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LAVE AND WENGER’S SOCIAL PRACTICE THEORY AND TEACHING AND
LEARNING SCHOOL MATHEMATICS ‘

Jili Adler, University of the Witwatersrand

In this paper | argue that Lave and Wenger’s social practice theory offers a very powerful language
for understanding knowing and learning about and the practice of teaching. However, this theory
does not transfer unproblematically into knowing and learning about the practice of school
mathematics. This argument arises within a study on teachers’ knowledge of their practices in
multitingual mathematics classrooms, a study that requires theorising knowledgeablility of school
mathematics teaching, that is, of both ‘teaching’ and ‘schoo! mathematics’. The implications of
this argument for research is that Lave and Wenger’s social practice theory needs elaboration if it
is to successlully illuminate learning and knowing schoo! mathematics.

INTRODUCTION

Lave and Wenger’s theory of social practice {1991} has recently gained currency
in PME. It has been invoked to examine, desctibe and explain mathematics
learning in school (See, for example, Jaworsky, 1994; Meira, 1995). In this paper
| will elaborate Lave and Wenger's theory and argue why their notion of learning
through participation in communities of practice appropriately and powerfully
iluminates learning and knowledge about teaching. But a shift into school learning
raises questions about what constitutes a community of practice, and hence about
theorising the learning and knowing of mathematics in school within social practice
theory.

SITUATING LEARNING IN PARTICIPATION IN COMMUNITIES OF SOCIAL
PRACTICE

Lave (1991} and Lave and Wenger {1991) situate learning in communities of social
practice, Building on Lave’s earlier work on situated cognition (1985; 1988}, thay
develop a theory of social practice - what they call ‘legitimate peripheral
participation in communities of practice’ (LPP}. LPP can illuminate how teachers
learn about teaching, their knowledge about teaching and provides a theoretical
orientation to teachers’ knowledge that incorporates the personal, the practical and
the social.

Briefly, a theory of social practice emphasizes the relational interdependency
of agent and world, activity, meaning, cognition, learning and knowing. It
emphasises the inherently socially negotiated character of meaning and the
interested, concerned character of the thought and actions of persons-in-
activity...In a theory of practice, cognition and communication in, and with,
the social world are situated in the historical development of ongoing
activity. (pp.50-51)

For Lave and Wenger, becoming knowledgeable is a8 simultaneous and ongoing
fashioning of personal and professional identity within a community of social
practice. Learning is located in the process of co-participation, and not in the heads
of individuals. This is thus a social theory of mind where meaning production is
taken out of the heads of individual speakers and located in social arenas that are
at once situationally specific and in the broader society. In Lave and Wenger's
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terms, knowledge about teaching is thus fundamentally tied to the context of
teaching, and cannot be abstracted out. Knowledge about teaching is also dynamic
and simultaneously personal and social.

‘Legitimate peripheral participation’ (LPP) is the conceptual bridge between the
person and the community of practice. As people participate in communities of
practice so they become more knowledgeable in the practice, they move from a
position of ‘newcomers’ to becoming ‘old-timers’ with greater mastery of the
practice and with all the conflicts, contradictions, changes and stability that entails.
LPP is a means of explaining both the developing identity of persons in the world,
and the production and reproduction of the community of practice. Here is a
conceptual framework for integrating the personal and the sociat in describing and
explaining teaching.

For Lave and Wenger, social practice, and not learning, is their starting point.
Learning is rather a dimension of any social practice. It is at once subjective and
objective through a focus on whole person-in-the-world. Learning is increasing
‘participation in communities of practices and concerns the whole person acting in
the world. This is in sharp contrast to dominant learning theory which is
concerned with internalisation of knowledge forms and their transfer to and
application in a range of contexts. Knowing is thus an activity by specific people
in specific circumstances. Identity, knowing and social membership entail one
another. Thus ‘learning is not a condition for memberships, but is itself an evolving
form of membership’ (p.53). Knowing about teaching and becoming a teacher
evolve, and are deeply interwaoven in ongoing activity in the practice of teaching.
Knowledge about teaching is not acquired in courses about teaching, but in
ongoing participation in the teaching community in which such courses might be
a part.

This view of knowledgeability opens another way of understanding teachers’ roles
in developing knowledge about teaching. Debates on the ‘teacher-as-researcher’
often polarise researchers and teacher-researchers, with arguments about what
constitutes research, and, moreover, what knowledge about teaching in fact
atfects practice'. Lave and Wenger's social practice theory clearly identifies
teachers as a crucial source of knowledge about teaching.?

Lave and Wenger distinguish between peripheral and full participation where both
are legitimate but different forms of participation in the practice and both are
constantly changing. Full participation signals mastery in the farm of full
membership in the practice rather than an endpoint in learning/knowing all there
is to know about the practice. The process of moving from peripheral to full
participation thus requires a ‘decentering’ of mastery and pedagogy away from the
individual master or learner and into the structuring of resources in the community
of practice (p.94). Learning and mastery are a function of how resources are made
available. For Lave and Wenger understanding participation and learning requires
a focus on the tearning curriculum, and not the teaching curriculum. It is neither
teaching intentions, nor planned pedagogy that can both enable and explain
learning. Rather, the social structure of the practice and conditions for legitimacy
define the practice and possibilities for learning.



Peripheral and full participation provide a means for distinguishing new and older
teachers, as well as for distinguishing within newer or older teachers in such a way
that those that remain more peripheral teachers are not so simply because they are
‘poor’. This might well be the case, but must be seen in relation to a teacher’s
access to resources in the social structure of teaching. The concept of
transparency elaborates this point.

TRANSPARENCY

For Lave and Wenger, becoming more knowledgeable, entails having access to a
wide range of ongoing activity in the practice - access to old-timers, other
members, to information, resources and opportunities for participation. Such
access hinges on the concept of transparency {p.100).

*The significance of artifacts in the full complexity of their relations with the
practice can be more or less transparent to learners. Transparency in its
simplest form may imply that the inner workings of an artifact are available
for the learner’s inspection...transparency refers to the way in which using
artifacts and understanding their significance interact to become one
learning process. (p.102}) '

Becoming a full participant means engaging with the technologies of everyday
practices in the community, as well as participating in its social relations. Thus,
access to and use of artifacts in the community is crucial. Often material tools,
artifacts -technologies - are treated as given. Yet, often they embody inner
workings tied with the history and development of the practice - these need to be
made available.

Lave and Wenger elaborate ‘transparency’ as involving the dual characteristics of
invisibility and visibility:

... invisibility in the form of unproblematic interpretation and integration {of
the artifact) into activity, and visibility in the form of extended access to
information. This is not a simple dichotomous distinction, since these two
crucial characteristics are in a complex interplay. (p.102)

In other words, the invisibility of mediatir.g technologies is necessary for focus on
and supporting the visibility of the subject matter. The notion of transparency
connects with the implicit and expligit in pedagogical relations. The implicit can
enable a focus of attention on the subject matter. But for effect, it must make the
subject matter visible. Often, again for cultural reasons, implicit pedagogical rules
can obstruct rather than enable the visibility of subject matter. It is the implicit
rules that become the object of attention, rather than the subject matter.

In short, practices that are more or less transparent can enable or deny access to
the practice - enable/legitimate or obstruct/prevent peripheral participation.
Through transparency, members can exercise control and selection into the
practica. Thus, the explanatory burden for learning - and here learning about
teaching - is placed in cultural practice, in the community of teaching, and not on
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one kind of learning or another. Increasing participation and hence
knowledgeability is not about connecting theory and practice, or experience and
abstraction, but rather entails the organisation of activities in teaching that makes
their meaning visible.

LEARNING TO TALK

In addition to transparency, legitimate peripheral participation also involves learning
how to talk {and be silent) in the manner of full participants. For newcomers then,
the purpose is not to learn from talk as a substitute for legitimate peripheral
participation, it is to learn to talk as a key to LPP. Unpacking these concepts
related to talk, Lave and Wenger distinguish between talking within and talking
about a practice. Full participation in a community of practice means learning to
talk, and this entails talking about and within the practice (p 109). Talking about
the practice from the outside is what often constitutes formal learning (eg. theory
of education in teacher education) where student teachers learn to talk about
teaching from outside the practice. For Lave and Wenger this is achieved through
a didactic use of language, not itself the discourse of teaching practice, and thus
creates a new linguistic practice all of its own.

Talking within and talking about practice thus need redefinition (p.109). Talking
within a practice itself includes both talking within (eg exchanging information
necessary to the progress of ongoing activities} and talking about (eg stories,
community lore}. Inside the shared practice, both forms of talk fulfil specific
functions: engaging, focusing and shifting attentions, bringing about co-ordination
on the one hand; supporting communal forms of memory and reflection as well as
signalling memberships on the other.

Talking about a practice also usually involves both talking within and about - but
in Lave and Wenger'’s terms, the effect of this talk is not full membership of the
practice - because it is happening from the outside - it is rather what they call
‘sequestration’ and an alienation from, or prevention of access to, the practice.

We know only too well from teacher education courses that a prospective
teacher’s ability to write a good essay on what is good teaching - where "good
essay’ is signalled in the practices of the academy - often bears little relation to
good teaching in practice.

Knowledge about teaching is thus not simply in individual teachers’ heads: it is
tied to their identities and evolves in and through co-participation in the practices
of the teaching community. Teachers, particularly if they have been in practice for
some time, are more or less knowledgeable about their practice (teaching)
depending on the community, their access to its resources - particularly to
activities related to talking within and about the practice, and to the transparency
in the practice.

It is this conception of teacher knowledgeablility that that has shaped my own

study of teachers’ knowledge of their practices in multilingual mathematics
classrooms.. Teachers have knowledge to share about teaching mathematics In
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multilingual mathematics classrooms. Moreover, a study that wishes to access
such knowledge should then include teachers talking about and within their
practices. In short, Lave and Wenger provide a theoretical orientation, with design
implications, for a study entailing teachers’ knowledge.

However, a study of teachers’ knowledge of the teaching and learning of
mathematics in school needs also to theorise the learning and knowing of school
mathematics. Does Lave and Wenger’s social practice theory transfer from
apprenticeships and other communities of practice like Alcoholics Anonymous and
teaching into school mathematics learning?

SHIFTING INTO SCHOOL LEARNING

Lave and Wenger develop their understanding of learning as part of social practice
through contexts of successful fearning - apprenticeships. They explicitly turn
away from the schoo! because learning as intended in schools has been not only
been unsuccessful for so many, lack of success has also been socially distributed.
In addition, the formal school has been the dominant and determining domain of
learning theory, yet it is not the only context of learning.

Instead of teachers and learners we have old-timers - knowledgeable others in a
community of practice - and new-comers whose knowledge and identity evolve
through centripetal participation in the practice. They elaborate the importance of
transparency in the practice and access to resources for newcomers becoming
knowledgeable and fashioning a successful identity. | have argued that this
conceptualisation of learning within social practice assists the theorising of
knowledge about teaching - how teachers learn about teaching. How does Lave
and Wenger’s conceptualising transfer to theorising learning mathematics {for
example) in school? In Lave and Wenger's own terms this question is important:
school is a specific social context, involving different social practices to contexts
of apprenticeship.

A shift into school learning, raises a number of questions: What/who is the
community of practice in school mathematics? What is the community that
teachers are old-timers in? mathematicians? mathematics teachers? Or are older
students, or mathematically schooled adults the old-timers here? and where are
they in relation to the teachers? and pupils? What are pupils newcomers into?
What might constitute legitimate peripheral participation in the mathematics
classroom and towards what is the centripetal process of participation? becoming
a mathematician? a mathematically schooled adult®?

Lave and Wenger offer a general theory of social practice in which learning is
always a part. However, there are clear difficulties moving into the context of
schooling. In school, students remain students until they leave. No matter how
much mastery they might have achieved, only a few, after school, might become
their mathematics teachers and even fewer mathematicians. Moreover, their
teachers - however mathematical - are not, in the context of schooling, practising
mathematicians. There is also a labour intensity in an apprenticeship model that
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does not transfer easily to mass schooling conditions. Thus, while Lave and
Wenger’s intentions are for a general theorising, and they attend, at moments, to
the specificity of schooling {pp,39-41), they, in fact, sidestep difficulties in using
their conceptualisation to interpret and explain teaching and learning in school.

Difficulties in interpretation can be located in their privileging the structure of the
practice rather than the structure of pedagogy as the source of learning.
Motivation, identity, conflict, power relation all reside in the community of practice
and will work in different ways to enable centripetal movement to full participation
or constrain it. This is why for them, learning is only understood in relation to a
learning rather than a teaching curriculum. But in so doing, and despite their own
commitment to move away from dichotomies, they insart a new and equally
problematic dichotomy between teaching and learning.

It is useful to ponder for a moment that in Russian for example there is only one
word - obuchenie - that describes teaching/learning. In other words there is no
learning without teaching and vice versa. The teaching/learning relation is a hugely
complex one. It is as fundamental a praoblem in teacher education as it is in
school learning. Dominant teacher education practices are structured in both the
academy and in the school itself - a combination of a formal and an apprenticeship
context. The success of this combination and the relative merits, weightings,
contents and processes of the two parts remain the focus of ongoing research and
debate. Lave and Wenger’'s theory of social practice shifts the problematic away
from theory/practice dichotomies and guestions of transfer and encourages us
rather to examine the resources made available in different contexts of teacher
education and their possible effects.

| have argued that while Lave and Wenger provide a framework for understanding
teachers knowledge and identity, their social practice theory is not
unproblematically transferable to school learning and teaching. They have,
nevertheless, constructed useful concepts that could provoke interesting insights
into learning and teaching mathematics in school. Specifically, access and
sequestration, the availability of learning resources, transparency., and their
distinction between talking within and about a practice are easily read into the
pedagogical relation in maths teaching in school, and are thus useful to explore
further.

In relation to transparency, and, for example, in a study on mathematics learning
in multilingual settings, language - and specifically speech - functions as a tool in
the classroom, A great deal of classroom communication occurs through speech.
Speech is thus a resource where, in Lave and Wenger’s terms, invisibility and
visibility are in constant interplay: speech should be invisible so that the subject
of inquiry - a mathematical problem, say - can be engaged i.e. become visible. But
language is a cultural tool and never unproblematic. In and of itself, it can mediate
the activity in the course of action. For example, a group of learners working on
a problem communicate through verbal speech, gestures and so on.- This
communication is supposed to make the problem more visible, more accessible.
But the social relations in the discussion and the discussion itself can become the
object and focus of attention, particularly if it occurs in a mix of languages. That



language itself can become visible, mediate activity so as to obscure the task
rather than make it visible seems fairly obvious in a multilingual class. Thus, what
Lave and Wenger powerfully illuminate is that rasources for learning, like language,
can enable or exclude. Depending on how they are used, resources can enable
access to the practice or sequester participants.

For Lave and Wenger, becoming knowledgeable in a practice entails learning to taik
within and about the practice, and not learning from talk. Yet a great deal of
literature of language and learning is about both - learning to talk and learning from
talk. But Lave and Wenger's distinction between talking within and about is useful.
First, it links with distinctions between talk as exploratory/expressive vs talk for
exhibiting/displaying knowledge. What might this mean in a maths classroom? In
classrooms where there is a move to more exploratory problem-soiving
mathematical practices, students often work together on tasks, and then report on
their working to others in the class and to the teachers. While on tasks, pupils
could be said to have opportunity for talking within their mathematical practice.

Then, and either to the teacher, or other pupils or both, they talk about their
mathematical ideas. Thus they are being provided opportunity to learn to talk but
a question begging is: given the distinct practice that is school mathematics - that
classroom talk has its own form and function {Mercer, 1995), how then are pupils
apprenticed into this talking? And what happens in classes where children have
a range of spoken languages? In short, what Lave and Wenger's theorising of
learning does not explain, is the specific demands of apprenticeship into school
mathematics, and its necessary focus on the structure of pedagogy.

Within a social theory of mind, that is sharing some basic assumptions with Lave
and Wenger, there has been a great deal of research, theorising and debate on the
mediation of mathematical knowledge in school. It is way beyond the scope of
this paper to elaborate fully here. Briefly, however, more sociological arguments
draw on the work of Paul Dowling {See, for example, Davis and Coombe, 1995}
and the importance of the discursive elaboration of mathematical knowledge in the
classroom for access or apprenticeship into mathematics as opposed to widespread
alienation. Here, mediation of mathematical knowledge via the everyday and the
emphasis on procedural knowledge in the curriculum come under scrutiny. More
psychologically oriented research has focused on the question of meaning where
both children’s meanings and socially constructed mathematical knowiedge are
important in the pedagogical situation. Alienation is a function of the suppressing
or ignoring of learner meanings. Informed by both neo-Piagetian and socio-cultural
theory, here, quality and effective mathematic learning and teaching in school
involves a blending of both self- and other-mediated activity, between scaffolding
a task and providing for creative responses to a task, between teaching and
learning (see, for example, Cobb, 1994; Confrey, 1994, 1995a, 1995b).

CONCLUSION

In short, explaining access to or sequestration/alienation from school mathematics
requires an understanding of the structure of pedagogy. Lave and Wenger’s social
practice theory falls short here. My own study of teachers’ knowlaedge of their
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practices in multilingual mathematics classrooms combines social practice theory
with socio-cultural theory for a full and effective elaboration of knowing, learning
and teaching mathematics in school.
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BEING A RESEARCHER AND BEING A TEACHER

Janet Ainley
Mathematics Education Research Centre
Institute of Education,
University of Warwick, Coventry, U.K.

This paper seeks 1o explore the tensions between the roles of teacher und .
reseurch, and between different styles of research activity, through the
detailed study of accounts of a particular classroom incident. Personal
observations and reflections are used, following the style of the Discipline
of Noticing (Mason, 1994), to consider what may be learned from these
tensions to inform the activities of both teaching and researching.

Introduction

The subject of this paper arises from personal experiences of my involvement in a
long term school-based research project. I am concerned to try to explore the
tensions between the role of teacher and the role of researcher in ways which may
shed light on my effectiveness in both roles. The literature on educational research
abounds in texts on classroom observation, and on the teacher as researcher
(Hitchcock and Hughes (1995), Hopkins (1993) and Hammersley (1986) are typical
examples). What is less easy to find is any literature which deals with the researcher
as teacher, or with the boundaries between the two roles in the classroom. My
interest here is not in the macro level of research design, but in the micro level of
individual interactions in the classroom. The activity I am engaged in is very much
‘researching from the inside’ employing the Discipline of Noticing (Mason (1994)).

The research context

The research project 1 am working on is concerned with exploring the effects of
high levels of access to portable computers on children’s mathematical learning. It
is based in a primary school, involving children aged 6 to 11 years. Our research
takes place mainly in normal classroom settings with a whole class of children. The
activities used arise as far as possible from the normal work planned for the class,
but with input from the researchers (myself and Dave Pratt) to extend and enrich
the mathematical ideas involved through the use of appropriate software.

In the early stages of the project, we worked with three classteachers? over a period
of two years. It was an important part of the project design that this period would
be one of considerable professional development for the classteachers, in terms of

I The wrn ‘classieacher” is used throughout to denote the regular members of the school stdt involved in the
project. This is distinguished from ‘tcacher’, which refers to the person tking the role of weacher at a particular time.
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both their confidence with computers, and their knowledge of mathematics, in
which none of them were specialists. We also planned activities with them in school,
and visited their classrooms regularly to observe and collect data.

During this time we developed good professional relationships, and became familiar
with each other’s approaches to teaching. Without the friendship which built up
between the project team during this period, much of the classroom-based research
which we undertook would have been very difficult to carry out, particularly as the
classteachers were working in areas which were largely new to them. It was as
important that we had confidence in each other as teachers, as that the classteachers
trusted us as researchers. Although our main interest is in cognitive issues, studying
how children’s mathematical learning is affected by the use of the computer, our
data was collected largely through a more ethnographic approach, observing
lessons, collecting examples of children’s work, interviewing teachers and children.

During a later, more intensive, phase of the project, we were able to work full time
on the project for one year. Each of us attached to one class during a school term,
teaching mathematics and science for 3 half days per week. The timetable was
arranged so that the other lecturer was able to act as a researcher during these
lessons. The classteachers were generally present during the lessons, sometimes
working alongside the ‘teacher’, and sometimes acting as a second ‘researcher’.
Thus the roles of teacher and researcher were clearly defined for us within any
particular lesson, but the transitions between roles was frequent. It is this
experience of acting both as a teacher and as a researcher which has focused my
attention on tensions involved in the relatonship between the two roles.

Conflicting perceptions of a classroom incident

I shall work mainly on a single incident which had a significant effect on my
awareness of the tensions arising from perceptions of classroom roles. Data has
been drawn partly from aspects of the data collected as part of the main project:
from field notes taken by researchers, and the journals kept by lecturers and
classteachers. The incident took place at an early stage in the project, before the
intensive period of work described above, and involved a classteacher, whom I shall
call Martha, and both lecturers.

Martha was using laptop computers with her class for the first time, working on a
data handling activity which had been planned jointly with other members of the
project team. The children had gained reasonable confidence with the machines, and
Martha had introduced the question ‘Whar affects how a toy car rolls down a slope?’
We have reported elsewhere on some of the children’s work on this activity, and on
the classteacher’s own insights about the approach to collecting and handling data



(Ainley and Pratt (1994, 1995)). The following sections give three different views
of activity in the classroom during a particular week.

Janet’s story

Visiting the classroom, I tried to take a back-seat, allowing Martha to take the lead
in the lesson. I sat with groups of children, taking field notes on my owi laptop.
Extracts from my notes reflect my attempts to record my observations without
getting drawn into ‘teaching’ or solving technical problems.

I'm sitting at a table, but because I'm writing on the machine and looking at
the screen I feel more invisible than I would with pencil and paper. ... It's
very hard not to get drawn into problem solving, so I have come away to
three pairs of girls working in the book corner. ... The girls with the
extended ramp I watched on Tuesday are busy testing, with a fine disregard
for accuracy. They are holding the ramp in place, but not noticing that they
keep moving i1. They have so much information to collect about each car that
it is a very long process. ... Some of the ramps are so steep that they cannot
record information easily. (Janet’s notes 9301 14)

Both the style of the activity and the use of the technology were new to Martha and
to the children, and so it was understandable; and for me expected, that there would
be some time spent exploring less profitable approaches before much progress was
made. However, as time went on my notes reflect some anxiety about how the
activity was developing.

Abour 2.15. Some {groups]are siill typing in their field names. Most have 4 or
3 records at most. Martha is stressing that they need lots of data, but in
practice this is going to take a long time. I'm not sure how much data
handling is going to happen. (Janet’s notes 9301 14)

Re-reading my notes evokes a strong sense of the discomfort 1 felt at this point. As
a researcher, 1 felt frustrated that time was passing and nothing very interesting
(mathematically) was happening. I was aware that 1 had other calls on my time
which might prevent me seeing later stages of the activity.

At the same time the part of me that is a teacher felt that I would have done things
differently, that the lesson was losing momentum and that the children needed some
clear direction in order to move on. However, I was very aware that it was not my
classroom: | was no! the teacher, and had a strong sense of an etiquette which did
not allow me to intervene. 1 was not sure how clear Martha’s mathematical and
scientific understanding of the situation was. At this point in our relationship I often
found it hard to read her reactions, as a previous journal entry indicated.



My heart sank a bit at Martha’s introduction, which was very brief. ... |
would have wanted to let them play with the cars first, and then spend more
time discussing possible variables, ... However, as things progressed I revised
my opinion. ... I must be careful not to underestimate Martha! (Janet’s journal
930112).

In the classroom, my tensions were soon resolved.

As usual, just as I was wondering if Martha has realised rhihgs are going a bit
awry, she came and talked about it. ... Martha feels a bit at sea, I'm going to
try talking to the whole group ... (Janet's notes 9301 14).

Stepping into the role of teacher made me feel much better. I was able to take
control of the direction of the children’s work and pull together ideas for their
future investigations, even though I was not going to be there the following day to
see the results. In a fairly short discussion I felt that they had made some progress.
Although I had had some worries about how things were progressing in Martha’s
classroom, I felt at this point that the situation had been partially retrieved. 1
discussed the situation with Dave, my colleague, who would be making the next visit
- to Martha’s classroom.

Dave’s story

Extracts from Dave’s journal and field notes indicate how the next lesson
progressed, but also give some insights into a different perspective on the roles of
researcher and teacher. Dave is prepared to intervene more explicitly to influence
Martha’s planning, though like me, he finds that he has possibly underestimated her
perceptiveness about the situation.

Yesterday Janet worried me by her report of the previous day. It seems that
Martha had found problems helping the children through the scientific process
involved in the experiments ... Janet and I decided that 1 would get in early
and try to talk to Martha about how the children might be focused more and
that this could result in them using the spreadsheet instead [of the
database]which they would find easier. In practice, Martha herself had come
to much the same conclusions. (Dave’s journal 930115)

As the lesson progressed, with children now working with spreadsheets to
investigate the effects of just one variable, Dave seems to see his role as being a
teacher as much as being a researcher. His field notes are all written in the past
tense, describing incidents that have taken place, and in which he has been involved,
rather than trying to record events as they happen. Dave intervenes directly to show
children techniques on the computer, and also takes the initiative in suggesting to
Martha how the activity might proceed.

r
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Larger groups were formed by merging all those who wanted to do the same
thing. There were two weight groups, one surface group, and one ramp
height group. ... I had ralked 10 Martha about the need to keep all other things
the same. In fact then they might as well use spreadsheets. Martha was unsure
about how 10 use the spreadsheet. However, after I had shown one group, she
was clearly much happier and was able to see how to teach the other groups.
(Dave's notes 9301 15)

Despite the fact that Dave and 1 regularly looked through and discussed each other’s
field notes, these differences in research style did not become apparent to us. Our
attention was generally focused on what the children had done, and issues to do with -
the mathematics or the technology. It was only at a later stage, when we were both
acting in the roles of both teacher and researcher, that I began to reflect on and then
explicitly discuss the tensions raised. However, Martha herself was much more
perceptive about our approaches.

Martha’s story

For Martha, this incident was something of a turning point, at which she might
easily have rejected the project because of the pressures it was putting upon her. She
reflected her conflicting feelings openly in her journal, despite knowing that we
would eventually read it.

I'm not sure what to say about today. At the moment [ feel clearer again about
the situation but at 2.30 this afternoon [ felt confused and very dissatisfied
about the whole thing, and wishing I had never heard of lap-tops. (Martha’s
journal 9301 14)

With typically disarming honesty, she also commented on our behaviour.

I do feel that this phase of the project is being approached differently by Dave
and Janet. Janet is really sitting back and taking on the role of the observer
rather than supporter, helping only when I am desperate. I wonder why?
(Martha’s journal 9301 14)

I felt much clearer this morning about the task for today and the way ahead.
... | talked things through with Dave before we started and he seemed to think
my plan was workable, and that we, both the children and myself, needed to
go through that rather busy and confused stage. I realised that | definitely had
leared a great deal. ... | wonder if Janet allowed me to go down the wrong
path intentionally? ... 1 felt much more comfortable with Dave taking a more
active role with the children. With Janet, when she is just observing, I feel as
if 1 am us much the guinea pig as the children and the computers are- (I know
I am really) but it feels as if I'm on teaching practice. (Martha's journal
930115)



Reflections

At first, I found reading Martha’s journal hurtful. It presented an image of myself
which I did not recognise, and which I felt was unfair. Now that we know each
other much better, Martha and I have been able to discuss this incident several times
with good humour: it has become known as ‘that Thursday afternoon’.

Returning to her written comments now, | am struck again by their perceptiveness,
heightened perhaps by contrast to my lack of it. As a researcher, I made a
deliberate attempt not to intervene or take any part in the teaching or organisation
of the lesson. I had, wrongly, assumed that she might feel threatened if 1 behaved
like another teacher in her classroom, ignoring other connotations of my behaviour.

Martha also comments on differences in the ways in which Dave and I acted in the
role of researcher in the classroom. These differences became more apparent to me
when ] was being a teacher, with researchers in my classroom. In simplistic terms I
would characterise two research approaches, reflected in Martha’s comments, as
those of observer and experimenter, illustrated briefly in the table below.

Observer Experimenter
* passive - monitoring activities, but * active - intervening to make an
not intervening, using the teacher as input to the activity, to see what
an agent happens _
* trying to record everything, » focusing on recording what is most
without too much filtering interesting
* holding back - not wanting to e getting involved - fitting into the
invade the teacher’s territory territory by behaving like a teacher

» minimising the effect of the deliberately acting as a catalyst

researcher

These are not intended as clear-cut categories. Certainly neither Dave or | feel our
behaviours fitted entirely into one column or the other, but the polarisation serves
to expose the often subtle distinctions more clearly. The two styles are also seen
more clearly in the context of the reactions of teachers to the presence of the
researcher.

We saw earlier that Martha felt more comfortable with an experimenter in her
classroom than with an observer. One story I can tell for this, in retrospect, is that
an observer reminded her of being assessed (even though the observer’s attention
was on the children), while an experimenter felt like having another teacher
working alongside her - a familiar situation which had positive associations.

As a teacher, 1 sometimes felt resentful of an experimenter in my classroom: 1 felt
that my control of the overall direction of the lesson was being undermined. In
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discussion, Dave (as a teacher) has reported times of frustration at the presence of
an observer, feeling that without active intervention on the part of the researcher to
move children’s thinking on, opportunities were being missed.

As a researcher,” my reactions to the styles of observer and experimenter are less
clear-cut. I often feel uncomfortable as an observer. To watch children’s activity
and not join in feels false, unnatural. | have a sense that I am not doing anything.
(This feeling has resonances in the experience of standing back as a teacher to assess
what is happening in the classroom. There may be echoes here of Martha’s reaction
- why isn’t she helping?) However, at another level, 1 know that what [ am doing is
important. The significance of children’'s words and actions are not always
immediately apparent: it is only through detailed and uncritical observation that
they can be captured. Mason (1994) stresses the importance of ‘giving an account
of” before ‘accounting for’. As an observer 1 have this model in my head. I try -
often unsuccessfully - to record incidents without judgement.

There is an attempt here to eliminate the researcher from the research context: to
create an invisible, neutral monitor, keeping the subject of the research ‘clean’. This
image is appealing; clinical, efficient, ‘correct’. There is a sense in which we would
perhaps all like our research to be seen in this light. However, in our project the
researchers were not neutral observers, but active participants in shaping the
research context. Whatever we did or did not do in the classroom, we had been
involved in planning the activities that the children worked on, often giving quite
explicit models to the teacher as to how a new stage of the activity should be
inroduced. In this sense, assuming the role of observer in the classroom was to
some extent a pretence. ‘

In contrast, 1 often find acting as a experimenter when 1 am in the classroom more
comfortable: I feel | am doing something, and getting some responses t0 my actions.
There is a great satisfaction in making a comment or asking a question, and
recording the effects on children’s activity. I find the role of experimenter
seductive: | use the word deliberately to convey both the pleasure and the lingering
sense of unease. It is this unease which I want to explore further. '

The rationale which Dave and 1 have discussed for acting as an experimenter is that
we have already set up the learning situation and want to see its effects. Specific
interventions in the classroom are made as a result of observing children’s progress
and judging that they are in need of further input to challenge or extend their
understanding. Having made the intervention, the researcher can then withdraw to
observe the effects of the intervention. The tension for me lies in the discipline
required to make this withdrawal. Once 1 begin to intervene, 1 find myself
becoming a teacher.



Having begun by looking at the interactions between researchers and teachers, I end
by looking at the relationship between the researcher and the teacher in myself. My
mental image is of stepping across a line between two areas of activity. Sometimes
the step is deliberate; sometimes inattentive wandering. Once I step over that line
and begin to be a teacher, I find it hard to act effectively as a researcher. I have an
investment in the children’s success, and 1 am looking for evidence of this. I stop
seeing and hearing what they really do so clearly. Children generally don’t feel able
to say when they have had enough of my intervention: indeed they may be happy
for me to carry them along my line of thinking. The purpose of my intervention as
a researcher will probably be different. I want to have an effect, but to do as little
as possible, leaving space to listen to the children. I may ask for the children’s
assent to my intervention, and try to leave them the freedom to ignore it.

Far from leading me to feel that I must deny my identity as a teacher in order to be
an effective researcher, 1 see the skills that I have as a teacher as crucial in enabling
me to frame such interventions effectively. At many levels, I can not stop being a
teacher when 1 am in school. To be an effective researcher (and perhaps also an
effective teacher) I believe that I need to be aware of the attractions and constraints
of both roles. ‘
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Procedural and Conceptual Aspects of Standard Algorithms in Calculus
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This research studies the different methods students use to carry out
algorithms for differentiation and integration. Following Krutetskii, it might be
conjectured that the higher attainers produce curtailed solutions giving the
answer in a smaller number of steps. However, in the population studied
(Malaysian students in the 50th to 90th percentile), some higher attaining
students wrote out solutions in great detail, so little correlation was found
berween the attainment of students and the number of steps taken. On the other
hand, the higher attainers had less fragile knowledge structures and were
significantly more likely to succeed. But with problems that can be simplified
by a non-algorithmic manipulation before using a standard algorithm, the
higher attainers were more likely to use some form of conceptual preparation.

Introduction

In his renowned study of the different problem-solving styles of children, Krutetskii
(1976) showed that, of four groups (gifted, capable, average, incapable), the gifted were
likely to curtail solutions to solve them in a small number of powerful steps, whilst the
capable and average were more likely to leamn to curtail solutions only after considerable
practice, and the incapable were likely to fail. This may be related to the strength of the
conceptual links formed by the more successful students in their cognitive structure
(Hiebert and Lefevre, 1986) which helps the individual utilise knowledge in an efficient
and powerful way. :

The brain is a huge simultaneous processing system that must filter out most of its
activity to be able to focus attention on a small amount of data for decision making
(Crick, 1994, p. 61). Therefore the ability to code information efficiently—to make
appropriate links between concepts and to develop methods that economise on
processes—is likely to increase the brain’s capacity to perform mathematics.

Davis (1983) suggested that at least two kinds of procedures exist: a visually moderated
sequence (VMS) and an integrated sequence. In a VMS, the whole sequence is not yet
apparent and the student carries out a manipulation to produce new written information
which is then operated on in tum until the problem is solved. In an integrated sequence,
the student is aware of the whole algorithm built up from smaller component sequences.

Hiebert and Lefevre et al (1986) contrasted procedural and conceptual methods of
processing mathematical information. Following Dubinsky (1991) and Sfard (1991),
who focused on the way in which process becomes encapsulated (or reified) as mental
object, Gray & Tall (1991, 1994) introduced the notion of procept: the amalgam of
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process and concept represented by the same symbol. They hypothesised that less
flexible thinkers see the symbol more as a process to be carried out using fairly inflexible
procedures. The more flexible thinkers are hypothesised to view a symbol both as a
process to do mathematics and a concept to think about. Evidence with young children
doing arithmetic showed that whilst the less successful clung to (often idiosyncratic and
inefficient) counting procedures, the more successful not only showed flexible ways of
thinking conceptually, but also often chose more efficient procedures to carry out
required processes.

In this study we consider a population of students solving problems involving standard
algorithms in differentiation and integration. Three groups, each of twelve students, were
selected attaining grades A, B, C respectively in recent examinations. Following
Krutetskii, one might hypothesise that the more successful make sophisticated links to
reduce the manipulation involved and curtail their algorithms to make them more
effective, whilst the less successful are likely to use more rigid procedural methods that
have longer and more fragile connections which may break down. However, the
population studied does not fully reflect these hypotheses. It consists of Malaysian
students following degrees involving mathematics taken from the 50th to the 90th
percentile of the total population (because the highest attaining 10% travel abroad to
study). It was found that in this population there was little correlation between
attainment and curtailment of solutions (because the higher attainers included those who
wrote out painstakingly detailed solutions). The major difference between higher and
lower attainers in standard questions was that the low attainers had more fragile
connections in their knowledge structure and were more likely to break down.

However, the higher attaining grade A students were more likely to show the capacity to
use subtle initial simplifications to simplify the overall manipulation required. Specially

designed problems, such as finding the derivative of l+zx benefit from an initial
x

conceptual preparation to make the differentiation algorithm simpler to apply. Those
who fail to carry out a conceptual preparation and tackle the problem using the standard
algorithm may not only be applying a more complex algorithm, but have to follow it up
with a more complex post-algorithmic simplification.

It was found that in certain questions, higher attainers were more likely to use conceptual
preparation than lower attainers. On other occasions where the preparation required was
more subtle or the gain was not so obvious, their confidence in symbolic manipulation
led some high attainers to use a standard method even when they were aware of a
possible alternative. Just as with the more successful children in arithmetic, who would
confidently use efficient procedures when they did not immediately recall the relevant
number facts, the more successful calculus students developed a powerful combination
of conceptual and procedural methods whilst the less successful were often faced with a
more difficult manipulation and therefore were more likely to fail.



Curtailment of solutions

A crude method of determining the degree of cunailment of a solution process is to
count the number of steps carried out by the students. Some students may begin with the
given formula, others may write a simplification as their first line. The latter case needs
to include the implicit simplification in the first line in the line count. In addition, the
final form of the solution is often written in a conventional inanner, and when a student
writes a solution which is not yet in this form, a note should be made that to attain the
canonical form to be comparable with other students may require one (or more) further
steps.

The following tables show typical solutions of the integration problem
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for the number of steps given in each column. (Each column may represent slight
variants, but the most common solution is written out.) Some solutions do not end in the

. 243 3 : -
conventional form _;/__1,5 + ¢, so these could be considered as requiring one more step

1o attain standard form for the sake of comparability.

Grade A students all responded correctly and their solutions vary in length from two to
six steps (the latter possibly being equivalent to seven steps if the last line were further
simplified to its conventional form). (Table 1.)

Typical solutions of grade A students

All responses correct (12)

1 student 2 swudents S students 2 students 2 students
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2 steps 3 steps 4 steps 5 steps 6 steps
(including unwriten | (one solution Both in non
first line ) non -conventional) -conventional form

Table I: Grade A student responses to an integration problem




Grade B students produced many errors, with five correct and seven incorrect solutions.
Amongst the correct responses, three used four steps and two used six steps. (Table 2.)

Typical solutions of grade B students

Correct responses (5)

Errors (7)
3 students 2 students 2 students 3 students 2 students
JV3r'de [V3dax JV3rdr [V3rax
TN I
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_ 2t 2(3x°)
27x° 271
_ 6x’ _2
2737 9
4 steps 6 steps Overgeneralisation | Mixture of substitution | Algebraic
of integration and direct integration | Misconception

Table 2: Grade B swudent responses to an integration problem

Grade C students have only four correct solutions but one has only 2 steps, one has 3
steps and two have 4 steps. (Table 3.)

From these solutions of students in grades A, B, C we note that the higher attainers in
grade A are all successful but vary considerable in the number of steps taken. Grade B
students are less successful (5 out of 12) and the correct solutions vary from 4 to 6 steps.
The grade C students are even less successful (4 out of 12) and the four successful
students have solutions varying in length from 2 to 4 steps. It cannot be asserted that
there is any clear patten between curtailment and attainment. However, there is a clear
diminution in lower attaining students successfully completing the problem. The
difference between the performance of Grade A and Grade B is statistically significant
using the x2-test with Yates correction (p<0.01), and between Grade A and Grade C even
more so (p<0.0025). The zero entry in the Grade A failures greatly biases these results,
nevertheless the differences are clearly striking.
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Typical solutions of grade C students

Correct responses (4) _ Errors (8)
1 student I student 2 students J 3 students 2 swdents 3 students
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2 steps 3 steps 4 steps Over- Mixuwre of Algebraic
Non- generalisation of | substitution and | Misconception
conventional direct integration | direct integration
solution

Table 3: Grade C student responses to an integration problem

Conceptual Preparation

When the manipulation involved in using an algorithm becomes more complex, it may
be possible to devise alternate methods to simplify the solution For example, the

problem to determine the derivative of l+2x using the standard algorithm for the
X

derivative of a quotient involves the student needing to use the fonnula in a cumbersome
way and then simplifying the result:

l+J(2
y=—=
X
dy (2x)(x) (2()(l+x) 2x3—2.r-2x3_ 2x 2
Z 272 4 )
(x7) X X X

However, if the expression is first simplified as x ~ +1 then its derivative is straight
away seen to be —2x 7, affording a considerable reduction in processing. Students may
shorten their solutions in various ways, for instance, the initial simplification might be
conceived as a succession of forrmal manipulations:
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2 2
I+x" 1 x"
7 I A

X X X

-2

+1.

However, often students compress this further to a single written step:

2 )
l+x -2

s—=x  +1l.
X : 1+ x°
Some do this by reading the symbol —— as two fractions in this way:
N x
1+ x
IS

2

. | . ‘ X TP
translating — immediately as x~2, then wriling — as +1, to perform the simplification
. . X . X
in a single composite step. 5

. . , . . 1+ x
Out of thirty six students, twenty of them simplified the expression 5

carrying out the differentiation, for example by writing: X

before

y= x4,
4 _ ~2x7 = 13— :
dx X
Fifteen students failed to conceptually prepare and so led to a more complex version of
the algorithm and the need to perform more simplification afterwards. All but one

student were successful in this task, the remaining student making a single slip by
writing a "+’ sign in the numerator of the quotient algorithm instead of a ‘-’ sign:

dy _2x()+2x(+xY) 2 +2x+20° _axt+2x 4 2
dx (X2)2 X4 X4 x x3

The students in the various grades performed as follows:

Students’ Conceptually | Post-algorithmic No further
grade prepared simplification simplification
A 10 2 0
B 6 6 0
C 4 7 1
Total 20 15 ]

Table 4: Student responses 10 a differentiation problem

Here the number carrying out conceptual preparation reduces from 10 out of 12 in-grade
A to only 4 out of 12 in grade C. Using a x2 test with Yates correction, this is significant
at the 5% level (with p=0.038). The numbers involved are small and the differences
between groups A and B and between B and C are not statistically significant.
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The fragility of conceptual preparation

The conceptual preparation for a solution depends very much on the nature of the
problem. There is no obvious algorithm to cover all possible cases. For instance the
2
o bex™ . . . .
derivative of y = is simplified by separating the expression into two parts, but the
. rz .

derivative of

1 x4

§ —

3 2
1+ x 1+ x

is found more easily by adding the two expressions together and factorising the
numerator.

1 P P | I )(]+.l ) 2
).’: 2— 2: 7= I—_\' ,
I+ |+ x 1+ x (l+1 )
ﬂ=—-2,\'.
dx

In this example, only six of the twelve Grade A students added the terms together and
factorised the numerator. Conceptual preparation therefore varies considerably from case
to case and is not given by a single algorithm, so students may use some form of
conceptual preparation in some problems, but not in others.

Sometimes it may not even be clear whether some form of conceptual preparation may
be advantageous. For instance, the problem

Fmdl— wheny = (x+l)
dx X

is best solved by using the chain rule with 4 = x + — to obtain the derivative in the form

x
" l% However the problem
¢

dy 1}?
Find £~ ,whenyz(x+—)
dx X

happens to be easier by expanding the bracket to differentiate x> +2+x72 In this case
there 1s a tension between using the generalisable chain rule method and the particular
method expanding the bracket, which happens to be marginally shorter. This is reflected
in the performance of the grade A students where six used the chain rule and six
expanded the bracket. In interview, four of the six using the chain rule could see a
possible advantage in the altemative method but preferred to use the more general
strategy and trust their facility in manipulation.
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Conclusion

In the group of students studied (between the 50th and 90th percentile in the whole
population) there is no obvious correlation between the number of steps taken in carrying
out a routine symbolic algorithm and the level of attainment of the student. Thus the
curtailment spoken of by Krutetskii in higher attaining children solving problems does
not occur here. The more successful Grade A students include those who write out
algorithms in greater detail as well as those who cunail the solution. The most obvious
difference between the Grade A and Grade C students is the ability of the former to
complete the procedure correctly.

However, when problems are designed which can be simplified by an initial conceptual
preparation, the more successful students are more likely to conceptually prepare than
the less successful students. With problems where the preparation involves using a more
specific method that is shorter or a generalisable method which happens to be longer, the
more successful students are likely to be aware of the alternatives, some using the shorter
method, some preferring the more general method and having confidence in their ability
to carry out the manipulation. This is in accord with the notion of proceptual thinking in
arithmetic (Gray & Tall, 1994) where the more successful select appropriate conceptual
methods or have the power to carry out the procedures correctly. It is also in accord with
the value of having both conceptual and procedural knowledge (Hiebert & Lefevre,
1986).

References .
Crick, F. (1994). The Astonishing Hypothesis. London; Simon & Schuster.

Davis, R. B. (1983). Complex mathematical cognition. In Ginsburg (Ed.), The
development of mathematical thinking, (pp. 253-290). New York: Academic
Press.

Dubinsky, E. (1991). Reflective Abstraction in Advanced Mathematical Thinking. In
D.Tall (Ed.) Advanced Mathematical Thinking, (pp. 95-123) Kluwer:Dordrecht.

Gray, E. M. & Tall, D. O. (1991). Duality , ambiguity and flexibility in successful
mathematical thinking. Proceedings of PME XV. Assisi, laly, Vol. 11, pp. 72-79.

Gray, E. M. & Tall, D. O. (1994). Duality, ambiguity and flexibility: A proceptual view of
simple arithmetic. Journal of Research in Mathematics Education, 252, 115-141.

Hiebert, J & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics:
An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural
knowledge: The case of mathematics (pp. 1-27). Hillsdale, NJ: Lawrence Erlbaum.

Krutetskii, V. A. (1976). The Psychology of Mathematical Abilities in Schoolchildren.
Chicago: The University of Chicago Press.

Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on
processes and objects as different sides of the same coin, Educational Studies in
Mathematics, 22 1, 1-36.

34 L2426



USING SMALL GROUP DISCUSSIONS TO GATHER
EVIDENCE OF MATHEMATICAL POWER
) SITSOFE ENYONAM ANKU
NANYANG TECHNOLOGICAL UNIVERSITY, SINGAPORE

Abstract

Four grude nine students discussed their solutions to seven mathematical problems.
The discussions were analysed 10 provide evidence of mathematical power which
was defined in terms of NCTM's student assessment standurds (SAS) and their
integration. Results showed that students demonstrated mathematical power to the
extent that at leust one category of the mathematical activities ussociated with each
SAS wus reflected by the students’ small group discussions. Combining students’
written scripts with their talk provided a better insight into the things they were
talking about. Also, monitoring the studenis and sometimes providing them with
prompts helped them to accomplish their tasks. Finally, the students tended to shift
their viewpoints consensually or conceptually 1o align their viewpoints with
majority viewpoinis.

Introduction

A major reform in mathematics education throughout North America,
initiated by the National Council of Teachers of Mathematics (NCTM), involves the
provision of standards for curriculum and evaluation in K-12 mathematics (NCTM,
1989) and standards for teaching K-12 mathematics (NCTM, 1991). The standards
for curriculum and evaluation, and those for teaching, are the ones perceived by the
NCTM as important and needing implementation if students are to develop
mathematical power which refers to "all aspects of mathematical knowledge and
their integration” (NCTM, 1989, p. 205). Specifically for this study, mathematical
power was defined in terms of student-assessment standards (SAS), which comprise
mathematical communication, mathematical problem solving, mathematical
concepts, mathematical procedures, and mathematical disposition. Associated with
each SAS are defined categories of mathematical activities (NCTM, 1989).

One way to monitor the development of mathematical power is through the
talk that can result when students interact (as can occur in small groups) to make
sense of mathematical activities. There have been several investigations into the
contributions of student interactions (in small groups) to the learning of
mathematics (Artz & Newman, 1990; Davidson, 1990; Johnson, Johnson, & Stanne,
1990; Webb, 1991; Yackel et al., 1990), but none has been directed specifically at
examining the extent to which information from the small group is indicative of
students’ mathematical power. Furthennore, it was reported in the March 1994
issue of the Journal of Research in Mathematics Education (volume 25 number 2,
page 115) by the Research Advisory Committee of the NCTM that:

Perhaps the most obvious research-related response to the Standurds is the
identification and clarification of the research base for the recommendations
contained in the document. The Stundards document contains many
recommendations, but in general it does not provide a research context for
the recommendations, even when such a context is available.

"
13
¥

L

2-27
35



1

So, in line with the aspirations of the Research Advisory Committee, this
study sought to provide a research context for using the small group format to
gather information indicative of students' mathematical power. The information
involved what a group of four students said or wrote down individually as they
engaged in student-student interactions to discuss their solutions to mathematical
problems.

Theoretical Framework

To initiate and sustain verbal interactions among students, some form of
discourse is necessary. This discourse includes the way ideas are exchanged and
what those ideas entail (NCTM, 1991). Throughout the discourse, the individual's
ways of making sense of things (Davis, Maher, & Noddings, 1990), are influenced
by the social interaction that helps the individual to make sense of those things
(Bishop, 1985; Yackel et al, 1990; Vygotsky, 1978). Accordingly, where
individual students interact to discuss their solutions to mathematical problems, |
believe it is important to consider the individual's ways of making sense of the
problems and the social interaction among the students, both of which contribute to
the generation of knowledge. Thus, the ideas of constructivism and knowledge
generation through social interaction, provided a useful theoretical framework for
gathering information on students' demonstration of mathematical power in small
group contexts.

Method

Design

Four of the 18 grade 9 students of a class were selected to form the focus
group of the study. The remaining students were also grouped into fours or fives
and they participated in the study but data gathered from them were used only for
purposes of triangulation. For each data gathering session, the students attempted to
solve the assigned problems individually within 20 minutes and then later discussed
the solutions they obtained with their group members for 40 minutes. [ urged the
students to focus on explaining and giving justifications for the solutions they
obtained while they discussed their solutions. Occasionally, I gave students prompts
either when they asked for help, or when I found they were stuck in their
discussions.
Small group formation

As students' talk was very vital for gathering information for the study, it
was desirable to have group members who would communicate with each other,
feel comfortable sharing their ideas together, validate their conjectures while others
in the group tried to meaningfully criticize those conjectures. Also, according to
Webb (1991), for equal number of males and females, achievement does not differ
significantly when students work in groups. Accordingly, students for the study
were selected based on the following criteria: 1) mathematucal ability, 2) ability to
talk in a group, and 3) balancing of males and females. ’
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[he problems

Although what constitutes a problem varies for each student and that not all the
problems could provide information indicative of all of SAS, what was important
was that each problem must have the potential for students to engage in sound and
significant mathematics as a part of accomplishing the task (Van de Walle, 1994).

- Furthermore, the problem should provide the students the opportunity to have
something to talk about. In that regard, I tried to use problem types with Wthh the
students were familiar, and indeed, students had a lot to talk about.

Data collection techniques

To gather information from the participants’ perspectives (Hammersley &
Atkinson, 1991; Pation, 1987), | video-recorded the group's discussions-of their
solutions to the problems. The remaining groups' discussions were audio recorded.
Also, | collected all students' written responses to the problems.
Data analysis

The focus group's discussions were transcribed from the video and then
analyzed. Information from students' small group discussions were organized
around SAS which served as key constructs (Fetterman, 1989; Guba & Lincoln,
1991; Hammersley & Atkinson, 1991; Merriam, 1991). The unit of analysis
(Merriam, 1991; Yin, 1989) was the information students generated in 40 minutes,
as they discussed in small groups, their solutions to each of the mathematical
problems. Any inferences or generalizations were not statistical, but rather
analyucal (Yin, 1989), and they were to "guide but not predict one's actions”
(Merriam, 1991, p. 176). To provide "trustworthy” results, efforts were made to
ensure the "credibility” and "auditability” of the data and the results (Guba &

Lincoln, 1991). For example, after the transcription, each video recordmg and the
transcripts were re-examined together.

From the full transcript of each problem, portions were coded as Cl, C2, ...;

MPI, MP2, ...; MCI, MC2, ...; PSI, PS2, ...; and MDI, MD2, ...; which represent
categdries of mathematical activities associated with SAS. For example, in PS4,

"PS" refers to "problem solving" while "4" refers to an excerpt that reflects the

"fourth” category of students’ mathematical activities listed under problem solving,
that is, verify and interpret results. Then, from all portions of the discussions
coded PS4, 1 selected one excerpt that, in my judgment, best illustrates students’
ability to verify and interpret results, using the NCTM’s definition. Transcripts for
the other problems were treated similarly.

The extent to which students demonstrated mathematical power was then
provided in terms of the interpretations of the excerpts relating to SAS and the
union of those excerpts. What was important here was to provide a holistic picture
of students’ demonstration of mathematical power within problems and across
problems.

Results and Reflections

A category of mathematical activities associated with mathematical
communication (an SAS) was the use of mathematical vocabilary, notation, and
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structure 1o represent ideas, describe relationships, and model situations. An
example of students’ use of mathematical notations to represent mathematical ideas
and to describe mathematical relationships is illustrated by the excerpt in figure 1.
Students were-discussing their solutions to a problem requiring them to find the
ratio of the area to the perimeter of a given plane figure. Jane orally described
ratio correctly as *... This, two dots, and that.” Her script (see Figure 2) showed
that she could represent ratio also with a "slash” instead of a "double dot.” When
Daniel responded to Jane's question "Does it matter if you write it this way or that
way?" by saying that "They are all the nght answer”, apparently, he was assuring
Jane that both ways of representing ratio are correct. Quincy also was in
agreement. So, in addition to seeing how students represented notations, we
recognize that they also "debated” its appropriateness.

Jane: So then if it is ratio, it will be like....

Paulina Is this ratio? [Asking Daniel].

Daniel: Yes...

Jane: ... This, two dots, and that? Does it matter if you write it this way or

that way? What do you think?
Daniel: They are all the right answer. [Quincy nodding his head].

Figure |: An excerpt of students’ discussions involving mathematical
communication.

An examination of Jane’s script (Figure 2) shows that “this” was referring to
one part of the ratio, "two dots” was refermnng to the symbol for ratio, and “that”
was referring to the other part of the ratio.
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hematical power

Evidence of students' demonstration of mathematical power was provided by
their: 1) ability to communicate mathematically, 2) ability to use mathematical
concepts, 3) ability to use mathematical procedures, 4) ability to use mathematics to
solve problems, and 5) disposition towards mathematics. In addition, students’
mathematical power was evidenced by the extent to which students integrated all
these aspects of what should constitute mathematical knowledge. Table 1 provides a
summary of the distribution of excerpts that were reflective of SAS. The table was
obtained after analysis similar to the ones in Figures | and 2.

Table |

ories o nent Standards (SA

Refl { by Di ) f Prob
SAS Prob 1 |Prob?2 |Prob3 |Prob4 |ProbS5 |jProb6 [Prob?7
C 2/3 3/3 373 33 2/3 3/3 313
MC 217 417 3717 477 3/7 317 271
MP 4/7 3/7 477 277 217 3/7 571
PS 2/5 2/5 2/5 2/5 2/5 415 2/5
MD 417 317 417 471 317 3/7 6/7
Note:

C = Communication, MC = Mathematical concepts, MP = Mathematical
procedures, PS = Problem solving, MD = Mathematical disposition

For example, 2/3 in the row of "C" (communication) and in the column of
"Prob 1" (problem 1) means that there were excerpts from the discussions of
problem | that reflect two out of the three categories of mathematical activities
associated with mathematical communication. Notice that 2/3 was not used to mean
two out the three equal categories; it was only used to mean that two of the three
categories were reflected. So, evidence that the discussions reflected mathematical
activities associated with any two or more SAS (union of excerpts related to SAS)
was taken to constitute evidence for integration. (For further details, see Anku,
1994).

her results

Two major types of shifts were perceived to have taken place as students
discussed their solutions to the problems given them. These were labeled - ‘
consensuul when the shift was to align an initial viewpoint with that of the majority,
and conceptual when an initial conception was abandoned by the students for a
different conception during the discussions. Most of the consensual shifts involved
majority viewpoints that were compatible with acceptable viewpoints within
mathematics. Apparently, students did not shift consensually if they had a solid

2-31 s



- grasp of an initial v:ewpoml Finally, conceplual shifts observed from the study
resulted in conceptions that were compatible with standard conceptions within
mathernatics. :
Reflecti

There were some difficulties associated with capturing students’ mathematical
power through the SAS. The circular definition of students’ mathematical power
made it problematic when deciding what constituted students' mathematical power.
For example, the NCTM considers students’ mathematical power as one of the
student assessment standards and considers mathematical reasoning also as one of
the student assessment standards. However, a category of mathematical activity
associated with students’ mathematical power involves mathematical reasoning also.
Thus, conceptually, mathematical reasoning is presented as a subset of students’
mathematical power and at the same time presented as of equal importance to
students’ mathematical power, which is a student assessment standard. What
constitutes students’ mathematical power was therefore difficult to determine and
sonie conceptual clarification is needed.

. Talking about conceptual clarification brings to mind the difficulty 1 had
deciding whether the mathematical power demonstrated by the students in the small
group was for the group or for the individuals in the group. During the discussions
some particular, students séemed to talk frequenlly, but as responses to what other
‘students, who seemed talk less frequently, said in the group. In either case, the talk
reflected a category of mathematical activity associated with one of the students
“assessment-standards. So, was it the student who talked more frequently that
demonstrated mathematical power or the one who talked less frequently but who
provoked the discussion? Or was it the whole group that demonstrated
mathematical power" It was a difficult decision for me to take and 1 found myself
"buying” into the idea that in the small group context, the individual demonstrated
mathematical power which was "mediated” by the group interaction. By that |
mean there was some "group effect” on the individual's demonstration of
mathematical power, and 1 am still grappling with how to determine the extent of
that group effect.

Sometimes, deciding on which categories of mathematical activities particular
information reflected was difficult because of the overlap of some of the categories
associated with SAS. Evidence that was indicative of a student's ability "to apply a
variety of sirategies to solve problems”, for example, might also be indicative of
that student’s “flexibility in exploring mathematical ideas and trying alternative
methods in solving problems.” However, these two categories of mathematical
activities are associated with two different SAS. Rather, instead of creating
separate categories for such mathematical activities, efforts should be made to unify
such categones so as to provide a more holistic picture of students’ mathematical
power.

Even though the study could be considered a "best case scenerio,” the results
suggest several implications for classroom practice. Since the small group

40 232



discussions provided information indicative of studemts' mathematical power, the
results suggest that the small group context can be used to gather such information.
As such, mathematics teachers are encouraged to use it as a context for gathering
information indicative of students' mathematical power.. Also, mathematics
teachers are encouraged to consciously provide for all categories of mathematical
activities that are associated with SAS if students are to meet the expectations of the
reform. Limiting the categories will limit the extent to which students develop -
mathematical power. Also, when teachers adopt the use of small groups to gather
information indicative of students’ mathematical power, they are encouraged not to
focus only on students’ 1alk, since sometimes, combining students’ talk with thelr
wrillen scripts can provide bétter insights into the subject of discussion.

A classroom instructional process, which involves discussions of
mathematical activities, may help i improve students’ proficiency in ’mathematics
because as students shift their reasoning consensually or conceptually as a result of
group discussions, they tend to align themselves with viewpoints that are compatible
with acceptable viewpoints within mathematics. For students to confidently align
themselves with acceptable viewpoints, teachers need to encourage their students to
self-validate (Anku, in press) their solution. This was evidenced in the study by
students not changing their solution when they could self-validate it. Thus, the
ability to self-validate should provide the control element shaping the direction of
the shifts.

Finally, teachers are encouraged to monitor the group discussions so that
prompts can be given to challenge shifts not aligned with acceplable viewpoints
within mathematics. Giving the appropriate prompts at the appropnate time means
that the teachers are knowledgeable enough to detect students’ difficulties (and
slrengths) and:know what prompts to give to help clarify students’ Lhmkmg
Momlonng 1s also necessary lf teachers are to identify the "buds” or "flowers" that
are "in the course of maturing” (Vygotsky, 1978, p. 87) and provide appropriate
mathematical activities that will enhance the growth of those buds or flowers.

In conclusion, this study demonstrates in a small way that from small group
discussions, there can be observable events that reflect the categories of :
mathematical activities associated with SAS. To continue with the current reform
within mathematics education, eachers should be encouraged to take risks to
identify and assess classroom events that reflect the seemingly rhetoric parts of the
SAS. Teachers will need a lot of guidance and encouragement, and 1 hope this
study provides an additional source of encouragement that it can be done.
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Abstract

This paper applies a theoretical framework for analvzing seventh grade
students’ knowledge of rational numbers. A study was designed 10 examine the
pussible interrelations among different dimensions of knowledge. Sixty-six Israeli
students answered a written gquestionndire and were intensively interviewed about
their mathematical content knowledge of rational nunibers.

A comprehensive picture of the algorithmic, intuitive and formal
dimensions of knowledge and the interactions among them is provided. This
framework is seen as being potentially extended to other domains of study and
other populations.

The non-negative rational numbers constitute a formal extension of the
natural numbers. This extension 1s a major part of the curricula of both upper
elementary and middle schools and requires substantial restructuring of the
meaning of and operations with numbers. Studies have consistently shown that
non-negative rational numbers have long been a stumbling block for many
students (Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1981; Carpenter,
Lindquist, Brown, Kouba, Silver, & Swaftford, 1988; Greer, 1994). Each of these
studies provided information related to a specific aspect of students' mathematical
content knowledge of rational numbers.

Fischbein (1983) has suggested that mathematical knowledge 1s embedded in
a set of connections among algorithmic, intuitive and formal dimensions of
knowledge. Usually, the assessment of students’ mathematical knowledge considers
only the algorithmic dimension. In our opinion, in order to get a comprehensive
picture of knowledge and thinking abilities of students, one has to take into
account the formal and the intuitive knowledge as well. Proficiency in procedures
does not necessarily ensure understanding. Ideally, the dimensions of knowledge
should cooperate in the processes of concept acquisition, understanding and
problem solving. In reality, though, this 15 not always the case - often there are
serious inconsistencies between students’ algorithmic, intuitive and formal
knowledge. Such inconsistencies could be the source of common difficulties that

This study is a part of a project supported by the Umited States - [srael Binational Scieace Foundation (BSE) Grant
{# 88-00213/1). Al opinions expressed hiere are those of the asthors and do not necessanly reflect the views ol the
funder. We wish to acknowledge the pancipal and co-principal investugators ol the project - Prof. Eiraim Fischben,
Prof. Dina Tirosh, Prof. Janres Wilson, and Dr. Anna Graeber - for their helplul comments on earlier drants of ths
paper. We thank Nurith Snir and Boaz Shani 1or collecting the data.

235 3?EST COPY AVAILABLE



learners encounter in their mathematical activities, including misconceptions,
cognitive obstacles and inadequate usage of algorithms (Fischbein, 1983; Tall &
Vinner, 1981; Ttrosh, 1990).

The absence of a conceptual framework for analyzing learners'
mathematical content:knowledge, his made a global understanding impossible.
This study therefore assesses seventh graders' mathematical content knowledge of
ratignal numbers in respect to the three dimensions and the interactions among
them. We assume that these interactions may better explain students' reasoning
when solving a problem, correctly or incorrectly.

Method
Subjects
Sixty-six seventh graders participated in the study. All of them had had
formal instruction about operations with non-negative rational numbers (fractions
and decimals) during the sixth grade.

Instruments

l. Diagnostic test: The students were asked to complete a diagnostic test which
examined their formal; algorithmic and intuitive understanding of rational
numbers. The diagnostic test examined the following aspects:

a) The algorithmic dimension: Ability to compute with fractions and
* with decimal numbers, and the capability to explain the rationale
behind the various algorithmic aspects.

b)  The formal diinension: Ability to identify and give examples of
natural nuinbers, integers and rational numbers. Knowledge related
to the hierarchy of subsets of rational numbers and familiarity with
the density of rational numbers and with the commutative, associative
and distributive laws.

c) The intuitive dimension: Ability to identify the adequate operations
for solving multiplication and division word-problems, capability to
produce adequate intuitive models for representing number concepts
and operations with them, and competency in evaluating the results of
arithmetical operations with rational numbers.

!'Q

Interviews: A.sample of 23 students was chosen for extensive interviewing.

Eleven students were those who showed poor algorithmic, formal and
intuitive knowledge, while 12 students had relatively good algorithmic but
low formal and intuitive performance. Each subject was interviewed at least
three times for 20-40 minutes. The interviews were semi-structured, that is,
an interview program was outlined for each subject and additional probes
were made during interviews to better understand their conceptions.



Results

A. Algorithmic knowledge.

The students were asked to solve five multiplication problems and nine
division problems. Half of the students were asked 10 solve problems with
tractions, the others solved the same problems given in decimal form. Poorest
performance was observed on items involving mixed numerical notation in
decimals. About 40% of the students did not supply any answer to those items.

Interestingly, dividing 6:11 and 11:6 was problematic. About 20% of the students
responded to neither of these items. Twenty percent of the students claimed that it
was impossible to divide 6 by 11.

Students’ performance on division tasks was poorer than on the multiplication
tasks, and their performance with decimals was poorer than with integers and.
fractions (see Table 1).

Table |: Seventh Graders' Performance in Algorithmic Tasks (in %)

Correcl Answers Correct Answers
Fractions Decimals Fraclions Decimals

039 - 97 78 25:4 55 34
3.75-5 64 C 67 4:0.25 67 55
9-0.3 88 78 0.2:0.8 64 51
0.75.0.5 88 70 0.8:0.2 79 67
6.254.8 64 51 0.2:3 73 42
©0.25:0.6 76 34
8.254.5 ) 52 27

6.11 53

11.6 55

The students were generally unable to justify the successive steps of the
algonthms (their understanding of the algorithms seems instrumental and not
relational). During interviews, when asked to explain why a certain algorithm led
to its solution, most of the subjects kept repeating the steps in the algorithm. They
were surprised that a question such as "Why do you multiply both the divisor and
the dividend in 4.5:0.5 by the same number?” could be asked. When asked if it
was possible, in a problem like 5.8:2, not to multiply the divisor and the dividend
by 10 but to perform the division directly, most of the interviewers argued that
"It is impossible, you must first get rid of the decimal point”.

2-37

L
45 &



B. Intuitive knowledge.

l. Beliefs about multiplication and division:

The students were asked to respond to statements related to multiplication
and division.
a) In a multiplication problem, the product is always bigger than one.

b) In a multiplication problem, the product is always equal or bigger
than both factors.

c) In a division problem, the dividend is always bigger than the divisor.

d) In a division problem, the dividend is always bigger than the
’ quotient.

¢) In a division problem, the quotient must be an integer. .
f) In a division problem, the divisor can be a fraction.

The vast majority of the students held primitive beliefs concerning the
results of multiplication and division. High levels of correct answers occurred
only to two items: e (82%), and f (91%). Both were division items which
reterred to only one magnitude (the quotient or the divisor). Performance on
multiplication items referring to only one magnitude (the product) was poor
a (53%). Low percentages of correct reactions appeared on the other items, all of
which dealt with the relative magnitudes of at least two -of the quantities involved
in arithmetical éxpressions c (42%), d (27%), b(29% correct, 26% of whom
justitied it by muluplication by (). Students hold common beliefs that
"multiplication always makes bigger” and "division always makes smaller”

2. Representations:

Most students lacked the ability to construct appropnate representations of
operations with rational numbers. About half drew appropriate graphical
representations of [/3, and of 6:2 using mostly either disks or rectangular-region
models for 1/3, and set models for 6:2.

The representations of improper fractions and of operations involving
fractions were a much more difficult task for the students. Only few (10%)
constructed appropriate representations of 3/2, 13% represented 1/3 x 5 in a
meaningful way, and about 27% gave appropriate representations of the division
expressions (i.e.,4:1/4 and 1/4 : 4).

3. Performance on Word Problems:

The students were asked to write an appropriate expression for each word
problem without performing the computation. They were given four
multiplication and seven division word problems.



High levels of correct answers (75% correct) occurred in the multiplication
problem involving a natural operator {"A motorcycle needs 0.3 liters of fuel per
k.m. How many liters does it need for passing 9 k.m.”"). [n this case the operator
is a natural number and thus the numerical data in the problem are in accordance
with the constraints of the intuitive repeated addition model of multiplication. In a
similar problem, aibeit with a noninteger operator, the percentage of correct
answers was low (35%). In this case 409% of the students chose division instead of
multiplication as the suitable expression. This shows that when the numerical data
in the problem violate the constraints of the intuitive repeated addition inodel, this
model operates behind the scenes and prevents the right solution ( Fischbein,
1993).

Table 2: Performance on Division Problems (in %)

Quotative Model Partitive Modei
Problem Comcct % m.i.d.* No Problem Comect % m.i.d No
No, Answer  Correcl Answer No. Answer Correcl Answer
I 0.25:0.6 6 20 23 5 6:11 59 - 15
2 0.8:0.2 65 12 11 6 0.25:4 63 9 15
3 4:0.25 58 15 15 7 11:6 58 - 18
4 0.2:3 14 20 24

* m.i.d- multiplication instead of division

Sixty percent gave correct answers to the partitive division problems and to
two out of four quotative division problems (see Table 2). The students had
great difficulties on the other two quotative division problems. We believe that in
these problems the difficulty of the context exceeded the difficulty caused by the
constraints imposed by the division model.

C. Formal knowledge.

Serious deficiencies were identified on the following aspects of formal
knowledge:

L. Subsets of rational numbers and their hierarchical structure: Only 33%
identified {1,2,3,...} as the set of natural numbers, 13% identified
{..-3,-2,-1,0,1,2,3...} as the set of integers, and no more than 28% of the
students provided an adequate example of a non-integer, raticnal number.
Only 18% knew that -3/4 is a rational number, and even less (11%)
correctly identified 0.251 as a rational number. Students’ performance on
items which examined their knowledge of the hierarchical structure of the
numerical system was also poor. When asked to determine which of the
two given sets was a proper subset of the other, 23% correctly agreed that
the set of the rational numbers includes the integers, and 48% agreed that



the latter set includes the set of natural numbers. Yet, 39% of the subjects '
incorrectly agreed that the set of the natural numbers includes the set of
integers. ‘

2. The density property of rational numbers: Most students were familiar with
the density property of rational numbers. The majority of them (about
60%) provided adequate examples of numbers between two given rational
numbers. Likewise, most students could correctly determine whether two
given rational numbers were equivalent or not. The only problematic pairs
were 4/8 and 35/70 (25% argued that 35/70 was bigger than 4/8 because
both the numerator and the denominator in the former were greater than in
the latter), and 1/7 and 1.7 (15% argued for equivalency).

3. The commutative, assqciative and distributive laws: Students were asked to
write examples for the use of these laws. About 60% provided adequate
examples for the commutative law. Less students (44%) provided adequate
examples for the distnibutive law. Only 20% of the students provided
adequate examples of the associative law-the most prominent inadequate
examples consisted of two uses of the commutative law, namely,
Jx4x5=5x4x3.

Other items in this category dealt with arguments that were presented as if
they were offered by a student, and a subject was asked to comment on it, e.g.:
"Roni wrote: 7:(4 + 2) = 7:4 + 7:2 . Is his solution correct? Why?". Forty-three
percent correctly argued that 7:(4 + 2) is not equal to 7:4 + 7:2.

D. The interaction between algorithmic and intuitive knowledge.

Students function on different levels in algorithmic and intuitive tasks.
Sixty percent of the students who showed adequate algorithmic knowledge,
obtaining products smaller than both factors, still claimed that " multiplication
makes bigger". Half of the 58% of the students who solved 0.2 : 0.8 correctly,
still argued that "the dividend is always bigger than the divisor” and 71% of them
claimed that "division always makes smaller”. it was obvious that when
functioning on the algorithmic level, intuitive knowledge was not considered.

E. The interaction between word problem solving and intuitive knowledge.

a) The repeated addition model for multiplication demands a nayural operator
and thus imposes the belief that "multiplication makes bigger”. The two
multiplication problems on which high levels of performance occurred included
natural operators. The other two multiplication problems involved non-integer
operators and caused many incorrect answers. For example, the problem:

"There were 9 kg. apples in a store, Yael bought 0.3 of this amount. How many
kg. of apples did she buy?" forty percent of the students chose division instead of
multiplication as the suitable expression.
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b)

We assume that students who know that the answer should be smaller than
9, and hold the intuitive beliet that "multiplication makes bigger and division
makes smaller”, choose division instead of multiplication for solving this problem.

k.

3]

The partitive model for division imposes three constraints:

1) the dividend ts always bigger than the divisor 11) the divisor must
be a natural number, and iii) the dividend is always bigger than the
quotient ("division makes smaller”).

Only in problems 5 and 6, the numerical data were not in accordance
with one constraint of the model (i). Half of the subjects who gave a
correct expression for solving these problems, hold the intuitive
misbeliet "the dividend is always bigger than the divisor”. The same
percentage of correct expressions was given to problems 5, 7 (6:11,
[1:6), although in one the dividend is bigger than the divisor and in
the other it is not.

One of our hypotheses was that intuitive belietfs support the
performance on solving word problems. Accordingly we expected
students who believed that "the dividend is always bigger than the
divisor” to change the roles of dividend and divisor in the expression
solving these problems. Only few did so.

The quotative model imposes only one constraint, namely: "The
dividend is always bigger than the divisor”. The percentage of
correct answers given to the two problems in which the numbers
followed the constraints of the quotative model (problems 2, 3) was
relatively high (58%, 65%). Low performance percentages (6%,
14%) occurred on the problems in which the dividend was smaller
than the divisor. Twenty-five percent of the students did not give any
answer to these problems, 25% changed the order of the divisor and
dividend (as expected) and almost the same percentage incorrectly
chose multiplication (instead of division) as the appropriate operation
tor solving these problems.

Final Comments

Conceptual understanding of rational numbers is foundational for many
vital components of mathematical and scientific reasoning, notably ratio and
proportion, algebra and calculus (Greer, 1994). In this paper a new conceptual
framework was suggested for analyzing learners' mathematical knowledge of
specific mathematical content domains, which takes account of algorithmic,
intuitive and formal dimensions and their connections. With this framework, we
were able to provide a systematic, comprehensive picture of students' mathematics
content knowledge of rational numbers, and the interactions among the different
aspects of this knowledge.



[t became apparent that students’ knowledge of rational numbers is
inconsistent. We therefore concluded that, during instruction each component of
knowledge should be addressed separately and attention should be paid to
integrating the three aspects.

Although we used this framework for analyzing students' knowledge
of rational numbers, expansion to other domains seems reasonable. We suggest
that the framework be adapted to other populations: students in different grades.
to preservice teachers or novice teachers. 1t can also be extended to other
domains of knowledge.

Students' performance on algorithmic tasks indicated a difference between
skills on fractions and decimals. The students' performance on fractions was
higher than on decimals. They tended to use fractions even when the tasks were

given as decimals ( e.g., substitute %% for 0.25 : 0.6). A possible explanation is

that students in Israel learn fractions before decimals, so that their experience
with fructions is richer. More research i1s needed in order to verify this
assumption and its educational implications should be considered.
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THEORY AND PRACTICE IN UNDERGRADUATE MATHEMATICS TEACHING:
A CASE STUDY

and Candia Morgan
Department of Mathematics Institute of Education
King's College, London University of London

This paper presents a case study of the beliefs and practices of a university teacher of mathematics.
Working in a tradition of practitioner research, the practitioner and an observer have recursively
and critically reflected on the practitioner’s expressed aims and on the text of a lecture to first year
undergraduates. While it was possible to identify ways in which the practitioner attempted to
operationalise his aims in structuring the content of the lecture and in his interactions with the
students, aspects of his practice were also identifted which may have been in conflict with his aims
and which suggest tensions between his aims, both for the practitioner himself and for his students.

In spite of increased altention paid by the mathematics education community in recent years o the
beliefs and practices of teachers at primary and secondary level {Hoyles, 1992), relatively few
researchers have addressed the practices of teachers in higher education. With few exceptions (e.g.
Vinner, 1994; Mohammed Yusof & Tall, 1995) PME papers concerned with undergraduate
education have focused on students’ individual mathematical conceptions rather than on
classrooms, teachers or teacher-student interaction. At the same time, however, there is interest in
the UK in the quality of universily mathematics teaching and, in particular, its response to the needs
of undergraduate students with relatively low entry qualifications and to the disjuncture in students’
experiences al the interface between school and university mathematics. This interest has been
reflected in the establishment in 1992, under the auspices of the Mathematical Association, of a
working group on Teaching and Learning Undergraduate Mathematics, bringing together teacher-
academics from beth Mathematics and Mathematics Education. Arising from the work of this
group, we (the authors of the present paper) have undertaken a collaborative project to examine the
practice of one mathematics lecturer, the practitioner (TB), through an articulation of his own
critical reflection on his aims, beliefs and practice with the altemative perspective provided by the
observer {CM). In this paper, we present a case study of a single lecture, considering the
relationships between the lecturer’s consciously expressed intentions and his practice, addressing, in
particular, the following questions:

* How were the practitioner’s aims and beliefs about teaching and leaming reflected in

teaching method? .
* How were his aims communicated to students?
*  Whal areas of possible mismatch were there between the lecturer’s and the students’ aims
and expectations?

Methodology

The study described here is in the tradition of practitioner research concemed with professional
‘self-knowledge’ and development (Weiner, 1989; Morgan, 1993), examining the lecturer’s practice
through his own theoretical framework and through the eyes of an informed observer. The
interaction between the two participants has been vital in forming the subsequent analysis. It is
anticipated that this collaborative enterprise will result in changes in practice (although we do not
yet know what these changes will be) and generate funther research questions.

29} . :



We have initially considered a single one hour lecture, towards the end of an introductory first year
course in ‘Basic Pure Mathematics’ taken by a small group of students starting a four year course
leading to a degree in Mathematics with Education (preparing them 1o be mathematics teachers in
secondary schools). These students on the whole have somewhat lower initial qualifications in
mathemaltics than those starting a single honours mathematics degree course at the same universily.
They are thus perceived within the university mathemalics department to be likely to find this
‘abstract’ course difficult. The observer atiended this lecture, which consisted of periods of
‘question and answer’ and of extended exposition by the lecturer, taking notes of what was said by
the lecturer and by students and transcribing what was writlen on the blackboard, relating this 1o the
oral interactions. These notes form the basis of the analysis offered here.

The analysis has been a recursive process, encompassing the interests and perceptions of both
participants. Thus each read and wrote a commentary on a section of the notes of the lecture; this
lext and commentary was then commented upon by the other participant. There were also a number
of meetings in which issues arising from the analysis were clarified and points of conflict were
discussed and, if not resolved, at least acknowledged and appreciated by both parties. Inevitably,
because of our different experiences and perspectives we brought different resources to bear on the
analysis, asking slightly different questions and focusing on different aspects. From the
practitioner’s perspective, the pril"nary focus was on identifying and describing the beliefs and
intentions underlying his practice and reflecting on the ways in which these were represented in his’
own behaviour. The observer’s interest lay in a focus on the interaction beitween lecturer and
student, reflecting on the maitch between the practitioner’s expectations, his actions and the ways in
which these might be perceived by the students.

Practitioner’s theoretical framework and teaching aims

Before looking at some examples from the lecture itself and considering the analysis of these
examples, il is necessary to consider the aims and theoretical framework employed by the
practitioner. These are expressed ins general terms in the statement included in the information
sheet given to students at the beginning of the course: '

A general aim of the course is 10 help students in the transitions from concrete to
abstract mathematical thinking and from a purely descriptive view of mathematics (o
one of definition and deduction.

This statement relates to a model of progression in mathemalical development from
‘computational’, through ‘descriptive’ to ‘deductive’ modes of reasoning. This progression 1s
reflected in mathematics curricula and in the performance of students at different stages of an
undergraduate course (Barnard, 1995) although it is unlikely to be constant across different topics
and contexts. We exemplify it here in the contexts of simullaneous equations and of polynomials:

Computatiopal - Numerical and symbolic computations and procedures with a focus on specific
objects, e.g.

Simultuneous equations: Solving 2x+3y=7, 4x—-y=35.
Polynomials: Differentiating or sketching the graph of x% +5x +6.

This is characteristic of most pre-university mathematics.
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scriptive Manipulations of more general objects and descriptions of general behaviours, e.g.
Simultaneous equations: Describing the various possibilities for the solutions of the
system of equations:

axt+bhy+cz=d,

axt+by+cz=d,

ayx + b—‘y + C]Z = d3
Polynomials: Relating the degrees of the sum and preduct of the polynomials
dg+ax+arx’ +..+a,x"and by +bx+byx’ +...+b,x" 1o mand n.

Although the mathematics is largely descriptive, the objects and procedures being described are
more general than at the purely computational level. Whereas in computational situations solutions
are validated by the computation itself, the increase in generality means that proof now plays a
greater role in validating conclusions.

Deductive Thinking in a more rheoretical domain of defimtions and deductions, in which
symbols and words are the predominant features. The behaviour of a system of linear equations is
now a theorem aboul a vector space and the dimensions of centain subspaces. There is also a focus
on connections between mathematical structures, such as the fact that the set of integers and the set
of polynomials (over a field) both have a unique faclorisation property.

The majority of students” mathematical experience before university is of a ‘compulational” type
with the focus on what has to be *done’ in order 10 achieve a correct outcome. 1t might be expected,
therefore, that these first year undergraduates would experience some difficulty in their transition to
descriptive and deductive ways of thinking.

Aims of the case study lecture
The lecture discussed here started with a discussion of the irrationality of 2, leading into
consideration of polyncmials and the theorem:

If f(x) is a monic polynomial with integer coefficients and f(x)=u(x)v{x), where

u(x) and v(x) are monic polynomials with rational coefficients, then u(x) and v(x)

must in fact have integer coefficients.

Included as a crucial step in the mathematics was Gauss's Lemma:

Let f(x) and g(x) be polynomials with integer coefficients. If each of f(x) and g(x)
has the property that there is no integer (apart from £1) that divides all of its
coefficients, then the polynomial f(x)g(x) also has this property.

In discussion with the observer, the practitioner classified his ‘content-related’ aims in four layers:
Knowledge of the above facts;
Justification, defined as a step by step understanding of the proofs of the results;
Understanding, further subdivided into:

(a) Holistic understanding of what the thecorem is saying and how it fits into a wider picture.
For example the theorem carries with it, as a simple special case, the deduction * V2 is not an
integer implies V2 is irrational”.
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(b) A feeling for why the theorem is true and what makes the proof ‘tick’, for example, the
place of the statement “If f(.x) and g(x) are polynomials with integer coefficients and p isa
prime which divides all the coefticients of f(x)g(x), then either p divides all the coefficients
of f(x)or p divides all the coefficients of g(x)"; and

‘Culmre, looking beyond the particular theorem to a consideration of how the proof reflected
certain characteristics of this general area of mathematics. Such characteristics include:
* the feature that although polynomials have lots of ‘bits’, the bits can often be used like
steps in a ladder in order to achieve a proof;
= the closeness of Z (the integers) to Q (the rationals) in that (a) every element of Q is of the
form a/b with a,b € Z and (b) one can clear denominators of a finite number of fractions;
= the theme that one can often reduce to primes because every positive integer is a product
of primes;
= the basic property of primes that if p is a prime and a, b are positive integers such that p
divides ab, then p must divide eithera or b.
It was considered to be useful for the students’ future thinking in this area to have these features
built into their networks of mental associations.

In the rest of this paper we consider the ways in which the practitioner’s aims were manifested in
his practice, drawing on extracts from the lecture and the subsequent reflections and discussion
between practitioner and observer.

Proof and the move towards deductive modes of reasoning

Examination of the ways in which proof was addressed during the course of the lecture causes us to
question the extent to which the practitioner’s aim of moving away from the computational towards
the descriptive and deductive was reflected in the actuality of the lecture. In building up towards
addressing the theorem, the irrationality of roots of prime numbers was revisited. The students had
come across the proof of the irrationality of v/2 in an earlier lecture. The first interaction related to
proof was at a general level reflecting the practitioner’s ‘Culture’ aim in relation to mathematics as
a whole rather than the specific topic area:

TB /2 is irrational; x* =2 for no rational x. This is one of my favourite theorems:
jump from no integer x to imply no rational x. What's the point of proofs if you
believe the theorem already?

§1 It keeps us in our place.

8§2  There might be people who don’t believe.
§3  You can believe in something that's fulse.
TB To understand what's going on.

This interaction was not, however, central to the content of the lecture and it must be considered
whether the subsequent proof activities during the lecture addressed the stated aim of
‘Understanding’ or the overall course aim of moving the students towards deductive thinking.
Having refreshed the students’ memory of the result (but not the proof) for v2:

TB Is V3 rational or irrational?
S lrrational’
TB Why?
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S Same as you put x* =3

TB We haven't got the even-odd dichotoniy to help us so what do we do?

The student’s apparently computational orientation in “putting” x% =3 as the next step in the proof
(i.e. performing the next step in an algorithmic process) is echoed by the lecturer's “Now whut?”
and “what do we do?”. Al this stage there is a contrast between the mode of language used by the
practitioner and the mode of thinking he intended his students 10 adopt. While to the practitioner
these phrases are seen to be equivalent to descriptive questions such as “*what is suggested by this?”
or "what can we relate this to?”, the students appéar to take them as a cue to conlinue in a
computational mode, following a set of procedures that had been previously established in proving
the irrationality of v2. Even the guestion “Why?", which might have related to the aim of
‘Understanding’ established earlier, prompls a responsc which appears merely to echo the form of
the previous proof.

Al a later point, however, the lecturer’s language changes from this computational mode to ask
questions which seem not only o address the aim of ‘Understanding’ but also to prompt responses
that appear to be in a descriptive or deductive mode:

TB o’ is even. What does it tell us about @?

AN d is even

TB ... we have proved that ¥2 is irrational. In terms of polynomials, x° =2, what
does that tell us?

S It might have complex factors.
Here, the suggestion that a mathematical statement can “tell us” something approaches a deductive
mode of thinking in which the next step of the proof arises from the meaning of the previous
statement rather than froin manipulation of its symbolic form.
In spite of the clarity of the practitioner’s aims in relation to deductive thinking, the differences in
the language he uses in constructing proofs during the lecture suggest a mismatch or at least a lack
of clarity in his practice.
Tensions between aims’ _
The practitioner felt that Gauss's Lemma was a result of a kind that would be fairly new to the
students, as it is a *descriptive’ result, saying that if two polynomials cach have a certain property,
then so does their product. It was also felt that the property in question, the coefficients having no

common factor, might have had few links with the students’ previous mathematical experience. A
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numerical example was provided 10 help the students engage with the meaning of the result. In
order to move away from a computational orientation, however, it was necessary to address a proof
of the general result. There was a choice here between giving the details ol the proof in full
(Justification) or giving the underlying ideas (Understanding and Culture). With most theorems in
this course the practitioner would do both, believing there to be a link between the two. However,
he also believed that, when synthesising a number of components of a proof, there is often a
delicate balance between trying 1o help the students to keep all the components in their mind and
trying to help them to consolidate their understanding of each individual component. On this
occasion he decided that there was more to gain by trying to cover the essential ideas of the proof
rather than all its details, deliberately suppressing ‘Justification’ in favour of ‘Understanding’ and
‘Culture’. -
TB Gauss's Lemma. See if we can understand what it’s saying. f(x) is something
like 3x+4 and g(x) is 2x2 = x+5. There's an additional assumption that no
integer divides all the coefficients. . . .
(3x+4)(2x* - x+5)
=6x +5x2 +11x+20
You know how to do this. [You can see that there’s no integer which divides all

the coefficients of the product polynomial.]'! But it doesn't prove the general
result. You're all dying to know why [the result is true in general].

(on the board) {

S Yeah
TB  And you’ll be relieved io know I'm not going Lo prove it.
S Awh

TB Why is it true? This property [that no integer divides all the coefficients} implies
that if it is true then no prime number [divides all the coeflicients} and conversely
if no prime number [divides all the coefficients) then it is true. So we can reduce
itto B
{(on the board) { “There is no prime number which divides all the coefficients”
Take a particular prime number

(on the board) { p plab = pla or plb

We can show using the essence of this:

all coeffs of f(x)g(x
(on the board) P| flx)gtx) )
plall coetfs of f(x) or plall coeffs of g(x)

With polynomials, the bad news is there are lots of bits. The good news is you
can use the bits as steps. With a bit of induction thrown in, this is the essence of a
proof of Gauss’s Lemma.
‘The main points contained in this “essence” of a proof coincide with the practitioner’s content-
related aims of ‘Understanding’ and ‘Culiure’ elaborated above, including the possibility of

I'The recording of this section of the lecture was incomplete, The phrases in square brackets have
been inserted to indicate the sense of the original utterances.
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reducing a statement about all integers to one about primes and the linking of the property of primes
that “p divides ab impiics p divides a or p divides b" with the idea that it is possible to use the
“bits” of a polynomial as steps.

As may be scen in the extract, the lecturer characteristically makes use of a number of informal
‘asides’ (e.g. " You’re all dying to know why.”) which not oniy contribute lowards establishing his
relationship with the students but simultaneously serve to induct them into mathematical value
systems. Thus asking the guestion “why?" is seen to be important; a numerical ¢xample is not
enough to prove a result; an exposition of the “essence™ of a proof may answer the question “why"?"
but does not prove in itself.

Similarly, at a number of points throughout the lecture, references were made to aesthetic and
affective responses to mathematics. For example:

If you can’t split it up with integer coefficients then you can’t with rationals. Do you
see how beautiful that is? ‘

(Murmur - a little response from students)

See the power, even with all those rationals the theorem says you still can’t factorise it.

The practitioner is clearly attempting to communicate ‘Cultural’ aims at a very general level as well
as in relation to the specific content of the lecture. Nevertheless, in reflection after the lecture, he
was sceptical aboul the extent to which these aims could be achieved within the context of the
course, wriling:

The students would have been mainly focusing on the first two content-related aims
[Knowledge and Justification), perhaps partly due to time sequential ordering (you can’t
understand what you don’t know) and partly for survival 1ype reasons such as the need
to understand subsequent parts of the course and to succeed in the examination.
However they would have been aware that there was something more that the lecturer
was trying to convey.

Thus the practitioner himself perceives a mismatch not only between his aims and those of the
students but also between his aims and the institutional restrictions of syllabus and examination
system. Indeed, this tension is manifested within his own practice. Not only did his introduction to
the lecture include the statement *“The anmn today is to do enough so you can get on with the sheet™,
but the homework sheet itself consisted entirely of specific examples of polynomials on which the
students were expected to operate largely computationally (either to decide whether or not they
were irreducible or-to factorise them into irreducible polynomials}. For the practitioner, the aim to
“get on with the sheet” was clearly secondary, merely providing an indication of the amount of
material he planned to cover during the lecture. Nevertheless, the degree of success in answering
the guestions on the sheel was likely to be the main means by which both lecturer and students
could evaluate their performance. Of course, the evaluation of ‘Understanding’ or ‘Culture’ would
be considerably more problematic.

Conclusjons

In studying this lecture, we can see that the practitioner’s aims were stated explicitly in course
documentation and were reflected in a number of general statements (ie. ‘asides’ without reference
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10 the specific content of the lecture) made in oral interactions with the students. In his planning of
the approach to the proving of Gauss’s Lemma the practitioner had made conscious choices
between his various content-related aims.

There were, however, some areas in which his practice appeared not to match closely with his
overall aim to move from reliance on computational reasoning towards descriptive and deductive
reasoning. The language used to guide students through proofs has been identified as one such
area; in particular, the use of the phrase “what next?” would seem to encourage a computational
approach. Another, perhaps more powerful, area of mismatch lies in the evaluation structure of the
course: the homework sheets and examinations. Many of the questions set appear designed to focus
students’ attention on the more computational aspects of the course and the first two layers
(Knowledge and Justification) of the practitioner’s content-related aims. It appears likely that the
*higher® layers of content-related aims (Understanding and Culture) may best be achieved if the
students spend additional time outside the lecture not only working on the problem sheets but also
in reflection on the content of their lecture notes and handouts, in further reading, and in discussion
of the topic -with their colleagues. These ‘higher’ aims were clearly ascribed value within the
lecture; it is, however, unclear how they could be valued by the assessment system and thus become
important primary aims for the students. While the students were advised at the stant of the course
that attending the lectures and completing the problem sheets would not suffice, it may be that such
relatively context free advice requires further reinforcement throughout the course and that the
practitioner’s aims at all levels need to be made more explicit to the students at all stages of the
course.
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HEURISTICS AND BIASES IN SECONDARY SCHOOL STUDENTS’
REASONING ABOUT PROBABILITY '

C. Batanero ’, L. Serrano’ & Joan B. Garfield’
* University of Granada; ® University of Minnesota

ABSTRACT

In this paper the responses of 247 secondary students to & test items used in
classical studies of probabilistic reasoning (representativeness, equiprobability bias and
outcome approach) are analyzed. The study was designed 1o assess the qudlity of
probabilistic reasoning of two levels of secondary “students (14 and (8 year-old
students). These groups are compared revealing few differences in their responses.

STUDENTS' INTUITIONS AND TEACHING PROBABILITY

New mathematics cumicula for elementary and secondary school are being
introduced in Spain as well as in other countries around the world. These curricula
reflect a change in beliefs about how probability should be taught. While probability
has been included in a limited scope in the secondary schools, typically as part of
a mathematics course emphasing computation such as combinatorics, current curricula
being implemented introduce probability in earlier grades. Newer approaches suggest
an active leaming format where students first inake predictions about the chance of
occurance for different outcomes, then do experiments with random devices such as
spinners, dice and coins, record their results, and compare the experimental
probabilities generated to their original predictions.

Indeed, several researchers have recommended this method as a way to
encourage students to confront and correct their misconceptions about chance events
(e.g., Godino et al., 1987, delMas and Bart, 1989; Shaughnessy, 1992). Because
students often hold incorrect views about probability and randomness, Garfield (1995)
suggests that effective teaching be based on knowledge of students' preconceptions,

and that when leaming something new, students construct their own meaning by

'Acknowledgement This fcpon has been founded by the Direccion General de
Investigacion Cientifica y Técnica, M E.C. Madrid (Project PR95-064).
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connecting the new information to what they already believe to be true.

Konold's research on probabilistic reasoning (1995) suggcsts that merely having
students make predictions and compare these to experimental data is not sufficient to
make students to change their conceptions, because enough data are rarely collected
to reveal the correct patterns of outcomes, students' attention are limited, and data
variability is typically ignored.

Background

According to Kahneman et al. (1982), statistically naive people estimate the
likelihood of events by using judgmental heunstics such as representativeness and
availability. People using the representativeness heuristic tend to estimate the
likelihood for an event based on how well it represents some aspects of the parent
population. They tend to believe that even small samples should reflect the population
distnibution or the process by which random outcomes are generated.

More recent research suggests other possible explanations for people's poor or
inconsistant performance on probabilistic tasks. Lecoutte (1992) described an
equiprobability bias as a tendency for individuals to think of random events as
"equiprobabie” by nature, and to judge as equally likely outcomes that occur with
different probabilities.

Konold (1989) identified an "outcome approach” 1o interpreting probablities.
Pcople using this approach, when confronted with an uncertain situation, do not see
their goal as specifying probabilities that reflect the distnbution of occurrences in a
series of events, but as predicting the result of a single tnal. Research by Fischbein
et al. (1991) identified errors in solving probability problems as due to students'
difficulties detaching the mathematical structure from the context of a stochastic
situation,

This is a brief summary of a wide variety of research studies that document
errors in probabilistic reasoning from young children to adults. This research suggests
that an approach to teaching probablity based on predictions and expenments may
not be enough to help students form correct ideas about probablity and strategies for
solving stochastic problems.

Therefore, our study was designed to assess the quality of probabilistic
reasoning of two levels of secondary students, those who had not studied probability
and those who had studied probability in a traditional, mathenatical way. We were
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interested in the extent to which these students demonstrated normative reasoning or
appeared to be solving problems based on use of misconceptions or faulty heunstics,

and if differences in responses would be revealed for the two groups of students.
DESCRIPTION OF THE STUDY

Methodology

A questionnaire was administered to 277 Spanish secondary school students in
the spring of 1995. About half of the students (n= 147) were in their first year of
secondary school (14 years-old) and had not studied probability. The rest of the
students (n=130) were in their last year of secondary education (18 years-old, pre-
university level) and had studied probability with a forrnal, mathematical approach for
about a month the previous school year.

Questionnaire

The questionnaire (presented in the Appendix) included 8 items that have been
used with slight vanations in previous research (e.g., Green, 1982, Lecoutre and
Durand 1988, Garfield and Delmas 1991, Fischbein et al. 1991, lLecoutre 1992,
Konold et al. 1993 and Madsen, 1995). ltems were selected to assess whether students
had some particular misconceptions or used incorrect heunstics. These types of
incorrect reasoning and the corresponding items are described below.

Represeniativenesy

The first two items assess if students were using the representativeness heuristic
o judge the likelihood of different sequences of coin tosses. Although, from a
normative point of view, all such sequences are equally lkely to occur, sequence b
may appear more representative than the others. ltem 4 tests students’ intuitions about
binomial probabilities. We expected that students who reason with the
representativeness heunstic would choose the correct answer ¢ (although for the
Incorrect reason).

Outcome A pproach
Konold et al. (1993) suggest that some students could obtain the correct answer
lo item 1 by reasoning according to the outcome approach. Students who understand
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the idea  of independence and equally likely outcomes would select the correct
response to both items | and 2. Therefore, it is important to contrast the responses to
items 1 and 2 together.

Negleet of sample size: law of small numbers

ltem 3 is adapted from Kahneman et al. (1982) to assess whether students
appear to be neglecting the sample size in judging probabilities. This is a special case
of the representativeness heuristic, referred to as the "law of small numbers,” because
people tend to judge small samples as equally representive of a population as large

samples.

Fquiprobability Bias

Some of Lecoutre's (1992) items were used to assess whether students tended
to reason using the equiprobability bias. For ltem 4, response d is more likely to be
chosen by students with equiprobability bias. In items 5 through 8 combinatorial
understanding is needed to choose the most likely result. The incorrect responses a
in item 5, d in item 6 and 7 and ¢ in item 8 may be obtained by the equiprobability
bias.

DISCUSSION

In Table 1 we present the percentages of the students' responses to each
individual item. Chi-square tests were used to compare the distribution of responses
for each item for the two groups of student. The p-values for the Chi-square tests are
shown in the table. It is apparent that, in general, students did very poorly on the test,
with always fewer than half of the students getting any item correct. The most
difficult item for students appears to be item 5, and the next most difficult item was
number 3.

Difference in age groups

The older students had a greater percentage of correct answers for items 1, 2,
4 and 5. Nevertheless, there were no significant differences in responses for the two
groups of students for items 3, 6 and 7. The younger students had a higher percentage
of correct responses for item 8. Probabilistic reasoning appears to increase slightly for
older students, which is not surprising given that these students have had some
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formal study of probability.

Table 1: Percentages of correct answer, main distracter and other responses
in the two groups of students

Item % __correct main _distracter other p-value

ageld age 18 age 14 age 18 age id4 age 18
{n=147) (n=130) (n=147) (n=130) (n=147) (n=130)

1 463 654 b 354 b 231 183 115 005
394 538 d 238 d 200 368 262 003

t

3 238 269 ¢ 633 c 600 12.9 13.1 n.s.
4 354 438 d 456 d 415 19.0 147 003
5 156 192 d 626 d 523 218 285 C0.04

6 224 23.1 e 466 e 431 320 338 ns.
7 40.] 508 d 367 d 362 232 130 ns.
8 367 300 e 395 e 502 238 138 001

Types of Misconceptions reveded

Although 55.2% of students gave the correct answer to item 1, the percentage
of students who gave correct answers to items 1, 2 and 4 was only 9%, which
suggests that very few students in either age group use normative reasoning (o
answer these probability problems. ‘

A larger percentage (42%) gave correct answers to both of the first items
which involved coin toses, while 24% of those who gave the correct answer to item
| gave an incorrect response 1o item 2, possibly indicating an outcome orientation,
a result also noted by Konold et al. (1993) in their previous study. However, the
percentage of students who changed their response was higher in Konold et al.
research than in our study.

The percentage of students who selected as the response b to items | and 2,
and gave a correct answer o item 4 was 22%, possibly suggesting their reasoning
according to representativeness heuristics.

Based on response to item 3, most students (62,7% ) appeared to judge the
large sample to be just as representative as the small sample, and that both hospitals
were equally likely to have 80% or more boys on a particular day. This suggests the

"law ol small numbers” aspect of the representauveness heuristics.

2-55

63+



Students' difficulty with items 5 and 6 did not necessarily represent the
équiprobability bias, because a large group of students { 57% in item S and 44% in
item 6 selected the response: "it is impossible to give an answer”, possibly
indicating an outcome onentation, while only 18.1% in item 5 and 26% in item 6
chose answer a which could reveal the equiprobability bias.

However a large number of students appeared to use the equiprobability bias
responses in items 5 (18.1%), 6 ( 26%), 7 ( 36.5%) and 8 (47.6%). Only 13 students
(5%) gave correct response to all four of these items.

CONCLUSIONS

All the items in our study asked students to compare the likelihood of different
events associated with random experniments consisting of more than one tnal. These
items have been taken from different studies in which students' incorrect responses
have been used to develop theories about patterns in probabilistic reasoning.

Our results support previous research, suggesting that students have great
difficulty in using probabilistic reasoning and appear to use othes types of heuristics
to solve basic probability problems, even after formal mathematical instruction on
the subject. While our data support some of the previous studies on misconceptions,
they raise new questions about the role of students' prior knowledge and reasoning
as they feceive instruction in probability. ‘

As pointed out by Godino and Batanero (in press) some leaming
misconceptions and difficulties cannot be just explained by mental processes, but by
recognizing the complexity of mathematical objects and the necessanly incomplete
teaching processes in schools. Consequently, we recommend further research 1nto
students’ probabilistic reasoning, as an essential step for selecting teaching and

assessment situations. We hope to address these issues in future studies.
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APPENDIX: QUESTIONNAIRE
Item |
Which of the following sequences i1s more likely to result from flipping a fair
coin 5 times? a) HUHTT; b) HTTH'T; ¢) THTTT:; d) HTHTH; ¢) All four
sequences are equally likely.
Item 2
Which of the above sequences would be least likely to occur?
Item 3
In a certain town hospital a record of the number of boys and girls newbomns is
kept. Which of these cases is more likely:
a) There will be 8 or more boys in the following 10 newboms.
b) There will be 80 or more boys in the 100 following newboms.
¢) Both a) and b) are equally likely.
Item 4
If we observe the following 10 newborns, which of these things is more likely
to you?
a) the fraction of boys will be greater or equal to 7/10.
b) the fraction of boys will be less or equal to 3/10.
¢) the fraction of boys will be included between 4/10 and 6/10.
d) All these are equally hkely.
Item S
When two dice are simultaneously thrown it 1s possible that one of the
following results occurs: Result I; S5 and 6 are obtained; Result 2: 5 is obtained
twice. Select the response that you agree the most:
a) The chances of obtaining each of these results is equal.
b) There i1s more chance of obtaining result |I.
¢) There is more chance of obtaining result 2.
d) It is impossible to give an answer.
ltem 6
When three dice are simultaneously thrown, which of the following results 1s
most likely to be obtained?
a) Result I: A 5, a3, and a 6. b) Result 2: A S three times.
c) Result 3: A S twice and a 3. d) All three results are equally likely.
¢) It is impossible to give an answer.
Item 7
Is some of the previous events in item 6 least likely to be obtained?
Item 8
A spinner is divided in 5 equal sized areas nuimbered from | to 5. Which of the
following results is more likely to result from the spinner 3 times?
a) 2,1,5 in this exact order. b) 2,1,5 in every order.
¢) 1,1,5 in every order. d) a) and b) are equally likely.
¢) a), b) and ¢) are equally likely.



CHANGES IN STUDENT TEACHER VIEWS OF THE MATHEMATICS
TEACHING/LEARNING PROCESS AT THE SECONDARY SCHOOL
LEVEL

N. Bednarz, L. Gattuso, and C. Mary, Université du Québec a Monturéal (UQAM)

Within the framework of a muathematics teacher-training program, a variety of
teaching strategies are used with the student teachers with the objective of changing
their views of mathematics teaching. A study was conducted on one group of
students entering the training program and on another group graduating from the
same program in order 10 identify how their views evolve during the program. The
changes identified indicate a shift in their perception of the mathematics teacher
from that of a skillful communicator seeking to transmit his or her passion and
knowledge to others to that of a teacher concerned primarily with initiating a
learner-centered interactive thought process that actively engages both teacher and
student and whose starting point is the students' knowledge and errors.

introduction

Studies of teacher-training programs indicate that student teachers are generally
‘offered little opportunity to change the views they formed of mathematics and how
it is taught and learned during their years of pre-university schooling (Kagan
1992). These studies also reveal that in their own classroom practices and teaching
strategies, student teachers consistently adhere to their previously acquired views.
When faced with a problem in the classroom, they tend to resort very quickly to a
certain "habitus” (Bourdieu 1980) that stem automatically from their own 13-odd
years of experience as students.

The winner in the young teacher’s conflicting situations then is the reliably
rooted habitus from one's own experiences as a student. Through these
typical regressions, the functioning of this kind of habitus readily supports
the old "solutions" and the reproduction of the old school (Bauersfeld 1994,
p- 179).

As studies have shown—particularly those of classroom culture (Bauersfeld 1980,
Voigt 1985, 1989) and of the “contrar didactique” (Schubauer Leoni 1986, 1988)
—certain views underlie student teachers' approaches to specific knowledge. By
examining student/teacher interactions, these studies in fact help shed light on the
system of reciprocal expectations at work in the specific situations studied. They
show the strong influence of teachers’ prior experiences with the given problem and
their own gradually acquired ideas of the teaching/learning process on the strategies
they adopt for use with their own students in similar problem situations.

If teacher-training programs are to effectively counterbalance student teachers'
socialization experiences during their 12 to 13 years of prior schooling, they cannot
overlook the fact that these students bring with them their own previously formed
views of mathematics and how it is taught and learned. This raises the question of
how to bring about the necessary changes in the way student teachers view
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mathematics teaching which will be fundamental in their future practice. It is with
this in mind that we developed our secondary-level mathematics teacher-training
program, the principles and content of which will be discussed in a later section of
this paper.

An initial analysis conducted of the student cohort entering the teacher-training
program at the Université du Québec a Montréal (UQAM) was part of a broader
study whose goal was to delineate more clearly the changes that take place in
student-teacher views at key stages in the training. The analysis conducted at this
stage focused on the students' entry profiles prior to training, and included a
comparison of their profiles with those of a group of students graduating from the
same program.

The objectives of this stage of the research project were as follows:

» to identify the views held by students entering the teacher-training program with
regard to mathematics and how it is taught and leamned,;

» to develop a clearer understanding of how the initial views held by student
teachers evolve during the program. :

The Teacher-Training Program: Principles and Content

The approach used in our teacher-training program, which is based on a socio-
construclivist perspective, was developed around the reasoning processes and ideas
of student teachers, and was designed to encourage them to evolve in their ways of
thinking. The initiatives taken to achieve this end are varied, and involve aspects
such as mathematical training within the program (workshop for exploring
mathematical activity, and courses focused on mathematical activity that involve
areas such as numencal structures, geometry, probability, and statistics). An
epistemological thought process is promoted in all courses, particularly in the
course on the history of mathematics. In an interrelated way, the initiatives also
involve teaching training by means of courses of didactic (didactic and labs that
focus on the content of the first cycle of secondary school, proportional reasoning
and related concepts, algebra, variables and functions, measurement, etc.) and
teaching practicums.

All aspects of the program give priority to student participation in activities in
which asking questions, explaining different points of view, and teacher/student
interaction play an important role. The training itself is organized as a culture that
implements the strategies being taught so as to encourage participants to develop
" mathematical habits” different from those acquired during their own years as students.

To understand the mathematics teaching/learning process, the culture-
participation model would appear to be more pertinent than the knowledge-
transmission model, or one that introduces students to a body of objective
knowledge. Participating in the mathematical process in the classroom also
means participating in a culture that uses mathematics or, better still, in a
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culture of "mathematization”"(Bauersfeld 1994, p. 177). [translation ours)

One of the main objectives of the initial mathematics course, that student teachers in
the program are required to take, is therefore to expose them to an approach to
mathematics that is different from the one they have experienced previously, and to
introduce them, in a problem-solving context, to another mathematics-teaching
culture by instituting a true process of explanation, discussion, and negotiation
within the classroom. A number of problems that differ in form and content are
used to initiate the process. Working in teams, the students identify each problem
and endeavour to solve it. They present a variety of possible solutions to the class
immediately after completion of the teamwork. At this stage, they are encouraged
to verbalize their strategies and their reasoning. Different solutions are compared
and supporting arguments provided. The student teachers' personal views regarding
mathematics and how it is taught and learned are indirectly called into question
through these discussions.

Other activities in the training program are geared more specifically to the teaching
of mathematics. The concerns of the teacher in the classroom setting are a focal
point of the didactic courses, and are therefore approached in the following ways:
(1) To develop insight into students and their difficulties, reasoning processes,
viewpoints, etc., actual student work is used, together with a bank of student errors,
and videos of their oral participation and actions in both interview and classroom
situations; the student teachers are also given the opportunity to question and
observe students. (2) The student teachers are prepared to diagnose students’
procedures in real situations. They are asked to analyze students' errors and
reasoning processes and to develop stralegies for dealing with these errors. (3)
Situations are proposed, implemented, analyzed, and queried in such a way that the
student teachers learn to choose those scenarios that are pertinent to conceptual
learning. (4) The student teachers are continually called upon to verbalize their
mathematical reasoning or ideas. (5) Each student teacher is repeatedly called upon
to plan lessons and teaching sequences on the basis of his own conceptual analysis of
the notion(s) to be covered. This includes trying to anticipate student difficulties and
reasoning, and to develop classroom strategies that they will later try out and
reconsider. Thus these future teachers are gradually trained to "reflect in and on
action” (Schon 1983, 1987). The different activities offered in the context of this
three-year training program, as outlined in this paper, give the student teachers the
knowledge they require to teach in a way that will enable their students to
participate actively in the process of developing their own knowledge.

The aim of the study described in this paper was twofold: first, to develop a better
global understanding of the potential impact of this training program and its
limitations; and second, to lay the groundwork for a subsequent, more in-depth
study of the particular aspects of this training that help catalyze changes in the views
and practices of future teachers. The second study will be a developmental study to
be conducted on a student cohort that will be followed for a three-year period. It
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will be combined with an analysis of different training situations.
Methodology

A questionnaire was administered to two groups of students enrolled in the
secondary-level mathematics teacher-training program. The first group included 71
beginning students, while the second group included S| students who were in the
third year of the program and had completed their didactic courses and their
practicums. The questionnaire had five main parts, which included statements that
the students were asked either to rate on a scale of | to 5 (total disagreement to total
agreement) or to put in order of priority. The first part of the questionnaire dealt
with mathematics and was designed to pinpoint the students' underlying views on
the subject itself (mathematics as a human construct that is, or is not, part of a social
context, versus mathematics as a pre-existing, independent body of knowledge). A
number of specific items were designed to assess the value that the students place on
reasoning, proof, validation, definitions, subject-specific language and vocabulary,
the use of symbols, representations, and concrete material in mathematical
activities. The second part of the questionnaire had to do with the learning of
mathematics and was designed to elicit the students’ views on the topic (learning as a
construct of the student, whether or not it fits into a social context, versus learning
as the process of imitating given models). Certain items were designed specifically
to elicit the respondents’ views on the role of manipulation and error in this
learning process. The third part of the questionnaire dealt with the teaching of
mathematics (teaching that fosters an interactive thought process and takes the
student into account, versus teaching as the passing on of pre-determined
knowledge). Even more specific, the fourth part of the questionnaire sought to
identify the objectives that the student teachers consider relatively important in the
mathematics teaching process, and the fifth part, the pedagogical practices which, a
priori, they deem valuable. The final part of the questionnaire consisted of an open-
ended question in which the students were asked to express their views on the
following question: What do you consider to be the characteristics of a good
mathematics teacher?

A few individual or focus-group interviews were also conducted with students from
both groups (beginners and graduating students) as a means of gleaning additional
information and furthering analysis of the questionnaire results.

Profile of Students Entering the Program

Our analysis of the students’ answers to the questionnaire (cf. Table 1) reveals a
somewhat mechanistic view of the problem-solving process in mathematics: in fact,
even though respondents agree that there are always several ways of solving a
mathematical problem (# 4), that students must be encouraged to think along these
lines (# 25), that problem solving involves much more than simply finding a
solution to the problem (# 6) and in fact implies creativity (# 10), they nonetheless
perceive the problem-solving process as a matter of applying computational rules
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(# 9) and as a highly procedural activity (# 15), to which the school system often
limits it. The imporntance that student teachers place on exercises (# 30) and on the
learning of mathematical formulas and algorithms (# 36) is very revealing in this
regard. The student teachers entering the program attribute considerable
importance to definitions in mathematics, which they deem essential to know (# 3),
to the use of symbols (# 8), and to the language and vocabulary specific to
mathematics (# 12). This firmly engrained perception may well have major
repercussions on the way they teach, as can be seen by the practices they favour in
their comments on this topic (# 63). A certain open-mindedness was nevertheless
noted in the new students which could be built upon during training when dealing
with the role of manipulation, materials (# 5, 20), and representations (# 11 and 62)
in learning mathematics, and the importance of helping the learner develop
reasoning skills (# 32). The view that these beginning student teachers have of the
way students learn mathematics totally disregards the key role played by the learner
in the process: from the student teachers’ point of view, the student learns by
imitating a certain model (# 21). Few of them think that students come to school
with any knowledge on which new leaming can be built (# 19), nor do they see the
majority of learner errors as having any logic behind them, rather, they attribute
these errors mainly to carelessness (# 18).

Our analysis of the objectives and practices automatically favoured by these student
teachers further indicates a factor that is confirmed in their answers to the open-
ended question, namely, a concern with showing the usefulness of mathematics
(# 33), motivating their students to like the subject, fostering inquisitiveness about
the subject (# 35, 44), and bnnging mathematics within reach of their students
(# 55, 61). Obviously in this sense they are concerned about the student per se, and
they are generally in agreement with the questions concerning the student.
However, given their view of the leaming process, we are still left wondering what
they actually perceive the student’s role to be in this process. They seem to focus on
the teacher's qualities and on his or her manner of presentation, which they feel
must be stimulating, clear, well organized, logical and accurate if it is to be within
the students' reach and pique their curiosity.

Table 1 — Average ratings given by each student group for specific
items on the questionnaire (B: beginners, G: graduating students)
I Questionnaire Items B G I

Mathematics is based on a set of definitions that must be learned. | 3.44 |2.27

IAbout mathematics

3

4 There are always several ways to solve mathematical problems. 3.89 {4.31
|5 Exploring situations by means of concrete materials is not doing | 2.23 |1.31

6

mathematics.
16 Solving mathematical problems means finding the right answers. | 2.54 |2.03
E Without symbols, there is no mathematics. 3.46 |1.76
9 Solving mathematical problems means applying computational rules| 3.31 [1.98]




11 Exploring a situation by means of drawings or diagrams in 1.54 | 1.27
order to find a solution is not doing mathematics.

12 Without a specific language and vocabulary, there is no 3.07 |2.09
mathematics.

15 There is always a rule to follow when solving problems in 3.52 12.21
mathematics. — —

About learning

18 Most student errors in mathematics are due to carelessness. 3.47 {2.68

19 When children begin school, they have everything to learn. 2.72 |1.84])

21 Students learn mathematics by following a model presented by 3.72 | 2.5
the teacher.

23 Students cannot discover mathematical concepts and principles 2.22 11.58
on their own.

20 Exploration and manipulation are relevant only for early 1.8 | 1.47
learning activities (numbers, operations) and young children.

About teaching

25 Students should be encouraged to find more than one way of 468 | 4.54
solving a problem.

30 Exercises develop skills. Students should therefore be given alot | 4.23 |3.23
of exercises.

31 Teachers should assume that students do not have enough 206 |1.72
knowledge to discuss mathematical concepts in an exploration
activity.

32 Teachers should provide the students with the basic knowledge 475 | 4.49
that will allow them to reason.

33 Teachers should make sure that the students acquire the basic 437 1421
skills needed in everyday life.

35 It is important to foster inquisitiveness in the students. 4.72 | 4.56

36 It is important that the students be taught mathematical formulas | 3.52 {2.31
and algorithms.

44 Students should be taught in such a way that they enjoy 472 | 4.6
mathematics. _

155 Teachers should avoid using symbols too soon. 3.57 {4.31

61 Teachers should use mathematical language that is within the 4.85 | 4.68
students' grasp. .

62 A variety of representations should be used to present a topic. 443 | 4.35

63 Symbols should be used at each stage of the teaching process. 3.87 {2.56

Lastly, our analysis of the respondents' answers to the open-ended question
confirms and clarifies the views that the new student teachers have of what makes a
good mathematics teacher. Whether they speak primarily of arousing curiosity,
interest or motivation, of accessibility of teaching style, of making the subject
matter intelligible to the students or developing reasoning skills, one overriding
idea prevails—that of transmission: "transmitting in the most appropriate language,



getting the subject matter across..., knowing how to transmit..., transmitting their
passion for mathematics..., transmitting mathematical reasoning skills...,
transmitting the skill of comprehension..., transmitting the desire to learn
mathematics..., communicating and transmitting their interest...," and the list goes
on. If the student is mentioned in their initial concemns, it is often in terms of the
teacher's availability to the student. They state that the teacher must be "patient,
available to answer questions outside of class hours, be prepared to repeat the same
problem twenty times until the students understand, repeat explanations until
everything is clear for the students, encourage them and give them confidence, etc”.
These comments focus on the way in which the subject matter is communicated; the
teacher must be “"clear, well organized, accurate, understandable; he must
communicate in a way that is easily understood; and he must be articulated, know
how to communicate in a dynamic manner, have a thorough knowledge of the
subject”. A few respondents, however, express diverging views at this stage,
highlighting potentially opposing points of view that could be exploited during the
training program. These views include placing value on student initiatives and
errors (this idea was expressed in two excerpts), concern with taking students’
difficulties into account (expressed in five excerpts), and concern with showing the
relevance of mathematics (seven excerpts), with adapting one's teaching (11
excerpts), and with emphasizing comprehension over finding the right answer
(three excerpts).

Changes in the Views Held by Student Teachers

An analysis of the answers given by the graduating student teachers (cf. Table 1)
reveals major changes in their views of problem-solving activities. They no longer
regard such activities as the simple application of computational rules, or as simply
following a procedure (# 9 and 15). Also evident are significant changes in the
importance they place on definitions (# 3), the use of symbols (# 8), and the
language of mathematics (# 12)—factors that they no longer regard as representing
the limits of mathematical activity. Consequently, they no longer place emphasis on
learning formulas and algorithms (# 36) or on the use of symbols in all stages of
teaching (# 55 and 63). Instead, greater emphasis is placed on materials, and on
exploration and representational activities. Lastly, their view of the process of
learning mathematics has also evolved. It is no longer regarded as mere imitation
(# 21); children are perceived as coming to school with knowledge in hand (# 19),
and errors are no longer viewed as the result of carelessness (# 18); the learning
process is now regarded as a more complex activity in which the student plays a key
role (# 23, 31) This new way of regarding the student is also evident in their
answers to the open-ended question. The following types of statements are found:
"Encourage the students to participate; create opportunities for them to succeed; the
students must be at the centre of the discovery and learning process; challenge the
students and provide a framework in which they are free to express their ideas;
listen to the students, get them to participate so that you can see where they are
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having difficulty; involve them actively in the learning process; let the students
discuss, think, reason with and challenge each other; to do so, create situations that
are sufficiently enriched and likely to be of interest to the students. A good teacher
must foresee and understand his or her students' errors in order to help them
progress." '

Conclusion

The few examples cited above are indicative of the changes that occur in the student
teachers’ views on mathematics teaching. The view of the teacher as a skillful
communicator seeking to pass on his or her passion and knowledge gives way to
that of a teacher who is more centred on his or her students, their reasoning
processes and their errors, and who is seeking to initiate an interactive thought
process involving activities carried out with the students. Further analysis is
required to identify more precisely (beginning with the different entry profiles) the
changes that take place in student teachers’ views at the different stages of the
training process and the aspects of the training strategies used that actually
contribute to these changes.
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A STUDY OF PROPORTIONAL REASONING
AMONG SEVENTH GRADE STUDENTS

David Ben-Chaim, Oranim, The University of 1aifa
James T. Fey, Umversity of Maryland
William M. IFitzgerald, Michigan State University

Contextual problems ivolving rational nuathers and proportional reasonmng e three
broud categories -- rate, ratto and scaling -- were presented to seventh grade students
with different curriculur experiences. There is strong evidence that “new” carricula
strclents who are encouraged (o construct thewr awn procedures for solving proportions
and upplving those skills colluborauvely 1o applied problem solving, perform betier
than tradiional carriculum students. In any case, seveath grade siudents are capable 1o
recogiize sitations in which ratio or prupnrlmnul CORIPArISONS dre appropriaie und dn
have the abidity 1o represent ratio and proportion flexibiluy and in some cases cven
accuratedy.

Introduction

Recently new curmiculum, new strategies and new emphases have been developed
concerning many of the topics of middle school mathematics. This is especially true
regarding the treatment of rational numbers, including fractions, decimals, percents,
ratio, and proportional reasoning. In traditional middle school curmicula, cach
arithmetic operation with each type of rational number 1s taught with a focus on
developing student proficiency in well-defined computational algorithms that are then
practiced to ensure speed and accuracy of execution. Only when that computational
proficiency is attained will students be challenged to apply their computational skill to
practical or fanciful "word problems".

On the other hand, in the Connected Mathematics Project (CMP is a new
curriculum for grades six, seven and eight; created at Michigan State University) the
approach to rational numbers and proportional reasoning 15 to encourage students to
construct their own procedures for doing rational number computations, solving
proportions, and applying those skills to applied problem solving. The CMP
curriculum supponts that construction of rational number knowledge by presenting
students with a senies of contextual problems requiring proportional reasoning and
computation. Students collaborate in work on the problems, sharing their diverse
insights and approaches with partners and then with the whole class through
Mathematical Reflections discussions and journal writing. At no point in the CMP
curriculum materials are students shown any standard algonthms for addition,
subtraction, multiplication, or division of fractions or decimials. They are not shown
standard procedures for solving problems involving percents (¢.g. the "three cases of
pereent”), nor any routine method for solving proportions or testing ratios for
cquivalence (c.g. "cross-multiplication™). '

-
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The striking difference between traditional and CMP approaches 10 rational number
and proportional computation and problem solving raises a very natural and
fundamental question by parents, and others, who are concerned about the
performance of students at this level. The question ts: How do the computational and
problem solving strategies and success of CMP and traditional curriculum students
compare?

In particular, 1t 1s natural to wonder whether the new CMP approach docs
successfully lead students to construct effective (accurate and/or efficient) strategies
for fraction, decimal, percent and proportional computation and whether CMP
students develop flexible and/or effective strategics for solving contextual problems
involving rational numbers and proportions.

Purpose of Study

The basic goal of our proposed study is to describe the character and effectiveness
of proportional reasoning by seventh grade students with different curricular
experiences as they face problems in the following three broad categories (following
ideas of Freudenthal, 1978; 1983): '

e Comparing magnitudes of different quantities with an interesting connection, as
in "miles per gallon”, or "people per square kilometer”, or "kilograms per cubic
meter”, or "unit price”. These computations are not generally called ratios, but
rates or densities.

¢ Comparing two parts of a single whole, as in the "ratio of girls to boys in a class
1s 1510 10", or "a segment is divided in the golden ratio".

e Comparing magnitudes of two quantities that are conceptually related, but not
naturally thought of as parts of a common whole, as in "the ratio of sides of two
triangles is 2 to 1". These comparisons are sometimes referred to as scaling and
they include questions of stretching and shrinking in similarity transformations.

The main purpose is to compare the two populations. However, we are also
interested in leaming more about how seventh grade students leam and what they
know about proportional reasoning. For an extensive review of the litcrature on
proportional reasoning sec Tourniaire and Pulos (1985) and Behr, Harel, Post and
Lesh (1992).

Methodology

CMP sites for testing were selected based on the criteria that students had swdied
two full years of CMP: the sixth grade and seventh grade. Five different sites were
identified: Portland, Sturgis and Shepherd, MI, San-Diego, CA, Pittsburgh, PA.
Control sites were selected from the overall population of control sites for the CMP
assessment. Based on matching with the CMP sample sites, and on lowa Test of Basic
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Skills (1TBS) results, control classes were obtained from Parma, MI, Toledo, Ol
San-Diego, CA, and Pittsburgh, PA. The CMP sample consists of cight seventh grade
classes and the control sample consists of six seventh grade classes. In total, 187
students were in the CMP sample, and 128 students werc in the control sample.

The instruments designed for this study consist of students wnitten tasks, students
structured interviews and teacher written questionnaire. Three major types of
proportional reasoning problems were chosen to be included in the writien
Proportional Reasoning Test: rate problems, ratio problemns, and scaling problems.
Three forms were created. The rate problems were included in forms | and 3, the rato
problems in forms 1 and 2, and the scaling problems in forms 2 and 3. In each class
cach form was distributed evenly among the students as much as possible. The 4 rate
problems were attempted by 124 CMP swdents and 91 control students. The S ratio
problems were attempted by 124 CMP swudents and 85 control students. The S scaling
problems were attempted by 126 CMP students and 80 control students. The tests
were administered in May, 1995,

For example, the rate problems were grouped around a story about "A Trip To The
Zoo": Max, Eliza, Alex, and Cosima planned a bicycle tnp 1o the zoo as a yecar-end
outing for their class. Students gathered at the school parking lot and rode together on
the bicycie path to the zoo. Afier looking at the animals for a few hours, they met at
the picnic tables near the duck pond for a snack and cold dnnk before riding back to
school. [The first problem was:]

I. Max and Eliza bought supplies for snacks and reported the following expenses:
Gatorade cost $2.00 for 16 ounces. Cran-raspberry juice cost $1.60 for 12 ounces.
They bought Cran-raspberry juice. Did they make the most economical choice? Show
the calculations that lead you to that answer. '

The ratio problems were grouped around a story about "On The Road To School”
and dealt with: different ways of comparing the numbers of groups of students;
cquivalent and inequivalent ratios/fractions; and missing value problems.

The scaling problems dealt with photos, cnlargements, and shadow images. The
students were asked to identify enlargement faclors, deal with equivalent and
incquivalent ratios and find area relationships.

A special rating form was created to analyze the data. Three major categorics were
identified: Correct Answer, Incorrect Answer, and Blank. Correct Answer has three
sub-categories: "Only the correct answer”, "Correct answer with correct suppon
work", and "Correct answer with incorrect support work"”. These sub-categories were
created because in each problem the students were asked to provide support work by
providing reasons for their answers. The incorrect answer has also three sub-
categories: "Only 1ncorrect answer”, "Correct thinking but wrong conclusion”, and
"Incorrect thinking". The analysis of the data included determining the percentages in
the cells on the basis of the total number of students multiplied by the number of
problems of that form. For example, the Rate form included 4 problems which were



atiempted by 124 students, so the total N of the distribution is 496. In this case, each
entry is a percentage of that total.

Results

The overall results are presented in Table 1. 1t can be seen |, that most of the students
responded to most of the problems with support work. 1f we exclude the "Only correct
answer”, "Only incorrect answer”, and the "Blank”, 75% of the CMP students and
66% of the control students provided support work. Nevertheless, the quality of
writing i1s important. Our impressions are that the CMP students demonstrated more
proficiency in this regard than did the traditional students.

Table 1: Proportional Reasoning — Overall Results
CMP Students vs. Control Students (All numbers in this tahle are percents)

RATE RATIO SCALING OVERALL
CMP CNT CMP CONT CMP (NT CMP CONT
N=496 N=364 N=372 N=255 | N=630 N=400 | N=1498 N=1019
C Only the ‘
o | correct answer 2 5 3 N 4 4 3 4
R
R Correct st | 28 | a3 | 21| 36 | 16 | 43 | 2
support work
E
C Incorrect
o supportwork | T [ Mo o[ ] e s 12
1 Only the
N incorrect 2 6 4 5 17 17 9 10
answer
C
0 Correct
g | thinking,but |5 | 5 | 5 2 2 7 6
wrong
R conclusion
E
¢ | [Incomrect i8 | 28 | 19 | 201 23| 30 20| 27
I'hinking
"
BLANK 7 9 14 25 17 27 13 20
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Obviously, the correct answer with correet support work s the most desired
response from students. The overall results show that the CMP swdents outperformed
the control students (43% vs. 21%). F.ooking separately tor cach type of problem, both
samples were better in rate problems and worst in scaling problems. In the Blank
category, the percentages increase from rate, to ratio, to scaling. Overall, the CMP
students’ responses were blank 13% of the time, while 20% of the control students'
responses were blank. Obviously, as the topic is more instructional-related, the
percentage is higher. The analysis of the data includes many additional comparisons
between specitic items for both samples. For example, a special focus was on the
application of additive vs. multiplicauive principles. Another atiemipt was to identty
students' strategies and methods in dealing with a certain type of proportional
reasoning as required in the first "Rate” problem (given in the Methodology section).
Ten ditferent strategies (correct and-crroneous) were identified, for the majority, we
could identity students work to demonstrate the application of the strategies. lFor one
or two strategics which might be too sophisticated for seventh grade students, we
complete the picture by providing our own analysis.

The followings are the ten identified strategies with some students' examples for the
first problem in the "Rate” form:

(1) Comparing the ratios of two _different variables using "external ratios" or a
"functional method” as mentioned by Tourniaire and Pulos (1985). Actually, it is the
"unit rate" strategy dealing with "price per unit" or "umt per price”. For example —
student's work:

20016 125 Gatorade  12.5& unit price.
1.60=12 13.3 Cran-raspherry 3.3 unit price.
No, they dudn't make the best ceanomical choiee.

This answer was classitied as Correct with "correct support work”.

Another example ~ (> y.76 125

1.60=+12 133
Yus, they made the best economical choiee,

This answer was classified as Incorrect within the sub-category of "correct thinking
but wrong conclusion™. '

Another example of Student's work = [ 155> ;132 125160 1514

Nao, they didn’t make the best choice.

This 1s an example of directly comparing ratios of two different variables.

Another example of using "unit per price”: {,n5> x  j28/60 7.5

No, they did not;  becanse  with
Geatorade you get more for vour money

and with O puaice you get fess.
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(2) Comparing ratios of the samc variable using "intermal ratios” or a "scalar

methods" (Tourniaire and Pulos, 1985).

For example — incorrect answer of a student:

1612 = I R4
200°1.60--1 R0
Yes, they mude the right choice.

This answer was classified as "Correct thinking but wrong conclusion”. We could
not find many students who used this strategy.

Our completion is: 16 ounces/12 ounces = 1.333... = 4/3

= the quanuty on the
numerator is a better buy.-
2.00%/1.60% = 1.250 = 5/4

(3) Comparing the cost of the same quantity by finding common factor or common
multiple quantities — "price per unit" i1s a specific example for this strategy.

For example — student’s work:  [¢; 603 533

+.33

2,13 CGutorade  $2.00 for 16 ounces
Crun-ruspberry  82.13 for 16 vunces.
No, they didn't muke the best choice.

Another example is: No, . . . for 48 ounces Gatorade is $6 and C.R.B. is $6.40.

(4) Comparing amounts for the same cost by finding common factor or common
multiple costs — "unit per price" is a specific example for this strategy.

[For example, one student used the "building up” strategy (the next one) and found
that he/she can buy 60 oz of Cran-raspberry for $8 and 64 oz of Gatorade for $8.

Of course, one could compare for 40z:  $2.00/5= 40z = 16/5 = 3.2 oz (Gatorade
$1.60/4=40c = 12/4 =3 0z C.R.
or find the amount per $1:  16/2 = 8 oz per $ Gatorade
12/1.60 =7.5 0z per $ C.R.
(5) "Building up" strategy by using a list or a table.

For example — student's work:

G C
$ ounces h) ounces  No, they didn't because at 48 ounces of juice
2.00 16 .60 12 Gatorade costs $6.00 even and Cran-
32 3.20 24 raspberry cost = $6.40.
6.00 48 36
6.40 48
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(6) L.ooking at the ratio of the differences between the same vanable.

For example — students' work: | 2.00 16 16 2.00
-1.60 212 NO |12 -L60  YES
40 4 11 4 40z

Many others used more or less the same strategy, but we could not find an
acceptable explanation.

The following is our mathematical explanation for the "difterence method".

Price per unit Quantity Cosl
type 1 —x nof lype | nx
ype2 oy m of type 2 my

Assume x>y > x =y +7 Assume n>m

Using the difference method:
(nx-my)/(n-m) = [n(y+z)-my}/(n-m) =
(ny+nz-my)/(n-m) = [y(n-m)+nz}/(n-m) = y + nz/(n-m)

This 1s the "price” of one additional item of type 1. Obviously, it is more expensive
than type 2.

(7) A strategy of relating to only one vanable by ignoring part of the data in the
problem. Obviously, this 1s erroneous strategy.

For example - students’ work: |Yes, hecause each drink you
buy is H0 cheaper, so you
ure suving lots of money.

Nao, because Cratorade iy
cheaper, hecause U hus
maore ounces (o if.

(8) A strategy of responding just to the numbers.
For example - students’ work :

Yes 2.00x12 24 Gatorade

Leoxi2 19.2 L60xI6 25.60 Cran-raspherry
2.00x16 32

(9) A strategy named by us as "affective responses”. We identified two kinds: by
the value of money (under or over) and by taste (like or dislike).

For example — students' work :

No, Gutorade | [No, because what if some of the kids
Yes, they did hecase o really tusies betier don't like Cran-raspherry.
didn't cost thut much money.

Yes, it wus a good chowe, they
saved 0.

(10} The last strategy includes: method used is not clear, answers are given but no
method is given, no response.




As mentioned before, we interviewed students {rom both samples and administered
teacher's questionnaire. This was done in order to gain an additional insight to the
written tasks, especially when students were also asked questions without stories such
as "is the ratio 4/7 equal to 10/13?" or "is 7/8 = 8/97",

Conclusion

While the CMP students outperformed the control students throughout the study,
we can sec that we are dealing with some very difticult ideas to master. The authors of
Street Mathematics and School Mathematics, Nunes et al. (1993), say that they have
found no linear path of leamning through this complicated maze of proportional
reasoning. Our findings confirm those thoughts. The vaniely of ways students find to
solve problems 1s always amazing. Our task is to keep the doors to clever solutions
open to those students who will produce them.
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Children’s Word Meanings and the Development of Division Concepts

Sarah B. Berenson and Draga Vidakovic
Center for Research 1n Mathematics and Science Education
North Carolina State University
Introduction

Focus

Many researchers agree that division concepts begin developing in students
as early as age seven but are not clearly understood by most students until age 18.
Work has been done 10 exanine students’ responses at various ages (o a variety of
division problem types, different division contexts, and rational number division
(Kouba, 1989; Tirosh & Graeber, 1989; Harel, Behr, Post, & Lesh, 1994).
Division strategies and division models have been studied by Fischbein, Deri, Nell
and Manno (1985), Kouba (1989), Greer (1992), Contrey (1994) and others.
For this study, we wanted 10 extend the investigation of children’s division
concepts beyond their processes, strategies, and models. More specifically, we
were interested in children’s meanings of words that are commonly used in

division instruction.

Theoretical Framework

Discourse and negotiated meaning are current areas of pedagogical interest
in the reform agenda. They emerged with the constructivist perspective of the
mathematics classroom where teacher and students mediate the meanings of
words, symbols, and situations (Vygotsky, 1986; Voight, 1994). For Vygotsky
(1986) word meanings were essential links between language and thought.
Evidence suggests that students use language differently to express their thoughis
and betore adolescence have very different meanings for words than adults
(Vygotsky, 1986). For mathematics educators who ascribe to constructivism and
promole the role of classroom discourse, it becomes important to examine the
range of meanings that students have for words commonly associated with

division.



Luria (1981), a student of Vygotsky's, used card sorts as a method of
eliciting responses from children. The children's considerations of each word
while sorting and classifying become an opportunity for them to verbalize their

thoughts about the words and other word associations.

Voight (1994), and Lo (1994), among others, used case studies 10 examine
the mathematical meaning of elementary children. From these studies, negotiating
meaning within the social context of the classroom and the role of the teacher in
sense making emerged as notable conditions for learning mathematics. These
findings suggest that it is important for teachers to realize that even though
students use the teachers’ words, the students’ meanings may be very different
from those of their teachers. Berenson and Vidakovic (1995) observed that
students in grades 3-8 have many different meanings for division words such as
“sharing” or “fair share”, reflecting the diversity of cultures represented in
schools today.

Method

The 38 students in this study were in grades 5-8 in a large, rural county in
Southeastern United States. They were selected based on the results of earlier
structured interviews given by their teachers, which we thought were
representative of the range and diversity of division ideas found among middle
grades students. The interviews for this study were conducted by the researchers.
Sources of data included individual interview transcripts, video tapes, field notes,

and students’ paper work.

We chose to adapt the methodologies of Luria (1981); the first method is
concept definition and the second method is free classification. The basic idea of
concept definition is to study students’ definitions of division; it is accomplished
by analyzing the associations of the word division that students make when
defining the word. According to Luria (1981) there are several ways that the
students may verbalize their definitions. In concrete associations, a student

identifies some characteristic of the word division or relates the word to a



concrcie situation. In the second 1ype, a student relates the word djyision 1o a
category or system of concepts which Luna refers to as verbal-logical
associations. For this study, students were asked to give their definitions of

division after they had done the free classificaions.

The method of free classification involved giving the students a number of
cards, each with one word on them. The words used in this study were associated
with division and were obtained from the students’ teachers (See Table 1). The
students were asked to group the words, name each group, and explain the
reasons_for placing the words in a particular group. We asked the students to
perform three card sorts. After the first sort, the interviewer inquired if the
student could decrease the number of groups by merging or regrouping the first

word sort. These directions were repeated tor a third sort.

Analysis and Results

Concept Definijions

The analysis of these data are incomplete at this time. A preliminary
analysis found evidence that some students at this level do give concrete examples
of division situations. For example, one sixth grade student described division as
dividing candy among friends and another as putting an equal number of balls in
boxes. Some students demonstrated difficulty in verbalizing their division
definitions, picking out only one or two concept features such as “parts” or
“groups.” Whenever vou divide two numbers and it's like the people, like yvou
have a party and vou get a number for something for evervbody. and vou would
divide it into - to be how many people vou could get for it. Still others were
able to make verbal-logical associations with division. Division is to take away
from one big group ... just divide the big group into separate parts that are fair to
each other. What is less clear at this point in the analysis are the links
between the students’ concept definitions and their free associations.

Free Associations

Early in the interviews it became apparent that many students perceived



two categories of words among the 16 they had been asked to sort. Students
described some of the words as “math” words and others were described as used
outside of the mathematics classroom or “non-math” words. For example, one
eighth grader said that she had “never heard of split, halve, and fuir used in
mathematics.” A student in seventh grade described fair and share as things you
have to do in life, whereas all the other words were math group words. Another
student grouped splif, separate, evenly, and egual as words associated with
“marmiage.” There were some interesting exampies of contradiction among the
students. For example, one student claimed that she could not sort “split” into any
group but then proceeded later in the interview to repeatedly use “split” in her
descriptions of division. The dichotomy of terms perceived by the students
prompted us to classify the card sort words as 1) division labels and 2) division

descriptors. These are also shown in Table 1.

Table 1. Division Words an se Is’ ifications tor Card Sort Analysis.
Division Labels Division Descriptors
remainder split share equal
dividend separate total same
divisor share fair group
divide parts evenly
quotient
First sort. The analyses of the word classifications began with an

examination of the students’ first set of word groups to determine which of the 16
words were associated with division. Nearly two-thirds of the students (n=24)
named one of their groups “division, divide,” or “*dividing” in the first sort. Of
these, there appeared 1o be three distinct types of word group associations. By far
the most common division association (n = 18) was one that included only the
labels of division: divide. dividend. divisor, quotient, and remainder. Two

students associated several division descriptors such as halve, parts, group, and
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split with division, but did not include the division labels such as dividend and
quotient. Four students demonstrated that they associated both division labels and
descriptors with division within the first set of word groupings. For example, an
eighth grader grouped divide, divisor, dividend, guotient, remainder, split, equal,
group, separate, halve, evenly. total, and guotient and named the group
“division.”

S_u_hs;q_u_e_n[_sgﬂs. Fourteen students were able to associate all 16 words
with division in the second or third sorts. Among these students were 3 who did
not associate any of the words in their first sort with division. The remaining 11
students who were able to group all 16 words as “division” words had either used
division labels or both division labels and descnptors in their first grouping. The
logical progression of most students’ associations seemied to begin with division
labels in the first grouping, the addition of some division descniptors with the
labels in the second grouping, and finally the inclusion of all the words as
division words in the third grouping. When we considered the ages of these 14
students, there is little evidence that older students associated more words with
division than younger studeats. For example, 3 fifth graders, 3 sixth graders, 6
seventh graders and 2 eighth graders were among these 14 students with muluple
meanings for the concept of division.

Discussion

Further analysis and results will be reported at the PME neeting this
summer. We will determine if students tended to associate each word with the
naie of the group or the group words with one another. Additionally, the many

ditferent names created by the students to name their groups are of interest.

There appeared to be a logical progression of word associations among
these middle grade students. The first series of associations began with the
associations of division labels, then the inclusion of words such as geparate and
split , termed division descriptors. Several possible avenues are open for future

investigations including teaching experiments and classroom observations. ‘These



settings can provide students with opportunities to negotiate the meanings of

words commonly used in division instruction.

References

Berenson, S., & Vidakovic, D. (1995). Rural students informai knowledge of division. In D.
Owens, M. Reed, & G. Milisaps (Eds.). Proceeding of the Psychology of Mathematics
Education -NA Conference, {2-344 - 2-350). Columbus, OH:; Ohio State University. *

Confrey, J. (1994). Splining, similarily and rate of change: a new approach 10 multiplication and
exponential functions. In G. Harel & J. Confrey (Eds. )The development of multiplicative
reasoning in the learning of mathematics (pp. 293-332). Albany, NY: SUNY Press.

Fischh;'in, E., Deni, M., Nello, M., & Marino, M. (1985). The role of implicit models in solving
verbal problems in muluplication and division. Journal for Research in Mathematics
Education, 16 (1), 3-17.

Greer, B. (1992). Muluplication and division as models of sitwations. In D. A. Grouws (Ed.).
Handbook on research on mathematics teaching and learning (pp. 276-295). New York:
MacMillan,

Harel, G., Behr,M., Post, T., & Lesh, R. (1994). The impact of the number type on the solution
of multiplicason and division problems: Further investigations. In G. Harel & ). Confrey
(Eds.).The development of multiplicative reasoning in the learning of mathematics (pp. 365-
388). Albany, NY: SUNY Press.

Kouba, V. (1989). Children’s solution strategies for equivalent set multiplication and division
word problems. Journal for Research in Mathematics Education, 20 (2), 147-158.

Lo, J. ). (§1994). The parucipation, beliefs, and development of arithmetic meaning of a third-grade
student in mathemalics class discussions. Journal for Research in Mathematics and Science
Education. 25¢1), 30-49.

Luria, A. (1981). Language and cognition. New York: Wiley.

Tirosh, D. & Gracher, A. (1989). Preservice elementary weachers” explicit beliefs about
muluplicauon and division. Educational Studies in Mathematics, 20, 79-96.

Voight, J. (1994). Negouation of mathematical meaning and leaming mathemaucs. Educational
Studies in Mathematics, 26, 275-298.

Vypowsky, L. (1986). Thought and language. Cambndge, MA: MIT Press.

. 88
L 5.

80



THE USE OF EXAMPLES IN THE TEACHING AND LEARNING OF
MATHEMATICS

Liz Bills
Crewe and Alsager Faculty
Manchester Metropolitan University

In this paper [ make a brief survey: of literature on the use of examples in concept formation and
compure abstraction from examples with concept formation from single or generic examples. |
apply these theoretical ideas 10 a number of classroom incidents and conclude that there is a role for
multiple examples even where the generalisation is generic.

Classical theories of the psychology of learning take as one of their foundations
the human ability to distinguish, to identify sameness and difterence, like and
unlike, and thereby to group, separate and classify. The notion of classification
allows us to conceive of members of a class and hence of representatives of
classes, or examples.

The issue of classification is also a route into consideration of particular and
general. "Particular” describes features of an individual member of a class,
whilst "general” describes features common to all members. A statement
describing an attribute of a particular member of a class might be adapted to
describe an analogous "general” feature of every member of the class.

Many writers have considered the issue of particular and general in mathematics.
Traditional theories of concept formation by abstraction are one attempt to
characterise the relationship between particular and general in the learning of
mathematics. Several major theorists have queried classical ideas about the nature
of the relationship between general and particular in the learning process.

Classical theory has us forming concepts by abstraction of the commonalties from
numerous encounters with the particular. Skemp (1971) uses the example of a
child developing the schema of "chair” through numerous encounters with
cxamples and non-examples of chairs. Dienes (1960) bases his principles for the
teaching of mathematics on the notion of abstraction from examples.

Borasi (1984) expresses disquiel at this interpretation of learning new concepts in
the context of mathematics education. She points to psychological evidence
produced by Tall and Vinner (1981) which contradicts the notion that "irrelevant
attributes of the examples from which a concept has been abstracted will be
forgotten once the concept is established. They found, on the contrary, that some
features of the examples which were presented in the teaching of the concept were
not attributes of the concept. Nevertheless they were retained as part of the
students’ "concept image”, that is the students’ mental picture of the meaning of
the concept. Borasi also expounds the shortcomings of the abstraction model in
the case of the concept of an infinite set.

.
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Freudenthal (1978) argues that learning of mathematical concepts at school does
not take place by the process of abstraction:

“the origin of general ideas, concepts, judgements and attitudes in the learning
process, whether they are antained in a continuous process, by comprehension,
that is by generalising from numerous examples, as is the common opinion, or
by apprehension, that 1s by grasping directly the general situation, which is my
thesis.” (p170)

He describes methods of promoting "apprehension” in the classroom by the use of
"paradigms”, that is single examples which give access to the general situation.

Lakoft (1987) argues a similar case concerning the classical view of
categorisation. He opposes to it a new theory of categorisation called "prototype
theory” and claims that "...prototype theory....suggests that human categorisation
is essentially a matier of both human experience and imagination - of perception,
motor activity, and culture on the one hand, and of metaphor, metonymy, and
mental imagery on the other” (p8). Further, prototype theory suggests that there
are good and bad examples of members of a category. This contradicts the
classical view that no example of a category is any better than any other example
and, says the author, fits better with our experience.

Other writers have expanded on traditional understandings of abstraction without
stressing their limitations. Dreyfus, for example (1991) speaks of abstracuon as
focusing on relationships between objects rather than on the objects themselves.
This description includes the traditional idea of shifting attention to the
similarities and differences between objects, but also expands on it.

Harel (1991) treats abstraction as part of the process of generalisation and concept
building. This part of the approach seems problematic in the case of the function,
where there is evidence of students using all kinds of erroneous schema which
they have abstracted from the examples that have been presented to them. He
suggests use of generic examples as a means of assisting students in making
abstractions and building concepts around formal definitions. 1 will refer to this
work again in my discussion of generic examples.

In rejecting the classical abstraction model of concept formation, Freudenthal (op
cit.) states his preference for a teaching method which employs "paradigms”. A
paradigm he describes as "one example, which evokes the general idea” (p170) or
the one necessary example. In the context of learning Latin "amo" as an example

~of a first conjugation verb is a paradigm. It acts as a paradigm even though the
tiransposing to other first conjugation verbs may be unconscious.

The notion of an example which is seen in some way as representing a generality
has been taken on by a number of authors, often using the term "generic
example”.

AT
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Mason and Pimm (1984) discuss generic examples in a variety of contexts,
suggesting f(x) = le as a generic example of a continuous but non-ditferentiable
function, 2/3 as generic example of the set (21/3t: 1 € Z}, and Kleenex as a
generic example of a tissue. They point out that the role ot example is to help
students to see the generality which is represented by the particular. In other
words students need to see the examples as "examples of™ some more general
statement.

In Mason (1993) Mason again points out that the teacher’s experience of
“examplchood” when presenting an example to students may be quite different
. Trom the students’ experience.

Hazzan (1994) and MacHale (1980) draw attention to some of the dangers of
over-reliance on canonical or generic examples. Hazzan made a study of students’
understanding of group theory and in particular their ability to solve the equation
x = x-'in the context of a group. Many of the students claimed that the only
possible solution to this equation was x =e¢. One of the author's suggested
explanations for this is that the students are relying on multiplication on the real
numbers as their canonical example of a group operation, so that they assume that
the onty element which is self-inverse is the identity element. Features of the
example which are not a part of the generality it represents, have been imputed to
that gencrality. Hazzan links this over-use of the canonical example with the role
of metaphor in understanding abstract concepts. The students see the group
operation as multplication, rather than like multiplication, so that one student
says "Suddenly, everything (in Abstract Algebra) looks so strange. | mmean why
isn't ¢ *b equal to h*a?" (p53). These findings illustrate some of the points made
by Tall and Vinner (op cit.) in their work on "concept image”.

MacHale regrets the tact that text book authors are so consistent in their counter-
examples, so that, for instance, f(x) = |x| is almost the only example to be found
ol a continuous but non-differentiable function. The use of a single counter-
example supports "monster-barring” (Lakatos 1976), that is it allows students 1o
disnuss the counter-example and maintain their belief that, for example, all
continuous functions are differentiable. In addition it does not encourage students
to locate what it is that is similar about these examples and that makes them
representative of the general. This amounts to an argument against the use of
generic examples.

Harel (op. cit.) emphasises the generic example as a means of generalisation for
students. He speaks of "generic abstraction” as the process of forming a new
concept by consideration of one paradigmatic or canonical example and suggests
three principles for selecting effective generic examples:

The entification principle says that the context from which the new object's
properties are (o be abstracted must be familiar. The necessity principle states
that students must be able 1o see the reason for the abstraction they are being
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asked 10 make. The parallel principle says that the generic example must be
treated in a way which can be paralleled later in the general case.

His last principle perhaps misses the point that it is the student's treatment of the
example which is crucial. "Irrelevant” properties of the example may continue to
form part of the student's concept image.

Balacheff (1988) uses the notion of generic example in the context of students
writing proofs. Of his four categories of proof, generic example is the third and
is characterised as follows: "The generic example involves making explicit the
reasons for the truth of an assertion by means of operation or transtormations on -
an object that i1s not there in its own right, but as a characteristic representative of
the class” (p219) He suggests that such a "proof™ is a step on the way to the

formal "thought experiment”.

The generic example then is seen as a stage between particular and general. It has
been advocated as a teaching approach and observed as a stage in understanding.
To see generic understanding as a stepping stone between particular and general is
to deny the universality of the "abstraction from particulars” model of concept
formation.

This discussion of the role of examples in the formation of concepts alerted me to
look for the teachers’ and students’ use of examples in mathematics. Are there
instances of the use of generic examples, and if so in what context? s there
evidence of students using examples as a basis for abstraction? These, and many
other questions were in my mind as | undertook a period of teaching in a local
school and also a series of meetings with a group of teachers. The classes I taught
and observed were of seventeen year old students. During this time | made notes
on incidents which struck me as relevant to my interests and also tape recorded
some lessons and conversations.

Duning one of my meetings with the group of teachers we discussed a recording |
had made of my conversation with a student. He was working on finding the
equation of a straight line. Towards the end of this discussion, one of the
teachers, Kate said: ‘

“This has actually just shed some light on a conversation I had with my son.

He was finding equations of straight lines through a point and | was saying to
him "use y-y, = m{(x—x;)"and he said "I've never heard of that before” and he
wrote down for me y = mx + mx; — y;and 1 said "where did you get that?"
sorry "— mx; + y," I'm getting it the wrong way round myself, and I said I
had never seen it in that form before and he said "Well | did a lot of examples
and | found that this pattern was working out” and it's the first ime I've ever
heard - I hadn't realised what I was hearing at the time - it's the first ume I've
ever heard of somebody coming up with their own generalisation from doing a
lot of numenical examples - and I now think my son'’s quite clever actually”
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Although Kate expresses surprise at her son's generalisation 1 can recall similar
occasions from my own teaching experience. For example, two boys, Paul and
Kwok, working on the Cartesian equations of circles arrived at a general
condition that the equation x? + ¥? + ax + by + ¢ = 0 should represent a
circle. They did this whilst working through an exercise which contained a large
number of particular questions of the same type.

[t is important to note that Kate's son apparently came to his generahlisation by
spotting patterns in numbers. He saw a relationship between the coefficients in
the equations he derived and the gradients and co-ordinates of points that were
given in the questions. Paul and Kwok did not do this but worked through, in the
general case. the procedure they had been practising in several particular cases.
They performed on the general equation x2 + ¥2 + ax + by + ¢ = 0 the
process which they had routinized on humerical examples.

What the two incidents have in common is that the students came to an algebrue
expression of thetr own generalisation in the course of working on a lot of
particular cases. There is however a subtle ditference between the ways in which
they arrived at these generalisations. | might describe the former as an empirical
or inductive generalisation and the latter as a generic generalisation. 1 find the
labels "abstraction from examples” and "generic abstraction”, as 1 have
understood them in the work of others and described them in the earlier part of
this paper, useful in making this distinction.

Having made this distinction | want to consider two further incidents in which |
found these labels useful. The first is a conversation between me and one student,
l-wan.

I ask Ewan to work on the question

"Find the equation of a straight line which has gradient M and passes
through the point (p, q)". ‘

He says "let's try it with y = mx + ¢" and writes this down but then doesn't have
a strategy for starting. He claims that he could do the question if he had values
for M, p and q so 1 ask him (1o work withM =4, p=2and q=3.

He draws a sketch of the line in this case but then says he has forgotten the method
for finding the equation. I take him through the steps of substituting known
values into y = mx + ¢. We don't write anything more down but Ewan works -
out a value for ¢ in his head, saying

"Yes. IU's 8 plus something equals 3. ... 8, it would be 8 minus 5. Yes.
So that's got to be -5. Soit’s got to be y=4x-5.".

Next 1 ask him to work on the original question:

({n this transcript a series of full stops indicates a puuse of half a second for each
full stop)

| Lizz  Uhmhm. Right, now the job that you've been given
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Ewan: Uhmhm.

Liz:  is to find the equation ot a line

LEwan: yes

Liz:  which doesn’t have them specified as numbers.

Ewan: Yes. So that, g=mp—c. (writes g=my-c)

Liz:  No do you mean p there?

Lwan: | do mean p, not ¢. .. p. | can’t write either.

Liz: What did you use that equation for when
you were doing the other one?

10 Ewan: That?

It Lizz  Hmm.

i2 Ewan: lused :. pis x because it's the x -co-ordinate

13 Lizz  Uhmhm. ,

14 Lwan: ¢ is y, because it's the ¥ co-ordinate. (writes g=mp+c)

Relie R BRe RV N R

15 l.iz: Hmm.

16 Ewan: m is the gradient and ¢ is the constant. And because I didn't know the
constant but because I knew the other ones

17 Laz:  night
18 Ewan: | knew that mp+c had to equal ¢, so | could just work out what ¢ was.
19 Liz:  Right. Well the same is true for this case.

20 Ewan: Yes. ... So it would be ..... g=mp. (writes g=(mp)) .............
................ a bit of a shot in the dark ... 5 1s what the two co-ordinates
were when added together.

My intention in this interchange was that my example of the equation of a straight
line going through (2, 3) and with gradient 4 should be a generic example for
Ewan. | expected him to grasp the method and be able to apply it in the general
case. His speeches in lines 12 to 18 indicate that he had grasped the method at
some level. However, he does not go on, as expected, to manipulate the equation
g=mp+c to give an expression for ¢. Rather he goes back to the numerical
example we had done to look for a number pattern. Perhaps his hesitation over
doing this ("a bit of a shot in the dark") was because he had only one example
trom which to generalise.

| could speculate on the reasons for Ewan's failure to do the algebraic
manipulation, but that is not my purpose here. | want merely to suggest that
empirical and generic generalisation are confusingly (to both teacher and student)
mixed together in this incident.

A common reaction from teachers with whom | have discussed this account 1s to
suggest that I should have done more numerical examples of a similar kind with
liwan before asking him to work on the general case. This suggestion runs
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counter to the idea of my numerical example as a generic example. The essence
of the generic example is that only one is required.

The second incident is from my meetings with teachers:

Three teachers were working on the following problem:

In how many ways can n | by 2 rectangles be arranged to form a
2 by n rectangle?

Two teachers working together and one working on his own had independently
come to the conclusion that the sequence of numbers of arrangements for
increasing values of n was a sequence of Fibonacei numbers. Prompted to try to
justify this conclusion, David, who was working alone, showed me how to obtain
all the arrangements of four rectangles by adding two more rectangles to the each
of the arrangements of two, and one more rectangle to cach of the arrangements
of three. 1 asked him to show his demonstration to the other two.

David: If it's Fibonacci, for number four you add the two combinations and three
combinations together

Valerie: Right
David: There are my two combinations, three combinations so [ just need to add

one to each of those and | need to add two to these which if 1 add that way round |
end up with all five combinations. ............ hmm? So ..

Katherine: Why does - ?

David: They're the twos

Katherine: What happens if you add to the other side? s it not possible to get any
ditferent ones?

David: I think that's going to be-exactly the same results as if I'd added them on
top. As long as | put these ones across and these ones down

Katherine: Because those two are the other way round - yes

David: Now - | haven't tried, but [ guess three and four - I'm just assuming at the
moment that it's just adding on - so that's four - and threes were - one, two, three
Uaughter as Duvid "secretlv” 1akes some more rods from the two women's work)
sv | should be able o get all the combinations just going hke that, that, that

I had asked David to give his demonstration because | thought it would serve as a
generic proof that each term was the sum of the previous two. In fact both David
and the two women seemed to want to look at another case, that of n=3, in order

to be convinced.

I suggest that these teachers were not looking for empirical evidence that their
conjecture was correct, They had already seen that the sequence of numbers was
a Fibonacci sequence. They were looking for confirmation of an argument, hot
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of a result. In other words, they were looking through the particular to the
general, rather than seeking statistical evidence.

On the basis of my brief review of literature on examples 1 might distinguish
between empirical and generic generalisation on the basis of the number of
examples needed. That is, empirical generalisation requires a number of
examples whereas generic generalisation requires only one example. However,
Paul and Kwok made what [ would identify as a generic generalisation on the
basis of a large number of examples (it is possible that they could have done as
much afier only one example) whilst Ewan attempted an empirical generalisation
on the basis of only one example. The three teachers felt the need to look at a
second example even though they were using a genenic argument. The number of
examples used is not a reliable indicator of the type of generalisation.

My study of examples in use suggests that a multplicity of examples may be
useful even in cases where their interpretation is generic. The distinction between
the two kinds of generalisation may not be so easily made in practice as in theory.
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THE INFLUENCES OF SIGNIFICANT OTHERS ON STUDENT
ATTITUDES TO MATHEMATICS LEARNING.

Alan Bishop, Christine Brew,
Faculty of Education, Monash University, Melbourne, Australia

Gilah Leder, Catherine Pearn,
Faculty of Education, La Trobe University, Melbourne, Australia

Abstract

In the first part of a three vear study in Australian secondary schools, Year 7
and 9 students were surveyed and interviewed about their attitudes towards
mathematics learning. Factors investigated were their perceived performance
at mathematics and the influence of peers, teacher, parental aspirations and
experience of mathematics. Teachers and the students’ parents views were
also sought, and in this way apparent conflicts could be explored. In this
paper we present certain quantitative findings and extracts from an interview
which provide insight into the apparent influences of significant others
described in the questionnaire data.

1. Background and research procedure

This study is generally concerned with understanding the reasons for the
underdevelopment of the mathematical potential of many young Australians. lts
focus is on students who may be experiencing cultural conflicts in terms of gender,
ethnicity or class, and who may not be able to achieve their full potential in
mathematics. The conceptual context for the research is student attitudes and in this
paper we report on the first part of the study, which was carried out in 1994 with
students in four predominantly Anglo-cultural background secondary schools, and
which looks predominantly at gender differences. '

Explanations and interpretations of under achievement in mathematics have
tended in recent years to move away from the cognitive domain and to focus more on
student attitudes (McLeod, 1992). Moreover as the social dimension (Bishop, 1985)
has come to be recognised as a highly significant factor in mathematics education, so
the need has arisen to camry out studies which examine the roles of particular
individuals and groups in influencing young people’s attitudes towards mathematics
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and mathematics learning. There 1s therefore the need, as Leder (1992) aftirms, to
adopt ‘research paradigms that allow a greater attention to individual differences and
context-specific problems.’ In this study we are exploring the network of perceptions
and relationships involving the individual students, their peers, their mathematics
teacher and their parents. These are assumed to be the most ‘significant others’
(Sullivan, 1955) likely to influence the individuals’ attitudes.

The four state co-educational schools were selected on their low non-English-
speaking-background student numbers (less than 30%) , and on the socio-economic
status level in the school’s catchment area, with two schools having medium to high
levels and two medium to low. In each schoot a Year 7 and a Year 9 class were
chosen through consultation with the mathematics coordinators and the teachers
concemed. Each teacher was asked to rdentify four low and four high achieving
mathematics students. Four sources of data were collected: questionnaires
administered to all the students in each of the classes studied, video tapes of three of
their mathematics lessons, interviews with the selected students, and interviews with
their parents (wherever possible). Full ethical procedures were followed.

2. Questionnaires.
2 (a) Questionnaire development

To determine the students' attitudes towards various aspects of mathematics
leaming, a multi-dimensional questionnaire was developed, using items from the
Fennema-Sherman Attitude Scales (1976), the Mathematics Attribution Scale
(Fennema, Wolleat & Pedro, 1979), the Individualised Classroom Environment
Questionnaire (Fraser, 1990) and items developed by the researchers based on
statements from The National Statement on Mathematics (Australian Education
Council, 1991).

There were four sections to the questionnaire. Your Views about Mathematics
included ems to ascertain each student's attitudes to mathematics and to leamning it.
More Views about Mathematics assessed the students’ attnbutions for their success
or failure in mathematics in terms of ability, effort, task and environment.. The
Individualised Classroom Environment questionnaire was used to ascertain each
student's own perception of the learning environment within their mathematics
classroom. How Good Are You? (Forgasz & Leder 1995) aimed to determine the
students' perceptions of their own ability and how they thought their parents, teacher,
and peers would rate them as leamners of mathematics.
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2 (b) Questionnaire Results

Our general results are consistent with earlier findings of students’ perceptions
about mathematics. Girls indicated they were more anxious about mathematics
and felt more strongly than boys that mathematics was not a male domain.
Furthermore, low achievers perceived they obtained less support from their teacher
and during interviews they said it was hard to get attention, or felt ignored by their
teacher, or even avoided the teacher. The reasons students gave for avoiding the
teacher included being confused by their explanations, they were shy, they thought
they would be bothering the teacher, or were afraid of revealing a lack of
understanding.

In the selected questionnaire results to which we refer here, students were
asked to rate their own achievement level in mathematics on a scale from 1 (low)
to S (high), which we discuss below as High Achievers (ratings 4 and 5) Middle
Achievers (rating 3) and Low Achievers (1 and 2). Each student also gave their
‘wished for’ rating, their perceived teacher’s, classmates’, mother’s and father’s
ratings of their achievement, as well as their perceived mother’s and father’s
‘wished for’ ratings for them.

Students’ self-rating compared with their ‘wished for’ rating

Students overwhelmingly indicated they wanted to do better at mathematics
(84%). Fifteen percent of students were happy with their level of performance.
‘There appears to be a gender difference in this latter result as 21% of boys stated
they were satisfied with their performance while only 6% of the girls did so.

Students’ self-rating compared with teacher rating

Perhaps the most “significant other’ which should first be considered is the
student’s own teacher. When the students’ self-ratings were compared with their
teachers’ ratings, based on end-of year results, over half of the students
overestimated their performance. Boys were also more hkely to overestimate and
girls more hikely to underestimate their performance (p<0.01, Table 1).

Willis (1990) reported that boys over-rated and girls under-rated their
performance in mathematical achievement in relation to wnitten assignments.
Under-rating of performance has been assumed to be associated with girls having
lower self-esteem than boys. Yet it is not clear from the literature whether over-
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rating of performance is more productive, that is whether it contributes to higher
achievement levels, than under-rating of performance. Our data indicate that this 1s
not necessarily the case since the teachers gave the girls a higher rating than the
boys, although the difference was not significant (one-third of a mean grade point
difference out of 5 grades).

Table 1: Students' self rating of performance by gender.

Over-rating of Self rating and Under-rating of
achievement achievement level achievement
same
Girls (n = 79) 44% | 29% 26%
Boys (n = 96) 67% 23% 10%
Total (n=175) 56% 26% 18%

Moreover, when the same data were analysed in terms of the year of school
attended, Year 9 students also over-rated their perfformance to a greater extent than
the Year 7 students (p<.01), while the teachers rated the Year 7 students
significantly higher than the Year 9 students (p<.001). Perhaps under-rating of
one’s performance is related to factors other than self-esteem? We now tumn to our

data on the influence of other ‘significant others’.

_—_

Students’ self-rating compared with perceived class-mate rating

Table 2: Peer influence in the over-rating and under-rating of performance in
mathematics.

'Peers over-rate my Peer and self rating  'Peers under-rate

performance’ the same my performance’
Girls (n = 80) - 28% 62% 10%
Boys (n = 99) 15% 58% 27%

Total (n=179) 21% 60% 19%
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Within the classroom the students’ classmates are likely to be a highly
significant influence. In relation to their perceived rating from their peers, the boys
were more likely to believe that their peers under-rated their achievement (p<.01)
while the girls were more likely to believe that their peers over-rated their
performance (Table 2). it is important to note, however, that the majority of both
girls and boys perceived no difference between self and peer rating.

A question on the attnibution scale in the questionnairc More views about
mathematics, also made reference to the impact of distracting peers as a factor
determining failure. A highly significant interaction was detected between gender
and student perceived achievement for this question (p<.01, Table 3). An
examination of the means showed that while distracting peers diminished as a
factor in percetved failure for higher achieving boys, for the higher achieving girls
it increased.

Table 3: The influence of distracting peers as a factor in failure

“Imagine you have not been able to keep up with the rest of the class in maths this
term: Students sitting near you wouldn't work.”

Scale | - 5. 1= strongly disagree up to 5 = strongly agree (mean and sd in

parenthesis)

perceived rating boys (98) girls (81)
5. excellent 24 (1.2) 38 (1.0)
4. very good 28 (1.D 33 (1.
3.average 34 (1.2) 2.7 (1.1
2. below average 26 (09 30 (1.3)
1. weak 35 (1.9 34 (1.3)

Similarly, in relation to year levels, the influence of distracting peers in general
was greater in Year 9 (mean 3.2; sd 1.1) compared to Year 7 (mean 2.8;sd 1.1;
p<.01). This result suggests peers are a more significant factor atfecting
performance in the mathematics classroom in Year 9.

Student self-rating compared with perceived parental ratings

The third group of significant others whom we considered were the students’
parents. In relation to their perceived parental ratings, students overwhelmingly
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perceived that their parents wished them to do better than their current
performance (78%). Only nineteen percent of students perceived their parents were
satisfied or at least did not wish for a better performance in mathematics.

More interesting, although more difficult to interpret, are the findings related to
the student’s mothers and fathers seperately. For example, boys perceived that
their mothers would rate them higher than did the girls (p<.05) and the same
pattern was observed for the perceived father rating although the difference was not
significant. In addition, students who rated themselves as low achievers believed
that their mothers would rate them higher at mathematics than their fathers would.
This suggests that mothers and fathers exert rather different influences on their
children’s performance. However, when the teachers’ rating of the students’ actual
performance was used as the independent vanable, this finding was not replicated.

Our conclusion is that students’ perceptions of others’ raungs of their
mathematical performance interact with their own in different ways, and exert
complex but important influences on their attitudes, and therefore on their
behaviours in the classroom.

3. Student Interviews

Fifty-students were selected for interview but space hmits prevent reporting
these in detail here. (Further reports on the interview data will be provided at the
conference.) We include below selections from one interview with a female Year 9
student, Kerry, to tllustrate some of the effects of the influences of significant
others on her behaviour in the classroom.

Kerry was designated as a very successful student in mathematics by her
teacher; in fact in her view she topped the class. Kerry, however, under-rated her
own performance level, saying she was “a bit above average”. She predominantly
works in the class with a middle achiever, Beth:

Interviewer: Is it important who you sit next to in class?

Kerry: Doesn't affect me at all, except when friends ask for help all the time.
Interviewer: Who would they be?

Kerry: Like Steven and Beth.

Interviewer: They want to look at your work?

Kerrv: Yes.

Interviewer: Is it hard to not respond to that?
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Kerry: Yes, sometimes, because if | don't help Beth she gets annoyed with me.
Like they ask you in the middle of a question when you are trying to finish.your
question and it is really hard.

Interviewer: If vou really wanted to excel in class, who would you sit next to?
Kerry: Not like to sit next to, but probably if fairly good people sat together it
would be better.

Interviewer: Do you sit with people who are good at mathematics?

Kerry: No, not really, sometimes [ try and sit with people who are fairly good.

While Kerry was aware that she might be more comfortable working with
someone cqual to herself in mathematics, she felt unable to alter the social
dvnamics of the classroom.

Kern: I enjoy doing maths, though not something you tell people, you get
looked at funny. In primary school I used to say it was my favourite subject!
Interviewer: What sort of people would look at you funny? Both boys and girls?
Kerry: Both but mainly the boys. Mainly boys who don't do so well. | can tell
vou the girl, Beth, she gave me a hard time about a lot of things.

Kerry is clearly aware of the conflict that Beth creates for her by
simultaneously asking for help while denying Kerry the opportunity to develop her
own abilities. Kerry revealed further the damaging influence of peers when asked
to identify a good and bad learning experience in mathematics.

Kerrv: You could look at this one both ways. Getting 100% on a test, everyone
lays it on vou. (They) call you a square. That is really hard. | try and ignore it,
keep it to myself but it wears on you, sometimes [ go off at people.

Interviewer: Is the same pressure on boys who achieve well?

Kerry: Not as bad. Normally it is the opposite sex and girls wouldn't go off so
much as boys.

In the literature, girls are portrayed as more supportive of each other and less
competitive than boys. For example, girls are reported 1o place a greater priority on
friendships, which signifies “an expression of a cultural emphasis on solidarity”
(Wyn, 1990, p.125). Yet what strongly emerges from Kerry's comments and from
her actions in the mathematics classroom is evidence of enormous peer pressure,
particularly from her female work partner, for Kerry to camouflage her positive
attitude to mathematics. Under-rating her performance serves to be functional for
her in order to remain socially acceptable while still managing to succeed.
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The influence of girls upon other girls’ attitudes towards mathematics is clearly
one area in need of further exploration as the questionnaire results did provide
evidenice of less peer pressure on high achieving boys compared to girls. More
generally, the impact of peers within the social arena of the classroom undoubtedly
contributes to student anxiety in mathematics and points to the need for teaching .
which focusses upon the development of functional group dynamics in the
mathematics classroom.
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STUDENT TEACHERS’ APPROACHES TO INVESTIGATIVE MATHEMATICS:
ITERATIVE ENGAGEMENT OR DISJIOINTED MECHANISMS?
Paul Blanc, Rosamund Sutherland
King Alfred’s College (Winchesier), University of Bristol.
This paper reports on the first phase of a project which aims io characterise student teachers’
approaches 1o a range of problems of an investigative nature with the aim of identifying and
analysing the different influences that affect these strategies. Results are discussed for a group of
14 first year primary school trainee teachers, with more detailed analysis being presented for §
case study students. The study has been influenced by research on problem solving and didactique
of mathematics. The main findings suggest that more successful students interact with their written
text in an iterative as oppased to a linear way. Tabular representations are sometimes used
mechanistically and unproductively as separators of activity. Interviews with students played a
crucial role in identifying their strategies, which were not always evident from the written script
alone.
Introduction and Background
In the 1980s problem solving became one of the major themes in Mathematics
Education. As Schoenfeld (1992) points out, despite the statement from the National
Council of Teachers of Mathematics that “problem solving must be the focus of
school mathematics” (NCTM, 1980 pl), there i1s a very broad view as to what
problems and problem solving actually involves. This ranges from applying standard
techniques in routine exerctses, 1o thinking creatively about some situation (often not
explicitly mathematical). Exploring any patterns involved, posing problems and
seeking solutions using formulation, testing and proof of conjectures are aiso aspects
of problem solving. This type of mathematical activity finds its roots in Polya’s
problem-solving strategies (Polya, 1957) and has been developed in work on
mathematical thinking by, for example Mason et al (1982). In vanous parts of the
world ofticial or national publications promoted changes to the curnculum, suggesting
a move towards “mathematics as an exploratory, dynamic, evolving discipline” in the
US (National Research Council, 1989) and open problem-solving and investigations in
the UK (Cockcroft Report 1982). The subsequent changes in the UK led to problem-
solving and investigations becoming part of the official mathematics curnculum. The
inclusion of such activities as assessed coursework for GCSE (examination at age 16)
has ensured their being common occuwrrences in UK schools. Similar emphasis on the
study of mathematics as a science of patterns has influenced Australian curricula
(McGregor and Stacey 1993, Australian Educational Council 1991).

There has recently been a debate about the effectiveness of such mathematical
investigations tn  the UK. Hewtt (1992) has questioned whether the diversity and
richness of such open ended problems 1s being reduced to spotting pattemns from
tables. Wells (1993) in a contentious pamphlet introduces the notion of Data-Pattern-
Generalisation (DPG) as a general mechanistic method of solving problems said to
have little or very limited mathematical value. Relating this to Teacher Education he
suggests that in some courses “students are expected to do investigations...thus, being
inducted into false and very limited ideas of mathematics™ (p48). The overall thrust of
these arguments is that the potential positive advance of pupils exploring mathematics

2-97 1@5



at their own level has been serously undermined by the algenthmic and mechanical
nature of the approaches adopted by pupils in schools. Bamard & Saunders (1994)
also maintain that an instrumental understanding of content is being replaced by an
instrumental understanding of process.

Much of this research has not considered the dynamics of the teacher-student
relationships within an institutionalised educational setting. Some of the more negative
effects of the use of open problem solving could be explained by Brousseau's (1986)
notion of the metacogmtive shift in which perceived failure on the part of students can
lead to the teacher imposing heuristics as objects of study instead of the mathematics.
intended. Brousseau suggests that this phenomenon is more likely when heunstics,
advice and models are given the status of cultural objects and he uses Venn diagrams
in the “modem mathematics” movement as an example of this effect (Brousseau
1986). This phenomenon is not due to inadequacies on the part of teachers and pupils,
but 15 1n fact an inevitable (or at least potential) consequence of any teaching situation.
The institutionalisation of meta-level guidance on how to approach open problem-
solving can readily be seen in UK curnculum matenials. For example in matenals
produced by the Shell Centre (1984, p.46) the following key strategies are
recommended: Try some simple cases; Find a helpful diagram; Organise
systematically, Make a table; Spot patterns; Use the pattemms; Find a General Rule,
Explain why 1t works; Check regularly.

Cox and Brna (1995) maintain that external representations are used by those students
who are successful within a problem solving situation to monitor their performance and
provide a source of explanation. It 1s also suggested that graphical representations are
more limited in terms of expressing abstractions than sentential representations
(Stenming and Oberlander, in Press) and that because of this they may provide more
vivid self-explanation feedback than a more linguistic modality such as language and
algebra. Cox and Bma also report that students who were successful in solving
problems testing analytical and verbal reasoning were more likely to have used
multiple representations. They also found large differences in the types.of extemal
representations used by these students and they attnbute one source of this vanation to
cognitive style.

Given this background it was decided to carry out a research study to characterise
student teachers' approaches to a range of problems of an investigative nature, with the
aim of identifying and analysing the different influences that affect these strategies
(Blanc 1995). This paper presents the results from the first phase of thus research.

The study

The setting for this phase of the study was an imitial teacher education course at King
Alfred’s College, Winchester, working with first year students. These students, who
are training to become primary teachers with a specialism in mathematics (14 in the
group, 11 females, 3 males), follow a four year programme leading to an educational
degree with qualified teacher status. This cohort included mature students and recent
school leavers with a variety of both educational and social background. Students who
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have recently left schoal are likely to have very :
different  experiences of pre-18 school | How many diagonals does a polygon have?
mathematics than mature students because of § "8

recent changes in UK curricula. Produce a written solution 1o this problem
The students worked on a range of | Make sure that you explain your solution

. . . Ensure you don’t erase any work
investigative problems throughout the vyear, you reject. I'm interested in all your work
ncorporated into therr normal teacher

education programme. In this paper we report
their work on the diagonals of a polygon problem (Fig 1). The rationale behind the
choice of this problem was that, whilst straightforward, it can be solved by a variety of
strategies, it was suitable for the group as a starting problem and was related to the
field of graphs and networks which was the content area for this sesston. There is also
previously reported research (Balacheff 1988) of younger students’ attempts at this
problem, where some analysis of their problem solving is given. :

Fig 1

Data were collected by: analysis of student scripts (photocopied); taping of the session
(dictaphone); notes made by the observer dunng the session and immediately
afterwards. All students completed a questionnaire on theirr educational and
mathematical background. Five students (offering a range of background and
experience) were selected for more detailed micro-analysis of their scripts and
interviewed in depth (taped and transcribed) to further probe their solution strategies.
For readers unfamliar with this problem, one way of expressing the solution is that {or
a polygon of n sides there are: n(n-3)/2 diagonals.

Two possible routes to this solution are:

Method 1:  Let n be the number of vertices of the polygon (n > 3). There 1s no
diagonal from the vertex to itself or to its two neighbours so
the number of diagonals leaving each vertex 1s n -3. The total
number of diagonals 1s therefore equal to the number of
vertices muitiphed by the number of diagonais leaving each
vertex. This must be divided by two since each diagonal gets
counted twice.

Method 2 A table of numbers of vertices and diagonals is as follows:
—T a) We notice that the differences between the number of
Ventices Diagonals diagonals go up as follows 2,3,4,5 The next case will be a
3 0 difference of 6. So for 8 vertices there are 14+6=20 diagonals.
b) For 7 sides there are 5+4+43+2 diagonals. This can be
recognised as the sum of the natural numbers up to 5 with |
subtracted. So for n sides the number of diagonals is the sum of
the natural numbers up to n-2, subtract 1. This is ((n-1)(n-2)/2)-1.

=3 AT § S ]
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Analysis of students’ strategies
Table | presents an overview of the characteristics of the students’ approaches to the
“Diagonals of a Polygon” problem. Space does not permit inclusion of the full micro-
analysis of each student’s approach, this will be covered more fully in future articles.
Students’ strategies were characternised according to three main critena:
e types of external representation used (annotated diagrams, tabular representations

and

algebra

and

natural

language);

reflecting

the

distinction between

graphical/diagrammatic and propositional/sentential representations, discussed in
Cox & Bma (1995), tables being an intermediate representation.

the nature of students’ solutions; this includes whether students used their method
of counting, visual cues, or the table directly in their development of a rule,
charactenised as recursive or umversal, expressed in algebra and/or in words. We
also indicate whether a satisfactory general solution of any kind is generated.

ways of working with text; some students’ moved around the script going
backwards and forwards (it¢rative) whereas others used a linear approach. Evidence
of switching backwards and torwards between specific representations is also noted.

Table 1
".Amre TBeth | Len ] Wendy I Sue

(D) Many, with Many with Many no repeats. §{ Many no repeats. | Many no repeats
Annotated repeats. repeats. Multiple Originals
Diagrams Used annotations. enhanced later.

(T) Minimal Minimal Two tables. Two tables. First | Three columns.
Tabular information, information. First has numbers. Secoend { Includes
Representations || Differences’. Differences. Differences. with algebraic diagonals per
Used Diwvides activity Divides activity. | Diwvides activity. | ratios of vertices | point.

Second similar. to diagonals. Differences.

(A) Use of Minimal algebra. | Extensive. with Extensive with Rules expressed
Algebra and Arithmetic Prog. | Different manipulaiion. manipuiation in various fornis.
Natural (AP). Variables meanings in Only after tables. { and use of Algebra as end
language used and constants different sumnung AP. product.

| confused. contexts.

Development of

Recursive from

Recursive from

1) Recursive

Recursive from

Universal from

a rule. AP formula. table. from table. counting/ visual cues in
2) From algebra. | drawing strategy. | diagrams/table

Representation || No final solution. { Panial solution 1) Words. Algebra Wards /Algebra
and form of only, algebraic. (Universal Rule) | (Universal Rule) | (Universal Rule)
final solution. (Recursive Rule)
Satisfactory No No Yes Yes Yes
peneral solution
Switching I Minimal. Minimal. Switching Extensive. Extensive.
between None after use of | None after use of | between Flexible between | Enhancement of
representations || table table. T and A. D, T, and A. D and T leads to

. refined A.
Working: Linear Linear Mixed Iterative [terative

We now present an overview of one student’s work, Swe. Superficially her script reads
as work done n a strict linear way, perhaps following mechanistic recipes, but when

"This indicates students calculated the differences between the numbers of diagonals and wrote this on their script.
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interviewed it was clear that she jumped about on her script, in an iterative way
adapling her representations to suit her needs. When Sie rcached an impasse she
enriches her representations, adding information to diagrams and the table. She
developed her first general rule from the table and the diagrams. This solution was then
further refined using a relationship derived from the tabulated information. Whilst the
table is used to find patterns this student’s work 1s more than just mechanistic pattern
spotting. The table is used as organisation and as a focus for activity going both
forwards, further into the problem as well as back re-examining work done before.

Swe draws examples for the triangle, An example diagram
quadrnilateral (a  square), pentagon,
hexagon, heptagon and octagon writing
the number of diagonals on the nght
Written on the left of each shape s the
number of lines from each point. This
was not done when drawing out the
shapes and diagonals onginally but
considerably  later, after she had
constructed her table

S hainy

Sue’s table

\ rar i 5 ] ; - r - .
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> ] © > 7 ' o
4 | Z {
>1
5 ! P 5 Z
} > e |
G ! i 4 : X
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. i L =) '
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The list of (first) differences (2,3,4.5,6) added 1o the second column appears to lead o
a hypothesis which predicts the next case from the previous cases. In the interview Sue
said that she drew the table because she wanted to look at the numbers, to see the
results together. The third column of the table comes directly from the diagrams but
was added later. Sue simply counted up how many lines came from each point, that is
made use of the visual image. Sue said she thought about how she drew the shapes in
order to get to the solution. I was drawing all the diagonals from one point to go to

the next one...” so her generation of the rule comes, at least in part, from drawing in
the diagonals.

(e & Lnes frm eacn goull % 0° @ sae) = n® & liaga.
P
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It 1s important to note that both the table and the ‘diagrams underwent several
transformations. Sue stated that she stll needed to draw the shape out to find the
number of diagonals: from each point. She then wrote that by subtracting three from the
number of points you get the number of hines from each point and provided a refined
formula in words. She wrote * you don’t have to draw it out”.

N of sides x (ne o sdc:s_@ = n° of ﬂnzb_dajarm
z

When questioned where this insight came from she said “that would have been from
the table™. Suwe appears to negotiate with herself by going back over work correcting,
refining and enhancing previous representations.

External Representations

The main external representational devices uscd by the students were annotated
diagrams, tabular collection of information, algebra and natural language. We found
that it was not whether a particular device was employed that mattered but how this
device fitted in to the overall solution which difterentiated the outcomes.

Cox and Bma (1995) say that in impasse stuations students frequently switch
representations arguing that time spent in construcling new representations is a heavy
burden. We would add that exactly how thus switching (routinary, self-directed or
‘thrashing’) takes place s important. . They also suggest that graphical
representations can serve 10 itlustrate structure. The way students make use of these
graphical representations from the point of view of mathematics appears to be related
to how they have constructed them (and whether they have attended to tius in their
solution). For example Wendy’s recursive solution comes directly from her own
constructions (see Table 1). She states: “Count all diagonals from one vertex then
move on to the next vertex...each ume we changed vertex the number of lines to be
drawn decreased, this made us think of a series formula.” The counting/drawing
method here is a crucial element of solution. This suggests that constructing diagrams
for yourself as opposed to being presented with a static constructed diagram could
make a difference to the problem solving process. Of the students in this small sample
(Table 1) one saw a visual solution (2 out of the cohort of 14). This seems to be in
contrast with the results of Balacheff (1988) in which more students seemed to make
use of the visual structure. Leaming geometry could promote a visual awareness. Does
the UK students’ lack of geometry explain their not paymg more attention to the visual
figurative image?

The most stnking phenomenon of tabular representations was confirmed at
interview. A tabular representation was used in an inflexible way by 3 of the 5 students
studied in depth. Two of these stated that they had received strong advice about doing
tables and the third said she had been strongly influenced by her partner to draw a
table. In these three cases the table seems to act as a separator so that work after the
table uses only the table uself as o potential source of information. This supports the
contention of decontextualised pattern spotting (Wells 1993). However tables were
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used in a highly flexible, dynamic way by Sue (as illustrated above) and as a means of
organisation by Wendy (she was adamant that the tables were to sort out “the muddle”
not to spot patterns, her rules are derived from counting/drawing methods). There is
weak evidence that once students begin to use algebra they do not switch from this
external representation and this issue is one focus in the ongoing research.

We have evidence that some students do use different representations as strict
divisions of activity and that this may be due to inflexible use of some taught process
mode! of problem solving. Identitying such behaviour is far from straightforward as we
have shown in the case of Sue. If students did see the work as separate sections with
their own beginnings and ends this may interrupt their solution process. We are
particularly interested in whether this separates the generation of the rule from the
generation of the data they use‘to denve the rule. We note that of the students who
were most successful in solving the. problem, their engagement was the overriding
concem. External representations were only useful to them in so far as they helped
them continue to solve the problem, less successful students seemed to use the
representations as mechanisms,

Linear and lterative working

Individual interviews with the students, after they had completed the problem highlight
the very different ways of working with' the written text. Some students work In a
linear fashion down the page ‘with littlé reworking or looking back. This led in some
cascs to discontinuities tn solution and failure to exploit potentially crucial information.
Beth (see Table 1) recognises similanty to the handshakes problem and uses this
method to demonstrate a recursive counting strategy (counting down from (n-1) to
1). Yet after drawing the table, she does not exploit this solution m her work. Beth and
Anne both stated (categorically) that they did not look back after the table in contrast
to Wendy and Sue whose attention moves all over the work, that is, they use their
written text in a non-linear way using a varied range of representations in an iterative
manner adjusting, correcting and enhancing. This is not usually evident from an
analysis of the written script. In fact it 1s hkely that mechanistic approaches may be
inferred from a surface analysis alone.

Some Concluding Remarks

Open ended problem solving has been introduced into schools as a reaction against the
teaching of routinary, algorithmic methods. Almost inevitably, new mechanistic (DPG)
methods are being incorporated into the institutionalised practice of such investigative
work as Brousseau's research indicates would be the case. This 15 why Brousseau
suggests that 1t 1s more important to emphasise the devolution of a problem as opposed
to the type of problem being solved.

This study has shown that there are considerable differences between the ways in
which students interact with paper-based external representations when solving open
mathematical problems. In agreement wath the work of others (l.esh et al. 1987) the
most successful students, from the point of view of solving the “Diagonals of a
Polygon™ problem (cf. Table 1), interacted with external representations in an iterative
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way, often using several external representations in parallel (switching), returning
within the process of soiving the problem to modify or extend an extemal
representation as Sue did.

Is it possible to teach students to pay attention to mathematical structure when
constructing diagrams? If so it will be inevitable, as shown by Brousseau, that any
form of teaching could institutionalise this practice as a new heunstic which could
replace the mathematics being taught. This didactical phenomenon does not imply that
we should stop teaching but that all forms of teaching bring with them potentially
negative effects. It also suggests that teacher training should emphasise such
phenomena.

Subsequent phases of this project have involved analysing students’ work in computer-
rich situations, for example using spreadsheets or Cabn to solve open problems. We
conjecture that these environments are likely to structure the students approaches in
particular ways, for example spreadsheets could provoke students to construct tables
and graphs. Work with Cabri may provoke students to focus on more graphical
information. The nature and extent of the ways in which students make use of external
representations developed- within computer-based activity when working away from

the computer will also be the focus of ongoing research.
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THE ANALGEBRALIC MODE OF THINKING AND OTHER ERRORS
IN WORD PROBIL.EM SOLVING
Hava Bloedy-Vinner
The Hebrew University of Jerusalem, Israel

Abstract: A conceptual fromework is given for examining students” solutions
1o complex algebrare word problems. A characterization of crrors is given,
distinguishing errors related to analgebraic mode of thinking from errors
crelated to problem analysis and o management difficulties. new forms of
analgebraic errors are revealed.

1. Introduction

Many studies have been concerned with issues of general problem solving as they
apply to algebraic word problems. One of these issues 1s to what extent problem
solvers use semantic knowledge and other domain related knowledge in their solutions.
Another 1ssue is solvers’ abihty to recognize the structure of a problem and to apply a
relevant solution schema. Studies conceming these issues are surveyed by Chaikhn
(1989).

An tssue which is particular to algebraic word problem solving is that of translation
processes. Most studies which investigate this 1ssue .deal with simple problems of the
“students and professors” type, and with the reversal error.  An extensive survey of
these studies, as well as an account of their own contribution was given by MacGregor
and Stacey (1993). Cortes (1995) classifies errors in the translation of word problems,

in this paper | would like to focus again on both general and particular. As to the
general, | will use Schoenfeld’s charactenization of mathematical problem solving
performance (1985). As to the particular process of translation, | will focus on the
analgebraic mode of thinking mtroduced n Bloedy-Vinner (1995), and bring new
instances of it as well.

2. The study

Contrary to most studies which deal with the translation process, this study
examines students’ solutions 10 comiplex algebraic word problems, namely, problems
which state several relations of varied types. The problems chosen for the study were
standard text book type problems. Although the mathematics education community
does not always approve of this type of problems, these are the problems which are
currently being used by the system for teaching translation skills, and can therefore
reveal translation diificulties.

The purpose of tius study was: 1. To characterize errors caused by algebraic
language difficulties. 2. To distingwish those from errors caused by other Tactors, As
will be shown, the mvestigation of complex problems gives us the opportunity to
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examime the factor of algebraic language versus the other factors, and 1o reveal new
misconceptions of algebraic language, which are not revealed in simple problems.

The problems were given to Israeli students who had taken matriculation exams
before, and were studying at a umiversity preparatory course. By a rough estimate,
more than hatf of high school graduates are on their mathematics level or below. Some
ol the students were interviewed after solving the problems.

3. Theoretical framework

Schoenfeld (1985) suggests tour categones of knowledge and behavior which
serve to explain mathematical problem solving. ‘These categories are: Resources,
heuristics, control, and belief systeins. Two of these, resources (knowledge possessed
by the individual that can be brought to bear on the problem at hand), and control
(global decisions regarding the selection and implementation of resources) arc relevant
to ny analysis of skill components needed for solving standard algebraic word
prablems. These components are:

I. Ability to understand and analyze the relations stated in the problein,

2. Knowledge of algebraic language.

3. Management of unknowns and equations,

The first two components are resources, the third is control.

Understanding and analyzing the relations depend on semantic knowledge of words
in the statement of the problem, on knowledge of mathematical concepts and facts
(hke geometric shapes and formulae, for example), and on pragmatic knowledge
related to problem domain. Some of the relations are not stated explicitly, and must be
gathered by pragmatic knowledge. lilustrations will be given i the following sections.

As 10 the second component, | am going to use the analysis of algebraic language
and of analgebraic mode of thinking introduced in Bloedy-Vinner (1995). It was
argucd there, that algebraic language 1s poorer than natural language in noun types
(numbers only) and in predicates (= and < only). This leads to difhiculties in
translating natural language predicates or relations which do not exist in algebraic
language. Students may resolve these difficulties by erroneously enriching “theirr”
algebraic language. This behavior is the analgebraic mode of thinking, namely, usage
of algebraie language wiich does not comply with its standard mathematical meanmg.
Vanous forms of analgebraic thimking which were revealed in this study will be
described later.

Management of unknowns and equations 1s the control needed when complex word
problems are translated. It is the act of deciding how to manage the translation; which
unknown numbers in the problem statement will be designated a letter, and which will.
be expressed by an expression constructed to translate a relation; whether to translate
a relation by an equation or by an expression which is gomg to be used in the
translation of subscquent relations. As a result of this management we end up with a
number of equations and a number of unknowns which are determned by the problem.
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The number of relations stated by standard word problems is usually such that we end
up with an equal number of equations and unknowns.

Errors in word problem solving can be caused by fatlure in any of the components
described here. In the following sections | will analyze students’ errors and classity
them according to these components.

4. Analysis of student’s solutions

The students were asked to write equations which translate the problens, but not to
- solve them. Let me start with the tollowing problem:

Problem 1. Before the game Tal had 3 times as many marbles as Gadi. During the
same Tal lost half of his marbles 1o Gadh, and then the number of marbles Gadi had
wax {2 more than the namber of marbles Tal had.

The relations stated (exphicitly or imphaitly) by the problem are:
(a) At the begimning Tal had 3 times as many marbles as Gadh.
(b) Tal lost half of his marbles.

(c¢) Gadi won half of Tal’s marbles.
(d) At the end Gadi had 12 marbles more than Tal.

The vanety of the 269 solutions analyzed was enormous, and this made the analysis
very difficult. 1t was deaided, therefore, to analyze the solutions relation by relation,
classifying errors in the translation of each relation according o the first two
components: understanding and analysis of the relation, and knowledge of algebraic
language. In addition, the management of the solution was classified. The same
method wall be used here to describe the classification of solutions;

‘Franslations of relations (a) and (d):

Starting the translation with relation (a), it could be translated by writing a two-
vanable equation, e.g. X=3Y, or by writing a one-vanable expression, ¢.g. 3Y for
Tal’s number of marbles. On the other hand, ending the translation with relation (d), it
could only be translated by writing an equation, equating expressions constructed
(correctly or incorrectly) for the numbers atter the game, adding 12 to Tal’s number.

f.et us first look at errors of analysis. Understanding and analysis of these relations
require semantic knowledge of ©  times as many as™ and “__more than” and the
distinction between theny', Confusing addition with multiplication n these relations
was considered an analysis error. 7 students did that in relation (d) and none in relation
(a) (see Table 1). '

All other errors were classified as analgebraic. 31 out of the 32 analgebraic errors
in (a) and 97 out of 115 in (d) involved reversals. The reversal error was dealt with in

"The I febrew statements of these two relations have the same syntax and the same words except for
their preposinons,
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many studies, usually in two-variable cquations translating simple  one-relation
problems. Most explanations, excluding MacGregor and Stacey (1993), were based on
the interpretation of letters as objects, word abbreviations or labels. An additional
explanation was proposed by Bloedy-Vinner (1995). According to that explanation,
the ongmm and the image of an algebraic expression (which we understand to be a
function) are vaguely conceived as one entity, being changed by the function, but
remaining the same entity. For example, X and 3X are the same entity (e.g. nunber of
Tal’s marbles), becoming 3 times larger by the actuon of the tunction. This leads to the
terpretation of 3X as the predicate “X 1s 3 umes as large”, a vague one-place
predicate, not paying attention to the question larger than what. Interpreting
expressions 1n the sense of predicates mstead of functions, is an ervor which helps
students translate predicates which do not exist in algebraic language, thus enriching
“their” algebraic language. Algebraic expresstons can, thus, tell stonies, not just
construct numbers.

Table 1: Distribution of translations for each relation n Problem 1.
(Analysis errors and analgebraic translations are not mutually exclusive.)

Correct Analysis | Analgebraic | Relation No

n=2069 transiation error translation | missing | answer
Relation 231 0 32 | 5
(a) 85.9% 0.0% 11.9% 0.4% 1.9%
Relation 225 7 22 10 5
(b) 83.6% 2.6% 8.2% 3.7% 1.9%
Relation 106 118 19 27 5
(¢) 394%| 43.9% 7.1% 10.0% 1.9%
Relation 138 7 115 ) 5
(d) 51.3% 2.0% 42 8% 22% 1.9%

Since we are dealing with a complex problem, the students had to use whatever
they had constructed for relation (a) in their translations of the subsequent relations (b)
and (¢). This enables us to get evidence which supports the claim about analgebraic
transiation wlich was made above. Let us look at some examples (see Figure 1):

{n Example | the student starts with declaring who 1s who, and writes a reversed
equation for (a). Later, in the division 3Y/2, we can see that he considers 3Y to be
Tal’s number (he lost half his marbles). Thus, as lus solution evolves, he i1dentifies the
origin 'Y and the image 3Y, both to be the same entity of Tal’s number of marbles.
This may be related to lus mterpretmg lus first equation as a table with two unequal
nunbers on both sides: 3Y - Tal’s number, and X - Gadi’s number of marbles, so that
3Y tells the story “Tal has 3 times as many marbles.”

In Example 2 the student uses the children’s intials, so we know who 1s who. He
starts with a nonreversed equation, but then. in 2173 (probably a fraction ervor, instead
of (173)/2) we can see that he considers 173 to be Tal’s number. Here, though the first
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and second equations are correct, the student may have read s second equation in a
table-tike manner, namely, Tal's and Gadi’s unequal number of inarbles on both sides,
and thus T/3 became Tal’s number of marbles. So again, the origin T and the image
T/3 are the same entity.

Figure 1. Examples of solutions of Problem 1.

Lo X- Gadi, Y- Tul, 0. TalY 3XGudi, 2:X2 3X

3V X 3Y2 A2 7. Tul 3X, Gadi X,
2.0 3G, 13 (G, 12:273 (. Tal afier gamel” T 1 2Gadi afier game
3 Tul- 3X Gadi- Y, 3X 20 Y {2 A3X T f2
4. 31T-G 137012 8 lal X, (iudi 3Y,
5 Before  afier Before the game: 3Y X .

fal  3Y 3X2 After the game: 3Y-12° X

Gadi X X-12 3X2 X129 Tul 3X, Gadir X

10.3Y2 342 : 12

In Example 3 the student chose to denote Tal’s number by 3X, where X does not
denote Gadi’s number. In fact, X does not denote anything, and 3X is chosen just to
tell the story “Tal’s number 1s 3 times as large”, interpreted as a vague one-place
predicate. Example 4 1s even stronger evidence for this: the use of the letter T implies
that both T and 3T denote Tal’s number, and 3T 1s used in the equation in the sense of
“Tal’s number which is 3 times as large”.

21 out of the 32 analgebraic translations of (a) included direct evidence of the kind
shown i Examples 1-4.

In translations of (d), 20 out of the 97 reversals included direct evidence that both
X and X+12 are conceived as the same entity, Gadi’s number, which is “12 more™ (the
question 12 more than what?” remains obscure). Example 4 is one ilustration of that:
The student writes a table-like equation, with total number of marbles before and after
the game on both sides. we can see that both G on the left and G+12 on the right
denote Gadi’s number. Solution 5 is another example of that; X and X+12 are Gadi’s
number before and after the pamme. The table-like equation has Tal’s and Gadi’s
numbers on both sides. In the mterviews these students were asked whether they
thought that Gadi had won 12 marbles, and they all said that they didn’t think so, but
rather that as a result of the game, lus number became 12 more than Tal’s.

We have seen that the analgebraic translation we are dealing with is related to the
problem of ““who 1s who”. This dificulty s less hkely to anse when translating (a) into
the one-vanable cxpression: There it s obvious that X 1s Gadi’s nunber, 3X 1s Tal’s
number, and 3X translates correctly the relation between thent. In this study students
were not told to write a two-vanable equation. 205 students chose to translate (a) into
a one-variable expression, only 2.9% of which were reversed. 58 students wrote
equations, 43.1% of which were reversed. This explains why in (a) there were few
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reversals as compared to (d) and to other studies reported in literature, where students
had to write equations.

The examples we have discussed involved table-hke equations with unequal
entities of the children on both sides, like 3Y=X or 3X/2=X+12. In addition to these,
there was another type of table-like equations translating (a) and (d): The equality sign
was used as a separator between an onigin and its constructed image, hike X=3X,
Y=Y+12, or 3X/2=3X/2412 (see Examples 6, 7, 10.) 3 answers n (a) and 16 in (d)
included this fonn of analgebraic translation.

Translations of relations (b) and (c):

Understanding and analysis of these relations require pragmatic knowledge of
games where marbles pass from one player to the other, entailing that whatever Tal
lost was won by Gadi (this was hinted but not stated explicitly). Also, mathematical
knowledge of fractions is needed. Since relation (c) is not stated explicitly, many
students weren’t aware of it, and didn’t translate Gadr’s wimning. Examples |-7
illustrate this error, made by 109 students. As mentioned before, when asked about it
in the mnterviews, they said that Gadi did win. Still, they weren’t aware of it while they
were writing their translations. 3 students thought that since Tal’s number was divided
by 2, Gadi’s number should be multiplied by 2. The analysis errors in (b) included
confusion about who had lost and what he had lost (5 students), and fraction errors like
the one mentioned i Example 2 (2 students).

A new form of analgebraic error was revealed in 19 solutions: a letter or an
expression denote the number of marbles of a clnld, and s considered 1o change as the
story evolves, without perfonmng any algebraic operations on them. The same letters
and expressions are used to translate both (a) and (d), while (b) and (¢) are considered
to “happen automatically”, maybe by wnting the words “before” and “afler” besides
the equations. Example 8 illustrates this. In an interview about an age problem not
reported here a student said about similar equations he had written; “7The first equation
iy true now, and the second cquation will he true in 1) years”. As if the expressions
have a life of their own and they change with time. | will call this phenomenon
expressions or variables with evolving meaning .

Each of the relations was classified as missing (see Table 1) when the student
either gave an uncompleted solution as in Example 9, or when he introduced a new
letter without writing another equation to translate that relation, as in Example 7
(where (b) ts missing).

As to the management, it was considered incorrect when there were too many
equations (Example 6) or too tew equations (Examples 3, 4, 9). It may be said that
management errors are the result of analysis errors and analgebraic errors we have
discussed.
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The summary of solutions for Problem | is given  Table 2. It shows the
contribution which cach skill component made to errors.

Table 2: Distribution of Problem I solutions by error types they inclide (n=269).

Correct | Analysis |Analgebraic|  missing Incorrect No
answer errors errors relations [ management | answer
76 123 146 37 37 5
28.3% 45.7% 54.3% 13.8% 13.8% 1.9%

I would like, now, to present the second problem. Because of lack of space, | will
deseribe only aspects which are different trom what we have seen in Problem 1. These
aspects are characteristic of the geometric domain.

l’roblem 2: When cach side of u squmc way increased by 2 om., it'’s area became
12 cm” larger.

Figure 1. Examples of solutions of Problem.2.

12V VN2 Y12 |5 (42 12 9 (uiyth-2) S 12
2.2(\ 2) 12 6.(N:24 8- 12 0. (u 2)b 812, ub S
34N Y HX-2) YoI2 (7. 2u2h 12 ub PLx? S, 12vxfx:2) S
4.8 2V 202 12 8. (u-2)(h-2) 12 12.5, o-12

Understanding and analysis of this problem requires knowledge of the geometrie
domaim. There were two types ol crrors related to this. First, 28 students used
erroncous area formulae (see Examples 1-7). Second, 18 students misunderstood the
problem, and thought it was about a rectangle (Examples 7-10), or about a square
where only two sides were mcereased (Example 11). Other errors, which were made by
17 students and were also classified as analysis (knowledge) errors, icluded wrong
order of operations (like writing (X +12) nstead of X? 12, or X? +2% instead of
(X+2)%).

The nussing relation category includes 19 (13.6%) solutions which itroduced a
new letter for the arca without writing a corresponding equation (e.g. A=X? ). In
Problem | this only occurred m 1.1% of the solwtions. 16 of these students had used
the mittal S of the Hebrew word for “area’.  They probably thought that using this
letter, which was normally used in area formulae, already told the story of the area
relation, and telt free, therefore, to use 1t without adding an equation. Examples 0, 9,
|2 demonstrate this management error.

Some solutions may be interpreted as story like translations, where symbols are
used like words. FFor example, (4X)2=12 may be telhing the story: “4 sides were
increased by 2 and the result is an increase by 127 This is another instance of
crroneous  enrichment of  algebraic language mentioned carlicr. These are  not
necessarily word by word translations, and may be telling the contents of the problem
as understood afler its analysis.
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The swmimary of solutions for Problem 2 1s given in Table 3. It shows the
contribution which each skill component made to errors.

Tabte 3: Distnbution of Problem 2 solutions by error types they include (n=140).

Correct | Analysis [Analgebraic| missing Incorrect No
answer errors erTors relations | management | answer
40 59 I 49 44 10
32.9% 42.1% 7.9% 35.0% 31.4% 7.1%

5. Conclusion

We have seen an analysis and a classification of the soluttons of two complex word
problems. A method of analyzing each relation separately, and then integrating the
results was used. This method made it possible to classify hundreds of different
solutions of a problem. The complexity of the problems enabled us to get evidence of
several forms of analgebraic errors: vague conception of an origin and an image as one
entity, an expression interpreted as a predicate, table-like equations, variables or
expressions with evolving meaning, and story like translations.

The errors were attnbuted to failure in 3 skill components: 1. Analysis of the
problem and domain related knowledge, 2. Knowledge of algebraic language,
3. Management of the solution. The extent to which each component contributed to
errors was investigated.

The problems which were presented belonged to different domains and inciuded
explicit and implicit relations. Because of that, they could illustrate the influence of the
inathematical knowledge (geometry, fractions, order of operations), and the pragmatic
knowledge needed to understand and analyze the relations in a problem.
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CHALLENGING THE TRADITIONAL
SCHOOL APPROACH TO THEOREMS:A HYPOTHESIS
ABOUT THE COGNITIVE UNITY OF THEOREMS

Paolo Boero Rossella Ganti, Enrica Lemut M.Alessandra Mariotti
Dipantimento di Matematica  Istitulo Matematica Applicata ~ Dipantimento di Matematica
Universita di Genova C.N.R. Genova Universita di Pisa

The purpose of this report is that of highlighting the possibility that in an adequate
educational context the majority of grade VIII students successfully implement a process
of theorem (conjecture and proof) production, characterised by a strong cognitive link
between conjecture production and proof construction. A detailed description is given of
this process and of how it surfaced in a teaching experiment organized by us.The
conditions are discussed that may have allowed the extensive implementation of the
process in the classroom Same educational implications are sketched.

1. Introduction

The purpose of this report is the introduction and justification (on an experimental
basis) of a hypothesis concerning mental processes underlying the production of statements
and proofs by VIII grade students.

The hypothesis stems from previous research on the feasibility of a constructive
approach to theorems by students. In particular, during a teaching experiment conceming
arithmetic theorems students were engaged in the production and proof of conjectures. It was
observed that students kept a keen coherence between the text of the statement produced by
them and the proof constructed to justify it (see Garuti & al., 1995). This textual coherence
brought forward the problem of a possible cognitive continuity between the statement
production process and the proving process.

The hypothesis forming the subject matter of this report is that the majority of grade
VIII students can produce theorems (canjectures and proofS) if they are placed in a candition
s0 as to implement a process with the following characteristics:

- during the production of the conjecture, the student progressively works out his/her
statement through an intense argumentative activity functionally intermingling with the
Justification of the plausibility of his'her choices;

- during the subsequent statement proving stage, the student links up with this process in a
coherent way, organising some of the justifications ("arguments”) produced during the
construction of the statement according o a logical chain.

Despite the undeniable differences between "deductive organization of thinking” and
“argumentative organization of thinking” (Duval, 1991), we want o stress some aspects of
continuity, concerning the production, during the construction of the conjecture, of the
elements ("arguments”) that are used later during the construction of the proof.

The hypothesis featuring as subject matier of this report, which concems the holistic
character of the theorem production, if validated and thoroughly investigated by other studies,
might have imponant didactic consequences as to the school approach to theorems, radically
calling into question the teaching traditions (see Discussion).

2. References 1o history and research in mathematics education

The history of mathematics shows remarkable similarities between the holistic way of
producing theorems by the student, described in our hypothesis and the way of producing
theorems by mathematicians: despite impontant differences (as to reasoning, cultural
experience, institutional bonds, etc. - see Hanna & Jahnke, 1993), we can detect the existence
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of common features, in particular as to the intermingling between the progressive focusing of
the statement and the argumentative activity aimed at justifying its plausibility. At times, in
the case of the history of mathematics, this is a long process, that involves many people for
many years (cf Lakatos, 1976); at times it is a personal process, traces of which are found in
the notes or memories of one mathematician (cf Alibert & Thomas, 1991).

With reference to the theoretical approach to "hypotheses” proposed in Boero & al.
(1995), the production of a conjecture as described by us in the Introduction can be considered
as a "hypothesis” production act: that is o say, it can consist of the argumented selection
(prompted by a given question made by the student himself or by others) among possible
alternatives, with a margin of uncertainty, as to its validity, that can be solved through the
systematically organised reasoning or a counterexample ("verification™ of the "hypothesis”).

In the research produced in Maher (1995), in a problem solving situation implying the
necessity of formulating and justifying conjectures, a behaviour similar to the one described in
this report is observed in very young students (grade 1V).

All these elements prompled us to examine all over again the studies on the
mathematical proof within the mathematics education research, which, on the contrary, above
all point out the elements of difference between argumentative reasoning and deductive
reasoning (Balacheff, 1988; De Villiers, 1991; Duval,1991; Hanna & Jahnke, 1993; Moore,
1993; Tall, 1995). It seems 1o us that the existence of differences, epistemological obstacles,
etc. is not incompatible with the fact that students can construct the proof using elements
come up during the argumentation that accompained the conjecture construction process. But
every element of continuity implies the risk for students 1o identify processes of different
nature (cf Duval, 1991). These reflections were helpful to us for the planning of our teaching
experiment and for the analysis of students’ behaviours: in particular:

- at the stage of construction of the teaching experiment we tried to create favourable
conditions for the appearance of the cognitive unity assumed by us, but also for the spacing
out by students of the conjecture production stage from the proving stage, insisting in
particular on the reasons for the necessity of proof as "proof of the statement truth™,

- in the analysis of protocols we tried to catch the signs of attained change in students between
the perspective of the argumentation 1o construct the conjecture and the persuasion of its
plausibility, and the perspective of its proof.

3. Description of the teaching experiment

The main difficulty which we had to face was that of finding experimental confirmation for
our hypothesis. It was necessary, in particular, to create an experimentation and obscrvation
context suitable to "reveal” the nature of processes of statements and proofs production and
verify the potentiality conjectured by us. Undcrlining indicates some crucial points.

The teaching experiment was carried out in two grade VIII classes of 20 and 16
students, at the beginning of lhe lhlrd school year with the same teacher. Students had already
interiorized the habi ng al ed hypotheses in different domains (mathematical
and non-mathematical), ummg_dm_[hg[_m Students had already experienced
situations of statements production in arithmetic and geometry; they had approached proof
production in the arithmetic field (see Boero & Garuti, 1994; Garuti & at., 1995).

The task concerning the production and proof of a conjecture was contextualized in the
“field of experience™(Boero & al, 1995) of sunshadows. Students had already performed about
80 hours of classroom work in this field of experience. They had observed and carefully
recorded the sunshadows phenomenon over the year (in different days) and over the moming
of some days. They had approached geometrical modeling of sunshadows and solved
problems conceming the height of inaccessible objects through their sunshadows.
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The field of experience of sunshadows was chosen because it offers the possibility of
producing, in open problem solving situations, conjectures which are meaningful from a space
geometry point of view, not easy to be proved and without the possibility of substituting
proof with the realization of drawings.

In the two classes the activilies were organised according to the following stages (whole
amount of time for classroom work: about 10 hours):

a) Setting the problem ;

"In the past years we observed that the shadows of two vertical sticks on the horizontal
ground are always parallel. What can be said of the parallelism of shadows in the case of d
vertical stick and an oblique stick? Can shadows be pardllcl ? At times? When? Always?
Never? Formulate your conjecture as a general statement.”

(Individual work or work in puirs, as chosen by the students)

Some thin, long sticks and three polystyrene platforms were handed, in order to support the
dynamic exploration process of the problem situation.

b) Producing conjectures: many students started to work with the thin sticks or with
pencils. They started to move the sticks or to move themselves to see what happened. Other
students closed their eyes. The absence of sunlight or spotlight in the classroom hindered the
expenimental verification of conjectures they were formulating: it was the mind’s eyes that
were "looking”. Students individually wrote down their conjectures.

c) Discussing conjectures: the conjectures were discussed, with the help of the teacher,
until statements of correct conjectures were collectively obtained which reflected the different
approaches to the problern by the students.

d) Amanging statements: through different discussions, under the guidance of the
teacher, the following statemenis, 'cleaned” from metaphors and more precise from a linguistic
point of view than those produced by students at the beginning, were collectively attained:
-"If sun rays belong to the vertical plane of the oblique stick, shadows are parallel.”

- "If the oblique stick moves along a vertical plane containing sun rays, then shadows are
parallel.”

- "The shadows of the mo sticks will be parallel only if the vertical plane of the oblique stick
contdins sun rays.”

The first two statements stand for iwo different ways of approaching the problem on the part
of the students: the movement of the Sun and the movement of the sticks; the third statement
makes explicit the uniqueness of the situation in which shadows are parallel.

After further discussion the collective construction of the two statements below was attained:

- "If sun rays belong to the vertical plane of the oblique stick, shadows are parallel. Shadows
are parallel only if sun rays belong to the vertical plane of the oblique stick ”

- "If the oblique stick is on a vertical plane containing sun rays, shadows are parallel,
Shadows are parallel only ifthe oblique stick is on a vertical plane comtaining sun rays”

In order to help the students in the proving stage it was preferred not to express the statement
in its standard, compact mathematical form "if and only if...” (its meaning in common ltalian
cannot be distinguished from the meaning of "only if..”") .

¢) Preparing proof; the following activities were performed:

- individual search for analogies and differences between one’s own initial conjecture and the
three "cleaned” statements considered during the stage d);

- individual task: "What do you think about the possibility of testing our conjectures by
experiment?”

- discussion conceming students’ answers 1o the preceding question. During the discussion,
gradually students realize that an experimental testing is "very ditlicult”, because one should
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check what happens "in all the infinite positions of the sun and in all the infinite positions of
the sticks™.
This long stage of activity (about 3 hours) was planned in order to enhance students’ critical
detachment from statements, motivate them to proving and make clear that since then
classroom work would have concemed the validity of the statement "in general”,

f) Proving that the condition is sufficient (activity in pairs, followed by the individual
wording of the proof text);

g) Proving that the condition is necessary (short discussion guided by the teacher,
followed by the individual wording of the proof text).

h) Final discussion, followed by an individual report about the whole activity (at home),

The following materials were collected: videotapes of the initial stages (a and b); tape-records
of discussions and teacher-students interactions; all the students’ individual written texts. The
data which we are about to consider mainly concem stages b) and f).

4, Students’ behaviour
All students actively took part in the production of the initial conjecture. 29 students (over 36)
were able to follow the following activities (from ¢ to h) in a productive way.

For each type of students’ behaviour one example of written texis individually produced
by students during the stages b) and f) will be reported entirely. At this stage of the research
we deem important to dwell on typical behaviour that can justify the plausibility of our
hypothesis and to examine it more deeply (in view of its subsequent and more extensive
confirmation).

It is possible 1o see how at the conjecture formulation stage there is much inaccuracy
from the point of view of language, conceming in particular the expressions used to indicate a
vertical plane containing sunrays. Through gestures with the hands or the movement of sticks
it is clear that the students intend to indicate a vertical plane, but often they call it "direction of
rays”. During the experiment this inaccuracy is gradually overcome: "concepts in act”

‘(Vergnaud) receive appropriate names. Another aspect concems the terms "it can be seen”,
“looking™ (referred to shadows): it is worthwhile to remember that no sunlight or spotlight was
available in the class, therefore the students looked and saw with their imagination.

4.1. Correct conjecture with justification (21 students)

Underlining indicates traces of connections between conjecture production and proof

construction.

Formulation of the conjecture with shifting of the stick:

(Beatrice) "1 tried to put one stick straight and the other in many positions (right, lefl, back,

frant) and with a ruler I tried to create the parallel rays. I sketched the shadows on a sheet of

paper and I saw that: if the stick moves right or left shadows are not parallel; if the stick is
h rallel, Shifting the stick along the vertical plane,

forward and back, the two sticks are always on the same direction, that is to say they meet the

rays in the same way; therefore shadows are parallel. Whereas shifling the stick right and left

the two sticks are not on the same direction anymore and therefore do not meet the sun rays in

the same way and shadows in this case are not parallel. Shadows are parallel if the oblique

stick is moved forward and back in the direction of sunrays.”

Proof: "Shadows are parallel because, as we already said, sun rays belong to the vertical

plane of the oblique stick

But all this does not explain to us why this is true. First of all, though the sticks stand one in

an oblique and the other in a vertical position, they are aligned in the same way and if the
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obligue stick is moved along its vertical plane and is left in the point in which it becormes

vertical itself we see that they are parallel and, as a consequence, their shadows must
naturally be also parallel, and also parallel with the shadow of the oblique stick, which has
the same direction of that produced by the imaginary, vertical stick ™
In this case the justification produced at the beginning("meet the sun rays in the same way”)
is the one that in the following proof makes Beatrice imagine the oblique stick moving along
the vertical plane containing sun rays.

Formulation of the conjecture with the movement of the Sun

(Sara) "They could be paralle!l if | imagin sees and 1 nust pl ifin
the position so as to see two parallel sticks. In this way the sun sends its parallel rays to

enlighten the sticks. But if the sun changes its position it will not see the parallel sticks and,
therefore, their shadows will not be parallel either Shadows can be parallel if the oblique
stick is on the same vertical plane as the sun rays.”

Proof: "If the sun sees the straight stick and the oblique stick parallel it is as if there were
another vertical stick at the base of the oblique stick If this stick is in front of the oblique stick
its shadow covers the shadow of the oblique stick These shadows are on the same line,
therefore, the oblique and vertical sticks shadows are parallel.”

In this case the initial idea "I imagine to be the sun” seems to suggest the main
argument of the proof (the shadow of the imaginary, vertical stick covers the shadow of the
oblique stick).

Conceming production of the statement, Beatrice’s and Sara’s texts give evidence of
complex mental processes correspondig to our hypothesis.

Conceming proof, both texts show interesting traces of the detachement from the
problem situation (e.g.: "I imagine to be...” becomes "If the sun sees™ ) and the original
statement. Students seem 1o be aware that it is necessary to validate the statement by a
reasoning process ("But all this does not explain to us why this is true.” ). Many other texts
show similar aspects.

We notice that in both cases above, just as for the majority of students, the dynamic
process that brought to the production of the statement (movement of the sun or movement of
the stick) is found again in the proving process. Yet the dynamic exploration implemented
during the construction of the proof, though it shows remarkable similarities with the one
implemented during the production of the conjecture as to the type of movement, differs
deeply as to the function assumed in the thinking process: from a support to the selection and
the specification of the conjecture, 10 a support for the implementation of a logical connection
between the property assumed as true ( "vertical sticks produce parallel shadows”) and the
property to be validated.

4.2 Correct conjecture without justification (6 students)

6 students out of 36, be their level high or low, formulated the conjecture correctly, but during
the formulation did not manage to produce arguments backing up their hypothesis. This fact
seems somehow o affect the subsequent proof that tums out to be lacking in "arguments” and
rather confused.

(Elisabetta) Conjecture: "In some cases, although the oblique stick is in a position different
from that of the vertical stick, the parallelism is kept, whereas in other cases the parallelism
in shadows is not kept. Therefore, shadows can be parallel only if the oblique stick [meaning
with a gesture lhe venical plane] is parallel to the direction of the straight stick shadow, that
is to the sun rays.”

Proof: "Our statement is true because lf the vertical plane of the oblique stick gathers the sun
rays as that of the vertical stick, then the two shadows will be projected on the same line.”
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4.3. Wrong conjecture (9 students)

9 students, be their level high or low, produce wrong conjectures probably suggested by the

principle "sun rays are parallel, then ..."” or by drawings that owing to their bidimensional

nature may be misleading, and are also static and so they may stick the attention on particular

situations.

(Vincenzo) Conjecture: “In my opinion shadows cannot be parallel if the two sticks are one

vertical and the other not vertical. I took the two sticks, I put them in a vertical position and
shadows were parallel, then slowly I moved the right-hand side stick and noticed that its
shadow moved. In my opinion they do not remain parallel, because if I have two vertical
sticks, their shadows are parallel because rays are parallel, that is to say they come across
the obstacle and form the shadow. But if I move slowly, rays that were hindered before now
pass by, though they are hindered from another point, that is to say the shadow moves and,

therefore, it is not parallel anymore.”

Al the proving stage, after classroom discussions, 6 of these students "make up for” the lost

grounds and it can be noticed how their proof is full of constructions and argumentations, as if
these students had 1o reconstruct the conjecture to be proved:

(Vincenzo) Proof: "The statement is true because: let us imagine 1o have an oblique stick and
a vertical stick Let us imagine to draw an imaginary line, perpendicular to the horizontal
plane, starting fram the point of the oblique stick. Let us do the same thing with the vertical
stick but the other way round, meaning that | draw an imaginary oblique line parallel to the
oblique stick.

It happens that I get two vertical lines with parallel shadows and two oblique lines with
parallel shadows. The imaginary stick casts a shadow into the direction of the oblique stick,

as a consequence the shadows between the oblique stick and the vertical stick are parallel”.

5. Conclusions
It appears to us that the data just illustrated are consistent and make our hypothesis plausible.

Actually, as concems the production of the statement, argumentative reasoning fullils a
crucial function: it allows students to consciously explore different alternatives, to
progressively specify the statement and to justify the plausibility of the produced conjecture
(see 4.1.). On the other hand, students that produced wrong conjectures later show the need of
reconstructing the valid conjecture in order to produce the proof (see 4.3).

The fact that poor argumentation during the production of the statement always
corresponds to lack of arguments during the construction of the proof seem to confirm the
close connection that exists between production of the conjecture and construction of the
proof (see 4.2.). .

Moreover, the consistency among personal arguments provided during the production
of statements and the ways of reasoning developed during the proof seems to be confirmed:

- by the fact that the type of argumentative reasoning made during the production of the
staternent by one student is resumed by him/her (often also with similar linguistic expressions)
in the justification of the statement subject to proof;

- by the fact that the kind of dynamic process (movement of the sun or the stick) recorded at
the conjecture stage is almost always the same as the one used at the proof stage.

A further element surfaces during the teaching experiment: it can be observed that at
the statement formulation stage the exploration by students almost always concems both the
parallelism and the non-parallelism, even if this process is not “abridged” (cbviously, owing to
the la;:,k of experience in standard mathematical formulation) in a statement such as "if and
only if’", '
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6. Discussion
As mentioned in the introduction, the hypothesis on which we worked seems 10 have
imponant didactic implications, since it calls into question the traditional school approach to
theorems.In fact, usually in ltaly and in other Countries the teacher asks the students to
understand and repeat proofs of statements supplied by him, which appears one of the most
difficult and selective tasks for grade 1X-X students. Only as possible last stage (often
reserved to the top level students or students choosing an advanced mathematical curriculum)
the teacher asks the students to prove statements, generally not produced by students but
suggested by the teacher. Even more seldom students are asked to produce conjectures
themselves. If our hypothesis is valid, during this traditional path students’ difficulties can at .
least partly depend on the fact that they should reconstruct the cognitive complexity of a
process in which mental acts of different nature functionally intermingle starting from tasks
that by their nature bring them to partial activities that are difficult to reassemble in a single
whole. Our teaching experiment suggests an altemative didactic path.

Just for the importance of such didactic implications we deem opportune to critically
analyse some possible limits of the study made so far and 1o sketch funther developments of it.

6.1. Critical analysis of findings and further research

First of all, we must consider in what sense students have performed a mathematical activity
conceming theorems.

The object of the experiment is a hypothesis conceming the physical phenomenon of
sunshadows; it has as a geometric counterpart, at the level of model, a statement of parallel
projection geometry. Students produce their conjecture as a hypothesis conceming the
phenomenon of sunshadows; when they verify their conjecture most of them seem to be aware
of the fact that they must get the truth of the statement by reasoning, starting from true facts.
Most of them produce a validation realized through a deductive reasoning. Actually their
reasoning starts from properties considered as true ("two vertical sticks produce parallel
shadows”) and gets the truth of the statement in the "scenary” determined by the hypothesis.

In this way, students produce neither a statement of geometry "strictu sensu”, nor a formal
proof: objects are not yet geometric entities, deduction is not yet formal derivation. But their
deductive reasoning shares some crucial aspects with the construction of a mathematical
proof. Moreover, the whole activity performed by students shares many aspects with
mathematicians’ work when they produce conjectures and proofs in some mathematics fields
(e. g.: differential geometry): mental images of concrete models are frequently used during
those activities. As to proof, mathematicians frequently come near to realize the ideal of the
formal proof only during the final stage of proof writing. During the stage of proof
construction, the search for "arguments” 1o be "set in chain” in a deductive way is frequently
performed through heuristics, the reference to analogical models and keeping into account the
semantics of considered propositions (cf Alibert & Thomas, 1991).

For these reasons we think that the activity perfformed during our teaching experiment may
represent an approach to mathematics theorems which is correct and meaningful from the
cultural point of view.

In our opinion, the continuity aspects hihglighted by us represent a huge potentiality for
the development of the students’ ability to prove conjectures; nevertheless, this potentiality
needs an adequate educational context in order to surface successfully. In planning our
teaching experiment we singled out some conditions that are probably necessary to this end;
they concem:

- the didactic contract set up in the classroom (the production of a conjecture to solve an open
problem, the value of an hypothesis as an “argumented choice™);
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- the didactic path in which the task is inserted (particularly, in our case, the choice of the
field of experience of sunshadows as a long term learning environment);

- the management of classroom work after the task (individual activities alternating with
activities in pairs and discussions; activities 1o prepare the proof stage - see e).

We are not as yet able to establish whether all the conditions that we singled out are
actually necessary and sufficient for the extensive implementation of the process that we
recorded in our teaching experiment.

It is necessary to ascertain what the actual weight of the didactic contract is, through
comparisons with classes having a different history behind.

It is necessary to find out how much, and how, the cognitive unity of theorems appears also in
mathematical fields other than geometry (and, in particular, that of “shadows geometry™).

It appears also important 10 ascertain the consequences of "theorems cognitive unity”
experiences on the activity of standard theorems proving, proposed through their statements.

Finally, it seems opportune to investigate the connections, the analogies and the
differences between the procedures for the dynamic exploration of the problem solving
situation during the production of the conjecture and, during the process of proof construction,
the procedures for the dynamic exploration of the situation determined by the hypothesis.

Acknowledgements. Carlo Dapueto and Pier Luigi Ferrari helped us to clarify and develop
some ideas of this paper. We thank them very much.
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The purpose of this report is the introduction and justification, on the basis of a
teaching experiment, of a hypothesis concerning the crucial role that can be
played by the dynamic exploration of the problem situation in the production and
proof of the conjecture required 1o solve the problem. We will show how studemts
can generale the conditionality of the staternent and the functional cannection with
the subsequent proof through the dynamic exploration of the problem situatian.

1. Introduction

Two previous reports had tried to focalize (through historic and epistemological analyses) the
main cultural aspects of theorems in geometry (Boero & Garuti, 1994) and arithmetic (Garuti
& al., 1995) in order to plan and analyse teaching experiments aimed at:

- verifying the possibility of productively involving students in the approach to theorems;

- identifying the difficulties found by students during that approach, the necessary mediating
interventions on the pant of teacher, etc.

The teaching experiments carried out showed how the students consciously took over
the conditionality and generality of the statements (under the proper guide and mediation of
the teacher) and then tried to prove them. However, the activity of most of the students
greatly dcpcnded on teacher’s lnlerventlons and their acquisitions were mainly based on the

i f 1l ir Imates.

This research pmjccl went on analysing mental processes underlying the production
and proof of conjectures in mathematics. We believed that such analysis could give us some
hints on suitable problem situations and the best class-work management modality for an
extensive involvement of students in the construction of conjectures and proofs.

In particular, we ook into consideration the conditionality of the statements, to which

the logical structure of the proving process is connected. We have tried to formulate some
hypotheses conceming the production of conditional statements and related proving
developments. In order to do this, reference has been made to preceding studies, which
suggested: the impontance of the exploratory activity during the production of conjectures
(cf. Polya’s "variational strategies™ see also Schoenfeld, 1985); the relevance of menial
images (as "a pictorial anticipation of an action not yet performed”, Piaget & Inhelder, 1967
- see Harel, 1995) in the anticipatory processes in geometry; the possibility of deriving the
hypothetical structure "if..then..."” from the dynamic exploration of a problem situation (cf
Caron, 1979).

We therefore came to the following hypothesis referred to a didactic situation where
students are requested 10 solve an open problem through the formulation and proof of a
conjecture.The hypothesis concems the crucial role that can be taken on by the dynamic
exploration of the problem situation both at the stage of conjecture production and during the
proof. The hypothesis is organised as follows:

- as lo the conjecture production,

A) the conditionality of the statement can be the product of a dynamic exploration of the

problem situation during which the identification of a special regularity leads to a temporal

section of the exploration process, that will be subsequemly detached from it and then
“arystalliz” from a logic point of view ("if......, then.... ™ );
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- as 1o the proof construction,

B) for a statement expressing a sufficient condition("if...then...” ), proof can be the product
of the dynarriic exploration of the particular situation identified by the hypothesis;

C) for a statement expressing a sufficient and necessary condition ("...if and only if..." ),
proving that the condition is necessary can be achieved by resuming the dynamic exploration
of the problem situation beyond the conditions fixed by the hypothesis.

Al this point we had to work out, put into practice and analyse a teaching expenment
which let us explore the plausibility of the hypothesis, supplied the relative supporting
elements and paved the way for further in-depth studies. In order to do this, reference has
been made to: _

- our previous observations made about the behaviour of students struggling with the
formulation of hypotheses and conjectures in both mathematical and non-mathematical fields
(cf Boero & al., 1995). Those observations stressed the importance of the choice of the
context ("field of experience") as a crucial factor in order to acllvale mental processes of
dynamic exploration of the problem situation;

- studies performed by BalachefT (1988), De Villiers (1991), Duval (1991), Hanna & Jahnke
(1993), Mesquita (1989), Moore (1994), Tall (1995) and conceming approach to proof and
epistemological, cognitive, pragmatic differences between argumentative reasoning and
deductive reasoning. Our planning of the teaching experiment and the subsequent analysis
were influenced by those studies: in particular, see 2.3. (stage € of the teaching experiment),
32 and 4.

The teaching experiment is described in § 2. T