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We report on the responses of high attaining groups of fourteen-year-old students to 
one written algebra item and two written geometry items that formed part of a 
nationwide survey designed to test mathematical reasoning. Preliminary findings 
suggest that responses are influenced by topic (algebra or geometry), gender and 
familiarity, as well as by general mathematical attainment. Additionally responses to 
familiar (algebra) items appear to be subject more to the influence of textbook than 
of general mathematical attainment, while responses to unfamiliar (geometry) 
questions are more subject to variation between classes. 
In this paper we report some preliminary findings from a written survey conducted in 
the first year of a three-year longitudinal study of mathematical reasoning. The aim 
of this research is to advance understanding of how students learn to reason 
mathematically by analysing their progress over time, and  specifically to identify 
through large-scale longitudinal study, individual, school and teacher factors that are 
predictors of secondary school students’ competence in mathematical reasoning1. 
A 50 minute survey was administered in June 2000 to 2797 high attaining fourteen-
year-old students from 63 randomly selected schools within nine geographical areas 
that spanned England. The items were iteratively designed and tested over a period 
of three months. The starting point for the construction of each item was an issue 
concerned with proving, followed by a trawl of the literature around this issue and a 
search for relevant tasks in the curriculum. We report here on students’ answers to 
one open-response algebra item (A1), one open-response geometry item (G2a), and 
one multiple-choice geometry question (G3). 
Frequencies for the sample as a whole are given as well as for four groups of 
students (P1, P2, Q and R) in order to illustrate some trends in the data. Groups P1 
(N = 30) and P2 (N = 28) are parallel top mathematics sets from a non-selective 
suburban school, Q is a group of 25 of the best students selected from four mixed 
ability classes in a highly selective school, and R (N = 31) is the top set from an 
urban comprehensive school. 
Students were given a Baseline Mathematics Test a few weeks before taking the 
proof survey, to provide a measure of their general mathematical attainment. This 
test consisted of 22 multiple-choice items selected from the Third International 
Mathematics and Science Survey (IEA, 1996). There were no questions on 
mathematical reasoning. The mean scores on the test, for the total sample and for 
groups P1, P2, Q and R were 15.3, 16.4, 16.2, 20.0 and 15.2 respectively. Thus the 
mean scores for P1, P2 and R were roughly similar to the mean for the (high 
attaining) sample as a whole, while the mean for Q was substantially higher. 



 

 

 
Pattern spotting responses to a question about generalising a structure 
Question A1 (shown in Figure 1) is concerned with generalisation in a setting (tile 
patterns) familiar to English students. (There is extensive work on a generalisation 
perspective to introducing algebra; see Mason, 1996). 
As well as providing a 
numerical answer, 
students were asked to 
show how they had 
obtained their answer. 
Responses were coded 
into 5 broad categories 
(Table 1, below). We 
discuss just one category 
here, which we name 
pattern spotting. In this 
students obtained the 
incorrect answer 180 by applying a number pattern without recognition of the 
structure of the question (see Hoyles and Küchemann, 2000, for a description of the 
other categories). The diagram in question A1 shows 6 white tiles surrounded by 18 
grey tiles. Students were asked for the number of grey tiles needed to surround a row 
of 60 white tiles. The incorrect answer of 180 grey tiles was found by deriving a 
(false) relationship, either between the given and required number of white tiles 
(there are 10 times as many, so there will be 10 times 18 grey tiles) or, less 
frequently, between the number of white and grey tiles (there are 3 times as many, so 
there will be 3 times 60 grey tiles). 
Code 1 Incorrect answer (180); use of an incorrect number pattern 

Code 2 Incorrect answer (eg 120); partial use of correct structure (eg doubles but does not add 6) 

Code 3 Correct answer (126); use of correct structure in the specific case of the question with 
no indication of generality 

Code 4 Correct answer (126); use of correct structure indicating its generality 

Code 5 Correct answer (126); use of correct structure (expressed in variables) 

Code 9 Miscellaneous incorrect answers (including no response) 

Table 1: Response codes for question A1 
It was not unexpected that some students would resort to using number patterns and 
thereby attempt to make an empirical, as opposed to a structural, generalisation (Bills 
and Rowland, 1999). Despite the drawbacks of such an approach (see Hewitt, 1992), 
the use of number patterns has been widely advocated in UK curriculum materials 
for many years, even in such stimulating materials as the DIME project (Giles, 
1984). However, in such materials students are asked to produce a systematic list of 

A1 Lisa has some white square tiles and some grey square tiles.
They are all the same size.

She makes a row
of white tiles.

She surrounds the white
tiles by a single layer
of grey tiles.

How many grey tiles does she need to surround a row of 60 white tiles? ..........

Show how you obtained your answer.

Figure 1: Question A1 



 

 

 
numerical data from which to induce a rule. Here, for reasons as yet unclear,  many 
students were attempting to generalise from a single numerical instance; that is, not 
only were they ignoring the spatial structure of the situation, but they were not 
testing their rule on other numerical data. 
Figure 2 shows the frequency of the 
pattern spotting response for question 
A1. The solid black column shows 
that over one third of all the students 
gave this response (total sample, N = 
2797). This is far larger than we had 
anticipated, and almost as large as the 
proportion of students who answered 
the question correctly (43 %). 
Figure 2 also shows the responses for 
groups P1, P2, Q and R. We draw 
attention to two noteworthy features. 
One is the difference between classes 
P1 and P2. These are parallel classes 
from the same school, so the finding 
strongly points to the operation of teacher influences, though at this stage we do not 
know what these might be. A second interesting feature is the relatively high pattern 
spotting frequency (48 %) for group Q. The students in this group were selected for 
their high mathematical attainment within an already selective school. Many of those 
who gave this pattern spotting response to question A1 gave high level responses to 
other items on the proof survey (including the geometry item to be discussed below); 
many also scored highly on the Baseline Maths Test. Again, the reasons for the high 
frequency of the pattern spotting response for group Q are not yet known, though the 
textbook used in the school might provide a clue2. 
Responses to an item to distinguish perceptual from logical reasoning 
Question G2a (Figure 3) is based on an item by John Gardiner (personal 
communication). We 
used it to investigate 
whether students use 
perception or logical 
reasoning in explaining 
their answers to a simple 
(but unfamiliar) figural 
question (see Lehrer and 
Chazan, 1998; Harel and 
Sowder, 1998).  
Students are presented Figure 3: Question G2a 

G2 The diagram shows two
identical square tiles,
A and B.

The tiles overlap.

a) Do the two non-overlapping
regions have the same area?

.........

Explain your answer.

BA

Figure 2: A1 pattern spotting frequencies for  
total sample and for four groups 
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with identical overlapping squares and are asked whether the two non-overlapping 
regions have the same area, and why.  
Responses were coded into 3 broad categories, which are shown below (Table 2)3. 
For code 1 responses, students gave no reason or only mentioned the non-
overlapping areas and deemed them to be the same (or not the same) because they 
looked to be the same (or not). Code 3 responses focussed on the overlap, with an 
argument along the lines: ‘The squares overlap the same amount (and have the same 
area)4, so the non-overlapping regions have the same area’. The code 2 responses 
were similar but with the area of the overlap treated in a specific rather than a 
general way; for example, students might state that if one third of each square 
overlaps, then the same amount, two thirds, of each square does not overlap. 
Code 1 Correct or incorrect answer (Yes/No); no logical explanation 

Code 2 Correct answer (Yes); logical explanation based on specific example 

Code 3 Correct answer (Yes); logical argument 

Code 9 Miscellaneous incorrect answers (including no response) 

Table 2: Response codes for 
question G2a 

Figure 4 shows the 
frequencies for each 
code, for the total 
sample (the solid black 
columns) and groups 
P1, P2, Q and R. 
Perhaps the greatest 
surprise was that over 
half the total sample 
gave a code 1 
(perceptual) response. 
The relatively poor 
response of class R is 
also of interest. It 
matches that class's 
performance on another geometry item (question G1) where the students made an 
incorrect response based on perception rather than mobilising a simple geometric 
argument (see Hoyles and Küchemann, 2000). On the other hand, there is less 
difference between classes P1 and P2 than on question A1, and the performance of 
group Q is much as one might expect from their general mathematical attainment, 
with relatively few code 1 responses and relatively many code 3 responses.  
Choices of argument to explain a geometrical conjecture 
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Figure 4: G2a code frequencies for total sample and for four groups 



 

 

 
In question G3 (Figure 5, below), students were presented with a mathematical 
conjecture and a range of arguments in support of it (options A, B, C and D). They 
were asked to make two selections from these arguments--the argument that would 

be nearest to their own approach and the argument they believed would receive the 
best mark from their teacher. The question was deliberately couched in dynamic 

G3 In the diagram, A and B are two
fixed points on a straight line m.

Point P can move, but stays
connected to A and B
(the straight lines PA and
PB can stretch or shrink).

Avril, Bruno, Chandra and Don are discussing whether this statement is true:

xÞ + yÞ  is equal to  180Þ + zÞ.

xÞ

zÞ

yÞ

A B

P

m

I measured the angles in the diagram and
found that angle x is 110Þ, angle y is 125Þ
and angle z is 55Þ.

110Þ + 125Þ = 235Þ,

and 180Þ + 55Þ = 235Þ.

I can move P  so
that the triangle
is equilateral,
and its angles
are 60Þ.

So x  is 120Þ and y is 120Þ.

120Þ + 120Þ is the same as 180Þ + 60Þ.

60Þ

60Þ 60Þ

I drew three parallel
lines.
The two angles marked
with a  are the same
and the two marked
with a  are the same.

Angle x is 90Þ+  and angle y is 90Þ+ .

So x plus y is 180 +  + , which is 180 + z.

90Þ 90Þ

I thought of a diagram where the angles x,
y and z are all 170Þ.

S o  i n  m y  d i a g r a mx  +y i s  n o t  e q u a lt o  1 8 0+ z.

170Þ
170Þ170Þ

a) Whose answer is closest to what you would do? ...........

b) Whose answer would get the best mark from your teacher? ...........

Figure 5: Question G3 parts a) and b)



 

 

 
terms (“Point P can move …”) to invite students to adopt a dynamic approach to the 
question. Fischbein (1982) suggests that such an approach can be an effective way of 
accessing generality and of gaining insight, and option C (Chandra's answer) is 
similar to an approach that he recommends for tackling the angle sum of a triangle. 
Frant and Rabello (2000) also suggest that a dynamic approach can be useful at an 
intuitive level and for forming conjectures, (though they seem to argue that a static 
approach is needed for a formal proof). 
Two aspects of the students' responses are of 
particular interest. One is the marked difference 
between the choices for ‘own approach’ and for 
‘best mark’; the other is the difference in choice 
between girls and boys, particularly for ‘own 
approach’. 
Table 3 shows the distribution of choices for the 
total sample. It indicates that by far the most 
popular choices for ‘own approach’ were A (40 
%) and B (35 %), both of which are empirical 
arguments, with only 10 percent choosing the 
general argument, C. On the other hand, 50 
percent chose C for ‘best mark’. This response 
pattern also occurred with a parallel numerical 
question (A3) and it echoes the findings of Healy and Hoyles (2000) in their survey 
with 16-year-old students. (Not surprisingly, given the large number of students 
involved, the difference between the choices for ‘own approach’ and ‘best mark’ was 
highly significant: χ2 = 1759.5, df = 16, p < 0.0001) 
Figure 6 shows the 
frequency of choices 
for ‘own approach’ for 
girls and boys in the 
total sample. It can be 
seen that the girls show 
a clear bias towards 
choice A with the boys 
showing a lesser bias 
towards C and D. These 
differences were also 
significant (χ2 = 63.8, 
df = 4, p < 0.0001). At 
this stage the reasons 
for the differences are 
not clear, but they would seem to be worth investigating further. Similar differences 
occurred in question A3 and with some other items in the survey.  

Figure 6: Question G3 – frequency of choices of 'own approach'  
for girls and boys in total sample  
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Table 3: G3 - frequencies for 'own
approach' and 'best mark' (N = 2797)

Own approach
G3 A B C D other

A

B

C

D

other

total

total

0.08 0.03 0.01 0.00 0.00 0.12

0.09 0.10 0.01 0.01 0.00 0.22

0.18 0.17 0.08 0.05 0.00 0.50

0.03 0.03 0.01 0.04 0.00 0.11

0.01 0.01 0.00 0.00 0.03 0.06

0.40 0.35 0.10 0.11 0.04 1.00



 

 

 
Discussion 
These simple statistics suggest that: first, type of response to a familiar algebra item 
about generalisation may be related to general mathematics attainment but may also 
be influenced by teaching and textbook: second, that since geometry is given rather 
little emphasis as a context for reasoning in the English curriculum, ‘better’ 
responses in geometry (that is, introducing a logical as opposed to a perceptual 
explanation) may be more strongly related to general mathematics attainment than in 
algebra and also geometry responses may be subject to more variation (as in class R) 
due perhaps to teacher belief and interest: third, that even students who have had 
rather little introduction to proving have already developed two different conceptions 
of mathematical reasoning, in that arguments that they assess would receive the best 
mark differ from arguments they would adopt for themselves: and fourth, gender 
might also be a factor influencing response. Many of these results are similar to those 
reported following the analysis of a survey conducted in 1998 of older (16-year-old) 
students’ conceptions of proof (see Healy and Hoyles, 2000). These suggestive 
findings will be investigated further: statistically using multilevel modelling 
(Goldstein, 1995) and qualitatively through interviews with students and teachers 
selected on the basis of the profile of individual or class response. 
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Notes 
1.  Information about the study can be found on the project's website at www.ioe.ac.uk/proof. 
2.  The Year 8 book devotes several pages to number sequences, and these are presented in a fairly 

open way; however, the setting is nearly always purely numerical, rather than involving spatial 
patterns as in A1. 

3.  In a fourth category, not listed in the table, students obtained the correct answer by measuring, 
for example by imposing a square grid on the diagram and counting squares. Such responses 
were given by only 0.5 % of the total sample and by none of the students in the four groups under 
discussion here. 

4.  Code 3 responses were subdivided into those that did and did not make explicit reference to the 
fact that the squares A and B had the same area. 
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