
 
 

ALGORITHMIC  AND  MEANINGFUL  WAYS  OF  JOINING  TOGETHER 
REPRESENTATIVES  WITHIN  THE  SAME  MATHEMATICAL  

ACTIVITY: 
AN  EXPERIENCE  WITH  GRAPHING  CALCULATORS 

Rina Hershkowitz      Carolyn Kieran 
Weizmann Institute of Science   Université du Québec à Montréal 

 
In designing mathematics learning with the mediation of computerized tools, one of the crucial questions to be 
considered is how much and in what way we would like the tool “to do the work” for the students. In problem 
situations where the solution is achieved mostly via graphical representatives, and algebraic models are 
mostly used as “keys” for obtaining graphical representatives on the screen, the algebraic representatives and 
their form seem minimized in importance, and students may tend to generate them from tables by mechanistic-
algorithmic procedures. The above questions will be mainly demonstrated within the description and analysis 
of a case study involving a group of three 10th graders (about 16 years of age) working together to investigate 
and solve a problem situation on the topic of functions, having graphing calculators (TI-83 Plus) at their 
disposal. The role of contextual factors is highlighted by means of contrasts with the work of students on the 
same problem from another country. 

 
Introduction 

In designing as well as in studying a classroom learning activity in a computerized 
mathematics learning environment, one should consider contextual factors of various 
origins, like: (a) the mathematical content to be learned and its epistemological 
structure; (b) the learners, their mathematical knowledge, culture, and the history 
with which they started the researched activity; (c) the classroom culture and norms, 
the role of the teacher, the learning organization--in small groups or individually--
etc.; and (d) the potential “contribution” of the computerized tool.  
This study discusses questions related to the above factors and how they lead 
students to use a computerized tool and benefit from it mathematically or the 
opposite. The questions will be mainly demonstrated within the description and 
analysis of a case study involving a group of three 10th graders working together to 
investigate and solve a problem situation on the topic of functions, having graphing 
calculators (TI-83 Plus) at their disposal. The protocol analysis of the group work 
will reveal a dialectical problem-solving process that develops between two ways of 
making use of the computerized tool: a mechanistic-algorithmic one and another one 
that is led by students’ search for meaning.   
Contrasting the work of the group against the work of groups in a classroom from a 
different country will shed some light on the roles of the above contextual factors in 
students’ making beneficial use of the computerized tool. 

Some Theoretical Comments 
During the past 20 years or so, the potential of computerized tools to develop and 
support mathematization by students working on problem situations has disclosed 
many positive aspects of their integration into school curricula.  This can take the 
form of amplification and reorganization (Pea, 1985; Dörfler, 1993) and of 
experiencing new "mathematical realism" (Balacheff & Kaput, 1996). A common 



 
 

claim is that the computerized tools can play an advantageous role in assisting 
students to make connections between and within various representations of the same 
mathematical entity (e,g., Kaput, 1992).  Teasley and Roschelle (1995) have 
documented instances of computer environments serving to disambiguate student 
thinking in the exploration of novel mathematical phenomena, by easy flexible 
transformations between representations. The power of a grapher to smoothly 
transform a function from its algebraic to its graphical representation, and the 
availability of the corresponding numerical data directly from the graph (by "walking 
on it"), make it possible to deal with problem situations involving complicated 
functions at an early stage of learning.  
However, students have also been found to use technological tools in non-thinking 
and non-productive ways.  Goldenberg (1988) has, for instance, warned of the ways 
in which students can misinterpret computer-based graphical representations of 
functions because they have not chosen an appropriate window; while Guin and 
Trouche (1998/1999) have argued that a surprising result produced by a graphing 
calculator does not necessarily induce a question on the part of students.  
Looking closer at the interaction that learners have with a computerized tool in the 
classroom, one should take into account the epistemological power of the technology 
(Balacheff & Kaput, 1996), for example, the ways in which this power emerges from 
the multi-representational nature of the tool, the availability of different 
representations and different representatives of the same mathematical object (i.e., 
displays within the representations, Schwarz & Dreyfus, 1995), and the smooth 
transformation between them. Schwarz and Hershkowitz (in press) investigated how 
representatives can mediate the construction of meaning in mathematics learning. 
They claimed that from an epistemological point of view the relations between the 
mathematical entity and its representatives are inherently ambiguous. Representatives 
either may represent mainly the most prototypical examples of the mathematical 
entity or, because they are partial, may often be ambiguous in the sense that only 
some of the critical properties of the entity are displayed in the representative.  
The ambiguity and the power of the computerized tool encourage the production of 
various representatives upon need, and also stimulate students’ requirement for and 
ability with interweaving representatives together.  In so doing, students may extract 
the invariant properties of the mathematical entity and thus overcome the ambiguity 
within the single representative. This process is part of the students’ search for 
mathematical meaning.  On the other hand, technological environments can induce 
students to reach “false representatives” (those that do not represent the critical 
properties of the mathematical entity at all) or to interweave representatives together 
in a non-meaningful, algorithmic fashion, as for example in the automatic extending 
of the numerical values of a spreadsheet column (Ponte & Carreira, 1992).  
In this paper, we discuss two ways in which students interweave together the tool-
based representatives: a mechanistic-algorithmic way (where students combine 
representatives in non-thinking, rote ways), and a meaningful way.  Moreover, we tell 



 
 

the story of the use of two kinds of representatives in the process of problem solving: 
representatives that do not represent the properties of the mathematical objects 
involved at all, and representatives that do. 

The Study 

The case study involves three 10th graders from a Montreal high school working 
together to investigate and solve a mathematical problem situation, having graphing 
calculators (TI-83 Plus) at their disposal. The analysis of their activity is described in 
four rounds. On the whole, the investigative activity done by this group and their 
solution strategies are monitored by their need for a search for meaning. But, in 
Rounds 1 and 2, the process of "joining together tool-based representatives," which 
the students engage in, is mostly of the first kind, the mechanistic-algorithmic, which 
leads students towards some “false representatives.” Rounds 3 and 4 provide 
evidence of a different way of joining together representatives, one that is clearly 
characterized by a search for meaning. The progress of the group from Rounds 1 and 
2 into Rounds 3 and 4 is led by critical thinking and is supported by the students' 
control of the "joining-together-representatives" functions, which are part of the 
strength of the graphing calculator. 

The problem situation and some comments about its history 

The following are the parts of the problem situation that are relevant to this paper.  
 

Growing Rectangles 
Each of the following three families of rectangles has its growth pattern: 
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In family A the width grows each year by one unit; the length remains constant at 8 units. In B the width and 
the length of the rectangle grow each year by one unit. In C the length doubles each year, and the width 
remains equal to 1/4.  



 
 

Please investigate the problem in groups.  At first try to generate various hypotheses concerning the following 
questions:  
1. Please compare the areas of the 3 families of rectangles over the years.  What are their 

initial situations? Which family (or families) takes over the other families (or family) and 
when? 

2. In which years will the area of each family exceed 1000 square units?  

Now check your hypotheses with mathematical tools (the help of the graphing calculator is recommended). Try 
to be as accurate as possible. 

 Please write a report as a common product of your group. 
Try to describe your conjectures and what they were based on. What kinds of debates did your group have? 

Try to describe the ways in which you solved the problem and in what ways you were using the graphing 
calculator 

This activity was first tried in an introductory one-year-long course on functions with 
the mediation of graphical calculators (TI-81) in Grade 9 in Israel (for details see 
Hershkowitz & Schwarz, 1999). It took place during the sixth week of the course. At 
that stage, students had practiced the actions and passages between and within 
representations and representatives. They were aware of the fact that obtaining a 
graph representing a given phenomenon required an algebraic model.  
The students in the Israeli class were first invited to suggest hypotheses without using 
the computerized tool, then to use it to check them. Students tried to figure out which 
family would eventually take the lead by using intuition and/or by computing "by 
hand" the areas of the three families of rectangles for a few values. Then students (in 
most of the groups) translated the situation into algebraic representations (with some 
difficulties in generating the function-area for Family C, y=1/4*2x), and then 
obtained the graphs with their graphical calculators (see Figure 1 below for a stylized 
representation of the graphing window).  

 
Figure 1 

 
After the groups had finished, the teacher discussed with the class the mathematical 
findings and strategies. Students reported that in the eighth year (x=8), the three 
rectangles had the same area, and that from that year on, Family C took the lead from 
Family A. Family B remained in between. The evidence provided by the different 



 
 

representations was accepted even if, for some students, it was unexpected; no 
student declared the computer wrong. Nevertheless, they tried to reinterpret the 
situation, and even to overcome wrong intuitions, by matching together 
representatives from different representations; the algebraic, the numerical, the 
graphic, and the phenomenon itself. The sociomathematical norm of what constitutes 
evidence in problem situations was formed here as a consequence of students' 
interactions with the tool.  

What happened in the case-study group 
Before setting off to work in groups of threes on the problem situation, the research 
class from the Montreal school was asked also to read the problem and to vote on 
whether they thought that Family A, B, or C would have the largest area over the 
long term. A couple of students voted for Family A; most voted for Family B; and a 
few abstained. No one predicted that Family C would eventually have the largest 
area. Teams then started to work on the problem situation. They also had to produce a 
written report on the problem-solving process, as a common product of the team, and 
then to present it orally in front of the whole class during the concluding discussion. 
This activity was two periods long (an hour and a half in all). 
The team to be featured will tell the story of the dialectical process between the 
mechanistic and the meaningful, with the search for meaning as the guiding thread of 
the dialectical process.  
Round 1: Making the technological tool generate the algebraic expression for the 
situation. 
After reading the problem questions, the group of Kay, Ema, and Sam (two girls and 
a boy) began immediately to create a table of values on paper. They entered the 
numbers 1 to 10 in the left-most column, headed "year."  They labeled the next three 
columns "Family A," "Family B," and "Family C."  To fill the Family A column, they 
calculated 8 x 1, 8 x 2, 8 x 3, and continued by increasing each entry by 8.  Kay 
remarked: "It is going by 8 each year."  To fill the Family B column, Sam suggested 
"the year where it is, just square that number and you will get the area." When the 
Family B column was completed, by computing the area of the growing rectangles in 
their heads, Sam began to compare the 1st and 10th entries for Families A and B. Kay 
remarked that "so far, B has more over the long term." She then stated: "We can do 
equations for each one and compare on the graph of the calculator to see where they 
all intersect."  Sam nevertheless wanted them to first complete their table. 
To fill the Family C column, they multiplied the given length of 2 for the first year by 
1/4 (with the help of the calculator); they then took the length of the previous year, 
doubled it, and multiplied by 1/4. Thus, for the initial values of each of the columns, 
the procedure used for filling them reflected the operations suggested by the text of 
the problem situation (e.g., "in C the length doubles each year and the width remains 
equal to 1/4").  But the filling-in of the table was not done with the aim of detecting 
the relationship between x and y values so as to yield an expression for the function. 



 
 

It was done simply to have 10 values for each Family so as to be able to calculate the 
differences between the 1st and 10th values, and check their initial hypothesis as to 
which Family had the largest area over the long term. Their attention was on the 
global differences.  It is worth noting that while the calculations for Families A and C 
were done in a recursive fashion, the calculations for family B were based on an 
explicit generalization for x (the year number) – Sam said: "the year where it is, just 
square that number and you will get the area," and yet he did not reach or use a 
closed-form algebraic expression. 
After completing column C, Sam announced that they had been wrong in their 
prediction that Family C would be ahead. He then said that "by having all this, you 
can now just make up equations for each one."  It is hard to know what Sam meant 
by this; either he was ready now to generate from the situation and the tables the 
algebraic expressions for the growth of the three families, or something else. In any 
case, the objective of the three of them seemed to be to look for intersection points on 
a graph. Kay, at that point, seemed to have a very clear strategy in mind: "Let's do a 
linear regression."  Sam added: "So, if they want to know when they take over, you 
have to do an equation and find out where they meet."  Kay continued his sentence: 
"And you have to find the point of intersection."    
The group had finished answering the front-end question that we had posed regarding 
their initial hypothesis and could now get on with the main task at hand. As in the 
Israeli class, the objective of all of them seemed to be to draw the graphs in order to 
be able to compare the three families by having intersection points. They were also 
aware that, in order to obtain a graph representing a given phenomenon, it is 
necessary to have an algebraic model. However, the way in which the group members 
went on to find the equation for each Family was quite unexpected. With the 
experience we had from the first class, we had thought that they would either analyze 
the given problem situation with its patterns of rectangles, or look at the numerical 
values they had generated for their tables in order to find an expression for the 
relation between the x values (the years) and the corresponding y values (the areas). 
The way in which they chose to join the paper-and-pencil and technology-based 
representatives in order to obtain the graphs and the intersection point/s is a crucial 
part of our story and is described in the following paragraphs. 
After rapidly entering the first five values of each column from the paper table of 
values into STAT-Edit lists of her graphing calculator, and then selecting LinReg (ax 
+ b) of the STAT-Calc menu, Kay obtained the following three LINEAR functional 
expressions for Families A, B, and C:  8x; 6x - 7; 1.8x - 2.3.  She suggested to her 
team-mates that they enter these "equations" into the Y= editor of the calculator and 
then ask for the graphs, which they did.  She, who was the fastest at using the 
calculator, soon announced, "OK, guys, these are the graphs," while turning her 
calculator toward them so that they could see her screen (see Figure 2). 
It is noted that this team was not alone in its use of the calculator's linear regression 
tool as a means of generating the area expressions for the three families of rectangles. 



 
 

The teacher, when questioned, disclosed that the class had used regression for two or 
three weeks, about half a year earlier when they were dealing with problems 
involving real-world data. Students had learned to model (i.e., obtain equations for) 
these "real-world" situations with the help of the linear and quadratic regression tool 
of their calculator.  
 

 
Figure 2 

 
Figure 3 

 
We can conclude that the above regression procedure, which is often the only way to 
get an algebraic rule for the so-called regularities of real-life phenomena, was 
adopted by these students as the most efficient way to get the algebraic model of a 
problem situation, even if this particular problem situation involved idealized 
mathematical data. The students appeared to trust the algorithmic routine involved in 
using the regression tool of the calculator and did not feel any immediate need to 
verify empirically the correctness of the expressions that had been generated by the 
calculator with the data that they already had in their paper-and-pencil table.  
Nevertheless, one is led to ask why the group mechanistically used the calculator to 
generate and to join together the representatives (the numerical and algebraic 
representatives) instead of looking more carefully at their table where the answer to 
the question "WHEN?" was there all along (in Year 8, all the families had an area of 
64).  Did they consider the graphical representation more reliable? Or is a functional 
algebraic rule, and its joined-together graph, a stronger argument than mere 
numerical evidence?  Or was it important for them that what they had been able to 
conclude by means of the numerical table (that Family C had the larger area over the 
long term) be supported by confirmatory and matching evidence from the graphical 
representation as well, that is, that they be able to join together the paper-based 
numerical representatives with the graphical tool-based representatives?  Or were 
they just carried away by the above algorithm that begs to be executed once one has 
generated tables of data for a given phenomenon? 
Round 2: Failure at getting the technological tool to work for them: a turning 
point. 
From the beginning of applying the regression option of the calculator tool and up to 
this moment, the group had appeared to be marching along a mechanistic path in a 
kind of automatic fashion, without doing very much in the way of reflection. When 



 
 

the graphs they generated did not look as they had expected them to (Sam: "They 
don't all intersect at the same point "--as seen in Figure 2), Kay changed the scales 
immediately.  But, that did not help her to obtain the meeting point she wanted to see 
(see Figure 3). Repeated scale changes (even up to 1500 years) did not produce the 
elusive point of intersection that they had intuitively been expecting. Kay then 
suggested they try the CALC-Intersect option to have the calculator provide some 
information with respect to the point of intersection. The error message of "no sign 
change" suggested that there was no point of intersection in the given window and 
confirmed for them what had been evident from their reading of the graphs, graphs 
that had been produced by the expressions of the linear regression option. Yet, there 
was a sense of unease. They had failed in their attempt to get the technology to work 
for them. They had expected a single point of intersection somewhere in the first 
quadrant.   
Round 3: A shift of attention.  
This round starts with Kay beginning to think more about the situation: "We try to 
find how much it increases, which one grows the most."  They returned to the text of 
the problem situation and reread it: "Which family (or families) takes over the other 
families (or family) and when?"  Kay emphasized the "AND WHEN."  Sam began to 
look at the paper-and-pencil table of values and said: "We already figured out who is 
going bigger, but we can’t answer when, because ..."  Then Sam and Kay noticed in 
the table that, at 8 years, all three families had an area of 64, and so Sam asked three 
times: "So why aren't they meeting?"  They now paid attention to the hard numerical 
evidence that there was a single point of intersection.  Their inability to match this 
evidence and the graphical representatives they had obtained became very clear and 
waited to be resolved and explained. 
Kay substituted 8 into their algebraic expressions for Families B and C and obtained 
41 and 12.1, instead of the desired 64, and she said: "We did something wrong."  In 
an attempt to make sense of what was going on, the students restarted the process of 
joining-together-representatives, again with the regression option of the calculator 
tool. But, this time they were equipped with the critical thinking they had developed 
from the above comparison of the numerical and graphical representatives. They 
recalculated the linear regression for Family B and this time noticed that the value of 
the correlation coefficient was not 1, but .98. Sam remarked that the resulting 
expression was therefore not 100% sure. Kay insisted: "Even so, we were way off." 
Sam began to systematically substitute values into the expression for Family B:"6(1) 
- 7 is -1: that's wrong; it's not having a negative area." With his substitution of 2 into 
the same expression, he became even surer that they were wrong. Kay wondered 
aloud: "So do we make up our own equation; maybe it's not a linear regression." 
Sam, who was still substituting, said, "We're getting further apart; even C goes off."   
In this round, their mechanistic approach to joining-together-representatives was 
being put into question by a more meaningful one. It is not clear if they started to 



 
 

suspect the mechanistic routine itself or the way they had performed it. However, as 
will be seen in the next round, rather than abandoning the process carried out with 
the technology, they insisted that it be made to work for them.  
Round 4:  Insisting that the technology be made to work for them. 
Kay decided to check the way that they had used the regression algorithm by trying 
other forms of regression available on the calculator tool. She went to cubic 
regression and realized that the correct equation was y = x2 -- because of the neat 
parameters and the correlation coefficient of 1. She added: 1 squared is 1, 2 squared 
is 4, 3 squared is 9.  Soon Sam reacted: "I don't know why I didn't figure it out from 
the beginning.  I said it, why didn't I see it?"  Even Ema expressed that they had been 
carried away by the regression routine: "It's because we were so absorbed by our 
calculators." 
Meanwhile, Kay ran through other regression choices for Family C until she hit upon 
the exponential regression, which yielded y = 0.25 x 2x with a correlation coefficient 
of 1.  Just to be sure, she entered an x-value of 1 to see if the calculator would 
produce the same y value as she had in her paper-and-pencil table.  One value seemed 
to satisfy her that the equation was correct, but she stated that she did not really 
understand the equation. 
Sam too seemed a little uncomfortable with the expression for Family C. They had 
never before experienced exponential equations. Kay seemed prepared to go on to the 
next question. After all, they had earlier realized from their paper-and-pencil table of 
values that the point of intersection was (8, 64), and they now knew that they had 
equations that corresponded with the values of their paper table of values.  However, 
Sam wanted more.  He wanted to be sure that their newly-found equations did, in 
fact, yield graphs that intersected at the point (8, 64).  He suggested that they enter 
the new equations in the Y= editor and graph them with a scale involving a y-
maximum of 70: "We should see that they are all meeting at 64." He smiled visibly at 
the result. It is not clear, however, that Kay paid any attention to this last exercise in 
consistency. 
The technology had now been made to work for them. The graphs, the equations, the 
paper-and-pencil table of values, and the situation all fit together. Doerr and Zangor 
(1999) have emphasized the importance of leading students to "develop a reasonable 
skepticism about calculator-generated results" and encouraging the establishment of 
classroom "norms that require results to be justified on mathematical grounds, not 
simply taken as calculator results" (pp. 271-272). It is noted that these students did 
not throw aside their calculator tool when the graphs it produced could not be 
justified on mathematical grounds; they continued with it until it could be made to 
deliver correct mathematical representations.  

In short, we can conclude that the group completed its answer to Question 1 by 
means of actions involving "joining together representatives" which, at the starting 
point as well as at the end, were controlled by the need to have meaning.  But the 



 
 

sequence as a whole was an intertwining one where both the mechanistic and the 
meaningful were dialectically connected. The regression routines were the 
mechanistic parts of the sequence. The to-ing and fro-ing between the mechanistic 
and meaningful joining-together-of-representatives was at times characterized by 
lengthy segments of mechanistic activity. Nevertheless, the search for meaning 
always prevailed. 

Discussion 
As mentioned before, when we speak of computerized tools in learning we usually 
speak of their “positive” potential in mediating learning. The above example showed 
that such mediation might raise dilemmas for learning. A crucial dilemma is how 
much and in what way we would like the tool “to do the work” for the students. And 
more specifically, do we value that students be able to express a problem situation 
with algebraic models, and that they produce themselves this algebraic model?  
Both classes were driven by a search for meaning in comparing the growth of the 
three families and were looking for the three graphs and their intersection points, 
knowing that the algebraic models were the keys for obtaining the graphs. The first 
class, which had a more limited tool (TI-81), started immediately to construct the 
algebraic models of the three families from the problem situation itself. This was not 
so easy for Family C and a few groups in this class failed. Our group from the second 
class trusted from the beginning the mediation power of their more advanced tool 
(TI-83 Plus) to do the work of generating the algebraic models for them. But in the 
first round they failed to get the right algebraic models, even for Family B.  During 
that stage, they had used the tool in a mechanistic way, without engaging critical 
thinking, and thus obtained “false representatives.”  
What is the source of the differences between the two classes? It is obvious that the 
tool itself may explain part of the difference because the TI-81 has only a quite 
limited regression option. But, the dissimilar history of mathematics learning in the 
two classes is likely a major contributing factor. As we mentioned above, our second 
class had the experience of dealing with real world problems with non-idealized data, 
which usually do not fit perfectly an algebraic model. This encourages the use of 
regression techniques as a means of obtaining an algebraic model. So the students 
imposed the same kind of modeling technique on the “Growing Rectangles” problem 
situation. For students who have difficulty in modeling the growth of an exponential 
function from the situation itself, such as was experienced with the Family C 
rectangle, this technique may serve as a temporary scaffolding.  

Students may rely on a similar kind of scaffolding when using spreadsheets for 
modeling. We have observed younger students investigating similar problems of 
exponential growth with EXCEL (Hershkowitz, 1999). Some of these 7th graders 
tended to generalize phenomena like the growth of Family C into a recursive model 
by carrying out actions such as the following:   



 
 

Enter 2 into cell A1, and then in cell A2 punch in "=A1+A1" and drag down to 
produce the lengths of the Family C rectangles; then in column B enter into the B1 
cell "=1/4*A1" and drag down to obtain the area of the Family C rectangles. In this 
way, the spreadsheet tool allowed students to combine the use of recursive formulae 
and dragging, and thus to overcome the local property of recursion.  
In fact, if we look at the process which our group used to fill the table for Family C in 
Round 1 -- doubling the previous length and then multiplying it by 1/4 -- we may 
conclude that the recursive approach is much easier than trying to generate a closed-
form rule where the independent variable is the number of the year.  Recursive 
approaches might even be more natural, at least in the case of exponential growth. In 
this sense, the tool--either the TI-83 or EXCEL--with its scaffolding affordances 
enables students to act meaningfully on quite high-level objects, such as exponential 
functions, even before they have learned formally about them. 

The other side of this coin is that this scaffolding may stay longer then we, as 
mathematics educators, would like in the process of learning algebra. We had 
examples of students working on a problem situation in which exponential growth 
was investigated, where students were quite close to generating a closed-form 
exponential formula. But, when they discovered the EXCEL option of generating a 
recursive expression + dragging, as a quite efficient alternative for obtaining a whole 
set of data for the phenomenon, they curtailed their efforts to mathematize the 
problem situation in a higher level manner. While it might be argued that these 
students were engaging in a kind of algebraic thinking (Kieran, 1996), might the use 
of computerized tools in learning algebra reduce students’ needs for high level 
algebraic activity? 
In addition, we face an even more crucial dilemma; the algebraic representation and 
its form seem minimized in importance for students. Our case-study group, like 
groups in the other class, knew that the algebraic formula was the key, but perhaps 
because of their more advanced tool, and because of their learning history, the shape 
of the algebraic model seemed unimportant. In fact, students can now go from 
entering lists to a graphical representation without ever seeing or having to examine 
the algebraic representation of the situation.  Does the use of these tools in algebra 
signal the beginning of the loss of the algebraic representation from our mathematical 
classes at the secondary level? 
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