composition of functions. Journal for Research in Mathematics Educatic
19(3): 246-259.

Holland, J.H., Holyoak, K.J., Nisbett, R.E., and Thagard, P.R. (1987). Inductic
Processes of Inference, Learning and Discovery. MIT Press, Cambridge, MA.

Kearsley, G. (1987). Artificial Intelligence and Instruction. Addison-Wesley, Readi:
MA.

Lawler, R.W. and Yazdani, M. (Eds.) (1987). Artificial Intelligence and Educatic
{Vol. I). Ablex, Norwood, NJ.

Sleernan, D. and Brown, J.S. (1982). Intelligent Tutoring Systems. Academic Press.
Wenger, E. (1987). Artificial Intelligence and Tutoring Systems: Computational a

Cognitive Approaches to the Communication of Knowledge. Morgan and Kaufm:
Los Altos, CA.

e e e Ackniowledgernent -
The authors are grateful to I). Zimmerman for her contribution to the dcvelopment
the Perfect Student Expert.

275 QT COPY AVAILER!



ADRESGES

AINLEY Janet Mary BALACHEFF Nicolas

Dept of Science Education IRPEACS

University of Warwick B.P. 67

COVENTRY CV4 T7AL 69131 ECULLY CEDEX

UK France

ALLAIRE Richard BASSFORD David

CIRADE X-7115 Shell Centre for Mathema-
Université du Québec a tical Education

Montréal University of Nottingham
CP 8888, Succ. "A" NOTTINGHAM NG7 2RD
MONTREAL QC UK

Canada H3C 3P8
BAZZIN] Luciana

ALMOG Nava Dept di Matematica
School of Education Universita di Pavia
Tel Aviv University Strada Nuova 65
69978 TEL AVIV 27100 PAVIA
Israel Italie
ARCAVI Abraham BEATTYS Candice
Dept of Science Teaching Center for Mathematics
Weizmann Institute of Science and Computer Education
76100 REHOVOT Rutgers University
Israel NEW BRUNSWICK
: NJ 08903
<: ARSAC Gilbert USA
Université Lyon 1
43, bd du 11 Novembre 1918 BECKER Gerhard
69622 VILLEURBANNE CEDEX Modersohnweg 25
France D-28 BREMEN 33
RFA
ARTIGUE Micheéle
IREM Paris VII BEHARIE Manjul
2, Place Jussieu Faculty of Education
75005 PARIS University of Durban-
France Westville
Private Bag X54001
ARZARELLO Ferdinando 4000 DURBAN
Dept Mathematica Rep. of South Africa
Universita di Torino
Via Carlo Alberto, 10 BEHR Merlyn
10128 TORINO Dept of Mathematical
Italie Sciences
Northern 1llinois Univ.
BAILLE Jacques DEKALR
EqQquipe E.E.A. M. ILL 60115
Universite de Grenoble ] USA
Sciences de 1'Education
Domairne ‘Iniversitair. BELL Alan
47 X Shell Centre for Mathen
38040 GRENOBLE 00y tical Kducat: o

France University of Mot inehoane

NOTTINGHAM HG7 kD

BEST COPY AVAILABLE s
279




fistisge -
et
Yepfalr.

B3
§
RS
5

278

BEN-CHAIM David

ORANIM

School of Education of the
Kibbutz Movement

36910 TIVON

Israel

BEN-LAVIT Shlomit
Dept of Psychology
The Hebrew University
91905 JERUSALEM
Israel

BERGERON Jacques C.
Faculté de Sciences de
1'Education
Université de Montréal
CP 6128, Succ. “A"
MONTREAL, QUE

Canada H3C 3J7

BISHOP Alan John

Dept of Education
University of Cambridge
17, Trumpington street
CAMBRIDGE CB2 IQA

UK

BODIN Antoine

Institut de Recherche sur
l1'Enseignement des Mathé-
matiques

Université de Franche-Comt<
25000 BESANCON

France

BOERQO Paclo
Universita di Genova
Via L.B. Alberti 4
16132 GENOVA

Italie

BOOKER George

Math Dept

Rrisbane C.A F.
PO.Box 82

MOUNT GRAVATT Qita22
Australie

BOOTH Lesley I
School of Edueation
James Cook Unpwveroyty
TOWNGSVILLE

Queensland b
hustralie

N2

BRANDAU Linda
University of Calgary
Dept of Curriculum &
Instruction

CALGARY, ALB T2NIN4
Canada

BROMME R.
IDM Bielefeld
RFA

CARMELI Miriam

Dept of Science Teaching
Weizmann Institute of
Science

REHOVOT 76100

Israel

CARPENTER Thomas
Univ. of Wisconsin
Dept of Curriculum &
Instruction

225 N Mills st.
MADISON

WI 53706

USA

CARRAHER Terezinha Nunes
Universidade Federal de
Pernambuco

RECIFE

Brésil

CHIEN Chin

Dept of Mathematics
Taipei Institute of Tech-
nology, No. 3, Section 1
Shin-Shan South Road
10626 TAIPEI

Taiwan

Rep. of China

CLEZMENTS M.A. (Ken)
School of Education
Deakin University
GEELONG

Victoria, 3217
Australie

CORB Paul

frirdue University
Flucation Paidding
Wil LAVAYETTE

Phe 47an7
VA

BEST COPY AVAILAB -



COLLIS Kevin F.
Dept of Educational Studies
University of Tasmania

% 9 Box 252 C
ﬁ 7001 HOBART
- Australie

CONNE Francgois

Dept de Didactique
Université de Montréal
CP 6128, Succ. "A"
MONTREAL H3C 3J7
Canada

COQUIN-VIENNQT Daniéle
Laboratoire de Psychologie
du Langage - UA CNRS 666
Université de Poitiers

95, ave du Recteur Pineau
86022 POITIERS CEDEX
France

de CORTE E.

Center for Instructional
Psychology

University of Leuven
Belgique

EPsychologie cognitive et
Traitement de 1l’'information

symbolique

Université de Paris 8
CNRS UA 218

2, rue de la Liberté
93526 ST DENIS CEDEX 2
France

DASSA Clément

Faculté de Sciences de
1'Education

Université de Montrdéal
CP 6128 - Succ. "A"
MONTREAL H3C 3J7
Canada

DAVIG Patricia Joy
Center for Mathematios
Education

Open University

MILTON KEYNE:S

KT GAA

K

BEST COPY AVAILABLE

279

DHOMBRES Jean

CNRS

Lab. d'Histoire des
Sciences et Techniques
UPR 21

49, rue Mirabeau

75016 PARIS

DORFLER Willibald
Universitit Klagenfurt
Universitatstrasse 65-67
A-9022 KLAGENFURT
Autriche

DREYFUS Tommy

Center for Technological
Education

HOLON

Israel

DUBINSKY Ed

Math Dept.

Purdue University
WEST-LAFAYETTE

IN 47907

USA

DUFFIN Janet

14 Orchara Croft
COTTINGHAM HUI6 4HG
UK

DUPUIS Claire

Institut de Recherche sur
1’Enseignement des Mathé-
matiques

10, rue du Général Zimmer
67064 STRASBOURG CEDEX
France

DUYAL Raymond

Institut de Recherche sur
1'Enseignement des Mathé-
matiques

10, rue du Général Zimmer
67084 STRASBOURG CEDEX
France

FISENRERG Theodore
Popt. of Math

Ben Garion University
|LLH GV

i Ao ]

251



ELLERTON Nerida
School of Education
Deakin University
GEELONG

VICTORIA 3217
Australie

ENGEL Ilana

School of Education
Tel Aviv University
Po Rox 39040

68978 TEL AVIV
Israel

ERVYNCK Gontran
Kath. Univ. Leuven
Campus Kortryk
B-8500 KORTRYK
Belgique

ESCARABAJAL Marie-Claude
Laboratoire de Psychologie
Université Paris 8

2, rue de la Liberté

93526 ST DENIS CEDEX 2
France

EVANS Glen

Dept of Education
University of Queensland
St-Lucia

QLD 4067

Australie

FALK Ruma

Dept of Psychology
The Hebrew University
91905 JERUSALEM
Israel

FERRARI Pier Luigi
Dipartimento di Matematica
Universita di Genova
GENOVA

Italie

FIGUERAS Olimpia

Centro de Investigacion y
de Estudios Avancardos

del IPN

FISCHBEIN E.

vehool of Education
Tel Aviv University
Por BOY 19040

GAYTHB TEL AVIY

[orael

280

FRANCK Anita

Faculty of Education
Univ. of Durban-Westville
Private Bag X54001

4000 DURBAN :

Rép. d'Afrique du Su

FRESKO Barbara

Dept of Science Teaching
Weizmann Institute of
Science

76100 REHOVOT

Israel

FRIEDLANDER Alex

Weizmann Institute of Science
Dept. of Science Teaching
76100 REHQVOT

Israel

GALLOU-DUMIEL Elisabeth
Institut Fourier
Université Joseph Fourier
B.P. 74

38402 ST MARTIN D'’HERES
France

GATTUSO Linda

LEGEP du Vieux-Montréal
5225 Kensington Ave
MONTREAL H3¥X 387

Canada

GIMENEZ Joaquim
EUFP EGB Tarragona
Univ. Barcelona
Ctra Valls S/N
43007 TARRAGONA
KEspagne

GOLDIN Gerald A.
Rutgers University
SERC Bldg Room 239
Busch Campus

NEW BRUNSWICK

NJ 08903

IIGA

GRAS Repis

Equipe de: Didactique de
I"Institut Mathématique
Universite de Kennes T
L0000 RENMES

Mranoe

BEST COPY AVAILA”



GROSSI Maria Grazia

Nucleo di Ricerca Didactica
Universita di Pavia

PAVIA

Italie

GUIN Dominique

Institut de Recherche sur
1’Enseignement des Mathé-
matiques

10, rue du Général Zimmer
67084 STRASBOURG CEDEX
France

GURTNER Jean-Luc

Dept of Psychology
Jordan Hall, Bldg 420
Stanford University
STANFORD

CA 94305-2130

USA

GUTIERREZ Angel

Dpto de Didactica de la
Matematica

Alcalde Reig 8

46006 VALENCIA

Espagne

HADASS Rina
University of Haifa
ORANIM

School of Education
36910 TIVON

Israel

HANNA Gila

Ontario Institute for
Studies in Education
252 Bloor st. W.
TORONTO

Ontario, M55 1IVH
Canada

HAREL Guershon

Dept of Mathematical
Sciences

Northern [llinois Univ.
DEKALDRB

ILL 60115

USA

HARIIOON D Breace
EDCT Dept

Fac., of Education
Dauiversity of Coalynw
CALGARY

Coana-doc T0H TR

281

HART Kathleen

Nuffield Secondary Mathe-
matics

Kings College

LONDON

UK

HASEMANN Klaus
University of Hannover
HANNOVER

RFA

HAUSSMANN Kristina
Paedagogische Hochschule
Postfach 4960

7500 KARLSRUHE 1

RFA

HERAUD Bernard

Faculté d’'Education
Université de Sherbrooke
SHERBROOKE PQ

Canada

HERSCOVICS Nicolas
Concordia University
Dept of Mathematics
7141 SHERBROOKE Oues
MONTREAL, PQ

Canada H4B TR6

HERSHKOWITZ Rina
Science Teaching Dept
Weizmann Institute for
HScience

76100 REHOVOT

Israel

HILLEL J.

Dept of Mathematics HB-2354
Concordia University

7141 SHERBROOKE Gt. W,
MONTREAL, QUE

H4AB 1R6

Canada

HITT Fernando
Tnstrtute of Educration
University of London
SO, Bedtford Way

Vi e ey
LT o AP

BEST COPY AVAILABL'



Wiy
:-_} -'&}_.Q L.

282

HOYLES Celia

Dept of Maths
Institute of Education
University of London
20, Bedford Way

LONDON WC1

UK

HOZ Ron

Ben-Gurion University of
the Negev

BEER-SHEVA

Israel

ISHIDA J.

Institute of Education
University of Tsukaba
TENNODAI

Tsukaba-Shi
IBARAKI-KEN 30%

Japon

JAIME Adela

Departamento de Didactica
de la Matematica
Universidad de Valencia
Alcalde Reig 8

46006 VALENCIA

Espagne

JANVIER Claude
Université du Quebico &
Montréal

MONTREAL

Canada

JANVIER Michel

Equipe E.E.A. M.

IREM

Université des Scicncen
Place E. Bataillon
34060 MONTPELLIER CLDkX
France

JAWORSKI Barbara
Open University
RIS

JURDARK Moarad

Dept, of Education
American Undveraity o
Vel rut,

FLTROT

Liban

«
234
L34 -

KASTENBAUM Michéle
lL.aboratoire de Psychologie
Université Paris 8

2, rue de la Liberté

93526 ST DENIS CEDEX 2
France

KEITEL-KREIDT Christina
Technische Univ. Berlin
Arbeitsbereich Mathema-
tikdidaktik

Sebr. MA 7-3

str. des 17 Juni n°® 135
D-1000 BERLIN 312

KIERAN Carolyn
332, Grosvenor Ave
WESTMOUNT

QUE H3Z 2M2
Canada

KIEREN Tom
University of Alberta
Canada

KRUMHOLTZ Nira

Dept of Science Education
TECHNION

32000 HAIFA

Israel

KUCHEMAN Dietmar
University of Londun
Institute of Education
20, Bedford Way

LONDON WC1H OAL

UK

KUYPER Hans

Rion

Institute of Educ. Research
Postbus 1286

9701 BG GRONINGEN

Pays-Bas

KYNIGOS Chronis
Institute of Education
University of London
1K

LABORDE € lette

IMAG

Pidactiqgoe Mathe ot
Informatiaqne

R B ¥

402 BT MAKTIN D'HERES
Foranece

BEST COPY AVAILABLE



283

LACASSE Raynald
Université d'Ottawa
Canada

LARHER Annie

Equipe de Didactique des
Mathématiques

Campus de Beaulieu

35042 RENNES CEDEX
France

LEDER Gilah C
Faculty of Education
Meriash University
CLAYTON

Victoria

3168 Australie

LEMOYNE Giséle

Dept de Didactique
Université de Montréal
CF 6128, 3uce. A"
YONTREAL H3C 307
Canada

LERNMAN Stephen
Raeoughdown End
Rovghdown Villas rd
EQXMOCR

HEMEL HEMPSTEAD
HERTS HP3 0QA

i1

LERON Uri

Dept of Science Education
TECHNION

Ir titute of Technolory

()O PAI“A

N
I
[

LESH Eichard
Wicat Systems
{iT(nCO ILL

LI. .\

LECTER Richar!
SETh Moliican Way
ROV

004

Uk
DTN Laid
Poent of Mathe mation

Natuonal Tailvan Norvmod
Prosere ity

SR

Tn 1w,

oo 8 Chian

LINCHEVSKI Liora
Sclivol of Education
Hebrew University
MOUNT SCOFUS 291-90%
JERUSALEM

Israel

LOWENTHAL Franci
Laboratoire H.V
20, Flace du tar
70Q0 MCNS
Belgigque

G Dwm
2

MAHER Carolyn

Center for Mathematics
and Cemputer Education
Rutgers University

NEW BRUNSWICK

NJ (08903

USA

MANSFIELD Helen

Curtin Univeresjty

of Technology

Faculty cf Educatian
Kent st.

BENTLEY

6102 Western Australia

MARICTTI Aleseandrs
Dipartimento di Matematica
Viq Bucnarroti, 2

SHhige FIiss

lt\:llr:

MARTIN CGary w.
University of tlawaii
Curriculum Rescareh &
Development Grp.

1776, University Ave
HONOLULU

Hl 46822

MASON John
Center for
Educatiog
Qpen Unix.xx;ty
MILTON KEYNJK

MK7 €A

UF

li
Mathiematiios

MAURY Cwleets

Egquive B oA M

[ kil

Hhawveraite e S daerge
bloce B Batag oy
FA060 MONTERLLIRR CR] =)
Frono

BEST COPY AVAILABLE



4
'
,

McLEOD Douglas
Elementary & Secondary
Education

Washington State Univ.
PULLMAN

WA 99164-2122

USA

McRAE Ladonna
University of Calgary
CALGARY

Canada

MENDICUTTI N. Teresa
Bosque de Moctezuma 98
La Herradura
NAUCALPAN

53920 Mexico

MITCHELMORE Michael C.
Bavarian Academy of Sciences
MUNICH

RFA

MONGEAU Pierre

CIRADE X-7115
Université du Québecc a
Montréal

CP 8888, Succ. “A”
MONTREAL QC

Canada H3C 3P8

MOVSHOVITZ-HADAR Nitsa
Dept of Education in
Science & Technology
TECHNION

HAIFA 32000

Israel

MUKHOPADHYAY Swapna
Learning Research and
Development Center
University of Pittsburgh
USA

MURRAY Hanlie

Dept of Didactics
University of Gtellenbosch
STELLENBOSCH

7600 Rep. d'Afrique dn Snd

NACHMIAS Rafi
Gohool o Edueatiion
Terl Aviw University
RO TEL OAVIV
frrae]

~

‘he
!

284

NADOT Suzon

G.R. Didactique

46, rue Saint-Jacques
75006 PARIS

France

NAIDOO Yanum

Faculty of Education
University of Durban-
Westville

Private Bag X54001
4000 DURBAN

Rep. of South Africa

NANTAIS Nicole

Univ. de Sherbrooke

2500, boul. de 1’Université
SHERBROOKE, QUE

Canada J1K 2RI

NASSER Lilian

Instituto de Matematica
Universidade Federal de
Rio de Janeiro

RIO DE JANEIRC

Brésil

NESHER Pearla

School of Education

The University of Haifa
HAIFA 31999

Israel

NEUMAN Dagmar

The niversity of Gothenburg
Dept of Education

Suéde

NOHDA Nobuhiko
University of Tsukuba
Institute of Education
TENNODAI

Tsukaba-Shi
IBARAKI-KEN 305

Japon

NOGS Richard

Dept of Mathematics,
Statistics & Computing
Inst. of Education

20, Bedford Way

LONDON WC1H OAL

4

MeLEOD Douglasn

Flementary Secondary vdse.
Washington State Univ,
PULLMAN

Wi 99164-21270

BEST COPY AVAILABLE



OLIVE John
University of Georgia

Dept of Mathematics Education

105 Aderhold Hall
ATHENS

GA 30602

USA

OLIVIER Alwyn

Dept of Didactics
University of Stellenbosch
STELLENBOSCH

7600 Rép. d’'Afrique du Sud

OSTA Iman
Equipe de Didactique des

Mathématiques et de 1'Infor

matique de Grenoble
Université Joseph Fourier
B.P. 53X

38041 GRENOBLE CEDEX
France

OTTEN Wilma

Institute of Social and
Organizational Psychology
University of Groningen

" GRONINGEN

3 Pays-Bas

PACE John FP.

Essex County College
Rutgers University
UK

PALLASCIO Richard
CIRADE - X-7115%

CP 8888, Succ. "A”
MONTREAL QC, H3C 13ps
Canada

PARMENTIER Christophe
G.R. Didactique

46, rue Saint-Jacques
75005 PARIS

France

PATRONIS Tassos

Dept of Mathematioo
University of G atran
FATRAS 6110

Grece

PAUWET A

Conter for fnatract oogoal
Poyeholopy

University ot [oaaven
Beelymigo.

287

PELED Irit

School of Education
University of Hailfa
31999 HAIFA

Israel

PESCI Angela

Dpt of Mathematics
University of Pavia
Strada Nuova 65
27100 PAVIA

Italie

PIMM David

116, Gurnards Ave
Fishermbad

MILTON KEYNES

MK6 2EE

UK

PIRIE Susan
University of Warwick
COVENTRY CV4 TAL

UK

PONTE Joao Pedro
Faculdade de Ciencias de
Lisboa

Ave. 24 de Julho 134-4
1300 LISBOA

Portugal

POST Thomas

Dept of Mathematical
Scéiences

Northern Illinois Univ.
DEKALB

ILL 60115

USA

PRESMEG Norma

Faculty of Education
Univ. of Durban-Westvill.
Private Bag X 5400!

4000 DURBAN

Rép. d’'Afrique du Sud

REISS Matthiasg

Universitit Gutenberpg Univer
sitat

Mainea

RFA

REGNTCE Taren B
Learning Rosearch and
Development Contooy
University ¢ brttabhurg
HOA

BEST COPY AVAILABLY



REYS Barbara J.
University of Missouri
Columbia

USA

REYS Robert E.
University of Missouri-
Columbia

USA

RICHMOND Kathryn
University of Calgary
Dept of Curriculum &

Instruction
CALGARY, ALB T2NIN{4
Canada

ROGALSKI Janine

CNRS Paris V
Laboratoire PSYDEE
46, rue Saint-Jacques
75005 PARIS

France

SAMARTZIS Stavroula
Psychologie cognitive du
Traitement de l'information
symbolique

Université de Paris 8

CNRS UA 218

2, rue de la Liberté

93526 ST DENIS CEDEX

France

SCHOENFELD Alanh

Education Univ. of California
BERKELEY

CA 94720

USA

SCHWARZ Baruch

Weizmann Institute

Dept of Science Teaching
REHOVOT

lsrael

SFARD Anna

The Science Teaching Centre
Givat Ram

The Hebrew University of
Jerusalem

91904 JERUSALEM

Israel

286

SHIMIZU K.

Institute of EKducation
University of Tsukaba
TENNODAI

Tsukaba-Shi
IBARAKI-KEN 305

Japon

SHUMWAY Richard

Ohio State University
COLUMBUS, OH

USA

SIERPINSKA Anna
Institute of Mathematics
Polish Acadamy of Sciences
P.B. 137
00-950 WARSAW
Pologne

SINKINSON A.

Nuffield Secondary Mathe-
matics

Kings College

LONDON

UK

SMITH Jack

University of California
BERKELEY

USA

SNIR Nurit
Bar-Ilan University
Israel

STONEWATER Jerry

Dept of Mathematics &
Statistics

Miami University
OXFORD

OH 45056

USA

SUKENIK Michal

School of Education

The University of Haifa
HAIFA 31999

Israel

GURANYD Janos
Science Faculty
Loranel Edtveos Univ.
Muszeum KRT 8
H-1088 BUDAPEST
Hongrie

BEST COPY AVAILABLE



" SUTHERLAND Rosamund
Mathematics, Statistics
& Computing Dept

Inst.

of

Education

University of London
20, Bedford Way
LONDON WC1H OAL

UK

STRAESSER Rudolph
IDM Bielefeld

Unjiv. of Bielefeld
BIELEFELD
RFA

TALBOT Laurent
CIRADE X-7115

CP 8888 - Succ. "A”
MONTREAL QC

Canada H3C 3P8

TALL David
Mathematics Education
Research Centre
Science Education
University of Warwick
COVENTRY CV4 7AL

% UK

* TIROSH Dina

School of Education
Tel Aviv Univevsity
69978 TEL AVIV
Israel

THOMAS Michael
Coventry School
BABLAKE
Colldon rd
COVENTRY
CV1l 4ALL

UK

UNDERHILL Bob
321 Memorial Hall
Virginia Tech.
BLACKSBURG

VA 24061

UGA

VAN DEN BRINK Jan
OW & OC
36561 GG
UTRECHT

Pays

Bas

Tiberdreetf 4

REST COPY AVAILABLF

287

289

VERGNAUD Gérard

CNRS Paris V
lLaboratoire PSYDEE
46, rue Saint-Jacques
75005 PARIS

VERSCHAFFEL Lieven
Center for Instructional
Psychology

University of Leuven
Belgique

VIWEGIER Monika

Institute of Mathematics
Polish Academy of Sciences
P.B. 137

00-950 WARSAW

Pologne

VINNER Shlomo

Israel Science Teaching
Center

Hebrew University
JERUSALEM

Israel

WATSON Jane M.

Dept of Educational Stud:es
University of Tasmania

Box 252 C

7001 HOBART

Australie

WOOD Terry

Dept of Education
Purdue University
WEST LAFAYETTE

IN 47307

UGA

YERUSHALMY Michal
School of Education

The University of Haifa
Mount Carmel

HAIFA 31998

[srael

YACKEL Erna

Dept of Mathematics &
Sciences

Calumet Campus

Purdue University
HAMMOND

TN 46324

UGA



288

YOSHIKAWA S.

Joetsu University of
Education

Japon

ZAZKIS Rina

Dept Science Education
TECHNION

Institute of Technology
32000 HAIFA

Israel

ZEHAVI Nurit

Dept of Science Teaching
Weizmann Institute of
Science

REHOVOT

76100 Israel

BEST COPY AVAILABLE



