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The Impact of ‘Meaning’ on Students’ Ability to Negate Statements

Tony Barnard
King’s College London

This paper reports on a study to investigate students’ capabilities for handling
logicalp structures in mathematics, in particular in negating statements
involving quantifiers. Undergraduates, both at early and later stages of a
untversity course, were asked 1o negate a variety of statements set in everyday
and mathematical contexts. It was found that, even after two years at
university, one in three students could not negate apparently simple
statements. Comﬁparison of the performances of the two groups showed that the
ways in which they d}z;'ffered refl)ected characteristics of the parallel transitions
in the nature of the mathematics encountered and in the intellectual
development of the students.

Introduction

Mathematical discourse at university is permeated with structures of the form “Suppose
A is not true. This is the same as saying that B is true”. Consideration of equivalent ways
of expressing the falsity of a given statement, such as “for all x> 0, a < x” or “p divides
ab implies p divides a or p divides b, occurs abundantly in both exposition an.d
construction of mathematical proofs. Thus the ability to negate statements correctly is
fundamental to meaningful mathematical communication at this level. Students who
have difficulty with such structures may willingly accept, learn and reproduce instances
of these in a mathematical argument, but they will be missing the point of such an
argument in that it will have contributed little to their overall understanding of what is
going on in the mathematics.

In an attempt to gain insight into the difficulties students have with ‘negations’, lists of
statements of the following kinds were drawn up.

l. xsatisfies P, forall xin X.

2. xsatisfies P, for some xin X.

3. xand y satisfy P,

4. x satisfies P and Q, forall x in X.

3. A implies B.

6. There exists x in X such that S(x,y) is true for all y in Y.

1. Given x in X, there exists y in ¥ such that S(x,z) is true for all z in Z (the
*limit” definition structure).

These statements were sct both in everyday contexts and mathematical contexts, and
students were «csted on their ability to negate them. The students were drawn from two
groups: students in the first term of their first year, and a mixed group of second and
third year students who had completed at least one year of formal mathematics.
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The most notabie finding was perhaps the sheer number of wrong answers, even with
what many lecturers would regard as “just common sense”. Thus for statements 2, 3 and
4, generally less than half of the first year students tested gave the correct answer. For
statement 6, the number of correct answers was less than 1 in 4. The performance of the
second and third year students was markedly better: generally 2 in 3 correct for each of
statements 2, 3 and 4, and just under half correct for statement 6. However, the
prevalence of such errors among students engaging with the more advanced mathematics
of an undergraduate course was still far from ideal.

Subsequent interviews with students and consideration of the most common incorrect
answers suggest that among the underlying causes of difficulty in performing negations
are the following:

« logical structure,
* lexical representation (language, symbols),
» contextual influences,
level of abstraction,
¢ degree of complexity.

It will be argued that ability 1o cope with these difficulties is related to progress in the
transition from a descriptive view of mathematics, grounded in a practical domain in
which objects and meanings of words are the dominant construcis, to one of definition
and deduction, grounded in a theoretical domain in which symbols and words themselves
are predominant. This aspect of mathematical ability is discussed in (Tall. 1994).

The test

Six lecturers in the mathematics department of a UK university were asked to run the test
with their classes in the first term of the academic year. The total numbers of students
invoived were 78 from the first year and a further 78 from the second/third years. Before
distributing the papers, the lecturers gave an explanation/reminder of the meaning of the
word ‘negation’, following a prepared briefing sheet of notes and examples. Each

student was then given a paper containing the following three sets of questions (figures
I, 2,3).




For each of the following statements, circle the letter beside the statement below it
which is its negation.

1.1 All people living in Chéltenham watch ‘Neighbours’.
No people living in Cheltenham watch ‘Neighbours’.

Some people living in Cheltenham watch ‘Neighbours’.

All people living in Cheltenham don’t watch ‘Neighbours .
Some people living in Cheltenham don't watch ‘Neighbours'.

Some students stay awake at lunchtime.
All students stay awake at lunchtime.

Some students fall asleep at lunchtime,

No students fall asleep at lunchtime.

All students fall asleep at lunchtime.

Linford Christie and Sally Gunnell can run fast.
Linford Christie and Salty Gunnell cannot run fast.

Neither Linford Christie nor Sally Gunnell can run fast.

Either Linford Christie or Sally Gunnell or both can run fast.
Either Linford Christie or Sally Gunnell or both cannot run fast.

Long John Silver always has a briefcase and an umbrella. _

Long John Silver is sometimes either without a briefcase ar without an umbrelia (I‘wnhout both.
Long John Silver is always either without a briefcase or without an umbrella or without both.
Long John Silver is sometimes without a briefcase and without an umbrella.

Long John Silver is always without a briefcase and without an umbrella.

What goes up must come down.

What goes down must come up.

What goes up must stay up.

If something docsn’t go up, it ncedn’t come down.
If something goes up, it needn’t come down.

There is a station on the London Underground whose name contains no letters of
the word ‘"MACKEREL".

There is a station on the London Underground whose name contains some letters of the word
‘MACKEREL".

There is a station on the London Underground whose name contains all the letters of the word
*‘MACKEREL'.

There is no station on the London Underground whose name contains all the letters of the word
‘MACKEREL". v
For any station on the London Underground, there is a letter of the word “MACKEREL’ which
is not in the name of the station.

For any station on the London Underground. there is a letier of the word ‘MACKEREL’ which
is also in the name of the station.

For any lecture room, there is a time of day such that all students able to attend
lectures at that time can fit into the room.

There is a lecture room such that, for any time of day, there are students able to attend lectures
at that ime who cannot fit into the room,

There is a lecture room such that, for any time of day, all students able to attend lectures at that
time can fit into the room. .
For any lecture room and any time of day, there are students able to attend lectures at that time
who cannot fit into the room.

For any lecture room, there is a time of day for which there are students able to attend lectures
at that time who cannot fit into the room.
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Figure | : Negating statements in evcryday contexts




For each of the following statements, circle the letter beside the statemnent below it
which is its negation.

2.1 For all integers a, a2 = 0.

There does not exist an integer a satisfying a2 2 0.
a? <0 for all integers a.

There exists an integer a such that ¢ < 0.

There exists an integer a such that a2 2 0.

There exists a real number x such that log(x) = -1.
There exists a real number x such that log(x) = -1.

There does not exist a real number x such that log(x) = -1.
Log(x) = -1 for all real numbers x.

Log(x) = -1 for ali real numbers x.

Sin(x) > 0-1 and cos{y) < 0-9.
Sin(x) £0-1 and cos(y) < 0-9.
Sin(x) £0-1 and cos(y) =20-9.
Sin(x) €£0-1 or cos{y) 2 0-9.
Sin(x) >0-1 orcos(¥) < 0-9.

Forallxe X,x2=1 and x3 <8.

Givenx € X, either x2 < 1 or x3 > 8.

There exists x & X such that either x2 < 1 or x* >8.
There exists x € X such that x2< 1 and x3 > 8.
Forall xe X, x2 <1and x®> 8.

Ifu>7 thenv=3
Ifu<7 thenv#3.

Ifu>7 thenv 3.

‘u>7" does notimply ‘v = 3",
‘u <7 doesnotimply ‘v=3"

There exists a positive integer m such that m + n 2 5 for all positive integers n.
Given any positive integer m, there exists a positive integer a such that m+n <35,

Given any positive integer m, there uxists a positive integer n such that m+n 2 5.

There exist positive integers m and n such that m+ n < 5.

There does not exist a positive integer m such that m + n < 5 for all positive integers n.
There cxists a positive integer m such that m + 1 < § for all positive integers 7.

Given a prime number p, there exists an integer x such that pa < x for all positive
integers a.

There exists a prime number p such that. for any integer x, there is a positive integer a
satisfying pa < x. .

There exi» a prime number p such that. for any integer x, there is a positive integer @
satisfying pa 2 x.

Given a prime number p and an integer x. there exists a positive integer a such that pa 2 x.
Given a prime number p, there exists an integer x such that pa 2 x for some positive integer a.
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Figure 2 : Negating statcments in mathematical contexts




For each of the following statements, write its negation in the space below it.
3.1 All people living in Neasden have black hair.
3.2 Some TV programmes are good.
3.3 Kylic Minogue and the Loch Ness Monster can sing.
3.4 Donald Duck always wears glasses and a hat.
3.5 Where there’s a will, there’s a way.

3.6 There is a tree in England whose number of leaves is not equal to the number of
words in any book.

3.7 For any textbook, there is a price above which the number of students who can
afford the book is less than the number of copies in the bookshop.

Figure 3 : Formulating the negation of statements

Responses of the students

In each of the boxes in the tables below, the upper italic figure relates to the first year
students and the lower figure relates to the second and third year students.

1 2 3 4 5 6 7
58 4¢ 44 37 60 24 32
81 76 65 60 68 49 50
53 50 53 42 12 18 40
73 65 67 65 30 42 4
60 62 35 31 33 24 12
82 9 69 54 35 32 29

Section 1

Section 2

Section 3

Table 1 : Percentage of students giving correct response to each section

LIP 121131415 161721 ]22)]23)24]25
7110 15) 29 251254 18} 15 2110} 15
5 5 6| 47 1] 39 91 13 4 8

Iy 271 26 7 i6 oy 12| 17 331 29
41 10] 17 8 7 g lay 11 51 18

5 4 21 16 01 12§ 41 7 21 25
5 3] 9] 18¢ 57 2 11} 39

45 41 2 6| 27 7139 20 9

63 511 10 6 6 51 10| 12

19

38

Table 2 : Number of siudents choosing each option (N=78)
(correct responses i bold )
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The most common underlying error was that of negating a single part of the statement
which had, for the student, a dominating presence. For the statements set in everyday
contexts, this point of focus was often the section of the main verb. For example, in 1.2,
by far the most common error was to solely convert “stay awake” to “fall asleep™.
However, in 2.2, where the section corresponding to “stay awake” was the less tangible
“log(x) = -1", the errors were more evenly distributed between solely converting “log{x)
= ~1" to “log(x) # —1" and solely converting “There exists” to “There does not exist”.
Similarly, in 1.6, 53% of the first year students and 23% of the second year students
solely converted “contains no letters” to either “contains some letters” or “contains all
letters™, whereas in 2.6 the logically corresponding errors, C and E, were exceeded in
popularity by the error of choosing D, the statement which converted “There exists™ to
“There does not exist” as well as “m + n = 5" to “m + n < 5”. This behaviour was also
widespread in section 3 where the students had to construct their own statement. For tic
negation of 3.6, 21% of the first year students changed only “not equal” to “equal”, and

even a very high proportion of the ‘correct’ answers consisted merely of the replacement
of “a” by “no” after “There is”.

Where students operated on one component of the statement with no relation to the
others, and this was not a negation of the main veib, it was usually a transposition of two
quantifiers. On being asked why they were focussing on just one part of the statement,
typical student responses were “I was going for something a bit different”, “I just want to

make it not true ... minimum statement to make it false”. This is the kind of behaviour
that might be expected from students operating in the unifocal {Case, 1985), or
unistructural (Biggs and Collis, 1982), mode of a developmental stage.

A possible explanation could be related to the opposing needs for coming to a
conclusion, and for conclusions to be consistent. Students operating at a higher level of
sophistication, for whom consistency was a factor of relative concem, were less likely to
jump to hasty conclusions.As might be expected, the students’ difficulties were greater
with those statements which were more complex logically, such as statements 6 and 7
which were longer and had more than one quantifier. With a short term working memory
of limited capacity, successful operation with these statements may require a chunking
strategy and/or use of symbolic notation to mentally compress the components. As one
student put it, “I think there was too much in that one™! However there were also
complexities not related to logical structure. For example, “stay awake at lunchtime” in
1.2 was more complex linguistically than “are good” in 3.2. This variation was likely to
be iess significant to students more proficient in abstract reasoning, and could partially
explain the different relative performances of the two groups at 1.2 and 3.2. For the first
year students the percentage of correct answers for 3.2 was 35% greater than that for 1.2,
while for the second and third year students the corresponding figure was only 4%.




Contextual influences

It will be noticed that the increases in success rates of the second and third year students
over the first year students for the first four statements of each section were greater for
sections 1 and 3, where the statements were set in everyday contexts, than they were for
section 2, where they were set in mathematical contexts. (The increase for 3.2, which
was slightly less than that for 2.2, may be related to the remarks of the previous
paragraph.)

A possible explanation for these phenomena may lie in the role played by truth value.
Students with less facility in abstract reasoning are generally less able to throw off the
‘real world’ true/false dimension when contemplating a given statement. For example,

" they are more comfortable writing down a statement they knew to be true than one
which they know to be false. A student comment on 1.5 and 3.5 was “I found them hard
because they were phrases that you knew”. For such students, more grounded in the
practical than in the theoretical domain, the truth or falsity of a statement was a matter of
relative importance and probably had a greater influence on their perfomances at
negating statements than it did for students with a greater facility in abstract reasoning.
Furthermore, this differential effect was likely to be greater with statements set in
concrete everyday contexts than with more abstract statements where, for students whose
abstract thought was more fragile, the true/false dimension had less immediacy.

Relative difficulties with statements set in everyday contexts and those set in

mathematical contexts with concise symbols were also reflected in the following
contrasting student remarks. While discussing her difficulty with 2.7, one student said,
“It is harder with numbers than with the worded sentences because you’ve got the
mathematical language as well, tha: you have 1o be thinking of. At the same time you
have to think what pa < x actually is, rather.than in the common sense case.” On the

other hand a second student, whose best performance was on sheet 2, said, “(There was)
less to keep in mind”.

There is one final statistic which, though not surprising, does have its merits. Five
lecturers were also given the 21 statements. While the percentage of students who gave

correct answers in all 21 cases was 1%, the percentage of lecturers who achieved this
was 100% !

Conclusion

Although the statements were chosen to have the same logical structure from section to
section, there was no significant correlation of logical structure in the students’
responses. The error patterns that did emerge arose rather from factors such as (a)
complexity, (b} single, or unrelated multiple, operations, and (c} links with meaning via
domiinant phrases and truth value. For students at an early stage of development in
detached theoretical thinking, the various components of a statement were likely to have
attached weightings of importance, or presence, derived from a network of associations
and meanings in their base of experience, They were less able to shake off logically




irrelevant associations than students who had progressed further in the transition to the
stage where it is the weightless words themselves which are the dominant feature.
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A Study on the Secondary Teaching System
about the Concept of Limit

Lorena Espinoza and Carmen Azcarste

Mathematics Education Department
Universidad Auténoma de Barcelona. Spain

The mathcmatical knowledge of limit" and the transfermations 1t undcrgocs in order to be
taught arc studicd in this paper; also, the mathematical activitics performed with limits and
the mathematical modcls used around this concept are deseribed. The resulls obtained in this
phase make an analylical instrument {o allow us to epproach in better conditions the tcachers’
knowlidges and teaching methodologies, so thal some drdactic phenomena which are present in
secondary lcaching and lcarning of linnls can be identificd, explained and even predicted.

1 Introduction

The present report accounts for the results of the first part of a research aiming to study the
mathematical secondary teaching systemn for the concept of limit.

Most researches undertaken in mathematics teaching related to this concept have focused on
the study of the students’ conceptions and on the epistemological problems linked to its learning
process. Hspecially remarkable in this area are the works by B. Cornu. 1985 and A. Sierpinska,
1987, |5).[6).{7].[8).{14].[19].[20].[21].122).[23]. Our own research has been developed under a
systemic standpoint and out of the three main components of the complete teaching system,
i.e., knowledges. teacher and pupil [13]. it mainly focuses on "the mathematical knowledge of
fimit” itself” and on “the teacher”™.

This work follows a research line which takes mathiematics education as "the science of the
specific conditions for conveving those mathematical knowledges which are useful for human
institutiens tc operate” (Brousscau. 1993). In this view. it is concerned with the study of
mathematical knowledge involved and with the transformations it undergoes in order ta be
taught. as well as with the mechanising and operations emiploved for the mentioned conveving
[2]. {4]. Here is where the variable Teacher assumes a remaikable importance since it is her/him
who will, in the end. transmit to the pupil the decisions taken towards a teaching goal by the
institution {4].

2 The Conceptual Framework

\We take as a starling point the fact that in order to understand and interpret how the sys-
tem of mathematical education works. how disfunctions are gencrated and developed within
it. and also how to detect some didactic phenomena, it is first necessary to study the mathe.
matical knowledge actually tanght by the teaching systems [6]. To this purpose, the specifie




mathematical activity carried out by the didactic systems has to be analysed. 'This implies
selecting an epistemological model for the mentioned activity (15]. In our hereby account, we
use the anthropological model of the mathematical activity proposed hy Chevallard [11], or
more gencrally, of the institutionalised mathematical practices, the one which considers them

as a human activity of studying the domain of mathematical problems. putting forth an
interrclation between creation and evolution of the problems’ domnains. the building of mathe-
matics study techniques and the recursive development of the associated theories. Furthermore,
we use some concepts of the theory of didactic transposition [9]. of the relationship with know!-
edge {10} and of the didactic momentums [13]. as analytical tools, as developed by the same
author.

The kernel theory which supports this standpoint considers that mathematics actually
taught at school is different fromn the one built up or used by the specialists: this late en-
during a series of transformations and adaptations in order to be taught [9], [16]. The distance
between an object of mathematical knowledge and its “correspondent” teaching object is often
very large and, cven some times surprising. Without the analysis of the mathematical knowl-
edge actually taught and not having in hand good and explicit epistemological models which
would allow this analysis. it comes to be very difficult to visualise any phenomena. and any
didactic phcnomena, in particular [1]. {4]. [13}.

3 Design of the Study Program for Research

During the phase of the work we are presenting here, the strategy aimed at analvsing the
mathematical artivity developed about limits in secondary education textbooks. as related to
the concept of limit. targeting at:

1. Different contexts in which the concept occurs
2. Description aud classification of the studied and proposed techniques

3. Correspondence between the theoretical tools appearing in textbooks and the actually
performed activities

4. llighlighting those activities not actually developed which could nonetheless be developed
using the propoesed theoretical tools

5. Elicitation of those mathematical models inplicit within the activity performed with
limits

6. ldentification of some didactic phenomena actually present in this development.

Finally, using the results derived from this analysis, formulating sonie conclusions and expla-
nations about {he spotted didactic phenoniena. which will serve as hypothesis for the research
oft course.

4 Study Methodology

Three official Spanish textbooks are selected in order to he analysed by means of the study
pregram proposed by Dr. J. Gascén [16], based on some theories developed under the same
didactic paradigms. conscquently 1natching the model of the mathematics activity sustained in
this study.




5 Main Study Results

From the analysis of the selected texthbooks we have developed the following sections:

1. Kinds of Problems: Description of the techniques employed and delimitation of the Fields
of Problems

Three grand classes of types of problems were essentially found within the global activity:

(a) Algebraic handling of limits

This is the first and most important, in view of the amount of exercises covered
within this field of problems and of the time dedicated to them. The technique
consists of: T1l: producing a result by means of consecutive algebraic handling of
a given expression and by applying different theorems about litnits. The algebraic
handling bears more importance or interest than achieving a result, not only for
grading purposes, but basically because should the expression be not "adequately”
handled the result would be almost imnpossible to draw.

(b) Graphical representation of Functions. These functions are in general continuous
except in a finite set of discontinuities (in most cases, a maxinmum of 3), and they
have an algebraic analytical expression. The technique consists of: T2: Algebraic
handling of a functional expression (almost always algebraic) in order to locate the
points of discontinuity. Then, calculating the limit on those points. Last. drawing a
graphical representation of the function,

Study of “slightly different™ Functions. These functions are often absolute values,
integer parts and functions which are defined in slices. The technique consists of:
T3: Reducing those expressions to handling able algehraic expressions and then
calculating the limits.

2. What id not done but could be done with lmits? Soine unrest arises to sce how the
theoretical developments explicitly shown by textbooks would be good enough to perforin
various activities which are not actually perforined, although, by some mysterious reason,
they are highly valued as far as learning cvaluation is concerned. both in secondary
education system and in cognitive education researd hes:

{a) Related to Graphics: There is a lack of elementary reading technique to read a graph
of which the analytic expression of the function is not kuown.

(b) Related to Discrete condition and Successions: Being limits a powerful tool for the
purpnse, no relationship is built up hetween continuous and discrete. No work is
done with the succession of function images. which would allow to link succession
and function. through limits, even though the mathematical model which cases this
relationship is elicited during the theoretical discourse.

Related to Numerals, Real numbers: No work is done with the conception of real
numbers as limits of successions. even thengh the body of real numbers is char-
acterised as ordered and complete (density property). No work is done with the
idea that 3.999... equals 4 and with the idea that three points following a nuineral
actnally represents a limit.

3. Some Didactic Phenomnena.




During the didactic analysis some quite surprising. and even contradictory. facts and
situations arosc. Those situations secmn to

indicate the presence of sonie phenomena. since they appear under the same aspect in all
three texthooks:

{a) While dealing with linits, various theoretical models about this concept are explicitly
presented which will never be required or used later on. while developing the actual
mathematical activity proposed to the students. Those models appear to be purely
otnamental, only meant to emphasise the fact that the matter been studied and
worked abont limits is coniplex, abstract, and consequently, important.

Along with the theoretical developnient varions activities could be performed. which
would enhance the usefulness and meaning of this mathematical tool, and it would
also help to justify introducing those rigorisms in secondary school: nevertheless,
they are nor performed.

The actually perforined mathematical activity is very clear and simple. It lacks any
complexity: the exercises do not contain any «. . notation nor any deep abstractions:
problems deal basically with calculation of limits solvable by means of techniques
which are clearly explained during the theoretical discourse.

The techniques being taught and being used for the mathematical activity hear
such a severe rigidity that it almost blocks any work linking one with the other. or
modifving them to derive one from the other. They are =0 much specific that the
study activity about fields of problems comes to be atomised and restricted to just
a few fields, teading to the loss of an integrated sight {15]. [13].

There is only one mathematical environment where the concept of limit is developed:
the study of functious. No relation with numerals is shown, as opposite with what
was done up to the seventics [18]. The corcept is not presented as a suitable tool
to read a function graph of which the analytical expression is unknown. Most of
the functions are of algebraic nature, except some transcendent and trigonomietrical
ones.

Formalising the concept of limnit in mathematics emerges as a need in order to provide
ceal numbers with continuity [17]. It monids a tool associated with continuum, with
convergence, By contrast. textbooks systematically portray it as linked with the
concept of discontinuity.

i. Some possible explanations for those phenomena.

The premise inplied states there is an implicit wodel of function in the secondary teaching
system which forees the finits to be considered as sheer algebraic comiputing. and con-
sequently, free of any difficulty coming from its analysis. that is: Function jsynouymg;
Algebraic Expression Any intricacy in its study derives from the algebraic handling itself.
This is the reason why a function is different from a graph and also different from a real
situation. Also, there is the other implicit model which deals with limits as synonyms of
function lmits. In this case. limits will be limits of algebraic expressions and they are
approached as solving an algebraic problem.

As a result. the following facts are drawn:




(a) The relationship between function and graph is of ccnsequence nature, not by defi-
nition. That is: given a function, we can elicit its graph. but a given graph does not
represent nor has any associated functional feature.

(b) There are no functions without algebraic analytical expressions. conscquently, since
nuinbers are not functions, no such things as 3.999... = 4 are considered.

(c) The students consider the following expressions as analytically different:

i -1
-, r#1 and x+1. x#I

r—1

(d) On building a graph, the students engage themselves in calculations and building of
tables; they do not use discontinnity points nor asymptotes, in order to create the
graph. These are studied as something unrelated to the drawing technique.

(e) Almost absolute lack of any activity related to the continuity of functions (just one
exercise appears among the recapitulation problems).

5. Some epistemologic and didactic obstacles

(a) In order to formulate the concept of limit the concept of real number i required,
but in order to define the real number the concept of limit is required as well [17].

Limit (convergence) refers to items which do not yet exist since they have not been
defined.

From an epistemologic standpoint the idea of limit cannot be conceived as unlinked
from the idea of rcal number; hoth ideas were formalised almost simultaneously.
Nevertheless, in secondary teaching system numerals can only be scarcely approached
(limits of nuineric successions) since it would mean to appreach real numbers, which
are still a mysterious matter in secondary teaching [3], {8]. {14, [19], [20]. [23].

From a mathematical standpoint, limit of a succession is a simpler thing that limit

of a function. since it is a discrete item. From an education standpoint, limit of a
function is simpler since it is casier to be elicited.

6 Some Final Conclusions and Remarks

1. The techniques being taught bear a severe rigidity in solving problems about limits. The
fields of problems being studied are atomised and almost completely mutually unlinked, making
it difficult to engage into a deep study of those problems {15}.
2. There is a uniformity in both theorétical and practical activities as far as the concept of
limit is concerned.
3. There is a conflict between: what the secondary teaching systemn states that should be
taught and learned in mathematics, as can be seen in the theoretical discourse of textbooks,
and what is actually done. as can be detected through the activities submitted by those same
textbooks to the students.

As a possible explanation to these phenomena, the suggestion is put forth that there is
a hidden mathematical wodel of limit not elicited because it is considered as very limited
and scarcely analytical, although il is the aclual concept being nsed and also the one which
characterises the kind of activities developed in the classrooms that is: limit as synonym of
function limit, and even more. function as synonym of algcbraic expression. ‘I'his way, what is




really studied is the limit taken as an operator assigning a number to each function. Nothing
aside from algebraic expressions is being considered as study object.

Finally, one of the important contributions to research in mathematics Leaching being
brought up by this section of the study, is the elicitation of how knowledge to be taught con-
stitutes a new construction being produced under different paradigms and interests. Models of
mathematical knowledge do not match with models of taught knowledge, and consequently it
embraces a new epistemology, an episternology characteristic of mathematics education. There-
fore, although there exists an interdependence between epistemologic and didactic problems,

the weight of mathematicians in designing a teaching partmpal ion must pe conditioned and
supervised by teachers.
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This paper reports the effects of teaching mathematical analysis to students
who are to be teachers of elementary school children, yet who take analysis as
the final summit of their mathematical studies at university. The students
concerned divided into three groups. A tiny minority understood the
formalities of the subject and the need for logical proof, the majority attenipted
1o learn definitions by rote but in the main jgiled to understand the underlying
concepts, and the remainder used inappropriate concept images from earlier
mathematics. This paper guestions the rationale of teaching formal analysis at
degree level for those who are not spectalist mathematicians.

Introduction

This paper considers the almost insignificant effect that a course in analysis had in
changing the quality of mathematical thinking of a group of students who, training to be
elementary and secondary school teachers, follow the course as a high point of their
university degree programme. Evidence from written assessment and individual
interview shows that only a tiny minority of the students are moving in a direction that
would eventually enable them 1o utilise the formal aspects of mathematics, The majority
did not recognise the need for formality. It was a surprise to find some students, even at
this level, attempting to generalise from the particular; despite their extensive work with
real numbers, their concept image had not expand to take in the notion of the concept
definition. Knowing the concept definition by heart did not guarantee that they
understood the concept (Vinner, 1992). Their experience prior to meeting the formal
definitions not only affected the way in which they formed mental representations of the
concepts (Tall, 1992), but frequently became manifest through their efforts to resolve
problems with an inappropriately “evoked concept image” (Tall & Vinner, 1981).

A high proportion of pre-university mathematics teaching tends to emphasise calculation
and manipulation of symbols to get “answers”. In such an atmosphere the acquisition of
the concepts has an intuitive basis which is founded upon experience (Tall, 1992). Such
a paradigm contrasts starkly with that utilised to develop advanced levels of
mathematical thinking; formal definitions give rise to concepts whose properties are
reconstructed through logical deductions.

The study of analysis may be seen as an attempt to introduce the student to the formality
that is the hallmark of the working mathematician; the general thought patterns of the
students are encouraged to change from a mode which relies extensively on the
formation of concepts through the encapsulation of process as concept (Gray & Tali,
1994), to a mode which is structured within the realms of concept definition. However.
the transition from one form of thinking to the other is a difficult one. Though
mathematicians use definitions and formal language in a meaningful way to compress




mathematical arguments, the learners method of thinking about mathematical concepts
can depend on more than the form of words used in a definition.

Vinner (1992) has outlined students possible responses to cognitive tasks associated with
the implied use of definition: the desirable one in which the student is not supposed to
formulate a solution before consulting the concept definition, and a more usual model
where the respondent is unaware of the need to consult the formal definition but places
emphasis on a concept image. In the instances considered in this paper we show there
was little very little evidence of the former but a considerable emphasis on the latter. But
perhaps it is impossible to avoid the mathematical tensions that arise between the
mathematcs tutors’ desire to introduce students to the rigour of mathematical proof and
the student perceptions that may be dominated by other considerations:

“When I got the piece of work back my main concern was with what 1 had got. Unfortunately
being so preoccupied with other things I am doing....I am fully aware of the fact that the things I
did last year and even last term arc going to be out of my head unless I think about them again.
What I said to you earlicr about relating cverything, well it just gees against that philosophy...
basically I have a problem of relating...” (Third year undergraduate student)

The context

At the end of a first course in Analysis, 20 students, all following a four year course
leading to a teaching degree with mathematics as their main subject, were given written
tasks that required a demonstration of their understanding of the use of definitions
introduced during the course. Though there were three items within the package of
assessed work we will consider student responses to the first, a problem which focused
on the their understanding of real functions and the definitions associated with
differentiability and continuity. As a result of the analysis of the students efforts seven
students were invited to take part in more detailed individual interviews.

This first item invited students to;
x* x rational

Explain why the function flx)= o is discontinuous for alf x # 0,
0 x irrational

The students written responses showed that the majority of them tried to avoid as much
as possible the use of formal language; they worked mainly with an image and/or tried to
use a dynamic or procedural version of the definition. In their responses it was possible
to identify the coexistence of these characteristics with older images that had remained
unchanged by the new theory. In other instances it was possible to identify “incorrect”
images constructed on a misunderstanding of the theory.

Image using

Though all of the students had been taught the concept definition, only one student used
it to solve the problem. By far the greater majority of students provided evidence of
attempts to reconstruct a proof through a concept image, without reference to the concept
definition; in some cases with verbal reconstruction (Figure 1):
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Figure 1: Verbal reconstruction of the proof for continuity
One attempted to be more explicit about the image (Figure 2):
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Figure 2: An evoked concept image of continuity

Though this student was interviewed later, no further insight into his image was
forthcoming. However, some was gained from the interview with another student. Asked

to draw pictures of functions that could not be differentiated this student drew the graphs
shown in Figures 3 and 4.

As she drew Figure 3 the student commented:

“1 still think if you could differentiate at a point
[pointing to a cross]... if you joined thosc together
[joining up the crosses] like that you coul’ still
find the gradient at a centain point....you can have
the gradient between two of those points, that
would be the gradient if it was a straight line.”

Figure 3. Student image of a non-
differentiable and discontinuous function




As she drew the second graph the student was
asked if it was possible to join the points:

*“No... because I've seen one similar to that
{Figure 3] on a graphical calculator, and I've
seen that one as well [Figure 4].

The student was asked if she could provide an
example of the formula for the function she had
Figure 4. Student image of a non- seen drawn in the calculator, but she replied:
differcntiable and discontinuous function

“] can’t remember, It wasn't exactly that [Figure
3} it was similar, It had lots of little bits there [in
the calculator] and then got wider.”

Three isues would appear to arise from the students efforts to compensate for their

inability to providere the appropriate concept definition:

» The image associated with the “linked points” of a graph prevents any
formal association between the concept definition ard an appropriately
formed concept image.

Such an image may be reinforced by misconceptions that arise from an
automatic use of graphic calculators and computer programs; initially
students may not associate the relationship between the graph, the defined
function and the associated procedure (see also Hunter, Monaghan &
Roper, 1992),

Students learn images and intuitive ideas by rote; some seem not to worry
about basic foundations upon which to relate knowledge meaningfully.

Reconstructing the definition

The images some of the students constructed differed significantly from the ideals that
mathematicians would wish to be constructed from the definition. The statement
“Between two rationals there exists an irrational; between two irrationals there exists an
irrational” was translated by some students to mean:

“since there is always an interval around each rational p/q where x is an irrational...”

“there is always an interval around some rational x where x is irrational and.,.”

Such representations provide an example of student’s imprecision in the use of
mathematical language and their difficulty in dealing with quantifiers which may arise
from interpreting theorems in such a way.

Helped by a “redefined” model:
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one student simplified his arguments to prove that the function given in the first question
is continuous at x=0. This student could conclude:
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During the interview this was placed into a context by the student:

“We had worked out in class that between any two rationals you always find an irvational,
between any two irrationals you'll always find a rational, so from that I deduced thar if you took
two rationals you’ll always be able to find an irrational in between, so | put down on my
assignment that it was alternating between rationals and irrationals, which is wrong 1
think...Why do [ think it is wrong? To be absolutely honest with you [ haven’t really looked at it
properly to work it out which I know I should, but all 1 remember is thinking that I was right
when 1 did the question.™

Such a student would require some considerable time to synchronise his model with the
proposed theoretical model. These students will not have this time.

The individual interviews confirmed the evidence received from assessment. Each
interview started with a series of common questions to establish students understanding
of the formalities and central concepts arising from the analysis course. The students
selected for interview (N=7) were drawn on one hand from those whose written work
bad shown evidence of the interplay between personal description and a concept image
and those who, on the other, displayed the inappropriate use of a concept image.

Space precludes presentation of ithe “formal” questions but the following synthesis will
allude to them and highlight the most important issues that arose from the interviews.

< None of the students gave the formal definition of contiruity and neither
could they state how to calculate correctly “the derivative of f at a point in
the domain D where /:D— IR.”.

Since the student’s examples of differentiable and non differentiable
functions were the same as those given for continuous and discontinuous
functions, it is hypothesised that their concept images of these notions
were the same (Vinner & Tall, 1981). Their confusion over these two ideas
could be seen even when they attempted to provide a formal definition:

* A function is continuous if it can be differentiated at every point within a range™
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“A continuous [function], you can differcntiate that.....if you have two points on it, it
is continuous between the two points then you can differentiate that”

Whether or not a function could be defined at a point determined whether
or not it was continuous for some students

“...where you pick two points and a point between can be defined as well. You've got
a curve which continues because whichever point you pick there’s always another
point on the line, there's no gaps in the curve.”

“Continuity is every single point has another value™
Some others had a confused image that they could not synthesise in words:

“I don't know the definition but I know that it’s where alil the points if you drew them in a graph
all points.....well they are not up and down all over the place™.

 Unable to write the
1 Youa gol a basic line definition of continuity
3. ...and at some point the one student indicated

lina reaches there and breaks | that the images of
4. ... it continues from continuous function she
2.... with the things somawhere else in a possessed were from

; grtical plane but not the R .
going up and down orizontal sa it stops there | graphical work (Fig. 5):
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Figure 5: A students evoked concept image of a continuous function

This student’s attempt to describe such a function with her graph were almost
indecipherable. However, she did indicate that

“I am just remembering a few things but it is not coherent at all”,

Discussion

It seems that a great problem in dealing with mathematics lies in the fact that the theory
was constructed upon aims that students do not achieve. Partially, this is because the
composite theory is not made explicit but hidden behind the forma! language and
apparently clear hierarchies which mathematicians use to present the subject matter.
Students have difficulty linking the language and the sequential steps of the hierarchies
to form an overall theory encompassed within an understanding of the reasons for its
formation. Many, destined to acquire definitions by rote learning, attempt to support
these through intuitive ideas and the reproduction of procedural aspects of the theory.
Even though they may be given intuitive experiences to support the formal aspects,
being unable to understand the relationship, they evoke previously established concept




images which are not good enough to build upon. They acquire definitions with no
supporting content; they evoke images from within the school mathematics curriculum.

Additional evidence for such an hypothesis could be found in the students’ efforts to
classify numbers as rational or irrational. One student who had no understanding of the
difference and who made little effort to obtain any, stated that:

“I always look these up when I need to know what they are. I've got a list of all the different
symbols and what things mean and 1 usually refer 10 that when I need to know, but it hasn't
stuck yet.”

Another, though aware of the definition, preferred to use a concept image when
analysing 0.9:

“If you rounded thar up it would be a rational number.”
His explanation of this comment indicated that he did not understand what one means:

“I don’t know, it’5 just like .999... is too close to 1 but I don’t know whether that makes any
difference to a rational or an irrational number being so tiny. I'm just guessing.”

A third had difficulty classifying zero as rational or irrational but even though he
atternpted to work with the formal definition he failed because the latter was
misunderstood.

*..zero isn’t it 7 I don’t know...Maybe it’s an irrational. I'm not really surc whether you can have
division by zero....Zero divided by zero, normally you can’t have zero on the bottom of a
division line because it’s undefined, so therefore it can’t be defined as p over ¢ so it must be
irrational.”

This evidence of students rote learning, both of the definition and the concept image,
must be placed alongside additional evidence which illustrates that students knowledge
of mathematical concepts may take on a variety of identities (Duffin & Simpson, 1993).
We suggest that though such variety may be strongly associated with students
conception of real numbers, the real numbers may still not be natural in the sense used
by Duffin & Simpson even for students at this level.

Conclusion

This paper presents some evidence that arises from the mismatch that can occur when
students who are not candidates for advanced mathematics are faced with the rigours of
advanced mathematical thinking. The vignettes serve to support the evidence provided
by Vinner (1992) but we would wish to look more closely at the longer term prognosis
for the mathematical development of the students considered. Although only one student
provided evidence of a reasonable understanding of the place of concept definition in
analysis, all of the students described within this paper achieved at least pass grades in
their assessed work-largely through a kindly interpretation of the marks.

From the evidence of the assessnient and the individual interviews the students may be
seen to fall into one of three groups:
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* A very small group (N=2) which seemed to be moving towards a formal
understanding of the subject matter using the formal definitions
meaningfully or recognising the need for formal language and logical proof.

* A second, much larger group, (N=10) who, though they evoked the use of a
concept image to support personal description, did not effectively use formal
definitions. The majority of these students revealed that they had initial
difficulties interpreting problems in the context of the theory. Such
difficulties could be manifest through the limited considerations they gave to
crucial aspects of the problems, for example, considering rational cases but
not irrational ones, or arguments augmented with superfluous—in the sense
that they provided more than the necessary-repctitive considerations.

* A third group of students (N=8) used inappropriate concepts images formed
from earlier mathematical conceptions which remained largely unchanged as
a result of the course in analysis. Such students attempted to establish a
formal result by generalising from specific cases or they displayed an
inability to link procedural and conceptual images of function and graphical
representation.

The laudable desire to lead these students towards the formality of mathematics was
thwarted for two reasons. Not only do they not appear to be ready to start the course—
and thus the assumptions underlying the move to formality were not met-but, more
importantly, they will have no opportunity to consolidate their knowledge to the point
where concept definition and concept image have appropriate associations. When faced
with formal aspects of a theory which they do not construct for themselves, students can
ignore not only its convenience but also the arbitrary and respective reasons for each
theoretical construction and each definition; important links can be missed and such
deficiency will give way to a collection of fragments which bear little relationship to
each other.
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REASONS TO BE FORMAL:

contextualising formal notation in a spreadsheet environment

Janet Ainley

Mathematics Education Research Centre
Institute of Education, University of Warwick

This paper addresses the early stages of children’s introduction to the use of variables in
formal algebraic notation. We conjecture thar some of the difficulties encountered by
children in this area may be accentuated by their lack of appreciation of the purpose or
power of formal notation. A 1eaching approach is described which aims 1o situate the use of
formal notation in meaningful contexts. Case study evidence from children working with
this approach, using graphical feedback in problem solutions. is used 10 suggest links to
other areas of cognitive research, and to refine questions for future study.

Background

In 2 recent survey of the leaming and teaching of scheol algebra, Kieran (1992) cites a number of
research findings which indicate the relative success of computer-hased environments in
developing children’s understanding of variable in the early stages of lecaming algebra. Kieran
auributes this success largely 1o the procedural natare of the programming involved. The usc of
variables in Logo is mentioned particularly as being accessible because it lends itself to procedural
interpretations. Kieran also comments on the fact that although there has been a great deal of
research into children’s leamning of algebra, there has been little research into the weaching of
algebra or the content and presentation of what is taught. This paper reports on rescarch which
involves an innovative approach to the introduction of the use of varables to primary school

children which may suggest an additional explanation for the relative success of children working

in computer-based environments. We conjecture that the lack of any sense of purpose for the usc
of formal algebraic notation in traditional approaches to beginning school algebra may contribute to
children’s difficulties in accepting formal notation. Activitics based around working with a
computer ofien involve pupils in using variables, for example within Logo or BASIC
prograrmming, in order to achieve particular effects, so that the algebraic notation is a means, rather
than an end in itself,

Approaches to contextualising algebraic notation

The idea of contextualising formal notation is not, in itsclf, a new one. Word problems offer a way
of both giving meaning to algebraic expressions, and linking work in algebra to children’s
expericnces of arithmetic problems. However there is considerable evidence that representing word
problems as formal equations presents major difficulties for pupils. (Kieran (1992)). Generally
such word problems have a single solution, which may be found through a number of different
approaches. Describing the problem situation in an algebraic form may be high on the teacher’s
agenda, but not on that of the pupils.




‘Investigations® offer anather approach 1o introducing formal algebraic notation in meaningtul
contexts. Typically in such an activity the child might be required to explore 2 number pattern
arising from a practical situation, and then asked for the hundredth number in the pattem. or a
method for finding any term in the sequence. The aim is to encourage the child to generalise the
pattern in the form of an algebraic expression. This approach has been characterised by Hewiu
(1992) as *train spotting', since the learner's aueation is gencrally focused on pattern spotting
rather than on the situation from which the investigation arosc. From the child’s point of view, it is
difficult to see any purpose in formalising the patern in algebraic wrms: a verbal deseription of the
pattern, or a generic method for calculating values. may seem just as efficient for giving the
solutions required,

An alternative approach to formalising

One focus of our rescarch in the Primary Laptop Project has been chaldren’s use of spreadsheets as
a mathcematical tool. Early studies indicate that the children’s ability to interpret and understand
graphs has been enhanced through working in a spreadsheet environment (Ainley (1994). In order
1o expleit this potential, we have developed a teaching approach (iilustrated crudely in Figure 1)
which we have called active graphing (Ainley and Pratt (1994a1). Children are encouraged to enter
data they collect in experimental activities directly into a spreadsheet. and graph this data regutarly
during the coursc of the experiment,

thus enabling the graph to be used as collect > make a g study graph and make
initial data graph or refine conjectures

an analytical tool. This means that the

physical experiment. the tabulated Gecide what fartha
w r
daws and the graph are brought into collect cata data is needed

close proximity. Research evidence

when you are ready! *
Mokross and Tinker (1987)) supports rdraw conclusions }

from data-legging projects (c.g.

our conjecture that this proximity is - - -

. . . ] Figure 1. The aclive graphing process
mmpurtant in supporting children's :
understanding of the conventions of gr. ohing. and their ability to interpret complex graphical

represcrtations by relating them o the activities from which they arise {Pratt (1994}).

Since the spreadsheet is an environment in which an agebra-like notation is used. we were
interested to explone whether an active graphing approach could be used o introduce children to the
power of generalising through formal algebraie notation. In order to do this, we selected acuvites
which lent themselves w this approach, having a practical element so that children could begin by
collecting data, kot in which the underlying mathematical structure was accessible to the children,
Two other key feawares of the activiues were that the outcome was not ohvious, so that there was
some posnt in using the actve graphing approach, and that the practical activity was rather tedious,

so that children would be encouraged 1o leok for short cuts,




With these criteria in mind we selected a A farmer has 30m of flexible fencing.

number of optimising activiies. We have ] She wants to make a rectangular pen for
reported elsewhere (Ainley and Prat her sncep against a stone wall.

(1994b)) on the use of one of these as a 7 .

whole class activity which gave us some i EME

insights into situations which prompted the S

need for formal notation. Here we focus | what length and width should she make it
on one pair of children working on a to enclose the largest area?

second activity, known as The Sheep Pen,

What if she had a different length?
shown in Figure 2,

Figure 2: The Sheep Pan Activity

Methodology

In this stage of the Primary Laptop Project our research is essentially exploratory, rather than
addressing clearly focused rescarch questions. ‘We are interesied in exploring the range of
mathematical activities that are possible for children who have continuous and immediate access to
computers, and identifying areas for more focused research in the future.

The case study material used in this paper was collected in a research setting removed from the
classroom. Eight pairs of children (chosen by the researchers) worked on the activity with one of
the researchers acting as ‘ieacher’, introducing the activity, responding to the children’s questions
and occasionally intervening. The sessions were recorded on video tape, with the second researcher
also taking ficld notes.

Jordan and Stcllios were both aged eleven and in their final year at primary school. They were
described by their class teacher as being of average ability, but ncither of them were particularly
highly motivated in mathematics. They had not been introduced to formal algebraic notation; but
they were familiar with using a spreadshect and had expericnce of an active graphing approach in
the context of experimental work.

Working through the active graphing process

Like most of the pairs we observed, Jordan and Stellios began by working practically on the
activity, using an art straw cut to 30 cm iong 10 model the fencing. They bent the straw, measured
the length and width of the pen, and set up columns on the spreadshect to record their results. They
knew that they could use and replicate a formula to calculate the area of the pen, and since the focus
of the activity was not on understanding the calculation of area, we helped them where necessary to
get this formula working cormrectly.

When they had collected several picces of data, the researcher intervened to encourage them to look
at a graph, shown in Figure 3. Jordan was able to discuss the meaning of the graph but at this stage,

al




his attention was on particular points, rather than on the relationship between length and arca.
However, it is clear from the boys’ responses to further questions that they were aware of the
overall shape and pattern of the graph.

STEL: Ifl put eight and a half, where would that be?| 120 =
How would we write that? 119 - ; X
RES: Where do you think 8.5 would appear as a 100 el X
cross? A 90
Stellios points between & and 9 for the width, and at | o 8077
about 100 for area, They put in 8.5 as the width.and { ¢ 7©
Jordan bends the straw and measures the length as 14.] 5 80 o o e e
The area appears on the spreadshect. 50 -
STEL: Highest! That's the best so far! ;g
Jordan makes a chart again to check the position. 20
The length is actually measured incorrectly, so this 2 ; 6' é 1‘0
point looks higher than 8 or 9. WIDTH
JOR: There it is (pointing to the graph)
STEL: ‘(zggi‘r:'t:lns; lg\:er) I thought it would come Figwa 3: Graph of measured data

The bays were confident 10 make predictions based on the graph, but they had not yet seen the
shape of the graph clearly enough to realise that some of their measured data was inaccurate, For
soie other pairs, irregularities in the graph. provided feedback which stimulated them to question
their resulis, and either re-measure, or change to calculating the length of the sheep pen for a given
width. For Jordan and Steilios, looking at extreme values was the stimulus to use calculate data
rather than measuring. This was a pattern which we came to recognise in other pairs. It is quite
awkward to bend the straw accurately for such a small width, and also the small numbers involved
make the calculation relatively simple.

STEL: Try a width of point 5.
JOR: What's the length?
STEL: Oher 19,29

RES: How did you work that one out Stellios, because you didn't measure that one did you?
STEL: Ifthe ruler’s 30, half und half is one and the rest is 20, no 29.

Once Stellics had described his method, the boys wanted to use it to check the other values they
had alrcady entered. Thus the method used initially for {inding a single value developed into a
generic method which they could use repeatedly. At this point the researcher intervenced to suggest
that the boys might ‘tcach the computer’ their method for calculating further data. This was a
metaphor which was familiar to the children from their work with Logo.

RES:. .. What you are trying to do is to tell the computer how to work the length out, given some

width. (pointing 1o cell B11 in the width column) So if you knew what that width was,
you're trying to work that length out (pointing to cell All, in the length column.)

JOR: You have 10 add these together (pointing vaguely at the length and width column). ... double
it (pointing to the width).

STEL: How do you double it? ..

JOR: and then you work out the length.




STEL: zero point five add zero point five or something

JOR: .. yeah but they don't know .. (pointing at width ceil)

JOR: Iknow B eleven, (typing) B 11 BII, ... right B 1], add, ... Bl udd, o no, Bl times 2.
STEL: oh yeah times 2

JOR: sothen that doubles it , and

STEL: add A 11

JOR: Bi] times 2 add ..

STEL: add All equals C!1

JOR: No we need t ...if there's 30 in the ruler right, it's all doubled thowugh, we need to tell it how
to work out what's left.

The beys” initial attiempts to formalise their method show a number of significant features  Jordan
has a clear picture of the calcuiation he wants to express, hut has 16 overcome iwo hurdles in order
to formatise it. The first is 10 express *doubic it', which he quickly resolves as “times 2'. The
second is more difficult. Having doubled the width, he then needs to find a way 10 express *what is
left” from the origmal 230 cm. In working on this, the boys quite confidently use “B11° 15 a
placeholder for a width which they don’t yet know. This step in formidising does not scem to
present an obstacle for them, but as they try to resolve the problem of how to find ‘what is left'

Jordan reverts to a generic example. His use of the cell reference as a placcholder is not yet secure,

The boys continued to work on their problem for several more minutes, occasionally touching the
keyboacd, but mainly trying out ideas verbaliy. At one point, they deleted the formula they had
typed. and the rescarcher took the opportunity t ask them to recap what they have done.

JOR: So far we’ve got, from here we've gor Bl1, anything that's in B11

STEL: times it by 2

JOR: iimes it by 2 so it doubles it

RES: ..0K

JOR: We need 1o tell it fike, we want 1o tell that there's 30 aver there, if we times, say it wus 5,
times by 2 it becomes ten. and what, and tell it to know how much is left on the ruler.

RES: Right. How do your calculate what's left? What do yeu do when you do it in your head?

JOR: Well if it was. ifit was ...

STEL: What's left ...is it that litide r thing? Is it remainder?

JOR: if it was, if it was 7, vou double the 7 to 14 it would go in there but there's 16 i=ft ...

RES: What have you done 10 work that 16 ous?

JOR: 1hknow thar 14 add 16 is 30

Here we see that althongh Jordan still reverts to a gencric example when he cannot resolve the
problem ¢f finding what is left, his grasp on B11 as a placcholder has changed. He spontanccusly
talks about anything thas is in B11, indicating he has some understanding of the cell reference as a
variable. Itis interesting that each time he goes to a generic example he chooses different values to
work with,

Stelhos” interjection abowt remainder at first scems confused, and indeed we watched the tape

several times before we noticed what he was saying. He seems to be making a link between the
phrasc ‘what's left over’ and memorics of division problems, where he has leamt to record the




;emainder’ with a ‘litde r’, e.g. 25+ 3 =8 r 1. He seems to be using a direct-translation approach
(Chaiklin (1989)), but the translation is not from a given word problem, but from the boys' own
verbal formulation of their calculation method. This direct-translation approach continued to prove
an obstacle in their attempt to devisc a formula.

About ter minutes later, they decided they needed 1o include 30 in their formula. They typed

=30 B11*2 - . They secemed 1o have a sense here that they must start with the length of the straw,
but they were trying to translate ‘take it away from’, and they could not sec which operation to use.
They quickly deleted this formula and tyjed =B11%2-30

STEL: .. You can’t take 30 from ...um

JOR: times it by 2 1ake it from 30

STEL: times it by 2 and take it from 30

They try putting in 13 for the width and get length -4 and area -52.

JOR: i1s probably 52

STEL: the minus, shouldn't have put the minus in

JOR: [Idon't know

JOR: B!Itimes it by 2 1ake it from 30 ... but this looks like take away 30, and we don’t .. It
should have been 4, so its nearly righi .

At this point, the boys had been working on the problem of teaching the computer their method for
around thirty minuwes. 1t is tempting to interpret their position at this point as failure to move from
their generic method to a formal algebraic expression. However, from the language that Jordan
uscs it would seem that he has accepted the cell reference as a variable which he can operate on.
We felt that his difficulty lay in attempting to make a direet translation from their verbal
formulation, which cannot be reconciled with the arithmetic structure required by the spreadsheet.
Their verbal formulation for the method of calculation followed closely the physical process which
they had gone through. choosing the width and bending the straw this amount at both ends (‘Bl11
times 2°), then measuring the length of straw left between the two folds (‘take it away from 30°).
We decided to intervene, offering them a slightly different physical model with the aim of
redirecting their atiention fram the verbal formulation and back to the physical situation. The
results were dramatic,

RES: Let's think of it in a different way ... Here's our lengih of fencing, which is 30 (holding up
straw). Let’s imagine cutting off our two widihs. So we're starting with the 30 and instead
of folding, Iets cut them off. ...

JOR: If we start with 30, take away Bi{ times 2

At this point Jordan typed in the correct formula (=30 - B11 * 2), filled down the column, and they

began to enter more values for the width.

JOR: we virtually did that, but it was the ather way round,

The hoys then worked excitedly. enicring values 1o try to find the maximum area, and using
decimals to home in on where they thought it would be, In a second session the following day, they




worked on the more general problem, using different starting lengths, and enjoying producing
graphs showing smooth curves.

Discussion

In analysing the work of Jordan and Stellios, and of other pairs working on the Sheep Pen task, we
see a number of factors which seem to contribute to their success in fermalising. Their familiarity
with the spreadsheet environment enables them to accept a cell reference as a placeholder in
increasingly sophisticated ways. Initially, they used it as little more than an alternative name for
the vaiue of the width. Later, Jordan at least used it 25 a placeholder for a potential number soon
to be realised, (JOR: ... yeah but they don’'t know .. (pointing at width ccll}). Finally, he seemed to
be using the cell reference as a placeholder for a range of numbers, that is, as u variable (JOR: So
Jar we've got, from here we've got Bl 1, anything that's in BII). 1t is worth noting that these
children were familiar with entering and immediately replicating given formulas. As a result. they
tended to see these as two parts to the same process. Thus they have an image of a physical
location not only for the cell into which they wili enter a particular number, but also for the column
of cells into which they may eater a whole range of numbers.

Tall (1992} refers to a formal algebraic expression of a relationship as a template, a potential
arithmetic relationship waiting to be realised. Some children may only be prepared to accept the
use of a symbol as placeholder within the template if that potential can be immediately realised. i.e.
itcan be immediately wmed into a number. Later, children, may accept a greater distance between
the use of symbolisation and its realisation as a number Such childrer: are further on the way
towards reification, when they must accept that the symbolic expression is itself something that can
be manipulated and used {as if the distance between potential and realisation had become infinite).

When working with a spreadsheet, it is difficult 1o identify those children who have reached this
final level of sophistication in their thinking, since those with more limited views of the nature of
the cell reference may also be able 1o successfully create a formula to model their rule. We
conjecture that the extent to which children are able to express a verbal generalisation of the rule
they are trying to formalise may give some indication of whether or not they have taken this final
step in their thinking. In the Sheep Pen problem, such a verbal generalisation might be signailed by
describing their rule in terms of the width of the pen, rather than by using generic examplcs. Much

of Jordan and Stellios’ discussion of the problem focuses on creating a formula: they sepeatedly use

the cell reference, and so it is often unclear how far they have moved towards such a generalisation.

In analysing the tapes of nairs working on this activity, we were impressed by the perseverance the
children showed in working towards a formalisation of their rule. Jordan and Stellios spent about
thirty minutes on this stage of the activity without noticeably losing motivation or moving off task
for more than a short period, even when their auempts were apparcntly unsuccessful. Although




they often talked in terms of operating on numbers or cell references. their hand movements
indicated that their thinking was clearly grounded in images of folding and measuring the straws.

Even when situated in investigations or word problems, formalising is often a separate process from
the main activity which has been externally imposed by the weacher. In contrast, within active

graphing activities, formalising has a clcar purpose: to generate more data. This larger quaniity of

data enables you to work on the problem, and the accuracy of this data can be scen from the
feedback given by the graph. We conjecture that such activities give children a sense of the
purpose and the power uf formalising. They realise that uniike their teacher, the spreadsheet simply
will ot be abie to interpret non-formal rules, such as ‘take away from’. It is our belicf that this
expencnce of using formalising contributes to children's success in understanding variable. In
common with other computer based environments, children’s thinking is supported by feedback
given by the computer on their attiempts to give a formalisation. Further, there is an external
referent. the physical situation in the case of the active graphing problems, or the functioning of the
program in the case of programiming, This broader context allows for aliernative formulations to be
developed, and so offers an escape route from the trap of direct wanslation from a single
formulation,

Our analysis also raises a number of questions which we hope 1o address in further rescarch.

*  How do children perceptive of the nature of the cell reference in their formalisations?

* How inlzractions with the spreadsheet support them to move towards generalisation?

*  What are the factors which influence chiidren’s ability to tronsfer from spreadshect notation to
waditionat algebra?
What kind of activities might support this teansfer?
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ARTICULATION PROBLEMS BETWEEN DIFFERENT SYSTEMS
OF SYMBOLICC REPRESENTATIONS IN LINEAR ALGEBRA

Mariene Alves Digs, Michéle Artigue, Equipe DIDIREM, University Paris 7

Abstract: This article deals with the isswe of flexibility between the cartesian and parametrical
viewpoints i linear algebra. Firsily, we present the rotions of setting, register of represeniation
and viewpoint which constitute the theoretical basis of this article. Then we conie to cur project of
research and the methodology we have set up 1o analyse flexibiltty. Finally, through the analysis of
a written lest, we show the difficulties first year studemis encounter before the flexibility issue. We
also show that for problems that can be solved by only manipulaung techniques, the lack of
Alexibility both technical and conceptual leads the students to mistakes which show important losses
of meaning.

L INTRODUCTION

The disappearance of linear algebra rudiments from secondary school programmes in France (since
1989), has resulted, at the university. in an awareness of learning difficuities in this field. Since 1987
studies on the analysis of these difficulties as well as experimentation of didactic engineering were
developed (Robert & Robinet, 1989}, (Dorier. 1990), (Rogalski, 1991). Some of the identified
difficulties can be formulated in terms of flexibility, 2 notion which is now recognised in
mathematics didactics as a key element of conceptualisation.

It seems necessary, here, (o distinguish two tvpes of flexibility, according to whether or not flexibility
operates within cognitively hierarchical structures.

* the first type corresponds to a hierarchical flexibility. It is the case, for example, in E. Dubinsky's
research {Dubinsky, 1991) which is built around the "process-objet” duality of mathematical
concepts and where "encapsulation™ and “disencapsulation” processes allow mathematicai work to
sail between the two levels A.Sfard's research (Sfard, 1991) similarly emphasises on the double
dimenston "operational” and “structurai® of mathematical concepts and the necessary flexibility
between these two dimensions, even though, the first dimension is the necessary preliminary to the
second one

We can also find this kind of flexibility in D.Tall's research who underlines the two reading levels
which can be associated to the same mathematical symbol via the notion of "procept” One can
finally find it at stake in the three levels distinguished by Hillel and Sierninska (Hillel & Sierpinska,
1994) in the reference to Piaget and Garcia's work in a recent research on linear algebra,

¢ The second type corresponds to a non-hierarchical flexibility Such a flexibility is particularly
considered through analysis in terms of "setting" as introduced by R Douady {Douady, 1986, 1992)
or in terms of "register” as introduced by R Duval (Duval, 1993} as well as in terms of “changing
viewpoint " used by a few authors, (Rogalski, 1991) for instance

©ur research in linear algebra situates within this global problematics of cognitive flexibility More

particularly, our interest will be focused on the second zspect of flexibility' the one of non-
hicrarchical flexibility




IL. SETTING, REGISTER AND VIEWPOINT NOTIONS

1. Setting notion

This notion was introduced by R Douady in her thesis and based on an epistemological analysis
emphasising on

- the duality of mathematical concepts, first implicit then explicit tools of mathematical activity
before they take the status of object and are studied as such,

-the role played by changes in settings in the mathematical production activity.

This epistemological analysis Teads her to transpose these features into the didactic field through the
notions of tool/object dialectic and setting games (Douady, 1986,1992)

Therefore, a seiting is defined as being “made of objects of some mathematical branch, of
relaiionships between these objects, of their eventually various formulations and of mental images
associated with these objects and relationships { . ] Two settings can comprise the same objects and
differ in mertal images and/or in terms of developed problematics” The change in settings " is a
means to obtain different formulations of a problem that, though not necessarily equivalent, allow a
new access to the difficulties encountered and the elaboration of means and techniques which did not
appear necessary in the first formulation Anyhow, translating one seiting into another often leads
to unknown resuits, to new techniques, to the creation of new mathematical objects, in fact to
the improval of the initial setting and the other intermediary settings used”.

Setting games, as organised by teachers, are didactic transpositions of these processes They are seen
in the developed theory as privileged means to raise "cognitive desequilibrium™ and also to allow the
overcoming of these and the reach of higher equilibrium.

Therefore, the setting notion emphasises the idea that the same concept is meant to function in
various environments and that its functioning in each one of these environments offers specific
features. The cxisting differences are just means and tools of mathematical creation

As far as linear algebra is concerned. introducing the first concepts (generated space, linear
dependence and independence, equality and intersection of subspaces) is ofien made by only using
the R° <ubspaces Moreover, teaching favours the two and three dimensions which allow an
emphasis on the game between the algebraic and geometrical settings and give way to cognitive
flexibility which later become more metaphorical in higher dimensions or in more general spaces. In
our study, we consider two settings the algebraic one and the geometrical one

2. Register notion

The setting notion is about the whole functioning of a mathematical concept while the register
notion, which comes from the linguistic area, is more particularly about the symbolic representations
according to which it can be represented and studied R Duval underiines the role pfayed by this
semiotic dimension in the conceptualisation process In other words, the distinction between object

and semiotic representation, which depends on the possibility to associate to the same concept many




different representations and to carry out conversions between these representation systems, is
considered as a strategic knot in the conceptualisation process.

For Duval, the semiosis, that is to say the semiotic representation's apprehension or production, and
the noesis, that is to say the conceptual apprehension of an object are inseparable. He defines a
representation register as "being a semiotic system which makes possible the three basic cognitive
activities that are finked to semiosis.

I - Forming a representation identifiable as 2 register representation This implies selection of
features and data in the represented contert, selection which is done according to the units and
forming rules of the register in which the representation is produced.

2 - Treating a representation, that is to say transforming this representation in the same register
where it was formed.

3 - Conversing a representation, that is to say transforming it into a representation of another
register while keeping the whole content of the first representation or only a part of it".

R Duval underlines thai, as far as teaching is concemned, activities conceming the formation and
treatment of representations are present but conversion activities are often neglécted, as if
conversion tasks between two registers were automatically mastered by someone who knows each
register, separately

In our study, tie following registers of semiotic representations will be more particularly considered

intrinsic symbolic representation, coordinates representation, equation representation, matricial
representation.

3 - Viewpoint notion

Mathematicians' work requires other kinds of flexibility, particularly, what we call "changing
viewpoints” and is not so easy to define in a general way. Therefore, linear algebra seems to require
flexibility between what we call the "cartesian™ viewpoint and the "parametrical® viewpoint.

Such flexibility acts both in the geometrical and the algebraic settings and, even if it relies on
flexibility between semiotic representations, it does not seem reducible to a mere semiotic flexibility
as it involves more global aspects. For instance, the vector subspace notion may appear under a
parametrical viewpoint with a stress on generating elements which characterise the subspace
elements or under a cartesian viewpoint with a stress on algebraic equations which characterise the
subspace.

Of course, in that case, the cartesian/parametrical flexibility puts at siake flexbility between
representations, particularly between:

¢ intrinsic parametrical representat.ons, such as: A = lin{a,b} = {v/ v =aa +3b};

+ explicit parametrical representations under the form of a table, such as.

A =lin{(1,00), (0,100} = {(x,y.2) € R' /x=a,y = B):

s intrinsic cartesian representations, such as' A = { v/ T(v) = 0 }, T being a linear operator;

s explicit cartesian representations (by homogenous and linear equation systems), such as
A={{xy,z) € Riz=0)
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But we hypothesise that flexibility between the parametrical and cartesian viewpoints, which involves
for instance the idea of duality, goes beyond a mere control of these semiotic conversions.

4. A study on linear slgebra focused on cognitive flexibility between registers

K.Paviopoulou's thesis (Pavlopoulou, 1994) is directly situated in the prospect developed by

RDuval. Its deals with the learning of elementary vector notions: linear combinations, linear

dependency and independence in R and R. Three semiotic representation registers are considered:

* the graphic register (G). in which a vector is represented by an arrow in R and &

» the symbolic writing register (S). in which a vector is represented by the linear combination of
any two or three vectorsin R or R,

» the 1able register (T) in which a vector is represented by a column matrix with two or three lines.

An analysis of beginners' linear algebra textbooks shows that, in general, different registers coexist
but conversion problems between registers are not explicitly set up in terms of fearning. Moreover,
there are kinds of conversions highly privileged.

K Paviopoulou organises a didactic sequence with students in difficulty (those who have failed their
traditional programme) Her purpose is to emphasise the co-ordination between registers by
following a classical experiment scheme: experimental group, control group, pre-test, post-test. She
confirms the difficulty of a spontaneous building of conversion kndw]edge and proves the positive

effect of the experimental didactic sequence, positive effect which goes beyond pure conversion
tasks

Ill. OUR RESEARCH PROJECT ON FLEXIBILITY IN LINEAR ALGEBRA

In our research, we try to study, more particularly. articulation problems between different systems
of symbolic representations in linear algebra in the frame of the global study of flexibility between
two viewpoints: the cartesian and parametrical viewpoints.

This project is based on a first piece of research (Dias, 1993) concerning the evaluation of a didactic
engineering product (Dorier, Robert, Robinet, Rogalski, 1994) on linear algebra for first year
university students. Our evaluation was focused on the central notion of the experimental teaching:
the rank notion. Our attention was, then, draw to the difficulties students had found with the
articulation of cartesian and parametrical viewpoints required 10 solve problems of determining

vector system ranks and vector space representations. These difficulties were at the root of our
present problematics

1. The global project

In order to tackle these probiems, we cross different approaches’

1 - an a priori mathematical analysis of both technical and conceptual knowledge linked to this
flexibility, for the different notions and tasks involved in a first course of linear algebra;

2 - an analysis of the way these flexibility problems are taken into account through a study of
curricula and textbooks, including a comparative study of the French and the Brazilian situations,




3 - a study of the cogritive functioning of students aiming at the identification of key-stages and
difficulties in this area,

As far as methodology is concerned, our research is based on an analysis table of flexibility, issued
from the first part of the research and on diagnostic tasks which aim at evaluating the students
capacities concerning flexibility.

Our research is meant to emerge to a didactic engineering project aiming at a more efficient
management of these issues since the first year at university

2. The 2nalysis table of flexibility

The purpose of this table is taking into account, as we said before, the flexibility between cartesian
and parametrical viewpoints Il is obvious that this flexibility is based on flexibility between the
different registers of representations associated to these viewpoints It is also based on quite a
number of conceptual and technical knowledge

The analysis table is meant to be a tool useful for analysing the knowledge linked to the flexibility
which is necessarily or potentially at stake in elementary linear aigebra

+ according to the involved linear algebra notions;

¢ according to the tasks that are usually encountered at this level;

» according to the variables of these tasks, particularly the representation registers at use

® At the level of nations, we distinguish the following notions.

- vector space,

- vector subspace and operations betwcen subspaces (including linear combination. generated
subspace, identity, intersection, sum, direct suin of subspaces, supplementary subspaces),

- basis and dimension (including linear dependence and independence, rank),

- linear application (including kernel and image, isomorphism. linear operator's matricial
representation),

- linear equations system

* At the level of tasks, for instance, as far as the notion of vector subspace and of operations
between subspaces are considered, we distinguish the following tasks

- Check with the definition whether a vector space’s subset is a subspace or not,

- Describe the solution's subspace of a linear and homogeneous system,

- Determine whether an object defined in a certain way belongs to a subspace defined in another way
or not.

- Demonstrate that a vector is or is not a linear combination of some given vectors,

- Check whether a vector belongs to the subspace generated by other vectors or not;
- Characterise the subspaces generated by given vectors,

- Find a generating part of a set of given vectors or a given subspace,

- Move from a kind of representation to another,

- Demonstrate that a subspace is included in other one or that they are equal,

- Determine the intersection of two subspaces,

- Determine the sum of two sabspaces,

- Demonstrate that two subspaces are in direct sum,

- Demonstrate that two subspaces are supplementary
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® And at the level of the variables of the task, for instance, for the task. "Demonstrate that two
subspaces are equal”, we distinguish the following variables:

- type of space: B and R*,R*, R* isomorphic spaces, others;

- types of given representations: parametrical or cartesian with sub variables in order to take into
account the different kinds of possible representations en each category (cf.II 3);

- types of required representations: idem

- dimensions of space and subspaces involved :

- flexibility: compulsory or potential

- flexibility knowledge: with distinction between technical and conceptual knowledge (see below)

3. Analysis of University first. year exam.

+ The context: We have used this analysis table of flexibility in order to analyse a written exam
taken in 1992/93 by 113 students after their first semester course, at the university of Lille. The
linear part of this exam consisted of four questions:

In R are given the following vectors-

a=(0,-1,1,0), b=(2,1,1,0), c=(0,03,1)

d=(2.0-1-1);, e=(1,0,L1); f=(1,0,0,1)

1) What is the rank of the vector system {a,b,c,f}?

2) Give a parametrical representation and a linear equations system for lin{a,b,c.d}

3) Determine: ) linfa,b.c} N lin{a,e}; ) [lin{a,e}+lin{a,c,e}] N lin{ab,c};

4) The system {2y+2t = @, -x+y = 8, x+y+3z-t = v, z-t = §, have a solution for all («,3,7.8)? Justify
your answer without any calculations.

In this report, we have chosen to analyse questions 2 and 4 because they are more significant in
showing the difficulties of flexibility both at technical and conceptual level.
For question 2, the variables of the task are the following:

- type of space: R,

- type of given representations: 4 vectors represented by their coordinates in the canonical basis and
an intrinsic symbolic notation of the generated subspace

- type of required representations: a parametrical representation and a cartesian representation;

- space and subspace dimensions: 4 and 3

- compulsory/potential flexibility: If the expression “find a parametrical represeatation” is understood
as: "find a minimal parametrical representation”, flexibility is strongly necessary But students can
produce the trivial parametrical representation {xatyb+zc+td=0/ x,y,zt € R} and solve the
associated linear system (xa+yb+zc+td=v, in order to find the condition of &« —ff —4 +38 =0 for

v = (a,B,%,3)) which gives directly the cartesian representation. If so, flexibility remains necessary
but it is reduced.

- flexibility knowledge: here it appears tightly linked to knowledge related to the resolution of linear
systems, more precisely to the relations made between resolution conditions/cartesian representation,
rank of the lincar system/rank of the vectors system, number of necessary parameters/number of]
necessary equations with the fundamental theorem linking these two numbers.

Moreover this necessary flexibility can function at different levels. It can function at a technical level,
encapsulated in some way in algorithmic processes or at a more conceptuat level.

The same type of a priori analysis can be applied to question 4 but, in this question, as the answers
have to be justified without any calculation, a conceptual leve] of flexibility is required




¢ The data analysis

Question 2- For this question, 34 different procedures were identified Here, we shall focus on the
procedures P and Q which are in some way the typical erroneous procedures and correspond to 38%
of the answers. With some local variations, the procedure P is the following:

- to write the matrix whose lines are given by the coordinates of a,b,c.d;

- to write the associated lincar system: {-y+z = 0; 2x+y+z = 0, 3z+t = 0; 2x-z-t = 0}, seen as a
cartesian representation of the subspace,

- to apply the familiar Gauss method to this system. This leads to a parametrical representation
depending on one variable, as there are infinite many solutions, for example: x =z, y =z t =3z

These cariesian and parametrical representations are internally coherent but they are incoherent with
the results of question 1 (rank{a,b,c,f) = 4) and the obvious independence of each pair of vectors.
The erroneous procedure Q is similar {with columns instead of lines) and it leacs to similar results
The procedures described in the a priori analysis represent only 38% of the answers, that is to say 43
students, half of them just giving the trivial parametrical representation

It is worthwhile noticing that among the 57 students who first looked for the rank of {a,b,c,d} and
correctly found 3 by using the familiar Gauss technique, very few were able to correctly exploit this
result in order to give a minimal pararaetrical representation Some of them, for instance, give the
relationship: @ = a+b-¢ as a cartesian representation of the subspace, or this one: d = axtby-czas a
parametrical. Most of them jump to P or Q procedures.‘

We have found only 6 students who tried to check their final results, that is to say, the number of
parameters to be used and the number of equations to be found, as expected by the didactic contract.
Among these students, only one had got the correct representations but he failed to identify which
one was the parametrical representation and which one, the cartesian representation. So, he provided
the following wrong justification “We are in R, where lin{abc,d} is represented by three
independent linear equations therefore dim(lin{a,b,c,d}) = 1. Only onc parameter is sufficient”. The
five other students which had used P and Q procedures also found: dim(lin{ab,c,d}} = 1. They
suggested the relation: dim(lin{a,b,c,d}) = n-r as a means to justify such a result, n being the
dimension of R" and r the rank of the vectors system.

Question 4: Only 20 students gave correct answers to question 4 and once more we were surprised
by the variety of procedures used by students. Among them, 55 recognised the given system as
associated to the equation” xat+yb+zc+td = 0, but many did not know how to use this result to give a
right and justified answer. This is understandable, taking into account the results obtained for
question 2 and the fact that a conceptual flexibility was compulsory here. The attachment to Gauss
technique was so important that 13 students used it explicitly and 7 students used it implicitly
without respecting the instructions.

IV, CONCLUSION.
These results confirm our conviction that flexibility between cartesian and parametrical

representations has a fundamental role to play in the learning of elementary linear algebra and that
this flexibility cannot be reduced to abilitics of a mere semiotic type. It has bath conceptual and
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technical components which intertwine in the solving process, the conceptual dimension playing an
essential role in anticipation, control and interpretation processes.

These results also show that this flexibility is not of an easy access and that students tend to reduce it
to its most algorithmic aspects and, as a consequence, to be trapped by all kinds of possible formal
skid. This confirm our hypothesis that flexibility competencies cannot be left to the student personal
effort They have to be explicitly taken into account in the teaching process and managed in the long
tun The ambition of our research project is to provide tools in order to better understand how this
flexibility is or can be at stake in a first course of linear algebra and to manage it more efficiently.
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ANALGEBRAIC INTERPRETATIONS OF ALGEBRAIC EXPRESSIORS
— FUNCTIONS OR PREDICATES?
Hava Bloedy-Vinner
Hebrew University, Jerusalem, Israel

Abstract: Algebraic language is analyzed and compared to natural
language. The term apalgebraic is defined. A conceptual framework
is suggested for students' interpretations of algebraic
expressions. New explanations for various phenomena, including
the "students and professors* reversal error, are given,
illustrated by students' written response and interviews.
1. Introduction

This paper presents a part of a study which suggests a
conceptual framework for dealing with phenomena related to
students' difficulties with the symbolic language of algebra.
Kaput (1987) discusses the influence of natural language rules on
translation errors in algebra. 1In my study I try to systematically
analyze the structure of algebraic language, compare it to the
structure of natural lanquage, and learn about the influence of the
latter on the understanding of algebraic language.

The term analgebraic (Bloedy-Vinner 1994) will be used to refer
to modes of thinking related to improper use of algebraic language.
The word algebraic here will refer to correct use of algebraic

"language. The definition of analgebraic depends on the mathematical
context. In this paper I will discuss analgebraic mode of thinking
in the context of interpreting algebraic expressions.

2. Comparing algebrajic and natural language

As we shall see, analgebraic interpretations of algebraic
expressions are related to erroneous analogy between algebraic and
natural language. To explain this analogy let us start with a
comparative analysis of both languages. The structures to be
analyzed and compared are natural language sentences e.g. “She
likes Bill's friends", and equalities and inequalities as x-2=8y or
2+52>3, The constituents of these structures in both languages are:
1. Primitive nouns like "she*, *“Bill" in natural language, and
numbers or letters like 2, 5, x, y in algebraic language.
2. Complex nouns like "Bill's friends", x-2, or 2+5%, which contain
other nouns as constituent parts. when some of the constituent
nouns are replaced by empty places, e.g. "_ 's friends", _ -2, or

, we get functions. Functions create complex nouns when
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substituting nouns for the empty places. 1In algebra we use letters
instead of empty places and get algebraic expressions, which are
functions and <create numbers (complex nouns) when substituting
numbers for the letters.

3. when we replace nouns in a propcsition by empty places we get
predicates, like "_ called", * _likes__ ", .= , and
(Relation is another term for two-place predicate.)

state something about pouns which are substituted in them.

The structural similarity we have seen points to some correct
analogy between natural and algebraic language. To describe the
erroneous analogy made by students, we need to look at some
differences between both languages. We shall look at two aspects:
1. The aspect of richness: Natural lanquage is rich in noun types
and in predicates, while algebraic language has one noun type only,
numbers, and two (two-place) predicates, equality and ineguality.
when we use natural language to make algebraic statements, we have
many additional predicates like "__ is positive", " _ is even" etc.
To express these verbal predicates with algebraic symbols, we have
to do with algebra's two predicates. The richness of algebraic
language, on the other hand, is obtained from its ability to
compose functions, and to create nouns which are much more complex
than those of natural language.

2. The aspect of precision: Natural language can be ambiguous and
has vague meanings, while algebraic language 1is unambiguous and
precise.

It turns out that students often make an erronecus analogy and
use algebraic language as if it had the properties of natural
language with regard to both aspects of richness and precision. 1In
the following sections we shall see this erroneous analogy and how

it results in analgebraic interpretations of algebraic language.

3. Analgebraic interpretations of algebraic expressions

In this section I will discuss one form of analgebraic
interpretation of algebraic expressions. As we shall see, this
interpretation can explain phenomena related to students’
difficulties with pure algebraic tasks as well as with word problem
translation tasks. This form of analgebraic interpretation
consists of two misconceptions which are related to each other:
1. when we consider an algebraic expression as a function, the




origin and the image should be conceived as two separate entities.
Instead, students sometimes identify these entities and see them
vaguely as one entity, being changed by the function, like a
growing child, or an object which is painted but remains the same
object. For example, in the expression |x| the origin and the
image are vaguely conceived as one changing entity (rather than a
pair of separate entities), so that =x becomes positive by the
function, and still remains x. The vagueness here is one example
of erroneous analogy between the languages.

2. An algebraic expression should be interpreted as a function
which creates a new number. Instead, students may interpret it as
a {(one-place) predicate, stating something about x. For example,
[x] dis interpreted as a predicate stating that "x is positive".
This misconception is related to the previous one: the origin and
the image are conceived as one entity, and an obvious property of
the image, in this case positiveness, is attributed to x. Thus the
expreszion is interpreted as the predicate "x is positive", rather
than a function creating a new rumber which is positive.

With this conception, the student borrows algebraic expressions and
uses them as predicates rather than functions. The result is an
“enrichment” of algebraic language hy additional predicates. This
is another erroneous analogy between algebraic and natural
language, by which algebraic language is made similar to natuvral
language, namely, rich in predicates.

4. Mathod

The purpose of this study was to examine to what eytent students
were algebraic or analgebraic in their interpretations of algebraic
expressions in the sense described above. For this purpose 1
compiled the questionnaire which is presented in figure 1.

The questionnaire was administered to 1Israeli students at a
university preparatory course. These students had taken 3-5 unit
matriculation exams in mathematics (a unit is one weekly hour
during 3 years of high school). They answered the questions after
having restudied the related material in the course, at the end of
which they repeated the matriculation exam. By a rough estimate,
more than half of high school graduates are on their mathematics

level or below. Results will be given for two groups: Group SCI

preparing to study science at the university, repeating 4 or 5 unit




exams, and group SOC preparing to study social studies, repeating
the 3 unit exam. Some students in the S0C group were interviewed
after answering the questionnaire.

Figure l: The questions administered in the study.

Wwhich of the following forms mean "X is negative“?

(you may clrcle more than one answer):

a. —|x| b. -x c. x<0 4. -x* e. -x<0

The temperature a tonight was negative, but was still 5
degrees higher than the temperature b of last night. wWhich of
the following equations expresses the claim made above?

a. a=b-5 b. —a=-b+5 c. —a=b+5 d. a=b+5

e. —a=-b-5 f. —-a=b-S g. None of the above.

The teacher asked the students to compose a table for the
function y=0x+2. Danny said that x was always zero and y

was 2. What is your opinion? (correct, incorrect, explain!.
What are x and y's solutions in the equation: 0x+5y=10 ?

What do you think of tne following statements:

a. In x+10, 10 was added to 3%, therefore it is now larger.

b. In 10x, x was multiplied by 10, therefore it is now larger.
Write an eguation to represent the following statement: There
are 6§ times as many students as professors at this university.
Use S for “he number of students and P for the number of
professors ,Rosnick & Clement 1980).

5. Results

For all guesticns, answers were classified inte 3 categories:
algebraic, analgebraic, and other errors (which may be analgebraic
too, but in a different sense). These categories will be described
specifically for each question. Distributions of answers are
reported in table 1.
Questions 1 and 2: These questions deal with expressions with a
minus sign. For both questions the analgebraic category includes
answers demonstrating the two misconceptions described previously:
first, the origin ard the image of expressions with a minus sgign
{-ix|{, -x, -x?!, ~a) are vaguely conceived as one entitv, as if x
changes and becomes negative. Second. the expression is
interpreted as the predicste "x is negative" rather than & function
creating & new number. (These misconceptions should not be confused

with that of seeing -x as negative regardless of the value of x.)

In question 1 the student 1is given expressions {(functions} and
inequalities (predicates), and 1is required to circle those which
have the meaning of the verbal predicate "x 1is negative", The
algebraic category includes x<0. All other answers &re analgebraic,




because they interpret expressions as a predicate. Most of the

students chose inequalities and expressions together. This implies
that they understood that the question was about x and not about
the result being negative, and that they did not understand that
expressions were functions and not predicates. Note especially the
answer -x<0 {chosen Dby 33% in SOC): this response vaguely
combines x<0 and -x; because of the identification between the
origin x and the image -x, the student is not aware of the
contradiction between "x is negative" and -x<0.

Table 1: The distribution of the answers.

guestion| group algebraiclanalgebraic|other errors|no answer

1 SCI n= 34% 66% 0% 0%
SOC n= 9% 91% 0% 0%

SCI 43% 45% 10% 2%
S0C r 21% 61% 15% 3%

SCI n= 68% 32% 0% 0%
S0C n= 18% 73% 9% 0%

SCI n=48 65% 21% 9% 6%
S0C n=34 50% 32% 18% 0%

SCI n=49 10% 90% 0% 0%
SCC n=40 17.5% 77.5% 0% - 5%

SCT n=49 12% 88% 0% 0%
SOC n=40 12.5% 77.5% 0% 10%

SCI n=49 84% 14% 2% 0%
SOC n=33 52% 45% 3% 0%

To see that students really meant to state something about x (and
not about the result of the expression) let us look at some
interviews (§ is student, I is interviewer):

Interview 1: (Written response. a. -}x| b. -x ¢. x<0 d. -x2.)
8: In ({(b) we can see that it 1is minus x, therefore it is
negative, x is negative, this 1is what we're asked about in
problem 1. I: Who? §: The x. I: Yes. §: In (c¢) it's also negative
because it says that x is less than 0.

Interview 2: (Written response: a. -|x| b. -x c¢. x<0 e, -x<0.)
§: (Pointing at -x<0j)...this is also negative! I: What? §: x. I:
Why? §: Because it's less than ¢, and negative too.

Question 2 deals with the meaning of -a in the context of
translating a word problem. The algebraic category includes the
response "{g) none of the %Yove, it should be a=b+5 and a<0", and




"{dr a=ht5* (or (d)+{(e) of students who noticed that these were
equivalent). ‘The category of other errors includes the response
“(a} a=b-5" (or (a)+(b)) which is a reversal error (discussed in
section 6.) All responses with one equation with -a are in the
analgebraic category. These students see the origin a and the
image -a as one entity, the temperature, and use the expressicen -a
to translate the predicate "a is negative". to illustrate this
claim let us look at one of many similar interviews:

Intexviaw 3: (Written response: c¢. -a=b+5.}

S: The temperature tonight is -a. I: -a. But is says here that
the temperature was a. S: But it was negative! I: That is why you
wrote —-a2. S: Yes. I: a itself represents a negative or a positive

number? S: Negative. I: That's why you wrote minus here? S§: Yes.
Questions 3 examines the interpretation of 0x as a predicate
stating that "x is 0", which follows from seeing the origin and the
image as one entity which changes and becomes 0. Answers like
"wrong" or “wrong, x can be any number" were included in the
algebraic category. Answers which -Sustify Danny's statement were
included in the analgebraic cateqgory. About one third of these
answers gave explicit explanations like: “correct, when we multiply
a number by 0 it becomes 0".

For questiom & the answer x=0, y=2 is a familiar phenomena. It was
classified as analgebraic. The misconception revealed in gquestion

3 can be one o©f its explanations. (Other errors include the

answer: y=2, X has nd solution.)

Question 5 examines the meaning of 10x and x+10. Answers to both
parts were classified in the same way: the algebraic category
includes answers 1like “wrong" or ‘“wrong, x is not larger, the
result of the expression ig larger.~ The analgebraic category
includes answers justifying the given statements (for ail x or for
positive x). These statements imply that the origin and the image
of the expression are one entity: x is conceived as changing and
becoming larger. More than half of these answers expressed this
conception explicitly: "true, multiplying x by 10 makes it larger®,
or "it's ccrrect only if x 1is positive. If it 1s negative, it
becomes more negative®, or “"When we add 10 it does not change x
because there is no relation between x and the 10; but when we
mulitiply x by 10 we add x's to it, therefore it becomes larger.®
The last quote shows that the student really thinks that X becomes
larger, and that it is not just a matter of vague formulations,




6. Back to "students and professors" reversal error

The misconception just described may lead to an interpretation of
algebraic expressions which can explain the reversal error in the
“students and professors" problem of Rosnick and Clement (1980)
(see question 6). All explanations proposed in literature before
1593 for this error, were based on interpreting lecters as objects,
sets of objects, word abbreviations, or labels rather than numbers,
and on the influence of problem word order (Rosnick & Clement 1980,
Clement et Al. 1981, Davis 1984, Mestre 1986, Kaput 1987).
MacGregor and Stacey (1993) claim that students represent on paper
cognitive models of compared unequal quantities, which do not
depend on problem word order. Crowley, Thomas, & Tall (1994) <laim
that the order of symbols in the equation depends on process vs.
concept orientaticn of the student.

in my study I found evidence for the above explanations of the

reversal error, but also for a new explanation, related ¢tc the
misconceptions described in this paper: Letters are perceived as
numbers; in €5 the origin S and the image 6S are conceived as one
entity, the number of students, which is changing and becoming 6
times larger, so that 8 is now 6 times larger. This leads to the
interpretation of 6S as the predicate "S is 6 times larger". (Note
that this 1is a vague one-place predicate, not paying attention to
the question larger than what.) The answer 6S=P is interpreted as
a table with the (unequal) numbers of students and professors on
both sides. The answer 6S+P adds up the number of students 65 and
the number of professors P. Both answers include 6S as stating the
predicate "the number of students 1is 6 times larger"“. Thus
students who cannot use algebra's predicates to translate the (two-

place) predicate S is six times es large as P", use 65 as a (one-
place) predicate, erroneously enriching their algebraic language,
making it like natural language.

Unlike other explanations in literature, this explanation works

well for reversals of other arithmetic operationc as well.

In question 6 correct equations were classified as algebraic, while

all reversals, e.g. 63=P, 65>P, Q=65+P, were analgebraic. Other

errors include non reversal iike S=P or 6P>S.

Let us look at scome interviews for illustration of the above claim:
Interview 4: (Written response: §S>P.)

§: Here I understood that the pnumber of siudents is 8 and that §




is 6 times as large as the professors, so the number of
professors is P and 6S is larger than P. I: That is, 6S

represents that... S: That this is the number of studenys.
Interview 5: (Written response: 6S students, P professors,
Q the whole population, Q=6S5+P.)
§: I took Q as the whole university population, then it equals
the number of students plus the number of professors. I: OK, and
what is S in this problem? S: The number of students!
7. Conclusion
In this paper I dealt with an analgebraic mode of thinking in
the context of interpreting algebraic expressions. It consists of
two misconceptions: the identification of origin and image as one
entity, and the interpretation of expressions as predicates rather
than functions. We saw how these interpretations explain certain
phenomena, including reversal errors in transiation.
The results of the research show that there is a high rate of
analgebraic thinking. We should remember that the study was

performed in a population of high school graduates and that the

questions were administered to them after finishing the algebra and

functions chapters at a university preparatory course. This shows
that normal instruction does not uproot these misconceptions, and
that special treatment is needed. It seems that the conceptual
framework given here can explain the misconceptions and their
origins and set the ground for treatment suggestions.
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STUDENTS'® RESPONSES UTILISING THE PROCEDURAL AND STRUCTURAL ASPECTS
OF ALGEBRA

Carmel Coady University of Western Sydney, Nepean

Cognitive research aimied ar determining the components of algebraic thinking in students has
become the focus of attention for many mathematics educarors. One finding that has seen general
agrecment among such researchers is that mathematical concepis may be acqitired in two ways: i)
‘procedural’ (Kieran 1992; or ‘operational’ (Sfard 1992) or ‘process’ (Dreyfuss 1990 and
Dubinsky 1991) and ii) 'structural’ (Kieran 1992 and Sfard 1991) or ‘object’ (Dubinsky 1991},
with Sfard stating that a 'deep ontological gap’ exists benveen the two.

The purpose of this paper is to examine this ‘gap’ by analysing the responses of four studenis to
o mathematical questions selected primarily because their solutions may be obtained by uiilising
either a ‘process’ or an ‘object’ view of algebra. The four students mentioned above were part of a
much broader study of algebraic concepts conducted using first-year university students who had
recently completed six ycars of secondary schooling. The results obtained from these supposedly
‘experienced’ swudents of algebra appear tv indicate that, although they have had repeated
exposure to both aspecis of algebra, this ‘gap’ siill exists with the possibility of a ‘bridge’ berween
the two, in many cases. being extremely remote.

Introduction

It is the firm belief of several educationalists involved in mathematical research that students acquire
algebraic concepts from both a “procedural’ (or process) perspective and a ‘structural” {or objecty
perspective (see for examiple Kieran 1992, Sfard 1991 and Dubinsky 1990). For the purposes of this
discussion, Kiceran's definitions of these tenms have been adopied. She defines the term “procedural’
to infer “... arithmetic operations carried out on numbers to yicld numbers” (p. 392), while the term
‘structural” incorporates a set of operations performed on algebraic expressions rather than numbers.
Features of both conceptions are listed by Sfard {1991): “... the structural conception is static,

instantancous and integrative. the operational is dynaric, sequential and detailed” (p. 4).

The charactenstics of the acquisition of algebraic concepts in association with the notion that

‘transition’ from a ‘process’ conception to an ‘object’ conception is not achieved quickly or easily

(posuutlated by Sfard, cited in Kieran 1992) provided the impetus for the present study. The research

questions formulated were:




a) To what extent are these two views of algebra still prevalent in older siudents who have
completed their fundamenial algebraic instruction?

b) Given that both aspecis exisl. is there empirical evidence that mirrors Sfard’s descriptions?

¢) To what extent do students appreciate the connection between the two conceptions, or are they

seen as representing two totally separate ‘categories” of algebm?

Methodology and Sample

In order to address the research concerns mentioned above, one hundred and twenty eight first year
university students were given several questions requiring written responses intended to eiicit their
understanding of algebraic concepts from the ‘procedural” andfor ‘structural’ standpoint. Ten
students were asked to atend a follow-up interview of approximately one hour's duration, during
which each was required 10 repeut the questions while verbalising their reasons. Each of the ten
interviews was audio-taped and later wanscribed verbatim. It is not the ntention of this paper to
report on the overall results of the eniire sample bat rather 1o present four mini ¢ase studies that

clearly distinguish betwecen the two conceptualisations being explored.

Frank. Rod, Barbara and Paul, the four studenis discussed in this paper, were enrolied in
mathematically-based science degree programs. Ail were 18 years of age and had just completed the
2.unit mathematics course during their final wo years of sccondary school.  This particular
mathematics course consists of substantial calculus and algebra components with students being
exposed 1o the associated nuenal for six, forty-minute periods (or equivalent) per week., Because
one of the primary goals of sccondary school education is to promote und instl in students the
structural aspects of algebra, it seemed reasorable to include in the saniple those students who had
completed their elementary algebra training and who had also been exposed to algebraic concepts in

a vancty of contexis over several years.

For the purposes of this paper, two questions only have been seiected and the students’ responses 1o
these, both written and verbal, ar¢ now analysed and diseussed in some detail. 1t must be noted that

both the questions chosen could have been solved quite readily employing echniques involving either

or both aspects of algcbra under consideration




Results and Discussion
Question 1: Given V =ur?h.

22
a) Find V, given rc=-7, r=2h=7

b) Find V, given T = same as in 2), r = same as in a), h = double the value in a).
¢) Find V, given Tt = sume as in a), r = half the value in a), /i = same as ina).

d) Find &, given V = same as in a), X = same as in a), 7 = half the value in a).

The four responses given to this quesiion together with some suggested reasons are considered

collectively, as all were identical.

Each of the four students chose to substitute numerical values for the variables V, r and & (where
appropriate). Since al treated each of the four paris of the question separately, tedious and
repetitive calculations becamic a feature of the responses given. Prompting by the interviewer to re-
examine the question, in the hope that the relationships existing between each part of the question
would be identified, was ignored. The interviewer evzn suggested that an altemative method of
solution raay be applicable. However, this was also rebuffed with the students stating emphatically
that in order to answer the question, numbers corresponding to the conditions stated in each part had
to be used. Hence all students, although actively invelved in the processing of an algebraic statement
containing nu.nbers, were completely unaware that their workload would be considerably reduced
had the relarionships between the variables used and also within the question itself been identified

and utifised.

Question 2: Determine the effect on the

4
a) volume of a sphere (V = Em—’)

b} surface arca of a sphere (A = 4nr?)

if the radius is doubled.




This question evoked qualitatively dissimilar responses from all four of the students being discussed
here. An analysis of their answers together with the verbal reasoning behind them revealed

distinctive cognitive patterns underlying each response.

Frank
Frank's answer 1o this question was quite banal - “it will increase™. When urged to try and quantify

this response in some way, Frank's denial was insistent:
No we cannot work out by how much unless it [r] Is defined.

He made absoluiely no attempt to select possible values for » as he was convinced that numerical
values had to be stated in the question before the magnitude of the effect could be determined.
Frank's superficial answer seemed to indicate that he could not fully engage in the processing needs
of the question and. therefore. chose "the easy way out’. However it could be argued that Frank had
in fact fulfilled the requirements of the question as he interpreted it, since he did state the ‘effect’ on
the volume/surface area. Furthermore, the fact that additional probing proved futile, appears to

indicarte that Frank's logical skills did not extend much beyond the obvious.

Rod

Rod’s answer to both parts of this question was that the volume (or surface area) “doubled™. When

asked the reason for this, Rod replied (with regard to pan b)):

Well ... if the radius of the sphere had doubled, you'd get a larger sphere so
therefore the surface area would be rtwo times as great.

Rod's working showed that he had merely nserted a *2" into the formula. Therefore, although he
had no knowledge (in terms of & numencal value) of the surface area of a sphere with vadius r, he
knew that if the radius was doubled, then the sphere became larger by ‘twice’ the amount. In other
words, he muitiplied the original (albeit unknown) volume/surface area by two. Clearly Rod had

seized upon one aspect of the question only and had deduced (incorrectly) a conclusion based on this

single piece of information.

2—53 o,
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Barbara
Barbara’s method of solving both pans of this question involved the suostitution of values for r. Her
choice of this method appeared (0 be based on intuition as the following extract (also typifying her

response to part b)) indicates:

I would substitute values here, first doubling the radius. OK we’ll use r = 2 and

r = 4. {With the aid of a calculator she obtained V¥ = 33.5 and V = 268. .respectively].
So. if you double the radins of a sphere the volume of the sphere is increased by
approximately § times.

Of panicular interest is the wording of Buarbara's conclusion: ™ ... the volume [or surface area) is
increased by approximately § times [4 umes for the surface area|”. The use of the word
‘approximately’ obviously results from the computations made with the aid of the calculator. When
asked whether she could state the exact effect on the volume/surface area of a sphere if the radius

is doubled. she replied:

No as whatever values were chosen for r, decimals would be involved and only an
approximate answer coudd be given,

She appeared uncenain as 10 whether the approximate value would change given a different set of
values for r and hence was reluctant to pursue this line of thought. The most logical explanation for
this was that she had reached a conclusion that she felt satisfied the requirements of the question and

therefore saw no reason to explore other possible solutions.

Paut

Paul was able to spontaneously generalise the phrase ‘the radius is doubled” into symbeols (2r) and
then to substitute this expression into both formulac. Furnthermore, he was capable of cormectly
interpreting his answer. exhibiung complete confidence in his belief that the use of the abstract

‘object’ 2r would result in the correct answer.

Substitute 2r and squure that 12r¥] equals 1.4r% 5o that just is timesing the
surface arca by 4.

b
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Paul’s ability to use and perform operations with the generalised expression 2r, without the need for

a concrete referent such as the substitution of numbers, suggests that he is quite comfortable with the
structural properties of algebra. His immediate recognition of the quantitative effect that doubling
the radius has on the volume/surface arca would appear to indicate that his logical skills are relatively
advanced. In order 1o cxamine the exient of these skills, Paul was asked 1o re-do Question 1.
Surprisingly, his response still centred on the use of numerical substitution, even though during this
latter phase of the interview, Paul was again prompted to look for relationships between the different
parts of 1he question. However, Paul could stilt not identify any relationship between the parts, nor
did he use a variable expression 10 obtain a solution.  Arguably the cuing effect of the expliciily
stated values for m., r aad /it may have dominated any impulse 0 generalise although this appears

contrary 10 his "object’ orrentaiion demonstrated previously in Question 2.

{11 should be noted here that Frank. Rod and Barbara were not asked to re-do Question | after
having attempted Question 2. Given their solutions to the latter together with their accompanying

reasons, it was felt that any further investigation of Question 1 would serve little purpose.]

Thus it appeared from the responses given by Frank, Rod and Barbara to both questions, that the
manipulation of numbers in some form or another was mandatory if they were to achieve a
conclusion. However, Paul’s responses to both questions indicaied a clear dichotomy in terms of the
solution methods used. As stated earlier, this may be atributed to the natwre of the questions asked,
although this inference does lose some of its credibility as further prompiing failed to elicit any

association between his two solution procedures.

Conclusion

This paper has examined both the procedural and structural aspects of solving algebraic problems
from a student perspective.  The discussion above clearly illustrates that both means of acquiring
algebraic concepts exist at this educational level, with the ‘procedural’ aspect of algebraic learning,

requiring that mmbers must be manipulated, predominating.

Frank. Rod and Barbara provided responses to both dquestions that manifested the features of a

procedural approach as described by Sfard since their answers cnded to be dynamic, in that they




could seemingly “change’ given a different set of circurnstances, and sequential, as the solutions were
characterised by step-by-step ratier detailed procedures. Frank knew that if the radius increased
then rationally the volume/fsurface area would increase. However, he was unable to quantify his
conclusion as he was still locked into the procedural stage where he required the subsutution of
‘given® values for r. Rod’s answer could be classified as slightly more sophisticated in that he knew
that the resulting volume/fsurface area would increase by “double the amount™, after having
multiplied the ‘unknown’ volume/surface area by two. Barbara, on the other hand, while still
needing to work with numbers, was successfully able to integrate ail pieces of given information.
This successful integration and hence cornpletion of the problem would also help to explain her
hesitation in corroborating her initial conclusion with any additional numerical support. Finally, with
regard to these three students, it seems reasonable to conclude that, although they each felt the need
to ‘process’ in order to solve the algebraic problems, they clearly displayed differing degrees of
‘procedural’ competence. This 15 evidenced by Frank’s and Rod’s use of a single piece of
information only in Question 2, while Barbara was able to hold all relevant pieces of information

while formulating an answer.

Paul's responses 10 Question 2 tended 10 be static the did not feel the need 1o justify his conciusion
any {urther), and instantaneous (as he was able to spontaneously generalise “double the radius™ to
2r) resulting in a complere integraton of the question. Once again Sfard’s description of the
structural approach to algebraic problem-solving has been verified. However, his inability to use this
method when answering Question | is somewhat disturbing, perhaps hinting at the possibility that,
although a ‘transition’ from one conception to the other may occur, each may then continue 1o
develop separately with the initial link between them being forgotien or even lost completely. This
adds a further dimension to Kieran's {1992) statement: *The wransition from a *'process”™ conceprion
10 an “object” conception is accomplished neither quickly nor without great difficulty” (p. 392). In
fact, as demonstrated by this small study, some students may never accomplish this ‘transition’,
implying that Sfard’s "deep ontological gap” between the two aspects nuy unfortunately never be
totally bridged. This is further exemplified by the responses of the fourth student, Paul, who was

successfully able 10 manipulute numbeny as well as algebraic expressions. Hence the “gull” between

the procedural and structural aspects of algebraic problem solving appeared to have been “bridged”

1o some extent. However i Paul's case, this could be viewed as a "one-way’ crossing only as he




was unable 1o immediately generalise from the pariicular in Question 1 and thus reduce the otherwise
necessarv but laborious calculations. This hints at the possibility that these two perspectives,
‘process-object’, miy develop independently of each other with a student often becoming proficient
in using either one or the other interpretation but lacking (or forgetting) the two-way conaection

between them,

In conclusion, a final point that should be stressed is that the results of this study have at least two
far-reaching implications for the teaching profession. First, it appears that one of the major goals of
secondary school teaching, that of instilling in students the steuctural properties of algebra, is not |
being achieved for all students. Thus the potential for these studenis to acquire the necessary
thought processes required for advanced mathematical thinking must be limited, at least to some
extent. Secondly, while a thorough development of both the procedural and structural conceptions is
desirable, the affinity between the two should not be de-emphasised once structural competence has
een achieved. Both play importani roles in mathematical activity {(Kieran 1992) and hence their
recognition and an awareness of the influence of their interconnection should be continually

reinforced so that a deeper understanding of the principles underlying mathematics is secured.
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WORD PROBLEMS: OPERATIONAL INVARIANTS IN THE PUTTING
INTO EQUATION PROCESS

CORTES Anibal
LabPSYDEE, 46 rue Si-Jacques, Paris, France

Enors made by 9th and 10th grade students in putting word problems into equation
were aralysed and class:fied. The classification of all errors recorded duning the experiment has
resulted in only three categories: & « Errors in the construction of mathematical correspondencss. b
- Errors that concemn the concept of equivalence and that of the unnknown. ¢ - Errors in the
constructicn of a “calculable” mathematical object.

The analysis of relationships between errors and the mathematical properties violated
allows the identification of inherent operational invariants for the putting into equation process.

Research in cognitive psychology concemning word problems has often focused on
the analysis of reasoning by analogy, for examiple Bassok and Holyoak (1989); Clement J. (1988).

In intermnational publications devoted to mathematical ¢ducation many authors
analyze the resolution of word problems. The passage from natural language to an algebraic
expression was analyzed by several authors in terms of syntactic and semantic translation,
MacGregor and Stacey (1993) have reviewed this research and focus their work on reversal error.

Seversl authors analyse the mathematical problem posing processes, Silver E.A.
(1993) has reviewed this research.

Other authors construct methods for the resolution of problems, see Filloy E. and
Rubio G (1993). Rojano T. and Sutherland R. (1993) recommend writing intermediate
mathematical expressions and then construct, by substitution, the equation of the problem. The
intermediate expressions become thus explicit, but the cognitive process underlying the writing of
these expressions remains unexplored.

The algebraic solving process is not analysed in this article, because: the solving of
equations or systems of equations is made by means of algebraic transformations that end to other
equations that are not, in general, related with the text of the given problem; there is therefore a
detour behaviour in the algcbraic solving proccés. This conclusion allows us to analyze the putting
into equation process independently of the associated algebraic solving process. The operational
invariants that guide thought in the solving of equations can be found in Cortés (1993).

In this article the putting into equation process (notably the implicit cognitive work}
is modeled in terms of operational invariants.
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The theoretical fremework and the experimental work.

Our theoretical framework is based on the "Conceptual Field Theory” (Gerard
Vergnaud, 1990). Cognitive behavior is modeled in terms of "schimes”. The concept of schéme
was introduced by Piaget and later was further ¢laborated by Vergnaud, in order to find a model for
the acquisition of compiex knowledge, in particular scientific knowledge. According to Vergnaud
(1990): “a schéme is she invariant organisation of behaviour (action) for a certain class of
situations... A schéme is made of four different kind of ingredients: operational invariants,
inference possibilities, rules of action, goals. The representational part is essential”. The
operational invariants are mainly: implicit concepts (concepts-in-action) and implicit theorems
(theorems-int-action).

The analysis and the classification of word problems that appear in secondary school
text books, as well as the analysis and the classification of elementary cognitive mathematical tasks
necessary for puiting word probiems into equation, provide indices on the implicit nature of implied
cognitive processes. The analysis of relationships between errors and the mathematical properties
violated allows for the identification of inherent operational invariants for the putting into equation
process.

The experimental work: for the past several years we have focused our investigations using 7th
through 10th grade students. In this article, however, we will only discuss the results from the 9th

and 10th grade classes: 25 word problems were given to students (5 different tests comprised of 5
problerns each) the resolution of which implics the construction of first degree equations.

The resolution of these problems implies: a) The possibility to construct a single-
unknown equation directly. b) The construction of a system of two equations (two unknowns). &)
The construction of a system of several equations that can be reduced to a system cf twe equations.
d) The construction of second dcgree equations that can be reduced to a first degree one by
simplification of terms.

For some problems it is necessary to write and to transform formulaes. Problems
concermning inequations and the the study of numerical fonctions will not be approached in this
paper.

Errors in the putting into equation process

All the errors observed in the putting into equation process can be classified into the
following categories:
a - Errors in the construction of mathematical correspondences.
b - Errors that concern the concept of equivalence and that of the unknown.
¢ - Errors in the construction of a "calculable” mathematical obyect.




a - Errors in the construction of mathematical correspondences.

After reading the problem text students are faced with the construction or with the
identification of useful mathematical functions: a number (given or unknown) corresponds to only
ont number (given or unknown). Each of these correspondences is a particular case of a numcrical
function in which the algebraic expression is not known. The search for these correspondences is
guided by the necessity to construct one or several equations that will allow 1o solve the problem.

For example: A person has [20F more than a second person. When they have both
spent 360F, the first person has twice as much morey than the second one. How much money did
each person have before making their purchases?

26% of students succeed: y + 120=x; x-360= 2 (y-360) (x represents the money
of the first person and y represents that of the second person). The problem makes reference to
additive processes that unfold in time, in which there are initial states (x and y) which, after the
expense of money (transformation), will correspond to the final states (x-36C and y-360). The
conceptualization of these processes is necessary to construct a correspondence between these
states. For example: the initial state y for the second person will correspond to a state x, greater
{120F more) than the first; the functional relationship remains to be constructed. We observe that a
correspondence (sometimes evident) built correctly in natural language, can drive to an enoneous
numericat function. For example, many students propose x + 120=y instead of x=y + 120

30% of students mzke errors in the construction of these correspondences and write
false equivalences, for example:  x + 120=360* 2
of a system of equations 120 +x-360=2y ; x-360=y
The next error: x + 120 + y-360= 2x + vy clearly shows the meaning of the "sumimary of the
problem text” of the written equation: scroe students do not make a rupture with natural language.

Seniences are sometimes perceived in an ambiguous maaner, for example: One pays a sum
of 1750F with 24 bills of SOF or 100F. How many hills are there of each kind? Sorne students write
the foltowing equations: 24x= 1750 and 24y= 1750. This particular analysis of the probiem icads to
absurd numerical solutions: the students do not check the plausibility of the results obtainad.
Written equations do not translate relationships of the problem and thus the meaning of the symbols
x and y shift from the meanir  f s number 1o that of a unit; "bills of S0F and 100F" respectively.

Conclusion: These errors always lead to a false eguivalence: it is the written trace
that one analyzes. Therefore, in the analysis of implicit processes of thought it is necessary 10 go
beyond the written equations. The identification of relevant correspondences implies the respect of
the fundamental constraint of mathematical functions: only one image. Censeguently, there is an
operational invariant: the concept-in-action of matkematical function expressed in terms of
correspondences between sets (modern-definition of function). The studenis have never soen this
definition; a concept-in-action designates implicit operational knowledge.




b - Errois that concern the concept of equivalence and that of the unknown.

Once pertinent corvespondences (contained explicitly or implicitly in the problem
text) are identified, students are faced with mental construction {implicit) and with writing the
cquations. Tha intreduction of the "equal” sign esiablishes a rupture with natural langeage. Each
equation has, in genzral, the meaning of an equivalence between maguitudes, and the terms of this
¢quivalence must therefore respect a consiraint of homogeneity: tc have the same units and the
same meaning.

An equivalence can be constructed: a) By the equality of two functions. b} By the
substitution of given riumbers into a function. c) By the subsritution of given numbers and functions
into another function. ‘The mathematical functions giving origin to a firs: degree equation are, in
general, also of the first degres and of one or several variables; for example: y= 3x, y= 5x-20, 3x +
dv=1z....e.

b - 1 - The functional relationship between variables is not constructed,

For example in the problem: One pays a sum of 1750F with 24 bills of 50F or 100F.
How many bills are there of each kind? From the firs\ sentence one can construct a correspondence:
24 bills corresponds to a sum of 1750F; a nuinerical runction can nci be immediately constructed. It
is aecessary first to concepiualize that there is an unknown number x of S0F bills and an unknown
number y of 100F bills; and that the number of bills will total 24, mathematically expressed as: x +
y=24. Moreover, the total sum (1750) must contain twe sums of meney: S1 comprised of SOF bills
and S2 of 100F biils (the equation is: S1 + §2= 1750}. It 1s also necessary to construct that S1
corresponds to x number of bills following the numerical function S1= 50 x, similarly $2= 100 y.
Equations that model the problem are constructed from these numerical functions. This cognitive
work is generally implicit. Several students write the following equations:

S0x + 100y= 1750 24 (x + y)= 1750 (instcad of x + y= 24).

The second equaticn “summiarizes” a correspondence between sets (24 bills corresponds to 1750F):
the function z= 24= x + y (total number of bilis) is not constructed. Also, the eguation
24(x+y)=1750 does not respect either the homogencity of the units and the significance of all its
tarms, of the homogeneity of the significance of symbols inside a system of equations: x ¢an not be
a “object or a unit" in an equation and a number of objects in the other.

Angther exemple: A rectangular piece of land has a perimeter of 110m. By
decreasing its length Im and increasing its width Im, its area is increased by 4m?- What were irs
initial dimensions?

30% of students succeed: 2x + 2y= 110m, (x-1) (y + 1)=xy + 4m2. An analysis in terms of initial
and final states can also be made for this problem. There is a correspondence between linear
measures and perimeter and there is another correspondence between lincar measures and area. The

comresponding numerical functions are formulaes that the student is supposed to know. Some
students write: (x-1) + (y + 1)= 110 + 4.2, In this examplc 4.2 represents 4m2: for some students a




length and an area have the same unit. There is therefore a failure in their concept of area and in the
conceptualization of the relationships involved in the problem. In this equation areas and perimeters
are processed indiscriminately: these errors are conceptual. This is similar for the foliowing errors:

x-D+@y+D=110+4dorx-1+y+ 1= 4m2 or (x-1) + (y + 1)= xy. These equations are not
equivalences because they do not respect the constraint of hontogeneity.

Another exemple: A gardener wants to plant a surface with tulips, in which there
would be 3110 yellow tulips, 2110 red tulips and 30 black tilips. How many yellow tulips did the
gardener buy? Some students write "x number of yellow tulips; y number of red tulips” and then
the equation: (3/ 10)x + (2/ 10)y + 30= n. In this equation the significance of the unknowns shifts to
that of objects or a unit "tulips” and the numerical fuctions x= (3/10)n and y=(2/1(n are not
constructed. This type of error is very frequent.

b -2 - Some errors are due to a failure to check the functional relationship between variables.
For the sentence "the length is 20 m greater thun the width” many students propose L + 20= |
(instead of L=1 + 20), this equation has the meaning of the "summary of the problem text”. To
check the validity of the written equation implies checking the functional relationship between
variables by means of numerical examples: the student {or the expert) will give to variable 1 a
numerical value (for example10) and then calculate the value of L and verify that "L is 20m greater
than 1", These errors are duc to a failure te check: the numerical functic . underlying the equation is
not constructed.

b - 3 - The homageneity constraint of units is not respected.

For example: A rectungular field has a perimeter of 5.28Km. Calculutc its dimensions knowing that
the length is 220m greater than the width?

Some students, starting froin the following equivalences (often implicit):

y=Xx+220and 5.28=2 (x +y)

write: §.28=2 (2y + 220).

The homogeneity of units is not respected: in most cases these errors are due to a failure to check.

Conclusion: The equation concept, taking the meaning of equivalence between
magnitudes, is an operational invariant in the putting into equation process. The numerical

function concept necessary for the construction of eguivalences is also an opcrational invariant.

In the construction of numerical functions and equivalences, thought is guided by the
principle: the respect of the homogeneity of term that constitrte the equation. This principle is
also an operational invariant.




¢ - Errors in the construction of a "calculable” mathematical object.

The construction of correspondences, numerical functions and equivalences is
motivated and guided by the necessity to construct an equation or a system of equations (in
examples analyzed here). Furthermore the writing of a mathematical object will be the outcome of
the putting into equation process because it allows the calculation of the numerical value of an
unknown or several unknowns: it is, in this sense, a “calculable” mathematical object. The choice to

construct a particular mathematical object implics conceptuahization of the mathematicai propertics

(of this object) conceming the possibility to provide the type of numerical result that one seeks 10
calculate. The construction of a "calculable” mathematical object is an operational invariant.

¢ - 1 An erronecus substitution in the construction of a single-unknown equation. The
construction of a single-unknown equation often implies the substitution of an unknown by a
function. For example in the problem: A rectangular field has a perimeter of 5 28Km. Calculuate its
dimensions knowing that the length is 220m greater than the width? The substitution of the function
is made, sometimes, in an erroncous manner; one constructs a function y=f(x) and then f(x) takes
the place of x instead of y: it is a conceptual error, for example:

y=x+220, 5,28=2(x+y) which leads to 5.28=2 (x+220+2y)

one cnds thus with a two-unknown equation: a mathematical object non relevant for the solution. A
failure to check can lead to the following error:

y=x +220; 5.28=2{x + y) leads to 5.28=2 2y + 220)

¢ -2 - Errors thai concer.i the concept of system of equations

¢-2-a) The writing of two identical equations. For example in the problem: One pays a sum of
1750F with 24 bills of SOF or I00F. How many bills are there of each kind? Some students write a
system with two wdentical equations:  S0x + 100y= 1750; 50x + i00y= 1750,

In their concept of system of equations students lack mathematical knowledge that would allow
them to decide if the written system makes it possible (or not) to calculate the unknowns. The
former is a conceptual error.

¢ -2 -b} Impossibility to solve an "unusual" system of equations .

Students from 9th and 10th grade know the single-unknown equation and the system of two
cquations as tools for solving word problems. A large number of students are able to solve systems
of equations, but only if they are written accerding to the “usual” script: ax + by=c¢; a'x + b'y=c¢";
they then apply quasi algorithmic procedures to solve them. These students stop after the
construction of an “unusual” system of cquations, for example:

Y=+ 2X +4x +8X | y=x 4+ (x +22}+ (» +44) +(x + 66)

or  y=(/10x , (U 10)x+y+30=x or L=1+220; 5280=2I+2L

Some of these systems can be solved by the substitution of an equivalence into the other. The use of




the lincar combination method can imply the rewriting of an equation by means of an algebraic
transformation well known by students (for example L= 1+ 220 becomes L-I= 220). This type of

dead-end appears in classes where the teaching is focussed on the resolution of systems of the type:
ax + by=c;a'x + b'y=¢'.

¢ -2-¢) Dead-end in front of a system of equations the resolution of which mplies algebraic
transformations.

In the algebraic treatment of word problems. the detour behaviour can begin with algebraic
transformations that lead to a mathematical object that one is able to calculate. However, students
often construct equations with several unknowns that they do not transform (in order to put them in
the form that they ¢an process). For example: (x + 5)/ (y + 5)=9/ 11; (x-5)/ (y-5)= 2/ 3

or X+y=50;y+2=292z+x=35

Conclusion: These crors show: First, a limited conceptualization of the
mathematical properties of written equations (concemning the possibility to provide the type of
numerical result that one seeks to calculate). Second. the absence of the checking process.

Cognitive model of the putting into equations process.

Gur cognitive model is the functioring of the schéme which goveras the putiing into
equation process. Som.e aspects of this model can be found in Cortes A. (1994).

The resolution of word problems has 2 purpose: the calculation of the numerical
value of unknown magnitudes by means of the construction of a relevant mathematical object: a
single-unknown equation (if one wants to calculate the value of only one unknown); a sysiem of
two cquations (if one wants to calculate the numerical value of two unknowns); a function; an
inequation... The choice to construct a particular mathematical object implies the conceptualization
of the mathematical properties of this object. The construction of a "calculable" mathematical
object is a principle that guides thought in the resolution of word problems. This principle provides
a means to select relevant mathematical relationships among the whole range refationships.

After reading the problem text, students are faced with constructing or identifying
useful mathematical correspondences: 2 number (given or unknown) corresponds to only one
number (given or unknown). Each of these commespondences is a particular case of a numerical
function in which the algebraic expression is not known. Conseyuently, there is an operational
invariant: the concept-in-action of numerical function.

Then, studenis are faced with the implicit or explicit construction of equations that
have the meaning of equivalences between magnitudes; the introduction of the “equal” sign




establishes a rupture with natural language. The concept of equivalence is also an operational
invariant. However, the terms of numerical functions and written eguations must have the same
units and the same significance and the coherence of the resolution process implies that symbols
have the same significance o1l through the solution process. Consequently we can define a fourth
operational invariant, a principle: the respect of the homogeneity of equation terms and symbol
significance. This principle guides the transformation of correspondences (natura! language) into
numerical functions and allows then the construction of equations as well as the checking of the
validity of these equations: it establishes therefore an essential link between the conceptualization
of reality and mathematical modelization.

Conclusion:

Classifying errors according to the mathematical property violated. allows us to
classify errors that have different scripts into the same caterory. The type of teaching influences the
occurence frequency of certain errors, as well as their script.

The cognitive model that we propose takes into account the most important
conceptual aspects of the putting into equation process. The infuence of the teaching process is not
analyzed in this article, and neither is the checking of the numerical results and other processes.

The construction of a cognitive model of the putting into equation process is
intresting from a theoretical point of view and also from a practical onc (e.g. teacher’s training).
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A CASE STUDY OF ALGEBRAIC SCAFFOLDING: FROM BALANCE SCALE TO
ALGEBRAIC NOTATION

Jorge Tarcisio DA ROCHA FALCAO'
Universidade Federal de Prrmambuco (BRASIL)
Graduate Program in Cognitive Psychology

A experience of introducing algebra (o a group of 11 low-lass and poorh-schooled
eluldren from Recife (Noriheast of Brazil) by a gromp of researchers coordinated by the
author is reported in terms of case study. Tins experience consisted in the proposal of a
didactic sequence covering a semester, and wicludmg four sets of activities: mtrodnction of
the two-pan balnree scale i order to make explicit sume basic principles, passage 1o
simbolic representation and inrodiction of a new contract (represent first, solve later),
“seale-cleanmg™ usmg symhaolic represemation, and simhalic depuration with rewriting.
Clinical duta suggest mmporsamt acquisitions in terms of a new representutional tool, for
wlich the two-pant balance scale has served as preparatory metaphor.,

The experience reported here was conducted by the author during the period from August to
early December 1694, in the context of a larger project of assistance to poor children in Recife,
Brazil. This project has been supported by grants from European non-governmental organizations,
and consists in offering a professional training coupled with school-like activities in language and
mathematics. Professional activities offered include the crafling of marionettes and giant puppets,
bread production in bakeries, artisenal fabrication of candies and formation of waiters (for boys
only). The essential aim of the project is to offer these children an alternative to the streets, by
offcring thein an opportunity of learning a professional tool and having some school support. The
activities in mathematics mentioned above were conducted by a group of researchers and students of
the Graduate Program in Cognitive Psychology - UFPE, and consisted of three main topics, the first
two having been exaustively neguciated with the group: |. new Brazilian currency (RS, reaf) and
decimal number system, 2. algorithms of subtraction and division and 3 introduction to algebra
Activities concemning topics | and 2 were conducted by two associated researchers, assisted by
graduate students, topic 3 was under the coordination of the author of ihis report The group of
researchers was offered complete autonomy in proposing mathematical activities during the
semester: there was no mathematics teacher 1o “negociate” with, no program needs to cover, no
curricula prescriptions nor specific time-table to take into account. We developed the complete
experience (three topics) in mathematics in 16 meetings that took place once a week, on tuesdays
aflernoons, in the rooms of the CECOSNE Fondation at Recife. The group of 11 children (6 boys
and 5 girls) who patticipated in the experience reported here was heterogeneous both in age (12 to
17 years) and school level (6th grade to high school); this last aspect, by the way, must be considered
cautiously, since high-school students showed poorer level in elementary mathematics in a previous
cvaluation than elementary 6® and 7* grade ones Only two among all of the children ventured, upon
questioning, to offer a meaning 1o the word “algebra™ the first one, a cicver 15 year-old boy, 8"
level at elementary school’, stated that “Algebra... é o bichu!” (focal popular slang corresponding
roughly to Algebra... it’s the boogie man'), the other one, a 16 year-old girl, 1" high-school level,
wondered if algebra wasnt ** . wma coisu que tem a ver com asa-delta” (somethnng concermng
hang-gliders [called in Brazilian Portuguese asas-delta (delta-swings) because of their delta-shapel)
We discussed with the group the possibility of starting a set of mathematical activities concerning
algebra, without offering any previous definition of it (in spite of their insistence in having such a
definition) They agreed in starting studying algebra, provided that it wasn’t too boring We
proposed, in the next meeting, the first of three main sets of activities, all of them described below

' This study was sponsored by grants from FACEPE (Fundzgdo de Amparo & Ciéncia ¢ Tecnologia) and CNPq
(Consetho Nacional de Desenvolvimento Cientifico ¢ Tecnolégico).
? In Brazilian public school system. algebra is frequentlly introduced by the ond of the 7% grade
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The experience with algebra covered 10 weekly meetings of apioximately two hours and a half each,
and were all registered by a research assistant.

L. Facing a certain problem and introducing some activities with the two-pan
balance scale
I 1. At the first meeting, the following problem was proposed to the group:

Jodo had 5 bags of marbles and 2 more marbles, and Lis fiend Pedro had 3 bags of
marbles of the same type of Jodo's and 6 more marbles. The two boys had, in all, the same
number of marbles. How many marbles were there in each bag?

This problem sparked a lively debate between two biocks of opinion in the group: the first one, under
the leadership of S., a 15 year-old girl, 1™ grade/high schooi, stated that the whole problem was a
trick, since it wasn’t possible to have two pcople (Jodo and Pedro) owning each one a different
nuntber of bags and extra-marbles and, concomitantiy, having the same mumber of marbles; the
second block of opinion proposed that it was possible to find oul the number of marbles, provided
that we were very patient and lucky and tried a lot of possibiliiies {a small “sub-group™ inside this
block of opinion siated thal, in fact, we could nol find out a precise number, since there wasn’i a
precise operation tv do in order o calculate the number of marbles). In spite of this second bloc of
opinion, none of their members tryed to “patiently”™ find out the number, and the first meeting was
over without any answer at all.

1.2. At the second meeting, we proposed to postpone the debate about Jo3o and Pedro’s problem,
and to start thinking about a series of situations concemning the use of the very familiar two-pan
balance scale Five basic situations in the two-pan balance scale were then explored and discussed
with the group during this and the next two meetings. It is important to mention that these situations,
represented pictorially in the table 1, were presented to the children with an actual scale. Among the
set of five situations, situations 3 and 4 were especially discussed, since for many of the children they
displayed an inproper, messy set-up, caused by two violations of the two-pan balance scale canonic
lay-out: }. known weights in both pans (sitnation 3), 2. unknov.n weights in both pans (situation 4).
The group was then motivated to discuss « strategy of “cleaning” the scale, in order to be able to
find out the unknown weight A basic theorem-in-action (Vergnaud, 1985) concemning the
fonctioning of the two-pan balance scale {e), with its logical consequence (*), was previously
explicited in the form of a principle . e {Principle 1] we have fo ave equal weights in each of the two
pans of the scale in order to have these pans in equilibrinm;, * {Consequence] if rlie pans of a two-
pan halmice scale are in equihbrinm, then there are equal weights at each pan By the end of the
fourth meeting, a small sub-group proposed that the right way to proceed, in situation 3, was to take
away the 20g weight in the right pan of the scale; the violation of the basic principle of the two-pan
balance scale was resolved when a complemeni of the proposition above was produced in the
following terms: we take away 20g from the right pan of the scale, and [Principle 2] we do the same
m the left pan, in order 1o keep the pans in equilibrinm. The (proposital) lack of a 40g weight
forced the group to propose an important complement to the most recent principle; in the absence of
concrete weights to put in the pans of the scale, we can make believe the substitution was done
Despite this important and consensual achievement, the transfer to situation 4 was not direct and
immediate, since many of the subjects stated that this situation was very different of situation 3. “/n
sreation 3, we kuow the weights, so we can lake them away or fjust to imagine we 've done so; in
sunation 4, we don't know the weight of the corn packages, and we can’t do anything upon
wrknown things'™ (S, 15 year-old girl, 1" grade/high school, the same gitl who stated the
impossibility of solving JoAo & Pedro’s problem) The dcbate sparked by this restriction was very
interesting and intense In fact, S didn’t have a good answer to the impartant question asked by a
little 6™ grade 12 year-old boy: “W/{Y can’t you take way one corn package from each pan if you
know the scale will keep the balance™ The group was then convinced that the principle of taking
weights away (factually or making believe) could be extended to situations where the weight of the
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package was unknown, provided that principles 1 and 2 were respected. Situation 5, a combination
of difficuities of situations 2 and 3, provoked an unexpected discussion on “procedural order” taken
seriously into account by the group: when we have to “clean” knowr. and unknown things in the
scale, by which one we begin: knowns or unknowns? They decided, as a social contract (not strictly
respected, in fact), to begin always by known things. Once these two important principles (! and 2)
explicited.and refined by the group, we started the second set of activities, described below.

Table 1 : Set of basic situations explored in the two-pan balance scale

2

2. Describing scale dispositions and installing a new coutract: represent first, Iry
to solve later

2 1 Atthe fifth meeting, the subjects were introduced to a new activity, consisting of representing,
in a diagram prepared by the author (see reproduction in figure | below), a new set of situations in
the two-pan balance scale This activity was presented to the cliildren as a scale-dictanon, in analogy
with the familiar situation of class-room dictations, they were asked to represent, in the paper, four
situations pioposed in a real scale, using known and unkoown weights These situations
corresponded to the following algebraic structures x +a=b, 2x+y +ta=b+y+x;, 2x ry+z+
a=2x+yib andx+y +atb=y +¢

At the very begining of this activity, a new conlract (Brousseau, 1988, Schubauer-Leoni & Perrel-
Clermont, 1985, Schubauer-Leoni, 1986, Perret-Clermont, 1992) was for the first time introduced
avoid trying to find out the value corresponding to the unknown weigth, trying instcad to initially
represent the situation, with the aid of the scale-diagram Although everybody gently and
immediately sceined to agice, we soon realized how difficult it is, in fact, to postpone the resolution




Figure 1. diagrar proposed as auxiliary paper and of a problem or problem-like situation, “wasting
pencit tool for the representation of scale-situations  sime with drawing and writing”, as one of the
L ] L J subjects said It is very comprehensible: they

L l were under another implicit, older and stronger
contract which states that the longer someone
speuds in finding the solution of a school-
problem, the more “burro” (stupid) he she is.
As a consequence, the new contract (concemning the priority of representation over resolution) had
to be re-taken plenty of times. We also discussed the meaning of the equal sign ( = ) in the auxiliary
diagram above mentioned They accepted without discussion that this equal sign, in this particular
cnntext, did not represent an identity between the content of each scales's pans, but rather the
equilibrium of the pans caused by the equality of’ weights in each pan of the scale The third and
equally important point of” discussion concerned the representation of unknown weights in the
diagram Since the group was especially worried about time-spending in the task-solving procedure,
it was easy to negociate the introduction of a simplified representation for the known and unknown
eniities in the scale we proposed small geometric figures (circles, trianigles and squares) to represent
the packages (unknown weights), and numbers to represent known weights. This very question of
codification generated a very important debate, since one of the subjects (A., 6™ grade) decided to
use squares as simbolic representation for unknowns, and represented by the same symbel (the
square) different packages (corn and flour) put on the scales’s pans. This proposal was criticized by
L. (1™ grade, high school), who called the attention of the group to the non-differenciation of
different entities in A.’s representation. L. proposed, then, an alternative representation where
dilferent packages were coded by different symbols (squares and a triangle. see figure 2 on the next
page) A. aigued 1hat “the teacher had allowed the use of any symbol 1o represent wknown things™
[what is true] , and he had the right of choose the squares, but he and the rest of the group was easily
convinced to adopt L s representation We explaned, then, our third principle: |Principle 3} different
things must he represented by different symbols in the scale diagram. Later, this principle was
tefined afler a debate caused by some troubles in the representation of a complex scale lay-out:
sugar, salt, salt, corn, known weight (first -an), corn, sugar, known weight {second pan). One of the
subjects decided, coherently with principle 4, to utilize three different symbols in the left par, but
violated the correspondence fond package <» symbol in the right pan (trangle for sugar in one pan,
stjuare for sugar in the other) The debate led the group to refine prnciple 3 with an addendum in the
following terms [Principle 4} once a ssmbol is choosen for representing something miknown, this
symbol cannor he used 10 represent another unkinown entity, and the relation previously established
benween symbol and thing represented cannot be changed in the context of a particular scale-
diagram Tiie group was, then, able to represent many situations proposed in the two-pan balance
scale, we passed, then, to another set of activities, consisting of representing not more scale-
dispositions, but problems, in the same scale-diagram.

2.2. The first problem proposed' is reproduced below.

Amanda and Tiane like to colfect samples of stationery. Amanda’s coltection is composed by 70
especially-decorated individual sheets of paper; Tiane has 10 individual sheets and two similar
blocks of sheets given by her father. We know that the two girls have the same number of
individual sheets of stationnery. How many sheets of stationnery are there in each of Tiane's
blocks?

‘The tansposition fiom scale representation to problem 1epresentation required the group to work
upon two aspects 1 ‘To discuss once more the confract giving temporal priority to representation
over problem solving procedure, 2 To forget the two-pan balance scale ifseff, and start considering
the derivated diagram, since the group was facing situations concerning other cqualities (c g,

' This problem is part of a set of problems proposed ongmalls by Lins Lessa, 199§ and adopied n tlus study
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number of stationnery sheels) than weight equality. Afier having represented these problems, we
passed to another group of activities, consisting of solving the situations represented (values of
unknowns in scale dispositions and solutions in problems) through “scale cleaning-up™.

Figure 2: Scales’s disposition and respective A. and L. propositions of representation.
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Representation proposed by A. Representation proposed by L.

3. The “scale cleaning-up” activity and symbolic depuration

This set of activities covered the three last mieetings, and consisted of a symbolic
transposition from moltorie, effective activity of 1aking away packages from the pans of an actual
scale to an activity of eliminating icons (representing unknowns} graphically, taking into acount
principles 1 and 2 (Figure 3 reproduce the activity of scale cleaning proposed by R, 5™ grade) All
representations previously proposed were then given back to their proposers in order to be “cleaned-
up™ A four-point procedural sub-contract was stablished for the cleaning-up procedure’ | Make
explicit which icon-unknown would have its value scarched, 2 Keep in mind principles | and 2, 3
Rewrite the new scale set-up afler each round of scale cleaning-up, 4 Reach a final line of rewriting
with the format icon = value. The piece of protocol on the next page (Figure 3} illustrates well
these points. After this activity, many problems were then proposed in order to be represented and
then cleaned-up [t's important to mentien that, at this phase of new problems, the auxiliary diagram
propused was first reduced to a simplified form, and then reduced to the equal sign, as shown in
figure 4. We tricd, at this phasc, avoid mentioning scales explicitly, talking instcad about principles
(especially principles | and 2) aplicable to representational situations We also discussed ways of
refining representational propositions, and the group was able to piopose two main refineinents 1
Substitution of a serics of icons of onc type by a numeric coeflicient folowed Ly the icon (eg . 31
instead of {1111{1), 2 Substitution of the connector “and™ by the operator + (plus), in the
transposition from natural language 1o representational language We proposed 1o add a final
procedural item of contract in combination with the two itens above repiesenting the familiar icons
(triangles, circles and squares) by some specific letters, those at the end of the alphabet X, Y and Z
This substitution was very well accepled by some of themy since they realized that their
representations had rejuined those in mathematics books. The whole work was then completed by an
invitation 1o bring to class their alyebra books, in order to work over some algebraic expressions and
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problems considered very difficult by themselves. Because of time limits, only one meeting (the last
one) was dedicated to this activity, during wich S. was also invited to reconsider the problem of Jo#io
and Pedro, in order to verify if it had a solution: afler having represented the problem, she easily
cleaned it up and solved it, with a shy smile of satisfaction.

Figure 3 : reproduction of R.’s protocol

Figure 4 : simplification of auxiliary representational diagrams offered during the didactic
sequence

Auxiliar diagram 1 Auxiliar diagram 2 Auxiliar diagram 3

Scale-disposition dictations and Problem dictations and New problems, cleaning-up
cleaning-up cleaning-up and rewtiting

4. Discussion

This work represents an incursion of the author in the terrain of mid-term didactic projects
directed to school-like groups, without the methodological comfort provided by experimental and
quasi-experimental designs.

A certain set of ideas presided the didactic sequence reporied here in its main traits. First of
all, the idea of an epistemological gap between arithmetic and algebra (Vergnaud et al., 1988). This
gap (which dialectically shares epistemological relevance with the idea of continuity (Da Rocha
Falc3o, 1992; 1993)), can assume many aspects, one of the most important concerning explicit and
implicit contracts undergoing arithmetic and algebraic procedures. In fact, the arithmetic procedure
implies an immediate search for solution, represented by the calculation of intermediate values in
order 10 reach a final answer. Algebraic procedure, differently, postpone the very activity of
solution’s search and begins by a formal transposition from empirical domain or natural language to
an specific representational system. Because of this, much endgy was directed in the didactic
sequence presented here to the negociation and installation of a2 new contract: represent first, try fo
solve later.

Symbolic representation is a key psvchological aspect in the development of algebra and
many other concepinal fields (Vergnaud, 1990) in mathematics because of two points' first, it is not
a result or superstructure of operational siiuctures, as proposed in the context of Piagetian theory
(Piaget, 1970, 1975) but rather a constituent of concepts, with operational invariants and situational
links that gives socially sharcd meaning to knowledge (Vygotsky, 1985)), second, it opens to a
patticular individual 2 wide range of symbolic cultural tools that, as culfural amplifiers (Briner,

Ty
t

o




1972), enables one to access new instances of conceptual construction. So, representations provide
metaphors that can be useful as pedagogical tools in the context of an effort of didactical
engineering (Artigue, 1988); these metaphors help in amplifying pre-existing schemes (Vergnaud,
opcit ), since they provide semantic links between structured knowledge and new pieces of
information In this process of enrichment of nieaning, a quite important psychological sub-process is
represented by the explicitation of theorems-in-action (Vergnaud,1994), upon which are established
many practical competences exercised in daily life. The proposal of the two-pan balance scale
represents an effort of offering a metaphor of algebraic equivalence between equations, based in the
conservation of a pre-stablished fonctional equality between each side of an equation The
construction of meaning for the equivalence of equations (essential aspect for the comprehension of
algebraic algorithms} is initially connected to the familiar idea of equilibrinm, in the context of a
culturally familiar artifact, the balance-scale. This idea of equilibrium is frequently poorly explicited,
although people can make a competent use of a two-pan balance scale in order to sell or buy fish in
Brazilian popular markets; nevertheless, equilibrium as theorem-in-action is based upon two
explicitable principles (see section 2. As a metaphor, the balance-scale offers a context of cultural
fonctionning where complex mathematical concepts (algebraic equivalence and algorithmic
manipulation) can be initially rooted in competences and theorems-in-action (Schliemann and cols,
1992), enriching pre-existing schemes. The balance-scale also offers a suppont for symbolic
representation, which semanticaily and syntactically sets the fondations for the introduction of
algebraic formalisms. This is one of the reasons why we have passed, very quickly, from the actual,
concrete balance-scale to a scale-diagram and to an even more abstract diagram (figure 4;. This
passage is also important because of a central point concerning the usc of metaphors in general: if it
is valuable to introduce metaphors in the effort of scheme enrichment, it is equally important to leave
them behind as soon as possible, in order to avoid an undesirable over emphasis on the scaffolding,
so to speak, at the expense of hiding the architectural structure one is interested in analyzing 1 other
words, the concept of algebraic equivalence can not be reduced to the idea of balance on a two-pan
balance-scale 1 would finally say, quoting once more G Vergnaud, that “(...) symbolic systems can
be “conceptuat amplifiers” (.. ), provided we never forget that they can be misleading, that their use
raises specific difficulties, and that they aie not the real thing in mathematics™ (Vergnaud, 1987,
p.232)

The reflection above leads to the last point to be discussed here: whar did the children learn
afier this semester-long work? Did they understand algebraic cquivalence? Did they build up the
concept of algebraic variable? Was the passage from principle 2 to algebraic script-algorithm of
equation processing sucessfull? Is the competence shown in algebraic problein solving at the last
meeting indicative of effective scheme improvement? These are complex and important questions.
First of all, scheme improvement cannot be assimilated to the simplistic, false dichotomy of being or
not being able to do something, a scheme, as an invariant organization of behavior for a certain class
of situations, made of operational invariants, goals, expectations, anticipations, rules of action and
inferences, cannot be reduced to a frozen competence disconnected from its socio-culturai ecology,
its situated meaning (Meira, 1993). It is time for cognitive psychology to leave behind *“‘gencral
problem solvers”, universal algorithms and “central™ heuristics. cognition is not an intransitive,
decontextualized entity (Lave, 1988). So, there is not an easy and unigue answer for the question
that opens this paragraph. a careful, multi-task and long-term evaluation must be done in order to
assembly elements of answer. Nevertheless, clinical data immediately available seems to allow the
foliowing two points in terms of possible achivements due to the didactic sequence reported here:

1 A new contract (represent furst.. ) was established, it does not mean that other contracts were
simply substituted, but we seem to have succeed in negociating their social aflowance for a new one
2. A new representational tool (the diagram), their two operational principles and procedural sub-
principles are now available for a certain class of problems

These two points touch the very core of a new, incipient and workable scheme, upon which
the pedagogigal effort of teaching the basics of algebra goes on.
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Abstract

The present research intends to study the process of “institutionalisation®, i.e. all that the teacher
uses to give 1o the mathematical knowledge of the students a status according 1o what is expected by
the institution at this grade of school, and to identify relevant variables on the side of students and on
the side of teachers, in relation with the knowledge al stakes. Here the knowledge is the absolute
value. We analyse the change in the French curriculumn, the choices of two teachers, and we compare
the same lesson done by the same teacher, in the same week, for 2 different classes : a "good class”
and a “weak class", we look for differences in the studenis‘work, differences in the discourse of the
teacher. An effect of the differences in the knowledgre of students and in their work is thal the same

lesson of the leacher can be a clarification for some of them and an abstract discourse getting very few
Iinks with their own activity for others.

1. Problematics and methedology
1L.1.The problem

In our previous researches (1990, 1991, 1993), we identified from obscrvations of classcs and

interviews with teachers and students, some phenomena especially perceptible in "weak” classes,
namety : .

- something lik ~ an opposition between a logic of leaming and a logic of success : the desirc of
geling a short-raage success for the siudents may impede lcarning and long-range-success ; it looks

like the teacher gives to « -¢ students the ways to solve excrcices instead of obtaining a real lcaming
from them.

- the difficulty to find a balance between the construction of the sense of the mathematical concpts
and the acquisition of basic mechanisms as algorithms

- the tnclination of teachers 1o reduce mathematical eaching to teaching of algorithms.

Those phenomena are related to contrainsts (time, students themselves who ask for algorithms,
the need for the teacher to get some successful results for the students and so on) and lead to the "ne-
learning” of some students. The contrainsts affect especially institutionalisation (Brousscau 1987),
namely all that the teacher uses to give to the students’ mathematical knowledge a status according to
what 1s expected by the institution at this grade of school.

This process of institutionalisation is on the teacher's responsability. It takes various forms and
appears on several occasions in the class : during the lecture, conclusions of problem solvings.
remarks, recalls, but also for instance through the choice made by the teacher of the exercices given,
especially for evaluaton.

A very imporiant point is the articulation between this institutionalisation and the sense acally
involved by the students during activity of problem solving. Even if students use with sense in
problem solving some tool that we can 1 ‘entify as a mathematical concept, the choices for the teacher
are quite tightened : without institutionalisation. most of the students remember only the context of an
activity and cannot usc the same concept 1o solve another problem, but after the lesson, when
definitions and formalisms are given, we may often observe a loss of sense for some students

For example, on the onc hand, after an activily to leamn (ractions from sharing rectangles, some
students think that they learned to share rectangles, so it is not surprising if they did not use those
fractions to deal with lengths for instance, but, on the other hand, after the lesson, when fractions arc
wrilten with numbers, we can observe errors like "one sixth is the double of one third" and so on.

_ The present research intends to study this process of “institutionahsation” and to identify relevant
variables on the side of stuacnts and on the side of teachers, in relation with the knowlcdge at stakes




On the side of the knowledge, we study its place in the curriculum, in handbooks (which knowledge
is aimed to, what types of exercices are offered, what relationships with other knowledge in the same
grade, in previous gradcs, in future grades) and the evolution of this place. We study also the choices
of the teachers : organization of their teaching, types of exercices, evaluation...

On the side of students, we pay attention to the links they make between problem solving and the
teacher's lesson : we try to identify the knowledge used by students in problem solving, by
themselves or with the mediation of the teacher, how this knowledge is modified by interactions
between students or under the influence of the teacher. We also pay atiention to home work, the way
students prepare the tests, how they leam for these tests and by these tests and we search a possible
relationship betwceen specific successful problem solving for instance and global success dunng the
school year.

1.2, Methods

In order to do this study, we have chosen to make some cases studics by observing several
classcs on the same mathcmatical topic. We are collaborating with a sociologist to study the
interaction of cognitive and social factors.

We have chosen the 10th grade (1516 years old) because it is in France the first year of "lycée”
{10th to 12th grades) and the last year before onentation into scientific, literary or economic sections.
We have taken into account three variables : the mathematical topic, the teacher and the class.

We sclected two mathematical tapics that are new at this level : the absolute value (including the
absolute value function) and homothety. The first one is a bit marginal in the curriculum at this level.
The second one has a more important place : it is an opportunity to use the vectoriel calculus which
has been introduced two years before, about translation but only with addition : the multiplication of a
vector by a number is new in this class,

For the teacher, one variable which we selected is his experience : for the mathemalical topics
sclected, we planed to observe leachers who are used to teach in fower grades and others who are
used to leach in higher grades with the hypothesis that the first ones will be more attentive to the
consolidation of previous attainments and the second ones to the preparation of future knowledge.

For the class, we intended to observe the same teacher in two classes of the same grade but not
with the same knowledge : one considered as a "good” class and one as a “weak” class.

We have got observations in the classes, students'tests, interviews with teachers and with
students...

The rescarch is still in progress and here we present one topic : the absolute value (analysis of the
new curricuium, choices of 2 teachers) and the observation of one lesson of the same teacher in two
classes of different levels.

2. The teaching of the absolute value
2.1. A new presentation of the absolute value in the French curriculum.
2.1.1. The classical teaching of this topic before 1990.

In the precedent curriculum, the term “absolute value® was introduced (up to 1986) in the 6th
gradc in the same time as relaive numbers : it was deftned as the number without the sign, namely 2
relative number has a sign and an absolute value, 2 number and its opposite have the same absolute
value, In the 6th and 7th grades, it was used to cxpress the rules of operations bn relative numbers,
but it was (up to 1988) actually studied and used on and after the 8tk grade (13-14 years old), with
regard o relative numbers and poinis marking on a graduate line, but also functions (that were
introduced on the 8th grade too), solutions of cquations.

1t was introduced and treated from a numeric and an algebraic point of view. The definition of Ixl
was given in onc of the following ways: "the positive number among x and -x", or *IxXI=xifx 20
and Izl = -x if x s 0." It was uscd to mzke somc excrcices a little more difficult, for instance
resolution of equations and incquations. We found in 8th grade exercices like
"Find all the real numbers x such thatIxl <3 ;1 <l < 2 ;x> x;Ixl<x;IXx- <2

12x+9 < 3,5 ; Mx-51 = 3%, Sometimes, it was required to place these numbers on a graduate line.

So




There were sometimes more difficult exercices even in 8th grade, like:
2x-
"Calculate the rational numbers x such that gx;-_%l =2"or "

2)&-3I v .

2= -

"Find all the x such that Ix2-4! + [x-2! =0", "lx-1-1l=1" "ix-11-11 < 1"

*Interpreting absolute values as distances between points on a graduate line, find x such that ix-21+
Ix-31 = 5", Ix-2t + {x-31> 2",

The nction of furction was introduced in this grade and we found also exerctces like :
*Consider the function f defined by f: R — R f:x — Ix-2I

1) Caleulate £2) ; (-5.5) ; (@) : f(0) & f(-1)

2) Let x be a real number superior or cqual to 2. Compare real numbers (x-2) and Ix-2!
Prove that the real number 3.5 is the image by f of one and only one x superior or equal to 2 ; find
this x.

Same question for % 1551

3) Let x be a real numbser inferior to 2. Compare then real numbers (x-2) and 1x-2i

Prove that the real number 3,5 has one and only one antecedent inferior to 2 ; determine this
antecedent.

Samc question for% 1551,

4) Is the function f a bijection from R onto R* 7"

In the 10th grade, the propertics of the absolute value were restated at the saine time as
approximations, but in the exercices on approximations, expressions with inequahties were more
used than the absolute value. Nevertheless, there was a large use of the absolute value in the excercices
about functions : " Study and draw the graph of the functions f(X) = 1-2x>+5x+3! ;

f(xy = x2-Ix ; f(x) =\ll4—9x| (X)) = IxI-1 s f(x) =yin+2x4) ; f(x) = V2x+Hx-11" ...

Hovvever, the official instructions and commentaries on the curnculum of 10th grade precised
since 1982 about the absolutc value : "the essential pointis to be able 1o interpret Ib-al as the distance
between the points a and b, relations such that Ix-2i<] or Ix-2l<1/100 with intervals the centre of
which is 2, to be able to do some simple majorations using the triangular inequality... The sudy of
some piccewise affine functions is a reasonable objective. Other examples accumulating absolute

. . : . 2x45
valucs, as the study of the fuction 1x-Ix- 1l or the solution of the equations lIxI-3f + 2+Ix!l = 1 or | -‘—_l—-i

= V(2x+3)? are dependant on gratuitous technics and can do nothing but repulse students.”

2.1.2. The new curriculum

The absolute value caused a lot of crrors for students many years after its introduction (see for
example Duroux, 1983 or Chiarugi, Fracassina, Furinghetti, 1990). In particular, students hardly
accept that Ixl may be -x, and when they have to study Ix-2l, they distinguish the cases x>0 anc x<0.
These errors seemed to be related to the early definition of the absolute valuc as the number without
sign. So this notion has becn considered as difficult and of no real use for this grade, and now,
students (the first were those who began secondary school in 1986), mect the absolute value for the
first time in the 10th grade (since 1990), as a distance on the real line and as a panicular function (the
theme of funcuons is important for this grade and it is also new : before, there are lincar and afline
functions but the notion of function is no longer introduced in the first years of secundary school).
Exercices like thosc above have disappeared from 8th grade, we now find some of them in the 10th
grade. Some others cannot be offered even in this grade because there 1s no longer definition of
function, bijection and so on and the only functions composed with an absolute value that are now to
be studied in this grade are of the type Ix-al + b.

In the new handbooks, the absolute value is defined as the distance between x and 0. The
distance between numbers 15 said to be the usual distance between the points getting these numbers as
abscisses on a graduate line : "the largest minus the lowest™). Some handbooks define la-b as dfa,b)
before defining lal as the particular case where b = 0. They don't speak of invariance of distance by




translations to justify that the two definitions given for ixl when x=a-b are the same. According to the
official instructions, the links between absolute value and definitions of intervals are reinforced,
cquations and inequations like Ix-al =b or Ix-al <b are first solved in a geometric way.

Does this new curticulum allow to avoid the difficulties described above 7 It is difficult 1o know.
We have some informations by the evaluation made by APMEP! (1991). But as the competences
expected from students at the end of 10th grade are quite low, there arc few questions about the
absolute value. The refationship between absolute values and distances seems better. Nevertheless,
students succeed the translation from distances into absolute value for the definition of intervals the
center of which is positive but the other cases and the translation in terms of inequalities are not yet
mastered : among 1800 students,

- B6% can tranlate d(x;7) <3 in Ix-71 5 3 but 48% only can tranlate the same in4 s x < 10

-42% can tranlate IXx+5! < 1 ind(x;-S) s 1 and 29% in-6<x < 4 ;

- only 29% can translate -2 < x <2 in d(x;0) <2 and 28% in IxI < 2.

This evaluation took place the first vear afier curriculum had changed and perhaps teachers had not
yet completely changed they way of teaching this notion which was not new in this grade before.

Chiarugi and al. found only 39% students 14 years old but 80% 17 ycars old able to draw on
the real line the interval such that Ixl < 3.

It is difficult to compare the other questions, except the better success in numerical questions
than in algebraic ones : 41% gave a right answer {or the 4 questions (yes, no, | don't know):
ifa=-5;b=25;c=-13,thenla-bi=20;lcl- bl =-12 ;a + Ibcl =33 ; la-bi - fa+bl = 10,
but only 20% gave a right answer for the 4 questions : whatever reals numbers are a and b, we can
say thatla-bl sa ; la+bi = a+b ; la+bl = fal + I ; la+b! < lal +1bl.

For the function aspect of the absolute value, 60% can draw the right graph for g defired by g(x) =1
and 53% can complete the variation table

X j-3 7

g(x)

2.2. What type of problems is the absolute value a suitable tool for ?

The absolute value 1s a tool to have shorter formulations, to define functions with only one
algcbraic expression, instead of scveral ones, as an example it is a convenicent way to express square

roots : Y(f(x))? = if(x)! or positive magnitudes as distances, areas... but one may always avoid it by
considering several cases. Moveover, to solve equations or inequations, you have to remove the
absolule value and distinguish cases. But, since there is no longer formalisation of the notion of limit
in secondary school. the expressions the students have to consider can often be written easily without
the absolute value; so it is not very useful for problem solving. So, the status of this concept makes it
difficult to introduce as an implicit tool 10 solve a problem. Morever, it is nearly impossible to find a
problem which is not given in a mathematical form and for which the absolute value is a suitable tool
for solving it (see for instance the problem analysed in 3.1.). If we want that the students use this
concept, we arc nearly obliged to ask them to do it by exercices which need translations between two
langages, for instance intervals defined by their ends or by their centre and radius like these :

! Associaton of tcachers of mathematics




valeur absolue distance drotte des réels encadrement intervalle

ix-21 <3 dix;2 <3 | —f~g~prorrrd—| -1=xs5 x €[-1;5]

Il <7
Ix-11 <£3/2

d(x; 5) <92

Ix+3/21<52

ldsv¥V2r <15

V3 E(1,73:1,74]

br-2277 < 102

In other exercices as study of functions, the function to study 1s given with an absolute value
and the student has to distinguish different cases to study it. Itis difficult to find a probiem in which
the student has to use absotute value to define a function because it is always possible to do it whitout
the absolute value, except if the student has to enter this function in a computer or a calculator, for
example lo'draw the graph. The absolute value provides also means to make counterexamples : it
gives the only function studied at this level that is continuous and not differentiable everywhere, For
this, it is used, as square roots, to produce functions more difficult to study and to give the
opportunity of studying the sign of algebraic expressions, as we saw in the analyse of handbooks.

2.3. The choices of two different teachers

We observed the lessons prepared on this topic by two teachers : teacher A has a long expenence
of tcaching in the first ycars of secondary school : he had teached for nearly 20 years in a "college”
(6th to 9th grade) and 2 years in a "lycée” before the observation ; lcacher B has always been in a
"lycée” (for about 1B ycars) and he teaches in "Termunaic C” (the beginning of calculus, the last year
of sccundary school for students who wants to begin scientific section) since many years. The 2
teachers said that they follow the official instructions and define absclute value from distance.

Teacher A started from distance in various situations, namely "in space, (thenin a plane, on a
line, on a graduate line), you have a point A, the unit of fength being cm, find the points M (resp. M',
M"} such that AM = 3 (resp. AM' £ 4,5, AM" > 2)" and calculation of some gaps between
temperatures.

Thea he defined d{x,y) as the distance MN where M and N are respectively the points the
abscisse of which are x, ¥ and precised d(x,y) = x - y il x> yand d{x,y) = v - x1f y > %x. He gave
"technical” exercices (some like the one abo ¢ and 1esolution of equations and inequanons, both from
an algebraic and geometric paint of view).

Then the students had to solve 2 problems n small groups: "M. Dupont” (sce below) and
another one about distances and geometnc transformations (as an example onc quesiion was : "On the
graduate line {(d) with the reference (O, [). A has an abscisse 3 and M an abscisse x, P is the symetnc
of O around M, write the distance AP as a function of x7). In these problems, students met the
absolule value as a function. Students also played on a computer with a game of targets in which they
had to guess an interval. Lastly, propertics of the absolute value were studicd.

Teacher B started from the distance only on a graduate line. First, he studied only the numenc
and algcbraic aspects of the absolute value, with 1ts properties, he gave the same definition as tcacher
A and insisted too on the geometric way of reselution for equations and inequations. The absolute
valuc as a function was studied tw- =onthes later in the chapter about functions. At this moment, the
problem "M. Dupont” was given 1o solve at heme.

For the cvaluation, their choices were net the some to test the numeric and algebraic aspects of
absolute value : teacher B asked to complete a table of 4 columns (absolute value, distances, intervals
and drawngs, incqualities: some exercice like in § 2.2). Teacher A ashed questions about distances




and graduate line in a previous test but without absolute value. Both of them gave equations and
inequations to solve but teacher A asked questions with numerical difficulties, uniike teacher B, who
used entires numbersor 2,5;1,5:0,25 ...

Moreover, the 2 teachers gave a problem that needed more research from the students : teacher A
gave a problem which looked like *M. Dupont” and teacher B one which looked like the one above
about geometric transformations.

We saw that technical excrcices were easier in class B than in class A and so the results were
better. In the "good class” of teacher A (se2 below), 12 students on 32 (37,5%) succeed (except
perhaps errors on numbers) for Ix - v3 +11 =3*102 ; 13*105 - x! < 5% 105, 8 make an error on signs,
12 make errors on powers, 7 make errors linked to absolute value. We sce that, when the gecometric
representation is not easy to draw and to read, many students fail.

In class B (a "good class” 100), for the table, on 33 students, 18 (54,5 % ) do at most one error
(9 have no crror in translations, 9 fail only in the translation of d(x,1) 2 3 by inequalitics), among the
others, 9 do an error with sign. But, as there was 21 answers 1o give, on the whole (i.e. 693), 96%
arc corrects. For equations Ix-2! = 3 ; Ix+51 = 2 ; Ix+0,5| = 3,5, 26 students on 34 (76,5%) have 3
right answers. For inequations Ix-31 < 1,5 ; [x+1l < 3, 27 students on 34 (79,4 %) have 2 right
answers, 23 (67,6%) succeed the 5 questions.

3. Observation of the same lesson, by the same teacher, in two classes :
a "good class" and a "weak class".

3.1. The problem and the actual aim of the lesson.
The following problem was given by the same teacher, Teacher A, in the same week, to the
students of his two classes of 10th grade, one of good level and one of weak level.

Mr Dupont works in a society, the head office of which is in Paris and which has branches in Rouen,
Yvetot and Le Havre, all located, in this order, along the same road from Paris to Le Havre. The
distances are : Paris-Rouen : 110 kms, Le Havre-Y vetot : SO kms, Le Havre- Rouen : 85 kms.

On Monday and Saturday, Mr Dupont has to go in the head office,

on Tuesday and Thursday, he must go in Rouen,

on Wednesday in Le Havre :

and on Friday in Yvctot.

He comes back lhome every night.

Where should Mr Dupont live if he wants to drive the less as possible ?

This teacher has a somewhat innovative practise in the 2 classes : during onc session, students
are offered problems involving the new concepts as implicit tools ; they are organized in small groups
10 solve them. Dunng the nexg session, the teacher directs a synthesis, and, at the same time, gives
the lesson : definitions, explanations ...

The problem "Mr Dupont" was given just aiter the definiton of the absolute value from
distances. Students were organized 1n small groups of 3 or 4, half a class at a time. They got about
one hour and forty five minutes for solving this problem in which a first question required "how
many kilometers has Mr Dupont to drive if he lives in Paris ? il be lives in Barentin, 17km West from
Rouen ?° and thers were two other questions with a different organization for the weck of Mr Dupont
(with in particular a case in which the minimum was reached on a whole interval).

This problem involves distances on a tine and scems a good problem to use absolute value. It
was the reason why teacher A chose this problem. But an a prion analysis shows that studcats are
sure to find the good answer cven if they try only the given towns. 1t is not because the problem is
bad, but a necessity of this type of problems : if you considere a sum of absolute valucs of
polynomials of first degree, you have a piecewise affine function and there is hecessarily an end of an
interval where the minimum or maximum is reached. The best you can do is that this minimum is
reached on the whole of onc interval. Otie needs to express the function only to prove but not to find.

So, if you want that the students define a function, you have to require it. Anyway, when
defining the distance covered by Mr Dupont during one weck, students have no reason to use
absolute value : to prove, it is easier to have the function defined on tntervals on which it is an affine
function. It is only in the case where you need only one algebraic expression, for example to usc a
compuler that the absolute value will be an economical way.




We now analyse the realization of this situation in two classes.

From the synthesis realized in another lesson by the teacher, we can see that he was going
towards two cbjectives : first, to use the sense of variation of affine functions in a proof and restate in
this occasion the difference between affine and linear functioss, second to introducc a table o present
the different algebraic expressions for the distance.

If the origine of the graduate line is in Paris and x the abscisse of Mr Dupont's home :

Paris Rouen Y vetot Le Havre

|Monday 2x 2 2x

Tuesday 2(110-x) 2{x-110) 2(x-110)

Wednesday 2(195-x) 2(195-x) 2(195-x)

Thursday 2(110-x) 2(x-110) 2(x-110)

Friday 2(145-x) 2(145-x) 2(145-x)

Sawrday 2x 2x 2X

week 1120 1120-4x-—-680 —4x+240 —— 820 —— 8x-340 ——1220

3.2. Development of the students’ research in different groups.

Three groups of four siudents were observed during their rescarch, each in a different half-class,
two in the "weak class” and one in the "good class™.

For the students the main difficulty was to put the problem in a mathematical form. They drew a
line and place the towns, but did not think of using a vanable for the abscisse of the house, In fact,
they thought that Rouen was the good place (and 1t was) and, after some tests, tried to find a symetry.
But the symetry was goed if you were not too far from Rouen (tn fact as far as Y vetot : 35 kms) and
was wrong after.

It was the teacher who asked a mathemaiical proof and said that the house will be represented by
a point M with an abscisse x. This order of cvolution was symewhat similar in the three groups but
the deveclopment in time was quite different : in the good half-class, the intervention of the teacher
came after about half an hour when in the weakest of the three half class, it came about ene hour fater.

All groups thought of representing the road by a graduate line because the precedent lessons
about distance insisted on this representation, but the weakest groups spent plenty of time to discuss
how to do that (choice of origin, unit...). So the three groups spent very inequal time to try to write
the distances with "x", and the work was (o complete at home. But, on the next lesson, theweakest
students had not done it. so the synthesis made by the teazher came after an actual research for the
best students and nearly rothing in the algebraic domain for the weakest ones.

3.3. The synthesis of the teaxcher in the two classes

When observing the same teachr ¢ in two classes, we started from the hypothesis that the teacher
fits 1o his students and we were exprcting some differences.
We detected two marn differences between the 2 classes in the synthesis

- time is not managed in the same way : there are more digressions in the class of lower level,
Morcover, in this class, those digressions are caused by an error or an insuffisantly accurate answer
of a student ; they give an opportunity to restate previous lessons. In the other class, they give an
opportunity 10 anticipate further lessons. Paradoxically, more difficult questions may be asked in the
class of lower level,

For example, a student said that a curve like this was a parabol because it !
had a symetry, the teacher expected that this propesition would be refused | /
because the equation was of degree . It secms that the students were not \ |

able to say that, in the other class, onc student gave this argument so a hule
time was spent for this question but we don't know how many should have | | <
been able w0 dot. i




- there is more heuristic discourse in the class of lower level, br.t it 1s more algorithmized.

We said that this teacher has an innovative practise. Moreo* ¢r, he gives much place to heuristics in
his discourse. We stedied the non mathematical discourse «n the two classes during the synthesis of
the session "Mr Dupont” with the method presented in PME in Assisi by C. Chiocea, E. Josse and A.
Robert. We were expecting the rate of explanations higher in the good class. In fact it was a little

higher in the weak one but it was cul in smaller units and more repetitive, we said more
algorithmized.

Conclusion

About a marginal content as absolute vaiue, we saw that the choices made by teachers, who said
1o follow the official instructions, were quite different, including cvaluation. We are now going on
this research by observing 5 teachers, including teachers A and B in 5 classes, on absoiute value,
equations, inequalities. We arc going to construct a common test for these five classes. and see the
cvolution in the different classes of some students getting the same resulis at the beginning of the year
in numeric and algebraic domains, with reference to the test that, now, in France all students pass at
the beginning of 10th grade.

Another question is the differences in the way the same teacher conducis the class, according to
the level of students. Here, we have a case study. Will the differences observed be the same for
another mathematical concept ? for another teacher ?

Nevertheless, WE think that we may retain as a general fact the important differences in the
actual work of students during activities aiming at giving sensc to mathematcal concepts : for some of
them, the work during the class prepares the understanding of the lesson , for the others, it is far
from this... Then, what help to give to students during their rescarch for making it morc suitable, but
without reducing this research to nothing ?
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THE GAP BETWEEN ARITHMETICAL AN ALGEBRAIC TYPES OF REASONING
IN PROBLEM-SOLVING AMONG PRE-SERVICE TEACHERS

ABSTRACT: The management of teaching situations means that teachers
are confronted with a number of choices as to the approaches they are
to favour in an introductory algebra context whereby connections to
arithsetic are put to good use. The cholces a teacher makes are
strongly influenced by the relationship which he or she maintains
from the outset with these two fundamental areas of knowledge. Three
groups of future teachers (164 students) were questioned with a view
to analyzing to what extent these students were able to shift back
and forth between these two areas of knowledge within the particular
context of problem solving. Interviews on either an individual basis
or in a dyad format were conducted with a number of subjects, and
have served to bring out the gap which emerges as the different types
of reasoning are deployed.

RESUME: L'‘enseignant, dans la gestion des situations didactiques, est
aux prises avec des choix a poser en regard des situations et
approches & privilégier dans le contexte d'une introduction a
1‘algébre et d'une saine articulation avec 1'arithmétique. Ces choix
sont fortement marqués par le rapport que lui-méme entretient a
priori avec ces deux domaines de connalssances fondamentaux. Trois
groupes de futurs enseignants (164 étudiants) ont été interrogés en
vue d’analyser le passage qu'lls sont & méme ou non de faire entre
ces deux domaines dans le contexte particulier de la résolution de
problémes. Des entrevues individuelles et dyadiques condultes auprés
de gquelgques sujets pointent 1'écart qul existe entre les
raisonnements mis en place de part et d'autre.

A dissociation between arithmetic and algebra has been observed
to varying degrees among students who have received instruction in
algebra (Lee and, Wwheeler, 1989); such observations have served to
show that these students do not in any way appear to see the
relevance of algebra for arithmetical situations that could call for
this other type of reasoning, no more than the same students appear
to see the importance of making use of arithmetic for occasionally
determining the un-truth of an algebraic statement. This necessary,
functional dialectic involving two areas of knowledge that are
essential to any meaningful grasp of algebra {(Chevallard, 1989-90)
thus appears to go completely unnoticed by students.

The dissociation, among students, which arise between these two
universes obliges us to examine not only the nature of the teaching
situations involving arithmetic and algebra which students undergo
but also the relationship which the teacher him-or herself maintains
with these two basic areas of knowledge in which he or she is called
on to act and interact. The choices which a teacher makes concerning

the structuring of classroom learning situations depend among other
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things on the relationship which he or she has with the knowledge to
be taught (all forms of knowledge reinterpreted according to the
postulates and cognitive experiences of the person). It is through
such choices that the instructor thus refers to the play and
interplay of issues underlying the didactic contract present in the
classroom setting to organize the operations whereby a student takes
hold of knowledge. Thus the relationship to knowledge manifested by
the instructor inescapably produces an impact on the relationship
which the student maintains toward the knowledge being taught, in
this instance arithmetic and algebra. But what exactly does the
relationship to the field of algebra involve? And what, then, those
relationship to the field of arithmetic entail? And are teachers
capable of establishing a dialectic between these two fields?

In this study, we have chosen to take a closer look at the
future teachers with whom we have been in contact. On the other hand,
algebra as a whole encompasses too large a field to serve as a
subject of research for us. Hence, we have narrowed down our choice

to problem-solving for two reasons: 1) the importance which has been
attached to this area of activity in, precisely, the development of

algebra in elementary and secondary teaching programs; 2) the
experience which future instructors have acquired in these two
fields.

OBJECTIVE OF THIS RESEARCH

The fundamental objective of this research is concerned with
examining the modes of problem-solving which student instructors make
use of in arithmetical or algebraic contexts to identify the
resistances and eventual difficulties which arise in the shift from
one type of approach to the other. Do student instructors perceive
the relevance of moving on to algebra? Does arithmetic appear as a
useful tool to fall back on on occasion? The following questions have
guided our research: are pre-service teachers capable of easily
moving back and forth between each type of reasoning (from arithmetic
to algebra and vice versa) and can they do so spontaneously according
to the different problems which justify using one mode or other or
when called on to do so? Do they provide evidence of resistances in
this movement from one type of handling to the other?

METHODOLOGY
With the foregoing in mind, during an initial phase we presented
a written test made up of eight problems (four "arithmetic" problems




and four "algebra' problems) to students from three different teacher
education programs (future elementary school teachers (n=66},
secondary school teachers (n=33) and remedial teachers (n=65) who
will be called on to work with students having learning problems in
both elementary and secondary school settings). The schema which
Bednarz and Janvier (forthcoming publication) elaborated to analyse
problems was used to develop the test. This first step enabled us to
sort ocut those students who essentially relied on arithmetic to solve
the eight problems contained in the test from those who mainly used
algebra, as opposed, finally, to those who mixed their use of
arithmetic and algébra. Eight students from each of the three groups
were then selected to participate in an individual interview. 1In
addition, in a later phase, a number of subjets were requested to
participate in dyadic interviews in which one student with
“"arithmetical tendencies" and another student with "algebraic
tendencies" were involved together in problem-solving. The latter
type of interview is useful in that it offers, on the one hand, a new
angle from which to view the distinctions between arithmetical and
algebraic types of reasoning evidenced by the misunderstandings
characterizing each partner, and serves, on the other hand, to shed

light on the difficuit articulation of these two fields among pre-
service teachers. We shall return to a number ©of the observations
which we have derived from these interviews once an overview of the
results of the written test has been presented.

RESULTS

The results of the written test provide evidence of a dichotomy
between arithmetic and algebra among pre-service teachers. Thus, the
great majority of future secondary schocol teachers (SEC) confine
themselves to algebra, even when dealing with "arithmetical' problems
(sec fig. 1).

On the other hand, few students from the group of (future
remedial teachers (REM) make the shift to algebra whenever the
situation requires it (see fig. 2), altough their duties will
eventually involve them with students with learning difficulties, in
connection with algebra in particular. Finally, the group of futur
elementary schocl instructors (ELEM) appear to be the best prepared
for playing off both of these fields.

When the interviews are used to examine the gap between the
"arithmetical" students from their "algebraic" counterparts, the
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KEY: arithmetical procedures [[Hm algebraic procedures

[::::] other (no answer or ambiguous answer)

ELEM group SEC group
29,3%

Figure 1

Average percentage of arithmetical and algebraic procedures used
by each group for solving “arithmetical" problems

REM group ELEM group SEC group

92,5%

Figure 2

Average percentage of arithmetical and algebraic procedures used
by each group for solving "algebraic' problems

resistances which arise in the shift from one field to the
otherbecome easier to make out. These resistances can be grouped
according to: 1) the nature of procedures used to solve problems in
arithmetic and algebra, and 2) the kind of control which is brought
to bear on both situations.

1. Reasoning based on states versus reasoning based on
relationships

Our research has enabled us to better understand the gap which
exists between algebraic problem-solving procedures and a number of
arithmetical procedures used by pre-service teachers, principally
involved in problems having no affixed states (see the problem of
"Luc and Michel" in the appendix)}. To solve this problem, Mirielle,
for example, an "arithmetical" subject, will basically focus on the
differences which occur between the amounts ascribed to Luc and
Michel before and after transformation of these sums, an approach
wich Efric, the "algebraic" subject, will have great difficulty




understanding, as is shown in the following excerpt taken from a
dyadic interview:

Excerpt of a dyadic interview:
fric {EC), "algebraic" subject; Mirielle (MV), “arithmetical™ subject

L M {(notes taken down by Mirielle
? 3.50 ? on her sheet of paper)
4.20 .40

3.10
1.10
4.20

Ok. “"Luc has $3.50 less tharn Michel does'" (writes down L, M and
3.50, as above). Now to start with, I suppose that...

Michel has at least $3.50.

Well, let's say..., veah, you could say that. Ok, "Luc doubles
his money"..., Well, when you get down to it, I go about it more
using the difference between the two. I know that he, here,
there's 3.50 separating them. Uh, "Luc doubles his money whereas
Michel increases his money by $1.10." So I know that here there -
was an increase of $1.10. But I don't know that here. Here, I
don't know the amounts that they had (writes down the two "2"
(question marks)).

Ok.

what I do know is that there was a difference and that
afterwards, I've got Luc who's now got 40 cents less than Michel
(writes down ".40"}. So I know that the difference between these
two (draws an arrow between $3.50 ~And $.40), is $3.10.

$£3.10, you say...

A difference of $3.10, and 1 know already that... $1.10, here
there was an increase of $1.10. So normally that should give the
amount. ..

...that Michel had.
Here, that Luc had.

whereas Mirielle reasons in terms of the gap between Luc and
Michel's respective amounts, Eric on the other hand tries to f£ix the
states involved, particularly the amount belonging to Michel, as may
be seen when he comments, "Michel has at least $3.50". In contrast
with the reflections of her algebraic counterpart, Mirielle provides
clear demonstration of the qguite explicit distinction which she is
able to make between what Eric's interpretation and her own mode of
reasoning: she works off of differences whercas he thinks in terms of
states. The “structural" type of arithmetical reasoning adopted here
and which has been previously identified among cerlain students in
the study prepared by Bednarz and Janvier {(forthcoming publication),
appears tn be completely beyond the grasp of the algebraic subject,
who is unable to comprehend the underlying logic of this procedure:
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"I could see (her do it), but I don't understand why she did that and
I don't understand why it worked. I mean, where did she come up with
that? Like, the way she takes $.40 from $3.50, I don't get it"
{Schmidt, 1994, p.377}). We had the opportunity in ancther dyad to
observe how misunderstanding of what is involved in an arithmetical
type of reasoning based essentially on relationships can lead an
"algebraic" subject to reinterpret a solution derived from this kind
of reasoning in terms of states:

Excerpt of a dyadic interview:
Jacinthe (JL) "algebraic' subject; Nadine (NL) "arithmetical' subject

JL: She (meaning Nadine)} assumes that Luc is equal to 0. In other
words, it's as though Michel had 0 plus three-fifty. All right.
Then she adds a dollar-ten. Luc has got 0.

But it's not that... wWhen you get down to it, I'm not saying
that Luc is equal to 0. What I am saying is that Michel starts
out having three-fifty more (than Luc) and then adds a dollar-
ten, which gives him four-sixty. If Luc had gone the same way as
Michel, he should have had three-fifty less, really, but instead,
he's come up only 40 cents short (of Michel)...

Uh huh, that gives him four-twenty to start with...
To start with... Does thit make sense to you?

Yeah, because, look here. You said that Michel wound up with
four—-sixty, all right? You know that he's got 40 cents more than
Luc. So... You know he winds up with four—-sixty but that he's
got 40 cents more than Luc, so then you have to say that ILuc's
the one who winds up with four-twenty.

But to start with...

Sure, I can tell you it works, but... It's like you found the
amount Luc winds up with. All right. It's as though you were
saying that Michel winds up with four-sixty and Luc winds up
with four-twenty.

I'm not saying thaht Michel winds up with four-sisty. He's got

40 cents less, I mean more than Luc...

Play with relationships does not figure in the mode of reasoning
demonstrated by the "algebraic" subject, and when she was required to
explicate the procedure of the "arithmetical' subject, she tended to
transform the stated relationships into states: "Luc is equal to 0",
"Michel had 0 plus three-fifty", "Michel winds up with four-sixty
and Luc winds up with four-twenty". The type of reasoning at work
here is in keeping with algebraic-type problem-solving which, by
positing "x", fixes states and organizes relationships around this
symbolic substitute but also operates at some remove a "structural”
type of reasoning which is capable of developing indepeadently of
states,




Example 2; Task B7,6 Making a net from a three dimensional model. A three dimensional model
of a cube is placed in front of the student. The interviewer shows how the cube can be unfolded
without fully showing the net. The interviewer says, "Draw how this cube would look if it was
unfolded and laid flat". After the student has responded, the interviewer asks, "Why did you draw it
that way?”

Many examples of drawing and recognising nets of cubes can be found in teaching and test
material. Piaget and Inhelder (1967) found that children shown a series of correct and incorrect nets
of solids, were able to choose the correct one by guessing rather than demonstrating genuine
understanding. Piaget and Inhelder found that asking 2 chiid to draw theynet after being shown the
model revealed intentions much more intelligently motivated. Piaget and Inhelder (1967) found that
children who had been given experiences in folding and unfolding paper shapes were two or three
years advanced on children who had not had those experiences. Children who do not perform well on
this task would likely benefit from activities of transforming two dimensional shapes to three
dimensional shapes and vice versa.

me final comm

Clinical approaches to assessment have advantages for the classroom teacher wanting a deeper
understanding of their students’ knowledge of mathematics. Two critical aspects of clinical
assessment methods are, first, the quality and appropriateness of the task with which the student will
engage, and second, the skill of the interviewer in eliciting responses, and interpreting those
responses. The clinical interview is a tool from research that can he applied powerfully in practice
because the methodology is closely attuned to a fundamental activity of teaching and leaming --
interactive communications. It's power derives partly from the incisive nature of the task, and partly
from the potential for the interviewer to use the task to uncover conceptual strengths and weaknesses
of the student. Subtle differences in task presentation and structure can elicit responses from students
that reveal different aspects of conceptual understanding. For example, in the measurement task
above, th - directions are comparatively specific. More specific would be to provide square shaped
tiles with instructions to use the tiles to cover the region. Less specific would be the questions, "How
could this grid be used to find the area of this leaf? or "Why would we want to put this leaf on a grid
Tike this?" Several challenges face this approach to assessment, Mathematics education is 2 young
science where research into many aspects of the learning of school mathematics curriculum is
negligible or non-existent. Our analyses of tasks and their research bases raises many questions
needing sustained disciplined inquiry. Teachers need specific training in clinical assessment
techniques and principles, and school organisational practices need to change to allow clinical
assessments and follow-up strategics 10 be conducted effectively.
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Observations involving various students have shown us that
"arithmetical" subjects do not shift easily to algebra, for they do
not perceive the relevance of this field for problem-solving.
Conversely, th "algebraic" subjects we interviewed do not make the
shift back to arithmetic easily, and are unable to comprehend the
meaning and consequences of the operations performed solely on
relationships or transformations by "arithmetical" subjects.

2. The kind of control which is brought to bear in arithmetic
and in algebra

A comment by an "algebraic" subiect who was required to state
his views concerning an arithmetical and an algebraic solution to the
Yarithmetical" problem of "The pool' (see apendix) provides a clear
illustration of what distinguishes the kinds of control which are
made use of arithmetic and algebra:

“"Now, with this one {the arithmetical solution), 400 litres
divided by 40 minutes gives you a flow of 10 litres per minute:
seeing as how the first faucet produces 24 litres per minute
and the second 14 litres per minute, it would seem... to be a
comprehension problem. To her way of thinking, it's as though
she sees... I imagine a pool that's being filled and is goiang
to overflow. You've got to drain it. Now, with this one (the
algebraic solution), (24 X 40) minus (x X 40) = 400, the answer
is less obvious {to come by), because you could take away this
problem and deal with any other problem you want.

wWhereas, the other one (arithmetical solution) seems to me
stick more to the problem. This one (algebraic solution) is
more abstract. Once you'’ve got that down (pointing to the
equation), you could forget the problem for all intents and
purposes... You know, it's easier to see you're just doing
math... you're just replacing it by algebra... Whereas here
(arithmetical solution), you're referring to the gquestion the
whole time."

In arithmetic, contextual meanings serve toc guide the approach
adopted in problem-solving and to reassure subjects as to the
correctness of the types of reasoning used. In algebra, meaning
relating to context appears to play less of a role, if any; the
subject has no choice but to develop new criteria of validity. But do
subjects actually do that when they move on to algebra? What elements
contribute to the certitude among algebraic subjects that the right
types of reasoning have been used? Our observations have led us to
distinguish between two types of "“algebraic' problem-solvers among
pre-service teachers: 1) those who embark upon an instability as to
the meaning they give to variables and a lack of relective
involvement in the way they handle problem-solving, and 2) those who
bring constant control to bear on the development of algebraic
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calculations and who themselves readjust according to certain errors
they have made. Whereas the behaviour of the first group of subjects
presents a lack of control (the reasons for this remain to be
determined), these results lead us to examine the type of control
exercized by the second group of subjects and offer a number of new
research paths in this field.

CONCLUSION
Our research shows that dissociation of algebra and arithmetic
exists among many future teachers. It is possible to explain this
phenomenon in part on account of the gap which exists between the
types of reasoning deployed in each of these areas (particularly so

between the "structural” type of arithmetical reasoning and algebraic

reasoning). These results give us pause for reflection on the
capacity of these future teachers to comprehend the strategies
students make use of in introductory algebra, to reckon with these
strategies, and to install a productive articulation between
arithmetic and algebra among students throughout their secondary
school studies.

APPENDIX

Problem "Luc and Michel": Luc has $3.50 less than Michel. Luc doubles
his sum of money whereas Michel increases his by $1.10. Now Luc has
$.40 less than Michel. How much money did each have to begin with?

Problem "The pool": To fill a pool with a capacity of 400 litres, two
faucets are opened simultaneously: one to fill it and the other to
empty it. With the two faucets working, it takes 40 minutes to fill
the pool. How many litres per minute can be emptied by the second
faucet if the first faucet pours out 24 litres per minute?
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THE INFLUENCE OF PROBLEM REPRESENTATION ON ALGEBRAIC
EQUATION WRITING AND SOLUTION STRATEGIES

Kave Stacey and Mollie MacGregor
University of Melbourne

This paper investigates the possibility that the mental model which a student constructs of a
problem situation affects the equations written and the solution strategies used. A series of
problems was presented to 166 Year 9 and 10 students in such a way that different mental
models of the same problem situation were constructed. Success rates and strategies for
solving were affected by the mental model, and a psychological set could be induced which
tended to affect the perception of subsequent problems. As they worked, many students
extended their mental models to encompass further features of the mathematical structure.
For this reason, students’ use of algebra was not hindered by initial construction of a mental
model incompatible with algebra.

As teachers and researchers know only too well, the formulation of algebraic equations to
represent a problem sitation is very difficult for many students. However, if students are to derive
any real power from the algebra they leam in school, they must be able to take a problem situation
and formulate useful expressions and equations from it. Cnly after this step has been completed
comrecty can the routine algebraic procedures which they are taught be used for solving the problem.

Research relevant to students’ difficulties in formulating equations comes from several
sources. The extensive research on one-step arithmetic word problems (for summaries, see Fuson,
1992 and Greer, 1992) has established that the semantic structure of problem situations influences
both task difficulty and children's strategies, even amongst sets of problems which only involve one
mathematical operation (e.g., subtraction). Although there has been a good deal of research and
theory-building in the field of one-step arithmetic problem solving, there is no general agreement
about the nature of the knowledge and processes involved in modelling a situation mathematically
(Fuson, 1992). As Greer (1992) has pointed out, “psychological complexity” (p. 276) frequently
underlies what on the surface appears to be a simple relationship.

An increasingly sophisticated series of studies has linked aspects of the verbal presentation of
word problems (mainly arithmetic problems for young children) to task difficulty. For example,
factors such as the numbers involved, problem length and readability, and the degree to which the
semantic relations between the quantities in the problem are made explicit and easy to process (De
Corte, Verschaffel & De Win, 1984; Lewis & Mayer, 1987) are known to affect success rates.

Cognitive psychologists have investigated comprehension processes for algebra word
problems, concluding that students sometimes use schema-driven approaches which direct them to,
identify information to fill "slots” in the schema, sometimes make direct translation of words to
symbols, and sometimes “"read” information from various forms of mental representation of the
problem situation (Hinsley, Hayes & Simon, 1977; Paige & Simon, 1966). MacGregor and Stacey
(1993) showed how “reading” information from intuitive mental representations of comparisons of
two quantities explains one common en oy in formulating algebraic equations. An extension of this
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carlier work to the study of the effect of mental models on algebraic equation writing and the selection
of solution strategies is described in this paper.

Diffarent verbal descriptions of the same problem situations were used to encourage students
to form different mental representations of the same problems. One set of mental models is
compatible with algebraic solutions of the problems: the other is not. The study set out to explore:

(a) whether different verbal presentations of the same situation could lead students to construct
different mental models;

(b) to what extent students moved between the models;

(¢) how the mental models affected students’ success in obtaining answers, the strategies they used
and the equations which they formulated.

OUTLINE OF THE INVESTIGATION

Procedure

The items shown in Figure 1 were included in two forms of a pencil-and-paper test. The test
was given in two schools to 166 students in Years 9 and 10 who had been learning algebra for three
or four years. Test papers were randomly distributed in each of the seven classes panicipating, half
the students receiving Test A and half receiving Test B. At the beginning of each test paper there
were instructions to write an equation for each item and to solve it.
Construction of the items

The four items each des.ribe problem situations where the size of a part is to be found, given
information about the total amounts and various comparisons between the parts. ltems I, 2 and 3
have the same underlying mathematical structure; Item 4 is a variation. ltems 1A and 1B (see Figure
1) are both valid, simple, complete natural language descriptions of the same problem situation. They
pose the same question and are designed not to differ on any readability characteristics. ltem 1A
describes the problem as a sum of parts. It was expected that students would construct from this
description a mental model reflecting the sum of parts structure and as a consequence begin to solve
the problem by noting that two equal quantities plus 5 give 47. The first step towards a solution
based on this model is to subtract 5 from 47. The sum of parts model is totally compatible with an
algebraic solution, such as x + (x + 5) = 47, so 2x =47 - 5, eic. It also involves easy arithmetic.
In contrast, Item 1B describes the same situation as a division into parts. It was expected that
students would construct a diffcrent, but equally correct, mental mode! and consequently tend to
solve the problem by a strategy of "share equally, then adjust”. They would first allocate Mark and
Jan equal amounts (usually $23.50 each) and then try to adjust the amounts by giving some of Jan's
money to Mark. The first step in a solution based on this mental model is therefore to divide by 2.
This method of solution is not compatible with a solution by algebraic equations. The arithmetic
necessary is harder than for the sum of parts model. It was predicted that students working from a
sum of parts model (Test A) would find the problem easier than those working from a division into
parts model (Test B),. Evidence as to which mental model students constructed would be obtained
from the first symbols they wrote down or the first calculation they did: subtraction for the sum of
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parts model, division for the division into parts model.

TESTA

FA. Jan has $x. Mark has $5 more than Jan has. Alwogether they have $47. How
much has each person got?

2A. A group of scouts did a 3-day walk on a long weekend. On Sunday they walked 7
km farther than they had walked on Saturday. On Monday they walked 13 km farther
than they had walked on Saturday. The total journey was 80 km. How far did they walk
on Saturday?

3A. Jeff has to wash 3 cars. The second car takes 7 minutes longer than the first one,
and the third car takes 11 minutes longer than the first one. Jeff works for 87 minutes
altogether. How many minutes does he take to wash the first car?

4A The three sides of a triangle are different lengths. The second side is 3 cm longer
than the first side, and the third side is twice as long as the first side. The side lengths add
up to 63 cm altogether. How long is the first side?

TESTB

I1B. $47 is shared between two people, Mark and Jan. Jan gets Sx. Mark gets $5 more
than Jan gets. How much does exch person get?

2B. A group of scouts walked a distance of 80 km on a 3-day weekend. On Sunday
they walked 7 km farther than they had walked on Saturday, On Monday they walked 13
km farther than they had walked on Saturday. How far did they walk on Saturday?

3B. Jeff nas to wash 3 cars. The second car takes 7 minutes longer than the first one,
and the third car takes 11 minutes longer than the first one. Jeff works for 87 minutes
altogether. How many minutes does he take to wash the first car?

4B. The three sides of a triangle are different lengths. The side lengths add up to 63 cm
altogether. The second side is 3 cm longer than the first side, and the third side is twice as
long as the first side. How long is the first side?

Figure 1. The two versions of the test

Items 2A and 2B. and 4A and 4B, were also designed to prompt construction of different
mental models (sum of parts versus division into parts) for the same situation, although with three
parts rather than two. In these ifems, the sum of parts model is again compatible with an algebraic
solution and also leads to a solution by arithmetic reasoning with first step subiraction. However. no
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solurions readily follow from the division into parts model: no algebraic solution is available and the
arithmetic reasoning required to find out how to adjust equal amounts to meet the conditions is very
difficult. (In fact it was achieved by only one student, Martin whose work is shown in Figure 2.) In
both ftems 2 and 4, the prompting of the division into parts model was lessened a little, deliberately -
the key word "shared" was not used, and in Item 4 the first statement ("The three sides of a tiangle
are different lengths”) might suggest that division into three equal lengths is not a good way to start.
Of course all items can {eventually!) be solved by a guess and check strategy, with either or neither
mental model, and it was expected that some students would use this when other methods were not
immediately obvious to them.

Items 3A and 3B are identical. It is possible that a "mental set” created by the previous two
problems on Test B would affect students’ perception of its structure and consequently their choice of
first operation. On the other hand, if students did not perceive Items 2 and 3 as having the same

structure and hence did not transfer the previous solution method, Item 3 should be equally easy in
both forms of the test.

RESULTS AND DISCUSSION

Table 1 shows the percentages of correct answers for each item for each test, regardless of the
method used. Table 2 shows the number of students carrying out subtraction or division as their first
written operation on each item, and whether or not their final answer was correct. Some students
began an item in one way (¢.g.. dividing 80 by 3 in ltem 2B) and then changed strategy (e.g., toa
sum of parts subtraction or a guess and check method) to obtain their final answer. However, as the
purpose of Table 2 is to help identify mental models prompted by problem descriptions, only the first
operation written down was used to classify responses. We acknowledge that, in some instances,

students had probably already replaced their first mental model by another more promising one before
they began to write.

Table 1
Success rates on four items (N = 166)

vVersion n Item 1 Item 2 Item 3 Item 4§
A a3 73% 73% 73% 611t
B 83 67% 641 631 63%

Evidence for different mental models

Evidence that the different forms of presentation of items did indeed lead students to construct
different mental models is obtained by comparing overall success rates and the first operations
written. As shown in Table 1, there were more correct answers in Test A than in Test B, Combining
data in Table 1 for all items, the chi-square test shows an association significant at the 5% level
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between the test version and success on these items {x2(1, N = 664) = 4.17, p = 0.04]. Since the two
groups were well matched, it is reasonable to conclude that the difference in difficulty was due to the
different presentations.

Table 2
Numbers of correct and incorrect solutions related to first operation wristen down and version o] 1est

Test A Test B
Subtract Divide Other® Subtract Divide Otherd
v X v x v X v x v x v X
Item 1 34 3 18 15 9 4 22 0 30 27 4 [¢]
Item 2 42 8 3 3 16 11 37 9 5 14 il 7
Item 3 44 6 3 3 14 13 35 5 2 21 X2 15
Item 4 34 S 4 3 13 24 31 6 4 11 17 14

9Cacgory "Other” includes answer only, guess-and-check method, method not clear, and no answer.
Note. For Ticm 4, initial division by 3 but not by 4 is classified as "Divide”.

Table 2 links the problem presentations to the mental models constructed. It shows that 104
responses to Test B indicated division as the first operation whereas only 52 responses to Test A did
so. Similarly, submraction was indicated more often for Test A (176) than for Test B (148). The
association between the test version and the first operation chosen is highly significant {¥2(1. N =
366) = 18.6, p = 0.0001]. This finding supports the hypothesis that problem presentation is a factor
influencing which mental model is constructed.

Moving between the different mental representations

The results above support the hypothesis that the different test forms promoted the
construction of different mental models. However, as Table 2 shows, over one third of Test A
students appear to have used the division into parts model in Item 1. On the other hand, many Test B
students worked with a sum of parts model, particularly in ftems 2B and 3B. We propose that the
inability of the division model to provide satisfactory answers to the more complex items encouraged
students to extend their division representation to include sum of parts aspects. As students continued
to confront the mathematical structure underlying the set of problems, their mental model of the
structure was further elaborated and other aspects became dominant. Mental modecls are fluid rather
than static, and take on extra features as the solution process continues.

The approximately 10% difference (8 students) in success rates on Items 1, 2 and 3 shown in
Table 1 can be seen as being due to the greater persistence of the division into parts mode! by the Test
B students (se¢ "Divide x" columns in Table 2). Analysis of the incorrect answers leads us to
propose that students for whom the division into parts model was strong were more likely to be




satisfied with incotrect answers such as $23.50 and $18.50 for Itemn I, and (80+3)-7-11 for ltem 2.

Since the wording of Itern 3 is identical in both tests, the discrepancy between success rates
on this item (see Table 1) is likely to be caused by the psychological set favouring the division into
parts model induced by the two previous items. The written working on the test papers shows that
most students had used the same procedure for Item 3 that they had used for Item 2, often written in
exactly the same format. Examples of students’ work are shown in Figure 2. These and other Test B
students perceived Ttems 1, 2 and 3 as having identical structures, although the first two were
presented as a division into parts and the third was presented as a sum of parts. This is further
support for the fluidity of mental models.
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On Item 4, despite the “sum of parts™ format of the previous iterm 3B, and the statement that
the three sides of the triangle were different lengths, many Test B students showed continuing
evidence (see Table 2) of the division into parts model. It is therefore puzzling that Item 4A was not
easier than Item 4B. Some students with a sum of parts model for Items 2A and 3A did not adapt it
for Item 4A. Another puzzling feature is why so many students chose division for Item 1A. Possibly
the fact that the problem is about two people and a sum of money prompted them to think immediately
of the action of sharing.

Use of aigebra

Despite the explicit instruction to write an equation for each item, there were only 49 equations
(or sets of simultaneous equations) written for Test A and only 41 for Test B out of a possible total of
664 equations (4 x 166). The small number of equations writien (14% of the possible total) make it
unwise to draw firm conclusions whether students doing Test A (which prompted the model compatible
with algebraic solutions) found it easier to construct equations than students doing Test B. However,
there appears to be no difference. There was no evidence in the equations or attempted equations written
by Test B students of any tendency to try to express algebraically a "share equally then adjust” srategy
based on the division into parts model. It seems that the students who were prepared to write equations
were able 10 access mental models incorporating the sum of parts, as is required for an algebraic
solution.

Knowledge of algebra, or willingness to use it, varied considerably beiween classes. In one
of the two schools, most students avoided algebraic methods. In the other school. an equation was
written (but not necessarily used) in approximately 25% of responses. However even in this school.
Test A students were no more inclined than Test B students to try to use algebra. In these relatively
simple situations, there were frequent difficultics with algebra which seemed unrelated to the mental
model chosen. Some students omitted one or more terms when writing an equation, for example,
writing A +7 + A + 13 =80 in Item 2A or 2B. Students frequently used algebraic letters only to
record information, (e.g.. A + B + C = 80) and then used unrelated processes (arithnietic reasoning
or guess and check) to solve the problems. It seems that some of these Year 9 and 10 students see

algebra as a language for erpressing mathematical relationships but only a few realise that it is also
useful for problem solving.

CONCLUSIONS
The different presentations of the problems tended to cause students to construct different
mental models, evidenced by statistically significant differences in solution strategies as well as in
success rates. We have also shown that a mental set or schema induced by one problem can affect the
perception of subsequent problems. There is evidence that as students worked with the same
mathermnatical structure through the serics of problems, most of them readily extended their mental
representations to encompass other features of the structure. Our data support the view that

comprehension and problem solving are intertwined processes - comprehension is not a first isolated
step.
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As predicted, the group of students who were more likely to have constructed the mental
model vnhelpful for algebra wrote slightly fewer equations, but the data were not conclusive and
further investigation is required. There were no instances where students tried to write equations
based on the inappropriate model. Regardless of the test version, students who wrote equations had
access to the sum of parts model; indeed the routine of the algebraic sclution may itself prompt it.

The investigation of mental models related to common mathematical structures is a useful
direction for future research. Within even simple problem situations such as the ones used here, there
is a complex web of relationships between quantities which different students will perceive with
different emphases and interpretations. It is important for teachers to appreciate the variety of mental
models their studen:< nay construct and to appreciate that routine procedures {(such as solving linear
problems algebraically) are compatible with only some of these models. Students need to know that
there are alternative models of a situation, and that their initial perceptions of underlying structure may
not be the most useful.
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THE DEVELOPMENT OF ELEMENTARY ALGEBRAIC UNDERSTANDING

Elizabeth Warren

Australian Catholic University, McAuley Campus

The role of reasoning skills per se in the learning of mathematics has received little attention.
Yer the importance of such processes in mathematical learning has been often acknowledged. In
the algebraic domain, a recent approach for introducing elementary algebra involves
generalising from both visual patierns and tables of dara. The difficulties thar children
experience with these generalising processes have been well documented. But there remains a
need to explore not only the contribution these generalising abilities make to understanding the
variable concept but also the specific reasoning processes that are associated with this
particular mathematical leaming. This paper begins to explore these issues. A number of tests
were administered (0 355 studenis. Logical reasoning, analogical reasoning, patterning and
spatial visualisation all contribute to the algebraic domain. The results also indicate that both
generalising abilities contribute to predicting understanding of a variable concept, with the
ability to generalise from tables being more accessible 1o most students.

INTRODUCTION

A recent approach for introducing the variable concept has focused on the developmental
patterns that represents the transition from arithmetlic to aigebra (Mason, Pimm, Graham, &
Gower, 1985; Pegg & Redden, 1990). This approach entails introducing algebra by looking at
patterns, creating tables, describing the pattern, and “short handing™ these descriptions into
algebra. A number of research projects have reported the difficulties students experience with
this approach. For example: in their attempts to generalise most children could not express a
generalisation, disregarded all patterns when trying to generalise, and tended to use a procedurai
approach in reaching a solutior (Ursini, 1991); students experience many difficulties when
expressing relationships clearly in either natural language or algebraic notation {MacGregor &
Stacey, 1993); and arithmetic incompetence and fixation with a recursive approach seriously
obstruct progress (Orton & Orton, 1994). The focus of many researchers in the algebraic
domain has seemed to be on how students’ specific knowledge, especially that of the novice,
influences the nature of the processes they use.

Mzny researchers contend that mathematical competence requires both comprehensive
knowledge structures and general reasoning processes (e.g. Champagne, 1992; English, 1992).
The importance of fostering general reasoning processes in all areas of mathematical curriculum

has been widely documented. Such processes allow one to learn more mathematics, and to solve
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mathematical problems throughout life (Fennema & Peterson, 1985). Yet there has been a
paucity of research focusing on the role of these reasoning processes, especially in the learning
of algebra. Tt seems that different modes of algebraic representation involve developing an array
of powerful reasoning processes. The exact nature of these processes and the identification of
those associated with particular mathematical learning needs to be explored (Champagne, 1992).
This paper reports on part of a larger study, which explores childrens’ understanding of
early algebraic concepts. This paper begins to investigate how developmental pattemns relate to
understanding the variable concept, and the reasoning processes students apply in algebraic |
learning, with a particular focus on those used in interpreting, and translating symbolic and
visual representations, In mathematics, Lipman (1985) claims that spatial thinking, analogical
and logical reasoning, classifying and hypothesising, and an ability to perceive patterns and
generalise from them, all influence mathematical learning. A preference for a visual or
symbolic approach (o solution is also claimed to play a role (Presmeg, 1986,1992). Thus this
phase of the study was exploratory in nature and attempted to identify any relationships existing
between students’ general reasoning processes (namely spatial visualisation, spatial orientation,
logical analogical, patterning, and a preference of a visual or symbolic approach to solution),
and their understanding of pre-algebraic and early algebraic ideas (namely, generalising from

visual patterns and tables of data, and understanding the variable concept).

THE STUDY
Methodology )

Since the aim of this study was to explore relationships between general reasoning
processes and understanding pre-algebraic and early algebraic ‘deas, a correlational research
design was utilised (Isaac & Michael, 1985). Seven written tests were developed. These
consisted of six reasoning tests, including one test for ascentaining a preference for visual or
symbolic approach to solution, and one algebra test. Each test measured a different process and
understanding.

Logical reasoning, analogical reasoning, and pattern generalisation were each measured
by a separate test, each comprising ten items. Since spatial rcasoning, according to Tarte
(1990), consists of two distinct component, spatial visualisation (the ability to mentally
manipulate, twist or invert a visual stimuli) and spatial orientation (the ability to change ones
perceptual perspective when viewing an object), two tests were used to measure these aspects of

the spatial reasoning process. All items for these five tests were adapted from a wide range of




commercially available materials (e.g. Kit of Factor-referenced cognitive tests).

The test for measuring preference for visual or symbolic approach to solution was
developed from a number of well established sources (e.g. Krutetskii, 1976; Moses, 1982;
Suwarsono, 1982). The probiems demanded a minimum application of mathematical knowledge
but relied heavily on students’ general reasoning processes. All items could be solved by both
visual and non-visual means, and each solution was scored accordingly with a score of 0
awarded for a non-visual solution and 2 for a visual solution,

To test children's algebraic understanding, a number of different item types were
developed. These items tested children's ability to: complete patterns and tables and generalise
from this data to an algebraic expression, and understand the vaniable concept in a variety of
contexts. Questions were drawn and adapted from a range of sources (e.g.Kuchemann, 1981;
Quinlin, 1992). An cariier study, (English & Warren , in press) reported that there was no
significant corrclation between the ability to generalise from a pattern and understand the
variable concept. This was an unexpected result in nced of further probing. 1t was felt that
perhaps the original algebra test was either too short or too narrow. As a consequence, the
algebra test, for this study, was expanded and modified, with & greater emphasis placed on the

measurement of the patterning component.

Nature or the sample

Since the study was concerned with children’s development of beginning aigebraic

conceplts, children were chosen from Grade 8 and Grade 9 {mean age 13 years and 4 months) as
these are the two grades when algebra is formally introduced in the Queensland curriculum. The
sample comprised of 355 children drawn from two coeducational schools in the Brisbane
metropolitan arca. Chilaren attending both of these schools are representative of diverse socio-

economic and cuftural backgrounds. All scven tests were administered to each student.

RESULTS
Retiability of the tests

The reliability of cach test was determined by calculating the Cronbach alphas. Table |

presents a summary of these results.




Table 1

Reliability analysis scale for the tests

Component No of items Cronbach alpha
I.Logical 10 .61
2.Analogical 10 .55
3.Patteming 10 84
4 _Spatial visualisation 10 64
5.Spatial orientation 20 60
6. Visual approach 10 52
7.Algebra (patterning} 16 .86
8.Algebra (tabics) 16 .86
8.Variable concept 28 .89

Considering the number items in each test these reliability coefficient were regarded as

more than adequate.

Intercorrelations among the variables

As each test measured different reasoning processes and understandings, the aggregated
results from each test were used to ascertain relationships between these variables. A Pearson
correlation analysis was used to identify any intercorrelations.

The algebra test consisted of three distinct components: gencralising from visual
patterns, generalising from a table of numbers, and understanding the variable concept. Given
the emphasis on students’ ability to gencralise from patterns and tables of data in their early
algebraic learning, it was considered important to investigate the extent to which these skills
relate to each other and to understanding the variable concept. Corrclations were carried out to

identify any interactions between these components. Table 3 summarises the results.
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Table 2

Intercorrelations Between the components of the algebra test

Component 1 2 3
1. Algebra (patterning} - 67 54
2. Algebra (tables) -- .63

3. Variable concept

*p < .001

As shown in Table 2 there were significant correlations between all components of the

algebra test. The significant correlation between the ability to generalise from patterns and the

ability to generalise from tables was not unexpecied, given that these two processes comprise a

number of similarities. Of particular injerest to this study was the correlation between the

variable concept and the ability to generalise from 12bles compared with the correlation between

the variable concept and the ability to generalise from patterns. A stepwise multipie regression

analysis was camied out to ascertain the role each generalising skill plays in predicting

understanding of the variable concept. Table 3 summanses the results of this analysis.

Variable B SEB BETA
Step 1
Algebra (Tables) 48 .03 49
Stzp 2
Algebra (Patterning) .19 .03 .21
Note, R? = .39 for step 1. delia R* = .03 for step 2

(p at cach step is below .05)

The score for the ability to generalise from tabies was selected first. 2. ounting for 3%

of the varance. The independent contnbution of the ability to gencralise from patterns
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accounted for 3% of the variance. Thus both the ability to generalise from tables and the ability
1o generalise from patterns are both related to an understanding of the variable concept, with the
ability to generalise from tables being a stronger predictor of success.

Various reasoning processes correlated with the three components of the aigebra test.

Table 4 summarises the results of this analysis.

Table 4

Intercorrelation_among _the Reasoning Processes and the Components of the Algebra Test

7

1.Logical . . . .38
2. Analogical -
3.Patterning . - .30
4.Spatial Visualisation

5.Spatial Orientation

6.Visual approach

7.Algebra {(patterning)

8.Algebra (tables)

9.Variable concept

* Correlations below .3 have been omitted

The spatial orientation reasoning process and a prefrrence for a visual approach to
solution failed to correlate significantly with any components of the algebra test. Both logical

reasoning and spatial visualisation correlated significantly with all three components of the

algebra test. Analogical reasoning was significantly correlated with an ability to generalise from

tables, and patterning with an ability to generalise from patterns.

DISCUSSION

This research raises a number of issues regarding the teaching of algebra. Firstly logical
reasoning, analogical reasoning, patterning and spatial visualisation scem to have some bearing
on success in the algebraic domain. Yet little opportunity exists in our current curriculum for
development and fostering of these reasoning processes.

Secondly, cven though the ability to generalise from patterns contributes to an
understanding of the variable concept, the ability to generalise from tables is a stronger

predictor for success. In fact, there scems to he considerable overlap between these abilities




with the ability to generalise from tables being the more accessible of the two (Both tests
comprised a total of 24 marks with the mean score for the patterning component being 11.77
and the mean score for the table component being 13.49). Thus generalising from tables is
perhaps a more feasible means of introducing the variable concept. Once understood, this skill
could be subsequently drawn upon when generalising from patterns.

Thirdly, generalising from tables and generalising from patterns have specific reasoning
processes that need to be developed and fostered. Both draw on the logical and spatial
visualisation reasoning processes. But specifically, the development of Analogical reasoning
seems to be related to interpreting and generalising tables and the development of the patterning

reasoning process seems to be related to generalising from visual patterns.
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ALGEBRAIC THINKING IN THE UPPER ELEMENTARY SCHOOL:
THE ROLE OF COLLABORATION IN MAKING MEANING OF ‘GENERALISATION'

Vicki Zack, St. George's School and McGill University
Montreal, Canada

Twenty-five children in a Grade 5 elementary school classroom worked alternately alone and
together to solve one pivotal non-routine problem and other assigned related problems. Guided
by the teacher who was observing their reasoning, nudging and learning with them, a number of
the students came to see the structure of the problem, identified key ideas, and were able to
express them algebraically.

The creators of the National Council of Teachers of Mathematics (NCTM)
Standards envision classrooms in which students take charge of their learning,
debate alternate solutions and develop connections and meanings as they speak
together. Vygotsky's famous concept, the zone of proximal development, suggests
that "skills ... and understandings are achieved in interaction with others before the
children can do them on their own" (Newman et al, 1989, p. 15). For the past six
years ] have been a homeroom classroom teacher and researcher in a Grade 5
elementary school classroom (10-11 year olds). The students in our school have been
tackling non-routine problems throughout their elementary school years. In this
paper, I would like to describe how in the 1993-1994 year, a number of children
working together progressed further than had children in my class in any previous
year, in regard to algebraic thinking,.

1 will suggest some possible reasons for the difference. In the 1993-1994 year,
when [ assigned a problem I had presented in prior years, a new strategy was put
forth and a few of the children were seen to use each other's ideas as springboards to
a greater extent than had been the case previously. I endeavored to build upon the
children's emerging ideas by providing other problem-solving challenges, aiming
thereby to promote reflection and connections. Also, due to my participation in a
graduate course on algebra taught by Lesley Lee (January to April, 1994, Concordia
University), I had exposure to ideas about algebra I had not reflected upon
extensively before, such as algebra as generalised arithretic (Mason et al., 1985) and
different definitions of what algebraic thinking might be (Davis, 1985), and to ideas I
had not encountered previously, such as Bednarz's distinction between educators
she calls algebra types, i. e. those who always think in terms of equations, and those
who are arithmetic types, i. e. those who endeavor to connect with children's
(hopefully) rich experience with arithmetic and to use it as a foundation for learning
algebra (Nadine Bednarz, personal communication, February 2, 1994). The focus of
the paper will be on the evolution of the children's understanding as they worked
on figuring out the number of diagonals in a decagon. Specifically, I will discuss the
algebraic expressions which some managed to generate for a number of the
problems. Aspects which are integral but which can only be touched upon briefly in
this paper are those dealing with my own growth in awareness, and with the
mediating roles played by peers for each other, such as rephrasing, interpreting,
highlighting, resisting closure, and serving as a receptive audience.




Classroom set-up, and assigned problems

St. George's is a private, non-denominational school, with a middle class
population of mixed ethnic, religious, and linguistic backgrounds; the population is
pre-dominantly English-speaking. The total class size in the 1993-1994 year was 25;
however 1 always work with half-groups (12 or 13 children in each group) of
heterogeneous ability. Problem solving is at the core of the mathematics curriculum
in my classroom; non-routine problems are drawn from various sources.
Mathematics class periods are 45 minutes each day (and are at times extended to 90
minutes). Problem solving is the focus of the entire lesscn three times a week. In
class the children often work in heterogeneous Groups of Four selected by the
teacher. The children work first with a partner (2-some}, and then when the pairs
are ‘ready’, two pairs discuss the solution to the problem together as a 4-some.
When the Groups of Four teams have all completed their deliberations, the entire
group (12-some) meets to discuss the problem.

In addition to the in-class problem-solving sessions, each week the children
also work on one challenging problem at home (Problem of the Week), and are
expected to write in their Math Log about all that they did as they worked the
problem. The children present their Problem of the Week solutions to a partner, to
their 4-some, and to the group of twelve. The focus in this paper is on a series of
connected, and increasingly demanding, Problem of the Week problems. The
wording and sequence of the assighments were as follows:

* Tunnels: 'Nine prairie dogs need to connect all their burrows to one another
in order to be sure that they can evade their enemy, the ferret. How many
tunnels do they need to build?' (Moretti et al, 1987, T-81, revised) (February 7,
1954)

¢ Decagon Diagonals: How many diagonal lines can be drawn inside a figure
with 10 sides? (April 25, 1994)
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* 25-Sided- , 52-Sided Polygons: How many diagonals would there be in a 25
sided polgon? in a 52-sided polygon? (May 16, 1994)

* Tunnels revisited: Can you write a number sentence or genezal ruie for the
Tunnels problem? (May 25, 1994)




The children are videotaped on a rotating basis as they work in their groups
of two and four. All the presentations done at the chalkboard are also videotaped.
Much of the class session is conducted by the children. Data sources include: focused
observations, videotape records, student artifacts (copybooks), teacher-composed
questions eliciting opinions (written responses), and class discussions regarding
research topics. In the 1993-1994 year, after each problem-solving discussion was
concluded, I sounded out the students’ reactions via a response sheet I used (the
Helpful Explanation sheet) in which I asked the children whether they found a peer
explanation of the solution helpful (Zack, 1994).

From drawing & counting, to detecting patterns, to a generalized algebraic
expression: Solving the Decagon Diagonals Problem

The pivotal focus in this paper will be upon the solution to the Decagon
Diagonals problem. I will indicate briefly how the students progressed and made
connections to the other problems. I have assigred the Decagon Diagonals problem
for the past 3 years. Every year but this one there have generally been three strategies
(S) used:

S#1 (used by most of the children): drew ali the diagonals and counted them; the children often
used diffecent colours to help them distinguish diagonals belonging to each vertex.
(Sometimes, the students make an organizea list charting all of the combinations, and count
them,)

S#2 (used by some): drew some diagonals and then saw a pattern in the number of diagonals
within one polygon (for example for the 10-sided one you would have: 7,7, 6, 5,4, 3, 2,1, 0 = 35).
The children continued the pattern without continuing the drawing of the diagonals, and added
the numbers together.

S#3 (used by only 2 to 4 children each year): saw a pattern of differences between the number of
diagonals contained in each polygon

triangle  square pentagon  hexagon  septagon

0 2 5 9 14
—

i N N L\

2 3 L] 5

and then continued the pattern without drawing any diagonals,

This year, one student in each group of 12 or 13, (Jerome in Group I, and
Cathy in Group II) arrived at the answer by counting the number of diagnnals
emanating from a vertex, multiplying that number by the number of sides, and
dividing by two. [ will call this number sentence strategy, Strategy #4 (5#4).




Let me begin by sketching what happened in Cathy’s group (Group 0). Cathy
wrote the above-mentioned procedure in her Math Log. During the discussion in a
3-some (one child was away), Cathy presented her solution to Abe and to Linda,
saying that it was "weird" but it worked. Abe stated: "Oh, I see how you did it"; he
did follow her thinking but later when he tackled the subsequently assigned 25-
Sided-, 52-Sided Polygon problem, used the same strategy he had used for the
Decagon Diagonals problem (S#3). (Abe only appreciated the power of Cathy's
approach later, as a result of further discussion. It must be stressed that Cathy and
Jerome did not themselves see the potential of their strategy until later.) Linda
(who used a variant of 5#4, and whose answer was incorrect but whose strategy was
closely linked to Cathy's way) tried to follow Cathy's thinking. Although it was
fascinating to see that Linda sensed the two key ideas (i. e. divide by two, subtract 3,
discussed in a section below) when she credited Cathy with helping her understand,
it was nevertheless also evident that Linda was confused. David (who had used S#1
and had had the correct answer) heard Cathy present her strategy when the 12
children gathered in the large group; he at that point only commented that it was
interesting: "Oh, that's neat." However, David was later seen to use Cathy's strategy
for the 25-Sided, 52-Sided Polygon problem, and was then seen to delve further, to
extend and to engage in inquiry (Tunnels— Aigebraic, May 25, 1994). Susan (who had
used S#1 correctly) was yet another who did not at first feel that Cathy's strategy was
helpful (cf. her comments on the Helpful Explanations sheet), but was then seen to
use it for her work with the subsequent 25-Sided-, 52-Sided Polygon problem.

In the second group, the strategy Jerome used at first in his Math Log was S#3;
however, the pattern which Cathy had seen and documented in her Math Log was
one which Jerome "saw" while the May 4 discussion with all 12 children in his
group (Group I} was occurring at the chalkboard. The videotape shows him studying
the assignment page in his Log, and then saying:

Oh-- I just saw another pattern. Well, every time. . . what happens is . . . if you
see like the five has two from each one, well from two--, from two times five
it's ten, but this is actually five so it's half of ten- and then over here it was
seventy but it's only 35.. . . so it's always half

And we hear Gina saying "half" simultaneously with Jerome saying "always half",
and then hear Jeff saying: "Ya, ya, if you multiply it by 10 and then divide by 2".
(Jeff's "it" is the 7 diagonals emanating from one vertex in a decagon.) Despite the
seeming anstruseness of Jerome's oral explanation, Jeff was able to follow it, and to
interpret it for others. When analyzing this portion of videotape one sees that Jeff
not only interpreted, he also focused on salient points, for example highlighting the
fact that one need only attend to the diagonals emanating from one point and
proceed from there. Thus we can state that the number sentence expressed in
Strategy #4 at this point was as follows:

S#4: Number of diagonals emanating from a vertex, times the number of
sides, divided by 2.




When I asked the group whether anyone would like to try to express it
aigebraically (at which point Valerie groaned, and Tamara stated, "I should have
taken notes"), Jeff put it into a generalized expression, writing upon the chalkboard
as follows:

A x S + 2 = #of diagonals

(with A standing for the number of diagonals from one vertex, and S the
number of sides in the polygon)

There were three children in Jerome's 12-some who I now feel were in sync
with Jerome's solution: there was Jeff, who said in his Helpful Explanation sheet
that Jerome had "helped him by explaining better the pattern I saw but could not put
my finger on", and who wrote the generalized expression; Micky (who used S#1 but
whose answer to Decagon Diagonals was incorrect) who as I will show below
adapted Jerome's idea/Jeff's expression for his subsequent algebraic solution of the
25-, 52-Sided Polygon problem; and Gina (who used S#1 and whose answer to
Decagon Diagonals was correct) who understood the aspect of "double-counting”
and explained it clearly to her partner, Indira, as well as the rest of the group. During
this session I strove to highlight the importance of the notion of "double~counting”
to the group, but it is not clear to me how many of the children, Gina included,
understood the reasons for my emphasis.

It is of import to note that I stressed to both groups that what had transpired
was unique in that no other student had ever previously come up with the Cathy/
Jerome-Jeff strategy. (See my correction which follows in Note 1.) Nor had It I
stressed to Group I (the Jerome-Jeff group) that no one in any of my Grade 5 groups
had in the past ever come up with an algebraic expression such as theirs. My
comments may have influenced some of the children to look more closely at
Cathy's or Jerome-Jeff's strategy than they might otherwise have done.

Key ideas expressed algebraically: "Seeing" the structure of the problem

I needed to oblige the children to see that what they wanted was an expression
which could be used no matter what the number of sides, and so I assigned the
second problem, the 25-Sided Polygon, 52-Sided Polygon problem: How many
diagonals would there be in a 25-sided polgon? in a 52-sided polygon? As the class
was dispersing, Micky quietly asked me: Do we have to draw all the diagonals? and |
turned the question back to him: Do you have to draw all the diagonals?

When the children submitted their Math Logs, I noted fhat none used S#I,
nine used S#2, one (Abe) used 5#3, and ten used S#4. Of those who used S#4, some
used arithmetic expressions (Group II: Cathy, David, Susan, Linda, Carrie; Group I:
Anne), and others expressed ihe equation algebraically and then solved it (Group I:
Micky, Jeff, Jerome; Group II: Bruce). Micky wrote and explained the following
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notation in his Log—~(Z - 3) x Z + 2, by saying: "Each time I do a problem like this
I don't want [to have to] draw an "X" sided figure. I know that a [vertex] connects
with all of the other [vertices] exept for 3, itself, the [vertex] to the left and right. . .
You subtract 3 from the amount of total sides . . . then . . . here's the rule: (Z = no. of
sides} (Z-3) x Z + 2 = no. of diagonal lines in figure."

It was as they solved or discussed the solution to this problem that sotne of
the children and I began to see the structure of the 'diagonals’ problem, both the
Decagon Diagonals and the 25-, 52-Sided Polygon Diagonais one. I will note the key
ideas, the order in which the students attended to them, and how some of the
children understood the key ideas and could represent them algebraically:

Key ideas
(1) divided by 2:

Many children spoke of "overlap”, or "double-counting”, or “so it's always half” but they were
not necessarily able to express it in a number sentence as + 2

(2) minus 3:

At first the children attended to the number of diagonals emanating from a vertex (see Jeff's
"A"). Subsequently while solving the 25-Sided, 52-Sided Polygon problem, they became aware
that the number of diagonals was derived from the number of sides in the polygon "minus 3', and
were able to say why; for example, we saw above Micky's explanation of his reasoning in his
Log, and Cathy wrote in her Log: “You always take away 3 becase two make the two lines to
the side and one is the vertex."

During the discussion at the table (3-some), and then again during the 12-
some discussion, Jeff said to Micky: "Oh, I understand, the minus 3 is to get my A"
hence making the connection between Micky's iiotation and his own. It is
important to note that my attempt to point out to Jeff that in order to solve a
problem, one must use one letter {(eg. Z, or other) and state the second variable in
terms of the first variable met with a confused reaction on Jeff's part. He did not see
why he could not use two unknowns, A and Z. This was perhaps because he already
knew the solution to the problem and hence did not need to actually solve the
equation. So although Jeff could see the connection between aspects of his and
Micky's respective notations ("Your Z minus 3 is my A", he did not see the need to
express the relationship of one variable in terms of the other, asin Z representing
the number of sides, and (Z - 3) representing the number of diagonals.

Some derived the expression in collaboration with a partner, i.e. it was a
symmetrical relationship in that each was close to the solution, and needed only a
nudge to get to the final expression (David and Bruce). In another case, the
relationship was asymmetrical in that two children explained the expression, and
the listener agreed with it (Micky and Jeff to Hosni). In two cases where I thought
the students would arrive at the algebraic notation, they could not do so, and could
not understand it when someone else presented it (Gina, Tamara).




Making connections, and writing meaningful algebraic expressions: The Tunnels
problem revisited

I then wanted to see whether the children could make connections between
the afore-mentioned problems and the Tunnels problem, which was the first they
had solved in the series (Feb. 7). The strategy which the children had used for
Tunnels was S#1, i. e. draw all the diagonals and count. Two children explicitly
made a connection between the diagonals problems, and the Tunnels problem (Jeff
and Bruce). Upon the conclusion of the Decagon Diagonals discussion, Jeff said:
"Look, Vicki, I just turned to the Tunnels problem. It's just the same, but you have
the sides” (May 4, 1994). It was at the end of May that I asked the children to look
back at the Tunnels problem, and then asked: Can you write a number sentence or
general rule for the Tunnels problem? (Tunnels--Aigebraic, May 25, 1994).

Cathy, Jerome, and Jeff, the three architects of Strategy #4, seemed to stick
closely to the original expression for Decagon Diagonals when writing their
statement for Tunnels--Algebraic in their logs. For example, Jerome's statement in
his Math Log is as follows: (5-3) x S + 2 + S. The three arrived at their
statements independently of each other. When I at first looked quickly at Jerome's
statement, I was sure it was incorrect. It did not make as much sense to me as did
David's Math Log entry for example (see below), and I had difficulty figuring out
why it worked. Jerome listened to his partner Michel when Michel suggested that
Jerome could use the ‘other' rule "but instead of taking off 3, you take off 1." Jerome
later saw that Jeff and Micky's collaborative effort had also rendered the
corresponding expression: (5-1) x S + 2.

Miciky saw that there was a connection between the Decagon Diagonals and
the Tunnels problems; in the Tunnels problem the connection does go to the left
and the right. Micky kept pushing to see: How do you put the 3 back? Although
Jeff's expression in his Math Log at the outset was the same as Jerome's (above), and
Jeff seemed for a while very content to stick with it when conferring with Micky, it
was Micky's insistence on determining "how to put the 3 back’ (it is Jeff who points
out that it is not 3 but rather 2 which needs to be 'put back’) and Micky's dogged
resistance to closure that led them both to work together and arrive at the creation
of (§-1) x S + 2 = tunnels". Jeff's cryptic note in his Log next to this equation
reads: "“Best way *". Jeff is thrilled with this creation; his pleasure is captured on the
videotape as he says quietly but exultantly: "PERFECT!"

David's algebraic expression for the Tunnels--Algebraic problem was Z -1 x
Z + 2:"[It's] 1instead of 3 because you can go to the sides.” Although the notation
varied somewhat, there were 6 other algebraic notations which represented the
same idea as David's (Abe, Bruce, Susan, Sheree as well as David in Group II; Micky
and Jeff in Group I). I regret that at no time did I display all the diverse notations in
order for the children to see and discuss the range of possibilities. The children were
seen to push for supporting arguments, and for meaning; they suggested that some
ways of expressing the idea made more sense than did others. For example, a
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number sentence such as22 x 25 + 2, worked outas 22 x 12 1/2, met with a
response that it did not make sense because it would mean that the sides of the
polygon had been cut in half.

The achievements of all the children are worthy of mention. There were nine
students who were able to use algebraic notation and of those, five seemed aware
that the use of a general rule was powerful. Four students were able to make
connections to previous problems and to use a number sentence (equation} to
express the solution for Tunnels but used an arithmetic (eg. 8 x 9 +2 = 36) and not
an algebraic expression. The other twelve were able to understand aspects of the
problems even though they could not yet express the solutions algebraically. Most
importantly, the children contributed to each other's learning; no one child was able
to achieve alone the goal regarding algebraic expression. I the teacher appreciated in
retrospect the extent to which the novel strategy (S#4) had helped me to see how a
generalised equation for these problems would be derived; the children's
discussions regarding what I have here designated key ideas helped me see what the
components of the equation meant.

Acknowledgement: The author wishes to thank Carolyn Kieran and Barbara Graves for helpful
discussions during the preparation of this paper. This research was supported by a Social Sciences and
Humanities Research Council Grant from the Government of Canada #410-94-1627, )

Note

As | finished mentioning to the children that their use of the number sentence was unique, it suddenly
struck me that another child, Mario, might have made just such an attempt two years previously. And
when [ went back to consult the Math Logs from that year (1991-1992), there it was. It is important to
stress this instance because as I reflected upon it, it became clear that Mario's ideas never reached their
potential because some essential elements were missing. For one, I the teacher could not follow Mario's
reasoning as presented in the Log (although there was obviously a vital germ of an idea there that
stayed with me over the two year interim), and as a result could not nudge him further in his Log, nor
help support his ideas when he presented to the class. Prior to 1993, the students presented their
Problem of the Week solution only to the group of 12, and did not discuss with a partner and thenin a 4-
some; hence Mario did not have a peer to hear him out, who might have attempted to follow his
reasoning. When | consulted the videotape of that session, I discovered that Mario gave his
presentation to the group of 12 just before recess, and se the children in the group may have been
attending more to the fact that they would soon be at recess (recreation) than to Mario's ideas.
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DEVELOPING CLINICAL ASSESSMENT TOOLS FOR ASSESSING "AT RISK" LEARNERS
INMATHEMATICS

Robert P, Hunting
La Trobe University

Brian A. Doig
The Australian Council for Educational Research

Research-based tools for assessing studen:s' mathemarical strengths and weaknesses are
impontant 1o good pedagogy. We report a project for developing clinical tasks for axsessing “at
risk™ studenss. The history and evoiution of clinical assessment methods is rraced from their
origins in Piagetian research, and related developments in psychological assessment noted. A
process for validating clinicul tasks entailing contens relevance and representativeness,
theoretical validity, process analysis, and useability is outlined. We briefly discuss two
examples from our recent work 1a highlight the need for explicit links 1o research.

‘The purpose of this paper is to provide some background to a project aimed at developing
research-based tools for clinicians to use in the initial stage of assessing mathematical strengths and
weaknesses of studerits, and provide examples of some tasks. Effective strategies are needed for
helping individual students who are not realising their mathematical potential in the regular classroom
setting. The training of teachers with advanced clinical skills, and the provision of assessment tools
for them to use. go hand in hand, because it is the way in which a tool is applied that will determine
its effectiveness.

lini

It is generally agreed that the origins of the clinical method as a formal educational research too!
coincided with Piaget’s early investigations into children’s thinking (Ginsburg & Opper, 1969).
Neither of the two most widely used research methods of that time - naturalistic observation or
standardised testing - were considered suitable for studying children’s cognitive functioning.

In a clinical interview a dialogue or conversation is held between an adult interviewer and a
subject. The dialogue is centred around a problem or task which has been chosen to give the subject
every opportunity to display behaviour from which mental mechanisms used in thinking about that
task or solving that problem can be inferred. An idealised description of the method is provided by
Opper (1977, )

Several varniations of the same task may be presented to probe the strength and limits of the
construct thought to underlay the subject’s response, and to provide additional insights into that
subject's inental functioning. Because of the dependent relationship between the subject's responses
and the interviewer’s questions, no two subjects will ever receive exactly the same interview. It
follows that interviews can vary greatly across subjects in any one experiment. Basic to research
involving clinical interviews are analyses of verbal protocols and non-verbal communications (Davis,
1991; Ginsburg, Kossan, Schwartz, & Swanson, 1983; Resnick & Ford, 1981).




The clinical method has been the mainstay of cross sectional status studies conducted by genetic
epistemologists and cognitive psychologists in the Geneva tradition (for example, Inhelder & Piaget,
1958; Lovell, 1971; Noelting, 1980; Thomas, 1975). Repeated use of clinical interviews has

provided powerful case study data bearing on questions of why children fail to leam mathematics
{Allardice & Ginsburg, 1983, Erlwanger, 1975). In addition, clinical interviews have been used in
longitudinal constructivist teaching experiments (Cobb & Steffe, 1983; Hunting & Korbosky, 1990;
Hunting, Davis, & Pearn, in press: Steffe & Cobb, 1988; Wright, 1989).

Good teachers from the beginning of time have used similar strategies to the clinical method,
precisely because the teaching process invoives cfforts on the part of teachers to understand the
mathematical realities of their students. As Cobb and Steffe (1983) have said: “The actions of all
teachers are guided, at least implicitly, by their understanding of their students’ mathematical realities
as well as by their own mathematical knowledge™ {p. 85}. Recent didactic literature oriented around
the clinical interview asa teaching strategy is exemplified by Labinowicz (1985}, who argued that the
dominant form of paper and pencil testing in the United States did little to assist the teacher make
decisions about what to do next with their students. He proposed a clinical form of assessment that
allowed teachers to follow the children’s thinking as they worked through tasks presented in the
context of materials.

Diagnostic assessment often uses clinical approaches similar 10 those used for research purposes.
The diagnostic interview is the point of entry at which information is gained that is needed to assess a
problem, a relationship is initiated that will facilitate communication by the interviewee, and where the
client's further relationship in a program of visits is facilitated (Pope, 1983). In the field of
mathematics education Ginsburg et al. (1983) identify two phases in the diagnostic process. In phase
oneavailable data are assembled from parents and teacher, including information about the curriculum
the student has been experiencing. This data is used, along with a standard set of general items, to
help broadly identify the student’s problems. The second phase involves specifying more precisely
the nature and possible source of the student's difficulties. Diagnostic assessment is akin to tailored
testing (Lord, 1980), whereby iterms are selected contingently using availabie estimates of examinee
status. However, in contrast to tailored testing, where the emphasis for diagnosis is derived from
formal scoring and psychometric analyses, diagnostic assessment has been categorised as

impressionistic (Cronbach, 1984). As Ginsburg et al. (1983) have reminded us,
~There is little agrcement on a taxonomy of general mathematical disabilities. Any particular
child is likely to have a mixture of conceptual and procedural difficulties contributing to math
learning problems, as well as more general lcaming problems and emotional difficultics™ (p.

46).
The clmical movement in assessment

Renewed interest in clinical approaches to assessment of learning in mathematics have coincided
with recent emphases on action-reflection models of tcaching (see for cxample, Schon, 1987) and
orientations to psychological testing that admit more qualitative approaches such as dynamic
assessment (Feuerstein, 1979; Gupta & Coxhead, 1988; Lidz, 1987, 1991) and individualised
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assessment (Fischer, 1985; Frederiksen et al., 1990). A further breakthrough in mathematics
assessment occurred in the 80s when several authors re-discovered Piaget’s clinical interview
techniques {Donaldson, 1978: Ginsburg, Kossan, Schwartz, & Swanson, 1983: Hughes, 1986;
Labinowicz, 1985). Labinowicz" textbook, in which he reported in detail the responses of young
children to clinica! interview tasks, was a significant advance.

Other assessment tools.

Clinical methods and tools are one of a range of assessment alternatives world-wide that are being
trialied and evaluated in cfforts to improve student learning of mathematics (Anastasi, 1990; A. C. E.
R., 1994; de Lange, 1987; Leder, 1992; N. C. T. M., 1993: Niss, 1994a; 1994b; Romberg, 1992;
Izard & Stephens, 1992). Other alternatives include student portfolios and journals, investigations,
open-ended questions, observations, performance tasks, and student self-assessment (Grouws &
Meier, 1992). Recent work on curriculum and assessment in Australia {AEC, 1990; 1994a; 1994b)
has been driven primarily by a desire to monitor standards, provide accountability measures, and to
improve reporting (Board of Studies, 1994). As Cronbach (1963) pointed out, these purposes are not
the same as that of improving learning and teaching, and as such have somewhat different qualities.
The advantage that clinical assessment methods have over instruments designed to serve
administrative regulation is that the data source (the student) and the data analyser and interpreter (the
teacher-interviewer) can engage directly in interactive communications. The teacher-interviewer “reads

the play” as the play proceeds. Moreover, the primary concern of the assessor is to better understand
the knowledge state of the learner.,

The development process

Traditional approaches to the question of test validity have embraced three major categories of
validity evidence: content-related, criterion-related, and construct-related (APA, 1966). The testing
field has moved to recognise that validity is a unitary concept (Anastasi, 1990; Cronbach, 1984).
Because content- and criterion-related evidence contribute to score meaning, they have come to be
recognised as aspects of construct validity (Messick, 1989). Yet, as Messick (1989) says, “in applied
uses of tests, genernl evidence supportive of construct validity usually needs to be buttressed by
specific evidence of the relevance of the test to the applied purpose and the utility of the test in the
applied setting™ (p. 20). In the context of developing clinical tools for assessing the mathematics
knowledge of a student in an interview setting, there were severa arcas which we felt needed careful
attention during the process of task construction and development. These are content relevance and
representativeness, construct or theorcticat validity, process analysis, and useability (Hunting &
Doig, 1992).

Contenl relevance and representativeness. In order to highlight skills or understandings which may
have been overlooked in the construction of provisional task sets, analyses were conducted to




determine links between each task and corresponding content cells of three major curriculum
statements. These were .

+ A National Statement on Mathematics for Australian Schools (AEC, 1990);

+ the Curriculum and Evaluation Standards of the National Council of Teachers of Mathematics
(NCTM., 1989); and

» the mathematics portion of the United Kingdom National Cusricutum (DES, 1988).

However, no attempt was made to include tasks which link 1o every content cell of any of the
curriculum statements, or indeed to content cells common to all three statements. The tasks were
designed to reveal the processes of students” mathematical learning, so the emphasis was to capture
major psychological subdivisions, as we currently understand them. Since a task may tap multiple
aspects of a student's knowledge. it was our goal to choose the least number of tasks that would
maximise information about students’ breadth and depth of knowledge. The goal of parsimony is
especially important due to time constraints surrounding assessment interviews.

A second procedure. complementary to the first, involves submitting the provisional task set to a
panel of mathematics education experts familiar with relevant curriculum content and related research.
The panel was asked tc consider, as well as construct representation, relevance of task context,
format of protocol, appropriateness of vocabulary, and adequacy of logical branches for tasks that
have alternative pathways dependent on student response. They were also invited to comment on
interrelations between tasks and clusters of tasks.

Theoretical validity. It was our aim to provide supporting rationales for cach type of task.
Rationales have their bases in the research literature of mathematics education, as pioneered by
Labinowicz (1985). A major contribution of this exercise was to delineate known psychaological
boundaries and emphasise the significance of cognitive functioning with respect to the domain of
mathematics relevant to the student. Through this analysis recent research findings can be manifested
in tasks not otherwise forthcoming from an analysis of traditionally conservative curriculum
documents. Regular and routine revision of tasks arc needed as new research findings throw light on
students’ mathematical behavior.

Process analysis. This phase entailed documenting typical student responses to each task type,
with an interpretive commentary that attempted to link student behaviours to available theoretical
constructs. This analysis represents a potentiaily rich source of data for clarifying cxisting theorics
and results about students’ mathematics learning. The documentation of typical student responses is
conducted through training programs designed to prepare skilled clinicians {Hunting & Doig, 1994).

Usgability. Teachers who have undertaken specific training in the implementation of clinical
assessment procedures in mathematics were asked to comment on the utility of the procedure. They
were invited to comment on the format and sequencing of the tasks for ease of use, as well as
accompanying checklists or data sheets used to record student responses.

S
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Theneed forar h basg for ment task

We argue that assessment tasks require rationales based on research and literature into the
mathematical learning processes of students, and that these rationales need to be made explicit to
teacher-clinicians so that they understand the responses of students against some theoretical base. We
have explained elsewhere (Hunting & Doig, 1992; 1994) the critical link between the assessment tool
and the skill level and knowledge base of the person who uses that tool. Historically, test developers
liave neglected to acknowledge results from educational research into the learning and teaching of
school subject matter. Recognition of the need to make explicit the research base that supports
assessment items or tasks is a serious weakness in current efforts to design national and state
assessment instruments (Ellerton & Clements, 1994).

We present here two examples from our Level B assessment task set (Hunting, Doig, & Gibson,
1993). These examples illustrate the importance of incorporating research results into the design and
development of assessment tasks. The first example is taken from the Measurement section, and deals
with area. The second example is from the Geometry and Spatial Sense section. Qur instrument
development model assigns a high priority to provision of a theoretical justification for assessment
tasks used. Other examples are discussed in Hunting, Doig, & Gibson (1994).

Example 1: B6.4 Measuring an irregular, region. For this task the clinician begins by showing the
student the graphic shown betow, and says: "This diagram shows a leaf placed on 1 cm gnd paper.
What is the approximate area of the leaf? How did you work out your answer?”

i/
A i
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_—

Webb and Briars (1990) recommended that tasks for assessing students’ measurerment skills should
involve the student actually measuring something. In their opinion items of the type where there isa
pencii drawn alongside a ruler and the student is asked "How long is the pencil?” are inadequate
because they assess only whether a student can read scales rather than micasure using a particular unit,
A criticism of usual practice by Dickson, Brown. and Gibson {1984) is addressed with this particular
task. They argued that measurement presented in schools is more precise than it occurs in real life. A
related task is B7.5 in the Geometry and Spatial Sense section. Here the student is told. "A dog is tied
to a five metre rope which is attached to a stake in the ground. Make a sketch on this grid paper to

estimate the area and shape of the ground on which the dog can walk. Tell me how you work out
your answer as you do it",
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ANALYSIS OF ERRORS AND STRATEGIES USED BY 9-YEAR-OLD
PORTUGUESE STUDENTS IN MEASUREMENT AND GEOMETRY ITEMS

Glora Ramalho, Instiiuto Superior de Psicologia Aplicada
Teresa Cerreia, Instituto Superior de Psicologia Aphicada

Abstract
An experiment ts described mvolving  9-year-old portugnese  students
responding o the geometry und measurement ttems included m the IALP
survey. One of the major arms  of this study was (o detect the errory that
were made in those items and the miscoticeptions anderlying them. The
children were nerviewed on an individual basis. A brief discussion of the

difficulnes found 1s presenied.

The major motivation for this line of research was to elucidate the difficulties met by 9-
year-old portuguese students while solving the mathematics test included in the IAEP
survey, in view of this country's low performance in 1991 (Ramalho, 1954) Ths
presentation will address the errors made and the strategies used by 21 pupils while
solving the items regarding the topics of Measurement and Geometry that were included
in that survey We are aware of the time lag existing between the test administration in
1991 and the present study whose results pertain to 1994 students were not the same and
it is not possible to argue that there were not any changes in these two years Mcreover, 1n
the current study we were constrained to a smaller number of students due to the
methodology that we considered as appropriate to use

Nevertheless, in spite of the limitations that we just acknowledyged, we found 1t interesiing
i) to examine the difficulties met by current pupils, ii} 1o compare their general
achievement with their 1991°s colleagues, and finally, iii} to investigate their strategies and
possible misconceptions
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THEORETICAL FRAMEWORK

In terms of theory of psychological development we subscribe Bickhard's (Bickhard, 1980,
Campbell & Bickhard, 1986) nonstructural proposal of levels of knowwmg . This
perspective conceives of "developmental stages as a hierarchy of levels of knowing that is
generated by iterating the basic knowledge relationship () The hierarchy of knowing
levels has an invariant sequence in any domain The knowing levels can thus be used as the
basis for a new, nonstructural definition of stages” (Campbell & Bickhard, 1986, p 51).
More specifically, the reflective iteration of the knowing relationship consists of a process
of making knowledge that is only implicit in the organization of the interactive
competencies of one level, explicit at the next higher level of knowing, which in turn will
have further implicit properties knowable at the next lowing level, and so on

This general view of development is compatible with the perspective of “conceptual fields”

introduced by Vergnaud (1990) Like Bickhard, this author rejects the model of
developmental stages pointing to the evolvement of gencral logical structures His
contention integrates a partial order organization of chidren's competences and
conceptions, readering the analysis of cognitive development dependent on both the
specific epistemology of the particular contents and the analysis of the subject's
experience The rescarch prorities which Vergnaud mantamns for the field of
Mathematics education imply the recognition of a varied class of posmible problems, the
careful examination of its structure and of the cognitive operations necessary to deal with
them

Methodological considerations

We would like to recall here that the present investigation follows the apphcaton of a
standardized method in the contex: of the IAEP survey As mentioned above, the main
goal of the international studv was to characterize the educational systems and the cultural
environments favorable 10 success in the Mathematics domain The test was built so that
it could rank students’ performance within each country and relate that performance with
contextual factors potentially favorable to success The use of the survey method was
adequate 1o the objectives so defined, but has a hmited value in the scrutiny and
understanding of the cognitive processes involved (Ginsburg, 1983) and, consequently, the
conceptions underlying the solution of the items that were included

More specifically, as we aimed at a better understanding of the cogmtive processes, we
sought out to use protocol methods which could ehcit students inmediate accounts of
their mental steps while atempting to solve the gquesuons We used the revised chmcal




interview (Ginsburg, 1983) consisting of flexible questioning of individual children, with
concrete object support Even if the resulting protocols may not be abie to model all of the
thought processes at stake in the probiem solving activities, they are at least recognized as
important contributions to the study of such mental paths (Hart 1985, Ginsbury 1983)
Moreover, as the discovery type of the revised clinical interview allows for the researcher
to perform a naturalistic observation of nonantecipated results and a flexible explorauon of
their meaning, we thought of this type of protocol method as the most adequate to the
objectives and constraints of the present investigation

METHODOLOGY
Sujects and Instrument
This study included 21 9-year-old students attending two elementary schools in Lisbon

The children were presented the 15 items covening  Measurement (9) and Geometry (6)
included in the Second Internatonal Assessment of Educational Progress  The pupils
were individually subject to a revised clinical interview as referred 1o above In the end of
each interview they were also asked to answer the queshionnaire enclosed in that survey
and addressing their family and school contexts

This presentation covers the results found for eight of these items The cniterion for this
selection was the low performance obtained Therefore, we will summarize our findings
with respect to the five Measurement items and the three Geometry items in which the
difficulties were greater in the current study

Procedure

The items were presented in the same order to each of the children by one of the present
researchers As they answered, they were asked about the way they had gotten to that
solution, through the question "How did you get to that result®™ The interview would
proceed in a way that was dependent on the answers given The time of each interview
varied between 10 and 30 minutes and the interviews were audio-recorded

Data Aaalysis

The tapes were transcribed and the resulting protocols were descriptively analvzed in
several different ways, in accordance with the research mnterests already mentioned above
In order to do that
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1) we first classified the results under four categories i) correct answer, 11) correct answer
after the student was urged to read the question once again. m} correct answer after some
interaction with the interviewer; iv} correct answer not reached,

2) we made a comparison between 1991 results and the present ones, considering as
correct answers only the categones i) above,

3) we attempted to identify the types of errors made and the misconceptions underlying
those ervors

RESLLTS
Current student performance
Current sudents’ achuevement in each of the items is presented in Table 1 We can see that
children performed the worst in items 5, 7, 8, 14 and 15, which were selected for a more
careful analysis that will be presented below

TABLE] Frequency Distribution (%) of Students Answers to Measurement Items
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Table 2 illustrates the outcomes of the admimistration of the Gecmetry items
Achievement was poorer in the items 4. 6 and 12, which will be given more attention in
the discussion that will follow
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Comparison between current and previous results
The contrast between current and previous results is shown in Table 3,
somewhat remarkabie change In nine of the 15 items (6 Measurment

and shows a

ttems and 3

Geometry items) there was a notorious improvement and the performance in two other

itemns was kept mostly the same The results were only worse in four of the items

TABLE 3. ftems' Levels of difficulty - in the 1991 survey and in the present study
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Errors and Strategies

Starting from the most difficult items to the easiest ones, item S (Measurement) asked
for the length of one side of a square, given the distance around it. Five students answered
well immediately Some of the others (2) got to respond correctly just by readiny the
question once again. But most of them (15) reached a right answer after some degree of
interaction with the interviewer. This interaction showed that there were students who
could not understand what was meant by “the total length of the square’s sides”, and some
would identify it with length of one side Some others would seem to be confusing a
square with a cube Once this problem got straightened up children had their answers
right. Quite often they used the strategy of multiplication to get to the length of the side
“if the total is 20, than 5 times 4 is 20, and so the answeris 5 *

Item 6 (Geometry) required the identification of a circle, among a set of geometrical
figures, from a basic property’ that all of its points were equally distanced to its center

The geometrical shapes seemed not to be very well known among the children,
particularly the circle But there seemed to exist also a problem with the drawing' the
shapes were indicated by points, and their center was also identified by another point (P},
the figures were not clear and were perceived as fuzzy and belonging to one only drawing,
rather than representing different entities Only 5 youngsters identified the correct answer
right away. Three other responded well after being urged to read the item once again

Most of them had trouble in understanding what was asked and in devising a strategy to
answer it. The most common strategy utilized was to draw a few lines connecting the
points which defined the figure and its center They drew in this way for all the shapes, but
usually chose to draw specific fines, like diagonals in the case of parallelograms, which
allowed for more than one possible answer

The number of rectangular faces in a tniangular prism, where the hidden faces were
indicated, was demanded in Item 12 (Geometry). As in all the other items that were
included, the figure was first and the question came last Eight pupils were right in their
first response Many others (11) were asked to look at the item once again, and gave the
right answer just by reading it a second time Apparently, the triangular faces were most
catching in the drawing, and when they came to read the problem they understood it as
regarding the triangular faces, rather than the rectagular ones

In item 7 (Measurement) half the pupils anwered correctly on a first answer basis, and
the other half did not get to respond well This item inquired the students about the time
of a train departure once it was known that it had been a few minutes late What seems to
have been the problem here was their understanding of the word "late™ For some of them,
leaving "late" meant leaving "before", or else "going back, and therefore, subtracting”
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Measunng a segment when the zero-point of the ruler is not at the end of the segment,
whuch was asked in Item 14 - Measurement, was not a tnvial problem for 10 students,
thtee of whom did noi get to solve it well, even after some interaction with the
mtenviewer The ertors that we found regarded either focusing on the numbers rather than
the standard umt of measuremsnt {they would just look at the ending point of the
sepment ), or starting at a poutt other than zero (they staned their counting from une on, at
the beginning of the segment)

ltem 1S (Measurement) asked the children to find the distance atound a given rectangle
given the length of 1ts two dimensions, which were indicated on the drawing that was
presented Thurteen students had no trouble 1n answening correctly Some of the other
pupils found some difticully in understanding the meamuny of “distance around™, geti:ng 1t
confused with the nouion of area The figure displayed, once again preceding the text,
helped that confusion apparently the indication of the side’s length led them to the
computation of the area

in item 8 (Measurement) students were asked 10 select the dimension of an object that
would allow for less objects fitung in a given box  Most students did not shuw any
difiiculty in solving the problem Two children got it right just by reading the tem once
agan, and six students used direct proportionality (less objects - smialler objects) which
led them 10 the wrong answer Once they reflected on the results of cach step of then
reasoning they easily corrected their answers

Counung the faces ot a sond figure wirch did not indicaie the hidden faces was the
content of [tem 4 (Geomeiry). Although this item showed 10 be refatively easy for these
students, it 15 noteworthy that four of them still had troubles n solving it Apparently the
difficulty regarded the fact that the fudden taces were not drawn they would count tie
faces in the drawing and just 2dd one more

DISCUSSION

In the first place we would like 10 emphasize the preciprtation shown by most children n
giving quick answers to the questions that were posed This haste had a stronyg impact on
thesr (poor) wdentification of what was asked 1n each of the items We tend te aitnbute 1t
10 an spparently pervasive notion among these students that quick answers are an
indication of smartness and good achievement In our view, this notion brings serious
limutations to their thought capacities and to their development of reflecuive power

There were nusunderstandings about somie of the words uuhzed in the itemns (eg

“distance around™, “late™), as well as problems in the figures' display the fact that these

latter always preceded the text, that they sometimes weie furzzy or clse gave too much




stress to some of their aspects, together with the problem mentioned above, appears to
have constrained the youngsters' performance In the same manner, the muluple choice
format, unusual to portuguese students this age, led them in some sense to direct their
reasoning to conform to one of the alternatives, befare they centered it on the problem
itself

In the Measurement items we also detected some other difticultics at least on therr figst
approach to the problems i) with respect to the determunation of a’segment's length we
verified Hiebert's findings. namely that students were “focusing on the numbers rather than
the standard unit of measurement. starting at a point other than zero and leaving gaps”
(Hiebert, 1984, quoted in Boulton-Lewis et al. 1994), i) regarding the connection
between volume and quantity we identified  strategies that made use of direct
saidtionships' "less™ objects was understood to imply “smaller” objects

To conclude, we think that this methodological approach, already explored by Han
(1985), which combines an extensive survey with a more intensive approach, in this case,
the revised clinical interview, has allowed for interesting outcomes concerning both the
spectficauon of the overal! performance of the large group. ond the cluadaton of the
difficulties that were met
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TEACHER'S CONCEPTUAL FRAMEWORK
ON MATHEMATICS ASSESSMENT
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SUMMARY: Whenever we wanr to make use of a test or a questionnaire to collect
information for taking any kind of decision, we have 1o decide about which one could be the
most appropiate for our task. For this work, we have designed and made use of a specific tool
to study the way in which mathematics teachers conceptualize and value the students”
assessment. The result has been a system of categories which shapes mathematics teacher's
ideas and concepis about assessment. This work ends with a discusion about the resulis and
their interpretation.

INTRODUCTION

Over the last thinty years, many changes have been taking place in the organization and
structure of the Educational System in most developed countries, and mainly in Compulsory
Education; one example is the almosi constant reform of Curricula, being Mathematics teaching
always in the heart of it (Howson & Kahane, 1986).

Curricular changes in Mathematics have been various, each time being focused on
different areas of the Curriculum (Begle, 1968; Fey, 1980, 1992; Howson, Keitel &
Kilpatrick, 1981; Steiner, 1980). However, those changes in assessment methods have been
very limited and controlled, being more frequent in theory than in practice; the debate about
assessment is very fecent and, for the moment, its changes are not very well known (Romberg,

1989). The ideas of changes and reforms in Mathematics Education are not having almost any

cffect on assessment due 1o two main reasons: the soctal impact of assessment, with its effects
on pupil's promotion, and the continuous practice of examinations and external tests
(Kilpatrick, 1979; Niss, 1993; Romberg, 1992; Webb. 1992). Regarding Compulsory
Education, assessment is the area of Mathematics that has experienced less changes, what is
supported by teachers. Mathematics teachers are, in fact, a key factor in the determination of
the ways and uses of assessment made on our pupils’ knowledge of Mathematics (Popkcwitz,
1994: Skovmose, 1994; Webb & Coxford, 1993).

Current rescarch in Education has focused on teacher’s cognition (Houston, 1990}, on
teacher's implicit theories as a field of rescarch. However, within the bibliography consulted,
we have found very few works about assessment.




WORK PURPOSE

The following work is an approach to Mathematics teacher's implicit theories
about assessment. These theories are understood as schematic representations of the
teaching activity. They are teachers' statements about the empiric world after having examined
the information obtained from reality. This study has been based on descriptive
methodology and we hav2 made use of surveys carried out with the iraditional tools in this
methodology: the questionnaire. It is a study of transverse nature made with the help of a
small-scale survey, as it will be explained later on,

The goals of this survey have been set out following two phases:

First phase: it was devoted to focus the general aim on a specific central objective; this
objective has consisted in establishing the Spanish Mathematics teachers’ current
opinions about assessment, i.e. their common concepts, ideas, relationships
and valuations.

Second phase: it was defined to identify and relate the stages and
secondary aspects derived from the central gbjective. To achieve our purpose, we
have gone thirough the following stages:

a) the posing of certain key questions in order to reveal the main ideas and functions
about assessient in Mathematics.

b) the delimination and application of the categories used to classify the different
answers given to those questions.

¢) the study of the categories validity and the description of the established system of
categories.

METHODOLOGY

Sample. We have followed a purposive sampling to choose the appropiate sample
for our study: we have sclected one by one the different cases that kave finally been included in
the sample, finding on this way one able to meet our specific necessities.

This sample has finally been made up of 59 teachers, where 24 were receiving initial
training at that moment, and the rest were tenure teachers of Mathematics who belonged to
Secondary Education and University -10 of themn belonged to the area of Didactics of
Mathematics. Our purposive sample has consisted of some teachers who were willing to
participate in the study in debate. It has covered different teaching levels in which Mathematics
assessment has been extremely important.

Tool. At the beginning of the 91-92 Academic Year, we finished the composition of
the Survey of Conceptual Framework about Assessment (SCFA). It was a tool to determine the
field of ideas and functions normally used by Mathematics teachers with regard to assessment.
This questionnaire, which appears in Appendix I, fits the following schema:

Information about the Institution that carri¢s out the study.




Description of the purpose, rcquest for help and thanks to the subject who has
participated in the survey.

Eleven consecutive questions. The medel of cach one consisted in posing a question
(first line), continuing with a general sentence that helped to find its answer (sccond line) and,
following, six blank spaces for writing one or several answers to the posed question. The
content of the questionnaire saw three different versions and it was finally accepted by the
research team, being later on applied as pilot surveys to small groups of teachers who had no
relation with them.

Questionnaire structure. The quesiions that were finally included have the
following structure:

Questions 1-5: questions related to assessment in general where:

questions 1 & 2 refer 1o objectives and aims of assessment:

questions 3, 4 & 5 refer 10 practical and technical aspects.

Questions 6-10: specific questions about assessment in Mathematics where.

questions 6 & 7 refer to objectives and difficulties of assessment in Mathematics:

questions 8. 9 & 10 propose the consideration of other elements in Mathematics curricula
Question 11: this question intends to collect information about other zspects not considered
in the previous questions.

Application procedure. Although there was no time limit to answer the questions,
in all cases it took between 30 minutes and an hour. Durning the test, where some members of
the rescarch tcam were present witnessing the seriousness of this process. the guestion paper
was applied to individuals in some cases, and to groups in others.

ORGANIZATION AND CLASSIFICATION OF ANSWERS

The second stage, which consisted in establishing the meaning of each posed question,
gave the result of a number of different answers, Each answer was expressed by onc
statement, which could appear once or more times, We have compiled all the grven statements
as answers 1o the questions and have organized them according 1o an alphabetical list,

The general information appears in Table 1.

Question Frequency  Average of answers per participant
235
129
131
191
92
218
152
180)
198
10 128
It 62
1673
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We have collected 1673 answers in total, which correspond to 543 different
statements. It is interesting to note the high number of coincidences among all the answers. The
average of statemenis per participant has been 28 and the average of different answers has been
9.2.

Our study is focused on determining if these answers fit a system of ideas and concepts able to
be classified and systematized. Are there any prior and clear criteria to classify the answers in
order to know the underlying idea and the position of the person who gave the answers?

QOur next step consisted on determining some criteria 1o classify the given answers.
The established classification must reveal, in each case, the different concepts
involved in the content of the question, and the relationshkips among them.

We intended to establish a conceptual structure which determine the field of
meanings of each question in order (o classify them accofding to different interpretations.
The procedure carried out by the research team was as follows:

* the determination of a system of ideas and concepts 1o elaborate the questions and
classity their corresponding answers;

* the establishment of some theoretical criteria 10 classify the answers, in two stages
with corrections;

* the comparison with the classification criteria followed by an experienced teacher.

* the claboration of a final classification and application to the statements of the criteria
derived from this classification. In this classification we did not take into account the resuits
obtained in question 11 for not being significant.

The third stage was devoted to swdy the reliability of the classification. For that reason.
the list and system of categories were submitted to the control of 10 external judges who made
their own classification. According to it. our first classification was revised and another one
was scheduled following the critenia that were previously established; the percentage of
coincidences in the two stages of classification with the different judges -external and intemnal-
was as follows. Table 2: Coincidence in statements classification:

Average of coincidences
First classification Final classification
Question 1. 50.8%. 63.2%
Question 2 57.6% 66.6%
Question 3. 80.0% 95.6%
Question 4. 47.0% 38.9%
Question 5. 56.2% 76.2%
Question 6. 45.7% 58.0%
Question 7. 60.4% M2.1%
Question 8. 57.2% 67.6%
Question 9. 59.3% 73.1%
Question 10. 63.6% 71.3%
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The increase in the percentage of coincidences with external examiners regarding the
new classification is noticeable. The final average percentage was 70.2%.

OVERALL ANALYSIS OF FREQUENCY

At the end of the third stage. we carried out a description of answers given to each
question according to the established system of categories. The final catcgories obtained in this
stage, which appear in Appendix II, were 41. These categories appear with the original
question together with the frequency of answers given to each question.

We followed two criteria to analyze the classification before mentioned.

Firstly, and as far as the toial number of answers is concerned. we considered their
frequency and percentage according to each category and studied the importance of each
category in the total number of given answers.

Secondly, and with regard 1o the relation between the number of answers and the
number of participants, we considered the percentage of answers that teachers gave related o a

“particular category.

According to the first eriterion, we have to point out that all the questions were not
analyzed with the same precision. In questions 1 and 6, their answers were classified according
to 12 and 8 categories respectively. The answers to question 10 were analyzed through 4
different categories; questions 2, 7, 8 and 9 had 3 categories each, whereas questions 3, 4 and

5 had only 2. This can be reasonable if we bear in mind the information obtained through all
the answers and the average of answers per subject. Questions 1 and 6 had the highest

frequency of answers with an average of 4 per participant. In general, a higher number of
answers makes a coincidence with 2 higher number of categories established for their analysis.

As far as the second criterion is concerned, it should be interesting to mention that all
the categories had not got the same percentage of answers with regard to the total number of
participants. Therefore, there were 8 categorics that obtained a percentage higher than 100%.,
i.c. on average, each teacher had. at least, written one statemnent within these categories.
These are the following:

Assessment is used to contrci.

Examiners should belong to the classroom -internal examiners.

Traditional tools should be used for assessment.

In Mathemuatics, it is a priority to assess knowledge.

In Mathematics, it is a priority to assess ability.

Difficulties in assessment are duc 10 the student.

Content is the criterion to assess Mathematics textbooks.

Teachers arc assessed on their professionalization,
These 8 categories establish a basic profile of the main ideas about assessment in Mathematics,
and correspond to 7 of the posed questions; only two of these categorics are answers to a




singie question (number 6). This profile is coasistent; it is not made up of contradictory
categories, and offer a conservative and traditional idea about assessment in Mathematics.
Thineen categories obtained a percentage of 50%-100% in answers. This reflect some

frequent but not prior opinions about assessment; the remaining 20 categories had a percentage
inferior to 50%.

CONCLUSION

With this work, we have collected data to:

* describe the nature of current conditions with regard to Mathematics
teacher's knowledge about assessment.

* identify norms and patterns to be compared to current conditions in
order to explain Mathematics teacher's ideas about assessiment.

* determine the relationships among specific cases regarding the obtained
structured system of ideas, concepts and opinions.

We do believe that we have established a system of categories for the SCFA
questionnaire, being also significant the procedure carried out to determine and validate this
system. The variety shown by the 1673 statements that were compiled, gave the result of 41
different categories that established the system of concepts and ideas employed to answer the
posed questions. Those categories reflect the different interpretations and meanings given by
our participants in order to express their knowledge. Moreover, they reveal how complex and
rich the system of ideas about assessment is.

We have carried out an analysis of every question and of the total, bearing in mind the
frequency and percentage of given answers for each category and for the categories related to a
single question. The fact that the categories show different frequencies in their use, and that a
cerntain conceptual framework of assessment is seen as predominant does not mean that these
conceptions also belong to a regular group of subjects. However, within the different
categories, we can find some patterns of interpretation that can improve the explanation
obtained up to now. Therefore, it should be interesting to continue this work with an analysis
of the different category groupings obtained through the answers given by our subjects of
study in order to explain the dimension underlying in the established categories and reduce the
information obtained.

APPENDIX 1
The following questionnaire is focused on determining and precising some of the most
important questions related to Mathematics Assessment. Please, read it carcfully and complete
the information that we ask you for. Thank you very much.
I.- What should be object of assessment?

Assessment in education should be mainly addressed to:
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2.- Why to assess students?
The aims of studenits’ assessment in Compulsory Education are:
3.- Who should assess students?
Compulsory Education Students should be assessed by.
4.- What rools should be used 10 assess studenis?
The most frequent tools to assess students are:
5.- How should the resuits of assessment be expressed?
Students should receive the results of ussessment through:
6.- Whar should be assessed in Mathernatics?
Mathematics pupils’ assessment should be addressea to:
7.- Whar are the main difficulties in Marhematics assessment?
The most difficult aspects in Mathematics assessment are:

Assessment not only affects students but other elements in the educational system.

8.- What criteriu do you consider important to assess Mathematics textbooks?

9.- Whar aspects should be assessed in teachers of Mathematics?
The most important performances to assess Mathemutics teachers are:

10.- What results should be assessed in the Centres with regard to Mathematics Education?
11.- What other uspects. not considered before, can be assessed in a Mathematics lesson?

APPENDBIX II

Question Category

It is a poority to assess student’s knowiedge

It is a priority to assess student’s work

It is a priority to assess the attitude towards the subject
It is a priority to assess the student’s ability

It is a priority to assess the student’s behaviour

1t is a priority to assess curriculum

Tt is a priority 10 assess teachers

It is a priority to assess students

It is a priority to assess content

It is a priority 1o assess objectives

It is a priority to assess means and materials

[t is a priority 10 assess the educational institutions.
Assessment is carried out to obtain information
Assessment is carried out to take decisions
Assessment is carried out to control

Examiners should be internal

Examiners should be extermnal

Traditional tools should be used to assess

General tools should be used to assess

Assessment should consider the way of communication
Assessment should consider the kind of information
In Mathematics, it is a priority to assess knowledge
In Mathematics. it is a priority to assess work

In Mathematics, it is a priority to assess attitude

In Mathematics, it is a priority to assess ability

In Mathematics, it is a priority to assess behaviour
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frequency
27
19
25
26
19
9
23
13
17
16
]
14
35
30
66
97
23
144
32
as
49
62
13
25
84
8




6 In Mathematics, it is a priority to assess content 37
6 In Mathematics, it is a priority to assess objectives 6
6 In Mawehmatics. it is a priority to assess means and materials 8
7 Difficulties in assessment are due examiners 9
7 Difficulties in assessment are due to swudents 67
7 Difficulties in assessment are due to procedures 36
8 Criterion to assess Mathematics textbooks is preseniation 56
3 Criterion to assess Mathematics textbooks is content 97
9 Teachers are assessed on their personal values 41
9 Teachers are assessed on their scientific and didactic training 53
5 Teachers are assessed on their professionalization 97
10 Centres are assessed on their organization 54
10 Centres are assessed on their projects 29
10 Cenrres are assessed on their teachens 7
10 Centres are assessed on their students 28
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QUALITATIVE FEATURES OF TASKS IN MATHEMATICAL
PROBLEM SOLVING ASSESSMENT

Manue! Santos Trigo® and Ernesto Sdnchez

CINVESTAV-IPN
This paper discusses the importance of considering qualitative tasks
to evaluate the students' work in mathematical problem solving. Two
examples which show some features of two type of tasks are
provided. In addition, the initial work shown by some ten grade
students is analyzed as a means to show the potential of the use of
these tasks in assessing the students work and also as a class
material,

Introduction

Recent directions on what type of mathematics students shouid learn have

. challenged the idea of learning only collections of procedures or abilities to
solve routine problems. [nstead, there has been interest to focus on
understanding the meaning of mathematical ideas and to search explicitly for
differe.it application of those ideas. As the NCTM (1989) indicated students
need to develop abilities to explore, conjecture, and reason logically. as well as
the ability to use a variety of mathematical methods effectively to solve
nonroutine problems (p.5). Research on how students solve mathematical
problems has suggested that it is important o pay attention to the basic domain
knowledge o resources, the use of cognitive and metacognitive strategies, and
the conceptualization of mathernatics that students bring into the problem
solving arena (Schoenfeld, 1992). In this context, the question "What type of
mathematical tasks could promote or foster the students understanding of
mathematics?® becomes essential to analyze how this students understanding
could be achieved. This paper presents an experience that analyses the
process of designing qualitative tasks to assess students understanding of
mathematics. It also focuses on discussing mathematical ideas that students
showed when were asked to solve the tasks. Although some of the tasks were
mitially thought as a way to evaluate students' ideas of mathematics, there is
indication that they can aiso be used as a means to engage the students in
some kind of classroom discussion.

*Visiting Scholar at The University of California, Berkeley,
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The Importance of Qualitative Assessment

Kitcher {1988} presented a view about mathematics called "naturalism® in which
he relied on the analysis of mathematical practice to explain the development of
mathematics. He proposed that a mathematics practice has five components:

i. A language employed by the mathematician whose practice it is

ii. A setof statements accepted by those mathematician

ili. A set of questions that they regard as important and as currently unsolved

iv. A set of reasoning that they use to justify the statements they accept

v. A set of mathematical views embodying their ideas about how mathematics
should be done, the ordering of mathematical disciplines. and so forth (p. 299)
In this context, it is important to relate the students mathematical leaming to the
practice of doing or developing mathematics. Schoenfeld (1994) stated that
*learning to think mathematically means (a) developing a mathematical! point of
view --valuing the processes of mathematization and abstraction and having the
predilection to apply them, and (b) developing competence with the goal of
understanding structure--mathematical sense-making (p. 10). Indeed, what
Kitcher identifies as key issues in the practice of mathematics becomes
essential to promote the students fearning of this discipline. Here, it is important
to design mathematica! tasks in which students have the opportunity to use
different representation of mathematical situations, to identify meaningful
information, and to use mathematical ideas to make progress or solve the
preblem. It is aiso important that students use different means to estimate or
evaluate the plausibility of their solutions. That is, tasks that can be used as a
vehicle to promote the use of language, mathematical content, and diverse
strategies to find and discusses diverse solutions or ways to solve the problems.

A Sampie of Tasks

Some tasks could involve tinding relationships of various events that appear
regularly around us. in some cases, the event provides the context to set a
specific task. Although many of the tasks are embedded in contexts such as
dealing with post office information, painting a school wall, or designing a field
track, there are aiso situations in which the tasks are presented in terms of
straight mathematical content, i.e., geometry, algebra, or arithmetic patters. The
underlying principle is that all the tasks give the students the opportunity to use
basic mathematical ideas to work on different phases of the process of solution.
in fact, several tasks were designed by choosing situation that are familiar to the
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students and ofter the opportunity to use their mathematical knowiedge already
studied.

Two types of tasks have been developed, 45 minutes tasks in which the
students have t0 explore various mathematical ideas to work on a pian that
leads to the solution of the task; and 15 minutes tasks in which there is a direct
application of some content. An example and some discussion about the
teatures of each task is provided below.

A. Statement of the Task (45 minutes) (bowi task)

A hemispherical bowt contains some water. The height of the water is 8 cm and

the radius of the bowl! is 20 cm.

i. Yo what angle could the bowl be tilted before the water spills?

ii. If the height of the water is h and the radius of the bowl 1s H, write an
algebraic equation to find the angle a.

iii. How would you show that your equation in part u is correct?
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Qualitative features: An important pan of this task is to represent the key
eleaments of the task into a diagram that could provide some sense on what the
problem is about. Figure 1 is a cketch of the recipient that shows the amount of
water. Note that the recipient has a stand that maintains the bowi in a fixed
position. Here, students are provided with Styrofoam spheres to help visualize
the container. The second figure represents an abstraction of what happens
when the bowi is tilted. For example, the water can be thought of being frozen
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and the bowl moving. Here, it is possible to observe that the situation could be
approached on the piane, instead of a three dimensional representation.
Indeed, making the conr.ection from three to two dimensions is a powetful step
that aliows to locate the data of the problem easily (figure 3). Another important
feature of this task is the selection of the angle. For example, in figure 3, the
angle a goes from the vertical radius to the line representing the top of the
bowl, 90 - a could also be identified as the angle fo tilt the bowl.

Dealing with values h and R gives the students the opportunity to analyze
various particuiar cases and observe the behavior of the angle.

From the figure 3, it is observed that: Sin a = 16/20 which leads to

a = arc sin(16/20), and for the general case,

a=arcsin[{(R-h)/R =1-h/R]. with0<h<R

B. Short task (15 minutes) (area task)

in the figure below (rectangle), a point P is an arbitrary point on the diagonal
CB. From P two perpendiculars are drawn to AB and AC. These
perpendiculars intersect AB and CD in E and H and respectively and AC and
BD in G and F respectively.

Ll F

i. What can you say about the area of AEPG and DFPH? Explain

u. Explain what happens to both areas when P is moved along the diagonal
BC?

Qualitative Features: This is an example ot a lask in which the context is
geometric oriented. 1t involves ways to examine special cases in which the
information given in the problem could provide a sense ‘of what occurs to the
areas. For example, if p is located in the middle of BC, it is clear that the are is
the same. Now, if segment CB is taken as a reference, it is observed that AABC
& ADBC are congruent (SAS); in the same way ACPG is congruent to ACPH,
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and APBE is also congruent to PBF. By taking into account this information, it is
concluded that the area of AEPG must be the same as the area of DFPH.

The above examples show some mathematical ideas that students may use
during the process of dealing with the task. An important feature of these type of
task is that students have to analyze the given information in order to decide
what plan could lead to the solution. That is, there is no direct way to scive the
tasks. The approaches shown by the students are used to evaluate their work
from a holistic perspective. An example of this evaiuation is given further.

It is important to mention that the development or design of a task foliows
various stages.

i. The task is discussed among colieagues to identify some of the its qualitative
features. Here, some changes for the presentation or context of the task may
emerge from the discussion and the initial statement or wording of the task is
ofter modified or adjusted.

ii. The next part is to pilot the task with a small group of students to see what
students can or can't do with the task. This initial field test gives some indication
on whether or not the potential identified initially is real. Then a second revision
is done by taking into account the pilot results and a new version of the task is
presented.

iii. The next stage s to try this version with different students and then to analyze
the results and give specific recommendation for its use.

Preliminary analysis of the students’' work

The bowl and the area tasks were given io 12 grade 10th students, they worked
individually for 45 minutes in the large task (bowl} and 15 minutes the short one
(area). The written work shown by the students was analyzed by considering
the type of resources and strategies tha! the students used to solve or make
progress while working on the tasks.

Six students recognized that the area of the two rectangles was the same. One
of the students wrote:
They are equal. The rectangle is split into 2 congruent tiangles by the diagonal
CB. And CP split the rectangle GCHP into 2 congruent triangles, And PB splits
rectangle EBFP in also 2 congruent tnangles. So by this point the two sides have
cgual arcas 5o if CB divides the larpe reclangle into two small tiangles that have
arcas. Then AEPG and DEPH must have equal ancas.
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In explaining what happens to the areas when P is moved along the diagonal
BC, this student responded:

The areas will continue to be equal no matter where P is on BC.

In general, the students who recognized that the area was the same provided a
similar type of argument to support their claim. it was clear that they have all
the resources to justify their arguments, however, they did not provida a reason
on why for example the triangles were congruent. One student used a special
case to support his answer. He relied on a 4 x 2 rectangle and drew the
following diagram:

L 4 A Area of A = 2 and
3 B Areaof B=2

| 2 2
—_—4 .
Two students thought that the area of the rectangles was different but did not
show any work to explain their responses. These students wrote comments
such as "l was never really good at this area of geometry” or *i do not remember
how to do this". Two students did not show any work.
In the bow! problem, the students experienced difficulty in visualizing the
relationship that could heip them to refate the information given in the problem
to the angle. However, it was interesting to observe that all the students use
some kind of representation. Five students tried to use a three dimension
representation to identify the angle, but they struggled to identify the angle
position and failed to make significant progress to the solution of the problem on
their own. Only three students were able to represent the angle in a diagram of
two dimension. And four students asked for significant help throughout the
entire process of solution.
It is important to mention that the students who achieved the solution of the
problem (three students) spent significant part of their time trying to understand
the conditions given in the statement of the problem. For example, some of the
questions that they discussed that seemed to be helpful to understand the
components of the problem included:
How important is the shape of the bow!? What about if the container were a
parallelepiped? Where should the angle be located? Which data do we have to
calculate the angle? Indeed, by discussing these questions, the students were




able to focus and determine a plan and strategy of solution. In contrast, the
students who immediately selected a way to approach the problem,
experienced serious difficulty not only in identifying which angle to consider but
also what data to use. It seems that trying to approach the problem without
having a complete understanding of possible relations of the data impeded that
the students explored or identified other ways or variants to sotve the prcblem.
Some of the students commented (after having worked on the problem) that the
bowl problem resulted to be difficuit because it was a kind of different type. That
is, it was necessary to choose a manageable representation in which the
behavior cf the bow! could be easily manipulated and they expressed that, in
general, the regular class examples do not include this kind of exercise.
Although, they thought that it was important to deal with these probiems !0 find
interesting applicaticns of mathematics.

Discussion of Results and Recommendations

in general, the students showed significant progress while wcrking on both
tasks. However, the use of their mathematical resources often appeared
loosely attached {0 their arguments. This was evidernt in the use of congruence
in the short task. In addition, it seems that studenis experienced difficulty in
presenting the written form of their response. As Schoenfeid (1992) suggesteaq,

problem solving activities should encourage studants to value both discussions
of various approaches and the cecmmunication of what is important to support
their solutions.

Although few students were able to scive the bowl problem on ther onw (30%]),
it was found that by working on this task, they showed awareness of using
various means to approach the solution. For example, thinking of other type of
container seemed to help them make sense of the main components of the task
{behavior of the water, level, and the angle). It appeared that representing the
problem in two dimension was th2 main otbstacle to identify a manageable
relationship. Here, it is suggested that students spend more time dealing with
tasks that involve the us2 of representation from three to two dimensions.
Although the initial purpose was to explore the type of strategies vsed by the
students while working on some prcblems, it was interesging to observe that the
information of the students work alsc could be categorized in terms of how they
conceptualize mathematics and problem scolving and in terms of mathematical
disposition to work on this type of problems. For example, it was evident that




some students tried to work on the problems via number grabbing as initial
method while other spent more time making sense of the conditions of the
problem. [t was also clear, that some students showed a betier disposition to
work on these tasks and those who showed some kind of flexibility in using
more than only one approach, eventually were abie to solve the problems.

Conclusions

The use mathematical tasks in which students have the opporunity 1o apply
diverse mathematica! ideas has been recognized as a necessary step not only
in mathematical instruction but also in the students evaluation. Students may
intially be reluctant to approach tasks in which they are asked to do more than
using procedures while making sense of the information, designing a plan, or to
solve the task. This paper shows that they eventually become interested in
exploring various ways while approaching the tasks. It seems important that
tezchers should value and use these tasks on regular basis in their instruction.
So, students could accept that dealing with these type of tasks is part of their
experiences in the {earning of mathematics
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THE INFLUENCE OF TEACHERS ON CHILDREN'S IMAGE OF MATHEMATICS

AURINDA BROWN
UNIVERSITY OF BRISTOL, SCHOOL OF EDUCATION. UK

A set of instruments which allowed the exploration of links berween the image of mathematics of
the teacher and their pupils is introduced. Although, given the constrainis of th: research design. |
had expected no connections to be found the data showed clear evidence for the teacher’s
influence on their pupils’ image of mathematics. In particular, interviews with the pupils revealed
little evidence for the negative perceptions of mathematics prevalent in many children and aduits.
The 1eachers had been selected because they were effective in the opinion of advisory 1eachers and
the question is then raised ‘what is it that these teachers are doing?’ In line with a cwrrent concern
with grounding theoretical and philosophical concerns in mathematics education within the reality
of practice my current research attempis to identify the strategies used by effective practising
teachers to achieve positive images of mathematics in their pupils.

In 1988 I worked at devising a set of insaruments which might allow me to explore whether a
particular teacher did. in fact, influence the image of mathematics of their pupils in the same way. |
found research studies on:

« children’s attitude to mathematics and their perceptions of it

« teacher’s views of mathematics and of mathematics teaching

« identifying characteristics of good practice

« working at the complex space which encompasses the children, their teacher and the mathemaiics
and I read reports (Buerk, 1982 and Vertes, 1981) of teachers with a strong philosophy who
apparently influenced their pupils in some way. This reading all fed into the research design.

(See Lerman, 1993 for a more up to date survey of the area.)

Research design

Definitions of image and influence

The personal theory (Kelly. 1955, Claxion, 1984) which an individual holds about mathematics at
the present time which will include feelings, expectations, experiences and confidences was calied
the individual’s image of mathematics.

An influence of the teacher on children’s image of mathematics will therefore be defined as how
the children’s personal theories of mathematics have undergone a common change or adaption
through working with the teacher.

The total of influences of the teacher on a particular child’s image of mathematics would be
expected to be greater than that of any common changes, but the identification of common changes
would help the teacher to identify those of their personal beliefs which are most apparent 10 their
pupils.

In looking for common changes in the set of pupils taught by a particular teacher, I will not,
therefore, be considering the difference in adaption of personal theories which might be apparent,
say, in the subset of boys and the subset of girls within the pupils.

Choice of teuchers
1 imposed a number of consiraints of which the most important for me were:
+ cach teacher would have a strong personal philosophy and be considered to be effective either by
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advisory teachers or their head of depurtment
+ a range of philosophies would be represented such as SMP 11-16 tan individuahsed workcard
scheme), skill in exposition, ‘not using a text-book®

s each teacher would have taught a group of pupils for at teast a full year before the process
started.

In the end [ worked with 4 teachers, the fourth one being chosen because their own philosophy of
teaching mathematics was undergoing chunge.

Choice of pupils

With each teachier | worked wiih one class and asked cach teacher to choose 6 pupils, two of
whom did respond 1o whatever they did with them, two of whom did not respond and the other
two to make up imbalances such as gender representation. They were not to infonm nie of the
reasons for their choices. Given the definition of influence above i would be looking for similarity
of responses between the teacher and all six of their pupils even though one-third of them did not
respond! Given this constramt, at this stage of the process, I was sure that | would find no
cvidence of such influence!

Pre-visu

I felt that #t was important to expericnce the teacher working with the group of pupils and this visit
started the ficldwork. My record of this visit was in the form of notes. written at the time., of
events that happened in the lesson using reportive statements only eg *“Teacher says "Now make
22" (A M Brown, 1987). At this carly stage of the process | wanted 10 avoid other categories
quoted by Brown such as interpretative and prescriptive. | had 10 work quite hard prior to this first
visit to ger into the habit of doing this. Each teacher was asked not to prepare a special lesson for
me 1o observe, but just to do what they planned 1o do.

Interview with 6 pupils
Each interview was semi-structured (Walsh, 1985) with a basic script for me to follow trom
which | could ask contingent questions as in a clinical interview (Ginsburg, 1981). 1 tape-recorded
each interview and later transcribed the tapes. The interviews began with us engaging in some
mathematics which was chosen by the pupil from five alternatives. This was partly as a vehicle for
us to get 1o know citch other before the *questions” and partly as a vehicle 1o allow a choice of
mathematical activity to be made which then led o a discussion of why that choice was made and
the possibility of leaming something about their view of mathematics directly. The five activities
were chosen to offer a spread of categories of mathematical experience: practical work/geometry,
nuinerical/algebraic, an investigation, applied/bookwork, a problem.
The work of Hoyles (19835) in: asking pupils to recall particidar episodes and Thomas (1987) in
the formulation of the questions in the affective domain were influential in the design of the seript
for the interviews with the pupils.
Opening statement:
On the table in frant of you there are, in fact, five different activities. Although e will
not have time. probably, ta finish the activity in any sense. could you choove ane for
us to get involved in?
After approximarely 15 minutes:




Your answer o this question might be the same ay your first answe: lf wetead of
asking vou to choose an activity for us to getinvelved in. I'd asked youc i chosse tie
one vou thotught was most mathematical, would voir have chasen dilferenthy
Stories:
For this part of the mterview [ am going to make some statcments wid. for eachione,
see what is brought to mind by what [ say. Try to remember the event so ciearly that
vou can tell me a story ahont what happened.
a1 Tell me about an activity vou have done recently in a muaihs lesson. and althoush
you probably did not think so at the time. 11 is brougitt to mund now when ! say, there
youware, sitting in a maths lesson and what you are doing does fecl like mathematios
biTell me about an activity vou have done recently in @ maths lessen. and althouel:
you probably did not think so at the time, it is brought to mind now when I suy. there
you are, sitting in @ maths lesson and what vou are doing does not jee! iike
mathematics.
c}imagine a time when voufelt good in a maths Iessen.
dylmagine a ime when you felt had in a maths lesson.
¢i What I am mtercsted in iy your image of mathematics. So fur vou have indicated in
Your responses to the various statements and activities that maihs is . s there
anything else vou' d like to add that has not been cavered so far to the question W hat
is mathematics to you?
Some of the quesiions might seem long-winded but experience showed that they preaipitated direct
responses from the pupils without any need for themn to clanify what I meant. The precise wording
developed over time. The last question proved useful in that [ could get feed-back from them about
what I thought I had heard.

Inmterview with the teacher

I kept the interview with the teacher as close as possible to thar with the children and also taped
them. They engaged with the mathematical activity and then [ asked them to describe to me their
criteria for choosing the children for interview. The story questions were the same followed by
« ¢can you say in on¢ word how you feel about mathematics?

* can you say in on¢ word how you feel about teaching mathematics !

« and finally a chance to mention anything you would like to that you do not think we have
covered naturally so far.

The technique of asking for stories through which to probe the underlying tenets (Davis and
Mason at a serinar Changing ways, ATM Easter Counse, 1988) of the teachers worked well and |
felt comfortable in the interviews which lasted in some cases over an hour.

As the interviews progressed 1 reflected on the technigues I was using to encourage the teachers 1o
taik mote. The most effective technique ! called ‘summing up’. Clearly, on the later tapes. there
arc cormmenls frony me, n response to a particular story or staterent, which are little more than a
simple reiteration eg Se vou think that ..(repetition) ... These comments seem to provoke cither
agreement or disagreement on the pant of the weacher followed by clarification and Turther examples
which 1 now call provoked anticulation.




Posr-visit
The final visit was to observe the teacher and, as with the pre-visit, 1o simply note reportnve
observations (A M Brown, 1987) uniess anything from the previous experience in the interviews
was brought 10 mind in which case [ would chang= to interpretative mode (A M Brown, 1987)
continuing in reportive mode when sufficient notes had been taken to ensure that the link could be
remembered. In practice this was the least satisfactory part of the whole process since those pupils
who had been through the interviews wanted to engage with me and ! became an active part of
each of the lessons and ‘observation’ was difficult. Having worked hard 1o observe in the pre-visit
in reportive mode I also found it difficult to move into a more interpretative styic.

Evidence

A large amount of evidence was collected. There appeared to be evidence for strands linking
linking the umages of mathematics of the teachers with those of their pupils as follows (dizgrams
showing the links for Teachers A and C are inciuded as a separate figure on the follow mg pagen

« Teacher A through challenging the pupils leaves them with an image of mathematics as mitially
hard, but casy when sorted out

«Teacher B through using the structure ef the SMP 11-16 individualised Icarning bookiets leaves
the pupils with an image of mathernatics as a set of titles from the boohlets

+ Teacher C sces mathematics as a framework of ideas which all tink with each other and leaves
with the pupils an image of mathematics based on using and applving it

« Teacher D and the pupils have a common image of mathemarics as enjoyahle.

These links came as a surprise 1o me. I had expected that my conditions on the pupils. namely
some who did and others who did not respond to their teachers, would ensure that influence,
defined as being an image common to all the six pupils and therr teacher , could not be present.

One other surprisc was that the vast majority of the 24 children interviewed scemed on the whole
1o be genuinely engaging with their mathematics. Where were ali these pupils who hate
mathematics and cannot see the relevance of it? Where are the children lacking in confidence.
scared of making a mistake? Certainly not all the children I interviewed would have said that maths
was wonderful; some thought it hard at times, others boring at times, but my overwhelming
impression was of children working in classrooms where there was a positive experience. They
were children who were learning something in mathematics lessons and had a feeling of progress.

Teaching strategies and purposes

Sa, these four teachers are seemingly capable, on this evidence, of working with pupils so that
they end up seeing mathematics in a particular way. This scems to have positive effects on the
pupils’ performance in mathematics. The most pressing question raised for me by this piece of
work was : what is it that these teachers do? They have a strong philosophy. yves. butif, <ay, I am
starting to teach




Pupil A2

Mathematics is about organising thing so that
they are easier to think about. When things are
already easy they are not wonh thinking abaut
and not mathematics. It's more demanding than

just number.
Teacher A:

Pupil Al influence through challenge

Idon’t understand 1t
sometimes. [ get a bit low,
but in the end [ ¢can do .

Control. insight and challenge. in one
word mathematics is compelling. When
kids repon *It’s all so easy and you can

Pupil A3

When you look at al} those numbers.
vou dont read it. it looks difficult. 1
think maths is more about problems
as well as figures, Sorting out things.
Finding casier ways to do things.

Pupil A4

1 think matns s ¢ hard
subject

make i1 as complicated as you like and 1t's
just as casy’ about an extended picce of
alpebra, that's at the heart of what I'm

trying 10 do with my teaching. Pupil AS

Pllpil AG

I think ! felt cood it was building those classrooms
Feeling good wien I'd finished ir, schieving, actually

Thut making a scale-model
wus really hard. interesting
but hard. I got to understand

working it out. We'd not really known what to do - all 1t a hit better, 1t took shout i

our own work really.

week 1o understand.

Pupil C2

[ prefer having to solve it myself [t gives you
that satisfaction of not having to take it from a
book. T enjoy mathematics. 1 find it more of a
challenge than a chore. The problem-solving
exercises would help me because I could imagine
how I felt and go logically through the steps.

Pupil Cl
upi Teacher C:

You've got to actually solve influence through

things for vourse!f which aren’t .
in a book. That's not really what [ think the whole dea
I thought maths was going to be
in the carlicr years because that
was just numeral sort of maths.
You can relate it more 10 things
outside, it's not just like a
picture on the board. you can

mathematcs teaching

Pupit C3

Mathematics is problem-<olving In
Conneet-4 13 sturt by experimenting
on a smalier gnd to see if there's any
pattern and be uble to predict: maybe
changing the number of counters
which vou have to make a row.

Pupil C4
philosophy

I think maths i~ Just
of a problemis  applyving stuff that

that vou model it and make it solvable.  vou have learned 1n

the lesson in reahity.

Mathematics 1s a framework and

is fun. Fun

when vou sec the children building
their own frameworks which are not
necessarily you frameworks.

imagine it. Pupil €5
Pupil C6
Maths 1s using what 1
There way a real problem there | undersicod what was already know like
happening and there were so many different types of maths mgonometny and
used 10 find the final answer. Maths was numbers tome. FHel: measurement

that in maths cvervone knew the answer but s time”’

s gonc on

I've discovered that even Teacher C doesn’t know ali the

answers - s maths has changed - vou can expenment,




and know that | want to create an environment in my classroom where children lear from their
mistakes rather than feel they have failed when they make one, are there specific techniques which
{can try?

In trying %o find a way of thinking about what these teachers actually do to achieve the atmosphere
in their classrooms which they value I started using a confusing variety of words such as
‘strategy’, “tactic', ‘skill’ and ‘technique’. Sometimes the teacher used a specific and repeatable
behaviour over again with marked effect and at other times the strategy seemed more nebulous and
globat such as asking questions. How could T find a way of describing what I was looking for?
Therc seems to be a general richness (lack of consistency?) in the use of words to describe
strategies, but in the literature concerned with learning strategics [ found a modei which proved
most useful in describing 10 me what [ was trying to articulate in terms of teaching strategies (for a
fuil discussion see Nisbet and Schucksnith, 1986):

Characteristics Examples
Central strategy Related to auitude and *Planfulness’
{style, approach to motivational factors
leamning)
Macro-strategies Highly generalisable Monitoring
(executive processes  Improve with age Checking
closely iinked to Improve with experience  Revising
cognitive knowledge)  Can be improved by Self-testing
training, but difficult?
Micro-strategies Less generalisable Asking questions
{executive processes)  Easier to instruct Planning

Form continuum with
higher-order skills
More task-specific

The examples here are concerned with learning strategies, but this hierarchy of strategies seems
worth working with as a tool for allowing me to notice teaching strategies. I am not going to put
too much energy into their classification beyond these broad divisions since ‘a strategy is
essentially a method for approaching a task, or more generally attaining a goal. Each strategy
would call upon a variety of processes in the course of its operation” (Kirby, 1984 quoted in
Nisbet and Schucksmith, 1986). These arc distinct from non-executive processes which might be
termed skills but any distinction when related to the complex arenas of lcaming and teaching 1s as
Nisbet and Schucksmith point out casicr to maintain in theory than in practice. For my purposes
micro-strategies will subsume skills and tactics.




The work I am currently involved in is concerned with interviewing perceived effective
mathematics teachers after their first lessons in the school year with classes new to them to tind
out what strategies they use 1o achieve the classroom ethos for mathematics which they want. |
am not so interested in the management and organisational strategics as those hnked to how they
teach mathemaucs. After the initial interviews the work is tollowed up using a similar set of
instruments 10 those discussed above and working with a class which the teacher has taught tor
some time.

In the above leaming hicrarchy applied 1o teaching strategies 1 am hinking the cenrraf seraregy 10 the
teacher's images of mathematics and mathematics teaching and. as such. gives an overall sense of
direction to therr work. Such philosophical and attitudinal perspectines buslt up over ume are
certainly not easily transferable but do inform the decision-making necessary to apply lower onder
strategies. In finding a way of talking about what I am observing in such a way that it might be
usible by trainee teachers I have staned to work on macro-strategics in werms of iheir purpose s
articulated by we or the teachens whilst observing or listening to practice. For a particular purpose
the teacher often has a range of strategies which coukd be applied at differing times and in diftering
circumstances and, where a particular purmpose is shared by a number of teachers, they will have &
range of strategies berween them. The nucro-strate gies for a particalar purpose nnght be casily
transferable as behaviours but the trainee teacher would still need 1o work at the level of purpose 1
begin e integrate the behaviour into a wot to achieve that purpose and wall only recognise the
micro-strategy as being usetul if it confonms 1o therr naive but developing cenral strategy To pive
an indication of what 1 mean here fallows & purpose wiih @ few related sirategies:

Purpose; Knowing what thes dnew

At the start ol a topic or theme how can you find out what the individual students o vown class
know and where they find problems so that you can make hinks?
Suaegres:
« invite the students 10 make posters or wnte in response o " Tell me what you know
about ..°
« open-ended starter
¢g You're going to be working on area and you tnvite the students to draw shapes watly
arca 8. This can he consirained by using square dotty paper and iy iting the corner of the
shapes to be on the points of the grid.
* a pupil offered an explanation of how they had begua 1o tackle a problem The other pupils were
invited to close their eves and put up their hand if they had started i the same way. In fact, in e
lesson oberved, only two pupils ¢-d so. An altemnative stan was requested and the pupits agian
closed their eyes and put up their hands if this was their way of staring. The process contmued
with more information being collected and these different starts were then used for tarther
exploration:
- Whareds the aim of the peapie who dreve the radus? (Brown, L. 1992




This work is still in its early stages but the framework is providing a useful tool for my
observations. In the presentation 1 will give an update on the work so far with a fuller list of
purposes and strategies and would be interested to meet teacher researchers from other countries
with a view to exploring similarities and differences.
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LISTENING TO STUDENTS' IDEAS:
TEACHERS INTERVIEWING IN MATHEMATICS!

Marta Civil
University of Arizona

As teachers work on developing learning environments that build on students’ ideas
in mathematics, guestions such as "how o uncover these ideas?" and “what to do
with these ideas?" arise. This report focuses on the experience of a group of
teachers as they interview students in mathematics. The teachers' write-ups serve
as a spring board for a discussion of beliefs about mathematics and its teaching, and
of aspects related to their pedagogical content knowledge. This discussion is placed
within the larger framework of change in mathematics education, with a particular
emphasis on implications for teacher education.

"t’s scary to go into the classroom with the idea of letting the children go in different
directions and me following them.” This is what Donna, a preservice clementary teacher, said
upon reflecting on her experience with an approach to mathernatics instruction that moved away
from the teacher as imparter of knowledge to the teacher as facilitator of mathematical inquity.
Donna's statement captures what I think many teachers are currently going through as they work
on changing their tecaching practice. The classrooms described in documents addressing
recommendations for change in mathematics teaching and leamning (NCTM, 1989; NRC, 1989)
are very different from the classrooms that many of us experienced as students and as teachers.
If classrooms are to become mathematical Jearning communitics where students and teachers
participate in the joint construction of mathematics (Cobb, Wood, & Yackel, 1990; Wilcox,
Schram, Lappan, & Lanier, 1991), students’ ideas should come to the foreground of class
discussion. Teachers may then be faced with a variety of mathematical ideas floating in the room
and their role is to probe and guide without leading or imposing their views as to what consututes
the ultimate answer. In order to build on their students’ ideas, tcachers need to listen to their
students in ways that may be quite different from the kind of listening that usually takes places in
a mathematics class. This "new” listening is an active listening in which the teacher shows a
genuine interest in the students' thinking in mathematics by asking them to claborate, to explain
further, and by involving different students in the conversation.

This report is part of a larger rescarch project that has as a goal to document and analyze the
efforts of a group of clementary teachers as they try to bring change to their mathematics
classroom. As they move towards an approach that focuses and builds on students' ideas of
mathematics, becoming active listeners of these ideas is of key imporiance. Hence, one aspect of
our rescarch focuses on teachers listening to students’ ideas about mathematics and on what they
do with what they listen. We arc looking at this from different perspectives: nature of the

UThis research is supported in part by the Natonal Scicnee Foundation #ES1-9253845. The views expressed 1n
this paper are those of the author and do not necessarily reflect the views of the Foundation,
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classroom discourse (through observaiion and videc-tapes); teachers' use of students’ writing in
mathematics; teachers' use of task-based inteiviews as a means to learn about their students’
thinking. This paper uses the teachers' interview reports as a window into aspects of their
beliefs about mathematics and its teaching, their pedagogical content knowledge and their
understanding of mathematics.

Background

This rescarch report is part of a teacher enhancement project that was developed to address
the needs of teachers who want 10 become active participants in the reform movement in
mathematics education. Thirty onc teachers (lcaching children ages & through 14) constitute our
first group of participants. This project has a strong leadership component. Hence, one of the
criteria in the selection of these teachers was evidence of their participation and exposure to a
variety of reform-onented workshops and experiences in mathematics. These are neither novice
weachers nor unfamiliar with the rhetoric of reform in mathematics education. Many of them have
been using alternative teaching strategics and reflecting on the teaching impli- ations of this call
for change for quite some time now. This is not to say that there was not a great variability
across participants as to their level of awareness of the call for reform and their personal
interpretauon of this call. Different participants had different nceds--often shaped by the
circumstances of their school ard school district.  Furthermore. a constant throughout the
institute was the tension between participant as leamer of mathematics and participant as tcacher
of mathematics.

A broad goal of th* project is 10 enhance teachers’ undersianding of mathematics by
cngaging them in a variety of experiences as learners of mathematics. During the summer
instituie, these clementary teachers work in small groups on problems in geometry, numbers and
number theory, probability and statistics. Technology, manipulative materials, and a variety of
exemplary curriculum resources are integrated throughout the institute. In addition to exploring
mathematics, the teachers discus. wopics from rescarch on leaming mathematics and work on the
implications of the reform for their own classrooms and schools. During the school year, the
teachers work on implementing aspects addressed in the instituie. Support is pravided through
project staff visits to their classrcoms, monthly meetings with some of the teachers, and four all-
day reunions during the year.

The instructional approach fallowed throughout the summer institute is based on a social
constructivist view of learmng (Cobb, Wood. & Yackel, 1990; Simon, 1994). In our
interpretation of this view, we focus on the complementanty of individual and social perspectives
on learning (Bartolim-Bussi, 1994; Cobb, 1994). Throughout the institute, the instructors often
choose challenging tasks aimed at promoting social interaction in a mathematical context. The
teachers share their ideas on the tasks posed, examine different ways to approach them, and




cxtend upon them. Our aim is to creale a mathematics [earning community in which participants
are responsible for the negotiation of meanings and for deciding on the validity of different
methods (Bishop, 1985; Wilcox, Schram, Lappan, & Lanier, 1991). Hence, a key activity
during the 1nstitute is listening to each other's idcas and pursuing these to advance in the
exploration of mathematics. We also explore different ways of finding how and what students
think about mathematics. The participants watch videotapes of task-based interviews of children
and rcad and discuss resource materials related to the issucs of interviewing students and
histering to studenis' 1dcas of mathematics. During the school year the teachers have to inlerview
two of their students (individually or together) on a topic and with tasks of their choice. The
teachers’ wrile-ups about their interviews provide us with another way to gain an understanding
of the many issues involved 1n changing the teaching and learning of mathematics.
A Discussion of the Teachers' Interview Reports

Letung Go of she Teacher's Hat

With a few exceptions, interviewing students on a mathematics task was new lo these
teachers. Three factors appeared to play a role 1n the teachers’ writing of the interview reports:
the task chosen for the interview (e.g., the choice of a problem-solving task or of a concept-
investigation task led to considerably different reports): the teachers’ belicfs about mathematics
and 1ts teaching: their level of experience with interviewing and reporting findings.

Adted 10 the novelty and difficulty of the interviewing process, we need to keep in mind that
thas 1s just a small part of a larger program in which these teachers are being pushed to think
about how mathematics is usually taught and how it may be taught. Hence, their interview
reports convey a tension betwaeen the images they have held for years and the alternate images
proposcd for the teaching and learning of mathematics. Several teachiers wrote about how hard it
had been for them to refrain from telling or showing their students how to do something during
the interview (¢f. Markovits & Even, 1994, for similar observations). Letting go of the “telling
maode” ean be particularly difficult since the model of the teacher as dispenser of knowledge is
very well ingrained thee  out our experience in school. Knowing how to ask probing
quesuons without direcung students’ thinking is usually not an easy task, especially because this
kind of quesuoning 15 very different from the recitation type questioning that takes places in
many classrooms. An interview that had as a goal 1o investigate the concept of decimal soon
tumned nto a teaching-by-telling interview in which the students were led through the teacher’s
agenda by a senies of questions that remind me of Plato’s dialogue, Meno.

Another characteristic common to several reports is the focus on outcomes, especially to
point out-that the students did reach the "cormrect answer." This may be an indication of their
beliets about what 1s valued in 2 mathematics activity. But it also may be partly due 1o the
difficulty 1n reporting in writing a thought process, Ieading to statements such as "they both




thought for a deliberate amount of time and gave the cormrect answer," with minimal to no
description of what this thinking was.

The necd to evaluate the students’ performance is very much present. But this evaluation is
coated with very positive remarks, emphasizing the fact that they "did get it” In reading some of
these reports, several of the characteristics of the progressive educator (Ernest, 1991) surface,
especially in relation to the minimizing of conflict and the avoidance of errors. Yet, it is through
cognitive conflict and by locking into students’ "errors” that we are most likely to ieam about
their thinking. Interviewing in mathematics should enable teachers to prod students’ ideas and
walk into murky areas. Shying away from these areas may lead to lost opportunities [or learming
for both teacher and students.

I next focus on what I consider to be two cxemplary interviews. These teachers’ write-ups
are thought provoking and could serve as documents for reflection in teacher discussion groups
along the lines of current work on using cases in mathematics teacher education (Barnett &
Sather, 1992).

Lisa is a seventh and eighth grade (12 - 14 year olds) mathematics teacher with a very solid
background in this content area. This became evident during the discussions oa mathemaltics
problems and concepts throughout the institute. She appeared knowledgeable, comfortable, and
rcady to take on the many mathematical challenges that were presented to the participants.
During the institute she gained further appreciation for the use of manipulatives as a means (o
help students gain understanding. Thus, for her interview she had two students work (in
individual intervicws) on some fraction tasks using square tiles and the number line (this being a
model that she routineiy discusses with her students). Lisa had the students represent fractions
such as% and %Wilh the square tiles. She was interested in them “sceing” these fractions. The

students had no difficulty making up models "with the tiles to represent the fractions given. Then,

after a very short time on this (each interview lasted about ten minutes), Lisa asked them to

represent % on the number line. Both students drew a number line from | to 10 and marked §

as 1; In her write-up, Lisa does not share much of her thinking about this response. She

writes:

I tricd 1o ask them again to show me where % was and not half of ten, 1 asked them to

draw a number line starting at zero and going to one and then to mark % . They both
appcared apprehensive at first, as if the space between 0 and 1 were sacred ground. They
Knew that half was in the middle and finally marked the ;— and labeled it.




Several questions seem appropriate here: What model for fraction were these students using?
Was their answer 10 be expected given the sequencing of tasks? Whal kinds of probes and rasks
could be used to further explore their thinking? Using this episode to investigate these and similar
questions could prove very fruitful in teacher discussion groups as a means 1o explore their own
understanding of the mathematical content and their pedagogical content knowledge. By asking
the students to draw a number line from 0 to 1, the students are able to give the "desired
answer.” But, what would have happened had she given them a number linc from 0 through 6.
with marks at every whole number? Would the students have marked .5 or 3 as their choice for
li? As Larson (1980} points out. a number line from 0 to 1 may be interpreted by students as a

part-whole model and thus may shed little light on students’ understanding of the number line as
amodel for fractions.

Lisa's report reflects the difficulty to bridge between one’s own understanding of the content
and the students’. In no more than ten minutes per student, she had them work on three very
distinct tasks, involving different subconstructs of rational number and the idea of unit. Just
based on her report, it is hard for mc to assess how much awarencss Lisa has of the many
subtletics {from a Icarning point of view)} involved in the tasks <%.e presented. She does write
that, pdor to this experience, she had assumed that her stulents knew more about certain
concepts such as the number line. Students do find the number line model for fractions to be
more difficult than the area (region; part-whole) model {Larson, 1980). Yet, tcachers such as
Lisa may not have had a chance 10 revisit the large knowledge base on rational numbers.since
they were in college working on their teaching degree. And even then, it is not clear how much
they did (since lime is always a factor) and how rclevant they may have perceived that
information to be at the time. Now that they have had their own experiences teaching this tapic,
a discussion of relevant research related to vignettes such as those writien by Lisa is likely 10 be
meaningful and help advance their pedagogical content knowledge.

Learning about their students’ concepts

Penny teaches third grade (8 year olds) in a middle 10 upper class school district. She is very
aware of what the implications of mathematics education reform are and is clearly a lcader in
implementing change. She feels isolated in her school because of some of her peer cachers'
apparent lack of interest in or concern about discussing mathematics tcaching and learning.
Judging by her very insightful journal. her auitude throughout the institute, and her teaching
behavior, she seems to be in the forefront of reform. Her write-up presents three students’
responses to one single task which was part of a larger interview that she administered
individually to cach of 25 students. The task can be stated very simply:




The teacher shows a red trapezoid (from the patiern blocks collection) and tells the
student “this trapezoid mpresems-;-of the whole, show me the whole.”

Penny had interviewed students in mathematics before and had in fact used this task in
previous years. It is Penny's ability at probing, listening, and waiting that makes her report a
very rich one. In reading it, one learns about these children’s images of fractions and how prior
expericnce with the pattern blocks appears to influence their work. One of the students, in
looking for the whole. appears fixed on the idea that it has to be a hexagon. Immediately
discarding the yellow hexagon as being too small, the student seems at a loss because she is
looking for one single picce. When Penny asks her a general question about fractions, the
student refers to a pie as the context for her answer. In the context of patiern blocks, this student
may have been limited by an overreliance on the yellow hexagon as the whole. In a different
context, one of her choice, she may have succeeded in solving a task similar to the one posed
{see Mack, 1993, for a discussion on the influence of coniext when working with rational
numbers). These are just suppositions, but the point is that the case presented opens up the door
to further invesugation. But how does this student finally respond to the task posed? She takes
six red trapezoids and arranges them in the shape of a hexagon, with a hole in the middle. This
hole creates some discomfort for her, as she says that the shape has to be "all filled in." She then
takes a yellow hexagon to fill in the hole and presents that as her answer. Penny probes to make
sure that the child is indeed done and concludes the interview telling her that they will look at this
problem with everybody in the -+ 1ss later on. What is this student’s concept of the whole in the
context of pattern blocks? Is only a hexagon acceptable? And more gencrally. would she accept
2 pie (or another representation) with a hole as a model for the unit? This image of a continuous
region (with no holes) is also sharcd by another student in Penny's report. This student Lakes
three red trapezoids right away. He appears confident that this is what he niceds for the whole.
The whole interview is then spent on his trying to decide how to arrange these blocks to make the
whole. To Penny's question as to whether there is only one way o arrange these blocks, the
student answers that they can go any way as long as they touch. Penny probes this idea of
touching and the student insists on it and says that "it's a rule.” He finally arranges the three red
trapezoids as a larger trapezoid for his answer. This vignette could serve as a motivator for a
discussion on discrete versus continuous models for fractions (pant-group/part-whole). Penny
does address several teaching implications based on her reflection on the overall interview. She
discusses what these students knew and what they did not, what they did and what-they did not
do. Her knowledge of her school program and of her students allows her to situate her findings
within the larger context of where these children come from (in terms of mathematical
experiences in school) and where they are heading.




Implications

One clear aim of the project in which these teachers are involved is the development of
tzaching and leaming environments where students' thinking about mathematics is encouraged,
shared, and explored. To do this, teachers not only need to nurture a safe atmosphere conducive
to intellectual risk 1aking, but also, they need o know how to uncover students’ thinking and
what to do with it. The experience in interviewing described in this paper is one way for teachers
to become more comfortable with how to probe students' thinking in a more controlled
environment than that of the classroom. Two questions arise from this experience: What do
teachers learn from listening to their students in an interview setting? What do we (as
mathematics teacher cducators) learn frem reading the teachers’ reports of their interviews? The
first question is hard to address without some follow-up conversation with the teachers on this
experience. Some teachers were more explicit than others in their reports and shared some of
their views on what they had leamned. Several of them commented on the difficulty of not asking
directed questions. A few expressed that this interview experience had been eye-opening in
terms of what they thought their students undersicod and what the interview revealed (c.g.,
Lisa).

The second question has been the focus of this paper and leads to scveral implications for
mathematics teacher education. The choice of a task for an interview is a difficult one. Sume
teachers chose tasks that did not seem to be challenging enough (or for which they did not know
how to probe). A knowledge of their students (what they know, how they learn) and of whai
makes a task inathematically rich seem necessary ingredients when designing an interview. The
most informative interviews are those that set out to investigate a child’s understanding of a
concept (rather than a problem-solving task). Among those, several teachers based their
interview on aspects of rational numbers (c.g., the two cases presented carlier).  Yet, this topic
was not addressed in the summer institute (other than incidentally). The teaching of rational
numbers occupics a prominent place in mathematics in elementary school. To dismiss it in
institutes for teachers as something “elementary” that they most likely already know is certainly a
mistake as Lisa‘s and Penny's reports show. The guestions raised by their write-ups can lead to
a very fruitful discussion in which this topic can be investigated from both a teacher-as-lcamer
and a teacher-as-leacher position.

Leamning how to listen to students talking mathematics in an cffort to uncover their thinking is
a siep towards the development of learning environmerntls where mathematics 1 socially
constructed. But tcachers need to know what to do with the ideas they hear. An interview
setting may give them a chance to reflect on the ideas they uncover. This reflection could he
enhanced through a discussion group in which teachers share their findings and discuss teaching
and learning implicatons. What should Penny do next with her third graders based on what she




found out about their concept of % in the context of patiern blocks? How many meore teachers in

our group are unaware of the difficulty for many middle-school students to visualize fractions on
the number Lne?

Uncovering their students’ ideas is not enough, as several teachers in this group have
realized. They regularly use students’ writing in mathematics as one other way to “fisten” to their
ideas. In the classroom, they are w:orking on changing the nature of discourse by inivolving their
students in the inquiry process. But.what to do with their students’ writing and with the ideas
they advance in the discussion is becoming an issue for some of these tcachers. They would like
to go beyond the “thank-you for sharing,” often followed by little to no further discussion of the
student's idea. Engaging teachers in small group discussions of actual students’ ideas about
mathematics (such as those uncovered through interviews) seems like a necessary next siep.
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ANALYSING FOUR PRESERVICE TEACHERS' KNOWLEDGE AND THOUGHTS
THROUGH THEIR BEOGRAPHICAL. HISTORIES™

Domingos Fernandes
University of Aveiro, Portugal

Abstract

For about 40 hours I met four prospective secondary mathematics teachers aiming at (a}
reconstructing, and reflecting upon, aspects of their own academic and personal lives; (h}
ralking abour Mathemarics teaching and learning ; and (¢} talking about their views of what it
means ta he a Mathematics teacher. Research data enable one 10 relate the participanis’
hiographical histories to the development of their current professional identities; it was also
possible 1o get an understanding of the participants’ personal traits, thoughts, knowledge and
learning strategies. This paper discusses and elahorates upon those results and, consequently,
vields reflections on: (a) the preservice education of mathematics secondary teachers: (b) the
relevance of the biographical approdch in the study of preservice 1eachers' knowledge und
thoughts: and (¢) the impact of the biographical approach on the development of preservice
teachers’ praofessional identities.

INTRODUCTION

I have been involved in the education of mathematics teachers for about 15 years.
Duiing al! these years I have lcarned how difficult it has been for me to have a significant impact
on my students -- future mathematics teachers. As a matter of fact. their personal views about
mathematics and about its teaching and lcarning, which are known as being rclated to their
teaching actions. are not easy to change. Besides. ! have also realised how their optimism. and
even enthusiasm, which they usuvally show while they are engaged in the preservice program,
staris to fade away as they engage in the school routine. We all know that some particular school
contexts do not facilitate the professional development of beginning teachers; many of them
aren't even supportive of their ideas or pedagogical proposals. These facts might partially
explain why it is s0 difficult for them to bring innovaticn and change into practice.

I think that | could go on and on building up a long fist of difficulties which are inherent
to our role as mathematies and teacher educators and which clearly call for our permanent
reflection and informed action. However, | do believe that preservice teachers can make a
difference in the future development of mathematics education. We need to provide them with
more adequate learning cnvironments and. simultancously. we nced to pay closer attention to
preservice teachers as persons who are engaged in a life-long process of human and professional
development. This means, for example, that we should reflect upon the answers to questions
such as: Arc we listening to our preservice teachers? Do we really know what they icamn and
how they learn? Do we take their own formative experiences, their knowledge. values. and
beliefs intc account ? Are we providing preservice teachers with an education which truly takes
into account the contexts in which they are supposed to teach? Do we care about the meanings

"Rescarch icported 1w this paper was deseloped wathin the project Resedug do de Problemas: Fasine, Avadiagdo ¢
Formagio de Profevsores (Poblemn widving. Teaching, Assesung, an Teacher Educationy which i financially
supported by JUNTA NACIONAL DE INVESTIGACAO CIENTHICA E TECNO! OGICA (JNICT) under grunt
PCSHAA139Z/CLLD.
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they attach to their preservice program? Are we dealing appropriately with the theory-practice
dicotomy?

Thesc are some of the questions that we must deal with if we are to make changes and
improvements in the education of mathematics teachers, that is, if we are to provide them with a
meaningful and powerful pedagogical atmosphere which can challenge their teaching beliefs
and, at the same time, contribute to the development of their professional identities. That is why
the underlying idea of the research reported in this paper has to do with the need to get a better
understanding of preservice teachers' knowledge, thoughts, and professional identitics by means
of describing and interpreting the points of view which emerge from their biographical histories.

The following are the fundamental questions which guided the rescarch described in this
paper: (a) What meanings do the preservice mathematics teachers who participate in this study
attribute to the former experiences that they lived as students both in their Cotlege and pre-
College cducation? (b) What are the main characteristics of these preservice teachers’
professional identities? That is. what knowledge and thoughts do they reveal about being a
mathematics teacher. about mathematics and mathematics teaching and learning and,
particularly. about problem solving? (c) What relationships can be found between these

preservice teachers' biographical histories and their professional identitics?

RESEARCH FRAMEWORK

Beyond the personal reflections and concerns expressed above this research is based
upon the following grounds : (a) Recent research work on teachers' knowledge and thoughts that
has been conducted in the context of Portuguese education (e.g., Delgado, 1994; Fernandes &
Vale, 1994: Ponte ¢ Canavarro. 1993; Vale. 1993): and (b) Work done in the area of narrative
and biographical research, not necessarily developed by mathematics cducators (c.g., Butt,
Raymond, McCue ¢ Yamagishi. 1992; Carter, 1994; Elbaz. 1990; Knowles, 1992; Kelchtermans.
1993),

In reviewing that research 1 have reinforeed the idea that reflecting and coming up with
new approaches about the initial education of mathematics teachers must be linked to the
development of empirical research which enables one to get 1o know who preservice teachers
arc. what they think, what they know, what they leamn. and how they feam.

Most of the recent Portuguese research in the mathematics teacher education area is
based upon the assumption that teachers’ thoughts and knowledge play a detenninant role in the
development of their teaching decisions and actions and. uitimately, in their teaching practices.
It was based on this same assumption that researchers such as Thompson (1992) and Cooney
(1985) developed their own research.

What are the main lessons that can be drawn from the resuits of that research? Firstly. it
15 clear that teachers and their formative experiences emerge as hey players in any changing or
innovative process tn mathematics education.  Secondly. in order for teachers' professional

deselopment to be successful both the quality of the programs and our good intents are
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necessary: however, they are not sufficient. Thirdly. studying teachers' thoughts and knowledge
provides relevant information to be taken into account by teacher educators in the process of
improving teacher education programs. Finally, it must be said that implicitly or explicitly ail
studies acknowledge that we need to pay more attention to the person that every single teacher is.

It is important to highlight some of the shortcomings of that body of research as well:

i. As it should be expected their conceptual frameworks are strongly anchored in
research work developed by mathematics educators. There are very few references to research
work done in other areas; particularly, in teacher socialization. teacher thinking. and teacher
education literatures.

2. In most of the studies the participants were experienced teachers; very few
investigated preservice or beginning teachers' beliefs, practices, or knowledge (Abrantes, 1986;
Fernandes, 1992: Fernandes e Vale, 1994; Vale, 1993).

3. There are very few references to the teachers' preservice programs and to their
relationships with the teachers’ beliefs and actions (practices). The role thosc initial programs
can play in investigation and reflection upon teacher education processes has been essentially
ignored.

4. Teachers' academic and formative experiences while they were pre-College or
Cotlege students were not studied as well as their relationships with their current views about
mathematics cducation, about teaching and about learning.

This analysis calls for the statement of other research questions, for the adoption of other
methodological and analytical approaches and for the inclusion of other theoretical perspectives.
I think that as mathematics educators we have much to learn from research conducted in teacher
education by non-mathematics educators. This may help us to fill in some gaps and to overcome
some shortcomings like the ones referred to above.

The biographical research perspective is one of those methodological and theoretical
approaches that can enrich our work as teacher educators and researchers in mathematics
education.

Barthes (1973) stated that narratives are an integral part of peoplc's lives. That is, groups
and members of a particular class or profcssional group express their knowledge, feelings,
beliefs, thoughts. values. and experiences through narratives. Ultimately, one can say that

people’s namatives are a genuine expression of their culture. Thus, one is doing biographies
when one uses people's narratives to write or to reconstruct their lives.

For the purposes of this investigation narratives, in writing or oral form, are more or less
organized means through which human beings express their thoughts giving meaning to past,
present or future events (experiences). Conscquently, in their very nature, narratives are
personal and subjective. According to Cortazzi (1993) one may state that there arc at least three
main reasons which justify the adoption of the biographical rescarch approach in teacher
education: a) it promotes and facilitates teachers’ reflection; b) it enables one to thoroughly




investigate the nature of teachers' knowledge and thoughts : and ¢) it gives "voice” to teachers'

feclings. lived experiences, and the like.

Asking teachers to tell their experiences or their histories is a means to encourage them to
reflect. Under this perspective, teachers and preservice teachers are commonly asked to narrate
episodes, expericnees, or teaching/learning events (e.g.. Bird, Anderson, Sullivan ¢ Swidler,
1993: Carter. 1994; Johnston, 1994: Keiny. 1994; Pultorak. 1993: Rust, 1994: Stoddart. Connel,
Stofflettt e Peck. 1993).

Research on teachers' thoughts described in Clark & Peterson® s extensive review of the
literature has shown how complex the relationships between teachers' thoughts and their teaching
actions really are (Clark & Peterson. 1986). In order to study these relationships researchers
have been making extensive use of teachers' narratives (e.g.. Butt et al, 1992: Carter, 1994;
Elbaz. 1990; Knowles, 1992: Kelchtermans, 1993; Stoddart et al, 1993).

In sum, investigating teachers and preservice teachers' knowledge and thoughts through
their biographical histories allows for its contextualization tfrom the inside: that is. through
narratives onc can learn thoughts and knowledge which are deeply grounded in classroom events
cxperenced by the teachers to which only they can aseribe real meaning (e.g., Cortazzi, 1993;
Kelchtermans, 1993).

METHOD

The method adopted in this study foliows recommendations by Kelchtermans (1994) and
Knowles (1992) who have also used a biographical research approach to understand teachers’
thoughts. knowledge. and development. Some of the corncepts that they have used as heuristic
tools were extensively used in this study. Critical phase. critical person, critical event,
formatiive experiences and reuchers’ professional identiry are some of those concepts.
Participants

Four participants volunteered to participate in this study: Inés, 23, Regina, 21, Catarina,
23, and Jodo, 24. All tour were enrolled in a 5-year program leading to a License in
Mathemmatics Teaching and were seen by their mathematics methods course instructor as good
informants. Inés was in her sixth year at the university, Jodo and Catarina in their fifth year, and
Regina in her fourth year. Their mathematical ability was considered average (Inés, Jodo), above
average {Catarina) and excellent (Regina).
Data Cotlection and Data Analysis

As suggested by Kelchtermans (1994) data for this research were mainly coilected
through a “cycle” of three biographical individual semi-structured interviews {focusing on: (a) the
participants’ most significant educational experiences in their family environments and in pre-
College schools; (b} the participants' expericnces in their university program: and (c¢) the
clarification and reflection upon what had been said in the previous interviews. Participants’
views about mathematics and about its teaching and fearning as well as their views about what it




means 1o be a mathematics teacher were inquired throughout the three interviews. All these
interviews as well as the ones mentioned befow were audio-taped and totally transcribed

Two group interviews were aiso performed. The first one 100k place in the very
beginning of data collection and was aimed at getting to know cach other. presenting the
research objeciives, legitimating the work to be done, and motivating the participants to the
importance of their commitment to this research work. The second one took place before the
third round of individual interviews and focused on issues such as the participants' preservice
education and their experience in this particular investigation. A fourth round of individual
clarification interviews was neceded and helped both myself and the participants to refiect upon
the written reports and to clarify and elaborate on some of their parts.

Data analysis was performed in three main steps: (a) after the first two rounds of
individual interviews and the first group interview; (b} after the second group interview and the
third individual interviews: and (c) after the final clarification interviews. Thus the analysis was
inductive and recurrent in nature. All participants had the chance to analyse the written form of
their own narratives for further ellaboration and reflection. As a consequence, all the cases were
subjected to some sort of medification.

Each participant's narrative was used 10 write a case reflecting a vertical analysis.
Together all four cases provided the grounds for a horizontal analysis. Each case was organised
in two main sections: (a) Genesis of the Ideas: and (b} Features of a Professional {dentity. The
first one has threc sections: Family, Schools, and University. The second one has four sections:
Mathematics. Teaching and Leaming Mathematics, Becoming and Being a Mathemaiics
Teacher. and Problem Solving.

MAIN FINDINGS AND DISCUSSION

Due to space limitations individual cases are not discussed in this paper. A discussion of
the general findings which arose from the harizontal analysis follows in the next sections.
On the Genesis of the Participants' Ideas

All the participants except one (Catarina) grew up in very small, rural villages and belong
to families of modest cultural, social. educational and economic backgrounds. For example.
Regina's and Inés” fathers had to leave the country to raisc the necessary for their familics. Those
two participants grew up with their mothers in Portugal while their fathers were working in
Germany and France, respectively. Maybe because their parents had to struggle very hard to
earn their livings all the participants were encouraged to study since they were very young. This
is interesting to point out because all the participants' parents but Catarina's parents and Inés'
mother did not even get a middle school diploma. They all hold a Grade 4 one.

Education was primarily seen by all familics as a means to get social, economical, and
cultural promotion. A means through which their children could get a decent life. 1t was under
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this perspective that education was strongly valued in the families of all participants. They were
all pushed into getting a College education.

While in Grades |-6 the participants enjoyed quite different experiences, they all stressed
their close and tender relationship with their primary school teachers (Grades 1-4) and remember
their moments of fun and recreation with their peers in the school's playground. Their memories
of Mathematics learmning back in Grades 1-6 are limited to performing computations. They all
enjoyed it and they all experienned success in this discipline. When inquired about their
teachers' teaching strategies and styles they either said that they didn't remember any or stressed
the "fun activities™ that they provided in special ocasions of the year (e.g., Christmas, Easter).

Apparently, and according to all the participants’ narratives, it is during Grades 7-12 that
their relationship with Mathematics and with its teaching and learning starts to evolve in a more
visible and significant wa);. They all pointed out more or less traumatic experiences in the
Mathematics classrooms which are still very present in their memories and which ended up
being recognised as critical incidents.

For example. Regina gives a strong meaning to the effort that she put into overcoming
difficultics inherent to getting classes through TV. She states that what "saved” her was "the
method” she used then. Itis interesting that in our days she still refers to that experience when
she is in trouble.

Catarina's narratives provide us with another example. For two years in a row she didn't
like Mathematics because of her Grade-6 teacher. However, because of her Grade-8 teacher she
regained confidence in herself and she started to cnjoy mathematics again. These and several
other examples illustrate that all the participants remember very well experiences lived in their
matheinatics classrooms. However, they seemed to have some difficulties in analysing the
events from different perspectives. Usually. they were inclined to focus on the teacher-student
relationship. That is, most of the times they did not blame their teachers’ teaching methods: they
blame them frequently on the grounds of their attitudes towards the students.

Another aspect which seems to be strongly rooted in the participants’ ideas has to do with
the number of students who fail in Mathematics. 1t is seen as something unavoidable and almost
natural. Mathematics is difficult, they say. and onc fails because cither one is working on weak
grounds or one doesn't study cnough. A constant in their opinions was that they tended to blame
the students for their own failure; not the teacher, nor any other external aspect. They only
blamed the teacher when his or her rapport to the students was seen as a bad one.

Based upon the participants' experiences in tneir university program. one can list the
following ideas: (a) they sce their program for becoming a mathematics teacher as difficult or
very difficult; (b) they iend to see education courses as the ones that "everybody is able to do™;
(c) they seem to value more the mathematics courses, including methods courses. than courses of
a more general nature: (d) they expect to spend 7 to 8 years at the university to complete their S-
year program (the exception is Regina who is one of the best students in the university): (¢) they
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all feel that they are not being adequately prepared to be a mathematics tcacher: (f) they claim
for more education courses of a practical nature instead of theoretical ones.
On the Participants' Professional Identities

As it should be expected, the participants’ professional identities are stll quite incipient.
They scemed to have difficuities in reflecting upon the issues that were raised during our
interviewing time. For example, it was quite surprising for me to realise that they couldn't
mention other role of mathematics teaching beyond providing students with utilitarian tools to
function properly in society. The formative, cultural, and scientific roles of mathematics
teaching were seldom mentioned. This is consistent with their Platonic and utilitarian views of
mathematics.

Mathematics, for these students is a difficult discipline. However, it can be leared by
everybody if one works very hard and if one perscveres. This view seems to give little
importance to the role that pedagogy and method can play in mathematics teaching and learning.
Paradoxically. and on the other hand. they referrred to the need to provide students with more
active methods to enhance their motivation and to facilitate their learning. In sum, | expected the
participants to possess a more elaborated and sophisticated pedagogical discourse. Apparently.
their views arc strongly based upon quasi-naive reactions to educational situations and
experiences that they have been living.

The preservice teachers who participate in this study scem to consider mathematics
teachers as different from teachers in other disciplines. They say that mathematics teachers are
seen differently by students and society in general. They apparently link this view of
mathematics teachers with the nature of mathematics itseif and state that to become a teacher of
mathematics is a quite difficult endeavour.

Teaching mathematics, according to the participanis, must be diversified to mect students
differences in attitudes, capacities and abilities. However. it was cleariy a difficult for them to

claborate this idea. That is. to make a difference these preservice teachers miss pedagogical

tools which can guide them in the planification of more appropriate mathematical tasks,
On the Biographical Research Approach

In my opinion, based upon this research experience, the use of the biographical approach
in the context of preservice teacher education has several advantages. First of all. it highlights
the relevance of preservice teachers' past experiences both in family and school contexts; this is
impurtant because we need to be aware of the limited impact that our courses or actions may
have on the professional development of the future teachers. Secendly, narratives call for
preservice teachers’ reflection and interprelation of past and present events. This is probably one
of its strongest features because. as this study suggests, preservice teachers seem to have
difficulties in developing a coherent and elaborate discourse about issues on mathematics
teaching and learning. Thirdly, this research approach helps to get a better understanding of
preservice teachers' thoughts and knowledge because. in telling and reflecting upon their stories,
they are necessarily led to express their thinking about mathematics and education.




Many other things could be said about this research experience. Although it is the first
time that I engaged in this approach. | think that I can tell that | learned the importance of

knowing more about "my" preservice teachers. As a matier of fact, I leamed that bringing up

their biographical histories into our discusstons might be an effective mceans to challenge their
professional thinking and knowledge. And this is an indispensable component for the
development of preservice teachers' professional identities.
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Professors’ perceptions of students’ mathematical thinking:
Do they get what they prefer or what they expect?
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In u previous study (Mohd Yusof & Tall, 1994), it was shown that university
students in a problem-solving course developed positive attitudes towards
mathematics as a process of thinking rather than as a procedural body of
knowledge. In this study their teachers are asked to specify the attitudes they
expect from their students and the altitudes they prefer The difference is used
to define the professors' “desired direction of change”. It is found that almost
all attitudinal changes in the problem-solving course are in the desired
direction. Six months after returning to standard mathematics lecturing,
almost all chunges are in the opposite direction — consistent with the
hypothesis that profescors get what they expect, not what they prefer.

Mohd Y sof & Tall (1994) studicd the attitudinal changes in 44 students following a
course in mathematical problem-solving based on the approach of Mason ef ¢! (1982).
{There were 24 male and 20 female students — a inixture of third, fourth and fifth year
undergraduates aged 18 to 21 studying Industrial Science (majoring in Mathematics) and
Computer Education at Universiti Teknologi Malaysia.) The original study used a 17
item attitudinal questionnaire and showed that students” attitudes to mathcematics and
problem solving changed in what was considered a positive manner. In particular
students” attitudes changed from mathematics as a body of procedures to be memorised
to mathematics as a process of thinking.

Here we collect data from the students” teachers to establish their “desired direction of
attitudinal change™ and further data from the students in a delayed post-test, after six
months of standard mathematics lectures. This allows a comparison to be made betwveen
the staff’s desired change and the actual changes occurring in the students during
problem-solving and during a return to regular mathematics teaching. The data from the
qucstionnaires is supplemen :d by interviews with sclccted students and staff.

“The **desired direction of attitudinal change” perceived by mathematics staff

Mcmbers of the Mathematics Department were invited to fill in the attitudinal
questionnaire of Mohd Y usof & Tall (1994) twice. On first reading, they were requested
to tick the response they expect from a typical student. On the second they were
requested to put a circle where they prefer it to be. Twenty-two members of the
department took part. responding to the following questionnaire on a five point scale:

Y. v. - n. N (definitely yes, yes, no opinion, no, definitely no).




Section A : Attitudes to Mathematics

. Mathematics is a collection of facts and

procedures to be remembered.
. Mathematics is about solving problems.

. Mathematics is about inventing new ideas.

. Mathematics at university is very abstract.

. 1 usually understand a new idea in
mathematics quickly.

Section B : Attitudes to Problem-Solving

. 1 feel confident in my ability to solve

mathematics problems.

. Solving mathematics problems is a great

pleasure for me.

.| only selve mathematics problems to get

through the course.
I feel anxious when | am asked to solve
mathematics problems.

[ often fear unexpected mathematics
problems.

The mathematical topics we study at
university make sense to me.

.| have to work very hard to understand
mathematics.

. [ learn my mathematics through memory.
. am able to relate mathematical ideas learned |

.| feel the most important thing in mathematics
is to get correct answers.

. am willing to try a different approach when
my attempt fails. :

. 1 give up fairly easily when the problem is
difficult.

Table 1 : Attitudinal questions to mathematics and problem-solving

Table 2 shows the responses of 22 lecturers in the Mathematics Department and the
dircction of the desired change from the expected to the preferred attititude. The columns
marked “Yes(Y)™ have the “total yes” responses (Y +y). with the subset “definitely yes™
(Y) in brackets. Similarly for "No{N)".
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Tuble 2 : Lecturers” perceptions of students preferred and expected attitudes




The arrow and the plus and minus signs in the second column indicate the direction of
movement. The number of plus or minus signs indicates the average weighted strength
of response, taking cach Y response as 2, y as 1, nas —1 and N as -2, If the average
response is 1 or more, the response is considered “strong” and denoted +++ or ---.
Between 0.5 and | it is denoted “++7 or “--", and less than 0.5 it is considered “weak”
denoted “+" or “-". For instance. “facts and procedures” is desired to change down from
an expected strong agreement (+++) by the typical student to a preferred weak
agreement (+) by the lecturers. In line 4, “being abstract” diminishes from an c¢xpected
strong agreement (+++) to a preferred disagreement (--). The significance of the change
is computed using a %2 test (with Yates correction) on the number of yes responses
(Y+y) and is given as significant (<5%). highfy significant (<}%) or not significant
(n.s.).

In only four of the cases is the change too small to be statistically significant: the
lecturers expect the typical student to belicve strongly that mathematics is about solving
problems and prefer it marginally stronger, that mathematics is not about inventing new
ideas. but weakly prefer that it should be, that the student has a strong expectation to
have to work hard to understand, whilst lecturers have a lower expectation, and that
there is @ weak expectation of pleasure, but lecturers prefer it to be strong.

One change in direction is statistically significant - that the typical student is expected to
give up when a problem gefts difficult, but the lecturcrs prefer the opposite.

Two differences remain in the same direction but the changes are highly significant - an
expected strong student belief that mathematics is a collection of facts and procedures
to be remembered, which the lecturers desire less, and a weak expectation that they are
willing to try a different approach when their attempt fails, which is preferred stronger.

The remaining ten are both statistically highly significant and have opposite expectances
and preferences. The lecturers expect the typical student to think mathematics is very
abstract, will not understand quickly, will consider that mathematics does not make
sense, will learn through memory, will not relate mathematical ideas, will not have
confidence, will only solve problems to get through the coursce, will show anxiety, will
fear the uncxpected. and regard correct answers as the most important thing. In every
case the lecturers prefer the student te think the opposite.

Individual interviews with lecturers

Interviews revealed substantial differences in meaning of ideas cxpressed in the
questionnaire from the ideas of “mathematical thinking™ in the problem-solving coursc.
For instance. Kilpatrick & Stanic (1989) suggest three different perceptions of problem
solving—as means to a focused end, as skill and as art. It soon became apparent that the
lecturers see it more as a means to achieve a specific end or a skill to be learned rather
than the art of thinking mathematically. “Inventing new ideas™ was perceived as original
rescarch rather than just ideas new to the individual. as in the following quotation:




To me mathematics is a tool for solving problems. One way of motivating the students is by
showing them applications in the real world. In this way they get the knowledge and the
skills for solving problems. ... I do not think the students arc capable of creating new ideas
on their own. '

Lecturers are not certain of the problem-solving techniques used in the course:

... L am not sure of these [processes}. | have not thought about them and I don’t know how
1o go about [teaching| them. I think I need to learn more about them before I can implement
them. We developed certain abilities to look at problems but we are not sure how those
abilities came to be with you.

Instead they show students how to do examples in the hope that they will develop their
own techniques:

The experience of making conjectures, generalising and the like, | think the students can get
themselves on their own, from doing their project work. We do not have the time to teach
them everything.

We tell them how to do it - for example, what are the criteria that should be fulfilled in the
formula before they can use it. Normally I explain only part of it then I think the students
can compiete it themselves. ... | think that is sufficient for the students.

Under the circumstances, ! expect students to acquire the mathematical skills and to get high
marks in the exam. ... | would want them to become good problem solvers tut 1 am not sure
they would be. I myself did not try to get them into becoming one consciously.

Some lecturers genuinely want to change the system but are not sure how to do so:

I would like students not only to see mathematics as a subject that they need to learn and
pass in an exam but also as a discipline which enables them to think for themselves. My
main aim is not in trying to finish the syllabus but rather in making the students learn the
mathematics in a more meaningful way. ... I am not really sure how but | am tryiag to do it.

To me mathematics is a mental activity but | should say that at this level | presented it more
as a formal system. Because we are confined by the syllabus and also depending on the
studenis’ background. ... 1 would like it to change. How do | do that? I don’t know.

There arc a lot of problems that we face. Firstly the students themselves do not have the
motivation in their mathematics learning. Secondly they do not have the confidence in their
ability to do mathematics. So we have to deal with these first hefore we can make them sec
mathematics as a thinking subject.

1 very rarety allow students to think {mathematically]. The problems that we pave them do
not require them to use their thinking capability. ... It is due to the shortness of time.

We give them littie recom to do their own thinking. But we cannot change it because the
systent does not allow us to do so. So we cnd up teaching them what they need to know,

The system has been proven a failure. It has not been successful in producing good
mathematictans, or engineers that can use mathematics effectively. They only know how to
use procedures or computer packages without really understanding why they use them.
...It"s all down to the system. We are not training students to discover patterns, or how to
prove a statement is true, for example. What we teach them is mainly how to use the
procedures.




The change in student attitudes in problein solving and mathematics lectures

To discover how the attitudes of the students changed, the same attitudinal questionnaire
was given before and after the Problem-Solving course, then six months later after a
semester of standard mathematics lecturcs. The responses were as follows:

Before P S AfterPS After Math
Yes (Y) |No (N) | = JYes (Y) [ No(N) |- {Yes (Y) | No(N) | -
facts and procedures | 34(18)) 8«2} {2 11(3) | 32(§ (1] 30(9) | 14(1) | O
solving problems 270001 16(4) |11 4221 0(0) |21 32(223} 12(0) | O
inventing new ideas | 21(4) [ 2L(6) {2} 37(15)} 5O (2] 24 | 18() {2
very abstract 25(13y) 17(0) {2 15(8) 1 26G) {2 22(I)| 21 (™ { ]
Mathematics | understand quickiy 9 305 151203 | 212y |3 13| 29(1) |2
make sense 22(4) {225 (0] 353 ] T 12|29 | 14(0) |1
work very hard 37013 5(h |21 288 | 13 3] 32@®) | 12 |0
leamn by memory 30 Ji2( 121 1Oy | 317y |2 20¢2) | 22(1) | 2
able to relate ideas 24(8) 11442y 2 351 80) |11 31 () { 10y |3
confidence 26(Ty 1 17(2) |1} 36012} 6(0) |21 34D | 1OWDY | O
plcasure 3257 () (0] 422D 0@ (24 422D 1O |1
get through 16 | 27®) [ 1] 40 | 37073 ] 14(1) | 29(5) | O
Prablern | anxicty F7¢1y 124(0 |3] 640 | 36(9) |2 9(0) | 32¢4y |2
Solving |fear unexpected 30(IM] 124 (2] 103 {31 (3] 163y { 28B¢2) |0
correct answers 214 120 3) 21 S | 3601131 170 | 23(7N) | 2
try new approach 42(17)] oM 2] 4320 0 |1] 43(l6)| (D O
sive up 193 |24 [ 1] 50 | 37¢2|2] B | 34(12)) 2

Table 3 : The changing attitudes of students before and after problem-solving and “after math”

Calculating the significance in the change of the total “yes™ responses and using a
weighted average response as in table 3. we find the following changes:

desired change After P S After math Total change
factsand procedures | |77 <1% [ ]2 <l% [t <% [[}ii  ns.
solving problems 1t nse AT <% [ §aT <% |10 ns
inventing new ideas 1'_:“ s ST <% |5 <% |1l n.s.
very abstract 10 <% T ns* |1l n.s. M n.s.
Mathematics | understand quickly | tI.. <I% #'.'- <1 |47 n.s. % . ns.
make sense o <% (17 <17 [0 ns. §| 12 n.s.x
work very hard TROREEEE XN I DM T X I I DY ns. 1o ns.
learn by memory 1. <% il <% 1T <S% |l n.s.*
abletorelatcideas | $21° <1% {10 <5% |}t ns. f127 s
confidence T <% . <S% |in ne. {17 <S%
pleasure t7Y ns [&Zﬂ ns. | jiie ns flut ns
brost get through l:::' <:‘Zc 1o <% [Eﬁ <1% §|° n.s.
roblem | anxicty 1. <% L <S% n.s. —. n.s.
Solving | fear unexpected 1 <% i:f <% [ 1. n.s. i To<1% J
correct ans” *rs 17 <% b <ie 1Tl <% )2 n.S.
try new approach TPOREEERS LI I DOGGREE K-S I DOOGRENE E N W DOOEINN X3
give up Jit <S% f o <% LT ns. Lo <S5%

Table 4 : Desired changes compared with changes after problem-solving and after mathematics lectures




Note that the attitudinal changes during the problem-solving course are all in the same
direction as the desired change, with the exception of one: “pleasure” was rated highly
each time with positive attitudes changing only from 43 down to 42 (out of 44).

On the contrary, all but one of the changes during the mathematics lectures are in the
vpposite direction. Even the exception—“anxiety” —has an increase in those feeling
anxious from 6 10 9, but the weighted average is biased marginally in the oppositive
direction by the drop in “definitely not anxious™ from 9 to 5.

During the problem-solving course, only four changes are not statistically significant:
pleasure, williness to work hard, willingness to try a new approach remain highly rated,
whilst mathematics is abstract has a small improvement from positive to negative.

Three items change significantly: ability to relate ideas and confidence both increase,
whilst anxiety diminishes. All other items have hghly significant changes in the desired
direction. Some belicfs are reversed so that after problem-solving students now believe
that mathematics is more than facts and procedures, it involves inventing new ideas, il
makes sense, it is not learnt just through memory . there is less fear of the unexpected,
icis not just getting correct answers. Others are greatly increased: mathematics is more
about solving problems, it can be understood more quickly, and students are less likely
to give up when encountering a difficulty.

However, six months later, after returning to the mathematics course many opinions
have reverted back in the old direction. Of these there is a significant reduction in belief
that mathematics is not just memorisation, and highly significant reversal in belief that

mathematics is just facts and procedures; it is less about solving problems, less about
inventing new ideas, less about doing the work for reasons other than to get through
the course and less about things other than correct answers.

Comparing the situation from before the problem-solving course with the status after six
months back at regular mathematics lectures, many of the indicators revert back towards
their old position. But three problem-solving attributes remain: confidence and
unwillingness to give up remain significantly improved and fear of the unexpected is
highly significantly reversed. Smaller changes are cvident in the belief that mathematics
make sense and that it is not necessary just to learn by memory. (Thesc arc improved by
a factor that would be significant at the 10% level, marked “n.s.*” in table 5.)

In addition to these changes, there are other items that are given at least “+4” or “--" in
the final ratings: mathematics is facts and procedures. is about solving problems,
students work hard, arc able to relate ideas. take great pleasure in their work. have low
anxiety, are willing to try a new approach. All these are attributes carry over from
carlicr mathematics lcarning. The emphasis is on procedural aspects, working hard to
solve problems and rclate ideas to obtain plcasure and fow anxicety. However, the
comments of the lecturers carlier suggest that this pleasure is morc the security of
operating in a system sct up to teach the students procedures which can be successfully
tested than in developing flexible new skills appropriate for the changing modern world.




Student comments

The following selected comments written by the students in the final questionnaire bring
to light several factors that could explain their changes in attitudes. In the perception of
mathematics for instance, about a third (32%) reported that the regular mathematics did
not allow them to think in a problem-solving manner:

Since following the course | know mathematics is about solving problems. But whatever
mathematics | am doing now doesn’t allow me to do all those things. They are just more
things to be remembered. male, yrar 5

I believed mathematics is useful in that it helps me to think. Having said that it is hard to

say how I can do this with the maths I am doing. Most of the questions given can be solved

by applying directly the procedures we had just ieamed. There is nothing to think about.
female, year 3

They saw that their mathematical training is rather rigid. They felt that their lecturers laid
too much emphasis on content. and on unchallenging work:

At the moment | am finding difficulty with maths because | am just not cnjoying it. Too
much emphasis is put on getting the right answer and not on method and understanding.
female, ycar 4

The mathematical atmosphere here is very bad: there is tittle discussion and it provides no
encouragement to do maths. The content is emphasised over cverything else. We are
crammed full of lots of bland mathematical abstract theory. male, year 3

Some emphasise the way in which the lecturers move fast to complete the content:

1 did not enjoy most of the maths courses—too dependent on the lecturers. 1 don't find the
way most of them teach particularly inspiring. We find oursetves hurrying through to keep
up. There is no tinie to think about the mathematics we arc doing. malec. year 3

Some appreciate their knowledge in problem solving, suggesting it helps them to learn
their mathematics and solve problems more effectively:

The problem solving techniques help me come to terms with the abstract nature of the maths
I am doing. T try to connect the ideas together and talk about them with my friends. It is not
that casy though. But I feit all the effort worth it when | am able to do so. male, year 3

I find the problem solving knowledge very useful in helping me understand the whys and
.the hows of advanced r.athematics. It is much more satisfying than rote-learning.
Furthermore it is actually casier to remember something that you understand.

female, year 4

There are some who have minor reservations on their problem solving experience. But
they believe it is necessary to have a positive attitude:

The main dicadvantage is time. It would take several hours maybe days to understand cach
new concept. Under the current circumstances we are finding ourselves rapidly hurrying to
keep up, Sometime we were oo bogged down in the technical details and we end up purcly
taking down the notes without even concentrating. This really defeats the problem-solving
techniques. ... But | think with further support from good teaching as well as tailoring the
courses to suit the needs of the students the situation can be improved. male. year 5




Summary

Although lecturers prefer students to have a range of positive attitudes to mathematics, |
they expect the reality to be different. They prefer students to sce mathematics as solving |
problems, making sense, with students working hard. able to relate ideas without needing
tc tcarn through memory. having confidence, deriving pleasure, with low anxiety and
fear, ready to try a new approach and unwilling to give up easily on difficult problems.
On the other hand. they expect them to see mathematics as abstract, failing to understand
it quickly, not making sense, working hard to learn facts and procedures through
memeoery. unable to relate ideas, with less confidence, obtaining less pleasure, working
only to get through the course, with anxicty, fear, sceking only correct answers, and
ready to give up when things get difficult.

By assigning a “desired direction of change” in the dircction from what lecturers expect
to what they prefer, it transpires that when doing a problem-solving coursc almost all the
changes are in the desired direction and when returning to mathematics lectures. almost
all the changes are in the reverse direction.

The findings show that the lecturers have little confidence in the students” ability to think
mathematicaily and tcach them accordingly. The students acquiesce to this approach, and
set their sights on the lower target of learning procedurally to be successful in routine
tasks. In this there is a widespread sense of pleasure although, after the problem-solving
course, opinions cxpressed suggest concern that that the quantity and difficulty of the
mathematics gives them little room for creative thinking.

Tcaching problem-solving skills is not part of the lecturers’ previous cxperience.
consequently the lack of experience and the perceived difficulty of changing a formal
system with so much content to be learned arc severe deterrents to change. However.
given the fact that problem-solving causes “positive changes in attitude™ which are
largely reversed in the standard course with its more difficult mathematical content, it is
appropriate to pose the question:

Given such a situation, do professors wish to continue to get what they

cxpect. or do they want to change to atiempt to get what they prefer?
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WHAT ARE THE KEY FACTORS
FOR MATHEMATICS TEACHERS TO CHANGE?

Erkki Pehkonen, Dept Teacher Education, University of Helsinki, Finland

Summary: In the research realized during the spring of 1994 together with
prof. Giinter Torner (University of Duisburg), our purpose was to find ans-
wers to the question: What have been the key factors causing a discontinuity
in teacher change? QOur test subjects were experienced German teachers
(N=13). We used two methods to gather the data: a brief questionnaire and
interviews. Through the interviews, we tried to follow the teachers’
memory pictures of their change, and decided to use the theme interview for
the methodology. During the interviews, a total of 49 statements about the
change were mentioned. We could compress these statements into fifteen
change factors. The most referred change factors were, as follows: changes
in society, experiences with pupils in school, experiences with the school
administrations.

It is imperative that any research into teaching and learning, within a
framework of constructivism (e.g. Davis & al. 1990; Ahtee & Pehkonen
1994), should take into account the teachers’ and pupils’ mathematical beliefs
and conceptions if we are trying to completely understand their behavior.
Already in the beginning of the 1980s, we had evidence that different
philosophies (or belief systems) of mathematics teaching lead to different
teaching practices (e.g. Lerman 1983).

The focus of this paper is to reveal the factors which teachers have ex-
perienced as crucial for their change, the so-called change factors.

The design of the research

During his career, each teacher changes with new experiences all the
time. Typically, the change is continuous, since beliefs do not change radi-
cally; they evolve through extensive, extended experience. But every now
and then there are some bigger steps, points of discontinuity. In this re-
search work, we are interested in these discontinuities. In the research work
realized during the spring of 1994 together with prof. Giinter Térner (Uni-
versity of Duisburg, Germany), the focus of our research work was to find
answers to the question: What have been the key factors causing disconti-
nuities? We are especially asking about the teachers’ own recollecticns of
such key experiences.
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Test_subijects. Firstly we will provide a very short description of the
German school system that the interviewed teacher are apart of. After four
years of elementary school, pupils face the following four options: to attend
the Hanptschule with graduation after the completion of the tenth grade; to
opt for the Realschule (which originally prepared its pupils mainly for the
service industry) and graduate after the tenth grade; to go to the Gymnna-
sitm (academic high school} and graduate after a total of twelve or thirteen
years, depending on the State (Bundesland); or to spend the same number of
years in a Gesamtschule (composite high school).

We interviewed 13 experienced German middle school teachers in the
spring of 1994. The teachers were expected to have had at least 10 years of
teaching experience. Furthermore, they were expected to be innovative in
their teaching, at least according to the school administrators who provided
us with their addresses. All the thirteen teachers interviewed were from the
Ruhr Area (in northwest Germany): five of them were from Gymnasiums,
two from Realschules, one from a Hauptschule, and five from Gesamt-
schules. From the Realschule and the Hauptschule, it was not easy to find
teachers who were prepared to be interviewed. Only three teachers were
female, all the others were male teachers.

Indicators. To gather the data, we used two methods: a brief question-
naire and interviews. The questionnaire contained thirteen statements
- about teaching principles in school mathematics. These thirteen aspects
emerged as the result of a factor analysis in another study on teachers’ con-
ceptions, based on questionnaire results (Lepmann & Pehkonen 1995).

In the interview, we decided to use a theme interview methodology (e.g.
Lincoln & Guba 1985) in which many questions are associated with the re-
search problem. For this research, we generated four main questions, as
follows: (1) Tell your “history” as a mathematics teacher. (2) How did you
teach in the very beginning? (3) How do you teach today? (4) Can vou name
some factors which might have had an influence on changing you?

The teachers who answered these questions were assisted with some addi-
tional questions according to the situation, until we thought that we had
extracted the answers to the questions. For example, when discussing the
change factors, we might have followed up the questions by using the list of
possible sources for the perturbance given by Shaw & al. (1991): pupils, col-
leagues, parents, administrators, teacher-educators, books, articles, and
self-reflection. At the end of each interview, there was an additional ques-
tion about the questionnaire, as follows: (5) Woutd vou express your opinion




on the questionnaire? Perhaps, you would like to comment further on some
of your responses.

Practical realization. The questionnaire was mailed beforehand to the
teachers, and they were asked to fill it in. The plan was to help teachers to
reflect on their own teaching, and thus partly to structure the interview.
Thus, the information received through the questionnaire contributed some
parallel aspects concerning the teachers' conceptions. The completed ques-
tionnaires were collected after the interviews.

The interviews formed the main source cf information. The length of
the interview was 40-60 minutes as a rule. Both researchers were present at
each interview, in order to nave two different viewpoints on the situation.
And each interview was discussed thoroughly on the same day. In addition,
all the interviews were recorded on video.

Methodology. Using a questionnaire methodology, researchers usually
remain on the surface level of beliefs. With interviews and observations, an
attempt may be made to go deeper, as well as to find out what the uncon-
scious beliefs are which lie behind the explicated conceptions. Since the
structured interview often remains almost on the same level as a good ques-
tionnaire, the interviews here were realized applying the methods of natu-
ralistic inquiry in a form of the theme interview (Lincoln & Guba 1985).

We had four main questions which we showed to the teachers before-
hand and which formed the core of the discussion. During the interview, we
asked more questions if we felt that we had not yet extracted “all the
answers” to our main question. The narrative mode of interviews encour-
aged the teachers to reflect on their past experiences and on the feelings
associated with them.

Some results

The results of using the questionnaire supported the main inquiry
method: the theme interview. Therefore, we will concentrate here on the
results of the interviews. A larger description of the research results
(Pehkonen & Térner 1994) will be published in some periodical soon.

Evaluation of the data obtained. The information obtained (interviews
and questionnaire) was worked out in the form of a teacher’s mathematics-
related snapshot. The information from the interview of each teacher was
written on one page, including the following components: time and place of
interview, position, teaching experience, mathematical world view (today),
own view of personal change, change factors, and comments on the ques-
tionnaire. Each teacher received his “snapshot” by mail for reviewing, and




had two weeks time to react, if he thought that our interpretation was not
valid. The teachers were satisfied with our interpretation about their ma-
thematical conceptions, except one teacher. He wanted to make a small
addition in one change factor of his view.

During the interviews according to our interpretations, a total of 49
statements emerged about the change. We classified these statements into
fifteen different change factors. Furthermore, these fifteen factors could be
classified into four groups: Experiences as a teacher with individuals (1) pu-
pils in school, (2) own children at home, (3) children of relatives, (4) pupils’
parents. Experiences as a teacher with institutions and authorities (5) other
school forms, (6) the school administrations, (7) as a class teacher, (8) co-
operative teaching with colleagues, (9) changes in society. Experiences as a
learner with individuals (10) excellent teacher-tutor, (11) a working group
of voluntary teachers. Experiences as a learner with institutions (12) in-
service courses, (13) further studies at the university, (14) mathematics edu-
catior: conferences, (15) literature.

The most referred one was factor (9): changes in society; there were
altogether ten statements. The other much referred one was factor (1): ex-
periences with pupils in school, with eight statements. And the third factor
which was also much referred to was factor (6): experiences with the school
administrations, with six statements. The rest of the factors were men-
tioned by 1-3 teachers. A summary is given in Table 1.

factor (1) @ @ @ G 6 7 @ ) Q0 (A1) 12) a3) (14) (15
z 8 3 1 1 3 6 1 2 10 2 3 3 2 1 3

Table 1. The distribution of statements on each factor.

Each factor caused the teacher to begin to reflect critically on his own
teaching. Here, we will comment briefly on each of the three most referred
factors.

Factor (9). Nearly every teacher reported a drastic change within so-
ciety, influencing situations within families. The changing society also in-
cludes changes in the organization of school (e.g. large classes, restricted
financial resources) which have an impact on mathematics teaching. Some
keywords were: the crisis of the family in our western society, materialism,
TV consumption, a lack of interest in school achievement, deficiency in the
potential to concencrate, computerization leading to the lack of ability to
communicate, the “electronization” of children's rooms, the lack of pro-




fessional perspectives, deficiency in criticisms, manipulation by the media,
and politization of schools.

Factor (1). This factor is one of the most important impact parameters.
In the words of Mr. BR: "It took me nearly an hour to explain the multipli-
cation of fractions: numerator times numerator, denominator times denomi-
nator by using sophisticated arguments about operators. Today I am asha-
med. After that lesson, a boy who was having much trouble with math ad-
ressed me: “Why didu’t you tell us the rule straight away at the beginning of
the lesson?” IHowever, teachers do not only report changes concerning pu-
pils as mathematics learners, but also point out the individual and personal
dimensions of their pupils as part of a complex sodal environment.

Factor (6) Many teachers claim that the situation of administrative re-
gulations has become worse in the last five years. The average nuruber of
pupils per class has risen although problems with the pupils have emerged.
Mr. HO had the following experience: "It is no longer possible to organize a
fruitful inner differentiation when there are more than 30 students in a
class...”

From all 49 given statements about change, the test persons referred to
themselves as teachers in 72 % of the answers and as learner only in 28 % of
the answers. Some of the interviewed teachers first stated that they have
not changed, but were teaching using the same styles as in the beginning of
their careers, e.g. Ms. DY and Mr. WI. However, during the course of the
interview, they found some factors which might have influenced them.

Key experiences for changing conceptions. Here we will elaborate the
obtained fifteen change factors more. In many factors, the “always present”
influence of the society is clear. Besides the factor (9), this may be seen also
from the factors (1), (2), (4), (5} and (7).

In another classification of the change factors, we will focus on one side
on paositive factors which will help teachers in change pracess, and on the
other side on negative factors which could form an obstacle for change.
Some factors could effect in both directions: positive and negative, depen-
ding on the circumstances. The teachers have given principally only positive
factors besides item (6). Only the factor (4) was discussed in the negative
sense. Further, one teacher mentioned that changes in society have lead to
some irustrations rechanging his teaching to a more traditional one. For
example, one could be compelled to work cooperatively, although he would
like to work independently in his own classroom (8). We believe that here
research has to answer some more questions.
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Some factors have caused in the teachers a change in the view point,
e.g. the factor (2). One of the biggest changes happened, when the teacher
was compelled to identify himself with the teacher of his own children or
with that of his relative children, since then the personal affectedness was
the highest.

It seems to that some changes in a teacher’s behavior may be stimulated
when the teacher is forced to look from outside on another mathematics
teacher (or himself) resp. mathematics as a subject. Then he often is willing
to reflect critically his own appearance as a teacher as well as the relevance
of mathematics he is teaching.

Reflections of that type may lead to the assumpgtion that mathematics,
although the discipline is a fundamental school subject, is limited with re-
spect to the individual development of a pupil (the factor (7)). Although this
was reported by the teachers, we don’t know the effec: of the mathematical
competency. Whether one (and which one) or both of the extreme positions
is stimulating this perception: a high qualification at university level or a
restricted education in mathematics.

In addition to these observations, the question how the teacher under-
stands his role as a teacher may lead to different solutions in instruction: If
the teacher is considering himself in the first place as a mathematics instruc-

tor, he watches the teaching situations from the view point of mathematics.
This is in many cases very different from a pupil’s view point which comes in
question when the teacher sees himself mainly as an educator, and mathe-
matics is only the content of the study.

Discussion

With our research method - a combination of a questionnaire and an
interview, we could see the limitations of the questionnaire method, too.
Almost all teachers were giving strong critiques on some statements in the
questionnaire, and asking what we wanted to reach with them; and the
point was that they were not always on the same statements.

Of course, we are aware that our own conceptions on mathematics
teaching are setting the natural limits for our investigations. Nevertheless,
the research described here has enlargened our knowledge horizon. We
were not aware of all of the mentioned aspects before our interviews. Asa
measure of validity for our interpretations, one could use the satisfaction of
the teachers to our interpretations. Only one test person from thirteer.
wanted to make one small completion in the view of him we had written.




awonomous teachers as describzd by Castle and Aichelc (1994): "Autonomous teachers are scif-
dirccted learners who question, study, and search for answers from a necd 1o know. . . .
Autonomous teachers construct personally meaningful profcssional knowledge resistant to
cducation fads or extcrnal mandates. . .. and arc morc confident in what they know.” (p.7). In
certain sense, Margarida and Susana have developed this kind of autonomy, while Anne Marie is
still in the way. Asa matter of fact, from the three teachers, Susana has acquired an attitude of 2
life-long learner who believes that pupils and teachers are always cngaged in a learning process, as
she concludes her report @ "from new methods of assessment and reporting my investigalions, . . .
1 discovered that we [tcochers and students] lcarn how to leamn”.

The process of change reported in this work is not a closing point, bul must be continued.
We must keep on investigating if the perceived changes in the beliefs, attitudes and behaviors of
these teachers will remain and/or improve, and if they really affect mathematics learning in the
classroom cnvironment. In order to assure that the enhancement program actually promoted the
changes suggested by this work, we intend to carry on a closer investigation in which we rely not
only on the tcachers’ reports and narratisves but also on observations of their lessons, analysis of
classroom tasks, and interviews with the three teachers and some of their students. Only then, we
will b< able to assert that they have become autonomous tcachers.
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Our observations during the interviews give support to the results of
Bottino & al. (1991) that teachers’ choices seem to be many times more affec-
ted by pressure from their colleagues in successive school years than by edu-
cational considerations. Another research results which are coherent with
ours is the work realized by Shealy, Arvold, Zheng and Cooney. In their
paper describing the evolution of student teachers’ beliefs, they commented
that “the greatest effects were interaction with faculty, graduate students,
and peers, op2n-ended problem solving, and his field experiences” (Shealy
& al. 1993, 227).

As a result, we have also an open question: Would the high mathemati-
cal competency block or promote a teacher’s activity? According to our re-
sults, the problem might lie in the question, since mathematical competency
seems to play an ambivalent role on a pupil-oriented attitude. Our inter-
views provide us with examples in both directions. A couple of other ques-
tions occured from our research: International comparisons in this point
could be of interest. Are these change factors culture bound or something
universal? Furthermore, it might be interesting to know how big a percen-
tage of all teachers are as far in the change process as most of our test per-
sons. And what will a random sample of teachers respond to the statenents
on change factors?

Implications for in-service education. In teacher in-service education,
we are just trying to reach a change, i.e. to help teachers to grow. There-
fore, we aim also with this research to answers for the question “Which kind
of teacher in-service education would be optimal, in order to have a change
in participants?” In this sense, our results are serving also the teacher in-
service system.

Our study had made some school authorities {e.g. in Diisseldorf) sensi-
tive on the meaning of teachers’ belief systems for their teaching which have
had some positive feedback in the form of teacher in-service courses. At the
same time, it has revealed that teaching in many cases could be very sur-
ficial, concentrating on rote learning of some procedures and techniques.

For teachors change, there seem to exist at least two effective strategies
to follow: change of roles, and change of viewpoint. The change of roles
means that the teacher is forced to identify himself with a student, e.g. in a
simulation group. Such a situation lets the teacher an opportunity to ob-
serve himself from outside. This could as a consequence cause a perturbance
in his thinking which is a prerequisite for change (Shaw & al. 1991).

The change of view point could be reached e.g. through letting the
teacher to deep interview a pupil, in order to try to understand his mathe-




matical (and broader in general) thnking. Such a task may allow the teach-
er to accept a pupil as an individual through seeing in him also other aspects
than only his mathematical abilities or a lack of them. Thus, he learns to see
also mathematics from the pupil’s point of view, and understands that ma-
thematics is not, perhaps for all people, the most important subject on earth
- nevertheless it is a very challenging one. Therefore, his view of school
mathematics is changing. As a consequence, he is able to realize “nonstan-
dard” reflections on mathematics and doing mathematics.
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TEACHERS' AWARENESS OF THE PROCESS OF CHANGE
Vinta Maria Percira dos Santos Lilian Nasscr
Instituto de Matemética - Universidade Federal do Rio de Janciro

Thiis paper reports the comlext of a staff teacher developmen! project and examines the awareness of
the process of change experienced by ilree teachers who have participated in boill a continnous
teacher training and a teacher enhancement program. Having in mind the aim of investigating if the
staff development furnished by this project is leading 1o professional development, we examined,
analyzed and categorized the data collected in 1994, The aualysis addresses the three teachers'
perceived changes in lerins of professional growth, teacher antonomy and melacognilive avwareness
about inathematics teaching and iearning based on the work of Coaney (1994}, Kagan (1992) and
Santos (1993). Although this growth demands time for teachers 1o mature their views, willinguess
and courage 10 engage inlo innovations, this work suggesis that these three 1eachers have
progressed a lot toward professional developuent.

In many countrics, low mathematics performance of students is usually associated with poor
teaching. Nauons around the world are demanding better teachers at all fevels, but yet oo littie
cffort has been taken to understand what prospective and practicing teachers think about doing,
learning, teaching and asscssing mathematics and how these conceptions can affect both preservice
and msenvice teacher preparation as well as teaching practice (Dossey, Dassey & Parmanue, 1990).
Formal education invols es complex interaction betw een teachers and students who are influencing
and being influenced by cach other in terms of both cognitiv e and noncogniuve factors. Teachers'
beliels aboul mathematics and mathematies pedugogy arc inherent in the human endeavor of
teaching. However, onc may question when and how these beliels appear and if they can be
challenged and/or changed.

Thompson (1992} summanzes her review of the literture pointing out that belicf systems are
dynamic, permeable mental pictures susceplible to change m hight of cxperience, and that the
rclationship between teaching practice and beliefs 1s not a simple lincar causul-cffect, but is a
dialectical one. Hoyles (1992) proposes the not.on of situated beliefs based on the fact that
"teachcers reconstruct their beliels whilst interacting with any innovation . . . {and] alt beliefs are, o
a certan extent, constructed in sciings” (p. 282). Ponte (1994) draws our atlention o the fact that
the classroom environmient and social, educational, and personal constramnts also contribute to
shape teachers' beliefs, which favors a diatectical perspective of the association between beliefs and
prictices.

In this paper we analyze the process of change expenienced by three mathematies teachers
who have heen engaged 1n a project of teacher desclopment. We also examine thair awareness
about changes in both their pedagogical practices and views about mathematies teaching and
learming.

Context of the Teacher Education Project

The Fundio Project (PP project) is an ongong staff development at the Mathemituies Institule
at Unnversidade Federal do Rio de Janeiro tiitiated 1in 1980. The FP project acts in three directions;
tcacher traneng, rescarch and mathematies teaching at university lesel The contunuous teacher
trining component insolves uniersity professors, secondary teachers and undergraduate students

The man converns of this component wie w improve the presersice mathematies teacher education,
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1o provide continuous teacher enhancement, to develop a collaborative effort between university
and classroom teachers in order t improve the process of mathematics teaching and learning, and
1o call altention 1o the importance of the teacher as an educator. The project work and the
environment in which it takes place provide a supportive context leading both to the persenal
recognition of teachers and 1o the realizanon of the importance of their role as mathematics teachers.

Throughout the mutual collaboration between the three groups, the teacher training
component benefits from the experience of school teachers and, at the same time, contribuies
positively for the growth and change in teachers’ attitude. The participation of undergraduate
students in the project (even in their first year of university course) contribules to their icacher
cducation program through the contact with classroom situations, the discussion about problems of
mathematics teaching and the engagement in rescarch teaching experimenis.  Furthermore, they
give valuable idcas when planning and designing school aciv ities because their way of thinking
and speech style is closer o the pupils® population with whom the teachers work. In sum, since
the beginning of the project the idea was 10 have undergraduate students, teachers and university
professors sharing their expertise and knowledge (Nuncs, 1993). Actually, iths a collaborative
project of action rescarch where the whole group is involved mn identifying important leaming and
tcaching problems and scarching together for workable solutions. In other words, it is on-site
inquiry aimed at problem resolution which tends 10 motivate school 1eachers to become practitioner
rescarchers (Clouthier & Shandota, 1993; Raymond, 1994).

In addition to this component of the FP projeet, there is a systematic gradu:.tc program (or
mathematics teachers (a t.vo-vear enhancement program pievious to the master). Through this
program the teachers get the opportunity to rethink and reflect about their views, beliefs,
conceplions and attitudes toward mathematics teaching and leaming. The program is arranged
around three 1ssucs: mathematical content, methodology for mathematics teaching, and mathematics
cducation. The teacher-students have to enioll at least in respectively four, one and two courses
from cach 1ssuc before carrying on a small research monograph. Durning these two years, the
teacher-students use their own school classrooms as an expenmental laboratory to investigate the
possibiliues of innovating in their mathematics teaching. 1t is also the first step (or becoming a
rescarcher stnce they are required to systemaltize their pedugogical planning. write about therr
classroom 1nvesugations, report their obsen ations and trials, and discuss the whole process of
these innovations with their peers.

The components of continuous teacher trmmng und praduate tcacher enhancement program
provide to practicing teachers a full range of opportunities to develop professional awonomy,
acquire independent thinking when facing clussroom problems, and become adaptive agents that
are able to try out tnnovatrons and o reflect-in-action (as Schon, 1963 advocates) about the postuve
ang neganve aspects of this move. According to Cooney {1994), in teacher education programs,
tcachers nced o have expeniences which help them to develop both the conceptual and the
pedagagical bases. He suggests that “teacher education programs ought (o have features that —

* cnable teachers o develop a knowledge of mathematics that permits the feaching of

mathemaics [Tom a cONsirUChvIst perspectine;
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offer occasions for teachers 1o reflect on their own experiences as lcarners of
mathematics:

provide contexts in which teachers develop experuise in idenufying and analyzing the
constraints they face in teaching and how they can deal with those constraints;

furnish contexts in which teachers gain experience in assessing a studenlt's understanding
of mathematics;

afford opportunitics (or teachers to translate their knowledge of mathematics into viable
teaching strategics.” (p. 16)

All these features are present in the FP project as a natural consequence of the dyvnamics
adopted, 1. e.. discussing and theonzing about mathematical learning and tcaching problems and
experimenting idcas in their school classrooms. Furthermore, the teachers engaged in the project
are stimulated to sharc and disseminate the innovative mathematical ideas developed in the projeet
in their school conlext to their peers and in symposiums, workshops and confercnees on
mathematics education. All these situations lead teachers to acquire both autonomy (Castle &
Aichcle, 1994) and mathematical pedagogical power (Cooncy, 1994), and develop their
metacognitive awareness about teaching in the sense defined by Santos (1993).

It is important to notice that “icachers' conceptions are not casily altered, and that one should
not expect noteworthy changes to come about over the period of a single training coursc.”
(Thompson, 1992, p. 13%) In addition, we should observe how teachers' beliefs and conceptions
match and/or are in conflict with their teaching practices and behaviors. Teacher training programs
can infiuence and help teachers to solve these dilemmas if the programs provide them with
reasonable time and a suitable setting allowing them to think, reflect, try out innovatiens, and
decide about changing or not their conceptions and practices. Based on  the evidence from
previous rescarch studics on tcacher education (Cooney, 1994: Hoyles, 1992; Ponte, 1994;
Thompson, 1992}, the FP project works so that each participant (either undergraduate student or
practicing teacher) stay regularly linked with the project for at least two years. As a matter of fact,
there are teachers engaged in the project for about ten years.

A Look at Some Instances of Teachers' Changes

In 1994, cighteen undergraduate mathematics majors, nincteen practicing teachers and five
university professors took part m the teacher training component. The participation ol practicing
teachers and undergraduate students in this component of the FP project and the development of
their metacognitive awareness about the complexity of the teaching-lcarning process led some of
them to earoll in graduate teacher programs (enhancement and/or master level), This year there
were twenty five teacher-students engaged in the graduate teacher enhancement program of the FP
project . Data for this investigation were collected in March and December of 1994, consisting of:

¢ undergraduate students and tcachers’ wnitien reports about the activities developed in the
continuous teacher tramning project doth at the university setting and at the school
classrooms;
undergraduate students, teachers and tcacher-students’ writien comments about
mathematics education articles and research studies discussed;
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undergraduate students, teachers and teacher-students' written reports with a crtical
analysis of the influence of cither the teacher training or the teacher enhancement
components in their views, belicfs and conceptions about mathematies and the
mathematics teaching profession;
teachers and teacher-students' written reports pointing out their perceived views about the
five components suggested by Kagan (1992) as cssential for defining teachers’
professional growth. These components include: metacognitive knowledge about pupils
and classrooms; teachers' expectations, belicfs and knowledge about pupils; their self-
image as teachers, shifting the focus of attention from self to the design of instruction and
then to pupil tearning; development of standard classroom procedures; and growth in
problem solving skills, becoming able to relate and connect topics of the mathematics
cumculum,

Partial analysis of these documents, describing categories of the professional growth of students

and teachers involved in the investigation, was reported by Nasser and Santos (19%4).

Having in mind the aim of mvestigating if the staff development fumished by the FP project
is leading to professional development, teacher autonomy and metacognitive awarencss, we
examined, analyzed and categorized the data collected during this year. Our analysis was based on
suggestions given by Kagan (1992), Santos (1993) and Cooney (1994). In this paper we focus
our attention on the changes pointed out by some teachers during the whole year of 1994, Due to
space limitations, we only address the cases of three teachers who have participated in the teacher
training and are now cnrolled in the enhancement program.

The Three Teachers

Margarida is a beginning teacher facing the dilemmas of the imuial career who worrics about
her awareness to overcome these problems; Susana is an experienced leacher who his becn
searching for ways of improving her teaching in the last decade; and Anne Maric is a scrious and
responsible teacher who trics to innovale but needs continuous support from her peers at school or
at the university 1o keep on with her pedagogical tnals. Margarida and Anne Marnie have taken part
in the teacher training as undergraduate students for about two years some time ago, and they
returncd in 1993 to the University looking for the support of the teaching enhancement program.
On the other hand, Susana has participated 1 1 the teacher training project as a teacher for two years,
and also engaged in the enhancement progra 1 in 1993.

Margarida

In March of 1994, she reported the internal conflicts of her professed beliefs about teaching
style and tecaching approaches to mathematics with her actual teaching behavior in class. She was
facing, as a beginning teacher, the dilemma of being attached to the mathematical content while

willing to 1rnovate without knowing exactly how, but afraid of losing her icaching jobs 1n privale
schoals in Rio:

One of the most importan! factors experienced in the continuaus lcacher training
component was the emphasis given 1o spreading the focus of teaching, in the sense thal
the 1eacher is nol the only owner of the knowledge. . . but he/she is anly a vertex of an
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imaginary triangle formed by the teacher, the learner and the knowledge. . . . When
beginning 1o teach in 1993, I observed that altiough having been influenced by the
variely of innovalive activities [from the teacher trainiug ] . | felt a big difference when
Sacing tie reality of working in private schools. The question of the teacher heing
atiached 10 the programmaiic content is too hard and heavy for a beginning teacher. . ..
My theoretical attitiede was one, but my actual 1eaching practice was anotlier one, quite
differens which was making me feel someiimes auxions. . .. My first lessons were the
worsl ones, because 1 repeated exactly the same methods used by my previous teachers,
which I have always rejecied. This gave me a terrible sensation because nothing that !
was doing was pleasing me. . .. Thai situation was letting me anxious, and 1 felt like a
hypocrite, preaching some ideas and acting in a different way that was divergent fron; my
own thinking about teaching. During this time, I have even thwught in quining the
teaching career. . ..

In December 1994, w hen reflecting back about the influences of pariicipation in beth componcents
of the FP project, we can perccive the change i her speech about teaching and problems faced in
schools. At this moment, she was aware that her teaching attitude and behavior has been affected
and influcneed the most by the participation 1n the teacher enhancement program:

« .o Irwas ai that time, thei the discipline of “problemn solving® [one of the conrses from
the programn] “fell over my head.” and soon I perceived tial this discipline was goiug in
be of "great impaci;” and it's good thai this happened, bicause that's exacily whai I was
needing: a shock treanment to awake me from the stillness { was locked in. The approach
of this course, in particular, shook me up and changed my way of seeing education.
With the assigmments and the links with the classroom practice (at last we applied
something in our classes?), this problem solving course led me to discover another side of
the lessons in witich the teacher interacts miuch more with the pupils, guiding them in the
construction of their knowledge. . . . All this has shown me that the application of
fnnovative proposals in classrooms may be successful, being enough for this a certain
amount of williugness and courage from the leacher.

When looking back io the entire teiacher enhancement program, even though rcalizing the
mmportance of the mathemaues content disciplines, Marpganda acknowledges the cructal role played
by the mathematics cduscation and methadology for mathematies teaching disciplines in developing
her seif-image as a creatn ¢ professional teacher being able W integrate different mathematics topics
and to generate mteresting activities. Marganda says “influenced by the three disciplines of
mathenatics edncation | tried to do a nore diguifving work as a teacher whicl is coherent with mv
ideals and iny preaching abowt wathemmatics teaching. .. This is my second vear leaching and 1
could leave behind a grear deal of insecurine.”  Anather evidence of her professional growth s the
fact that she had the courage o subnitt a communicaiton about her teaching expenment with the
study of tngonometny o the Nanonal Meeting on Muthematies Educanon that wall be held i July
1995 in the Northeast part of Brazil.
Anne Marie

She 1s a tcacher with some expenence who has already overcome the difficulties of the [irst
two years ol teaching  Dilterently trom Marganda who s very metacogniively-aware of her
tcaching behavior and constraints for implementing changes, Anne Mane 1s more dependent on the
approval {1tom her peers and crcates obstacles for the suceess of innevations. This kappens

because she works in twa privirie sclools having difterent educattonal philosaphies. One s ey
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raditional while the other is more open (o innovative mcthodologics. This need of peers' support
and interest is noticed in her speech:

1 1ry 1o pay attention 1o everything that can be directly connected 1o the learning-teaching
process, bui I ueed 10 have a larger muniber of people in each school involved in the
production of activities andfor researcii. . . . Nevertheless, I feel thar as my level of
information increases, my level of concerns increases too, I wonld like to change
experiences and creale things more often but several times 1 face the reality of working
with colleagues with low interest in hoth teaching and change.

Although Annc Maric has participated (or two years in the teacher training as an undergraduate, and
she has been enrolled since 1993 in the teacher enhancement program, she seems to have gathered
information without processing it.  Only now, when conducting the final investigation of the
cnhanccment program, her awareness of her teaching limitations is coming to a conscious level.

1 see that 1o become an excellent teaclier I will need to liave a researcher's atiitude, that is
10 reflect about each lesson given 1o my students, thinking ahout their reactions and
performances. But the attention shonld not be only focused on the teacher: it is essential
to have complete krowledge of the mathematics conteml in order 10 betler explore it, aud a
deep knowledge about the learner in order to understand the learning process. . .. Today
1 helieve 10 have a better consciousuess of my role as an educator. I perceive more clearly
the hnportance of diversifying tle lesson styles, of innovating in the way of questioning,
of stimulating discoveries, of promoling learning transfers, and of taking advantage from
the pupils’ mistakes. Bur this more dyuamic attitude is the result of various factors: iy
professional experience. and moments experienced in the enlancement conrses andlor
workshops.
Susana

Susana is an experienced teacher who works with two school realitics: middle school pupils rom
public schools and prescrvice teachers at high school level from a Center of Elementary Tcacher
Training. Since the beginning of her carceer, she has scarched [or original ideas and matcerials, and
inscrvice leacher trinmg in order to improve her teaching expertise. Susana was aware of her

teaching difficultics but had to keep looking for different ways 1o solve school problems, as noticed
below:

Initially in miy teaching career, I kuew there were mistakes in the educational sysiem, |.
e.. the pupils didu't learn and I noticed that sometimes [ conld aot communicate with
them. I conldn't idemtify the factors that were causing thix sitnation and I didu't know
even which strategies lo use in order to modify this reality. . .. While I was getting to
know yew methodologies aud becoming aware of the phases and obslacles io overcowe,
there wast't a fixed classroom rowiine any more.,

Susana had alrcady acquired a lot of teaching expenence when she came to work as a practicing

teacher in the canbinuous teacher training program.  After two years of pachicipation, she left this
mservice teacher training m order to wrile with some colleagues a mathematics textbook for
presen ice clementary teachers at igh school level, At this point tn her career, it scemed as if she

had nothing more (o Iearn, but when she engaged in the enhancement program, Susana realized that
she st bad a fong way 0 go




The enhancement program allowed me botl to deepen and evaluate my knowledge as'well
as improving at the same titne ny students' and my metacognitive skills in a constructivist
approach. . . . The main change that occurred with me was the incorporation in my
teaching routine of: cooperative work, valuation of the language when interpreting
mathematical ideas, use of concept maps accompanied oy written explanatious, and group
assessment, . . . [ found ont that I still have a lot to discover and [ feel that all the
disciplines of mathematics, mathemalics education and methodology for 1eachiug in the
program are adding up to my knowledge. I try out theories, adop!t a construclivist aftilude
most of the time, but realize that there isn't a theory that is sufficient 1o solve alone the
problems of 12 teaching-learning process and I 1ake advantage of the theory | find more
suitable in each moment.

Looking al Susana's discourse, we can observe that by incorporaling a new reperloire of routines
in her teaching practice and by reflecting about the usc of several lcaming theorics, Susana is
moving toward a scientific approach 1o teaching. Which, according to Cooney (1994), "honors
observing students; hypothesizing about, and examining the cffects of, various teaching strategies;
and reformulating hypothesis about students' learmung.” (p. 19)
Discussion

As we said before, changes in teachers' attitudes, beliefs, and praclices need time and
supportive context to take place. Maybe, this explains why the main acknowledged changes in
these threc teachers occurred only when they returned (o the university to enroll in a tcacher
enhancement program. They nceded time to mature some of the innovative teaching ideas shared in
the leacher training component before they were able o develop their metacognitive awareness
about mathematics and its pedagogy. Oaly then, they could acqune autonomy to try out

innovations and to incorporate new classroom routines as problem solving, group work, and a

teaching practice focusing more or queslioning, lcading to a constructivist approach. 1t was crucial
for them to have cxperienced group work as tcacher-students before implementing it in their
classes. The three teachers explicitly state that the most influcnual courses from the enhancement
program were the three disciplines dealing with mathematics educatron and mcthodology. They
explain that this occurred because they had the opportunity to develop small pieces of tcaching
experiments in their schools, thus becoming researcher pracuttoners,

Throughout the enhancement program, Margarida was able to improve her metacognitive
awarcness of tcaching concerning her strengths and linntations, and was able o find out ways to
cope with her conllicts and professional dilemmas. To some extent, Margarida and Anne Marie
followed a sinular path of change concerning the shift of their attention from the sclf to the content
and, then, to the learning process as suggested by Kagan (1992). The reading and discussions
about mathematics education articles were fundamentat to provide them with a theoretical basis for
professional growth. All of them also acknowledge the importance of expenmenting different
ways of colleeting information about pupils' learning and difficulties for becoming investigators in
their own classrooms (e.g., interviews and/or group problem-solving). The act of writing in a
more systematic way the results of these investigations as well as reporung the successes,
difficultics and failurcs contributed to develop the awareness of their strengths and lmite 1ons and
1o bring to a conscious levcl the complexity of trying innovations. This helped them to become
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A COLLEGE INSTRUCTOR'S ATTEMPT TO IMPLEMENT
MATHEMATICAL PROBLEM SOLYING INSTRUCTION
' Manue! Santos T
CINVESTAV-IPN, Méxice

Pioblem solving has become an important part of mathematical
instruction in the last 25 years. This study focuses on analyzing the
rola of a college instructor who tries to implement problem solving
instruction in his regular calculus class. Results show that even when
the instructor openly supported the principles of this approach, there
was no consistency in the implementation of those principles in
classroom activities. This suggests that it takes time for instructors to
conceptualize and accept significant changes in their actual practice.

introduction

Problem solving has been an important part of the mathematical
education agenda in the last 25 years. Lester (1994) pointed out that there has
been a lot of progress in understanding how students solve mathematical
problems, but he also suggested that there is a need to continue doing research
that provides more directions in the implementation of problem solving activities
in the classroom. One of the issues that Lester identified as being crucial in the
implementation of problem solving approach is related to the role of the teacher
during the development of course, "in my view, attention to the teacher's role
should be the single most important item on any problem-solving research
agenda® (p. 672).

The present study investigates the effects of attempting o provide
mathematics instruction based on problem solving in a calculus class at the
college level. The course was a reguiar course taught during one term. it is
suggested that this type of study will help instructors to be aware of the potential
and limitations when trying to implement some strategies related to problem
solving instruction. The study focuses on the analysis of the instructor's views
and behaviors observed during the course.

Background to the Study

Mathematical proeblem solving involves a view of mathematics in which it
is important tc find the meaning and connections of mathematicai ideas. It also
emphasizes that doing mathematics is a social activity in which people interact
during the process of understanding or solving mathematical problems. As a
consequence, some essential learning activities associated with this approach
involved the use of some nonroutine problems, the use of smali group
intaractions, and the consideration of problem-task assignments. Here, the role
of the instructor becomes crucial not only in the selection of what activities to




implement but also to what extent those activities appear in the actual practice.
Therefore, it is important to document the instructor' behavior while intending to
provide a problem solving environment in the development of the class.
Thompson (1988) suggested that instructors’ beliefs about mathematics
and problem solving influence the way that they conceptualize and implement
leamning activities in the classrcom. The need for documenting the directions of

instruction was pointed out by Thompson when she stated:
reports of instructional studies in problem solving have generally lacked
good descriptions of what actually happened in the classroom {except for
those in which programmed instructional booklets were used) and have
failed to assess the direct effectiveness of instruction (p. 232).

Schoenteld (1992) stated that learning involves the active process of
constructing interpretations of what one sees, and what the student perceives
may not be what the teacher intended. Therefore, it becomes important to
discuss what the instructor did during the course and to interpret the results in
the context of the problem solving approach.

Methods and Procedures and Frame of Analysis
Miles and Huberman (1984) discussed advantages in the use of

qualitative data. They expressed the opinion that:
with qualitative data, one can preserve chronological flow, assess local
causality, and derive fruitful explanations. Serendipitous findings and
new theoretical integrations can appear. Finally, gualitative findings
have a certain undeniability that is often far more convincing to a reader
than pages of numbers {p. 22).

The review of related studies suggested that a design which involves
gathering information via extensive conversation previous to and during the
development of the course, and an interview with the instructor at the end of the
course could provide grounds {0 analyze the direction of the course. in
addition, the researcher observed the development of the course and
maintained direct interaction with the instructor and recorded class
observations. The main interest was to analyze to what extent the activities
implemented during the course were consistent with the problem solving ideas
discussed with the instructor previously and during the course.

The framework utilized to analyze the information is a modified version
of Thompson® ideas on how to categorize teachers' beliefs about mathematics
and teaching. The main categories used to analyze the instructors’ behaviors
included aspects related to the nature of mathematics, the class interaction, and
the evaluation of the students work, The frame resembles aspects related to




what mathematics is, what the role of the instructor (students) is, and what it
means to leamm mathematics, that Thompson identified as important
components to analyze teachers' behaviors. Thus, the information gathered via
interview, class obsarvations, and fields notes were organized and analyzed by
foliowing those categories. t is important to mention that the final analysis and
results has been shared with other mathematical instructors and they have
identified some of the finding on their own practice. This part enhances the
validity of the results in this type of qualitative studies (Marton, 1988).

Limiting the Context: Analysis and Discussion of Resulls

To analyze the direction of the course and its consistency with the
original plan, an interview with the instructor was conducted a the end of the
course. Some of the questions address specific issues discussed with the
instructor during the planning period of the course; others were inspired by the
class observations carried out by the researcher during the development of the
course. The analysis will address issues related to the nature of mathematics,
the conception of learning, and the students' problem solving evaluation.

The Instructor's Conceptualization of Mathematics.

Schoenfeld (1987) pointed cut that the way teachers conceptualize
mathematics permeates the classroom activities that are implemented during
instruction. He described his own experience as a student in which the
instructor could not remember the binomial formula and showed the students
how to figure it out. Learning activities that relate the sense of studying
mathematical relationships are different from those in which the instructor gives

only rules for solving problems. Schoenfeld (1987) stated:
the important thing in mathematics is seeing the connections, seeing
what makes things tick and how they fit together. Doing mathematics is
putting together the connections, making sense of the structure. Writing
down the results - the formal statements that codify your understanding -
is the end product, rather than the starting place (p. 28).

Thompson (1988) pointed out that teaching is 2 human activity that
involves experience, taste, and judgment. She stated that "in my view teaching
is an activity that  not be prescribed; it cannot be reduced to a sequence of
predetermined steps to be learned as one learns, say, an algorithm® (p. 234).
Therefore, there is room for the instructor to make instructional decisions that he
or she considers suitable at a particular moment during the class. Hencs,
exploring the way the instructor thinks of mathematics and problem solving and




analyzing the activities that he implemented during the study could heip to
document the type of instruction that he provided during the study.

There are indications suggesting that the instructor endorsed a view of
mathematics that emphasizes the conceptual part of mathematics. For
example, to the question "which aspects of mathematics would you mention in
responding to the question 'what is mathematics?' * (in the interview carried out

at the end of the course), he responded:
....| [would} probably start by turning the question around and say what is not
mathematics, in an effort to try to immediately broaden the questioner's
perspective, and in response to that, | would say it is not a matter of going
through a few predetermined steps and ending up with an answer. | am not
sure that ... a clear description of what is mathematics is that easy, certainly
not to those who would be asking it. However, | would include the uncertain
nature of mathematical fact, call it. 1 would certainly include mention of how
mathematical fact evolves, how it is changed ... with such examples as non-
Euclidean geometry because it's relatively accessible, or perhaps more
accessible, might be basebali mathematics, where our usual addition of
fractions is thrown out the window with very good purpose. | would certainly
include mention of attempts to understand or explain and try to distinguish
that from absolute truth and discourage suggestion of absolute truth. One
would have to include somea mention of skilis. There is no doubt about it,
that one cannot do mathematics without a certain collection of skills and for
the most part in undergraduate instruction that's the extent of {the] focus.
However, | would want to go weli beyond that and include notions of
generalizations of patterns. | would like to emphasize the difference
between various levels of mathematical activity: skill leve!,
conceptualization level, validity level.

In his response, the instructor differentiated the mechanical approach to
mathematics instruction, that is, the identification of a determined sequence of
steps (rules) in order to understand content from the approach in which there is
room for discussion, speculation, and criticism. His view of the nature of
mathematics suggested that mathematics is a subject growing constantly and
that there is not absolute truth.

The instructor is firm in his position on the teaching of mathematics at the
undergraduate level. He considers the teaching of basic skills as important; he
also believes that formal mathematics should not be the focus of undergraduate

teaching. At the end of the study, he stated:

I'm beginning to question more and more the utility in formal pursuits. It's
only...formal mathematics is only usefui if you have some reference points
to evaluate its utiiity (my emphasis}, and so only if you have some sort of
understanding of perhaps some of the aberrations of, cali it, intuitive
mathematics; let's face it that it's really weird formulas just come in, and they
formulate their theories after the fact. So no, | don't think that there is that




much utility for it especially in first year calculus.... However, i do think that
leaves lots and lots of room for many other valid mathematical activities and
in particular conceptualization and applications of concepts in different
settings; they're much much more universal than applications of aigorithms.

Learning: The Interactions Between the Instructor and the Students

it is important to relate the activities that the instructor implemented
during the problem solving instruction to his views of mathematics. For
example, he relied on several examples to introduce each day’s content; the
students normally spent some time reflecting on the examples, but the instructor
was always ready to answer any question from the students without exploring
the students' difficulties. The instructor at one point formalized the definitions or
theorems discussed during the class; often he demonstrated some of the
theorems. This type of instruction occurred more often when the concept of
derivative was used to present some of the formuiae for obtaining derivatives.
For example, all the rules for operating with derivatives {addition, multiplication,
and division) were demonstrated by the instructor in one class. One student
who probably did not follow the demonstration asked whether these types of
proofs were going to be on the final exam; the instructor who might have known
the purpose of this question responded, "N, but you have to know them”....
Cther students asked during the same class why the derivative of the product
was not the product of the derivatives. The instructor responded with a formal
demonstration of the expression that characterizes such a product. The
researcher observed in this session that some students were experiencing
some difficulties in understanding those demonstrations and that the instructor
did not follow up some of the students’ concerns. This type of intervention by
the instructor sometimes happened in the course. In addition, when the
students asked some questions regarding the development of the proof, the
instructor only repeated the proot without expioring the students' difficulties. 1t
seamed that even though the instructor was aware of the students’ ditficulties,
he did not address these issues directly dunng the instruction; perhaps, this was
because of the limited time for covenng the content.

It was clear that the model of mathematics that the instrucior portrayed in
his teaching presented mathematics as a well organized subject. For example,
the instructor often introduced and presented the use of aigorthms and rules in
a sequential manner. For example, during the class several examples that
involved the chain rule for determining the derivative of function were
discussed. The strategy in attacking this problem was to apply the chain rule




and the formulae for the derivative involved in the expressions. The students in
the assignments in which they had to use the chain rule calculated derivatives
without analyzing whether or not the functions were differentiable at the
corresponding points. Thus, the message given to the students was that
mathematics always works and that it is important to use the right approach to
solve problems.

The importance of engaging students in practicing basic skills is shown
in an analogy which the instructor made betwaen leaming mathematics and

playing goli. At the end of the course, he stated:
... | might give an analogy here. If you are learning to play golf, you first
of ali learn how to swing a golf club and have it hit the ball, and only
when you get the ball flying you spend a lot of time on the practice 'till
you're getting the ball flying and yet that's not the extent of what you do
when you play golf, but that's an important part when you play goif. |
agree that the emphasis we show on examinations is somewhat
unfortunate and yet it's practice.

The instructor's ideas about the use of problem solving were linked to the
way that he conceptualized mathematics. He maintains that doing mathematics
is a social activity and that this aspect should be integrated into the problem
solving instruction. He thinks that this aspect can be promoted by asking the
students to work on the assignments together, asking the students to work in
smalt groups during the class, and by discussing examples that show the
application of mathematics in various contexts. However, in his actual class,
there were few examples in which the students had the opportunity to defend
their means of understanding or solving problems.

Even when the instructor recognized the importance of discussing
nonroutine problems in the classroom, he also recognized that the actual
conditions of the college limit the use of problem solving. For example, he
mentioned that the extent of the curriculum, the size of the ciass, and the testing
practices are major concerns that impede trying new instructional approaches.
He recognized that to discuss nonroutine problems on a daily basis during
instruction takes time and that there is a risk of not covering the proposed
curriculum. In addition, the final exams (designed by the department) normally
include only routine exercises for which the students have to be prepared.

Regarding the number of students, the instructor at the end of the course stated:
Having class sizes of 38, 39 students ... it's difficult to do anything but
present the traditional lecture format. And i think it's quite clear that
traditional lecture formats are not very efficient learning tools, especially




for today's student who doesn't engage in that way any more. They have
to engage in other ways.

Evaluation of the Students' Work

Although thae instructor recognized the utility of discussing nonroutine
problems, he also suggested that the students’' examinations should not include
these types of problems. During the interview at the end of the course, he

stated:
| think that there is a good deal of ... discussion of nonroutine problems in
that it can emphasize how concepts can be applied, it can promote social
interaction, it can promote the thinking aspect, the critical analysis aspect
of problem solving, and these are all things that are useful in order to
learn. | agree that these things are not particularly easily tested and so
this is not what comes up in examinations; however, [ think that by
pursuing them cne can improve performance on examinations by
knowing the stuff better by applying those things to it.

He went on to say that he provided some coaching to the students on
how to write exarns in which they have to work quickly to solve 12 routine
exercises in about two hours. The students knew that even when they were
asked to work on some nonroutine problems in the assignments and during
class instructions, these problems could not be part of the final examinations.
All the students were concerned about the final exam, and they constantly
asked for the correct and most efficient procedures in order to do well in that
exam. They often ignored exploring the problem in more general domains or
looking for other approaches. They knew that these types of activities are never
included in the final examination.

Although the instructor agreed to consider nonroutine problems in the
assignments and class discussions, he rarely checked the students' progress in
solving the assignments. The researcher, who was in charge of marking the
assignments and giving written feedback to the students, periodicaily reported
to the instructor and the students the students' strengths and difficulties. This
report was always judged by the instructor to be satisfactory.

Conclusions

Research in mathematical problem solving has suggested that it is
important that mathematical classes provide an environment in which the
students have opportunities to develop and apply diverse strategies to
understand and solve mathematical problems. Results from this study suggest
that being aware of the main principles of this approach is an important step on
the part of the instructor. However, it is important to develop a mathematical
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community among instructors (as a group) in order to develop nonroutine
problems and give the support needed to implement problem solving activities.
For example, it Is necessary to consider learning situations in which the
students openly discuss and challenge their ideas. In addition, it is important to
value the students communication of mathematical ideas. These classroom
activities challenge some views that identify mathematics as an fixed discipline
and may produce some conflict in the classroom. Nevertheless, if students get
encouraged to participate and to value the interaction with other students, then
thay may see that what it counts in studying mathematics is the search for
meaning and not only to master different procedures. Thus, the procass of
assimilating and implementing problem solving strategies in mathematics
instruction should be seen as an ongoing process in which there is always
room for improvement and adjustment. Here, there is indication that instructors
need support not only from other colleagues, but also from researchers and
institutions to overcome aspects related to the coverage of material and
students' evaluation..
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DESIGNING COMPUTER LEARNING ENVIRONMENTS BASED ON THE THEORY
OF REALISTIC MATHEMATICS EDUCATION

Janet Bowers, Vanderbilt University

The belief that computers can qualitatively change the nature of work has been well
documented (e.g., Norman, 1988). The implication for education is that the computer has the
potential to serve as a medium for helping students to learn by providing an environment in which
they can model and reconceptualize their activns. This view of learning, which is consistent with
the tenets of constructivism, guides the development of the Realistic Mathematics Education (RME)
program. This paper reviews the three principles of RME, mathematizing, reinvention, and
didactic phenomenology, and contrasts them with traditional views of instructional design in order
to derive a set of computer design heuristics that are compatible with constructivism.

Most people who use computers to facilitate their writing process, organize ideas, or model
mathematical problems have cxperienced the ways in which interacting with a computer can
qualitatively change the nature of the work that can be done (Norman, 1988; Dorfler, in press; Pea,
1994). Word processors, data bases, and spreadshects are examples of open-ended computer
applications that erable users to create and modify the working environment within which they
organize their thinking strategies. This definition of work is consistent with the Freudenthal
Institute’s conception of learning. According to Freudenthal, “{Mathematics is} an activity of
solving problems. of looking for problems. but it is also an activity of organizing a subject matter”
(Freudenthal, in Gravemeijer, 1994, p. 21). This organizing activity, called “mathematizing,” is one
of three basic assumptions of the theory of Realistic Mathematics Education developed at the
Freudenthal Institute. This paper examines these three assumptions, mathematizing and modeling,
didactic phenomenology. and student-developed models, and contrasts them with the basic
assumptions of standard approaches to instructional design (ID). The goal is to derive design
principles for computer learmning environments that can give risc to opportunities for students to
reflect on and ultimately reorganize their current ways of knowing.

ional Design Theory an p Peve PK 1) er Learning

For the past several decades. the practice of designing instructional materials (and
educational software) has been giided by the field of (ID). This approach is based on the belief that
students can achicve goals over time by mastering successive leamning units (chunks defined by
domain experts) that are delivered through high-quality instruction (Gagné and Dick, 1983). This
approach, which reflects a “top-down™ view of design, is thought to be inconsistent with

constructivist theories of learning. In essence, the argument states that instructional activities that
are consistent with constructivism cannot be created with a top-down behavioral approach because
ID does not take into account the view of the students as active constructors of their own ways of
knowing. In responsc to this argunient, the proponents of ID state that “While 1STG [Instructional

The research reported in this paper was supported by the National Science Foundation under grant
number RED-9353587. All opinions expressed are solely those of the author.




Systems Technelogy Group] has a well-documented methodology, it is not clear how a
constructivist would go about carrying out these steps How does one sclect relevant problems? By
job analysis?...If we do a task analysis, are we going to choose irrelevant tasks?"” (Merrill, 1991, p.
50). Merrill suggests that while these theories might offer some general assumptions regarding how
children leamn, they do not offer a systematic way of developing materials.

One response to this challenge is offered by the Freudenthal Institute’s approach to
instructional design. The philosophy that underpins the Realistic Mathematics Education program
{RME) combines instructional design with developmental research in a cyclic process. The basic
tenet of this approach maintains that (math) learning is a human endeavor that can be accomplished
through mental effort (Freudenthal, cited in Gravemeijer, 1994). This orientation offers an
alternative to the top-down apgroach because it centers on creating instructional sequences that
engage students in problem-solving activities which are intznded to lead to increasingly
sophisticated student-generated strategies. This focus on students’ actions, models, and
interpretations illustrates the “bottom-up” nature of this approach {Gravemeijer, 1993-a).

By coordinating this cognitive perspective with a social perspective in which children are

viewed as active members of a community of learners, software designers can begin to form a
holistic picture of students’ learning-in-action. As Laurel (1993) points out, the process of
designing computer systems should begin with an analysis of what the users are trying to do, rather
than what the screen should look like. This approach assumes that what the learner is irying 1o do

is engage in discourse, negotiate understandings of his or her activities, and reflect on those
activities. In taking account both students’ cognitive activity and their social obligations, the
designer can begin to develop an environment and cnvision potential implementation schemes.
This process will be elucidated by examining the basic assumptions of Freudenthal's approach to
instructional design.

Desi h

The three basic tenets of RME form a strong core that reflect beliefs about mathematics,
about teaching, and about mathematics education itself (Gravemeijer, 1994). These core
assumptions constitute a rare ¢xample of a unified set of design heuristics that are consistent with
the tenets of constructivism (Cobb, 1994) and hence can serve to guide the development of
computer learning environments.

Brinciple £l Progressive mathematization and guided reiny:

The first principle maintains that students lcarn mathematics by reflecting on their own
actions through a process of progressive mathematization. Mathematization is defined as the
process by which learners organize their mathematical activity to transform a context problem into
a mathematical interpretation.  According to Gravemetjer (1994), this process can be conducted in
two directions: horizontally and vertically. Horizontal mathematization occurs as students create
models of their mathematical activity in various contexts. Vertical mathematization refers to the




process by which students reify these models through progressive mathematization. Gravemeijer
(1993-b) outlines several characteristics of this progressive mathematization process. They can be
grouped into two categories: developmental aspects and social aspects. The developmental
characteristics include the central role of context problems, and the attention that must be placed on
the development of situation models as bridges between reality and more abstract mathematics.
The social aspects include the interactive character of the learning process, and the roles and
obligations that have been established in the social microculture.

The question of how to develop context activities that support these modeling activities is
addressed by the principle of guided reinvention. The term “reinvention™ is offered as an
alternative to the notion of sequencing that is prominent in instructional design theories. The
reinvention principle suggests that learning should follow a path that enables the student to reinvent
mathematical concepts for themselves as they are guided along a potential learning route. The
critical difference between this approach and traditional 1D theories is that prospective and
potentially-revisable routes are mapped out based on the designer's knowledge of students’ actions
and of the history of mathematics, rather than from the designer’s own conception of how the task
should be approached. For devclopers, these two sources of guidance (an historical account of
mathematics and observations of prior students’ interpretations) can inform the planning process by
suggesting possible learning routes to be included in the computer environment. This does not
suggest that development should be limited to a linear procedure. RME's cyclic approach of
design, implementation, and revision is critical to the design of computer environments as well
because even the most well-intentioned programs elicit unanticipated interpretations. These
unexpected uses should be channeled back to revise the program and also serve as insights into the
nature of the students” actions with the computer.

One guiding heuristic that has evolved from the principles of mathematization and
reinvention is that the starting point of activities must always be experientially real for the students.
This does not imply that the students need to be actually familiar with the context in a physical
sense, but that the problem and context representations must be understandable (or make sense) so
that the students’ associated actions can be personally mcaningful. According to Gravemeijer
(1994),

Reality is understood as a mixture of interpretation and of sensual experience. This

implies that mathematics too can become part of one’s reality. Reality and what one

counts as common sense is not siatic but grows under the influence of the learning process

of the person in question. {p. 94).

The notion of ‘reality’ in relation to computer environments is highly provocative because
it can include, from a semiotic perspective, representations which may or may not have real-world
referents (Laurel, 1993). For example, interacting with an animated rabbit or cartoon garden that
grows flowers in specific patterns may not reflect a real-world scenario. It can however support the
development of strong imagery that is central to the mathematization process. The issue for the




computer developer is to enable the students to act in the environment in a way that is personally
meaningful regardiess of whether these interactions mirvor real-world referents. The intent is to
engage users interactively in situations in which they reify their activities. Such an approach
circumvents the issue of dualism that often confounds arguments regarding representations (Cobb,
in press).

Applying the principle of mathematization to the design of computer systems implies that
the environment must allow students to model a problem in multiple ways such as through graphics,
symbols, or icons. For example, students using the Geometer's Sketchpad (Jackiw, 1991) can first
create models of their activities using the drawing tools (horizontal mathematization), and then use
their {ocal sketches to develop scripts for their more formal solution heuristics (vertical
mathematization). This scripting process, which enables students to create, save, and apply
geometric constructions to different sets of “givens,” may facilitate the process of vertical
mathematization by providing an environment in which students can interact with the agents of the
program to form increasingly sophisticated models. Rather than serving as an intelligent tutor, the
computer simply provides a medium in which the student’s actions and intentions can be realized.
It also serves as a social mediator enabling groups of students to discuss their various hypotheses
and share constructions over the network.

Principie #2- Didactic Ph 1 )

Gravemeijer terms the second assumption “didactic phenomenology.” This principle is
based on Freudenthal's notion that leaming occurs as sfudents create mental mathematical objects
by engaging in mathematizing. In the classroom, didactical phenomenology refers to the teacher’s
sense of how materials fit into the larger goals of the instructional program and how the students
might gradually transform their initially informal activity into increasingly abstract yet personally
meaningful activity. By analyzing the micro-didactics of the learning in-situ, the teacher can be
aware of how to capitalize on the students’ models to support level-raising and the gradual
formalization of activity.

Although the designer is not a dircct participant in the classroom microculture, the
“programmer’s voice™ plays a rolc in constituting this mathematization within the educational
context (Griffin, Belyaeva. Soldatova, & Velikhov-Hamburg Collective, 1993). This role is fo
create an environment that can lead to vertical mathematization by supporring the students’
development of rich imagery. The emphasis on the word “supporting” indicates that students
cannot be given timagery. Each student creates his or her own mental imagery by reifying his or her
own actions within the computer environment. One aspect of a supportive environment is the use
of familiar images. Pictures of real-world objects can be used to illustrate potential actions based
on the user’s prior knowledge of the object’s physical properties. One disadvantage of using
familiar pictures is that if the properties of the computer-based objects vary too widely from the
uscr’s expectations, they could become confusing. A second disadvantage is that images represent
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objects rather than actions. 1n response to this, Laurel (1993) suggests that developers focus on
supporting activity and representing this activity in the environment.

The notion of representing action suggests that if developers create a virtual world that
clicits reflection on prior actions and makes alternative actions possible. students would be able to
progressively refine their strategics in sophisticated ways. For designers, the critical issue is to note
that these progressions should be initiated and planned by the students, rather than being imposed
by the program. This does not suggest however that students will naturally refine their strategies. In
contrast, this process occurs within the classroom microculture. For example, as the students and
teacher mutually negotiate the sociomathematical norms, efficiency might emerge as an implicit
criteria for discussing solutions (Cobb & Yackel, 1993).

The multiplication microworld developed by van Galen (van Galen & Gravemeijer, 1988)
illustrates how didactic phenomenology can inform the design of a computer environment. This
program was designed to help students develop increasingly sophisticated strategics for
muitiplication by providing pictures (such as flowers) in varying array formations. The intent was
that students would begin by counting all of the flowers, but slowly develop more sophisticated
counting strategies such as counting the number of flowers in each row, and eventually curtailing
this process by simply muitiplying this number by the number of rows. When discussing
observations of students using this program. van Galen and Gravemcijer (1988) note. “We saw
examples of children exchanging inefficient strategies for more cfficient ones™ (p. 5). By
conducting research on how the children act in the computer environment and how the social

environment affects their actions, the research cycle continues to feed back to inform the design of
new software, materials and implementation scenarios.

There are some trade-offs involved in designing computer cnivironnients that support level-
raising strategies. Onc such decision is the debate between being aided by tools to accomplish tasks
at the expense of actually performing the physical actions. Pea’s (1994) solution is to consider the
computer and user(s} as one system. From this perspective, the work that can be accomplished by
the whole system should be considered viable. rather than trying to account for individual
contributions. This is consistent with a more realistic view of how people interact with tools in
general. A second trade-off is the prudent use of constraints. Therc may be a fine line between
focusing the users’ creative effonts and actuatly “funneling” their actions.

-Devel odlels
Ttis third principle discusses how self-developed models serve to bridpe the gap between
informal and formal knowledge (Gravemeijer, 1994). Assuming a non-representational view of
learning, this principle holds that students develop their own models for their injtially informal
activities. Slowly, through the encouragement of the teacher, students” modcls of their informal
activities become models for more formal mathematical strategies (Gravemejer, 1994). This




approach varies widely from a representational view which suggests that students use pre-existing
models that contain knowledge in their structure.

This distinction can be illustrated by considering two different microworlds, The Thinker
Tools, a physics microworld designed to model various properties of motion {(White, 1993), and van
Galen’s multiplication program discussed above. The instructional objective of the Thinker Tools
microworld is “... to introduce simplified conceptual models in the initial stages of learning and
then to progress gradually to more complex models” (White, p. 4). In this way, the expert-novice
dichotomy is brought to the fore and distinctions are made a priori. That is, the developers
determine what simplified models (based on simplified expert models) the students will use initially
and then provide more complex models that the students formalize into a set of laws. The Thinker
Tools program could be described as “top down™ because it begins with a goal of teaching
particular concepts via previously constructed representations and specific algorithms for solving
problems. Further, prior knowledge is viewed as a stumbling block, something that has to be
overcome. White writes, *“The thesis is that acquisition of ... knowledge overcomes misconceptions
and fosters an understanding of physics and scientific inquiry that older students taught with
traditional methods appear to lack” (p. 3).

In contrast to the above emphasis on pre-formed models, programs that are consistent with
the RME approach take students’ actions as their starting points. Thus, prior knowledge and
actions arc considered not as residual anifacts that can be progressively eliminated by the discovery
of more sophisticated rules. but as “the very essence of cognitive creation™ (Kieren, 1993. p. 2).
For example, van Galen’s multiplication microworld was developed in concert with research
indicating that students often progress beyord counting solutions by usiag thinking or derived fact
strategies such as products of doubles and multiples of five and ten. This *“bottom up” approach to
learning conceptualizes the learner as an active agent constructing his or her own strategies.

In summary, the distinction between the activities incorporated in traditional ID approaches
versus those that are consistent with the RME approach can be viewed as a difference in underlying
assumptions about students' abilities to generate and develop thwir own models. While the Thinker
Taols is based on a carcful analysis of how experts think about and represent established concepis
in physics, the Freudenthal Institute’s multiplication program is based on a careful analysis of how
students’ own strategies evolve. While both microworlds enable students to view representations

in multiple forms, the ability to develop and modify onc’s own models and stratcgies represents a

more holistic approach that is conststent with the tenets of constructivism. For software developers,
the implication is that student-generated models offer a crucial starting point for conceptualizing
how 1o incorporate poicntial actions ir'. the computer environment.
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This intcrpretation of RME's fundamental assumptions leads to a view of learning as both
socially situated and integrally related to the physical artifacts (models) students develop and use.
For deveiopers, this suggests a perspective in which the student and computer are viewed as an




integrated system. This view is also consistent with Pea’s (1994) contention that knowledge is
socially constructed and distributed across minds, persons, and symbolic and physical
environments. Given this perspective, software developers can capitalize on the reciprocal
relationship between the ieamer and his o ber tools in order to develop comiputer environments that
support the processes of mathematization and level raising. This holistic view of {earning-in-action
combined with the core principles of RME offers design heuristics for software developers
interested in creating environments that enable users to distribute their intelligence (Pea, 1994) in
order to organize and reflect on their activities,
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PASSIVE AND ACTIVE GRAPHING :
A STUDY OF TWO LEARNING SEQUENCES

Dave Pratt
Mathematics Education Research Centre, University of Wanwvick

Abstract
This paper reporis on the graphing work of children, aged 8 and 9 years, who have immediaie and
continuous access to portable computers across the whole curriculum.They have been using their
computers to generate graphs and charts from experimental data. The unit of analysis is a learning
sequence in which the progress of a small group of children on a specific coherent task was recorded
over a period of several weeks, The paper describes nvo such learning sequences 1o illustrate two
types of graphing, which can occur in computer-rich environnents. in one sequence, the children
col[ecrej data after which they explored the graphing facilities on the computer whereas in the other
learning sequence graphing is used iterarively as an integral part of the ongaoing 1ask.

Introduction
Perhaps the overriding characteristic which distinguishes contemporary living from that as recent as
fifty years ago is the central impontance of information. In particular, there is a great emphasis placed
upon the presentation of data thiough images, such as graphs and charts, as a nieans of informing or
persuading. There is a tendency to believe that such images are transparent in the sense that the reader
will gain immediate undersianding of their message (see Dreyfus and Eisenberg (1990) for a longer
discussion of this issue). There has been much interest in the use of computers to help cruldeen to
develop their understanding of graphs. However, a growing body of literature suggests that there is
considcrable complexity in the cognitve demands of such an approach.

Some of this rescarch has focused upon the misconceptions and itlusions that can occur in computer-
based cnvironments {sec, for example, Yerushalmy 1981 and Goldenberg 1987). Other research has
looked upon the support offered by linking the graph-ploting computer directly to an experiment
under the learner’s control. The evidence (from, for example, Nachmias & Linn 1987, Mokross &
Tinker 1987, Brasell 1987) suggests that this data-logging approach helps the child to interpret the
meaning of the graphs as they can make direct connections between their actions in the experiment and
the feedback gencrated in graphical form on the computer.

We have previously proposed a pedagogic approach (Pratt 1994), teimed active graphing, which
offers children a computer-hased environment which seems to support the acquisition of fresh
insights into the nature of graphs and graphing. This paper develops these ideas further by reporting
in some detail two leaming sequences, which illustrate contrasting ways in which spreadshect
generated graphs have heen used in the classroom,

Methodology
We analyse the graphing work of two groups of children, aged 8 and Y years, data which was

collected by direct ohservauon in the classroom over several weeks as part of the ongoing research in
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the Primary Lapiop Project! in the UKL The abserver kept field notes which were laicr refined by
discussion within the project team, including the weacher. The unit of analysis is a leaming sequence.
We recorded over a period of several weeks the work of a small group of children on a coherent and
specific task. Since the children would, frota time to time, move away from this particular task to carry
out other work, the learning sequence was not continuous but the researchers were in a position to
continue monitoring so that, when the children returned to the task in question, detailed observation of
the sequence could be continued.

Joy and Shelly’s lecarning sequence arose out of an activity in which the children were asked to
consider how they might predict their own adult heights, This resulted in the need to collect and
analysc various body measurcmenis of all the chiidren in the class. Andrew, Ben and Sam's learning
sequence arose when the children were shown how 1o mike simple paper spinners and asked how the
design of the spinner might affect its flight In particular, they tried to design a spinner which stayed in
the air for as long a ime as possible,

Results
Learning Sequence | : Jov and Shelly
The teacher had asked the class how they might predict their own adult heights and a class decision
had been made to collect data about their own body measurements. Smatl groups of children entered
their data into a spreadsheet and this was checked and collated by one group. The class was shawn
how 10 use the spreadsheet w generate graphs and charts which they were eacouraged to investigate.
Shelly and Joy were two quite bright girls, though not in the eacher's assessment mathematically
cxceptional. Shelly and Joy hegan to create many different graphs and charts, usually based on the
whole sct or a large suhset of the body data. The two girls were clearly enjoying the process of
generating appealing pictures on the screen and had managed to create about six or seven graphs in just
a few minutes. They had dismissed some as boring and praised others as interesting. After about half
an hour, they commenicd:
Joy: "That's fun exploring graphs.””  Shelly: “Yes, hecause you can draw any graph that you like.”
At one point, they became particularly interested in one chart (Fig. 1), generated from the whole set of
data. They seemed to have seuled on this as the best graph so far., At this poiat, the researcher
questioned the girls about their understnding of this chart. Shelly and Joy seemed to think that each
bar corresponded 10 one person and one part of the body.

The Primary Lapiap Project is studving the effecis on young children’s mathematic al learning
when they have constant and immediate access 10 partable computers. The computers are seen
as part of a compiex working enviromment, where many aspec ts integrate 10 suppaort the
children's leaming. The project has just completed its third phase in which children of ages
ranging from 8 1o 12 took part over a period of one academic vear. Two researchers worked on

- 2 . 3 K .
the project full-time for the year in cooperanon with rl_,z‘s nérmql class teachers.,
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L leg
R leg
R arm
L arm
head
height §

age

R
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M Bernard
M David
Andreas
ElJames
M Stephen
B chris
Max
FJoe

M Ryan
Andrew
ElJoanne
Nicola
M Lucy

Ed Hannah
B Jenny

So the first bar showed Bernard's
left leg, the second bar showed
David's right leg. followed by a bar
for Andreas’s right arm and so on.
The two girls were making
connections between the ordenng of
the bars tlabelled by the parts of the
body) and the ordering of the key
(tabeiled by the children’s names).
In the exwract below, the researcher
probed further by encouraging them
to face the bugs in their
explanations and, when necessary.
by focusing attention on some
revealing aspeet of the chart:

1 1
1000 2000 3000

EdRomy

Fig 1 : Joy and Shelly’s graph, chosen on aesthetic criteria

Researcher Shelly

Mmm.

So where is Bernard's right leg or Andreas’s for that
matter "

Why are the bars made up of lots of different shading? | Each bar is everybody's.
So how is each bar made up?

Ryan’s is at the end because he is the tallest,

At this siage, Shelly had recognised that each bar contains information about every child but she was
now ordering the bars according in the heights of the children.

So who is the shortest? Bernard.

Is that right? No.

Shelly knew that Berard was actually quite a tall bov.

Silence
Oh no.

...because some pecple have thin legs.

So what's happening? How are the bars made?
Are all the bits of the right leg bar the same width?
Why is that then?

Shelly made a connection between the appearance of the bars and an attribute of people not contained

in the dataset, a phenomenon referred to elsewhere as over-interpretation (Donnelly & Welford 1989),
It is clcar that the discussion has prompied Shelly to try to intwerpret the graph rather than treat it merely
as an aesthetically pleasing picture. However, the connection that she was making was not <haped hy a
knowledge of the conventions of such a graph.

Learning Sequence 2 : Andrew, Ben and Sam

In this sequence, we describe the work of three boys (age 8 and 9), Andrew. Ben and Sam, who, like
Shelly and Joy, were bright children but not exceptional and not, in the teacher’s view, the most
mathematically able in the class. They had been shown how 1o make paper spinners and were




exploring alterations to the design which might affect the flight of the spinner. They had decided to
focus on how the time of flight was affected by changing the spinner’s wing-length. In pardcular, they
wanted to find out which wing-length would maximise the time in the air. Their method of working
was 10 make a paper spinner, measure the wing span, time its flight and then immediately cnter the
data into their spreadsheet. The teacher had spent some time encouraging them (o generate scatter-
graphs at regular intervals in order to see how their experiment was progressing.

After testing four spinners of various wing lengths, they generated their {irst scater-graph. The boys
were able to relate each cross with the corresponding piece of data in the table. The researcher decided
to probe further into their understanding of the graph (R stands for researcher, A for Andrew, S for
Sam and B for Ben).

R: “It’s early days, but can you sec any pattems yet?” A: “Up. down, up, down.”

They were focusing at this stage on the specific data points but they were able to use the information to
determnine missing data.

R: “What other results do you need?” S: ~1.5.7.8.9..10."

Andrew, Ben and Sam set about muking more spinners. After seven results, they decided o generate
another scatter-graph. When interviewed, it was clear that their thinking was sull focused on the
individual points rather than seeing any more gencral pattern. However, when they were asked to
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Fig 2 :Snapshot A - An intervention focused Fig 3: Snapshot B - Ben interpreted the line and
Andrew, Ben and Sam's attention onto the trend  Andrew recognised a point which does not fit
in the data.

show the trend or pattern in the crosses using the computer’s drawing tools, they dropped th= line over
the points and moved it around a litde before settling on the position shown (Fig 2). It is likely that the
linc was secn by the boys as a representation of the pattern in the crosses rather than as a statement
about the relationship between the wing-length and the ime of flight. After collecting three more




results, they generated another graph (Fig 3) and again there was some debate about where to put the

line. When the researcher probed further, a shift in their understanding scemed 10 have taken place.

R: “What can you say about the patlern?” B: “The longer wing stay longer in the air.”

A: **Apart from that one.”

Andrew was pointing to the cross representing a wing-length of 6.5 cin.

This was a break-through since it was the first evidence of the boys gaining insight into their

experiment by interpreting the graph and/or data. Andrew confirmed his appreciation of Ben's

assertion by the way that he was able to identify a mishit. The boys decided 1o check that piece of data

and collcct soine more.
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Fig 4 : Snapshot C - More and more data seemed to conflict
with the boys’ earlier confecture.
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Fig 5: Snapshot D - Andrew, Ben and Sam recognised a

non-tinear relationship between the iwo variables

Andrew, Ben and Sam began to
make some very long winged
spinners. Along the way, they
cniered one piece of data incomrecty
when a spinner of wing-length
12.5cm was entered as 122.5¢m.
The crror went unnoticed until they
drew their next scatter-graph. The
feedback from the graph was so
different from previous graphs that
they were prompted to look back at
their results and they identified the
mistake,

Later. they began to make their
spinners in a diffcrent way.,
Although they did not realise it at the
time, their sesults were being
affccted by this change. Again it was
the feedback from the scatter-graph
that alerted them to the possibility
that something strange was

happening. To make sense of the

graph, they had to think back to
what they had been doing in their

experiment.

As they continued to collect more
data, Andrew, Sam and Ben were
discancerted that the new cntries

seemed to confuse rather than clarify. They were geting more and more exceptions to Ben's carlier




assertion (Fig 4). It never at this stage occurred to them that the relationship might be other than
linear. However, after a litle more data collection (Fig 5), Sam, in 2 moment of inspiraticn, said,
“IU's an up and then down pattem!” and waved his hands around.
R: Do you remember when you put the line over the crosses yesterday to show the patern? Could
you do that again?" Andrew placed a line over the first set of points.
R: “What happens then? Grab another line to show the rest of the pattem.”Andrew then placed a line
over the remaining crosses.
R: “What would be the best wing-length to use” " Ben traced his finger over ihe lines before replying:
B: "5.5"and drawing in the vertical line.

Discussion
These two learning sequences were selected because they seemed to typify two contrasting uses of the
graphing facilitics available in modem spreadsheet software.
1. Passive Graphing
Conventionally in UK schools, children use a graph 1o display the results at the end of an experiment;
the children come to see the graph as a presentational tool. The emphasis is placed on making the
graph look attractive. We refer to this style of graphing as passive (Fig 6).
It is important to note that the children’s need to draw a graph is motivated by the production of a
display. The source of this need is, we think, fundamentally important since it shapes the child’s
vision of what the graphing activity is about and in turn drives the child's view of which characteristics

of the graph are significant. Joy and Shelly’s

[Eoued dm"’{ make a graph }-—ﬁspla )j graphing cxplorau.ons h:fd bcc.n motivated by_ the
teacher’s exhortation to investigate the graphing

Fig 6: Passive Graphing evident when the facilities on the computers, Their atiention was very
presentational use of a graph is emphasised much focused on the acsthetic aspects of the various

graphs that they were so casily able to generate, The
presentational aspects of the graphs were foremost in their thinking so that, although they were
engaged in a lively interaction with the computer, we would nevertheless classify this style of graphing
as essentially passive. The interaction was not one in which the use of the graph was furthering their
experiment,

Joy and Shelly were making what we call pseudo-mathemarical conncctions. We use this wwrm to
describe a process in which children use the computer to gencerate objects thus giving the appearance
that they are engaged in mathematical activitiy and yet, on closer inspection, it becomes apparent that
there is littde substance to this illusion.

Howevcr, we do not mean Lo infer that such fearning sequences were valueless. Indeed. it is quite

possible that these carly affective responses might contribute to later success. In any case, we would

be very surprised it the children did not need to go through this process in order to test out what the

computer was capable of hefore setding down to more focused work. These experiences allowed the

children o gain a familiarity with the technology and some notion of the range of possibilitics.
[}
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By being given the freedom to investigate the graphing facilities within the spreadsheet, Joy and Shelly
made connections with previous experiences of pictures and graphs rather than with the formal
conventions as understood by the teacher (cf the play paradox in Noss & Hoyles, 1992). The
pedagogic question becomes cne of how to offer children experiences where they can use graphing as
an interpretative instrument and so encourage them to make new connections.

2. Active Graphing

In response to observing such experiences, the teacher asked Ben, Sam and Andrew 1o generate
scatter graphs on a regular basis (perhaps every three or four picces of data) and to use this
information to help them decide on the next action 1o be taken in the experiment. Fig 7 gives a crude
description of the process, which we refer 10 as active graphing. In the Active Graphing approach,

[colecl nitial data I » ( make & araot ] p| study graph and the children are encouraged to
.

rmake or refine
enerate a graph after only a few
conjectures B grap Y

collect l pieces of data have been collecied. By
data studying the graph and the tabulated

decide what further .
t datn is | data, they are cxpected to try to decide

what to do next in their experiment.

r | -
when you are ready! Further data is collected and more

draw conclusions graphs are generated. At each stage,

the children ar: encouraged to pause
Fig 7 : Active Graphing siressing interpretng a graph and reflect upon what this ells them
about their experiment. Eventually, a point is reached when it is felt that cnough data has been

collected to draw some conclusions.

We are struck by Nemirovsky's (1991) method in which, rather than secing the children’s efforts as
misconceptions, which often lack power of explanation, he reports positively on the connections that
children make. He notes how the children that he observed made two types of connection between
graphs gencraied astomatically on a computer as the children manipulated toy cars. He uses the term
syntactical transiation to describe occasions when the students linked features of one graph with
features of another. In an active graphing approach, we 100 observed children making syntactical
translations between different modalities; for example, nurnbers in the spreadsheet were often
connecied with peints on the graph (and vice versa). The term, semantic translation is rescrved for
situations where the children made connections between the meaning of the graph or the numerical da
and the experiment itself. We observed Andrew, Ben and Sam inwerpreting graphs in terms of the
experiment such as when they recognised the sloping line as indicating that the longer wings stayed
longer in the air and later when they made the even more sophisticated non-lincar connection. When
the children made predictions about their experiment based on the graph or data, they were making
semantic translations in the opposite direction.

Nemirovsky sees sofving a problem as negotiating between two or more apparendy conflicting
versions of the truth as presented by different modalities. We find this a particulariy helpful way of




viewing the interactions of the children as they move between and around the modalities offered by the
active graphing approach (cf Hoyles and Sutherland (1989) when referring to two categories of
children’s problem solving with Logo;working at a syntactical level and making sense of ).

When we talk about the children making mathematical, as opposcd to pseado-mathematical
connections, we refer o both serantic and syntactical translations. However, we would conjecture
that active graphing may promote another semantic connection, relaied to the purpose of graphing. In
the active graphing approach, the children are using graphs as a meaningful and relevant wool. A child
who sces graphing as an analytical interpretative instrument has made a powerful mathematical
connection which has fundamentally widened that child’s grasp of the utility of graphing.
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BETWEEN EQUATIONS AND SOLUTIONS: ANODYSSEY IN 3D.
Michal Yerushalmy Merav Bohr
University of Haifa, Israel

Comparison of two functions, 1s a way to describe an equation. Thus approach 1s the onc
we use through an innovative algebra curriculum in which the function s the central
concept. This approach calls for 2D graphuc representation of equations in a single
variable, and can be generalized using 3D representation of equations in two variables.
We had interviewed 5 pairs of [0th graders, who studied with an experimental algebra
curriculum. During 15 hours of interviews we explored how they interpreted equations in
twu varables and their solution sets both, analyiically and graphicelly. The students had
not seen thus sort of problem before. Throughout ther actions we realized that their deep
understanding of functions and compartsons in a single variable not just helped them to
view 3D graphs but more tmportant, 1t helped them 10 relate to, solve ard explatn
problems that ure normally tie subject for rote learning and memor zation.

For the most part, solving cquations and inequalities is taught as a set of seemingly
arbitrary rules that govem allowed and disallowed actions. Moreover, the equations
leamnt at schoo! mathematics are these that can be solved analytically, while the infinite
number of types of equations that can only be solved numerically is hardly introduced
The message of the traditionat algebra curriculum is that all equations should have an
algorithm that collapse the equation into a number and that mastering these algorithms is
the important knowledge required. It is at least equally important to investigate
comparisons, to produce equivalent equations by manipulating the expressions and to
analyze the processes they represent (Chazan 1993). Choosing the function to be the
central concept around which the algebra curricuium should be organized (Yerushalmy
and Schwartz 1993), and the availability of graphic technology, make it casier, and even
attractive to describe anyv equation (or inequality) as a comparison between two
functions Thosc who consistently tried this approach with their students agreed that it
present substantial and clear organization 1o the algebra curriculum, and open an arcna
for exploration of the cssenee of functions, equations and solutions. However. some,
rightly so, questioned the consistency and the gencralability of the approach while

moving to multi vaniables relations  Before proceeding we sali iilustrate the use of the

representation in one variable




and n_two variables

Equivatert Solution's

The visual {imitations are clear: such representation of two variables is about all one can
do graphically Furthermore, previous research of the understanding of 3D shapes is
discouraging (Osta 1987) and the graphic technology, while colorful and flexible than
concrete drawings, is still a 2D environment and we should not assume that what seems
10 be successful approach in 2D representation would prove itself in 3D representation.
However, we were eayer to explore how would students who educated to look at any
equation in a single variable as a comparison of two functions and who were never
formally leamt about functions of two vanables would think about equations and their

- ;lution sets in two vanables. Specifically we question the possible views of equation in

iwo variables, the interpretation and explanation of the 3D representation of functions

and equations and the implications on the ability to distinct between solutions, functions

and equations. Our study is based on 15 hours of interviews with five parrs of 10th
graders who leamnt their algebra 'precalculus course through inquiry guided by special
materials which organize the curmriculum around the concept of function and make
intensive use of multi representation graphic technology. The classes were closely
observed during 4 months prior to the experiment The students, four of were of the
strongest in their classes and the rest at the average and above level. volunteered to
participate Each pair interviewed for about three hours and 1t inctuded a half hour

mtenention to teach the representation of functions of two vartables, using Lego blocks,
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paper and pencil and software to graph functions of two variables. During the interview
the students worked on the following task: Describe the solution set of each of the

2 2
following equations: 2* = x* | -J-:-%—+—}-’9— =1; x’y+xy? = 1. The first equation in 2

single variable requires compansons of the graphs of the two functions and was posed to
view whether students do view an equation as a comparison. The second can be
described as two explicit functions and the third cannot be written as an explicit function
of a single variable and solution by comparison of two functions. The interviews were
videotaped and transcribed. Here we will shortly describe the conflict students ran into
while analyzing equation in two variables using single variable knowledge, their
suggestions for representations and their use of the 3D representation to make sense of

other equations in two variables. We will provide data from work of one pair.

-

2 2
1. The conflict xT—r -}9— = [ This part went for about 20 minutes. Students were not

familiar with analytic gecometry and the assumed background was manipulations skills,
experience with functions and comparisons in a single variable and familiarity with
graphic technology. The given equation can be manipulated to be written as two explicit
functions in a single variable and we expected that students will try this approach first.
While the manipulations are not complex, the conceptual shift from a comparison of the
type f(x,v) = g(x,y) into two functions #{(x) ==+ .. isnot trivial. It requires the
understanding that in general any comparison of functions in a variables could be
cquivalent to a function in (#-1) variables but not always. It also requires to read the
equation sign in the comparison and in the function as two different objects: the first is
symmetrically bi-directional and the fater is not. The analysis of the data showed that the
problem was an appropriate example to a task that can be carried on successfully without
understanding but at the same time opens the stage to deep dilemmas: We will start with
& short episode from the interview with Ron and Ed'

Ed: We'll change the equation so 3 equals something...

! Michal and Merav are the authors and the interviewers Students' names were changed 1o prevent
tdentification




Ron: lt will result 2y = m . This will not help us’'

Fd: I will try to factor both sides and produce two comparisons:
(2¥X2y) = (6 - 3xX6 + 3x). [t (factoring and comparing) did not lead them anywhere.
Ed: I need to find out when do these two sides are equul; it 15 easiest with zero.
Substituting 0 for y will allow me to find for which values of x the right side will be zero
as well. That would be the values for which the comparison exist.

Even though they manipulated the equation and separated the y they continuc to relate to

it as a companson and not as to a function of x. Ron: When y=0thenx = £2.
They sketched the parabola f(x) =9 - %xz and marked the two roots...

Ron: ..but we assumed that y -0'

Fd: Right, so we actuully found two points.

Michal: Am I allowed to assume that both sides could also be equai 10 a 100?

Ed: I can substitute any number for y.

Michal: So then what would you say about the solution set?

A long pause scems to sign that they have no idea how to procecd.

Run: Lets start (o think... There are twe variables in here...

Ed: Two variables in one equation.

Michal: what do you mean by that?

Ed: That is something that I have some difficulties to solve..... I can't, it 1s depended on
two things and [ can't compare it to something else.

This last statement of Ed clarifies his confusion about the object they deal with: if it is a
function then the y values determined by x but here y is an independent variable. But, if it
is an equation what are the compared objects? Ed seeks ‘something else” which he could
not find. We will later observe how this conflict developed into an invention.

2. An invention of the representation: While planning the experiment we were uncertain
if at all to provide and for what purposes software. We provided the 2D plotter because it
was the everyday tool that the students were used 1o have for solving and manipulating
cquations. In effect, all students tried to plot the manipulated equation in one form or the

other but only some of them were able to analyze the problematic representation. For




some of them the inability to type the vanable y into the sofiware was a discouraging
feedback while for others it was the first indication that something is very different here.
We used this opportunity to move into the next stage of the interview-

Merav: Would | offer vou something that could help you solve thus, what would you
take?

Ed: That the suftware would also accept the 3.

Michal: Assummng that this software could accept the y, how would 1t uppear’

Ron: Then | would need 3 equations”.

Ed: Wit a second...I'nt talking here ubout twa totally different axes systems,

Ron: Exactly, two coordmnate systems,

Michual: Can you draw 1t

Ron: [ have to see both x and y hecause the x solves the equation ut one way in une
system and the y diso..the y could get a single value solution, 1t 1sn’t an ordered pair bus
i a different system’

Michal: So m what system?

Ed: Oh, something 3-dimensional’

Ed: I would have an x axis and a y uxis that goes (n (pomts towards the inswde of the
screen), {'m not sure. So each of them s an independen: variable but where 1s the
independent variahle that thev are hoth dependent in?

They presented the need for 3 dimensional representation did not spring out of visual
constderations of the functions rather by analytical search for a representation that would
satisfy their need to express the comparison in two independent variables. Tn order to test
their ability to view 3D graphs we asked to describe a simple function f(x,y)=x+ y
and provided an addition tabie on a paper. All that did not help thern to think about the
shape: it was only when we suggested them a Lego plane and blocks that they started to
talk about shapes:

¥d: for example for (1,1, when i s ¢1.1) so [ get here 2 (puts two Lego Blacks one on

top of the other on the pomt (1.1))

* Ron might have meant 3 dimensions and not equations or 3 equations solving for x, solving for y or for
the set of .y




Ron: Exactly, because building the height...as if we are building an axes system this is
three dimensional’ Ed put three Blocks at the (1,2) coordinate.

Ed: Should we keep on butlding? Shouldn 't we look here (at the printed addition tabie)
and find out about its shape?

At that point Ed started to view the addition table to the 3D shape and soon he was ready
to conjecture about the resulted shape of the function analyzing the differences at the
diagonal, the columns and the rows. They concluded that a shape that changcs in a
constant rate in any dimension should be a plane. It scems clear that the graphic
representation nourished from the experience and understanding of functions as an input-
output process, from the understanding of the dependency betwecn variables and from
their experience in analyzing the function graph’s behavtor (such as analysis of rate of
change or finite differences). Following a short ‘Lego session” we introduced the 3D
software to the students.

3. Now again comparisons are an option

Once ( following the intervention) the students were familiar with the new representation
and the technicality of the 3D software we discussed the third task: x’ v + y’x = |

Ed: ] van start by factoring x and then by y.

Ron: It flooking at the product of the two functions) could simplify things for us.

Ed: Maybe we will simplify 1t well enough...no, we'll factor by xy (in one step)

Therr attempt to view the funclion as a product of two functions was a surprising strategy
for us. All we expected at this stage was the use of the 3D software for plotting the two
functions. However, since all students learnt 10 construct functions and analyze their
propertics using op<rations between functions {in a singte variable) it made a lot of sense
for them to generalize this method in the context of two variables’ function.

Ld: Now, what about x+y? we know how it looks like...and Xy 15... let's wark for a minute

on u medtuplication table...

Ed then built2 two dimensional table of values as a tool to draw from about the shape.

We suspect that the habit to describe cach function’s behavior (without any formal
knowledge of calculus) using tables of values and finite differences and their

representation through out the cutriculum enabled him to use this numenc tool,




Ed: The diagonals arz the important part.... Maybe it is not the central idea here but [
can see that actually there is a sequence of whole squares. The next one wiil be 36... So
the graph looks ....(shows with his hands a concave increased curve)
Ron: The slope increases more and more while x increases
They continued with predictions about the product of the two functions (the sum and the
product} but soon asked to view it with the software.
The discussion then turned to the analysis of the very
complex graph at the light of the product of the two
functions. They talked about symmetry and about viewing
propetties of each of the components’ functions. Finally
we asked: Where is the solution set?
Ron: All the points that...that touch...
Ed: .. touch the flat thing ...
Michal: Would you draw on the paper what you see on the screen?
The left figure is their prediction. The figure on the right produced by the software.
‘Comparison of two surfaces
also motivated a discussion

about an empty solution set. it
provides another opportunity

to view their parallel multi-

representation judgment:
Michal: What about the solution set of x* +y* = ~1?
Ed: They don't have ntersection points.

Ron: Oh! Algebraically they don't have intersection ponts either, because (pomnts art the

eguation x° + y* = ~1)...because it can’t be, because each one of them 15 a power and

there it can not be a negative number.

Ron: it would elevate above ..1f the function

f(x.p)=x* + y! is hooked then the flat thing should o

go down by one.




Ed: We could use rwo strategies; Our previous strategy in whick we raised the
paraboloid...or we could lower down the flat thing and then again attain no solutions.

Discussion
The combination of the objective difficulties of viewing 3D and the complex concepts

we deal with caused us a very shaky take off which later tumed to an odyssey. The
problems we posed, reguiarly assumed to be non interesting problems, problems that are
subject to rote leaming and motivate memorization rather than thinking proved to be an
arena to sophisticated mathematical discussion. The 3D graphic software was an
essential tool but completely insufficient; the deep understanding of functions, of
relations as objects created by comparisons, of equivalent equations, and the ability to

maneuver between the various representations: numeric, analytic ard graphic made this

experiment to be an intellectual experience. We are convinced that a learning sequence

that equipped learners to invent methods of representation and analysis as reported here
is a valuable and important one to consider . We acknowledge the difficulties the
representation may cause and that the current technology still does not provide the
ultimate solution to the problem. We suggest that students’ views and uses of
representations mentioned here (and other aspects that will be reported elsewhere) will

provide a base for rethinking the algebra curriculum.
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UNDERSTANDING AND OPERATING WITH INTEGERS:
DIFFICULTIES AND OBSTACLES
Rute Elizabete Borba
Universidade Federal de Pernambuco

Abstract

Difficulties and obstacles of different nature —epistemological! and ontogenetical —have
been observed in the operations, conceptualization and understanding of integers. These have
been enumerated by many authors that analyzed the historical evolution of this concept (Glaeser,
1985; Boyer, 1985; Nagel, 1979) and also by empirical observations of children solving situations
that involve relative numbers ((Mukhopadhyay, Peled & Resnick, 1989). The present study
sought fo establish parallels between these obstacles and difficuities described and those observed
in an empirical study with 96 children of Recife. Performances before a periad of instruction and
immediately after training addition and subtraction with integers were observed. Didatical
difficulties were also analyzed in this report.

Resumo

Dificuldades e obsticulos de diferente natureza —epistemologicas e ontogenéticas —tém
sldo observadas na operacionalizagdo, conceitualizacdo e compreensdo dos nimeros relativos.
Estes tém sido enumeradas por autores gque analisaram a evolucdo histdrica deste conceito
(Glaeser, 1985; Boyer, 1985; Nagel, 1979) ¢ também a partir de observacdes empfiricas de
criangas resolvendo situagdes com nimeros inteiros (Mukhopadhyay, Peled & Resnick, 1989). O
presente estudo buscou estabelecer um paralelo entre alguns destes obsticulos e dificuldades
descritos e aquelas observadas em um estudo experimental realizado com 96 criangas da cidade
do Recife. Foram observados e analisados os desempenhos anteriores a um periodo de instrugdo
com riimeros relativos e imediatamente apds o treino em adigdo e subtracdo neste campo
mumérico. Andiises de dificuidades de naiureza diddtica também foram efetuadas neste relatério.

This report refers to an empirical study (Borba, 1993) with 64 fourth grade and 32 sixth
grade students. The fourth grade children were divided in groups accordingly to different modes of
instruction. These modes differed in the way the sign rules were dealt with and if students were
explicitly trained with integers or natural numbers. The students performances were observed in
pretests and after a period of instruction, on adding and subtracting using diagrams (fourth graders)
or simply using sign rules (sixth graders), posttests were applied These tests had four parts:
numerical equations with integers, situations involving profits and losses. temperature situations
and interpretation of numerical equations The training was given in classrooms with twelve
students or more each This format of study was chosen trying to reproduce situations more similar

to those encountered in usual classrooms which may contribute to analvze the adequacy of
procedures, problem situations presented and the forms of representation used in formal teaching.
The fourth grade students were instructed to analyze situations of profits and losses supported by
auxiliary forms of representation diagrams and the number line The diagrams used were those
proposed by Vergnaud (1982) on which a transformation links two static relationships. An example
of the situations proposed was' ( ‘¢l 1x owing ('rS 42,00 to the bank. She deposited Cr$ 64,00 in
her account. What 1s now her sutuanion’ A correspondent diagram for this situation 1s:
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Vergnaud justifies the use of diagrams arguing that equations and equalities are not used by
children to represent relevant relationships that are present in the probiems proposed but that they
usc these representations to recall the sequence of numerical operations necessary to find the
results Diagrams can, therefore. be considered a different kind of equation [t contains additional
information specificd {measures, states, transformations, or relationships).

The number hine was i this present study used as an auxihiary form of venfying the
correctness of answers.

Some of the results presented m this stady will be analyvzed through the establishment of
paraliels between epistemological difficulties and children performance

Glaeser (1985) presents six obstacles, evidenced by the examination of mathematical
classics. 1n the development of the understanding of relative numbers [ifficuities and obstacles
must be inially distinguished Obstacles here will be used in the sense purposed by Bachelard
{1967) as resistance of conceptions that do not permit advances n knowledge. These differ from
difficulties that wall here be seen as poor performances demonstrated by subjects while solving
problems 1n a much more superficial sense. The obstacles presented by Glaeser are. (1) incapacity
to deal with 1sofated negatine gquanutics. (2) difficulties 1n giving sense to isolated nepative
quantiies; (3} difficuluies in unifving the number line, (4) ambiguity in the understanding of the
mo zeros absolute zero and zero as an origin, (5) difficultics n getting loose of the concrete sense
of numbers and (6} desire to use unifving models for both additive and multiplicaunve fields.

The first two obstacies presented are 1n fact difficulties in the sense that they demonstrate
mere incapacity 1n dealing with negative quanuties and that did not necessarily hinder the advance
n the understanding of relatise numbers.

The difficulties in umfying the number line is an obstaclc that directly impedes the
understanding of relatine numbers. This obstacle exists when the subjects do not differentiate
qualitatively negatine and positive quantitics or when they simply concenve the number line as a
Juxtaposition of two opposite semi-lings or even by not considerating both the dvnamic and static
character of numbers

Mukhopadyay. Peled and Resmck (1989) investigated how children represent negative
numbers befors formal instruction. First. third, fifth, seventh and minth grade students were
intenviewed while solv rng equations that involved relative numbers. The authors concluded that the
children used quite abstract models and that practically did not exist models amongst the youngest

ones The older children demonstrated progressive development on the understanding of negatives.
They initiatly had a Divided Number Line Model manipulating positive and negative numbers in an
isolated way. Progressively they achieved a Continuous Number Line Model that treated both
positive and negative numbers as coherent ordered enuities




Results of the performances presented on the {irst part of the pretest, of this study being
reported, showed significant differences between the two grades involved (F = 897, p < . 0009).
Table | shows the performance presented by the fourth and sixth grade students on some of the
equations presented in the first part of the pretest.

Table 1
Percentage of Correct Answers in the Pretest
Equation presented to child Fourth grade students Sixth grade students

+ 400 + (+260) 62,9 87.5
- 400 + (- 200) 17 313
- 400 + (+200) 2,2 6,3
+400 - (+200) 29,8 40,6
+200 - ( -200) 13,2 125
- 200 - (- $00) 48,6 28,1
- 400 - (+200) 0,0 18,8

As may be observed the fourth graders presented initially greater difficulties in solving these
cquations than the sixth graders. It is nccessary to point out that these results were obtained before
formal instruction on integers was initiated. Onc of the aspects analvzed is that the sixth graders
performed better when signs involved were of the same kind - both positive or both negative. This
possibly denotes the usc of a Divided Number Line Model and these students may have accepted
operating with negative numbers just as they had been doing with natural numbers even before
understanding what these "new” kind of numbers meant.

It has been observed by Vergnaud that children meet problems involving directed numbers
long before their format instruction to this conceptual ficld. He argues that there are six distinct
categories of relationships present in the ficld of additive structures, re.. problems involving
additions or subtractions or both of these operations. These categories are. (1) composition of two
measures, {2) a transformation links two measures, {3) a static relationship links two measures, (4)
composition of two transformations, (5) a transformation links two stati¢ rclationships and (6)
composition of two static relationships. Vergnaud stresses that time transformations and static
relationships are not adequately represented by natural numbers. Natural numbers are adequate only
for the relationships involved in the {irst category. The other categories involve clements that
should be represented by directed numbers. These categories are, however, present in many
problems proposed to children before they begin to lean about integers There scems to be a great
discrepancy between the structure of problems taught at school and the mathematical concepts that
are aimed to be learned. Children have also contact with everyday problems that involve integers
such as inverting rotations and compensating gains and losscs in games This may, to some extent,
Justify that students have previous formal contacts with integers




The third obstacle presented by Glaeser that refers to the historical difticulties in unifying
the number line has straight connections with the fourth one - ambiguity in the understanding of the
two zeros. The understanding of relative numbers begin when the child perceives that if negatives
are smaller than positives there must be a point where they are originated. This gives the child a
new mcaning for the zero that is not only the absence of quantity but also an origin.

The second and third parts of the pretest of the present study referred to situations involving
profits and losses and temperature situations. Analyzing the differences of these distinct situations
beiter perfonmance was observed with situations of profits and losses Significant differences were
observed when the four conditions (types) of testing were considered ( Fyy 15, = 30 66, p< 0009).
These differences may be betier observed on Table 2 where a sample of the formal representations
of the problems proposed 1s presented. These observations seem 10 :ndicate that most students did
not realize the necessity to indicate the different nature of their answers. They were not expected to
present their answers in a conventional form (with signed numbers. for example) but to indicate
clearly that their results were credits or debts or that they represented temperatures above or below
zero.

Table 2

Percentage of correct answers in the different situations of the pretest

Formal representation of the Fourth graders Six graders

problem presented

Problems of profits and losses
(-18) - (-76) = (+28) 50,1
{-47) - (+21) = (-68) 2.1

Problems of temperature
(-13) - (-25) = (+12) 373 28,1
A7) - (+H12) = (-29) 123 34,4

Kobayashi (1988) alerts that enough attention sfiould be paid to the difference of meanings
among negative quantitics. The first aspect is the case where the zero is determined a prior
naturally. In these cases the origin is not set artificially. The examples given by the author are:
clectricity charges and property and debt. The second aspect evidenced by Kobayashi is the case
when the origin is determined arbitrarily. The position on a line, measuring temperatures, clevation
of the, water level in a river, and Armo Domin: and before Christ are examples presented by the
author for this case Some of these origins are unchangeable because they have been used widely
and historically 1n our socicty . The third aspect 1s the case when quantities are determined
according to the direction in which the quantities are changed, increased or decreased. Examples
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are difTerentials of temperature, water level, volume cte. In the present study two different kinds of
origin are therefore involved. A natural one - as in the case of profits and losses - and an artificial
one - the measurements of temperature. The students, in both grades, showed difficulues when
negative values were involved but strange enough the better performances were observed on the
temperature situations. Brazl is a tropical country where very little vanation 1s observed on
temperature measurcments and only very fow cities occasionally have marked temperatures helow
zero. What possibly made students obtain correct answers in temperature situations were the terms
presented when the problems were proposed on which direct reference to temperatures below zero
were made. Even though the problems involving profits and losses had a very natural ongin only
very few students seemed imitially to feel the necessity of making clear that the answers obtained
represented debts.

While interpreting numerical expressions imvolving integers children initially could not
explain equations that were representing negative quantities and significant differences were
observed between the pre and posttest (p - 0.0007). While interpreting these cequations on the
posttests students preferred sitwations involving debts and credits Only two children used
temperature as basis for interpretation on the posttest To understand integers children scem to
initially necd to support their understanding on physical models (such as measuning temperatures,
positions on a line) or soctal models (positive and negative accounts rclated to money or to results
in games). These models closely related to the child's everyday experiences mav be used as a
starting point in the understanding of integers but this complete comprehension depends on the
ability to abstract the invanant of these situations This abstraction was not evidenced 1n the
posttest of the present study because the groups tramed with situations of debts and credits did not
scem to transfer their previous knowledge to new situations - mcasurement of temperatures.

The greatest difficulty presented while interpreting equations with relative numbers was on
expressions of the tvpe (+a) - (-b) Children's conception of subtraction as an operation that
decrcases quantitics hinder them to accept intially that the final result in this case 1s greater than
the onc started with. This case is also very confusing to children because two minus signs are
invalved, Carraher (1990) presents three tvpes of meamng for the minus sign that provide
categories for the classification of evenday situations involving negative numbers (a} the nminus
sign and the operation of subtraction, tb) the minus sign as a mark intimately connected with the
magnitude that follows 1t and (c) the minus sign as a representation of snversion n this last case,
one can mentally rcconstruct the starting point by inverting the operations The resuits of
expenments related by this author comparning subjects performances 1n written and oral situations
indicate that what has often been viewed as a conceptual difficulty mav, in fact, be a difficulty
introduced by the notation conventions that are usually used in school These results were 1o some
extent confirmed by the present study where differcnecs 1in performances wete presented
accordingly to the dificrent type of situations involving integers On formal expresstons ditliculties

with suhtraction were emphasized On problems with everyday situations, particularly debts and
credits. children's difficultics wih this operaton were less evident The interviews with these




children scem to indicate that difficulties are directly related to representational systems and not
necessarily demonstrate lack of comprehension on integers.

The final comment to be made refers to the different wavs the chuldren were instructed on
integers The fourth grade students were taught using situations of profits and losses and the sixth
graders were instructed in using the sign rules Both groups presented significant differences on the
postiests when compared to the performances prescnted on pretests brt a qualitatinve analysis
showed that the sixth graders many times found conect answers using ncorrect or incomplete
procedures Many “false” rules were created by these students and some of them succeeded in
obtaining correct answers The fourth graders, taught with diagrams, when interviewed. presented
well established explanauions for the problems that involved additions but were stiil confused with
subtraction problems despite the use of these auxihany forms of representation Probably more time
dedicated i instructional programs with this operation is necessary

Many difficultics encountered by children can be more casity detected and also instructuonal
programs arc more eificient in some cases than in other ones Some obstacles need to be considered
in very special ways and more understanding of these profound difficulties may be very useful in

claborating more efficient instructional programs
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GAMES FOR INTEGERS: CONCEPTUAL OR SEMANTIC FIELDS?
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ABSTRACT

By the sign rule problem we understand four questions into which we cast
Glaeser’s historical survey (Gloeser, 1981) ond Brousseau's episternclogical
remarks (Brousseau 1983} about integers: How fo take the bigger rom the smaller?
How to subfract a negative? Why minus times minus equak plus? What does i
mean minus-times something? 1n the paper we present a didactical strategy 1o
sotve this problemn, based on Baudriiard's concephion of gome (Baudrilard, 1979)
and on the theory of Conceptual Fields (CFy (Vergnaud, 1990). We report some
experimental results and discuss them from the point of view of the theory of
Semantic Fields (SF) (Lins, 1994).

Difficuities about integers are quite old. In his historical survey, Glaeser [1381] descnbes

perplexites of famous mathematicians of the past about the sign rule. The proof that we know
today was first given by Haenkel in 1887 in a text about complex variables. We know that it is
useless as an explanation for convincing a 13-years old student. integers have scarcely been
dealt with in recent literature Among 56 research reports presented in PME XVIl, only one

explicitly concems integers [Lytie, 1984]. The sign rule remains a major problem for the teacher

Works about integers generally display a profusion of suggestions for addition but are
insufficient about multiphcation. Glaeser [1981] points out this insufficiency in Freudenthal [1973]
“The reading of pages 279/281 does not even suggest that he has realized the astonishing
phenomenon studied here” [p. 305] Freudenthal [1883] offers three simultaneous approaches to
the sign rule problem. The first insists on the necessity of permanence of distnbutive and
commutative laws (-3)x4=4x{-3) [p. 434]. This leads to the usual difficulties. students keep
asking. what does it mean minus-three times something? Less than zero time it? The second
approach is extension of linear transformations according to what he names the “geometrical-
algebraical permanence principle” [ib. id.. p. 444]. This raises the problematic relation between
discrete-numencal and continuous-geometrical domains The third approach is simply teaching
rules, among which (-a) (-by—a b Freudenthal asks for “the most simple and effective wav 10

programme the learner with () six rules It is almost nothing compared with the rules a child must

! Advisor of the Action-Reserch Group (GPA) of the Graduate Program in Mathematical Education UNESP,
Rio Claro, SP, Brazil

2 genior studentin the Mathematics Pre-serviceTeaching Program UNESP, Rio Claro. SP, Brazil




learn in order do master a column arithmetic™ [sic. p. 457]. When the student comes to the point of
asking why minus times minus equals plus it is already too late® he has leamed a solution
without knowing the problem and is “fed up” with rules.

We thought of anticipating the solution to the sign rule problem as theorems in action,
according tc CF. Our idea was that the roles should be exchanged: the teacher should be the one
to ask and the student the cone to answer why minus times minus makes plus. The didactical
strategy shouid l2ad the student to provide his own expianation to facts that he should consider
as evident: “(theorems in action) are associate with a feeling of obviousness they are (.. ) taken as

obvious properties of situations” [Vergnaud, 1982, p. 38].

This research was aimed at testing the didactical validity of a certain conception of game
to solve the sign rule problem. This conception sharply distinguishes game from activity. At the
moment of the game, nothing else counts but following a rule. “The game is the vertigo of the rule,
By choosing a rule we suspend the law. The obligation that the game creates is of the order of a
chalenge™ [Baudrillard, 1979, p. 151]. In particular, no interruptions for registering results or
making connections with the sylabus should be admitted. In designing games for integers we

have been guided by pedaqogical beliefs that are best stated as answers to two questions.

Question 1; “How can we make theorems become theorems in action?” [Vergnaud, 1982, p. 36}.

Our answer was: By engaging the student in games where the use of theorems in action leads to
better playing strategies. Question 2: “How can we make theorems in action become theorems?”

[ib. id.} Our answer was: By introducing adequate work-sheet activities based on the game, after
it has been finished.

THE DIDACTICAL PROBLEMS AND THEIR SOLUTIONS

Glaeser's [1981] historical account of epistemological obstacles in the
development of integers was made more precise by Brousseau [1983]. We cast these works into
four didactical problems:

P1. How to take the bigger from the smaller? 3-5= .
P2. How to subtract a negative? -(-3)=..
P3. Why minus times minus equals pius? (-2){-3)=...
P4. What does it mean minus ... times something? (-3)x .7
What do we mean by solutions to these problems? Our premisse has been that integers

are operators on signed naturais and operations between integers are operations with such

3 This statement should be taken as rethorical but we believe that it can be justified.
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operators. In a state-operator conception, using[_] for additive.O) for multiphcative operators and
O for their states, our two basic diagrams are.

o256 & Q@

We emphasize that the * signs before the operator numbers do not have the same
meaning as the + signs before the state numbers This 1s easily seen by noting that we can use
a red/blue code for the operators and a + code for their states or vice versa Denoting the
multiplicative operators by f, , the second diagram represents the transformation of one state into
another: f.3 (-2) = +6 “Tc multiply 4 rational integer by -« is 10 multiply by « and change the sign of
the product” [Papy, 1968, p 334]. We argue that this is not yet the solution of minus times minus
P3 is solved when the subjects perform the composition of multiplicative operators f,°f.;=f,
which is quite different In our games we have introduced f.; (-2} = +6 as a rule and expected that
fa°f..=f.c would come out as a theorem in action Note that in both cases the calculation
(-3)=(-2) = +6 is the same.

By solutions of the four didactical problems (theorems) we mean the following four
theorems in action By a solution of P2 we mean the action of removing a debt by increasing the

amount of money in a gain/debts model By solutions of £1. P3 and P4 we mean the actions of
completing the diagrams beiow without resorting o stales.

Y
P1: / Pa: @/ \@ P4: @S"@ = @I
al (0] v
THE DIDACTICAL STRATEGY THE GAMES

According to Brousseau's conceplion of learning we cannot hope to solve these
problems in one stroke. "leaming is the result of experimentation of successive conceptions
temporanly and relatively good that have 1o be successively rejected or retaken in a truly new gencsis
at each ttme” [Brousseau, 1983, p 171] In order to provide conditions for expenmentation of

conceptions, we designed three games based on additive and multiphicative machines [Dieries.
1969A, 19698]




G1. This is an additive state-operator game. The kit consists of a board with
G\\m//g a stamped network, cards represeriting additive operators to be placed on

N\

the network’s branches, and one-colored beads, representing the operator

associated to card numbers: an operative sign (an arrow) and a predicative

}3 states, to be placed on the network's knots (butterflies) Two signs are

sign {+/-). Operator states are not signed. The objective of the game is to

piace the cards between knots so as to close commutative circuits. In the

N
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advanced version, players should develop schemes for composing additive operators without
resorting to the beads. The expected strategy is direct composition of operators, thus solving P1.
Y +3 ~ We denote this strategy by G1A. In applying this game we have observed the
>7a_-b ’_g—: emergence of a strategy consisting in mentally keeping track of the states by
’ memonizing the number of beads in one fixed knot, generally the first one that
was filled. We denote this strategy by G1B. A puzzle occurs when a card is to be placed in such
a way as to close two circuits simultaneously and, due to a previous unnoticed mistake, the
numbers assigned to it from each of the circuits do not match. We shall refer to this situation as
G1C. In some cases the number of beads on a knot is not sufficient to allow for the subtraction
determined by the card that a player wants to place. It is expected that they decide to increase
the number of beads on all previously filied knots. We refer to this solution as G1D.

G2. Tnis is a real estate sales game with “red money" representig debts. This game introduces
singed operator states. Instruction cards may ask a player to “remove a $10 red bil' from the
stock of a partner who happens to have no debts. This situation instals the neutrahization of

opposites that solves P2 [Lytle, 1994]. We call it G2A.

G3. This is a pawn-track game The position number to which the
pawn has to be moved is obtained from the introduction of its
present position number into the entry of a connection of additive
and muitiplicative machines The track numbers are coded +/- The

operator numbers to be placed in the machines are obtained by

throwing two dice with face numbers also coded +/-. To negative
multiplicative operators is assigned the property of reversing the sign
of the states upon which they act. The player may choose the

. Parallel 7,
O O O O machine connection best suited for his move. The objective is to put
v N Y pawns on the positions numbered, say, 30. in the first match only

e N

series connections may be used; in the second one, only parallel

connections. We define G3A as the strategy consisting in operating

with the dices’ rnumbers before trying the senes connection of multiplicative operators




= :=» > This is the solution to P3. Moving his pawn to a position whose number does

not divide 30 indicates that the player has not solved P4. When the player avoids this trap we
say that he has developped G3B.

THE SITUATIONS

Informal experiments and adjustmants were made so as to fit the kits to the vertigo of the
ruie conception of game. Then a systematic teaching expernence was made with G1 and
observations were made with G1 and G2.

S1. Two of us applied the G1 and subsequent work-sheets in two out of six weekly classes for
5th graders (11 years-old} during 7 weeks n a public school of a relatively rich town of Sao Paulo
State, Brazil. Officially the study of integers should only begin at 12 but the school administration
raised no objections. The class was being ruled by one of us. Each meeting lasted for 1.5 hours
The class was divided into 9 groups of 4 students. Ech group received a complete G1 kit. First,
beads were used on the knots (butterflies). Then we asked the children to leave them out
(advanced game version}. Special care was taken not to hint how to perform direct composition of
additive operators. Promotional grades were set on criteria of presence, pariicipation and
performance. A contest was organized, awarding medals to the three first places but not counting
for grades. The last three meetings were dedicated to group-work on four work-sheets. These
activities started with problems of completing a circuit that reproduced part of the network board
and ended with problems of replacing a serires of cards by a single one in the absence os any
butterfly drawings. We asked for solutions of the problems but suggestions were limited to* do as
you did in the game.

S$2. One of us played G1 in two occasions, with 7 groups of mathematics high schoo! teachers
(S2A) and with 8 groups of college teachers and senior students ($2B}4. The previously accorded
presentation was the following. If the G1A strategy did nct occur we would ask the groups for a
direct method without insisting (S2A) or increasingly insisting (S2B) If G1C occured, we would
say: go back to beads. As for G1D, we would tell the sofution if necessary in order to concentrate
on G1A. S2A also played G3. The accorded presentation was to first play the series version and
worn the players before starting the paraliel version' there is a pitfall in this game. As they fell into
the trap we would remark. your are already trapped. Find out v'/hy.

THE RESULTS

R1. Two of the four contest finalists were sutudents considered “weak"™ according to teachers’

general oppinion The nastiest boy spontaneously worked as tutor of other groups. Only one case

4 UNIJUI, 1jui (RS), November 11. Un.G., Guarulhos (SP), November 24, 1994.




of cheating was observed. G1D caused no major problems, children promptly suggested the
increase of the number of beads. They realized that there was some arbitrariness in this number:
you could have started (the game) with more (beads). Nevertheless they did not develop G1A,
not even the winners, G1B was used all the time, inclusive on the work-sheet situation.
Consequently G1C never happened. Some students resorled to wnting numbers for the states on
the work-sheets and then quickly erasing them while asking; can't we play any more? When they
faced the no-butterfiies problems tney became lost. At this point our suggestion: do as in the
game, became appaerently meaningiess. One group that had had poor performance in the game,
slarted developing ad hoc strategies, which only succeeded when the cards had the same sign.

The others kept asking for help Nevertheless, considerable ability of mental caiculation was
develcoed.

R2. None of the S2B groups and only one of the S2A developed G1A, precisely the one where
a member c¢ould cite Dienes's page numbers by hearl About half of the groups ran into G1C
and one third required explicit solutions for G1D All groups faced with the demand for a direct
scheme of composition of additive operators, started by reinforcing G1B. Faced with
increasingly stronger demands for direct methods, four of the $28 groups succeeded, three
succeeded after some feed-back information, two gave up and left the room. Three of the
groups which [ater succeeded, chose a minimal-value state as reference for G1B All S2A
groups playing G3 fell into the G3B pitfail. Ponting out: you are already trapped, apparently
produced little or no effects. palyers continued trying to reach 30 from positions such as 12.
Only after repeated being told that their efforts would be useless did they produce an
explanation and, in some cases, reset the game. One player praised G3 as excellent but
actually rejected it as a teaching instrument; / am going to play it with my best students outside
the classroom and | will introduce some random instruction cards, so that they can get ouf of
the trap. Qur data about G1A are not conclusive.

DISCUSSION

Results in R1 and R2 did not «onfirm our first pedagogical belief that theorems could
become theorems in action by engaging the student in games, conceived as the vertigo of the

rule, hence the second behef could not be checked. As foreseen by Vergnaud [1890, p. 152} and

Cienes [1969A, p 9], G1A tumed out to be much more difficult than G1B Why? There is no

doubt that the different degrees of difficulty can be explained in CF in terms of complexity of the
mathematical structures involved in these two problems But we still have to explain the different
outcomes of the two situations S2A and S2B, dealing with the same {G1A) problem. Mathematics
teachers and senior students certainly knew P1-P4 as theorems, but they only put P1 into action




in S2B and not in S2A. Nevertheless, the outcome of $2B indicates that they had the means of
having done so.

The issue is not why G1A is more difficult than G18. What we have to find out is why the

to overcome the difficulty imposed by a given complex mathematical structure? This question may
be rephrased as: how do mathematicians overcome such difficulties? More precisely, how did
they produce such complex structures? It seems difficult to answer this question in CF since this
theory takes mathematical structures for granted: CS “favours () models that accord an essential
role to the very mathematical concepts” [Vergnaud, 1990, p 146] We could evoke the affective
and dramatic dimension of the situation but the discussion of Walkerdine [1988] shows that this

would be just an attempt to graff context into CF A new approach 1s needed.

In SF, that is, from the point of view of production of meaning. $1 and S2A are
completely different from $2B Meaning is produced in the dialectics of the subject and the

other[Lacan, 1973, p 239]. The motor of this dialectics is a certain demand of the other, before

which the subject talks and acts. In S2B the demand required an immediate verbal answer:
“mistakes” were promptly avaitable as raw matenal for meaning preduction The social agent in
charge of the room hailed with a promised yes for an answer. Since he was recognized as an
invited lecturer, this yes was perceived as stemming from a bigger legitimating cultural instance.
Therefore desire and fantasy were directly melt with the power of mathematical discourse On
the other hand, in 81 and S2A the meaning of a winming strategy would only come in the
aftermath, as an extemnal reference’ a medal. “The focus of their fantasy upon the cxternal
reference called up by the practice prohibits the possibility of their driving enjoyment from the

power of mathematical discourse™ [Walkerdine, 1988, p 195} 5

Distinction of the G1A and G1B preblems can also be made in SF. We argue that

justifying composition of additive operators by resorting to operator states, or by doing away

with them, are different modes of producing meaning These justfications belong to different
semantic fields [Lins, 1994, p 185). However it is hard to explain the different degrees of
difficulty of G1A and G18 in SF without resorting to some idea of structure

Briefly, SF indicates the condition that a game situation should satisfy in order to be
didactically effective. the imphcaton of the mathematucal discourse with the subject's fantasy

5 This argument also explains why in $2. only upon msistence was G3B solved, and in S1 only in the work-
sheet situation was G1A first considered Non-systematic expenences with G2 indwcate that children de not
take very long in arder 10 solve G2A by borrowing some money from the bank [ndeed, the demand for a
solution of G2A is explicit in the rules of the game




and object of desire. In order to explain how this condition is present in well succeeded game
didactical strategies such as in Giménez [1993), we have to consider how the promised yes (the
transfer, in lacanian terms) is delt with in a socially and cuiturally meaningfull context. The
language paradigm is rapidly becomming a central issue in Mathematical Education [Rogerson,
1994). Further applications of G1-G3 should take such an issue into consideration.
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The focus of this paper is on new paradigms in cognitive scicnce, and on the refationship
herween these paradigms and mathematics education research. We will contrast what is
generally understood as “cognitive science ™ with emerging alternative paradigms in the
discipline. The main distinguishing feature of these new paradigms is a view of mind that
does not separate cognition from biology nor from culture. We propose that this view of
the mind s important implications for research and practice in mathemutics educarion, and
we affer examples from research in support of this thesis.

Introduction

The focus of this paper is on new paradigms in cognitive science. and on the relationship between these
paradigms and mathematics education research. These new views of cognition entail a reconsideration of
the idea that knowledge. including mathematical knowledge, is objective, abstract, rationai and context-
free. The most important entailment of emerging paradigms in cognitive science is a stance which holds
that it is theoretically and empirically inadequate to consider knowledge independently fiom the knower.
Although this idea is by no means a new one, either to thc mathematics education community or to

scholars of cognition more broadly (c.f., Cobb, 1994; Cobb, Yackel & Wood (1994), Lave & Wenger
{1991}, Rogoff (1990), Sfard (1994)). we believe that more can be done to delincate the implications of

this concept. The issues of objectivism and non-objectivism invite a deeper reflection on basic

assumptions of mainstream cognitive science. and on the implications of these assuntptions for research
and practice in mathematics education. We raise, for example, questions like the following: If
knowledge depends on the knower, what does it mean to explain cognition as information processing, or
as symbol manipulation? What can it mean to describe a learner as “"possessing” certain mental
representations of a inathematical concept?

Underlying these questions is an implicit presupposition that information exists prior to the
knower. and that mathematics itself has an objective reality independent of the learner — mathematical
objects exist "out there somewhere,” waiting to be “re” -“presented” in the mind of the subject. Leaming
in mathetmatics, in this view, consists in accurately representing and manipulating the objects of
mathematics.

The goal of this paper is to present an alternative non-objectivist perspective which we claim is
morc adequate for understanding and explaining mathematical cognition. We will deseribe this
perspective in theoretical terms, and will iltustrat- *t through the interpretation of rescarch results taken
from work on children’s understanding of infimty and transformation geometry.




One of the central goals of mathematics education research is to understand the thinking invelved in
doing and leaming mathematics. In addressing this goal, it is important to make use of resources outside
the field of mathematics education, and even outside the discipline of psychology. The field of cognitive
science constitutes one such resource. Unfortunately, the term "cognition”, and cognitive science in
general are often understood to refer to a particular theoretical approach focused on individuaj reasoning,
often explained in computational terms. The result of this interpretation has been that many mathematics
educators, especially those concemed with social and cultural factors, have overlooked the potential
contribution of cognitive science as the scientific study of knowledge.

There is a widespread belief that in explaining human cognition it is necessary to refer to mental
representations and information-processing, and "to posit a level of analysis wholly separate from the
biological or neurological, on the one hand, and the sociological or cultural, on the other " (Gardner,
1985, p. 6). Moreover, there is a strong belief that central to any understanding of the human mind is the
idea of computation. Gardner, among others, expresses this view, whea he states, "Not only are
computers indispensable for camrying out studies of various sorts, but, more crucially, the computer aiso
serves as the most viable model of how the human mind functions™ (loc. cit.). Herbert Simon, identified
as founder of the discipline, describes cognitive science as "the study of intelligence and intelligent
systems, with particular reference to intelligent behavior as computation™ (Simon & Kaplan, 1989, p. 1).

Mainstream cognitive science approaches that are consistent with this view include symbol-
processing models (cognitivism; c.f. the work of Simon, Newell, Pylyshyn, Fodor) and parallel-
distributed processing models (connectionism; c.f., Rumelhart, Smolensky and others). However, with
Cardaer, we define cognitive science more broadly, as a multidisciplinary. "empirically based effort to
answer long-standing epistemological questions ..concemed with the nature of knowledge® (loc. cit.).
Cognitive science is, most simply, a science whase subject is cognition; an inquiry into knowing which
utilizes the scientific method. In this view, there is nothing that implies that a cognitive scientist must
endorse the more restrictive, computationally oriented framework mentioned above. The central
paradigms in cognitive science today, cognitivism and connectionism, thus do not define cognitive
science, rather they constitute only two approaches that happen to be popular today.

The fundamental problem with these approaches is, first, that they are at heart objectivist, and
sécond, they are focused at an individual level of analysis. By “objectivist™ we mean a philosophical
tradition that :

.- assumes a fixed and determinate mind-independent reality, with arbitrary symbois
that get meaning by mapping directly onto that objective reality. Reasoning is a rule-

governed manipulation of these symbols that gives us objective knowledge, when it
functions correctly. (Johnson, 1987, xxi-xxii)

That is, the world, including the mathematical world, is made up of objects extemat to and independent
of the knower (c.f. White, 1956). Mainstream cognitive science paradigms for the most part take this
view as foundational, and devote their efforts to building models of cognition that can account for how
humans succeed and fail at representing the world, and at processing information from it. This view is
very different from the foundational assumptions of several emerging paradigms in cognitive science: we
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will describe briefly the central elements of a non-objectivist approach to cognitive science before tuming
more specifically toits relevance to mathematics education.

Non-objectivist cognitive science

Qur view of cognition is based on work by non-objectivist cognitive scientists, aclive in several
intersecting domains. These researchers have in common an approach to cognition which explicitly
includes both the biological and the social. Central figures in this approach include Lakoff and Johnson
from linguistics (Johnson, 1987; Lakoff, 1987), Maturana and Varela, working in theoretical biology
{Maturana & Varela. 1987). and Rosch from cognitive psychology (Varela, Thompson & Rosch (1991);
also summarized in Lakoff, 1987). These scientists see cognition as a biological, embodied phenomenon
which is realized via a process of co-determination between the organism and the medium in which it
exists. Rather than positing a passive observer taking in a pre-determined reality, a non-objectivist
cognitive science holds that reality is constructed by the observer, based on culturally determined
categories as well as individual bodily experience. As LakofT states, in describing what he calls embodied
concepts, A concept is embodied when its content or other properties are motivated by bodily or social
experience.. Embodiment thus provides a nonarbirrary link between cognition and experience™ (LakofT,
1987, p. 154).

This paradigm is non-objectivist because it rejects the necessity of an objective world that is
aiready “cut up into” objects with pre-existing propertics. Instead, as Putnam states, * *Objects” do not
exist independently of conceptual schemes. We cut up the world into objects when we introduce one or
another scheme of description. (Putnam, 1981, p. 52, quoted in Sfard & Thompson, 1994, p. 14). A
non-objectivist perspective allows us to consider cognitive activity beyond the level of the individual,
since conceptual schemes are in large measure socially constructed, and also to acknowledge the role of
biology in cognition (Johnson, 1987; Lakoff, 1987; Maturana & Varela, 1987; Varela, Thompson &
Rosch; 1993) Within a non-objectivist cognitive science, the knower and the known are codetermined, as
are the leamer and what is leamed. Thus, cognition is about enacting or bringing forth adaptive and

cffeetive behavior, not about acquiring information or representing objects in an external world.

Mathematics and mathematics education

Traditional views in the philosophy of mathematics {piatonism, formalism, constructivism) consider the
existence of mathematical objects (or formulas), in various degrees and forms, as being independent of
human understanding (Davis and Hersh, 1981; Kitcher, 1984; White, 1956). White, discussing this
issue at length, quotes Hardy as stating: “I belicve that mathematical reality lics outside us, and that our
function is to discover or observe it {(White, 1956, p. 2394) Davis and Hersh note that, although many
contemporary mathematicians might disavow this statement, in their daily work, they act as if it were
true: “The typical working mathematician is a Platonist on weekdays and a formalist on Sundays. That
is, when he is doing mathematics he is convinced that he is dealing with an objective reality whose
properties he is attempting to determine. But then, when challenged to give a philosophical account of
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this reality, he finds it easiest to pretend that he doesn't believe in it after all” (Davis & Hersh, 1981, p.
321).

Clearly. withio the mathematics education community, such a view no longer holds great
currency. Research carried out with children in classrooms or homes orin the streets cannot pretend that
mathematical knowledge is an abstract, disembodied, asocial entity . However, we believe that in many
cases, clements consistent with mainstream cognitive science persist even within research that
acknowledges the socially-constructed nature of mathematics. These often subtle ways of thinking and
talking about cognition can be characterized as a kind of residual objectivism.

Asa generic example, a piece of research may examine in detail the social interactions, discourse
practices, or cultural factors involved in students' learning within a particular area of mathematics, be it
fractions or functions. But, when discussing what the student knows as an individual, in describing what
the learner takes away from the social situation, the framework often shifts, and mathematical knowledge
is described in terms of mental representations and the storage/retrieval/processing of information. For
example, rescarchers talk of students “acquiring” a concept, or “building an internal representation™ of a
mathematical entity. This view of mathematical knowledge is objectivist, in that it presupposes the very
existence of an independent mathematical reality which contains objects to be represented and inforrnation
to be processed.

Furthermore, this view may reflect an objectivist stance toward mentat constructions themselves.
Instead of using the terms mental representations or mathematicalnbjects as theoretical tools to further
understanding, which can be more or less adequate or useful (see Sfard’s comments on mathematical
objects in Sfard & Thompson, 1994}, in some cases the rescarchers’ goal seems to be to discover and
describe mental structures which are presumed to actually exist. Statements like the following
demonstrate this objectivism corcerning mental representations: “I am deeply supportive of perspectives
that challenge the presumed connection between our introspections about our knowledge and the acnal
underlving representations ” (emphasis added: Kirshner, quoted in Sfard & Thompson, 1994, p. §).

It may very well be that within mathematics cducation, we find the equivalent of Davis and
Hersh's weekday Platonists and Sunday formalists. We may declare that the mathematical or conceptual
objects we talx about are only theoretical constructs, with no existence independent of the theorizing
individual or community, yet find it easier to utilize the objectivist vocabulary of mainstream cognitive
science when describing the results of our research into mathematical feaming.

Thesis

Returning to the issues with which we opened this discussion, we propose the following thesis:
Objectivism is not a necessary element in cognitive science or in mathematics education research.
Cognitive science does not have to consider either knowledge or its components as existing objectively
(as is done in the information-processing framework and in discussions of mental representations).
Furthermore, we claim that non-objectivist cognitive science of a particular kind is more useful and
adequate than objectivist cognitive science for mathematics education research and practice. In support of
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this thesis, we will present specific examples from each our research programs, examples in which a
ron-objectivist interpretation is applied to selected findings.

Examples from research

Children's understandings of infinity

Our first example comes from a study of children’s ideas about infinity carried out by the second author
{Nidez, 1993a, 1993b, 1994). The rescarch methodology was the clinical interview, focused on Zeno's
paradox. The researcher presented the paradox to children from 7 to 14 years of age, using a statement
like the following: “Imagine that we are asked to go from a point A to a point B, but we are told to do so
by following a rule which says: first go half of the way. then half of what remaias, then half of what
remains, and so on. Do we ever reach point B?" Zeno's paradox asises because, if this rule is followed,
then we never reach point B, yet this is contrary to our experience, in which a journey always reaches a
destination. '

In a serics of experiments described elsewhere (Nifiez, 1993b, 1994), the author found a
developmental, age-related difference in the responses to the paradox. Younger children often altered the
conditions of the situation such that the problem would be solved. For example, Ban (who is 7 years. 9
months old), eventually resolved the paradox by changing the destination of the “joumey:"

Ban +(7;9): We get closer .. but if we go half of the way there is just a step left, and if we
go the (other) half, there is just one haif left, .. and we go that half and we arrive ..
(thinks and rc-analyzes with his fingers near the cdge of the table).. or maybe thereisa
small piece lefi before the arrival und we decide thai that's the place where we kave ro

stop. ..We put the arrival before the place where we want to go, so then we are sure that
we amive,

The opinions of students older than 10 or 11 were very lzbile and counterintuitive. They seemed to realize
the difficulty of resolving the paradox. Their answers were full of doubts and hesitations:

Mat -(14:8): Does it arrive? (thinks, whispers) .. | think we don’t ammive exactly, maybe
about a millimeter away. | think that we will arrive, but that we are not goiag to arrive
immediately, .. if we have every time, .. weli, I don't know, | think that it will arrive
exactly at the point, and 1 think that it will not arrive exactly. | have two opinions. I don’t
know whether it wiil be exactly or at about a millimeter away.

According to our theoretical stance, mathematics is a language shaped historically and based on
consensus. In Zeno's paradox, agreeing to respect the conditions of the problem (that is, not changing
the “givens” of the situation) takes place within this consensus. The consensus in turn, depeuds, in part,
on the biological structure of the subjects (e.g., their level of neurobiological development). This issue is
essential because the conceptual world that emerges from the eognitive activity of young children is based
on a conseusus which is different from ours (because their neurobiology. their language, their embodied
cognition is different). Thus, what we call figor in mathematics has a different meaning for students of
different ages, and younger students take a different attitude than older ones about the possibility of
changing the conditions of Zeno's paradox.




The children’s unnoticed alteration of the corditions of the paradox takes place in a differeat
domain of consensus which we happen to not share. As a further example, we have found that before
age 12, some students show a striking ontological difference between two “kinds™ of infinity. A 10—
year—old, Yak, answered a question about his use of the terms “bigger” and “smaller™ infinities:

RN: If that is the “bigger” infinity, as you say, when you say “smaller” infinity. is it the

same thing but in the other sense?

Y: Yes, and there is only one difference. At a certain moment it becomes so small that we
can not even know where it is.

RN: _S(; what is the difference then, betweea the “bigger” infinity and the “smaller”

lYnﬁn;}y;‘ certain moment, when we are in the smaller infiniry. it stops, whereus in the

bigger infinity it could continue until .. infinity
In other words, there are endless infinities and infinities which stop, both being infinities! The idea of an
infinity which stops contradicts our very notion of infinity, as mathematically-experienced adults.
Children’s notions about infinity also change, depending on individual characteristics and on the context
provided for the paradox. Ten-year—old high performers, and |2- and 14-year-old average students gave
different answers with different arguments to isomorphic situations in which the context had been
changed (e.g., the distance to be covered in the jouney).

Do these alternative notions represent misconceptions about what infinity means? We don't think

so. They are part of a shaping of consensual space based on bodily grounded cxperiences, just as the
idea of "indivisibles” of the piane were for Archimedes or Cavalieri.

“Conceptual bugs" in transformation geometry

The next example is taken from a qualitative research study by the second author, and focused on the
learning of twelve midd!e-school students who spent about 7 hours working in pairs with a computer
microworld for transformation geometry (Edwards, 1990,1991). This microworld was made up of Logo
procedures corresponding to rigid transformations of the plane (translation, reflection and rotation), and
included a garme in which the transformations were used to superimpose two congruent shapes.

One research result concerned certain expectations the students demonstrated about the rotation
transformation. The rotation command takes three inputs, for example “ROTATE 1020 45.” The first
two inputs specify a fixed point about which the entire plane rotates (in this case, the point (10, 20), and
the third input specifies the amount of the rotation (here, 45 degrecs clockwise). About one third of the
students who used either a pilot or final version of the microworld initially expected the rotation
command to work differently than it actually did. Instead of envisioning a whole plane rotation, these
students thought that the ROTATE command would first move the shape o the center point, and then
tum it (Edwards, 1991).

The students quickly realized that this was not how the microworld functioned, and were able to
adapt and effectively use the whole-plane version of rotation as implemented on the computer. What is of
interest to our thesis, however, is not the actual performance of the students with the microworld, but
rather the interpretations that are possible conceming the students’ initial idcas about rotation.




One possible interpretation, which the author made when first analyzing the data, is
fundamentally objectivist. Under this view, the students had a “misconception™ about the nature of
rotation. The mathematically correct version of rotation, involving a single movement or mapping of the
whole plane, was instantiated in the computer microworld. Any alternative notions that students held
about rotations were simply incorrect, based on a lack of understanding of rotation as a mathematical
entity. This misunderstanding was referred to as a “conceptual bug” by the author in early written
analyses (e.g.. Edwards, 1990). An objectivist interpretation suggests that we can “correct” such
misconceptions simply by providing accurate representations of mathematics as it actually exists.

Under a non-objectivist interpretation, however, we would not describe the students” initial
conceptuatizations of rotation as “misconceptions” (cf., Smith, diSessa & Roschelle, 1993/4). Instead.
the students’ understanding of rotation would be seen as an appropriate, adaptive expectation arising
from their own embodied experience in the world. In the everyday world. when something tums, it
alinost always tumns around a center point which is parr of the object itself. When a child turns around,
she turms around the central axis of her own body: if she plays with wheels or tops or other tuming
objects, these objects tumn around their own centers. [t is rare to experience an object that tums at a
distance, from a center point in an arbitrary location. Yet this is the kind of rotation which is instantated
in the microworld (Edwards & Zazkis, 1993).

The students’ initial understanding of rotation ditfers from the more general, whole-plane notion
held by the mathematician. Some might argue that this is simply a matter of convention, of agreeing upon
a way to describe rotations (that is, mathematicians may choose to desciibe rotation as a whole-plane
transformation, but they could just as well adopt the students’ convention of first sliding and then
turning). But this assumes a single mathematical entity, rotation, which each community describes
differently —an objectivist view. Under a non-objectivist view, each understanding of rotation is
completely different, since each derives from a different set of experiences, from a different practice.
Each is couched in a vocabulary that the knower has found most useful; furthermore, in the mathematics
community at least, this vocabulary is shared and formal.

[n order to medify the students’ initial, perfectly adaptive understanding of rotation (or any other
mathematical notion), it is not enough to provide the “mathematically-correct™ version. Instead, we must
create situations in which the new mathematics more adaptive than the old, and provide social support for
students as they learn a new way of talking about what they are doing. Computer microworlds can
provide problem-solving situations and games that require the use of new mathematical objects and

operations. Teaching with an emphasis on communication can provide the necessary social support.

Discussion:

From a non-objcctivist position, mathematics is conceived as totally dependent on human beings— it
emerges in the interaction of biclogical beings as they evolve within and adapt to their medium, and is
therefore contingent ¢ n the very nature of the interwoven process of embadied concepts and social
interactions. This view rejects an objectivism which reifies cither mathematics itself or the constructs we
create to help usteli the story of mathematical leaming. We belicve that research and practice in
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mathematics education cannot help but be enriched by drawing from the new perspectives provided by
non-objectivist approaches to cognitive science, which include an increased and more sensitive emphasis
on the bodily and social bases of thinking, leaming and knowing.
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OVERCOMING LIMITS OF SOFTWARE TOOLS: A STUDENT'S SOLUTION FOR A
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ABSTRACT
This paper describes how a student, confronted with discrepant results while using a
multi-representational software program, solves this discrepancy by mentally adding
features to the software design. The discrepancy occurred while the student was working
with transformations of functions. A model for understanding in multi-representational
environments is refined in order to incorporate the data discussed in this paper.
Students’ reasoning can inspire changes in software design.

INTRODUCTION

In recent years much emphasis has been given to the role of software tools as a
mediator of students’ knowledge and as a way of enhancng students’ learning {Borba &
Confrey, 1992; Confrey, 1994; Beare, 1994; , Edwards, 1994; Kieran & Hillel, 1990;
Monaghan et al. 1994, Nemirovsky, 1994; Noss et al, 1994; Schwarz, 1994). On the other
hand, not very much has been said about how students have been “substantially” changing

the design of software in order to adjust it to the mathematical ideas they are engaged in.
In this paper, a case study is presented in which a student overcomes the limits of a
software design in order to solve a problem involving transformations of functions. The
importance of this kind of student input for software development and for mathematics
education in general will be discussed.
THE RESEARCH

This particular research was part of a larger project? on the teaching and learning of
functions through contextual problems and transformations of functions using a multi-
representational software. The overall pedagogical framework (Borba, 1993; Confrey &
Smith, 1991; Confrey, 1994 ) includes a critique of the dominant role of algebra in
mathematics education. Transformations of functions, in particular, are usually dealt as
effects on the graph resulting from changes in the coefficients of an algebraic expression.
Borba (1993) have argued that this is just one appreach among several others, especially
with the facility provided by multi-representational software, such as Function Probe

1 The research reported in this paper was partially funded by CAPES (a funding agency of the Brazilian
government ("Bolsa 804/88-12") and by the Nationa! Science Foundation of the U.S.A. (Grant 9245277). ltis
currently supported in Brazil by CNPq, a funding agency of the Brazilian government, (Processo 520107 /93-
4.)

2 The research reported in this paper was developed as a part of more encompassing research developed by
the Mathematics Education Research Group at Cornell University directed by Dr. Jere Confrey.




(Contfrey, 1991). It had been previously discussed how Doug, a high school student, have
dealt with transformations of functions in our research (Borba & Confrey, 1992; Borba,
1994). In this paper it will be discussed how Ron, another 16 year old high school student
from Ithaca, New York, U.5.A., dealt with this theme. Ron's performance can also be
described by the model for students' understanding in a multiple representation
environment (Borba, 1993, 1994), a model in which understanding is seen as a process in
which findings in one representation are justified based on arguments developed on
another representation.

Function Probe (FP) is a multi-representational software which allows, among other
features, a graph to be transformed into another through direct actions on the graph using
translation, stretch or reflection icons. FP allows both the reflection line and anchor line for
the stretch to be moved. Therefore, a graph can be reflected on or stretched from any line
parallel to the y or x axis. Points can be sampled from a graph allowing a transformation in
a continuous graph to be studied as actions on discrete points. These saniples can be sent
to the table where they will be stored in "x" and “y" columns. Any pair of columns can be
sent back to the graph window as points and columns of numbers can be altered in the
table window. In this study, three students were interviewed in a teaching experiment
fashion (Cobb & Steffe, 1983) over approximately eight two-hour sessions. Students were
introduced to the features ot the software through three tutorials and then given tasks
involving absolute value, quadratic, and step functions.

The tasks were based on a model which was an alternative to the algebra-
dorminated approach. In the first part of the model, the focus was entirely visual. Using the
transformations icons, subjects attempted to transform graph A into graph B. In the
second part, a numeric component was added as students were asked to predict what
would happen to the coordinate values of a given point of a graph when the graph was
transformed. Finally, students were asked to explore the relationships between actions in
the graph and coefficients of algebraic expressions. The interviewer was the author of this
paper.

RESULTS
The Probiematic

Ron proceeded through the visual part of the model quickly and with few obstacles.
He was able to predict and explain the relationship between the visual and the numeric
values of the points easily and without hesitation. As he sought to create algebraic
descriptions of the transformations, he generated what was labeled "covariational
equations” (Borba, 1993, 1994). These equations express in algebraic terms a
transformation in the table world. For instance, in Fig. 1 we can see a horizontal
translation to the right by 5 units which can be expressed by the covariational equation x’ =
x + 5and y' = y where (x', y') are the coordinates of the translated set of points and (x, y)




are the original set of points. These covariational equations express a type of algebra
which was labeled "table algebra" (Borba, 1993) due to its close connection to the table
micro-world.
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X x'=x+5
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Fig. 1. On the top part of this figure the graph is being horizontally translated by 5 units.
Points have been sampled (not shown in the figure) and sent to the table window on the

bottorn part of the figure. Also shown on the bottom part are points of the corresponding

covariational equations.

As Ron was involved in the third part of the teaching experiment - studying the
relationship between graphical transfcrmations and changes in the coefficients - he ran
into a problem similar to one which often happens in the classroom when computers are
not used. Ron used the iconic facilities of FP - which allow him to drag a graph - to
horizontally translate by 5 units the graph of y=x2+3x+5. Having the model uf
y=ax2+bx+c in mind, Ron could nolice, looking at the screen, that in the translated graph
c=15. Despite his finding, he decided to check it, using paper and pencil and his previous




results from the analysis of covariational equations. He claimed: “. . .l know an easy way to
find out what ¢ will be . . . fust substitute ... do the formula that I did [the covariational
equation discussed before}. y. . .sox, x2 + ... think this will work ... 3x + 5, and the
thing . . . transformation was to the right by . .. It's (x+5)2 + 3(x+3) + 5.". Fe wrote down
what he thought was going to be an algebraic formula for a horizontal translation by 5 to
the right: “(x,x2+3x+ 5) --> [(x,] (x+5)2 + 3(x+5) + 5" . Next he developed the above
expression until he reached "(x+5, x2+13x+45)". Ron was then confronted with a
discrepancy in the results: he had found using the icons that a horizontal translation by 5
to the right would make c= 15 and now, using his algebraic algorithm, he predicted c=45.

To make things more complicated, the feature of FP which allows the equation of
the transformed function to be shown was turned on and showed y = {x-5)*2 + 3(x-5) + 5.
Besides the discrepancy of values for "c”, Ron now had a new problem: how to explain that
a horizontal translation to the right resulted in a change in a “minus sign" in the FP
display. Moreover, as he put y = (x-5)*2 + 3(x-5) + 5in the y = ax2+bx+c format, he was
reassured that c=15.

The rcots of Ron's latest puzzle can be found in his investigation in the table world.
As he was investigating the relationship between transformations in the graph and
changes in the coordinates of transformed points, he generated covariational equations in
which there was no contradiction between the “plus sign" and a horizontal translation to
the right, since x'=x45, y'=y could express such a transformation.

In trying to solve this problem, Ron developed three solutions: a visual one, an
algebraic one and a visual-algebraic one in which he “transformed" FP. In this paper, the
focus will be on the last solution proposed by him3. In the first two solutions, Ron found
explanations for the discrepancy between the different values he had found for "c" but he
could not find explanation for the discrepancy between the movement to the right and the
minus sign. He in one instance found an explanation for the movement to the right and on

another find reason for the minus sign, but there was no explanation yet for & coordination
of both events.

The Visual-algcbraic solution: changing Function Probe

On the first two solutions for this problem, Ron was still working with the equation
which was originally involved in this problem: y = x2 + 3x + 5. When he started working
on the third solution, he was already working with equations in a different format:
y=Af(Bx+C)+D. This format was suggested by the interviewer since it keeps separate the
vertical transformations from the horizontal transformations and, although it was
suggested from the beginning, Ron started working withv it only at this point of the
teaching experiment.

35ce Borba (1993 and Borha & Confrey (1993) for a discussion of the first two solutions.




After some preliminary investigation with the model y = Af(Bx+C)+D, Ron was
focusing on the understanding of C, working with the family of functions y = (x+C)? and
keeping
A=B=1 and D=0. In this investigation, he had the first breakthrough of what would
become his new solution to an old discrepancy:

Wait, wait, I just want to change it back to +52 [(x+5)2]. That'sall. So now if you
imagine this x-axis shifting over completely by 5. Shifted +5, okay? ... Now, and change
all the values back to what they should be okay? And then over here at -5 is going to
be where the y-axis is going to be -5 is going to be, see what I'm trying to say?

Ron was building an argument in which he was seeing a horizontal translation as a
result of an action on the x-axis instead of seeing it as a shift of the graph. As the
intervicivzr realized the nature of Ron's argument, he asked Ron if that could explain why,
when C had a "+5 change”, the graph would move to the left, bringing back the original
problematic in a new scenaric. Ron's response was quite telling: "Um. . . yes. If youdo...
if you think about it right. Let me think about it. Yeah. See if you pull this [the x-axis] to
the right, -5 is getting to end up at the zero, and in the distance will be 0 at -5, see?.” Ron's
articulation suggests that he was understanding “+5" as a movement of the x-axis to the
right. The x-axis would be pulled back to the right because "[bly being @ function, it pushes
it all back the way 1t was supposed to be . . . so then this whole thing slides back and then it's
plotted where itis now ... "

A way to interpret Ron's reasonirg is by thinking of a metaphor of "double rubber
sheets" proposed by Borba (1993) as a refinement to the "rubber sheet metaphor”
(Goldenberg & Klirnan, 1990). In the double rubber sheet inetaphor there is a back rubber
sheet with the Cartesian axes and a front rubber sheet with the curve on it. Previously, |
had chosen to think of transformations as impacting on the front rubber sheet while the
back rubber sheet remained permanent. The same kind of reasoning is embedded in the
designof Fu  tion Probe. Ron, however, was thinking of the horizontal translation as
being an action on the back rubber (x-axis) sheet, followed by an adjustment which would
push both rubber sheets so that the origin would be back to ils original position. The
"original position” can be understood by thinking of an observer who is standing still
looking at the origin before the graph has been transformed. In this sense, Ron could
coordinate his action with the plus or minus sign in the equation written in y = f(x) form
and with the final "visual” result of the graph.

After this point, Ron used the double rubber sheet metaphor to exiend his idea to
stretches and also to all the coefficients of the model y=Af(Bx+C)+D as shown in the next
two excerpls:

Band C... Anything inside the function, streiches and pulls and shrinks it this way

or moves it this way [horizontallyl. Anything outside the function stretiches or pulls it
this way [vertically], so now only one ruboer sheet changes . ..




Because B and C [in y=Af(Bx+C}+D] are inside the funciion. That means you haven't
done the function yet, so you're still working on the x-axis. When you're outside the
function, you've already done {with] the function and you're working on the y-axis
now - directly with the y-axis.

In the first excerpt, Ron tries to explain how he visualizes his model: he noted that
he could see B and C as connected to action on the x-axis, because they are "inside the
function”, which can be understood as the coefficients which "act” on the variable "x"
before prototypic functions (Confrey & Smith, 1991) such as y=x2, y=1x| and y=[x] are
"applied" to the variable; in contrast, anything outside the function, A and D, are going to
be in the front rubber sheet where the parabola or the line is. Based on this argument, he
concludes that the coefficients "inside the function” are linked to horizontal actions,
whereas the other ones are connected to vertical actions, as he explains in the second
excerpt. Ron's conclusion is coherent with the model y=Af(Bx+C)+D, which separates
vertical actions from horizontal actions.

Ron added thread to his metaphor to represent any curve that was being graphed,
made the front rubber sheet a "sticky rubber sheet" to glue the thread, and used "pins" to
attach the two rubber sheets together when necessary and so on. He ran into some trouble
to adjust what he was visualizing and the metaphor he was using to express what he had
in mind and the coefficients. But after some time of interaction with the interviewer and
with the ideas embedded in the design of FP, Ron caime to what he called an “overall
generalization™:

R: Here's what you do, okay? Here's the overall generalization. You have 2

rubber sheets, one of them is your graph. The clear one is your ... the other one
is your function.

I: Yeah, the one on the bottom is the axes.

R:Is the axes.

I: Okay. ..

R: So anything that is inside the parameters of the functions means you change
the graph before you do the function. That means that you're ... that means
that B and C are a stretch and a contraction [he probably got confused and said
contraction instead of translation] before you do your function, okay?

I: S0 you're going to do that on the graph or the axis?

R: On the graph. Ornoton. .. on the axes, not on the function, not on the
function.

R: ... Then when everything is all stretched, you pin it down and you slap our
function on top of it, then let everything bounce back the way it should be. That
means that when you shift it to the right 5, plop it on, when you bounce it back,
it will move it left 5, okay? If you look at your function, shift this over, plop it
on, and move the whole thing ...




R: Plop that on, move it over, okay? Now when you change A and D, what
happens is you take your clear one, keep this where it is and , ou stretch your
clear one up this way. Then, when your clear one’s all stretched, you piop it on.

Ron was able to expand the notion of change in the axes, incorporating vertical and
horizontal translations and stretches. Moreover, he constructed his version of the double
sheet metaphor, improving it, and was able to coordinate the numerical changes in the
coefficients with the transformations on the graph.

" DISCUSSION

This case study contributes to a growing literature (e.g. Proceedings ot PME-94,
PME-92) suggesting that working in computer envirgnments can be something quite
different than working in other environments. Constant and fast feed-back, easy use of
several representations at the same time and flexibility in students inquiry have been some
of the features listed to support computer use in mathematics education. On the other
hand, most classrooms are not equipped with computers; and it can be argued that
problems solved with the help of computers a~z not relevant for the general classroom.

This potential contradiction does no oceur in the case discussed in this paper since
the problem Ron dealt with - coordinating a horizontal translation of a graph with the
changes in the coefficients - takes place in classrooms without computers, too. In addition,

although the three solutions presented by him were mediated by FP, the ideas developed
by Ron can be implemented by students and teachers who have no access to computers.
The fact that Ron's solution can have impact on every classroom adds importance to his
findings.

The literature has emphasized either the role of the software in shaping the thought
of the student or, often times, the construction by the student as if it had happened
without the strorg support of the design embedded in every computer software. I have
proposed the idea of an "intershaping relationship” (Borba, 1993) as a way of giving equal
emphasis to the influence of a software design on a student and the role of the student in
noft only appropriating this design but actually shaping or mentally enhancing a software
as Ron did in the case discussed in this paper.

Ron's solution to the problem can be framed by the model of students’
understanding discussed in Borba (1994), since the problem emerged as a discrepancy
between results obtained in different representations, and he found in the graph
representation an explanation for an algebra-related problem. It should be noted however,
that Ron's solution demands a refinement of the model, since in order to coordinate the
"minus sign" with the horizontal translation to the right, he had to mentally change the
structure of the graph representation of FP. He had to build his own notion of translation,
overcoming the limits of FP, which is a very rich software with powerful transformations
icons, but which cannot allow for transformations in the axis in a dynamic manner. The




model (Borba, 1994) should emphasize, therefore, the role of students' changes in multi-
representational software as they justify a result found in another representation. Close
attention to students' thoughts, such as Ron's could also result in relevant sugzestion for
future software design

Finally it should also be noted that the pedagogical approach of teaching functions
through transformations, exemplified by the original way Ron approached this problem,
emphasizes the notion of family of functions and the focus is on the coefficients and not on
the variables. Such an approach combined with others which focused on the notion of
variable could help students to reach the function sense proposed by Eisenberg & Dreyfus
(1991).
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Graphs that Go Backwards
Tracy Noble and Ricardo Nemirovsky!
TERC, Cambridge, MA, USA

This paper reports on results of interviews with high school students using a motion detector
to create graphs of velocity vs. position. We are interested in the possibilities offered by
non-temporal and non-functional graphs, such as velocity vs. position graphs, for exploring
grapking and motion from a different perspective. In the transcripr and analysis of selected
Episodes of an interview with the student Noam, we trace the development of his ideas about
the relution between the shape of the graph and the path of his motion with the car, as well as
his use of language and gestures in explaining the responsiveness of the graph 1o his actions.

Introduction

Much of the literature on students' use of motion sensors to create graphs has focused on
graphs of scme quantity, such as distance or velocity, over time (Thornton and Sokoloff, 1989;
Nemirovsky and Monk, 1994). Temporal graphs (of some quantity vs. time) have a common logic:

the graph continually progresses forward, just like time. Doubling back is not allowed. Thus,
temporat graphs are all graphs of functions: for a given time (or x-value), there is only one
corresponding distance or velocity value (y-value) on the graph. Given this relationship to functions,
graphs of some quantity, such as distance, vs. time are useful for exploring functions; for instance,
linear functions can be explored by graphing distance vs. time for motion at a constant speed.

Given the value of making temporal graphs in leaning about functions and motion, why
would one ever choose to venture outside this realm? There are, of course, many other types of
interesting graphs to explore with students (Janvier, 1978; Bell, Brekke and Swann, 1987a, b, &c).
In dynamical systems modeling, for instance, graphs of velocity vs. position, which are examples of
phase spacc graphs, can be very helpful for understanding a system’s behavior (Janvier, 1978;
Nemirovsky, 1993; Tufillaro, Abbott, & Reilly, i992). In phase space, the state of a system is well-
defined by a single point in the space, and the space is often many-dimensional. However, for a
single, solid object whose state is defined only by its position and velocity, the object’s phase space is
its velocity vs. position graph. These graphs can often clucidate different features of the behavior of a
system than temporal graphs do. For example. in an oscillatory system, such as a spring undergoing
simple harmonic motion, the trajectory in velocity vs. position space will trace out an ellipse or a
circle, and will keep re-tracing the same path until the motion slows down and the trajectory spirals in
towards the center of the cllipse. Alternatively, a graph of position vs. time for the same system
would be sinusoidal, and the damping would be visible as a decreasing amplitude of the sinusoidal
curve. Given the alternative way of looking at these and other dynamical systems that velocity vs.
position graphs offer, we conjectured that students may also find valuable insights into motion and
graphing through work with these graphs.

1The work reported in this paper has been supported by NSF Prime Grant # RED-9353507, under a
subcontract from the SimCalc project. All opinions and analysis expressed herein are those of the authors,
and do not necessarly reflect the views of the funding agency The authors wish to thank David Carraher
for his editorial feedback and Steve Monk for a number of helpful discussions related to this paper.




This paper will follow the work of a high school student named Noam as he tries to
understand the velocity vs. position graphs he produces by moving a hand-held toy car in front of a
motion detector. Noam begins his work with the graphs by describing the graph as if it corresponds
to a trail left by the car, or a trace of the car’s motion. During the course of the cpisodes, Noam
slowly constructs a sense of the meaning of the graph that is more like that used by experienced
graph-users. Some authors have described students’ initial ways of thinking about graphs, some of
which closely resemble Noam's, as misconceptions (for instance, the "graph-us-picture”
misconception) which must be removed and replaced with correct conceptions (for a brief review, see
Clement, 1989). We argue. instead, along with Smith, diSessa, & Roschelle (1993), that students’
processes of learning often can be betier described as a process 6f adapting and refining initial ways
of thinking as they experience the responsiveness of the graph to their actions (Monk and
Nemirovsky, 1994; Nemirovsky, 1994). We suggest that as Noam learns more and more about the
responsivencss of the graph in the course of the Episodes described herein, he does not abandon his
initial way of thinking about the graph and adopt some new way. Instead, Noam subtly changes and
refines his thinking, eventuatly coming to think of the graph in a way that would not only be
considered “corrcct” by experienced graph users, but that also retains many features of his initial
thinking that turn out to be powerful for understanding velocity vs. position space graphs

Other themes that arise from the analysis of the transcript described in this paper are Noam's
usc of gestures and his use of language. Noam’s gestures provide a way for him to talk
simultaneously about the car's motion and the resulting graph, with the use of a single gesture. We
have also analyzed Noant's usc of language, tracing his use of the word "straight” throughout these
Episodes. We have found that his use of the word "straight” does not follow some linear progression
from “incormrect” usage to a more mathetnatically "correct” usage. Instecad, Noam uscs the word
“"straight” flexibly, to describe a number of differcnt concepts; it becomes a tool for him to use to
explore new ideas, not just the word for an non-curved line.

Methodology

In this study. five students were interviewed for five hour-long sessions cach (except the first
student, who was interviewed three times) using individual teaching cxperiments (Cobb and Steffe,
1983). The interviewer posed some pre-determined problems to the students, but also aided the
students in exploring questions of their own whenever possible. The videotape of each interview was
analyzed in order to plan for the next interview.

The first inierview with cach student began with playing a game in which the student and the
interviewer, Tracy Noble, made representations on paper of the toy car's motion on the tabie for the
other person 1o use to act out the intended motion. At some point during cach student’s first or
second interview, Tracy and the student began using the motion detector to make graphs of the car's
motion, beginning always with velocity vs. position graphs, and sometimes moving on to temporai
graphs as well. The motion detector senses the distance away of the nearest objeet in its path, and the
software (MacMotion™) can use this information, gathered over time. to compute the velocity of the
object as well
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Before beginning work with the motion detector, the students were only given the minimal
information that they reeded to begin making graphs: that 1s, they were told that the small plastic box
wilt detect their motion, and that they should move in front of it to make a graph on the computer
screen. Some might argue that time might have been saved in this process by simply "explaining™ to
Noam the meaning of the velocity and position axes ahead of time, and that all of the work he did in
these episodes was unnecessary. However, the graphs on the computer sercen all had axes labels,
unit labels, and scales on the-axes, 50 that if that information is relevant to the student, he can read it
off the computer screen. We would argue that. instead, that no explanation can replace persenai
exploration of the tool and the meanings of its responsiveness to the environment.

Noam

At the time of this interview, Noam was a high schoo) senior at a Boston-area vocational and
technical high school that is connected to a traditional high school. Noam had been primarily in the
vocational track, which meant that for his senior year he spent every other weck working in a graphic
arts shop, and the intervening weeks in academic elasses. Noam had taken two years of math:
arithmetic and a pre-algebra/algebra class, and one year of general science at the time of the interview.,
He was at the time of the interview enrolled in a physics class.

Transcript
The following Episodes occur about halfway into Neam's first interview, when Tracy introduces
Noam to the motion dctector for the first time. The four Episodes last a total of about 10 minutes, and
they occur in immediate succession. [Notation:"..." indicates the voice trailing off. and ", . . "
indicates deleted transeript. ]
Episode 1-- What is the Graph?

Episede 1 begins when Tracy introduces the motion detector to Noam for the first time, and asks him
to move the toy car in front of it. e had not worked with a motion detector before.

Noam moves the car at a slow, relatively constant speed. along the path below.
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The following graph appears on the computer screen:
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Tracy asks Noam to “walk her through" the graph.

Noam: Okay. (pause) Where did | start [moving the mouse on Graph | between A and D}]? 1
siarted fron this [A] It was - | started from here {A]? [Tracy: 1 think you started from here [A] .
...] Haw come it's [Graph 1] not going in a straight line [runs finger across Graph [ in a
horizontal line]...[points 1o table on which he had moved the car] like I did? [Tracy: In a straight
line like you did...] Okay. Either way [dismissing the topic of the straightness]. Okay. I started
coming here [running the cursor from B to C along Graph {]. It secems like | turned...[running
cursor downward from C to E on Graph 1 ].backed up {moving cursor up 1o Fl.and started going
over here [moving cursor from F back along the x-axis (o G,

Tracy asks Noam about what he had expected. and he explains why he had expected the graph to
have a straight line on top by acting out the motion he believes he made with the car. He has been
influcneed by the correspondence he sees between the graph and the motion, and as a result forward
and back are flipped from the original (Imagine flipping Figure 2 over the tape line).

Notes on Episade - In trying to make a comespendence between the graph and the motion he made,
Noan asks why the graph is “not going in a straight line like 1 did,"” because for motion left to right
along a straight path, Noam expects a straight line on the graph. not the bumpy one he sees from A to
C [Graph 1}. Noam uses “straight” here to refer to the quality he notices in his path with the car: its
lack of curvature. This is the first example we see of Noam expecting the graph on the computer
screen 1o look like the path he took with the car. Another example occurs when Noam analyzes his

turning motions, associating the 2nd and 3rd motions in Figure 2, with the curves Cto E, and Eto F,
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respectively (on Graph 1): "It seems like 1 turned...[running cursor downward from C to E on Graph
1] backed up [moving cursor up to F].” Noam may associate these portions of the graph with turns
because these parts of the graph have a curved shape {(See Graph 1), or because these lines move
vertically on the graph, which he may connect with forward and back motion on the table (See Figure
2). ltappears that Noum expects a direct correspondence between the path taken by the car and the
graph produced, almost as if the graph were a trail left by the car.

Episode 2 -- Stopping and the Graph
Immediately after Episode 1, Tracy suggests that Noam make sure the card at the frent of the car is
always facing the motion detector, so thul the motion detector can read the positicn of the car. Noam

rnoves the car as shown below:

a little faster All these motions are

E slow I along the same line
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Figure 3

This produccs the following graph:
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Graph 2
Noam talks through this graph. saving he started at A, and stopped at B, C, and E. Then Tracy asks
him how he can telf from the graph which places he stopped at, and Noam responds below:.

Noami: This here. [points at Graph 2, at B or C] [Tracy: That there?] Indicates stop [gestures a
downward curve with his hand, like the graph shape at B or C: 7Y |, because 1t [graph near B or
C} duesn't go like that one [points at Graph 2, from E to G, and runs his finger from Left to
Right to Left across the curve]. [Tracy: Okav.] It's [graph near B or C| not u struight line
[gestures along « straight line in the air with his hand]. Even though that one’s [from E to G| not
straight but...

Notes on Episode 2: Noam's description of Graph 2 includes @ new feature: stopping, and Noam has

associated stopping with the arca of the graph near points B, C, and E. Given the trip with the car,
which did not involve turning. the places where the graph curved downward to the x-axis took on a




new meaning for Noam: "[graph near B or C] doesn't go like that one [points at Graph 2, from E to
G]." Thus, there is a sense in which the graph shape from E 1o G (Graph 2) can “go,” as opposed 10
the graph shapes at B and C. This is closely reiated 1o the experience of drawing this graph (Graph
2). or fotlowing the line with one's finger. Tracing the graph near the points B and C requires an
actual stop of the finger. so that line "doesn't go,” whereas the stretch from E 1o G can be drawn in
one continuous stroke, so that this line does "go™.

Another feature of this Episode is that Noam's gestures link the graph he has made (Graph 2)
with the act of drawing or tracing the graph. When Noam says that the graph at point Bor C
“Indicates stop [gestures a downward curve with his hand, like the graph shape at B or C: Y 1," his
gesture indicates both the shape of the downward curve of the graph, and the e¢brupt stop of the car on
the table that produced the shape. In this Episode, we also see an example of Noam's changing use
of the word “straight.” Noam uses the word "straight” to describes the difference, on Graph 2,
between the graph near B and C and the graph between E and G when he says that the graph ncar B
or C is "not a straight line . . . Even though that onc's {from E 10 G} not straight but...". Noam is

apparcently now using “strmght” 10 describe his sense that the graph at B or C is interrupted, not
smooth, as opposed to the uninterrupted and smooth graph from E to G. Even though this use of the
word is unconventional, when Noam stretches its usage, he is able to 1alk about this smooth quality

of lines, which he may have had no other specific language to describe.
Episode 3 -- A Stop or a Turn?

Immediately after Episode 2, Tracy and Noam are discussing Graph 2 (See Graph 2 in Episode 2)
when Noam describes a rule he believes: when any object moves right and then left. it must stop in
between those two motions. He itlustrates this point with gestures which decompose forward and
buck motion into pieces. Then he describes how Graph 2 relates to this rule:

Noam: But that [Graph 2] doesn’t show that [the stop between left and right motion]. It just shows

here [running hand horizontally along computer screen], turning around [runs hand along

downward curve on computer screen, curving (o the left, then continues moving to the left,
horizentally, into space]. . .

Tracy ask< Noam 1o clarify what he sees as the ditference hetween points B and E on Graph 2, and he

answers as follows:
Noam: This one [Graph 2. B] stops and starts - starts all over again [traces part of Graph 2 at BJ. .
Oh. mavhe that [Grapl 2, area of E] should stay like that because, wh. I'm stopping [moves
hand ta the Rieht, staps it], but then I continwe on the sume road [nenes hand back 1o the Left]. .
Back - just back [moves cursor from ~E to ~G again]. . . ‘Cause the other stops don’t go

bhack. . . Stop [siop cursor at CJ and go in the sume direction [to the Right]. And over here
[points with exrsor at E]L 1 stopped and went 1o the opposite direction [moves cursor to the Left],

Notes on Episode 3. 1n this Episode, we find that Noam's way of understanding certain curves as
indicating turns and bis newer uscaciation of some curves with stops has caused a confhict centered on
the point E of Graph 2 Noam is certuin that there must be a stop between his right and left motions
(see Figure 2y, and thus that he must have stopped at point E. However Noam also associales curves
with tums of the car, and he is concerned that Graph 2 at point E only indicates "turning around,” and
doesn't show the stop  While Noam is analyzing Graph 2, he comes upon the realization that perhaps
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the shape of Graph 2 at point E makes scnse. “because, uh, I'm stopping [moves hand 1o the Right,
stops it], but then I continue on the same road [moves hand back to the Left]. . . Back - just back
[moves cursor from E to G].” Noam has discovered that there is something about point E that makes
it look different from the stopping places at B or C: at point E he stops and comes back to the left
again. running over "the same road” a sccond time, whereas for the other stops at B and C, he stops
and then goes "inthe same dirc 2 [to the Right].” Noarmn has found that the point E is both a stop
and a turn, because he does stop there, but, unlike the stops and B and €, he changes direction at
poiat E, a kind of turning around, and moves back 1o the left.
Episode 4 -- Slow and Fasi

Immediately after Episode 3, Tracy suggests that Noam try doing another motion, and he does
a motion involving another tum oft to the side and a crossing of the line of tape on the table,
reminiscent of his first tnotion in Figure 2. While talking through this graph, Noam associates
turning on the graph with turning the car, and crossing the axts with crossing the road, once again
speaking of the graph as if it were i traul fcft by the car.

Then Noam tries another motion: a lincar motion in which he moves the car to the right
stowly, stops, moves it further to the right slowly, stops, and moves the car back to the left very fast.

The following graph results:
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Graph 3
Tracy hegins to ik Noam about this trip. and he desenbes it as follows:

Om

Noam: Okay, so I can tell right now, thar the wider it [moves his finger up and down across the
vertical width of Graph 3] is -the line is off. that shows it the speed.  Okay. [Tracy: Okay.] Just
by looking at this one [ean tell. Okay. I came here [moves cursor from A to B, ulong x-axis].
Stopped [B]. And then continued here [moves cursor from B ro C. along x-axis). Stopped [C].
And I rushed back [moves carsor back to the left]. So, this indicates with curser the depth of
Graph 3 from x-axis to D]- so - what are these numbers supposed (o be [ pointing ta the numbers
alemg the yv-axes on the grapl]? Velocity? [Tracy: Yeah.] So it shows here - it shows here that
it's (i e., speed of "rushing back” is] ever one velocity.

Notes on Epasode 4: 1o the second trip Noam takes in this Episode. we see for the first time Noam
making a purposeful distinction between the speeds of two different parts of 2 trip. so that the part of
the graph befow the x-axis has « much targer vertical extent (is "wider”) than the part above the
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x-axis. The new salience of the vertical "width” of the graph causes Noam to ask what the vertical
axis label is, and even try to associate the vertical extent of the lower part of the graph with a value of
velocity: "it shows here that it's {i. c.. speed of ‘rushing back’ 1s] over one velocity.” Because
previous trips have involved tums and backward and forward motions perpendicular to the tape line,
or have involved moving 2t a constant speed, the vertical extent of the graph hadn't been a useful
feature for distinguishing different parts of the graph.
Discussion

These Episodes illustrate a process in which Noam adapts and refines his initial way of
understanding velocity vs. position graphs to account for the new types of responsiveness he notiees
when he makes cach new graph. In Episode 1, Noam's way of understanding the graph involved
thinking of it as a trail left by the car; then in Episode 2 he made a linear motion with several stops.
and located the stops on the graph, using the methad from Episode | of traveling along the graph as
the car travels along its path. However, instead of looking for the actual path of the car in the
trajectory of the graph, Noam looks to it this time for the feeling or sense of the motion. that is,

whether a line seems to “go” or not. Then in Episode 3, Noam's origina thinking of the curves of
the graph as turns allows him to sce that the stop at the point E is different from the other stops, and
that point E actually represents both a stop and a tum. Finally in Episode 4, Noam gives a highly

detailed account of the trip he made to produce Graph 3. as one might expect from an expericnced
graph-user. Even while conunually adapting his thinking, Noam's original way >f thinking about the
graph provides him with important resources that he draws on to interpret each new graph he makes.

in Noam's usc of the word "straight” throughout these Episodes, we note that the word is
uscful to Noam, even when he is not making progress toward “correct” mathematical usage. The
search for correct word-meanings or accurate gestures does not drive the process of inquiry. Instead,
Noam'’s words and gestures arc both used flexibly, as tools in the service of his interpretation of the
responsiveness of the graph.
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THE GRAPHICAL, THE ALGEBRAIC AND THEIR RELATION-
THE NOTION OF SLOPE

Shakre Rasslan and Shlomo Vinner
The Hebrew university of Jerusalem, Israel

ABSTRACT
Some aspecis of the slupe concept were examined in 174 Arab and Jewish (srael studenis. One of
the research questions was whether studemts realize that the slope iy an algebraic invariunce of the
line and therefore does not depend on the coordinare system in which che line is drawn. Another
question was whether the students are able 1o move back and forth from the algebreic aspect to the
graphical aspect of slope in order to perform simple tusks. The results show thai besween 1.2 10 23

of our sarmple cun be considered us “tlierate” i certain conteats of the slope concept.

§1. The Notion of Slope and the Research Problem. The slope is a central concept in the
chapter about linear functions and their graphs. Recentiy, some of its cognitive aspects got a
special attention in several studics, cither in purely mathematical conteats (Moschkovich ct al. 1993;
Mullis et al. 1991) or in "real world” contexts (Clement, 1989; Goldenberg, 1988: Nemirovsky.
1994). This paper will deal with the notion in purely mathematical contexts.

In many countries (also in Israel) the chapter on linear functions is taught already in the ninth grade.
The topic is mentioned again and again in high school courses and elementary college courses (pre-
calculus and calculus). In the common mathematical textbooks one can find definitions like the

following: 1. If (x,.y) and (x,. y, ) are two points on a straight line then its slope is (v, - ¥ WX,
- x,). (See, for instance. Leithold. 1981, pp.30-31. ) 2. If y =ax +b is the equation of a straight

line then the number a. which is the coefficient of . is called the slope of the line. (Lang. 1973,
p-28. ) Thesc definitions are absolutely algebraic. Neveriheless, the word "slope” has a potential
of 2 geometrical interpretation because of its everyday meaning. In a previous study (Ben David,
1986). where close observations were made on 10-th grade class, it was found 7 students out of
33, when asked the slope of a straight line in a context of algebra course , responded that it was the
angle between the straight line and the x-axis. This misconception was not reported by Clement
(1989). although similar misconceptions were mentioned (“height for slope” and “slope for height,”
p.85). We were cunous to see whether the "angle for slope”™ misconception will he found in a
bigger and more hetcrogencous sample. We wanted. as well. 10 examine whether students realize
that the slope i~ an algebrare notion which dees not dependd on the graphical representation of the
line equation and we were ahvo cunous to examine additional aspects of the slope notion which are

directly related to some general mathematical abilities: the ability to pass from the graphical aspect

2 264

£ v, -




to the algebraical aspect of a concept, the ability to pass from the algebraic aspect to the graphical
aspect of a concept and the ability to pass from the algebraical to the graphical - back and forth.
The mathematical education assumption about concepts which have algebraic and graphical aspects
is {or, at least. should be) that students should be able to cope with simple tasks which involve
passing from one aspect to another.

§2. Method. Our sample included 3 classes of Israeli Arabic students and 3 classes of lsraeli
Jewish students, 10-th, 11-th and 12-th graders. The total number of students was 174,

In order to answer our research questions we compiled a 7-question questionnaire which we
administered to the above sample. The questions were:

1. In the following coordinate system (please notice that the x-axis and the y-axis have different
scales) a straight line is drawn. What is the equation of thus line”

2. Draw the straight line the equation of which you have found in the presious question in the

following coordinatc system.

1134
. What is the slope of the straight line in the first question?
. What is the slope of the straight line you have drawn in the second question?
. Which of the following siatements is a true statemeat? Explain your answer!
a) The slope of one of the above lines is greater than the slope of the other one.
b} The two slopes are equal.

. In the following coordinate system draw a straight line whose slope is negative.

*

7. Itis given that the slope of a certain line whose equation is ¥ = ax + b 15 negative. 1t is also

given that the points (1, y, )V and (3. y,) are on this linc. Which of the followmg statements is true?

Explain your answer! a) y, <y, bl y, >y, < ¥y =y, d) Itisimpomible 10 know

P

because a and b are not given.

‘I he first five questions were micant to examine whether the student is able to pass from a given line




in a coordinate system to its equation, whether he or she are able to identify two different Lines in
two different coordinate systems as representing the same algebraic entity and whether he or she
are able to overcome a supposedly natural tendency to relate to the technical term "slope™ its
everyday mearing. Question 6 was meant io examine whether it is clear to the student that a
negative slope means an obtuse angle with the x-axis. In other words, we wanted to examine
whether there is a graphical association in the student’s mind related to the tern: "negative slope”
and whether this association is a correct one. In order 1o answer question 7 the student has to relate
to the picture corresponding to the term "negative slope”, to realize that the point (3. y, ) is at the
right side of the point (1. y, ) and thereforc it is lower than the point (1.y, ). Sincethe y of a
lower point is smaller than the y of a higher point then y, >y, . Thus. moving back and forth from
the algebraic to the graphical is crucial for carrying out the task of question 7.

We consider all the above questions as simple and elementary. No special preparation is required
in order to answer these questions. Only a true understanding of the basic mathematical linguage i<
needed. Such understanding of the mathematical language is, so we believe, a necessary working
assumption for every mathematics teacher in the 10-th grade and above. Otherwise, it is like
teachiny short stories by O. Henry in an English as second language class to students who do not
have a minimai English vocabulary. Question 7 might secm to the reader a harder question than the
other six. We consider it as a "simple complex” question. It is simple in the sense that the
associations needed in order to solve it are immediate and straight forward. No tricks are involved.
It is complex because it calls for elements which are not mentioned explicitly in the question and it
requires more than one step. Calling for elements which are not mentioned directly in the question
is necessary for every non-trivial task. Reading comprehension tasks which do not have these
characteristics cannot examine any high level thought. Again, by saying “high level thought” we
mean only one level above the elementary level. nothing higher. As to the more than one step
which is needed in this case we would like to add that the moment one step is made the next step,

somechow, follows directly from the previous one. It is a process similar to what Davis (1984) calls

a "visually mocerated ~equence.”

§3. Results and Analysis.

Caiegory 70 A correct answer (62%., N=174)

Ca=gory It A wrong answer which is a result of computational mistakes (3%).

CTetegoy I A wrong answer resulting from a reconstruction failure of the slope formula (5%).
Ceaiegory ¥ : A wrong answer which is a result of a defective algebraic thinking (19%)
Examples: . The pointis (1.2 If we substiture it the equation line we will get: 2 = (L2y* 1+ b

Therefore b = 1.5 and the line equation is y = 5x + 1 5 (Therc are two elements in this answer that
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we would like 1o point at. First, the student docs not know to pass from the point in the graph to
its algebraic representation. Second. the student decides that the slope of the line is 1/2 without any
attempt to justify it. Perhaps he guessed it. perhaps he got it from his neighbor's questiennaire.)
2. The line equativnisy = av+ b, I =2x+ b, | =21 + 0. x =0 und. therefore the line equation
isy=11722)x + (112) (The roles of the letters are not clear at all to the student and because of that
his substitutions are totally wrong. He writes a = 2 instcad of x = 2. In addition to that he
assumes, without giving it any justification. that b = 0. From the equality x = 1/2 he infers thata =

1/2 and even more surprising, b = 1/2 which contradicts what he wrote earlier in an implicit way:

: Meaningless answers (9%) Examples: 1. The equation of the line is determined
by the angle. 2. The cquatton of the tine iy = 23 + 1 30 From the angle we see that the slope
is 1. Therefore the equation of eie line iy v- 1= 1%2-x) y=-v+ 3

Question 2

Cztegory - o The student drew the line of the first question in the coordinate system given in the

second question (69%). In this category two solution strategics were used. The first strategy used

the equation y = (1/2)x as a starting point. By means of this equation two or three points of the line
were calcutated and marked in the given coordinate system and then the fine through them was
drawn, In the second strategy the tisk was considered as a map drawing task. A geometrical
shape in one map should be drawn in another map which has a different scale. In this particular
case it is sufficient 10 identify the location of two points of the geometrical shape in order to draw
all of it. Since it was impossible to distinguish by meuns of the questionnaire between students
who used the first strategy and those who used the second strategy we included all of them in the
same category. We have no doubt ihat there were students who used the first strategy because
there were three points marked on the fine they drew. We also have no doubt that there were
students who used the second strategy because they got an incorrect equation in guestion 1 whereas
their drawing 1o question 2 was earrect.  The second strategy is considered by us more
sophisticated than the first onc because it uscs elements which are specific 1o the context of the
question and thus enables a shortcut. The first strategy just uses the common algorithm for a line
drawing as if there was no guestion 1 in the questionnaire.

Teregory -0 Answers in which an incorrect line was drawn (23%). Among these answers there
were lines which did not pass through the origin or lines which did not pass through (2,1),
Usually it happencd because the line equation which the stedents got in question | was wrong and
the students used the first strategy in category I. The students who used this strategy should not
be blamed for using an unsophisticaied strategy for the given context. They should be blamed for
not being aware of the contradiction which was obtained. Focusing on one technical detail while
lasing the connection ta the entire context is, unfortunately, characieristic to many situations of

problem solving in mathematics cducetion. This phenomenon is even more salient in the next




category.
Taiapory 0 Answers in which a curve was drawn (3%).
5% of the students did not answer this question at all.

Qugstion 3
Cawmgsty D The slope is defined either as the coefficient of x in the linc equation y = ax + b or
as (y, - ¥ (x5 - x|} where (x,. y,} and (x,, ¥,) are two poinis on the line (71%). In this category
we included also students who gave an incorrect equation for the line. Also here, as well as with
the first strategy in category 1. question 2, we want to say that although there is nothing wrong with
the application of the formula ty, - v)f(x, - ) it indicates that the student is not aware of the fact
that the calculation Ieads 10 the coefficient of x in the ling equation. which is the slope he was asked
about. 38< of the students are not aw are of it,

o o e

zi2gosy — o The slope of the line is defined as the derivative of y = ax + b 12%). Although this
category is quite small we wanted to keep it as a separate one because it retlects a common tendeney
of thought: a property implicd by the onginal definition takes its place and the original definition
is forgotien. (Simijurty, in the case of increasing function there are students who claim that an
increasing function is a function whose deriv ative is positive,)

220 A failure in the application of the formula (y,- ¥, )%, - x;) (9%). The
impression made by these answers was that the students used distorted formulas like
(y2 -y AR Xa) . (X5 - X))y, -y ete. or they failed in the number substitution.
Tziegomy Y The slope of the line is defined as its equation or part of it (6F). Examples:
L Theslopeisy =¢l:2n 2. Theslapeis (1'2n (The students probabiy remember that the

slope is connected somchow to the line equation but they cannot disscciate from the equation the

relevant part

Examples: | The slope a = (0 because the line pusses through the origin, (This is a

distortion of the rule: It the line passes through the erigin then b = (1in the eyoation vy = ax + b. )

2. The slope 15 Av/AX (The student repeats the general definttion although he was asked to give the
slope of a spevific line. )

5% of the students did not answer the question at allain spite of the fact that they gave an equation in
their answer to question 1.

Question 3
The categories of tns question were supposed to be the same as in quesiion 3. This was true in the

majority of the cases  Howevever, 94 of the students who answered question 3 correctly gave a

wrong answer to question 4. This was a result of the fact that the students used once again the

expression {y»- ¥ ¥/ix, - %1 in order to caleulate the slope of the line. In the second tme they




chose two points on the line they drew in question 2. These points were not identical with the
points they chose in question 3 and some computationai mistakes which led to the wrong answer
were made. The students were, probably, not aware of the contradiction in the same way as in
category Il and category HI of question 2.

. Question 3
Tziegory I Answers which claim that the slopes of the iwo lines are equal and also explain it
correctly (65%).

CZeziegory o Answers which claim that the slopes are equal based on wrong explanation (5%).
The wrong explanations are hike: 1. The two lines are purallel therefore their slopes are equul.

2. The wao slopes are equal because the lines do not intersect. 3. a = O in both lines.

1:egoy T2 Answers with no explanation which ¢laim that the slopes are equal (8%).
2gc7y -7 1 Answers which claim that the slopes of the two lines are not equal with or without
explanations and also meaningless answers (19%). Examples: 1. The slope of the first line is 1i2
and the slope of the second one is 2. 2. It is impossible (o determine what the right answer is
because the line equation is not giver. 3. The first answer is the correct unswer becuuse when the
slopes are equal then the lines are either idewtical ar perpendicular. 4. The first unswer is correct
becawse the scales are different. 5. The first answer is correct because the angles are different.

3% did not answer the question. From the above categorization it turns out that only about 65% of
the students we can claim for sure that they know the concept of slope. About other §% (category
[11) we cannot claim it but we also cannot claim the opposite. About all the rest (categories I, IV and
those who did not answer), which are 27% of our sample we can claim that the concept of slope is
not clear to them. 3% (some students in category 1V} tied the concept of slope with the angle that the
line formys with the x-axis. This was in contrast with our expectations and we will discuss it later on.
The claim that between 27% and 35% do not have basic knowledge about such an clementary
concept is potentially traumatic. Just remember the strong reaction of the mathematics education
community in the USA wa the fact that 1/3 of the students in a calculus course at ¢ certain university
tailed in the students - professors task {"There are six times as many students as professors at this
wniversity,” Rosnick and Clement, 19803

Question 6
=7 = > The student drew a line with a negaiive slope (84%).

2o The student drew a line whase slope is positive but the drawing contains some

elemenis which can be associated with the nation “negative.” (b is negative, x is negative or y is

negative) (8%)
8¢z of the students did not answer the guestion.
Question 7

Zzlmgsoy I The studentchose the correct answer v > ¥, and also explained cormectly his or her




choice (37%). Examples: 1. a < 0 means when x increases y decreases. 2. The function

decreases. . 3. According to the drawing:

o %

LI ™~
When we analyzed the task in question 7 (sce §2) we suggested thac the student is supposed 10 pass
from the algebraic aspect to the graphical aspect and back. This is quite obvious in example 3 above
but it is not so obvious in the first two examples. We assume that the claims about the decreasing
function are implicitly associated with appropriate mental pictures and therefore, in fact, the

students passed from the algebraic aspect to the graphical aspect and back.

Cazegory I : The student chose the correct answer y, >y, butdid not explain (9%).

Category I3 : The student chose a wrong answer (with or without an explanation) or chose the
right answer but gave a wrong explanation (51%).

3% of the students did not answer the question.

When summarizing the categories of question 7 it tums out that between 515 to 60% are incapable
of carrying out, what we called in §2, a "simple complex™ task. This is angther exampte of the
inadeqaute level of mathematical thought that so many students demonstrate. If we compare this to
our comment at the end of our analysis of question 3, relating our resuits to those of Rosnick and
Clement (1980), we may discover the same features. When a problem which is a littke bit more
complex, but still simple, is presented to the students (there it was: “At Mindy's restaurant, for
every four people who ordered cheese cake, there were five people who ordered strudel.” ) the
number of those who fail is doubled. The percentage of “illiteracy™ in our case is between 1/2 and
2/3. (Note that in the above commient and in similar comments, we do not intend to be judgimental
toward the students. We only discuss the quality of mathematics learning and teaching in the current
situation versus the expectations of the mathematical education researcher community (as expressed
for instance in the Curriculum and Evaluation Standards, 1989.) A similar comment about a “slope
task” was made in Moschkovich et al. 1993, p. 70}

As to the "angle for slope™ misconception that we were looking for, it has not been found. "Nhen
we looked for an explanation to the fact rhat it appeared in Ben David's sample (1986) we were told
thatits s. -lents had had in their junior high period a course in "technical drawing.” This was nota
mathematics course but during the course the students drew a lot of straight linex and they related 10
the angle between those lines and the horizontal direction. Thus. in a spontaneous way, a noticeable
number of students associated in their mind the word "slope” with a picture of an angle, This
association remained dominant alse after the technical notion of slope was introduced to the students.
On the other hand. the students in our sample got only the technical definition of slope and no

auempt was made to connect it to the angle between the line and the x-axis. The students
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themselves, who are, usually, quite indifferent to mathematics, did not bother ¢ make any
connections between the everyday meaning of the word “slope” and its technical meaning. This
situation presents a dilemma to the teacher: should he or she attempt to tie the technical meaning of a
notion to its everyday meaning (in case there is such 2 meaning) or should they avoid it. If they do it
they may 1aise the danger of misconceptions. If they do not, misconceptions may be avoided but the
students might remain detached from the mathematical notions, feeling that they have nothing to do
with everyday life. As with any serious educational dilemima it is impossible 1o advise what to do.
The decision. apparently, depends on the teacher, on the students and on the particular context of the
educational events.
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VISUALISING QUADRATIC FUNCTIONS: A STUDY OF THIRTEEN-YEAR-OLD GIRLS
LEARNING MATHEMATICS WITH GRAPHIC CALCULATORS.

Teresa Smarn
School of Teaching Studies, University of North Londoa, UK.

Abstract: The graphic calculator provides the mathematics learner with a powerful tool that is
relatively cheap and portable. Previous work has shown that girls in particular respond well to using
technology that is both personal and private. This paper reports on work that teok place in a lower
secondary school niathematics classroom. The pupils (all girls) had free access to graphic calculators
during their mathematics lessons. Prior to this. the girls had not used a graph plouting calculator or
software. As a result of the experience. the girls started to develop a robust visual image of many
algebraic functions. They were happy to describe how changing the value of a coefficient would lead
to a transformation of the resuiting gruph. They discussed graphical methods 1o solve algebraic
problems. often itlustrating their ideas by using their hands to draw diagrams in the air.

INTRODUCTION
For students in the advanced mathematies classroom, the use of graph-drawing software has been
shown to increase the ability to visualise and investigate algebraic functions. With cheaper graphic
calculators these facilities are now more widely accessible, although projects to integrate graphic
calculators into the 11-16 classroom are still relatively new. Little research has been done with this
younger group. and this inital study shows a similar impact on girls in a lower secondary school.

BACKGROUND TO THE STUDY.
The importance of computer graph draw ing software for the mathematics classroom has been well
researched. (Tall 1989: Leinhardt, Zaslavsky et al. 1990: Duren 1991) As Duren noted “the
availability and access to graphics software for the secondary school mathematics curriculum has
provided two powertul learning modalities for students: visaalisatioas and investigations.”™ (Duren
1991 : 23} In particular the benefits of the use of computer software on a student’s understanding of
the functions (Breideabach. Dubinsky et ai. 1992) and in developing a visual approach to
transformati- ns and graphs (Bloom. Comber et al. 1986; Dugdale. Wagner ¢t al. 1992) have been
demonstrated. Now the availability of graptuc caleulators has made this graph drawing software

widely accessible and provided a powertul resource for the mathematics classroom.

As Kenneth Ruthven. the co-ordinator of a project funded by NCET (National Council for Education
Technology, UK to investigate the use of the graphic calculator in the post 16. Advanced level (A-
level) elassroom wrote: “The impact on the project students of unrestricted access to graphic
calculators, either as a personal or classroom resource, wis impressive.” (Ruthven 1992 @ 5) The
NCET project found that studenis who had used the graphic calculator in their mathematics lessons
did significantly beuter when wested than a control group who had had no access. (Ruthven 1990)
The research took place in the A-fevel classroom. but as the price of the graphic calculaiors comes
down, then schouls have started to buy then: for younger pupils’ use.

BEST CGPY AVAILABLE




BACKGROUND TO THE CASE STUDY CLASS

This paper is based on a case study of a class of 13 - 14 year old girls observed during their
mathematics lessons over a {3-weck term. The pupils were from a girls’ school situated in a
deprived area of London (UK). It is popular and over-subscribed, but there were growing concerns
that the girls were underachieving in mathematics. One of the steps taken by the school to try to raise
pupil's achievement was to investigate the benefits of integrating technology into the mathematics
classroom. As a first stage the school acquired a set of 35 graphic calculators and set out to ensure
that as many pupils as possible had an opportunity to become familiar with the calculators.

At the same time, a decision was made o give one class unrestricted access to the calculators for
cvery one of their mathematics lessons, and to study the results. In this class, the calculators became
a form of personal technology ~ they could be picked up and used whenever nceded.

1 chose to work in a girls' school because T was aware of gender issue surrounding the use of
computers in the secondary classroom. (Culley 1988; Hoyles 1988; Elkjaer 1992; Cole, Conlon et
al. [994) Previous work with graphic calculators together with the results of the NCET project had
shown that girls work well with this form of technology. An explanation offered for this is that the
girls value a form of tcchnology that is personal, cnabling them to be less anxious about making
mistakes on a private screen rather than a public computer monitor. (Smart 1992) Also, in this study

we took note of research showing that all pupils, and particularly girls, benefit from collaborative
work with a computer. (Johnson 1985; Undersood and McCaffrcy 1990; Underwood 1994) One
emphasis of our work with the graphic caleulator was to encourage the girls to share their ideas and
discuss their findings.

THE STUDY
My first aim, working closely with the class teacher, was to investigate whether it was possible to
integrate the graphic calculator into the mathematics curriculum. The school followed a text book
scheme. It was important that this class - who were in the top third ability range for their year - did
not fall behind the parallel group wha were not using the calculators. The teacher wished to keep up
to date with the text books, bringing in the calculator when beneficial. My role was as an observer
and more “expert” user of the calculator.

The second aim of the study was to observe the influence of unrestricted access to technology on the
pirls'’ mathematics learning. I .. 'ped to find, as Goldenberg noted, that: “Proper use of visual
imagery gave students new depth and clarity in thinking abowt old problems. The mathematical
richness in linking graphical and symbolic representations of functions also gave students
opportunities to pose and cxplore new problems.” (Goldenberg 1988 : 136)




Our third, more detailed goal, was to see if the graphic calculutors would help the pupils 10 develop:

. a more investigative approach to their learning of mathematics, using the calculator to predict,
test and generalise;
a graphical approach to solving problems: and
an interest in writing and talking about the mathematics they learned through using the
calculator.

Through this. the teacher wanted to create an aimosphere of enjoyment and exploration of

mathematics in the class with the girls discussing and directing their own mathematics learning.

EXTENDED PROJECT WORK ON PARABOLAS.

In this paper I concentrate on only one part of the case study. Four weeks into the term, tie girls
were all familiar with the facilities of the calculater. Already we could see that access to the
calculators had encouraged them to extend problems posed in the class beyond what was expected in
the text book scheme, The teacher decided that so much mathematics was developing that it was
preferabie to use normal class time to follow through and extend any problems. The pupils then kept
up to date and completed the allocated chapters for homework or during “catch up™ lessons. At the
same time, we felt that the pupils were confronting new ideas without time for consolidation. Things
were going too fast. We decided to ask the pupils to work on a piece of extended project work. Their
task, over the next four weeks, was o explore the graphs of quadratic functions. They could explore
using cither graph paper or the calculator or both. Some time was made available during the normal
class periods and extra workshops were organised during the lunch hour when the calculators and
teacher heip would be available.

For their extended project, pupils were asked to explore the graphs of the following functions
¥ a2 whena is positive and when a is negative

9 i
v=x-+bh and y=x--b

2 . Lo .
y=(x+¢)= when ¢ is posilive or negative

The {iest thing they did was make a plan (something they had learnied to do in geography and not
mathematics). We wanted to encourage them to investigate the functions by making and testing
predictions rather than by drawing one graph afler another. The ease with which the picture of a
graph could be produccd and compared with its previous state encouraged them to work in an
explorative way.

On completion of the project, the girls were required to hand i a written report of their explorations.
This was assessed. Later we asked the girls to discuss their tindings and their feelings about using
the graphic calculator. We made a video of groups of 5 or 6 girls, discussing their work. Talking
about mathemaitics was not semething these girls had much experience of. They were more

accustomed to answering the teacher’s guestions. To help the discussion, each group was provided
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with a set of card with questions. Each pupil was asked to pick up a card and talk about the question.
The other pupils could then add to the discussion or choose another question.

Below [ illustrite the progress they made with the extended project work on parabolas using the
airls’ own words writien and spoken.

They had very litle experience of writing and talking about mathematics. They were encouraged to
make a plan. They felt this plan heiped. As Shazia said: It helped me because it put the work into
stuges. [ didn't have to do everything at once. It was good because 1 knew what to do after, so the
plan was quite useful.” Angie agreed: “vea, with my plan, 1 did it differently. [ planned it in stages,
like if T was doing A =a1?, | planned that, then | planned for v= aZ+h. So | found that easier. 1

thought it would be casier than making one big one.™

MAKING AND TESTING PREDICTIONS
Atevery stage the pupils were making and testing predictions. Shafa gave as steps in her plan:
** = Predict w hat the graphs would turn out like. then say 1f you were right or wrong
— Sec if the graphs have anything in common
- Write some ¢conclusions on what you have found out.”

Angic deseribed in her written report her predictions for the graphs of v=ax? when a is positive and
then negative: ~ was right in my prediction that the centre of the graph will always be 0. I was also
right in saying that as a gets bigger the curve will become steeper and closer to the y—axis. When a
is negative the U shape is formed upside down - and as @ gets igger the curve got steepertoo and I
ot that right too.” Her partner Amina made a different prediction. She said: “About y=ax¢ withthe
positive one [ « |. [ found it was a curve and as a got larger it went closer to the vertical axes so my
prediction for the negative ¢ is that when well the curve will be upside down but when the a got
farger it wouid move away from the vertical axes and would be less steep. But 1 found out imy

prediction was wrong. and it was exactly the sanie as the positive one but upside down.”

When exploring the graph of v={x+c)2 nearly all the pupils were surprised at what they saw. having
made fulse predicuions. As Shahanaz wrote: “My prediction was partly wrong because 1 predicted
that whatever +¢ was then the graph would go through the value of a = it [Here Shanaz is using "it"
for +c . generalising using a mixture of wards and symbols]. But instead 1 ™und that the curve
would go through the negative side of the x-axis. through whatever ¢ wus ¢.g.. y=(x+5)2 it would
go through =5, But when we looked at v=(x-c)2 then our prediction was right whatever +¢ was it
would ga through -¢ ~0 in the case of (¥-3)2 1t would go through minus -3 which i +3.

Shala found the same but she explored further. She wanicd to understand why this curve went
through the opposite side. She wrote in her report,
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*1 was so surprised when it [_\':(.\‘+3}2 ] turned out the other way'. so I did the equation
y=(x+3)2=0
=> x+3=0
= x=-3

50 the solution was x=-3"

VERIFYING RESULTS PREVIOUSLY LEARNED., WITH PAPER AND PENCIL, IN CLASS.
In using the calculator, the pupils discovered rules they had learned in a symbolic forn in the
classroom but did not necessarily feel confident with. For example, in exploring the araphs of y=x?
+ bor y=x2 . b many of the girls found for themselves a visual image of the rule: “a minus
followed by a minus is a plus™. Shibley said:
1 did these two graphs and 1 discovered that if you take _\‘=.r2+ b and =x2 minus a negdtive
number, it is the same.”

I asked Lier if she was expecting ths resuht
“When | predicted what the graph of y=x2 - - 8 would look like. | thought the whole
[positive] numbers were supposcd 1o be at the top of the sereen. 1
thought the minus was going to be at the bottom. After 1 realised, that a minus and a minus
is a plus.”

Shakila went further. She explored the effect of putling two quadratic functions together. She drew
the graphs of functions of the form:  v=(x+c)2 Fx2 F b

She predicted that the 2raphs would be of the same shape as all the other graphs (parabolas). and the
b and the ¢ would only affect the position. She found that she didn't always get a parabola on her

screen but sometimes a straight line and soinetimes a parabola steeper than the expected graph of

y=.\'2. She was interested enough to work out why this happens setting out to simplify the algebraic

cxpression. She wrote as her conclusion:
“This never had a lot to do with parabolas but I also learnt somiething. for | found out why I
got a line graph. | had 1o do research to be able to understand or atherwise T didn't have a
clue of why | got line graphs.”

Goldenberg nuted that: “if the connection between the analytical representation of the function and its
graphical representation is perccived as magical or arbitrary, the two representations cannot inform
each other.” (Goldenberg 1988 : 153) Shakila when surprised with the graphical representation she
found on ber screen, and did the rescarch going back to exanune the symbolic form.

Other pupils however, just accepted the graph produced on the caleulator without guestioning its
validity. As Leinhardt warned: “In computer based instruction, ... the graph the mactune produces 1s




unquestionable. A teacher should be aware of the 'magic’ effect this may have on students.”
{Leinhardt. Zaslavsky et al. 1990 :7) This "magic™ led to several of the pupils feeling convinced that
there was soraething wrong with the graph of y=(.\'+c)2 when the value of ¢ lay outside the range of
the caiculator. It was no longer a parabola, and as Janet said, “‘weli, they weren't what [ thought they
were going to be. because the graphs before when I had plotied y=ax? and y=x2+b, they were all
the same - they were all U shapes - but with these ones with say v=(x+4 )2 the curve was not the
same so 1 couldn't make predictions™. Janet later. after discussion with the teacher, readjusted her
mental image of the graphs of_\-=(‘.t+c)2. She said in her group discussion several wueks later: “*Well
the graphs are all the same shape but they appeared different shapes because we did the axes different
and the graphs went off the screen so you have to add it on yourself in your mind.” Other giris had
greater difficulty. When they saw an unexpected feature in the graphs they made up a set of rules to
interpret the feature, falling into the danger that Goldenberg had warned about. “Our carliest
rxperiments showed that students often made significant misinterpretations of what they saw in

graphic representations of function. Left alone to experiment, they could induce rules that were
misleading or downright wrong.” (Goldenberg 1988 :137) Several of our students believed when the
graph was translated up or down the screen as in the case of )‘:.\'2‘ 6 and _v=x2+6 then, as Dimpey

said: "the top parabola is narrower and vou see less of it and the bottom graph is wider and less
steep. The graphs in this group do not have the same shape.” This was agrecd to by all the other girls
in her group. These girls needed another experiencc besides the calculator. This could be provided
by moving an acetate sheet with the graph of y=x2 up and down the calculator screen, but they also
needed more time exploring the graphs and the equations by hand.

WERE THEY CONFIDENT WITH THEIR GENERALISATIONS?
As Shahanaz wrote: ‘
“We decided to take the last two equations [y:(.t+c)3 and y:(,r-c}-?l a step further by secing
what will happen with y=(x-c}2 - d. We predicted that if we did -/ it {v=(x-c)?]would go
down and if we did +4 it would go up (below x-axis above x-axis).”

When they were asked if they would know how to investigate the graphs of v=xd and y=ux3 +b,.
and tf they could predict what the ¢ and the b would do to the graph, Shafa, Shakila, Shahanaz and
Henna felt confident enough to discuss what they would do. They use their hands to show the
shapes and the movements up and down the screen. Below is what they said:

Shafa: Well do the same as this {y=ax2] and writc down some sort of prediction - like
what you would think the graph would turn out to be und write down all the equations
and then try to learn how to do cubed on the calculator. We would follow the ptan here.

Henna draws an § shape on her paper.

Shakila:  Wasn't it onc of those S type graphs like that? [she points to Hennal.

Shafa: The a would move il 1o the sade or maybe go up or something




Shahanaz: It would spread it out: it would make it steeper and wider.

Shafa: Ch yea, when a is positive, the higher it gets the steeper 1t [the graph] is.
Henna: The +b, well the +£ that {pointing 1o the stationary peint of the graph] would
start going up as well.

The girls know exactly how they would explore other functions and transformatior. and were quite
confldent that they could use the graphic caleulator to do this.

DISCUSSION.

All the girls in the class handed in an extended picce of work exploring all the cases and produced
work that was considered by the teacher 1o be of a higher level than what she would predict for them,
Several of the 30 girls extended the work to conssder combined transformations, such as predicting
the shape and position of the graph of y=(x+3)2 - 4. or y:.’.r-’+ 6. They found that the work with
the graphic calculate was “quicker and nmiore accurale” and as Natasha said: “the calculator draws the
graphs on top of cach other so it is casier 1o see pitterns.” One of the strongest pictures gained from
the study is that of the pupils’ talk about seeing the pattern, seeing that a “minus and a minus is a
plus™, predieting what the graph of a combined function would Jook like. One of the aims of work
with a graph plotting facility is to encourage the leurmer to move freely and easily between the
pictorial and the symbolic representation of any function. These girls achicved this casc of
movement. They developed strong powers of visualisation. When a new problemn was posed they
tended to adopt a visual strategy 1o solve it.

All the girls were able to talk fluently and articulately about their work with parabolas. This was
impressive as the majority of the pupils in the class do not have Engiish as therr first language or the
language that they use at home with their famities. Their school recognised the importance of
language development through the curriculum, and I saw the graphic calculator as providing an extra
stimulus for meaningful talk. As a group of mathematics teachers working with bilingual pupils
noted: *“The main aim of the maths department is to provide interesting lessons for atl students, in
order to develop their mathematical skitls and knowledge. A central way of achieving understanding
of mathcmatics 1s by talking, reading and writing about it. In order to do this we must provide
students with the appropriate mathematics vocabulary and the appropriate stimulus for the use of
language to take plice.” (Cox, Gammon ct al. 1993 :9) I believe that the ease in which the caleulator
produces a visual image of the function. and the rzud to retain a picture of this image, pushes the
pupils into talking and describing, and hence using “appropriate mathematical language™.

My observation finished at the end of the term but the pupils’ use of the calculator did not. When |
returned several weeks Iater, the class was working on a textbook chapter an lincar inequalities.
They extended their work to include higher order incqualities. When [ asked about the solution to 7 -

x2 > 0. one of the girls replicd. “Well the graph is upside down because it's minus -ad it's up there




because it's +7 so it will be all that inside the curve.” This girls und many of the others felt confident
with questions that often causc difficulties for more mathematically sophisticated students because of
their well developed powers of visualisation.
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