DOCUMENT RESUME

ED 453 072 SE 064 732
AUTHOR Puig, Luis, Ed.; Gutierrez, Angel, Ed.
TITLE Proceedings of the Conference of the International Group for

the Psychology of Mathematics Education (PME 20) (20th,
Valencia, Spain, July 8-12, 1996). Volume 3.

INSTITUTION International Group for the Psychology of Mathematics
Education.

ISSN ISSN-0771-100X

PUB DATE 1996-00-00

NOTE 428p.; For volumes 1-4 and addenda, see SE 064 730-734.

PUB TYPE Collected Works - Proceedings (021)

EDRS PRICE MF01/PC18 Plus Postage.

DESCRIPTORS *Educational Change; Educational Technology; Elementary

Secondary Education; Higher Education; Knowledge Base for
Teaching; *Language; Mathematical Concepts; *Mathematics

Instruction; Problem Solving; Social Influences; Teacher

Education

ABSTRACT

The third volume of this proceedings contains full research
articles. Papers include: (1) "A longitudinal study of children's fraction
representations and problem-solving behavior" (G.A. Goldin and C.B.
Passantino); (2) "Psychology students' conceptions of a statistics course”
(S. Gordon, J. Nicholas, and K. Crawford); (3) "Choosing a visual strategy:
The influence of gender on the solution process of rotation problems" (N.
Gorgorio); (4) "Discourse in an inquiry math elementary classroom and the
collaborative construction of an elegant algebraic expression" (B. Graves and
V. Zack); (5) "Number processing: Qualitative differences in thinking and the
role of imagery" (E. Gray and D. Pitta); (6) "Identification of Van Hiele
levels of reasoning in three-dimensional geometry" (G. Guillen); (7) "Working
with 'the discipline of noticing': An authenticating experience" (T. Hardy
and D. Wilson); (8) "Classifying processes of proving" (G. Harel and L.
Sowder) ; (9) "Seeing, doing and expressing: An evaluation of task sequences
for supporting algebraic thinking" (L. Healy and C. Hoyles); (10) "The role
of prior conceptions in teachers' responses to staff development: A synopsis
of case studies of three middle school mathematics teachers" (T.A. Herrera) ;
(11) "The use of levels of subordination to help students gain fluency in
mathematics" (D. Hewitt); (12) "An analysis of the development of pupil
understanding in group work activities using multimedia" (B. Hudson); (13)
"Some issues in assessing proceptual understanding”" (M. Hunter and J.
Monaghan); (14) "The development of language about function: An application
of Vvan Hiele levels" (M. Isoda); (15) "Hitomi's meaning construction of table
and algebraic expression of proportion during instruction: A case study" (K.
Ito-Hino); (16) "Communicating teacher's metaknowledge through lessons" (H.
Iwasaki); (17) "A study of teacher enquiry into the processes of mathematics
teaching" (B. Jaworski); (18) "Using children's probabilistic thinking to
inform instruction™ (G.A. Jones, C.A. Thornton, C.W. Langrall and T.A.
Mogill); (19) "Coming to know about 'dependency' within a dynamic geometry
environment" (K. Jones); (20) "Somali children learning mathematics in
Britain: A conflict of cultures" (L. Jones); (21) "From measurement to
conjecture and proof in geometry problems--students' use of measurements in
the computer environment" (K. Kakihana, K. Shimizu, and N. Nohda); (22)
"Mathematics teachers' training: Some remarks about the role of

Reproductions supplied by EDRS are the best that can be made
from the original document.




self-identification" (M. Kaldrimidou and M. Tzekaki); (23) "To have or not to
have mathematical ability, and what is the question" (R. Karsenty and S.
Vinner); (24) "Invisible angles and visible parallels which bring
deconstruction to geometry" (E. Kopelman); (25) "Research on the
complementarity of intuition and logical thinking in the process of
understanding mathematics: An examination of the two-axes process model by
analyzing an elementary school mathematics class" (M. Koyama); (26)
"Application of reification theory in translating verbal expressions and
statements into algebraic expressions" (B. Kutscher); (27) "Measures of
teachers' attitudes towards mathematical modeling" (J.I. Kyeleve and J.
Williams); (28) "Innovation-in-practice: Teacher strategies and beliefs
constructed with computer-based exploratory classroom mathematics" (C.
Kynigos); (29) "The implementation of curriculum policy on classroom
organization in primary mathematics in Cyprus" (L. Kyriakides); (30)
"Partitioning and unitizing" (S.J. Lamon); (31) "Simultaneously assessing
intended, implemented and attained conceptions about the gradient" (A.C.
Leal, A.B. Ciani, I.G. Do Prado, L.F. Da Silva, P.R. Linardi, R.R. Baldino
and T.C.B. Cabral); (32) "When change becomes the name of the game:
Mathematics teachers in transition to a new learning environment" (I.
Levenberg and A. Sfard); (33) "The competition between numbers and structure"
(L. Linchevski and D. Livneh); (34) "Situated intuitions, concrete
manipulations and the construction of mathematical concepts: The case of
integers" (L. Linchevski and J. Williams); (35) "Secondary pupils'
translations of algebraic relationships into everyday language: A Hong Kong
study" (F. Lopez-Real); (36) "Letting go: An approach to geometric problem
solving"” (E. Love); (37) "Learning to formulate equations for problems" (M.
MacGregor and K. Stacey); (38) "Origins of students' interpretations of
algebraic notation" (M. MacGregor and K. Stacey); (39) "Mathematical beliefs
behind school performances" (M.L. Malmivuori and E. Pehkonen); (40)
"Preservice secondary mathematics teachers' beliefs: Two case studies of
emerging and evolving perceptions" (J.A. Malone); (41) "On the notion of
function” (J. Mamona-Downs); (42) "Reasoning geometrically through the
drawing activity" (M.A. Mariotti); (43) "Thinking about geometrical shapes in
a computer based environment" (C. Markopoulos and D. Potari); (44) "The quest
for meaning in students' mathematical modelling activity" (J.F. Matos and S.
Carreira); (45) "The role of imagery and discourse in supporting the
development of mathematical meaning" (K. McClain and P. Cobb); (46) "The
origins and developments of the NCTM professional standards for teaching
mathematics" (D. McLeod); (47) "Mathematics and the sign" (0. McNamara); (48)
"Student's early algebraic activity: Sense making and the production of
meanings in mathematics" (L. Meira); (49) "Performance and understanding: A
closer look at comparison word problems" (I. Mekhmandarov, R. Meron, and I.
Peled); (50) “Graphing calculators and pre-calculus: An exploration of some
aspects of students' understanding”" (V.M. Mesa and P. Gomez); (51) "On the
utilization of encoding procedures on the treatment of geometrical problems"
(A.L. Mesquita); (52) "Children's developing multiplication and division
strategies" (M. Mitchelmore and J. Mulligan); and (53) "Children's concepts
of turning: Dynamic or static?" (M. Mitchelmore and P. White). (ASK)

Reproductions supplied by EDRS are the best that can be made
from the original document.




ED 453 072

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS
BEEN GRANTED BY

-

Pr@ceedmgs @f th@ ZOfth Comferemce of

v

‘the ]Im@mafcmma]l Gmup for- ﬁ:h@

Psycho]logy @f Mathematncs Educa{tmn

N e realen

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

A
@
$

N

A

Umvelrsnty of Vallencna

Va]lencna, Spam

<y . . .- St e d
. Bl - Vo
.ot - - oot
- T . N N - r
. . . e w PRI
4 - - . .
N 2 o
. .- ' Lot
, T s [
' . . 0 ' .
A . i ) .
et -

2@

Ju]ly 8 12 ]19%

V@]] 3

U.S. DEPARTMENT OF EDUCATION
Oflice of Educational Research and Improvement
EDUCATIONAL RESQURCES INFORMATION

CENTER (ERIC)
}&This document has been reproduced as
received from the person or organization
originating it.
O Minor changes have been made to
improve reproduction quality.

® Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.

EST COPY AVNLABLE



Proceedings of the 20th Conference of the
International Group for the Psychology of
Mathematics Education

Volume 3



International . Group for the Psychology of
Mathematics Education

PME 20

Proceedings of the 20th Conference of the -
International Group for the Psychology of
Mathematics Education

Edited by

Luis Puig
Angel Gutiérrez

Volume 3

Valencia (Spain), July 8 - 12, 1996

Universitat de Valéncia
Dept. de Didactica de la Matematica

-

.



Proceedings of the 20th Conference of the International
Group for the Psychology of Mathematics Education
Volume 3

Editors:

Luis Puig

Angel Gutiérrez
Dept. de Didictica de la Matematica
Universitat de Valencia
E.U. de Magisteri "Ausias March”
Apartado 22045
46071 - Valencia (Spain)

Fax: 34 - 6 - 3864487
E-mail: Luis.Puig@uv.es
Angel.Gutierrez@uv.es

Copyright © 1996 lefi to the Authors

All rights reserved

ISSN 0771-100X
Deposito Legal V-2190-1996

Cover: Reproduction of the cover of a Spanish textbook (Arithmetic for the
children) written by Antonio Gallego Chaves and published by Satumino

Calleja in 1886.

Logo: The logo of the PME 20 Conference has been designed by Juan José
Tomero, from the Dept. de Didactica de 'Expressié Musical, Plastica i

Corporal of the Universitat de Valéncia.

Printed by Encuademaciones Artesanas, S.L.
Periodista Badia S; 46010 Valencia (Spain)

9y

- IV



TABLE OF CONTENTS

VOLUME 3
Table of Contents
Research Reports (cont.)

Goldin, G.A.; Passantino, C.B. _
A longitudinal study of children’s fraction representations and
problem-solving behavior

Gordon, §.; Nicholas, J.; Crawford, K.
Psychology students’ conceptions of a statistics course

Gorgorid, N.
Choosing a visual strategy: The influence of gender on the solution
process of rotation problems

Graves, B.; Zack, V.
Discourse in an inquiry math elementary classroom and the
collaborative construction of an elegant algebraic expression

Gray, E.; Pitta, D.
Number processing: Qualitative differences in thinking and the role
of imagery

Guillén, G.
ldentification of Van Hiele levels of reasoning in three-dimensional
geometry

Hardy, T.; Wilson, D.
Working with ‘the discipline of noticing’: An authenticating
experience

Harel, G.; Sowder, L.
Classifying processes of proving

Healy, L.; Hoyles, C.
Seeing, doing and expressing: An evaluation of task sequences for
supporting algebraic thinking

Herrera, T.A.
The role of prior conceptions in teachers’ responses to staff
development: A synopsis of case studies of three middle school
mathematics teachers

Hewitt, D.
The use of levels of subordination to help students gain fluency in
mathematics

Hudson, B.

An analysis of the development of pupil understanding in group work

activities using multimedia
Hunter, M.; Monaghan, J.
Some issues in assessing proceptual understanding

\ 6

3-27

3-35

3-43

3-51

3-59

3-67

3-75

3-81

3-89

3-97



Isoda, M. :

The development of language about function: An application of Van
Hiele levels ‘

Ito-Hino, K.

Hitomi's meaning construction of table and algebraic expression of
proportion during instruction: A case study

Iwasaki, H. ‘

Communicating teacher's metaknowledge through lessons

Jaworski, B.

A study of teacher enquiry into the processes of mathematics
teaching '

Jones, G.A.; Thornton, C.A.; Langrall, C.W_; Mogill, T .A.

Using children’s probabilistic thinking to inform instruction

Jones, K.

Coming to know about “dependency” within a dynamic geometry
environment _

Jones, L. :
Somali children learning mathematics in Britain: A conflict o
cultures

Kakihana, K.; Shimizu, K.; Nohda, N.

From measurement to conjecture and proof in geometry problems
-students’ use of measurements in the computer environment-

Kaldrimidou, M.; Tzekaki, M.

Mathematics teachers’ training: Some remarks about the role of self-
identification

Karsenty, R.; Vinner, S.

To have or not to have mathematical ability, and what is the guestion

Kopelman, E.

Invisible angles and visible parallels which bring deconstruction to
geometry

Koyama, M.

Research on the complementarity of intuition and logical thinking in
the process of understanding mathematics: An examination of the
mo-axes process model by analyzing an elementary school.
mathematics class

Kutscher, B.

Application of reification theory in translating verbal expressions
and statements into algebraic expressions

Kyeleve, J.1.; Williams, J.

Measures of teachers’ attitudes towards mathematical modelling

Kynigos, C.

Innovation-in-practice: Teacher strategies and beliefs constructed
with computer-based exploratory classroom mathematics

7 v

3-105

3-113

3-121

3-129

3-137

3-145
3-153
3-!6]
3-169

3-177

3-185

3-193

3-201

3-209

3-217



Kyriakides, L.
The implementation of curriculum policy on classroom organisation
in primary mathematics in Cyprus
Lamon, S.}.
Partitioning and unitizing
Leal, A.C.; Ciani, A.B.; Do Prado, L.G.; Da Silva, L.F.; Linardi, P.R;
Baldino, R.R.; Cabral, T.C.B.
Simultaneously assessing intended, implemented and attained
conceptions about the gradient
Levenberg, §.; Sfard, A.
When change becomes the name of the game: Mathematics teachers
in transition to a new learning environment
Linchevski, L.; Livneh, D,
The competition between numbers and structure
Linchevski, L.; Williams, J.
Situated intuitions, concrete manipulations and the construction of
mathematical concepts: The case of integers
Lopez-Real, F.
Secondary pupils’ translations of algebraic relationships into
everyday language: A Hong Kong study
Love, E.
Letting go: An approach to geometric problem solving
MacGregor, M.; Stacey, K.
Learning to formulate equations for problems
MacGregor, M.; Stacey, K.
Origins of students’ interpretations of algebraic notation
Malmivuori, M.L.; Pehkonen, E.
Mathematical beliefs behind school performances
Malone, J.A.
Preservice secondary mathematics teachers' beliefs: Two case
studies of emerging and evolving perceptions
Mamona-Downs, J.
On the notion of function
Mariotti, M A,
Reasoning geometrically through the drawing activity
Markopoulos, C.; Potari, D.
Thinking about geometrical shapes in a computer based environment
Matos, L.F.; Carreira, S.
The quest for meaning in students’ mathematical modelling activity
McClain, K.; Cobb, P.
The role of imagery and discourse in supportmg the development of
mathematical meaning :

vl §.-

3-225

3-233

3-241

3-249

3-257

3-265

3-273

3-281
3-289
3-297
3-305

3-313

3-321
3-329
3-337
3-345

3-353



McLeod, D.
The origins and developments of the NCTM professional standards
Jor teaching mathematics
McNamara, O.
Mathematics and the sign
Meira, L.
Student’s early algebraic activity: Sense making and the production
of meanings in mathemalics
Mekhmandarov, 1.; Meron, R.; Peled, 1.
Performance and understanding: A closer look at comparison word
problems
Mesa, V.M.; Gémez, P.
Graphing calculators and pre-calculus: An exploration of some
aspects of students’ understanding
Mesquita, A.L.
On the utilization of encoding procedures on the treatment of
geometrical problems
Mitchelmore, M.; Mulligan, .
Children’s developing multiplication and division strategies
Mitchelmore, M.; White P. o
Children's concepts of turning: Dynamic or static?

., VII

3-361

3-369

3-377

3-385

3-391

3-399

3-407

3-415



RESEARCH REPORTS

(continuation)




A LONGITUDINAL STUDY OF CHILDREN’S FRACTION
REPRESENTATIONS AND PROBLEM-SOLVING BEHAVIOR!

Gerald A, Goldin and Claire B. Passantino

Center for Mathematics, Science, and Computer Education
Rutgers University, Piscataway, New Jersey 08855-1179 USA

As part of a longitudinal study of children’s mathematical development
we analyzed videotapes of 20 elementary-school children solving
problems in two carefully-structured task-based interviews
administered one and one-half years apart. Here we describe and
discuss three individual students’ behaviors, with attention 1o the
external representations and models they employed or constructed in
attempting non-standard problems in the domain of fractions. From
our observations we seek 1o draw preliminary inferences about the
development of these children’s understandings of fractions.

As mathematics education research focuses more on children’s processes of
constructing meaning, researchers have sought to describe in greater detail how
particular mathematical concepts develop. Task-based interviews are being used
increasingly to explore students’ developing mathematical understandings (Davis,
" 1984). The observed problem-solving behaviors of children permit conjectures or
theories about the internal representations and conceptual understandings giving rise
to those behaviors (Lesh, Post & Behr, 1987; Goldin, 1987, 1988, 1992).

The research reported here is part of a descriptive longitudinal study conducted at
Rutgers University on the development of mathematical understandings in children
in grades 3-6 (Goldin ef al., 1993). Five highly structured task-based interview
scripts were created to investigate how children’s internal systems of mathematcal
representation develop over time, and the role of such representations in their
changing conceptual knowledge and problem-solving capabilities. Two interviews in
the sequence, #2 and #S5, were designed to focus on fraction representations. We
shall describe some behaviors of three individual children. We make use of the
external representations and models they employ or construct as they attempt to
solve non-standard problems in the domain of fractions to draw preliminary
inferences about their developing understandings of fractions.

1 The research reported in this paper was partially supported by a grant from the
U.S. National Science Foundation (NSF), “A Three-Year Longitudinal Study of
Children’s Development of Mathematical Knowledge,” directed by Robert B.
Davis and Carolyn A. Maher. The opinions and conclusions expressed are those
of the authors, and do not necessarily reflect the views of the NSF.
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Research questions

The overall research questions we investigate fall into the following four areas: (1)
External representations and models: What particular fraction representations or
models are in evidence? Which of these seem to endure over time? Does the
individual child evidence use of a set model, a linear model, some sort of region or
area model, a division model, or a model of a different sort? What external modes
of representation—words, notational symbols, pictures, enactive behavior, gestures,
recall of daily life experiences, etc.—predominate, and how do these change over
time? (2) Strategies and problem-solving heuristics: In solving problems about
fractions, what problem-solving strategies, heuristics, or metacognitive activity can
we infer or conjecture? How do the children’s internal, strategic representations
facilitate or impede (a) problem solution and (b) conceptual understanding of
fractions? (3) Making connections: How stable are the students’ constructs? To what
extent or under what circumstances do children change or abandon representations
or models, or make new connections among representations or models? What
evidence can we find of students making translations or transformations among
fracuion representations, of semiotic acts assigning meanings in one representation
to configurations in another? In particular, do their models or representations
change or interact in ways that suggest “reconceptualization cycles” or “local
conceptual development” (Lesh, Hole, & Post, to be published) during the problem-
solving episodes? (4) Learning and teaching: What are the links between “model-
eliciting activities” (Lesh & Kaput, 1988) and the processes of instruction and
assessment? What can be learned or conjectured from exploratory observations of
children’s problem solving in the domain of fractions about how to foster overall
development of mathematical competency, and deeper understandings of fractions?

Design and administration of the interviews

Scripts for task-based clinical interviews were designed and developed by a team
including the authors and other graduate students working toward advanced degrees
at Rutgers University, under the leadership of the first author. All members of the
team had professional teaching expenience in mathematics or elementary education.

Each script follows explicit principles in its construction (Goldin, 1993). The child
is asked a series of questions of increasing mathematical difficulty, so that the final
task is one that can be attempted by all the children, but is challenging even to the
most skillful. During the interview, the child engages in free problem-solving with
minimal input from the clinician (except for prompts such as, “Can you tell me

12,
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more about that?” asking for explanations of what the child is doing or descriptions
of what the child is thinking). All student efforts are “accepted” without
preconceived notions about appropriate solution strategies, and (with a few,
specified exceptions) without distinguishing between “wrong” or “right” answers.
The clinician typically asks follow-up questions to responses without indicating their
correctness. When an impasse is reached, the clinician offers structured heuristic
suggestions, in accordance with each script, and again allows for free, uninterrupted
problem solving by the child. The suggestions continue until the child solves the
problem, or (after an interval of time) the clinician moves on 1o another section of
the interview. Each interview is designed to take approximately 45 minutes (one
class period) to administer. Materials are available for student use, depending on the
problems posed in the interview: paper and pencil, markers, chips or other
manipulatives, paper cut-outs, string, rulers, calculators, etc. The abundance of
flexibly-applicable materials allows the researcher to observe external
representations made or used by the students, and to explore connections among
representations (Lesh, Post, & Behr, 1987). Each interview includes retrospective
questions and questions to explore the child’s affect during problem solving.

Each script was revised several times by the development team. Revisions were
guided by mock interviews with each other, followed by interviews with tndividual
children of the developers’ personal acquaintance, and finally a videotaped, pilot
clinical study with children in a nearby urban elementary school. The pilot sessions
permitted critical evaluation of the draft scripts, and training for climcians through
mutual critiques of interviewing techniques.

Of 22 children in the longitudinal study, 20 participated in both of the interviews
that focused on fraction concepts, #2 and #5. Two videotapes were made at each of
these interviews. One camera focused on the interaction between the child and the
clinician, showing their faces; the second camera focused on the student’s work.
Interview #2 was conducted in January and February 1993, when the children were
in the middie of fourth or fifth grade (ages 9-11 years); interview #5 in the spring
of 1994, when the same children were at the end of fifth or sixth grade. The
students came from a cross-section of New Jersey communities: from one school in
a predominantly blue-collar, “working class” community, one school in a suburban,
upper middle-class district, and two urban schools. Though the group included girls
and boys of differing backgrounds, ethnicity, and ability levels, it was not drawn as
a stratified random sample. The study should be regarded as a set of exploratory or
investigative case studies, not as an experiment yielding valid generalizations for a
wider population.

3-59 4"
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We next describe briefly just those portions of the two task-based interview scripts
for which children’s behaviors are discussed here. The full interview scripts are
available from the authors on request.

Task-Based Interview #2: Early in this interview the child is asked several questions
related to his or her understanding of one-half and one-third: ©® When you think of
one-half, what comes to mind? ® When you think of one-third, what comes to mind?
The purpose here is to invite freely described representations of fractions, without
yet suggesting a specific context. Other parts of interview. #2 provide opportunities
for the child to describe a region and/or a set model for fractions, e.g.: ° Suppose
you had twelve apples. How would you take one-half/one third? Several different
cut-out shapes are presented, and for each the child is asked: ° Here is a shape. How
would you take one-half/one-third? © Why is this one-half/one-third? ° Are there
any other ways to take one-half/one-third? The student’s ability to write a fraction
and understanding of notational meaning are then explored: ° Can you write the
fraction one-half/one-third? ° What does this fraction mean to you? Another
activity focuses on the way students work with an array of objects. The overall goal
in this part of interview #2 is to investigate various fraction represeniations and
models the child spontaneously uses or describes, and to observe the child's facility
in making connections or moving from one representation to another. Each main
question is followed by dialogue designed to elicit more specific descriptions or
concrete models with the provided materials. Observation and analysis of interview
#2 also becomes baseline data related to interview #$.

Task-Based Interview #5: This interview begins by asking the child an open-ended
question similar to (but more general than) those asked in interview #2: ° When you
think of a fraction, what comes to mind? The described representations are later to
be compared to those elicited at the beginning of interview #2, when the child was
asked about one-half and one-third. Next the student is engaged in a discussion
about fractions, and the kinds of things he or she has done with fractions in and out
of school. A paper is then shown with five fractions written on it, all with numerals
in large bold print, in vertical format with a horizontal fraction bar: one-half, one-
third, two-thirds, three-fourths, and four-sixths. Questions asked include: © What
fractions do you see here? ° Can you explain to me what the fractions mean? ° Why
are they written this way? © Could you show me what they mean using some of the
materials? ® Which fraction is the smallest (largest) fraction in the group? ° Are
there any fractions in this group that are the same size? Two additional sheets of
paper are shown successively to the student, one with pictorial representations that
can be interpreted as corresponding to various fractions, and another with



“improper” fractions written numerically. The child is subsequently asked to show
one-third and then one-fourth of a cui-out circle. A series of questions explores the
child’s understandings, including connections made among such external
representations and the stability of the child’s described fraction constructs. Later in
this interview a series of problems are posed, each with the possibility of some
fractional interpretation. In one of these, an unmarked piece of wood, measuring
1"x1"x5", is placed in front of the student (recall that a variety of other materials,
including a ruler, a length of string, a calculator, pencils and markers, etc. remain
on the table): ° Pretend this is a stick of butter. You need a tablespoon of butter to
make a cake. You don't have a measuring spoon, but you know that there are eight
tablespoons in a stick of butter. Here is the butter. How could you find exactly one
tablespoon?

Analysis and comparison of the two task-based interviews for all 20 children with
respect to the four categories of research questions above is presently under way.
Here we summanize some preliminary observations for three of the students.

Preliminary observations and inferences

Eernando: In fifth grade, Fernando (age 10) mentions “two pieces” as essential to
one-half, and “three pieces” as essential to one-third. In finding one-half of a shape,
he only asserts that the pieces have to be equal when discussing the circle. He also
indicates that pieces have to be the same shape. In discussing thirds, he mentions that
the pieces have to be the same size for the square (“you cut them out to see if they
are the same size™), but denies that this is important when discussing vertical slices
into three parts that he has made of the circle and the flower cut-outs. What matters
for Fernando with the latter shapes seems to be only the number of pieces (3).
When shown a wedge shape aligned with the circumference of the circle cut-out
(having 1/3 the circle’s area), and asked if this could represent one-half or one-
third, Fernando responds affirmatively: it could represent one-half, because there
are two pieces; it could represent one-third, because there would be three pieces if
you drew the other line. When shown another wedge shape aligned with the
circumference of the circle cut-out (having 1/6 the circle’s area), he agrees it
represents one-sixth, but says it is too smgall to be one-half or one-third: it could not
be one-third, because “you need more than three pieces to complete the circle”.
When the same wedges are placed inside the circle, rather on the circumference,
Fernando made some interesting adjustments in his thinking. A wedge with half the
area could now represent one-third, because the bottom section of the circle looks
like one-third (as he drew it when he “sliced” the circle into three pieces), the
wedge with 1/3 the area could still represent one-third if you put it back on the edge
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of the circle; and the wedge with 1/6 the area could still represent one-sixth, or
maybe one-fifth, because when it gets put back at the edge. five or six of them could
fit into the circle. At this point in his development Fernando recognizes the number
of pieces as critical to the fraction; he seems to think that the pieces should be the
same shape, though this may not always be true; he is uncertain about whether they
need to be the same size. He swiltches easily to a set model when asked to take one-
half or one-third of twelve apples (he does this by dividing), or one-half or one-
third of an array of twelve shapes (where he disregards their colors and shapes). '

In sixth grade (age 12), when asked to show one-third, he uses the same
model, again slicing the circle and shading the right-most *“third”. It still does not
trouble him that the pieces are different sizes or shapes. A marked change, though,
is that he now recognizes that the pieces can be split to form more slices; so that 2/6
would be the same as 1/3, or 2/8 would be the same as 1/4. This is clearly related to
his demonstrated ability to find equivalent fractions, by multiplying or dividing the
numerators and denominators by the same number, using 2/2. or 3/3 or 4/4, etc. He
volunteers that you could show one-third by taking one out of three circles. He
solves the butter problem by measuring 12 1/2 cm, then dividing the 12 by 8 to get
1 1/2 cm. He measures off one tablespoon only, and says the others would be the
same size because he figured it out. It is not clear if he recognizes this as an
approximate solution. But in the butter problem Fernando does recognize that
“same size” can be important; after you get eight pieces, you can “cut them all and
measure them on top of each other”.

Grabam: In fourth grade (age 10), Graham demonstrates flexibility in representing
fractions meaningfully. What comes to mind with one-half is half the population of
Rhode Island; for one-third he thinks of a pie with three pieces in it “because that's
what we usually say - one slice of a pie”. He is versatile in showing halves and
thirds of shapes, emphasizing that the pieces must be the same size, even if they are
not the same shape. He delights in making squiggly shapes, and knows that there are
“infinity ways" to divide the circle or the flower in half by making diameters. He
changes flexibly to a set model when finding one-half or one-third of twelve apples
or twelve mixed shapes.

In fifth grade (age 11), Graham never mentions irregular shapes. When asked
what comes to mind when you think of a fraction, he says “just the fraction, two
numbers with a line in the middle.” He easily represents and orders the fractions,
and uses the algorithm for determining equivalence. He has also learned to divide
and to form decimal numbers. This seems to interfere with his solving the butter
problem, because he divides 5 by 8 and ends up with a number in the “hundredths
-and thousandths”, which he cannot use. He estimates “six tenths”, but then has
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problems finding this amount in inches. He estimates where this is on the ruler. The
clinician says, “At about the 5/8 mark?” and Graham agrees. Then he goes on to try
centimeters, about 1 3/4 cm, but this is too large so he gives up. He says they don’t
do problems like this in school because “when the teacher gives it to you it’s usually
easy to solve.” It is difficult to escape the implication that schooling is diminishing
rather than enhancing Graham’s flexibility of representation, even as his
algorithmic proficiency increases.

Jack: When asked in fifth grade (age 10) what comes to mind when you think of
one-half, Jack says he thinks of half of a circle, because it’s the easiest thing to cut
in half; for one-third he thinks of a rectangle, because it's easiest to split into thirds.
When finding halves of shapes he emphasizes going through the middle to make two
equal parts. He makes three vertical slices to find thirds of a square, but says it is
impossible to find thirds of the circle or the flower because when you slice them the
slices are not equal. Curiously, however, he immediately recognizes the wedge-
shaped third of a circle and says that it could be used to represent one-third. He
volunteers that three of the wedges whose size 1s 1/6 of the circle would make one-
half, and that two of them would make one third. The wedges needed to be in
position at the edge of the circle for Jack to recognize this: “They don't represent
anything unless you move them back to the edge.” He easily finds one-half or one-
third of the apples or the shapes, but insists that each third or half of the shapes
have the same number of circles and flowers, as “a circle does not equal a flower”.

In sixth grade (age 12), when Jack thinks of fractions, he mainly thinks of the
numbers. He compares fractions mostly by the algorithmic procedure of finding a
number that “goes into both”. When asked to explain he just laughs, and says “It
works and 1t’s right”. When pressed further, however, Jack does make rectangular
regions which he compares visually. In fifth grade he could only imagine making
slices of the circle, but in sixth grade he immediately makes an upside-down Y to
trisect it. He says he can't think of any other way to do it. It is difficult to infer
internal representations from Jack’s behavior in solving the butter problem, as he
offers little verbally during the twenty minutes he works on it. He appears to be
desperately trying to find a number that works. When pressed he says that one inch
1s too big, one-half inch is too small, three-quarters is too big. After some time the
clinician says, “So it's bigger than one-half and smaller than three-quarters”. Then
Jack realizes that 1/2 = 4/8 and 3/4 = 6/8, so maybe it’s 5/8' He appears thrilled
with this discovery. It is interesting that Jack is “ready” to figure out 5/8 in the
context of his heunstic problem solving, while Graham (above) does not react when
“given” the answer 5/8, even though this puts into words the location he is
indicating on the ruler.
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Conclusion

Our observations suggest that in some situations, increased technical capability of
symbolic mathematical representation of fractions does not imply increased
flexibility of application or depth of conceptual understanding. There is evidence
that for these children exploring various concrete and imagistic representations of
fractions in greater depth would enhance their conceptual development.
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PSYCHOLOGY STUDENTS’ CONCEPTIONS OF A STATISTICS COURSE
cholas hryn Crawfo University of Sydney

ABSTRACT:

We report in this paper the preliminary results from a study 1o investigate the
conceptions of a compulsory statistics course held by university psychology students.
Phenomenovgraphic research methods were used to analyse responses o
questionnaires administered to 270 students. A set of five categories of description
for the students’ conceptions of their statistics course were identified. Relationships
were found between the students’ conceptions, their attainments in assessment tasks
and their willingness to study statistics. The results suggest that a majority of
students view statistics as essentially disconnected from other knowledge. Moreover,
a narrowly algorithmic approach was reinforced by assessment requirements,

What do psychology students think they are learning when they are required to study
statistics at university? What conceptions of statistics do their attainments in
statistics examinations reftect? Is there a relationship between students’ willingness
to study statistics and their conceptions? What connections do they see between
statistical knowledge and their broader concerns? These are some of the questions
we attempt to answer in this paper for a group of 270 students who were studying
statistics as a compulsory component of second year Psychology. The paper is based
on ongoing research into students’ orientations into learning statistics at university
(Gordon, 1993; 1995; In Press).

The prominence of siatistics in university courses has generated considerable
research into statistical education in the last fifteen years. This research shows that
many students have difficulties with and misconceptions about statistical ideas (Sce,
for example, Garfield and Ahlgren, 1988; Green, 1994). Many studies have focussed
on reforms in statistics education by suggesting new and improved ways of teaching
statistics (Eg Garfield, 1993; Hawkins et al, 1992; Romero et al, 1995).

In contrast, our perspective focuses on what is learned rather than what is taught. In
order to take the standpoint of the students, that is, take a *“second order perspective”,
the research adopts a phenomenographic approach (Marton, 1986; Crawford,
Gordon, Nicholas & Prosser, 1994). This approach is described by Marton (1988) as
“a research specialisation to study the different understandings or conceptions of
phenomena in the world around us.” Such an approach views phenomena
systemically and avoids the boundaries between person and context. It is consistent
with a Vygotskian view that there is no assumption of a duality between self and
contest; between thinking and acting (Vygotsky, 1978). The use of a
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phenomenographic approach to this rescarch has allowed us to describe the
experience of leaming statistics at university from the point of view of the students
themselves. We have attempted to give our students a voice, a voice not normally
heard in statistical education.

METHOD OF RESEARCH

Over 270 second year Psychology students, at the University of Sydney, completed a
questionnaire on their conceptions of the statistics component of the course and their
attitudes and approaches to learning statistics. The survey was completed
approximately halfway through semester 1, that is, in week |2 of a 21 week semester.
The questionnaire included the following open ended question, designed to elicit
students’ own conceptions of the statistics they were currently studying.

What in your opinion is this statistics course about? Please explain as fully as
possible.

The first stage in the analysis of the data was to identify a set of qualitatively
different categories of description to the open ended question. This involved the
following procedure:

1. An initial set of categories was identified, by two independent researchers reading
and classifying the entire set of responses to the above question.

2. The two researchers then compared and discussed the categories and agreed on a
draft set of categories.

3. They, together with a third researcher, independently classified 30 of the
responses in terms of this set of categories.

4. The individual classifications of the three researchers were compared and a final
set of clear statements of each category was agreed upon.

5. All 270 responses were then classified accordingly.

6. All responses were discussed and agreement reached on any classifications that
did not match. :

The students were asked whether they would have studied statistics if it had not been
compulsory to do so. Their responses to the questionnaire were then analysed to
explore the relationships between students’ conceptions of the statistics course and
their attainment in tests and examinations during the first semester, their expressed
willingness to study the statistics and gender.

RESULTS
Categories of Description of Students’ Conceptions of the Statistics Course

L3-12
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The phenomenographic analysis of the responses to the question yielded a set of five
qualitatively different categories. A fabel for cach of the categories is given below.
Labels are followed by descriptions of that category and illustrative excerpts from
students’ wrtten responses.

1) NO MEANING ‘

Students’ responses that indicated perceptions of the course as meaningless or
unconnected to their goals in leaming psychology, worthless or set by the university
as a means to confuse or “cull” less able students, were classified in this category.

For example a student responded to the question as follows: Trying to confuse me
2) PROCESSES or ALGORITHMS
Responses were classified in this category it:

a) The student’s responses to the question consisted of a list of one or more statistical
procedures such as hypothesis testing or tabulating data.

b) The student’s perception of the course was reported in terms of an input-output
machine or black box. That is, the response indicated a perception of the course as
being about mechanical processes or coding.

Examples: Number crunching
and Statistical results from experiments.

... It's not necessary, considering computers do all the work.
3) MASTERY OF STATISTICAL CONCEPTS AND METHODS

Responses were classified in the third category if students reported their perception
of the course in terms of competence or proficiency in the methods of statistics.
Typical responses mentioned some or all of the following class exercises: analysing
or interpreting given data, coming to conclusions on the basis of decontextualised
information, solving practice exercises. In short, reading and/or understanding
statistical information in isolation from the rest of their studies of psychology.

FFor example a student wrote: To give us the basics in statistics.
Another wrote: Determining the results of experiments in the correct manner ...
4) MASTERY AND A TOOL I'OR GETTING RESULTS IN REAL LIFE

Responses in this category included notions of proficiency in statistical methods but
also referred to the use of statistics in conducting research or its use in society.

An example of a response indicating the perception of the course as providing a tool
was: using statisties to apply it 10 experiments we will use later on in careers in
psychology. A practical course.



5) The final category was labelled A WAY OF CRITICAL THINKING.

Responses were classified in this category if they included the 1dea of statistics as a
tool and, in addition, referred to the statistics course as being about a (mathematical,
scientific) way of critically evaluating findings, or organising, communicating and
assessing findings.

An example of a response in this category was: Understanding how numbers can
provide evidence for or against some hypothesis you are testing. As a way of
ensuring the validity & reliability of your own research methods. To understand how
numbers can be used to falsify dutalconclusions.

Distribution of Responses

Figure 1 below indicates the distribution of responses into the five categories.

FIGURE 1: Distribution of Students’ Conceptions of the Statistics Course
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Interestingly, a large number (11%) of the students omitted to answer the question or
responded in a way that indicated a reluctance to think about it. 1t appears that many
students find it difficult or are unwiiling to articulate their conceptions.

Relationship to Other Variables




We first consider how students’ reported conceptions of the statistics course relate to
their performances in assessments in the first semester. Students had three
assessment tasks. There were two class tests which were open book exercises, in
which students were asked 1o show all working, and a multiple choice examination.
No books or notes could be used in the examination. Relationships to the
examination marks and the average of the two class tests (which will be referred 1o as
the class mark) are reported separately.

The means for the students’ performances are shown in Table | and Figure 2.

TABLE |: Average Assessment Marks for Each Conception Group

Conception Means for Class MarlidMeans for
Examination Marks

No Meaning 64% (N=9) 47% (N=9)

Processes 59% (N=55)* 57%(N=54)

Mastery 59% (N=73) 49% (N=69)

Tool 58% (N=43) 56% (N=41)

Thinking 80% (N=3) 53% (N=4)

*N differs in some cases, as some students did not write both the examination and the class tests.

Figure 2 below shows that students performed better in the class tests than in the
examination. The correlation between these students’ class marks and examination
results 1s 0.6.

When comparing the attainments of the different concept groups on the two different
forms of assessment (problem solving tests and multiple choice examination), an
interesting pattern emerges. No statistically significant differences were found
between students’ average attainments on their class tests for the three largest
Conception groups: Processes, Mastery and A Tool. With the exception of the three
students whose conceptions of the statistics course related to a way of thinking, no
mean increase in marks was gained by students who conceived of the course in other
than algorithmic terms. Thus, increased effort to make meaning were not rewarding
under the conditions of the assessment of the class exercises.

The group of students who reported their conceptions of the statistics course as
algorithmic Processes obtained higher marks in the multi choice examination that
any other group. Indeed the Processes group performed significantly better on the
semester I examination than those who reported their conceptions in terms of



Mastery (paired t =8.11, p=0.0001). This result implies that their conception was
associated with an expedient approach to learning, in terms of course grades. For the
vast majority of students, a purely algorithmic or mechanical conception of statistics
- was reinforced by successful assessment results.
FIGURE 2: Mean Marks for Class Tests and Examination for Conception Groups
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Seventy four percent of the students surveyed answered “No” 10 the question: Would
you study statistics if it were not a requirement of your psychology course?

The 1able below shows the differences in the perceptions of the course between those
that responded in the affirmative and those who expressed an unwillingness to study
statistics. Almost 80% of the “Yes” students reported their conceptions in terms of
mastering the methods and concepts of statistics and/or using it as a tool. Few (14%)
of these students reported thinking of the course as being about statistical procedures.
However, over a third of the “No” students reported their conceptions in terms of
algorithms and processes. Not surprisingly, none of the students who expressed the
opinion that the statistics course had no meaning for them expressed a willingness 10
study statistics.



TABLE 2: Students’ Concepts Versus Their Willingness to Study Statistics

Percentage (Number) of Students

No Meaning | Processes | Masiery | Tool | Thinking
“No” (N=181) |7% (13) 36% (65) |36% (66) |20% (36) |1% (1)
“Yes” (N=65) 0 14% (9) [45% (29) |34% (22) | 8% (5)

The increased interest in statistics of the minority group who felt positive aboul
studying statistics was reflected in their grades. On average, the “Yes” group
achieved higher marks on both forms of assessment.

Gender

For both sexes, Mastery was the modal category. However, Table 3 below shows
that a considerably higher proportion of females than males reported thinking about
the course as providing a tool which could be used in the future. On the other hand, a
larger proportion of males than females evidently perceived the statistics course to be
about mechanical processes or statistical procedures. In general, males performed
better on the multiple choice examination.

TABLE 3: Students’ Concepts Versus Their Sex
Percentage (Number) of Students

No Meaning | Processes | Mastery | Tool Thinking
Females (N=201)13% (7) 25% (50) |36% (12) |25% (51) |2% (4)
Males (N=75) 8% (6) 29% (22) |33% (25) | 8% (6) 3% (2)

DISCUSSION

There has been some concern about the outcomes of statistics education. This
research has focussed on student conceptions of a compulsory statistics course —
their point of view. The majority of the psychology students who were surveyed were
unwillingly studying statistics at university. Most reported learning mechanical
procedures or decontextualised statistical concepts and methods. Further, these
conceptions appear to be reinforced by success in formal assessment tasks. The
minority group of students who expressed a greater willingness 1o participate in
statistics courses reported more thoughtful and personally meaningful conceptions of
statistics. Their increased motivation was reflected in higher marks. However, for
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most students, a lack of understanding and interest was no deterrent to their
successful completion of class exercises nor reflected in grades.

Although the course was a component of wider studies in psychology, less than a
quarter of the students expressed an awareness of connections between statistical
knowledge and applications in psychology or any other field. If we regard statistics
as a useful and human endeavour, university educators will need support to ensure
that students receive meaningful experiences of doing statistics that go beyond mere
“"number crunching” so that they cannot imagine that “computers do all the work”.
Such support will require more time and better resources than are usually allocated.
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Choosing a Visual Strategy: the influence of gender
on the solution process of rotation problems.

Niiria Gorgori6

Departament de Didactica de les Matematigues
~ Universitat Autonoma de Barcelona, Spaiu

Abstract

Visualisalion in geomelry requires the mental manipulation of visual tunagery. Most pre-
vious studies related lo visualisalion have focused on the processes imvolved in solving
mathematical problems in general. Litile research has been published that takes into ae-
counl the oceurrence of visual processing when children work on spatial tasks, presented -
through figural stimuli. - This report discusses the relationship between achicvernent and
stratigics used by students aged 12 16 when tackling transformation problems involving
spatial rotations. It compares, as sample groups and not as individuals, the mathematicel
behaviour of boys and girls and not solcly their performance. The resulls suggest that gen-
der is not enough: an crplanatory variable when analyzing the solving processes involved
in spatial tasks, at least when students fuce tasks whose geometric focus is a rolation.

Spatial abilities, visual processing and gender.

One of the most studied aspects among those related 1o mathematical abilities is the analysis
- of differences among individuals. However, there are two dilferent ways of viewing a person’s
various mathematical abilities. One way is to consider the level of accomplishinent in some
given tasks, which have some common characteristics determined in advance. The second way,
is to constder the individual’s cognitive traits that facilitate the solving processes of those tasks.

The construct visualisation appears not ouly in most of the studies dealing with spatial
abilities, but also in many rescarches related to the solving processes of inathematical problems
in general, On the studies concerned with spatial abilities, visualisation, even il not alwayy
having the same meaning, is often related to the idea of achicvement. ‘The origins of the
rescarch considering visualisation as a trait of the solving processes of mathematical problems in
general, was the individual’s characterization, presented in Krutekskii’s work (1976), from their
mathematical cast of mind. considered as something different from their level of spatial ability.
Bishop (1983), taking as a starting point the idea that it is impossible to establish a single
definition of spatial ability, and trying to focus attention on the significant learning processes,
suggests we consider two different abilities (op. cit., p. 184): the ability of interpreting figural
information (IF1), and the ability of visual processing (VI’). Bishop ctuphasizes those aspects
related Lo processes over those related to the stimuli form and refers to visual processing in the
mathematical context, in its broadest sense, and therefore in a context where visual stimuli are
not always needed. ' ' -
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Since the beginning of research related to spatial tasks, many studies have attempted to
analyze the variables that influence the degree of achievement that students demonstrate in
those kinds of tasks. Many and varied aspects have been studied: gender, cultural influcnce,
curriculum content, matenial manipulation, and so on. Through the years, the amount of
research that demonstrated a superior achieveent for boys than girls in spatial tasks is so
impressive that to refer 1o them all would be cumbersome. The evidence seems so enormous
that it is difficult not to conclude that a characteristic of spatial tasks is maseuline superiority.
Nevertheless, there is research pointing ont that more variables need Lo be taken into account:
age of sample people (Hall and Hofl (1988), Nash (1979), ethnic origins (Van Lecuwen (1978),
cultural backgrounds (Hanna 1989), or what is understood as spatial tests (Eliot and Smith
(19382), Halpern (1989), Shuard (1982) and Wattanawaha (1977)).

Mosit of the studies related to gender differences in spatial abilities are concerned with
achievement, and regretfully not with the differences in solving strategics or processes. 'he
amount of research dealing with differences related to gender in the solving processes of spatial
tasks remains very small. Some of these stndies conclude that even if there are not gender
differences in performance, it should not be assumed thalt strategies nsed by individuals of both
genders are the same (Newcombe et al. (1989), Tartre (1990)). The analysis of others do not
lead us to identify any characteristic of the mental proeedures of boys and girls that allows
us to suppuse the existence of any differences between strategies and solving processes of both

genders (Battista (1990), Lohinan (1979), Presmeg (1985)).

Some of the research guoted above relers Lo the solving processes of mathematical tasks
in general. However, the content of the visualisation of abstract relationships has a different
nature from that of the visual processing of geometric facts. Actually, most of the studies
that analyze cognitive processes related to visualisation, are interested in the solving processes
of mathematical problems in general. Little has been published regarding the analysis of the
solving processes of spatial tasks, presented through figural stimuli, and taking inte account
the possibility of using or not using visual processing.

The solving processes of rotation tasks.

This study deliberately proposes to use the construct spalial processing ubility instead of the
construct visual processing ability, in order to clearly state the diffcrence between the ability
to solve any situation by means of a visual processing strategy, and the ability to cope with a
spatial task, having already visual roots, using any kind of strategies.

ln the present rescarch, spatial processing ability is understood as the ability needed to fulfill
the combined mental operations required lo solve a spalial lask. Il includes not only the ability
lo imagine spalial objecls, relationships and transformations, bul also the abilily Lo encode lhemn
inlo verbal or mized lerms. [l also includes the ability not only te manipulale the visual tinages
of spatial fucts, but also the ability to solve the tasks using processes that are not merely visual.

Obviously, the spatial processing ability so defined, even if described with a singular term,
has plural meanings. - Spatial processing ability includes at least as tnany different abilities
as niany spatial transformations one may imagine. The present study focussed on one of its
aspects, rotation. '

The rescarch (Gorgorié 1995}, I am referring to, analyzed and characterized the strategies
used by a sample of students, aged 12- 16, when dealing with geometric tasks that required
a spatial rotation. On this report, | present the resulls coucerning the comparison of the
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mathematical Lehaviour of boys and girls, as satuple groups and not as individuals, from the
point of view of strategies used during the solving processes and not solely their perforinance.

Taking as a starting point Hurden and Conlson’s study (1951), and modifying it to fit the
present rescarch goals, students’ strategies were analyzed from three different standpoints: the
origins and the organizing of the information used, the mental representation mode, and the
focus of attention. ‘Therefore, for every subject arrd for every task, one iay speak of structuring
‘slralegy, processing stralegg and approaching strategy, being not three different. kind of cognitive
strategices, but three different aspects of the student’s solving strategy. Following, there is a
short deseription of each category, for further details see Gorgorio (1996).

For the study of structuring strulegies, the student’s cognitive strategy was considered from
the standpoint of the different mental ways of facing the task, the mental organization, and
source of the information nsed to cope with the task.

When analyzing processing stralegics, the student’s cognitive strategy was considered from
the standpoint of its forms of mental representation. ‘I'he premise was taken that all mathe-
matical problems imiply reasoning or logic in their solving processes. Furthermore, all the tasks
presented in the present rescarch to sample stadents had a figural support on its presentation.
Therefore, the fact that determined which kind of processing strategy the student used was the
use or not the student made of visual images during the solving process, a fact that coutd only
be clicited from students explanations and observation.

The analysis of the students’ cognitive strategy considering its attention focus over the
geometric object led to deterniine his or her approaching strategy.

Method.

Qualitative data obtained through clinical interview was used in the analysis of students’ solving

processes. Quantitative analysis was used also, in order to achieve the other goals of Lhe study.

Qualitative and quantitative analysis being complementary generated the results of rescarch
and contributed to the study’s validity.

Nine tasks were presented to a sample of students o be solved during the snterviews. ‘The
geomietric demand of all the Lasks was a spatial rotation.  All the Lasks were presented with
visual support, using both real objects and 2-D representations of 3-1) objects.

As one of the assumptions was that task characteristics influence students strategies, the
tasks’ statements were prepared carcfully. Among the characteristics that were considered as
heing hable to modify or influence students strategies, the most significant turned out to be the
required action. Required action is the action to be done by the subject in order to solve the
task, in the sense established by Leinhardt et al. (Leinhardt et alt. (1990)). Among the tasks,
there were 4 whose required action was. of interpretation, that is to say, where the students had
_to react in front of a geometric action presented as accomplished, or to gain meaning from an
object or a representation, without representing or drawing anything.

Three of the tasks of interpretation (f--1, 2 1 4 1), had the form of a nltiple choice
question, where students had to decide which was the correct answer by identifying objects
being or not the same through rotation. ‘I'hose tasks belonged to a test that has been created
and validated in a previous study. The test content inclnded some 3-1) geometry items related
to curricular content, and some other items to test- the performance of students in spatial tasks
in general. -
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The tasks whose required action was of ‘construction were 5. In those tasks, students had
cither to draw or to construct, with wnmlc-u cubes, an object fulhllmg the geometric request.
Given the initial object, the student had to generate the final one, that means he or she had
to apply a rotation, mentally or through manipulation, over it to generate a new one, real not
imagined. Task 2--A, presented next, is an example of tasks of construction.

Construct, with the wooden cubes,
the object presented in the figure,as it would remain
after rotating it 180° over its base.

‘ask 2--A.

The tasks were administered to a samnple of 24 students, aged 12 to 16, sclected from a
broadest sample of 645, from different types of schools, which had been administered the test
previously mentioned. When setecting the sample to be interviewed, students’ characteristics
were diversitied, takmg into account theorctical conditions: gender, ago and performancee at the
spatial test.

For every task, the interviews were prepared beforchand, planning a detailed sketch 'from the
results and obscrvations of a pilot experiment. Interviews were tape recorded, and drawings and
objects made by the students were put away. Students’ processes of drawing and construction
were recorded through codified notes. During the interviews, the researcher also noted actions,
movements and gestures iade by the students that were considered to be hints of strategies
used. Students were asked for the description of their solving processes once the task was
accomplished. The transcription of all interviews, drawings and objects produced hy btudents
during the interview, and researcher’s notes were the initial data.

Systemic networks, Bliss ct-al.(1983), were used to unfold, structure and reduce the data.
Comparing the data corresponding to all the tasks, structured through networks, atlowed the
characterization and description of the different kind of strategies. Other goals required a
qlld.llllldll\'(‘ analysis to be achieved. In such cases, for cach task and for each category of
strategies, tables were built sumearizing the data.  From the tables, the existence of some -
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tendencics was observed.  Further statistical analysis was used to decide which tendencies
were enough significant to be considered. Broader results, for iustance those concerning the
differences among slraiegi(rs usctl by boys and girls, were attained conmparing quantitatively
and qualitatively the evidence obtained through parallel processes done for each task and for
each kind of strategy. :

Results.

For cach task, students’ cognitive strategies were characterized as being structuring, processing
and approaching strategies. Ouly a short characterization is presented here. In Gorgorio (1996),
the reader will find a detailed description and some examples of the different types of strategies
within cach category.

The structuring stralegies observed implied the student getting involved in the context of
the situation, using information obtained from previons experience, or simplifying the task’s
structure,

Processing strategies were characlerized as being visual or verbal. A processing strategy was
considered to be visual when, from the student’s explanations, it was clear enough that he or
she had imagined some of the following aspects: the task’s context, a rolation or a position’s
change of cither the subject or the object. When saying that it was clear enough that a student
had immagined any situation, it is meant that either the student had explicitly said he or she had
unagined it, or it could be elicited fromn the student’s explanations and observation. That would
be the case of some students who said to be performing an action, a physical action, when they
actnally did not. A student’s processing strategy was consideral to be verbal when the student
solved the task without inagining any situation, but relying on facts related to properties of
180° rotation, syinmetry, congruence or using information belonging to the context.

Approaching stralegics were characterized as being global or partial. An approaching strategy
was considered to be global when the subject focussed his attention over the object or the
sitnation considered as a whole: by comparing it with a real life object or situation, or by
referring to the objects’ congrucence. 1t was considered to be partial when he or she focussed his
or her attention on some parts of the objeet, taking into acconnt some of the following aspects:
the existence of significant parts, their characteristics, their relative position, or the elements
resnlting of splitting up the object.

In terins of gender differences, some qualitative differences were observed among
structuring and processing strategies used by boys and girls, and no difference
appeared among approaching strategies used by individuals of both genders. When such
differences appeared, related to structuring or processing strategics, they depended on the
required action of the task. '

Coucerning structuring strategies, when there were qualitative differences and the required
action of the task was.of interpretation, girls tended to nse structuring strategies consisting of
simplifying the task’s structure, while boys did not use any structuring strategy. For instance,
in one of the tasks of interpretation, where students had to compare four options among them,
girls tended o take one of the options as a model, and compare the others with that one, while
boys tended to deal with all four options simultaneously.

When the reqnired action of the task was of construction, girls did not use any structuring
strategy, and boys were distributed among these who relicd on previous knowledge and those
who did not use any approaching stratcgy. Boys relying on previons knowledge made use of
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information obtained from previous experiences or information which could explain the situation
or helped Lo solve the task. For instance, in task 2 -A presented before, one of the students
{A.B.) said, without being asked and just before initiating the solving of the task, that he
should take iuto account what changes take place when turning 180° an object over ils base.

A.B.: I have lo buill up the object, suy... the part behind hus lo be in front, and
the right has o go lo the left ... when building il up.

Iu a similar way, differences appearing on the processing strategies used by boys and girls,
depended on the required action of the Ltask. Morcover, qualitative differences among processing
strategics appeared only when Lhe required action of the task was of interpretation. ‘The
following table presents, for each Lask, its Ltype of required action, the existence of differences
among genders concerning processing stralegies used, and the significance of those dilferences.

Task required difference | significanee

aclion boys/girls-

Streets | interpretation NO -
/-1 | interpretation YES 90%
2 I [interpretation NO -
3---1 | interpretation YES 90%

“{—A | construction NO -
2.-A | construction NO -
7 A | construction NO -
/- 3 | construction NO -
3--B | construction NO

From the table one observes that qualitative differences amnong processing strategics ap-
pearcxd only on two tasks, where the required action of the task was of interpretation: boys
tended Lo use visual processing strategies and girls 1o use verbal processing strategies.

Concerning difficulties and errors, some diflerences hetween boys and girls had been ob-
served. Those dilferences on the errors observed during the interviews corresponded to the
ones observed on the large sampling test. Girls had more difficulties and made more errors
when interpreting tasks' statements so for the verbal language referred to spatial facts and ob-
jects as for the representational code used. Girls made also more geometric errors than boys. A
significant difference between the number of geometric errors of boys and girls had been found
for three tasks. Girls tended to mistake a 180° rolation for a symmetry.

The differences between erros of both genders can be interpreted through boys and girls nsing
different strategies. In the task of interpretation, where appeared significant differences among
errors, those were related to the processing strategies used. Verbal processing strategies -—which
were on the most used by girls— led to a biggest number of errors due to missinterpretation
of the task’s statement. In the tasks of construction, differences are tied to a distinct use of
stracturing strategies. Structuring strategies on which the subject relies on previous experiences
tended to léad to eorrect answers. T'he number of boys who used this kind of strategy is
substantially bigger than that of girls. This fact could explain the differences favoring males,
of the number of correct answers. ’ to
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Conclusions.

The methoadology used on a researvely very mch conditions the nature of the results one arrives
at. By large sample testing one may conchude general assertions. which, on the other hand, give
only information about achievement amd not processes. Qualitative analysis of data, obtained
through interviewing a reduced sample, leads o obtain results of a descriptive nature about
students” solving, processes that can only be used o explain students behaviour on analogous
situations.  However, both methodologies may be used on a complementary way as in the
present rescarch, where part of the results obtained throngh statistical analysis of a big sample
test. iy be explained through the answers of a reduced sample.

Auother important issuc of the present rescarch relates o the key role tasks™ characteristies
have as inlinencing factors of students’ solving processes. 'The most relevant concerning gender
differences is, probably, the required action. The studies considering spatial orientation abiliny
as the achievement level on a spatial test, were presenting to students tasks of interpretation. In
such kind of tasks, qualitative differences in the use boys and girls do of processing strategies
have heen found. and that ditferent use led to differences in the answers’ correctness. T'he
rescarches studving solving processes, dealt with tasks of construction, In tasks of constriction
1o differences have been observed neither in processing strategies, nor in approaching strategics
of boyvs and girls. However, some dilferences on the structaring strategies used by boys and girls
have been observed. Furthermore, when there are differences among boys™ and gicls' answers,
those can be explaised through that dilferent use of structuring strategies.

Morcover, the results of this study add evidence to the fact that sex is not enough a ditfer-
enliating variable when analyzing the solving processes of spatial tasks, for differences hetween
genders are less than differences within genders, at least when students face tasks whose geomet.-
ric demand is a rotation. It is one of the writer’s belicfs that education should help students
to overcome their difficultios, but should not force them to renounce their individual traits,
Therelore | conclide quoting Clements and Battista (1992, p. 158) *we should eventually be
able to move beyond studyiug gender differences 1o the study of different cognitive profiles that
nderlie suceessful performance in geometry .
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DISCOURSE IN AN INQUIRY MATH ELEMENTARY CLASSROOM AND THE
COLLABORATIVE CONSTRUCTION OF AN ELEGANT ALGEBRAIC EXPRESSION

Barbara Graves and Vicki Zack
McGill University and St George's School/ McGill University
Montreal, Canada

This paper investigates how the discourse practices of two Grade 5 students mediated
their reasoning processes in an inquiry mathematics classroom. The focus is on the
collaborative exchange as a mechanism for conceptual change as the students engaged
in a difficult problem-solving activity. Of particular interest is how students drew on
their shared knowledge and interest to maintain the discussion and how the role of
genuine inguiry within the talk resulted in the construction of what we have designated
an elegant algebraic expression.

This paper investigates the discourse of inquiry as we examine how the discourse
practices of two Grade 5 students mediated their reasoning processes in an inquiry
mathematics classroom. Currently, the study of discourse holds an unprecedented high
profile in research which investigates human cognition as an interaction of individual,
social and cultural processes (Cole, 1991). Many researchers have focused broadly on the
social and functional uses of language in society (cf., Halliday, 1975; John-Steiner, Smith
& Panofsky, 1994; Vygotsky, 1978), while others have focused specifically on classroom
discourse including the mathematics and science classroom (Ball, 1991; Green & Dixon,
1993; Lemke, 1991). In a recent article Hicks (1995) reviews aspects of discourse as an
inherently social construct which mediates children’s academic learning, and discusses the
educational reforms in relation to discursive activities (e.g.,. NCTM, 1989). In regard to
the 'appropriation' of mathematical discourse, children become schooled in the practice of
mathematics as they leam to make connections between their own inventions and the
conventions of the culture (Lampen, 1990; Cobb, Wood, & Yackel, 1993). At the same
time as children leam about cultural tools such as algebraic generalization, they come to
appreciate the power and authority inherent in those tools (Wertsch & Rupert, 1993).

In our investigation of communication in collaborative problem-solving exchanges,
the work of Teasley and Roschelle (in press) is especially pertinent. Teasley and Roschelle
define collaboration as "a coordinated, synchronous activity that is the result of a continued
attempt to construct and maintain a shared conception of a problem.” They identify this
shared conceptual structure as the joint-problem-space which has two imponant features:
1) the joint-problem-space is constructed and maintained by means of conversation in the
context of problem-solving activity; and 2) the joint-problem-space is the structure which
enables the conversation about problem-solving to take place. The underlying assumption
is that while overlap in meaning in the collaborators' common conception of the problem
may be neither complete not certain, it is sufficient to lead to a gradual accumulation of
shared conceplts.

In this paper the episodes selected for study illustrate the students’ search for
meaning, and their appreciation of an elegant solution in terms of coherence, economy, and
explanatory power. Their engagement with the ideas in their mathematics assignment
seemed to us a prototype of what inquiry is. We will deal with their individual
conceptualizations of the problemn, as evidenced through their talk as we consider the
question: "What does it mean for a cognitive process 1o occur both in and between
individuals?” (Cole, 1991, p. 398-399). We concur with Vygotsky's view that the sign
(word, diagram, algebraic notation) both represents a person's thinking, and transforms it
(Wertsch & Toma, 1995, p. 163) and we adopt the premise that communication, activity
and representation are mutually consttutive (Teasley & Rqschelle, in press).
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The school community and classroom setling

St. George's is a private, non-denominational school, with a middle class
population of mixed ethnic, religious, and linguistic backgrounds; the population is pre-
dominantly English-speaking. The total class size in the 1993-1994 year was 25; the work,
however, is always done in half-groups (12 or 13 children in each group) of heterogeneous
ability. Problem-solving is at the core of the mathematics curriculum in this classroom.

The school and classrcom leaming site is a community of practice which Richards
(1991) has called inquiry math; it is one in which the children are expected to publicly
express their thinking, and engage in mathematical practice characterized by conjecture,
argument. and justification (Cobb, et al., 1993, p. 98). The students have been tackling
non-routine problems in diverse areas of the curriculum since their entry to the school,
hence six years for many. For a number of the children, it is likely that academic discourse
would be heard at home, as well as in school.

Mathematics class periods are 45 minutes, and twice a week are extended to 90
minutes. In addition to the in-class problem-solving sessions, each week the children also
work on one challenging problem at home. They are expected to record their work and
reflect on their strategies in a Math Log which serves as the initial basis of their group
discussions in class. In class much of the session is conducted by the children as they
discuss the problem first with a partner, then in a group of four consisting of two pairs,
and finally with the entire group of twelve students. In this way each problem is examined
on four separate occasions in multiple contexts.

The data

The children are videotaped throughout the school year on a rotating basis as they
work in their groups. In addition to the videotape records, data sources include focused
observations, student artifacts (math logs), teacher-composed questions eliciting opnmons
(written responses), and retrospective interviews,

The mathematical context of the problem/discussion

The focus in this paper is on the final problem, Tunnels revisited, in a series of 4
inter-related problems which are increasingly dcmandmg Below is the séquence of
problems:

s#1 Tunnels: 'Nine prairie dogs need to connect all their burrows to one
another in order to be sure that they can evade their enemy, the
ferret. How many tunnels do they need to build?' (February 7, 1994)

«#2 Decagon Diagonals: How many diagonal lines can be drawn inside a
figure with 10 sides? (April 25, 1994)

#3 25-Sided-, 52-Sided Polygons: How many diagonals would there be in a
2S8-sided polygon? in a S2-sided polygon? (May 16, 1994)

o#4 Tunnels revisited: Can you write a number sentence or general rule for
the Tunnels problem? (May 24, 1994)

In an earlier paper Zack (1995) described how the children in her 1993-1994 grade
5 class worked together to arrive at an understanding of generalization. The two joint
authors of this paper, Vicki Zack, a teacher-researcher in her homeroom classroom for the
past 7 years, and Barbara Graves, a university researcher, have extended the investigation
by examining how two of those children applied that knowledge to solve an additional
challenging problem. The two boys, Jeff and Micky, both managed to generate a general
rule to solve problem #3, "How many diagonals would there be in a 25-sided polygon? in a
52-sided polygon?" and then used their algebraic expressions as the basis for their ensuing
discussion of and solution to problem #4. (Note: The students had already encountered
this problem as problem #1 in the series. At that ime ALL students approached problem



#1 by using either an iconic graphic to represent the burrows and tunnels or by means of a
chart.)

The collaborative exchange

Following are conversational extracts which have been transcribed from the
videotapes. Overlapping conversation appears between /slashes/. While our goal was to
include portions of dialogue which clearly convey the meaningful aspects of the exchange,
it has been our experience that transcriptions of children's talk from videotapes often appear
less meaningful to the reader than to the researchers who had access to both the visual and
audio record as well as to the context of the activity. We hope the accompanying
descriptions help fill in the gaps. '

The pivotal strategy upon which the algebraic expression for problem #3, Decagon
Diagonals (Zack, 1995) was constructed was as follows: Count the number of diagonals
emanating from a vertex, multiply that number by the number of sides, and divide by two.
Hence, in a decagon, there are 35 diagonals. Figure 1 below graphically illustrates this
representation. '

Eigure 1. Child's representation of diagonals from one vertex in a decagon.

In their solution to problem #3, Jeff and Micky constructed two vanations: Jeff constructed
a rule with two components, (S = number of sides):

A * S + 2 = diagonals, where A = sides - 3
Micky's rule is equivalent but more direct, (Z = number of sides):
Z-3*Z+2 =diagonals

" In both solutions it was Z - 3 or sides minus 3 because the connections were made to
all vertices except for three, namely itself, the ventex to the left and the vertex to the right.
The boys agreed on the equivalent nature of these two representations.

Two models of the problem. The boys then went on to tackle problem #4 which
required that they generate a number sentence or general rule to determine how many
tunnels are needed to connect all 9 burrows. .

J: .. That was just like saying this is what I know, now how am I gonna put it into a
sentence? So what I did is I did Point A times sides divided by two then plus sides
‘cause you gef the diagonals plus the sides, and then that'’s all the lines you can
draw. (emphasis added)

The model of the problem that Jeff has constructed is a component model in terms of
diagonals and sides and this representation explicitly extends the findings from problem #3.
He represents it as:

A*sides+2 | + sid_es = tunnels
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This strategy draws not only on leff's mathematics knowledge but also on his
understanding of the pragmatic context in which the problem was assigned: As he states,
"why would she [ Vicki] mention wnnels” if there was no connection. Micky, in contrast
did not apply his findings from problem #3 to problem #4 as he was under the impression
that a novel solution was required, and he was “looking for something like totally
different.” Nevertheless, the boys appear to be in agreement at this point:

M: Okay so it's basically the same thing but you just fadd on the sides/.
I /Add the sides/.
M: Except you add it once more without the minus 3.

The "minus 3" rceferred to has been an imponrtant element in the boys' understanding of
the number of diagonals in a polygon. At this time Micky points out that the sides which
are added to the diagenals to determine the total number of tunnels have not been
diminished by 3. He goes on to suggest

M: See, but once you think of i1, the Z minus 3 seems pretty weird.

This is the first hint that M's mental model is not J's two-component model but rather the
figure as a whole. It seems that if M's model of the problem were in terms of diagonals
plus sides, the two components of J's algebraic expression, (S -3) *S + 2, and +S.
might pose no problem. But now the "weirdness” of the minus 3 is introduced, and M
goes on 1o suggest a hypothetical solution which maps to his more holistic representation.

M: Zumes Z.

This is M's attempt to encode his idea that there are connections from one burrow to all the
other burrows, or ‘points’. The glitch here is that at this point neither boy realizes that 'it’,
namely the point of origin, does not connect to itself. chfcomplctes the representation and
Micky asks about the minus 3.

J: Sides times sides divided by two

M: You're not-, you're not getting back that minus three are you?
J: Ya you are-=

M: When?

J: =You're getting it in a twenty-five ‘cause it's times twenty-five umes twenty-five
divided by two.

M: Ya, will you get that three back?
J: Yes.
M: When?

Genuine inquiry. The guestion concerning the "3" puzzles Micky, and is asked a total
of 14 times throughout the exchange. Interestingly, from a rhetorical and affective
perspective, the guestion is most appropniate and reflects a genuine inquiry penaining 10 an
important loose end. As such it neither irritates Jeff nor feels repetitive, but rather it drives
the remainder of their 20 minute discussion which ultimately results in new knowledge. At
this point the boys carry out the calculation which doesn’t give them the desired result. This
evidence is not lost on Jeft as Micky repeats the question.

M: =When do we back-, when du we add back that three?

J: We don't.

M: Why not? You have to connect every single line with every single ling-burrow.=
J: = No, not in the diagonals. .
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M: Not in diagonals but I'm talking about twunnels. [leafing through his notebook |
J: Yalknow. Why wouldn't you get it back?

Genuine response. Jeff has gone from “yes you get it back,” 10 "no you don't” and
now seems to reflect more carefully on the problem with "Why wouldn't you get it back?”
Now it appears that the interest in the question is coming 10 be shared by both boys.

M: When are you gonna get those back”? When you're multiplying or something’?
You're not-, you're not gonna get them back.

J: (..) That's a good point. |second.-instance of reflecting on this problem|]
J: Tt does work, but we're not exactly sure when you get the three to connect it back.
M: /Well if we're not 100 sure about it, / we can't really say it works.

Metacognitive awareness. Clearly from this previous exchange we can see how the
boys understand the important difference between knowing that it works and knowing why
it works, At the same time they are able to monitor their own problem-solving in terms of
those concepts.

Now the explanation is suppornted with empincal evidence.

). 1 know/ but you don't get the three back because we just tned it out. Twenty-,
twenty-five times twenty-five /divided by two-/ [working it out on the calculator|

A number of attempts are undentaken to find the "3" all of which prove to be unsuccessful
leaving the boys in the following frame of mind:

M: But when are we gonna get that three back? I'm still wondering. If it has to
connect with every other burrow.

J: (...) | have no idea.
M: Well neither do I.=
J: = 'Cause we proved it works / but we don'y know-

Random hypothesis generation. While the discussion to date has been developed
upon some agreed upon principles and has followed each individual boy's
conceptualization, it now veers off into random hypothesis generation:

J: Maybe we've lost one number, then when we divide it we gain it back, or multiply it
we gain it back?
M: Well how can we divide it and get it back”

J: Well we-, we could multiply it and it goes three over what it should be and then you
divide it by two and it evens out.

J: We even it out, by-, we multiply it and it's three oo much to equal diagonals, okay?
Stay with me here.

M: I'mirying to, believe me, I'm trying 10.
Understanding the communicative situation. The “stay with me here” and “believe
me I'm trying 10" clearly signal the boys' shared understanding of the pragmatic context
surrounding their discussion. In this instance they address their communicative roles
explicitly as a means of maintaining the focus. This sensitivily to the communicative
aspects ot constructing a joint-problem-space are revealed on another occasion when M
uses a form of direct address to maintain a focus on the problem.

M:  /But you want to still/ add back that three. You still want that 3 Jeft.
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Four days later: Re-establishing the focus. The same question opens the
discussion four days later, but there is a conceptual shift on the part of Jeff which Micky
appears to realize. Using drawings in his notebook he demonstrates that it's not 3, and as
we see below, Micky replies with "it should be minus one.” At this point it is difficult to
know if this understanding happened in response to Jeff's explanation or had been
developing elsewhere. (For ease of reading, the following portion of the exchange does
not include Jeff's speech tums which repeat what he has already stated and overlap
completely with Micky's tumns.)

M: My only question is where did the three go? Now, that's all I'm wondering about.

/1 understand/ the rest.

J:  /Okay/. | have no idea where the three went. It probab-, but-, the thing is (..) why
do you need the three?=

M: Weil, but you're-

J: ='Cause it's not three. It's not three. From here [points to drawing in book] it's
three but then you got this point [refers to book drawing)

‘M: =1know-

M: /But lh:_at should actually be minus one/= (emphasis added)

M: ='cause it cannot connect with itself, but in the problem it can connect with the
others.

Principled exploration. This is both a new and a key idea for understanding the
problem. Jeff suggests an exploratory hypothesis which incorporates the new
understanding into the previous strategy.

J: I'don't know. Try it by subtracting one.

M: /we'll see/

J: /1 think you/ wouldn't have-, you could subtract by one and multiply it by sides.
M: Maybe it'll give us uh something.

Test and evaluate. They apply this to solving the problem for a pentagon since they
know the answer is 10.

J: Oh okay. So now watch. Okay, it's-, uh let’s do this one. We know it's ten. Four
times uh five [picking out values on calculator as he speaks. He then looks directly
at M and asks] Do you want to do divided by two for do you want/ to-

M: /Well ya have to-. / Okay, show it
now. Twenty, /and thay would be ten.

I [Twenty/ Divided by two [looks directly at M]

M: Equals ten.= '

J: =Equals ten. So you don't need to add on the sides.
M: |shakes his head] Oh cool.

J: We just found out a new rule.

M: Oh here, wait. We have to try it in like three cases.

J: Ya, we'll try it in three cases, but let me just write it down. Um, S minus one-
| writing in his notebook |

They then set about checking their new rule, (S - 1) * § + 2, in a number of situations.
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J: Try it, try it all you want. We've just figured out two ways to tigure out tunnels.

Appreciating mathemalical elegance. What is striking about the excerpt which
follows is that it demonstrates that their appreciation of the new rule goes far beyond just
"having another way to solve the problem.” The boys characterize the new rule as
straightforward and "the simplest way" since it eliminates the addition of the sides, and the
subtraction of the ‘extra 2.". At the same time they acknowledge the explanatory power of
this rule which enables them to understand that it is 2 that they get back not 3. Overall they
both agree that it is better.

M: But that would be the most straightforward, it'll /be the simplesy/

3 fThat'll be the most
straightforward because=

M: =You wouldn't have 10 do an extra, uh, adding on.
J: And an extra subtracung. That's /where you/ get the two back.

M: / ((two extra))/

J. It wasn't three that we were getting back. It was the /iwo./

M: /Two./ So this is actually
better.

J: This is better than before.

The exchange concludes with the boys entering the new rule in their math notebooks. Jeff
writes " *best way" next to this new entry, and exultantly says, "Perfect,” as he flips his
pencil onto the table as a concluding gesture. These gestures in conjunction with the boys'
language convey their satisfaction and delight in their accomplishment and suggest an
aestheuc appreciation of an elegant solution.

Conclusion

The focus in this paper has been on the way in which genuine inquiry within a
collaborative exchange can serve as a mechanism for conceptual change. In examining the
exchange between two grade 5 boys collaborating to solve a challenging problem we can
see how in order to maintain the focus of the discussion, they drew on their shared
knowledge not only of the task, and of specific mathematical concepts but also of the
communicative context appropriate for this reasoning activity. The students' sustained
scarch for meaning, their quest for coherence, and their appreciation of an elegant solution
i terms of parsimony and explanatory power are behaviors often associated with expert
performance (Patel & Groen, 1991; Graves, 1995). We would like to suggest that the
source of this performance was the establishment of a meaningful problem which really
required a solution and which could be approached jointly. It was M's search for coherence
as he sought to account for the 'loose end' of the 3, which drove the inquiry and
established the problem within the coniext of the task itself. While ] knew that his rule
worked, and he knew why it worked and could explain it, he could not provide a
satisfactory answer to M's question. The collaborative construction of the problem space
provided the suructure within which M's repeated quest for coherence was investigated
jointly through the boys' conversational reasoning and which led to new a
conceptualization.

Acknowledgment; This research was supported by a Social Studics and Humanities Rescarch Council
grant from the Government of Canada #410-94-1627 1o 1he second author.



References:

Cobb. P.. Wood, T.. & Yackel, E. (1993). !)muum. lndlh(.nldlltdl mmkmg and (.meom pr.n.uu. InE
Forman, N, Minick. & C. A, Stone (Eds ),

developmient (pp. 91-119). N. Y .: Oxford Umversuy Press.

Cole, M. (1991). Conclusion. In L. B. Resnick, J. M, Levine, & S. D. Teasley (Eds.). Perspectives on
socially shaged cognition (pp. 3J98-417). Washington, D. C.: American Psychological Association.

Forman, E. A., & Cazden, C. (1985). Exploring Vygmhtun puspccuvu. in t.duulmn Thu cognmw, value
of peer interaction. In J. V. Wersch (Ed.),

perspectives (pp. 323-347). Cambridge University Press.

Green, )., & Dixon. C. (1993). Talking knowledge into being: Discursive and social practices in

classrooms. Linguistics and Education, 503 & 43, 231-239.
Graves, B. (in press). The study of literary expentise as a research stralegy. Poclics,

Lemke, J. (1991). 5, Norwood, NJ: Ablex,

Halliday, M. (1975). Leaming how 10 mean. London: Edward Amold.

Hicks. D. (1995). Discourse. leurning and teaching. [n M. Apple (Ed.). Review of rescarch in education
2L 1995-196. Washington, D. C.: American Educational Research Association.

Jnhn Slum.r V. Smuh L. W & P.mufsky (_ (Ed.s)(l‘)‘)d) Iniroduction. [n Socjocultural approaches
Aive (pp. 1-33). N. Y.: Cambridge University Press.

l.lmpcn M (199()) Cnnnulmg mw.nuum W|Ih convununns lnL P Sicffe & T. Wood (Eds.).
gs. Hillsdale, N. J.: Lawrence

Erlbaum.

Patel. V.. & Groen. G, J. (1991). The guuml .md specific nature uf medu.al (.Kpt.l‘lhl. A critical look. In
K. A Ericsson, & J. Smith (Eds.), s (pp. 93-125).
New York, NY: Cambndge Universily Press.

Richards. J. (1991). Mathematical discussions. In E. von Glasersteld (Ed.). Radical consyuctivism in
mathemutivs education. Norwell, MA: Kluwer Academic.

Teasley, S. ., & Roschelle, J. (in press). Construcung a joint problem space: The computer as a tool for
sharing knowledge. In S, Lajoic & S. Derry (Eds.). The compuler is cognitive Wol. Lawrence Erlbaum.

Vygotsky. L. S. (1978). .M. Cole, V.

John-Steiner, S. Scnbner, & E. Souberman (Ed\) Cambridge, MA: Harvard University Press.

Werisch, J. V.. & Rupent, L. 1. (1993). The authonity of cultural tools in a sociocultural approach (o
mcdiated agency. Cognition and Instruction. 1§ (3 & 4). 227-239

Wertsch, ). V., & Toma, C. (1995). Discourse and leamning in the classroom: A sociocultural approach. tn

L. P. Su.lh.&] Gale (Eds.), Consuuctivism i education. Lawrence Ertbaym,

Zack, V. (1995). Algebraic thinking in the upper t.lumnlurv schml Th(, role nl Lollah:nllun in making
meanng of "gencralisanon’. Proceedings of the Ni > >
Matheintics Education. Recife, Brazil, July 22-27, I‘)‘)S pp. 106-113.

3-34

421



NUMBER PROCESSING:
Qualitative differences in thinking and the role of imagery
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This paper considers imagery associated with children’s mental processing of
basic number combinations. Children’s verbal and written descriptions are
used as a means of accessing their imagery and we see how the tendency to
concentrate on different objects leads to qualitative differences in imagery and its
uses. Children described as ‘high achievers’ provide evidence of an implicit
appreciation of the information compressed into mathematical symbolism. In
contrast, ‘low achievers’create images strongly associated with visual stimuli
suggesting that these children, far from encapsulating arithmetical processes,
are mentally imitating them.

INTRODUCTION

“Ifind it easier not 1o do it [simple addition]with my fingers because sometmes | get into a big

muddle with them [and) T find 1t much harder to add up because I am not concentrating on the

sum. I am concentrating on getting my fingers right...which Lakes a while. Itcan ke longer 10

work out the sum than it does 10 work out the sum in my head.” (Emily, age 9)
Although not explicit in Emily’s comment, the meaning associated with her notion of
‘concentrate’ was related to the mental manipulation of a collection of dots. She was
describing the difficulty associated with the simultaneous engagement of external
referents-fingers-and the mental scan of a different series of referents—dots. The latter
was preferred but the former was used because:

"Il we don't fuse our fingers] the wacher is going o think, "why aren’t they using their

fingers... they are just sitting there thinking'... we are meant to be using our lingers he-

cause it is casier... which itis not” (Emily, age 9)
There is no doubt that Emily is only one of many children who prefer to do things
‘mentally’, or as has been described so frequently by children “in my brain”, Many do
so because they know things and engage in a form of automatic processing. Others have
to make a conscious effort and do so, not because they realise that such effort, with
practice, may gradually become automatic, but because of the social environment of the
class; “We are not allowed to use fingers”, “I am too old for counters” and perhaps the
saddest from a boy of 10 who “wanted to do things like the clever children’.

Recognising that others do things mentally does not give such children an insight into
how things are done by others. This is the focus of this paper. It considers the relation-
ship between procedures, concepts and images in simple arithmetic. To establish the
latter it assumes that an image is mediated by a description (Kosslyn, 1980; Pylyshyn,
1973). It builds upon the notion that the language and concrete items associated with
objects of thought possess different connotations. These have implications for the qual-
ity of children’s imagery (Pitta & Gray, submitted) and their processing ability.



The evidence suggests that whilst proceptual thinkers focus on the flexibility of the
symbolism and hold symbaols as “objects of thought”, procedural thinkers may construct
and uulise mental images which support their procedural interpretations of symbolism.
If it is appropriate, they quickly translate the symbol into another object of thought, for
example, finger images, a number track or marbles. It is suggested that mental manipu-
lation with these objects places such strain on the limits of the child’s working memory
that it impinge against the continuing compression required for “constructive abstrac-
ton” (Kamii, 1985) and the development of proceptual thinking.

IMAGERY IN NUMBER PROCESSING

The means through which the co-ordination of actions may become mental opcrations
was of interest to Piaget who believed that new knowledge is constructed by the learner
through the use of “active methods” which required that “every new truth to be learned
be rediscovered or at least reconstructed by the student” (Piaget, 1976, p. 15). Whether
or not all children who display competence in the procedural aspects of early number
activities undergo this process of constructive abstracuon—which Kamii suggests is a
construction of the mind rather than something that exists in objects—or indeed whether
or not they abstract the appropniate thing is a mute point. The abstraction. of a basic
counting unit may form a platform from which children may gradually replace slower
count-based approaches with more efficient fact reinieval processes. However, such pro-
cedural compression may not be so easily achieved by low achievers.

These observations lead us to consider imagery, though, because of the disguised nature
of mental images it is only possible to make conjectures about them. They may appear to
be well wrapped possessions, covered in many fine layers and sometimes even hidden
in discrete packages. We may believe it is possible to shake the package to find out what
is inside, but by doing this we run the risk of breaking it. The pitfalls, particularly in
terms of operational definiuons and interpretation are clearly identified by Pylyshyn
(1973).

In cognitive psychology, it has been traditional to characterise mental representations as
symbulic; a pattern stored in long term memory which denotes or refers to something
outside itself (Vera & Simon, 1994). Such a characterisation is based on the assumption
that the knowledge structures possessed by humans are symbolic representations of the
world. Images exist, are used and may influence thinking.

It is suggested, though controversially so, that symbolic mental representations divide
into analogical and propositional representations—essentially sensory dependent and lan-
guage like representations. The classical analogical representauon is the visual image-
though images can be formed from other modalities—which appears to have all of the
attribues of acual objects or icons. They take up some form of mental space in the same
way that physical objects take up physical space and they can be mentally moved or
riated (see Boden, 1988). Propositions, as mental representations, may represent con-
ceptual objects and relations through, for example, mathematical symbols or spoken
words. Gray & Tall (1994) suggest that the symbols of elementary arithmetic serve the
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ambiguous purpose of representing processes and concepls.

Deahenne & Cohen, (1994) suggest that the relationship between different forms of
representations may be seen through the presentation and solution of arithmetic facts.
Symbolic, verbal and the analogical representations support the transcoding of numbers
into whatever internal code is required for the wask in hand. It is ranscoding approaches
which require the use of working memory in the absence of external representations that
we are particularly interested in this paper. Symbaolism promotes direct verbal routines
and flexible wransformations by proceptual thinkers. Amongst procedural children, where
symibolism is more iconic (static) we see the occurrence of analogical forms of imagery
which we suggest may inhibit the potential for flexible interpretation.

METHOD

Twenty four children were selected within in a “typical” school of the English Midiands
to represent the chronological ages 8+ to 12+. This provided a sample of six children
trom each year, three ‘low achievers’ and three ‘high achievers’. Achievenient was meas-
ured levels obtained in the Standard Assessment Tasks of England and Wales ((SCAA,
1994)) or scores obtained from the Mathematical components of the Richmond Auain-
ment Tests (1974). Children were interviewed individually for half an hour on at least
four separate occasions over a penod of eight months.

Following the presentation of range of auditory and visual items (Pita & Gray, submit-
ted) the children were presented with a series of one and two digit addition and subtrac-
ton combinations, for example, 643, 9-5, 13+5, 15-9. Children’s responses were
obtained using semi-structured interviews recorded through field notes, audio and video
tapes. Children were asked to talk freely about their imagery and what came to mind
during the solution processes for each item. Solution approaches were classified simi-
larly to that of Gray & Tall (1994). Whilst external represcentations were partially ident-
fied through children’s sensory motor acuvity, evidence of images relied extensively on
verbal and written description by the children. Though no precise claims can be made
about the nature of their imagery it is evident that a pattern does emerge.

RESULTS

First and very briefly, because of space limitations, we draw together the general solu-
uon strategies and associate these with the type of representations used. The

I. Strategies and Representations: Coimbinations to Ten

Figure | shows the strategies and associated representations used by the low and high
achievers to obtain solutions to the number combinations to ten. The representations are
subdivided to illustrate percentages which indicate:

* the use of external referents such as fungers.

* where children’s verbal description may be associated with conceptual objects
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represented by numerical symbols. This notion is loosely tied in with that of
propositional images.

« mental imagery associated by anaology with external referents-analogical images.

* the simultaneous engagement of external referents with an anological representation.

C I r I I r

KEY REPRESENTATIONS SOLUTION APPROACHES
] Exdemad Rularents 7
Propoatiional image
Analogical image
[ ram
sngapement
Additios Combiaations to 18
1. High Achievers
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100 0
Subtraction Cumbinations o 18
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Figurel: Swrategy combinations and representations used 10 solve

addition and subtraction combinations to ten. (Percentages)

Several features emerge from
the analysis of Figure 1.

Amongst the high achievers
there is the almost complete
absence of procedural meth-
ods associated with counting
and there is no evidence of the
use of external representa-
tions—verbal enunciation was
associated with images of nu-
merical symbols, either the
expressions themselves or the
final solutions.

Amongst low achievers we
note;

* the imagery of 11+ and
12+ children when solving ad-
dition combinations is domi-
nated by symbolism sup-
ported by analogical represen-
tations.

* the absence of symbolic
representation amongst these
two year groups when dealing
with subtraction was associ-

ated with the fairly extensive use of exiernal referents by the 11+ group.
* theincreasing use of external referents amongst the younger children and, in some
instances, we note that these are simultaneously engaged with analogical repre-

sentations.

At this point, the use of only immediate recall and counting methods amongst the 9+
and 10+ “low achievers” indicates qualities which would enable them to be identi-
fied as procedural. The 11+ and 12+, since they collectively display the integrated
mixture of known facts, the use of known facts and some evidence of counting pro-
cedures may be seen to display proceptual qualities when dealing with addition and
subtraction combinations to ten.



Strategies and Representations: Combinations to Twenty

Figure 2: Strategy combinations and representations used 10 solve
addition and subtraction combinations to wn. (Percentages)

The classifications identified
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Amongst Low achievers
we see that reference to

symbolic images is far less evident. The fairly extensive use of derived facts
amongst the 11+ and 12+ children is no surprise. Their strategies generally serve
to support the evidence given from different samples cited in Gray and Tall
(1994).

In general, the evidence shows that the high achievers did not use external rep-
resentations to solve any of the problems. They either recalled solutions or pro-
vide extensive evidence of semantic elaboration, both approaches being associ-
ated with “images of arithmetical symbols”. Amongst the low-achievers, only
the 11+ and 12+ indicate any reference to imagery without the simultaneous
engagement of external referents.

Amongst low achievers, we detect a decline in symbolic related imagery and a
“regression” from internal to external representations that is both age related
and associated with problem difficulty. On the whole their imagery is associ-
ated with analogical representations which support counting procedures. We
suggest this soon forces them to reach the limits of working memory and makes
life so extremely difficult for them that they recognise the “safety” in using
external referent. Gear er al (1991) have suggested that a component of devel-
opmental difficulties in mathematics is a working memory deficit. In our next
section we provide an alternative reason which suggests that on the contrary
these low achievers may show an extraordinary use of working memory. Their
problem is one associated with its use as well as its capacity.



DISCUSSION

The verbal reports of the proceptual children provides evidence of the important role
that symbohism plays:

= In those instances where we are able to identify known fact responses, these sym-
bols have skeletal qualities, they carry the ideas and offer the potential for process/
concept ambiguity. They require no detail to make them operational. Placed on the
nunds scratch pad they are interpretations of input data or precursors to verbal
output but they are associated with retrieval of simple facts without regard to quan-
uties involved. However, our evidence to date does not allow us to contribute to the
controversy that may surround notions of verbal coding (see Dehaene & Cohen,
1994)

» The different degrees of complexity associated with the use of derived facts, par-
ticularly with number combinations to 20, provided a variety of examples where
expressions were decomposed into simpler known facts, for example, 9+8=8+8+1,
15-9=15-10+1. Perhaps one of the points of interest was the tendency of the 11+
children to indicate that they “did not see anything™ although notions of “thought
it” were strongly in evidence. This is an issue that we feel needs further clarifica-
tion. We suggest that nothing was written on the scratch pad and verbal coding
could have taken place.

Finding solutions to the expressions through denved facts requires two features not necessar-
ily apparent when using known facts. The first is the possession of a good understanding of
the quantities involved in the original problem, for example noticing that 9 is close to 10, and
the second involves the use of working memory. However, we suggest that use of the latter is
minimised because the children almost intuitively recognise cognitive referents associated
with the inputs—disregarding perceptual properties they focus on the relationships associated
with the objects of thought—the procept.

It was this ability to recognisé the proceptual charactenistics of the expressions and their
associated symbolism that highlighted the difference between the low achievers and the
high achievers. The former had proceptual options availuble to them but we are not in a
positon to indicate whether or not their images at this point were functionally significant.
The evidence from the low achievers appears to be quite different; no matter what numbers
they were dealing with, each individual, on failing to recall a fact, generally they evoked a
procedure which they saw common to all combinations. Usually this involved counting,
particularly it external referents were used, but this was not always the case when imagery
was reported. Usually images given by the low achievers appeared to be functionally signifi-
cant—they appeared to have a direct role in the processing procedure.

Pitta & Gray, indicate how low achievers interpretations of nouns, icons and symbols were
strongly associated with the perceptive aspects of the stimulus. There appeared to be a need
to concretise objects. It appears that such distinctive behaviour also guides these childrén’s
approach to basic number processing. In the mental world we may see an almost automatic
representaton of the stimuli as images of countable objects. These may be seen as analogues
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to, for example, fingers, tally’s, number tracks or marbles, each providing an image of
the quantity associated with particulir numbers. On hearing the expression the children
appear to disregard the semantic aspects and move immediately 1o analogical magmtude
representations and use these as anchors for mental manipulation—numbers quickly be-
come concrete objects.

The dominant representations identified amongst the low achievers were associated
with a range of images from pictorial representations of a hand with fingers, through
iconic representations of fingers and tally lines. The oldest children indicated how
they labelled these tally lines and saw images of number tracks or number lines. The
evidence was that children who developed such images used discrete objects with a
double counting procedure. Two points emerge. First, the horrendous strain on work-
ing memory. Not only is the child maintaining sight of the analogical representation
but also focusing on discrete numbers in that representation. This is associated with
counting-up one set and counting back another. Indeed, one child described how
two “calculators’, by description circular number tracks, operated in different ways,
one keeping track of how many had been counted by decrementing in ones, the
other keeping track of the answer which was incremented in ones. Every calcula-
tion, with slight modification, was the same-it always involved double counting.
Indeed this was the case with all of the children who used such images-all involved
double counting of linearly arranged objects, some labelled some not labelled. Such
children seldom gave evidence of the use of derived facts. Indeed it is hypothesised
that seeing images of discrete objects supports the counting process but does not
lead o the realisation of the power and or compression associated with mathemati-
cal symbols. Instead of deriving facts and using what they know about numbers, a
sort of vertical processing, the children display some element of creativity in chang-
ing their images of countable objects. They use different referents to carry out the
same procedure, a form of horizontal processing (Pitta & Gray, submitted).

Such an interrelationship was developed by the few children who used dynamic images
composed of marbles or dots. Images of pattern formation dominated their mental ma-
nipulation. Marbles can move position, fingers cannot. Fingers require sequential process-
ing, marbles do not,

“{with] the dots...AUs. .Us casier because you don’thave 1o keep on thinking, “*No iLs that

one [ need to move, no s that one or that one”, because it doesn’t really matter which one

you move” {Emily, age 9)
But this was not the only advantage. because each item could move position independ-
ently of the others. A pattern of 34 may eusily become § 8¢ combining readily with 8 to
make 3989, or “two fours”. In such a way derived facts may be developed and indeed
this did lead to their use amongst two of the low achievers.

Amongst some of the younger low achievers the evidence of sitnultaneous engagement
of menid inagery and external representation caused confusion until one representation
dominated over the other. If we do two or more things mentally, for example, count-up,
count-buck und maintain a menal picture we gain some insight into the strains being
placed on working memory.

3-41 ‘4g -



CONCLUSION

There are limits to the size of working memory. Whether or not these limits are different
for those children we identify as high achievers compared to those we see as low achiev-
ers is not resolved. Their implicit appreciation of the information compressed into nu-
merical symbolism enables them to focus on the detail appropriate at the moment. How-
ever, this feature is not unique to their approach in mathematics. In the broader context
symbols, and the ability to focus on the many relationships asssociated with them, pro-
vides them with an economical means of utilising the power and space they have avail-
able. We would not like to give the impression that high achievers did not use and
manipulate visual images. When dealing with more difficult two digit combinations all
high achievers considered visual symbolic images in vertical form, even though they
were given verbally, and made transformations which enabled them to process them
more easily. Low achievers, giving more attention to different elements, found it even
more difficult to mentally hold the inital inputs. They appear to place much greater
reliance on a visual stimulus and create and manipulate images associated with this.
They have a much greater tendency to talk about things that may be captured by the
senses and their imagery tends to be strongly associated with real concrete objects.

Notions of procedural encapsulation and the steady compression of lengthy counting
procedures into numenical concepts imply that children recognise links between inputs
and outputs. It would seem that far from encapsulating arithmetical processes some
.children reconstruct these processes mentally. Attempting to match their thoughts to
given representations may only help them see things enactively, as with marbles, or
iconically, as with the number line. It is those who realise that representations may be
used to simplify ideas and are not intended to stand alone who will share in the construc-
tion of meaning.
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IDENTIFICATION OF VAN HIELE LEVELS OF REASONING IN
THREE-DIMENSIONAL GEOMETRYL

Gregoria Guillén. Dpto. de Didactica de la Matematica. Universitat
de Valéncia. Valencia (Spain)

ABSTRACT: An analytical study of the behaviour of third year Teacher
Training College students when carrying out tasks, designed on the basis of the Van
Hiele model, to solve problems on solids is the foundation of the characterization
we here propound for the levels [, 2 and 3 in the field of the three-dimensional
geometry. On detailing our proposals we have also taken into account the
characteristics already established as a result of research in this field and those of
Van Hiele levels generally.

RESUMEN: Un analisis del comportamiento de los estudiantes de 3° de
Magisterio cuando resuelven actividades sobre solidos, disenacdas en base al modelo
de Van Hiele, es la base para las caracterizaciones que proponemos para los niveles
[, 2y 3 de Van Hiele en el campo de la geometria tridimensional. Para la
elaboracion de esta propuesta también hemos tenido en cuenta las caracteristicas ya
especificadas en la investigacion realizada paru esta drea y las caracterfsticas
generales de los niveles.

INTRODUCTION

The Van Hiele model of reasoning in plane geometry and other areas of
mathematics has been the subject of considerable and imponant research the world
over. It has been demonstrated that the charactenstics of different areas (arithmetic,
algebra, geometry, elc.), reveal marked differences in the kind of reasoning
students employ.

As regards 3-dimensional Geometry there has been little research, but since
the Van Hiele model is bascd on the experience of its authors as geometry teachers,
it may well be especially suitable for this area of mathematics. There have been
several isolated approaches to 3-dimensional Geometry based on the Van Hiele
model. Some attempt to fonnulate specific characteristics for Van Hiele levels as
applied to solid geometry have been made in Hoffer (1981), Lunkenbein (1983a),
(1983b), (1984), Gutiérrez and others (1991), Pegg, Davey (1991), Davey,
Holliday (1992), Gutiérrez (1992). But as Gutiérrez (1992) indicates, the

I'The work seported in this paper has been supported by DGICY' of the Spanish Ministerio de
Educacién y Ciencia (PBY3-0706).



characteristics prescribed for the different levels of reasoning are insufficient.
More research is necded. On the one hand, the levels of reasoning applied in
practice in the case of space geometry must be specified; on the other hand, the
practical exercises needed to enable students to move from one level to the nexi
musl be designed, taking into account the phases propounded in the model.

In this paper we set oul the characteristics we propose for Van Hicle levels |, 2
and 3 in tridimensional geomelry2. Our proposal is based on research in which we
have been invoived, using third year Teacher Training College students, into the
design of practical tasks with solids, designed on the basis of the Van Hiele model’.

THE VAN HIELE LEVELS FOR SOLID GEOMETRY

The aims of our research were (o obtain operative and detailed
characterizations of each Van Hiele level in termns of the students’ behaviour in their
work with solid geometry, and to enhance their level of reasoning.

In order to define the characteristics of the different levels of reasoning we
used several sources. We considered descriptors specified in research relevant to
plane Geometry (for example, Burger and others (1986) or Fuys and others (1988)
provide accurare descriptors) and the characteristics of these levels formulated in
three-dimensional geometry research. We also analyzed the answers of students to
specific problem tasks given them to work on at home on the day before those tasks
were discussed in class. Their answers were collected before the discussion began.
We then noted the questions raised by the students in class, and their answers to
problem tasks they were subsequently given to solve.

We summarize below the characteristics we identified for level 1 and level 3.
and focus in detail on the descriptors found for level 2. Where the ability in task
may correspond either to level 2 or level 3 (depending on the kind of property,
refationship, or families of solids under consideration) we will indicate it.

L.evel 1 (Recognition)

At this level students deal only with visual information. They can perfarm
tasks dealing with recognizing, naming and building some three-dimensional
objects of different sizes which may be presented from different distances. In
addition, nets of seme simple solids can be constructed, dismantling models of
solids. Students can change the form of some solids by making cuts in concrete
models, and identifying the solids obtained. They can also describe a solid by

2 Some authors number the Van Hiele Levels from level 0; in this puper they are numbered as
tellows: Level T (Recognition), level 2 (Analysis), level 3 (Informal deducuon).

Y The results presented in this paper are part of the anhor's project of doctoral thesis.
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reference to its physical aspect or from prototype examples taken from their
physical environment. Moreover, they can compare or classity the solids on the
basis of global physical simifarities or ditfferences between them and establish
dichotomic classifications and classify only those figures with which are most
familiar. To describe a family of solids they merely choose a familiar example of
the family.

At this level, students may. in their answers, using terminology or refer to
geometric properties incorrectly, imprecisely or inadequately, and it is not on those
terms that the answers will be based. Answers of this sort given to questions on
solid geometry, may reflect the students’ previous experience of, or contact with
the study of plane geometry.

Level 2 (Analysis)

At this level students begin to recognize that objects have mathematical
properties. even though their thinking is still based on physical perception. They
can by experiment establish relations between the components of a figure and
between several or different figures. Tasks dealing with different abilities can be
performed, such as the following:

xample or non-ex; of :

Students may base the answers on their own definitions (being lists of propemcs)
and not taking into account definitions given by the text book (or the teacher). The
model, presented in different positions, can be identified adequately whether it is
presented as material model of the solid or its structure. Adequate identification is
also possible when the models are presented as physical objects, as pieces of a game,
inmersed in a structure, or in a puzzle.

Certain relations between given models can be understood: some can be
recognized as aggregates of others. Models can be separated and the elements of the
resulting models can be identified. Relations can be established between the
clements of one family and those of others from which it has been derived. For
example, it can be observed that if 4 space diagonals are made in a cube, it is
divided into 6 equal pyramids, whose bases are the faces of the cube, whose height
is half the edges of the cube, and whose lateral edges are half the space diagonal of
the cube.

. These are
duermmcd by observation, measurement, drawing and construction of models.
Students at this level can also enumerate properties for a family of solids or for a
general case (for example, a prism n-gonal), starting experimentally and
generalising the properuies from some examples. They can already grasp that a
mere example does not replace a family, and that to describe families of solids one
must seek several different examples and draw general conclusions from them.




However at level 2, students are not yet able to determine, as critical attributes
of a family, properties that contain terms such as "as much”, "as a minimum", "at
least” "as many... as”, "the same ... as”, "two different types of faces”. They cannot
use these terms to reformulate properties so that these become properties of a
family that includes an other. At this level the list of properties indicated for
families that contain other more specific families tend to leave out specific
examples. For example, if students are asked to state a property of right prisms
with a regular base in terms of different measurements for the edges, they leave out
examples which also belong to the family of prisms with reguiar faces. They will

say that "The right prisms with a regular base have edges of two different lengths".

3) Examples of a given family of solids can be constructed up with various

commercial materials. Different nets of a solid can also be built. Students can make
structured analysis of the models by levels, or separate a model in layers, or
observe the faces bordering a given face, or those which meet in a vertex. All these
observations can be applied to find nets of the solids.

4) Students can identify mathematical information provided by a solid model
or a drawing of it, explain their answer in terms of properties, or apply this
information to one of the nets. '

5) Students can tackle problems on classification as the following: Establishing

classifications-partitions, based on geometric properiies when the criteria have a
strongly visual component; naming the established families; identifying models of
solids as examples or non-examples of subfamilies; listing the properties of
established families; specifying all the types of example of a given family which
satisfies certain conditions. For example, given a set of solid models, students can
select examples of parallelepiped that they are non-examples of orthohedra.

Faced with the problem of classification at level 2, students can also choose
appropriate examples and non-examples to show whether that certain statements
interrelating families of solids are, or are not, correct. They can decide whether a
given relationship between families of solids is correct unless the relationship is
stated in terms of "There cannot be ... that are not... *. In this case, to understand
these terms and to determine what has to be proved requires a level 3 of reasoning.
Students can make statements using the expresions "always"”, "sometimes” or
"never” in order to show if between two given families of solids exists a relation of
inclusion, if they have common elements, or if they are exclusive. A tree or net
diagram can be constructed showing the relations between certain families.

For families with a marked visual component, or with which students are very
familiar, the relation of inclusion or exclusion can be established and substantiated
by proving that the propenties which one family (or its definition) exhibits are also
exhibited by the other, or that no example of one family exhibits the properties of
the other. For example, it can be proved that cubes are always prisms by showing
that they satisfy the definition of a prism. It can also be proved that the oblique and
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right prisms are disjoint families by checking that any example of a right prism is
not an oblique prism. But in level 2 the students cannot reason in a mathematically
complete way, to prove, for example, that prisms with regular faces are convex or
that pyramids with regular faces never are archimedean polyhedra.

It may be observed that at this level, the students do not admit the inclusion of
classes between given families of solids if it has not been previously considered as
inclusion in terms.of examples. Thus, even though it can be observed that
properties of parallelepipeds (for example that opposite faces are equal and
parallel) are also satisfied by orthohedra, it cannot be deduced from this that an
orthohedron is a parallelepiped. This relation could be verbalized if previously
examples of orthohedra have been included as examples of parallelepiped.

famili

If the properties contain terms such as "as much”, "as a minimum”, "as
maximum" or "at least”, students interpret them as “"exactly”. This interpretation is
not mathematically correct. The term “different” that appears in "as many different
measurements as...", “"the same different measurements that..." is interpreted as
"which has to have different elements”. "Faces of the same type" tends to be
identified with “That are equal”

Properties which present a further difficulty for students reasoning at level 2,
and also unable to give mathematically correct answers, are those which have not
been ascertained by experiment and whose correct mathematical verification
requires deductions, or taking into account several elements of different types. For
example, students cannot prove that the family of prisms with regular faces verifies
the following property; "The number of different measurements for the space
diagonals is equal to the number of face diagonals + 1. We can also include in this
group, the properties that contain the term “exactly” and which oblige students to
select families or very specific elements which are possible solutions, taking as a
starting point numerical data (for the edges or the different measures of the face
angles). These properties lead to a problem of proof, because all the possible
solutions that satisfy the property must be listed and it must be proved that there
can be no other solutions.

7) To evaluate sufficiently and to gxpl,gm the gn;wgrs corrgg;ly, giving

definition, are not related by inclusion. For example, when the family of the
deltahedra is introduced with a definition, students can give an example and a non-
example showing that pyramids with regular faces are sometimes deltahedra.

8) When the inclusion between families has a marked visual component, or s
an inclusion l't:ldll()n\hlp that is usually Lon\lducd by sludcms in terms nl
examples, i \
of a family, considered as properties of the other idmlly Al the end of the lt,ddnn;:
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course unit, students who reasoned in level 2 can use the relations of inclusion that
exist between the cube, orthohedron, rhombohedron, parallelepiped and prism.
They can also apply the relations of inclusion between the family of prisms and the
various families, already identified in that tamily, whose names contain the word
"prism”. For example, students can understand that the rhombohedra satisty the
properties of parallelepipeds; or that prisms with regular faces satisfy the
properties of prisms. :

However to determine adequately all the familics under consideration (or all
the families comprised in such families) and to describe correctly the interrelation
of families in terms of properties, level 3 of reasoning is required. For example, ai
level 2, students cannot demonsirate adequately that rhombohedra sansfy the
properties of uadrilateral prisms, of convex prisms, and of parallelepipeds. Nor
can they explain correctly that the properties of the first two families belong also 1o
the properties of the last family.

9) To produce formulie which give the number of faces, vertices, edges, or a
given sort of angles (face angles, dihedral angles and vertex angles), for a given
tamily of solids (prisms, dnllpnbms pyramids and bipyramids), and to apply those
formulae for a particular value of n. Funhermore students can justify a formula
either by generalizing for n the reaulls obtained from specific examples, or by
counting the elements in a structured way (for example, separating a polyhedron by
levels in order to count its vertices) and making a generalization for each level. For
example, the antiprism is seen as a closed band of 2n triangles plus two polygons, so
the number of faces is, F= 1 + 2n + 1= 2n + 2 and the number of edges is E= n (of
a base) + 2n (those in the band of triangles) + n (of the other base)= 4n.

However, 1o determine formula like that giving the number of face diagonals
or space diagonals for a given family, and to justity the results, requires level 3 of
reasoning.

10) For very specific famtlies, students can check, by counting, measuring, or
applying already known results, formulae that give the number of certain elements
or their measurement. For example, they can verify that, in a hexagonal righi
prism with a regular base, the sum of the angles of the vertices is 12(180 + 120).

However at this level students cannot prove in a mathematically correct way
that this result is valid for any hexagonal prism. In level 2 this result can be
justified only for right prisins with a regular bases.

Level 3 (Informal deduction)

At this level students begin to develop a capacity for rigorous reasoning and
are able to handle the simplest clements of the formal system (definitions and
implications in a single step). Logical classifications of the solids (inclusives-
exclusives) can be made, based on properties or relationships already known,
formulated with mathematical accuracy.  Students can work through and solve
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adequately the problems of ciassification that arise, with the propenties, definitions,
or relationships between tamilies given at that moment. They can grasp the need
for definitions and why families of solids must be defined in a formal way.
Furthermore, they can understand the requirements of a correct definition and
succeed in formahizing 1. Various propositions can be proved in a informal way.
Deductive methods are presented together with experiments, which will therefore
allow students to deduce properties taking, as a starting point, other properties
which had previously been obtained experimentaily.

Let us now specify some of the abilities at this level of reasoning: Students can
conceive the examples as representative of classes, and are able to choose them in
such a way that the answer is mathematically correct. They can understand that the
properties or definitions given for a family, or the diagrams given to represent the
relationships between families, reflect the type of classification (inclusive-exclusive)
that is established. They can understand the logic quantifiers. They can list
properties in which one must take into account several families (because cither
common properties or properties of a family that are not satisfied by others are
considered) and apply relationships of inclusion between families to simplify a
given task.

At this level, the meaning of deduction is not yet realized, nor is the structure
+i a proof understood. Students can understand a proof explained by the teacher,
but they are not able to produce it by themselves. They cannot distinguish an
implication (p=>q) from its reciprocal (q=>p). They are unable as yet to understand
the function of axioms or the logical connection between statements, or the
axiomatic structure of mathematics.

DIRECTIONS FOR FUTURE RESEARCH

As regards the characterization of the levels for space geometry, once the
characteristics of Van Hiele levels 1, 2 and 3 (which are the levels of reasoning
applicable to the students who have participated in our research) have been
specified, it is necessary to identify the descriptors for level 4. We shall be carrying
out research with students from the Faculty of Mathematics, where they are
expected to be able to achieve a mastery of level 4.

On the other hand, once the descriptors of Van Hiele levels have been
identified in the field ot the 3-dimensional Geometry, the research into the Van
Hiele model can be continued by working on the assessment of the development of
the level of reasoning of students in this field. We are investigating it with third
year teacher training school, but presenting the results obtained is beyond the scope
of this paper.
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WORKING WITH ‘THE DISCIPLINE OF NOTICING’: AN
AUTHENTICATING EXPERIENCE
Tansy Hardy and Dave Wilson, Manchester Metropolitan
University, England

In August 1994 .at PME XV in Lishon John Muson gave a plenary addresy in
which he presented his development of a research methodology appropriate
for practitioner research, This methodology he has variousty described as
‘Noticing " and *Researching from the Inside’ [Mason 1993, Mason 19944,
Mason 1994b .

This is a report of our nuse', as practitioners in mathematics education, of such
an enquiry research paradigm — with our struggles of how and where 1o start,
with wmethodology, with discipline and with working ourselves and with
teachers on rescarching into our clussrooms. '

We have written this report in three major sections each of which 'reﬂccls
concerns that we encountered during our research. In ou(r-r concluding remarks
we attempt o give a personal overview of the effects of l|"li$ cXperience on us
as researchers and practitioners.

What is data for a practitioner researcher ?

This question emerged for us very early in our enquiry. A, 100 obvious,
answer might be. our experience. 1t seemed 10 us that there are problems with
this. '

Much writing by our students and much talk by teachers is hard to enter. It is
characterised by highly generalised anecdotal narratives and sweeping value
judgements. We find it difficult 1o get students to reflect upon their
experience. We wish to make the assertion here that within their narratives
there was nothing to be examined, nothing to be read. They cannot re-read
thesr accounts; but then in order to re-read there needs to be something to
read. They have created no-thing.

An immediate issue for us then was the question “What is going to be our
data)”

In other tields it is not such an important question because of their traditions.
In Cultural Studies, Media Studies and Literature the data which is examined is
clear, It is posters, filins, advens. poems. They are then read using the tools
developed by writers such as Barthes, Lacan, Foucault [see, for example
Easthope 1988].

' This paper is based on our work 1ogether with colleague Una Hanley See Hardy, Hanley, Wilson
1994
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It seemed to us that Foucault and Barthes have changed our notion of what can
be read. whit can be opened up to interpretation. Foucault’s examinations. in
the Archacology of Knowledge, have produced the data sets called “discourses’
which are the ways in which the medical profession for example have by
taiking, by theonsing, produced “the insane’. “the sick™ and so on. Within
education, writers. such as the psychologist Valerie Walkerdine, have used his
methods, amongst others. to examine critically the discourse of developmental
psychology and its production of “child™ as a consequence. Posters. and films
are artefacts and, as such, are already out there, exterior (o ourselves,
available for examination. Valerie Walkerdine examined the writings of. for
example, Hughes and Tizard and re-read them, offering re-readings of their
data which consisted of transcripts of dialogues between children, parents and
teachers.

The notion with practuitioner research, ol teachers and student teachers
reflecting on their own practice. poses problems in this respect. Within this
framework what is at that can be held up. exteriorised, for examination, for
reading and re-reading by practitioners?

We decided to work with a methodology which has been described and
developed by John Mason of the OU. which he terms *Noticing’. This involves
a disciphined way of working with other teachers in the telling of fragments
from their expenence. Particular exercises are offered to enable teachers o
work with this. 'The intention is 1o be able to turn unexaminable
e¢xperience. in the sense we have descnibed. into enterable moments,
recognisable by colleagues as resonating with their expeniences. Ht is about
articulating and symbolising experience. and by working with that articulation.
Gattegno has written;
“The main ditference between the existing. recognised sciences and all
the accumuidated expericnce of mitlennia is that the first have been
codified sociaily and given a status by their journals, their academies,
their annual or regular congresses. white the other is hanging in an
untouched universe which the future may want to reach and explore.”
There is a philosophical turn here. a certain distancing of ourselves from what
we habitually do as practitiones and say as we describe our practice; the
creation and insertion of a gap between our experience and our reflection
based on what we say. '
A coach told a basketball player who was practising shooting to “jump up high,
hang there, make your shot and then come down™. Hanging there can be scen
as analogous to inserting a gap, to the creation of distance. Caught up in the
momentum of our expenence it is impossible 1o notice and to choose, in the
same way as the shooter, caught up in the momentum of jumping up and down,
does not have the space to aim and to shoot.
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Certainly it is possible. at this stage. 10 question the validity of the data we
generate and the “truth™ of our readings and rereadings. We return Lo this
guestion later.

E.xercises with anecdotes

We need to consider the issue of turning theory into practice: 1o find ways that
assist practitioners in the collection of anecdotes which capture moments from
within their experience and iavite them to work further on these in such a way
as 10 create usable data. This idenufies two roles. o teller of an anecdote and a
listener 1o anecdotes.

The telier and the listener are both in the process of reading and validating the
story. FThey need 1o recognise that both are talking about the same thing. Hence
the need o work on the focussing of the anecdote in such a way that this
recognition can take pluce. Experience tells us that this recognition is not casily
achieved, as anecdotes tend o be emotionally chuarged. lengthy and difficult to
enter.

For an anecdote to be turned into data it needs. to be enterable by both the
teter and the fistener. The teller needs to be able 1o review the uncedote. the
listener secks resonance with her own expenience. The account must be
focussed. concentrating on few points rather than many in the first instance.
Ounce way of working on this is 1o limit the time available so that the teller
becomes involved in some form of personal editing process or, alternatively.
both can focus on an aspect of the story that has been identified as potentially
Cruitful.

Using the vocabulary of *Noticing™ these potentially fruttful moments might be
described as safient or a moment of energy. The telier needs 1o 1el the
anecdote as brieflv and as vividly as possible. Stripping away the impenctrable
overlays is o difficult process. The listener needs 1o assist the teller in
identifying where the emotional energy lies. Tellers ol anecdotes need to
recogmise when they were offering an acconnt for a situation rather than
giving an account of it and resist the temptation 10 justify and explain away
responses 1o situations rather than focussing on the response itself.

The following is an extract of an account by a primary school teacher. She has
produced a brief and vivid account of a particular experience with children
and then gone on o offer a commentary on parts of the interaction, Finally she
points up the significance of the incident for her.

An extract from A’s journal

The worksheet showed eleven “parcels”™ which had o hita “wray™.
One pair were working on this.
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Pupil 1: | have only ten parcels. there should be celeven.
I must have missed one.

Teacher: Why don’t you ... |A pausc — | was going 1o say ...
go through them and check cach one” instead - |
you need eleven to do the investigation.

| At this point | walked away but continued to observe.|
Pupil 2:  Have you got the same as me”?
Pupil i:  No, we had better match them.

| They then started to place the “parcels™ on the sheet of A4, How
| wanted to intervene!|

| made the decision (almost too fate!!) to leave them with the
problem. Even now when 1 re-read the extract | can recall the
fecling of being awake to the moment of decision and being able
to choose an alternative to what may have been an automatic
response.

Symbiosis

We have flagged up our concern with issues 1o do with the nature and role of
data. We want now to consider the relation of data and data collection to the
enquiry process as a whole. We want to show up threads inherent in our
discussion of data that identify two particular elements within the enquiry: the
element that is to do with the generating and identifying of a focus of enquiry,
of strands running through experience: and also the element to do with the
interpreting and validating of those strands.

For us there is a sense that these elements of the enquiry are caught up with
cach other, that in the identification of relevant data we cannot help but reflect
simultaneously on that data and consider its relation to other data.This data is
compared (0 existing strands in our experience, and we notice jarring and
resonance with previous interpretations. New interpretations start to form.

In this section we want to explore this symbiotic relationship. The 3 elements;
Data, Identification of Focus and Validation form the nodal points of the
diagram we build up below.

We start to create an image of this symbiosis. not at any asserted beginning,
but by considering the exercise of capturing moments of energy from one’s
experience, in the form of anecdotes. These may be identified by noticing
moments of lension, resonance. jarring; moments that present themscelves as
salient in some way: these could be events in which one is aware of making a



decision in that moment.
"Certain aspects of an event or situation stund out and are attended to
while other details are not even noticed. The aspects of an event or
situation which make it stand out are principally aspects resonant or
dissonant with past experience or present’ (John Mason)
We assert that these cntical incidents are the most important o consider,
although they may often be the moments that we habitually step round. avoid
or choose not 10 see.

In foliowing this exercise through, such anecdotes can be worked on, by telling
and retelling. by reading and rereading. in order to make them enterable. This
involves recapturing the incident and reworking the anecdotes. in writing or
group telling. so that salient aspects of the incident are articutated and
described. The intention is that the incident becomes re-cogmisable 10 others. so
that there is resonance for others with their own experiences. This requires
tcasing out moments of emotion. stripping away accounts for the actions and
reactions described and working towards an enterable account of the incident.

One possible consequence of this exercise is the validation of the importince
and significance of that data for those working on the ancecdote. If there is
resonance with and recognition of the incident in others™ responses, this in
iselt constitutes a form of validation. The resonance and recognition of the
incident with the teller’s own previous experience serves as another act of
validation.

And importantly. this may form part of the constitution of another element
of the symbiosis. the identification of focus. The re-cognition of a salient
moment may mark a move towards the identification of a focus which
provides a uscful entry into a view of practice. As importantly, the moment
needs o be reviewed in as much detail as possible by both speaker and histener
in order o identify patterns of preoccupation and interest.

‘Through the telling and reworking of these anecdotes it is possible (o see
strands within one’s own experience. routes through one’s unexamined
practice, that had been previously unilluminated, silhouctted amongst
previously unrelated threads.

Working on ancedotes by group telling or reading, producing and sharing
enterable accounts of incidents. simultaneously constitutes another element of
the enquiry — the awareness of a range of interpretations and views — and
ofters stronger validation of interpretations and further cohesion of a strand of
concern or awareness. In this process more data becomes available for
consideration. A form of co-generation.

"amd the one doesn’t stir without the other™ |Irigaray |
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So the three elements of data collection. tdentification of focus, and vahidation
coalesce further within this picture cach taking a multipurpose role.

To return o the concern of this section, we have shown that the identification
of a tocus is necessarily in a symbiotic relationship with the creation and role
played by the data, and 1ts validation. This is not undisciplined.

Concluding Remarks

Last year we not only attempted 1o use “The Discipline of Noticing as a
framework on a Masters Unit but 1o work with it ourselves. In particular we
worked upon the creation o briet-but-vivid accounts.

This was, in part, an attempt 1o test out. by working on ourselves as well us
with others. the conjectures that their creation is bath possible and worthwhile.
Certainly it reguired cltort and practice and in that sense was nol
unproblematic. What we observed was that early talk and writing by both
students and ourselves was charactensed by containing highly generalised
ancedotal narrauves, both about practice and about pupils. We have suggested
that within these narratives there was nothing to be examined, in the sense that
nothing salient. no moment ol energy was identiliable. This energy. we have
tound. signilies something worth examining further. The exercise seemed less
about giving “a proxy a matching expenence”™ or communicating a “shared
meaning”, but more one of creating data, getting a sense of what there is o be
studied and retlected upon.
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The issue of validity was to do with the identification of phenomena which
were recognised as part of the participant’s practice worth retlecting upon.
The telling. and re-telling up until recognition or resonance provided data for
reading and re-reading.

As we said carlier. in thé cultural studies field there are artefacts exterior o
ourselves available for reading. Valerie Walkerdine examined the writings of
Hughes and Tizard and offered re-readings of their transcripts. A practitioner
researcher needs o construct the data from their own experience which is
exteriorised and held up for examination. The validity of data we generated
about our teaching and the “truth’ of our readings may be questioned.

There has been a debate going on within psychoanalysis® about the validity of
the case studies produced by influential pracutioners. including Freud. Freud
concealed the provenance of his story of an infant saying “tort — da” (here -
there) while playing with a cotton recl. Stekel. when taken to task by Freud for
reveating the names of his clients al a conference is supposed to have rephed
that he had not only made up the names, but also the stories. Kohut's case
studies are thought to have been based upon his own self-analysis.

How much does this matter? We want 10 suggest, that trom the viewpoint of a
reflective practiioner. the issue of validity 1s much more one of whether the
retold anecdotes are recognisable by other practitioners and are so discussable
than of whether they are objectively true or not. The anecdotes come with
their own truth. in a way similar to that which Flaco Jimenez, as Ry Cooder
sind'. “brings his own authenticity on stage with him’.

The awareness that we were not dealing with a cyclical procedure was
reinforced by our experience of working with teachers on this Masters Unit.
Within their enquiries the teachers were involved in creating data, generating
and identifying a focus of enquiry and interpreting and validaung those
strands. However these elements were not engaged with in a linear order —
cychical or not. We have carlier indicated that in the identfication of data we
are simultaneously reflecling upon this data and its relation to other data and in
that sensc the clements of the enquiry process are inextricably caught up with
each other.

In this paper we have attempled to create a structural form to represent the
simultaneity and symbiosis inherent in this process and capture this
diagrammatically. This image has no asserted beginning, no end. We are
“always in the middle. between things, interbeing. intermeZzo™ . This allows us
to suggest that the identification of focus is necessanly in a symbiotic

? Recent discussion of this issue emerged on a psychoanalysis email discussion network
‘From BBC 2 Arena transmission on Ry Cooder's music

‘This 15 taken trom a description of rhizomic thinking a phrase used by Deleuze and Guattari to
reter 10 non-linear activity
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relationship with the creation and role played by data, and its validation. The
process of ‘Noticing’ is complex yet disciplined.

Of course, we come to the enquiry process with existing interests and
concerns, and there is always the question of whether we are merely
reinforcing current concerns (or even fetishes) — the obsessive ‘seeing 7s
everywhere’ — but we find that we can insert a gap and hold these at a distance
and conduct a valid enquiry.

In looking for ways to work with our Masters students and also to support our
own research we found that other available frameworks |see dicussion in
Mason 1994 pages 52-4| seemed neither to give explicit recognition of our
personal experience as teachers, nor to offer us an authentic description of
how we had come to our professional knowledge. We chose to engage with the
Noticings — Researching from the Inside framework as it supported this
experience, whilst making our reflections more systematic.

Here we have tried to speak validly with a voice from our own practice.

We have both recently been involved in practitioner research, including that
leading to post-graduate qualifications. We feel that ‘Researching form the
Inside’ has provided us with some conceptual tools and a framework that have
enabled us to also speak validly there with a voice from our own practice.
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CLASSIFYING PROCESSES OF PROVING

Guershon Harel, Purdue University
Larry Sowder, San Diego State Umiversity

This paper outlines a preliminary classification of the kinds of justifications that
students offer in mathematical contexts, i.e., their "proof schemes.” The
classification is based primarily on the work of students during teaching
experiments and individual interviews, with secondary and post-secondary
students. The dominant, natural proof schemes of most students--even university
mathematics majors--are pot ones accepted in the mathematical community as
giving mathematical proofs. Transformational proof schemes are viewed as
essential for advancing beyond these schemes, teaching experiments with
university students suggest that many students can make pleasing progress toward
expecting and giving acceptable mathematical proofs.

Many researchers have given attention to different aspects of the learning and
teaching of proof (e.g., Bell, 1976; Chazan, 1993; Fischbein and Kedem, 1982;
Hanna, 1990; Martin and Harel, 1989; Senk, 1985; Yerushalmy, 1993). These
indicate that the ideas of proof are ditficult for students to learn, at least as they are
currently taught. A quote trom Poincaré summarizes our position toward the
teaching and learning of proof in mathematics:

It is difficult for a teacher to teach something which does not satisfy him
entirely, but the satisfaction of the teacher is not the unique goal of teaching;
one has at first to take care of what is the mind of the student and what one
wants it to become. [via Artigue, 1994; emphasis added]

Accordingly, we have been concemned with attempting to determine what is in the
minds of students, when proof comes up in mathematics. Others have had the same
concern. For example, Chazan (1993) noted that U.S. high school geometry
students were skeptical that a deductive proof assured that there were no
counterexamples to the assertion proved, and that a proof was only further evidence
that a conjecture 1s true. Fischbein and Kedem (1982) found that among students in
an Israeli program of studies involving the greatest concentration on mathematics
only about one-third of the students who had endorsed a statement and its proof
realized that further checks of specific instances would be superfluous.

Our approach has been to focus on justifications, and to view a mathematical
proof as the type of justification that is usually accepted by the mathematical
community. During interviews, mostly of university students in courses for
mathematics majors, we have attempted to determine what sorts of justifications
convince them, and what sorts of justifications they would ofter in order to
convince others. During teaching experiments with university students, the thrust
has been to help students refine their own ideas about what constitutes justification
in mathematics.
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Categories of Proof Schemes

The notion of "proof scheme” has been uselul to us. Proving (or justifying) a
statement includes two aspects: ascertaining (convincing oneselt) and persuading
(convincing others). An individual's proot scheme consists of whatever constitutes
ascertaining and persuading for that person. Hence, a proof scheme is idiosyncratic
and naturally can vary from time to time and from context to context, even within
mathematics. It is important to note that "proot™ as used in "proot scheme” need not
connote "mathematical proot.” The teaching experiments have had the intent to
identity and alter students’ proof schemes, and the interviews to test the sufficiency
of the classification. The categories as currently conceived fall into three mujor
classes. In a few cases the labels for the proof schemes are tentative, so the reader
should rely not so much on the labels as on the brief descriptions and illustrations.

T'he External Conviction Proof Schemes

The earmark of the external conviction proot schemes is that justifications
hinge on such external features as the endorsement of an authority (the authoritarian
proof scheme), the form of the argument (the ritual proof scheme), or meaningless
manipulations of symbols (the symbolic proof scheine).

The Authontarian Proof Scheme. When students are not concerned with the
yuestion of the burden of proof, and their main source of conviction is a statement
given in a textbook, uttered by a teacher, or offered by a knowledgeable classmate,
they are exhibiting the authoritarian proof scheme. When asked how they might
convince someone of a particular result, statements like *l would try to find it in a
book™ or "I think my professor said it, so it should be in my notes” would be
oftered under this proof scheme. The value of proofs may even be questioned,
perhaps because in so much of the mathematics that the student has experienced the
emphasis has been on the results, with little or passing attention to the reasoning
processes used to arrive at those results. In the teaching experiments, where “why”
is a routine expectation as well as “how,” students have gradually become less
unyuestioningly accepting of assertions deliberately made by the instructor to test
their willingness o accept the mere word of the “authority.”

All this is not to say that accepting the word of an authority 1s all bad, of
course. Even noted mathematicians are no doubt on muany occasions willing to
accept a result without examining the details of a proof. Rather, it is the attitude of
helplessness in the absence of an authority, or the view that justifications are
valueless, that handicap the students with an authoritarian proof scheme.

The Ritual Prooft Scheme. Martin and Harel (1989) examined whether
students’ judgments of an argument are intluenced by its appearance in the form of a
mathematical proof--the ritualistic aspects of proof--rather than the correctness of
the argument. They presented students with a talse argument to a given
mathematical statement and then examined the students’ evaluations of that
argument. They found that “many studems who correctly accepted a general-proot
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verification did not reject a Lalse-proot verification; they were influenced by the
appearance of the argument--the ritualistic uspects ot the proot--rather than the
correctness of the argument™ (p. 49).

The “ritual proof™ misconception, however, does not have 1o manitest itself in
such a severe behavior as the judging of mathematical arguents on the basis of
their appearance only. For example, on many occasions during the beginning
period of a teaching experiment. either in a class discussion or in a personal
exchange, students have asked whether a cenain justification is considered a proot.
When asked to explain the motivation for their question, the students indicated that
although they are convinced by the justitication, they have doubts whether it counts
as a4 mathematical proof, for "it does not look hike a proof.” Typically such doubts
are raised when the justification is not comimunicated via inathematicat notattons and
does not include symbolic expressions or computations, even though the argument
itself is guite sound by the usual mathematical standards; it is just that the argument
daes not “look” like a proof.

The Symbolic Proot Scheme. Justificatons which use symbols as it they
pussess a life of their own without reference to their possible functional or
quantitative relations to the situation charactenize the symbolic proof scheme. The
power of symbols is well known, but when symbols are eimpty of meaning, or bear
no relationship to the situation for which the symbols were introduced. their use cuan
be counterproductive.  For example, it 1s not uncommon for linear algebra students
to interpret the inverse of matrix A as the fraction HA, and attempt to reason about
the inverse matrix as though it were a fraction.

Perhaps the most devastating consequence of the symbolic scheme 1s the
common behavior of approaching problems without first comprehending the
problem sitation and its task. 1t 1s not unusual to find that immediately atter
reading the problem, many students begin their solution with some sorts of symbol
mantpulanon of any expressions involved, with little or no time spent on
comprehending the problem statement. Students' actions take place quite
haphazardly without a clear purpose and without the formation of & coherent image
of the problemn situation. So, for example, many attempt a solution without
knowing the meaning of some of the terms used in the problem statement. and many
others are unable to aniculate the exact task they were to accomplish. For these
university students, the symbol manipulation rules they acquired in their earlier
school years define the essence of their mathematical world: quantitative
comprehension and sense making, wherein lie the value in representations by
symbols, were absent from this world,

The Empirical Proof Schemes

These proof schemies are based solely on examples. As with the authoritarian
proot scheme. reasoning based on examples is not entirely bad. Mathematicians
value examples highly (see, e.z.. Halmos, 1985). Psychologists nowadays note that
natural concept formation is based on examples, and sometimes on rather speciul
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examples (Medin, 1989). But as Sfard points out, mathematics students must
become “sufficiently mature in the mathematicabculture” to appreciate the role of
definitions tn mathematics (1992, p. 47). A similar maturity in the mathematical
culture should lead to an awareness of the tentative nature of results suggested by
examples.

Inductive Proot Scheme. When students ascertain themselves and persuade
others about the truth of a conjecture by evaluating their conjecture in one or more
specitic cases, they are said to possess an inductive proof scheme. Every teachér has
likely observed the dominance of this proof scheme among students, and research
corroborates this observation. For example, Chazan (1993) has observed the
existence of the inductive proot scheme among U.S. high school students. Martin
and Harel (1989) found that more than 80% of their preservice clementary teachers
considered inductive arguments to be mathematical proots. Even with mathematics
majors, who presumably are more sophisticated than the high school students or the
preservice elementary teachers, the inductive proof scheme is common.

The Perceptual Proot Scheme. This proof scheme fits, for example, many
geometric justifications that might be given by younger students. The perceptual
proof scheme is based solely on visual or tactile perceptions. For example, a
student may examine an isosceles triangle and decide that the base angles are
congruent just by visual examination. Older students might be convinced that the
medians of a triangle are concurrent by looking at several computer-generated
examples, and they might attempt to convince others by showing them simitar
examples.

The Theoretical Proof Schemes

The Trapnsformational Proof Schemes. The general characterization of these
schemes is that students’ justifications attend to the generality aspects of a conjecture
and involve mental operations that are goal oriented and intended-anticipatory.
They are the foundation tor all theoretical proof schemes. Here is an example of
transformational reasoning from a case study of a fourth-grader (by GH):

I asked Ed to think of a triangle with two equal angles and describe what he
thought the relationship between the sides opposite them. Ed responded
almost instantly that the two sides must be equal. 1 asked Ed to explain to me
how he had arrived at this conclusion. Using his hands to describe the
triangle, Ed said something to the effect that if one angle (he puts one
forearm horizontally and moves the second forearm diagonally to it) is equal
to the other angle (switches between the forearms’ positions}, then the two
sides (he puts the two torearms diagonally to form a triangle) are equal.
When I continued to press Ed for more explanation, he went on to say: I
you launch a rocket from this side (pointing to his right elbow and moving
his right forearm diagonally to indicate the direction of the rocket) and at the
same time you launch another rocket from this side (pointing to his left elbow
and moving his left forearm diagonally to indicate the direction of the other
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rocket), the two rockets will collide and explode at the vertex of the triangle.
Their parts will go down exactly in the middle of the triangle and make two
little triangles. When you put these triangles together, one on top of the other
(he lines up his two hands along the two little fingers and then opened and
closed them several times), these two sides would be equal.

Notice the generality of the thinking and its basis in mental operations. Note also
that the thinking could easily be turned into the common mathematical proof (since
Ed was a fourth-grader, he was not asked to do this).

The transformational proof schemes classification includes three types of
transformational proof schemes. Ed’s justification illustrates a spayal-images proof

__scheme, which in general is characterized as a transtormational proof scheme in

which the context of the justification is of images from spatial intuition.

~—

“Symbolic-transformational préof scheme” is our current label for an
encapsulated transformational proof scheme that has become a heuristic in devising
mathematical justifications. Repeated applications of transtormational proof
schemes, if reflected upon, can potentially result in the formation of proof
heuristics. Hence, a symbolic-transformational proof scheme is a proof heuristic
abstracted from the experience of applying transformational proot schemes. Here is
an example, in which an older student transforms the given algebraic expressions
into mental images related to graphs:

Prove that for x 20, log(x+1)< x. He first converted this inequality into its
equivalent x+1<¢', then he said: "Both functions [ x+ 1 and ¢'] are increasing
but ¢' goes faster. At zero they are equal, so ¢' must be greater.”

This student then translated this thinking into a more standard mathematical proot
form.

One particularly important example of the symbolic-transformational proof
scheme is this: To prove or refute a certain conjecture, the conjecture is
represented algebraically and symbol manipulations on the resufting expressions are
performed, with the intent to derive relevant information that deepens one's
understanding of the conjecture and potentially leads to its proot or refutation. In
this activity, the individual does not necessarily form conceptual images for some or
all of the algebraic expressions and relations that result in the process. It is only at
critical stages in this process--viewed as such by the individual--that the person

- intends to form such images.

The third transformational scheme is the constructional proof scheme. In the
constructional proot scheme a students’ doubts are removed by actual construction
of objects, as opposed to mere justifications of the existence of the objects. For
example, in justifying that the inverse of a square matrix is unique (when it exists),
some lincar algebra students have preterred a justification in which the inverse of a
matrix is constructed, step-by-step, to the usual assuine-there-are-two-and-show-
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they’re-equal proof, even though the proot by construction was based on a 2x2 case
with numerical entries. The students, most of whom realized the drawbacks of
arguments based on specific numerical cases, regarded the argument with the
specific case as a generic argument and preferred it because “you can see how it
works.”

The Structural Proot Schemes. The general characterization of these schemes
1s that they are special transformational proof schemes in which conjectures and
facts are representations of situations from ditferent realities that share a common
structure. The structure 1s characterized by a collection of accepted facts. There
are three subcategories, which will be described only briefly here. It is important
to keep in mind that these must be transformational in nature; otherwise there is the
danger of resorting to rote memory in settings where they could be used. The
postulational proof scheme is a structural proof scheme in which the structure is
characterized by a collection of permanently accepted facts. This scheme is essential
in studying the theory of vector spaces, for example. The spatial-postulational
proof scheme is a postulational proot scheme whose realities are based in intuitions
of space. The postulates in Hilbert’s Grundlagen der Geometrie, for example, could
provide the characterization with which to justify statements in geometry. Finally,
the_axiomatization proof scheme is a structural proot scheme in which the structure
1s characterized by a collection of tentatively accepted facts. This scheme is
essential in studying questions of consistency, independence, completeness, etc.

Implications

The symbolic and ritual proof schemes, grounded as they are in meaningless
symbol manipulation or surface features, have nothing to recommend them; perhaps
with a greater emphasis on the giving of justifications instruction can help students
to avoid them. Students must be educated to value and to want to know
justifications; the source of the results, not just the results, must be emphasized.

The authoritarian proof scheme, on the other, hand is a two-edged sword. In the
culture of schools or of knowledge acquisition, 1t can be valuable. The concemn is to
move away from a complete reliance on it and its suffocating etfect on the giving of
justifications. For example, in the teaching experiments, a conjecture was no longer
labelled “theorem,” sunply because the label “theorem” seemed to reduce the
students’ effort, willingness, and even the ability for some students to justify the
conjecture. The label “theorem™ apparently rendered the relationship into something
to obey rather than to reason about. The use of small groups, in which there is no
obvious authority figure, seems to foster more openness to evaluating justitications;
there the student is a inore genuine partner in justifying statements than in a
teacher-led justification. The empirical proof schemes, with their roots in everyday
thinking, are important and valuable. The inductive proof scheme is so strong,
however, that instruction must deliberately combat it to show its defects.

To become “sufficiently mature in the mathematical culture” or to progress
toward Poincaré’s what-one-wants-the student’s-mind-to-become, it is clear that a
student must move beyond the external and empirical proof schemes. Of greatest
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importance is instruction that promotes transformational proof schemes, since these
are the foundations for the theoretical proof schemes. The teaching expeniments
suggest that much progress can be made by designing instruction on carefully
chosen problems und making justifications an accepted part of the class routine.
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Seeing, Doing and Expressing: An Evaluation of Task
Sequences for Supporting Algebraic Thinking

Lulu Healy and Celia Hoyles
Mathematical Sciences

Institute of Education, University of London

Abstract

In this paper we describe a research siudy in which we set out to explore studenis’ use of visual
strategies, the circumstances under which links are made between symbolisation and visualisation and
the influence of computer use on these strategies and linkages. In this siudy we have been
investigating student approaches to a sequence of algebraic problems presented with visual
information. Qur comparative analysis of students’ responses to three different task sequences
involved documenting the trajectory of visual and symbolic approaches, attempting 1o identify the form
in which they occurred,why they occurred and if they were inter-connected. The sequence of dctivities
included work on the computer and we explored if and how interactions with the software connected
with other approaches. To illustrate our methodology and findings, we present data from three
students who worked through the problems in different mathematical settings.

Background _

It is generally reported that students of mathematics, unlike mathematicians,
rarely exploit the considerable potential of visual approaches to support meaningful
learning (see, for example, Bishop 1989; Dreyfus 1991). Where the mathematical
agenda is identified with symbolic representation, students are reluctant to engage
with visual modes of reasoning. Conversely, when powerful visual images are
present, students tend to exhibit a preference for solving problems simply by
perception without mobilising any mathematical knowledge (Hillel, Kieran and
Gurtner, 1989). Students’ reasoning tends to be compartmentalised: they operate in
one or other mode without making links between the two (Presmeg, 1986; Hoyles
and Noss 1989).

In many ways, these findings are unsurprising. Mathematicians know what to
look for in a diagram, know what can be generalised from a particular figure and so
are able to employ a particular case or geometrical image to stand for a more
general observation. Our question is, how can students best be encouraged to share
in these ways of thinking — what systems of support can we offer which will
encourage them to make connections between visual and symbolic representations of
the same mathematical notions. Underlying this question is a fundamental assumption
that permeates our research, that mathematics learning involves students in
constructing connections, in linking new mathematical knowledge with what they
already know — both about the system of mathematics itself and with knowledge
derived trom other domains. We have particularly focused on mathematics learning
in computational settings, settings which open up new possibilities for incorporating
visualisation into the practice of mathematics: Computers offer the potential to
operate on images with the kind of rigour which has hitherto been reserved for the
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symbolic; visual images can be externalised! and rendered manipulable. Previous
experience tells us that we cannot assume that this potential will necessarily
transform students’ mathematical thinking — at any rate, it is unlikely such a change
will be realised spontancously. We therefore set out to search for circumstances
under which students come to move more freely between visual and symbolic
representations and to investigate the role the computer might play n this process.

The study

Our investigations, carried out during the project Visualisation, Computers
and Learning,? focused on students working through carefully-sequenced activities
designed to exploit the visual alongside the symbolic in pursuit of a range of
previously specified mathematical goals. Specifically our aims were:

* to map students’ visualisation strategics in two mathematical domains: geometry
and algebra;
* to identify if and how links are made between symbolisation and visualisation;

* to identity if and how strategies and links between them are influenced by
computer use.

In this paper we describe the algebra strand of the project wn which the
mathematical focus was the study of Number Patterns, a topic commonly used within
the UK as a vehicle for introducing students to algebraic notation and functional
invariance. An example 1s presented in Figure 1.

VAV AN
When thete are 2 houses. there are ¢ maiches

SNSNINSNSNAN
| O T I T | When there are 6 houses. thete are 25 nxatches

How many matches are needed [or 9 houses?

Write a rule to wotk out the number ot matches for n houses.

Figure 1: ‘Houses’ sequence

The idea behind these activities is that students will identify relationships
within numerical patterns derived from spatial situations, perhaps express these in
natural language but ultimately formulate a symbolic generalisation. Through such
a process of doing, seeing and expressing, 1t is argued that they will build algebraic
meanings for the symbolic notation. The UK National Curriculum suggests a
sequence of progression whereby students work from simple one-operation linear
functions to guadratic functions. Within the curriculum guidelines, as students

I We accept that in this process the images will change but nevertheless suggest that these
externalised images are worthy ot investigation.

[ 2%]

This project was funded by the Economic and Social Research Council [Grant Numiber
ROOD234168].
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become more proficient they are expected to move from paper and pencil on to
spreadsheet explorations of number patterns. We wanted 1o compare this computer-
added approach with one in which computer use was integrated throughout a task
sequence. Additionally, since spreadsheets ofter the possibility for symbolic
interaction but little chance for manipulation of visual objects, we wrole a Logo
microworld, Mathsticks, in which students would have the opportunity to generate
computer-mediated visual and symbolic representations3. Thus, three task sequences
with the same mathematical content were designed.

Task sequences: The first task sequence was based on existing materials tound
in the school in which we conducted the research. This computer-added task
sequence (the CAT) involved paper and pencil work followed by activities using a
spreadsheet. In two computer-integrated task sequences, the spreadsheet CIT and the
Mathsticks CIT, computer use was incorporated at all levels. All the sequences
followed a common pattern — individual semi-structured interview, pair work,
group work, pair work, individual semi-structured interview. Both the individual
and pair work were based around a common set of tasks where the students worked
on identifying and expressing general patterns underlying different number
sequences presented through both visual and numeric data? as illustrated in Figure |.
Thus the aim for each task was that students constructed and justified a general
method to calculate values for the nth term. In the group work, two pairs came
together to discuss their previous activities and 1o justify any relationships they had
identified.

Data collection: Three groups of four students, aged 12-13 years, were
selected for case study. The groups, chosen in conjunction with the mathematics
teacher, were organised so that each group comprised a similar spread of ability.
Euch task sequence spread over about six weeks and took up about 10 hours of
student time. The data comprised student responses (paper and pencil or computer
work together with video and/or audio-recorded discussion) in each of the five
settings of the task sequence. The individual interviews were task-based where
students’ written responses were followed up and probed by the researcher. During
pair and group work a researcher was present as a participant observer with the role
of teasing out students’ intentions, strategies and explanations. At no time did she
give direct assistance in relation to the mathematics although she did provide syntax
advice when this was specifically requested. The data were synthesised into detailed
case histories describing the trajectory of each student working through a task
sequence. These case histories were then interrogated to find out if students™ goals,

3} Mathsticks was designed in conjunction with Richard Noss. We do not have space to descibe in
detail here but intend o demonstrate its main features during the presentation (see also Noss,
Healy and Hoyles in press).

4 Pilot interviews suggested that presenting terms not in sequence resulted in greater attention to the
-visual data.
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strategies and outcomes shifted and, if' so how and when.

Analysis of the case studies

Our case study students were relative novices in this area: Our aim was to
examine how all the factors in the learning setting interacted to facilitate (or to
inhibit) students in evolving a coherent knowledge system from an initial set of
disconnected fragments of mathematical ideas. We begun by classifying the.
conceptions and strategies that students applied to these kinds of problems {rom a
review of the relevant research literature (e.g. Stacey, 1989; MacGregor and Stacey,
1992; Orton and Orton, 1994) and from extensive pilot interviews we conducted
before undertaking the case studies. The research studies we surveyed tended to
report students’ difficulties and errors as evidenced in “one-off” situations. Two
particular strategies were extensively documented: First, a tendency to make false
assumptions of direct proportionality between terms when working on linear
sequences of the form f(n) =an+b (b#0), and second an overemphasis on
recurrence relationships in one variable. The problem with focusing on student
errors in this way is that the emphasis inevitably is on what students cannot do rather
than where these strategies would have worked (e.g. when b=0 in above example)
and how students could move on to more generally applicable methods.

Our agenda was to go beyond analysis of student behaviour and investigate
their mathematical thinking-in-change. The framework we eventually devised
incorporated the strategies previously documented but recast as a set of what we
termed construction approaches, each of which was deemed to represent the
evocation of a set of cognitive resources through which a student had tried to make
sense of the activity. We distinguished iconic and symbolic approaches and within
cach category identified four different ways in which students organised and
manipulated the data as they attempted to construct a generalisation. The approaches
are presented in Table | as a two by four matrix in order to point up the
mathematical equivalencies between the horizontal cells. However, it was clear from
our observations that these equivalencies were not necessarily apparent to the
students and our aim in the next phase of analysis was to trace the evolution in a
student’s thinking and to search for the conditions where connections were made
between approaches.

Maps of student approaches: To represent how student approaches evolved
over the course of a task sequence, a series of maps was constructed from the basis
of the analysis framework. One map for each of the five research settings was
produced for all the three case-study groups. It showed pictorially all the approaches
used — rectangular shapes indicating symbolic approaches, oval iconic ones, and their
frequency shown by the thickness of a shape's boundary. Approaches associated
with the final generalisation made were shaded. A map also showed the connections
made between approaches. Connections took the form of ¢xchanges where students
explained the responses associated with one approach by an explicit reference to the
resources underpinning another. Thus a connection was a mathematical justification



(or a refutation if an incorrect approach was rejected or debugged) — students
verified that one construction was consistent with an alternative way of viewing the
problem. A connection was represented on a map by a line linking the relevant
approaches.

Symbolic Iconic

Countin Eidetic
Counting the matches in an unstructured way Focusing on perceptual rather than mathematical
properties of the data:
“The star is like a cross from noughts and
crosses and a religious cross.”

Operating on terms Combining diagrams

Calculations using a known term or terms to ‘Chunking’ of known terms to obtain another:

obtain a target term: | — = —_—— —_—

1) “there are 16 muatches in 5 so there will be 48 | I I | | | +}< l I | |
in 15, you timesby 3" | e e

2) “towork out 7, 1did 10 add 13 because 3 =
had 10 maiches and 4 had 13"

| Operating on_differences between terms | Inter-term
Calculations based on the numerical difference “Chunking’ based on a relationship between
belween conseculive terms:

1} “4is 13 because you add 3 each time" terms:
2) “ladded 30 because the difference between 5 I I | | | #— Add this each time
and I5is 10 so youadd 10 3's” —_—— —
I | I | I «— First has 4 the rest have 3
l _l | I | 4 Chunk first one as well
Operating on_variables Intra-term
Calculations based on a relationship between *Chunking’ based on a relationship within a
dependent and independent variables: )
“You times the number of boxes by 3 and add [ | ‘€™
—_— — — — & Line
I I I I Q= Line of one more
—_ e ——" - Line

Table 1: Classification of Student Approaches

A Snapshot of our results

To illustrate our methodology further and to give an indication of the
differential influences on student approaches of the different task sequences, we
present the data of the approaches of three students, one from each of the case study
groups: Jodie, who worked on the CAT task sequence: Lesley, a member of the
spreadsheets CIT; and Tombana, one of the Mathsticks CIT students. First we
present the maps derived from the first and last interviews with each of these three
students (Figures 2 - 4) to illustrate any changes made in each individual's
configuration of approaches.

Both sets of interviews were concerned with two-operation linear sequences.
In the first interview, one task was given, while two tasks were presented in the final
interview. The maps show that, in their first interviews, all three students used a
number of different approaches and made no connections between them. Jodie and
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Tombana both failed at any point to exploit the iconic data. They also constructed a
final generalisation that did not lend itself naturally to algebraic expression — in
fact, the approaches they chose were those mentioned in the literature as being
frequently associated with errorsS. Lesley, on the other hand, showed an initial
preference for iconic approaches, and her final generalisation involved an intra-term
relationship.

counting counting ]

Key
ting perating
[ e o
P O i
vanable ) approach
§ - i 0

Jodie's First Interview Map Jodie's Last Interview Map 1 symbaolic

approatch

— aconncclion

-term
Lesley's First Inlerview Map Lesley's Last Interview Mup L] upprouch
associated
sounting Wllh lhe ﬁ“lll
- generalisation

| s |
vanables

Tombuna's First Interview Maup  Tombana's Lust Interview Map

Figure 2: First and last interview maps for three case-study students

The maps of the student approaches in the final interview suggest that the
students responded rather differently to the same type of task at the end of the
sequence. tn contrast to her first interview, Jodie adopted both iconic and symbolic
approaches, but only occasionally constructed connections between them. Her final
generalisations were associated with two different approaches, suggesting she had
not yet developed a consistent pattern of working. The two CITs students, on the
other hand did develop consistent sets of approaches and their final generalisations
both involved operating on variables. However, while Lesley actually made more
use of iconic data at the beginning of the task sequence than at the end, Tombana’s

5 Note that, wt this devel of analysis. it 15 not passible (o ascenain whether o student’s final
peneralisation was actually correct. The more complete versions of the maps iwhich we do not
have space to reproduce herey contain this information, slthough this was not ouy main concern,
Al approaches, potentially at beasy, can lead 1o both right or wrong answers. Our focus was how
the students were thinking about the tasks in hand.
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final, more connected map represents how she used the iconic data as a means both
1o construct and 1o justify the mathematical relationships conveyed by her algebraic
symbolism. For all three students, there is some indication of a move away from
approaches associated with arithmetic methods and a reliance on specific cases
towards the production of general functional relationships, although only Tombana's
final map shows the set of approaches that the activities were intended to engender.
However, it is clear that consistency amongst the final approaches, the use of visual
or symbolic reasoning and the construction of justifications by connecting
approaches ali differed substantially across the three task sequence.

Of course, the first and last maps show only snapshots of the entire story.
Making sense of the ditfferences between the two involves tracing a student’s path
through the other settings and considering her interaction with other students (who
mobilise different resources) and with the media of the setting. We do not have
space here to present the maps for all the intervening sessions, instead we consider
brietly these three students' interactions during the pair settings and the different
influences of tools available within each task sequence. During the pair setting in
which Jodie had access to paper and pencil only, her manner of working was eclectic
— she simply chose whatever approach most quickly seemed to lead to some (any)
generalisation. For Jodie, the spreadsheet task in the CAT sequence added little, in
fact she felt this activity was about learning to use the computer and not connected to
the previous work at all. In contrast, the spreadsheet CIT sequence seemed to have
encouraged Lesley to focus on symbolic aspects. In her pair work a consistent style
quickly emerged characterised by "pattern-spotting” where relationships in tables of
numeric data were identified without apparent appreciation of the need to connect
these to the structures underpinning them. It was not that Lesley was unable to use
the iconic data, but that the goal of the task became transformed to become the
construction of spreadsheet rules with the result that the iconic information had little
relevance. What is significant is that this pattern of working persisted into the final
paper and pencil based interview where Lesley’s original use of approaches was no
longer apparent.

We conjecture that the problem in both these task sequences(the CAT and the
spreadsheet CIT) is that there is a gap between seeing a pattern and the means of
expressing the pattern which students frequently chose not to cross, with the result
that their thinking remained compartmentalised. The Logo tools opened up a new
set of possibilities. In Mathsticks the means of expressing actions is firmly soldered
to the activity: students can interact with virtual matches and, as they do so, a
symbolic trace is produced, or if, they communicate in symbolic terms, a
corresponding visual trace is generated. In Tombana's interactions with Mathsticks
those touls were bought to life as she, along with her partner, constructed
relationships by first systematising her actions to produce a visual display of the
pattern, identifying REPEAT structures in the symbolic representation automatically
produced by her actions and finally using these as a basis for building general Logo
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procedures. She was also able to work from her symbolic representation back to the
visual — rccognising, for cxample, that the addition of an cxtra match within a
REPEAT loop could change a sequence of boxes to a sequence of houses. Thus in
Mathsticks, seeing, doing and expressing become inextricably linked: since a
student’s visualisations are coupled with the symbolic; mathematically speaking they
are one and the same. The resulting cognitive residue for Tombana (along, in fact,
with all the other members of the Mathsticks case-study group) was a robust stance
to number pattern problems which spread beyond the boundaries of the computer
setting.

Final remarks

Our results suggest that students bring numerous resources to mathematical
situations and that the approaches they choose to apply to any given problem vary
according to setting. It seems foolhardy therefore to deduce that a student is
incapable of using a particular approach on the basis of observations from just one
setting. On the contrary, we have found that the adoption of a particular set of
approaches depends, among other things, on the tools available. The Mathsticks
microworld seemed most likely help students appropriate our intended learning
aims, to provoke them to shift from a pragmatic to a theoretical stance to the
number patterns (Balacheff 1986). Our contention is that the route towards
construction of mathematical meanings — in this case algebraic meaning — is best
supported by tools designed to help bridge the gap between action and expression; to
scaffold movement 1o and fro between the visual and symbolic in much the same
way as spontaneously achieved by the mathematical cognoscenti.
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THE ROLE OF PRIOR CONCEPTIONS IN TEACHERS' RESPONSES TO
STAFF DEVELOPMENT: A SYNOPSIS OF CASE STUDIES OF THREE
MIDDLE SCHOOL MATHEMATICS TEACHERS

Terese A. Herrera, The Ohio State University

The purpose of the study was to document the process of teacher change within the

context of an inservice. My focus was the individual teacher's perspective of change,
including beliefs and conceptions of what it means to teach and learn mathematics.

Therefore, I accompanied three teacher-participants through a six-week summer
institute and several seminars during the following academic year, collecting data

prior to, during, and after the inservice experience. Through preparation of case

studies I identified themes that emerged across cases and concluded that prior

conceptions held by staff developers as well as by the teacher-participants played a

definitive role in the teachers' adoption of the innovative instructional method

modeled in the inservice. '

In response to the call for reform in mathematics instruction in the United
States, standards for revising curriculum and evaluation (National Council of
Teachers of Mathematics {[NCTM], 1989) and for teaching mathematics (NCTM,
1991) have been promulgated among the nation's teachers from elementary through
secondary levels [grades 1 through 12]. Unlike the mathematics reform movement of
the 1960s, this one does not rely on "teacher-proof™ curriculum materials; instead, the
teacher is seen as key to reform. As Fullan and Steigelbauer (1991) commented
succinctly, "Educational change depends on what teachers do and think--it's as simple
and as complex as that" (p. 117). In the effort to change teachers' thinking about
mathematics instruction, the primary outreach to practicing teachers is the inservice,
to which they bring their prior conceptions of effective mathematics instruction. A
question that arises, then, is: How do teachers' prior conceptions interface with
inservice education?

Method

The research reported here examined this question through case studies of
middle school mathematics teachers [teachers of grades 6 - 8] who were participants
in Project Discovery, a statewide initiative sponsored by the National Science
Foundation and by the State of Ohio. An intensive, long-term mathematics inservice,
it included a six-week summer institute on the inquiry method of instruction, and
several follow-up seminars. Since the purpose of the study was to document the
process of teacher change within the context of inservice education, 1 conducted
extensive interviews with and classroom observations of three participants prior to
and during the summer institute, actually attended the institute myself as a full-time
participant, and then made several two-day visits to their schools during the following
academic year. From this methodological stance of participant observer, I
documented through case studies the interaction of the individual teacher with the
staff development experience, in order to give voice to the teacher-participants and to
better understand the complexities of teacher change.
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The subjects. termed “teacher-parucipants,” were:

*Beverly. a Caucasian lemale, secondary-certified, with 17 years of teaching
experience in a small rural town:

eImani, an African-American female, elementary-certified, with 4 years of
teaching experience in urban city schools;

»Scott. a Caucasian male, elementary-certified, with 15 years of teaching
experience in a small town that serves as a residential adjunct to a large city.
As can be noted, subject selection was purposeful and heterogeneous, covering a
range of teacher vanables.

In the research setting. an inservice offered for teachers of middle school
mathemalics, participants were immersed in collaborative problem solving: inquiry
problems that modeled open-ended, hands-on problems with multiple solutions and
extensions. The university instructors expected the teachers to construct their owan
sense of inquiry teaching through their experiences with the problem solving, through
class consensus, and through creating lesson plans that incorporated an inquiry
approach.

Theoretical Framework

Constructivism, a "theory of active knowing." holds that knowledge is
constructed as the engaged thinker attempts to organize his/her individual experiential
world (von Glaserfeld, 1988, p. 33). What is particularly relevant in this theory to the
role of prior conceptions in teacher change is its claim that new information is not
passively received but, rather, reviewed in relation to an already organized operaling
system. If the new information is not seen to fit into an already accepted category and
thus cannot be assimilated into the system-as-is, a disequilibrium or perturbation
occurs. Within the context of this study, the inservice experience was considered a
potential cause of disequilibrium, one that could stimulate change in the form of either
asstmilation or accommodation.

Moreover, the Project Discovery Mathematics Summer Institute placed the
participants in a learning environment shaped by constructivist theory. Instead of
offenng a set of lectures on the inquiry method of instruction or even problem solving
strategies, the instructors immersed the teachers in problem situations which required
them to directly encounter and explore the mathematcs embedded in the situation.
This was their introduction to inquiry teaching. The participants were expected,
within a small group setting, to collaboratively make sense of the given problem
situation, test solutions given by the class, and construct new mathematical
understandings. This view of teaching and learning differs markedly from that held
by most mathematics teachers (Romberg, 1986), which proved unsettling as the
participants considered how, or even whether, to implement the instructional
philosophy being modeled.

Finally, constuctivism framed the data collection as well as the method of

analysis. The data collection acknowledged the teacher-participants' prior knowledge,
included information on how they engaged in making sense of innovative
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instructional methods, and allowed for the expression of personally-construction
meanings. The use of the case study as a method of analysis honors the view that
response to a learning environment is necessarily individual and unique.

The Role of Prior Conceptions

Inco ti

Staff developers as well as participants bring to the inservice setling
philosophies of mathematics that drive their theories of instruction and learning. In
Project Discovery the instructors operated from a holistic view of mathematics--a
terrain without fixed borderlines between topics, terrain to be explored rather than
curriculum to be covered--with "doing mathematics” defined as delving into a rich
mathematical situation and drawing from several areas of mathematics to resolve it.
For the teacher-participants "doing mathematics" generally referred to applying fixed
procedures, sequentially and linearly, within well-recognized borders. What was
experienced by the teacher-participants was a lack of connection between
instructional philosophies, between what was modeled in the inservice and what was
expected of them in "real world" classrooms. Imani commented:

| teach my kids math is like a chain. You just keep linking the chain up.
Everything you get, you just link to the chain. But if I'm not telling where, or
giving them good examples so they can discover where they can link itto. ..

The teacher-participants expressed a dissonance between their conceptions of
teaching/learning mathematics and those of the instructors, a mismatch of purposes
and objectives. The teachers looked for objectives that were compatible with the
tradition of school mathematics (Cobb, Wood, Yaekel, and McNeal, 1992), with its
officially-mandated curriculum, its assessment of discrete items, and its clearly
defined borders. Significantly, their view of school mathematics holds for the general
population of teachers (Brown, Cooney, & Jones, 1990; Romberg, 1986). Itis likely,
therefore, that the incongruity that emerged between the staff developers'
mathematical conceptions and those of the participants is a fundamental feature of
inservice education.

ition Toward Inservice Educatio
The dissonance was exacerbated by their prior conceptions of inservice
education. Within a staff development setting, they expected to "pick up things": to
select from the array of new techniques those that suited their classrooms and to
"insert” them into their existing practices. Beverly commented, "I'll pick up things
and I'll try, and I'll throw away and I'll keep." As a consequence, the common
mindset of the teacher-participants was to analyze the innovalive instructional
method, to see it not as a whole philosophy but as a sum of distinct parts to be
considered separately and adopted separately. What they expected to acquire was not
a different approach to teaching but rather discrete lesson techniques that could

enhance and expand their existing practices.
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Personal Definitions of Teaching Mathematics

A teacher's established core of practices, and the conceptions that meld it,
represent years of work. of learning and adjustment. for "practitioners' own sense of
self is deeply embedded in their teaching” (Rudduck, 1988, p. 208). As seen in this
study, teachers' prior conceptions mediated the inservice material, determining its "fit"
and its function in relation to exisitng practice. In the process of determining whether
or not 1o implement the inquiry method, they actively looked for alignment with their
personal conceptions of good teaching and, if not found, they either modified the
innovation or rejected it. Observations and interviews showed that any change in
classroom instruction corresponded to the individual's definition of teaching and what
it means to teach mathematics in the school setting.

An example was Scoll's conviction, expressed before attending Project
Discovery, that only mathematics that could be applied to real problems was worth
teaching: "If | tell them about the Pythagorean Theorem without telling them where
they'll use it, why learn it? [t's just mental gymnastics at that point.” Later, when he
was, indeed, engaging his class in problems that related to number patterns, for
example, problems that had no direct relevance to applications, he explained that such
problems taught his students "to think,” which had the most direct application he
knew to "real life" problems. He had achieved alignment with his personal -
philosophy by seeing his earlier goal subsumed into the larger goal of "teaching them
to think."

Primacy of Officially- dated Curriculum

For all practical purposes, the official curriculum as expressed through school
guidelines defined school mathematics, and the primary responsibility of teaching. as
perceived by each teacher-participant, was to cover that curriculum. Inevitably linked
to curriculum was preparing students for official district and state assessment. Such
assessment constituted accountability for the teachers as well as for their students.

How to address the very real issues of curriculum and assessment proved to be
concerns, If not outright frustrations, for the teacher-participants. Imani wanted to
know "how to relate this [inquiry approach] with the book that I have, because in the
real world we havé a timeline and things that have to be done," and "here fat the
Summer [nstitute] they're not on a timeline, but when I jump back into reality at my
school I'm on a timeline, and it's not that I'm pushing toward the test, but I have to
give kids those tests.” The common perception was that the staff developers failed to
take into account the working situation of the participants.

With regard to the long-range effect of the inservice, it is notable that the
official curriculum, both content and instruction, remained unaffected by whether or
not the teacher-participant implemented the inquiry approach. That portion of
mathematics which corresponded to official guidelines and which was to be assessed
eventually by official examination, the "real” mathematics, maintained the format and
style adopted by the teacher before the staff development intervention. In the case of
Scott, who came to consider himself a wholehearted proponent of the inquiry
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philosophy, after the inservice experience (wo ongoing but separate curriculums were
seen to be operating in his classroom. He allotted the majority of his lesson time to
inquiry problem solving and those strategies advocated during the inservice:
cooperative groups, teacher as facilitator, encouraging multiple answers and having
students present their solutions to the class. But he maintained as well a textbook-
driven portion of his lesson time, with problems and pace dictated by the textbook,
teacher-centered explanations, with topics treated discretely and fragmented into
individual skills. Leaving this textbook portion intact assured him that the official
curriculum was covered, which remained his primary responsibility in his definition
of mathematics teacher.

e Sroo alidato
When I asked Beverly at the end of the Summer [nstitute what changes, if any,
had occurred in her thinking as a result of the inservice experience, she responded
emphatically:

That question won't be answered until I actually get back into teaching again. |
just feel like | want to try some things and see if they work for me, see if they
work for my kids. . . . So [ don't see myself answering this a lot, not until I've
started school. That will tell me. ‘

This view of classroom reality as the crucible where new ideas would be tested and
validated or rejected was shared by the other teacher-participants. To determine if
and how inquiry would fit into established practice, they felt they had to experience it
first in their classrooms and see if it "works for my kids." Riseborough speaks of the
"often underestimated symbiotic relationship between teacher and pupil” and points
out that teachers "learn from pupils, they learn what is possible and what is not"
(quoted in Ball & Goodson, 1983, p. 17). Cenrtainly, the feasibility of inquiry teaching
was affected by such- structural constraints as the school schedule, availability of
matenals, and preparation time. But the teacher-participants saw student response as
a more significant factor--both in shaping the implementation process and, ultimately,
in determining the viability of the innovative instructional method.

Implications

[t is a defining characteristic of inservice teachers that they bring to the staff
development setting an established practice, including the conceptions that underlie
that practice. From their vantage point of direct contact with classroom reality, the
efficient operational mode is practical and classroom-oriented: select those discrete
units that are congruent with prior conceptions and insert into existing practice.
Furthermore, conceptions mediate new material as teachers strive to maintain intact
their personal interpretations of mathematics teaching and to fulfill their perceived
primary responsibility of covering offical curriculum. The teachers in this study felt
professionally responsible for "reaching” as many students as possible, engaging them
during the class period, and preparing them for external testing--hence, the teachers’
vulnerability to student response and their adherence to official curriculum. How an
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innovative method maps onto district guidelines, therefore, and how it corresponds 1o
student expectations relate directly to implementation of educational reforms.

Given the power and persistence of prior conceptions (Duffy & Roehler, 1986;
Wallace & Louden, 1992), those involved in mathematics reform need to address the
various sources of dissonance between established teacher practices and innovative
methods, especially those created by incongruent mathematics philosophies.
Otherwise, those conceptions that underlie existing practice can lead to a re-shaping
of an innovative program into a form that aligns more comfortably with the status quo
and can inadvertently sabotage teacher change.
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The use of levels of subordination to help students gain fluency in mathematics
Dave Hewitt
University of Birmingham, UK
Abstract: There is a current debate concerning the desire for children to have
regular practice in mathemuatics lessons and to gain fluency over areds of
mathcematics such as numerically and algebraic manipulation. In this paper, |
develop a theoretical model of how fluency can be achieved through the notion
of subordination’ and the role this plays in successful learning outside the
clussroom. | discuss ways in which this notion can he brought into the
classroom. and how successive levels of subordination can help a learner
become so fluent in a skill that they require little or no conscious attention
when employing it - u process | name 'functionalisation’

The issue of gaining fluency in areas of mathematics has been a subject of debate
recently in the UK' (Barnard and Saunders, 1994; Ernest, 1995; LMS et al, 1995).
This has often become a debate between 'progressive’ and 'traditional’ teaching
methods, as it traditional methods are the only way of achieving fluency in
mathematics. Although there are exceptions, ‘traditional’ methods can lead 10
mechanistic repetition with little understanding, and alienate many people from
mathematics. 'Progressive’ methods, such as the use of investigations can involve
children in doing mathematics but sometimes only involves them in practising low-
tevel mathematics. Again, although I am aware of notable exceptions, many
investigations, as part of examination coursework, appear to have an expectation of a
certain procedure being followed - collect numerical data from particular cases, put
them in a table, tind patterns in the numbers and express these in algebraic notation.
Since an algebraic rule is seen as an endpoint, there is little practice of manipulating
and working with algebraic expressions. Also, the potential breadth of mathematical
properties which might be noticed and skills practised are sometimes lost because of
an almost mechanistic procedure of "doing investigations'. As a consequence, few

skills are practised except for those relating to spotting number patterns (Hewitt,

1992),
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Qutside the classroom

The driving of a car involves skills which are practised on a regular basis.. The nature
of that practice involves far more than mere repetition. For example, the movements
involved in changing gear - those of hand and feet - are rarely practised by a learner
driver when the car is stationary. The aim is not to be able to change gear, but to be
able to drive a car in traffic. Changing gear is a.necessary in order to achieve this
aim. Even when changing gear, a driver has their attention mainly on the road rather
than their feet. In fact, attention will drift from one 1o the other at times, but v;vh:n is
significant is that attention does need to be on the consequences of the foot

movements, and is not solely on those movements themselves. Thus, this type of

practice involves a skill to be leamed (feet and hand movements to change gear)

being subordinated to a different task (the car's movement in traffic). I have

developed elsewhere (Hewitt, in press) this notion of practice through progress

where a skill to be learned is practised whilst being subordinated to progress within

some other task. 1 say that a skill, A, is subordinate to a task, B, if the situation has

the following features: (a) I require A in order to do B. (This may be an existing

necessity or can be created through the 'rules’ of a task); (b) I can see the

consequences of my actions of A on B, at the same time as making those actions; (c)

1 do not need to be knowledgeable about, or be able to do, A in order to understand

the task, B.

There are many examples of skills being learned through their subordination to other
tasks. Janet Ainley (1995) said / am reminded... of discussions with teachers who
feel that children would need to learn keyboard skills before they could use Logo or
a word processor, so that they don't become frustrated by their slow typing. [ point
out that | developed my (quite considerable) typing ability mainly through
programming and writing at the keyboard (p16). Dewey (1933) talked of the
practice involved in developing the human senses: Sense perception does not occur

Sfor its own sake or for purposes of training, but because it is an indispensable factor
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of success in doing what one is trying to do (p249). He goes on to say that Training

by isolated exercises leaves no deposit, leads nowhere, (p250).

Mathematics classrooms

Laurinda Brown {1991) talks about a series of lessons concerning matrices, where
children are learning and practising skills whilst working on other tasks: If an
individual had a problem with plotting coordinates in the early stages of the
investigation, it was soon sorted out because of the frequency of use of the data
(p13). | have developed approaches to the learning of formal algebraic notation (OU,
1991; Hewitt, 1994; Hewitt, in press), where the notation is introduced and
immediately subordinated to the task of finding my number after | said, purely
verbally, various operations which had been carried out. For example, "I'm thinking
of a number, I add seven, multiply by five, take three and I get fifty-two". The
children have already worked out how to reverse the order and use inverse operations
and so can find my number. However, | deliberately give such a long list of
operations that they cannot remember them without having a visual reminder. It is at
this stage that I write something down for the first time, and write out my series of
operattons within formal notation, such as the one below. The children have no
choice but to go through the notation in order to know what operations were done,

and so find my number.

.
ﬁ(ﬂ%uw)-zt:zoo

Emma Brown used this approach with a mixed ability class of 13-14 year olds, and
found that all of her students became confident in using and interpreting algebraic
notation very quickly. One student who had difficulty with the work, Donna, made
several 'errors’ (see below). However, what had been subordinated to this task of
doing things to an unknown - the use of standard formal notation - was correct. This
is not an isolated example. | have found with this activity that what is subordinated
in the activity - formal notation - is retained by children over a long period of time.
30
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In contrast to this, atter a similar period of time, children become a little uncertain
about solving equations, which had been a major focus of attention during the
activity. |
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This is quite a different model of learning compared to traditional repetitive
exercises because attention is deliberately taken away from what is being practised
and placed on a task in which it is subordinated. Thom (1973), in his discussion of
the modern mathematics movement, discussed the possibility that it is not always
desirable to make everything explicit by making it the focus of attention. He was
critical of the assumption that By making the implicit mechanisms, or techniques, of
thought conscious and explicit, one mukes these techniques easier. [his italics]
(p197). Practice through progress has purpose because there is a need to carry out the
practice in order to gain progress in a task. The model is also different to 'discovery’
methods which are based on the notion that because someone has found something
out for themselves, they are more likely to remember it. The subordination model
acknowledges the need for practice and recognises that meeting something once,
albeit by discovery, is not likely to be sufficient for something to be retained over a
long period of time. Furthermore, there is a significant difference between
consciously discovering a particular skill or property, and using that skill or property
fluently in novel situations. Practice by progress is always concerned with

subordinating and so applying that skill or property to other situations where it is

9L 3-8



needed. Thus, subordination not only offers practice but also siuates a skill within

relevant and changing contexts.

Levels of subordination
I invite you to do this exercise before continuing to read: The word suboardinasion

is misspelt. Write down (don't just think!} how it should be spelt.

When | have asked people to carry out such an exercise, no-one has commented to
me that their attention was placed in the required movements of their fingers in order
1o write the letter d. There are complex manoeuvrings of the fingers required in order
to carry out the challenge of drawing a d. | can no longer recall my own personal
experience of learming to draw this letter. However, | can observe young children
engaged in the challenge and notice that it is far from a simple task. | can observe
that there is great concentration and effort on behalf of a child when learning to write
this letter. | can deduce that the same must have been true for me, and for you. Yet
here you are, successtully writing this letter with little or no conscious attention
being placed in the physical activation of muscles required to write it. This exercise
provides the opportunity to become aware that there are skills you subordinate at an
unconscious level. Your attention is placed in a challenge at a higher subordinate
level (in fuct many levels higher) of writing the correct spelling of a word. In fact, we
have become so good at writing a single letter, that we are able to do so at any time it
is required and need give no conscious attention to doing it (or such a small amount
as to be negligible compared to the conscious energy given to the main task).
Gattegno (1971) described such things as functionings. I have called the process of
something becoming a functioning as functionalisation. This process is a result of
successive levels of subordination. This hierarchy of levels is only a hierarchy of
subordination within particular situations. There is no absolute hierarchy. For
example, a computer graph drawing package might be used with a task ot trying
different values for a and b in the equation y=ax +b in order to get a straight line
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which goes through two points on the screen. With the constraint that it is only
through typing in an equation that a line is drawn, choosing the values of the
coefficients in the equation y=ax +b is subordinate to the drawing of a particular line.
Alternatively, a different computer program could be used, such as Cabri /1, where a
line within a co-ordinate system can be 'picked up' and dragged. As this happens, the
equation of the line, which is also on the screen, changes accordingly. Thus, a task
could be given to students where they have to move a line on the screen so that the
equation reads y=3x - 5. With the constraint that the equation cannot be changed
directly, the position and orientation of the line is now subordinate to the changing of

the coefficients a and b in the equation y=ax +b.

One example of a chain of subordination is expressed by the following questions a
young child may engage in whilst learning their first language. Each new task
subordinates the skills developed in the previous task:

What noises can | make with my lungs, mouth, throat, tongue, llps 2
Can I make a combination of noises (a word)?

Can | repeat particular words on command?

Can I say words which sound similar to the words | hear adults say?
What words are associated with particular objects or actions?

How are words joined together (a'sentence)?

How are words and sentences transformed according to time and context?
Can | express my thoughts and feelings in accepted sentences?

A possible chain of questions within algebra is:
Can [ find the unknown number, when the list of operations is too long to recall
without the help of notation?
Can | rearrange one equation so that a particular letter/number can end up-in a
different position relative to the equals sign? How many different positions can it
take?
Can | use my manipulation skills to tackle simultaneous equations?
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Successive levels of subordination can help a learner gain fluency with a skill. Once
a skill is known, it can also be examined. Vygotsky (1992), in talking about the
development of a mental function says that In order to subject a function to
intellectual and volitional control, we must first possess it (p168). The desire for
something to be used and practised before being subjected to conscious attention and
examination does not imply that the only method to achieve this is through rote
learning without understanding. Sfard and Linchevski (1994) ofter a warning about
this by discussing a difference between a practising mathematician and a learner of
mathematics: The problem is that unlike the mathematician, the student may easily
become addicted to the automatic symbolic manipulations. If not challenged, the
pupil may soon reach the point of no return, beyond which what is acceptable only
as a temporary way of looking at things will freeze into permanent perspective... It
seems very important that we try to motivate our students to active struggle for
meaning at every stage of the learning (p225). Functionalisation offers a way to
achieve the practising and using of a new skill through its subordination to a clearly
understood task. In this way, a student can work at the task with clear awareness and
understanding of what they are doing, it is just that the task involves the frequent use
of a new skill in order to achieve ihat task. This is quite different to the student being

told to follow a procedure and repeat it with no clear understanding.

Functionalisation is a powerful notion because it describes so much of the successful
learning we have all done. Functionalisation describes the process by which you
have been able to develop the skills required to read this paper. Had these skills not
been so well subordinated then you would not have had the energy available to

engage with the ideas | have attempted to describe within these sentences.

11 am also aware of a similar issues within the USA. For example, there is a Web site in the San Diego region
(http://ourworld.compuserve.com:80/homepages/mathman/) where a group are campaigning for traditional teaching
methods such as memorisation and drill.
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AN ANALYSIS OF THE DEVELOPMENT OF PUPIL UNDERSTANDING IN GROUP
WORK ACTIVITIES USING MULTIMEDIA
Brian Hudson
Mathematics Education Centre
Sheffield Hallam University
UK

ABSTRACT
This paper offers an analysis of the development of pupil understanding in a group work situation
involving classroom activities utilising multimedia. Use was made of the National Curriculum
Council sponsored multimedia package "World of Number" (Shell Centre et al, 1993). The study
was carried out with a Year 9 (14115 years) mathematics class working on graphs of relationships
between distance, speed and time, The paper is an extension to that presented at PME 19 (Hudson,
1995) in a number of ways. Firstly a fuller analysis of the social interaction within the group is
offered. Secondly the interpretation of the development of pupil understanding is informed by
insights gained from literature which emphasises the need to move away from a focus on
discontinuity, and the notion of "misconception" in pariicular, towards one which emphasises the
importance of continuity in the development from novice to expérr knowledge. '
INTRODUCTION

The paper begins with an outline of the background to the study and there then follows a full
description of the classroom activities and associated resources. My theoretical perspective is
outlined in the fdllowing section, followed by a description of the methods of data collection and
analysis. A framework for the analysis of the resulting social interaction is then considered. There
then follow a number of examples of classroom interaction, in the form of video tape transcripts
which are analysed in some detail. The development of pupil understanding is considered, with
particular regard to one pupil especially. Finally the results of this study are discussed in the
concluding section.
BACKGROUND

The classroom research was conducted as part of a wider project involving the investigation of the
potential of group work using multimedia. It was designed to fit in with the planned scheme of
work when the group was due 10 do a two week unit of work on graphical interpretation involving
graphs of motion. The topic was introduced as a whole class activity by means of a dice game
played in pairs which involved plotting the change of position dependent upon each throw of the
dice. The aim of the game was to get to the finish first. Following this activity one of the units
from the World of Number package was introduced to the whole class with the aim of setting the
context and giving the pupils a sense of what to expect in terms of the future activities on the
system. The chosen element was the video clip of the women’s 100m race in the Seoul Olympics
from the unit Running, Jumping and Flying. Following the whole class discussion of what the
graphs of speed and distance against time might look like some groups began working on the
activities at the system



A group size of three had been agreed with the class teacher, with the aim of creating the
conditions for effective interaction. Each group was allocated an initial period of thiny minutes for
intensive work al the system. The practical limitations were cased considerably by the use of two
systems. In addition to the original luser disc package the school also had the use of the CD ROM
version. This provision enabled four groups Lo carry out the multimedia-based activities in a one
hour lesson and for each group to have a turn over the period of a single week. The class was
timetabled for two lessons of approximately one hour and one of half an hour per week.
MULTIMEDIA-BASED ACTIVITIES

The unit is made up of video clips of various examples of motion, several of which are sporting
events from the Seoul Olympics as detailed in Figure 1. Each sequence has two or three graph
options associaled with it. For example, in the sequence shown in Figure 2, the chosen axes in the
bottom left hand window are height and time. Other choices might be distance against time and
speed against time. This would give three graphs to choose from in the bottom right hand window.
The combined choice is illustrated in the top right hand window.
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The main aims of the multimedia-based activity were to promote discussion and provide time for
reflection. The activily was structured in such a way as 1o encourage the following process: select
and view a video sequence, think about the distance-time graph, sketch the graph, compare graphs,
choose a graph which fits your ideas, explain to each other why a panicular graph does or does not




fit, test out choice on the system and finally repeat the process with a different choice of axes. This
can be summarised as a cycle of observaton. reflecnion, recording, discussion and feedback (Lest),

as sununarised in Figure 3.
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THEORETICAL PERSPECTIVE

The theoretical perspective underpinning this study is based on the work of Vygotsky (1962) and
in particular the Vypotskian idea of co-construction as a mechanism for cognitive change. Also of
stgnilicant influence has been the work of Forman and Cazden (1985) who note that when we try to
cxplore Vygotskian perspectives for education, we immediately coniront questions about the role '
of the student peer group. Forman and Cazden point towards Vygotsky's notion of internalisation,
by which the means of social interaction, especially speech, ure 1aken over by the child und
internalised and how development proceeds when interpsychological regulation is transformed into
intrapsychological regulation. They further highlight the importance of Vygotsky's notion of the
zone of proximal development and his hypothesis that children would be able 1o solve problems .
with assistance from an adult or more capable peer before they could solve them alone.

In Hudson (1995), Vygotsky's notion of the function of egocentric speech is discussed in relation
Lo the development of one pupil's understanding in particular. This analysis is developed further in
this paper by drawing upon Confrey's (1995) discussion of the socio-cultural perspective and in

—panicular the dialectic between thought and language, to which she pays particular altention. She
outlines Vygotsky's argument that thought and language have difterent roots. Speech which is the
basis Tor language evolves out of gestures and affective responscs whilst thought, and particularly
logical thought, evolves trom the child’s activity and the use of tools.

Vygotsky's notions of spontaneous and scientific concepls are also utilised in this paper.
Scientilic, or systematic, conceplts are seen to onginate in schooling whilst spontaneous concepls
emerge from the child's own reflections on everyday experience. Spontaneous concepts are seen (o
work their way upwards towards greater abstractness thus clearing a path for the downward
development of scientific concepls towards grealer concreteness.

The analysis of the development of pupil understanding is also informed by the work of Smith,
DiSessa and Roschellc (1993/94) who suggest that "the fact that students have mathematical and
scientific conceplions thal are faully in a variety of contexts can be reframed to highlighe their
useful und productive nature as well as their limitations”. They arguc that misconceptions rescarch
has focussed on discontinuity although “there is substantial evidence that the form and content of

novice and expert knowledge share many features”. In suppor they argue funther that expert
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reasoning involves prior, intuitive knowledge that has been reused or refined and suggest that a
fundamental shift is needed in terms of concepiualising Knowledge “as a complex system”. They
agree that the ongins of misconceptions lic in prior experience and learning but that conceptions
which lead to erroneous conclusions in one context can be quite useful in others. They also note
that learning difficult mathematical conceplts will never be effortless but also that the support, reuse
and refinement of prior knowledge will be an essential prerequisite. They also draw attention to the
fact that the notion of replacement of new expert knowledge together with the deletion of faulty
misconceptions "oversimplifies the changes involved in leaming complex subject matter”. Further
they draw attention Lo the fact that misconceptions considered to be extinguished ofien reappear.
They recommend that the goal of teaching should not be 10 replace misconceptions with expert
concepts but rather to "provide the expenential basis tor complex and gradual processes of
conceptual change”.

DATA COLLECTION AND ANALYSIS

The overall upproach to the collection and analysis of data was consistent with that outlined by
Hamiiton and Delamont (1974) who offer an analysis of what they broadly term "anthropological”
classroom research. They describe the anthropologist as one who uses an holistic framework,
accepts as given the complex scene which is encountered and takes this totality as the data base.
There is no attempt to manipulate, control or eliminate variables. At the same time there is no
attempt Lo claim to account for every aspect of this totality in the analysis. A characteristic of the
process is that the breadth of the enquiry is gradually reduced to give more atention to the
emerging issues. From stanting with a wide angle of vision enquiry zooms in and progressively
focuses on those classroom features that are considered o be most salient. Thus they argue such an
approach clearly dissociates itself from a priori reductionism which is charactenstic of the more
traditional scientific approaches. This approach is also consistent with that of Eisenhart (1988)
who considers the relevance of the ethnographic research tradition specifically in relation 10
mathematics education, and who observes that, central to such an interpretivist approach, is the
assunption that all human activity is fundamentally a social and meaning-making activity.

The data was collected by video recording the work of groups working on the multimedia-based
activities. The approach to the analysis of the resulting classroom discourse was particularly
influenced by the work of Mercer (1991). The tocus of the study reporied on by Mercer is the
content and context of educational discourse in a computer environment from a Vygotskian
perspective. The analytic methods adopted are similar 1o those of ethnography and involved the
complete transcnption of all the discourse recorded on videotape.

INTERPRETIVE FRAMEWORK

In approaching the analysis of the data arising from the peer interaction, the need for an
interpretive framework soon became cvident. The approach adopted by Teasley and Roschelle
(1993) was found to be particularly resonant and was consequently adapted to form the chosen
framework. A framework for the analysis of collaboration is outiined, which the authors argue
involves not only a micro-analysis of the content of students' talk, but also how the pragmatic
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structure of the conversations can resull in the construction of shared knowledge. In order 10
understand how social interaction affects the course of learning, Teasley and Roschelle arguc that it
requires an understanding of how students use coordinated fanguage and action Lo establish shared
knowledge. to recognise any divergences from shared knowledge as they anse, and to rectify any
misunderstandings that impede joint work. The notion of "a shared conception of a problem™ is a
central one and this is used as the basis of what is descnbed as a Joint Problem Space. It is
proposed that social interactions in the context of problem solving activity occur in relation 1o a
Joint Problem Space (JPS). This is defined as a shared knowledge structure thal supports problein
solving activity by inlegrating goals, descriptions of the current problem state, awareness of
available problem solving actions and associations that relate goals, features of the current problem
state and avalable actions.
ANALYSIS OF CLASSROOM ACTIVITY

In this episode of classroom interaction Philip, Neil and Jonathan are watching the video sequence

of a jumbo jet landing. The axes are initially set on height against ume.,

| P: It doesn't stan off ...
Watch this. Height against ume. Philip runs the video.
2 N:  Speed against time that. The axes are set on height aganst ume.
3 P Yesbutno. We've gotto choose which height — Trying to clanify the task.
against time 15 the nght one.
4 ). Letshave a look. Referring to graph
option 1.
5 N: Yah! Oh! How come it does all the wavy lines?
b goes straight down.
It doesn’t go up and down does 11? Making a diagonal downward wavy motion.
6 1§ Wellchange it! Have a look ...
7 1p:  Nobut the nose goes up, doesn't it? Making a diagonal
downward smooth motion. #4
B iN: No! That's not it!
Y ). That's notat! Refernng to graph
option 2,
1) N:  It's wking off that, isn'tit?

Philip gives a lead at the start of this episode. Al line 1, he identifies the problem as being about

height against time. However Neil tukes his turn by responding to the video with the observation at
line 2 that it is "Speed against ime that”. Philip's response at line 3 appears 10 be contradictory
when he replies “Yes but no”. By this he may have been indicating that, "yes”, the graph showing
i5 the correct choice to fit the speed against time axes but that, "ne”, it is nol addressing the current
problem which is "to choose which height against time is the right one.” In doing so, Philip secms
to be attempting to clarify the task, i.e. to establish the Joint Problem Space (JPS). Jonathan takes
his tum to try to move progress with the task itself, when he suggests at linc 4 "Let’s have a louk”.
Neil's response to the video sequence at line 5 would seem to be based upon an expectation of a

smooth line. However Philip is able to offer an interpretation of the griaph, when he observes al

100
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fine 7 that the nose of the acroplane "goes up” on landing. The final comment in this section from
Neil, at line 10, displays evident contusion between what he interprets from the graph and what he
observes by walching the video sequence, which is clearly of the plane landing. The fact that the

. graph is rising from left to right suggests to Neil that this is the flight path of the aeroplane taking
off. This confusion in his thinking was apparent in an earlicr episode, when in response o a
question aboul what was happening to the distance covered, Neil's reply was: "It’y going up.
Higher” which was in conirast to Philip who answered: "It's getting greater”.

It would seem that Neal's difficulty is related to the fact that he is deseribing the picture that he
sees on the page 1.e. "It (the line) is going up (the page). Higher (up the page)”'. The inability, at
this time, to distinguish between the representation of the motion pictorially and the motion itself
would explain why Neil interpreted graph 2 as showing the aeroplane taking off.

The next section is later in the same episode when the group is considering distance against time.

Il J: Do you wani to change that one? Reterring to the choice of axes.

12 P Yeh, I've done thar. Ir's distance against time
now.

13 N: Distance is going down?
No! How could it be going down - distance” Referring to graph option 1.
Oh, it's just landed.
But its time's going up!

14 1P: What?

15 1J: Thedistance? Itcan't...can't ...

l6 1 ... go down. It just goes up.

17 N: | know it cant.

I8 1P So, why does it look like that then? Looking at graph option 2.

Jonathan's question at line 11 is an attempt to clarify the nature of the task. Philip responds
directly by indicating that he has chosen the axes to be considered and elaborates further that "It's
distance against time now". Neil's stream of utterances at line 13 seem to form a narration of his
current thinking, which once again appears to be very confused. He seeks to interpret the graph in
terms of the possible motion of the aeroplane. His first utterance relates to a perception of the
distance going down rather than decreasing. He seems to dismiss this as a possibility but then
refers to the fact that "it" (the plane) has "just landed”. He concludes with the utterance "But its
time's going up!" without being clear about what "it" refers to.

In response, Philip simply asks “"What?", at line 14, and Jonathan attempts to repair the
understanding, at line 15, by beginning to suggesi that the distance can't decrease. However Neil
does not allow him to finish and completes his sentence for him with ... go down. It just goes up.”
Although this completion is distributed over a single sentence, there is evident contlict within the
group in terms of their shared understanding. Philip intervenes at line 17 and asserts that "I know it
can't (go down)” which elicits the question from Neil "So, why does it look like that then?".
DISCUSSION

In this episode Philip gives a lead on a number of occasions which take the form of clarifying the
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probicm or establishing the JPS. He does ihis at the start of the episode (lines 1 and 3) and also
later at line 12 when the axes had been changed to distance against time. In doing so, he is assisted
by Jonathan who, for example, at line 11 asks "Do you want to change thar one?”. Jonathan is also
influential in moving the group torward when he suggests "Let's have u look” and also "Well
change it! Have a look ..." at lines 4 and 6. By contrast, Neil's ulterances are based on his
reactions towards what he sees on the screen. He is also much less clear about what it is that he is
describing. For example at line 5, he seems to use "ir" to refer to two things without being clear
about the distinction between them i ¢. the aeroplane and the representation of its path in the form
of the graph. He is again unclear at line 13 in terms of what "it"” refers to. In fact Philip responds
directly 1o Neil's question at line 18 by stating that "it starts from the bottom and goes up”. In
doing so, Philip is clearly referring to the graph although this is not explicitly stated. He
subsequently asserts that "I£’s got to be that" and appears to be quite certain. This graph option is
the only one which “starts™ at the origin or in Philip's words “starts from the bottont and goes up”.
Neil is also convinced by the time the group comes to test out their choice on the system and
exclaims that "It is right. Because the distunce goes up and so does the time, at the sume time!".

In Hudson {1995) Neil's confusion was described in terms of a misconception. However as Smith,
DiSessa and Roschelle (1993/94) observe, in emphasising the discontinuily between novice and
expert knowledge the potentially "useful and productive nature” of such can be lost sight of.
Initially Neil does not display confusion of a significant nature but merely asks why "it does all
those wavy lines”. On first seeing graph option 2, he is quite sure that it is not the correct graph and
asseris at line 8 "No! That's not it!?". Subsequently he reacts 1o the graph by seeking 1o interpret it in
terms of the potential motion of the plane and it is at this stage that the idea of the planc taking off
is introduced. He again responds to the graph showing on screen at line 13, with a stream of
utterances which display considerable confusion on his part.

As discussed in Hudson (1995), Neil's use of language is resonant with Vygotsky's notion of
egocentric speech. In highlighting the dialectic between thought and language Confrey (1995)
draws particular attention to Vygulsky's argument that these have ditferent roots and hence that
there are two distinct lines of development which eventually lead 1o a synthesis. Vygotsky -
proposed that speech can be considered 1o have two particular forms which he describes as
cgocentric and communicative respectively. The function of communicative speech is for the
purpose of communication with others whilst the function of egocentric speech is as an instrument
of thought itself. Vygotsky develops this view of the function of egocentric specch, by arguing that
all sitent thinking is "nothing but egocentric specch”. Vygotsky also notes that children resont to
cgocentric specch when faced with difficult situations. He argues further that egocentric speech is
the genetic link in the transition between vocal and inner speech.

Many of Neil's utterances are consistent with cgocentric speech, in contrast to both Philip and
Jonathan whose utterances seem 1o follow from their own reflections on the situation. Neil's level
of achievement was in fact one of-the lowest in the class and his performance on the delayed post-

test was slightly worse than on his pre-test. These results suggest that Neil's confusion deepened
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over the course of time and this is illustrated by his response to
being asked to describe a story to fit the graph in Figure 4 (the
axes are distance from home against time). Neil's response was: prim /
"An aeroplane coming out of a hangar and getting on to the .
runway it pauses for a little while and hovers forward into

the air but stops for a while then it comes back down again.” : J

This interpretation completely ignores the fact that the graph is

[ Figure 4 I

of distance against time and not of height against time. However

for a graph of height against time it would be one possible interpretation.

Further it suggests that Neil's spontaneous conception is of a graph of height against time. This is a
situation with which he is comfortable in which he is utilising prior, intuitive knowledge - although
not necessarily answering the question put. The real difficulty for Neil seems to arise when the
transfer from the motion to its graphical representation is not in the corresponding plane, which
appears to be the case with height but not with speed and distance. This example is an illustration
of how misconceptions which are considered to have been extinguished often reappear and it also
highlights the need to provide pupils such as Neil with further experiences as the basis for
“complex and gradual processes of conceptual change” (Smith, DiSessa and Roschelle, 1993/94).
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SOME ISSUES IN ASSESSING
PROCEPTUAL UNDERSTANDING

Mark Hunter John Monaghan
John Smeaton Community High School University of Leeds
. Leeds LSI58TA, UK Leeds LS2 9JT, UK

This paper reports on one strand of ongoing research on 13-13 year old
students’ understanding of algebraic expressions, that of students’
proceptual understanding. In preparation for a larger study tools for
assessing  students' proceptual understanding of algebraic expressions
through test items were developed. Students who had shown evidence of
proceptual understanding were subsequently interviewed to evaluate these
written tools. A number of issues surrounding the assessment of proceptuul
understanding are discussed including the method of assessment, the
context of the question and students' technical skills. The extent to which
conceptions can be ascertained from test items alone is discussed.

Introduction

Research is currently being conducted to determine the eftects of a cognitive conflict,
intensive discussion approach to teaching and leaming algebra (see Bell, 1986). This
research requires an understanding and categorisation of students’ concepts
surrounding the use of letters and expressions (see Perso, 1991). There are two main
areas of investigation, the concept the student has of letters within expressions and the
strategies and errors volved when working with expressions. However, there is a
third, subsidiary, but interesting area of understanding - that of the expression as a
whole. This brings i the ideas of understanding the expression as representing a
procedure to be carried ow, or as a structural object (concept) that can be
manipulated. PME has been an important forum for developing these ideas which
Sfard (1989) calls ‘structural and operational’ and Gray & Tall (1991) call
‘proceptual’. We use Gray & Tall’s terminology here.

We shall refer to the combination of process and concept represented by the
same symbol by the portmanteau name ‘procept’. (ibid, p.73)

Why have we chosen to focus this research on students’ understanding of letters in
expressions rather than equations? The issues surrounding students’ understanding of
letters are, on the whole, sinudar i both equations and expressions. However, the
study of equations tends to bring in several features that add to students’ difficulties
without necessarily shedding much light on their understanding of letters. For example,
when students have to solve equations, there are a number of procedural as well as
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conceptual difficuluies that need to be overcome. With a study focusing on expressions
we hope it will be casier to isolate the conceptual difliculties from the procedural
ones,

As part of the research methodology, groups of students were given a diagnostic test.
Test 1tems were designed to elicit students’ conceptual understanding of letters within
expressions and their strategies for working with letters in expressions. Other test
items were designed to provide information on students’ proceptual understanding

This paper discusses some of the issues surrounding the notion of procepts and the
categorisation of students as having a proceptual perspective. The research reported
here is in its pilot phase and is working towards a classification scheme that allows
students’ responses to be categorised as procedural, conceptual or proceptual. Various
‘working criteria’ couched in terms such as ‘two or more different but correct
answers’, ‘reasonable justificaion other than the same but written differently’ and
‘ignore purely spatial rearrangements of terms’ were considered.

Methodological issues

There are a variety of methods that can be used in order to glean some evidence about
the way m which students think. However, as Sfard and Linchevski (1994) point out,

“a painstakingly detailed scrutiny of student’s behaviours and utterances ...
1s necessary to have some insight into his or her thinking”.  (pp.192-193)

Our research involved giving 80 students a diagnostic test aimed at obtaining
information on their understanding of letters and the strategies and errors observed.
Within the context of the wider research a detailed scrutiny of proceptual
understanding was unpractical. So what value can we place on responses to test items
designed to ehicit students’ proceptual understanding?

A test will only give the conclusions of students’ thought process and does not give
much, if any, evidence about the way they arrived at their wntten response. To
provide further evidence to support the written outcome, a small sample of the
students that took the test were interviewed about responses that appeared to show a
proceptual understanding. Students were asked to justufy their previous answers and
answer somne related questions during the interview. One of the issues that was
explored in the interviews was the part placed by the context of the question. Some
questions used diagrams to act as a visual representation of the algebraic expression —
did students reach their answer through the medium of the diagram rather than from
consideration of the algebratc expression alone?

Test items

Only those stems relating to proceptual issues are presented here, These items were
used as a basis for the subscequent interviews.



Question 1

You can write down the area of this rectangle as 3u + 65, 3
Write down as many other expressions as you can for the
area of this rectangle. \ a 2b

R

Question 2

You can write down the arca of this rectangle as 4(« + b). 4 '
Write down as many other expressions as you can for the )
area of this rectangle. ' L

a b

Question 3

a) What does x + 2 + x + 2 pive when x = 6?7 b) What does 2x + 4 give when x = 67
¢) What does 4 + 2x give when x = 6? d) What does 2(x + 2) give when x=6

Explain how the answers are hnked. Explain how the expressions are linked.

Question 4

Y ou can write down the area of this rectangle asn + 5 4
muitiphed by 4. Write down as many other
expressions as you can for the area of this rectangle. n S

|

Students’ responses to the test items

The responses given below are from eight 14-15 year old students who were
mterviewed after having their test responses were analysed. These students were
selected as a sample from those students who showed some evidence of a proceptual
perspective on one or more of the four questions above. The test and protocol data
described below is representative of the different types of responses that the students
gave dunng the test and the interview.

The difficulty of defining what a ‘concept’ is feads to difficulties in defining a
procept. This, however, is compounded when assessing proceptual understanding
through test items. As students with proceptual understanding will not only be tlexible
about which perspective they are using, but also ambiguous. The key aspect of
students’ work that needs to be seen is that they can use an expression conceptually.

Question | asked students to give expressions that are equivalent to 3a + 6b. Student
S gave four expressions on the test: : :

Ia +2h) a+tdatatbh

3a+2b v 2h 0 2b atatat2b42b v b,
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This set of responses shows that student S can represent the same expression in a
number of different forms. Swudent S was then interviewed and explained her
responses using the rectangle, but perhaps only as a ‘prop’, as above. S was then
presented with a further rectangle and gave the answers 6xa + 258, 6(a + 2b), 8(b + a).
The last answer here was derived from adding all the numbers round the rectangle
(3, 3, and 2). This latter response shows the difficulty of any form of assessment, that
a student might respond correctly on one occasion and incorrectly on another.

Question 2 requires the students to give as many algebraically equivalent answers as
possible to 4(a + b). Student § gave the following answers on the test:

a+ b4 atb+a+btat+tb+a+b ata+rata+b+b+b+b.

The first answer shows a misunderstanding of the use of brackets, but do the next two
answers show a proceptual understanding? When interviewed about the question, S
explained that a + A4 meant 4 times o and b. This seems to show a flexibility of
understanding, but not one that is generally accepted! The issue here is whether
technical errors alter students’ proceptual perspective.

Student J seems to show a clear conceptual understanding of 4(a + b) on the test, as
the following answers were given as equivalent

da+ 4b atata+ta+tb+b+b+bh
4a+b+bhb+bhb+bh ) db+a+a+a+a.

However, when interviewed, J said “they all equal the square”, indicating that the
understanding was perhaps more due to the diagram used to give the question greater
meaning. J also went on to say that the expressions were “the same answer but
difterent ways of writing 1t”. Is this simply the use of “answer’ to inean ‘expression’ or
has the question been understood as implying a numencal result? Dunng the interview,
a follow-up question was asked that did not use the rectangle as a context or
representation for the algebraic expression. In this case, J wrote

3x + 6y X+tx+x+y+ty+y+y+yty
X+tx+x+6y Ix+tytyt+typtptypt+y

as equivalent to 3(x + 2y). This shows that, although the explanation during the
interview implied that the diagram had been used, it seems that this may have been
more an aid to explanation rather than an aid to understanding.

This use of the diagram was even clearer with student M, who explained in the
interview that “[ multiphied the first box, well | found the area of the first box by
timesing that length by 4 and | did the second one and | added them together...”.
However, when asked a similar question without the diagram, the student could sull
explain that 3(x + y) was equivalent to 3x + 3yand x +x+x +tp + y + .

Question 3 was a diterent style of question and first asked for an explanation of why -
the answers to cach pait of the question were (or should have -been!) the same. The
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second part asked why the expressions were the same, with the first part of the question
being used to try to avoid students simply saying that the answers were the same.
Student T gave the answers to the first part of the test item as a) 16, b) 30, ¢) 30, d) 16
(the answers of 30 were amved at by considering 2x to be 26 when x = 6, a ‘category
one” type error according to Perso (1991, p.11)). The student then wrote down that
“The expressions for the answer 30 are the same but in a different way and the same
for the answer 16”. Whilst 2v + 4 and 4 + 2x can be secen to be ‘the same but in a
different way’, was this how the expressions x + 2 + x + 2 and 2(x + 2) were seen, or
is the last part of the students explanation merely an afterthought following from the
fact that the answers were equal?

This was followed up in the interview (‘1” being the interviewer).

T: For the 16 that just says .x add 2 add x add 2 it is just saying that 2 times x
add 2 1s the same answer.

I So the answers are the same, what about this algebra... Can you tell me
they were the same from there?

T: . Yes, 1t you add brackets in, that will be ... 2 times x plus 2.

From a not very promising start, which seemed to show that the student had only
g.ompared the answers, T then gave a reasonable algebraic jUblIflcalIOII why the two
expressions were equivalent,

After correctly evaluating each of the expressions on the test as being 16, student L
explamed that the answers are linked “because it’s the same question only put out
different”, and explained that the expressions are linked “because it means the same
thing”. When interviewed, the student gave the following responses.

L: They all add up to the same thing.

i: Can you look at the letters and numbers and tell me, can you see a
connection between the letters and numbers as well?

L: No reply.
This student scems to have viewed the expressions in a purely procedural way.

Question 4 agan asked students to give alternauve expressions for #n + 5 multiplied by
4 with a spiit rectangle displayed. Student M gave the following answers

(5 +n)M S+S5+5+S5+n+ntn+n
These were then discussed during the interview.

M: Well | added those two lengths together first so it i1s 5 plus » then I timesed
them by 4 and then 1 wrote down 5 plus S four tunes and | added n and |
wrote that down 4 times.

i Can you write an expression that imeans the same as x plus 4 multiplied by 37
M: Jx+4) Ixd ¢ 3x
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From the interview, the student seems to be making use of the diagram, although the
second expression is not related to the diagram at all and the student is capable of
working without the diagram at all.

Discussion

One problem we anticipated was the difficulty of assigming meaning to an expression
such as 3(u+2b) when no numenc substitution was required. The expression may
appear as an abstraction with no immediate reference (no ‘sense’ and no ‘reference’ in
Fregian tenns). This is why we initially inserted the split rectangle in questions 1, 2
and 4 — intuitively, at the time, to make it accessible to the students. In retrospect we
believe our motive was to give the expression ‘meaning’ by providing a reference. But
in doing this we_hdve_made our proceptual analysis of students’ responses more
difficult because the figure may convey both process and product — the figure may
present both one rectangle and rvofrectangles forming a sum rectangle. For many
leamers 1t will, sulch;ilously, do both things at once, 1.e. it will present a flexible
and ambiguous proceptwhereas a similar question without a figure appears less likely
to prompt both process and product. Both forms present representations of an
algebraic procept. But

A representation does not represent by itself - it needs interpreting and, to
be mterpreted, it needs an interpreter.”” (von Glaserfeld, 1987).

But how do we interpret the mterpretation of the interpreter? Further there are many
tforms of representation (¢h1d). The figure appears as an (indirect) iconic representation,
Paget’s distinction between fignrative (relating to the observable) and operative
(relating to inference) knowledge has relevance here (see Furth, 1977). But, as Furth
makes clear, the distinction is problematic for what is observed is a function of what
the leamer already knows. This problem i1s evident when we attempt to analyse the
protocols. Student S in question | explained her responses in terms of the rectangle
but perhaps only as a ‘prop’. Student J, we felt, may have been using the rectangle as
a vehicle to assist the explanation to us. Student M focused on the rectangle nitially
but later ‘appeared’ to function without reference to it.

A problem that we have with procepts 1s with concepts. Skemip (1971, p.27) states
that “concepit itself cannot be defined” but notes that we may “describe some of the
characteristics of concepts™. This is not an argument in itsell against the term procept
but should cause us to take care with the term. It may also partially explain why some
people find they ‘cannot get a handle’” on procepts. Dubinsky (1991) and Sfard (1991)
by-pass some of these problems by speaking of process-object rather than process-
concept. Reflecting again on our intuitive intentions in the wider research related to
categorics and hierarchies of students’ conceptions of expressions, we happily speak
to each other of students’ concepts and their conceptual understanding but expernence
difficulty when called upon to explain this. Further, as the two interview extracts from
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student T suggest, soine students appear to have a conceptual understanding that is
grounded in handling cxpressions in a procedural manner.

Let us take this theme a little further for it relates to difficulties in developing cniteria
for categorising students’ responses as showing proceptual understanding or not.
Following Fischbein ¢r al. (1979) we note the labile nature of some students’
conceptions. An example of this is the response of student S to question I. Here the
student seems quite capable of a conceptual response on the test. However, when
interviewed and given a very similar question, also with a diagram, the student
responded in a way that was not obviously proceptual. In this example, the student's
understanding seems to have changed between the test and the interview. The reasons
for this may be manifold, but it seems that some unportant vanables include the
method used to assess the student’s understanding, the context of the question and the
student's grasp of the concept itself. The student may have been more able to reflect
on the question in a test, but felt under pressure to put down a rapid answer in an
interview. The diagram was slightly more complex n the interview and this may have
meant that, whilst the student had the understanding necessary to cope n a certain set
of situations, this understanding was no longer sufficient for the new situation. It is
also unportant to consider that when a student has partially attained an understanding
of a concept this may be exhibited by a conceptually correct response on one occasion
and an incorrect response on another, even on identical questions.

A related ditticulty in assessing students’ understanding from a test is the part played
by the student's technical ability. This is shown by student S on question 2 where the
first answer is given as a + bd. Tlis i1s algebraically incorrect, although the student
explained dunng the interview that this expression meant 4 times a and b. The
student’s meaming on the test item is hidden by a technical error, but from the
inlerview is scems that the student does have the conceptual understanding. In a
sunilar way, student T’s response to question 3 contains a place value error when
substituting x = 6 nto two of the expressions. This student then went on to give an
almost ‘textbook’ explanation of why two expressions are equivalent, but a sinular
technical error condd have resulted in the equivalence of the expressions being
overlooked by the student.

Conclusion

As in many situations, a single administration of an assessment item reveals very httle
of a student’s underlying understanding. The responses are affected by many extemal
(to the student) factors such as the context of the question and the method used to
assess their understanding.  There are also barriers between what the student
understands and what the student writes down or says. In the case of a test, technical
errors in what 1s writiecn down may mask a conceptual understanding either to the
student or to the assessor or both. Studems who are just developing a concept that is
being assessed may sometimes exhibit the concept and sometimes not.
110
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The issue of technical errors masking the assessment of conceptual understanding is
an important one. Students may sull understand the concept even if there are errors in
their technique, for example with the consistent use of brackets. However, students’
ability to express their thoughts to others are impaired, and our ability to interpret
them is much impeded, without extensive follow up work.

Procepts are a very important construct for work in mathematics education but little in
the existing hterature prepared us for the problems we experienced classifying
students’ understanding i terms of procedural, conceptual and proceptual
understanding. Perhaps too much emphasis by writers is put on theoretical issues and
not enough on analysing real students responses? The importance of the notion may
also lead us to ascribe too much to proceptual analysis. Our discussion of forms of
representation lead us to believe that procepts are only part of the picture.
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THE DEVELOPMENT OF LANGUAGE ABOUT FUNCTION:
AN APPLICATION OF VAN HIELE'S LEVELS

Institute of Education, The University of Tsukuba

ABSTRAC.'I‘

This paper proposes a model of the development of language about function. This model was
developed by comparing Japanese teaching practices and national curriculum with generalized
forms of van Hiele's Levels. This paper points out features of van Hiele's Levels and shows
that they are also characteristics of the proposed levels of language about functions. These
features include: language hierarchy, the existence of un-transiatable concepis, a duality of
object and method, and mathematical language and student thinking in context. The levels
indicate that students’ development resembles an expanding equilibration, rather than a
monotonous increase of knowledge.

Introduction

In the past ten years, multi-representational tools for exploring functions have
been changing the contexts and learning sequence of arithmetic, pre-algebra,
algebra, pre-calculus and calculus. In discussing these reforms, it is important to
consider students' development not only in terms of conceptual functional thinking
but also considering students' language conceming functions. Several models of the
development of functional thinking have been proposed (E. Dubinsky, 1992; A.
Sfard, 1991; A. Sierpinska, 1992; S. Vinner, 1991). These models' views imply that
the development of students’ knowledge and thinking about function is like an
expanding equilibration rather than a monotonous increase (cf. J. Confrey 1994;
E.V. Glasersfeld 1995). This paper will show another model of development which
provides the same view but focuses on the students' development conceming the
representations of function as mathematical language. One charactenistic of this
model is its background. This model was set by comparing the Japanese national
curriculum and teaching practices with the generalized forms of van Hiele's Levels
(A. Hoffer 1983; M. Isoda 1984). The Japanese curriculum may be the only
national curriculum which has specified areas of function/functional thinking from
elemernitary school.! This paper discusses the features of this model from the view
point of expanding equilibration and the features of van Hiele's Levels.

The Features of van Hiele Levels

A. Language Hicrarchy. Each level has its own language and the levels are hierarchical (van
Hiele, 1959).

lin the nationa) curriculum, the 4 areas of elementary school and 5 arcas of junior high school mathematics have becn
formally in place since 1958. These areas include functional thinking, figures/geometry, and arithmetic/algebra. Each
area is connected and integrated with each other. This tradition has its roots in the movement of Perry, Kline & Moore,
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$. The corresponding contents of different levels

sometimes conflict (van Hiele, 1986).

C._Duality of Object and Method. The thinking of each level has its own inquiring object

{subject matter) and inquiring method (the way of learning). The method of each level is verbatized

and becomes the object, subject matter, of the next level's inquiring. This is the duality between
object and method (van Hiele 1958; H. Freudenthal 1973; 1. Hirabayashi 1978),

D. Mathematical Language and Student Thinking in Context. While the levels are
distinguished as sets of mathematical language, the actual thinking of each student varies depending
on the teaching and learning context (van Hiele, 1958; M. Isoda, 1988; D.Clements, 1992; cf. M.
Bauista, 1994).

The last feature claims that we should make a distinction between the levels of
mathematical language and the levels of siudents thinking uself. Although several
research studies have attempted to evaluate individual student's levels of geometric
thinking, they point out the difficulty in doing so (cf. J. Mayberry, 1983; A.
Gutiérrez, 1991; D.Clements, 1992). If these four features can be pointed out in
another area of mathematics, for example the area termed 'functional relation’ in
Japan, we could conclude that it is an application of van Hiele's Levels. This paper
tirst discusses the levels of function from the viewpoint of language and then
discusses the development of students’ skills.

The Levels of Language about Functions

Through investigations? of the development of students' language for
describing functions and the history of the description of motion, the following
levels of function have been discussed34 (M. Isoda, 1987, 1988, 1990). Historical
examples are writlen in footnote five through eleven.

Level |. Level of Everyday Language.

Students describe relations in phenomena using gveryday janguage obscurely. They can
discuss changes in numbers using calculations, but usualty their descriptions are done with or focused
on one physically evident vanable, the dependent variable.> Even if they are aware of covariation, it
is difficult for them 10 explain it appropriately using two variables because their descriptions of
relations are done obscurely® using everyday language . So it is difficult for them to compare different
phenomena at once, appropriately.

Level 2. Level of Arithmetic

2lnvcsligulions included tests, interviews and wwaching practice/classroom observations,

3n van Hiele theory, levels are described with like these gencralized students’ activities. But these generalized description
are already memioned the level of language rather than cach student’s thinking itsclf. Because depending on the
contexeducational sitvation, students could do more higher tevel activity and students’ activity usually included lower
level acuvity and change depending on context.

4Because curriculum and students' development arc mutually relawed, students’ development reflects the curriculum and
investigations of development cannol prove its hicrarchy. Phylogenctic exampies are a good ground for ontogenesis.
5Z¢nu. Eleatic school, argued that Achilies conld not catch a wrtoise.

Sariswoule wrote that something talls Faster il it is heasicr.
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Students describe the rules of relations using tables. They make and explore 1ables with
arithmetic. Their descriptions of relations in phenomena are more precise with tables than with he
only everyday language of Level 1.7 Students have general concepts about some rules of relations? ,
for instance, proportion. Students can compare different phenomena using such rules. They describe
rules of relations as covariation and when reading 1ables, their interpretation of the covariation of
variables 1s at least as swong as their interpretation of cormespondence. Students can use formulas and
graphs to represent rules and relations, 1o, but it is not easy for them to translate between notations.
Level 3. Level of Algebra and Geomelry

Stwdents describe functions using equations and graphs. To explore function, they translate
among the notations of 1ables, equations and graphs and use algebra and geomeiry.? At this level,
their notion of function, which they already understand well, involves the representation of different
notations alreacty integrated as the mental image. FFor example, they can easily find the equation
emerging from the graph, and the graph from the equation.

Level 4. Leve] of Calculus

Students describe function using calculus. In calculus, functions are described in terms of
derived or primitive functions.\Y For example, to describe the features of a function we use its derived
_ function which is already learned. The theory of calculus is a generalized theory of this type of
description, i
Level 5. Level of Analysis

An example of language for description is functional analysis which is a metatheory of
calculus. This level's justification is based on historical development!! and not yet investigated.

Table 1 shows the duality between object and method in van Hiele's Levels
(the Levels of Geometry) and in the Levels of Function. Examples of un-
translatable concepts are offered between each level. Furthermore, the existence of
duality and untranslatable concepts suggests a hierarchical relationship between the
levels.'2 Thus, these constitute three of the four features of van Hiele's Levels histed
earlier in the paper. These, as well as the fourth feature, will be further discussed
later froni the viewpoint of the development of student thinking.

71’10Icmy made the chord (Irigonometry) wble w describe the motion of plancts.
Salileo found the ratio of differences in the distance fallen of falling hekdies o be the sequence of odd numbers.
YGalileo found the parabola, which Apollonius had described as being cut from a conic, from the odd number ratio of a
talling body.
9Newion descricd inotion using fluxion.
11, Bemoulli posed the problems of branchistochrone and geodesic line. These v.mulmn.:l problems were origin of
{unctional analysis and differeniial geomeury,
2in the case of quadratic function, we can make the following distinctions,
Level 1. Students do not easily comparce the situations. They can not appropriately distinguish guadratic {rom other
situations i’ we use only daily language. Sce footnote No. 6.
Level 2. Quadratic Tunclions and contextual situations can be deseribed using a table where second differences are
constant.
Level 3; Quadrauc functions are described algebrawally by y=ux2+hx+c, and geometrically by parabolas. Tangent
hines are discussed using b2-dac.
Level 4; Quadratic function is described with the derived Tunction ol cubic function and primitive function of hncar
function. Tangent lines are discussed ustng derivatie,

J
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Table 1. Duality and Un-translatable Concepts

" The Levels of Geomelry The Levels of Function
Level 1 | Students explore matter (object) using Students explore phenomena (object) using
igures (method). obscure relations or variation (method).
Example | Because it has rounded || In Japanese, we use "2 BAY, 3 BAI" to mean "iwo times,
of comers, the road sign three times"” on level 2. But in everyday Japanese (Level 1),
conflicts | 'YIELD' is not 4 triangle | we can use "BAI" 10 mean either "double™ or "plus”. A child
between [ according to the on level 1 says "BALBAI" ("plus plus”) to mean three times
levels meanings of Level 2, but{l the original amount. But "BALBAI" ("double double™)
we call it a tnangle in usually means four times. On level 2, students use "2 BAIL 3
daily language. BAI" 10 explain proportion as a covariance and they say three
times as "3 BAI" and do not say it "BALBAI".
Leve] 2 | Students explore the figures using the Students explore the glations using rules;
property;, The gbject on level 2 was the The object on level 2 was the method on
method on level I. level 1.
Example § A square is rectangular on Level 3, but not | The constant function is a function on Level
of on Level 2. 3 but ‘constant’ is not the relation which
contlicts was discussed as covariation on level 2.
Level 3 § Students explore the properties of figures  § Students explore the pules using notations
using implication. of functions.
Example § “The isosceles triangle has congruent On Level 3, a tangent line of quadnlateral
of angles. On Level 3, it is induced already  ff function deduced using the property of only
conflicts | and we do not have 10 explain more. On || one common point / a multiple root. On the
Level 4, we prove it. Level 4, the tangent line does not always
. have this propeny.
Level 4 [| Students explore the proposition, which is  § Students explore functions using derived or
formed by implication, using proof. primitive function.

The Development of Students' Thinking

Students’ development from a lower level to a higher level resembles an
expanding equilibration rather than a monotonous increase. Below, two examples
are offered which were selected from investigations of the development of
functional language from level 2 10 level 3. The features of van Hiele's Levels help
explatn the students’ growth of knowledge. First, I describe the Japanese
curriculum for moving from level 2 1o level 3.

In the national curriculum in Japan, an informal notion of proportion is
taught in grade 4 and more formal concepts of whole number proportion including
y=ax are taught via real stiuations in grade 6. The curriculums of grades 4 through
6 are regarded as level 2 or as a transition to level 2. In grade 7 (junior high school
grade | in Japan), students learn how to solve equations with one variable, the
defimition of function using the idea of correspondence, and the function y=ax. In
grade 8, the linear function y=ax+b is taught. In grade 9, the quadratic function
y=ax2 is taught and funciion is redefined using the idea of set and correspondence!3.
The curriculums of grades 7 through 9 are regarded as level 3 or as a transition to

Pia ihe current curriculum, this redelinition of function is wught in Grade 10. Examples were collecicd in the former
curriculum, '
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level 3. The investigation found that many students in grade 6 thought on level 2,
and many in grade 10 thought on level 3.
Example 1. 0§ i 10 s of thinking i

of moving 1o a higher level. The resulis'* of problem 1'%, below, show that
students’ proportional reasoning looks the same!¢ after they learned the formal
concept of proportion via situations in grade 6 and afier they re-leamed the concept
as the function y=ax in grade 7. But the results of problem 2 show the change in
their reasoning from grade 6 to grade 7. Q3 in problem 2, (see Graph 4) shows that
grade 6 students’ proportion of correct answers was higher!? than in grade 7, but is
the same as grade 9. Graph 5 indicates that, to get a correct answer, grade 6
students’ solving methods of problem 1 and of Q3 were more different than grade 7
students’. Q2 in problem 2, (see Graph 3) shows that many grade 7 students still
recognized this situation as dealing with proportions. Graph 6 show that half of
them could not write a correct answer to Q3. The ditference between problem 1
and problem 2 1s that problem 2 was posed via a real situation. This result suggests
that many grade 7 students, in the process of reconstructing the concept of
proportion as a function, become lost when applying the concept of proportion to
the real world. Indeed, Graphs 1 and 2 for Q1 show that after leaming proportion,
grade 6 students could describe and analyze the situation itself exactly, while grade 7
students, having re-learned proportion as a function, could not.

Problem 1 i ifyisi i i

Graph of Auswer Distribution
‘zre — No Answer
| :
. :‘[ _dpats, Qe14; Correct

P .Pa14, Q=15

|
|
|
|

i
) ',’f}/P-IO,Q-31 *1316|°P
,.:.?:,,P-IO, Q«24 y 7 Q 35
L Pal4, Qa3
9 .

Problem 2.

0 L L

1 Step 2 Steps 3 Steps 4 Steps

MThis data was collecied in a down town arca of big citics and cach grade's population was larger than 150 people.
They had already fearned cach grade content of tunction of funcbonal thinking arca in the natonal curriculum,
57his problem is the same as a problem i the Second lnteacnmional Mathematics Study.

16 The probability of ro difference is 0.6 There i no sigaiticant dillerence.

TThe probability ol no diffcrence is (L00015. There 15 a signihicant difterence,
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]
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Correct

2

o
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One interpretation of these results is that many students who already know the
concepts of proportion and have experience dealing with y=ax in the context of real
situations, can not assimilate the function y=ax in the context of algebraic
discussions. But Q3 of problem 2 shows that, in grade 9, many students are again
able to find the answer. Thus, it can be interpreted that students in grade 9 had
accommodated their knowledge.

Example 2. dents’ thinking is
We read tables as representing covariation and correspondence. In the Japanese
curriculum, functions are taught using correspondence in grade 7 to assist students
to level 3. Teachers begin to call a table of function a 'Correspondence Table’ when
teaching correspondence. But the results ot problem 3 show that students do not
change their thinking until grade 9 during which they learn the function y=ax2,
which is not easy to read covariationally. Indeed, in spite of students having been
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taught the y=ax table as correspondence from grade 7, many students continued to
read the table covariationally until they were taught y=ax2.

Problem 3. Write what you can find from the following tables.

(N X ] 213 |4 (2) X 2 {3 |4
y (4 |8 [12]16 y 12 |8 i8 |32
Resuli of (1) Resuli of (2)
Grude |6 7 ¥ 9 Grade J6 7 8 9

Covarialion 2% [48% [49% | 35% Covarialion 2% | 15% | 1% | 10% |

Comrespondence 24%, 14% 16% 35% Correspondence 37% 21% 20% 50%

Both 3% 0% | 11% | 1% Both Q (U] 2% %
Discussion

Examples | and 2 show that teaching supports students’ transitions to level 3.
~ 1t would be better to interpret the development of students’ thinking from a lower
level to a higher level as resembling an expanding equilibration rather than a
monotonous increase. Furthermore, the above examples reflect the features of van
Heile's Levels. Indeed, based on these features, we can more critically interpret
these examples.
Critical Explanation of Ex L. In order to explain example |, hierarchy and
duality of the levels of function in the context of Japanese curriculum must be
discussed. To move students to level 2, teachers teach rules, for example
proportion, using arithmetic on tables via real situations which were represented on
level | using everyday language. To move students to level 3, teachers teach
lunctions using algebra and geometry via rules which were represented on level 2
using arithmetic language with tables. Arithmetic language claims to move students
to level 3, but in the case of everyday language, although students use it, they do not
need to use everyday language in order'to leam about functions algebraically and
geometrically.

The notions of hierarchy and duality support a clearer explanation of example
1. Indeed, in grade 6, to move to level 2, teachers teach the concept of proportion
using_lables via real situations on level 1. And in grade 7, 10 move to level 3,
teachers teach functions of the form y=ax using equations and graphs via the concept
of proportion which was represented in arithmeltic tables. Therefore, in problem 1,
which was only represented with a table, there is no difference between the results
in grade 6, 7, 8 and 9. But problem 2 was represented with a situation. Because
grade 7 students had not leamed the function y=ax with situations using everyday
language, they overlooked/lost proportional reasoning in the situation.
Criti 2xplanation of Example 2. If we suppose that student thinking can be
changed depending on the context of the teaching situation, example 2 can be more
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fully explained. Despite the fact that teachers explain correspondence using tables of
y=ax, the students did not change their reasoning. But when teachers explained
correspondence on tables of y=ax2, the students did change their reasoning. Indeed,
in the case of the table for y=ax, students leamed covariance in grade 6 (level 2),
and as we already saw in example I, it was not changed in grade 7. If they know
covariance, e.g. the that first difference of y=ax and y=ax+b is constant, then they
can make a table. So, this knowledge is still viable in grades 7 and 8, during which
they move to level 3. But in the case of y=ax2 taught in grade 9, the first difference
is not constant. In order 10 make a table, since students could not use the first
difference they had to use correspondence. Thus, the quadratic function y=ax2
provided a context that helped students understand the notion of correspondence.

Table I, Examples | and 2 indicate that the levels of function include all four
features of van Heile's Levels. Furthermore, it has been implyed that studenis’
thinking is better characterized as ain expanding equilibration
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HITOMI'S MEANING CONSTRUCTION OF TABLE AND ALGEBRAIC
EXPRESSION OF PROPORTION DURING INSTRUCTION: A CASE STUDY

Keiko lto-Hino, University of Tsukuba, Japan

This article documented one sixth-grade student's interactions with notations of tables and
v=mx during the class work in propartion, which was deeply interwoven with her proportional
reasoning. Naturalistic method was wsed in order to get a thick description. The student was
ohserved 1o have developed different interpretations and uses toward even the same notation
(1able or y=mx), as she became maore comfortable with i, The quality of interpretation she de -
veloped was rather idiosyncratic. It reflected subtly the nature of her proportional reasoning.
Nevertheless, it was the interpreiation that served her making sense of novel problems during
class as well as y=nwx as equation and that underlay her extended use of unit factor approach.

Theoretical Background

Proportional reasoning is a form of mathematical reasoning that involves a sense of covaria-
tion and of multiple companson, and the ability to mentally store and process several pieces of
information (Lesh, Post, & Behr, 1988). l1 is a shared understanding that proportional reason-
ing docs not emerge as a full-blown ability, but that 1t develops gradually by increasing local
competence. However, we do not know much about how children's proportional reasoning de-
velops through their leaming expenences under instruction in school. Research on proportionai
reasoning have identified developmental stages; but they were mainly from a larger sample in
the laboratory setting. Recently, children's intuitive, context-bound, and often presymbolic so-
lution strategies even before instruction have been documented (e.g., Hart, 1984; Lamon,
1993). Yet it has not been studied substantiatly about the consequence of these strategies during
instruction, beyond a warning that children tend to memorize formal procedures such as cross-
products mechanically.

The purpose of this study is 1o get information about such developmental process of propor-
tional reasoning by examining in depth the leaming processes that students go through while
geiting explanation and practice conceming proportion in the classroom. | used naturalistic
method of inquiry with a small number of students at vanous levels of proportional reasoning
ability. In this article, | concentrate on one of these students, i.c., a Japancse sixth-grade girl
named Hitomi whose achievement was about average.

A charactenstic of this study is to try to understand children's development of proportional
reasoning through their real-ume expenence under instruction in ratio and proportion in the
classroom. The reason [or it comes from an evolving understanding that a person's learning is
tied specifically to context tn which i1t occurs, especially his/her interpretation of and interaction
with the context (Rogofl & Lave, 1984). Indced, there is ample evidence that contextual pecu-
harity of mathematics classroom influences children's leaming of mathematical concepts (c.g.,
Saljo & Wyndhamn, 1990). When most studies on proportional reasoning used interviews or
wrillen lests in the laboratory setting, this study intends to offer an information of children's

3-113 3 2.0,



tcarning actually occurning in the classroom. Another characteristic is that it sheds light on chil-
dren's interactions with notations and representations. There are both theoretical and empirical
reasons for this. Theoretically, the key role that notations play in mathematical constructive pro-
cesses is pointed out (e.g., Kaput, 1991). In ratio and proportion, specifically, different repre-
sentations including table and algcbraic expression refer to different experiences. 1t suggests
that coming to know lhcsefrep[esentalions promote children's reflections and connections.
Empirically, while observing and analyzing students' learning processes in this study, | began
to recognize that their reactions o newly introduced notations are rather visible and mirror im-
portant gains or losses in their proportional reasoning (I1o-Hino, 1995).
Tedchlng Proportion with Different Representations

In Japan, the idea of proportion is taught from earlier grades in elementary schools. For ex-
ample, when teaching multiplication table in grade 2, teachers emphasize the relationship be-
tween multipliers and products as a rule of multiplication. In grade 5, "quantity per unit” (e.g.,
60 kilos per hour) is introduced in order to compare two quantitics: here, proportional relation-
ship is also assumed (o underlie the two quantties. In grade 6, these earlier expenenccs are re-
lected on and for the first ime, proportion is defined and its mathematical characteristics are
clanfied along with different representations, i.€., table, graph, and algebraic expression y =
(fixed number) x x (in this article, an abbreviation y=mx is used).

Table below is a brief summary of content in each of the total 12 lessons in proportion that
the teacher in this study organized.

Day(s) Summary of Content

1 Finding examples of two variables changing dependenty

23 DafTerent relationships are expressed by using {ables. Proportion is defined with the table (Day 3)

4 Exercises on choosing examples of proportional relationship. Making sure of existence of "fixed
number” (y/x) in the proportion table.

5 Summary of three ways of finding the "fixed nurnber” from the table. Introduction of algebraic
cxpression of proportion y=mx.

6-8 Exercises such as identifying proportional situations, filling in proportion tables, expressing the

relationship in the form of y=mx, identifying the meaning of "m™, or finding missing-values in
proportion problems. Introduction of graphic representation (ay 8)

9 Strong poinits for each of the three representations of proportion

10 Solving problems by using different representations

H-12 Group exercises

Two observations of the teacher in treating the proportion table and y=mx are noted. First,
the leacher intended students to recognize connections between the table and y=mx, especially,
the connection between the regularity in the table, 1.e., uniquely determined quotient y/x for any
corresponding values in x and y changing proportionally, and "m* in y=mx. In doing that, he
initially made a distinction with respect to relationships between values in proportion table:
"hanizontal” and "ventical.” The "horizontal” relationship concemed the multiplicative relation-
ship among values within a row, while the "vertical” rclationship is about the values between
rows (see figure 1). By making such distinction, he led the students’ attention to the

1o,
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et latter. Once they recognized that Lthere is a unique

A Kby pai Iap ¥ fan .. "vertical™ relauonship, he introduced the term
T ‘Yi'-'\ﬁ)jm L "fixed number” (meaning y/x) that determines the

H. Horizomtal, V: Vertcal relationship. The expression y=mx was intro-

Figuwre I "Honzontal" and "Vertical ™ relationships ' . .
$ duced based on this understanding. Second,

soon after the introduction of y=mx, the teacher came to emphasize its use as an equation. In
almusi every lessons, he explained the way of substituting a value for x (or y) in y=mx in order
o get the corresponding value of y (or x). He tned to have students understand an efficiency of
the algebraic expression in finding missing-values.

Method

My everyday visil 1o the classroom started in April 1993, In May and June, a pre-assess-
ment ol the students’ proportional reasoning was conducied. Based on the resulls as well as
their behaviors in class and the teacher's comments on them, | chose four targel students. i be-
gan observing them in fate Junc; it continued until the end of October. During the lime, the
tcacher covered several textbook chapters; the chapler on proportion was dealt with in Oclober.

Hitomi was |1 years and 7 months old when Lhe leacher went into the chapler on propor-
uon. She was chosen as one target student based on the pre-assessment as representing an av-
crage student in the range of achievement, Hitomi was also considered o be conscientious who
worked hard in her class. She was cheerful and open 10 communicate with me, which was an-
other reason {or choosing her in order to get a thick description of her learning processes.

In the observation of Hitomi, I tried w identify the benefits she acquired from her work in
the class and the learning processes she weni through in acquiring that knowledge. In each
session, | either videotaped or wrote down on paper her behavior throughout the session. | also
audiotaped her voice by a small 1ape recorder that was regularly put on her desk and lurther,
collected her notebooks and worksheets. After cach session, I collated these data and developed
a desceription of her behaviors. On a regular basis, I also interviewed her and asked o solve
missing-value proportion problems as well as about the work done in class.

FFrom the results on the pre-assessment and interviews regularly held, prior o instruction in
proportion, Hitomi had been relying on the abbreviated build-up processes'? when the problem
invoived easy ratio complexity, which places a relatively tow demand on a rate conception
(Kaput & West, 1994). Although she sometimes used the unit factor approach?’ that needs the
rate conception, her use was strictly restricted to the shopping context in which thinking about
unit price is rather natural. Overall, her use of stralegy was context-bound: she did not have any
general method that works for a large range of proportion problems.

Construction of Meaning of Table and y=mx During Instruction in Proportion

[n this section, [ itlustrate the learning processes Hitorm wenlt through during the elass in
proportion, cspecially, her view and use of notations introduced by the teacher and dealt with

through vanous activities.
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Two Ways of Reading Proportion Tables

During the first five lessons the students were engaged in activities with tables. As described
carlier, the teacher distinguished two relationships between values in the proportion table.
Hitomi naturally incorporated the "honizontal® relationship. For example, she developed a table
(Figure 2) by saying "This is 10 minutes and 10 + 5, il's doubled, so this is also doubled and
it's SO cm. If | make this 100 ¢cm. and 100 + 2515 47... it's 4, this is 4 times as much, so this is
also 4 times as much... it would be 20 minutes..." She even showed this horizontalty-oricnted
view in Day |, when making cxamples of two quantities changing dependently.

In contras, she did not easily recognize the "vertical® relationship. It was a boy who first re-
ferred to the relationship in response to the teacher's question aboul a table in Figure 3 (Day 3).

Time (min.}x |5 10 |20 30 Time (hour) 1 2 3 4
Depth(cm.)y |25 {50 [100 150 instance (km.) |4 8 12 16
Figure 2 A wable that expresses a proportional Figure 3 A proportion table dealt with in class
relationship between x and y on Day 3

T: We are looking at the wable honizontaily like this (pointing 1o the arrows)... Suppose there is a missing
part, and we want to fill in that part, what other ways there would be, do you think?

S: Vertically?... I divided the numbsers in the lower row by the corresponding numbers in the upper row, and
then | got all 4s. I've been wondering what that would be...

T2 Oh... Do you understand what he said?... He read the lable ventically...

At this moment, Hilomi stared at the board. She appeared 10 check whether whalt the boy said
was correct by dividing each number by its corresponding number. As far as my observation
can tell, this was the first time thal she made explicil the multiplicative relauonship between x
and y in the proportion table.

Derived Interpretations to the Proporiion Table _

1 identified at least two ways of using the proportion table that Hitomi developed through her
class work. They were either different from the method taught by the teacher, or not given ex-
plicil attention in the class. Due to the space limilation, | describe one of them which was fun-
damental in her process of learning. '

A use of proportion table that Hitomi developed was to fill in the missing-value y,, in the
table by using the value of y;. Here, she paid special attention to y, and found the missing-
value y, via multiplication of y; and x,, (as for the names y;, y,, or x, see Figure 1). This in-
terpretation of the table was first observed in Day 5 when different ways of finding the "fixed

Time x (bour) |1 213 [ number” was summanzed. After the lesson, 1
Distance y (km.) 3 6 9 12 intervicwed her about a "lixed number” in a table
Figure 4 Pan of a proportion table dealt with in X
class on Day 5 (Figure 4).
I: You worked with this table today. What is the fixed number in this?
S It's three!
I: Why?

S: Well . if youdo 3 + 1. 6 + 2, and 50 on, you can gel 3 every lime you do division.

I Were there any other reasons in class? Or do you think there are any...

S (piggled) | wondei if | remember. . What | remembes is... well... since y is 3. . since y is 3... if you double this
{pointing al 2) you can get 6, and if you multiple Tike this way (pointing at 3 in y and at 3 in x) you can gel 9.°
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However, what she remembered was slightly different from what the teacher explained in the
class. He treated the "fixed number” more as a gencralized relationship that sausfies all (x, y).
This denved interpretanon by Hitomi scemed 1o last for some time (unul Day 10).

Initial View of Aigebraic Expression of Proportion

Day 5 was also the day when the algebraic expressio‘n of proportion was introduced to the
students. As descnbed, the tcacher introduced y=mx as a generalized relalionship between x
and y and emphasized its use as an equation to find missing-values. On the other hand, Hitomi
was developing her own view loward that new expression.

In Day 5, she was observed not to put a *fixed number,” which she found from a table, in
the blank in y = (blank) x x until the teacher instructed the students Lo do so. After Lhe class, |
interviewed her about the same table in Figure 4 which was also deall with in the class. Hitomi,
after identifying several relationships in teims of "fixed number 37 in the table, was asked aboul
the algebraic cxpression of that table.

I: Would you write an expression using x and y about this table?

S: X and y... multiplication? Oh, | sce, we did that loday... | think we wrote something like Lhis (writing "y = fixed
number x x = 77)... | think this is somewhere at the bottom of the textbook. .

I 1 would like you 1o think about this table... What would that be in this case?

§ (Wrting "3 w1 =3, 3%x2=63x3=9 3x4=]2" vertically)

I: How about using letters x and y?7

S: (L.ooking at the algebmic expression she just wrote) y equals [ixed number multiplied by x.

| Let's see... how will that be in this table?

S (Pointing at the four numerical expressions she wrote) Thal will be like this!

The protocol indicates thal she, in spite of her recognition of several relationships belween
vaiues in the table, did not see connection between them and the algebraic expression. Once she
was asked 10 wnile an algebraic expression, she [orgot all about those relationships and tried to
recall a specific symbolic notation that was writlen on her textbook. The protocol and other ob-
servations of her writing of algebraic expression also show that she used "y=mx" as a seal of
proportional relationship. Indeed, when asked to translate the tablc in termns of x and y, she
wrole "y=mx" litcrally, instead of writing "y=3x." Iniually she wrole "y=mx" and "y + x" (or
"x x y")interchangeably, or added odd symbols as shown in the protocol above. Hitomi soon
came 10 add *(5)," for example, beneath "m" in "y=mx," instead of writing "y=5x." (Day 6):
still, the standard writing of algebraic expression had not observed until later around Day 10.
Emergent Use of y=mx as an Equation

In spite of her teacher's repeated cxplanations of y=mx as an equation to find missing-val-
ues. Hitomi had not been using y=mx for that purpose. When she needed to find missing-val-
ues. she searched them direcily from problems without formulating the algebraic expression, or
made use of tables or graphs when they were available. It was around Day 10 when she began
to use y=mx in order 1o find the missing-value.

In Day 10 exercises, the students were finding the distance that a car al a constant speed of
40 km/h would take to drive in 7.5 hours. Hitomi first answered the question by computing
7.5x40. Here, she did not intend to formulate y=40x and substitute 7.5 for x. Indeed, when the
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teacher explained the use as equation, she whispered “oh... yeah it works.” In retrospect, this
was her tuming point. After this, she solved another problem by first formulating y=3x and
then substituting 10 for x. In the interview session conducled after the class, | gave her another
missing-value speed problem. Here again, she used y=30x developed in a previous question to
substitute 7 for x in order to find the distance that the car goes in 7 hours.

IL1s not clear why her use of y=mx as an equalion (o find missing-values emerged. Probably
one of the reasons would be that she had listened to the teacher's explanation repeatedly.
However, Hitomi did not just memorize the repeated explanation of the use of y=mx as equa-
tion. In an interview, when asked to write an algebraic expression [rom a table she developed
for a proportion problem, she added two values 1 and 35 outside (Figure 5) and then wrote an

- 0 3 : expression "y=35x. | Being asked the reason for
35 | Distance (km.) J105 [210 35, she pointed at 3 in the table and said, "Since

Figure 5 A able and llitomi's addition to it \picic 3 | made it 1... so it's 35." This observa

tion implies that she made a correspondence between "m” in y=mx and "y, " in the table. In
other words, she acquired the new use of y=mx by making connections with her own interpre-
tation of proportion lables that she had developed earlier. Since then, she came Lo use y=mx not
Just as a seal of proportional relattonships bul also as a oot for finding missing-values. She
also came to call y=mx as "formula.”

Discussion

Hitomi, like other students, brought her conception of proportion into instruction under
which she encountered notations of the proportion table and y=mx. Her leaming process doc-
umenled above shows that she had been developing her own interpretations and uses of these
notations from the very beginning of her interactions with them. They were also changing as
she became more familiar and comfortiable with them.

The qualily of interpretation that she developed was not identical 10 what the teacher in-
tended. [t was affected subtly by Hitomi's view of proportional situations that was predomi-
nantly build-up-based. [n the case of proportion table, she began o incorporate her build-up-
based view inlo the "honzontal” relationships between values in the table. She then derived the
special atlention 1o ¥, and the way 1o lind missing-value y, via multiplication of y, and x,,
whereas the teacher treated the fixed number more as a generalized relationship that satisfies all
(x, y). Here, she seems 10 have avoided (perhaps unintentionally) to directly grasp y/x as the
general multiplicative relationship, which will require her weak rate conception. [nterestingly,
the allention to y, seemed prevalém among the students. Three of the [our target students
showed their focus on v in the table. In class, different wordings of vy, such as "base num-
ber," or "the first fixed number” were also heard from other students.

Although they were more subjeclive, these interpretalions came to play a crucial role in or-
ganizing her thinking processes as "generative mental operations” (Kaput, 1991, p.55). Indeed,
Hitom came to be abie (o identif y proportional situations in terms of "fixed number,” fill in
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proportion tables, and solve missing-value problems by using tables. The derived interpretation
with the emphasis on y, also served her in trealing y=mx as equation. It further enabled her dif -
ferent ways of solving the missing-value problems, as described in the last paragraph.

Concerning y=mx, for a long time she viewed it as an authorized scal of proportional rela-
tionship rather than a thinking tool (Ito-Hino, 1995). It was near the end of lessons that she be-
gan Lo usc il as an equation 1o find missing-values. This rather monotonous interaction, com-
pared Lo that with tables, would refllect the extent to which a notauon is prestructured. The ex-
pression y=mx was highly prestructured that demanded her use of rute conceplion, whereas the
tble was more open in which her build-up-based view was supported. For her y=mx would
have been difficult and foreign in comparison with the wble. Under such circumstances, the
emeigent usc ol y=mx as equalion is (o be considered as a sound progress Lo her. Note'that it
hecame possible by her derived interpretation of table. Here again, she incorporated her build-
up-based view into the new use of y=mx. She inlerpreted "m" as the specific value y, to enable
a multiplication of the number of known-qguantity, which is 1 in this case, increm