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Preface

The program for PME 19 abounds in diversity. The Plenary Lectures,
for example, focus on certain tensions--the opposition between
spontaneous and scientific concepts, between everyday and school
mathematics, elementary and advanced mathematical thinking, between
student voice and oppression. The Panel Discussion provides three
contrasting analyses of the same video footage. The Research Fora, each
with reactors, highlight different perspectives on algebraic thinking and on
the relations between culture and mathematical knowledge. And there are
many excellent individual contributions, representing a variety of views

on the Psychology of Mathematics Education.

We would like to think that the Brazilian climate, meteorological and
social, the warmtli of its people, the ginga, the jeitirho, the abragos and
the musical rhythms can play a small yet important role in making PME
19 memorable. If not, we at least hope that you will find the following

papers stimulating and engaging.

Recife, Brazil, May 4th, 1995

David Carraher & Luciano Mcira
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Student Voice 1n Examining
"Spiititng™ as an Approach to Ratio, Proportions and Fractions!

Jere Confrey
Comell University
Ithaca, New York 14853
U.S.A.

Interviewng students has been the basis of much of the research on student learning in
mathematics education. In this paper, [ suggest there are different ways of listening to student voice, and
that the one which 1 have found most fruitful has required me to uncover and to challenge many widely-
held and aften tacu assumptions about mathematics. [ will argue that such challenges are necessary (0
pramote ihe kind of listening that wiil lead 10 all citizens becoming better educated and able to make
enticat decisicas in the twenty-first century. If we wish to see a larger and more diverse group of
students pursue mathematics, we, as mathematics educators, must ¢riticize the forces which: 1) dimimish
the role of expenience, tools, and physical demonsiration in the pursuit of mathematics, 2) obscure the
role of mulupie forms of represeatation in discovery and proof, and 3) privilege certain forms of abstract
symbolism, algorithms, and notation to the detriment of others in communication and learming. 1 will
argue that mathematics educators have been far 100 timid in chatlenging the conduct and presentation of
mathemancs, and, as a result, mathematics education has been a primary vehicle of social and cultural
reproduction in relation to racial, sexual and class inequisics The fact that in the vast majority of
countnes around the world, mathematics acts as a draconian filter to the pursuit of further technical and
quarttative studies is held largely in place by our failures to recognize mathematics as a cultural force, to
cntique its impacts, and to offer more critical alternatives. [ see the vigorous pursuit of student yoice as a
means to articulate a broader set of perspectives on matheinatics and to open the field to a more diverse
population.

Thus challenge. placed within the context of 2 meeting whose theme 1§ the socio-cultural
appreaches to cognition. entails a ba<ic dental that mathematics sits outside 1its constructions as human
endeavor. It furthermore draw s atiention to any description of matheniatics as acultural and ahistorical as
uself a means of oppression. By denying the role of voice (the languages of human cultures in its
construcm')n), mathemalics can remain a priesthood or a private club. By being acultural or ahistorical, it
15 cast as immune to critique of the composition of 1ts warkiorce. Such a pontrayal reinforces the view
that mathemnatical talent surfaces, rather than being nurtured through cffective schooling. We., in
mathemalics education, have an importantresponsibility to critique such a portraval of mathematics, and
to include student voice. | seek to make this cntique, not by romanucizing the child, but, by showing

wnhtoa knowdedge the comiderable Contnibutions ot Alas Maloiey . David Deams Helen Doers. and the mathematics
edu.aton rewcar h proup ot Cornell Universats
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with a particular example involving ratio and proportion, how listening to students can lead to the
development of robust alternative points of view.

Articulating student voice is not simply a cognitive matter; it is not simply a socio-cultural issue
of bringing children into alignment with adult expertise. Furthermore, voice, in this context refers to the
feminist use of this term, not just as verbalizations--that which is said--but purposes, motivation,
emotional presence, actions, feelings, activities, and expressions. "Voice" connotes fundamental matters
of power: Whose voices are heard and given weight? When a group's voice is suppressed without
physical threat, some form of schooling in self-silencing also occurs--the oppressed group has been given
strong messages that certain forms of expression are either unacceptable or dangerous to themselves.
Over time, their visible resistance declines and the messages to stay silent become intemalized. They
leam to participate in their own silencing as a means of survival. Those who do not learn these survival
skills are either cast out of the system or labeled deviant. Both results have high emotional and
intellectual costs.

If these forms of oppression exist in mathematics education. what would one expect to see? There
would be changes as we move up the grades. Silences would increase. Certain questions, such as "what
is this good for?" or “why are we leamning this?" would be ignored. Certain forms of mathematics would
be recognized and legitimated, while others would be cast aside, and on critical reflection. it would be
difficult to decide why the ajternative forms were disregarded. There would be large reductions in
participation, and those reductions would tend o eliminate members of certain subgroups--by-race, by

gender, by class, by cognitive, social or emotional preference. The fact that so many voices become
reduced to a few would not be grounds for outrage, but viewed as a regrettable but necessary part of
intellectual development. Attempts to remove these forms of oppression would be time-consuming,
would encounter barriers and resistance both from those oppressed and the oppressors, and, when
successful, would lead to the release of dramatic expressions of debilitating and facilitating emotions,
painful memories, self doubt, and exhilarating insights.

Tt ical Foundati

My own work has progressed through a variety of theoretical positions and none alone has been
sufficient to produce these claims. Radical constructivism and philosophies of science allowed me to
examine the development of ideas, and engage in historical analysis. These theories initiated me into
relativism and set the problem of how to undertake scholarship within an admission of the inevitable
fajlibility of human thought (Ernest. 1991; von Glasersfeld, 1995). Radical constructivism also presented
the duality of the seer and the seen and stubbornly refused to allow objectivily to mask the role of the
subject. Socio-cultural perspective, and 1o some degree, social constructivism made it evident that strong
cultural tides envelop all forms of knowledge development. 1In particuiar, Vygotskian theory encouraged
me to sce the interplay between one's experience and one's social interactions, between tools and
language {Confrey, 1993, 1994a, 1594b, 1595).

A weakness in the Vygotskian socio-cultural theory was the absence of a way in which children's
inventions could lead to changes in adult reasoning. There appeared to be no means of radical criticism




in Vygotskian socio-cultural perspective. Crit:cal theory in mathematics made solid critiques of the
mathematics, but tended to stop at the use statistics and arithmetic (Frankenstein, 1989). Experience in
mothering, living in wonder of children's perceptions, together with Piagetian developmental theory,
secured my commitment to the richness and legitimacy of children's voices. Finally, the stark reality of a
white male dominance of mathematics depantments and the research academy in the United States made it
clear that a more critical examination of the whole enterprise needed to be undertaken.

Feminist theory has been relatively modest in its examination of mathematics, sometimes even
endorsing its freedom from critical analysis, sometimes offering wistful critiques of the content, Making
a feminist critique of mathematics (Jaccbs, 1994; Burton, 1992; Rogers, 1990; Buerk, in press) has been
difficult, yet the tools for doing so are becoming richer and more convincing. 1 found feminist analysis to
be useful for a number of reasons: Firstly, as Marilyn Frye (1983) described it, oppression is like a bird
cage: look at any single wire and you wonder why the bird doesn't just fly around it. Look at the
configuration of the whole and the entrapment becomes evident. Secondly, feminist theory makes the
issue of emotional well-being a fundamental consideration: an emotionally impoverished environment
can be an understandable source of alienation, and one's failure to thrive in such an environment no
longer is simply evide:ice of a person’s lack of hardiness or deiermination. Thirdly, feminism begins with
the analysis of participation structures, so that one examines the impact on groups. In constructivism, and
in most non-feminist developmental theories, the construction and analysis of the impact on groups is an
awkward endeavor.

What has yet to be undertaken to my satisfaction is a feminist epistemological critique of
particular content, organization, and structure in mathematics. Feminist critiques in science and
elsewhere could point the way (Harding, 1986; Bbeier, 1984). Feminism's commitment to challenging
bias and elitism, especially as related to hierarchical structures, points towards examining the role of
hierachies in mathematical thought . At the same time as I sought to critically examine the concept of
abstraction in mathematics, feminist theory was examining the ways in which disembodiment of
knowledge tends to disadvantage or threaten females and children. Using these pointers, I had to apply
them to the particular subject matter of mathematics, a subject matter assumed by most to be pure and
independent from human intervention. This made the undertaking relatively original work--forging a
theory of mathematical development, revising current convention, while working with the current
anifacts. The theory was ripe for such an application--and so. weaving between radical constructivism,
socio-cultural perspective and feminism, I have made a direct attempt.

In effect, I am sugpesting that muliiple theories were necessary to offer the critique of the
imperatives that promote silence in mathematics. | am further suggesting that feminism provides Lhe
perspectives and tools that allowed mc to make the fundamental step--to take the side of the children’s
voices against the dominant views in mathematics.

No single analysis can ever make the case for the oppression of children's voices. However, the
corpus of my work and that of others (Mokros & Russell, 1992; Maher, 1994; Duckworth, 1987;
Ackermann, 1991; Kamii, 1985; Nemirovsky, 1993; Monk. 1992) has cstablished the viability of the




approach. Over the years, as | leamed to listen more and more closely to students’ inventions and
perceptions, a bred-in-the-bone conviction emerged. In those children's voices sounded more ingenuity,
more reason, more conviction, and more critical challenge to current practice in mathematics than most of
us were prepared (or willing) to hear. These investigations led me into philosophy and history as I sought
10 strengthen my ability to hear and validate the nascent wisdom in those voices. Slowly, gradually, |
began to question the (so-called constructivist) practices? that invited students to speak, only to find that
their ideas were not being hieard--at one end of the spectrum by those whose mathematics was 100 weak
to permit iistening, and at the other end by those whose mathematical training was 100 effective 10 permit
listening.

As 1 and others siruggled to hear and then tell these stories of children's words, our own voices
met resistance. Some educators found the stories quami, but argued for the need to quickly bring the
children back on track. a track which, of course, they could identify with confidence, their success and
training giving them the necessary qualifications to decide, Others found the stories quaint, but argued
that they were irrelerant relative 1o the demands of whoie classes. Others found the steries quaint, and
made the telling of stories the currculum itself, leaving the children with thetr words and methods, but
with little to grow on, In each of these three cases, the children were underserved, and the hard questions
of what constitutes cducationa) progress in mathematics were being inadequately answered. Our own
limited views of the content were restricting children's proposals. And the result was that: 1) children
found mathematics to be nonsensical; 2) they found vut they didn't need to take imitiative, or worse, that
initiative produced negative effects: and 3) on the whole, the social stratifications in class, race and
gender based on the culture, parental, teacher, peer, or selt expectations were repheated in succeeding
generations.

Whai | am ultimately claiming is that uniess mathematics educators challenge the dominance of
the curriculum by particular brands and values of pure mathematics . we will fail to set an aggressive
enough equity agenda, Iam further saying the challenge I will lay out is difficult, for it requires us to
challenge our own training and 10 question deeply our own tacit commitments and convictions. It also
requires us to forge new partnerships, forego some of our past loyalties to pure or abstract mathematics,
and to recruit different sorts of people into our field. In this paper 1 seek to demonstrate that student
voice is an effective and accessible vehicle for making these chaidenges.

To make this case, I will begin by introducing the 1dea «f a voice-perspective dialectic. By voice,
Trefer to students’ expressions of their ways of thinking, doing and describing, both alone and in groups.
I kzve come to believe that voice can only be strengthened if one acknowledges that its articulation is
placed within a voice-perspective dialeciie. Perspective refers to the hstener's frame of reference as a
member of an expent community: his/her resources, athtudes, experiences, comersations, and beliefs

about mathemnatics. Perspective is chosen to ackiowledge that teacher or researcher 15 experience and

2 )

=By vomstructiviat practiees 1 refer to the use of small groups, mampulatives, 2nd vontextual problems 1t s iranic that so
many ¢xpedtthe smpact of thew practices on the content to be only cospmienc, 1o they believe we can change atl ol these
pra. twes and yet expect to keep mtact the mathemanies sself




that her/his knowledge is probably broader than that of the students. In this paper, I seck to establish the
position that one can articulate mathematical voice more fully by reconstructing one's own mathematical
perspective to support rather than to suppress diversity. Thus, the dialectic one engages in is the pursuit
and articulation of student voice, ang the articutation and revision of perspective in light of student voice,
the further development of voice and so on.

Although one example can never establish “the case™ for oppression of voice, it can illustrate the
plausibility of such an argument. To do this, 1 will discuss my research conducted over the last seven
years on a construct I have labeled “splitting” (Confrey, 1994a), and I will focus on one month of a three
-year teaching experiment (1993-5) with a group of twenty students who progressed from third to fifth
grade (8 to 11 years old). Each year, I spent from three to six months, five days a week, one hour per
day, teaching mathematics to these students. The topics involved multiplication, division, ratio, fractions,
similarity, scaling, and decimals. In this form of teaching experiment, 1 designed and taught the
curriculum with members of my research group, and conducted frequent assessment, All classes were
videotaped. When students worked in small groups, a single smali group was selected for videotaping.
Post-tests were given each year. During the periods in which [ was not working with the children, they
received very traditional instruction using mostly worksheets, book materials, and driil and practice
activities. The children were from a school which drew on a mixture of backgrounds; some had family
connected with the university, both as faculty, staff and international graduate students. Another group
was from economically poorer neighborhoods in the town.

In other work, I have articulated the "splitting conjecture™ (Confrey. 1994a: Confrey and Smith,
1994, 1995). This conjecture suggests that splitting and counting are two independent primitive roots of
number operations (Fischbein, Deri, Nello, & Marino, 1985). Splitting gives rise to multiplication,
division and ratio; whereas a counting leads to addition, subtraction and subsequently multiplication as
repeated addition and division as repeated subtraction. Splitting has its roots in sharing, mixing, and
similarity, ete. The word was chosen because children use it spontaneously and inventively in their early
years® In addition to the basic splitting structures of doubling and halving, [ have demonstrated that the
implicit splitting structures, of which there are an infinite number, have a common structure, in which one
is the origin, multiplication and division are the key operations, ratio creates the unit. and rate is ratio per
unit time.*

I have chosen “splitting™ for my example, because its roots lie in student voice. In the standard
U.S. curricula, the splitting conjecture calls into question fundamental assumptions: 1) it challenges the
delay of the introduction of multiplication and division until third grade and the delay of ratio until fifth
grade; 2) it creates different mathematical systemns for measurement and numeration, which contrast to
those built from counting; 3) it connects to geometry in the early grades through ratio and similarity; and

3Mhe disadvantage of this word 1s that it does not easily translate across languages.

4In contrast, in counting structures, zero is the ongin, addittun and subtraction are the key operalions, one 1s the basic uni,
and rate 1s difference per vnul time.




4) it brings rate into the curriculum much earlier. Perhaps splitting's most fundamental contribution is
that it portrays fractions as a subset of ratio and proportion.
In this presentation, I will focus on one month of the classroom interactions during which contexts
for comparing ratios were investigated. My analysis will focus on the students’ strategies for comparing
ratios, for interpreting equivalence, and for adding ratios. 1 will reflect how rarrowly these issues are
treated within the traditional curriculum. The classroom excerpts will demonstrate both how student
voice can be supported within the classtoom context through “close listening™ (Confrey, 1994c), and the
subsequent analysis will show how those voices can encourage critical reflection on the mathematicai
content itself,
L_Comparing Ratics (Date: February 7.1994)
In order to raise the question of how to compare ratios, I choose the context of voters polls. The
reason for this was that the children had opinions, knew about poll's, could gather the data, and would
need to compare ratios in order to draw conclusions. Written on the board was a question: "In group A,
six children said that Tanya Harding should compete in the Olympics. In group B, five children said that
Tanya Harding should compete in the Olympics.*3 The following was the subsequent class interaction:
Teacher/Researcher: Can | tell from that which group . which ene had a larger peoportion of people? Ah, which one had moge
people that said Tanya Harding should compete?

Students: A,

T/R: Okay let me tell you ane more fact. Inthis group there were § people altogether and. tn this group there were 8 people
altogether. So, 1n whuch group would you say thet more of the people thought that Tanya Harding should compete?

Oliver. They are both the same because they are both three, there they're at least, all, the amaunt of people, there was always
three mmore.

T/R: Kate's nodding, what Jo you want to say?

Kate. It seems hike . . . (inaudihle).

T/R: Both gmups have the same. What word shoubd J use? Not same amount, because everyone agrees the first one has nwre
people who say Tamya Harding should compete? What wurd can we use?

Iris: Percent

T/R: She says mayhe we could use the term percent. Do they have the same percent of people? [a student responds no] Not
the same percent.? How are we goang 10 compare those two groups to find out which one seems to have a bigger. . .?

Camemperson: Would the word “likely® help?

T/R: If | came up t0 & new person in this group, and they were just hike the other peaple in the group, would this person or this
person [pointing fo A ard B groups] be more likely 10 say Tanya Harding should compete?

Students: [Lattle response ]

Sinthe spring of 1994, Namy Kermigan. a Jater was sttacked and anjured as she was leaving the ice dunng U.S. Olympic
tnals. Tanya Harding, anather <kater, was suspected of being involved in the attack The Olympic Commutiee had to
decide whether te allow Tanya Harding to compete 1n the Oly mpics before the case would be resolved 1n coun.




T/R: Not a real clear question. Let mie try with some different numbers. Suppostng i this group ene person said Tanya
Harding should compete and | only asked two people, 2nd tn thus group two people sud Tanya Harding should compete
and | asked three people, Would you say they are the same now? Oliver?

Oliver: One's one half and the other is a thitds. Two thirds of the people, Two thsrds of the people said she should compete,
and on A, half so [ wouild say B. Two-thirds is more than one half.

T/R: But Ohver, isn't "two” one bigger than one and “three™ one bigger than (wo. and both have “one® different hike you said
over here, so. ..

Oliver: So

Jorathan: They are both three off, both three away

T/R: (laughter) So which of those two do you want to behieve in more? So, Ben says they are still the same.

Ben: Not really. Yeah. because, because they are both one under. the number out of, hecause 2 15 one out of two umder and 2
out of three 18 one under.

{Teacher reviews the confhicting opinions. She tries switchsng the context (using the same numbers) (o comparing the cas=n
which for one child, two out of three times a pareat spproved of 1he child watching a television show, and & parent of a
different child approved one out of two umes. |

T/R: Do you agree Benthat to get 2 out of' 3 is somehow a tigger propartion of this group than this group {10 out of 2J? Does
everyone know 273 15 bigger than 1/2? We know this one. Now in this one is, if in class B, Souvt of 8, andinclass A6
out of 9. in ane of those classes? Is the proportion bigger or 1s it the same?

Max: The seme. | don't understand why it's not the same, because 10 the other one, it seems, 10 the TV one like one of the kids
Just asked one more tume., It would seem like it would be the same.

Ben: The only reason there was a difference was because she asked ome more ume.

T/R: That's a great question  The only reason this one 1« bigger than this one s the kid 2oked me one more tme.  You didnt
ask enough Kate. So, suppose Kate asked her parents erght times and told her she could watch show it four uimes; and
Carol asked six times and out of six times her parents 10ld her sbe could ask and she got to watch 1t four times. Did
either of them get to wath 1t 2 greater proporiion of the time? We know that they watched the show the same number of
times--they both watched n four imes--but was ¢tther of them more likely to 2et 0 watch 1t?

Students; Yes, Yet, Yes, No. oh yes,

Jonathan: Because 8 15 higger than 6 and she'd have two more imes and her parents satd yes two more times.

During the next few minutes, three student methods are articulated for comparing ratios. For the
first problem, Ka1 compares 4 out of 6 and 4 out of 8, saying, “Well, you can tell 4 and 8 is one haif by
looking at it and 4 and 6 is 2/3, and it's harder but 2 gocs into 6 three times so that's the third and two
goes into four two times so that's two-thirds.”

The teacher invites them to return to the original problem. Iris responds, but works with the TV
setling while using the original numbers, 6 out of 9, and 5 out of 8. She says: “Well, ninc and then eight,
times that they ask. Three times they aren't allowed to do it of eight and three times they aren't allowed to
do it of nine. And since 8 is one less than 9. . ." lris said that the bottom one (5 out of 8) was more
likely, but on re-examination of the videotape. it 1s unclear whether her previous answer of "more hkely"




referred to the likelihood of a child to get a negative answer from a parent since she was using the
complements of 5 and 6 in her argument.

Andrew said the top ane (6 out of 9) was more likely, and was asked for his explanation. He said,
"If another person went to the bottom {the 5 of 8] and they said yes, then it would be 6 out of 9, but if
they didn't, it would be 5 out of nine and it would be a lower proportion. [ would say the top one would
be more likely (6 out of 9]."

What seems evident in these exchanges is that the children were grappling with the problem of
companng ratios. Furthermore, the movement in the ciass was from a comparison based on the
subtractive difference in the numbers to another form of comparison. As the teacher gradually settled on
the language of proponion, likelihood, and "More of™ vs. “more," the children exhibited four kinds of
reasoning related to ratio:

1) their experience with familiar fractions: 1/2 and 2/3.%

2) the identification of a common "component” to contrast the relative sizes of the other component
(4 of 8 and 5 of 8).

3) a method of additively changing one component into another and then examining how change in
the other component affects the ratio. (Andrew changed 5 of 8 into 6 of © by adding I of 1 which,
he argued, made it more affirmative and therefore 6 of 9 was the larger ratio. )

4) a method of examining the complement of a:b (the complement is (b-a):b) to see if they could
more easily compare the complements. (iris contrasted 3 of 8 to 3 of 9 in order to compare the
ratios 5 of 8to 5 of 9).

These are very powerful strategiesd and with a commitment to student voice and the splitting
conjecture in mind, the question for the research team was what nproblem contexts to explore next.
Meanwliile, the students followed up the class discussion with a poli of the students in the school on the
same question by grade level. They were encouraged to record their data in a two-by-three contingency
table with boys and girls responses in categories along the top and answers of "yes,” "no." and "don't
know" along the side. Totals were listed along the right hand 2and bottom cdges. The children wrote
newspaper stories on the outcomes of their opinion poliing.

1L._Ratio Units, Episode One: Little Recipes

(Date: February 28, 1995)

5 [ use the term "fraction” here 1 that the students’ statements seemed to clicit 2 fra tinal part. later in the paper. |
discuss 1n more detal the relationship between fracions and ratios

T1n reading the paper, | supgest reading ratios as *a.b® rather than “ab” ualess they are explicitly wntten that way [ will
refer then 10 a and b pot a« numerator and denominator but as the two *componeni~” in the ratio | considered using
variable as a descripion but was concerned that it would carry unintended meamngs to the readee

311 mast classrooms, even if the student approaches were colicited, they would be 1gnored as teachers moved 1o the
texthook ways of companng ratios. In those, typically, a commaon denoninator 1~ found (usng only the option of one
component) and/or cross multiplicaion is used 2nd a rule, for a/b 1o be compared o doafad chthenab >cid ete. s
produced.  In thes paper. | will continue to place the typrcal introduc tion of these kleas in the foornotes to dlustrate that the
1ssue of e xamnn and reconsidening ane's own perspe. ve permedtes the tesearch enterprice and cannot amply enter as an
1ssue of gnaly~is Placement in the foatnotes alw allows the reader the option of staying within student voice wathout the
distraction of tRditional perspective




A decision was made 1o move 1o the context of recipes, for it provided an accessible context to talk
about varying the components while keeping the ratio constant (Noelting, 1980). Larger initial quantitics
were used, so that the probiem would demand the identification of smaller as well as larger equivalent
proportions. Orange and white pingpong balls were used 10 represent the amounts of concentrate and
water in juice mixtures. At first the discussions were about lemonade, but the children later switched to
talking about orange juice, because of the color of the balls.

Teacher/Researcher: Imagine | made this much temonade [a hasket 15 shown with 3 orange halls and 9 white balis] ard 1t had,
I wanted to keep ut the szme. | want to make more of it and heep it the same. What can | do 1o keep it the <ame but have
more balls 10 them?

Student: Add some mare.

T/R How are you gamng to know how t¢ add some moe? What kind of more should T add?

Camie: Double each part s even though there is nioge, there 1s more oleach. .. Make the arange balls. ..

TIR [Teacher realizes there's too few orange hatls and sdyusts things and then wntes an the board thiee columns labeled
lemon, waler, and 1otal]

Came: To keep it the same but get more, double cach number, soats gonna be 3.1 mezn & of the orange and 18 of the whites.

T/R: How many of them altogether?

Students: 24,

T/R. How many oranges?

Students: 6.

T/R: How many whites?

Student: 18.

T/R: {counting balls) Can someone think of another way 1 can do o

Andrew: Just 2dd three whites on every time you add an orange.

T/R: Seth says how that would work. Why do you think that works Seth?

Seth: {don't know, it just teems to work.

Andrew: Just add three whites and one orange, hecause that's sort of the pace that the orange s one tourth of the total, and so
every four you would take one orange hall and three whites.

Iris- 3 is one fourth of twelve and . ..

T/R: So here we are back here again Let's stop. § have ou much lepionsde amd T want loss lemonade but [ sull waat it to
taste the same  What can I de? What would you do ?

Amy: Let the lemons sit there and take 1§ (water] out

TIR: You are going to take some of them out How shall we take them cut? (pause) Should we tahe wut some of the water?
OK, suppostng ook out thae pusch water 2 balts)?

Studeat. But 1t waould be more wour

TIR: So Leantjust lake oot the wheles, so what do | do?

Student: Take out one lemon.

T/R: Does that end up isting the same?

Students: Nov
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T/R: That would be less sour, more watery  Okay, haw ahout if | tlake out one of each, 15 that going to taste the sane?

Students in chorus: NO!

Skye: Just take aut three whites and one lemon.

T/R: And that's going to be the same? How many balls in there? Let's count. So he says that T will have eight whites balls
How many of each? Six ..amd twoand .. . .Piecre do you disagree? 1 want ot to be the same. | really want it that way.
Max | need less. 1 can only drink ene glags. Its way oo cold ounide to drink more than one glass. What can 1 do now.

Max: I'm nat sure.

T/R: Think of i, T have a maixture. Tell me something 1 could try

Max: One lemon and three bails of water.

T/R: Three frozen water balls. Why did you decide that?

Max: Because, it just seems hike the thing to do.

Ryan: Because you need one lemon and three waters to keep uf the same

T/R [completes the chart with the students calling out pan.j

T/R: (we switch to orange juice and review what we did) Al of you have to drink my lemonade. | want 10 make more than
18. What can [ do? [ want three differcat way< to make more than {8 | see three hands. Raiwe your hand. Let's see.

Iris: Double 18 same way.

T/R: 36, 12, ahagether, 48.

Kate: Add three to 18.

T/R: Whichs?

Kate 2I.

T/R: Aad this ore™

Ksate: Add oneto g 7.

Ryxn: Triple the 18 and the 6.

[They work out the arithmetic)

T/R: We tripled 1t, we doubled 1t, we added three and added one o h but | don't kaow how to code this one any other way.
Max: Add six and then add two, [ think. (works out the anithemti v
Kate: Add nine and then add three.

Ryan: You gave us an example and we changed 1t into so many things.

In this exchange,? the students proposed a variety of ways of discussing how to keep the taste the
same. All the children seemed comfortable with the idea that they can double or triple the recipe to
maintain its taste. This was a simple confirmation of the intuitive role of splitting for the children. One
child was able to find a way to increase the recipe by adding three to one component while adding one to
the other. He referred to this as "pace.” Other children seemed to grasp this idea and extead it 10 include

Nna tymeal class, equivalence 1s discussed extensively i the context of fractions In this context, most teachers shaw
equivalent fractions by demonstrating wath cirele diagrams ae with T tion bars equivaleace 1o area on in fength. Quite
quickly then the child 15 taught to reduce fractions by finding cominon fug tors amd the guestion of what the factors represent
15 seldom exannned indetail. T80, 1t nnght be iken o anact ofcatiny all the equal wized preces into the same number of
parts which s descnibed as muluplying the numerator and denoninator both by the sanie number, n. but since n/nequals |,
1t s viewed as multiptying by an identity which doesn’t change the number.
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subtraction of components, aithough it took time and varied across students. Later it became clear that
finding the “pace,” as Andrew called it, proves to be a challenge for many, but its importance was
apparent to all, and its use in adding and subtracting to make more or less while keeping the taste the
same was widely accepted. Notice that in this exchange, the table became established as an important
record-keeping device.

In examining Aadrew's proposal, it became clear to me that with my previous work with functions, |
could describe the approach as covariation (Rizzuti, 1991; Confrey and Smith, 1995) and that they were
working with a precursorto a linear rate concept, Schorn (1989) described this as "so much of this for so
much of that." in other work, I have argued that this (3 to I, in this example) shouid only be called rate if
the child can imagine it increasing (to 4 to 1, for example) or decreasing (2 to 1, for example). Ina
setting in which only a single value for the ratio is possible (as pi is the: ratio of the circumference to the
diameter) a description of ratio as "the invariance across a set of proportions” should be applied (Confrey,
1994a).10

The children were asked to work in groups with manipulatives to see if they could adjust these recipes
to produce charts with 12 entries all with the same taste, A new description emerged: "a little recipe.” In
one group, the girls had made sets of unifix cubes in the proportion of four to one. When asked how they
knew the juice would taste “the same,” they said they could make it by putting together sets of "little
recipes.” This term became a favorite of the class and was used throughout the instructional program to
refer to the smallest whole number equivalence for a given proportion. A second description that
emerged was of "basic combination™. These descriptions as recipes and combinations communicated the
idea of a set of ingredients or components that belonged together and the adjectives "iittle” and “basic*
connoted their use as units.

I would first propose that the “little recipe” be consider to be a unit, defined as the invariance in a
repeated action between a predecessor and a successor (Confrey, 1994a). Secondly, I propose it be
named a “ratio unit” for it describes both the underlying ratio (as a member of the set) and acts as a unit
for increasing and decreasing the combinations. An interesting question is whether this is an additive or a
multiplicative unit. I will suggest that it functions as both, and that this feature is its defining
characteristic. The ratio unit can also be described as a "basis vector™ in linear algebra for it allows one to
span a vector.

10 recognize that this is a reversal of modern textbook defimtions which tend to say that 172, 2/3 and 3/5 are diffecent ranos &l
*in the same proportion®. | agree with Fowler (1987) who argues that this is an “arithmetized™ view of ratio in contrast 1o the Greel
perspective, and, as such, loses the essential charactenstic of invariance. It presumes that the fraction line notation (/) conveys the
operational relstionship of a to b, and treats numbers as abstracted entities which can he compared without any knowledge of the
mesans of their construction, | woukl also point aut that the terms ratio and propostion are hopelessly conflaied in English usage.
We talk about keeping the samme ratio across proportions, yet we also say two ratios are in the same proportion. In the context of a
recipe, the question is for a table of entries, (1,2); (2.4):(3.6) ek. is this a set of proportions with one ratio of is it a set of ratios with
one proportion? | prefer (o use the serm “ratio’ 1o refer to the invarance across a set of proportions, and hence there is one ratio (a.
b) that underies that set of proportions. However, | am Tess comfortable saying that (1.2) and (2.4) are different proportions, since
many will not understand such usage. Perhaps, as a compromise, | could use the terminology that (1.2) and (2,4) have the same rat
but are different comhinations. In contrast, (1,2) and (1,3) are different ratos and different combinations.
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Others have pointed towards this same construct in ratio and proportion (Lamon, 1994; Steffland.
1991; Steffe, 1994; Kaput & West, 1994; Lesh, Post, & Behr, 1988) and have focused primarily on its use
as an additive unit, in building up 1o larger combinations. However, due to the tendency to focus on the
task of building larger combinations and on only viewing multiplicaticn as a form of repeated addition,
most researchers have overlooked the process of finding the “little recipe™ within larger combinations.
They seem to assume that doing so would involve a process that is simply the reverse of "building up”.

In contrast, I will describe how the identification and development of the ratio unit gives it 2 "split
personality” (additive and divisional) and. as such, it serves as a critical bridge between counting and
splitting worlds. How the ratio unit emerges from the childrens' discussion is a springboard to
understanding how the ratio unit is a multiplicative unit.

IIL, Ratio Units, Episode Two: Finding Ratio Units

Finding the little recipet! in the context of being presented with larger guantities posed a serious
challenge. One group of giris that same day was working on reducing the amounts of original mixtures
containing 5 water balls and 20 lemon balls. Seeing 5 as a common factor, they tried to subtract five
from each as the way to reduce the recipe, but rejected it quickly. Then they considered sphitting the
components into two halves but realized that 15 wasa't even. They considered splitting the balls into
thirds, and started dealing them out into three piles. They had split the water balls evenly into three piles,
but they realized that the 20 lemons didn't divide up evenly into threes. This is an excerpt of their
discussion:

What goes into both? five. Spht them into five pifes. ' deal out the water and you deal out the water. It sounds strange
dealing out water. Three, three, three, this has four and this has three [they realized that two lemon prles were missing a
lemon] They look down and find 1t on the fioor. ] Oh, good, we did dmop two. .. When we take away three waters, that's 12
and four of these, so that would be (6. . [Ar1his point they realize that the httle recipe 1< 3:4.]

The children initially saw the importance of the number five, but their first conjecture was that it
would show up as a value in the little recipe. Reconsidering, they switched to splitiing, and after trying to
use two- and three-splits unsuccessfully. they made piles of five. I believe that for the children, doubling
and halving, which I would call two-splits seem to be a very legitimate action which maintains the ratio.
The five-split doesn't actually feel like a split to them here, rathier, it is thought of as making equal piles.

It appears that two interpretations of this are worthwhile. First, when the children can find a way 10
split the recipe, it is straightforward for them 10 assert the equivalence of the final and the original recipe.
No visible record of the value of the split is retained. Second, when a split is not an obvious choice for
them, they resort to creating piles, in which the number of piles is equivalent to the split. Although these
two actions, and dividing by a common factor, are all coded mathematically the same, the differences
among them are significant to the children.

How should one interpret the children’s claim of equivalence between the final and the original

recipe? This equivalence, established most firmly through splitting. is the essence of the meaning of

1! In the traditional curvulum, finding the listle recipe means aimplifying fractions 10 as wsually treated 1) as an issue of
tidiness or completinn of 2 process, and 2) it 12 undertaken by factonng and “canceling” of "finding mames for one.”




matio. It can be interpreted variously as recursion, similarity, or stretching, and its expression creates a
meaning for division (partitioning) and ratio. In interpretiag the next excerpt, [ will explain how a
meaning for multiplication that is in contrast to repeated addition is also created through the students'
voices.

(Date: March 1, 1994)

For the next two days, the students worked extensively with the recipe context and the problem at
hand was how to find the ratio unit.12

In this class, we began by reviewing the problem from the day before. The students restated the
prcblem for students wihio were absent and one girl stated the problem as "we were making orange juice
and those were the ingredients and we were trying to get the exact taste v.e wanted and we worked a real
long time trying to get the exact taste and so now we want to keep it and make a larger quantity of it”

(Claire). The teacher and class reviewed that if we added nore water balls it would be more waiery and

if we added more orange 1t would be more orangey, but we wanted to keep it the same. Previously absent

students were asked how the recipe could be increased while keeping the taste the same.

Naomi: You could add the um-m, a third, um-m add sonx vrange juice, and add some waler balls but the water balls would be
a third of what the orange juice would be

Teacher/Researcher: Beautsful, nicely said. Jon, does thatl make sene?

Jonathan; It1s kind of a third, becaune six 35 one third of cighteen.

(Discussion wath a student who doesn't respond and we discuss adding one of each. They decide they can't)

T/R: Naomi you said it was about a third, the water halls to the oranges, that the water balls are one thrd of the orange juice.
So,if I add one water ball, how many orange do 1 need to add?

Jonathan: 1 think you add a three.

T/R: Three oranges. saf | add one water ball I'd add 3 oranges. Dixes that make sense 10 everybody? Naomi just saw that
and satd 1t looks hke a third. The hardest problem you all were having the other day was finding out what that intial
amouni was. How did you find out this was the same as onte-third? What were soine ways of finding this out? Howdid
you know this was the same as une waier ball to three oranges?

Carrie: If you think of it as qust 2 number. 6 1s ane thrd of eighteen

TIR: 615 ore third of eighteen because 6 fits into 18 three itmes

Kate. We took blocks and divided them up 1nto equal piles.

T/R: CK. so we wall try thai one 1 Just & second, okay? How wouid taking blocks and dividing them into equal piles look
here? (points at board)

Ama’ We did the same thing, and we have, one was water and one 15 orange jutce and tound out 1t divided equally into little
recypes and ended up bewng three orange 1o one water, and just (unintelbigibis),

T/R: You divided equally into iittle recipes and can you tell me what that means o you?”

Ama: And then we wanted 10 make more lemonade s0 1t was 1n the same proportion.

12 Asinstructor, | was expecting that fisding the rauo unie was Just amplitying fracuons --prime factonng and factonng out
a common factor. Slowly, I came to the realizauon that it was not <o straght-forward to the students, of to me once 1began

hstening to them. This challenge 1s typally neglected because of the tendency to always stan <nall and smple and thus
emphasze building up rather than \plitting.
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T/R: How did you find those little recipes?

Ama: We put eighteen of {orange] and six of water.

T/R: {Draws it with dots in two rows vertically over each cther]

Ama: We tried to divide it into groups so there were the same amaunt of orange baits and water balls.

T/R: And then they saig, listen to what their problem was. How can we get this inio groups that have the same number of
white balls, no, how do | say it?

Ama: the same number, no each group has to have the same number of water balls and orznge balls.

T/R: Does that mean it has the same number of water balls as thre are orange balls?

Ama: No, we just tried four 10 one but it dida't work so we tned three to oe. . ..

T/R: [draws it 2nd 1, the class applauds and says the drawang looks hike dogs with three eyes] They said each one of these 1k a
hrtle rocipe. Once you knew what the little recipe was then what did you do?

Amse: We could combine the little recipes to make bigger ones.

{During the next few munutes the children discussed ways of building up and down piven the smallest recipe. Also, there was
a strategy of halving and one of taking one-third of another number)

R/T: Could you get directly 10 1 and 3 by looking at the numbens. s there a way to get directly to one ard three

Oliver: Divide the 18 try 6 and divide the six by one, no by five. by . .

T/R: Whatdo you divide six by to gct one?

Oliver: 6.

T/R: Does it seem hke you should divide it both by the vame thing? [Oliver divided 18 by 6 and 6 by 6.}

In the next problem, the children were given 14 balls of water to 21 bails of orange. They were asked 1o
find equivalent proportions.

Ciaire: You vould make it bigger, you make 14,28, and over there 42.
Teacher/Resexrcher: So, tell me what she dud
Trev: She added or she doubled,
T/R: That'salwaysa pond method.
[garbied exchange]
Camnie: 1415273
T/R: 14 is 2/3 of what?
Carrie: 21. So 2dd two to the fourteen and add three 10 the fourteen. The last ttme we had one third and we added one and
three so this time it would be 2 and 3. But [ don't know which tv add (o which

To find the little recipe, the majority drew dot diagrams or worked with manipulatives. Their goal
was to make identical groups, or as one child put it "to divide it into groups so there were the same
amount of orange balls and water balls”. This description conveys a significant part of finding the littlest
recipe that is often overlooked. This is the splitting or partitive act that must produce: 1) the number of
partitions that can be applied 16 both sets without a remainder; and 2) identical ratio. This activity is not
algorithmic, just as its more formal method which depends on prime factoring is not algorithmic.

In addition to my earlier claims that previous work on the ratio unit has neglected the ¢reation of that
unit, I would stress again that in the creation of that unit, we co-create partitive division and a new




meaning for equivalence. Equivalence in this setting is not based on equal length of the original
combination and the ratio unit. In the dot drawings for 6 and 18, the little recipe is equivalent to the
original combinatior because all the little recipes are identical, not because there are six of them. On a
graph, we coutd say the equivalence occurs because when the vector (6, 18) hits on a lattice point, so does
(1. 3) and it is the smallest unit that does also. The little recipe is a unit that measures the larger
combination, and | would reiterate, that as a result, there are direct ties to recursion and similarity.

A second appreach to 7ind a:b was to describe na:nb as follows: na is a/b of nb (such as 6is 173 of 18
or 1415 2/3 of 21). This description needs close listening and careful interpretation, because
mathematically moderly trained ears hear it differently than is intended by the children.!> On reflection,
1 would interpret their descriptions as follows: One third of eighteen means that eighteen is split into
three pants, Expressig it as a sphit, chiidren will say, 18 split among three is six. (18/3= 6). Another
form of this same equivalence might be the claim: 173 of 18 is 6. | want to suggest that this is a primitive
expression of the meltiphication that goes with partitive division--multiplication as *1/3 of.” Thus, we
wnte 1/3 of 1815 6. That is, the meamng of “1/3 of” to these chitdren is not as a fraction but as "1/3 of”
as an operator, a splitter. "1/3 of™ means dividing into 3 equal piles (Dienes, 1967).14

Ultimately. I believe that both of these expressions can be even betier coded using a ratio box!3 which
15 writien as

Oragpeballs  Waierballs
18 6
3 1
To later make the claim that 14 is 2/3 of 21, they are splitting 21 into three equal groups (or taking
one third of them) and taking two of them or doubling the amount. Ratios, as opposed to fractions, are
operatoss on a set of numbers, This description allows a ratio unit to be found!6.17,

13 [ beline my traimng led me to hear this as ap apphication of the ajgonthm for muluplying fractons, and thus to believe
that chidren were importing this algonthm from home instruction. Thus, 14 1> 273 of 21 neans 23 * 21 = 14, | rejected
this inferpretation after reviewsng all its accumeaces on tape bevause the students who offered it were so numerous and
saned 0 ther mathematics preparation. Fusthermore, axost people were taught that “of™ means "muliiply” without ever
examunung the reasons for that transiztion  In contragt, | now helieve that its spontaneous occurrence signals a different
construct of multtphcabion which evectuaily leads (o the algorithm for rational number multiplication.

4 For years, [ have cntiqued the claim that there are twe primnstives for davision but only one for multiplication (repeated
additian) | now understand that the difficulry we had finding the second primitive for multiphication came from trying 1o
cast multiplication as the inverse of division, in the form of: 1f /b =athena x b =¢. Instead | 2m arguing that pantitive
multpleanon is found by exam:mng partitive division ia the form of ¢/b = a, and casting the inverse operation in the form
of IMmxyeea,

13 Building on the work of Vergnaud's momarphism of measures va. functional relation analyas (Vergnawd, 1983, £988) of
muloiplcative structures, Peled and Nesher's (19838) turther applicanon amd *dechmandarov (1987, T used a 2x2 matnix to
exphre rauos wath students

W15 conjectuing these new interpretations of kow muluplcation, division, aod ratin are related, | reahzed that they needed
to bee wiztten in Lthe form of anthmetic equahions wiich bring aut the role of the equals stga (=), Thus operauens are rot
Just cades of actions, but are codes of acticas within cquivalence relations,

17 1n traditional st tion, ratios are notted the same as fractons. They are introduced later, in (solaton, and wathout
any forms of operation except comparison, e all have been *covered” in fractons Thus, any inconsistenctes 1a the two
syserm are ket inaheyance and when stodents try to iategrate these aud tail, the falures are labeled miconceptions.
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The advantage of this approach over the dot drawings is that eventually it leads to a way to find a
combination for any value of a component, and one is not limited to search for appropriate lattice points.
For example, it will assist them in making the claim that one-third of four is one and one-third.

The third strategy used by the children was to divide the same number into both of the components to
get the ratio unit. This strategy was used routinely by only two students and did not really catch on
among the others despite the fact that it produces the littlest recipe most readily. Difficulties were seen
repeatedly as children recognized a value of identifying a common factor, p, between the components but
then tried to use that factor as a component of the ratio unit making the ratio unit either 1:p or p:p (just as
the two girls had tried to subtract fives for 15:20). However, this never happened when they used the
language of splitting. Thus T suggest that the word "division™ for many of these students still referred to
quotative division (repeated subtraction) only and thus it was of limited applicability in finding the little
recipe.

IV: Iatroducing Graphs of Ratios

Students were introduced to graphing of ratios in two dimensions as vectors of the form (a, b). My
decision to do this was based primarily on the fact that it allowed for a visualization of ratio as an
invariance across a set of proportions (or combinations). Other considerations included: 1) seeing the
ratio construct as strongly tied to similarity and wanting to build those bridges in the glementary prades;
2) wanting to support the comparison of ratios in which both components of the ratios could be used
cqually as a means of comparison (as we had seen students spontaneousiy do in the context of polling); 3)
seeing this as a rich extension of the use of tables and a precursor to algebraic functions and slope; 4)
wanting to explore how combining samples could alter the ratio relation; and 5) seeing the comparison of
ratios as a rotation in the first quadrant, an anticipation of trigonometry.

The introduction to graphing was done using the context of recipes. The axes were labeled number of
water balls (horizontal) and the number of orange balls(vertical).!8 The studerts are instructed in how to
graph points that "stand for certain combinations,” and the origin was identificc as meaning no water
balls, and no orange juice. The term, ordered pair, is introduced as (a. b) using the example of 6 water
balis and 8 orange balls; "a” is defined as how far to go out and "b” as how far to go up.” The children
are asked to form groups and plot the points for six of different recipe problems {muitiple examples per
mixture) using different colors.

(Date: March 7)

In order to help students to see how to use graphs to compare ratios, they were given another polling
problem. It had been a particularly snowy winter, and they were asked whether they were hoping for
another snowstorm. The class's response was 3 "yes's” and 12 "no's.”

The teacher/researcher asked, "Supposing | have a group with 7 people who say yes and 21 who say
no. Listen to the way we can say it now: "In which of these classes does a greater proportion of the
people say they want a snowstorm. T want to know if in [our] class or in {his class {points to two different

1810 atber contexts (polling) thew axes could be laheled using parns and totals.




seis of data]. which has a greater proporttion of the people who say they want another snowstorm. in

which class are you more likely to get someone to say ‘yes, [ want another snow storm"." One of the

children quickly identified the fittle recipes and said that one yes out of four is less affirmative than one
yes out of three. The teacher/researcher asked them, "how would this look on a graph?™ The children
generated the points (1, 3). (2, 6), (3. 9),.... (6. 18). drew in a blue line, and compared them to thte points

(1. 4), (2, 8), and (3, 12), whose linec was drawn in red.

Teacher/Researcher: What do you notice?

Kai: There are maore steps and it's not a< steep.

T/R: If you were walking which would you sather walk up? The blue ane? It's not as steep. How do you see that the blue
class was more likely to say yes? How do you see that the people are more likely to say yes?

Trev: Because that one slants out more towards the yes.

T/R: It comes out that way. What is the meaning of the point (10, 3)? That's really “yessy.” At what point 15 a combtnation
more “yessy " than "nogy?” How can [ find the place where you can say it's more yessy ot more noey? Lets try it with
potnts—How about righs here? [pouwts ta (1, $)}

T/R: (1,5).

Srudents: More noey

T/R: (3.2)

Students More yessy.

T/R: Where does it change?

Skye: (2, ). More yessy Imeane2 .

Max: [tchangesat (1, 1), or (2,2}, or (3. 31 (4, 40,45, 1. 10, )

T/R: Da you sec how yeu can use this picture to compare. . !

Iris: When they both meet on the same line...

T/R: If you look at 12 where they hoth meet at the paint 10 ime. we hnow we have the same number of .2 [ponts to (3, 12)
and (4, 12) where there are 3 yex's and 12 no's, and 4 yex'sand 12 mo's, and the paints are (n honzontal abgnment}

Ins: No's.

T/R: The same number of no's.

T/R: What you are doing here 1< really important. Do you see how much information you got out of the graph? Out of those
pieces of datz we made all kinde of conclusions... Iris, you could ank af there 1< 3 point of tme when they are this way
together findlicates 2 yertical ahgnment of points|.

Ins: Compare (at] 4 yes's and fyou get] 12 and 16 no'c

In this segment, the children explored the graphs as a means of comparison. One studert seems to see

the comparison rotationally, onented more towards the yes. The teacher/tesearcher switches from a

comparison of two graphs of different ratios to the question of when any single combination becomes
more weighted towards yes or no. Students also recalled and visually applied the strategy of comparing

ratios by seeking out when two components were the same, and comparing the other component of each
combination.

V: From Voice to Perspective




The issue raised in this paper is "What are the implications of the students’ activities and approaches,
the students yoices, for our perspectives on mathematics.” The analysis presented thus far entailed a
certzin amount of interpretation of student voice and the development of such constructs as ratio units,
splitting, and partitive multiplication. On the surface, the data suggest that the approach is provocative
and potentially fruitful. 19 But provocative and potentiaily fruitful for what purpose? To teach the
rational numbers? But are the rational numbers well-defined and fully understood by most of us? 1s
there an agreed-upon endpoint toward which 1o be aiming? Asking such questions critically is, for me, an
essential part of examining our perspective, Asking these questions in light of acknowledging the
inventiveness of student approach is what is meant by the voice-perspective dialectic. If the analysis
stops here, then we fail 10 acknowledge the tensions, choices, ambiguities, and interpretations which are
part of the mathematical enterprise. The analysis should not stop here. To me, stopping here and
bringing children into alignment with adult perspective is a major way that mathematics becomes
oppressive rather than expressive to children.

It sceins clear that the data presented above support the view that children can operate intelligently
with ratios, especially if they are provided access 10 appropriate representations (data tables, ratio boxes
and two dimensional plane) within interesting and famihar contexts. This research chalienges the
assumptions of many who claim that proportional reasoning occurs developmentaily later than 10 years
old. It seems to me that our chalienge 1s 10 make judgments about what tdeas are important for children
and to then follow their approaches 10 create a developmenially sound curriculum that also leads to
profound and accessible mathematical ideas. Thus, the analysis of the rational numbers [ seek to
undertake in the next section must 1) aliow us to explain and support sound student constructions; and 2)
anticipate significant achievements in mathematics that connect to those constructions. In doing this,
existing curricula should be artifacts to be considered but they should not hold particular sway over the
decisions.

In the foregoing approach to ratios, ratios have been treated as combinations that fie along the same
vector. Moving to the two-dimensional plane to express ratio exhibited one clear advaniage explicitly
acknowledged in the splitting conjecture, namely that connections to geometry are made accessible
earlier. The importance of this goes beyond the exploration of the properties of geometric figures {itself a
topic of considerable value to children) to include the analysis of figures in relation to their symbolic
algebraic presentation (anticipating analytic geometry; see Dennis, Smith, & Confrey (1992) fora
discussion of the role of similanty and proportional reasoning in the development of functions.)

A gquestion that comes with this claim is what are the appropriate mental operations that would benefit
from being formalized on this two-dimensional plane.®® These should be the set of all operations that 1)

9 the post test, the 3-10 year ofds exibited for less addurve stratepies thar reported by 13415 year olds of CSMS. 15%
of our sample used addiive srategies on Mr. TaIUMr. Shoer compared @0 47% n CSMS. 30% used additive strategies on
the L's problem compared 1o 42% tor CSMS (Hart, 1988).

questton of what level of formahization o desirable 18 debatzble, and needs to be subjected 10 a pricess of
social/political discusaion that 1s more extensise than | can undertake in this paper. However, | do seek to demonstrate
some of the available aptions and tn 1ndicate how they shed fight both on the student methods and en our owa tacit
assumptions aboul ¢lementary mathematics.
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assist one in working competently with the desired contexts; and 2) connect to other operations from
previous and future mathematical pursuits. One approach would be to seek possible metrics or
structures?! that contribute to this analysis and interpret the operations from within them. The children’s
opezations needing to be explained are: 1) comparing ratios; 2) finding the ratio units; 3) refating ratio
units 1o their equivalent combinations; and 4) refining the sets of possible combinations. In doing this
analysis, I identified three possible metrics (see Figure 1). Each sheds light on the children's actions, and
most allowed me to convert what most researchers label misconceptions of chiidren into potentially
productive strategies. The standard related properties and operations one seeks to connect to are: 1)
multiplication and diviston, 2) addition and subtraction, 3) distributive properties, and 4) the standard
ordering properties--less than, equal to, and greater than.

1. By creating a vertical fracture?? of the plane at x= 1, one creates a one-dimensional line which
each of the ratio vectors (a, b) intersects at a distance b/a from the line y=0. The reduction of the two-
dimensionality of the plane 1o a one-dimensional line creates 2 metric that behaves like the fractional
number line, on which, for example, the vector ratio (3, 1) intersects at (1, 173); the vector (3, 2) at (1,
2/3) etc. If the vectors are viewed algebraically as y=3x then when x=1, y=1/3. In order to view this as
fractions (as) parts of wholes, the {tota!] needs to be represented on the x -axis and the [parts} on the y-
axis. Equivalence on this metric means being the same length. Thus, one definition of a fraction is "the
application of the ratio vecior (2, b) to the quantity of unit one,” Thus, when we see b/a as a fraction, it
could be written as (b/a) of (1). Thus, when one sees the fraction 3/4 and the fraction 213, by convention,
one can assume that they have a common unit of one. As a result, addition of fractions with unlike
denominators requires finding a common denominator to protect the meaning of equivalence as equal
length.

However, as we can understand from the students work with ratios in the two-dimensional plane,
working with fractions does not have to be confined to the line x=1. Using this approach, one could view
the comparison of 3/4 of § and 2/3 of 6 as a comparison of one fracture at x=5 with the vector (4, 3) and
the other at x=6 with the vector {3, 2). What makes these fractional approaches is that the "wholes," of
which the fractions are the parts, are specified by the values of the fracture lines, and the parts acts as
ratios via the ratio vectors. Thus the distance from y=0 to the intersection of each vector with its
cormresponding fracture line forms the basis for comparison.

2. A metric on the first quadrant of the plane can be constructed by drawing a quarter circle with the
origin at its center. The ratios can be ordered according to the intersection between their ratio vectors and
the arc, making rotation the basis of the ordenng. This ordering of the ratios will correspond to the
ordering on the rational number line, however the dispersement of the ratios will differ. In the work with
the fourth graders, drawing their attention to rotation as a mezns to compare ratios anticipates these

2 By metnic, I am referning to a way to formahize the comparians between ranios. Since T ant it assuring an external real
line, this 1s pot 1ntended to be a formal axiomuzation of thes ided. butats sntended to allow us to exanune the impact of the
genesis and chotce of metnics on the defimtion of operations

2 A honizontal fracture wall also create the rational Line
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developments. Later in the semester, the children designed and built wheelchair ramps, an activity in
which the angular measure and corresponding ratios were explored in some detail. Connections to
trigonometry can be later developed, via the vertical projections from the intersection of the vector and
the arc, which is of course sin(8) x radius.23

3. Finally, one can examine any single vector used as a means of generating equal ratios across
different combinations for its potential metrics. It is possible that there are two competing metrics on this
vector, each with a different meaning for equivalence. The first metric comes out of adding ratio units to
produce larger combinations. Describing this form of addition can be accomplished using vector
notation. It can be written that the students are adding (2, 3) + (2, 3) + (2, 3) to get (6, 9) and vector
notation suffices. However, after the ratio units are combined, the student wants to make the claim that
(6, 9) = (2, 3), which is ot true in vector notation. Vector notation requires students to write this as{(6, 9)
=3 x (2, 3), introducing the idea of a scalar, a "dimensionless number.” In contrast, in ratios we wish to
allow the student to write that 6:9 = 2:3, thus legitimating a different kind of equivalence. That leaves us
needing to explain what happens to the scalar 3 in the vector notation of this equivalence relationship. 1
claim that the 3 is the split.

Splitting, or division into parts, creates a set of identical groups, and this congruence is itself the basis
for the claim for the equivalence of the ratio unit and the larger combination. 1have further posited that
this equivalence creates the meaning for the operation of partitive division and subsequently for the idea
of a partitive multiplication of the form 1/3 of {8 is 6. These operations of splitting, partitive division,
and partitive multiplication form the operations that will allow us to describe the second metric on the
wector, however, doing so in depth is beyond the scope of this paper.

Thus, I can now clarify my concerns with the defintion of ratio by Thompson (1994, p. 190), in
which ratio is defined as a multiplicative comparison of quartities. It is my contention that the
equivalence of combinations that creates the invariance we label "ratio” comes from splitting.
Furthermore, partitive muitiplication develops as the inverse of splitting, and thus this multiplication
ariscs out of ratio, not the other way around. Asa result, Thompson's definition describes a formalism
only, and his relative placement of ratio and multiplication is phylogenetically and ontogenetically out of
order.

My claim is that in each of the systems, we sce variations in the meaning of equivalence,
multiplication, division, addition, and subtraction as yoiced by the children. These differences indicate
that there are options for defining the meaning of operations. Depending on which option one selects,
one enters into a variely of mathematical subfields: vector arithmetic, trigonometry, linear algebra,
fractions, etc. However. ig alt of them, the concept of ratio is essential. Preparing students for operating
formally in only one of these, (namely, fractions), and disallowing the others, 1) sends an inappropriate
message to students about the character of mathematics, 2) gives them only a nammow preparation, 3)

23There is also an important question to be raised about vector addition. One can argue that when combining samples, the
children should use the notation (a, b) * {c, d) = (a+c, b+d) rather than (a/h) + (c/d) = asc/b+d, but that salution becomes
less satisfactory when one witnesses it being used as a way to campare rattos as 10 the first excerpt where Andrew adds (1,
1) + (5. 8} %o get (6. 9) and concludes (5, 8) (s a lower ratin. 1 appears some form of 2 metrie ocdening 18 emerging here,
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discourages diversity in approach and thought, and, later 4) makes the reintroduction of these other
approaches unduly formal and awkward. Furthermore, as demonstrated through the examples given here,
if one seeks to develop a gcontextualized mathematics, one which does not sever its ties to experience and
activity, there is a peed for moving among these different structures flexibly and knowledgeably.

The point here is not to resolve all these issues, but to point to the need for mathematics educators to
examine move critically their own beliefs and reasons in light of student voica. Cur current tendency is
to try to change the children rather than to change the mathematical notations to express the needed
distinctions.? In mathematics education, we all too quickly label a genuine intellectual dispute as a
child's misconception. Although the mathematics education, theories about epistemological obstacies and
theorems-in-action invite us to engage in such epistemological investigations, szldom has their pursuit
ended up challenging the conventional mathematics. One must wonder whether this is a product of the
perspective of the observer rather than the voice of the student. If we want critical thinkers, we need to
acknowledge that doing mathematics is creating a composition of reason and algorithm (procedure) and
that doing so combines convention and craft (Shapin & Schaffer, 1985).

VI: Discussion and Conclusions

The value of the splitting approach needs further assessment, clarification and refinement. To
date, it has been tried in a highly experimental setting to allow the development of the conjecture and its
related implications. Basically, the teaching experiment has demonstrated the plausibility that splitting
can be developed in parallel to counting and that when ratio and proportion are used as the advance
organizers for relational thinking, there is: 1) considerably less evidence of the inappropriate application
of additive strategies for ratios, 2) an compelling transition to algebra through rate of change and
functions (Confrey & Smith, 1995), and 3) strong ties to geometry, in particular to similarity and
trigonometry. Furthermore, this approach has centain advantages in that: 1) builds from children’s
knowledge; 2) relates that knowledge to relevant cultural experiences; 3) involves the use of fundamental
tools; and 4) invites students who may not have efficiently mastered addition and subtraction back into
the curricular stream.

In this paper, 1 have further argued that we, in mathematics education, have accepted a model for
teaching the rational numbers that gives the arithmetic of fractions, as modeled on the one dimension
number line, precedence over the varied arithmetic and geometric interpretations of ratios. In doing this,
we have inadvertently narrowed the intellectual preparation of our students, discounting student strategies
that would support explorations into mathematical subfields such as trigonometry, vector operations, and
linear algebra. Later, we try to reopen these territories for children. When we do, we encounter
resistance, because the children have internalized our views that there is only one correct way, and no
longer believe they have a claim on mathematical thought. Furthermore, our introduction to these ideas

24 One of the reasons research un chikdren's understanding und use of programming is M compeiling 1s that given that
programming sppleex directly 1o the design of new technolagies, one feels free 1o change the programnnng language to
produce desinable outcomes. In this sense, programming s a hving language. Mathematics is comidered by most an
ancient language, to he imempreted or transtated but not changed. This veems unfortunate for it inhibues sts possibilities of
being an expressive language.
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at the higher grades tend to be even more distant from everyday thinking and common contextual
problems, and relies aimost exclusively on the manipulation of symbolic languages. As we privilege a
formal presentation over the use of applications and physical tools, we concurrently allege that only those
who survive the gyrations of this system, merit passage through the mathematical gateway.

In this paper, ! have made the claim that these practices are oppressive. | now can express this
position more clearly by specifying an epistemological analysis of my use of that term, and claiming that
this oppressiveness in fact has a long socio-cultural history.25 In other work, David Dennis and I have
documented, in the history of mathematics, the suppression of the use of multiple representations (Dennis
& Confrey, 1995) and physical apparaius and tools (Arnol'd 1990; Confrey, 1993). 1a a recent paper,
Otte (1993) has analyzed the time period of Fourier and claimed that during this period, pure mathematics
was estsblished as a specialization which parted ways with both physics (which assimilated non-
observable hut empirical constructs such as electricity) and technology (which became engineering). His
analysis stressed the way that the dominant forces on mathematical deveclopment prior to this period--
mechanics and geometry--were replaced by an emphasis on axiomatization and arithmetization.

If this analysis stands, then my analysis of rational numbers stands as an example of exactly these
values from pure math. The elementary curriculum can be viewed as implicitly dominated by
arithmetization and the reduction of the ratio space to the single dimensionality of the rational number
line. Furthermore, a press for axiomatization makes the decision 1o neglect the multiple meanings of
operations an intentional choicg: a suppression of diversity in return for early exposure and training in
formalization.

Abstraction within this value structure loses its power as an expression of the similar in apparently
dissimilar problem situahions, because formalization into symbolism that denies explicit connections to
context becomes preferred. In Vygoiskian terms, one could say that the semiotic portrayal of
mathematics becomes its defining characteristic and its value as a too! for action is diminished.
Abstraction, which should be the pulling together of context and activity with symbolism and language,
develops more as a pseudoconcept.

My claim is that within an epistemological environment that emphasizes formalization,
axiomatization, and arithmetization to the exclusion of context, multiple representation. and tool use, the
expression of student voice is suppressed. | have taken the position that the suppression of legitimate
diversity in student approach to mathematics is an act of oppression and permits mathematics 10 act as a
filter. By only acknowledging a narrow range of student strategics and then portraying only these
approaches as “correct™ or "true” rather than as choices or alternatives. children are discouraged and
alienated from mathematical thought. Only those who find the “playing” of the game according to an
extemal autherity's rules attractive, or have access to individuals who demonstrate a fuller view of
mathematics, persist in such a system.

251 would cast this snafysis as femining episternology because at 1ts use of the vore of oppressed groups to extablish

alermative perspect:ve i mathematics  [n sddition, reexaning history (n Light of such concerns sbowt oppression has a
STOng precedent In feminmist writings
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In closing, | wish to suggest that mathematics educators have a critical role to play in creating a
different context for the learning and pursuit of mathematics. However, to play this role, we must be
willing to engage in deep examination of own our beliefs, allegiances, purposes, and assumptions aboul
mathematics as much as about its learning and teaching. We must draw upon our rich heritage in
mathematics while viewing our commitments to educate as taking precedent over our training as
mathematicians. We must ¢collaborate with a variety of mathematicans, those in pure mathematics and
also those in applied mathematics, and those who use mathematics in their work, both in and out of the
academy. We must raise hard questions about what to teach and how to teach it, and in doing so, our first
commitment must be to the well-being and future growth of the children.
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Spontaneous and Scientific Concepts in Mathematics:
A Vygotskian Appreach

Vera John-Steiner
Uriversity of New Mexico

We are but a year ffom the centennial celebrations of Jean Piaget and Lev Vygotsiy
These two men never met, but their work is finked in a variety of ways. Vygotsky transtated some
of Piaget's early writings into Russian. and Piaget was asked to write a commentary about
Vygotsky's Thought and Language, thirty years after the Russia: psychologist's death Among
students of mathematics education, Piaget's influence has been far greater than Vygotskv's
influence. Recently, with increasing focus on the sociohistoricat contexts in which mathematics is
practiced (Tymoczko, 1986, Davic & Hersh, 1981). Vygotsky's socioculiural theories have come
to interast educators and psychologists

A central assumption of sociocultural theary relates to the nature of thought. While
Piagetians stress formal operations as the highest stage of thinking, Vygotskians include formal
logic, domain-specific modes of thought and dialectics in their characterizations of thought The
Piagetian approach reflects the powerfisl role of formalism in mid—century science, including the

impact of the group of Frerich mathematicians, Bourbaki Their work stimulated others. including

Piaget, to look for logically consistent modes of thinking and for universal laws A central aspect

of such an approach is the nction of invanant stages. In contrast, sociocultural thinkers stress the
co-existence of different forms of reasoning within a community of learners, from which an
individual appropniates different forms and processes in particular leaming contexts

Another difference between these two frameworks is the way the developmental origins of
thought are conceptualized by Vygotsky and by Piaget. As Faul Cobb recently wrote,
" _sociocultural theorists typically link activity to participation in culturally orgznized practices,
whereas constructivists give priority to individual students’ sensory- motor and coniceptual
activity” (1994, p.14.) This is a clear and useful distinction, but in Cobb's further analysis, he
limits the concept of what is social by main.aining a hard boundary between the individual and the

community This distinction is reformulated by Vygotskians, who see a dialectical unity between




the social and the individual The boundary is porous, shifting, and re-experienced in a variety of
ways As 2 woman, this unity starts for me in prenatal life, where the interdependence of the
mother and child precedes his'her separation and individuation.

fn this presentation [ will first outline some of the central themes of sociocultural theory.
Then 1 will focus on the distinctions between spontancous or everyday concepts and scientific or
systematic concepts, and the way in which these concepis are woven together in the course of
development The Polish psychologist, Anna Sierpinska (1993) applied Vygotsky's theory of
concept development to childrens’ mastery of mathematical concepts. 1 will rely on her work in
this tatk as well as on the writings of V. V Davydov (1972/1990; 1595), and on Jean Schmittau's
(1993, 1994) comparative studies of American and Russian childrens' mathematical activities.

Lastlv, 1 will speak about learning as a collaborative process.

Sociocultural theory
Central 1o Vygotsky's study of thinking is his emphasis upon

the genctic method, a focus that he shared with Piaget:
We need to concentrate not on the product of development but on the very process by
which higher forms are established. To encompass in research the process of a given
thing's development in all its phases and changes—from birth to death—{undamentally
means to discover its nature, its essence, for "it is only in movement that a body shows
what 1t is " (Vygotsky, 1978, p 64)

According to this perspective, learning and development take place in meaningful, socially and

culturally patterned contexts, and they need 10 be studied developmentally over both long

titne stretches and microgenetically The best-known microgenetic studies by sociocultural

rcsarc.hcts are those conducted by Jamves Wertsch and his coliaborators (Wertsch & Minick,

1990) In these studies of dyadic interactions, the investigator examines how a skill or strategy is
first acquired at the interpersonal level, eventually to be incorporated into the novice's intra-
personal repertorre

Vygotsky situates learning within retationships among mutually interdependent individuals.

In descnbing the process of language socialization from a Vygotskian point of view, we (John-




Steiner & Tatter, 1983) wrote

From birth the social forms of child-caretaker interactions, the tools used by humnans in

society to manipulate the environment, the culturaliy institutionalized pattems of social

relations, and language, operating together as a socio-semiotic system are used by the

child in cooperation with adults to organize behavior, perception, memory and

complex mental processes. (1983, p.83)
In this description, we suggest that human tools (as well as the many forms of interdependence)
exercise specific roles during socialization. External toois are used in productive labor and in the
regulation of environment/persons interactions. Psychological tools are less direct. Kozulin (1990)
provides clocks as an example of such tools. Historically, the measurement of time was first
finked to natural processes, such as the movement of sand in 2 hourglass With the invention of
mechanical and later digital clocks, the measurement of the passaz ' time became mediated. "In
order for an individual to read a watch, the whole system of symbols such as digits. language
abbreviations, positions on the screen, etc. have to be learned” (Kozulin, 1990
p 135

Time-related psychological activities in contemporary technological societies are mediated
by clocks, which become part of the human semiotic system. While physical tools are direcied
toward the extemal world, psychological tools have as their aim the mediation of activity and the
representation of the meaning of such activity. For instance, the reporting, remembering and
calculating of the passage of time with the help of clocks. Psychological tools are socially
constructed, and individuals have access to these tools as participating members of their social
world in which these toels have been made and shared

in & recent edited book on "distributed cognition” (Safomon, 1993), Roy D Pea applies
some of these Vygotskian notions concerning psychological tools to basic mathematical
reasoning. He mentions research on street candy selling by Brazilian children (Nunes, Schliemann,
and Carraher, 1993), Scribner’'s studies of dairy workers, (1985). Jean Lave and her colleague's
(1984) findings of grocery shopping, among others. Such studies highlight how people engaged in

intelligent activities use resources to arrange the environment conveniently and thus "achieve less

mental effort if necessary” (Pea, 1993, p 63.) Pea provides an additional detatled example of the




role of socially developed tools which become part of computational activity
An example of distributed intelligence comes from the PBS television show "Square One”
on mathematics for children. A forest ranger is being interviewed. Each year she measures
the diameters of trees in the forest to estimate the amoum of lJumber contained in a plot of
land. (Pea, 1993, p. 69)
With a conventional measuring tape she has to remember the formula which relates circumference
and diameter, and then she has to carry out some calculations.
But something different has been invented: A new measuring tape which 1 call a special-
purpose "direct calculation”™ tape for tree-diameter measurement The numbers are scaled
sq that the algorithm for these calculations is built into the tape. (Pea, 1993, p.7C)
Pea argues that "through processes of design and invention, we load intelligence into both
physical, designed artifacts and representational objects such as diagrams, models, and plans™ Pea,
1993) In providing contemporary examples of the roies of

psychological tools in problem solving, Pea contributes to a rethinking of some of Vygotsky’s

notions concerning mediated cognition, Vygotsky emphasized language in most of his analyses of
development Similarly, contemporary sociocultural theorists have neslected some non-verbal
psvchological tools such as diagrams, by focusing solely on words | have argued recently (John-
Steiner, 1995} in favor of cognitive pluralism. the notion "that historically developed mediational
means constitute an ensemble of psychological tools” (John-Steiner, 1995, p 3). Vygotsky (1981}
himself'listed a number of these:
The following can serve as examples of psychological tools and their complex systems
language; various systems of counting; mnemonic¢ techniques; algebraic symbol systems,
works of art; writing; schemes, diagrams, maps and mechanical drawings, all sorts of
conventional signs; and so on. (p.137)
But this is not a well-known quote  Vygotsky's primary focus on language may have contributed
to limiting his impact on Western mathematics education. This situation is changing, in part,
because of the great interest of educators in computers and in the graphing calculators used in
calculus classes Vygotskian theory, with its emphasis on psychological tools and mediated action,

provides a theoretical framework for the role of these artifacts in cognitive activity Roy Pea




suggests that these resources have contributed to the transformation of the objectives and timing
of the entire course of mathematics education {National Council of Teachers of Mathematics,
1991) For example,

in K-4 mathematics, a focus on tong-division operations and paper-and-pencil fraction

computations has been diminished, the availability of calculators is assumed, and attention

has shifted to estimation activities and & focus on the meaning of operations and selection

of appropriate calculation methods (Pea, 1993, pp. 72-73)

The role of artifacts in cognitive operations, which is now taken for grantzd, has
contributed to a rethinking of what some have called the "cranial storage metaphor® of cognition
(Kogoff, Baker-Sennett, & Matusov, 1993, p 3). Learning is increasingly conceptualized by
sociocultural theorists as distributed, interactive, contextual, and the result of the learners'
participation in a community of practice. One of Vygotsky's concepts, that of the zone of
proximal development (ZPD), is particutarly relevant to this social and participatory view of
leamning. The following definition of ZPD is quoted from Mind in Society, an edited book of
Vygotsky's writings:

(it is) the distance between the actual developmental level as determined through

independent problem solving and the level of potential development as determined through

problem solving under adult guidance or in collaboration with more capable peers

(Vygotsky, 1978, p.86)

Ann Brown and her collaborators (1992,1993) have expanded this concept to suggest that
the active agents within ZPD "can include people, adults and children, with various degrees of
expertise, but it can also include artifacts such as books, videos, wall displays, scientific

equipment and a computer environment intended to support intentional leaming™ (1993, p 191)

The role of complex artifacts in cognitive operations is now taken for granted, particularly
by educators interested in distributed cognition. There are restrictions, however, in the availability
of these technological systems to learners in economically underdevefoped countsies It is
important that in our theories of leaming we do not universalize leamning strategies beyond the
contexts in which they were acquired and practiced It is here that research in diverse cultural
settings, (for instance, John-Steiner & Panofsky, 1992, Nunes, Schliemann & Carraher, 1993,




Rogofl. 1994; and Saxe, 1991, 1994), serves as a useful countenweight to universalistic
approaches.

It is not possible to summarize all sociocultural concepts in this presentation. My purpose
it to choose those concepts from the sociocultural framework which are relevant to the
psychology of mathematics education Among these are psychological tools and their role in
mediated activity, the zone of proximal development, and my own notion of cognitive pluralism
There are two more concepts that need to be reiterated before I move on to the distinction
between every-day and scientific concepts. One of these is Vygotsky's notion of the heterogeneity
of thought, as manifested in the coexistence of genetically different forms: "[Dlifferent genetic
forms coexist, just as in the earth’s core the deposits of quite different geological epochs coexist”
{Vyeotsky. 1956. quoted in Wertsch, 1991, p. 99). When an adolescent or an adult confronts a
new problem or situation, he or she usually has difficulty in differentiating significant features
from insignificant ones At the same time, while the novice operates at a very simple level in the
new problem space, the same person is an expert in many other contexts. The co-existence of

developmentally varying forms within the same individual is an important application of

Vveotsky's geological metaphor. His notion is also refevant to diverse forms of thinking in

mathematics, both between and within individuals; for instance, consider the varying and
interesting roles of analytic and ansfogue approaches in mathematical problem solving (Davis &
Hersh, 1982) The differential appropriation of mathematical approaches, such as visval-
geometric, (or analogic) as well as formal and analytical approaches contribute to pluralism in
mathematical thinking.

Lastly, Vygotskians claim that the mastery of concepts is not achieved through individual
mastery. but is the outcome of socially embedded and socially facilitated activity. The centrality of
this notion within the Vygotskian framework is effectively captured by Thomas Bidell who wrote
in 1992 "According to this conception, dimensions of reality such as the social and the personal
are not separate and self-contained but have a shared existence as differing tendencies united
within real developing systems” {p.308).

One of the ways to conceptualize the unification of processes which many think of as

separate, is through activity' participation in communities of practice {(Lave & Wenger, 1991) or




within communities of learners (Rogoff, 1994). The social and interdependent nature of learning
and development is particularly striking in the acquisition of school-taught, scientific concepts.

Spoataneous and scientific concepts.

Scientific concepts, or what some authors have referred to as systematic or theoretical
concepts “originate in the highly structured and specialized activity of classroom instruction and
are characterized by hierarchical, logical organization. The concepts themselves do not necessarily
relate to scientific issues—they may represent historical, linguistic, practical knowledge—but their
organization is "scientific” in the sense of formal, logical and decontextualized structures Every-
day (or spomtaneous} concepts, on the other hand, emerge spontaneously from the child's own
reflections on immediate, everyday experiences; they are experientially rich but unsystematic and
highly conceptual” (Kozulin, 1990, p.168). Vygotsky's terminology in describing concepts was
partly borrowed from Piaget, who wrote of spontaneous and non-spontaneous concepts In
Kozulin's definition, "spontaneous” remains individually constructed, reflecting a Piagetian core
meaning. Other writers, for instance, Van der Veer and Valsiner (1991) bring a different
interpretation to the word. They write, "by spontaneous concepts he [ Vygotsky) meant concepts
that are acquired by the child outside of the context of explicit instruction. In themselves these
concepts are mostly taken from aduits, but they have never been introduced to the child in 2
systematic fashion and no attempts have been made to connect them with other related concepts®
{p270)

A frequent example illustrating spontaneous concepts is drawn from the domain of family
relationships: a child knowe who his brother is, but has difficulty with the puzzle, *"Who is my
father's son who is not nry brother?” (Kozulin, 1990, p.169). Clearly, the child has a variety of
everyday experiences with a brother. In English we don't know from the word used whether the
brother is oider or younger than the spesker, in Hungarian, my native language, the distinction is
provided by choice of noun: "béttvam® for older brother, “6ccsém™ for younger brother. Thus,
the specific term or terms for “brother" are provided by the speech community The child does not
make them up In the course of “constructing” everyday concepts, the chiki combines the sense

of direct experiences, which are rich in personal meaning, with words which are socially




constructed and transmitted. Thus, both Kozulin's sense of personal and Van der. Veer and

Valsiner's socially mediated interpretations of Vygotsky's notions are relevant to the unpacking of

the meaning of "spontanecus” concepts. Although the characterization of scientific and
spontaneous concepts has been a subject of debate among sociocultural researchers (see Gee's
recent manuscript, 1995), the use of these concepts has been productive in research and in the
development of new teaching approaches.

In a Dutch study of young children's semiotic activity (van Qers 1994a), Vygotskian
approaches were applied in an imaginative way. The children who participated were asked to play
with appealing toys set up in different corners of their classrooms. One group of children, who
were playing with a toy train, were told that they had to communicate about their train to pupils in
another school. In order to do so, the children had to look at different parts of the track and to
prepare for reassembly by trying to remember what the outline of the circuit locked like, etc  The
teachers encouraged the children 1o develop their own diagrams, narratives, and related notational
systems in prepzration for the communication with the children in the other school, an activity
whick did indeed take place. The teachers scaffold the system of analyzing the track by the
questions they pose and by the assistance they provide with the notational system. In a related
study (van Oers, 1994b), kindergarten aged children’s dramatic piay as “shoemakers™ and
“costumers” was observed and their interactions were tape recorded. The young learner’s
activities, which included measuring, counting, and the use of notational systems, illustrated the
use of mathematical concepts. In these studies, the concepts of addition, division, and schematic
representations are embedded in children’s play activities at an early age.

Sociocultural researchers, such as van Oers, do not view the acquisition of mathematical
concepts as following a single, unmiversai time table. They suggest that the effective teaching of
these concepts is based on theoretical and pedagogical analyses and on imaginatively arranged
contexts and tasks These concepts can be introduced to young learners if scaffolded by carefully
designed social experiences

The Russian psychologist V.V. Davydov (1972/1990) applied Vygotsky's distinctions
between everyday and scientific concepts to mathematics. He supgested that everyday concepts

are developed by empirical abstractions by comparning features of objects, and phenomena, at the




level of appearance. Empirical abstractions may be false. For instance, young childrens' belief that
when two objects fall, the heavier of the objects may fall more rapidly than the lighter one.
(Howard Gardner uses this as an example of the "unschooled mind.") An example that Schmittau
(1993) mentions in explaining Davydov's ideas is that of the diurnal cycie, "in which the
perceptual illusion of a sun rising in the east and setting in the west belies the scientific
understanding of a phenomenon produced by the rotation of the earth on its axis” (Schmittau,
1993, p 30). Davydov's central claim is that scientific concepts require a theoretical abstraciion
which reveals their essence. In describing what is meant by "the essence™ of a mathematical
concept, Schmittau considers Aristotle's distinction between the two ways in which polygons can
he categorized. In the first of these, polygons are grouped according to the number of their sides
This method of formal generalization does not reveal the same generality as achieved by genetic
analysis in which the triangle is seen as primary "since all other polygons can be generated from
and decomposed intc triangfes (Schmittau, 1993, p.31.) The latter method, then, reveals an
essential aspect of a mathematical object.

One of Davydov's students, the Siberian mathematics educator, L. K. Maksimov,
developed some teaching techniques based on Vygotskian analyses (1993). He was interested in
elementary students' mastery of the order of mathematical operations. He suggests that children
discover the problems involved in such operations when they get different answers for the value
of the same mathematicat operations. Rather than relying on formulaic resolutions of the order
problem, Maksimov provides them with new ways of representing their actions, in this case a
"mathematical tree”. The method also includes group problem solving approaches, where different
students assume responsibility for different operations such as multiplication or addition. These
teaching approaches highlight the importance of theoretical generalizations as well as purposeful
action, the role of contradicticns, the usefulness of cooperative leamning, and the importance of
new notational systems. Jean Schmittau (1994), who has been instrumental in documenting the
effectiveness of these Vygotskian teaching methods in mathematics, compared Russian and
American students' understanding of multiplication, including their varied ways of representing
and explaining this mathematical operation While American students relied on a cardinat

operational ﬁ'ame\\;ork. and used prototypic examples with small numbers, Russian children relied




on mathematical trees, used more interesting numbers including fractions, and were able to solve
new problems. ™... every Russian subject, including the children from the fourth and fifth grade,
who had never been introduced to binomial multiplication, was able to obtain the product of two
binomials and explain in what sense it represented multiplication® (p.17). As part of the
Vygotskian approach, Russian children engage is scaffolded problem-solving before they are
given algorithms. "[They] will be given problems such as 4/5 of 2/3 to solve by carrying out the
requisite actions during the fifth grade, with the algorithm for the multiplication of such fraction is
delayed until sixth grade™ (Schmittau, 1993, p.31).

Before children achieve true conceptual thinking, their concepts take their meaning from
the perceptual, functional, and contextual aspects of their reference. The challenge of effective
teaching from this point of view is to assist children in acquiring conceptual connections and to
discover underlying stability in the face of surface variations Maksimov (1993) uses mathematicai
trees as scaffolding devices, Sierpinska (1993) poses challenging problems to children and
adolescents and assists them during lengthy interviews with the development of complex
arguments. One of the problems she posed dealt with the “question whether the set of all natural
numbers can be regarded as having as many elements as the set of all even numbers” (p.100). She
found that adolescents when confronting such theoretical problems are frustrated and
argumentative, and she quotes Vygotsky who wrote. "the age of adolescence is not the age of
completion of the development of thought; it is the age of its crisis ard maturation” (p.104). The
mastery of scientific concepts requires scaffolding on the part of the experienced thinker who pays
close attention to learners’ productive errors, to their intellectual crises and disturbances, and to

the ways in which they synthesize their varied experiences.

Complementsrity and Cognitive Pluralism

In the early decades of this century, Vygotsky stressed the intergenerational scaffolding
cf the acquisition of knowiedge while contemporary researchers have documented the value of
peer collaboration (Forman & Cszden, 1985 Palincsar & Brown, 1584; Lambdin, 1993; and van
Oers, 1994b). These researchers have shown how, in joint activities, learners can solve problems

which they are unable to solve alone. Cooperative problem-solving provides the opportunity to
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verbalize thoughts, to articulate different perspectives which enrich each individual's

understanding. Although sociocultural theorists are committed to the exploration of joint

activities, our theoretical analyses have not kept up with the rapidly developing practices of

collaboration

It is my intention to discuss the development of such a theory in greater detail during my
presentation. The developing ideas of my collaborators (Michele Minnis, Bob Weber, Carolyn
Kenncdy, and Teresa Meehan) and | include the consideration of collaborative roles, values,
complementarity and cognitive pluralism. We view complementarity as central to shared activities,
whether such complementarity is a temporary one. as in Maksimov's mathematics classes where
different students are given responsibilities for addition, or multiplication tasks, or in situations
which require a more lasting divisions of labor. We are interested in linking complementarity,
division of'labor. and group interactional processes with the sustained use of diverse semiotic
means in the course of collaboration. Some individuals rely on diagrammatic representations of
ideas while thinking together and others write down the consequences of thoughtful
interactions. Words, drawings, scientific diagrams, mathematical notations, and musical notes are
part of the psychological tools with which knowledge is transmitted, explored and transformed
In examining the acquisition of mathematical knowledge from a sociocultural perspective, we are
engaged in exploring, expanding and reformulating Vygotsky’s generative notions I am looking
forward to participating with vou through dialogue, controversy and the development of new

syntheses in the varied contexts of psychological and mathematical discourse.
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Some Concerns about Bringing Everyday Mathematics

Mathematies Education

Analiacia D. Schliemann

Tufts University, USA

The Psychology of Mathematics Education has made considerable progress 1n the last 20
yearn Many ssues that had long been ignored have surfaced and are now being followed
with sntere.t. There s now a greater awarencss that mathematical knowledge is
vonstructed by the child.  We know that meaning and represcntations are important and,
certunly. more  informative  about processes of learning than simple measures of
performance: skill any competence have not ccased to be important, but they arc only pant
of a larger puerare Rescarchers have incrcasiagly examined the epistemological obslacles
and the construnts of specitic symbolic systems.  The very notion of “symbol” has become
hroader and richer: whereas scveral decades ago many mathematics cducaters would have
thought pnmanly about notational systems, it is now increasingly recognized that symbol
systems and symbohic representations must also include the wuse of language. graphs,
diagrams, and cven kinesthetlic expression. We now know that many of e key issues in
the cilaboration of mathematical understanding concern the cstablishment  of
interrelations  among  representations in diverse symbolic systems. It has also become
1screasingly  clear that mathematical knowledge has important social. cultural, and
historical dimensions that need to be understood. Our own work in Everyday Mathematics
1s but one refiection of this trend.

A conscnsus is comfortable. It is nice to know. for example, that most math cducators
consider themselves to be constructivists. 1 too consider myself to be a comstructivist.  But
aren’t we coming too quickly 1o an agreement ahout the big issues. an agreement about
goncral theoretical principles, bhefore we have given enough atiention to rescarch. We
hcar 4 lot of discussion today about the importance of “mcaning”, for example. The
concept of meaning is sometimes used as if it were basically well understood.  But do we
know. for instance, what mecaning really is and how it is constructed? Similarly. wec now
recognize that “contexts” are wmportant in leaming. But what do we really know about
contexta? We  generally agree that children’'s previous knowledge and everyday
capericnces are amportant for both lcaming and instruction.  But how do wc get beyond

wuch  gescral formulatens,  which sometimes sound like slogans, tu more precise
formulations?

My own view has been that empirical research can bring us closer to understand how
people think abou*. use, and experience mathematical ideas in partcular contexts. 1 also
believe that it is through this understanding that we can find better ways 10 provide
opportuniues for children to develop mathematical knowledge in schools. In what follows.
I wili first provade an overall view of the findings regarding how children and  adults
come to develop and use mathematical knowledge in cveryday situations, focusing on some
ol the key issucs raised by stedies comparing the mathematics people use in their lives
with the mathematics they learn or shonld fcam in schools. In this overview 1 would like
to share with sou some of the insights we have gained from research into cveryday
thinking After reviewing the research on everyday mathematics, | would like to look at
some  receni examples of people learming duning  xclivities designed as part of research
prjecis [ ocarned out with others, My ntent is to show you how and why such
observationy have lorced us to reconsider some of the ideas that we initially held ahout




Everyday Mathematics and its relation to Mathematics Education. Then I will discuss
implications that thesc and other studies scem to hold for the teaching of mathematics.

What have we learped about mathematics in and out of schools?

Developmental psychologists have long recognized the importance of children's
experiences and interactions in the world for the development of logico-mathematical
knowledge. Understanding that the number of objects in a set is not altered if their spatial
configuration changes. that a part is always smaller that the whole, or that if an object A is
larger than B and B is larger than C, then, necessarily, A is larger than C, are basic
mathematical concepts acquired independently of school instruction, through children's
actions and reflections upon the conscquences of their aclions in objects and situations in
the world (Piaget, 1967).

The importance of previous knowledge in the development of new understandings is
stressed in developmental analysis such as Piaget's and Vygorsky's. In his theory of
cognitive development Piaget proposes that the development of logico-mathematical
concepts takes place when children face situztions they consider problematic and to
which they first try. unsuccessfully, to apply previous available knowledge. In Piaget's
words. children try to assimilate the new situation using their previous strategies. When
this fails, they try new approaches or, in- other words, they accommodate developing new
strategies to take into agcount peculiarities of the situations. In this process, for a
situation to be problematic. it must be related to children's previous understandings
(Piaget, 1967). In Vygotsky's analysis of the development of scientific concepts, he
stresses the idea that “scientific concepts can only be born in children’s minds from
previous clementary and iaferior generalizations” (Vygotsky, 1985, p. 222).

More recently. studies of cveryday cognition and analyses of use of mathematics in out of
school contexts contributed to increase awareness among mathematics e¢ducators that
rnathematical learning can take place outside of instructional contexts and that children,
when they enter school, already undcrstand many basic mathematical concepts.  Specific
socio-cuttural activities such as buying and selling promote the development of
mathematical knowledge that was previously thought to be oniy acquired through formal
instruction.  Strategies for solving arithmetical operations. the properties of the decimal
system, or understanding and solution of proportionality problems are examples of
mathematical knowledge displayed by groups with restricted school experience. Besidcs
arithmetic (T. N. Carraher, Carraher, & Schlicmann, 1982, 1985: Saxe, 1990: Lave. 1977).
contents as varied as measurement (T. N. Carraher, 1986; Gay & Cole, 1967, Saraswathi, 1988,
1989; Saxe & Moylan, 1982, Ueno & Saito, 1994), geometry (Abreu & Carraher, 1989; Acioly,
1994; Gerdes, 1986. 1988; Hamris. 1987, 1988; Millroy, 1992; Zaslavsky. 1973)., and probability
(Schliemann & Acioly. 1989). have been found to bhe used or understood in ecveryday
scitings by children or adults with very little access to school instruction.

Although starting from different methodological traditions and theoretical frameworks,
studies of conceptual development (for instance. Gelman, 1979: Hughes, 1986: Resnick,
1986) share with everyday mathematics studies the conclusion that. independently from
school instruction, children develop a fairly rich body of mathematical knowledge
through their everyday experiences in the world.  Another common finding concerns the
role specific situations and contexts play in what aspects of logico-mathematical relations
will be focused upon and on how knowledge is displayed and represented. Developmental
psychology studies by Dias and Harris (1988), Donaidson (1978), Light, Buckingham, and
Robbins (1979}, McGarrigle and Donaldson (1974), among others, have long demonstzate
the imponance of the contexts where cognitive tasks take place. They show that children
who fail in formal syllogistic reasening problems or in the traditional Piagetian




conservation, class inclusion, or perspective taking tasks, demonstrate logical reasoning
when the questions are set in more natural and meaningful contexts.

Contexts also play a ceniral role in mathematical achicvement: When arithmetical
problems arc solved at work by young street vendors, answers are usually correct, while
in school like situations correct answers are much rarer (T. N. Carraher ¢t al., 1982, 1985).
Such findings are. without any doubt, extremely relevant for bow children from poorer
communitics arc looked at when they enter school and hive difficulties in coping with
routines they have to memorize without understanding., or with numerical symbols that
arc not related to the way they represent and work out mathematical relations.

Acknowledging development and use of logico-mathematical reasoning in children's
cveryday strategies is a first step towards promoting opportunitics for progress and
learning. But then, when at school, how can children's previous knowledge and
cxperiences be considered as the basis for learning school mathematics? Should we simply
replicate cveryday tasks in the classroom and try to guide chiidren in deeper exploring
their implicit mathematical relations? Can we find cveryday tasks that would fit all or
most of the contents we want to be part of the mathematics cumriculum? And, if so, once an
everyday task is transplanted into the classroom, are we dealing with the same task? Can
we expect that children will be as involved in mathematical analysis as they are when
they search for solution to problems in everyday life situations? These are issues
mathematics teachers and rescarchers are facing (sce, for instance, Civil, 1985) and they
demand closer analysis of the characteristics of everyday math-.satics in order to be dealt
with. In what follows 1 will look at the strengths and limita ions of everyday mathematics
in regard to three aspects | consider as mostly relevant for X.athematics Education: (a) the
question of meaning in arithmetical problem solving, (b) the question of generalization
and transfer of mathematical knowledge across different contexts and situations, and (c)
the question of referents for mathematical symbols,

Problem solving strategies and meaning in and out of schools

Street vendors develop, through their everyday working activities, a basic understanding
about the properties of our numerical system (see Nunes, Schliemann, & Carraher, 1993,
for 2 detailed analysis on street vendors strategies and understandings). Their failure in
school arithmetic is not duc to deficits in their ability to reason mathematically, but scems
to be rather related to failure in adopting the particular symbolic systems and conventions
taught by schools. As shown by T. N. Cartsher, Carraher, & Schliemann (1987) in their
analysis of the differences in an individual's problem solving strategics across situations,
the quality and effectiveness of mathematical reasoning seems 1o be closely related to the
naturc of the representations being used:  Out of schools people rely on oral mathematics;
in school written procedures are the rule.

The contrast between absurd results in school contexts versus correct results in work
contexts is a common feature of data by T. N. Carraher ¢t al. (1985), Grando (1988)., Lave
(1977). Reed and Lave. 1979), Schliemann (1985), and Schlicmann and Nunes (1990). These
and other studies arc rather consistent in showing that arithmetic algorithms traditionally
taught in schools to provide students with powerful general procedures are not always
helping them outside of classroom scttings and that strategies developed by people in
practical settings appcar to be more efficient than school algorithms.

As is often the case, students learn algorithms in schools as steps to be followed
automatically, without coasidering the implicit mathematical propertics and relations that
allow their construction. Algorithms arc meant to be cfficient and quick, thus reducing
the mental load involved in working out solutions. But speed and efficiency are school
a'gorithms® strength as well as their limitation since focus on the use of rules often lead to
answers  without considering the specific aspects of the situation involved.  Moreover,




focus on rules to be leamed without considering the implicit mathematical relations that
allow their construction usually leads to wrong steps when memory fails.

In contrast to school algorithms, the strategies developed by individuals as tools to solve
problems at work arc characterized by constant reference to the physical quantitics
involved, throughout the necessary computational steps, and by reliance on
transformations that take into account the properties of the decimal system.

It thus scems to be the case that everyday mathematics, although based on less powerful
oral strategies reveals understanding of mathematical principles and almost always lead to
correcl, meaningful answers. What about the limitations of cveryday mathematics? s
everyday mathematical knowledge context specific? Is it “concrete™ Can we hope that all
complex facets of mathematical concepts be deait with in cveryday settings?

The problem of transfer: What a difference a slight change in context makes

Several years ago Nadje Acioly and 1| carried out rescarch regarding Brazilian bookies that
work in what is known as the Animal's Game.

Among many other mathematical features, the game involves placing bets on diverse
permutations of anumbers (see Schliemann & Acioly, 1989, for a detailed description of the
mathematics involved in the game). A permutation is of course an arrangement (or an
arranging) of eclements accordicg to a particular order. We adapted permutation
conditions routinely used in the Animal Game 10 sce whether the bookics would gencralize
for cases with elements of diverse natures. For example, we thought that the set of
letters.{c. a. s. a}. which spell the word “house™ in Portuguese. would be secen as analogous
to the sct of numbers {1, 2. 3, 2]. Mathematically., the problems are isomorphic in the sense
that we can directly match propertics of one versioo !0 properties of the other.  However,
whai from our point of view appcared to be 4 trivial alteration (letters were used in the

place of numbers) tumed out to be not so trivial for some of the bookics. as the following
transcript makes clear:

Examiner: 1 want you to find out in hew many different ways you can arrange
the letters in the word CASA (show word written on paper) without lecaving any
letters out and without putting in any other letter.

Subject (who has just given the permutations for a sct of numbers): This one is
even harder (than with numbers) becauss 1 can't read.

E: But you don't have to read. 1 want you to tell me about how many diffcreat
ways you can change the position of these letters.

S: 1 c¢an’t to this.

E: What if you try to do it as in the Animal’'s Game?

S: This is very hard because reading is more difficult than working with
numbers. | know how to do a few calculations but [ don't know how to read.

E: What if you make believe that "C"™ is a number like "1% the "A™ a number like
"2", the “$* is number "3", and this “A" is number "2°  Couldn't you do it?

S: No, because one thing is different from the other.

(From Schliemann & Aciocly, 1989, p. 206).

The above dialogue puzzled us. How could it make a difference whether numbers or letters
were used? When we looked across the bookies. to sce what factors would predict how they
responded to such a task. we found an intriguing rclation to their level of schooling. Only
bookies with less than onc year of schooling failed to respond correctly to the letter
version. Cross-cultural studies of logical reasoning (Luria. 1976; Scribner, 1986} had
already shown that as little as one year of formal schoo! makes a difference in how pecople
dcal with logical reasoning tasks. But why is it so? Failurc to transfer is not specific to
illiterate people. In fact, in a follow-up analysis (Schliemann 1988) we found that many
college students were unsuccessful in noting the similarity between the letiers version




and what they had leamed in school about permutations. It thus seems that failure to
transfer among schooled or unschooled people is not simply a direct consequence of their
levels of schooling but is also rclated to the way they use their mathematical procedures.
Everyday procedures used by lottery bookies to determine the number of permutations in a
set of digits does not require working out the permutations but only to know how many
arrangements are 10 be found for a given set of numbers. Since tables listing the number
of arrangements for each possible set are available, they only have to memorize the
correct answers, without understanding the structure of task. In a way, they arc acting as
school ¢hildren when they memorize algorithmic procedures.

But would unschooled people show transfer of problem solving strategics if they have a
deeper understanding of their procedures? Schliemann and Nunes (1990) analyzed
transfer of strategies for solving proportionality problems among the patticipants of a
community of fishermen in Northeastern Brazil, In that community, the fishermen's
cveryday experience requires them to repeatedly compute the price of a certain number
of items to be sold, given the price of one item. Their understanding of proportional
rclations however appears to go beyond this repetitive procedure: they are able to invert
their procedures and compute the pricc of one item. given the price’ of more than one,
thus showing flexibility, one¢ of the characteristics of conceptual knowledge (Hatano,
1982). In this case, regardless of their levels of schooling, fishermen were also able to
transfer their procedures in order to solve proportionality problems relating guantity of
processed to unprocessed s2afood, a relationship they used to refer to in their activities but
where no computing problems ever occurred.

More recently Veronica Magalbdcs and 1 (see Schliemann and Magalhies, 1990 and
Schliemann & Carralier, 1992) provided a further analysis of transfer of strategies for
solving proportionality problems among unschooled people. We asked female cooks just
enrolled in an adult literacy class, or enrolled one year before they participated in the
study, to solve series of missing value proportionality problems. The problems involved
quantities in two contexts that were part of the subjects everyday expericnce (a sales
transaction context and a cooking context), and an unknown context of a pharmaceutical
mixture of ingredients. The cooks in one group were first given recipe problems, followed
by problems about prices. then by a repetition of the recipe problems, and finally the
medicine problems. A second group c¢ncountered the problems in the order price, recipe,
medicine, and recipe. Finally, a third group reccived the problems in the order medicine,
price, medicine, and recipe problems. For the first context encountered, while price
problems were nearly always precisely solved, only occasionally precise answers were
given for recipe and medicine problems: about half of the solutions for recipe problems
were ecstimates of quantities to be used and justifications tended to be rather informally
cxpressed, as in "l think that's cnough” or “That's how I do it"; for medicine problems
roughly onc-half of the answers were outright wrong answers that often appeared to be
obtained by guessing or by performing a meaningless operation upon the given
quantities.  Results for recipe problems in the second presentation context were strikingly
different from the first: the percentage of correct responses jumped from 18% to 61%. For
medicine problems presented after money problems. but before recipe problems, the
percentage of correct answers remained low (27%). However. after solving money
problems and recipe problems, the improvement for medicine problems was quite
remarkable (62% of correct answers).

As a whole. we can conclude that, although school experience may play a role in the way
people face problems in unknown contexts. mathematical knowledge developed in
cveryday contexts is flexible and general.  Strategics developed to solve problems in an
specific context can be applied to other contexts, provided that the relations hetween the
quantities in the target context are know by the subject as being related in the same
manner as the quantities in the initial context are,




Let’s now discuss the consequences of working with numbers to represent specific
measured quantities.

“Concrete" referents: Who needs them?

Out of school we use mathematics to reflect upon and to decide about situations involving
quantities or mcasures of objects and it is not patural to refer to pure pumbers or to
explore the relations between numbers by themselves. Young children (see Hughes,
1986), as well as adolescents and adults with restricted school experience (Schliemann,
Santos, & Canuto, 1992) typically do not understand what onec means by "How much is 4 plus
27", or "How much is 27 plus 197". If, however, the questions arc repbrased as "There are 4
bricks in this box. I'm going to put in it 2 more bricks. How many bricks there will be in
the box?", or as "If you had 27 cruzeiros and then someone were to give you 19 cruzeiros
more, how many cruzeiros would you have at the end?" they are able to work out correct
solutions, even though the physical objects (bricks. coins, or money bills) are not present.

One cxample of continuous use of refcrents in street mathematics is the street sellers
procedure 10 solve problems that are identified in schools as multiplication problems (sce
T. N. Carraher et al,, 1982, 1985; Nunes ct al, 1993). When computing the price of a certain
amount of the items they sell, starting from the price of one item, street sellers usually
perform  successive additions of the price of one item, as many times as the number of
items to be sold. This falls into what Vergnaud (1982) describes as the scalar approach for
solving missing value proportionality problems. In this case cach variable remains
independent of the other and parallel transformations that maintain the propertional
relationship are carried out on both of them. Another way to deal with proportionality
problems is the functional approach which focus on the ratio hetween the starting values

of the two variables and applies this ratio to find the missing value in the final pair
(Vergnaud, 1982).

Schliemann and Carraher's (1992) provide examples of the differences between street
sellers and school children's strategies for solving proporticnality problems.  Underlying
street  secllers’  strategy lies an  understanding of the rgelationship between the two
variables, number of items to be sold and price to be paid. as proportionally related.
However, although revealing preservation of meaning and understanding of proportional
relations, there secems to be limits to street sellers problem solving ability: When problems
are set in such a way that the relation beiween price and number of items (the functional
relation) is ecasier to be worked out than the relation between the starting and the ending
quantities (the scalar relation), school children most often focus on the functional
relation while street scllers continue to use the scalar strategy, even when this requires
more cumbetsome computations as in the following cxample:

Subject: Flévio, 13 years old ice-cream vendor for two and a half years.

E: 3 pens cost 9 cruzeiros. With 21 cruzeiros, how many pens can you buy?

S: 3 pens is 9 cruzeiros, 6 is 18, 1 pen is 3 cruzeiros. 18 10 21 is 3. 6plus 1 is 7. 7
pens cost 21 cruzeiros.

(From Schliemann & Carraher, 1992, p. 68).

1f. however, the starting amount is larger than the e¢nding amount, street sellers’
strategies (scc Carlos following cxample) are in clear disadvantage when compared with
school children’s ability to focus on the functional relation (as in Edson’s example below):

Subject: Carlos, a {3 year old chocolate vendor.
E. 21 chocolates cost 9 cruzeiros. How many chocolates can | buy with 3 cruzeiros?
S: (after a pause and after counting his fingers) 9 chocotates.

E: While you were solving it, you were thinking. Tell me now what were you
thinking about.

C: 9 plus 3 makes 12, 21 minus 12 makes 9.




(From Schliecmann & Carraher. 1992, p. 67).

Subject: Edson. 6th grader.

E: O erasers cost 3 cruzeiros. You want to buy 21 erasers. How many cruzeiros will
you need?

S: This onc is recally meant to get me. I 9 erasers cost 3 cruzeiros, then 21 erasers
cost (pause). This one looks like the other one. It is 7.

E: How did you find ou?

S: Because the triple of 3 is 9, and the triple of 7 ts 21. 3 times 3, 9. 3 times 7, 21.
(From Schliemann & Carraher, 1992, p. 68).

Another example of the limitations related to use of numbers with specific referents
concerns the understanding of multiplication as a commutative operation. Failure to
recognize the commutative law for multiplication among non-schooled subjects is
described by Petitto and Ginsburg (1982) among Diocula tailors and cloth merchants. For
addition and subtraction problems, their subjects could ecasily use associativity and
commutativity while solving the problems and their answers were nearly always correct.
For multiplication problems, however. they could solve a problem involving 100 x & by
adding 100 six times, but did not accept that the same result would apply for the
computation of 6§ x 100. Later Schiiemann, Araujo, Cassundé, Macedo, and Nicéas (1994)
found that, compared to school children who use multiplication, young street sellers whoe
use fepeated additions to solve multiplication problems show a developmental delay in
accepting the commutative law for multiplication.  When computing the price of many
items, given the price of one item, what makes sense to them is to add the number that
refers to price as many times as the number denoting how many items are to be sold. Thus
it seems inappropriate for many street sellers to consider multiplication on quantities as
commutative, that is, to add the number of items as many times as the price of cach one to

find the total price. even when this represents a great cconomy in addition have to be
performed.

However, despite their more powerful strategies for solving proportionality problems,
school children show a relatively high number of errors for problems where the quaatity
of items is stated a5 a number larger than the number referring to price. As discussed by
Schliemann and Carraher (1992), school children's difficulty lies in the loss of the
referent for the result of the ratio between the two starting quantities. They compute the
ratio but fail in identifying whether this denotes the price of one item or how many items
you can buy with one monectary unit.

Our review of everyday mathematics consistently shows that meaning is brought into
cveryday problem solving activities through constant presence of specific referents,  But
exclusive use of numbers with such situational referents imposes limits 10 mathematical
relaticns.  This brings us to a conflicting situation: to ensure that mathematical problems
are dealt with meaningfully. mathematical symbols should always be used in connection to
the physical quantities they represent. But what about generality and focus on
mathematical relations independently from specific physical referenis?  Shouldn't school
mathematics, even though recognizing the roots of mathematical understanding as deeply
related to physical referents, also aim at meaningful understanding of general
mathematical relations? What would then be the proper way to deal with the problem of
meaning in schools? Is it possible to develop activities where numbers and algorithms
become mezningful objects to be reflected upon even though they are not restricted to
links to specific everyday situations?

Can meaning he brought inte school mathematical activities?

The examples and results reported above show that the same cultural and social
environments that allow construction of mathematical knowledge also constrain and limit
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the kind of knowledge children and adults will come to develop. The analysis of the
strengths and limitations of e¢veryday mathematics lcad to the question of how can we
design better opportunitics for children to develop mathematical knowledge that is wider

than what they would develop outside of schcols, but that preserves the focus on meaning
found in cveryday situations.

As described by Resnick (1987) school! learning focuses on individual cognition, pure
thought activities, symbol manipulation, and general principles, while out of school
leaming is characterized by shared cognition, tool manipulation, contextualized reasoning.
and situation specific competencies.  Within out of school contexts mathematical principles
and propertics are tools to achieve goals that have practical and social relevance for the
individuals involved. We believe that this use of mathematics as a tool to achieve relevant

goals is the main characteristic of everyday mathematics that should inspire the design of
more appropriate school activities.

What follows is an cxample of an activity analyzed by D. Carraher and Schliemaan (1991)
in which children engage in discussion, use, and reflection about mathematical propertics
and symbols using their previous understandings and new discoveries as tools to play a
software gamec that was extremely motivating for them. An important feature of the
activity is that it secms to provide the proper environment for meaningful reflection
about mathematical rclattons and symbolic representations even though the objects

children deal with have no physical referents or material embodiments in the physical
world.

We know that, from their everyday experience in the context of sharing or distributing
things. cven young children understand the idea that the remainder is the part of the
original quantity that is left over. When computing long division results. however, the
meaning of the remainder is often a puzzle for school children. They do noi know what
quantity the reminder represents and they fail to understand how the remainder relates to
the decimai representation when divisions are performed in a calculator.

In the transcription to follow. Pedro and Tais have been working with Divide and Conguer,
a software designed by David Carraher (D. Carraher, 1991). The software is structored
around the division identity. that is, division with 2 remainder. (The basic idea bhehind
division with a remainder can be simply stated: any natural numbe-. A. can be expressed
as an integral multiple of any non-negative integer. B. added to some other integer, R,
such that A = B*Q + R, where Q is a panial quotient. For instance. the number 37 can be
cxpressed as an integral number of 8's, namely, four 8's plus the remainder, 5.) The
students’ involvement in the task is triggered by the puzzle they have to solve, namely to
break a code determining which of the 10 digits from O to 9 stands for each ome of 10
random letters displayed on the computer screen. To help them break the code they can
ask the computer to perform divisions with a remainder. The results shown by the
computer. however, are also partially coded according to the conventions of
ceyptarithmetic. The students must reflect upon the relations between the numbers
displayed in order to find out solutions.

In the following cxcerpt., Pedro and Tais are coming to realize that division in the Divide
and Conquer gamc docs not always give the same result as division by a calculator. Let us
listen to their discussion about the two types of division. They start with division with a
remainder. working within the limits of everyday multiplication and division where
nearly always only whole numbers are dealt with:

(Pedro and Tafs have just noted that 89 divided by 2 will yicld 44 remaainder 1 on
the computer.)

Interviewer: If [ divide (89 by 2) on the calculator 1 get the same answer.
right? (pointing to 44.5 on the calculator).




Tais (shaking her head): No, I think that (on the computer) 1 was left over and
here (pointing to the right part of the answer, that is, to .5) it's half of one.
Interviewer: This point-five is half of one?... Do you think it's the same thing,
Pedro?

Pedro: (is) five half of one? Does one have a half?

Interviewer: Explain it to him Tafs.

Tais: | thought like this. Here (in Divide and Conquer) it gave 44 with 1 left
over and there (on the calculator) this point-five is one half. Forty four and
onc half and (the computer) had forty four remainder one.

Pedro: Ah!. Now 1 get it. One half of 1 is onc-half and that's equal to 5. (Pedro
seems to be x uncertain about the mecaning of the 5 in the present context but
is willing to agrec with Tais that it means onec-half).

Interviewer (moving to another example): And now, 80 divided by 7...gave 11
remainder 3 (on the computer). Now let's try it out on the calculator.

Pedro (transposing the former cxample literally to the case at hand) It's going
to be point, um. five.

Interviewer:  Why arc you telling me it's going to he {eleven) point five?
Pedro: Because half of three is one and a half.

{(Calculator shows 11.428571 as the answer),

Pedrq: This thing here (428571) is half of three.

Interviewer: Really?...Are we dividing in half or not? (..) lsn't the problem 80
divided by seven?

Tafs: T can't ecxplain that.

Pedro (persisting): It must be half of 3.

Tafs: No way! All this ((428571) can't be half of 3.

Pedro: S0..7 [ though that this here (.428571) taken three times would give 3,
but that's not right.

Second laterviewer {(continuing): So where does this (.428571) come from?...
Stwudents: (no reply)

First Interviewer: You are saying that that is a little piece of three, but what
piece is it?

Pcdro:  That 7 has got to have something to do with it.

E: What do you think it has to do with it?

Pedro: This here (.428571), seven times, gives us the 3.

{From D. Carraher & Schliemann. 1991, pp. 28-29).

What is going on here? Is the problem meaningful for Pedro? 1t seems that we nced to be
careful about gencralizing. Pedro stumbles at a number of points in the interview. For
cxample, hc secems not to understand much about the notation for the decimal fraction that
curresponds to 3/7. That is, he does not seem comfortable with decimal notation. However,
he clcarly has some¢ understanding and, despite this limitation, Pedro seems to  have
discovered that the fractional pam of the quotient, when multiplied by the divisor, will
return the value of the remainder of integer division, therefore relating division with a
remaindzr to long division. He would certainly not explain his understanding in these
terms.  He seems to be explaining only a particular case. But his explanation draws upon,
or pcrhaps, better. is assembled from a more general sort of knowledge.  There are
inseparable aspects of concrete and abstract thinking going on, Even if Pedro does not yet
understand all the conventions involved in the decimal number notation. he now grasps
the relationships among the mathematical objects involved in the two -notational systems,
He achieves this in part through his own cfforis but also due to the collaboration and
s:affolding provided by his colicague ard the interviewers.

This cxample helps us in fhe analysis of the links between everyday and school
mathematical knowledge.  As happens ia everyday life, the situation was meaningful and
challenging for the children, triggering, in Hatano and Inagaki's (1992) terms, motivation
for comprehension, The interviewers and cach child's quesuons, comments. and
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suggestions as well as the goals of the activity provided the social setting for reflection and
discussion.  Children profited from their previous undersiand of division with remainder,
an understanding that is compatible with the characteristics of cveryday multiplication
and division wherc whole numbers predominale and values smaller than one are avoided.
The questions posed by the interviewers and the use of a calculator to help their
computations, however, required them to go beyond their cveryday experience and their
previous understandings in order to relate what they knew about division with a
remainder to the conventions for representing decimal numbers.

As the abovc dialogue scems to show, numbers without explicit reference to physical
objects or their associated quantities can nonetheless be meaningful. It is not clear
whether numbers ever become (otally unfinked from the concrete circumstances
associated with their emergence as mathematical objects, It is possibic that even
sophisticatcd mathematicians maintain ccrtain ties to physical quantitics and actions uponr
physical quantities. However, [ think it is likely to" he the case that objects formerly
intimately attached to specific situations can gradually become functionally autonomous.
That is to say. a student should be able to reflect upon and manipulate the newly cmerged
objccts without having to constantly refer back to the circumstances in which they were
initially introduced. Schools would appear to play a decisive role in this process by
gradually removing supports initially cssential for the representation of certain relations
and also by providing notation and other external representativns that allow the bnew

conceptual objects to be discussed and otherwise acted on in ways clear to oneself and
others.

Bringing everyday resources into new understandings: Graphs,
Zefinha, and the presidential elections

But recognizing the importance of schools does not diminish the importance of the prier
knowledge students bring into mathematics instruction from their vast and rich
experience from daily life outside the classroom. We may have underestimated, in past
studies of everyday mathematics, the fundamental role of schools. But this does not mean
that people have fewer resources than we supposed. In fact, 1| believe that everyday
mathematics constitutes an even far broader and deeper source of knowledge and intuition
than we had originally thought. Let us consider a final example to explore these points.

Throughout discussions and analysis of data with David Carraher, Steve Monk, Ricardo
Nemirovsky. Tracy Noble, Cornelia Tiemey. and Tracey Wright. we came to the conclusion
that, although most everyday mathematics studies have focused on arithmetic, there are
reasons (0 suppose cveryday situations. even though pot including ditect experiences with

graphs, provide people with ‘esources that could be relevant to the understanding of
graphs.

Graphs are conventional symbolic systems often misundersiood even by advanced
students.  Traditionally teaching how 1o construct and interpret graphs is conceived in
terms of methods to represent quantities according to certain rules.  Recent research on
how children and adolescents com: to understand graphical information show, however,
that people bring into the task of understanding information in graphs a wealth of
previous experiences, knowledge. and intuitions that allows them to construct meaning for
graphical representation without receiving specific instruction on how to plot points in a
two-dimensional space (see Monk & Nemirovsky, in press: Nemirovsky, 1994; Tierney.
Nemirovsky, Wright, & Ackerman, 1993),

The opportunity to discuss graphs with people with restricted school background
happened on Aug. 20, 1994, when the Jomal do Brasil published the results of several
months of opinion polls conceming Brazilian presidential clections to be held in October
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of that year. The results were displayed in line-graph format, with one line
corresponding to cach of the candidates. The x-axis displayed the dates of the polls; the y-
axis displayed the percentage of votes going to candidates. A drawing of cach candidate's
face appeared to the right side of his graph line and, along cach line. the percentsge of
vote intentions attributed to ecach candidate was displaved at ecach point. The two
candidates leading the polls were Lula and Fernando Henrigue, with the other candidates
far behind. For the seven polls from March to August (with two of them in July), Lula's
percentages were 28, 35, 41, 36. 34, 30, and 27. Fernando Henrique's corresponding
percentages were 7, 16, 17, 17, 20, 29, and 40. The consistent improvement of Fermando
Henrique's performance over the months culminates in a switch that was still unknown to
many: Lula is no more the favorite candidate as was the case for the !ast five months, but
Fernando Henrigue is ahead of Lula (40% vs. 27%).

D. Carraher, Schliemann, and Nemirovsky (in press) describe one of the interviews |
conducted and show how, with very limited school cxperience and no training on
graphical representation, one can make sense of graphical information. The subject
interviewed is Zefinha, a member of the cleaning staff of a Brazilian University., who had
attended school for nv more than three ycars and did not know that Lula, her candidate,
was no more leading the polls.

1 first explained to Zefinha that the lines in the graph were telling us who the people were
saying they would vote for and that cach line represented the votes each candidate was
getting.  Let's see how Zefinha reactcd when I asked her to tell me what she thought the
lines in the graph were saying:

Interviewer:  ..What do you think these lines are saying?
Zcfinha (without looking at the graph): They're saying that Lula’'s going to

win.

I: We're rooting for him, right?

Z: Yeah, me too.

I: Now tell me why do you think the line says he's going to win.

Z. (again, not paying attention to the graph): Because there's no doubt that
he'll win.

As oac can see, her initial interpretation does not take into account the information on the
graph but is rather the expression of her belief and wish that Lula would win. When I
asked her to point out in the graph what showed that Lula has morc votes she does some
visual search along the lines in the graph and points to the endpoints (27 and 28) of Lula's
line. In doing so., she scems to be grasping the general visual features of the graph and
stressing, as was the case with another pilot subject, the idka that the whole trajectory
counts. 1 then asked her to make systematic comparisons beiween the results for Lula and
for Femando Henrique for cach poli date, Zefinha casily makes these comparisons:

When Lula had 28, where was Fermando Henrique?
Femando Henrique had 7.

I: Lula was way out fromt, right?

Z: That's what I want, for him 10 move ahead.

[ Here (in May’s column) Lula has how much?

Z: Lula has 41,

E: And Femando Henrique?

Z:17.

[: (Pointing to the x-axis first date) This was in March. Do you sce? In the

month of March, Lula was in front (em frente) and Fernando Henrigue was

below (em baixo).

I:  And afterwards? Lula, here (in May), for example?

Z: 4]

I: He went up, huh? Now Fermando Henrigue was here,




Z: 17

As we approached the most recent polls Zefinha must take into account data that are
against her wishes:

I: What happened here (pointing to the number 34 in the first July poll)? Lula
had here (in May) 41. What happensd by the time he got here?
Z: He went to 34.

I: He lost a little?

Z: Yeah.

I: But is he still in front?

Z: But be’s still in front; he still has 28 (Lula’s ratings in March poll) and this
one 27 (August poll).

I 27.

Z: And this 27 is Lula’s...And he (Femando Henrique) has 40.

Consistent with her previous indication that the whole line shows how well a candidate is
doing, she seems to interpret the points in the lines as belonging to a candidate: Lula has
28 from March, "and this 27 is Lula's... and he (Fermando Henrique) has 40".  This
interpretation is not an absurd one and would be correct if we were, for instance,
discussing the number of goals accumulated by the Brazilian tcam along the different
games in the tast world soccer championship. But for the clection polls the only results
that counts are the final results. This is what Zefinha will have to realize next as she tries
to focus on August’s results, the time when Lula is no more leading the polls:

I: (Pointing to the last results) This is in August.

Z: In August.

[: Now in August, who's in front? Lula or Femando Henrique? ...

Z: In August? (Zefinha explores the graph and turns to the bottom line)

Fernando Henrique is here! (points to a lighter blue line at the bottom of the
graph).

Once more Zefinha tries to find features in the graph that would support here view that
Lula is winning. From the comparisons along the different months she now seems to
grasp that the last results arc thc oncs that really matter. She also knows that lower lines
indicate poorer performances. As a last resource to support her wish that Lula is winning
she looks for Femando Henrique's data therc. The interviewer explains that the bottom
lines refer to the other candidates and that what matters arc the two top lines. Zefinha
iinally realizes that her candidate is behind:

Z: It’s Lula, Obh no! (with exasperation). It's Fernando Henrique?! No, but 1
don't wan: Femando Henmrique to win!

I:  (Empathetically) But it'll change back again.

Z: (Now paying close atiention to the fact that Femando Henrique's line ends

above Lula’s) Because by this alignment it's Fernando Henrique that's above
(“em cima").

Note that, although upset about the situation, Zefinha accepts that this is the information
depicted in the graph. | then asked her to explam what should happen in September for
Lulsa to win. She first answers that everyonc should go out and work for morc votes for
Lula and then attempts to explain what she would like to scc happening in the graph:

Z: This little line has to give more votes, it has to go up more numbers.
I: It's like this. So where do we want it to go? Show me.

Z: Wec want it to go up like that (tracing the end segment of Femando
Henrique's graph).

[: It has to go up. And what do you want to happen to Femando Henrique's
line? ’

Z. 1 want Femando Henrique's line to stay undemecath his (Lula’s),

(From D. Carraher, Schiiemann, & Nemirovsky, in press).




This is a good example of what Ricardo Nemirovsky calls “fusion™ in understanding
graphs. When Zefinha states that “This little line has to give more votes, it has to go vp
more numbers”, she is fusing certain properties of the graph with the properties of the
events she would like to see taking place: the graph serves as a metaphor for expressing
trends and relations regarding voting preferences and voting trends can be expressed
through the spatio-geometric properties of the graph. The interview also provides hints
about how mathematical knowledge can be developed through reflection about the
characteristics of new systems of representation by bringing into play previous
knowledge, experiences, and beliefs, even when they do not directly correspond to the
specific features of the case under discussion. Without previous formal instruction on the
conventions of graphical representation, during the course of a 10 minute interview,
Zefinha worked out many issues concerming how cvents can be represented through the
visual and numerical characteristics of the graph. In this process she constantly brought
into play her wishes and beliefs about the political campaign, as well as previous everyday
knowledge. But in this case we are not talking about everyday knowiedge acquired
through specific experience with graphs. but rather about everyday knowledge that is
more general and refers to an individual experiences and understandings about spatial
relations. time flow, language, number properties, etc.

Implications for teaching: What to do in schools?

The contribution of school instruction to the development of more complex approaches to
mathematical concepts and representations is an important one for many reasors. Schools
can provide a2 much wider range of situations and tools for use of matheroatical concepts
and relations, allowing for children to explicitiy focus on these from different
perspectives.  Schools also provide access to a variety of symbolic representations such as
written symbols, diagrams, graphs, and explanations, which constitute opportunities for
children to establish explicit links between situations and representations that would
otherwise remain unrelated. It is in schools that children can come to wunderstand
mathematical concepts as belonging to. in Vergnaud's (i990) terms, conceptual fields.

The general recommendation that is frequently put forward when the relevance of
everyday mathematics to school mathematics is considered has been that we should star
from what children alrecady know. But how would we proceed to take them to develop new
strategics and new understandings? How can we henefit from what children already know
avoiding, at the same time. limitations that are typical of the everyday cultural situations
where cognition takes place? To bring to the classroom problems that can be related to
their everyday practice does not scem to be the answer since these will also be limited and
will not help exploring new facets of mathematical knowledge which are not part of

cveryday situations. Moreover, once transposed to the classroom cultural setting the
problem is no more the same.

The available rescarch data suggest that, for meaningful learming to take place in the
classroom, reflection upon mathematical relations must be embedded in meaningful
socially reclevant situations where mathematics is used as tools 1o achieve relevant goals.
But mcaningful situations are not and maust not be restricted to those that take place in out
of school environments. School meaningfu! situations must allow for a wider variety of
concepts and discovery of features that are not usually involved in street situations. We
need school situations that are as challenging and relevant for school children as getting
the correct amount of change is for the street seller and his customers. And such situations
may be very different from cveryday situations.

We provided cxamples of how children or adults can be challenged 10 use and understand
mathematical principles and properties in situations that are very far from the everyday
situalions they cope with. The problems to be dealt with by Tals and Pedro were rather
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abstract since, differently from everyday situations, numbers were being used without
specific  referents. The situation, however, allows for discussion and discovery of
mathematical properties as they are used as tools to break the code in a game, a goal that
was genuincly challenging for the students participating in the activity. In the second
example we showed that one can come to understand new systems of representation
bringing previous knowledge and beliefs to situations that are not related to  specific
everyday work cxperiences. We showed how, without specific formal instruction related to
the conventions used in graphs one can understand the information depicted in a grapk
when the facts under discussion are relevant enough to involve one’s sense making
resources in the search for understanding.

h is by bringing previous "adequate” or “inadequate” knowledge into the process of scase
making of new situations that people come to develep more advanced mathematical
understandings.  Therefore, the answer to what to do in mathematical classrooms is not to
design teacking activities that are copies of everyday activities, even if. in the classroom,
one aims at profiting from the positive aspects of everyday understanding and use of
mathematical knowledge avoiding. at the same time, the limitations imposed by the specific
characteristics of everyday situations. It seems rather that both the “adequate™ and
“inadequate” conceptions that people bring from their everyday experiences are important
steps towards the development of new mathcmatical concepts.  Classroom  activities should
therefore aim at engaging students in using all of their resources in order to understand
new situations. And these new situations, most often, arc not the ones to be found outside of
schools.

Can we dream of schools where students are permanently engaged in bringmg into play ali
of their cognitive resources to understand new procedures, new symbolic systems, new
mathematical relations? It is certainly not an casy task. But together, teachers and
rescarchers in mathematics cducation arc getting closer and closer to make the dream

come true.
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This paper addresses the development of mathematical thinking from
elemeniary beginnings in young children 10 university undergraduate
mathematics and on 1o mathematical research. It hypothesises that
mathematical growth staris from perceptions of, and actions on, objects in
the environment. Successful “perceptions of' objects lead through a Van
Hiele development in visuo-spatial representations with increasing verbal
support to visually inspired verbal proof in geometry. Successful “actions on”
objects use symbolic representations flexibly as “procepts” — processes to
do and concepts to think about — in arithmetic and algebra. The resulting
cognitive structure in elementary mathematical thinking becomes advanced
mathematical thinking when the concept images in the cognitive structure are
reformulated as concept definitions and used to construct formal concepts
that are part of a systematic body of shared mathematical knowledge. The
analysis will be used to highlight the changing status of mathematical
concepts and mathematical proof, the difficulties occurring in the transition io
advanced mathematical thinking and the difference between teaching and
learning the full process of advanced mathematical thinking as opposed to the
systematic product of mathematical thought.

Perception, theught and action

I find it useful to separate out three components of human activity as input (perception),
internal activity (thought) and output (action):

perception = 1 thought | - action

inpel internal processing ourput

This simple observation allows us to see mathematical activities as perceiving objects,
thinking about them, and performing actions upon them. 1 shall begin by considering
input and output before moving on to the nature of the intemal processing.

Input and output - objects and action

Elementary mathematics begins with percentions of and actions on objects in the
cxtemal world. The perceived objects arc at first seen as visuo-spatial gestalts, but then,
as they are analysed and their properties are teased out, they are described verbally,




leading in turn to classification (first into collections, then into hierarchies) the
beginnings of verbal deduction relating to the properties and the development of
systematic verbal proof (Van Hiele, 1959).

On the other hand, actions on objects, such as counting, lead to a different kind of
development. Here the process of counting is developed using number words and
symbols which become conceptualised as number concepts. This leads to fundamentally
different kind of development, described by Piaget, as follows:

... mathematical entitics move from one level to another; an operation on such “entities”
becomes in its wrn an ohject of the theory, and this process 1s repeated untl we reach
structures that are altemately structuring or being structured by “stronger’” structures.
(Piaget, 1972, p. 70)
Such an idea has led to a number of theories which highlight the duality of process and
concept. Davis (1975) noted children may not distinguish between the name of a symbol
and the underlying process. Skemp (1979) proposed a general “varifocal theory” in
which a schema seen as a whole is a concept and a concept seen in detail is a schema.
Greeno (1983) focused on the notion of “conceptual entities” which may be used as
inputs to other procedures. More recently. Dubinsky (1991) speaks of encapsulation of
process as object, Sfard (1991) of reification of process as object, and Gray & Tall
(1994) see the symbol as pivot between process and concept—the notion of procept.

The two sequences of development beginning with object and action are quite distinct.
I therefore hypothesise that, rather than view growth in elementary mathematics as a
single development in the manner of a neo-Piagetian stage theory, an alternative theory is
to see two different developments which occur at the same time. One is visuo-spatial
becoming verbal and leading to proof, the other uses symbols both as processes to do
things (such as counting, addition. multiplication) and also concepts to think about (such
as number, sum, product).

It is interesting to note that these devclopments can occur quite independently. The
Ancient Greeks developed a theory of geometry (including geometric constructions of
arithmetic) v.ithout any symbolism for algebra and arithmetic, and it is possible to
develop arithmetic and algebra without any reference to geometry. However, many
useful links have been made between visual and manipulative symbolic methods and it is
clearly opportune to take advantage of them to develop a versatile approach which uses
each to its best advantage.

In the advanced stages of such a development, certain subtle difficulties occur which
mean that advanced mathematical thinking must expunge itself of possible hidden
assumptions that occur when visual ideas are verbalised. In the nineteenth century a
number of flaws became apparent in Euclidean geometry and theoretical developments
in algebra (such as non-commutative quaternions) were over-stretching simple beliefs in
the manipulation of symbols. Research mathematics took a new direction using set-
theoretic definition and logical deduction. Theorems inspired by geometric perception
and symbolic manipulation were reformulated to give a new axiomatic approach to
mathematics that led on to greater generality.




This theory is also flawed. The axiomatic method asks us to write down finite lists of
set-theoretic definitions and axioms and to deduce theorems in a finite number of steps.
But if we do this with an infinite set, such as the natural numbers, Godel showed that
there are theorems that must be true but which cannot be proven in a finite number of
steps. Essentially, there will always be “toco many theorems™ to prove. Thus the existence
of a systematic body of formal mathematical knowledge is not the final quest in
mathematics, although it does offer a vital foundation upon which even more
sophisticated ideas can be built.

Advanced mathematical thinking today involves using cognitive structures produced
by a wide range of mathematical activities to construct new ideas that build on and
extend an ever-growing system of established theorems.

The cognitive growth from elementary to advanced mathematical thinking in the
individual may therefore be hypothesised to start from “perception of” and “action on”
objects in the external world, building through two parallel developments—one visuo-
spatial to verbal-deductive, the other successive process-to-concept encapsulations using
manipulable symbols—Ileading to a use of all of this to inspire creative thinking based on
formally defined objects and systematic proof (figure 1).

Internal processing and external representations

The cognitive growth that occurs in mathematics is implicitly designed to make
maximum use of the facilities available to fomo sapiens. The two parallel developments
described relate to the complementary roles of perception (input) and action {output). In
between is the internal mental processing which is far more difficult to describe and
analyse. Crick suggests that:
The basic idea is that early processing is largely parallel — a lot of different activities
proceed simultaneously. Then there appear to be one or more stages where there is a
bottleneck in information processing. Only one (or a few) “object(s)” can be dealt with at a
time. This is done by tcmporarily filtering out the information coming from the unatiended
objects. The attentional system then moves fairly rapidly to the next object, and so on, so

that attention is largely serial (i.e.. attending to one object after another) not highly parallel
(as it would be if the system atiended 10 many things at once). (Crick, 1994, p. 61)

Brain activity therefore has two highly contrasting features:

* a huge store of experiences and simultaneous activity,
+ asmall focus of attention,

(where the latter need not be a place in the brain to store items as in a computer but a
mental activity which is temporarily linked to conscious thought processes).

To minimise the cognitive strain it is essential to do two things:

s compress knowledge appropriately for the small focus of attention,
» construct linkages to other mental data to make it casy to usc.

The first is an essential characteristic of mathematics:
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Figure 1: Outline cogniuve development from child 1o research mathematician

Mathematics is amazingly compressivle: you may struggle a long time, step by step, to work
through some process or idea from several approaches. But once you really understand it
and have the mental perspective 1o see it as a whole, there is often a wremendous mental
compression. You can file it away, recall it gquickly 2nd completely when you nzed it, and
use it as just one step in some other mental process. The insight that goes with this

compression is ane of the reai joys of mathematics.

(Thurston, 1990. p. 847)

It is achieved in a variety of ways—routinising processes so that they occupy little
conscious attention, using pictures to allow the viewer to focus at whatever level and on
whatever detail is desired, and using words and symbols (particularly procepts) to

compress the notation into small, mentally manipulable entities.

The second involves the development of concepinal knowledge with many links to
maximise retrieval. This also involves concept-process links enabling the successful
individual to carry out mathematical procedures to find answers to problems. However, if
the mathematics places too great a cognitive strain, either through fatlure to compress or
failure to make appropriate links, the fall-back position resorts to the more primitive
method of routinising sequences of zctivities —rote-learning of procedural knowledge.
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The status of mental objects

In cognitive growth, the mental objects we think about are constructed in several
different ways, each having a different status. The visual objects we see are direct
perceptions of the outside world, or rather, our own personal constructions of what we
think we see in the outside world. Later in geometry, objects such as a “point” or a “line”
take on a more abstract meaning. A point is no longer a pencil mark with finite size (so
that a child may imagine a finite number of points on a line segment (e.g. Tall, 1980)),
but an abstract concept that has “position but no size”. A straight line is no longer a
physical raark made using pencil and ruler, but an imagined, perfectly straight line, with
no thickness which can be continued as far as required in either direction. In Euclid, a
line is defined as “breadthless length™ and a straight line “lies evenly with the points on
itself”. These words do not define a straight line in any absolute sense, but they help to
convey the meaning of the perfect Platonic object which we may “see” lying behind any
inadequate physical picture. As Hardy observed:

Let us suppose that I am giving a lecture on some system of geometry, such as the ordinary

Euclidean geometry, and that Idraw figures on the blackboard to stimulate the imagination

of my audience, rough drawings of straight lines or circles or ellipses. It is plain, first, that

the truth of the theorems which [ prove is in no way affected by the quality of my drawings.

Their function is merely to bring home my meaning to my hearers, and, if I can do that,

there would be no gain in having them redrawn by the most skilful draughtsman. They are

pedagogical illustrations, not part of the real subject-matter of the lecture.
(Hardy. 1940/1967, p. 125.)

The mental “objects” constructed by process-object encapsulation have a very different
status. As Dorfler suggested:
.. my subjective introspection never permitied me to find or trace something like a mental
object for, say. the number 5. What invariably comes to my mind are centain patiems of dots
or other units, 2 pentagor., the symbol 5 or V, relations like 5+5=10, 5*5=25, sentences like
five is prime, five is odd, 5/30, etc., etc. But nowhere in my thinking I ever could find
something object-like that behaved like the number § as a mathematical cbject does. But
nevertheless T deem myself able to talk about the humber “five™ without having distinctly
available for my thinking a mental object which 1 could designate as the mental object “5".
(Dérfler, 1993, pp. 146-147.)

In terms of the notion of concept imuge of Vinner (Vinner & Hershkowitz, 1980), there
is no conflict here. Within our mental structure we have both recognition structures that
recognise, say, the perceptions of a physical object, such as a drawing of a triangle, and
we also have connected sequences of mental actions that are triggered to carry out
processes in time. The concept image of a procept uses the symbol to links to suitable
processes and relationships in the cognitive structure. Thus, although we may not have
anything in our mind which is like a physical object. we have symbols that we can
manipulate as if they were mental objects.

I do not believe in my own case that I have things in my mind that correspond to
visualisations either. Despite working for many years on visualisations in mathematics in
which 1 can produce good external pictures on the computer screen to represent
mathematical concepts, the pictures | conjure up in my mind are very different from the




external representations. It is different with words. As I type this, I can hear the words in
my mind and if I start saying them as I type, what I hear out loud is what I hear in my
head. But homo sapiens has no “picture-projecting facility” for communication in the
same way as it has a verbal “sounc-making facility™.

I have a theory therefore that when we visualise, we use not “picture-making”
facilities, but “picture-recognising facilities” which we have in plenty. We have many
structures that resonate with incoming visual stimuli to recognise them and we simply
use these recognition’s to attempt to build up our visuo-spatial imagery. The result is a
vague “sense” of a picture. Certainly in my case it is vague. I do not know what you see
when you think of a visualisation, perhaps you see an eidetic image in full colour. Then
again, what we all see may be just the emperor’s new clothes!

Many mathematicians say that they think in “vague” visuo-spatial ways as a
springboard for more abstract thinking. Hadamard (1945) reported that most of the
mathematicians he consulted did so. In his own case he even saw formulae in this way:

I see not the formula iself, but the place it would take if written: a kind of ribbon, which is
thicker or darker at the place corresponding to the possibly important terms; or (at other
moments), I see something like a formula, but by no means a legible one, as I should see it
(being strongly long-sighted) if I had no eye-glasses on, with letters seeming rather more
apparent (though still no? legible) at the place which is supposed to be the important one.
(Hadamard, 1945, p. 78.)

Representations

In considering the kind of mental “objects™ we have in different mathematical contexts, it
is interesting to return to the ideas of Bruner (1966) who formulated his theory of three
different types of representation of human knowledge:

s enactive,
* iconic,
* symbolic.

One of these is essentially a physical process (enactive) whilst the other two produce
physical objects that are drawn or written! (iconic, symbolic). Iconic representations
drawn by hand, such as a free-hand graph. also have enactive elements in them,
suggesting a broader “visuo-spatial’” concept. (For instance, one senses enactively that a
“continuous” graph going from negative to positive must pass through zero.)

Symbols as procepis in arithmetic, algebra etc., also have dual process-object
meanings. This in turn suggests that the symbolic mode of presentation needs
subdividing as Bruner himself hinted when he mentioned, “language in its natural form”
and the two “artificial languages of number and logic”, (Bruner, 1966, pp. 18, 19).

Natural language occurs throughout mathematics to set the mathematical activity in
context. In the visuo-spatial to verbal development, natural 1anguage becomes a vehicle
for describing iconic images and formulating proof. It can also be used to describe

UVerbal symbolism can, of course, also be spoken, bul the writien word has great value asa permanent record thal can be
scanned and refiected upon.




properties of numbers, for instance, that addition is commutative because it is observed
to be always independent of the order (a fact easier seen by visualising the change in
order than carrying out the counting procedure—a valuable use of the interrelations
between visual and symbolic.) Meanwhile the “artificial language of number” has mental
objects which are procepts and the “artificial language of logic” in advanced
mathematics has concepls which are formally defined.

It is essential to distinguish between elementary mathematics, (including geometry)
where objects are described and advanced mathematics where objects are defined. In
both cases language is used to formulate the properties of objects, but in elementary
mathematics the description is constructed from experience of the object, in advanced
mathematics, the properties of the object are constructed from the definition—a reversal
which causes great difficulties of accommodation for novices in advanced mathematical
thinking.

This gives a range of different types of representation in mathematics, including:

* enactive (physical process),
* iconic (visual),

and three forms of symbolic representation:

+ verbal (description),
+ formal (definition),
s proceptual (process-object duality).

The notion of “procept™ helps in the analysis of cognitive difficulties related to
symbolism. When Eddie Gray and 1 first coined the term I felt, in a moment of self-
doubt, that all we had done was to give a name to something that was well-known to the
mathematics education community. Subsequently 1 realised it was more. By giving it a
name, we had essentially encapsulated the process of encapsulation. This enables us to
discuss different kinds of encapsulaticen in different contexts and to see how learners face
cognitive difficulties when procepts behave differently in different contexts.

For instance, in the development from the process of counting to the number concept,
the sequence of number words initially only function as utterances in the schema of
pointing and counting, but then the 'ast word becomes the name for the number of
objects in the collection. In arithmetic of whaole numbers, symbols such as 4+3 initially
evoke a counting procedure (count-all) which is then compressed via “count-on™ (which
uses 4 as a number concept and +3 as a count-on procedure) to a “known’ fact where
4+3 is the number 7. In this encapsulation there is a new concept, namely the sum, 4+3,
but it relates to a known object (the number “7"). However, for the process of equal
sharing for 3/4 (divide into four equal parts and take three) to be encapsulated requires
the construction of a new mental object — a fraction. Hence the considerable increased
difficulty with fractions as a succession of encapsulations and mental constructions.

Arithmetic procepts such as 4+3, 3x4, have a built-in algorithm to compute the result,
which children come to expect. Such procepts are genuinely operarional, in the sense




that one can operate on them to get an answer. But in algebra, procepts such as 4+3x
certainly have a process of evaluation (add four to three times x) but cannot be evaluated
until x is known. Such symbols are termed remplare procepts, in that they are templates
for operations which can be evaluated only when the variables are given appropriate
values. However, the symbols can still be manipulated as objects, in simplifying,
factorising, solving equations, and so on. The shift in focus from the symbolism of
arithmetic where the aim is to obtain numerical answers to the manipulation of template
procepts in algebra is one which causes severe difficulties for many learners.

Likewise, in the beginnings of calculus there are symbols which act dually as process
and concept. For instance, the limit procept:

Li !(X'}'h)—f(x)
S

dually represents both process (as h gets small) and concepr (the limit itself). This
causes further difficulties because it is not computed by a finite set of calculations
{Cornu, 1991). Instead, in a specific case such as flx)=x2, first the simplification is
performed assuming A0, then the final result is computed by setting h=0. For other
expressions this confusing limit process soon becomes too complicated and derivatives
are computed by a collection of rules.

The limit concept causes great difficulties for students (Cornu, 1991, Williams, 1991).
The majority seem to continue to treat a limit as a process getting close rather than a
concept of limit. The usual default behaviour to cope with lack of meaning is to use the
rules of differentiation procedurally. It at least has the familiar quality that it is an
algorithm giving a result, albeit a symbolic one, making the limit procept operational.

Figure 2 uses this analysis of different forms of representation to show how they
feature in different mathematical topics. It outlines the visuo-spatial to verbal
development in geometry, the proceptual development in arithmetic and algebra, and the
relationships between them in measurement, trigonometry and cartesian coordinates.

At the top of the figure are the subjects which begin the transition to advanced
mathematical thinking. All of these require significant cognitive reconstructions.
Euclidean proof requires the realisation of the need of systematic organisation, and
agreed ways of verbal deduction for visually inspired proof (the use of congruent
triangles). The move into calculus has the difficulties caused by the limit procept. The
move into more advanced algebra (such as vectors in three and higher dimensions)
involves such things as the vector product which violates the commutative law of
multiplication, or the idea of four or more dimensions, which overstretches and even
severs the visual link between equations and imaginable geometry.

The transition in all three subjects therefore requires considerable cognitive
reconstruction involving a struggle to understand. However, there is an even greater leap
to be made in advanced mathematical thinking to formal definitions (which changes the
status of the objects being studied) and formal deduction (which changes the nature of
proof). To see just how much change is required, let us briefly look at how the nature of
proof is dependent on the representations available and on the mathematical context.
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Figure 2: Actions and objects in the building of various mathematical knowledge structures
The Status of Proof

Given different types of representation and different ways of thinking about them, it
follows that there are likely to be different kinds of proof. In the enactive mode, proof is
by prediction and physical experiment: to show two triangles with equal sides have equal
angles, put them one on top of another and cee. In the iconic mode, a picture is often seen
as a prototype, that can be thought of as representing not only a single specific case, but
others in the same class. The picture in figure 3, which demonstrates that four times three
is three times four will work for any other whole numbers and so may be visualised as a
generic proof that whole number multiplication does not depend on the order:

4lots of 3
e e,

Figure 3: Multiplication is independent of order

3 lows of 4

Visual proofs, however, begin to fail when pictorial prototypes cease to represent the full
meaning of the class of objects to which the proof refers. For instance, the difference
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between real numbers and rational numbers is difficult to represent visually (although I
simulate it in some of my own software for schools, (Tall, 1991)). Here are two pictures.
The one on the left is of a continnous function on the rationals (the formula reads “if
x2>2, then the value is 1 else it is -1, on the domain where x is rational). The one on the
right is the real function taking the value xx?-1)+1 if x is rational, and 1 if x is
irrational. It is continuous only at x=—1, 0 and 1. (It is even differentiable at x=0.)

2 2 2
weifi(x >2,1,-1) domainl{ratixd) weffCrati{x),x (x =13+1,2)

2

Figure 4: The first function is continuous, the second continuous at -1, 0, 1.

Developing meaning for pictures so that they give correct intuitions is a sophisticated
business, which is even more difficult to turn into formal proof. However, for some
professional mathematicians visualisation gives valuable insight in the sense of Dreyfus
(1951), whilst others, aware of the possible pitfalls, distrust them completely.

Verbal proof depends on the context in which it occurs. For instance, in Euclidean
geometry it is essentially a translation of visual generic proofs for triangles and circles
based on the pivotal notion of congruent triangles. It is not logical proof in the sense
accepted in modern axiomatic mathematics. However, it does introduce the learner to a
most important aspect of axiomatic proof, that of systematic organisation, proving
theorems in order, so that each depends only on previously established theorems.

Proof involving procepts is usually performed through using the built-in processes. For
instance, proof in arithmetic is either through a generic computation, “typical” of a class
of examples, or using algebraic computation, c.g. the proof that the sum of two
successive odd numbers (2n+1 and 2n+3) is a multiple of 4 (4n+4),

Proof at the formul level consists essentially of rearranging the content of a given set of
quantified statements to give another quantified statement. These statements relate to
definitions of formal mathematical concepts, so if certain properties of concepts are
given, others are deduced. The logical part of the deduction is just the tip of the iceberg.
The part under the water is a hazard for many trying to navigate for the first time. Expert
mathematical thinkers use so much more of their experience to choose concepts worth
studying, to formulate them in the most productive way and to select likely lines of
attack for proof.




A group of mathematicians interacting with each other can keep a collection of
mathematical ideas alive for a period of years, even though the recorded version of their
mathematical work differs from their actual thinking, having much greater emphasis on
language, symbols, logic and formalism. But as new batches of mathematicians learn about
the subject they tend to interpret what they read and hear more literally, so that the more
easily recorded and eommunicated formalism and machinery tend to gradually take over
from other modes of thinking. (Thurston, 1994, p. 167).

The move to advanced mathematical thinking, using a full range of personal mental
imagery to develop new theories formulated in terms of systematic proof is more than
just the appreciation of a formal development from definitions and axioms. It builds in
the kind of structure exhibited in figure S, with the advanced mathematical thinker using
visuo-spatial ideas, symbol-sense and all kinds of intuitions to develop new theories that

can be woven into the Bourbaki-like systematic development that forms the solid
theoretical basis of the subject.

Where is the transition to advanced mathematical thinking?

In the description so far, the place where elementary mathematical thinking becomes
advanced has yet to be precisely defined. In figure 1, the “transition to advanced
mathencatics” includes systematic Euclidean geometry, calculus and advanced algebra.
Certainly these subjects all involve inherent difficulties requiring considerable cognitive
reconstruction and, at various times in history (ancient Greece, the seventeenth and
nineteenth centuries, respectively), they were topics of mathematical research by the

most creative minds of their generation. Calculus and advanced algebra also contain a
significant quantity of the mathematics taught at university for students as service
subjects, so it would be politic to include these subjects as “advanced mathematics”.

In the deliberations of the Advanced Mathematical Thinking Group of PME at its first
meeting in 1987, we found it impossible to come to an agreement and decided
pragmatically to take our brief to study mathematical thinking in topics beyond regular
mathematics from the age of sixteen. Pragmatism suggests that it would be pertinent to
include Euclidean geometry, calculus and advanced algebra above the line. However,
whereas each of these subjects has its own idiosyncratic difficulties, the universal
cognitive change occurs with the introduction of the axiomatic method, where
mathematical objects have a new cognitive status as defined concepts constructed from
verbal definitions. This is therefore a more natural place to draw the line between
elementary and advanced mathematical thinking. It is essentially a change in cognitive
stage from the equilibrium of visual conviction and proceptual manipulation to defined
objects and formal deduction.

It remains valuable to consider the first level beyond elementary school mathematics to
be a preliminary stage of advanced mathematical thinking, in which elementary ideas are
stretched to their limits (literatly!) before the theoretical crisis thev generate requires the
reconstruction of a formal view. Many will not require the full range of formal
mathematics, being fully occupied with the proceptual complexities of the manipulation
of symbo:. in calculus and algebra. The full range of creative advanced mathematical
thinking is mainly the province of professional mathematicians and their students.
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Figure 5 : The development of advanced mathemaucal thinking

The relationship between elementary and advanced mathematical thinking

The changes in status of mathematical objects and mathematical proof at various stages
of development offer an alternative viewpoint to consider the relationship between
elementary and advanced mathematical thinking. Indeed, it reveals very different forms
of mathematics in school and university. The “New Math™ of the nineteen sixties was an
attempt to introduce a set-theoretic deductive approach in elementary mathematics and it
failed. Now mathematics educators involved with mathematics in school are operating in
an age of democratic equality of opportunity which is predicatcd on a broad curriculum
suitable for the nceds of the wide population. There are signs that the curriculum in

elementary mathematics is producing students less ready to study mathematics at
university.




A recent report (Pozzi & Sutherland, 1995) has highlighted perceived shortcomings in
students arriving in the UK to study engineering. An exchange of letters in the English
national press has revealed serious concerns about “falling standards” related to changes
in the English curriculum. For example. Sykes & Whittaker (1994) report that in 1994,
only 50% of the entrants to their business studies course could multiply 1/2 by 2/3 and,
whereas 66% could correctly calculate the square of 0.3 in 1987, by 1994 this had fallen
to 16%. The general consensus amongst university mathematicians in England is that
students arrive at university to study mathematics with less understanding of proof, less
proficiency in handling arithmetic (particularly fractions and decimals) and less facility
with algebraic manipulation.

The decline of Euclidean geometry in English schools has led to a loss of experience
with systematic proof. The increase in practical links with real world problems and loss
of manipulative practice seems to lead to less meaning within mathematics. Procepts,
such as fractions, involve many conceptual encapsulations, incliding the encapsulation
of counting as the concept of number, addition of whole numbers as sum, repeated
addition as product and the process of equal sharing as the concept of fraction. There is
little wonder that fractions proves difficult for a wide range of the population. Likewise,
the meaningless manipulation of symbols in algebra is a consequence of inability to give
them meaning as process and concept (Sfard & Linchevski, 1994).

1t would be pertinent for a proportion of the mathematics education community to
focus on the learning of those students in elementary mathematics who might develop
the potential for advanced mathematical thinking, to anatyse whether their learning
environment is suitable for their long-term devclopment. Short-term it would be possible
to consider the ways in which the “more successful” do mathematics, to see if they need
a different environment from others. Perhaps some of the educational devices for
introducing mathematics in an elementary way. such as physical balances to introduce
equations, introduce cognitive baggage which is not in the long-term helpful for
cognitive compression.

Advanced mathematical thinking and undergraduate mathematics

At college level, mathematics is usually still taught in the “definition-theorem-proof-
illustration™ sequence with liitle opportunity for developing a full range of advanced
mathematical thinking.

The huge quantities of work covered by cach course, in such a short space of time, make it

extremely difficult to take 1t in and understand. ... From personal experience [ know that

most courses do not have any lasting impression and are usually forgouen directly after the

cxamination. This is surely not an ideal sitvation, where a mashs student can learn and pass

and do well, but not have an understanding of his or her subject.

Final Year Undergraduate Mathematiics Student

Rote-learning at university is even worse than procedural learning in school. At least
procedures can be used, even if the range of application is narrow, but a rote-learnt proof
that has no link to anything clse has little value other than for passing examinations.
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Regrettably, students who are good at routine problems in advanced mathematics often
fail when faced with something a little different (e.g. Selden, Mason & Selden, 1994).
Mathematicians seem to face a dilemma:

... we should not expect students to (re-invent what has taken centuries of corporate
mathematical activity to achieve. Yet if we do not encourage them to participate in the
generation of mathematical ideas as well as their routine reproduction, we cannot begin to
show th2m the full range of advanced mathematical thinking. (Ervynck, 1991, p. 53)

Fortunately, it is possible to encourage students to think in a mathematical way at
university level, as is shown by problem-solving approaches such as Mason ez af (1982),
Schoenfeld (1987), Rogers (1988), and the “proof debates” of the Grenoble school
(Alibert, 1988). Following the problem-solving approach of Mason et a/, Mohd Yusof
(1995) has shown that such a problem-solving approach changed student attitudes in a
way that university professors desired, whereas the adherence to traditional lecture
methods and the vast quantity of rote-learnt content caused students to change attitude in
the opposite direction. Typical responses from professors and students were as follows:

I sce mathematics as something that needs doing rather than learning where 1 should
participate actively in making conjectures, constructing arguments to convince others,
reflecting on my problem-solving and so on. But 1 think the maths course at the university

does not encourage this. Student A
We work under pressure and often feel anxious that we can’t do maths. Not because we
can'tdo it, because we can’t do it in time. Stwudent B

The experience of making conjectures, generalising and the like I think students can get
themselves on their own, from doing their project work. We do not have the time to teach
them everything. Prafessor C

To me mathematics is a mental activity, but I should say that at this level [ present it more as
a formal system. Because we are confined by the syllabus and also depending on the
students” background. ... 1 would like to change. How do 1 do that? 1 don’t know.
Professor D
Paradoxically, traditional ways of teaching are, for most students, causing precisely the
opposite effect that university mathematicians desire. The sheer difficulty and volume of
material to be covered in a university mathematics degree makes it difficult for students
to cope with formal mathematical content in a limited time. But does this mean that we
must accept the status quo of a huge formal syllabus with widespread rote leaming, or is
it not possible to modify courses to allow students to develop ways of thinking more
mathematically? The acquisition of a wide repertoire of advanced mathematical thinking
is a challenge which now faces university mathematicians. Is it a challenge which will be
accepted?
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PANFL PRESENTATIONS

In the Panel, thirteen minutes of video footage will be used to anchor
discussion around a common set of data.

The Panel is seen as an opportunity for participants to raise issues, to
formulate diverse interpretations regarding the *“same” happenings, and to
construct their own arguments, however rigorous, however speculative, about
the nature of mathematical thinking, based on their understanding of the
understandings of two students and two interviewers.

Students exposed to the same physical stimuli (or the same tasks) in the
classroom do not necessarily experience the same ideas and feelings, wonder
about the same issues, derive the same conclusions, nor make the same
associations. Likewise, researchers exposed to the same video segments do not
necessarily see the same thing. The panelists (and ths audience) bring their
unique backgrounds to bear on the events depicted.

What follows are the actual materials made available to each of the
discussants {including a written transcript of the dialogue from the video tape)
and the papers written by Profs. Bartolini-Bussi, Meira, and Vergnaud.

[Special thanks to Barbara Fox and Tobin School of Cambridge, MA-USA, for
making the video possible.]




TERC- Technical Education Research Centers
Cambridge, MA

This videotape comes from a 5th grade public school classroom in Cambridge, MA,
where students have been working since mid-November on a 4-week pilot of the NSF-
sponsored clementary math curriculum called: Tnvestigations in Number, Data and
Space, "Patterns of Change: Tables and Graphs®. Students are more than halfway
through the unit. During the first 2 Investigations students created "motion trips” on a
meter tape by walking. running, stopping, etc. They represented these trips with motion
stories, number tables and distance/time graphs. The students also spent a few days
using a soft ‘are program which allows them to invent motion trips that can be viewed
along a linear path, numnber table, and/or a distance/time graph. One of the important
goals of the unit is for students to be able to look at any of these representations of
motion, describe the trip that took place and make another representation of the same
trip.

iIn addition to piloting curriculum with this class, we are also doing research for the
Mathematics of Change project. We videotape daily in class where students have math
for about an hour a day. We also conduct individual and group clinical interviews, and
analyze videotapes as well as student work. Another important aspect of the research is
the weckly meeting with both teachers who are involved in the research and curriculum
pilot.

A note on transcript conventions:

! is used when someone is cut off or stops speaking abruptly
1s used when someonce's voice trails off

] is used to clarify a word (like it) or describe a gesture

) is used when somcone has said something unintelligible
is used to indicate the beginning of an overlap when speakers are talking at the
same time

. a comma between 2 numbers is a way of separating them (3. 5 is three. five. Not

three and five tenths)
Utterances are often placed on scparate lines.

{
(
i

Introduction

Tony and Dennis (both age 10, grade 5) are about 1o undertake the task of creating a
table of numbers about the position of 2 divers for each of 5 gear sets with different
gear ratios. They will look for patterns in their tables and also graph some of these
number tables in a position vs. position graph. We will follow them through this
process for | sct of gears (referted to as "A") hy looking at 5 episodes of videotape
which total about 13 minutes. The first 4 episcdes are from the last 12 minutes of class
on 12/15/94. The 5th episode is from the following day after class in an interview
setting with Ricardo Nemirovsky. David Carraher, another interviewer, asks questions
as he handles the camera.,

This is the 3rd day that students have been working with gears tsee picture below) and
the first time they've worked with & year setthat is not a whele number ratio of 1:n. For
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example, they've seen 10:20, 20:40, 20:60, 10:60 (where the ratio is the ratio of the gear
teeth and is 1:2, 1:2, 1:3, 1: 6), but this is the first time they've seen a 2/3 ratio (20 teeth
to 30 teeth). Each gear wheel has an axle of the same diameter from which a small
plastic person called a diver (sometimes called a driver by the children) is suspended on
a string which is 12 units long. There is also a vertical scale that is 12 units long,
‘marked with the numbers 0-12. Between each of the numbers are 3 lines (creating 4
sections) so that someone can measure, for instance, i6 and a half”. Each unit is 4
centimeters long, which is half the circumference of the dowel which tums the gear
wheel. Also available are yellow dot stickers {see photo) which can be used to mark
places on the gear wheels.

Children have been told that they should measure from the top of the diver's head
(although they sometimes invent their own system). They have also been advised to
make sure that the 2 divers both start at 0. (In this case they have not actually started
both divers at 0, and this is important for understanding the data table they produce.)
The boys have also been shown how to take measurements of the divers' positions by
moving the left diver down by increments of one unit. They have already collected the
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data above the dotted line in diagram 1(after writing 2 and 3.5) before Episode 1
begins:

DIAGRAM |

L. (Left Diver} R (Right Diver)
0 0

[ 2
2 3.5
3T
4 6.5
5 8
6 9.5
7 1
8 I\ i2

Episode I- Measuring and Recording datu (00-3-20)
*TONY: Either way it's not going to be even.
*DENNIS: § [moving to number table}
<TONY: 5

*DENNIS: 3.5 [writing 3 and 5 on table]
So when he gets to 4, we'll see where he s,

«TONY: He [right diver| passed 4 already [winding divers up).
*DENNIS: No. when the other guy [left diver] pets to 4,
[Dennis presses both divers against scale.]

One more notch, one more, onc more.[Tony winds divers down. |
6 and a half. {Dcnnis writes on numbcr table. ]

*TONY: 4.6

=DENNIS: 4, 6 and a half.

*TONY: 6 and a half.

*DINNIS: Oh yeah, | remember I did this yesterday.

What you do.,.When he's [1cft Diver} at 5,

he's [Left Diver] not at 5 yet.

*TONY: Well,it's aimost at... he's ( yhelow 7.

.ot '.\"‘u rr'[ :
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29
30
31
32
33
34
35
36
37

38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

61
62
63

65
66
67
68
69
70
i
72
73
74
75

[Tony presses the right diver against the scale.)

*DENNIS: Wait, wait let go of it. [Dennis tumns the gears and presses the left
diver against the scale.]

*TONY: He's [Right Diver] almost at 8.
+DENNIS: Now he's [Right Diver] at 8,

*TONY: Yeah, soit's 8.
-DENNIS: I5,8.

*TONY: Yeah, 5.8. {Dennis writes on number table.]
When he's at...9.

[Tony presses right diver against scale with his marker.]
*DENNIS: [touching diver] 9 and a half.

*TONY: Yeah, 9 point 5.

*DENNIS: So, flooking} 6 and 9 and a half.

*TONY: 6 and 9 point 5.

[Dennis writes 6 and 9.5 and goes back to divers.]

Is that ten?

*DENNIS: No, keep going. One more.
OK. He'sat 11.

*TONY: He'sat 11? He'sat?. 11, 7.

«DENNIS: 7, 11. [writing numbers on table] 7, 11.
[Dennis gocs back to gears.] OK, when. Keep.

*TONY: ..at12. He'sat9.

*DENNIS: He's at...

*TONY: 8 point 4.

*DENNIS: [pressing R diver against scalej 8 and one fourth.
*TONY: Wait, why is there 2 blues? [markers]

*DENNIS: Jesse [another student] just put 'em there.

Wait there's one, two, three [lines on scale between numbers). Yeah, 8 and one
fourth, [Dennis writes 8 1\4 and 12]
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76 *TONY: Yeah that's what I\ | was right...

77 Yeah, OK.
78 So we're pretty sure that one...
79 So which ones [other gear sets] do we have left {to do]?
80
81 *DC: Is there/ Is there a pattern here [number table A]?
82
83 *TONY: Uhh, yeah. Here? Which one?
84
85 *DC: What do you see?
86
87 *TONY: H, For A? [Each letter refers to a different gear set.
88
89 DC: ()
90
91 *TONY: Well, A, there/ He's [R] always like 1 or 2 ahead.
92 *Cause when he's [L] at 4, he's [R] at 6.5, so he's [R] 2.5 ahead of
93 him.
94 When he's [L] at 5, he's [R] at, 2 ahead of him.
95 When he's [L] at 6, he's [R] um, 3.5 ahead of him.
96 When he's [L] at 7, he's um, 4 ahead of him |R].
97 *DENNIS: la
98 *TONY: When he's [L] at 8 and one fourth, he's [R] already
99 finished.
100

In between Episode 1 and 2, Tony spontancously tries to look for patterns in the tables
they'd made from 2 gear sets with other ratios. David Carraher asks him to predict what
some graphs of these number tables might look like. In Episode 2, Dennis and Tony
are referring to the SAME set of gears (A) as in Episode 1.

(2 minutes later) Episode 2 - Gears and Patterns (3.30- 4.40)

101

102 +DC: Did those [gear set A, 20:30) have anything 10 do with the numbers that
103 came out?

104

105 *TONY: Uh, yeah. they had like. uh everything.

106 Because, um, these [gears] are like, kind of like the

107 measurcment tools, sort of.

108 So wherever like they arc. it's like the measurement. kind of.
109 [Dennis takes yellow dot stickers. ]

110

11 *DC: Could any numbers come out?

12

113 *TONY: Yezh, it's possible.

114 Any numbers could come out.

L5 [Dennis places a small dot on each gear wheel.]
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*DC: If yuu came back and measured with this [gear set}, like later, couid you
get different numbers?

*TONY: Well, it depends.

It's like, if somebody...

It's a matter of opinion.

Cause like if somebody, like changes it, yeah, it'll be different. Or like if
somebody thinks it's one thing and then another person thinks it's another, that
could change, like, to opinion.

+DC: Uh, huh. What do you think, Dennis?
*DENNIS: This [small gear] is 3 times...[unwinding divers]

*TONY: as fast

«DENNIS: ...as fast as the big one [gear wheel].
‘Cause you can tell

-DC:  !What, the smalf one? [gear wheel]

+DENNIS: The small one.
~TONY: [Yeah, this one. [pointing to small gear)

+DENNIS: "Cause you can tell.

If you do it like this: [lines up both dots by turning gears)

Both [dots] are in the middle.

You go around once [turning gears until dot on small gear is back to where it
began]

that's one time [pausing, then tuming gears]

two times [pausing, then turning gears)

and then 3 times.

sTONY: lthat's 3 times

[Dennis stops turning gears when both dots are lined up again.]

+DENNIS: Soit's 3 times as fast.

*TONY: Yeah.

In between episodes 2 and 3, David asks to see the gears with dots on them be tumed
again. Tony shows him, counting the small whee! zoing around 3 times and saying that
this proves that it's 3 times as fast. David then asks Tony and Dennis if they expect
their data to be like the data James and Alex (2 other students in the class) had collected
from the same gear set (A).




Episode 3 begins with David, Tony and Dennis looking at a table of numbers that
another pair of boys (James and Alex) created FROM THE SAME GEAR SET (A).
(See diagram 2). NOTE: James and Alex took their measurements by lowering the
Right Diver (the faster onc) instead of the Left Diver, by one unit at a time.
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(3 minutes later) Episode 3- Other Tables (4:46-6:40)

+DC: Did you hear what he [Tony] said?
*DENNIS: No

*DC: He [Tony] said 3 times as fast. [pointing]
He [Tony] was talking about 6 and 9 [on James and Alex’s table]

sTONY: Yeah. Seeright here? [pointing to 6.9].

*DC: Yeah, let's see.

*TONY: Yeah, becausc 6 andthen 7. 8. 9.

That would be thr/.

So the right driver's faster.

*DENNIS: ( ) {talking with another student]

*DC: Is that 3 times as fast?

*TONY: Yeah.6and 9. 5 and 8. 4.5 and 7 [pointing to

numbers in the table].
The whole thing is thr/




The, always the right driver's 3 times as fast.

+DC: 3 times as fast.
What do you think, Dennis?

*TONY: Well, ithas to...

*DC: Dennis?

Does this over here {pointing to 6.9] look like 3 times as fast to
you? 6 and 97

*DENNIS: Umm....No.

«DC: What's wrong?

*DENNIS: Ifit was 3 times as ...
What do you mean 3 times as fast? Where?

*TONY: Well, here. 'Cause see? [pointing to 6,9]
He's [lef! diver] at 6, he's {right diver] at 9.

*DENNIS: That's not 3 times as fast.
*TONY: Itisnt? Well.
<DENNIS: It would/ That would be 18 if it was 3 times as fast.
*TONY: It wouldnt%
*DENNIS: 1t's not even 2 times as fast.
+TONY: Itisn't? Oh. Oops.
«DC: Well, he's [Tony] not so sure about that.
*DENNIS: If it was at, 2 times as fast, it would be 12.
*TONY: Oh yeah, OK, OK.
So it would, like. 2 times.

Well, it's 2 times as fast [ think.
Orless. No?

*DENNIS: He’s less than 2 and more than 1.
<TONY: |One times as fast.

*DDENNIS: He's less than 2 and more than 1.

*TONY: So he's/
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sDENNIS:  lI's one and a half?
One and a half?

«TONY:  [Yeah, it's one and 2 half,

sDENNIS: I'Cause half of 6 is 3.
And one,

*TONY: land one.

«DENNIS:  !And one times the 6 is 6.

*TONY: 1So it would be...
*DENNIS:  |And halfof 6 is 3.

sTONY: 1So it would have to be 9.

*DENNIS: l6+3 is 9.
So it's one and a haif as.

*TONY: IYeah, so | made a mistake.
*DC: One and a half.

*TONY: So I made a mistake.

«DC: You made a mistake?

*TONY: Yeah...

Episode 4 takes place 30 seconds later. Boys were searching for markers in that time
pericd.

(30 seconds later) Episade 4 - Gears and how many times as fast? (6.50-7:50)
*DC: Can | ask you one more question?

*DENNIS: Yeah
TONY: {Sure

*DC: Didn't you say before that these gears here, the littie one, goes 3 times as
fast as the large one?

sDENNIS: Yeah.
*TONY: Ycah, that's what we said.
*DC: Do you still believe that?

*TONY: Not entirely.
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+DC: Why not?

*TONY: Well becausc we proved ourselves wr- wrong.
That, that was...

«DENNIS: It goes 3 inches faster.

*DC: 3 inches faster.

What about that story with the one and a half that you
were telling before.

Does that have anything to do with it?

*TONY: [ don't think so.
*DENNIS: INo. T don't think so...

=DC: Not one and a half times as tast.

«DENNIS: Yeah one and a half times as fast.
It is onc and a half times as fast.

*TONY: Yeah

«DC: One and a half times as fast?
Or three, or 3 more?

«TONY: Well one and a half times fast but 3 inches faster.

*DC: OK. great. thanks very much...

12/16/94-the next day

During class on the 16th, students were no longer working with gears. They'd begun
working with colored, 1-inch squarc tiles in order to further investigate number patterns
and graphs. The interaction in Episode 3 takes place with Tony and Dennis after class
in an interview setting with Ricardo Nemirovsky and David Carraher (from behind the
camera). Because they had not yet had a chance 1o create and explore graphs from the
tables connected to the different gear sets. Ricardo and David took them after class to
work on this.

The graph that they are working on had axes provided which werc labeled, "Left Diver”
and "Right Diver” and had a scale of 1-12 units of distance on cach (scc diagram 3).
This is the first time the boys have scen a position vs, position graph. The graph they
create shows the left diver's focation relative to the right diver's location. The boys
have been creating the graph shown on the tape by plotting <he points from their table
of numbers taken from Gear Set A (20:30). They are finishing the last point when we
join then.
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(the next day) Episode 5- Graphing the divers (8:00-13-40)

*DENNIS: They [the two lines] meet right here. [Dennis gestures a horizontal
path at about 8 with his marker.]

*TONY: Right here. [Tony points to a spot at about 8.12 with
his marker.)

*DENNIS: So it would be right there [pointing very close to
Tony's spot with his marker).

*TONY: Yeah, like right here, OK. {drawing a point at 8 1/4, 12]

Alright. Go. [Dennis draws a line connecting the previous graph line and the
new point at 8 1/4, 12.]

*RN: So, looking at these lines can you see which one, which
diver went faster or goes faster? [Dennis points to the 12 on
the horizontal axis. Tony points to the same spot.]

*TONY: Um. ycah, because...

*RN: How do you know?

+*TONY: Because according to this {points to vertical axis at 8},
he's [Left Diver] only here [pointing to 8 174, 12] 2t the end,
and he [Right Diver! is here [pointing to 8 1/4, 12].

*DENNIS: [pointing to 12 on the honizontal axis]




I have a clear reason.
Umm, because you can tell that this driver finished the race
before that driver. Ifthey had tied/

*TONY: It would have been like,

*DENNIS: [t would have been mote [gestures with his hand in
the air near his face)

*TONY: It would have been, [pointing to point 12, 12 with one
hand and 12 on the horizontal axis with the other].
it would have been like up here

*DENNIS: Ivertical [raising his hand above his head].

*TONY: Yeah, more vertical, if they had tied.

*DENNIS: If they had tied,

[Dennis gestures a horizontal path from 12 on the vertical axis
to point 12,12.] it would have been right here [12, 12).
“TONY: lit would be more, more vertical.

*RN: What if you draw a line that shows/ [gestures a small
line]

*TONY: atie?
*RN: atie, nght.
*TONY: OK.

*DENNIS: So [gesturing a horizontal path from 12 on the
vertical axis to point 12,12.)

*TONY: It would be umm...

*DENNIS: ...right here [draws point at 12,12].
*TONY: Yeah. And it'd be like,

*DENNIS: Can we use that yardstick?

*RN: Um hmm. [Dennis lines up the yardstick between 12, 12,
and 0, 0.]

*TONY: Let's use black [marker]. To show the difference
[between the 2 graph lines].
Got it? [the yardstick]




*DENNIS: Yep. [Tony draws the tie line.]

*TONY: That would have been about tied.

«DC: Where are they tied?

*TONY: On 12. [Both boys point to 12, 12.]

*DC: Have they tied anywhere else?

+TONY: Uhh, Yeah, they tied the whole way. | think. Yeah.

*RN: So being below this [tie] line [gesturing down and right]
what, what/

*TONY: Was like how the trip was.
This [pointing to 12,12] was like if it had been a tie.

*RN: And being like here [gesturing a line with a 60 degree
slope above the tie line], what does it mean?

“TONY: Iwell, it's..

*RN: Which one is, goes faster if you would be, create a graph
that goes...

*TONY: Vertical?

*RN: More vertical, right [gesturing the 60 degree line].

<DENNIS:  |And it goes...see these squares [blue lines on one

inch graph paper]?

It goes, point by point [pointing to blue comers intersecting along the tie line).

*TONY: By point by point.

*DENNIS: And since this [gesturing on their original line] is
uneven,

+RN: Um hm.

*DENNIS: it [the original line] goes between the things.
[comners of the squares of the graph paper they're drawing on}
1t doesn't stop at a point.

*TONY: lyeah, but this one

But this one [pointing to 10, 10] goes like this.

This one just keeps going um like, like see? This.

Yeah, see like here? {pointing to 10, 10]

He's at 10 [vertical gesture] and um. he's at 10 here [horizontal
gesture], so that's a tic and then they keep doing that all the
way back {gesturing along the tie line towards 0)

and all the way up here [pointing to 12,12].
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*RN: So suppose that there is another gear set that goes like
this {putring yardstick at a 60 degree slope].
Which diver would go faster?

*TONY: Umm, probably the left dr-

+DENNIS: The left diver.
Because at 12 it'd be...

“TONY: like uneven. [Dennis gestures a path vertically down
from the yardstick at about 7,12}
He would only be at um, ni- 7.

<DENNIS: 17. [Tony makesadotat 7. 12]
+TONY: Su, like similar to what we did.

*RN: And, say that/
«DENNIS: INo, no, not at 7.

{Dennis moves yardstick and gestures down vertically ]
‘Cause/ Right there [pointing to 6 on horizontal axis].

TONY: Oh then ird be at like 6.
-DENNIS: 6

*TONY: Probably like similar to what we did too.

«DENNIS: ISo. he'd [Left Diver] be
at twice as fast as this diver {Right Diver].

*TONY: Yeah, but according to our..
DC: [Twice as fast?

*TONY: Yeah, twice as fast.
*DENNIS: |Yeah.

DC: Why?

*DENNIS: Because he's [Right Diver] at 6,

and he's [Left Diver] already finished.
*TONY: |Yeah, so, yeah, he uh, he, uh he didn't.
He [Left Diver] finished and he's [Right Diver] only.
only halfway finished.

*RN. So, how would you describe the these 2 speeds [gesturing
1o bath axes] as the line goes like this? fmoving yardstick
upward, onc end fixed at 0,0]
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What happens with the speed of the left diver and/?

«TONY: IThe left driver keeps/
The left driver keeps getting, going faster and faster and faster
until it's [yardstick/graph linc] like straight [vertical], then he wins.

*RN: And as you go like that? [moving the yardstick to the
tie line]

*TONY: The right driver keeps, well the left driver’s losing
speed.

*RN: Unh hunh. And then?

TONY: Umm, then they're like about tie here and when

-DENNIS: loh, OK!
[Tony touches yardstick with both hands where yardstick
stopped at tie line.]

TONY: it goes like that

[Ricardo moves yardstick below tie line, still fixed at 0,0]
The right driver's starting to win now.

*RN: Um hm.

*DC: What about the speed?

DENNIS: loh!

*DC: Can | ask a question?

“TONY: {What?

-RN: {Well [gesturing to Dennis)

*DENNIS: [taking the yardstick] !f you had made, um, close
that off [placing yardstick at 12 vertically and gesturing a line],
close this side off [placing yardstick at 12 horizontally and
gesturing a line], you could tell if it was a tie

“TONY: Ornot
*DENNIS: lif you went to the right point, you could, you could....

*RN: Do it.do it. [Ricardo places yardstick at 12 vertically.]

*TONY: OK. [Tony draws 1 vertical line at 12 and 1 horizontal
line at 12, using the yardstick that Ricardo holds, starting from
the axis at 12, meeting at 12,12]

There...And, it's like an arrow sh-, it's like an arrow showing/

<DENNIS: At the right point where 12 and 12 is, you could tell
it was a tie

b
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*TONY: tie

*DENNIS: because it/ [Dennis gestures 2 new lines with his
hand ]

*TONY: ILike, that's the way you could confirm it was a tie.

*RN: Um hm.

*DENNIS: And the more back [gesturing with 2 hands tilting
above the tie line] it goes
*TONY: the, shows like the left

+DENNIS: lit shows the left driver's winning, and the
more that way [gesturing with 2 hands tilting down] it goes

*TONY: the more right it goes

*DENNIS AND TONY: the more right it goes, it's like the right
driver wins, and the more left it goes, it's the left driver wins.

*TONY: So it's just the opposite.

*RN: {ff Go ahead fto David).

*DC: Can you tell how fast either one goes from looking at this?
*TONY: Uh, yeah. It's like, vou can tell/

*DC: Like, if you look at this tie place here [David points to the
tie line}

*TONY: There? [pointing to tie line])
=DC: ...can you tell if that was a fast or a slow race?

*TONY: Uh, It was like the same speed race.

1t was medium.

They were just like going at the same speed.

Cause [ mesn, it's 1ot really...

You can't really tell

sDENNIS: Uit was

*RN: {Um hmm.,

*TONY: ithe speed.

Because it's not like if they're running or just walking. ..




PANEL PRESENTATION
Tony and Dennis
ANALYSIS OF CLASSROOM INTERACTION DISCOURSE
FROM A VYGOTSKIAN PERSPECTIVE
Maria G. Bartolini Bussi
Dipartimento di Matematica Pura ed Applicata
Umniversita degli Studi di Modena - Italia

INTRODUCTION’
The aim of this presentation is to analyse classroom interaction discourse in five episodes from a unit
on Investigation in Number, Data and Space. Patterns of Change: Tables and Grapks. In this case,
a complex interaction between visual tactile and verbal logical activity has been designed by adults.
So the attention will not be limited to speech only. My anslysis will be mainly focused on the adilt
rode in the interaction. This choice is related to my research interest in studying the teacher role in
classroom interaction and is consistent with Vygotsky’s emphasis on the adult role in the zone of
proximal development (ZPD). To anafyse the adult role, I shall focus on the adult intentions, as they
can be reconstructed from the available information. I distinguish between two different levels:
1) how adults set the stage, where interaction happens (macro-level),
2) how adults take actually part in the interaction (micro-level).
Two mair: issues are under scrutiny: looking for patterns (in the gear episodes) and interpreting
position / position graphs. Before analysing actual interaction between boys and adults (micro-level),
T shall discuss how aduits are supposed to have designed sctivity at the macro-level.

MACRO-LEVEL ANALYSIS (HINTS)
LOOKING FOR PATTERNS (Episode 1 - 4)
Looking for patterns is the first important aim of the unit. It is founded on a pragmatic base: the
two boys are requested to handle (according to some precise rules) gears and two-column tables.
The gears are made with toy materials, but they allude to technological tools of everyday life. The
presence of gears in technology is ancient: Aristotle himself is supposed 1o refer to toothed wheels in
his book on Mechanical Problems, whete he gives a qualitative description of a gear. Moreover
gears were employed to build automatic machines and other mechanical devices In the experimental
display a vertical scale is added, where to measure the elongation of the string from which divers
hang A two column table completes the display The complete display (together with the rules to
handle it) is an example of o0l of semiotic mediation (TSM Vygotsky), that inhibits the direct
impulse to react (e g the production of only a qualitative description of gears) It introduces an
auxiliary stimulus that facilitates the completion of the operation, up to the numerical modelization of




proportionality. The aduits are supposed to have set the stage in order to use the potentiality of the
display as a TSM to control boys' behaviour from outside up to the statement of patterns

The concept of pattern is a scientific concepr (SC): in a Vygotskian perspective a SC is neither a
natural development of everyday concept nor a matter of negotiation, but is acquired through
instruction. .

Data cullection is the pragmatic base on which the whole activity is founded it is done by means of
eyes, speech (including numbers) and hands. According to Vygotsky, the unity of (visual)
perception, speech and action generates, by in emnalisation, the internal visual field, where to produce
mental experiments (¢ g. guessing and testing a pattern).

As the adults probably knew in advance, Tony appears unable to perform the task of collecting data
alone, because of his uncertain understanding of the task (he is always - 10 - wavering between left
and right diver), of his incorrect execution (Dennis has to correct Tony several times - 25, 30, 64); of
his lack of knowledge about numbers (Tony confounds whole numbers and decimal aumbers - 17,
27) and their representations (Tony mistakes 8.4 for 8 and one fourth - 66), of his lack of acceptance
of order convention (Tony reads 11,7 instead of 7,11). Moreover, Tony's attention is easily diverted
by markers (70) he seems interested mainly in action (79). The joint activity of Dennis and Tony has
probably be planned as an example of activity in the ZPD, where Dennis acts as a more capable peer.

INTERPRETING POSITION / POSITION GRAPHS (Episode 5)
Interpreting (position / position) graphs is the second important aim of the unit On the one side,
graphs represent point by point the number table (and the pattern, if any), on the other side they
represents globally some property of the pattern (e.g straight lines represent proportionality, the
slope of a line represents a ratio, and so forth)
The boys have been accustomed to draw and read distance / time graphs, while considering trip
problems Both seem to master point by point representation while drawing the graph
However distance / time graphs have a distinctive feature. they have globally a rich semantics, as
they are a representation of speed (different slopes represent different speeds) On the contrary,
position / position giaphs modelize a comparison of the covered distances (i ¢ of the speeds when
the motion is uniform) Actually in the pragmatic base the motion is not uniform, as boys have to
stop to write down numbers Hence the semantics of such position / position graphs is not
immediately related to the question who is the winner Left diver can win in a Jot of different ways
What can be under boys control is first, the distance by which he wins at the end, and, second, the
distance in every point of the race The natural interpretation is 50 based on a point-by-point reading,
rather than on a global reading The global reading of graphs with different slopes has to be forced in
the interaction We shail come to this point later

The macro-level analysis that has been given above allows me to guess some of the adult intentions
in designing this unit and the special kind of interaction between Dennis and Tony
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1) the intention to use the whole activity as a ZPD for Tony;
2) the intemtion to use the gear - table display as a TSM for siating patterns;
3) the intention 1o force the interpretation of the position / position graph.

MICRO-LEVEL ANALYSIS (HINTS)
I shall go quickly through the transcript (a detailed analysis is beyond the scope of this short
presentation) in order to identify adult intentions, as they emerge from the on-the-spot interventions.
I shall intentionally omit other types of analysis focused on either the personal senses that ase built
and eventually modified by the participants or the role of other semiotic,tools (such as gestures) in
the interaction No analysis can cope with the process of interaction as a whole. even if every episode
is a unique event, it can be read in many different ways, and every reading puts the same episode in a
different perspective. Morcover this analysis is tentative: it does not take into account the aduit
introspection, that could have been considered if the adults had joined me in the knalysis. However it
will give elements to enlarge, reinforce or contrast the macro-level analysis.
In the following, for each phase, I shall interpret adult utterances by distinguishing'
Silence, when nothing is uttered; Question, when a direct question is posed,
Cali, when somebody is called to interact; Mirror, when some utterance is repeated.
Rule, when a rule of interaction is stated,
For each of them I shall give my tentative interpretation for the adult intention on the base of the
interaction
EPISODE 1 .
Lines 1-79 Silence Intention fo avoid interference with hoys' activity.
Lines 81-84 Question Intention: fo put a new problem. is there a pattern?
Lines 35-89 Question Intention: fo negotiate the meaning of pattern
(‘what you see)
Lines 91-99 Tony offers his ‘pattern’ akead
Silence Intention: to avoid interference with boys' thirtking.
Lines 100 Silence Intention: r0 avoid evaluation.
EPISODE 2
Lines 102-109 Question Intention. to negotiate the meaming of pattern
(through relationship between gears and number tables)
Tony recalls the pragmatic base (measurement)
Lines 111-114 Question Intention: ro negoiiate the meamng of pattern
(pattern as function)
Actually the function is bijective but, in spite of words. 1t is not
what Tony means (see 120 below)
Lines 117-127 Question Intention: fo know more about Tony's reasoning or
to negotiate the meaning of pattern
(pattern as independent from the person)
The ‘pattern’ ahead can actually be realised in many ways
Silence Intention. to avoud evaluation..
Lines 127 Call Intention. 10 try for sociocagnitive conflict among peers
Lines 129-154 Dennis shows his mental experiment and offers his 'pattern’




Lines 155

Lines 157

Lines 161-181
Lines 182-186
Lin#=T7-192

Lines 194-210
Lines 212

Lines 214-238
Lines 240
Lines 242-246

Lines 248-267
Lines 269-289
Lines 291

Lines 294-305

Lines 307-313
Lines 315-338
Lines 340-345
Lines 347-369
Lines 371-377
Lines 379-393

Lines 394-413
a

Lines 415-447

Lines 449455
Lines 457-481
Lines 483-484
Lines 485-486

Lines 489-510
Lines 512-525
Lines 529-531

Lines 533-548
Line 549

Silence
Silence

Call
Mirror
Call
Questions

Silence
Call

Silence
Mirror
Question

Questions
Quest. / Mirr
Rule

Silence

Questions
Silence
Questions
Silence
Questions
Questions

Silence

Question

Question
Questions
Question
Rule

Silence

Silence
Questions
Questions
Silence
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3 times as fast
Intention: fo avoid interference with boys' thinking
Intention: fo avoid evaluation

EPISODE 3
Intention: fo try for sociocognitive conflict among peers
Intention: to make Tony express his reasoning
Intention: fo fry for sociocognitive conflict among peers
Intention: o force the conflict by evaluation
(does it look like?. .what's wrong?)
Intention: s0 avoid interference with boys' thinking
Intention: fo encourage cooperation between boys
{Dennis has to convince Tony)
Intention: fo avoid interference with boys’ thinking
Intention (?): fo accept the solution
Intention: o know more about Tony's utterance

EPISODE 4
Intention' fo try for conflict between two solutions.
Intention: fo krnow more about boys’ thinking.
Intention: fo state an interaction rule:
(great refers to be willing to answer)

EPISODE §
The boys are drawing.
Intention: fo avoid interference with boys' activity
Intention: fo force global interpretation of that p.p graph
Intention: fo avoid interference with boys' reasoning
Intention: fo appropriate the tie problem posed by Dennis
Intention: fo avoid interference with boys' activity
Intention: {0 force point-by-point interpretation of 'tie'
Intention: fo force global interpret. of a whatever p p graph
(without recalling the pragmatic base of gears)
Intention (7). to avoid interference with boys’ reasoning
the adult wishes a global interpretation while the boys insist on
point-by-point interpretation
Intention: fo force global nterpret. of a whatever p-p graph
(the adult acts as if the relationship between gear and pattern
has been explicitly stated)
Intention: (o know more about boys” reasoning
Inte:tion: 10 force global imieroret. of a whatever p p graph
Intention: 10 pwt a new probiem on speeds
Intention: 1o state an interaction rule.
(the adult asks the permission to ask a question)
The boys reinterpret the tie situation
Intention: fo avoid interference with boys’ activity
The boys reinterpret the general situation
Intention: (o avoid interference with bays' activity
Inte.ition: 10 put again the general problem of speed
Intention. fo relate the general problem 1o the e sitnation
Intention' 10 avoid evaluation.
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The micro-level analysis elicits some adult intentions:

<) the intention to state interaction rules that change the custom of a standard classroom;
B) the inteation to put new problems or to appropriate a problem that is posed by a boy;
Y) the intention to negotiate the meaning of pattern;

5) the intention to force point-by-point interpretation of p / p graphs;

€) the intention to force global interpretation of p / p graphs;

C) the intention to foster peer interaction;

11) the intention to avoid interference, evaluation;

0) the intention to know more about boys' reasoning.

COMPARISON BETWEEN MACRO-LEVEL AND MICRO-LEVEL ANALYSIS

1) The intention to use the whale activity as a ZPD for Tony.
This macro-level intention seems to be related to a micro-level intention

C) the intention to foster peer interaction. As Dennis is a more capable peer he is expected
to act as an expert guide in Tony's ZPD. Yet the distance between Dennis and Tony is too large in
the episodes 1-4 t0 make cooperation effective Moreover Dennis shows no intention to help Tony.
At the beginning, he works alone while Tony is observing for most of the time. The effect is that the
unity of (visual) perception, speech and action is realised for Dennis only. It is not a chance that a
few lines later Dennis can produce the ‘pattern’ 3 times as fast by a mental experiment. Later in the
Episode 3 Dennis is still working alone: he continues to speak to himself even when DC (212) invites
him to convince Tony At the end, in the Episode 4, the potential sociocognitive conflict is hidden by
the fuzzy meaning of the term 'fast’ {(comparison of speeds or comparison of positions?).

2) The intention to use the gear - table display as a TSM for stating patterns;

This intention is not realised anywhere. When Tony misunderstands the meaning of pattern and when
Dennis proposes the pattern 3 times as fast in the Episode 2. no control on the device is done. When
Tony proposes to read the pattern 3 fimes as fast as the relationship between 5 and 8, 6 and 9, 4.5
and 7 (the whole parts) no control on the other pairs of the table is suggested (and not even on the
meaning of considering only the whole part of numbers. what does it mean in the gear to cut a 'piece
of clongation'?) Rather than using the device as a TSM, the adult prefers always to look for a
conflict between Tony and Dennis. Yet the boys do not interact to each other effectively. Moreover,
when Dennis reach a right solution by arguing (with an interesting sequence of elimination of
conjectures) only on the number table, the solution is not related to action on gears. So we have two
solutions with a different status: the solution one and a half time as fast is based on a single line of
the number table; the solution 3 inches faster is based on three (?) lines of the number table and on
the pragmatic base of the experiment with gears, where the right diver is sometimes 3 inches beyond
the left diver The ambiguity is increased by the ambiguous everyday meaning of the word fast, 10
compare speeds or positions (as in 5 minutes fast) The adult does not try to unravel the situation, by
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coming back to gears once more and by negotiating a meaning for fasz. The effect is that Tony is
lead to accept both solutions: one and a half time as fasi but 3 inches faster, without secing the
conflict. I have not even information to claim that Dennis himself has solved the conflict between the
two solutions (269-281).

3) The intention to interpret the position / position graph.
This macro-level intention is related to two micro-level intentions, that are present with different
weight in the interaction.

§) the intention to force point-by-point interpretation of p / p graphs. This intention is
actually realised by the adult in only in one case (371-377) even if the point-by-point interpretation
secems to be the true problem for the boys, as the semantics of the graph can be naturally
reconstructed only by means of a point-by-point interpretation.

£) the intention to force giobal interpretation of p / p graphs. This intention is clear in the
whole Episode S, also when the boys clearly show that they are going clsewhere (¢.g. 394-413).
However the boys do not relate the change of slope to a change of the gear set but to an increase of
speed in the same race, that cannot actuslly be realised with gears. Tony is confused (461, 468, 479,
525) and seems to repeat only Dennis' utterances.

Some types of micro-level intentions have not yet been forused in the macro-level analysis.
a) The intention to state interaction rules that change the custom of a standard

classroom;
This intention aims at avoiding the patterns of interaction that arc well known in standard classsroom,
where only the teacher has the right to ask questions, even if s/he is supposed to know all answers
and the pupils have the duty to answer.

) The intention to put new problems or to appropriate a preblem that is posed by a
bey;
Posing new problems is a pari of the teacher’s task; in this case the adult is willing also to appropriate
problems that can be posed by the boys too according to the non - standard rules of interaction.

0) The intention to kmow more about beys' reasoming.
This is a widespread intention, when in non standard classrooms the adults try to make sense of
pupils’ utterances.
The complex of the three intentions that have been described above could be summed up as.
4) The intention to construct an educational setting where pupils can take the respoasibility
for their learning.
This intention is consistent with

7} The inteution to aveid interference, evaluation and so forth
As the 1) intention appears very pervasive, it may well represent the deepest beliefs of the aduits who
take part in the interaction. An implicit evidence is offered by




Y) the intention to megotiate the meaning of pattern. We have two cxamples in the
interaction between the adult and Tony. the Episode 1, when the term partern is explained as what
do you see and the Epitode 2, when the question about a relationship between the gear and the
number table is transformed in questions about number tables (111) and about the repreducibility of
the experiment In the first case, the recourse to an everyday metaphor has the effect of activating an
everyday sense of pattern (a description of the way in which elongations are arranged) that is
different from the scientific concept; in the second case, the limited (if any) pragmatic experience
with the gear set does not allow Tony to relate gear and table to each other. But unfortunately the
meaning of 'pattern’ is still too fuzzy to be used

TO START A DISCUSSION
The final table sums up the results of both macro-level and micro-level analyses of adult intentions.
Some comments must be done. My analysis was done in a2 Vygotskian perspective. But was actually
the experiment designed and implemented in the same way? I believe that the design is consistent
with a Vygotskian perspective, but 1 guess that the quality of interaction is not. For Vygotsky, the
process of learning cannot be distinguished from the process of teaching to the extent that a single
word (obwchenie) is used in Russian for both, Actually, in a Vygotskian perspective, the adults
themseives would have taken part in the activity as expert guides in the ZPD for both boys (and not
only as problem posers or observers); the adults would have used the potentiality of the devices as
TSM; the adult would have not treated the concept of pattern (that seems to be a keyword of the
whole unit) as an everyday concept.
It is possible to imagine different models for adult interventions in the same situation and to guess
different developments of the process of teaching and learning.
The mental experiment is interesting and useful and is left to the reader.

ADULT INTENTIONS

MACRO-LEVEL
1) The mtention to use the whole activity as a ZPD
for Tony.
2) The imtention to use the gear - table display as a e
TSM for stating patterns.

MICRO-LEVEL
C) the intention to foster peer interaction,

3) The intention to interpret the position / posttion
sraph.

5) the intention to force point-by-pomt mterpretation
of p/ p graphs;

£) the intention to force global interpretation of p / p
graphs,

4) The mtention to construct an educational settmg
where pupils can take the responsibilty for their
learning

o) the intention to state imeraction rules that change
the custom of a standard classroom;

f) the intention to put new probieras or to
appropriste a problem that is posed by a boy,

6) the intention to know more about boyt' reasoning;,
1) the intention to avoid interference, evaluation;

1) the intention to negotiate the meaning of pattem;
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Abstract

The concept of “tool mediation” is central to Vygotskian analyses of cognitive
development (Wertsch, 1991). Individual growth and participation in sociocultural
practices provide children with two general types of teols: signs (semiotic systems) and
technical tools (instrumental artefacts). In school, students come across a wide variety
of sign systems in mathematics (e.g., tabular and graphical representations of
numerical patterns) as well as instrumental artefacts designed to engage the learner in
practical actions with selected aspects of the physical world (e.g.. devices with gears
that move objects along a numbered track). This paper uses the notion of tool
mediation to analyze the relationship berween represeniations built by the students on
paper and the use of physical devices in mathematics instruction. More specifically, I
discuss the interactions between two fifth graders as they work on a physical system

with gears of different sizes, and draw tables of values and graphs to represent and
study numerical patterns.

INTRODUCTION!

Classroom use of physical devices (or more generaily “concrete
materials™) is accepted by many mathematics teachers as good practice in
mathematics instruction. The Curriculum and Evaluation Standards for
School Mathematics (NCTM, 1989), for example, specifically
recommends that: “To provide students with a lasting sense of number
and number relationships, learning should be grounded in experience
related to aspects of everyday life or to the use of concrete materials
designed to reflect underlying mathematical ideas.” (p. 87, emphasis
added) The research on using such instruments in mathematics education,
however, has been labeled by Thompson (1991) as “equivocal at best.” (p.
1) Several studies have indeed yieided opposing outcomes regarding the
role and effectiveness of concrete materials in mathematics instruction.
While Fuson (1986), for instance, is very optimist about the positive

1 The Introduction and the scction on Concluding Remarks of this paper draw on the
work presented in Meira (in press).




effects of materials-based instruction, Resnick and Omansen (1987) are
more speculative.

In this paper, 1 discuss the use of “concrete materials” in mathematics
education in the more general frame of tool mediation suggested by the
Vygotskian approach. That is, rather than simply asking whether the use
of concrete materials enhances individuals’ cognitive efficiency and
mathematical performance, I explore the question of how instructional
artefacts and representational systems are actually used and transformed
by students in activity. In order to discuss this question, I present below
two contrasting views of the nature and function of mediational %ols in
mathematics learning: the epistemic fidelity view, and a cultural view of
tool-use.

A cultural view of tool-use

The cultural view suggested here begins with the assumption that tools
(such as physical devices and representational systems) are instruments of
access to the knowledge, activities and practices of a community (Lave
and Wenger, 1991).2 The types of tools and forms of access existent
within a practice are interrelated in intricate ways with the understandings
that participants of the practice can construct. The question is then: How
do people (e.g., students) interpret and make use of the tools (e.g.,
instrumental and representational) which are part of a cultural practice
(e.g., the mathematics classroom)?

Wenger (1991) argues that, as the object of an a person’s activity, an
artefact or sign can support the construction of fields of invisibility —
when users construct unproblematic “interpretations of a tool and it is
smoothly integrated into activities— and flelds of visibility —when tools
extend users’ access to information and participation in a practice. An
example from mathematics leaming is given below that illustrates this
dual nature (visibility / invisibility) of tools, and the dialectic relationship
between tools and cultural practices.

In an investigation of children’s discursive practices in several
contexts, Walkerdine (1988) describes one study that focused on
preschoolers’ understanding of size relations and their use of terms such

2 My use of the term activity relates to its meaning in Activity Theory (c.g., Leontiev,
1981): it refers to chains of actions (practical and intellectual) actually carried out by
peopie, and which acquire meaning within specific sociocultural contexts. The term
practice is used as defining of a social group that share activities, ways of doing and
commwnicating things.
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as big, small, bigger, smaller, biggest and smallest during a math lesson at
school, a clinical interview, and at home. She observed a nursery
teacher’s use of The Three Bears story as a way to “contextualize™ the
study of relational terms. According to the analysis proposed above, the
bear tale was to work as an instructional tool aimed at increasing
children’s access to mathematical information about size relations and
participation in classroom discussions (i.e., creating a field of visibility),
and at the same time be unobtrusive in the activity itself (i.c., creating a
field of invisibility). Walkerdine was, however, struck by the way that the
children reacted negatively to questions such as “is daddy bear bigger
than mummy bear?,’3 even though they could make correct size
comparisons in many other tasks in the same lesson, during the clinical
interviews, and at home. She argues that aithough in the school task the
bear-family was intended to instantiate size differences only, the
occurrence of relational terms at home was strongly associated with the
parents’ control of their children’s behavior, in particular with the
mothers’ regulation of food consumption. The relational terms seemed to
embody for the children unequivalent relations of power within their own
families, and which were brought to bear during the classroom activity.
Thus, by transforming a story about size relations (from an instructional
perspective) into one about family relationships, the children developed a
cultural interpretation of the bear-narrative. This cultural reading caused
the balance visibility-invisibility in the classroom activity to emerge in
unexpected ways (for the researcher, at least), for that which was made
visible (i.e., family relationships) could not be accounted for solely in
terms of the children’s mathematical knowledge of size relations.

The epistemic fidelity view of tool-use

In contrast to the cultural view, traditional conceptions of tool-use are
rather narrow ir that they focus on intrinsic qualities of physical devices
or representaticnal systems, and on how those qualities might promote
individual cognitive efficiency by enabling users to “see” underlying
principles and relations through them. In this perspective, the fields of
visibility created by activities with concrete materials are seen as pieces of
unmediated information which are supposedly lying right underneath
physical objects. Furthermore, tools are assumed to be more or less

3 In the story told the “daddy bear” is the biggest, the “mummy bear” is median sized,
and the “baby bear is, of course, the smallest.
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transparent depending on the quality of formal correspondences between
tangible features of objects and a target knowledge domain as understood
by experts. Resnick and Omanson’s (1987) work on “mapping
instruction,” for example, complied with this view when it predicted that a
step-by-step correspondence between subtraction with Dienes’ blocks and
written subtraction should allow students to understand procedures on
written symbols in ways compatible with the meanings they constructed
and understood in the blocks world. Roschelle (1990} points out that this
view reduces the idea of tool mediation and tool-use to a measure of
epistemic fidelity. The epistemic fidelity view focuses then on a empiricist
interpretation of tools, seen as containers or conduits of meaning, without
considering the cultural dimensicn of tool-use. This view has serious
consequences for mathematics education practice and research, as it
makes it difficult for one to appreciate the variety of meanings students
negotiate and renegotiate during activity in a social and material setting.

ANALYSIS

The analysis presented below is based on the videotaped interactions of
two 5th graders as they work on/with a physical device with gears of
different sizes (instantiating a 2:3 ratio), and build representations on
paper as requested by two interviewers during a math class (see attached
protocol). This section is divided in two parts. First, I will list and
summarize the main episodes of the segment analyzed. Second, I will
discuss these episodes in the light of the cultural view of tool-use
presented above. The discussion will tap on the nature of the relationship
between instrumental tools and sign systems, as well as on the mediating
role of social interactions in the mathematics classroom.

The video segment can be divided in four cpisodes as follows:
Creating data (0:00-2:50, lines 1-80}. We notice first that generating data
from manipulation of physical devices depends on the material
instruments available as well as on the language one chooses to register
the data. The lesson’s design required the students to read the position of
three-dimensional objects {called divers) against a two-dimensional scale.
As in the activity of professional scientists, this ability may depend on
knowledge about what kind of data to expect.

Speaking mathematically (2:50-4:50, lines 81-155). The second episode is
triggered by one of the interviewers, who asked the students questions
about what they saw in a table of values they had just built. This episode
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is marked by distinct orientations in the students’ strategies for building
quantitative relationships. One of the students (Tony) draws on the table
of values to construct an arithmetic relationship based on the growing
differences between the divers’ positions at the scale. The other student
(Dennis) uses the device itself to mediate his talk about the relationship in
terms of the relative “speed” of the gears.
Appropriating the work of others (5:00-8:00, lines 156-292). Dennis and
Tony are then asked to analyze the data produced by another pair of
students (James and Alex), who have been working on an equivalent set of
gears. Based on James and Alex’s table of values, Dennis and Tony revise
their own work, producing what they understand to be a more adequate
description of the relationship between the gears and the effects they have
on the divers' positions at the scale.

Re-representing data (8:10-13:40, lines 293-550). Last, the students are
requested to work on a graphical representation of the data produced in the
first episode. At this stage, a change in the “tools of the trade™ (from table
to graphical representations) generates a renewed competence to talk
about the physical setup.

Two related questions are discussed below on the basis of these
episodes: (1) How do the students make their practical actions on the
device mathematically accountable?; and (2) What is the relationship
between the students’ actions on/with the physical device and the actions
that emerge from their work with tables and graphs?

I start with the observation that the data produced by the students is not
devoid of expectations such as:; the data must somehow fit in a numerical
pattern, or they will eventually be graphed. For Instance, although the
device was not designed for precision (e.g., the video shows many
possible readings for most positions the divers are at on the scale) the data
actually registered by the students reflect a relation where the position of
both divers varies by constant rates (1 and 1.5 for the left and right divers,
respectively). Of course, the students are not totally aware of the
conceptual underpinnings of their data for the last pair in the table (8%,
12) differ in significant ways from the others (perhaps because the scale
ended at the 12th mark, as Tonny has noticed on line 98: “when he's [left
diver] at 8 and one fourth, he's [right diver] already finished.") But it is
clear that the students’ activity at this stage cannot be reduced to merely
reading off positions at the scale. In this sense, the data are not collected;
they are rather created on the basis of the students’ expectations about the
behavior of a specific form of mathematical representation (tables of
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values). Tables are known to group numbess that reflect patterns that must
somehow be made explicit in the classroom —so much so that Tony had a
prompt answer to the interviewer’s questions of “is there a pattern here?"
(line 81), and “what do you see?” (line 85). As the product of the
students’ activity, the table develops a life of its own, in the sense that it is
not a direct register of the behavior of the physical device.

Independently of the expectations the students might have held when
creating the data, generating and communicating inferences on the basis of
that data can be a difficuit task. indeed, the data as such may be “u matter
of opinion” as Tony believed (line 122). That is, the quality of the data
depends on factors such as the variable one takes to be independent, the
exactness of the measures, one’s cxpectations of what kind of data is
possible, and the alike. Also, the activity takes place in a classroom where
many such tables have been made publicly available through
representations on paper. Perhaps for all or some of these reason, perhaps
just because the device was there to be handled, the first attempt to relate
the gears in terms of proportions (the task as given) was actually
performed on/with the device.

In conducting an “experiment” with the device, Dennis marks facing
dots on both gears and counts the turns of the 20 teeth gear until the dots
face each other again (as in Figure 1A below). While the student
concludes from this experiment that the 20 teeth gear is “3 times as fast”
(line 152) as the 30 teeth gear, we see that his approach disregards the
number of turns (2) completed by the bigger gear. During manipulation of
the device, therefore, Dennis is unable to reflect upon a base unit to
compare the gears, missing the important step represented in Figure [B. It
is also important to notice that the students seem to experience no conflict
between the inference just mentioned. and the data as represented in their
table of values. It is as if, at this point, the tools available (instrumental
and symbolie) informed about two unrelated worlds.

After Dennis’ suggestion of a i:3 relationship between the gears (“3
times as fas¢™), the interviewer directs the students to inspect a table built
by another pair of students on the basis of an equivalent gear set. Whereas
Dennis and Tony's table did not adequately reflect the 2:3 ratio in any of
the measures, James and Alex’s table included threc data pairs with the
expected relationship (out of twelve measures taken). The interviewer
bepins this episode calling the students’ attention to a “correct” pair
previously mentioned by Tony (6, 9), and asking whether these nuinbers
confirmed the suggested rclationship of “3 times as fast™ (lines 161-2).




While Tony seems to understand this relation as “3 units ahead” (lines
168-170), Dennis soon recognizes that the relationship should be “one and
a half” (based on the observations that “one times the 6 is 6”, “half of 6 is
3", and “6 plus 3 is 9") (lines 226-237).

“One time" “Two times™ “Three uimes”

B) B Missing step: | ime < 1% times
TN

L. A
. /l ~__.”
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Figure |- Dennis’ experiment with the gears, and the “missing step .

We notice at this point that, while physical devices are generally used
in instruction to provide a meaningful context for mathematics, it is the
students’ activity with mathematical representations that allowed them to
understand the relationships embodied (by design) in the physical object.
A major shift occurs in the students’ activity. It is certain that actions on
the objective (material) device contributed to initiate the whole thing, but
it is the students’ discursive activity based on mathematical
representations that made them aware of the object itself. Furthermore, it
is important to notice that this shift happened as the students, guided by an
adult expert, appropriated the work of others into their own. That is, the
mediation of tools during mathematical activity becomes itself mediated
by social interactions. Finally, actions on the device were at first the
source for creating the data, now the representation of the data is used to
make visible the relationships intended by the lesson’s designer.

Back to the site where the physical device stooc the students are led by
the interviewer to think of the new relationship suggested on the basis of
James and Alex’s table {“‘one and a half times as fast”). Though Dennis
and Tony perform no new test with the device, they seem to agree that
both relations are valid if put in the right wording: “3 inches faster” (lines
269 and 289) and “one and a half times as fast” (lines 281-2 and 289).

The episode on graphing followed. There seems to be in this episode
no attempt to integrate the information about the relationship of the gears
{or of the number sequences) discussed in the previous episodes. The
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making of the graph allows instead a more general discussion about the
divers’ relative speed, based on the slope of the lines used to mark their
positions. Here, the students’ activity takes on a whole new set of ideas,
influenced by expectations related to graphing. For instance, the
reflection about slopes carried out does not require the exactness of the
measures; the students build instead a holistic perspective of the divers’
relative speeds in relation to a line representing a possible tie (slope equals
1). This activity represents, then, a considerable extension from the work
carried out so far, in that the students begin to create possible worlds in
discourse and through a new sign tool.
In sum, the following points stand out from the discussion above: (1) The
analysis of students’ activity with instrumental tools requires a parallel
analysis of the sign tools that mediate their practical actions; (2) The
representational and discursive practices that emerge in the students’
activity with instrumental tools makes this activity accountable and
meaningful for the students themselves;4 and (3) Instrumental tools and
sign tools may be said to constitute each other in activity, and the true
dialectical relationship between them emerges in social interactions.
Finally, 1 suggest a shifting relationship in the balance between the
visibility and invisibility of the instrumental tool available for Tony and
Dennis during the episodes. The device was in one sense invisible for it
functioned as a window through which the students could access
mathematical forms of representing relationships. However, the device
was sometimes visible and at the foreground of the students’ activity, as in
the episode where Dennis turned the gears with the dots until they faced
each other for the second time (in a sense, reestablishing the initial,
perceptually equilibrated state).

CONCLUDING REMARKS

One important theme of the analysis above was that the relationship
between instrumental and semiotic tools is better not conceptualized as
objective and determined a priori. The instructional quality of physical
devices, for instance, relates to the very process of using them. That is,
making sense of a physical device is a process that emerges anew in every
specific context and is created in activity through specific forms of use.

4 An extensive analvsis of the role of representational tools in mathematical activity is
carried out in Mcira (1995).




Moreover, instructional devices mighi themselves become the motive
of much wondering and conversation in the context of which students
engage in mathematical activity and argumentation. Walkerdine (1988),
for example, showed that even when teachers set up lessons in terms of
manipulation of physical objects, they continually use discursive strategies
to reveal for the students the mathematical properties (e.g., of place-value)
that the objects are supposed to supply. As in the segment analyzed
above, it is the mathematical tools (e.g., tables of valucs) that are used to
give the physical device particular meanings, not the other way around.

The analysis also contrasts the epistemic fidelity view with a cultural
perspective. It indicates that designers of instruction and research may all
too quickly assume the obviousness (or inadequacy) of instrumental tools
as learning materials, while not paying enough attention to the contexis
within which they are meant to function and the perspectives and histories
of their users. Formal analyses of the inherent structure of physical
devices can be partially enlightening to our understanding of artefacts-in-
use. However, what the relation between people and instrumentai
artefacts hecomes depends ultimately on their participation in specific
practices, and on the practical and discursive activities in which artefacts
are made to signity. For Lave and Wenger (1991), “the transparency of
any technology always exists with respect to some purpose and is
intricately tied to the cultural practice and social organization within
which the technology is meant 1o function: it cannot be viewed as a
feature of an artefact in itself but as something that is achieved through
specific forms of participation, in which the technology fulfills a
mediating function.” (p. 102}

In contrast with the epistemic fidelity view, the perspective outlined
uere franies the problem of tool-use in terms of mediated activitv. That is.
artefacts become efficient, relevant and transparent through their use in
specific activities, in the context of specific tvpes of social interactions.
and in relation to the transformations that they undergo in the hands of
users (see also Latour, 1987). Furthermore, we should note that this
sense-making process takes time and that even very familiar artefacts are
not necessarily nor quickly well-integrated in the children’s activities.

In whatever form, instrumental tools should have in the mathematics
classroom an important role as conversation pieces (Roschelle, 1990), i.e.,
things which students can use to make mathematical ideas and arguments
publicly available, and on the basis of which they can create their own
material representations.
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PANEL “TONY and DENNIS”
Contribution by Gerard Vergnaud

CNRS, Paris

Episode 1

Tony and Dennis meet different kinds of problems:
- what is it to measure ? what is to be measured ?
- how does one express non-whole numbers ?

- what is the invariant relationship between the two sets of numbers ?

In this cpisode. Tony and Dennis are not tackling to mcasure
specds, but only lengths. One may even wonder whether they measure fengths,
as the right diver was at % when the left diver was at 0. This is a problem all
along the episode, which neither Tony nor Dennis are able to discover. One
might even think that they express praduations and subgraduations rather then
lengths. This is especially the case for Tony as he often gives a whole number
instead of a decimal or a fraction in the first place (6 instead of 6.5 on line 17. ¥
instead of 9.5 on line 41, /.2 instead of /2.5 an line 62). On line 66, he also says
8 point 4 instead of & and % or 8 point 23. For his defense, one must say that,
according to the resuits | found 15 years ago. the division of the unit into 4

raises more difficulties than the division into 10. It is interesting also to notice

that Dennis always expresses non whole numbers as fractions (6 and a half on

linc 19, 9 and a half on linc 44, & und one fourth on line 68), Whereas Tony

rather expresses them as decimals (¢ poan 5 on line 46, € powr 4 on line 66).




But the most striking moment is Tony’s comment from line 91 to line 96.
Tony tries to find an invariant additive relationship instead of an invariant ratio.
As the differences are not the same when the divers go down, Tony can only

discover that the difference increases.

The words used by David Carraher (pattern, what do you sec) carry
deliberately litile information about the relationship to be found: they remain at

the surface level.

Episodes 2, 3 and 4.

By pointing at the gear set A, and asking if it bad anything to do with the
numbers, David Carraher clearly performs a mediation act (lines 102 and 103).
He changes the level of questioning. The problem is that we den’t know if,

betorehand. Tony has discovered something with the simpler gear sets (ratio 2
or 6).

Tony is obviously embarrassed. Therefore the next mediation act “cowld
any numbers come owr?” (line 111} is interpreted by Tony at the surface level
of the sequence of ordered pairs. And Tony does not see any impossibility. He
does not understand better than in episode 1, and considers that it is “a matter

of opinion” (line 122).

Curiously, Dennis finds the ratio “three times™ which Tony and Dennis

interpret (correctly) as a ratio between two speeds (Yine 131). Dennis'
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explanation is not correct because he does not see that three tums of the smalj
wheel correspond to two turns of the large one (lines 141 to 148). One can

suppose he has done this kind of experimer. with other sets of wheels.

The next table (page 5) is a perfect example that students have difficulties
with fractions or decimals different from %, 1'%, 2%... All numbers in the left

column are approximations by whole numbers or by whole numbers plus half.

The next mediation acts of David Carraher are important as they draw
attention back to the ordered-pairs, more specifically to the case 6 and 9 (line
162). This is one of the two easy possible choices to find the correct ratio. It
also conveys the wrong hypothesis “three more” . One more question by David
is necessary for Dennis to realize that it cannot be “three times as fast” . He
even finds arguments to convince Tony, and also finds that it is “less than 2
and more than 1" (line 220), and finally “one and a half”. Dennis explains
cotrectly the reason Kath Hart had already found the comparative privilege of

this value. Had the ratio been different, Dennis might have not found it.

By raising a contradiction with what had been said before (lines 253-254),
David provokes something unexpected. Neither Dennis nor Tony start
verifying anything with the set of wheels: it is Dennis that proposes an additive
relationship “three inches faster” (line 269) and finally accepts the

contradiction “one and a half times fast, but three inches faster ™.

Episode 5
I find it quite remarkable that both Tony and Dennis. replying to Ricardo

Nemirovsky’s question, “which diver went fuster?” point at the same spot 12




on the horizontal axis {lines 308 and 309). Yet, a short time later Tony is more
confused, and points at (8%, 12), to indicate the point where the left diver is “ar
the end’; also the right diver (lines 316 and 317). Dennis is less confused.
Both Tony and Dennis agree that a tie would have been (12, 12) (lines 329 for
Tony and 337 for Dennis). And Tony provides the comment “it would oe more

versical”. But it is Dennis that lines up the yardstick from (0, 0)to (12, 12).

David’s question “where are they tied?” (line 371) entails a response
which is too particular: (12, 12), but Tony adds rapidly “they tied the whole
war' This again is quite remarkable, as 5th-graders do not usually
understand graphs that well. The explanation of Tony (lines 406 to 413) is

especially fine.

The answers concerning the other possible graphs (60 degrees) are also
good. Dennis is even able to comment that & on the horizontal axis and 12 on
the vertical axis is “hvice as fast” (line 441). Tony is also able to interpret
correctly the variation of the graph towards the vertical or towards the tie
graph, or towards the horizontal. Both students are able to provide a very
explicit interpretation “the more right it goes, ii's like the right diver wins, and
the more left it goes. it's the left diver wins” (lines 522 and 523). Some time
later, Tony expresses the idea that all one knows about the “tie graph” is that
“they were just like going the same speed” (line 542).  As to the speed. “you

can't really tell” (line 544).

Conclusion.

There are several conceptuai problems involved in the sequence.

1} - invariance of the ratio hetween two distances, or two speeds:

2} - attribution of this invariance to the ratio between the number of teeth

of the gear wheels, the circumference of the rods being the same;

13
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- distinction between difference (additive)} and ratio (multiplicative);
- approximation of fractions;

- control of the same departure points (0) for both divers;

- representation of the position of both divers by a graph;

- interpretation of the coordinates first, and later of the slopes of

graphs, as indicating the faster diver;

8) - interpretation of the graph as a continuous invariant ratio between the

speeds of the divers, and not as an increase or decrease of speed.

Some of these conceptual problems have not been touched at all: problems

2 and 5. Some problems seem to be difficult or at least delicate (for Tony

more than for Dennis): problems 1 and 3 (and problem 4 most probably if one
thinks of the table before line 156). The most striking positive fact is the very

good approach, by both students, of problems 6, 7, and 8.

Also the careful mediation provided by David and Ricardo. Thank you.
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The construction of algebraic knowledge: towards a socio-cultural theory and practice

Ferdingnde Arzarello Luciana Bazzini Giampaolo Chiappini
Dept. Math., Univ. of Turin.ltaly Depi. Math., Unriv. of Pavia, Italy IMA-CNR, Genova,ltaly

Abstract. A theoretical model is sketched, which has been elaborated by the authors for analysing
pupils’ activities of production and manipulation of aigebraic formulas. The model is based on the
distinction between sense aad denatation of an algebraic expression and on the notion of conceptual
frame: these allow describing the way pupils antach a meaning to the algebraic formulas as well as
their major misconceptions. Successively, the relationships between the model and the learning
environments are examined and a detailed description is given of those features able to support school
gctivities which produce a meaningful learning of algebra. In the end, a few examples are discussed.

Introduction. Recent research in algebraic problem solving has identified as a key problem the
relationship that students create between formulas and their meaning. The inadequacy of such a
relationship often induces a void manipulation with symbols or an inefficient use of surrogates (see
Sfard, 1991; Kieran, 1992 and 1994). There is general consensus that many students do not master
the "sense” of those symbols which they have leamned to handle formally. Sometimes they do not
only ignore the meaning of formulas and concepts. but even arrive to invent meanings which
surrogate the authentic ones. Other students, even if good "algebraic computers”, do use algebra only
as a computational machine and not as a tool apt to understand generalisations, tG grasp structural
connections and to argue in mathematics.

From a didactic point of view, it is very hard to overcome such misconceptions and difficulties,
mazinly because the invented meaning often has its own justification, frequently rooted in previously
learned models. It may happen that the teacher and the student use the same words which correspond
to very different meanings in their heads; a genuine comedy of errors is thus generated: the pupil and
the teacher enter into a vicious circle, which is very difficult to break.

Existing literature has shown the possibility of taking instant pictures of students' difficuldes but
such a micro-analysis focuses on short-term phenomena and may be inadequate for studying long-
term cognitive processes of pupils engaged in the leaming of clementary algebra. In fact, the
unbalance of time scales between pupils and teachers (or school) is fundamental for featuring the
dialectic between learning and teaching the symbolic language of mathematics, especially the
algebraic one: without such an approach, it is also difficult to claborate suitable suggestions for
teaching.

It is our concem to analyse algebraic thinking in the framework of a theoretical model we have
elaborated on the ground of observed students’ behaviours while solving problems. Starting from
the consideration of students’ difficuities, their typical behaviours and the evolution of their processes
of thought, we outline a theoretical model apt to describe the main features of the cognitive dynamics
occurring in solving algebraic problems. This model is intended to be the basis upon which an
appropriate teaching-leaming of algebra can be thought over.

First we approach the question of algebra as a language and a thinking tool and then we feature the
environment where algebraic thinking finds its proper space.
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1. An analysis of algebraic thinking

Processes of thought in algebra are recognised to be inseparable from its formalised language: algebra
cannot be worked out without 2 written component. One must face the processes of teaching-
leaming of algebra considering both this written component with its syntactical rules and the
processes of thought which make it possible (or not) for pupils to translate the oral stralegies into
written formulas. Generally, these are not 2 one to one translation of the sequence of mental
operations into symbeolic expressions (stenographic function} but express a reorganisation of the
menta! operations and of the oral strategics into the code of algebra (ideographic fanciion, sce
Laborde, 1982).

In accordance with Vygotsky, we consider algebraic thought and language as two intertwined and
mutually dependent aspects of the same process. Analysing the word's central role, Vygotsky states
that it would be incorrect considering thought and language as two independent activities, in spite of
their separate origin. In particular, he stresses that the words’ meaning is a linguistic and intellectual
phenomenon which evolves in ime. This statement is of special interest when applied to the meaning
of algebraic expressions. In fact, it points out the functional aspects of that language, i.e. the
language as a tool for planning and anticipating, because of one's nceds and goals. Grasping the
functionality of the sign-system of aigebra (and more generally, of the symbolic language of
mathematics) is one of the more delicate didactic problems of its teaching-leaming.

As it has been pointed out by Land & Bishop (1966-69), see Mellin-Olsen (1987, p.53), two
elements featurc the way pupils appropriate of a sign-system functionality: the discovery of its own
functionality (which depends on the familiarity and on the presence of an activity with it) and the
decision by the individual to employ (or not to employ) the sign system (such a decision is usually
social, that is made by the individual in relation to the others). Pupils will own the functionality of
algebraic code insofar as they will be able to rue the relationships between that sign-system and its
meaning: so a precise analysis of the nature of such relationships becomes crucial for understandings
and planning didactic interventions in the classroom.

In this section we shall develop the following points: (1) a theoretical analysis of the meaning of
symbolic expressions in algebra, with the aim of characterising the leamning processes; (2) a
description of the knowledge construction in algebra, considering also misconceptions and crrors.
Let us start with a simple cxample: if you ask a pupil, who knows algebra, to split a number like 143,
it is not usual that sheshe uses the following strategy: 143 = (144-1) = (122 - 12)= (12+1)(12-1) =
13*11. The expressions /144-1/, /122 - 13/ and /13*11/ all denote the same object (i.e. the number
hundredfortythree) but show different ways through which such an object can be conceived, namely
as a difference between two numbers, between two squares or as a product. The functionality of the
algebraic code is concerned usually with the ruling of such productions (the above strategy in fact is
fully algebraic, even if no letters appear).

A suitable analysis of the major ingredients of the aigebraic code can be done using the ideas of Frege
on semantics (see Frege, 18922, 1892b, 1918). So we shall distinguish between Sinn (sense) and
Bedeutung (reference, denotation, also meaning, but the English translations are ambiguous) of an




expression (Zeichen): the Bedeutung of an expression is the object {(Gegenstand) to which the
expression refers (i.c. hundredfortythree in the above example), while the Sinn is the way which the
object is given to the mind (i.¢., as a difference of squares or as a product of numbers): see fig. 1.

SINN

ZEICHEN BEDEUTUNG
Frege's semiotic triangie

fig.1
Mathematics and especially algebra is plenty of expressions whose senses are different but which
have the same denotation. The most ‘evident’ sense of an algebraic expression represents concisely
the very way by which the denoted object is obtained by means of the computational ruies expressed
in the formula itself; we call it the algebraic sense. For ex., the formula /n{n+1)/ in the universe of
natural numbers expresses 2 computational rule, by which one gets the (denoted) set A = {G, 2, 6,
»..}. But the same formula is able to incorporate additional senses, apart the algebraic one. In fact, it
can be used in different knowledge domains, mathematical or not, cach generating (at least) a new
sense, depending on the nature of the domain. For ex., the expression /n(n+1) in elementary
number theory has the sense of "product of two consecutive nurnbers”, in elementary geometry it
may stand for the area of a rectangle of (integer) sides.n, (n+1). We call contextualized sense of an
expression a sense which depends on the knowledge domain in which it lives (as such, it may be
different from the algebraic sense): in fact the above formula expresses different thoughts, with
tespect to the different contexts where it is used (see Frege, 1918).
The power of algebra consists in the lots of scnses which are incorporated by the same formula
and/or which can be obtained by syntactic manipulations on it; whilst its didactic drama consists in
the complete unbalance among senses, denotations and expressions, which makes the status of
algebraic signs very obscure for students, because of their difficultics in grasping the functional
aspect of the algebraic code.
To have a precise description of the dynamics of algebraic thinking, we still need an ingredient, that
is the notion of conceptual frame. Let us make an example (sce Arzarello et al,, 1994b) .

Consider the following problem (submiited 10 undergraduate students):

"Prove that the number (p-1)(q*1¥8 is an even number, provided p and q are odd integers".
We can sce the following strategies in students:

{1) Most students typically develop the formula as (p-1)}g+1){(g-1)/8 and argue considering
the fact that factors ar¢ even, which is not enough for proving the claim.

{2) Only a few, after some trials, change their mind, rcname variables p and q and write down

the following calculations: (2h + | -D[(2k+1)%- 18 = 2h - 4k(k+1)/8 = hk(k+1).
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(3) It requires still some effort seeing that this is an even number, in the case k is odd, because
in that case (k+1) is even.

In fact, all actions and decisions in the first strategy are ruled by studenis’ knowledge conceming
even and odd numbers: such a knowledge consists of an organised set of notions (i.e., mathematical
objects, their properties, typical algorithms to usc with them, usual arguing strategies in such a field
of knowledge, eic.), which suggest them how to reason, manipulate formulas, anticipate results
while coping with the problem, that is how to switch on and relate to each other the senses of
formulas to be interpreted and to be manipulaied in order to solve the problem. We call conceprual
Jframe such an organised set of knowledge and possible behaviours. Conceptual frames are activated
as virtual texts while interpreting a text, for example of a problem, according to context and
circumstances; as such, they have socio-cultural and individual featres.

We ke the term frame from artificial intelligence studies (for ex., see Minsky (1975)); from this
point of vicw, a frame is a structure of data that is abie to get a stereotyped representation of a
knowledge. However, our notion of frame is wider, insofar it entails also specific conceptual aspects
of knowledge as an organised set of conceptual notions and operational skills related to some precise
pieces of mathematics: so we call it a conceptual frame. As such, it is related also with the notion of
cadre (setting), ¢. cussed in Douady (1986): the similarity with Douady's notion rests on the fact that
a conceptual frame has also a strong mathematical dimension. The notion of conceptual frame is also
close o semantic fields, introduced by Lins (1994), which in his view are 2 mode of producing
meaning, a link between a statement-belief (a belief which is stated) and 4 justification for it .

Now we have all the ingredients necessary to define algebraic thought: in short, making elemeniary
algebra means playing a game of interpretations: (i.e. activating different senses and/or producing
different expressions in suitable conceptual frames) of a text in a semiotic system (for ex., a problem
in ordinary language) into a text in another system (for ex., an equation), or from a text in a system
(for ex., an algebraic expression) into a text in the same system (for ex., another algebraic
expression). In fact, the intespretaticn is useful insofar as it makes possible to know something more
about what is interpreted. The term "game” is in accordance with the way Kripke interprets
Wittgenstein linguistic games (Kripke, 1982): there the paradox of the way a rule can be grasped is
solved switching to the social dimension. This approach has important consequences also from a
didactic point of view, insofar as it implics that 2 language to be taught, for ex. the algebraic one,
should not be conceived as a pre-defined system of signs. In this case it would scarcely be interesting
for eaching goals. On the contrary. it must be conceived as an activity with signs, which becomes a
language through the linguistic game, hence acquiring a consensual and shared meaning,

When a student starts her/his interpretative activity, by various reasons she/he activates one or more
frames, cach connected with onc Frege triangie at least. Which frame the student switches on,
depends mainly on context. circumstances and connotations of the terms in the original text. Once a
frame is active, the student produces as a result of her/his interpretation a text, and the process of
solution of the problem consists in successive transformations-interpresations of this text, possibly in
the production of complesely new exts, according to the frames that are successively activated.
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The game of interpretations can be actually made because of the two main functions of algebraic
language, namely the symbolic and the algorithmic (in the terminology of Jakobson, 1956, pp.60-
62); for more details and a less crude exposition see Cauty (1984) and Arzarello et al. (1994b). Using
Frege triangle, such functions can be described easily. As a sample of the former, let us consider the
processes of type (3) in our example: pupils can see that the formula k(k+1) denotes an even number
also when k is odd; in this case the expression does not change, while its (contextualized) sense does
(and possibly also its denotation). An example of the algorithmic function is given by the usual
algebraic transformations, for exampie from k(k+1) to k24k: here the c&pression changes (and also
its algebraic sense). but its denotation is invariant.

In short, the main point in our model is the game of interpretations, that is the dynamics among
changing tiangles; this process is called semiosis by some authors (see Duval, 1993): its main result
is the production of meaning, namely the production of a functional relationship among the senses
and the denotations of algebraic expressions.

The triangle of Frege, er its variants, and the relationships between the sense and the denotation of
signs have been considered also by other authors working in mathematics education, with different
meanings. For example, many people quotc Ogden and Richards (1923): see Mellin-Olsen (1987)
§2.1.3; the concept of personal sense or of personal meaning is a major concept in the Activity
Theory: see Leont'ev (1994) and Schulz (1994). Without entering into a comparison, we stress that
our triangles are dynamics, like in all the quoted examples. According to Frege the sense is pof an
idea or whatever in the mind of some people, how in some way all above authors seem to think. In
fact processes of semiosis always have social features and their goal is to share with other people
one’s way of grasping an object. In other words, the subject makes it explicit so that it becomes part
of the shared culture of a community. To quote Frege: "the sense does not constitute...something
inscparable from the single individual, but can constitute the common ownership of many people.
That things are so, is proved by the existence of thoughts which are common to the whole mankind
and constitute an inheritance which is conveyed from generation to generation” (Frege, 1892b, §3).
As we shall point out later, for us the key point in the construction of algebraic knowledge is not only
a question of conflict and of balancing in the subject’s mind, but also a choral activity in which the
participants (pupils and teacher) construct a socially shared algebraic language. This approach scems
particularly suitable for breaking "vicious circle situations™: in such cases it is the very inlerpretative
activity of pupils in social interaction t0 enter the right tuning and to break the stall without any direct
(and useless) intervention of the teacher. The main point is building up situations which stimviawe the
monitoring of the dynamics among expressions, scnses and denotations (i.c. semiosis processes).

2. From the knowledge to its learning

The thcorctical mode! described above is apt o interpret the nature of knowledge resulting from the
use of algebraic language. However we have not yet concreie suggestions for designing suitable
didactic situations, which allow pupils to build up a genuine algebraic knowledge, namely specific
processes of semiosis, where the main functions of algebraic language can be ruled functionally by




pupils. Hence we must analyse and describe how a specific picce of algebraic knowledge, which at

the beginning of the weaching intervention is under the exclusive control of the teacher, has become

under the control of students in the end.

To do that we shall introduce the following two main notions: (1) the social space of a subject; (2) the

didactic space-time of production and communication (abbreviated with SP).

The former is taken from anthropology and has been elabocated by Fortes (see Cole, 1985, p. 153):
"An individual's social space is a product of that segment of the social structure and that
segment of the habitat with which he or she is in cffective contact. To put it in another way, the
social space is the society in its ecological setting seen from the individual's point of view. The
individual creates his social space and is in tun formed by it. On the one hand, his range of
experiences and behaviour are controlled by his social space, and on the other, everything he
learns causes it to expand and become more differentiated. In the lifetime of the individual it
changes pari passu with his psycho-physical and social development... In the evolution of an

individual's social space we have a measure of his educational development.” (Fortes, 1970,
pp.27-28)

The imporiance of looking at the interplay between culture and cognitive development in cultural
practices has grown up in the last decades after the pionecring papers of M.Cole and his colleagues at
the Laboratory of Comparative Human Cognition (LCHC, 1978, 1979) and has alrcady produced
both theoretical frameworks suitable for analysing such relationships (for a survey, see Saxe, 1994)
and concrete teaching projects for mathematics (Saxe, 1992). Such studies and projects focus on the
relationships between individuals' goals in everyday practices and cognitive functions in their efforts
1o accomplish those goals. It is so possible to characterise the social space of a subject as the space
where she/he realises a spontancous learning through activities by which she/he can keep in touch .
with the meanings claborated by the culture of the social groups with which she/he interacts.

Our goal now is to analyse the interplay between culture and cognitive development, in order to
characterise processes of leamning in one’s social space with respect to mathematics; this interplay is
delicate and interesting when approached for the specificity of algebra (as well as for many pontions
of mathematics, because of the pervasive role of its symbolic language) and will show the necessity
of introducing the notion of didactic space-time of production and communication (SP).

The learning got in a social space is featured by the fact that the unbalance between the lcamer and the
expert decreases and comes 10 an end during their interplay in a natural way. Namely, the times
between Icarning and teaching are homogeneous: the social space of the subject cnables both the
learner and the teacher to share immediately the meaning of the system of signs used within an
activity and concerning the taught knowledge.

To make us better understood. let us develop an analogy with the way children learn their own
natural language. In casc of speech, a natural feed-back is settled between the "teacher” and the
learner and this guarantees them a real contact. The communication context, where their murual

relationships develop, allows them to sharc the same intentionality of thought and to experience the
language's symbelic function of usc. Things go diffcrently with the leaming of the written language:
in this case, the child can only begin to get in touch with it. within her/his social space, for ex. by
acknowledging the letters and some words, or by writing some simple words, ctc.. However this is




not cnough to allow her/him a real learning of the written fanguage. The aforementioned process of
natural and spontaneous learning is not available any longer, without a systematic and well designed
didactic intesvention.

This is also the case of mathematics, particularly when its formal language is concemed: it is typical
the case of written arithmetic and especiaily of algebra (which is not conceivable in an oral form). For
ex., children can generally develop the ability of using a numeration system for counting sets of
objects and also to solve simple problem situations. But, without a systematic and well designed
intervention of the teacher, they cannot achicve the mastering of the positional system or of the
symbolic function of arithmetic signs, as they must be used for solving problems.

There is an unbalance between the pre-scientific knowledge one can acquire spontancously and the
scientific knowledge that one must leam within explicit didactic interventions. Generally, such
interventions arc necessary when the unbalance between the expert and the novice in a certain
knowledge domain cannot be resolved in a natural and spontancous way. Of course. such an
intervention must be built upon the dialectic relationships between the pre-scientific and the scientific
forms of knowledge. The relevance of such a dialectic has been pointed out by Vygotsky, Bachelard,
Brousscau and others, within different thcorics and with different consequences for the theories of
leaming. Also Bauersfeld points out a similar phenomenon when in the process of teaching he
distinguishes the marter meant. the marer taught, the maiier leamed, that is the mathematical content
which is planned t0 be taught, the content of the real teaching intervention and the cognitive structure
of ¢he leamer after the process of tcaching. It is our opinion that these thrce forms are strongly
consonant and convergent in the processes of leaming which develop spontaneously in the social
space of the individual, but can diverge dramatically in those processes which need a systematic and
well designed intervention, like the case of algebra.

We can now introduce the notion of SP {didactic space-time of production and communication). It
will be used to picture the leaming situations in algebra; in Chiappini and Bottino (19953, 1995b) it
has becn used to analyse the learning situations in arithmetic. J1 is @ space (in the sense of the
definition of Fories quored above) designed by the teacher in order 1o allow the learner to plan
activities, because of a task. The plan of the student has as its main goal the accomplishment of the
task; the goal of the teacher is that the student gets in touch with the knowledge to be learnt, through
the designed activity. In this frame, the learning of a knowledge can be developed only through an
activity: thc meaning attached to it depends always upon the functionality of the used semiotic system
within the activity sclf. The word activity is here used according to the meaning that it has within
Activity Theory and concems the project developed by the learner according with the goals and the
modalitics she/he singles out of the given task within the SP. Hence the concrete process of learmning
consists in using the semiotic system'’s functionality within the SP, in order to incorporate the senscs
which are switched on and shared through the activity, achieving the meaning of the situaticn in the
end. The word space is here used to mean the frame within which the subject's activity can devclop
as a production-communication activity. The former underlines the intrapersonal features, while the
latter emphasises the interpersonal cnes. An SP is defined by the possibilities of action that are
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available within it and by the specific features and modalities after which the subject’s actions can be
realised as production and communication activity. The SP supplies with the task, suggests the
context and makes available the tools both for the action and for a socially shareable meaning of the
action’s product. By ‘tools’ we mean also the systems of semiotic representations, both as thinking
and as communication tools. An SP is able to create a social space and is useful for the learning of
the student if it can scaffold the activity of the pupil with respect to the knowledge to be learnt ina
way that is accessible to the evoked social space. An SP  allows to reproduce for didactic purposes
(i.. not in a spontaneous process) “the crucial maich between a support system in the social
environment and an acquisition process in the learner” (Bruner, 1985, p.28).

By accessibility we mean that the individual's social space must be able to control all the conditions
which make it possible for the subject developing the designed actions within the SP. Interiorization
of the activity made in the SP spreads out and differentiates further the social space of the subject and
in the meanwhile causes exhaustion of its didactic function. Hence an SP is destined to come to an
end: it goes out as a didactic support when the structure of the extemal activity has been interiorized,
that is when the subject can reproduce such an activity at an internal level and is consequently able to
incorporate the meaning which she/he has produced through the external activity in a suitable semiotic
system of representation.

An SP is meaningful for the karning of knowledge, provided that the possibilitics and the
modalitics of action, which it allows to the pupils, do realise the following goals: (1) motivating
pupils for their plannirg of the activity; (2) supporting them in the choose of the specific goals and in
the consequent processes of anticipation and planning; (3) emphasising the functionality of the
system of signs into which the knowledge to be learnt must be incorporated, according to the design
of the teacher.

The first two goals arc a necessary, but not sufficient, condition for achicving the planned lcaming:
they can be pursued by means of adjustment processes coached by the subject with respect to the
possibilities and modalities of action within the SP. The third goal needs that pupils acknowledge
such a functionality, and that they have a concrete accessibility to it within the SP: this mcans that
pupils are proximal (in the sense of Vygotsky) to convent the represented knowledge from a known
system of signs to another one and that the activity designed in the SP can support and help them in
achieving such a goal.

Last but not least, the time variable is a paramcter in a SP. Problems of time in the teaching of
mathematics have been pointed out by Chevallard (1992) and by Brousseau (1991).

Time is crucial at least from two points of view. First, it is an external variable, within which the
didactic space-time lives. It is important, because of the unbaiance between the times of the teacher,
and those of the learner, depending on her/his inner and social features. Second, time is an inner
variable, inside the processes of pupils. for ex. inside their game of interpretation: related processes
of internalization generaily mark forms of contraction of the thought, whose most relevant aspect is
the phenomenon that we call condensation (sce Arzarello et al. (1997)): the word is taken from
semiology (sce Eco (1984), p. 157} and from Freud (1905); it has also some connection with the




phenomena of curtailing, described in Krutetskii (1976), and with the property of contracting, typical
of inner language (see Vygotsky (1934), chap. 7). Let us briefly skeich this last point. While making
the game of interpretation, the stream of thought which sustains the computations and arguments of a
student contracts its temporal, spatial and logical features and condenses them into an act of thought,
which grasps the global situation as a whole. Such an inner process happens in a dialectic back and
forth with the formula (such processes are clearly visible when pupils interact positively with
spreadsheets, symbolic manipulators, etc.): there is a sort of converging process, from the formula to
the subject and conversely towards the final solution, through possible different acts of thought
and/or specch, which in the end culminates in a single act of thought in the pupil’s head and in 2
general written formula (on the paper, on the PC sereen, etc.).

3. Worked out examples

It is our ¢lai that effective learning situations in algebra can be developed only within a suitable SP,
so that the pupil can plan her/his activity developing gradually the meanings which are crucial for
acknowledging the functionality of the system of signs of algebra. The last part of the paper is
devoted to sketch a few examples which illustrate this point. The first three concern pre-algebra and
elementary algebra, whilst the fourth (which is only sketched for space reasons) regards a more
advanced topic of abstract algcbra. They are taken from experiences made with students of different
levels (from compulsory school to the University) in different places (Genova, Pavia, Torino).
However, the subjects are not so relevant: our major point is illustrating the role of SP in describing
processes of leaming in algebra.

We start with an example, that is the problem of naming a generic odd or even number (hence the
frame is fixed). Such a problem is faced in grades 6-7 in Italy and we can introduce it within two
possible SP.

SP1. Working with paper and penil. the problem can be solved by the teacher introducing pupils to
the expressions /2n+1/ or /2n/. Generally, the way by which such cxpressions incorporate the
genuine sense of being odd or even is pursued by instantiating the variable /n/ with some numerical
cxamples: this is done by the teacher at the blackboard and/or is given as an exercise to the pupils;
with this aim also some numerical tables are built. In both cases the SP is designed to involve the
pupil in a communication activity, which gencrally has all the features of a monologue, through
which the teacher tries to convince the pupil about the power and capabilitics of the system of signs
that is introduced. According to teacher's purposes, the interpretation that the subject is supposed to
give to the inroduced signs should be bascd upon the meanings driven by the instantiation of the

variable. However, the activity scems very poor and does not allow to many pupils grasping the
functionality of use in the variable /r/; the interpretation of the expressions /2n+1/ and /2n/ given by
the pupil can be done according with experiences and senses which are very different from those
thought by the teacher. This can be the cause of a different interpreation with respect (o the one




socially shared. It is so produced a gap between the meaning conveyed by the teacher and that
interpreted by the pupil. The "added value™ of sense so got by pupils for the formula is generaily very
poor: average pupils who have done the above exercises show serious difficulties in producing-
interpreting expressions where such a naming is required to solve conerete problems even at later
levels of school (sec examples in Arzarello et al.[94b]).

8SP2. Now let us look at the above problem faced in a spread-sheet environment. In this case, pupils
can interpret the algebraic expressions according with the aims of the teacher, albeit subjectively,
provided they can expericnce their functionality of use within an activity that is apt to pr . 1ce the
right meaning for them. Pupils work with a sheet where in column A the sequence . : natural
numbers is gencrated by means of an iterative rule (fig.2). The column of values may be given by the
teacher or worked out with pupils. After having named the numbers of column A by the letter N,
pupils are requested to find a universal formula which generates odd numbers in column B using the
anumbers of column A as inputs. The pupils insert in the B2 cell the formula which solves the
problem according to their conjectures; afierwards, looking at the column B of numbers so generated
(which is produced automatically by the computer) they can check if the formula they have produced
is adequate or not with respect to the posed problem .
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In a further scssion, new sequences of numbers are given to the pupils and, in each case, they are
1:quesiced to produce a universal formula which gencrates the sequence of odd numbers (fig. 3,4): for
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ex. /k-1/, f2k-1/.... represent an odd number if k is even, positive,.... Let us check which are the
features of the SP designed by the teacher, that have made it possible for the pupils to plan a
production activity, which has revealed meaningful for their leaming. In SP2 formulas are
constructed as a tool for transforming input data into results, according to the manipulative rules
incorporated in the working logic of the software. In case of mistakes, pupils can try again,
modifying the formuia they have produced: a positive feed-back process is realised among the pupil,
the computer and the formula self. Hence interactivity with software allows pupil to develop
constructive processes which may be richer than those got working in an autonomous way in paper
and pencil environments. In fact, interaction with computer in spreadsheet environmenis allows
pupils producing ard anticipating acts of thought, in order to grasp globally (some portions of) the
formulas necessary for solving the problem. The numerical table got by means of the computer
sustains and models anticipating processes of the subjects. They can so develop a common field of
experiences, meanings, references. where they can construct suitable senses for formal expressions.
The social construction of the meaning for formal expressions represents the most interesting aspect
of experiences like that illustrated by SP2; emphasis is not on the computer as a performer but as a
device which allows interactiviry. In fact, such interactive aspects may be relevant also in different
environmenis, where computer is missing and the interaction is coached by the teacher using other
constraints, for example organising properly internal and external group dynamics (sec Cobb et al.
[92] and our next cxamples), possibly forcing the use of suitable represcntations by pupils.
Interactivity with the computer is a particular case of social intcraction, where pupils negotiate the
construction of meanings to attach to the products of their actions (for example formulas): computer
is a cultural arwctact (Saxe, 1992) that works as a mediator which constrains and sustains the
negotiation self. When secial interaction is missing (or less present) the pupils attach senses to
symbols and formulas in a more private way, which may produce pitfalls and misconcepts. The
result is that the subject is not able to usc the sign system of algebra functionally with respect to the
aims of the task. As an example, let us consider the following problem (Arzarcllo et al., 1994a):

By means of a good choice of names to designate two subsequent odd numbers, show that
their sum is a multiple of 4.

Experiments carried out with students attending Junior Secondary School (6-8 grades) and
Undergraduate University Courses have revealed similar typologics of errors, namely:
* X +

*  2h+1+2k+1 or 2h+1+2k+1+42 instead of 2h+1+2h+3;
*  moreover, a high percentage of students make only arithmetical checks.

The cxamplc shows that some students, who can express the relationships among the elements of the
problem using the natural language or the arithmetic code, are unable to express them suitably b,
means of the algebraic code. More specifically, they are unable to use the algebraic code as a
mcdiator between the identified goals of the problem and the qualitative and quantitative relationships
among its clements.

1— 129 L0y




IIII'\Jl [

e RS O

d g - g - g e GG Al Y SCICK) s .
roject for the teaching of mathematics in the elementary school; the project
involve a few schools in Turin (about 150 pupils). Arithmetic is approached in a contextualized
manner, for ex. simulating a market in the class, where pupils szll, buy, weight goods, use cash-
registers, produce checks, etc. We have not the space for discussing all the activity and for giving a
detailed description of its whole SP. We shall limit ourselves to illustrate an episode in a specific
grade 4 class, which is useful for grasping how an SP can scaffold pupils” activities towards the
construction of an algebraic formula.

The example refers to a pl

Their previous knowledge concerning arithmietic and prealgebra is as follows: they are able to solve
simple word problems where the four operations are involved (up to three, four operations in the
same problem) and are acquainied in using letters for generalising problems (generally they use the
metaphor of the machine:"how to give instruction to a machine if it must make the right calculations?”
But none does attend any computer course). In the given situation, pupils are playing to be buyers
and sellers in a market and are discussing the way retail prices for goods must charged, compared
with wholesale prices. From their interviews with real sellers they know that taxes amount to 20% of
final prices (in Italy when you buy a good. the scller tell you only the global price without
distinguishing between VAT and the net price} and know how much further additional expenses
affect the final price. In a discussion ruled by the teacher the full class has agreed about the facts that
the final retail price must cover: wholesale price, taxes, additional expenses and the right gain for the
seller. Now they produce colicctively the following problem (the text is written at the blackboard by
the teacher, according to the suggestions of the pupils):
Which might be the price of pumpkin seeds, provided that the wholesale price is lire §000

for a kilo, additional expenses can be evaluated in lire 1000 for each kilo and knowing
that taxes are 20% of the total amount?

Pupils of the class (20 people) are divided inte 5 small groups. cach working autonomously

and producing its proposal, which in the end is exposed to the the others and written at the
blackboard.

1. Here are some example of the proposals of pupils:

Group of Valentino Group of Federica: 16000 Group of Melania: 20000
8000 + 8000 + 1000 = 9000 8000 + 1000 = 9000
1000 + 16000 + 16000 = 32000 20000:10x2 = 4000
20% = 16000:10x2 = 3200 9000 + 4000 = 13000
-------- 9000 + 3200 = 12200 20000 - 13000 = 7000
9200 16000 - 3200 = 2800

total amount
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2. Choral discussion
At this point the proposals are discussed by the whole class; social interaction among
them clarify the mistakes of Valentino's group; but pupils are not satisficd by the
solutions and try chorally other ones; after some attempts, they elaborate collectively a
method which we cali by trials, giving a list of examples as the following one:

"try with a global price of 18000 lirc; the amount of taxes is 18000:10x2 = 3600 lire; that
means 900043600 = 12600 lire as the global amount of expenses; hence the gain amounts
to 18000 - 12600 = 5400 lire”.

In the end they choose the example they like betier among the differcnt ones.

After two weeks the teacher recalls the problem to the class, distributes pupils a copy of
the protocols they have produced in their discussion and invite them to discuss the
protocols. They are again puzzled by the problem of taxes:

. Fabio writes at the blackboard: "800C + 1000 = 9000" and then : “20% of 9000 is
9000:10x2 = 1R00™ .

. Teacher: Whi.. will be the selling price?

. Fabio writes: 9000 - 1800 = 7200.

. Pamela: it is not right doing 9000 minus 18(); it gives too small a number.

. Teacher: It seems to me that you are not sure that the selling price will be 7200 lire. Please
make a check. Read again the text of the problem, remembering that now the selling price
is 7200 lire and check if it fits with the other prices given in the text

6. Federica: you must add 20% of the income.

.7. Melania, Sonia and others: There is no income! It is missing.

8.

9.

—

AW W
&N

Teacher; so? .
9. Mclania, Sonia: You must imagine it, think it before and then find the 20%.
.10.Melania: and then you must add it to the other expenses.
.11.Fabio: How can we add it? Excuse me...gencrally you take off! It is a number which
becomes smaller, making this 20%.
3.12.Federica: It is true that it is a smaller number, but you must not take it off from expenses!
You must add it to get the total expense.

3
3
3
3
k!
3

4. Pupils agree that the approach of Melania, Sonia, Federica is right, write down the
procedure and with the support of the teacher produce formulas for solving the problem
1n a gencral way, namely:

1. PRICE:10x2 + (8000+1000) + GAIN = PRICE,

They also generalise the furmula for different wholesale prices, for example 5000 lire
(they cxplicitly say that additional expenses do not change):
4.2, PRICE:10x2 + (5000+1000) + GAIN = PRICE.

Let us discuss sketchily the functionality of signs within the given situation: there is an cvident
cvolution from the productions of episodes 1 to the choral claboration 2. up to the discussion in
cpisodes 3.1-3 12. In the first episodes the productions are completely inside the arithmetic
register: but the signs of arithmetic become more and more functionat with respeet 10 the
pencrality (and difficulty) of the problem: arithmetic changes its status and its formulas are
produced more and more according with an algehraic code. Pupils acknowledge this during the
choral discussion in 2: the method by trial is in fact a set of arithmetic formulas whase sensc is
different from that of the formulas produced in cpisodes of 1 (even if they are the same
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arithmetic expressions). Pupils use the symbolic function of algebraic code to elaborate this
new sense attached to the old expressions. Of course, in this process, functionality is accessible

to pupils because of the meaningful sitation where the problem ix contextualised. It supporis
their activity, facilitating their anticipation of the very algebraic problem (note that the pupils
themselves read the problem in an increasing algebraic manner).

As 1o the variable time, there are two iraportant observations. The first is about the outer time
and the relationship between the time of the teacher and that of the pupils: it is interesting
observing that the jumps of pupils towards generalisation happen in cpisodes 2 and 3.6. Both
are marked by the possibility for pupils to come back to their written productions (the ficst time
immediately after the production, the second time after a fortnight). This fact is typical: we
conjecture that the possibility of sceing “what one has thought™ a second time in a written form
allows people 1o break the constraints of sequential acts of thought in the time and makes
accessible at the same moment things which were not so at the beginning.

The second obscrvation concems inner time: episode 3.9 is crucial for inventing the price as an
unknown variable. Mclania and Sonia widen their time horizon, get detached from previous
productions and elaborate a new sense for the price and for the formulas that are under their
cyes, namely the imagined price; then they can imagine to develop their calculations in the time.
They make accessible their act of thought to other people by acts of speech, which tune their
production with other pupils' thought {3.9: "you must imagine it”; 3.10:"and then you must
add it to the other expenses™). At this point, with the support of the teacher, their acts can be
condensed in a formula (episodes 4.1, 4.2).

Example 3: exploiting the isometry groups of regular polyedra (sketch).

It is an activity that [ do with my students in a course for future teachers of mathematics. They lcam
concretely the art of paper folding (Japanese origami) to construct geometrical shapes, for ex. the five
platonic solids. Then we explore together the main features of the groups of isometries for such
figures; particularly they face the problem of represeniting such groups as {sub)groups of suitable
permutation groups. The SP is given here by the relationships between students’ activities with such
anefacts and their knowledge about groups (which are very formal and poor: they de not own the
concept of group as a tool for solving problems). Like in the case discussed in ex. 2, they first work
in small groups of three-four, then each group presents its own solution and the choral discussion
starts; afier some weeks we come back to their productions and there is a second discussion. It is
interesting to observe the slow evolution of their way of intcracting among them and with the taught
matier within the SP, while the didactic time goes on according with their own times. The major point
is that the SP scaffolds their activities so that from the informal discussions about the objects they go
over to a more formal level and use the formalism of groups as a tool to produce general proofs. The
SP incorporates inside the germs “or its own cnd as a didactic situation; this corresponds 1o the
passing of students from inleractivas with the objects to interactions with a general meaning they
have been able to attach to the SP activitics.
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Some final remarks
Let us discuss more specifically the nature of the support that an SP can give to the developing of
pupil's knowledge in the case of the algebraic domain. Main algebraic activities concern producing-
transforming-interpreting algebraic expressions and among the major processes which are essential
for coaching such activitics we find anticipation and planning, that is processes which are not always
fuled in an autonomous way by pupils. The former concerns the activation of suitable senses for the
algebraic symbols and expressions which concern the problem to solve. The latter may have twd
different aspects: first, in the case of the construction of a formula, it concerns the setting of the
resolution process after 2 hierarchy of aims so that one can achicve the goal of the problem; second,
in the case of the interpretation of a formula, it concems the rebuilding of the hierarchy which was in
the mind of the people who produced the formula sclf. In the construction of a formula, anticipation
shows a back-and-forth stream of thought from inner pracesses to external representations, which
goes towards a goal by means of a suitable planning of the resolution process. In the ~ase of
transformation of formulas, anticipation and planning concern the gradual construction of the shaps
for a possible final state of the expression, again in a feed-back process between thought and
representations. In both cases the goal is a powerful stirrer of anticipation for the senses that the
expressions must incorporate in order to fulfil it. A major didactic problem is to find suitahle
mediations for supporting anticipation and planning. Our claim is that such processes can be
developed only within a suitable SP, where students can find both social interaction, that is
interpersonal exchanges between the pupil and the environment (teacher, mates,...) and suitable
mediators (namely cultural artefacts, like books, computer....) which are aimed at producing
meanings. To be useful for learning, activities in SP must allow pupils validating and justifying the
sensc of the expressions within het/his social space, that is within the rules and the culture that the
subject effectively owns. All this constitutes the socially shared. even if not explicit, background
which belongs to the social space of the pupils and constitutcs the nccessary basis for what pupils do
and for their intcrpretations of what they have done. SP must be able to scaffold and support the
student’s activity; the leaming process can be considered as an imitation, on part of the novice, of the
expert’'s performances: from her/his side, expert can support the novice explicating her/his own
strategies, streams of thought, skipped difficulties, while solving a problem. The social aspects of
interactions are essential to scaffold pupils’ activity as a cognitive apprenticeship and not only as a
practical one. The novice can so learn algebra while working in a cultural and social environment
which resembles the Jralian bottega d'arte in Renaissance, or the Samba School in Rio de Janeiro
{sce the description given by S.Pzpert, 1980): in such teaching-learning environments the novice
social space grows up also because she/he leams by doing, by seeing it done and by discussing
systematically what she/he is doing both with experts and with other novices. Our present research is
aimed at studying long-term processes, which tipically feature the evolution of pupils in the SP's,
exploiting the analogy with the above natural models of teaching-learning environments.
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Students’ Knowledge of Algebra

Martin van Reeuwijk
Freudenthal Institute, University of Utrecht, The Netherlands

A world-wide reform of the algebra curriculum is going on nowadays. Within circles of researchers,
like at PME-conferences, an increase in profundity of the reflection on the subject-matter can be observed.
However, much of the research on learning and teaching of algebra takes the traditional curriculum as a
given. The research reported on in this paper does not take the existing algebra curriculum as a starting
point , and as a consequence, the nature of algebra as we will discuss deviates from such research outcomes
{see also Kieran, 1994). In this paper we try to move beyond the rhetoric on algebra reform, and we will
describe some alternatives for the traditional approach toward learning algebra. We attempt to apply the
key-ideas of our theory of mathematics instruction - Realistic Mathematics Education — to the research
methodology we use — Developmental Research. The theory and the research methodology are illustrated
with examples from a developmental research study on “solving systems of equations”.

INTRODUCTION

The place and role of algebra in school mathematics are under intense review on many
fronts. The reasons for reform have been many and varied, and they are true for many of the
traditional mathematics courses: The society has changed drastically (people need to be well
educated to be able to deal with increasingly complex situations); Technology has taken over
many of the cumbersome computational activities (and it has had its influence on the content of
mathematics); New theories on learning and teaching (influenced by the constructivist approach)
are replacing the old ones (the behaviorist approach); And, consequently, the goals of mathematics
education are changing (there is more emphasis on higher level skills like problem solving,
reasoning, communication, critical attitude, flexibility, making connections).

In the traditional algebra curriculum in the United States, algebra is presented asa
language and a fixed structure. Students learn to copy the rules and tricks of algebra without a real
understanding of the matter. The pedagogy is top-down, and too little attention is paid to the
generalizing aspect of algebra, and to the dynamic aspects of variables — that is algebraic
reasoning. The jump to the formal level is made too quickly, and there is no time for students to
develop their own schemes. The traditional algebra course is seen as sterile, disconnected from
other mathematics and from the “real world” (Romberg & Spence 1993).

A large and growing body of research began to elaborate the cognitive underpinnings of
algebraic understanding (see e.g. Booth 1984, 1988, Kieran 1992, Schoenfeld 1987, Wagner &
Kieran 1989). Algebraic reasoning in its many forms, and the use of algebraic representations —
including graphs, tables, and formulas ~ are very powerful intellectual tools that should be made
available to all students {see e.g. Janvier 1978). In a recent curriculum innovation project in The
Nethetlands, this vision on algebra was used to develop teaching and learning materials for the
age group of 12 to 16 years (see Team W12-16, 1992). Unlike many of the traditional research
projects, this project was an example of integrated research and development. The project
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integrated all issues related to curriculum reform: developing curricular materials, teacher support
and education, assessment, and implementation. The research methodology of projects like the
"'W12-16 project’ is very much related to the philosophy on mathematics education as developed at
the Freudenthal Institute over the past 25 years. Before we describe in more detail some ideas and
results of recent research on early algebra, we first explain the theory, or philosophy, underlying
the work of the Freudenthal Institute.

Realistic Mathematics Education

In Realistic Mathematics Education (RME), mathematics is considered as a human activity
(Freudenthal, 1991). The main idea is to develop sense making ways for leaning and teaching
sense making mathematics. The approach of RME was propagated and elaborated by Freudenthal
and staff of the Freudenthal Institute (Treffers 1987, De Lange 1987, Streefland 1993, Gravemeijer
1994). We will describe RME using the following characteristic features.

‘real’ world

In the teaching and learning of mathematics, realistic contexts (or situations) play a crucial
part: The for the students experientially real world is used as both a meaningful base to start the
development of mathematical concepts and skills, and as a field to apply these mathematical
concepts and skills. The contexts — or problem situations — need to be authentic and realistic to the
students. This doesn’t mean they need to stem directly from everyday live. The contexts should
make sense to the students, and they must support the students in solvirg the problems and
developing {or reinventing) mathematics. The context can also be mathematics itself, mathematics
can be realistic as well.

$pending Money & the Game A @lirthday Party

Mom. Dad, and Rache! are cslebrating a birthddy al the dinner tabie.
Rachei says: "Hey Mom and Dad, your ages tofal 100 years now'™™
o} i i $44.00  (aqis surprisad. "Yes you are righl. And your age and mine total 64 years.*

Rachal repees. “And my age and Mom's total 58"
ELI TS

1. How old are Mo, Dad, and Rachel?
How much does a T-shurt cost?

Explans How you got your answer
Ang how much 18 8 30da? Explam how you go! your answers.

Figure 1. Some examples of ‘realistic’ problems, related to ‘solving systems of equations'.
Figure 1 shows two examples of problems to be consiuer ed 'realistic’. Both problems

involve the same mathematics, but use a different representation. The problems are ‘real’ in the

scnse that they make sense to the students; Students are able to realize what the situation is about.
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We will come back to these problems to show how the context supports students’ reasoning in
solving the problems.

ows productions and constructions

In RME we often start with a problem situation that students are familiar with. The existing
knowledge of the students that they bring in, is used as a starting point. We build on this existing
frame of knowledge and reference. It is important to identify if all students are at the same
thinking-level, and if they have the prerequisite knowledge before new mathematics is developed.
Students’ own productions and constructions are good means to find out and to establish a
common starting point.

Moreover, students’ own productions and constructions are also used to reflect on the
teaching-learning process, in order to help students to progress to a higher cognitive level of doing
mathematics.

Streefland (1995) carried out a small experiment to investigate the possibilities of a new
approach toward teaching and learning 'solving systems of equations'. Students were asked to
compose little bags of sweets and determining the prices of these bags. At first, the prices of the
sweets were given, and the students were asked to develop methods to compare the content and
the prices of the different bags. Next students imagined to be the shopkeeper, and they were asked
to make combinations of sweets like 'two chocolate and 5 liquorice lace cost 2.05'. Students came
up with a rich variety of notations and methods to describe the bags of sweets. These own
productions and constructicns were then used to discuss what notation systems were efficient,
and under what conditions it is possible to find the prices of the sweets.

mathematization

A first step of problem solving is interpreting the problem situation and to translate it in
some kind of mathematics. This process is called horizontal mathematization. By allowing
students to use a vanety of informal and pre-formal methods at different levels of abstraction and
formalization, all students can solve problems using mathematics that makes sense to them, and
that they feel comfortable with. Through reflection using own productions and constructions,
students are encouraged to make the step from a lower cognitive concrete level to a higher level of
abstraction, This formalizing aspect of RME is labeled as vertical mathematization (Treffers, 1987).
The challenge for the researcher/developer is to find problem situations that are paradigmatic for
the intended learning process. Students can develop a (thinking) model of the problem situation,
and use this model for solving mathematically similar or related problems.

The teacher and the instructional materials play an important role in mathematizing. They
guide the students in reinventing mathematics. The pedagogy is that of starting with an open
learning environment from which the teacher and the curricular materials facilitate and guide —
through reflection and discussion — the learning process of the students.
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In algebra instruction, mathematization means that students learn to algebraize, that is "to
make algebra of the problem situation’. Generalizing the individual strategies of the students helps
them move from the informal level to the formal level of doing algebra. This process can be
characterized as progressive formalization.

For example, the methods and strategies that the students came up with in the experiment
of Streefland were discussed and reflected upon in class. The goal of the reflection was to find
ways to generalize and formalize the methods of the students.

@ 2T + A5 =44.00
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Figure 2. '‘Guess & check’ strategies (I and [I), and ‘reasoning’ strategies (Ill and IV).

The two problems presented in figure 1 can also be solved on different levels of
mathematical sophistication. One can use a random guess and check strategy, a reasoning strategy
using the idea of exchange, or algebraic equations. Figure 2 shows some examples of ‘guess &
check’ and ‘reasoning’ strategies for the T-shirt problem. The task of the researcher/developer is to
design a natural environment in which the students will develop in a sense making way the more
formal concepts related to ‘solving systems of equations’. We will come back to the use of different
strategics later in this paper.

interaction

As indicated in the former paragraph, reflection and discussion are critical factors of the
teaching-learning process. The own productions and constructions are subject for discussion,
organization, and reflection. In RME, interaction between students-students, teachers-students,
and teachers-teachers are all important ingredients. This is paying much lip-service to the latest
fashion in (mathematics) educahon. However, this does not mean that group work is the best and
only form of ins‘ruction. Working in cooperative groups can contribute to learning, but it is up to




the teacher to decide what the most appropriate form of instruction is for her students and for the
situation in her class. Interaction is important because it leads to crucial activities of problem
solving: cooperation, discussion, sharing and reflection.

integrated learning strands

In the philosophy of RME, school mathematics is a subject in which different mathematical
topics are integrated; There are no separate courses algebra, geometry, and statistics, calculus and
soon. Because instruction is not hierarchically organized, all students get the opportunity to learn
about all topics of mathematics. Traditional instruction ~ especially in the middle grades — often
takes a linear approach, and it beliefs in repetition: A topic is introduced, taught, and practiced, all
in a short period of time in one unit of instruction; Students are expected to 'master’ this topic by
means of reproduction, and the topic is not revisited until probably the next year in the same
chapter of the book. We know from experience and from research that this approach does not
contribute very much to leamning. In RME, mathematics is seen as an integrated subject, that is
developed as a whole, and the connections between the different sub-domains are constantly
made explicit because these connections are implicitly present in the materials.

some remarks on RME

One of the causes for malfunctioning instruction is the discrepancy between the actor's
point of view and the cbserver's point of view. The actor ~ or student -_-has not constructed and
developed the knowledge of mathematics as the observer — the teacher - has. The teacher, or
expert, uses a different frame of reference than the student, and that causes problems in
communication and mutual understanding. This discrepancy is the result of a top-down approach
in instruction in which mathematics is presented as a fixed body of knowledge that needs to be
mastered and that can only be imitated by reproduction. Realistic Mathematics Education is a
bottom-up approach in which students’ own productions and constructions in their own language
and notation systems are used to develop the mathematics.

RME is more than a view on mathematics education, it also includes a vision on research
and development, and it also reflects the attitude toward reform of mathematics education. In the
philosophy of RME, learning, teaching, assessment, curriculum development, and other aspects of
instruction are all related. They mutually influence each other, and therefore, all these 1ssues
should be addressed at the same time in a mathematics education reform project. Thus RME
involves educational development at all existing levels.

DEVELOPMENTAL RESEARCH

In the former paragraph we described RME using five characteristic features. This
paragraph is an attempt to describe the research methodology using the same five characteristics.
The work at the Freudenthal Institute is mostly a combination of research and development,

actually research and development are integrated. Characteristic for ‘developmental research’ are
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iterative research and development cycles, with development efforts supported by the research,
and with renewed research efforts triggered by issues that arise in field experiments. Both the
instructional materials and the underlying theory constantly evolve during this cyclic process.

real world

The school, class, students and teachers are the reality from which the ideas about
mathematics education originate. The researcher/developer has strong connections with the daily
practice of teaching and learning. By teaching, observing, and visiting classrooms on a regular
base, we keep a feeling of what really happens in the classroom.

After an idea — or theory — on new ways of teaching and learning mathematics is ‘born’, it
is materialized in instructional materials that are tested in the classroom. 5o, the classroom plays
the role of a meaningful source for new ideas, and as a place to find out if the new ideas are

feasible, ard if they work.

own productions and constructions

As students’ own productions and constructions are important for the teaching and
learning of mathematics, so are the researcher/developer's first materializations of ideas
embedded in experience, common sense, and existing research. As described earlier, the task for
the designer /researcher is to find paradigmatic problem situations for the development of the
mathematical concepts. In order to realize an alternative approach for leaming some particular
mathematical topic, it is essential to carry out a thorough analysis of the subject area. The
designer /researcher needs to find out the essentials of the topic: what are the prerequisites, what
is it leading to, how can history help in the design of instructional activities, what can we learn
from existing research and experiences, what contexts and problem situations can be used.

The didactical phenomenalogy (Freuderithal, 1983) results in a prototype of instructional
materials, or some very first draft activities, that are tried out in the classroom. This is the start of
the cyclic process in which the ideas and the materials are constantly revised. From the point of
view of research, the observed individual learning processes of both the teacher and the student
who participate in the experiment, have considerable impact on the development of a prototype of
instruction for the mathematical subject at issue.

mathematization

The first prototype functions as a model of the intended learning process. The prototype is
tested in the class; by means of observations, and interviews with students and teachers, evidence
is collected on how well ‘it works'. The collected data and experiences give reason to reflect on the
first trial and to adjust the ideas and the instructional materials. For the students, the learrung
process is that of progressive mathematization, for the developer/researcher the learning process
can be charactenzed as progressive theorization. Moreover, at the level of the researcher this
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implies the development of theory on the teaching (and learning) of the mathematical subject at
issue. As said earlier, both theory and materials evolve.

Figure 3 shows two versions of the same 'Hats and Glasses’ problem. On the left is a
composed version of the problem as it was used in the first trial — the pilot ~, and on the right is
the revised version as it was used in the next iteration ~ the field test. The intention of this
problem is to have students develop a reasoning strategy in which they will exchange hats for
umbrellas, and make new combinations. The pilot showed that aithough the pictures may invite
for this strategy, the questions don't. Students could reason that a hat was more expensive, but
most students answered question 2 using a ‘guess & check' strategy. They did not make the
connection between questions 1 and 2. Therefore some intermediate questions were inserted in the
revision. From observations during the next try-out we learned that students did discover the
pattern and used the exchange principle to solve the problem. We learned that some more
structure was needed to achieve the intended goal.

Hatn and Giasess (piiot verion) Hats £nd Giaeses (fleid teet version)
\ NI N N PNEOF
TP ss8. :
=X 2 B
o N
\X ($52.00. .
FO
1 Wiuch 1 More SXpensve, & hat of & P Of glasses?
2 Vmaiisthe pios ol one hat? '\ Wihout cakulating the prices for & het, of & pair of glssses,
What i the pnos of ohe Dax of gissses? e 13 £10rS SxERCYINe? How MUCH TOFP SRTrIve?
Expian your regscmeg

2 Uns the two picturas 10 ks & new combabon of gasses
and hais, and witto Sown the cost of the combration

3 Make a combinabon of ordy hats o Oty Jpeset,
and (ind s poce.

4 What 1s (he pnce of ane har? And of one pair of rasses?
Figure 3. Two composcd versions of the ‘Hats & Classes” problem.

interaction

The researcher/developer is not one individual who invents ideas and tries them out. The
work i3 usually done in a team. Before the first version 1 ready to be tried out, alreadv many
drafts have been discussed with colleagues. The discussion is an essential part of the develorment
process; 1t gives the designer the opportunity to retlect on his ideas. During and after the try-outs
there is alsv a continuous interaction with colleagues, teachers and students. Experiences and

findings are shared and open 1o scrutinize. Developmental research is often a team vifort.
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integrated learming strands

In RME and consequently developmental research, teachers, students and researchers are
seen as equal partners. One cannot live without the other. All parties involved, leam during the
developmental research project. Since it is a team effort, everybady should be open to learn from
the other: The learning strands of the different parties are interwoven in service of the prototype
that is developed, and the theory about its teaching and leamning,

To create an environment in which the persons can learn from each other, one needs to be
careful with the language used. To facilitate the communication, understandable and clear
language is critical. It is therefore that developmental researchers do not use much of the
traditional research jargon and rhetoric.

a comment on the researcher

In the above paragraphs we have used different terms for the person who carries out the
developmental research. It is hard to find an appropriate term: researcher, developer, designer.
The developmental researcher is a mix of all three. But each of the words carries a meaning that
not necessarily means the same as intended. Freudenthal used to cal! the staff at the institute
‘engineers’, and maybe that is the best word to describe the developmental researcher.

ALGEBRA IN A NEW CURRICULUM

The examples provided so far, come from an instructional unit from the Mathematics in

Context™ project. Before we describe in more detail the content and development of this specific

unit, we will give a short overview of the vision on schoo! algebra in the MiC project.

The Dutch experiences in research and development in mathematics education of the past
decades, the philosophy of RME, and the NCTM Curriculunt and Evaluation Standards for School
Mathematics (1989} form the base for the approach towards algebra in the Mathematics in Context

project. In this project, algebra is characterized as:
* .. the study of relationships between variables (the study of joint vanation) Students learn
how to describe these relationships with a variety of representations, and will be able to
connect the representations The algebra is used to solve problems, and students learn how
to usc algebra in an appropriate manner. The latter includes making intelligent choices about
what algebraic representation (if any) to use in solving a problem. Algebra (its structure and
symbols) is not a goal on itself. Algebra 1s a tool to solve problems. The problems that arise
from the real world, are often presented in contexts, they are reahistic problems in the way
described earlier.”

* The Mathematics m Context (MiC) project is a NSF-funded project carnied out by the University of
Wisconsin- Madison and the Freudenthal Institute of Utrecht University in The Netherlands. The purpose
of the MiC project is to create a comprehensive mathematics curriculum for grades 5 through 8 that reflects
the content and pedagogy suggested by the NCTM Curriculum and Evaluation Standards. The materials being
developed are based on the beliefs that mathematics shouid make sense to students and that mathematics is
used to make sense of the world around us. The philosophy is based on the theory of Reahstic Mathematics
Education, and on the belief that mathematics s fellible, changing, and, hke any other body of knowledge,
the product of human mventiveness. In the MiC project, the content is organized nto four combiaed
strands--number, algebra, geometry, and statistics and probability. Over 40 instructional unts spread out
over the four sttands have been developed.




This vision has been worked out in about 13 instructional units. The units in che algebra-
strand of the curriculum are strongly interwoven. They are organized around three themes. The
theme Expressions & Formulas deals with representations of patterns and regularities. Geometric
patterns are used to make formulas, and an important aspect is generalizing. The second theme is
Eguations, in which means to represent restrictions and constraints are developed. This theme
culminates in optimalization problems and simple linear programming situations. Graphs is the
name of the third theme. Graphs are used as representations of processes as growth and change.

There are many connections between the units within a theme, and between units from
different themes. Topics are being revisited several times during the four years, so students get the
opportunity to learn at their own pace. We take ample time to develop the conceptual
understanding. A variety of informal and pre-formal methods are used to solve problems, and
students are stimulated to use their own strategies to make sense of the problems, and then
solving them. Algebraic thinking is more important than algebraic manipulating. Not i late
grade 7, and grade 8 the algebra is somewhat formalized. At the end of the middle school we
harvest what has been sowed. We do want the students to progress from the informal level to the
more sophisticated formal level.

implications for teaching

The approach chosen in the algebra strand — and also in the other strands of the MiC
curriculum —~is that of revisiting the mathematical topics, and slowly but thoroughly developing
mathematics. The step towards formal algebraic manipulations is made steadily. At first, the
context supports the manipulations. Even when the step towards a higher level of abstraction and
formalization is made, the students can always 'fall back’ on the context. This approach has
implications for instruction. The teacher needs to allow students to develop the mathematicaj
concep!s at their own pace. The role of the teacher becomes that of a facilitator and guide in the
leamning process of the students. She facilitates the students” reinvention of mathematics by means
of leading class discussions, knowing how to deal with different answers, and so on. This new role
is not easy, but the experiences so far show that more students are learning and enjoying )
mathematics (Wijers, 1995).

1 AN EXAMPLE: SOLVING SYSTEMS OF EQUATIONS

Research has shown that students have much difficulty with algebra topics as “making
equivalent expressions, substituting numbers and variables, and solving svstems of linear
equations with two or more unknowns” (see Booth 1988, and Wagner & Kieran 1989). Herscovics
and Linchevski (1994, in press) identified cognitive gaps related to translating word problems into
algebra, translating functions from a tabular representation into graphs and equations, operating
with or on unknowns, and operating on a equations as a whole.
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As said earlier, much of this research has taken the traditional algebra curriculum as a
given. To overcome the difficulties identified to the mathematics of 'solving of equations’ we chose
for an alternative approach, both in the organization of the content and in the pedagogy. Unlike
Kieran (1994) who chose to introduce variables on the functional level, we used quantities, and
started with the development of variables as unknowns. From history we can learn that only in the
late 15005, Vieta was the first mathematician who used letters for both known and unknown
{values) of quantities in equations. As Streefland (1995) indicated, we should also follow the
historical development of mathematics when we are designing new ways of teaching and learning
mathematics.

Comparing Quantities

Taking the existing research findings, the history of mathematics, common sense, and the
professional experience of the developer/researcher into account, a prototype for the instructional
unit Comparing Quantities that deals with the mathematics of 'solving systems of equations’ was
designed. Comparing Quantities is a sixth grade unit {for students of 10-11 years old} in the algebra
strand of MiC. It is the introductory unit of the theme ‘equations’.

The design of the unit started with the collection of realistic situations with the potential to
naturally provoke strategies as exchanging and making linear combinations. The problems would
be represented in pictures and stories to stay close to the world of the students. The teaching-
learning situations needed to offer an opportunity for the students to create and develop
mathematics and tools to organize and describe their actions. These tools could then be formalized

as the mathematics of unknowns, variable, and solving systens of equations. Reasoning had to

play an important role as an alternative for the structural approach as often done in the traditional
algebra course. A goal was to have students learning to compare, and not studying the algebra of
equations. By choosing for a bottom-up approach, the students could create equations themselves,
and could develop a conceptual understanding of solving systems of equations.




The unit starts with problems that provoke the use of ‘guess & check’ strategies (see figure
2), varying from random guess and check to more sophisticated ‘trial and improve” strategies. A
combination chart is introduced as a handy tool to organize and represent the information (figure
4). Moves in the chart represent an exchange of items. Students can analyze pattems in the chart
e.g., going one up and one left means $14.00 less - and they can repeat this move to get on the
edge of the chart, to create a combination with only one kind of item in it. Besides a handy tool to
solve systems of equations, the combination chart involves many other mathematical activities like
‘searching for patterns’, ‘applying tables of multiplication’, 'smart calculating’. The reasoning and
exchange strategies (see figure 2) from the third category of strategies that are elaborated on in the
unit. These strategies are used to discuss patterns and the different ways of notation.
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Figure 5. Notebook.

A fourth category of strategies that is introduced in the unit is the notebook (figure 5). This
strategy can be best compared with a notebook used by waiters in a restaurant: Every row is a new
order. The notebook 15 of a more general character than the other strategies. It can be used for any
number of items, and it is an efficient way to record new combinations. The notebook can be used
to solve the birthday problern as, but the combination chart is not an appropriate strategy. The
notebook is a matrix with the coefficients of the items in it. In the unit, students realize that the
notebook is a more powerful strategy than guess and check, and that a good reasoning strategy
can sometimes be quicker to solve a problem than using the notebook. At the end of the unit, all
these strategies are related to each other, and students learn that they are mathematically
isomorphic. The next step is to write the information of the problem in equations, and solve the
problem using these equations. There are many moments in the unit that give the opportunity to
write equations (as in the exchange strategy), but only at the end of the unit, the concepis
‘unknown' (and variable) and ‘equations’ are formalized. In this way students develop an
understanding of the equations and the role and meaning of the variables, and they can relate the
meaning always to the context of the problem situation. As said before, students are not forced to
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quit using the more concrete pre-formal strategies. The goal of the unit is that students start using
variables and equations, and that they realize where they come from. Students can always use any
of the strategies mentioned to solve a problem. A strategy that they feel comfortable with, and that
is appropriate for the problem situation.

story picture diagram symbols
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Figure 6. Structure of Comparing Quantities.
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We can summarize the structure of the unit with the diagram shown in figure 6. This
diagram is a kind of ‘map’ of the unit. It shows the progression of the development of the
mathematical concepts. The problems in the unit are presented in many different ways like
pictures, stories, diagrams, symbols; Students get in touch with and learn se veral informal and
pre-formal strategies to solve these problems like guess and check, reasoning (including
discovering and using patterns), combination chart, notebook. The strategies and representations
are conceptual mathematizations of the problem. By interaction and discussion, students {with the
teacher) reflect on these representation, and they are formalized using variables and equations. At
the end of the unit, students then apply the concepts and formal representations to solve problems.
Realistic situations play an important role in the development of the mathematical concepts. First,
they are the world from which mathematics arises; The realistic problems are the source from
which students develop the mathematics. Second, the students apply their mathematical
knowledge to solve problems in realistic situations.

Figure 6 is the result of several cyclic iterations of research and development. In the
following we will shortly describe the process that resulted in this version of the unit.

Development of Comparing Quantities

Very first versions of parts of the unit were tried out in a Dutch classroom to find out if the
ideus of the .*zsigners were feasible. It appeared that students were more creative and could
perform on a higher cognitive level than was anticipated. The step to more sophisticated strategies
and models to solve systems of equations was not as hard as we at first thought. Students brought
in much more ‘knowledge’ ~ or common sense? ~ of solving these kind of problems than we
anticipated. As long as the problem made sense to the students — that they could realize _r
imagine what the problem was about — they made a start to solve it, and in most cases could solve
the problem. We learned that students could do more than we might have thought at first. This
resulted in the pilot version for the American MiC project.

During the pilot we found out that the unit was too open. Students needed to be
challenged more and sometimes they needed more direction to make the step to a higher level of
abstraction. From observations of the lessons, and from analyzing student work, we learned that
the unit needed a little more structure to help students make the step to a higher level of
mathematical sophistication. The examples in figure 3 show what kind of decisions were made in
the revision process.

As part of the experiments, an assessment task was designed to use at the end of the three
weeks that students had worked on Comparing Quantities. During the pilot, two versions of the
task were administered to find out if students had learned the important mathematics in the unit,

but also to find out the differences between offering open versus structured problems (van
Reeuwijk, 1995b). In the structured problems, a specific strategy was provided and students were
asked to use the given strategy. The results showed that students perform better when an open
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version of the problem is used. In the field test only the open version of the task was administered.
The results confirmed the earlier findings, and it also showed that when students are offered the
opportunity to choose a strategy that they think is most appropriate,and that they feel most
comfortable with, they perform better, and we can get much more information on students’

thinking and performance.

In the process of revising the materials, the ‘engineer’ has to face a number of dilemma'’s
like: How much structure to put in the materials, how to distinguish between core and optional
problems, what to put in the teacher guide, and what to put in the studerit book, and so on. So far
we have leamned that teachers are much better in focusing on the essentials of the unit, and on
meking intelligent choices, the second time they teach the unit.

The design of a unit like Comparing Quantities is a cyclic process. As shown above goals
and ‘material’ influence each other. It is not a linear process in the sense that all the goals are stated
beforehand and the content and form are sought to ‘fit’ these goals. The contexts , the instructional
materials, and the outcomes of the experiments can lead to the formulation of new goals and also

to the formulation of new theoretical ideas.

5 DISCUSSION AND SOME CONCLUDING REMARKS
We have used Comparing Quantities as an example of developmental research, and to

illustrate how the philosophy of Realistic Mathematics Education cait play out in practice. This
little project is only a good start for more research on students’ knowledge of early algebra,
especially on reasoning and dealing with variables and equations. Streefland’s research (1995) is a
continuatior. and elaboration of the ideas developed in the design and testing of Con:paring
Quartities. The results so far show that we are on the right track, and that the approach of using
own productions and constructions and moving from informal to formal through a variety of
strategies, has much potential as a start for developing the concepts variable and equation. More
research is necessary to confirm these preliminary results. Research is also needed on how the
development of these mathematical concepts is continued. The shopping problems used in
Comparing Quantities and in Streefland’s research lead to only one interpretation of systems of
equations: The letters always stand for the unknown prices. But how to deal with systems of
equations where the letters represent the quantities. Then we have to step away form the context
of shopping problems, and operate with equations that have a different meaning. Issues like these
have to addressed in future developmental research

integration

We have mentioned ‘integration of learning strands” as a key idea of RME. Research and
development are integrated in developmental research. Much of the traditional research and
reform in mathematics education, however, focuses on one aspect of the teaching-learmning process
There is often a separation of assessment from curnculum development from teacher training and




support. As we believe that a separation in single courses algebra, geometry, and calculus is not
very fruitful way to organize mathematics instruction, the different asp'ects of education should
also be integrated in reform projects: Material development should be integrated, with assessment,
with instruction, and with teacher education and teacher support. A real reform and innovation of
mathematics education can only take place if attention is paid to all these aspects in a coherent
way.

closing comments

The cyclic process and the integration of research and development leads to impraved
versions and to the development of the theory or philosophy underlying he curriculum. The
testing of a unit in the class is a very useful and necessary phase in this process. Only then we can
really find out what is possible. Making a revision is not an easy process. Information needs to be
weighed and choices must be made. In this process the wishes and limitations of the teachers, the
students and the designers must all be taken into account. And of course good materials de not
guarantee good education, but they help (Wijers 1995).

In this paper developmental research is described in the ideal way. Idealistically the
researcher moves through cycles of integrated research and development, of theory and practice.
The result is a prototype or demo of materialized ideas for a certain topic of mathematics, that are
ready for instruction in the classroom. Developmental research is to be placed somewhere in the
middle on the scale of pure theoretical abstract research with no practical applications ¢n one side,
and writing textbooks on the other end. Developmental research is certainly more than pure
curriculum development, and it is research with strong practical applications, because it is
conducted in practice. I am not even sure if it is possible to do pure research in mathematics
education. Also the psychology of mathematics education should realize that research in
mathematics education is a “design-science’.

My main and first reason and motivation for the work 1 am doing on mathematics
education is to help developing ways for students and teachers to learn and teach sense making
mathematics in a sense making way. This belief often results in a too strong emphasis on the
development part of the work. When choices have to be made, teachers and students are number
one, and the research community comes second. It is too bad that funding agencies and other
policy makers often view developmental research as only curriculum development. This is caused
by the traditional view that research and development are separated areas. Because of these
traditional views, it is hard to claim and reserve money and time for the research component in
curniculum development projects.
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to Giovanni Prodi

The purpose of this contribution is to investigate some cognitive and didactic issues regarding
the relationship between "mathematics” and "culture” in teaching - leamning mathematics in
compulsory school. Our atiention will focus, firstly, on how everyday culture may be used
within school to build up mathematical concepts and skills; secondly, on the contribution that
mathematics, as taught at school, may give to everyday culture to allow (and spread) a
Yscientific” interpretation of natural and social phenomena and, thirdly, on tcaching mathematics
as a part of the scientific culture which ought to be handed over to the new generations.

We will try to help make clear some potentials and some intrinsic limits of teaching mathematics

in “contexts”, pointing out the role the teacher has to play to make the best of such potentials and
overcome such limits.

1. Introduction

Teaching and leaming mathematics in school involve different aspects of the relationship between
mathematics and culture such as:

-- the problem conceming how the teacher can use real world situations to build up and/or justify
and/or apply mathematical knowledge, and the effects of this usage on out-of-school culture;

-- the relationship between mathematics as taught at school and mathematical experience of students,
which is prevalently implicit, in everyday life contexts (for instance, handling money or employing
everyday electronic devices);

-- the relationship between mathematics as taught at school and mathematics for mathematicians and
other specialists who sistematically make use of advanced mathematical tools.

Our group activity, started in the '70, has dealt with implementing and testing projects to teach
mathematics in primary school {grades 1-V), in comprehensive school (grades V1-VII1) and, recently,
in junior high school (grades 1X-X) (see Boero, 1989a; 1989b; 1994b). These projects have shared a
characteristic since the beginning: they all sistematically make use of everyday life contexts and real
world problem situations to justify, build up and apply mathematical knowledge {cf the first aspect
quated above). Most of our research in mathematics education has focused on the potentials,
difficultics and problems involved in such a basic choice, which will be deait with in this repon.

This report will take into consideration:

-- how students’ everyday life experience can be used at school io build up concepts and mathematical
skills (sec § 3);

-- what mathematics as taught at school can give (through students) to out-of-school culture in order
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to allow for (and spread) a "scientific” interpretation of natural and social phenomena (see § 4);
-- how to manage the transition to teaching mathematics as a relatively independent part of that
scientific culture which ought to be handed over the new generations (sec § 5).

Qur repont will detail the specific difficulties students may meet in relation to these problems, and the
different roles the teacher has to play in each of them (see § 7).

The concept of “field of experience” (Boero, 1989a; 1992; 1994b) will be considered in order to

consistently frame the different aspects of the mathematics.culture relationship involved at school and
to show their functional connections.

2. Theoretical Background
As far as the words "mathematics™ and “culture™ used in this report are concerned, they will refer not

only to the knowledge presently characterizing professional mathematicians and traditionally learned
people, respectively, but also:

-- "mathematics” as:
* mathematical topics related to non-mathematical activities and knowledge independently of their
level of explicitness, going from the illiterate seasonal laborer’s mathematics to the accountant’s;
* activities based, depending on those who carry them cut and the conditions in which they are carried
out, ina more or less explicit and conscious way on elements of the mathematical knowledge. So,
for us, mathematics includes not only mathematical concepts and algorithms but also activities such as
problem solving, mathematical modeling, production and demonstration of conjectures etc. carried out
by anyone.
We have taken into consideration the latter for iwo reasons: first, the importance of problem
solving and modeling activities for the present work of mathematicians (inside and outside
mathematics: from the algebraic treatment of geometric problems to the probabilistic modeling
of some biological phenomena); second, the hypothesis (we share) according to which there is a

genetic link between activities, processes and conceptualization {for recent studies on the subject
refer to Sfard, 1991 and T:I1, 1994);

-- “culture” as, according to current anthropological interpretations, any intellectual or material practice
shared by social or ethnic groups, which is socially recognizable, communicable and transminable.

According to this concept of culture, the o called "material culture” (for instance, agriculture as
practiced in different areas all over the world) belongs to "culture” as much as religion or
philosophy or mathematics do. But "culture” as considered above is actually made up, through
history, of many "cultures”: cultures of different countries, cultures of different social or ethnic
groups living in the same area, cultures which characterize some institutions {such as school).
Everybody’s cultural background retains traces of different cultures and everybody, depending
on circumstances, appeals, in a more or less conscious and creative way, to those cultures he
has experienced.

Regarding the general cognitive and educational issues of our survey, reference will be made to
Vygotsklj's hypotheses (Vygotskij. 1978; 1990) conceming the relationship between leaming and
development, the teacher's mediating role and the cognitive functions of semiotic mediation tools.
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With reference to Vygouskij (and Leont'ev and Davydov too), it is worth noting that the definition of
"culture” we have chosen is consistent with their considering culture as a historical phenomenon
rooted in intellectual and material social practices. The importance of "activity” within mathematics is
also consistent with the importance they generally attach to "activity” in knowledge forming.
We may add that the definitions of "mathematics™ and "culture” we have chosen might be
somechow incompatible with theoretical reference frameworks in the domain of leaming
pesychology, where knowledge forming is considered a personal process, induced by external
stimuli and oriented by social constraints, but basically carried out by inner adaptability
mechanisms. In our case, the reference to Vygotskij's hypothesis about the social forming of

knowledge within the historical-cultural context seems to make the definitions we have chosen,
derived from anthropology, compatible with leaming issues.

As far as general educational issues are concerned, we will adapt some concepts developed by the
French School of Mathematics Education to our requirements (i.¢. the "toolobject dialectics™ by R.
Douady, 1985 and the "didactical contract™ by G. Brousseau, 1984).

This adjustment may imply incorrectaess and inconsistencies with the original theories. Indeed

it must be taken into account that mathematics as considered by French theories differentiate

from mathematics as considered in this report as well as the theoretical references within the

cognitive field which refer to Piaget's constructivism (see Boero, 1994a, for a discussion about
the issue).

Regarding the different aspects of the mathematics-culture relationship within teaching-learning
mathematics as considered in this report, we will carry out the analysis using, as a way to
conceptually unify all issues involved, the concept of "field of experience” (Boero, 1989z, 1992,
1994b), which was introduced in order 1o analyze the problems met when, in teaching-learning
mathematics, contexts the student are acquainted with are referred to. In short, saying “field of
experience” we mean a sector of human culture which the teacher and students can recognize and
consider as unitary and homogeneous (examples of which are the field of experience of the “sun
shadows"and that of "purchases and sales”). Obviously, in the long run, arithmetics too may become
a "field of experience” for students. In studying teaching-learning problems related to a given field of
experience, the complex relationships which is developed at school between the student's “inner
context” {experience, mental representations, procedures concerning the field of experience), the
teacher's "inner context™ and the "external context” (signs, objects, objective constraints specific of
the field of experience) must be considered.

In this report we will consider the evolution of the student’s inner context helped by activities
organized and guided by the teacher within appropriate "fields of experience”. In cenain real world
fields of experience, he/she may acquire mathematical tools and thinking strategies which he/she will
use to think and act more effectively within the same or within other fields of experience. These tools
may also become the basic clements to approach (through the teacher's mediation) the mathematical
fields of experience.

In this perspective, the problem of the relationship between "culture” and "wnathematics teaching-
leaming™ plays a key role if we want to understand the contributions which real world contexts may
give (o the development of mathematical knowiledge and skilis, and the contributions thal mathematics
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may give 10 the cultural mastering of different real world contexts. In turn, such understanding seems

to be necessary to clarify the potentials, limits and variables governing the effective use of real world
contexts in teaching mathematics.

Conceming this issue, we remark that real world contexts are generally used in teaching mathematics
in ordet to connect studying mathematics with out-of-school motivations and applications. Such use
often takes on ideological ard social connotations which may lead to:

i) undervalue the difficulties sometimes involved when the complexity and difficulty of the subject
matter (mathematics) are interlaced with the difficulties regarding the cultural mastering of some real
world contexts (which are of course experienced out of school but not explicitly and rationally as the
mathematical modeling process requires);

i) not make the best of the potentials of working in real world contexts as to the development of skills
and attitudes necded for activities withia the domain of mathematics;

iii} disregard one of the tasks school has to perform that is handing over the new gencrations
mathematics as a science relatively independent of its applications, or disregard (when such task is
undertaken) the difference between mathematics considered as a tool (often used in a not fully aware

and explicit form) to act in real world contexts and mathematics considered as a science relatively
independent of its applications.

Astoi) (cultural mastering of real world contexts) this report suggests distinguishing:
-- real world fields of experience which in out-of-school life are already "mathematised” ( such as
those usually involving measurement of lengths, time and weight or handling money);
-- real world fields of experience in which the mathematical modeling activity carried out at school
may be clashing with conceptions rooted in common sense, or anyway it cannot rely on sufficient

levels of mathematisation already existing in everyday culture (a good example is the transmission of
hereditary characters).

We think that such distinction is important to make clear how, in the first case, the teachers
work can rely on out-of-school experience to develop concepts and mathematical procedures and
10 build up higher levels of awareness and explicitness regarding the mathematical tools and
processes involved; while, in the second case, this does not happen and sometimes the teacher
has to work against conceptions opposed to mathematical modeling.

As 10 ii) (potentials of activities related to real world contexts) this report will try to point out how
some basic skills and processes involved in mathematical activities (such as linguistic-reasoning

skills, meta-cognitive processes etc.) can be developed by implementing the potentials of working in
real world experience fields.

As to iii) (relationship between mathematics as a tool to act in real world contexts and mathematics as
an independent science), this report suggests that, on one hand, there is no gap between some skills
and some concepts which can be built up by working in real world fields of experience and used for
working in mathematics but, on the other hand, there are gaps between everyday thinking and
thinking through mathematics as well as between everyday thinking and mathematical thinking. We
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believe that teaching mathernatics must be concerned about all this (“continuity” and "discontinuity”).

3. Everyday mathematical experience and school mathematics

Everyday culture includes social practices (i.¢. money-goods exchange, measurement of common
physical magnitudes such as lengths, weights etc.) where fundamental mathematical concepts,
properties and strategies are used (sometimes as implicit operating tools). There are also objects
(referring 10 the preceding examples: money, rulers e1c.) which imply, in order to be used according
to social conventions, substantial mathematical knowledge and skills (Boero, Carlucci, Chiappini,
Ferrero & Lemut, 1994).

Referring to fields of experience such as "purchases and sales” or "calendar” the teacher may
introduce out-of-school social practices (for instance, money-goods exchange) into the class and use
objects and language cxpr&sions which enhance the resonance of school activity with the students’
out-of-school experiences. By accurately sclecting the problem situations to submit, the teacher may
stimulate students to nourish (within the short-lived work at school) their cultural development and
overcome naive ideas. These are processes usually occuring out of school in special environments
(such as those studied by Carraher, 1988) and used 1o occur, at large, in the ages preceding the
widespread development of schooling institutions in several socicties (see Bishop, 1988).

As to children’s "naive™ ideas, some children, on entering primary school, may show such
ideas, for instance, in reference to the buying power of money or purchase procedures. But we
have seen that for the child to achieve an "aduft” view rather quickly it is enough to refer to
external rules and constraints (generally the process is helped by what the child meanwhile
experiences Jut of school).

3.1. Our studies show that when systematic and (where possible) student-involving and realistic
activities are performed at school, not only is it possible to build up skills to solve simpie practical
problems, but also to help "theorems in action” (Vergnaud, 1990) to emerge, such as the
distributivity of multiplication with respect to addition when working out the cost of 3 items which
cost 420 liras each (Boero, 1988, 1992) and the additivity of length measures in solving the probiem
of using a ruler 20 cm long to get right the heigth of a plant longer than the ruler (Bocro, 1994a).

It is also possible to help the development of significant cognitive processes: anticipation (Boero &
Shapiro, 1992), hypothetical reasoning and working out different types of hypotheses and strategics
(Ferrari, 1989; 1990; 1992; Boero, 1990; Bocro, Ferrari & Ferrero, 1989; Boero, Ferrari, Ferrero &
Shapiro, 1994).

3.2. Research problems.

A considemable problem involved in teaching "realistic mathematics” (Treffers & Goffree, 1985;
Treflers, 1987) or teaching mathematics according to the “situated cognition™ perspective (Rogoff &
Lave, 1984; Lave, 1988; cf Vanderbilt Group, 1990) concems how systematically and contipuosly to
perform activities in a given everyday life ficld of experience.




There are different options, in particular:

a) different everyday life fields of experience arc episodically recalled while submitting word
problems (if necessary submitted as “story problems”);

b) an everyday life field of experience is worked away for a long time and the work is basically
directed by the requirements of building up maihematical concepts and skills;

c) an everyday life field of experience is worked away for a long time and the work is basically
dirccted by the requirements of the development of the knowledge conceming the field of
experience itself (in this case the concern about developing activities rich in mathematical
meanings and implications is not solved by chosing suitable problem situations but by choosing
a field of experience rich in mathematical poteatials).

Cenainly even an isolated "story problem” which the teacher manages to emotionally involve the
students in stimulates them to start context-dependent strategies (Lesh, 1985), but in our opinion it is
necessary to dislinguish between:

-- recalling (through the text of problems) of context-dependent strategies;

-- building up and development of solving strategics and mathematical concepts and skills through
class activities related to the everyday ficlds of experience.

Referring to such distinction, our research has shown that the potentials of using everyday life ficlds
of expericnce in mathematics teaching according to a) and b) are very limited as far as the development
of mathematical skills is concerned, while the approach ¢) is much richer in potentials (see Boero,
1988; 1992; 1994b; Boero, Ferrari, Ferrero & Shapiro, 1994; see Vanderbilt Group, 1990, for
similar conclusions conceming general education).

Now, let us consider the skills buiit up within an everyday life field of experience: they must be made
recognizable and usable for a more systematic mastering of the field of experience one is working in
and in order to reinvest them in other (mathematical or non-mathematical) fields of experience. The
teacher must therefore guide the process of making explicit (through standard language forms and, as
far as it is actually necessary, through mathematical language forms) the mathematical knowledge
built-in in the activitics performed at school in the everyday life experience fields. This transiticn
from implicit operative togls fo explicit mathematical objects shows some difficulties.

In our opinion the main research problem lies in identifying and correctly managing the differences
between school mathematical knowledge and mathematical knowledge attached to social practices
(i.c. everyday economic or technical activities etc.). The issue has been clearly put forward by
Carraher, 1988, as far as the relationship between problem solving strategics performed by children
in the street and sirategies as taught at school is concemned.

Liteature shows different approaches to this problem. Some general approaches (like the onc
proposed by Vygotskij, 1990, chapter VI) are related to the different nature of "everyday
concepts” and “scientific concepts”, in particular as far as explicitness and systematicity of
knowledge they refer to are concerned. Other approaches, expressively concerning primary
mathematical skills, refer to the fact that "street mathematics” is basically mental and orsl, while
mathematics at school is basically written {see Carraher, T., Carraher, D.W. & Schliemann,
A., 1987), Other researchers take into consideration the fact that the problem met out of school
has no educational connotations, while the problem met at school is loaded, by the teacher
submitting it, with educational purposes (Brousseau, 1986). In addition the relationship
between teacher and student (“didactic contract™) greatly affects the solving strategy, the
sclection of the main items of the solution to stick 1o mind etc.
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In our opinion the clash between school mathematics knowledge and out-of-school everyday
mathematical experience should be considered in connection with the different levels and domains in
which it occurs. If, on one hand, mental calculation strategies used in subtraction are different from
those used in standard written calculation, on the other, this difference has not the same nature of the
one conceming, in geometry, the relationship between mathematical proof and empirical verification
of a statement as well as the one conceming, again in geometry, empirical "commensurability™ and
mathematical "incommensurability” of the diagonal and the side of a square (see § 5).

Another problem conceming activities in everyday life contexts in ordet to build up mathematical
skills is the possibility for students to live "realistically” the problem situations related to out-of-s¢
fields of experience weare referring to (see Sierpinska, 1994; Verstappen, 1994). Still considering
that particular everyday life problem situations may greatly involve junior high school students, it
seems much easier to involve primary school students. We also think it must be taken into account
that some mathematical fields of experience (arithmetic, elementary probability ctc.) may become
familiar to junior high school students and suijtable for challenging mathematical activities.

4. Mathematics and "scientific” conception of natural and social phenomena

We are interested in the role played by mathematics in giving scientific interpretaiions of natural and
social phenomena which make up the werld view gradually drawn up by modem culture and which
should be handed over to the new generations through school. With this in mind. the tcacher may

propose mathematical modeling of phenomena (for instance, sun shadows or transmission of
hereditary characters) which are remarkable for the history of culture. Unlike what is stated in
subsection 3, in this case school learning cannot be replaced by out-of-school experience, not even at
an operating-implicit level, as far as using mathematical tools to solve problems is concerned.
Moreover very often the teacher must oppose the student’s conceptions worked out within histher
own environment or personal life story. So school should be committed to hand over the new
generations a particular view of social and natural phenomena which may be in conflict with other
views existing in our society or in other ones.

The legitimacy of this task is not unquestionable: the mathematical modeling of phenomena
enhances a particular way of looking at the world (based on the study of quantitative relations
between measurable magnitudes) and tends to emphasize some aspects of phenomena while
neglecting other ones (those non-mathematisable or not yet inathematised). So it is not a neutral
choice with respect to past arid present value systems and cultures. It is a choice which brings
out a certain number of problems if one believes that there is no "higher truth” expressing itself
in a higher level of mathematisation but rather there are different "truths” built up and expressed
by different cultural tools. It is worth reminding that within the field of experimental sciences
itself the recent debate (dealing with complex phenomena and their non-reducibility to a sum of
simple components ctc. - see Prigogyne, Thom etc.) wonder about the scientific legitimacy of
totalizing cultural operations which consider the mathematisation of the relations between
measurable variables as the model of scientific truth.

However in our opinion the problem of respecting cultural differences for culwrally bringing up
the new generations may be solved without giving up handing over scientific culture nor giving
up significant mathematical modeling of natural and social phenomena but enhancing the
training in the historical, philosophic and anthropological ficlds together with more room, in a
comprehensive syllabus, for mathematical modeling {in order to give the necessary knowledge
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of a method - or, if possible - more methods for using mathematics to get to know the world).
As far as we have seen in the class, it is possibile for 10/12-year-old children, within their
mathematical and scieatific training, to be introduced to historical and epistemological elements
conceming their activity (see Sibilla, 1989; Boero&Garuti,1994;see also Bartolini Bussi, 1994).

4.1. Thai said, our rescarch (Boero, 1989b; Ganuti & Boero, 1992; Garuti & Boero, 1994; Scali,
1994) highlights:

-- the impontance of general "principles” and specific "phenomenon concepiions™, among the
resources students draw from and as part of their way of thinking; it has been noted that conceptions
and principles sometimes act as a back-up for the mathematical modeling of phenomena while, at
other times, they hinder such modeling, and at other times again, they play an ambiguos role by
suggesting some connections between conceptions and mathematical models to teacher and students
while, at the same time, streagthening non-"scientific™ conceptions of the phenomenon concerned.

The two ficlds of experience we have more deeply analyzed in reference to the issue above are

sun shadows (for students from 8 to 13) and the transmission of hereditary characters (for
12/13- year-old students),

As 10 sun shadows, we built up situations which allowed different conceptions to come out
both in students already trained in geometric modeling activities and student not yet trained in
that. We so classified various conceptions: shadow as an effect of the strength of the sun, as a
"double”, as an appendix, as an intersection between shade and a surface,... The per cent
distribution of these conceptions and how they show (niore or less intertwined with one another
or "dressed in geometric clothes”) greatly depend on the activities previously carried out at

school within the field of experience of the sun- shadows. Changes depending on age do not
show so relevant.

As to the transmission of hereditary characters, some constants found at the beginning of the
activity (and found again after performing probabilistic nodeling activities) concerns the mixing
of characters taken as the idea about how the phenomencn happens ("children's characterisiics
are something in between their parents’, if children take something after their fathers they take
something after their mothers oo, and so in short a child is something in between the father and
the mother”), and fatalism or sin as principles to explain why and how unfavorable
characteristics are transmitted (in particular, as far as hereditary deseases are concerned).

-- the importance of the sign systems proposed by the teacher in order to stimulate the transition to a
scientific conception of phenomena.

Refer, for instance, to the straight fines which represent light beams when passing from
students’ early conceptions to the mathematical modeling of shadows.

o

When studcnts are 9/10-years-old or even 11/12-years-old this geometric model (we will call it
“shadow diagram™), properly iniroduced by the teacher through a lively discussion about the
shadow phenomenon or enhanced if some student put it forward, greatly affects the idea of "the
higher and stronger the sun, the longer the shadow”™ (otherwise it might frequently reappear
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later on even after having observed the phenomenon again and again).

The “shadow diagram™ seems to modify cven the way of thinking about the relationship between
height of the sun and length of cast shadows: from observing that ” the sun is low on the
horizon and the shadows are long” students start stating (after having known the "shadow
diagram™) something like "if the sun is low on the horizon the shadows are long” or “the
shadows are long because the sun is low on the horizon™.

4.2. The following research problems are connected to the experimental data stated above:
-- what are the nature and origin of the conceptions and principles shown by students? In some
instances, they scem to be rooted in out-of-school culture (a fatalistic view of hereditary deseases)
while, in other instances, they secem to correspond to individual developmental steps of one’s way of
thinking {shadow length dependent on the sun strength); in other instances again, they seem to
correspond to general principles inherent in our intellectual relationship with the world {principle of
continuity or symmetry);

- does the mathematics icacher have to refer to_ students’ culture? And if so, how?

[he issue is crucial especiaily when students’ principles and conceptions iniervene in class activities
as cultural obstacles; as we have seen at the beginning of this subsection, this is a crucial issue not
only from a cognitive and educational standpoint but also from a cultural standpoint (respect of
cultural differences, relations with views of the world which do not adjust themselves to the
"mathematical modeling” principle taken as a main road toward knowing and understanding
phenomena).

A few comments about the preceding two issues.

From a cognitive standpoint, students’ principies and conceptions have been deeply investigated
by psychology researchers and different hypotheses have been made in the last hundred years.
We would like to recall Piaget's studies on children’s mental representations and Vygotskij's
critical analysis of Piaget's theory about the characteristics of child thinking, and Vygotskij's
hypothesis according to which a continuos interlacing between "everyday concepts™ and
"scientific concepts™ would be happening since school starts teaching science,

Ir our investigating students’ ideas about the phenomenon of sun shadows within an age range
from 8 10 12, we think we have met conceptions which, for intrinsic reasons, match geometric
modeling well and graduaily develop with it (for instance, refer to the idea of shadow-appendix
spreading on the surface on which it can be seen). We have also met conceptions (more or less
in the same proportion both for 8-year-old and 12-year-old students) which go back (even
though they are still in the background and are sometimes connected with more general
“principles™) such as length of shadow dependent on the strength of the sun. Generally, the
conceptions which go back ead up clashing both with experimental data and geometric
modelin- .

As to the transmission of hereditary characters, the situation seems even more complex:
principles and deeply rooted conceptions break through again after some time and variously
intertwine with conceptions Ieamed, sometimes showing a need for a connection with everyday
experience (according to which hereditary characters depend on several genes and so what
happens more often is just the statistical mixing!), while at other times the need is for an
explanation of facts which catch students’ emotional sphere (hereditary deseases).

When having to cope with such behaviours, it is very hard to make educational choices both
because they involve the cultural training in the whoic »ad because it is not clear what long-term
aftereffects a scientific teaching which pushes students i~ forget about {or radically change)}
their conceptions and principles can have. In some instances, we have had the feeling that
working on studenis’ conceptions and principles carelessly inay undennine the roots of their
thinking and reduce the development of tneir competence in conceiving and reasoning.
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-- situations and ways the teacher may choose to mediate mathematical sign systems, without
building up stercotypes (cf. Ferrari, 1992) which repiace phenomena.

Actually, if it is true that mathematical signs help mastering the phenomena studied, it is also true that
sometimes reasoning on signs replace reasoning on the phenomenon.

Let us consider the "shadow diagram™ as an example.

As seen above, this tool is very useful both to understand the connections between height of the
sun and length of the cast shadow and to investigate the connections between beight of objects
and length of cast shadows (making an interesting "bridge™ with Thales’ thcorem: see Garuti &
Boero, 1992; Boero & Garuti, 1994).

But when it is time to decide if, at the same hour, the shadow which two vedical nails of the
same length cast on two horizontal planes looks the same in the school yard and on the roof of
the school, almost 50% students {grade V, with a solid background in studying shadows)
answer that the shadow on the roof is longer, giving geometric motivations of the same type as
shown below {see Scali, 1994).

\o/
7
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5. Mathematics as a specialized and explicit cultural experience

This subsection will deal with mathematics as pan of today’s scientific culture for its being a
specialized activity of inathematicians {particularly of "pure mathematicians™) and a component of the
basic cultural grounding of intellectual classes in modem societies. So mathematics may provide
traditionally learned people with some reasoning patterns ("mathematical rigour”™) and give some ideas
which frame the meditation on intellectual experiences ("infinity™).

Unlike § 3 and 4, we will not consider mathematics as a tool to know and work on non-mathematical
phenomena and problems but rather its nature of {relatively) independent science and its today's
characteristics. Within such framework, we may consider both mathematics as taught at high schools
in most countries according to educational aitns which are not directly related to applications, and

mathematics as a cultural developmental phenomenon (a field of investigation and discovery.
variously systematized).

In order for a mathematical field of experience to be developed in the ¢lass, the teacher must introduce
clements drawn from a scientific culiure (different from cveryday culture) for all the aspects qualifying
it in terms of cultural specialization (sometimes causing epistemological “cuts™ with respect to
everyday culture: see Balacheff, 1988). Mathematical statements have a specific structure,
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mathematical proof is a special way of reasoning, some mathematical concepts (such as the concept of
infinity or the concept of irrational number) are far from the operating experience of mathematical
teols. How can compulsory school students begin grasping these specific aspects of mathematics?

5.1. In our projects, from grade VI to grade X the teacher previously builds up, within the real world
fields of experience, the bases for conceptualization and reasoning within the mathematical fields of
experience (cf § 3, 4 and 6). Then he creates and manages teaching situations where students can
carry out constructive activities (conjectures, demonstrations, reflections...) concerning mathematical
"objects” as such (which anyway students already know well as "tools")(see Boero & Garuti, 1994;
Garuti & al., 1995). Our studies (in padicular regarding the first approaches to mathematics as an
independent science) show that during such activities:

-- referring explicitly to problem formulations or to breakthroughs ascribed to historical notables
facilitates the students’ distancing from their inteliectual work and the generaj and synthetic
formulation of its results (Boero & Garuti, 1994; also see Bartolini Bussi, 1994).

The following experience, carried out with grade VII students, scems worthy: after some hard
work on problems of proportionality concerning geometric modeling of shadows and
anthropometric regularities,the teacher introduces the anedocte about the problem of getting right
the height of the Pyramid as solved by Thales. Then he asks students to identify themselves with
Thales and draw vp a will listing discoveries made to be handed down to posterity. This
situation leads students to produce texts which show two very interesting characteristics:

* restoring and synthesis of the work done by students;

* general, and sometimes "abstragt” and "conditional”, formulation of statements similar to the
different formulations of Thales theorem found in textbooks;

-- comparing the student-produced texts with standard mathematical texts (for instance, those found in
textbooks) pushes many students to reformulate their texts or the reference texts in order to have them
somehow resembling to one another (Boero & Garuti, 1994).
Actually, still referring to the preceding example, we saw that when.(after drawing up the
"wills") different statements of the Thales' theorem were shown in the class, a number of
students tried to lead back their texts to the reference text (chosing the "official” text actually

closer to their own), while others tried 10 change the official statement, which was recognized as
the closest to their own, in order to demonstrate its affinity with theirs.

5.2. Research problems:

-- how far can the teacher go in pushing the student’s constructive activity (personal and social) and
when should he/she start proposing cultuml models unfamiliar to the class?

The answer is not ecasy; it scems to depend on many elements, among which: student’s age and
cultural experience, didactical contract agreed upon in the class, sectors of mathematics and, above
all, kind of performances required;

-- what are the potentials and the cognitive mechanisms involved in directly using historical sources
{notables, texts...) both when siudents work mathematically and when they compare their products
with "official” cultueal models?

We think that, on the basis of ours and other researchers’ experiences with very young students
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(sec Boero & Garuti, 1994; Bartolini Bussi, 1994; Grugnetti, 1989%), using historical sources
may be effective for different reasons: time distancing which helps cultural distancing;
comparison and reflection on mathematical topics histerical sources are related 10; emotional
mechanisms connected with onc's identity quest started by tasks reminding "the origins”™;
availability of problem formulations and their solutions expressed through a language which is
different from the present one (different formalisms or more direct lexical connections with
everyday experience etc.);

- how can the cultural ground be made ready (and how suitable situations can be created and
managed in it) to allow epistemological obstacles to come out? Students' taking into consideration
these obstacles seems to be a necessary step for the development of their mathematical culture and
their competence in doing mathematics (see Fishbein, Jehiam & Cohen, 1994);

-- what are the pre-requirements needed for a students’ productive approach to the fields of
experience of mathematics and what are the means to put them together?

As to specific pre-requirements conceming mathiematical concepts and skills, it seems to be
enough to enable students to master them by dealing with problem situations well rooted in real
world fields of experience. However levels of logical consequentiality, generalization and
reflection higher than those many students usually have seem to be necessary. In this respect
we have seen that 10/11-year-old students already show remarkable potentials concerning
reflection and logical reasoning skills needed for working in the mathematical fields of
experience. Usually these potentials may be more or less developed depending on students’
social and cultural up-bringing. .

Our experiences suggest that activities referring to real world fields of experience, conveniently
managed by the teacher, may help most students to develop linguistic and reflective skills. In
particular, we think that, referring to the situations discussed in § 4, the problems of conflict and
evolution of students’ conceptions and principles may greatly favour reflective thinking.

6. Connections between the Various Aspects of the Mathematics - Culture
Relationship

First of all, it is to be underiined that, in developmental and functional terms, the three types of
relationships berween mathematics and culture in compulsory school described at § 3, 4 and 5, can be
connected, in some cases even within the same field of experience. For instance, referring 10 § 4 and
5, in the ficld of experience of “sun shadows™, many students can overcome or change their carly
non-geometrical conceptions of the shadow phenomenon through geometric schematization. Such
schematization may then be used to tackle “real” problcms within the same field of experience (such as
determining heights that are inaccessible by direct measuring; see Garuti & Boero, 1992) and, ina
theoretical sense, in building up the field of expericnce of "rational geometry” (Boero & Ganni.
1994).

Through appropriate ¢ducaiional planning, the work within rcal world fields of experience may so
supply concepts (usually in fonm of "tools™} and skills required to work in the mathematica! fields of
experience. Nn the other hand, the activitics in these ficlds of experience are based on forms of
reasoning which appear 10 be rooted in non-mathematical cxperience and in mathematical modeling
experience. In particular, Boero, Ferrari. Ferrero & Shapiro {1994) show how, between grade V and

VIII, some out-of-schoof ficlds of experience offer resources to develop an initial class "hypothesis
game” which gradually enables students to culturally master the ficld (according to the interpretative
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models typical of different sciences), while allowing them to reach a more complex and demanding
hypothesis working out {conjectures, interpretations, justifications, ...) in the same or in other ficlds
of experience (including the mathematical fields of experience).

Referring to the external context, the student’s inner context and the teacher’s inner context {see § 2),
working in a real world field of experience allows the teacher to rely on out-of-school constraints and
resources of the external context and on cognitive strategies and ways of thinking of the student’s
inner context (connected with out-of-school experience) to introduce {or develop) signs, procedures
and mathematical concepts suitable for solving problems which draw their meaning and legitimation
from out-of-schoo! experience. Little by little the teacher (implementing different class activities such
as explanation, general discussion, comparison of students’ works) gives the first elements {signs) of
the external context of a mathematical field of experience (for instance, geometry} and helps the
students to build up the first elements of their inner context. To do this, the student may use the signs
the teacher has introduced during problem solving activities related to real world ficlds of experience
and may work on his‘her reasoning and reflecting on concepts and mathetnatical procedures used, in
those activities, as "tools” {which must become "objects” for activities within the mathematical "field
of experience™ transition from an extra-mathematical setting to a mathematical setting - see Douady,
1985).

The process of building up and identifying a mathematical field of experience may be {furtherly helped
by historical sources, official texts etc.

A remarkable aspect of activities referring to real world fields of experience concerns the possibility
of developing processes of spcial construction of knowledge in the classroom, because students’
inner contexts and the teacher’s inner context may enter immediate resonance on topics referring to
common experience. All this may also enhance a favourable climate for productive discussion about
mathematical strategies and objects involved in those activities, preparing the ground for discussions
in the mathematical ficlds of experience (see Ferrari & Bondesan, 1991; Garuti & al., 1995).

Still referring to the transition from real world to mathematical fields of experience, it is worth
mentioning an interesting research topic. In the framework of activities developed in real world
experience fields, we have often seen the conversion of "processes” inte "mathematical ebjects” (cf
Sfard, 1991). We think that a thorough study of this phenomenon shouid be made since the natural
transition from activitics within real world contexts to the objects the mathematical work is concerned
with may depend on it.

Another resecarch topic related to the connections between the three types of mathematics-culture
relationships considered at subsections 3, 4 and 5, concems the study of the cognitive working of the
traditional mathematica] teaching which is the most widespread in the world, especially at advanced
school levels, despite its being hardly appreciated by mathematics education researchers! In it the
mathematical fields of experience are built in the class through the teacher explaining definitions,
rules and theorems and students being driiled (according to modeis taught by the teacher). The
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relationship with real world fields of experience is only achieved through some applications of the
acquired mathematical tools.

It is a kind of teaching which works well with some students: it is enough to consider that most
intellectual classes of our society, including the specialists who have helped sciences to reach the
levels we know today, have been trained through it in the last centuries. On the other hand, its limits
are well known as well: it is greatly seiective and supplics knowledge which tums out inert for most
students (who are unable to use it to solve non-standard problems, especially in real world problera
situations).

A research on the cognitive warking of the "traditional” way of teaching mathernatics might be very
uscful because:

-- it might help understanding how the student may gjve meanings to a sign, a definition, a theory
introduced or explained by the teacher, and under what conditions this may happen;

-- it might help making clear potentials and limits of the constructivist foundations of mathematics
teaching which are very successful among mathematics educators today;

-- it might help the teacher to provide a cominen ground to educational activities which see students
work at building up basic mathematical concepts and skills, and educational activitics carried out to
have students to get hold of concepts and methods explained by the teacher.

In our opinion, some classic theoretical frameworks of learning psychology may give these
investigations the necessary basic tools. We are particularly referring to Vygotskij's analysis of the
relationship between teaching-leaming scientific concepts and the student’ everyday concepts (in
particular with reference to what cognitive use of tools and methods systematically and explicitly
taught by the teacher the student can make); and also to Ausubel’s studics on "meaningful learning™
("through reception” and “through discovery”).

7. Other comments oa the teacher’s role in the class: the didactical contract

In the preceding subsections we have pointed out the different roles the teacher has to play according
to the different relations between mathematics and culture which are built up in the instances we have
considered:

-- within some ficlds of experience such as that related to basic trade exchanges (§ 3}, the teacher
plays the role of a "mediating supgorter™ of conventions and practices alreéady known by the student
at least at a very early stage (or included in the cultural environment he/she comes from);

-- within other fields of experience such as that related to the transmission of hereditary characters (§
4), the teacher must necessatily play the role of a committed "dissentes” opposing the naive or non-
“scientific™ ways of thinking of the students and, often, of the same environment they come from. A
dissenter who holds a dialogue with such ways of thinking because he/she cannot afford ignoring
them and because some embryonic elements able to help the transition to a "scientific” conception of
the phenomenon concerned can be found in some of them;

-~ in the mathematical fields of experience (§ 5), the teacher must play the role of a "witness of
mathematical culwire” who has to give students elements (not included in the class experience) able to
allow them to compare their mathematical outcomnes.and tools for representing such outcomes in order
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to miake them develop ~.nd draw together towzrds official mathematical culture (Garuti & al, 1995).

In our expetience of planning and testing educational projects for compulsory school mathematics (for
&/16-year-old students) the complexity of the teacher's role is one of crucial issue; it requires the
teacher to be fully aware of the epistemological, cognitive and educational implications of histher
choices concerning the mathematics/culture relationship. Epistemological and cognitive issues have
teen already considered in the preceding subscctions. As to educational aspects, we would like to
underline that the difficulties concerning the profession of teacher match those conceming the students
when they practice the "profession of students”™, particularly when they have 10 comply with the
didactical contract and its changing according to the different role played by the teacher.

We think this issue should be examined carefully. We feel that a thorough study of what level of
awareness students of different age can have about what they are required to achieve should be made.
And also how to achieve such awareness should be investigated. We have the feeling (and the hope!)
that most 11/12-year-old students, in good class situations where the pre-requirements conceming
reasoning and reflection are complied with, could reach the ﬁr;l levels of awareness as to the
characteristics of a correct reasoning regarding modelization of reality (consistency with facts and
experimental data, internal logical consistency), as to the limits of a mathematical model compared
with the modelized reality, as to the distinction between empirical truth and mathematical reality in
specific instances {such as the incommensurability between side and diagonal of a square).
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WORKING GROUP ON

CULTURAL ASPECTS IN THE LEARNING OF M ATHEMATICS

The group is concerned with various research and debates arising in the community
of math education about relationships between CULTURE and mathematical
knowledge. Psychological and anthropological approaches of CULTURE are considered.
In the previous PME sessions, attempts were made in order to clarify research
directions which were recognized consistent with our interests:

¢ Informal education and formal mathematical knowledge

= Cognitive processes in learning mathematics and cultural environment

According to PME XVIII session, the members have been invited to contribute to a
booklet: previous research, research in progress or review of the literature.

These draft reports will constitute a basis for our discussions at PME XIX and a first
step to the preparation of PME XX in Spain. The three sessions will be introduced by
contributors of various countries on the following issues:

Session 1

1. Ethnomathematical content related to:

* school math curriculum: materials suitable for classroom use in order to facilitate
access to formal mathematics '

¢ alternative project: learning process in classroom and in professional environment,
math classroom learning built on students’ everyday experiences and b:;ckgrounds.

2. Applied mathematics as a source or as a goal in the schoo!l curriculum: a case of
study with historical aspects.

. 7/
Session 2

1.Way of using mathematical concepts in a bilingual or bicultural case of study
through:

* language in a bilingual situation, using social, linguistic and material resources.

* graphic representation of space: pluridisciplinary approach in a bi-cultural study.

2. Relational aspects in a pluricultural situation with reference to the home and school
context and mathematical learning.

Session 3

Relations between different ways to use the word CULTURE and the different purposes
according to which it is used in and outside maths education.

What are the fundamental and useful questions to maths education itself and math
education as part of holistic education?

Contributors: Marcelo de Carvallio Borba, Marta Civil, Beruadetie Denys,
Ceri Morgan, Inés M2 Gamez-Chacdn, Pawl Laridon,
[udit Moschkovich, Hans Niels |ahnke
Coordinator: Bernadettc Denys, IREM-Université Paris VI, denys@mathp? jussieu. fr




RESEARCH ON THE PSYCHOLOGY OF MATHEMATICS
TEACHER DEVELOPMENT

Between 1986 and 1989, a Discussion Group on Research on the Psychology of
Mathematics Teacher Development met at annual PME conferences. In 1990, this
Discussion Group was accepted as a Working Group and has continued to meet in
this format at PME conferences since then. At PME 19 we hope to build on the
foundation of shared understandings that have developed over the past ten years.

Aims of the Working Group
The Working Groups aims to:

develop, communicate and examine paradigms and frameworks for research in
the psychology of mathematics teacher development;

- collect, develop, discuss and critique tools and methodologies for conducting
naturalistic and intervention research concerning the development of
mathematics teachers' knowledge, beliefs, actions and reflections;

implement collaborative research projects;
- foster and develop communicatior. between participants;
produce a joint publication on research frameworks and methodological issues.

Plans for Working Group Activities at PME in 1995

A strong feature of the Working Group for Research on the Psychology of
Mathematics Teacher Development has been its cohesiveness, and its wide
representation across many countries.

Group members have expressed the need to have a deeper understanding of a
range of research methodologies which are particularly appropriate for research in
the area of mathematics teacher development. in 1994, the Working Group decided
to focus its efforts on the publication of a series of papers as a book with the
working title Research on Mathematics Teacher Development: An International
Perspective.

The preparation of this bock provides a unique opportunity to bring together the
research expertise of mathematics educators currently working in the area of
mathematics teacher development in a wide range of cultural contexts, and to
disseminate both their approaches to research and their findings more widcly. The
book will be dedicated to the collection, development, discussicnn and critiquing of
paradigms and frameworks for research in the psychology of mathematics teacher
development.

The Working Group sessions in 1995 will concentrate on the presentation and
discussion of the papers to be included in the book.

Nerida F. Ellerton, Convenor




Working Group
Algebraic Processes and Structures

Organisers: Romulo Cainpos Lins & Teresa Rojano

Since 1950 this Working Group has put a considerabie effort inte bringing the available
perspectives on algebraic thinking and on the teaching of algebra into a more or less coherent

whole, or at least inaking it possible that the various appioaches can “talk” with each otherahere 2

convergence seems unlikely. The collections of short papers produced for the annual PME !.ncctlngs

provide good evidence that the group has succeeded to a considerable extent.

The 1995 meeting will mark the closing of a cycle. as the Group prepares to publish a book.
in which the results of those years of discussion will appear within chapters written by several of
the people involved with the WG's activitles.

We think that the 1995 meeting has to fulfitl a twofold condition. First, we should reflect on
the results reached so far by the WG, particularly alming at proeducing for the community a clear
plcture of what the WG has produced as a consequence of its existence. Second. we should make

room for the opening of a fresh perspective for the possible continuation of the group.

In order to achleve those objectives. the following structure is proposed for the 1995 meeting

of the Algebraic Structure and Processes Working Group:

(1) a brief presentation uf the themes discussed in the group since 1980:

(ii} a discussion of the structure of the book, including a reflection about the changes in
trends which have happened since the group has started to meet; and.

{1if) the presentation, followed by discussion, of a video-taped classroom episode, centred on

a activity involving "algebra” or “algebraic thinking™.

Item (ill) Is particularly Intended at providing an environment in which old and new
members of the group will "work from scrateh,” le, it is intended 1o “loosen up” the ties between the
work 8o far produced and what might come to be the WG's future dircction. We think this Is an
important step. as the WG has always produced a strong sense of continuity in its work. something
which has centainly proved fruitful. but might as well become an obstacle now that a sort of apex
has been reached

A booklet composed of one-page abstracts of the chapters will be mmade avallable 1o the
partictpants.




WORKING GROUP
GEOMETRY
(Maria Alessandra Mariotti)

Different external representations in the geometrical field:
their dialectic relationship with geometrical knowledge.

It seems nearly impossible 1o conceive geometry without ‘figures', drawings , constructions, any kind
of images . The ambiguity of the term figure has often been pointed out by many authors, the term
traditionally refers both to the mathematical object and to its ‘concrete’ representation, for instance a
drawing in a textbook. At the same time thic ambiguity focuses the deep link between the two
aspects, and witnesses the interrelation between images and geometrical ideas

History tells us about the basic contribution given by the reflections on perspective drawing in the
development of ‘projective geometry’ The geometrical theorization of Desargues moved from
experiences and theories of outstanding artists and artisans

Recent research dealt in several different ways with the relationship between technical drawing and
geometrical education

New sofiware are now available. which provide images differently linked to geometrical topics, these
new means open new perspectives on geometrical education

A common point of view from which all these different aspects can be approached is the analysis of
the interaction between external representations and geomettical knowledge Particularly, the main
issue is how to use the dialectic relationship between cxternal representations and geometrical
knowiedge in the educationa! field

Certainly, the presence of new technologies and the availability of purposeful software raise the
problem of images anew, but, using new technologies in geometrical education does not exhaust the
complexity of the problem At the same time, although their presence adds new elements to the
analysis, focusing to computers risks to hide the rich contribute coming from other sources

These and other issues that you will suggest will be discussed

It would be intcresting to hear about the current rescarch on this topic, thus those who are directly
involved in this ficld of research are invited to participate and contribute

Whoever interest in contributing to the discussion with a short presemation, please contact me at the
following address’

M A Mariotti {co-ordinator of the Geometry Working Group)

Dipartimento di Matematica -Via Buonarroti, 2 - Pisa - laly

Fax number 39 50 599 524 - c-mail Manotti@dm unipi it




The Teachers as Researchers Working Group of PME

Judy Mousley, Chris Breen, Vicki Zack

The general aims of the Teachers as Researchers in Mathematics Education
Working Group of PME are to engage participants in discussions about the work of
teacher-researchers, to review issues surrounding this work and its contexts, and to
facilitate and promote collaborative work in this area.

The group explores the dialectical relationship between teaching and classroom
research, in the beliefs that mathematics teachers can and should carry out research in
their classrooms and that mathematics educators shouid research their own teaching
and its eflects in broader fields. Discussion and other activities generally relate to
teaching as a reflective practice and continuous learning process, the nature of the
theory/practice interface, the critique and dissemination of research findings from various
contexts, the types of research problems being generated in classrooms, and methods of
finding solutions within the context in which questions arise.

During the 1994-5 year, members of this working group have been using the
electronic mathematics discussion list <mathsed-l@deakin.edu.au> and received two
newsletters. A bibliography of readings related to the topic Teachers as Aessarchersis
being built up by the Working Group. A first draft will be made available at Recife—for
review, as well as deciding on areas needing further input as well as methods of
sensible organisation.

The 1995 Working Group sessions will workshop issues arising from case studies
drawn from patticipants’ work in this area over the past year. The cases will include:

. examples of participatory research by groups of teachers in schools, with externai
support;

a teacher who researched ‘blockages’ in her pupils’ understanding of mathematics

and hence developed an understanding of the differing perspective that being a

researcher could give;

an action research project regarding in-service training of mathematics teachers to

support the introduction of a new textbook;

university staff whose work with teachers led them to think about the act of teaching

in different ways, impacting on their own (tertiary) practices;

teachers and resaarchers working together and using data from classrooms to

explore particular mathematical concepts and retated psychological models; and

classroom research using ‘noticing’ as a methodology.

New participants in the Working Group are welcome to attend these sessions, and
encouraged to present a case—with a maximum of five minutes for presentation followed
by a short activity-based workshop.
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Advanced Mathematical Thinking

The AMT working group is concerned with all kinds of mathematical thinking,
developing and extending theories of the psychology of Mathematics Education to
cover the full range of ages. This interest includes gathering information on cusrent
research, discussions of both the mathematical and psychological aspects of advanced
mathematical thinking, and research into thinking in specific subject arcas within
mathematics.

This will be the tenth meeting of the working group. Last year our discussions of
computers, proof, and the psychology of advanced mathematical thinking concluded
with a proposal that we should consider two topics at this years meeting: the
formulation of mathematical thinking. and the relationship between social contexts and
mathematical thinking.

Essential to the development of mathematical thinking is the transition from informal
to formal reasoning. This is the basis of both the concept of proof, developed out of
informal deductive reasoning, and transformation of the structure of mathematics itself
into objects of mathematical investigation. Informal reasoning, in the form of intuitions
and insights, also plays an important role in the creative thinking of professional
mathematicians.

It is also increasingly apparent that social contexts are an important aspect of
advanced mathematical thinking. and are vital in its development. The mathematical
communities of classrooms and the professional mathematical community are two social
contexts in which mathematical thinking cvolves,

Our first session at PME XIX will include short presentations on the transition from
informal to formal, with plenty of time for discussion. Our second session will focus on
social contexts, in a similar format. Our third session will focus on issues arising in the
first two sessions, especially issues which integrate our consideration of the two topics.
We will close with a discussion of future plans for the working group.

Organizer:  David A. Reid,
Dept. of Secondary Education,
University of Alberta,

Edmonton, AB, T6G 2GS, CANADA
reidd@gpu.srv.ualberta.ca




SOCIAL ASPECTS OF MATHEMATICS EDUCATION
PME XIX RECIFE, BRAZIL, 1995
Leo Rogers, Rochampton Institute, LONDON SW 15 § PH
Session 1: Consideration of aims and purposes of National Curricula.

Some comparisons of mathematics curricula may be made in terms of statements of
content, specifying in what year a particular topic appears, and, in some countries, how much
time may be given to its teaching. A comparison on the basis of the “intended™; the
“implemented” and the “achieved” curriculum may be more useful.

It is intended critically to analyse some current national curricula with a view to
identifying the aims, objectives (both mathematical and political) and their social and economic
contexts and constraints.

Session 2: Alternative curricula for democratic citizenship.

Many teachers of mathematics would like to see a curriculum which provides the basis
for democracy and “responsible citizenship”. However, designing such a curricclum is
problematic. The “Criticalmathematics Educators Group™ group has been active in pointing out
the different perspectives of mathematicians, teachers and citizens, This session will look at the
options for possible curricula for empowering citizens.

Session 3: Classroom interaction.

Whatever we might do to improve the intended curriculum, the key to success will be

its implementation. Here we look at the interrelationships between teachers and pupils; the
different modes of discourse, their images of mathematics, their expectations of the system,
and their views of the purposes of teaching and leaming mathematics.

Session 4: The wider curriculum and future contexts.

What is the position of mathematics in the whole school curricutum ? In many countries
it seems to be isolated. Has this happened by its nature, or by buresucratic expediency ? Is it
more “efficient” to teach mathematics sep.arated from other subjects, or should we look forward
to a time¢ when mathematics becomes combined with other areas of study ? These questions
assume that we teach mathematics in school, and not elsewhere. We look at the increasing role
of technology, and wonder if all we need for our daily lives is “push button™ mathematics, and
that “real” mathematics will only be for a privileged few.




PME WORKING GROUP
CLASSROOM RESEARCH

Organizers:  Anne Teppo, teppo@mathfs.math.montana.edu
Carolyn Maher, cmaher@math.nutgers.edu

The purpose of this group is to ¢xamine issues and techniques related to research
involving the learner in the classroom.

The focus of discussion at PME XIX will be on research studies conducted in actual
classrooms that are investigating children's development of deep conceptual understandings.
Each session will begin with a short presentation of one aspect of a study which will provide
the springboard for discussion.

Issues to be addressed include; how to create an environment in which deep
conceptual learning can occur, the types of research methods that are appropriate for
investigating this kind of learning, and how findings based on rich data can be reported.

Short presentations by Leen Streefland (The Netherlands), Carolyn Maher (USA).
Tracey Wright {(USA), and Miriam Amit (Isracl) will lead off each working group session.

These presentations will include examples of students® work and video clips of students

engaged in the development of deep mathematical concepts within actual classroom
environments.

An important aspect of these sessions will be the opportunity for participants o shure
with each other the ups and downs of research that don 't get reported in papers or formal

presentations.
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A Science of Need:
Exploiting the Powers Students-Generated Constructs
and Conceptual Technologies

organizers: Miryam Amit, John Clement, Guershon Harel,
Jim Kaput, Colette Laborde, Dick Lesh, Ricardo
Nimerovsky

In research on instruction, a disproportionate amount of effort has aimed
at finding ways to explain, demonstrate, or illustrate key constructs.
However, relatively little effort has been invested in finding ways to create
situations in which students confront the need for these constructs.

This discussion group will describe research that has adopted the philosophy that ...
IF YOU BUILD THE NEED FOR A CONSTRUCT, STUDENTS WILL CREATE IT.
The examples that will be discussed will illustrate that, if an instructional
setting helps to create the experienced need for a given construct, then
even children who have been labeled "below average™ often emerge as
being remarkably able to develop the construct that is needed. Further-
more, the preceding children often create constructs that are much more
sophisticated than those that their teachers had been trying to teach; and,
this is especially true if the instructional setting also provides useful tools
to facilitate the construction of the targeted conceptual system.

Three closely related types of conceptual technologies will be discussed.

*» CONSTRUCTS: These include models, structural metaphors, and other
conceptual systems that humans create to structure their worlds ... and
to make sense of their experiences by generating useful descriptions,
explanations, manipulations, and predictions.

« CONCEPTUAL AMPLIFIERS: These include interacting languages, notation
systems, and other concrete/graphic/experience-based representation
systems or organizational schemes in which the meanings of the
preceding CONSTRUCTS are distributed. They also include other tools,
such as those that are based on electronic technologies in which certain
human capabilities are instantiated in order to facilitate interpretation,
computation, or communication,

» CONCEPTUAL ARTIFACTS: include culturally shared organizational
systems (e.g., communication systems, business and economic systems,
social/organizational systems, monitoring and accounting systems)




which have become some of the most important “objects” influencing
people’s lives in an Age of Information.

in science education resecarch, it is obvious that children create their own
constructs for thinking about systems that involve electricity, light, gravity,
and magnetic forces, and other scientifically interesting phenomena. For
example, in the past decade, analyses of children's naive conceptualizations
have been among the most productive areas of science education rescarch,
However, the emphasis was on ways instruction that could get children to
abandon their self-generated constructs; whereas, currently, science
education research has shifted toward emphasizing more positive aspects of
children’s initial interpretations. That is, for the most important big ideas in
the school science curriculum, researchers are exploring ways that children's
self-generated constructs provide foundations on which more sophisticated
conceptual systems must be built.

In contrast to science education, in mathematics education rescarch, a
common assumption continues to be that students are generally not
capable of creating any constructs {or ideas) of substance. Pundits observe
that ... "When it took professional mathematicians so many centuries to
invent the "big ideas” that should underiie modern textbooks, how can

students be expected to construct these ideas during a small number of
open-ended, unstructured problem-solving activities?"

This discussion group will involve contributions from the following
presenters, each of whom will focus on characteristics of construct-eliziting
activities in fields such as: (i) physics (John Clement), (ii) algebra (Jim
Kaput), (iii) calculus (Ricardo Nimerovsky), (iv) statistics (Dick Lesh),
geometry (Miryam Amit). Special attention also will be given to aspects of
construct development that emphasize communication (Colette Laborde)
and proof (Guershon Harel). ... The following questions and issues will be
given special attention.

What conditions create the need for some of the most important "big
ideas™ that should provide the foundations for the school mathematics
curriculum?

How can construct-eliciting activities be used to focus on deep
treatments of small number of “big ideas”™ rather than simply trying to
superficially “cover” a large number of idea fragments or isolated skills.
What kind of construct-development cycles do students tend to go
through during the development of useful interpretations and
representations of construct-eliciting situations? What mecharisms
contribute to these creations or refinements?




POST-STRUCTURALISM DISCUSSION GROUP
Organiser: Paul Emest, University of Exeter, UK

In the past few years, a growing number of researchers in the psychology of mathematics
education have adopted or utilised post-structuralist perspectives. Perhaps the best known is
Valerie Walkerdine who gave a plenary talk at PME 14, and is well known for her post-
structuralist analysis of young children's language and reason (Walkerdine, 1988). Other recent
papers have reflected or drawn upon a post-structuralist perspective, such as those of Jeff
Evans (PME 17), Clive Kanes (PME 15) David Pimm (PME 14) and Paul Emest (PME 15,
17). There was also a lively and well-attended discussion group on post-structuralism at PME-
18 in Lisbon, organised by Paul Emest and Tony Brovm.

Post-steucturalism offers a fumber of important insights for the psychology of
mathematics education. It stresses the import of social context, that of power and positioning
in inter-personal relations, the central role of discourse, language and text, and the problematic
and multiple nature of the leamer or cognising subject Currently these issues are topics of
central empirical and theoretical interest in the psychology of mathematics education. Thus a
co.«inuing discussion of post-structuralist perspectiv is important and apposite.

This year the group will focus its discussion one theme: The construction of the
subjectivity or subjectivities of the mathematics student as a learner of mathematics,
primarily in the mathematics classroom. How does the learner enter into and participate in the
culture of the mathematics classroom so as to become a Jearner of mathematics? How does the
leamner interact with texts, and in particular with written-textually presented mathematics
tasks? What is the contribution of these to the formation of mathematical subjectivity? How
does this lead, in the long run, to the formation of (1) mathematicians, (2) students successful
at school mathematics, and (3) students unsuccessful at school mathematics? Are different
subjectivities formed? Are the differences in the powers and intuitions developed by the
leamers related to their positioning in the discourse of school mathematics? How do gender,
race and class relate to the positionings and subjectivities so formed?

One theoretical perspective that looks fruitful is that of Rotman (1993} who suggests
that the ‘doer’ of mathematics adopts three different subjectivities These, in order of
decreasing scope, are that of (1) the person, (2) the mathematician, and (3) the agemt who
carries out the actions imagined by the mathematician This model has great potential
application beyond the fully formed mathematician Rotman considers The development of
these subjectivities is a interesting research issue for the psychology of mathematics educztion.

The group will discuss what insights a post-structuralist perspective can offer, and how
the questions raised might be researched empirically The group will proceed by shert lead
contributions followed by open chaired discussion.

References

Rotman, B (1993) Ad Infinitum The Ghost in Turing's Machine: Taking God Out of
Mathematics and Putting the Body Back in, Stanford Caiifornia: Stanford University Press.
Walkerdine, V (1988) The Mastery of Reason, London: Routledge.
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i ion Group: "Vygotskian Research and Mathematics Teaching
and Learning"

Convenor: Steve Lemman

The aim of the discussion group is to examine the contribution of Vygotsky and
some of his compatriots and the implications of their theory of leaming in a socio-
cultural context for mathematics education. The assumptions underlying
Vygotsky's position differ in several ways from the tacit philosophical and
psychological position of the mathematics education community. in particular
Vygotsky challenges the centrality of the individual in meaning-making and insists
on a social ontogeny of consciousness. By identifying meaning as the unit of
analysis for psychology, Vygotsky offered an alternative programme to mentalism,
one that focuses on the socio-cuitural settings in which the child grows up, on the
tools, both physical and psychological, which mediate experience, and on
intemalisation as the process by which the intemal plane of consciousness is
formed (Leont’ev). In addition his position transcends traditional Cartesian
dualities such as self/other, mind/body, feeling/thinking and subject/object. His
historical-cuitural method of research differs significantly from predominant
methodologies which typically focus on a part of the leaming situation.

At PME 18 in Lisbon, the first session developed from some key aspects of
Vygotskian approaches chosen and offered by the convenors, and in the second
session some rasearch issues/implications were proposed and discussed. At PME
19 in Recite we will aim to continue to interrogate that body of work looking for its
relevance for our research, for its complementarity or contradiction to other
approaches, and to its deficiences and its strengths. We will also aim to report on
some of the current research in the psychology of mathematics education which
draws on the Vygotskian perspective and to attempt to identity its particular
contributions to research perspectives in the teaching and learning of
mathematics.




Richard Lesh, Professor Anthony E. Kelly

of Mathematics Graduate School of Education
University of Massachuseits - Dartmouth  Rutgers, The State University of New Jersey
Group 1, Arts & Sciences 10 Seminary Pl. New Brunswick, NJ 08903, USA
Nocth Dartmouth, MA  02747-2300

Barbara Lovitts, National Science Foundation
Research in Teaching & Learning

4201 Wilson Bvd.

Arlington, VA 22230, USA.

Discussion Group Proposal: RESEARCH METHODS IN MATHEMATICS EDUCATION

In the past decade, research in mathematics education has ushered in a series of paradigm shifts; and,
related to these, the development of innovative research methodologies, such as: teaching experiments
in technology-intensive leaming environments, computer modeling of complex problem solving
behaviors, sophisticated videotape analysis techniques for real-life problem solving situations, and
cthnographic observations in which attention is focused on abilities that go far beyond "shopkeeper
arithmetic™ from the indusirial age.

The development of widely recognized quality standards has not kept pace with the development of
new methodologies; and, the result is that naive or inappropriate standards often cause excellent
studies to be rejected for funding or publication; or, conversely, potendally significant studies are
sometimes marred by methodological flaws.

In the United States, at the National Science Foundation's Program for Research on Teaching and
Learning has noted that, because the most innovative and po(amally powerful proposals tend 1o be
precisely the ones that streich the limits of estabished theory and methologies, they ofien are the ones
that are most significantly affected in negative ways. Researchers are faced with difficult choices.
They can use simpler or more traditional methodologies, and perhaps risk compromising the potential
power of their research; or, they can use more complex or less traditional methodologies and risk
rejection because of limited opportunities to explain their novel approaches.

For the preceding reasons, the National Science Foundation currently is funding a project whose goal
itis to:

Identify a selected number of emerging, nonroutine research methodologies.
Identify and clarify the theoretical basis for these methodelogies.
Develop guidelines for their appropriate implementation.
Clarify standards for data analysis and interpretation.
ldenufy the practical limitations of cach methodology.
the theoretical limitations of each
Sitnate the methodelogy within the larger universe of mseatch techniques.
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Therefore, we propese a discussion group, that will describe progress related to the preceding issues
and broaden the dialog about rescarch methods in mathematics education.




Embodied Cognition and the Psychology of Mathematics Education
Rafael E. Nifiez Laurie D. Edwards
Stanford University University of California at Santa Cruz

One of the central goals of the psychology of mathematics education is to understand the thinking
involved in doing and learning mathematics. The field of cognitive science constitutes a resource for
addressing this goal. Unfortunately, the term cognitive science is generally understood to refertoa
particular theoretical approach focused on individual reasoning, often explained in computational terms.
There isa widespread belief that in explaining human cognition it is necessary to refer to mental
representations, symbol manipulation, and information-processing. These concepts are rooted in an
objectivist tradition, in the sense that it is assumed that the objects and world being represented and
manipulated pre-exist the knower. The result of this interpretation has been that many mathematics
educators, especially those concerned with social and cultural factors, have overlooked the potential
contribution of cognitive science as the scientific study of knowledge.

In this discussion group, we intend to challenge this narrow view of cognitive science and to invite the
participants to consider new paradigms in cognitive science. In specific, we will focus on perspectives
that view cognition as a biological, embodied phenomenon which is realized via a process of co-
determination between the organism and the medium in which it exists. We will go on to explore the
relationship between these paradignis and the psychology of mathematics education. Todo so, we
propose to:

« analyze non-objectivist paradigms in different disciplines in cognitive science. including the

work of Lakoff and Johnson in linguistics (Johnson, 1987: Lakoff, 1987), Maturana and

Varela in theoretical biology (Maturana & Varela, 1987), and Rosch in cognitive

psychology (Varela, Thompson & Rosch, 1991);

* explore how these new paradigms can provide powerful tools for both research and practice

in the psychology of mathematics education; and,

« invite participants to bring their own research and practice issues into the discussion and to

examine them from the perspective of a non-cbjectivist cognitive science.

We believe that research and practice in mathematics education can only be enriched by drawing from the
new perspectives provided by non-objectivist approaches to cognitive science, and the overall purpose of
this discussion group is to begin to build 2 bridge from mathematics education to these new paradigms.
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USING OPEN-ENDED PROBLEMS IN MATHEMATICS
Erkki Pehkonen, Dept Teacher Education, University of Helsinki (Finland)

The method of using open-ended problems in classroom for promoting
mathematical discussion, the so called “open-approach” method, was developed
in Japan in the 1970’s (Shimada 1977). For example in the paper of Nohda
(1991), one may find a nice description of the paradigm for the open-ended
approach. This discussion group began two years ago in the PME-Japan, and
had a continuation in the PME-Portugal (Pehkonen 1994). In these first
sessions, the topic of discussions was the concept “open-ended problem” and its
classroom usage, with examples from different countries.

In Japan (1993), we concluded that open-ended problems pertain to a larger
class of open problems (i.e. problems with openness in the initial or goal situa-
tion). Furthermore, open problems contain e.g. problem posing, project work,
and most real life problems. The presentations (Nohda, Silver, Stacey) of the
discussion group are published (Pehkonen 1995). In Portugal (1994), we con-
tinued the basic discussion, and concentrated on the variety of open problems
used in different countries.

This year, the discussion group will focus on research results obtained
around open-ended problems. There will be 3—4 brief presentations (about 10-
15 min) from different countries, containing the presenter's view point of the
state of art in his/her country and its surroundings. The presentations will give
us some starting points for discussion. The main question will be “What re-
search-based knowledge do we have from open-ended problems?” Fro:n this,
one could conduct some further questions, as "What recent research has been
done on open-ended problems?” and "Are there some underpresented fields on
which we should focus our research?”.

References

Nohda, N. 1991. Paradigm of the “open-approach” method in mathematics teaching:
Focus on mathematical problem solving. International Reviews on Mathematical
Education 23 (2), 32-37.

Pehkonen, E. 1994. Using open-ended problems in classroom. In: Proceedings of the
eighteenth PME conference (ed. ]. P. Ponte & ].F. Matos). Vol. I, 24. University of Lis-
boa, Lisboa {Portugal).

Pehkonen, E. 1995. Introduction: Use of Open-Ended Problems. International Reviews on
Mathematical Education (= ZDM) 27 (2), 55-57.

Shimada, S. (ed.) 1977. Open-end approach in arithmetic and mathematics - A new
proposal toward teaching improvement. Tokyo: Mizuumishobo. [in Japanise]




SHORT ORAL COMMUNICATIONS




TEACHERS' PRACTICES AND BELIEFS IN A COMMUNITY WHERE HOME MATHEMATICS
DIVERGES FROM SCHOOL MATHEMATICS

Guida de Abreu - University of Luton, UK
Gerard Duveen - University of Cambridge, UK

This paper reports case studies of two teachers who taught in primary schools in a rural
sugarcape farming community, in the state of Pernambuco, Northeast of Brazil. These
case studics where conducted as part of 2 wider investization into how children growing
up in that community experienced the relationship between their home and school
mathematics (Abreu, 1993). When engaged in the practices of sugar-cane farming people
make use of an indigenous mathematics, which differs markedly from the "western” like
mathematics taught in the local schools.

The neglect of home mathematics by the schools, is a well documeated phenomena in
Brazil {c.f. D"Ambrosio, 1985, Carraber et al., 1982). The uitinrate responsibility for this
neglect lies with the teacher who is the mediator of the school culture and fails to
establish bridges. However, very little is known about teachers who work in communities
where home and school mathematics involve distinct forms of represeatation. To what
extent do they know about the existence of home mathematical practices? If they know,
what are their beliefs about those practices? Is there any kind of relationship between
their representations of hom= mathematics and their teaching practices? These are the
questions that will be explored in the two case studies presented.

The data for the case studies was obtained in classroom observations, video-tapes of
classroom lessons, and semi-structuted clinical interviews with the teachers. All data
collection was done, in April and May 1991, by the same researcher a native Portuguese
speaker, who also had previous experience of research in that community.

Both case studies illustrate that to come to terms with the situation teachers develop
representations of mathematics which: (1) enables them to understand and explain the
situation and also justify their teaching practices - cognitive function; (2) enables to
locate themselves and the children in the social structure of the farming community -
social identity function. Nevertheless, the case studies also illustrate diversity among the
teachers. Case study 1 shows how teacher's belefs in the low status of the home
practices prevents her from sceing any advaatage in bringing home mathematics into
school, On the other hand, case study 2 shows a teacher who attempts to valorise home
mathematics, but also fails 10 bridge the 'wo mathematics. In this case duc to perceived
difficulties in reiation to her lack of knowledge of the home mathematics, and also duc to
the way school mathematics culture is institutionally structured. To conclude we will
discuss how these data lead to a theoretical claboration of the relationship between
home and school mathematics in terms of construction of social identities.

Abreu, G. de 1993, The relationship between home and schoot mathematics in a farming
community in rural Brazil, PhD Thesis, Cambridge University.

Carraher, T.N,, Carraher, D.W., Schliemann, A.D.: 1982, Na vida, Dez, Na Escola, Zero.
Cadernos de Pesquisa, S.Paulo, 42, 79-86.

D"Ambrosio, U: 1985, Sccio-cultural Bases for Mathematics Learning, Campinas, Brazil:
Unicamp.
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Generalization in Leaming Mathematica

Nadja Maria Acioly
Universidade Federal de Pemambuco - Recife, Brazil

The present study aims at analizing the results of two investigations
involving the mathematical competence of aduits with limited schooling, as wel!
as offering some thoughts on the limits of these competences. In the studies,
the subjects solved problems similar from the point of view of mathematical
structure, the contents of which were either familiar or unfamiliar. Eight
unemployed adults participated in the first study; all were associated with an
institution for adult education in Bourgogne, France. In this study the data
collection entailed two sorts of social interaction: researcher-subject and
subject-subject. The proposed problems involved percents and
proporcionality. In the second study, twenty sugar cane workers from Brazil's
Northeast region took part. The proposed problems involved calculation of
areas and calculation of averages.

The results underiine the limits of generalization in leaming mathematics
and illustrate some cenditions where the transfer of competences has a
greater likelihood of occurring. The first study 1solated conditions that seem to
facilitate transfer: the nature of the social interation, the role of the
interlocutor, and the nature of the intervention. iIn general, pair problem
solving enhances performance, except when both problem solvers lack basic
knowledge about the mathematical concepts. in these cases, the individuals
do not approach the problems mathematically, restraining themselves to
talking about the contextual and social background described in the problem.
The type of intervention based on oposing viewpoints of the mathematical
concept seems to promote socio-cognitive conflict and to enhance
performance. The second research demonstrates that transfer can oniy occur
when the problem proposed is recognized as such by the subjects. If this
condition does not hold or the problem is considered unscivable, transfer
tands to be weaker or even non existent. These studies show that the
elements 1solated by the subjects as pertinent for solving probiems are not
always those contemplated by the researcher. The data offar elements for
identifying the competences of subjects with limited schooling, as well as
complementary data for analysing the possibility of transfer of these
competences.




SOME DIFFICULTIES IN THE DEVELOPMENT OF THE GEOMETRY
CURRICULUM ACCORDING TO VAN HIELE

C. Afonso; M. Camacho; M.M. Socas
Departamento de Anilisis Matemético Universidad de La Laguna

In the same way as there are elements in favour of the curricular development there
are barriers against it as well. As Howson, Keitel and Kilpatrick (1981) state, there are
some difficulties conceming the disagreements among different difficulties concerning the
disagreements among different ideologies and interests due to political, religious,
educational and social causes because all these modifications imply a change in the balance
of power; these are causes which affect the educational macrosystem. Others are related to
practice itself and thecy come from the ignorance of the new contents, the lack of
appropriate curricular materials as well as the necessity of leaving some contents and some
teaching strategies which proved useful and which gave security to the teachers for others
that, in any case, imply a risk. These difficulties are related to the educational microsystem.

Thus we can see that the difficulties in the processes of curricular changes affect
many elements, but we outstand only three: subject (Geometry), students and teachers.

Researches have been directed more towards the curricular organization of
Geometry according to the van Hiele model and towards the change of the students from
some levels to others through an instructional design (Clements and Battista, 1992; Jaime,
1993) than towards the problems that come from implementing 2 curticulum according to
the perspective of teachers.

The study we carry out at present makes a part of a wider one (Afonso, Camacho,
Socas, 1994) and its aim is to determine the role teachers play in the decision-taking in
order to implement a new Geometry curriculum as van Hiele says.

In this paper we will analyse the results of a survey carried out to a group of
secondary teachers who have been teaching students ranging from 11 to 14 years old for
more than ten years, with the main objective of determine their predisposition to use the
teaching proposals suggested in the van Hiele theory. For that reason an experience divided
into three stages was designed: In the first stage an open-ended questionnaire was presented
through which we determine the amount of coincidence among the ways of developing the
Geometry curriculum in the levels in which they appear from their training and expenence
and what comes from developing the curriculum guided by such a theory of geometrical
thought. In the second stage we analyse the training of the teachers according to the van
Hiele theory, combining the immersion method with the exhibition of the above-mentioned
theory. In the third and last stage we study by making use of a survey similar to the initial
one, the rate of agreement of ideas (supposedly modified) that the surveyed teachers had.
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ASSESSMENT AS A LEVER FOR IMPROVED INSTRUCTION - A CASE OF STATISTICS
Miriam Amit, Ministry of Education, Israel
The recent changes in mathematics education focus mainly in assessment ways, the leading
perception being that “what you assess is what you teach.” The traditional method of achievement
assessment using multiple choice examinations, in which the student had to cope with a great number
of items within a given time, is almost obsolete. These exams reflected the belief that mathematics is
a “sterile” subject, unconnected with real life, and the perception that “first you teach and only
afterwards you test on what you taught,” meaning that the test is the end of the learning process, and
not its beginning.
Recent initiatives in mathematics assessment csll for a better expression of the application of
mathematics in real life and request to do away with the thought that teaching and assessment are
mutually exclusive. The linkage approach between instruction and assessment demands a dramatic
change in the implementation of task characteristics and in the way students learning is recorded and
monitored. In order to meet these needs, a program known as the Packets for Middle School
Mathematics was developed in the ETS. This program incorporates Performance Assessment
activities, it strongly reflects the NCTM standards and facilitates the delivery of interdisciplinary
instruction, cooperative learning techniques, and the application of mathematical thinking in real-life
situations Each Packets activity was designed to elicit construction of mathematical models, based
on research by Lesh and others.
In a research carried out in two grade-7 classes, the students were asked to carry out a performance
assessment task that required information processing of attributes of consumer goods, and the
creation of a model of rating system to be introduced in a consumers guide for the young. The
students worked in groups and were asked to document their solution to the task, describe the model
they constructed, present it in front of the class and defend it against criticism of their peers. In spite
of the fact that this was the first time they had to cope with this kind of task, and despite the
teachers’ apprehension (“they never learned this kind of stuff”), the students succeeded in creating
models based on mathematical and geometrical concepts. An interesting phenomenon was the
“invention” of statistical terms equivalent to weighted average, mode and median. Thesc were never
learned before, were intuitively developed by the students, and constituted & starting point for the
methodical learning of descriptive statistics.
In the session we will present the activity, discuss the linking process of assessment and instruction,

and deal with the issue of the use of assessment as lever for further leaming
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PLAYING IN THE STOCK MARKET WITH A SPREADSHEET"

Isabel Amorim
Centro de Investigag3o em Educagio, Universidade de Lisboa

Learning mathematics is tot merely to assimilate a set of procedures and techniques which
would aloud the students 1o solve a certain type of exercises or to prepare them to leam more and
more sophisticated techniques. The integration of applicd mathematical problem solving activities in
mathematics teaching is framed by a perspective which considers that lcaming mathematics is also
leamning 1o apply it, relate it with other sciences and solve realistic problems.

The use of a computational tocl as a spreadsheet is considered to be an important conceptual
clement in mathematical modelling given the learning processes that are promoted (Matos, Carein,
Santos & Amorim, 1994). Multiple representations of a given situation are made accessible and the
user can manipulate and relate them. The computational tool is seen as a conceptual amplifier (Lesh,
1987; 1990) or a reorganizer (Pea, 1987) of the mind.

In this paper I will descrive and analyze an experience with 11th grade students exploring
theoretical (rmathematical) models which describe the evolution of the quotation of the share of stock
market. A spreadsheet was used as a working tool. Data was collected through observation and video
recording of one group of students at work. Data analysis was a kind of reconstruction from the most
significant episodes, regarding the role of the spreadsheet.

One of the main results of this study points to the idea that the spreadsheet plays the role of as
conceptual amplifier or reorganizer of the mind, depending on several factors such as the students’
personal characteristics, the nature of the problem, the kind of interactions between the students and
the interactions with the computational tool.
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ON THE DIDACTICAL TRANSPOSITION OF CARDINALS AND ORDINALS'

Maristela Veloso Campos Bernardo
Renata Cristina Geromel Meneghetti
Roberto Ribeiro Baldino

Graduate Program on Mathematics Education, UNESP, Rio Claro SP, Brazil

According to Zermelo-Fraenkel set theory, at least in the version of Haimos (ZF-H)
cardinal and ordinal numbers can only be distinguished in the infinite case: “(...) if X is finite (...} the
cardinal number of X is the same as the ordinal number of X {Halmos, 1960. p. 100]). Also,
according to Piaget, “(..) finite numbers are simultancously cardinals and ordinals; this results
from the very nature of number as a system of classes and of assymeircial relations, merged
together in one operational whole "' [Piaget, 1975, p. 219]. Hence, mathematically (ZF-H) as well as
psycologically (Piaget), finite cardinal and ordinal numbers coincide. Nevertheless, cardinals and
ordinals are culturally recognized as distinct mathematical notions and are taught as such in
elementary school. According to Chevallard’s Teory of Didactical Transposition (DT), in order that a
specific knowledge can become an object of teaching, it must have educational and epistemological
legitimacy [Chevallard, 1989, p. 63]. In so far as social agents in the teaching sphere recognize ZF-H
and Piaget as the basic references for the teching of C&O, a legitimacy problem arises and takes the
form of a contradiction of DT: elementary teaching deals with two distinct notions that, according to
scientific knowledge, should be copsidered the same. We have investigated how people live along
with this contradiction in the different levels of teaching. We have visited elementary school

classrooms, examined official sylabuses and textbooks and interviewed mathematics teachers of all

teaching levels. According to Arsac [1992] and Assude [1992], we have considered three possible
modes of DT: natural DT, counter DT and a blockage of DT. Our results so far indicate that the

blockage mode is the dominant one; teaching ordinals tends to be left to the Language teacher.
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SUPPORTING GRADUATE TEACHERS TO CARRY ON INNOVATIONS:
A DESCRIPTION OF HARRY'S ATTITUDE
Prof.Dr. Janete B. Ij'rant
Universidade Santa Ursula

This paper describes and analyzes the attitude of a Professor who decided to
adopt a new pedagogical approach for his Linear Algebra class How he decided to
change his way of teaching, what kind of support he got, and what expectations he
had

The results suggest the possibility of changing in mathematics teaching and
iearning by supporting teachers to carry on innovations.

INTRODUCTION

The implementation of a new methodology in Linear Algebra grad class was
the initial aim of the research, but my attention swerved to study, in depth, teacher’s
attitude towards implementing an innovation.

The importance of this study reiies on the fact that we usually plan on supporting
elementary and secondary teachers to carry on innovations but that is not common to
do the same with Professors Also, a result of this research reinforced that as happens
in the agriculture or economic scenario a person should have a strong support in order
to move from adoption to impiementation and from this phase to routinization

FIELD WORK

This study took place in a Math Education master's course, in Rio/Brasil.
Harry. a pure math oriented teacher, uses to teach Linear Algebra and other math
courses for undergrad and grad students, in the same way probably most of math
teachers do. After a seminar about Writing in Math Classroom {given by Arthur
Powell, Rutgers University) he told us about his deep interest in trying this new
approach and how he was willing to start a different course but he would like to get a "
real support” for this task Figuring out that it would be the perfect opportunity to
meaningful changes take place we planned the first lesson together and decided to
meet one hour every week to read the students production, to comment on them, to
reflect about what was going on, and to plan the next lesson.

The classes were divided in two parts' one was the writing part and the other
the content part. In the first part, each group of three students (A) chose a “math text™.
commented on it, gave it to another group (B) to comment and reply B’s comment
Harry's task was to write them back in order to improve their mathematics contents
How to do it without giving the right answer” How to keep students motivated to go
further in the math topic?

During one term (a semester} we were able to meet once a week for 1 30 hour,
during these meectings 1 tock notes. I interviewed Harry regularly and a few students
not so often, and ! made cépias fr T the students work. By the end of the term Harry
answered a questionnaire and talked about his answers in an interview.

Conclusion

As expected, Harry was divided in adopting a different approach and lecturing
Although he wanted to change he worried about the syllabus, so two of the classes
were only lectures. He is willing 10 use the writing approach again, because he said
that some difficulties and mistakes he was able to detect from the students’writing he
could not detect if it were in a regular exercise

It was an opportunity to rethink teacher’s role He felt that contrasting to the lecture

approach, using the writing approach he was more like & coach, sort of a nuxture of
ahvisor and a criic




PROBLEM SOLVING PROCESSES INVOLVING THE CONCEPT
OF DIRECT PROPORTIONALITY AND DIDACTIC
PERSPECTIVES OF MATHEMATICS PRE-SERVICE TEACHERS

Isabel Cabrita

University of Aveiro - Portugal

Proportionality is aconcept of several day-to-day and acadeniic applicability.
Nevertheless it can be verified that, faced with problems involving such a subject,
students either demonstrate a great deal of difficuity in associating and/or
determining the necessary algorithm and/or heuristics to be used, or opt (mainly
in extra curricular situations) for a far less formal approach vis a vis the one
clected by teachers in tackling the same subject. From this point of view some
rescarchers are of the opinion that integration, in the teaching-learning process,
of a large variety of problem solving processes of this type, including the less
orthodox ones, contribute towards the construction/solidification of a better
conceptual knowledge. For this to be plausible tcachers themselves have
nevertheless to have the aptitude to use such a variety of strategics.

Given this context we conducted an “exploratory study™ with the aim of
analysing the performance of 10 Portuguese pre-service mathemat.cs teachers
(grades 7/12) as to the individual ways they solved problems involving the
concept of direct proportionality when asked not to use (N) or to use (Y) a
variety of processes and analyse the strategies these pre-service teachers say
they would use in dealing with such problems in situations (N} and (Y).

Based on data collected with the instruments we used (5 problems - where
one was accompanied with several resolution proposals - arkd 2 questionnaires
developed for the purpose) we conducted a study of qualitative nature with
descriptive, analytic and interpretive intent which allowed us to draw as main
conclusions that: (1) participants evidenced great difficulty in the acquisition/
application of the concept under study; (2) they showed a preference for the
resolution and for the teaching of problerns in which the urit value was stated,
by using the strategy which resorts to the cross-product algosithm; (3) they
showed a preference for the resolution and the teaching of problems in which
the unit value was not stated, by first electing to seck its determination, using
less formal processes than the ones used for tackling the subject
“‘proportionality™; (4) although evidencing sensitivity to the need of approaching
problems by more than one process, in situation (N) participants merely restated
the processes they had used, essentially algebraic, or by means of schemes/
tables. In sitwation (Y) there were no significant differences




STUDENTS' ACTIVITY IN MATHEMATICAL MODELLING:
WHERE DO THEIR MODELS COME FROM?"*

Susana Paula Carreira
Centro de Investigacio em Educagio, Universidade de Lisboa

When speaking of mathematical modelling of real situations we often come across the idea that it is a
process by which certain aspects of reality are isolated and translated to mathematical structures. This
way of conceiving mathematical modelling also tends to see mathematics as the main source of
insights and conceptual tools for the adequate representation of empirical phenomena.

What we wish to cmphasize in this presentation is the insufficiency of this kind of premise to describe
and understand students' activity during their process of mathematical modelling. In our approach we
arc assuming that a mathematical model is not a model of reality but a model of a conceptual system
based on a certain interpretation of reality (Skovsmose, 1990). We will also ook at students’ activity
from a sociocultural point of view, specially in what concerns the mediational means that shape
students’ actions and models (Werntsch, 1991). Morcover we will stress the role of students’ previous
ideas and the situated nature of their cognitive processes that make their modelling processes quite
different from those of scientific experts (Driver, Guesne & Tiberghicn, 1990).

We shall focus on our recent rescarch with a class of 10th grade students that were involved in
mathemaiical modelling situations and had the possibility of using a spreadshect to work on the
problems pres»nted. While reporting the activity of a group of students, dealing with the problem of
modelling the cost of a taxi run, we will outline and discuss some results:

a) Swudents’ modelling activity reveals a particular situated nature where previous ideas about the real
situation play an essential role; the need to adequate these early interpretations to mathematical
structures and patterns scems (o be far more located than structural in students’ processes.

b} Students' conceptualizations may be contradictory but still very stable; aithough students describe
the discontinuitics of the taximeter readings, in successive periods of time, they adopt a continuous
lincar model to describe it mathematically.

¢) The tools that students are provided with can be very strong factors in mediating their activity;
when trying to build a general model for the price of a taxi run students first looked for ar: cquation
and then struggled with the reed to use the spreadsheet which proved 1o be both an obstacle and a
powerful representational tool.
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PUPILS® IDEAS ABOUT MATHEMATICS
Margarida César
Departamento de Educacao da Faculdade de Ciéncias da Universidade de Lisboa

When pupils arrive at school they already have their own ideas about Mathematics
as well as some knowledge related to it. On one hand, Mathematics knowledge is exterior
and pre-existent to themselves. On the other hand, they had previous Mathematical
experiences in their daily life. Anyhow, school Mathematics quite ignores pupils’ reasonings
in daily life Mathematics (Carraher, Carraher & Schliemann, 1989; Saxe, 1989).

The didactic contracts established at school play a main role in the ideas that pupils
build up about Mathematics (Schubauer-Leoni, 1986). The social construction of the
meanings in 2 Mathematics class is deeply related to the interaction among the didactic triad:
teacher, pupil and knowledge (Perret-Clermont & Schubauer-Leoni, 1988). Pupils are not
mere reproductors of schemes and practices. Therefore, the way they conceive Mathemgtics
deeply influences their relation to this schoo! subject. Moreover, the understanding of pupils®
representations about Mathematics is specially important due to the fact that
underachievement is quite high in this school subject.

As part of a broader study, pupils from the 7th level (N=331) at Lisbon were asked
about their ideas about Mathematics -- whether they liked this school subject or not, and
why. Most of the pupils related Mathematics to computation. This was true both for those
who liked it and those who didn’t. Some of them also described it as useful for their future
or for daily life. The main difference between those who liked it and the those who didn’t
is that the first ones said it was interesting and funny whether the others perceived it as
complex and difficult. Only very few pupils associated it to problem solving or to a "mental

game™ which reflected that these students usually had a traditional conception of Mathematics

and related tasks in a school class. These findings are consistent with previous international
rescarch by Lapointe, Mead & Askew (1992). Anyhow, the most surprising result was that

a lot of pupils reported that Mathematics was related to "memorizing things”.




YOUNG CHILDREN'S USE OF SHARING AND THEIR UNDERSTANDING OF THE
RELATIONSHIP BETWEEN DIVISION TERMS IN A NON-COMPUTATIONAL TASK
Jane Corres, Terezinha Nunes and Peter Bryant
Federal University of Rio de Janeiro; University of London;University of Oxford

In a previous study (Correa, 1994; Correa and Bryant, 1994), 5- t06-year-old children were asked
to make judgements about the relative size of the quotients in non-computational division tasks The
analysis of their informal strategies for solving concrete division tasks revealed that most of the
successful children made use of correspondence procedures. We decided to investigate whether
children's immediate experience of sharing can help them to work ow the inverse divisor-quotient
relationship in non-computational tasks, Our hypothesis was that asking children to share the
quantities between one element of the pair of divisors would encourage them to think about the
correspondence between quantities and consequently about the relations (same, more or less) to be
established between divisor and quotient. We gave this experience to an experimental goup, but not to
a control group, and looked at the cffect in partitive and quotitive tasks.

The experience of sharing had only a limited effect on S-year-olds’ judgements, even though they
arc at an age when children perform well in sharing tasks, and this effect is restricted to partitive tasks
and is not always accompanied by the proper justification. In contrast the expericnce had a much
larger effect on the 6-year-olds judgements about the inverse divisor-quotient relationship. both in
terms of correctness of responscs and in terms of the explanations given. The analysis of the
children’s justifications also leads to a hypothesis about the cognitive mechanism involved in the
solution of the task. It is possible that the main cognitive mechanism used by children for solving the
task involved the mental redistribution of the quantities in the form of new equivalent sets. The
children in the experimental group used the result of their active sharing as a baseline from which the
quantities were mentally redistributed into more sets (leading then to a smaller quotient) or, on the
contrary, into fewer sets (resulting into a quoticnt of greater size).

Two major conclusions can be drawn from these findings: a)proficiency in sharing tasks does not
immediately lead to a comprehension of the relationship betwee the quantities in division;
b)eoirespondence procedures (active sharing) can be used to help some children to overcome some of
their difficulties in judging the correct relationship hetween division terms in non-computational
tasks.

Correa, and Bryant.P (1994). Young children's understanding of the division corcept. Proceeding of
XIIIth Biennial Mectings of ISSBD. The Netherlands.

Correa.J(1994).Young children’s understanding of the division concept. Unpublished D Phil Thesis,
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NEW SCIENCE, COMPLEXITY AND THE MATHEMATICS CLASSROOM:
EXAMINING RELATIONSHIPS, NOT THINGS

M. Jaync Fleener
University of Oklahoma

New Science approaches complexity by rejecting reductionism, fragmentation, and notions
of control characteristic of the Newtonian worldview and examining relationships and interactions
rather than entities or things. Organizational theory, sensitive to the adaptive nature of
organizations, coosiders the dynamic nature and formation of relationships. Complexity theory
applied to learning organizations offers insights into the precarious halance between individual
personal autonomy and organizational life by adopting the perspective of New Science.

This short oral report will discuss visions of schooling constructed by 67 preservice
teachers with regard to the complex relationships which define the mathematics ciassroom
learning environment. Using Habermasian critical philosophy and metaphor analysis to identify
preservice teachers™ perspectives, the teacher-students, students-students, and teacher-self
relationships were examined. The guiding question for this investigation was:

How do metaphors describing the teacher-students, students-students, and teacher-

seif relationships in the mathematics classroom contribute 10 understanding

preservice teachers’ perceptions of classroom dynamics from a2 New Science

perspective?

The overwhelming majority of preservice teachers participating in this investigation
described a vision of schooling whereby all interactions and communications were through the
teacher. Students were perceived as isolated objects and not part of the classroom context by
virtue of their relationships with each other or their individual quests for understanding. The
perspective of these preservice teachers was not consistent with the bolistic vision of learning
organizations as these preservice teachers described students as “things™ acted upon by the
teacher.

Information and relationships, rather than entities or "things," are the basic elements of
Information Age dynamics. Schools must adopt a New Science stance or else the ever-increasing
complexity of the classroom combined with the increasing fragmentation and burcaucracy of
schools will further limit students from interacting meaningfully with mathematics and lead to
continued alienation from and fragmentation of mathematics learning. Research consistent with
this vision of the future will be explored in discussions associated with this short oral report.




A STUDY OF TYPES OF PROOFS PRODUCED BY STUDENTS OF THE
SECONDARY SCHOOL ON THE DOMAIN OF WHOLE NUMBERS

José Luiz Magalhies de Freitas and Sylvette Maury

Universidade Federal de Mato Grosso do Sul - Brasit
Université René Descartes - Paris - France

In the secondary schoo! teaching through demonstrations is one of the important
objectives of mathematics classes. Geometry problems are often used to teach students
how to produce proofs. Thus, Balacheff (1988) has proposed in this field a typology of
proofs, based in the work of secondary school pupils. In increasing order of complexity,
four types of proofs are distinguished classifying into two higher-level categories:
pragmatic proofs and intellectual proofs.

A legitimate question which can be raised is whether this model is transferable to
other areas of mathematics. The present study examines the productions of eighth and
ninth grade students, to the types of problems studied at the niming point between
arithmetic and algebra, on the domain of whole numbers. In comparaison with
BalachefF's typology, in our experiments with the students solving scveral arithmetic-
algebra problems, we only encountered one type of pragmatic proof, while our
inteliectual proofs were more diversified than in the model. In order to account for our
experimental data, we propose a three-class typology with one type of proof at the
pragmatic level and two at the intellectual level. Thus, we are encountered the following
types of proofs: Pragmatic proofs, are based on numerical calculation; Statement
proofs, proof mad up of an organized sequence of elementary statements in natural

langage and Algebraic proofs, that consist of validating statements using algebraic
terminology

We conclude that for intellectual proofs the typology proposed by Balacheif must
be adapted to arithmetic-algebra problems
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A DIFFERENT APPROACH TO ALGEBRA AND PROOF: BEHAVIOURS OBSERVED IN
CLASSROCM
Fulvia Furinghetti* - Domingo Paola**
*Dipartimento di Matematica dell’ Universita di Genova. ltaly
**Ljceo Classico ‘Giovanni Pascoli’ di Albenga. Ttaly

In this oral presentation we report the main lines of a project addressed to students aged 16 in which a
didactic path is developed starting from theoretical mathematical aspects (in number theory) to
applications (cryptography). The ambition of this activity would be to make students reach awareness
of the way of working of the mathematician {within limits of the school level involved); a particular
emphasis is given to activities such as the production of conjectures, counterexamples to facilitate the
transition to formal proof (Moore, 1994). In pursuing this task we were helped by the use of the
computer.

As a contexi for our work we chose the first clementary topics of number theory for these main
reasons:

- students consider the set of natural numbers a domain familiar because have worked in it since the
first school years

- the statements are simpler to read than those, for example, of geometry (usually they are quite short
and hypotheses and theses are better singled out)

- it is possible to find interesting applications, such as cryptography, within students’ reach
- it is made casy by the context to revisit algebra from a differcnt point of view,

The context of the experience provide eclements to study the educational issues emerged according
to different streams: in (Furinghetti & Paola, submitted) the impact of computer in this experience is
analysed, in (Paola, to appear) the mathematical content introduced is presented. Here we consider
the learning problems observed as for algebra and proof. They may be summarized as follows:

- difficulties in producing forrnulae

- difficulties in giving a sense to formulae and to control them

- difficulties in the individuation of the context of the problem

- difficulties in representing the reasoning through the algebraic manipulation
- difficulties in interpreting the statements proposed.

REFERENCES
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DIMENSIONS OF MUSIC IN FARLY CHILDHOOD MATHEMATICS
Noel Geoghegan
University of Western Sydney, Macarthur

This paper cxplores how clements of music cducation might provide effective aids to higher
achicvement in mathematical development in carly childhood. Rccent rescarch investigating the
development of carly number concepts and processes has been influenced largely by the
conslructivist view of learning (Steffe, 1990). In consopance with the constructivist paradigm,
carly childhood educators portray children as active thinkers, who construct sense and meaning
out of personal practical expericnces. Making scnsc is the purposc of cducation; to cncourage
children to look for similaritics, oppositions and connectedness in the scnsory inputs they are
receiving (Dicnes, 1987).

In the Icarning of mathematics, the ability to solve problems is considered one of the most
important skills for children to develop. In carly childhood, problem solving is really creative
problem solving in that it requires a wide range of creative, conceptual and logical thinking
abilitics to combine in reaching a solution. Early childhood music provides contexts where
creative, conceptual and logical thinking combine as windows of opportunity to develop and
rcinforce mathematical concepts. Many people believe that the learning of mathematics and the
learning of music are related but there is little cvidence to make such convictions persuasive
arguments, Efforts to integrate the teaching of mathematics with music arc rare indeed (Kiciman,
1991). Rescarch has implicd that a group of children with extra music training provide more
creative, original and complex idcas and a higher level of abstraction than those with the usval
amount of music (Kalmar, 1989) In bricf, mathematics is an aesthetic and creative (artistic)
endcavour; and music offers viable opportunities for the development of mathematical concepts in
young children.
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Students' representations of rates of change
Alex (1) es & Luciano Meira

Graduate Program in Cognitive Psychology
Universidade Federal de Pernambuco

The research reported in this presentation aimed at analyzing Sth, 7th and 9th grade
students’ understandings of the concept of rate of change and their sbility to invent graphs to
represent it (diSessa et al., 1991). The study focused on students’ developing competence at
building adequate paper and pencil representations of rates presented in five situations: plant
growth, filling of bottles, displacement of accelerated cars, frequency of a pendulum, and
frequency of waves in a beach. These situations were presented in tasks involving: (a) tables
representing several consecutive intervals with distinct rates; (b) comparison of rates between
two displacing objects, and (c) continuous Cartesian graphs. The combination of situations
and type of task was such that ali involved contextual clues and numerical values to allow the
computation of rates, as well as the production of diagrams. The figure below shows the
graphical representation built by a 7th grade student based on a table of the velocity of a car
along ten consecutive intervals with distinct rates. The area of each rectangle in the graph
shows the duration of the time interval (given in hours), and the height of the horizontal mark
shows the distance traveled (given in kilometers)

Intervals: 1 2 3 4 5 6 7 8 9 10
- «— Horizontal
The diagram above allowed the student to construct a relation between area of the
rectangle and height of the mark in such a way that he could easily recognize, for instance, the ..
interval where the object traveled fastest (the smallest rectangle and the highest mark in the

fifth interval implies the shortest time and the bigger distance traveled, respectively) Many
such idiosyncratic representations were invented by the students.

The overall analysis showed that students make extensive use of representational objects
acquired in activities outside school (e.g., reading of newspapers and comic books) in order to
represent rates of change in the situations given Furthermore, the types of representations
built by the students are intimately related to the task situation, and their definition of the
concept of rate. This communication will analyze the various types of representations
constructed by the students, and suggest a developmental trend for the acquisition of this
concept.
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Social interaction ar:d mathematical discourse in the classroom
Pedro Gémez, Luis Rico
Universidad de los Andes, Bogotd, Colombia; Universidad de Granada, Granada, Spain”

A set of variables for coding and analyzing mathematics classroom interactions is pro-
posed. These variables are designed to take into account the social interaction between
the actors (teacher, student on the blackboard. and group of students), the mathemati-
cal discourse itself, and the coniributions that each actor makes to the rrathematical
discourse. The interaction between teacher and students takes place during a lesson
segment: a block of time with a distinct pattern of activity during which a mathemati-
cal task is worked out.The set is divided into two groups: one for the coding and anal-
ysis of social interaction and another for the coding and analysis of the mathematical
discourse that takes place during this interaction.

The variables proposed to analyze the teacher performance during a segment are
characterized according to the teacher’s contributions to the discourse, the way the
teacher handles the students mistakes and contributions, and her/his own authority
conceming the validity of these contributions. The variables proposed to analyze the
students’ performance are characterized according to their reaction to the teacher’s
contributions, their attitude towards the teachers’ authority. their contributions to the
discourse, and the way these contributions are accepted as valid within the interaction.

The mathematical discourse that takes place during the development of a task in a
segment is characterized by the following dimensions with their corresponding com-
ponents: representation systems used (verbal. symbolic. graphical, tabular), knowl-
edge types involved (conceptual, procedural), physical mediums involved (verbal.
writlien on the blackboard, written on paper), resources used (textbook, calculator,
overhead projector), and actors contributions (teacher, student on the blackboard,
group of students). A component is said to have been present in the solving of a task
within a discourse if that component was used or involved in that discourse. A compo-
nent is said to have been necessary for the discourse if the elimination of its use or
involvement renders the discourse meaningless and the task cannot be accomplished.
Finally, a component is said to have been sufficient for the discourse if the use or
involvement that could have been done of the other components of the corresponding
dimension were not necess ary.
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ARE TEACHERS PREPARED TO INTRODUCE THE CONCEPT OF
YOLUME MEASURE?

ANA MARIA KALEFF, DULCE MONTEIRO REI and SIMONE DOS SANTOS GARCIA
Laboratorio de Ensino de Geometria - Universidade Federal Fluminense, Niter6i-RJ, Brazil

This communication contains a partial description of results belonging to a wider research work
on the improvement of the abilities of visualization and on the use of the van Hiele Model, aimed at
the understanding of the defficiencies inherent to prospective and in-service secondary teachers in
learning and teaching geometry.

During the past five years, while examining brazilian textbooks, we noticed that in some of them
use has been made of perspective drawings of rectangular solids, as those described by Ben-Chaim,
Lappan and Houang {1985), to introduce the concept of volume, even to children below ten years of
age.Our concern with that situation, similar to those described by Ben-Chaim et. al.{1985 and 1989)
among others, regarding the difficulties faced by students of ages 10 to 13 with the description and
the representation of solids composed by piled-up cubes as well as with the interpretation of the
drawings used to represent such solids, led us to promote, following the line of our research, a study
involving the performance of adults in interpreting the drawings mentioned and in evaluating the
related volumes. Particularly, we were interested to find out wether teachers were aware of the
conventions implicit in the drawings and of the role of concrete materials in the process of
understanding these conventions since brazilian textbooks offer no explanations about the
compositon of the drawn objects.

The study was undertaken in three steps. To start with, we developed a set of written tests
intended to measure the extent to wich the subjects would correctly interprete drawings and evaluate
volumes. In the sequence we developed a teaching unit intended to promote the acquisition and the
development of adults’ visual abilities. To complement, we performed an znalysis of the effects of
the application of the teaching unit via individual interviews held with undergraduate students.

The written tests, which were applied to 590 subjects, included, among others, some questions of
the National Assessement of Educational Progress Test, 1977-78 (Ben-Chaim et al, 1985). The
analysis of the results indicated 2 rather concerning picture since scores were far below the expected
averages. For example, comrect answers reached by in-service teachers in the determination of the
volume of a simple rectangular prism scored no more than 57% for women and 84.5% for men.

The teaching unit, similar to that proposed by Gutierrez (1992), was based on the use of the van
Hiele Model! of thinking, and has been applied in teachers’ training courses since 1991. Among the
effects of the application of the teaching unit and as confirmed by the interviews held, one was that
of teachers expressing that only afer manipulating with the cubes they became aware of the
conventions implicit in drawing and interpreting the representative drawings used; besides this, a
remarcable improvement could be noticed in the quality of the drawings made. Moreover, we can
report that after finishing the teaching unit, teachers became more confident in their own
performance, far more receptive to understand and analyze children’s difficulties and strongly
motivated to apply construction activities with concrete materials prior to developing the activities
proposed in textbooks
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MODELING EFFECTIVE PRACTICE AND PROMOTING REFLECTIVE PRAXIS:
USING INTERACTIVE VIDEODISK IN TEACHER EDUCATION

Diana VY. Lambdig, Thomas M. Duffy, and Julie A. Moore
Indiana University, Bloomington, IN USA

This study investigated how use of an interactive videodisk information system (the Strategic
Teaching Framework—STF) helped preservice teachers (PSTs) expand their visions of weaching,
learning, and assessment in mathematics and their skills in translating that vision into action in the
classroom. The subjects in this study were 16 PSTs enrolled in Indiana University's Elementary
Certification Graduate Program (ECGP). Use of STF was a new but integral part of a required early
field experience where PSTs waditionally spend one day per week for about 12 weeks working with a
teacher in an elementary school classroom.

One component of the STF system is a collection of videodisk examples of the mathematics
teaching of threc exemplary elementary school teachers, along with commentary on the videos from the
perspectives of the teacher, a2 mathematics educator, and the STF developers. A second component of
the STF information system is a conceptually organized information base, including resources on
topics such as assessment, management, teaching strategies, problem solving, and planning.

For the first four weeks of the term, PST's spent one aftermoon per week at the university working
with STF and designing lesson plans, and one moming per week either in teaching workshops (during
first two weeks) or in wotk in their field experience classroom (during the 3rd and 4th weeks). From
the 5th to the 13th week, the PSTs spent an entire day each week working with a teacher in the school,
as well as carrying out four assignments: (1) conducting a series of interviews about mathematics
concepts with three children from diverse levels of ability, and (2) - (4) designing and presenting three
mathematics lessons to the class as a whole.

We collected data to document how PSTs used the STF technology in formulating personal visions
of effective teaching, how they planned and taught mathematics lessons to actual classes of children,
how they critiqued their own teaching and the teaching of others, and how their philosophies and
beliefs about teaching and leaming developed throughout the course. Data on use of STF came from
observations, student journals, and computer logs of the frequency and types of use. Effectiveness
data were derived from student belief and attitude surveys, weekly student journal entries, and
documentation of the students’ performance both in actually teaching and in the analysis of teaching.

In several cases, the lessons that the PST's taught were explicitly modeled on lessons viewed in STF
and they reflected thoughtfully on their adaptation of the STF maodels in their subsequent self-critiques.
The PSTs evidenced many changes in their views of mathematics and effective teaching over the
course of the semester. While it is admittedly impossible 10 isolate the influence of STF from other
influences (methods instruction, class discussion, school observations, etc.), our research provides
compelling evidence about the various ways that STF contributed to the PSTs' growth.




THE STABILITY OF ALTERNATIVE PROBABILITY CONCEPTIONS

P. E. Laridon and M. J. Glencross

Universities of the Witwatersrand and Transkei

As reported at PME 17 (Laridon and Glencross, 1993), research uses questionnaires adapted
from Green (1988) to investigate the understanding of probability amongst grade 9 pupils (14
- 15 years of age normally) in the Witwatersrand and Transkei areas of South Africa. This
questionnaire has been applied to about 1 200 pupils.

A more detailed analysis is presented of two series of items from Green's
questionnaire. A novel sequential path approach 10 the statistical analysis of these series of
items is used. Alternative conceptions are posited as being the basis on which pupils made
choices amongst the alternatives presented with cach item in the series. The group of pupils
fitting iato a particular conception as indicated by a choice is followed through the series.
Some startling results emerge in tenms of the actual final percentage of pupils who have used
a particular conception consistently throughout the series. This cascade analysis is illuminated
by an analysis of accompanying frc. iesponses. The categories obtained are discussed in
terms of possible underlying causes as found in the literature (Borovenik and Bentz, 1991).
The outcomes of this analysis, questions statements often made about the stability and
persistence of aiternative conceptions. Serious doubts are also raised about the reliability of
the usual statistical analyses of instruments consisting of multiple choice items.

Statistics relating to Green's probability concepts leve] for the sample as a whole and
for some sub-samples will be compared with similar statistics obtained from studies in

Canada, Hungary, Brazil and Britain,
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"Algebralc” word probicms and the production of meaning: an interpretation based on
a Theoretical Model of Semantic Fieids

Romulo Lins’
Geraldo G. Duarte Jr.’

In thils paper we present both theoretical and empirical support to a view on people’s
cognitive functioning. In particular, we argue that people’s approaches to the solution of "algebraic
word probletns” is crucially related to the objects they constitute and deal with in that process. The
key notions are those of knowledge. Semantic Fields. objects and interlocutors, notions which are
constituted as part of a Theoreticul Model of Semantic Fields (TMSF) (Lins, 1992, 1994). From the
point of view that theoretical framework. an interpretation of data drawn from two interviews is
produeed.

Within the TMSF, knowledge is understood as a pair (statement-belief. justification). rather
than as in the traditional view, according to which “knowledge” has the status of a proposition.
“that which one knows to be the case” (ef. Chishohn, 1988]. For instance, according to the
traditional view "2+3=5" would be “knowledge.” But within the TMSF this is a text. not knowledge.
The enunciation of knowledge estabhshies three things: () the subject belleves in what he Is stating,
implving that. (iil he believes to be entitled to have that behef: and. (iii) it corstitutes objects.

The other key construct in the TMSF bullds precisely on the constitution of objects, and
provides the means to account for that process in a more general way. Any Semantic Fleld has a
kernel, in relatlon to which particular objects are constituted. In the case discussed above. one
might speak of a Semantic Field of fingers. possibly with a kernel consisting in two hands,
“eoncrete” or schematic. Within that Semantic Fleld one can constitute objects and operate on them;
numbers from { to 10 would be such objects. Other Semantic Flelds could develop around a scale-
balance, wholes and parts. function machines. areas. money, number as a measured collection, or
Algebraic Thinking. Knowledge is aiways enunclated to some interiocutor. who may be physically
present, remotely present or even fictional: the interlociitor mayv be ~liiternal” or "external.” It is the
subject of knowledge's expectation that his interlocutor will be able to: (§) produce meaning for the
text of his statement-belief; or. (i1} produce meaning for the text of his statement-bellef within the
same Semantic Field from which the knowledge was ¢nunciated.

Two Brazilian sixth-graders (12-13 years) were asked 1o solve verbal problems which
potentlally involve the manipulation of "algebraic rclatlons'hlps.' The scripts and the transcription
of the video tape Were then analysed in order to determine: (1) the objects with which pupils were
dealing: and. (i) the role played by cholces of interlocutors both In the solving process and in the
subsequent attempts to explain what thiey had been doing.

A FULL VERSION OF THE PAPER WILL BE AVAILABLE TO THE PARTICIPANTS OF THF. SESSION.
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COLLABORATIVE RESEARCH ON TEACHER’S TRAINING,
S. M. de Katz, S. Visciglio, M.Castelaro, M. Mas.  UNIV. NACIONAL DEL LITORAL
This work is a collaborative research ' intended as a contribution to secondary school
teacher’s training. The research was carried out by university teachers in charge of teaching algebra
to students initiating their business studies at the Universidad Nacional del Litoral, Argentina. The
working hypothesis is that student’s errors are closely related with strategic and didactic difficulties
of teachers. The work design was based on. 1) administering a test to: Students (A) initiating their
university studies; Solvers (R), Secondary school teachers, Qualified Monitors (IC), Secondary
school teachers having enough experience to answer the test questions as their students would; 2)
defining a democratic reflection environment for the teachers who participate which enabled them
to correct and analyze their own tests, comparing their results with those obtained by the students;,
3) issuing proposals and recommendations. The test includes 36 items (divided in 4 parts) including
both issues of syntax and semantics in algebra ” | as well as the quantitative and qualitative
interpretation of graphs to assess the level of “‘elementary mathematics from the adult’s viewpoint”
® The test was taken by 652 students and 40 voluntary teachers working at secondary school
where most (80 %) of the tested students come from (22 R and 18 IC). The statistical report of the
results, Variance Analysis (Friedman) with significance < 1% shows that 1C behavior is similar and
that the A-R, but IC-R behavior differs throughout the test . In the Correlation Analysis (Sperman
and Kendall) there is a significative correlation of scores in 3 groups with a significance smaller
than 1% in all cases Interpretation of the results in A and R is similar to those reported by
Hershkowitz, M Bruckheimer, and S. Vinner (1987), Chapter 19 in Learning and Teaching
Geometry, K-12. The information on the errors the 3 groups made and the strategy of sharing
reflection analysis and self-criticism allowed to detect examples of over-and under-estimation of
students’ learning as well as to identify didactic difficulties and the need of re-examine concepts

such as “variable™ ¥

and analyze “Symbol Sense” > The stimulus originated for teacher’s training
leads to an alternative proposat for the curriculum design.

™ Amal del Rincon, Latorre, (Investigacion Educativa, 1992); ®’ D. Pimm (El lenguaje matemético
en el aula, 1990 Translated from Speaking mathematically. Communication in mathematics
classrooms, 1987); ® R Skemp, Psicologia del aprendizaje de Ia matemitica, 1993);, ®  Arcavi,
Schoenfeld. (On the meaning of Variable. in Mathematics Teacher, 1988); ® A Arcavi (For the

Learning of mathematics, 1994, vol 14(3), pp 24-35)




ETHNOGRAPHIC RESEARCH METHODOLOGY AND MATHEMATICAL
ACTIVITY IN THE CLASSROOM®

Jodo Fil
Centro de Investigacdo em Educagao, Universidade de Lisboa

Mathematics education research is becoming increasingly concerned with the study of classroom
processes and the complexity of interactions within them. This increased interest in the sociocultural
aspects of the classroom work has led 10 a shift in the namre of research undertaken. It recognizes the
importance of social interactions within classrooms and what students and teacher bring to them.

The focus of our project is to investigate what is mathematical activity in the ¢lassroom from the point
of view of the participants. We assume that theory is essential in order to Jearn from the students and
teachier about their mathematical activity. The conceptual framework takes relevant notions together
from Jean Lave's ideas of context and activity — persons-acting, arena and setting being implicated
together in the very constitution of that activity (Lave, 1988) — and Vygotsky's idea of mediation.
Mediators enter into the organization of behavior in two ways that underline their conceptual and
material nature as they act simultaneously as tool and constraint — in coming to master aspects of the
world, children come to master themselves (Vygotsky, 1978).

In order to investigate students’ classroom activity, an ethnographic research methodology is
adopted. On this paper, it is discussed the adequacy of an ethnographic approach — the art and
science of describing a group or cuiture (Fetterman, 1989) — to the study of students’ mathematical
activity. Considering the idea from Spradley (1979) that rather than studying people, cthnography
means learning from people, we elaborate on the use of an cthnographic approach to investigate
classroom activity which is conceived according to three principles:

(i) activity is situationally specific and this implies that objects of analysis are points of cultural-
historical co:: uncture and should be analyzed in those terms; (ii) to focus on whole person activity
rather than on thinking as separate from doing, implies a negation of the conventional division
between mind and body: (iii) cognition is distributed across persons, activity and setting (Lave,
1988).
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Encoding treatments in geometry : an analysis of pupils'procedures!

Ana L. Mesquita
Universités de Lille and Universidade de Lisboa

The work presented here is a part of an on-going qualitative study on the utilization of encoding
treatments in the resolution of geometrical problems by junior high-school pupils.

Our previous studies (Mesquita, 1994, in press) suggest that the utilization of some non-standard
external representations, in particular the ones in which we can not extract directly geometrical

propertics from, seems to foster pupils'high-level geometrical procedures and in particular encoding
treatments.

In our communication, we will analyse and discuss the utilization of encoding treatments by 11-12
years-old pupils of two classes of a French junior high-school when they solved geometrical
problems with this kind of represeniations; in particular, we will focus on-the analysis of
characteristics of their treatments. One characteristic is linked to the spontaneousness of these
treatments, which are not a current practice in French school. Pupils used encoding marks, such as
numerical cipliers, abstract marks or colours, in very personal manners. Encoding marks seem to be
an effective contribution to write correctly a solution or at least to answer cotrectly to the question.
Our communication will be elucidated by fragments of pupils’ answers.

We argue that these personal procedures appear to be an emergence of symbolic treatments.
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LONG TERM EFFECTS OF A GEOMETRY COURSE BASED
ON THE VAN HIELE THEORY

L. Nasser (UFRJ) N. F. P. Sant'Anna (Colégio Pedro [}
Projeto Fundao — UFRJ — Brasil

In 1990, a teaching experiment was developed in Rio de Janeiro (Nasser, 1992a), involving
five 7th grade classes from two state schools, aiming to: detect some causes of the difficulties
presented by secondary school students in Geometry; identify the van Hiele levels (van Hie'e, 1986)
reached by the Brazilian students in the sample at that grade: investigate if the van Hiele theory can
facilitate the geometry leaming.

According to a quasi-experimental design, this rescarch compared the learning of the topic of
"congruence of plane shapes". While the control group fotlowed the traditional approach of the
textbook, the experimental classes were exposed to a teaching material, specially devised, based on
the van Hiele theory. Since the students were reasoniag at the two first van Hiele levels, the
exercises requiring proofs and formal justifications had to be avoided at the beginning. The
isometries (reflection. translation and rotation) were used, instead, to justify the congruence of two
shapes.

The results of this research showed that the experimental students performed better than the
control ones, mainly on questions requiring argurnentation and justifications (Nasser, 1992b).

This investigation

In order to investigate if the special treatment caused any cffect over the experimental
students on that sample, the performance in Geometry of the students from one of the schools
(Colégio Pedro 1) has been monitored for the last four years. The data collected involved the marks
obtained on common examinations given to all students at each grade, reports of these students’
Mathematics teachers about their performances in class, and the results of the examinations to select
students for the Universities in Rio de Janeiro, applied in the beginning of 1995.

The analysis of the data shows that the experimental students overperformed the control
ones, taking active and expontanecous part on classroom work. These results give evidence of a
positive long term effect of the experimental approach based on the van Hicle theory.
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STERNBERG AUTOMATIC PROCESSING INFORMATION AND KRUTETSKII ABILITY
FOR THINKING OF CURTAILED STRUCTURE: A EXPLORATORY STUDY.

Vicente Neumann, Universidad de Tarapaca {Chile)

Marcia R_ Ferreira de Brito, UNICAMP (Brazl)

Sternberg claimed that the ability for automatic processing information (API) is a key aspect of
mtelligence. In 2 similar way, Krutetskii pointed out that the ability for thinking of curtailed structure
(TCS)is an important element of the mathematical abilities structures. Whereas both concepts have
imoportant similarities, it was investigated that if the API ability and the ability for TCS are two terms

for the same concept or are two different phenomena. 69 university graduated studenmts were

administered {1} the verbal reasoning test of DAT, (2) a mathematical reasoning test based on
Krutetskii theory, (3) three API abilities tests and (4) three TCS abilities tests. For the data analysis
was used an Unweighted Leas Squares Factor Analysis and 2 Nested design MANOVA. The
MANOVA dependent variables were the factors obtained in the Factor Analysis, and the grouping

variables were (1) the type of graduate program (mathematical or verbal prevalence in the students
graduate programs) and (2) the academic achievement (below and above the median into each type
of graduate programs). The results are concordance with the claim that the API ability and the ability

for TCS are different phenomena. Theorctical, practical and methodological implications are
discussed.




Kuhn Revisitcu

Michael Otte
Institut der Didaktik der Mathematik, Bielefeld, Germany

Four concepts essentially determine the architecture of Kuhn’s essay,
The Structure of Scientific Revolutions: Paradigm, Normal Science,
Crisis, and Scientific Revolution. Kuhn's fundamental concepts may be
grouped into two complexes. On one side, we have paradigms and
normal science, on the other, crises and revolutions. The tension
between these two conceptual complexes has been observed early.
Scheffler, for instance, claimed that they are cognitively incompatible or
incongruous with one another (Scheffler, 1967, 1968). I think that
Scheffler did not sufficiently take into account the active and
instrumental character of scientific cognition (Otte, 1990). Nobody is
able to get cognitively involved with more than one theoretical
perspective at a time and stiil maintain the promise of a successful
application. It may take a whole individual life to work out the
consequences of a particular perspective. If we take this into account
and consider the matter strictly within a context of communication, what
has been outlined in Scheffler’s critique becomes more interesting, in
particular now that the interrelationship between science and society has
attained new dimensions with the influence of complex scientific
technologies in all walks of life (society as a laboratory). It may be too
late when finally the consequences of a large scale “experiment”, of the

implementation of a radically new, research based innovation become
tangible.

Kuhn’s work is considered to have achieved a revolution both in the
philosophy and in the historiography of science a self-evident result of
this is that his story has to be told twice. First, more or less immanently,
so-to-say as a treatise in the history of epistemology or philosophy of
science which is designated on grounds of certain hypotheses about the
cvolution of modem western rationality. Second, however, the changes
in philosophy of science and historiography of science introduced by
Kuhn can also be seen as a case of self-application of the message of his
own essay. One could then ask what genuinely singular historical
context has produced the revolution in the views on science which
Kuhn’s book puts forward. Process of change in the conceptions of
science as they emerged after World War Il are responsible.




INVESTIGATING THE IMPACT OF CHANGE IN THE CALCULUS
CURRICULUM AT SAN JOSE STATE UNIVERSITY

Barbara 1. Pence
San José State University, Department of Mathematics and Computer Science

The Department of Mathematics and Computer Science at San José State University (SISU), a
large college with over 26,000 students decided to change the curriculum of the first calculus course
from a traditional to reform course. This departmental decision to change the curriculum
encompassed content, technology and pedagogical modifications. The content moved from the
traditional to exploration based curriculum using the Harvard text, beginning with a library of
functions and introducing both derivatives and integrals through student experimentation,
approximations and observations. Technology became an assumed tool for student experimentation.
The role of sechnology included visualization, experimentation, verification of conjectures, numerical
calculstions, and graphical representations. Class environment changed to support more student
participation and group work. Along with these changes came a commitment on behalf of the faculty
w0 investigate the impact of this change. Study of the changes extended beyond that of the cumulative
score on a common final. Rather, it included an exploration of students attitudes, beliefs and
understandings.

The purpose of this paper is to share interim results of these efforts now underway at SISU.
To investigate the impact of the curriculum change in the first semester of the calculus curriculum,
results from the pretest, middle of the semester test, the final exam, student grades and initial survey
result from the subsequent course will be reviewed. Although the data covers 10 sections of calculus
and includes 4 different surveys, the focus of this report will be on the understanding of key
concepts, the concept images (Tall, 1992) snd the interaction between the understandings and the
affective rcsponsés. The review will concentrate on a small subset of students and underscore the
linkages between beliefs and understandings. Interzctions between the curriculum, student beliefs
and student concept images will be developed in light of work reported in Kaput and Dubinsky
(1994) and theoretical frameworks suggested by Dubinsky (1992) and Thompscn (1994).
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STEPS TOWARDS EFFECTIVE CLASSROOM PRACTICE

Joio Pedro da Ponte
Universidade de Lisboa

One important part of the preparation of a mathematics class is the selection of
tasks to be tacked by students. However, a given task can be transformed in
mathematics activity in a number of quite different ways, depending on the teacher
interpretation of what is important, her perception of students’ abilities and interests, the
time availabie, ctc. This presentation discusses how a mathematics teacher, Marta,
concemned with the impiementation of a new mathematics curriculum stressing the use
of materials and pupil activity, leads a 8th grade class in the concept of arca.

Marta is about 35 years old, having some ten years of expericnce. She has a
positive attitude regarding the new curriculum and mects regularly with two colleagues
from her school to design extensive and carefully crafted worksheets, containing
different kinds of mathematical tasks, first for 7th grade and now for 8th grade. These
worksheets iake a structuring role in cach teaching unit. For a given class, she either
uscs tasks taken from this worksheet or supplements it with extra tasks.

In this way, this tcacher participates of a regular practice of informal discussion
and production of materials with other collcagues. She is quite enthusiastic about this
work, that she finds the most significant professional experience since student-teaching.

As many other mathematics teachers, she likes the idea of “doing things
different” in the classroom, but she is aware of the need to cover all the topics of the
national curriculum. She solves this issue in a positive way, jumping over some of the
curriculum topics in exchange for a better cxploration of others.

However, the prevalence of £ niajor concern with “basic skills”, such as
numerical computation and knowledge of mathematical terminology as well as some
decisions that she takes about classroom management (such as teacher and student roles
an use of the time) strongly affects the scope of the innovative tasks that she takes to
the classroom.

Willingness t0 innovate and openness to new ideas is just a first step towards an
cffective classroom practice. The teacher needs 10 be able to analyze and reflect about
what is going on in the classroom, specially in what concerns the nature of the teaching
situations and the activity undertaken by students — and mathematics education
research should be able to provide conceptual and practical means to make it happen.




STUDENTS'APPROACHES TO DIFFERENT USES OF VARIABLE.

RICARDO QUINTERO & SONia URSiNI, CINVESTAY
ARACELI REYES & MARIA TRIGUEROS, ITAM
Meéxico

Aims of the study: Our research project is concerned with the mechanisms students of different
school levels use to identify, discriminate and connect different uses of variable (specific unknown,
general number, functionally related variables) and how these mechanisms are affected by
instruction. With this focus in mind, we intend: 1) To ¢laborate a profiie of students' interpretation
and symbolization of different realizations of variable at different school levels: pre-algebraic pupils
(12-13 years old); algebra beginners (15-16 years old); beginning college students (18-20 years old).
2) To investigate to what extent the difficulties students have to cope with different uses of variable
depend on the cognitive demands of the concepts themselves, or on specific features of school
instruction. 3) To investigate the usefulness of working in structured computer-based environments,
to help students in discriminating and connecting the multifarious aspects of variable.

For dealing with 1) a questionnaire of 52 open ended items was developed, extending a kemel of
questions used by Ursini (1994) who studied pre-algebraic pupils' interpretations and
symbolizations of variable. It was applied to 73 beginning college students in Mexico City. The
answers were analized hoth, qualitatively and using Clasical Test Theory (CTT).

Preliminary conclusions: It stands out that the concept of variable is not firmly established among
college students. They do better with variable as specific unknown than with the other aspects
although they still have difficulties with this use of variable. It is in the handling of this
characterization where differences with pre-algebraic students were more evident, which may be
due to school influence. It is remarkable that college students have great difficulties with the other
two characterization of variable and that a tendency remains to interpret them as specific unknown,
being so the difference with pre-algebraic students small. These preliminary results stress that there
is not enough emphasis on these aspects of variable at school. The variable concept it favours is
fragmented and this could explain students defficiencies whithin algebra itself and with the learning
of other branches of mathematics as analytic geometry, calculus or statistics that require a fluid
handling of variable.
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{COGNITIVE STYLES, LEARNING and TEACHING MATHEMATICS |

Jean-Claude Régnier
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The aim of this communication is to present an “action-research” like study conducted in
France by a team of about ten Mathematics teachers from three Lycées (high schools) in Burgundy
on the “cognitive styles” of pupils in a classroom situation. The pupils concerned are first, second
and third year pupils. Most of them are 16-18 years old.

The study originated, first in the difficulties encoutered by teachers in teaching their pupils
Mathematics, and secondly in the introduction of a new organisation in the schoolwork : the
creation of “modules” in the pupils’ timetable aiming at offering them individual help in their
learning Mathematics.

The relection and work on the notions of “cognitive style™ and “cognitive profile”, of “iearning
style” and “teaching styie”, of “educatinai differenciation” seemed to them attractive prospective
fields, likely to offer pragmatic answers to their educational difficulties. This approach must be
considered more in a praxeological way then in a “fundamentalist” one. The notion of “cognitive
style® developed by psychology must not be given a theoretical basis but must rather be used as a
factor whose knowledge by the teacher and the learner is likely to increase the efficiency of the
didactic sequences.

This prospect has led the towards some problematics of praxeological nature based on the
foliowing main questions :

Presupposing the existernce of "cognitive styles” among individuals,

- how can be the teacher clarify the "cognitive profile” of the learner in the complex context
of the classroom 7

- what links are there between the “cognitive profile” cf a learner and his attitudes in
learning Mathematics ?

- how can the didactic sequences be buiit, bearing in mind the double constraint of the teaching
style linked to the “cognitive profile” of the teacher-subject and each learning style linked to the
*cognitive profile” of rhe each learner-subject ?

- how can the teacher help the iearner capitalise on this knowledge of his own “personality” in
the learning process ?

The communication will present the pragmatic answers provided by the group whose teaching
pratice involves differenciation, and their assessment methods. A thirty-page detailed article will
be to anybody interested.




A DEVELOPMENTAL STUDY OF TIME AS INTEGRATION OF DISTANCE AND VELOCITY

ANTONIO ROAZZI*!
ANTONIO R. R. SANTOS*
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*MESTRADO EM PSICOLOGIA,
UNIVERSIDADE FEDERAL DE PERNAMBUCO, RECIFE, BRAZIL

ssFACULDADE DE EDUCACAO,
UNIVERSIDADE FEDERAL DO CEARA, FORTALEZA, BRAZIL

This study follows on from Wilkening's (1981) study and aims to verify whether children and adults
arc able to judge time using information about speed and distance. In the experimental task the value of
two dimensions, speed and distance, were given and subjects had to infer the value of a third dimension,
time. The sample consisted of 45 subjects from middle class backgrounds: 15 university students, 15 10-
year-olds and 15 5-year-olds. All subjects were tested under two conditions: manual and verbal. The E
explained that three animals (a turtle, a rooster or hen, and a cat) liked to play near a dog's house, but they
were afraid of the dog. When the dog began to bark, they ran away as quickly as they could across a
bridge located in front of the house and they stopped immediately when the dog became silent. In the
manual condition the subject was shown a button placed in front of him or her, and it was explained that
upon pressing the button the dog would begin to bark and would cease barking only when the subject
pressed the button again. Each animal was then placed at a pre-determined point and the subject was
asked to indicate how long the dog would bark before the animal hud moved a certain distance (70 cm,
140 cm, or 210 cm). The subject was asked to press the button to make the dog begin barking and to
press again when the subject thought the dog had barked long enough for the animal to reach that point.
When a verbal response was requested, the subject instead of pressing a button when the animal was
deemed to have reached the given point, told the researcher to stop the barking. Results indicate that
integration rules depend upon age. The integration concept was found only for adults and 10-year-old
children. While the two older age groups obeyed the normative division rule, the 5-year-oids shifted to a
simpler subtraction ruic. These results confirm Wilkening's main findings with a German sample
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UNDERSTANDING SHAPES AND SPACE FROM REFLECTION AND ROTATION

By: Ssads, S, M, L. and Edwards, C. W.
University of Soutkampton - Faculty of Education - England

Piaget' described geometry mainly as a science of space. He made extensive studies of children’s
logical thinking and of geometrical concepts with implications for the teaching geometry. He
described the process of children thinking and a method for investigation of an individual is
thinking and understanding. Van Hiele's® theory uses a geometric model as a methodology that
aliows students to move through a sequence of levels of geometric development. The significant
contribution of the Van Hiele and Piaget studies to research, has been in the dynamic
development of teaching-learning methodologies. According to Piaget’ the manipulation of
concrete objects forms the basis of people’s knowledge. The activities that involve manipulative
material are spontaneous and are essemtial for children to attain experience in spatial perception.
Fuys®et al. reported that manipulative materials are essential aids in learning geometry, specially
for students at lower levels in Van Hiele hierarchy.

This study provides a description of children’s reasoning in reflections and rotations in terms of
their answers to a test in this subject’ .

27 English children, aged 12 and 13, at 8 year of their schooling were tested. 13 of them did not
use concrete material to answer the test, and 14 children used concretc material to find the images
of the objects given in the test. The task involved drawing the reflection and rotation of given
objects, children were asked to find centres of rotation and they also decided if a point plotred is
or is not the centre of rotation.

The results of the test, indicate that pupils found it easier to answer the questions about rotation
using the concrete material than without it. Results for the questions on reflection were less clear
cut.. The detailed results and statistics tests will be shown in the conference.

The preparation of this paper was supportod by grasts sesber 201535/93-9 from the Brazilisn Ministry
of Education CNPq. We would like 10 tank Ros Hyde who is seacher of Lhe children tesied We thank ©
all of ieachers and institwtions that made possibic the development of this work.
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MATHEMATICS LEARNING AS SITUATED LEARNING'

Madalena Santos
Centro de Investigacio em Educagio, Universidade de Lisboa

The school is a size of cultural transmission where, teachers and students' are involved in everyday
activities, in the sense that: (a) they have routine characier, (b) they rouse expectations generated over
times about its shape and sentings, and (c) their living is in setiings designed for those activities and
organized by them (Lave, 1988).

We believe that leaming is situaied in practice as "an integral part of generative social practice in the
lived-in world” (Lave, 1991, p. 35). This parspective is consonant with Vygotsky approach that
"does not separate individuals from the sociocuitural setting in which they function™ (Wertsch, 1985,
p. 16).

We (a) lock at mathematics as "an act of giving sense which is socially transmited and constructed”
(Schoenfeld, 1992, p.339); and (b) talk about mathematics learning as "learning to think
mathematically”. We also think of mathematics as "a kind of action whose meaning is not determined
by the fact that it is math, but by its place in a sociocultural system of activity — be schooling, the
household, or an occupation” (Lave, 1992, p. 84).

It is in this context that we are trying to understand school mathematical leaming, observing and
analyzing a small group of 8th grade Portuguese students in their mathematics classroom. We
considered the unit of analysis proposed by Lave (1988) as “(...) the activity of persons-acting in
setting” (p. 177).

We will present and discuss some preliminary results such as: (1) pupils' individual goals (to be
ahead, to understand what I am doing, to do what the teacher asked to do, to be accepted by the more
powerful one) show how pupils are participating in different activity settings; (2) elements that help
pupils to give meaning to the activity are identified (the existence of a partner who is a good listener,
materials they choose to use, teacher questions or sugpestions).
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Practical knowledge vs. mathematical knowledge :
an example from the functions
Marianna Tzekaki
School of Education, Aristotle University of Thessaloniki, GREECE

In this presentation, we attempt to study the process by which the
knowledge that students use to face familiar problems is transformed into
formal mathematical knowledge. This process, so called
"institutionalization”, is examined in real classroom conditions with a
sample of 13 years old students.

At the first stage of the study we gave the students a series of specially
chosen familiar problems in order to introduce them to the concept of
function. After several successful sessions the students were able to make
the necessary generalization and the “institutionalization” of the concepts
involved. Then, we gave them several mathematical problems related to
the previous ones. By comparing the performance of the sample on familiar
problems with their performance on mathematical problems we found that
the subjects of the study faced difficulties in applying the generalizations of
the solutions used previously.

The conclusion of the study deals with the ways that the students of this age
group use to relate their practical knowledge with the formal one and the

concepts they entertain in relation to the different status of these two kinds
of knowledge.
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PROBLEM SOLVING: PERFORMANCES OF PRESERVICE TEACHERS

Is Vale
Escola Superior de Educagio de Viana do Castelo, Portugal

It is generally accepted that teachers' knowledges, belicfs and attitudes tlowards
mathematics and mathematical problem solving, seem to play a determinant role in the actions they
undertake in the classroom and their interactions with the students. So, rescarch efforts must be
directed to understand what teachers know, believe and feel about mathematical problem solving
and its weaching (Brown,1993; Pajares,1992). Otherwise, my personal experience tells me that
mathematical problem solving is one of the most neglected subjects in our schools.

Based on this same assumption and as a mathematics teacher educator, the underlying idea
of this rescarch has to do with the need to get a better undderstanding of preservice teacher’s
knowledge, attitudes, performances and to reflect on the problem solving programme | propose to
my students. So, this research involved a class of the 4th year of the Maths and Science course in
a Schoot of Higher Education, for almost five months. 1 studied in this class, the performances
and the reactions of these future young teachers when they were involved in problem solving
tasks. In particular, 1 sought to know more about the proposed tasks, as well as to identify their
main difficulties and attitudes. The following are the fundamental questions: (1) What pattems are
revealed by the participants in the written problem solving tasks?; (2) What difficulties are revealed
by the participants in the written problem solving tasks; (3) How could we characierizc the
attitudes of the participants while they carry out their tasks? (4) How could we characterize the
performance of these future tcachers in this activity, after formal instruction in mathematical
problem solving?

Taking into account the nature of the overall purpose of this rescarch, | decided to focus on
a qualitative methodology, which could provide the grounds for an understanding of the
performance in problem solving of a class of young teachers and their relationship with other
factors. In the process of data collection some data sources were used: four problems, four
performance inventorics, one report and one attitude task. The data analysis was holistic,
descriptive and interpretative. Repeated analyses of all data collected and the rescarch questions
were done W cnable me to come up with categories. These categories were used to organze all
data coliected.

The results showed there was a middle grade of performance, 1n particular in two of the
problems. The attitudes of the participants, in gencral, it was positive. They enjoved the proposed
tasks, which they found interesting and appropriate for thetr future students. The patterns used
were those | expecied for the kind of problems proposed.  The difficulties were mainly i the
comprehension of the probletn, gencralization and laking decisions. They were not reflectives
ones. They gave little signiftcance to the phases of the Polya model, were organized in the wnitten
work and they found the strategies useful.




A THEORY OF MEASURE
A. L Weinzweig
Office of Mathematics and Computer Science Education, Dept. MSCSE
University of Illinois Chicago
In seeking to determine the obstacles to the understanding of numbers and the operations on numbers,
it was recognized that the numbers of arithmetic were the numerical cornponents of quantities which
arise in measurement situations. An analysis of the context of a variety of measurement situations
resulted in a number of fundamental propertics common to all. A measurement situation consists of

a domain, 771 of objects and a measure, a property common to all the objects. There is a procedure for

determining when two objects have the same measure. This defines the Measure operationally and

defincs an equivalence relation in the domain and separates the domain into equivalence or measure
classes. These measure classes are objects in the measure system |72,
There are procedures for dissecting an object into subobjects and consolidating objects into another
object. (For Cuisenaire Rods, two rods have the same length if one fits exactly on top of the other. A
two car train equivalent to a rod is a dissection of that rod and a rod equivalent to a two car train is a
consolidation of that rod. The measure classes are designated by color  Dissection and consolidation
are consistent with the equivalence relation and induce an operation on the measure classes which is
addition. The measure system with this addition is a semi-group.
Repeated dissection of the subjects of an object produces a ser of subobjects, a partition of the object.
Of special importance are U-partitions where all the subobjects in the partition are equivalent to an
object U, the unit. The subsct of U-partitionable objects 772 is a sub-mcasurement situation of 772,
Partitions, as sets are objects in the measurcmeni situation of sets, S where the measure is numerosity.
This induces a mapping from 17721 to IS). Counting defines a mapping from S to 77 the set of numbers,
where numbers are defined as sequences of numerlogs. (The sequence <one, two, three, four, five> is
the number 5.) Equivalent sets have the same count so that the mapping induces a mapping from the
measure system of sets, | to numbers 72 Composing this map with the map from 172} to k3 yields
a map from 1772, | to 77 which assigns to an object in 772 a quantity with unit U.
The addition of two numbers a and b in N is defined by first finding two objects in M with quantities
aU and bU and adding their measures. The sum of these measures is given as a quantity with unit U
by cU and we definca +b=c.
Changing units from U to V where U is V-pantitionable leads to muitiptication and fractions.

Extending quantitics to 772from 772 leads irrational numbers, rounding, accuracy and approximation,
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EFFECTS OF TRAINING-IN-SERVICE ON TEACHERS' REPRESENTATIONS ABOUT
TEACHING AND LEARNING INTEGERS

M2 Cecilia Aguiar
Universidade Federal de Pernambuco
Rute Elizabete Borba
Universidade Federal Rural de Pernambuco

The present study investigated 25 high school teachers’ conceptions about relative numbers
and also the effects of analyzing scssions of didactic activities presented during a period of training-in-
service on these teachers' representations about teaching in this numerical field, in particular, the
multiplication operation. The answers given in different moments of the period of training were
analyzed. This training consisted of the presentation and analysis of didactic situations that aim to
justify that when multiplying integers the product is positive when the two factors are negative.
During this process these activines were also analyzed by the svstemic perspective of Mathematics
Education (Henry, 1991), in particular by the aspects related to the didactic transposition (Chevallard,
1985). These activitics, designed based on several studies (Freudenthal, 1973; Glacser, 1985 and
Kobayashi, 1988), explored diffcrent situations: measuring volume during a certain period of time
and registration of profits and losses during a certain peried of time, inductive extrapolation on
numbers and linear function graphs and geometrical representation of algebraic expression. The
main obstacle indicated by teachers on teaching integers refers to their own comprehension of the
naturc of this concept, and they consider the use of the sign rule the greatest difficulty presenied by
students. In the beginning of the training period, 20 teachers said that they used a rule, or showed a
lack of comprehension, 1o justify why (<) X (-) = (+). Only five said they used 2 mnemonic artifice or
some graphical represntation. Apparently occurred a change of perspective, during the training
process, from a tcaching using mere memorization of rules to another one with comprehension and
utilization of significant situations by the students.
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MATHEMATICAL PROJECTS IN THE EDUCATIONAL SYSTEM IN ISRAEL -
DEVELOPMENT, CHARACTERISTICS AND EVALUATION
Miriam Amit - Ministry of Education, Israel

The educational system in lsraei appears to be centralized. from the point of view of resources and
curmiculumn. These are determined by the Ministry of Education with the cooperation of academic and
field experts. In spite of this centralization, there is a large amount of flexibility in the application of
the curriculum, in the choice of instruction methodology and, specifically, in the evaluation methods.
In all stages of elementary, middle and secondary school, assessment is done by teachers, without
systematic external intervention. Only at the end of secondary school are there external matriculation
exams. The teachers are involved in their preparation and grading; the final high school grade is the
average of the external examination and teacher assessment of class work.

The fact that there is no required external assessment allows diversity in assessment methods during
different stages of the educational process. One of the innovative tools being applied more and more
are mathematics projects used for enrichment and deepening of the educational process, and for
assessment. These projects are carried out in all stages of the learning process, although they differ in
their characteristics, development and assessment method, according to age and scope of leamning. "

In elementary school, the mathematics project is generally a review of a variety of mathematics

subjects that were previously learned. Emphasis is placed on interdisciplinasity: students may plan a

neighborhood based on geographic charactenistics, by applying mathematical tools, or carry out small
rescarch projects in the natural sciences using mathematical models. Advising and assessment is
carried out by the school teachers,

In high school the projects are mainly extra-curricular. The students must cope with subjects that are
not included in the school curriculum and that require dealing with new mathematical knowledge or
with a combination of mathematics and other disciplines. Because of the need for specific expertise,
guidance and assessment are done by the teacher in cooperation with academic faculty.

The use of mathematics projects in the leaming process has extremely positive implications for
motivation and interest shown by a wide cross-section of mathematics students. In addition, the
special criteria according to which the projects are assessed have implications on the evaluation
methods used in mathematics and other subjects as well.

In the poster we will present the development, control and assessment methods used in the projects.

In addition, we will present examples of projects carried out in Isracl.




GRADE DISTRIBUTION AND STABILITY OF ATTITUDES TOWARD MATHEMATICS
MARCIA REGINA F. DE BRITO STATE UNIVERSITY OF CAMPINAS

The present paper is part of a wider research concemning the attitudes toward Mathematics
realized in four schools of the region of Campinas. The data was obtained from the answers of 2007
students to a questionnaire and to an Attitude Inventory (Aiken, 1979). The Attitud= Inventory was
previously traduced and adapted to Brazilian children and the statistic analysis results showed a
satisfactory Reliability Level (0.96). As the purpose was to improve the statistical treatment, in this
paper the obtained data of 1944 subjects was used and distributed according the following table:

DISTRIBUTION BY GRADE
Value Label Frequency Percent Valid Percent Cum. Percent
Grade 34 541 278 278 278
Grade 5-6 465 24.0 240 518
Grade 7-8 302 15.5 15.5 67.3
Grade 9-11 635 327 327 100.0
Total 1944 100.0 100.0

There are only few school situation studies realized in Brazil regarding
attitudes related to Mathematics and within these, no one refers to Mathematics in itself, but only
toward component aspects of Mathematics teaching, i. e. attitudes related to the solution of
problems (Lindgren and others, 1964) and some monographs related to the teacher, the teaching
method, or both. The international literature presents many studies regarding attitudes related to
Mathematics, particularly in the U.S.A., and periodical revisions of these studies are being done
(Aiken, 1970), besides the studies involving comparatively various countries (Walberg, Harnish and
Tsai, 1986). Conceming the relation between the series and the attitudes, Haladyna and Thomas
(1977), having as subjects 2800 students of first level, verified that the attitudes of these students
related to Mathematics change almost imperceptibly in the initial series (1. to 6. series) but decline
abruptly in Grades 5, 6 and 8. Other authors found decline in preference for Mathematics from
Grade 5 on. Martin et colab. (1991), using different measuring instruments, observed the
development of negative feelings related to Mathematics as the students progress in school, the
fourth and the seventh series being the ones where students demonstrate the most negative attitudes.

The analysis of data (Duncan Procedure) denotes pair of groups significantly different at the
.050 level. The results of the present paper permits us to conchude, at least for this sample, that
attitudes toward Mathematics do not modify themselves in a continuous and systematic manner as
the student progresses in the series. In this study, attitudes are more negative in students of Grade 7
and 8 and this can be attributed to the exigencies of abstraction towards these students, who, up to
row, were working much more with arithmetical concepts and, from Grade S on, are solicited to
work with algebraic contents. Besides, we have to consider the existing differences between the first
four series and the four last ones, in relation to the teaching method, the teacher's formation, the
quantity of subjects, etc.
REFERENCES: Aiken, L. R. (1970) - Artitudes toward Mathematics, Review of Educational
Research, Vol. 49, n. 4, pp. 551-596.
Aiken, L. R. (1979). Attitudes toward Mathematics and Science in Iranian Middle Schools, Scheol
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DEVELOPMENT OF EQUALITY REPRESENTATION IN SIX TO THIRTEEN
YEAR-OLD CHILDREN

Anns Pauis de Avelar Brito Lima
Universidade Federal de Pemambuco
Graduste Program in Cognitive Psychology

The passage from arithmetic to algehra has been a topic of interest in the field of
psychology of mathematics education. Many researchers have tried to clarify the most
important epistemological obstacles in this passage (e.g., Filloy and Rojano, 1984), as well
as proposing ways to face them Among the above mentioned obstacles, one of the most
important in the conceptual fidd (Vergnaud, 1991) of algebra is the representational
transposition from natural language (in which word problems are expressed) to algebraic-
formal representation (Laborde, 1982; Garangon, Kieran e Boileau, 1990; Capponi, 1990,
Da Rocha Falcio, 1992). In a previous study led by Schiiemann, Brito Lima ¢ Lins Lessa
(1994), with 6 to 1] year-old children, it was described some spontaneous representationa!
procedures concerning the passage from problems in natural language to the algebraic
equation, this study showed, in a non-systematic way, the longnudmal development of
children’s algebraic represmtauons Bodanskii (1990), on the same issue, proposes some
pedagogical initiatives aiming to develop some representational skills (e.g., detection of
basic relations expressed in the problem) in children as young as 6 years-old.

This study shares this interest in algebraic representation, and aimed to contribute to
the comprehension of its development through the analysis of 72 children, with ages varying
from 6 to 13 years (six groups of 12 subjects each). All children were invited to solve 12
algebraic problems, presented as short stories during an unique session conducted as a
clinical interview; each probiem was presented in two versions: stressing transformation of 2
quantity into another, or stressing the equality between two quantitics.

Results immediately available show that written representation for algebraic
problems does not appear spontaneously, being only detected in age-levels comresponding to
the moment of introduction to algebra at school (6* grade in Brazilian school system); at
this age-level, certain subjects can for the first time represent a problem in terms of an
equation. It was also detected that problems mentioning Aalf were consistently more difficult
10 represent than those mentioning dowble and triple. Problems with unknowns in both sides
of the equation were the most difficult for the children to solve; 10-11 year-old subjects (5™
grade) have only used arithmetic trial-and-etror procedures, substituting tentatively
unknowns by numbers. This problem-solving procedure, by the way, was more and more
used with the diminution of school level, the youngest subjects (1 grade) frequently
proposed one of the values appearing in the problem in order to fill in the unknown. As for
the variable version of the problem (equality versus transformation), problems stressing the
equality between quamtities seem in general terms to facilitate the representation and
manipulat:on of resolution when it is necessary to operate over the equation in order o0
reach the solution. Other aspects, concemning a more clinical analysis of protocols
production, combined with a statistical multidimensional analysis, will certainly complete and
clarify the aspects already available




NEW APPROACHES TO NEUROSCIENTIFIC RESEARCH AND THEIR IMPLICATIONS
FOR MATHEMATICS EDUCATION

Dawn L. Brown Grayson H. Wheatley
Tallahassee Community College Florida State University

The prominent place of symbol manipulation, oral and writter communication in schools
may have stemmed from the early studies of brain activity; especially by Broca and Wernicke which
focused on language as a mechanism of thinking. The belief that leaming should consist of repeated
practice can be derived from Hebb’s (1949) work on Jong-term potentiation.

Prior 1o the late 1970"s research into higher cortical function was limited because effective,
nonevasive techniques were unavailable. Recently, magnetic resonance imaging (MRIJ). positron
emission tomography (PET) and single-photon emission computerized tomography (SPECT) have
made it possible to study cognitive functioning under more normal conditions. Recent research on
the role of nitric oxide in brain functioning suggests that cells in close proximity communicate much
more rapidly that synaptic theory would predict. Such results help us understand how the brain uses
images in such powerful ways,

As mentioned previously the areas of the brain which are specialized for the understanding
and production of language are small and relatively discrete. In contrast, the areas devoted to the
processing of visual information are relatively large and spread over wide areas of the cortex. This
fact has been interpreted to mean that visual processing is actually much more important that the
processing of speech (Kosslyn, 1994). Certainly, our research and that of other mathematics
educators (Brown & Wheatley, in press) suggests that visual imagery is important in mathematics
fearning. For this reason we have ciosen to focus on research concerning spatial reasoning and
visual imagery.

Recent research on cortical functioning suggests that planning mathematics lessons which
emphasize sequential processing may not fit well with how our brains work. The empbhasis on
practice in mathematics learning which seemed necessary using the Hebb model, comes into serious
question. Imagery may play a2 much more importarnt role in mathematical activity than previously
thought. This research suggests that in mathematics education we can gain much by drawing on new
models of brain functioning.
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Situated Generalization

David Carraher, Universidade Federal de Pernambuco, Brazil
Ricardo Nemirovsky, TERC, USA &
Analicia Schliemann, Tufts University, USA
Leaming psychologists have traditionally discussed how previously acquired knowledge is used in
new situations in the context of transfer. Transfer entails the extension of knowledge to conditions
broader than those under which it was initially acquired and, as such is also closely associated with the

process of generalization, i.c., the extent to which the individual can articulate about similarities across
settings or formulate general stasements about hypothesized regularitics.

Resuits from decades of research on transfer within leboratories have been notoriously frustrating:
Studies documenting transfer are quitc rare; studies documenting failure to transfer abound. More
recently, ““situated leamning™ approaches have confronted theoretical and methodological suppositions of
transfer studies arguing that leaming and thinking take place in specific contexts that, far from being
incidentai, arc essential to what is learned and thought.  As much as these developments represent
progress, conceptions of situated leaming have not provided us with an account of how ideas are
generalized beyond the idiosyncrasies of their originating contexts, or how, despite specific differences
between two situations, one can identify essential similarities between them or try to approach both in the
same fashion. They even appear to contradict the very idea of generalization, for it is tempting to believe
that the more learning is bound to particular situations, the less one will be able to recognize similarities
and common pattemns. .

The aim of this paper is to show that the ways in which students learn to deal with new specific
situations involves remarkable use of previous knowledge as analogies, categorizations, comparisons
across situations, search for correspondences between different settings, as well as gencralizations, and
that to recognize them as such one nieeds to set aside stereotyped/formal views about what transfer and use
of previous knowledge are.

Our view is that if we try to analyze transfer of knowledge by pre-determining the common
features or structures between a starting and & target situation, expecting that learners will focus upon these
while learning about the first tazk and that, latter, they will apply it to solve the second task, we are bound
to fall in finding many occasions where transfer does occur. If, however, we look at the 12amer own
ways for making sense of new situations we may find that previous knowledge is constantly used.

We illustrate our views with two cases of children trying to make sense of graphs. Both children
spent four or five one hour sessions working with an interviewer about the interpretation of different
symbolic systems for representing "trips”. By examining instances from their video-taped interviews, we
can obtain glimpses of how previous knowledge and understanding are summoned to the problems at
hand. Each child was introduced to & learning cavironment in which real-time graphs of distance over time
were automatically produced from their own movements or from the movements of a train moved under
their control, by means of a motion detector linked 0 a computer. The situation is one where eveats in the
room can be related to the shape of the h on the screen. Our analysis focus not only upon use of
knowledge developed before the series of interviews started, but also at how the learners try to relate the
different events they are trying to cope with during the interview.

Analysis of interview videos revealed, in both cases, constant use of previous knowledge to make

rither 3 Ayaiimsc 4 open cacd why of lving peevions oreromoes o0 new ones. T s procest, ot
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oaly the understanding of the new situation was enriched by previous knowledge, but also previous ideas

were iansformed, expanded, and enriched by new experiences. We believe that, through such type of

analysis, it is possible to reconcile the apparent contradiction between situated learning and the
development of generalizations.




In what they believe?

Carolina Carvalho

Departamento de Educagio
Faculdade de Ciéncias da Universidade de Lisboa
R. Ernesto de Vasconcelos - Bloco C 1 - 3° Piso
1700 Lisboa - Portugal

Key words: Beliefs, beginning teacher.

Abstract: The majority of authors agree on the importance of the teacher as a
key figure in the classroom. In a mathematics’ classroom this is particuiarly true
because the nature of mathematical knowledge is itself problematic (Ponte, 1994)
and it’s urgent, according to the NCTM (1989), to begin to learn to valuate
mathematics and to be confident about own’s abilities.

The growing importance of the teacher as a central figure is obvious on the
quantity of research done. Specially, since the work of Thompson (1982) and
Cooney (1985) standing on the assumption that what the teacher does in the
classroom reflecis his beliefs. Many of the studies are about pre or in service
teachers. In our work, we are in interested in the beliefs of the beginning teacher.

In the present poster we ldok at some beliefs about mathematics, mathematics
students and teaching mathematics. The subjects (N=53) were invited to write an
imaginary dialogue between three characters: mathematics, a mathematic’s
teacher and a mathematic’s student. The presentation displays some of the results
obtained in this study.
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VALUE AND PRICE ESTIMATION BASED ON SOCIO-CULTURAL CUES IN
ADULTS OF DIFFERENT SCHOOL. LEVELS

Maria Angeia de Mello Cassundé
Universidade Federal de Pemambuco
Graduate Program in Cognitive Psychology

Brazilian people has been submitted to a very unstable economical system, were high
rates of inflation and successive changes in currency make ordinary people loose reference in
the evaluation of what is cheap or expensive. Because of this specific difficulty, we can
observe many cultural procedures of price estimation based on alternative value references,
in order to get rid of the senseless monetary reference: in Recife, for example, we have
observed in private {familiar) contexts some articles having their prices established in units
of bottles of beer. Nowadays, with the last Brazilian currency, the real, prices are much
more stable, but the cultural difTiculty in price estimation and evaluation is always present.

Three aspects seems to be relevant in the analysis of this cultural activity of price
estimation in a context of a economy traditionaily unstable: 1. Comprehension of the
decimal system upon which most currencies are built up, as well as some mathematical
operations involving basic arithmetic and proportionality, 2.Level of socio-cultural
familiarity with this kind of activity (establishment of price/value relationship), as shown by
Saxe (1993, 1991) in this study of Brazilian candy scllers at Recife; 3. Cultural system of
price hierarchy (how many bicycles does a Volkswagen worth?),

This study aitned to describe more accurately the usual strategies involving price
estimation, comparison and proposition in relation with mathematical structures involved
(different levels of difficulty in the context of the multiplicative structures), level of socio-
cultural familiarity with price system (people professionally involved in cotnmercial activities
versus other groups) and school level (very clementary level versus high-school or
equivalent).

Results interestingly show no differences among the groups conceming problems
involving the most elementary problems of proportionality; all groups made frequent use of
auxiliary cultural references in price estimation, oflicial Brazilian ininimum wage (R$ 70,00
= US$ 61,60 by the time of data collecting) appearing as the most frequent unit of reference
for comparisons and decisions in terms of the price [cheap or expensive] of proposed
products. More detailed clinical analyses were initiated in order to clarify certain differences
between groups inr terms of problem-solving procedures




Playing with multiples and arithmetic patterns in a domino game
Modnica F. B. Correia & Luciano Meira

Graduate Program in Cognitive Psychology
Universidade Federal de Pernambuco

Many studies about the relations between culture and cognition have focused on economic
activities as an important setting for mathematical leaming (Nunes, Schliemann & Carraher,
1993), while few have investigated recreation practices as a source of mathematical
knowledge (Saxe & Bermudez, 1992). The research reported in this poster aims at studying
the practice of game playing as an unique setting for learning mathemnatics. A community of
poorly schooled adults living in an agricultural area of inner Brazil, developed over many years
an specially interesting variation of the traditional domino. The goal of their domino game is
to produce arangements of the pieces such that the sum of values in all ends (four, instead of
the usual two ends) is a multiple of five (see diagram below). Several rounds of this game is
played until one of four contenders reach 200 points.

Step 1

| B HH B3R BHRY

3+1+5+4=13 = no points 13-5=%; $+2=10 = 10 points

Several strategies are employed by the players, who need (1) make additions and
subtractions for each piece they put in (see step 2 above), (2) think about the pieces an
adversary might play; and (3) plan in advance which pieces can give the highest multiples of
five.

Ethnographic observations of the games played in natural situations, problem solving
sessions with arranged games (c.g., with bases other than five), and paper and pencil tasks
were used to investigate (1) the players' understanding of multiples and of number sequences
with a constant rate, and (2) the strategies developed with increasing expertise in the game. A
preliminary analysis of this data suggests the uniqueness of this situation for the analysis of the
.acquisition of a mathematical concept in a recreation setting outside school. The poster will
characterize the strategies used and their development with practice, showing at the same time
that transfer of mathematical abilities developed in the game suffer important modifications
when required in paper and pencil tasks. Finally, we plan to show how games which are
familiar to schooled urban children may be used to enhance their understanding of specific
mathematical concepts
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REPRESENTATION OF THE LINK BETWEEN
FREQUENCY AND PROBABILITY ON TEENAGERS
Comparison between french and brazilian pupils

AUTHORS : Cileda COUTINHO, P.U.C. Sad Paulo (Brazil) :
Michel HENRY, Université de Franche-Comté {(France) ;
Tania CAMPQS, P.U.C. Sa3 Paulo (Brazil).

PIAGET, INHELDER {11, then FISCHBEIN (2] studied the impact of the ideas of hazard
and probability on child and teenager behaviours. MAURY [3] and BORDIER {4] have developped
their works on the learning of probability in scholastic context, linked with spontaneous conceptions
that could be ohserved.

Particulary in France, the teaching of probabilities goes more and more towards an
experimental approach of stabilisation phenomenons of the observed frequencies [5].

Such frequentist introduction of that probability concept to teenagers conflicts with some
preconceived conceptions that must be focused on, in order to proposc suited didactical
engineerings.

We carried out a questionnaire [6] on the link between frequency and probability. That
survey took place in France on pupils of 16 to 18 and in Brazil on university first year students. It
resulted that the same wrong ideas were expressed by both french and brazilian teenagers.

As a consequence, no significant difference on that point couid be explained by different
elements such as language, culture, or the way of life. On the contrary, we observed the same
epistemological obstacles that could be studied more precisely in the future.

The poster presents two questions and exemplary replies extracted from the questionnaire
whitch complete version will be available. Statiatics diagrams will illustrate them.

[1] Piaget J., Inhelder B.(1951) la genése de I'idée de hasard chez l'enfant, PUF, Paris,

(2] Fischbein, E. (1991) Factors affecting probabilistic judgements in children and adolescents,
Educational Studies in mathematics 22, 52.3-549.

{3} Maury S. (1986) Contribution & I'étude didactique de quelques notions de probabhilité et de
combinataire & travers lardsolution de problémes, Thése de Doctorat d'Ftat, Université des Sciences
et des Techniques du Languedoc, Montpellier.

41 Hbrdier J. (1991) Un modeéle didactique, utilisant la simulation sur ordinateur pour
lenseignement de la probabilité, Thise. Université de Paris VIL.

[S] Henry M. (1994) I'enseignement des probabilités, perspectives historigues, épistémnlngiques et
didactiques, ed. IREM de Besangon, Université de Franche Comté (France).

{6} Coutinho C. (1994) Introdugin ao conceito de probabilidade por uma visin frequentista,
Mestrado. PUC Sad Pauto.
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A SURVEY STUDY OF BRAZILIAN STUDENTS' DIFFICULTIES IN
THE LEARNING OF ELEMENTARY ALGEBRA

Jorge Tarcisio da Rocha Falcio
Graduate Program in Cognitive Psychology
liniversidade Federal de Pernambuco {Brazil)

The introduction to algebra represents for most students a moment of
difficulty, since the passage from arithmetic to this mew conceptual field is not a
continuous, linear process. In fact, as many researchers have shown, there is an
epistemological gap between these domains (Cortes, Vergnaud and Kavafian, 1990;
Filloy and Rojano, 1984), whose consideration helps to explain some cognitive
obstacles in the origin of several systematic mistakes. These obstacles are present
in two main aspects of algebraic activity: the proposition of an equation (passage
from natural language or empirical data to an algebraic notation} and the
resolution of an equation. As shown by Laborde {1982) and Da Rocha Falcao (1992),
the first of these two aspecis seems to be specially important to take into account
in the proposition of a didactic sequence in elementary algebra.

This study aimed to add data from a Brazilian north-eastern sample of 13 to
17 year-old students to the set of available data from other countries. A total of 386
protocols of students from the private school system of three north-castern states
of the Brazilian federation (Paraiba, Pernambucc and Alagoas) was collected with
the help of their respective mathematics teachers, in the context of the usual
collective ciass activity. The students were asked to solve 20 questions,
corresponding to ten algebraic structures, each structure being presented as a
word problem and an equation in the context of the same protocol.

Results clearly show a greater incidence of difficulties in word problems,
where it was first necessary to propose an equation; in this case, the most
frequent mistake was exactly due to the proposition of an incorrect equation to the
problem: in the case of the equations, the most frequent mistake was caused by the
incorrect utilisation of algebraic algorithms of simplification, specially those
related to numerical coefficients and systems of equations. In addition, a great
number of mistakes due to arithmetic difficulties, alone and combined to
specifically algebraic difficulties, was detected. The analysis of mistakes in both
groups of questions (word problems and equations) suggests, in global terms, an
extremely low comprehension of algebra as a representational and solving tool.
These data, crossed with observation of class activity in algebra, suggest a very
poor pedagoglcal activity in the introduction to elementary algebra, with a
preoccupying failure concerning the construction of meaning and a clear stress
on syntactic rules disconnected from their conceptual principies.
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THE MYTHIC QUEST OF THE HERO: A SEMIOTIC
ANALYSIS OF MATHEMATICAL PROOF

Paul Ernest, University of Exster, UK

A social constructivist account of proof as a means of persuading the mathematical community
is now widely accepted. But for those who accept that the traditional absolutist role of logic
has been dethroned, a question remains. What does the reader of mathematical proof
experience that convinces him or her to accept the theorem, instead of flawless logic? What
psychological processes are involved in the reader experiencing the text? This paper offers a
tentative social constructivist and semiotic-based theory of proof, which is also intended to
describe the way some learners of mathematics interact with texts and tasks.

Every sign, fragment of text, or task in mathematics has two intertwined aspects: that of
signifier and signified. My claim is that the 1calm of signifieds is an imaginary, textually-
defined realm, which via processes of intuition ultimately forms the platonic universes that
mathematicians® thoughts inhabit. Pant of any mathematics learner’s or mathematician’s role in
interpreting a mathematical text is to 1magme a miniature math world signified by the text. But
in reading a proof or carrying out a classroom task, the reader is following (or accomplishing)
the transformation of that text. In doing this, according to Rotman’s (1993) analysis the
mathematician is carrying out imagined text based actions. In reading a proof, these involve
imagined actions coupled with transformations of text which have a cyclic pattern. The
beginning is the announcement of the endpoint, the theorem to be proved. This is followed by
an imagined voyage through text and underlying math-world, until the endpoint is reached. It
is thus a cyclic pattern. According 1o Rotman (1993) the mathematician alternates his identity
or subjectivity between that of the mathematician and his agent: the imagined skeletal
representation of self - like the moving fingertip on a map retracing a joumney. This
representation of self - like the turtle in Logo - traces out a mythic journey of adventure, just
as does the universal hero in Campbell’s (1956) mythic cycle.

In the paper I explore this analogy, and also that between algorithm and proof, and
argue that the latter pair have more in common than is often acknowledged. Thus involvement
in the procedures of school mathematics provides an apprenticeship for the future
mathematician, in which she learns to project her seif into the script, programme, or imagined
math-world of the mathematical task. However my conjecture is that the future mathematician
learns (1) to obey the imperatives in mathematical text, (2) to write such mathematical texts,
and (3) to jump ot of the script (i.e. change role from subjected agent to mathematician) and
critique it. However many others learn only to be a regulated subject (i.e.1 above), carrying
" out on paper and in mind what it needs only a machine to do. '
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MATHEMATICS IN THE "AULA-TALLER": IS THERE A BRIDGE
CONNECTING THE MATHEMATICS INSIDE AND OUTSIDE THE
CLASSROOM?

Inés M* Gémez-Chacén
Instituto de Estudios Pedagdégicos Somosaguas. Spain.

The purpose of this study is to develop different alternatives in teaching and
leaming mathematicas, which take into account the experiences that the students have in
their professicnal enviroment or in the schools where they get a professional trairing.

These alternatives would deal with how mathematics are used in their context, in
their professional enviroment, in their lives, and how this can be incorporated in the
academic cummiculum. We belicve that a deeper understanding of the value given by these
students to the mathematics associated to their professional lifes, would help to clarify
dark areas in the study of the failure at school. Culture and Mathematics has followed this
linc of research where the fact that school mathematicas does not take into account the
mathematics learnt outside the school is strongly emphasized.

In this rescarch project we follow young people (15 - 19 years old) who dropped
the Spanish school system and joined an "Aula-Taller” Center. a few years later. This
center is focated in a suburban area of Madrid, and its purpose is technical education.

We try to explore the different approaches to the leamning process in the classrcom
and the one in the cabinetmaking’s workshop. and find out if the way the students
experience this interrelation influence their knowledge and beliefs about mathematics. To
illustrate both approaches we would like to describe their thinking strategies both in the
classroom and in the cabinetmaking’s workshop.

We look for the conections between the affective issues and the cultural influences
in thc mathematical feaming. Both generate in the student certain beliefs, and it would be
interesting to know to link differences in achievement to beliefs that are connected to
cultural influences.
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USING CONCEPT MAPS TO ANALYSE STUDENTS' RELATIONSHIP BETWEEN
QUADRILATERALS.

DEPARTAMENT 1%%% MATEMATICA.
UNIVERSITAT DE VALENCIA.

Concept maps (sec Novak ct al. 1983) have been used to explore students’ understanding in
geometry (Mansfield, 1989) and other mathematical topics (see, ¢.g. Hasemann, 1989) and subijects,
mainly in science. We acknowledge, as other authors, that the task of constructing a cognitive map,
that is, a concept map made by one student, is dificult and needs previous instruction. But this is not
possible if one is involved in a research that explores some topics in a big sample of students. So, it
would be interesting if we could design a tool that allowed us to construct cognitive maps from
students’ answers to a test. With them, one could analyse the relations which a student is capable of
establishing and those which he/she is not, and those which are consequence of misconceptions in
some of the involved concepts.
Most geometrical concepts are crganized in a hierarchical way such as the concepts related to
quadrilaterals. This hierarchy can be evidenced throughout propositions involving two concepts and
a link that connects both concepts. For example, we can consider the following concepts: Rectangle
and Square, and the following links: ‘is', ‘is not' and ‘can be"? and try to write some propositions
that show what kind of relationship can be constructed between them: ‘Square js not a Rectangle' or
‘Square js a Rectangle’ or Rectangle ¢an be Square’ (depending on the definitions used). This
information can be brought into a concept map {cognitive map if the relationship are from studcnts)
so that we can get a spacial representation of the way that one organizes the concepts in mind.
In the poster we will present how we obtain students’ answers about the relationship between
quadrilaterals and some cognitive maps constructed from those answers.
References.
Hasemann, K.(1989) Children's individuality in solving fraction problems, en Proccedings of the
13th PM.E., vol 2, pp. 67-74.
Mansfield, H.; Happs, J. {1989). Using concepts maps to cxplore students’ understanding in
geometry, en Proceedings of the 13 P.M.E., vol 2, pp. 250-257.
Novak, J.D; Gowin D.B. y Johansen. (1983): The Use of the Concept Mapping and Knowledge
Vee Mapping with Junior High Scheol Science Students. Science Edycation. 67 (5). pp. 625-645.

I we write ‘A is B because all instances 1n A are mstances in B. In terms of properties. all properties of B arc
propestics of A.

We wrilr ‘A gan be B’ because there are instances in A, but not all, that are instances in B. Interms of propertses, some
pacticular properties in A are particular propeties n B.

We write ‘A js pof B because there are not instances in A that are instance 1n B. In terms of properties, there are
particular properties in A that are not pariicular properties in B.




ILLUMINATING GAMES PROGRAM FOR
KINDERGARTEN MATHEMATICS

Bat-Sheva Hany and Haim Orbach
Beth Berl Teacher Training College

Center for the Instruction of Mathematics

The Illumination-Games Program includes many games and aids that
have been especially developed for the mathematics curriculum of the
Israeli Ministry of Education.

These iliuminating games encompass and teach the mathematical
basic concepts. Each of these mathematical concepts appears in a wide
range of activities that enables the child to absorb and understand the
concepts at his own rate. Moreover, the great variety of mathematical
aids and the child’s exposure to the educational environment, which our
program creates, strengthens the child's command of the concepts and
causes him to deepen and internalize these concepts.

This program is built on a modular formation. For example, one of its
aids is a set of the “verifier” which has booklets of shapes, patterns,
reading numbers and idemifying groups, ctc. The verifier was described
in detail in PME 18 ,Orbach & llany, 1994). Many of the activities that
are suggested for every game are gradually build so that each child can
make progress according to his ability. The level of difficulty increases
for the different age groups. In the process of playing these games the
children can learn the various mathematical concepts in a flexible and
casy way. Different children can gain the maximum learning benefits
according to their level of development.

In addition, the educational purposes of this program are to tcach
through enjoyable and creative games, to make children cooperate with
cach other and to deveiop proficiency and curiosity. It also gives the
opportunity to investigate mathematical situations. [lFurthermore, it
enhances logical thinking as well as encourages the child's creative
abilities.

In the conference we will present the games and the aids of our
program.

Ref.: Orbach, Iaim, & [lany, Bat-Sheva (1994). Verifier- a self lcarning
method in carly geometry and mathematics, PML 18 Conference, (Vol.
1. pp. 99). University of Lisbon, Porugal.




KNOWLEDGE REPRESENTATION - LINEAR SISTEMS

Estela Kaufman Fainguelernt
Mestrado em Educagio Matematica
Universidade Santa Ursula

This paper presents a study with a statistical treatment of idenuficauon,
interpretation and analysis of the results which appeared in the resolution of linear
systems of two equations and two unknown variables, by 16™ grade students, using
both aigebraic and geometric point-of-views

A projection was made with these results for all the 10™ grade population of the
city of Rio de Janeiro.

This study relates the representation and the acquisition of a concept which s
fundamental in the field of Mahtematical Education

In the process of teaching-learmng, it is essential to have a full consciousness of
the stage in wich the student operates in order 1o render it possible to adapt the
teaching methodology to that stage 3efore teaching each individual it is necessary to
study him/her in order to discover the phase of mental development in whick he/she is,
as well as his’her specific needs

Qur universe was composed of students in the 10™ grade, from 15 1o 16 years
old

The chesen theme for this rescarch was “Resolution of Linear Systems of two
Equations and 1wo Unknown Variables, under both algebraic and geometric point-of-

view" The students should already know this concept at his‘her present school grade

We tried to determine whether this hypothesis was true, and whenever it was
not, which difficulties were present and their possibie causes

We have chosen the above subject because it has several uses. both i the scholl
perfomance and in practical life

During the research, five test were applied, thiee of them with algebraic
resolutions and two with geometrical resolution, using grafical representation These
lests were graded, and a statistical treatment was applied to the results, giving the basis
for analvsing and interpreting the mathematical reasonig of the students, as well as for
diagnosing possible causes that might concur for it
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THE BALANCE SCALE VERSUS PROBLEM-STRUCTURE IN THE
INTRODUCTION TO ELEMENTARY ALGEBRA: A COMPARATIVE STUDY

Moaica Maria Lins Lessa
Umiversidade Federal de Pernambuco
Graduate Program in Cognitive Psychology

The twe-pan balance scale has been increasingly studied as a pedagogical tool in the
introduction to elementary algebra, e.g , Vergnaud & Cortez (1990), Filloy & Rojano (1984),
Kobayashi (1988), Schlieman, Santiago & Brito Lima (1990), Da Rocha Falcio (1995).
Schlieman, Santiago & Brito Lima {op cit), for example, have shown the importance of the
two-pan balance scale as an auxiliary tool for the comprehension of important notiens like
functional equality and unknown, as well as the main principles involved in algebraic
algorithms of equation manipulation Nevertheless, other researchers, like Both (1967), point
out some limitations inherent to the balance-scale metaphor in the introduction to elementary
algebra, other authors, like Bondanskii (1990), put more emphasis in the swruciure of the
algebraic problems presented to the students as a pedagogical tool, in detriment of concrete
metaphors like the balance-scale. This controversy raises an important research question:
which aspects, in the conceprual field {(Vergnaud, 1990) of algebra, are better addressed by
auxiliary tools like the two-pan balance-scale, and by a certain problem-structure emphasizing
the functional equality between two quantitics (to be modeled by an equation). This study tried
to offer some elements to this debate; two experimental conditions were then compared a) a
group of 10-11 year-old elementary students (N= 8) was submitted to a set of problem-
situations involving the balance-scale, b) another set of students, paired with those from the
first set, was submitted to another set of problem-situations, isomorphic to the first set,
involving word problems where the equality of quantities were emphasized. Both conditions
were presented to the same set of the six following algebraic structures (x and y representing
unknowns, other letters representing known quantities)”

1 ax+b=c¢ 2 wxtx=b 3 at+tx=bx

4 atx=bx+d § atby=bx+by+d |6 atby+cx=by+dxif
The subjects from the two experimental conditions were previously evaluated with a set of
questions (pre-test), involving both problems and equations for each of the six algebraic
structures, and post-evaluated with an equivalent set of questions, in order to evaiuate eventual
differences inter-groups dus to experimental design Results can be summarized as follows. 1
problems involving algebraic structures 1 and 2 were solved by all (100%) of the subjects in
the pre-test, with no differences between equations and word problems, 2 Problems involving
structure 3, modeled by the equation x + 36 = 4x, were interestingly solved in the pre-test by
some subjects in the following terms: “36 must be equal fo 3x, because 4x is equal to 3x plus
x", 3. The global percentage of correct answers in the pre-test was 50%; the other half of the
distribution was mainly formed by unsuccessful trial-and-error procedures, giving up problem
resolution and algorithm misuse; 4. The percentage of correct answers in the post-test raises to
100% in both equations and word problems, without quantitative difference between the two
groups; nevertheless, interesting qualitative problem-solving differences werc detected. This
iast aspect leads to the conclusion that both balance-scale and problem-structure stressing
functional equality have pedagogical and probably complementary interest




TEACHING PROBLEM SOLVING FOR MATHEMATICS TEACHERS

Antonio José Lopes, Dulce S Onaga, Maria Amabile Mansutti,
Maria Lydiz de Meilo Negreiros & Paulo Sérgio de O Neves

Centro de Educagdo Matemduca (CEM) - Brazil

The Center for Mathematics Education (CEM. Sdo Paulo - Brazil) develops since
1991 a project devoted to training mathematics tcachers in therr own workplace The
project, centered 1n Problem Solving, is supported by the Brazilian Federal Government
and involves many teachers from several regions of the State of $3o Paulo

Several investigations have been conducted in the last few years about the following
therwes (1) teachers’ beliefs. conceptions and attitude towards mathematics, teaching, and
problem solviné. (2) problem posing, (3) teacher development

This poster presents samples of the work developed with 600 teachers who took
part in short term courses and with 30 teachers who have been continuously supervised by
us The presentation focuses upon (1) quantitative data from the mvestigations carried on
in the project, {2) the teachers’ productions (e g, journals from daily activities in the
classroom), (3) qualttative analyses of several aspects of the investigations, (4) an extensive

analysis of the quality of the courses for in-service mathematics teachers

References

Borralho, A {1990) Aspectos metacogrunvos na resolugdo de problemas de Matematica:
ima proposta de um programa de imervengdo Urniversidade de Salamanca
(Dissertagio de Mestrado)

Brown, § | & Walter, M | (1990} The Arr of Problem Posing New Jersey Lawrence
Erlbaum Associates

CEAL-RP Resolugda de Problemas: Fducagdo Matemdtica para os anos 90 Projeto
financi- 3 peio SPEC/PADCT/CAPES

Fernandes, D (1992) Resolugio de problemas Investigacdo, Ensino, Avaliagio e
Formaglio de Professores In Ponte, Jodo P, Fducacdo Matematica, pp. 45-104
Lisbon

Fernandes, D (1992} Aspectos metacognitivos da resolugio de problemas de matematica
tducacdo ¢ Matemarica, 8, 3-6

Lopes. A J (1990} Desmi{shtification del Conocimiento Matematico por la Construcion
de Lenguage y Producion de Matematica em el Aula In Edwcation Matematica en las

. Arerica Vi, UNESCO, Coleccion de Documentosm n® 37, pp 169-182 Paris

Pontes, J P (1992) Concepgdes dos Professores de Matemitica ¢ Processos de
Formagiio 1n Ponte, Jodo P, Fducagdo Matemdrnica, pp 187-242 Lisboa

Puig, b. & Cerdan b (1988) Probiemas arirméticos escolares Editorial Sontesis Madrid

Schoenfeld. A H (1985) Marhematical Probiem Solving New York Academic Press

Qb1




29%

sHpwagew 10 {Sodepad
‘sotjewIyEew Jo pie ssmaa [exBojowidaiswdo
23pajmouy JO AUNJEU HY) JO SMA 2duesd 51545291 JO 1Puied T SE PN UM uouanpu
03 sadumy> Julq Anw sHFodepad NYYSPIOJXO) UL SJOOYDS (RIS {uoud aremyos pue ssanduiod jo asn s1ayoes] WO} LIRS pLre
MON SOUFPWUMPEW JO AU UL SHAAIINUI PUE SAUTBULONSINY) ~ » U SE N30 <UOIIR) [0S JO] HINOOM O] SJoOU Jo ey (r1208 Kffeounduid parsa )
M1 JO SMIA  SIAIC 139))¢ (aamrenyend uetiny} (§561) padmrejua pue Apnis < upuLy dn pamoj|o ] - TOTIGIIRIT) TRy
OS] SI0108) [BININD PUE [R1205 pue oanemuwenb) [eauduy - S, UIIsUAB I (resurdury) (€661 ) caduow g
(93pajmorny 2Bpojmouy [eNrewNR| R
pUNL 2an30(gns asnxigo WISEALIIUIS UOD JB1205 pasodolyg - }Jo uotressuad
PlOM pue aanaafgo Jutsn a¥pamouy pue 2anfgns aandsdsiad URISOIONET] O POYIAU ISIALOTUISUOD
{esAyd a1 ut suiSuo Ajuessooou EDUPRIATEL JO LOLRIUE 30 9942) omdwa-isenb o1 onbud pauajQ - RI1205 ® Jo wawdojasa]
aaey 10U op s1daduod pur JO poyiaw € jo wunudojaaa ~ UISIATIDNSUOD) MDD [BILOISIY § UPULIZT PAPUAY - TITRYY "

1eisqe A[adre) si sanewaIRy MIAJ [BILOISIY JAISUX — [eos {ledrsony]) (lo61) 150wy 4
onxad  dmnoead Y soneusew
([00OYI5 ARI0} 2HBIS [[erUS - yum aedwiod pue 23popwotny [EXleIeL O} Jo aameu a4 jo
SofEUIAjIew SUDHEAIISQO WoaISSE]D) - SIPNINIE  SINOBI] WNTEMU 0] SAEIS dOJIAID O SMITA SIN|MI] 159UU0D
Jo ASo2epad ) Furduanpjur {S2[ES IPMINE) SAUMRULOLSMN) - (q) pue sonewaipews pue 25pojmouy ainjosqe Jo o1 xhwane jeoudw? g
Aiqissod osje ase sro1de) {aanenenb wsioudwa  BuumHBANUL 341 MOYs () 01 M4 [EILIOISIH - OISy UEA

[B120S "SR oNS *S10108) 110 pue aaneuenb) Eolndurg - -sEA) soreye) (peotndurs) (9861} tPULIFT ' .

Suuoidxa pue Annbug - ot

Burajos wiajqosd ug s10e) jo uoreaydde - g

“PRIAISEIL 2q O1 S[{IYS pUe PALIEs] 2 01 §18] - 2a011] pue
‘sonRWAYIew Jo Smota dFueyd pue SONBWAR[IIN JO SMIAA -

,98uey) pue moln, uo sioafoud wingnoLund Jo yw0a3 pue 1sta1sod gy uyiim sonewdyiest Jo Safald wnpnswn)

paseq e sonTuoyew Josmata  AF0j0ap) sis{[eue sonewApew Jo  (soleye] ‘unugni, @onoesd Joj 5oushbasuod Jo SISA[RUR pue ureilg uRMRq 2pug

s.3930c2d wnpnowind uayw a0 Aydosofiyd Jo maladi eduoISIH - ‘uyny 1addod)  ui s159foxd winjnoLind utew g Jo uostredwo) - TOTTWIOSy TR

It 20no8ud Jo a3uryd SIRPITIL (aaenenb) jeanasoay] - 3ueys p PAKD feanR0ay 1) (1861) UOSHIIN "W

UoHNGLAUOD

UOISAIUO)) POYIRI  M3A IANEWDI[Y Apmig jo vondudsaq

uinw % Joyny

‘samuayieut Jo £3oFepad ayi 105 seouanbasuos Suuiq ol puno) Wam sanewayews Jo Aydosofryd ay1 ut smat [eaiSojotaisida aatewale
MIN [QUEUI *IIN[OSAR 210§21211 PUE 3A13INPap-1enFo] a1t ‘suctipen 1siatsod-[ea130] Jo 1yi a1 uy udds dram FuIYral s pUe SHIRWAGEL T A[IUDA jLU)

TSTESNpoA
S661 A '(j1zerg) 2)139Y - AN

Ansroawn uadQ/gND) — ONAUO BAg
sonewayiely Jo A3o02epag ap puw f3ojowransidy : ulmpag Gl MAAY V




A DESCRIPTION OF THE STRATEGIES EMPLOYED BY FIRST AND SECOND
GRADES STUDENTS IN THE SOLUTION OF MATHEMATICAL PROBLEMS
Marinalva Sitva Oliveira’

Curso de Mestrado em Psicologia - UFPA

The solution of mathematical problems is part of everyone's life in schooi and daily
situations. Different strategics may be used to solve those problems in cach of these contexts. In
school context mathematics has become outstanding for its high level of unsuccess (Rangel, 1992).
According to Carraher, Carraher e Schliemana (1993) that happens because algonvthms taught in
school are an obstacle for children’s reasoning, The objective of this study was to compare the way
mathematical problems of adition and subtraction are solved by children who are studying the first
grade by the second time (i.e. were not successful in the first school year) with the strategies for
solution of those problems taught in school. A set of (ten) problems of adition and subtraction (five
of cach) was presented to two groups of subjects. In Group I there were ten students who were
studying the first grade by the sccond time. Group two had ten studenis of the second grade. The
two groups were submitted to the same procedur-. FEach subject was ashed to solve wew
mathematical problems (fave of adition ard five of s btraction). The subject could give either an
oral or written response. After the subject presented a solution the experimenter asked about the
way through which he/she had reached the solution. Results show the use of algonthinic strategies
{AS) and non algorythmic strategics (NAS). Two AS strategies were most frequent: “counting with
the fingers™ (efficient only in the solution of problems which insolve units but not tens) and
“decomposition™ (the most efficient in the solution of problems which involve units and tens)
“Counting with the fingers™ was also thc most frequent strategy for both groups And the most
cfficient strategies for both groups (which most frequentlv led (o correct responses) were
decomposition {AS) and “memorization™ {NAS)
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PROPORTIONALITY: FROM INTUITIVE UNDERSTANDING TO SOLUTION STRATEGIES.

Lauro Lopes Pereira Neto and Analucia Dias Schliemann
Ana Claudia Nunes de Moura Tufts University, USA
Universidade Federal de
Pemambuco, Brazil

Previous studies show that, when asked to solve proporcionality problems outside of the specific
classes where proportion problem solving ts taught, students only rarely attempt to use the rule-of-three
algorithm they are taught i schools. Moreover, among the few who try to use the algerithm, most do so as an
automatic procedure and, when some part of it is forgotten, they are unable to reconstruct the rule since there
15 no understanding about the relationships that underlie its steps. Such results suggest that school teaching
stressing rules and algorithms learning 15 setting aside a most important side of mathematics activity: the
understanding of relations and the generation of algorithms as a consequence of such relations. However, as
shown by Nunes, Schliemann, & Carraher (1993), Magathaes (1990), Schliemann & Carraher (1932), or
Pereira Neto (1992) childrea and aduks with no schooi instruction on proportionality but who use mathematics
m their everyday activities buying and selling goods can solve proportionality problems. They do <o by using
the scaiar strategy which, through a series computations, transforms the values for prices and for measured
units preserving, throughout the procedure, the proportional relations between them. Although not as efficient
speadwise as the functional strategy or the ruie-of-three strategy, the scalar solution is well understood and
most frequently beeis to correct solutions since it allows for preservation of the meaning of the quantities being
dealt with throughowt the procedure (see Vergnaud, 1983, for a description of scalar versus functional
solutions)

This study aimed at developing more meaningful methods for teaching proportion problem solving in
schools by explorng understanding of propostional relations and use of the scalar strategy as a first step.

A total of 25 fifth graders from a public school in Recife, Brazl, participated in the study. Their ages
ranged from 11 to 13 years old and they had not received school instruction on proportionality before.
Subjects were randomly assig - 4 to three groups, one of them (five subjects) acting as a control group, the
other two (total of 20 subjects) . nstituting the experimental group. The two experimental groups participated
in 2 series of five one-hour teaching sessions.

Teaching sessions for both groups included compatitive games and discusssions aimed at creating
apportunities for children to reflect upon relationships between series of numbers in order to construct their
own solution strategies.

Their development was evaluated through comparison between a pre-test, an immediate post-test and a
delayed post test given two months later, as well as through comparisons with the control group. Concemning,
correct answers, while results for the control group did not show changes accross tests, remaining at around
40% of correct answers throughout, the percentage of correct answers for the experimental group jumped from
57% in the pre-test to 76% in the immediate post-test; in the delayed post-test, however, ft decreased to 60% .
Statistical comparisons reveal that the difference between number of correct answers in the pre-test and the
mmediate pos-test was significant (t19=1,94, p=0,05, unicaudal), but the difference between the pretest and
the delayvd post-test was not (t15=1,67, 0,05<p<0,10, unscaudal)

Use of the scalar solution strategy for the experimental group increased from 21% in the pre-test to
44% in the immediate post-test and 57% in the delayed post-test. The functional solution sirategy appered in
14% of the problems m the pre-test and in 15% of both post-tests. A notational system developed durmg the
teaching <essions was used to solve 65% of the problems in the immediate post-test. In 26% of the problems
the nottion was used but was not the basis for the solution strategy adopted. In the delayed post-test these
figures were, respectively, 29% and 57%.

There was therefore a developinent towards shoet term use of the scalar strategy with corresponding
increase m number of carrect answers. Use of the functional strategy. however, remained scarce, probably
due to the short number of sessions that did not allow children to explore more advanced solutions
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Representing Decimal Numbers
When Converting Units of Measure

Zéha Porto, Luciano Meira, & David Carraher

Graduate Program in Cognitive Psychology
Universidade Federal de Pemambuco

Research involving students’ understanding of decimal numbers has characteristically
focused on discontinuitics between students’ knowledge of natural numbers and knowledge
to be acquired regarding rational numbers. For example, whereas multiplication by natural
numbers always produces a product larger than the multiplicand, this no longer holds true
when the multiplier is a decimal fraction. Similarly, the relative order of two numbers can
no longer be reliably determined by considering merely the length of a numbes, since the
shortes decimal number may be larger in value than the longer umber.

Decimal numbers are widely used in applied contexts as parts of measures expressed
in standard units.  This being the case, it is possible that certain problems will arise related
not merely to difficulties in understanding the structure of the numerical system but also
relared to the system of measures and its expression through a numeric system organized
according to a different structure. Whereas decimal numbers are expressed according to
place value representations structured around powers of ten, the system of measures may
entail using varying ratios of units to subunits. For example, in the case of temporal
relations, there are 60 minutes in an hour, 24 hours in one day, and so on. Conversion of
measures problemns are potentially useful in clarifying the difficulties students have in
coordinating these two representational systems.

The present research aimed at investigating, during regular school activities and
clinical imerviews, children's competence with decimal numbers in problems of converting
measures along the dimension of time or of distance. Twelve pairs of fifth grade students,
aged from 12 to 13 years, were interviewed as they solved three sets of problems involving
the following conversions: (1) a time period given in months to be written in years, and
vice-versa; (2) a time period given in minutes to be written in hours, and vice-versa, (3)
metric distances given in meters to be written as centimeters, and vice-versa. The study
also included observations of the subjects’ fifth grade classroom.  All interviews and
classroom observations were videotaped.

The analyses cirried out showed that: (1) The teacher’s mathematical discourse in the
classroomn was restricted to tasks of computation and symbolic manipulation of the decimal
system and of metric distances, which posed relatively little challenge to students; (2)
students frequently understood decimal measures as expressing quantities according to
two units of measure (e g., a major portion of the students understood 2 5 as signifying 2
hours and 5 minutes™), and (3) tasks involving conversions within the metric system tended
to be solved through displacements of the cecimal point according to rules practiced in
school.

This poster will offer a detailed analysis of the strategies employed by the studems on
the conversion tasks, and discuss instructional approaches to the teaching of decimal
numbers with a focus on multiple measuring tasks and activities that can engage students
on investigating the relations between numbers and quantities




Soltware to Support Reflection, Annotation, and Presentation

Jeremy Roschelle, Jim Kaput
UMass Dartmouth

Draft Abstract

Mathematical thinking and learning require frequent access 10 prior experience for analysis,
reflection, and generalization. In addition, organizing personal experiences for public presentation
and discussion is necessary both to student learning and authentic assessment. Yet the growing tide
of "exploratory™ learning tools tends to focus on the continuous push forward to "discovery,” and
neglects tools for reflection, annotation and presentation.

Within the SimCalc project, a project wo build and test a series of rich simulations to support calculus
leaming begirning in the early grades, we are designing an overall architecture for enabling students
to capture their own progress. We want 10 enable students quickly to revisit previous trials and attach
reflections to their work. In addition, we want students 10 be able exchange their woek in ¢-mail
correspondence, or present a slide show for classroom discussion. Furthermore, we are aware that
the thrill of discovery often pulls students forward more strongly than the clarity of hindsight draws
them back. If students are to use tools for reflection and annotation, the tools must be simple, quick,
and not dependent upon compulsive attention to saving work.

The overall metaphor we use is & "dynamic notebook.” SimCalc software can save two types of
history information: state information, and state change information. Every time the student runs the
simulation, a copy of the simulation state is saved to & new page. In addition, student modifications
to the simulation between runs can be recorded as commands in the AppleScript language. This
recording can occur automatically in the background, thereby preserving state and state change
information until students are ready to reflect. We thus overcome the "save as” problem- students
don't have remember to save versions of their work, choose names for file versions, etc. Their work
autornatically is entered into the notebook in natural order.

The easiest way to browse notebook pages is to move forward or backwards in chronological order.
Several successive clicks on the next button, for example, produce an flip-chart style animation of
the graphs a student produced on successive trials. For non-linear access, students can name pages,
and then skip to any page via a popup menu. Within a page, our primary form of annotation is an
audio recording of the student's voice. Although we feel students are more likely to speak than to
type, we will also support textual notes, as they require less storage space. Notebooks can easily be
mailed to a teacher or another student via a Eudora script; furthermore, the ability to flip through
successive pages makes a natural format for a full class "slide show," thereby enabling a live
performance assessment, as well as portfolio-style assessment.

While the notcbook format is still experimental, and subject 10 refinemen: afier more classroom
testing, we believe that it offers a step forward from software applications that offer only “save-as”
capability. Coming "component software™ technologies such as OpenDoc and OLE may soon make it
feasible to provide a generic notebook that could support reflection, annotation and presentation of
many kinds of simulation microworld content. We feel that the time is ripe for mathematics educators
to design and debate genceral system capabilities in support of mathematical thinking that could serve
as a framework for many diverse "explotatory” software modules. To date, designers of typical
systems have concentrated on supporting rich activity and snapshots of the activity in peogress or
records of compieted products. But the support of mathematical growth requires muoch fuller and
more flexible reconds of activity, records that technological advances make newly possible.




THE INFLUENCE OF REPRESENTATIONS IN THE TEACHING OF MATEHEMATICS
Ana Coelho Vieira Selva - Education Center, UFPE, Brasil.

The purpose of this study is to analtyse the role of concrete representations, written and mental, in
the solution to division problems (partition and quotition). The most of studies have analysed only
the role of concrete representations { Desforges & Desforges, 1980; Kouba, 1989). Subjects were
108 children, equally divided across thres grades, from kindergarten to second grade. The subject
in each serics were distibuted in groups which differed with respect to the material made available
to assist with the solutions of the problems; group 1 had tokens, group 2 had pencil and paper and
group 3 was affered no object. We have observed more cotrect answers in groups 1 and 2, while
the performance of the subjects from these two groups compared presented no significant
differences. The main strategies were: direct representations of the problem (the subjects stablished
a parallel between their actions and the propositions); trial and crror: repeateed adding: use of
known fact (multiplication and division). The interaction between strategies of dircct representation
and repeated adding was significant (p<.00! in all grades). Group 1 tended to usc a direct
representations, while in group 3 repeated addig was more frequent (sec figure 1 and 2). These
results indicated that the percentage of use of the strategy of representation observed in all grades
did not mean lack of knowledge of more sophisticated strategics. It did indicated the influence of
the material uscd on the strategics chosen by the subjects. Similar resulls were observed in the
problems of quotition. Results show that: (a) the importance of written representations produced
by children in the development of mathematical concepts and (b) the need to stimulate the usc of
various types of represcntations in the mathematical concepts as a way of favouring a broader
understanding of the concept being studied.
Figure 1: Percentage of Use of
Strategy "Direct Representatisns Figure 2: Perceatzge of Use of
with Distribution of Sath Strategy "Repeated Adding™ in

Quantities” iy Group and Grade Preblems of Partition by Growp and
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QUADRATIC FUNCTIONS AND GRAPHING CALCULATCR
Telma A. Souza
Marcelo C. Borba
Graduate Program of Mathematics Education
State University of Sdo Paulo (INESP) at Rio Ciaro, Brazl

In this paper we discuss a pedagogical approach for the teaching and leaming of quzdratic
functions using a graphing calculator. We discuss how a high school student deals with quadratic
functions using a graphing calculator. Implications for mathematics curriculum are discusscd.

Graphing calculators are portable and relatively inexpensive, and can be seen as computers
with only onc software. They facilitate the production of a graphic ropresentation and allow
introduction of an approach which emphasizes visualization.

In this study we worked with the quadratic function wriiten in the form  f{(x) = axz +bx +c.
We interviewed one high school student focusing on the effects of the coefficients in the graph.

Thus is an ongoing study and we are in the process of designing other teaching experiments
with another students. We believe that interviewing students allowed us to take a close look at
students’ reasoning while allowing students to spend the time they need to deal with a given problem.

In this case study, using a graphing calculator, we saw that a student can be provided with
tasks that allow him 10 conduct his own investigations and engage in problems gencrated by him.




AN EMERGING VISION OF A MATHEMATICS CURRICULUM FOR
MIDDLE SCHOOL.,, AND IMPLICATIONS FOR TEACHER PREPARATION

Judith T. Sowder
San Diego State University

The Naticnal Center for Research in Mathematical Science Education
(NCRMSE), funded by the U.S. Department of Education, has for five years
supported a working group which has focused its efforts on research at the middle
school level, particularly in the area of multiplicative structures. The working
group is directed by Judith Sowder. Two subgroups were formed in the summer of
1994, one to consider the implications of recent research for curriculum at this
level, and the other to consider how recent research should affect the preparation of
middle school mathematics teachers.

The first subgroup, consisting of Guershon Harel, James Kaput, Richard Lesh,
Ricardo Nemirovsky, Randolph A. Philipp, and Patrick Thompson, prepared a
document entitled An Emerging Vision of a Mathematics Curriculum. This
document discusses what is meant by curriculum, and then outlines a conceptual
curriculum that focuses on qualities, quantification, reasoning about quantities,
thoughtful use of notation, reasoning about representations, and formalizing.
Characteristics of good tasks are described. and dilemmas associated with curricula
and implementation are discussed.

The second subgroup, in which Barbara Armstrong, Thomas Carpenter, Susan
Lamon, Edward Silver, Martin Simon, Larry Sowder, Alba Thompson, and Judith
Sowder have participated, prepared a document in which they make
recommendations that extend current thinking in teacher preparation to include a
deeper understanding of what it means to move from additive to multiplicative
reasoning, and how this affects the manner in which teachers must understand
quantification and quantitative reasoning, ratio, proportion, and rational number
concepts.

A summer 1995 meeting of approximately thirty mathematics educators will
focus on reactions to and discussions of these two documents.

The posters at this session will summarize the work of these groups by
presenting the recommendations from each of the two groups, and additional
recommendations made at the summer meeting.




STUDENTS' INFORMAL AND FORMAL STRATEGIES IN
PROPORTION PROBLEM SOLVING

Karen Warwick
Tufts University, Medford, Massachuseus, USA

This exploratory study analyzes the strategies used in proportion problem solving. The
analysis of strategies is important because research shows that children use multiple strategies in
mathematical problem solviné. The strategies are intuitive, related to their previous experience, and
informal. However, in formal instruction of proportion problem solving, one strategy, the rule of
threc algorithm, is the most common, if not only, strategy taught. Considering these two factors and
importance of the concept of proportion, it may be helpful to compare the strategies of students
with no formal instruction to the strategies of students with formal instruction in proportion
problem solving.

One type of proportion is the isomorphism of measures model. The isomorphism of
measures models involves two variables: a value on cne variable maps to one and only one value on
the other variable. Strategies that may be used to solve proportion problems include the scalar
strategy, the functional strategy, the unit-rate strategy. and the rule of three algorithm which, as
mentioned above, is most commonly the only strategy used in formal instruction.

Two groups of students participate in this study. One group is comprised of three fifth
graders who have had no formal instruction in proportion. The other group is comprised of three
cighth graders who have had at least two years of formal instruction in proportion. The six students
were asked to solve cight word problems in the form of a worksheet. All of the problems were of’
the isomorphism of measure model and all were missing value problems in which three values are
given and one value was unknown. Four of the problems were constructed to be more easily solved
by using the scalar strategy. and four by the functional strategy. Students were allowed unlimited
time to do the work and atlowed to show their work, or just the answer, whichever they preferred.
Afier the student completed the worksheet, she, or he, was interviewed. Each student was asked to
explain how the answer for each problem was obtained. Specific questions about strategy were
asked in response 1o the initial explanation and following statements.

The study showed interesting results, First, the fifth graders were able to construct original
stratcgies and were able to use them to solve new types of problems. Secondly. the cighth grade
students, who had a very high rate of success, used the scalar and unit-rate strakegies 10 solve
approximately half of the problems. The functional strategy was not used and students seemed to
ignore or were unable to recognize the relationship of values that related to two different variables.
The cighth graders used the rule of three algorithm to solve nearly half of the proportion problems:
this result is significant because it differs from previous studics that show less reliance by students
10 usc formal strategies in problem solving. Finatly, during the intervicws, both groups of fifth
graders and cighth graders revealed a high leve! of metacognition.

BEST COPY AVAILABLE s 3G




ADDRESSES OF PRESENTING AUTHORS




-A-

Guida Abreu

Faculty of Health Care & Social Studies
University of Luton, Park Square
Luton-Beds Lui 3JU UK-England

Fax: 01582-489358

Nadja Acioly

Rua 67, no. 176

Paulista , PE 53400 Brezil
Fax: 55-81-2711843

Jill Adler

University of the Witwatersrand
Education Dept - PB 3, PO Wits
Johannesburg 2050 South Africa
E-mail: 022jill@mentor.cdem.wits.ac.za
Fax: 27-11-3393956

Janet Ainley

University of Warwick

[nstitute of Education

Coventry CV4 7AL England
E-mail: serar@csv.warwick.ac.uk
Fax:01203-523237

Marlenc Alves Dias

Equipe Didirem - Université Paris 7
Casc 7018 - 2, Place Jussiau 75251
Ccdex 05 Paris 75005 France

Fax: (1) 44275608

Miriam Amit

38 EREZ St.

Omer 84965 Israel

E-mail: amit/@bgumail.bgu.ac.il
Fax: 972-7-469236

1sabel Amorim

Rua Antonio Luis Lopes, Torre N, 10A,
2670 L.ourdes Portugal

Fax: 351-1-7573624

Ferdinando Arzarello
Universita di Torino

Via Carlo Alberto. 10

Torino 10123 Ttaly

E-mail: arzarelo@dm.unito.it
Fax: 39-11-534497

Carmen Azcarate

Universitat Autonoma de Barcelona
Facultat de Ciéncias de Educacion
Barcclona 08193 Spain

E-mail: c.azcarate/@cc.uab.cs

Fax: 5812007

.B-

Roberto Ribeiro Baldino

Math Education UNESP, Cx. Postal 474
Rio Claro, SP 13500-970 Brazil

E-mail: baldino@rcb000.uesp.ansp.br
Fax: §5-195-340123

Tony Barnard

King's College, Depart. of Mathematics
London WC2R 2LS UK

E-mail: udah203@uk.ac kel.cc.bay

Fax: 071-873-2017

Nadine Bednarz

Université du Québec a Montréal, Cirade
C.P. 8888, Suc, Centre Ville

Montréal H3C 3P8 Canada

E-mail: cirade@er.uqam.ca

Fax: 514-9874636

Hava Bloedy-Vinner

20 Burla St.,

Jerusalem 93714 Israel
E-mail: vinner@vms.huji.ac.il

Paolo Bocero

Universita Genova - Dipart. di Matematica
Via L. B. Alberti, 4

Genova 16132 lialy

l'ax: 39-10-3538769

1259 27




Janete Bolite Frant

R. Pres. Carlos de Campus, 115/904, Bl.1
Rio de Janeiro, RJ 22231 Brazil

Fax: 55-21-2754061

Marcelo Borba

UNESP Rio Claro, Matemitica- C. P. 7§
Rio Claro-SP 13500-230 Brazil

E-mail: uercb@brfapesp.bitnet

Fax: (0195) 340123

Rute Borba
R. Visconde de Barbaccna, 284 - CDU
Recife, PE 50.740.460 Brazil

Janct Bowers

Vanderbilt University, Box 330, GPC
Nashville, TN 37203 USA

E-mail: bowersJS:@ ctrvax.vanderbilt.cdu
Fax: 615-322-8999

Marcia Regina Ferreira de Brito

Rua Santa Cruz, 447

Campinas, SP 13024-100 Brasil
E-mail: mbrito@ccvax.unicamp.br
Fax. 55-192-519933

Anna Paula de Avelar Brito lima
Mestrado em Psicologia - UFPE

Av. Acad. Hélio Ramos, CFCH-8° andar
Recife, PE 50670-901 Brazil

Fax: 55-81-271-1843

Karin Brodie

University of the Witwatersrand

102 Varalio, 22 Honey Street, Berca
Johannesburg 2198 South Africa

E-mail: 022brod@montor.cdem. wits.ac.za
Fax: 27-11-403-1264

Dawn Brown

Tallzhassee Community College
14219 Otter Run Rd.
Taliahassce, FI. 32312 USA

Laurinda Brown

University of Bristol, School of Education
35 Berkeley Squarc

Bristol, Avon BS8 IJA Engiand

E-mail: laurinda.brown'@dris.ac.uk

Fax: 01179251537

Maria G. Bartolini-Bussi

Universita di Modena, Dip. di Matematica
Via Campi 213-B

Modena 141100 fraly

E-mail: bartolini‘@dipmat.unimo.it

Fax: 39-59-370513

C-

Isabel Cabrita

Universidade de Aveiro

Campus Universitidrio Santiago. SADTE
Avciro 3800 Portugal

E-mail: moreira/@cifop.ua.pt

Fax: 351-34-370219

Jinfa Cai

Marquetie University

Math, Siatistics & Computer Science
Milwaukee, W1 53233 USA

E-mail: jinfac@marque.mscs.mu.edu
Fax: (414) 288-5472

Navid Curaher

Universidade Federal de Pernambuco
CFCH- 8° andar, Mestrado em Psicologia
Av. Acad Hélio Ramos. s/n. CDU

Recife, PE 50.670-901 Brazil

E-mail: decar@cognit.ufpe.br

Fax: 55-81-271-1843

Susana Carreira

Universidade Nova de l.isboa
Rua Guilhermina Suggia, 16
Alzucirie 2725 Portugal
Fax' 351-1.2954461




Carolina Carvalho

Dep. de Educacio, Faculdade de Ciéncias
Universidade de Lisboa

R. Emesto de Vasconcelos-Bl. C1- 3 Piso
Lisboa 1700 Portugal

Fax: 351-117573624

Maria Cassundé

Universidade Federal de Permambuco

R. Académico Hélio Ramos s/n. 8° andar
CFCH, Mestrado em Psicologia

Recife, PE 50.670-901 Brazil

Fax: 55-81-271.1843

José Aires de Castro Filho

Rua Fiscal Vieira 3800 B-103
Fortaleza CE 60.120-170 Brasil
E-mail: aires@lia.ufc.br

Fax: 55-85-223 3248

Margarida César
Departamento de Educagio
Faculdade de Ciéncias
Edificio C 1 - Campo Grande
Lisboa 1700 Portugal
Fax:1-757.3624

Marta Civil

University of Arizona
Department of Mathematics
Tucson, AZ 85721 USA
E-mail: civil@hath.arizona.cdu
Fax: 602-621-8322

Carmel Coady

University of Western Sydney. Napean
Science and Technology, P.O Box 10
Kingswood N.S.W. 2747 Australia
E-mail: c.coady@s!.nepean.uws.edu.au
Fax: 61-47-360747

Jere Confrey

Comell University

422 Kennedy Hall, Dept. of Lducation
Ithaca, NY 14853-4203 USA
E-mail: jeS6‘acomell cdu

Fax: 607-25587905

Jane Correa

R. S#o Francisco Xavier 466/103- Tijuca
Rio de Janciro, RJ 20550-013 Brazil
E-mail: jcorrea@vm.Ince.br

Monica Cerreia
R. Prof. Antonio Coetho, 135/302 - CDU
Recife-PE 50740-020 Brazil

Anibal Cortes

Université René Descartes
46 Rue St. Jacques

Paris 75010 France

Fax: 1-40462993

Cileda Coutinho

PUC S30 Paulo

111 Rua Marques de Paranagua
S3o Paulo SP 01303-050 Brazil
E-mail: tania@nucc.pucsp.br
Fax: 55-11-256-5039

D-

Jorge Tarcisio da Rocha Falcdo

Mestrado em Psicologia Cognitiva - UFPE
Acad. Hélio Ramos, s/n, CFCH - 8° andar
Recife-PE 50670-901 Brazil

E-mail: falcao’@cognit.ufpe.br
Fax:55-81-271-1843

Bemadette Denys

IREM - Unirversité Paris 5

7 Rue de La Comeéte

Paris 75007 France

E-mail: denysf@mathp7 jussicu. it
Fax: 33-1-47538338

Helen Doerr

Comell Theory Center

526 Engr and Theory Center Bidg.
Comnell University

Ithaca, NY 14853 USA

E-mail: hdoerr@itc.comell.edu
Fax: 1-607-254-8888




Brnan Doig

Counci! for Educatienal Reszarch
Private Bag 55, Post Office Camberwell
Victoria 3124 Australia

k-mail: doig @acer.cdu.au

1ax 3-2775500

-E-

Lauric D. Edwards

Univ, ot California, Sarta Cruz
Fducation Board, Crown College
Santa Cruz, CA 95064 USA
E-mail: edwards @ cats.ucsc .edu
Fax: 408-459-4618

Nerida Ellerton

Edith Cowan Univ., Faculty of Education
Churchlands Western 6018 Australia
f-mail n.cllertondcowan.cdu.au

Fax. 61-9-3877095

Paul Emnest

Univ. of Exeter, School of Education
Heavitree Road- Exeter EXI 2LU UK
E-mail: p.emest@ex.ac uk

Fax 1392-264736

-F-

Domingos Femandes

Universidade de Aveiro. Santiago

Dept Didactica ¢ Tecnologia Educativa
Axeirv 3800 Porugal

Fax 351-34-23384

M. Jayne Fleener

Universaty of Okl -homa

College of Educatiun, 820 van Vieet (val
Norman, OK 73019 USA

b-manl.

das234:a uokmysa backbone vnknor edu
Fax. 405-3254061

José Luiz Magalhdces de I'reitas

['mv Iederal de Mato Grasso do Sul
Dept de Matematica - CCET, Cx P 649
Campo Grande 79070-900 Brastl

Fulvia Furinghetti

ViaL.B. Alberti 4

Genova 16132 ltaly

E-mail: furinghe@dima.unige.it
Fax: 39-10-3538769

-G-

Rossella Garuti

Istituto Matematica Applicata, CNR
Via del Melograno, 7

Fossoli di Carpi, MO 41010 ltaly
Fax: 39-59-650810

Noel Geoghegan

University of Wester Sydney. Macarthur
P.O. Box 555 - Campbell Town

N.S.W. 2560 Australia

Fax: 02 7721565

Alcx Gomes

Rua Bacabal, 80/101 - Encruzilhada
Recife. PE 52030-120 Brazil

Fax: 535-81-2680936

Pedro Gémez

Una Empresa Docente

Universidad de Los Andes, AA 4976
Bogota Colombia

-mail: pgomez/@cdcenet.uniandes.cdu.co
Fax: §71-235-1726

Ines Maria Goémez-Chacon

Instituto de Estudios Pedagogicos
Somosaguas, Vizconde de Matamala 3
Madrid 28028 Spain

Fax: 34-1-7259209

Smion Goodchild

College of St. Mark and St. John.
Derriford Road, Plymouth

Pl 6 8BH UK

Fax: 44 1752 761120




Susie Groves

Deakin University

221 Burwood Highway, Burwood
Victoria 3125 Australia

E-mail: grovesac(@deakin.edu.au
Fax: 3-2446834

Angel Gutierrez

Dpto. de Didactica de 1a Matematica
Universidad de Valencia, Apartado 22045
Valencia 46071 Spain

E-mail: angel.gutierrez@uv.es

Fax: 34-6-3864487

H-

Neil Hall

University of Wollongong
Wollongong 2522 Australia
E-mail: r.hall@uow.edu.au
Fax: 042-213892

Brian Hudson

Sheffield Hallam University
Mathematics Education Centre
25 Broomgrove Road
Sheflicld S10 2NA England
E-mail: b.g.hudson@shu.ac.uk
Fax: 44-114-253-2339

Manuel Pedro Huerta
Teacher University
Calle Reina no. 74/7
Valencia 46011 Spain
Fax: 96-3864487

Robert Hunting

La Trobe University

Graduate School of Education
Bundoora, Victoria 3083 Australia
E-mail: hunting@luga.lat ube.cdu.au
Fax: 61-3-4787807

Bat-Sheva llany

27B Agnon St.
Rannana 43380 Isracl
Fax: 972-3-5234117

Kathryn Irwin

Univ. of Auckland, Education Department
Private Box 92019

Auckland New Zealand

E-mail: k.irwin@auckland.ac.nz

Fax: 64-9-373-7455

J-

Vera John-Steiner

University of New Mexico
College of Education
Albuquerque NM 87131-1231
Fax: 505-2778360

K-

A.:a Kaleff

Praia do Acarai, 57/ 1001
Niterdi, RJ 24230-000 Brazil
Fax: 55-21-7222249

Estela Kaufman Fainguelernt

R. Pres, Carlos de Campus 115/ 904 Bi1
Rio de Janeiro 22470-210 Brasi!

Fax: 55-21-2264315

Chronis Kynigos

University of Athens

Philosophy, Education & Psychology

19 Kleomenous St., Atthens 10675 Greece
Li-mail: ckynigos@atlas.voa.ariadne-t.gr
Fax: 301-7218592




Diana Lambdin

Indiana University

W. W. Wright Bldg., 201N Rose Av.
Bloomington, IN 47405-1006 USA
E-mail: lambdin@indiana.edu

Fax: 812-8569440

Pzul Laridon

Radmaste Wits University
Mathematics Dept. - P. O. Wits
Wits 2050 South Aftica

E-mail: 36pel(ycosmos.wits.ac.za
Fax: 27-11-339-1054

Stephen Lerman

South Bank University

Centre for Mathematics Education - 103
Borough Rd., London HP 30AX England
E-mail: lermans@vax.sbu.ac.uk

Fax: 0171-815 7499

Richard Lesh

UMass - Dartmouth

285 Old Westport Road

No. Dartmouth, MA 02747-2300 USA
E-mail: rlesh@umassd.edu

Fax: 508-999-8321

Liora Linchevski

Hebrew University

School of Education - Mount Scoups
Jerusalem 91905 Isracl

E-mail: liora/@vms.huji.ac.il

Fax: 972-2-521548

Romulo Campos Lins

Depto de Matematica - UNESP
Av.24-A,1515

Rio Claro, SP 135G6-700 Brasil
E-mail: romlinsi@reb000.unesp.ansp.br
Fax: 55-195-340123

Mbénica Lins Lessa
Rua Manoe! Azavedo, 365/103 Iputinga
Recife-PE 50.670-020 Brazil

Antonio José Lopes

CEM- Centro de Educa¢do Matemdtica
S3o Paulo- SP Brazil

Fax: 011 8150081

Sandra Magina

PUC - S3o Paulo

Marqués de Paranagué, 111, Consolagio
S30 Paulo 01303-050 Brazil

E-mail: sandra@nucc.pucsp.br

Fax: 55-11-256-5039

Susana Nanci Marcipar de Katz
4 de Enero 1449

Santa Fe 3000 Argentina

Fax: 54-42-598525

Marie Alessandra Mariotti
Univ. Pisa - Dip. di Matematica
Via Buonarroti, 2

Pisa 56127 ltaly

E-mail: mariotti@unipi.bitnet
Fax: 39-50-509524

Jodo Filipe Matcs

Universidade de Lisboa

Dept. de Educagdo -Faculd. de Ciéncias
Campo Grande- Cl- 20,

Lisboa 1700 Portugal

E-mail: ejfm@scosysv.fe.ul.pt

Fax: 351-1-7573624

Luciano Meira

Universidade Federal de Pernambuco
Mestrado em Psicologia -CFCH 8° andar
Recife, PE 50670-901 Brazi)

E-mail: Imeira@cognit.ufpe.br

Fax: 55-81-271-1843

Anne Meredith

Depanmant of Education
University of Cambridge

63 Hemingford Road
Cambridge CB1 3BY England
E-mail: aem1 7;@uk ac.cam.phx




Ana Lobo Mesquita

6 rue d'Angleterre

Lille 59800 France

E-mail: ana.mesquita@univ lille] .fr
Fax: 33-20105454

Yudarizh Mohammad Yusof

University of Warwick

Math Educ. Res. Centre, Inst. of Education
Coventry CV4 7AL England

E-mail: seral@csv.ac.warwick.uk

Fax: 01203-523237

Beatriz Monteiro

20 Granville Court, Cheney 1 ane

Oxford OX3 OHS UK

E-mail: B-monteiro @uk.ac.open.acs.vax
Fax: 908-653744

Judith Mousley

Deakin University. Geelong
VIC 3217 Australia

E-mail: judym/@deakin.edc.au
Fax: 61-52-272014

N-

Tadaoc Nakahara

Faculty of Education, Hiroshima Univ.
1-1-2 Kagamivama Higashi-Hiroshima
Higashi-Hiroshima 724 Japan

E-mail: g00809/@;sinet.ad jp

Fax: 0824-22-7111

Lilian Nasser

Rua Leopoldo Miguez. 99/Ap. 601
Rio de Janeiro, RJ 22060-020 Brazil
T:-mail: Inasser ufrj.br

Fax: 55-21-2901095

Ricardo Nemirovsky

TERC- Research Center

2067 Massachusetts Ave.

Cambridge, MA 02140 USA

I'-mail: ricardo_nemurovsky-a tere.edu
lax 617-3493535

Dagmar Neuman

Géteborg Univ., Depart of Education
Fagerstrand 131

Hisselby S-16571 Sweden

Fax: 46-8-7398884

Vicente Joaquim Neumann
Univerdad de Tarapacd

Cassilla 7-D, Arica Chile

E-mail: v_neumann@alpaca.quipu.cl

Tracy Noble

TERC, 2067 Massachusetts Ave.
Cambridge, It/iA 02144 USA
E-mail: tracy-noble@terc.edu
Fax: 617-349-3535

Rafael Nufiez

Stanford University

CSLI, Ventura Hall

Stanford, CA 94305 USA
E-mail: nunez @ csli.stanford.edu
Fax: 415-723-0758

-O-

Evangelina Diaz Obando

Florida State University

219 MCH Mathematics Education
Tallahassee. Florida 32306-3032 USA
L-mail: ediazigmailer. fsu.edu

Fax: 904-644-1880

Marinalva Oliveira

Universidade Federal do Para

Rod. Coqueire -Jd. Bela Vista - Ap.402B
Belém-PA 67110-000 Brazil

Fax: 55-91-249-2629

Alwyn Olivier

University of Stellenbosch

Research Unit for Mathematics Fducation
Faculty of Education, Private Bag X50i8
Stellenbosch 7600 South Africa

E-mail: aio @'akad sun.ac.za

Fax: 27-21-8872616




Ralph S. Pantozzi

Rutgers University

CMCSE/GSE Bldg., 10 Seminary Place
New Brunswick, NJ 08903 USA
E-mail: pantozzi@gandalf.rutgers.edu
Fax: 908-932-1318

Victor Parsons

University of Greenwich

Faculty of Educ., School of P.C. E. T.
Southwoop Campus, Avery Hill Road
New Eltham - London SE9 2PQ UK.
Fax: 0B1-316-9235

Erkki Pehkonen

Dept. Teacher Education

University of Helsinki, PB 38 Ratakatu 6A
Helsinkj Fin-00014 Finland

Fax: 358-0-191-8073

Barbara Pence

San Jose State University
Dept. of Mathematies - C. S.
San Jose, CA 95192 USA
Fax: 408-9245080

Lauro Pereira Neto
Av. Prof. Arthur de S4, 602/01-B, CDU
Recife-PE 50740-540 Brazl

Marie-Jeanne Perrin-Glorian

Equipe DIDIREM, Université Paris 7
Casa 7018-2 Place Jussieu

Paris 75251 Cedex 05 France
E-mail: gloriani@mathp7 jussicu.fr
Fax: 1-4427 5608

Andrea Peter

Westfilishe Wilhelms-Universitit Minster
IDM, Einsteinstr. 62

Mdnster 48145 Germany

E mail: apeter{@hrz.uni-bielcfeld.de

Fax: 251-8320%0

Marcia Pinto

23 Beech Tree Avenue - Tile Hill
Coventry CV49FE UK-England
E-mail: serau@csv.warwick.ac.uk
Fax: 01203-523801

Jo3o Pedro Ponte
Calgada do Galvao, 21
Lisboa 1400 Portugal
Fax: 1-7573624

Zélia Perto

Universidade Federal de Pemambuco
Centro de Educagio

R. Académico Hélio Ramos s/n
Recife, PE 50.670-901 Brazil

Dave Pratt

University of Warwick

Institute of Education

Conventry CV4 7AL England
E-mail: sesha@ecsv.warwick.ac.uk
Fax: 0203-523237

Norma Presmeg

The Florida State University

Math Education, Box 3032
Tallahassee, FL 32306-3032 USA
E-mail: npresmeg@gamet.acns.fsu.edu
Fax: 094-644-1880

-R-

Gloria Ramalho

Instituto Superior de Psicologia Aplicada
R. Jardim do Tabaco, 44

Lisboa 1100 Portugal

E-mail:
dir@dir.ispa.email400.marconi-sva.pt
Fax: 351-1-886-0954

Shakre Rasslan

Hebrew University

Science Teaching Dept., Givat Ram
Jerusalem 91904 Isracl

E-mail: vinner@vms.huji.ac.il

Fax; 972 2 585 708

| — 266




Jean-Claude Regnier

19 Rue Forétale Bat FF, Appt. 20
Montceau-les-Mines 71300 France
Fax: 72733465

David A. Reid

University of Alberta

Departament of Secondary Education. 341
Edmontou AB T6G 2GS Canada

E-mail: reidd@gpu.srv.nalberta.ca

Fax: 1-403-492-4902

Luis Rico

Universidad Granada, Campus Cartija
Facultad Ciencias de la Educacion
Granada 18071 Spain

Fax: 34-38-203561

Jerymy Roschelle
E-maii: jeremy@dewey.soe.berkeley.cdu

-S-

Silvia Saads

Flat 5, Brookvale Court - 25 Winn Road
Southampton 50171 WA England
E-mail: ss6@uk.ac.soton

Haralambos Sakonidis

Democritus Univerty of Thrace

Primary Education Departrent - N. Chilli
Alexandroupolis 68100 Greece

Fax: 0551-39630

Emesto Sanchez
CINVESTAV-IPN-Mexico
Nakota, 379, Col. Napoles
Mexico DF 03810 Mcxico

Madalcna Santos

Fscola Preparatéria de Caxias
Pr. Luanda 8. 6a. lisq

Ociras 2780 Portugal

Fax: 351-1-7573624

Vinia Santos

R. Ministro Correia de Melo, 99/103
Rio de Janeiro, RJ 22430-110 Brazil
E-mai}: vania@vms!.nce.uftj.br
Fax: 021-2901095

Martin M. Socas

Departamento de Andlisis Matematico
Universidad de la Laguna
c/Astrofisico Francisco Sanchez S/N
La Laguna-Tenerife 38271 Espafia
E-mail: msocas@ull.es

Fax: 34-9-22.635383

Manuel Santos Trigo

754 Eln St.

Et Cerrito CA 94530 USA

E-mail: Manuel@sce. berkeley.edu

Analicia Dias Schliemann
22 Railroad St., Apt. 407
Andover, MA 01810 USA
Fax: 617-6273901

Sylvine Schmidt

2005 des Genévriers

St. Brunc de Montarville
Québec J3V-6A1 Canada
Fax: 514-653-2369

Roberta Schorr

Rutgers University, 3870-Busch Campus
Piscataway, New Jersey 08855 USA
E-mail: schoor@gondalf.rotgers.edu
Fax: 908-445-2848

Ana Sclva

Universidade Federal de Pernambuco
Centro de Educagdo - DPOE

Recife, PE 50670-901 Brazil
E-mail: selvar@npd.ufpe.br




Teresa Smart

University of North London

School of Teaching Studies

166-220 Holloway Road

Eondon N7 8DB England

E-mail:
mxsmartt@cluster.north-london.ac.uk
Fax: 44-171-7535400

Alejandro Solano

Florida State University

219 MCH Mathematics Education
Tallahassee, Florida 32306-3032 USA
E-mail: asolano@gamet.acns.fsu.edu
Fax: 094-644-1880

Telma Souza

Rua 11, no. 731 - Centro

Rio Claro, SP 13.500-100 Brazil
E-mail: tasouza@rcb000.uesp.ansp.br
Fax: 55-195-34-0123

Judith Sowder

San Diego State Univ., Mathematics Dept.
San Diego, CA 92182 USA

E-mail: jsowder@sciences.sdsu.edu

Fax: 619-594-1581

Alina Galvio Spinillo

Universidade Federal de Pemambuco
Mestrado em Psicologia -CFCH 8° andar
Recife, PE 50670-901 Brazil

E-mail: spin@cognit.ufpe.br

Fax: 55-81-2" 1-1843

Kaye Staccy

University of Melbournc

Science and Mathematics Education
Parkville, Victoria 3052 Australia

E-mail: kaye_stacey@mac.unimelb.edu.au

T-

David Tail

University of Warwick

Mathematics Education Research Centre
Conventry CV4 7AL UK

E-mail: seral@csv. warwick.ac.uk

Howard Tanner

University of Wales. Dept of Education
Swansea SA2 7NB Wales UK

Fax: 44-1792-298499

Margaret Taplin

Shooll of Education

Univ. Tasmania at Launceston, Box 1214
Launceston, TAS 7250 Australia

E-mail: M. Taplini@educ.utas.edu.au

Fax: 61-03-243048

Anne Teppo

1611 Willow Way

Bozeman, MT 59715 USA

E-mail: teppo@mathfs.math.montana.edu

Maria Trigueros

ITAM. Dept. de Matematicas

Rie Hondo 1, Tizapan San Angel
Distrito Federal 01000 Mexico
E-mail: trigue@gauss.thon.itam.mx

Marianna Tzekaki

Department of Early Childhood Education
Aristotle Univ. of Thessaloniki, Box 1664
Thessaloniki 54006 Greece

Fax: 031-207379

V-

Isabel Pitcira do Vale

Escola Superior de Educag¢io, Apart. 513
Viana do Castelo 4900 Portugal

Fax: 058-829775

Martin van Reeuwijk

Freudenthal Institute. Tiberdrcet 4
Utrecht 3561 GG Netherlands
E-mail: martinr@fi.ruu.nl

Fax: 31-30 611 611

Geérard Vergnaud
Paris V, PSYDEE
46, rue Saint-jacques
75005 Paris France
Fax: 33-1-4046 2993




Lieven Verschaffel

Instructional Psych. and Technology
Univ. of Leuven, Vesaliusstraat 2, B-3000
Leuven 3000 Belgium

E-mail:

lieven, verschaffel@ped.kuleuven.ac.be
Fax: 32-16-326274

Shlomo Vinner

Hebrew University

Seience Teaching Dep., Givat Ram
Jerusalem Israel

E-mail: vinner@vms.huji.ac.il
Fax: 972-2-585708

W-

Elizabeth Warren

Australian Catholic Univessity
P.0. Box 247, Everton Park
Brisbanc (QLD) Q 4053 Australia

Karen Warwick

35 Myrtli Terrace
Winchester, MA 01890 USA
Fax: 617-7294372

Tad Watanabe

Towson State University

Dept. of Mathematics

Towson, MI* 21204 USA

E-mail: watanabe-t@toe.towson.edu
Fax: 410-830-4149

Avrum Isracl Weinzweig

9711 N. Kildare Av.

Skokie, IL 60076 USA

E-mail: izzie@jackos. math.uvic.cdu
Fax: 312-99649]

Joy W. Whitenack

Vanderbilt University, Box 330, GPC
Nashville, TN 37203 USA

E-mail: whitenjw{@ctrvax.vanderbilt.cdu
Fax: 615-322-8999

Uri Wilcnsky

Tufts University, Science & Techboiogy
Center Room 125 - 4 Colby St.
Medfard, Ma 02155 USA

E-mail: uriw(@media.mit.edu

Fax: 617-627-3995

Y-

Ermna Yackel

Purdue Univesity Calumet

1035 Knicker Bocker Parkwag
Hammond, IN 46323 USA

E-mail:
yackeleb@nwi.calumet.purdue.edu
Fax: 219-989-2750

Michal Yerushalmy

57 Beaconsfield Rd.

Brookline MA 02146 USA

E-mail: yerushmi@hugse1.harvard.cdu

2-

Vicki Zack

St. George's School

5822 Einstein Avenue

Montreal H4W 2X6 Canada
E-mail: vicki_z@ced sts-systems.ca
Fax: 514-486-5638




’ ’
Impressa na ﬂ-"ﬂl"ﬁl Ros

03043 Rua Martim Burchard, 246
Bras - Sao Paulo - SP
Fone: (011) 270-4388 (PABX)

com filmes fornecidos pelo Editor

253




