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We describe some contrasting aspects of the internal, visual imagistic 
representations of two elementary-school children, inferred from fine-grained 
analysis of their problem solving during a pair of carefully scripted, videotaped task-
based clinical interviews 16 months apart. The problems involve conceptual 
interpretation and use of fractions. We look for and find concrete/pictorial, pattern, 
and dynamic imagery, based on set (discrete quantity) and spatial extent (continuous 
quantity) models, and memory images of formal notation. We also infer internal 
operations on and transformations of imagery, and discuss our interpretations. 

 
This study considers in some detail the internal, visual imagistic representations of 
two children as they solve some problems involving rational numbers (fractions). We 
acknowledge at the outset important limitations to the methodology of inferring 
internal representational configurations from observed external statements, behaviors, 
or productions. Internal representation involves ambiguity, and inferences about it 
entail context-dependent interpretations. In this exploratory and descriptive “status 
study,” our goal is not (yet) to commit to a definitive, reliable or generalizable coding 
scheme, but to make as explicit as possible the bases for our inferences, improving 
task-based interview methodology as we explore individual children’s imagery. 
Various researchers investigate and discuss imagistic representation generally, and 
visual imagery in particular, as a fundamental system of cognitive representation for 
mathematical problem solving (Bishop, 1989; English, 1997; Goldin, 1982, 1987, 
1998; Goldin & Kaput, 1996; Owens, 1993; Presmeg, 1985, 1986, 1998; Thomas & 
Mulligan, 1995). We shall focus here on concrete/pictorial imagery, pattern imagery, 
memory images of symbolic notation, dynamic imagery, and mental operations on or 
transformations of images. These characteristics are not mutually exclusive; e.g., 
pattern imagery may be dynamic, and transformed via mental operations. 
We use definitions (consistent with those of Owens and of Presmeg) as follows. 
Concrete/pictorial imagery is spoken of or gestured at as if it were a picture or a 
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physical object. The image may be given a name referencing what it resembles in real 
life. Presmeg (1985) found pictorial imagery to be the predominant form during 
problem solving; Owens also found it to occur frequently, especially during the 
orientation phase of problem solving and again as a kind of retrospective, global 
check. In pattern imagery the image abstracts and/or generalizes mathematical 
relationships. Presmeg (1985, p.175) notes “such imagery may be vague or vivid but 
its essential feature is that it is pattern-like and stripped of concrete details.” 
Krutetskii (1976) calls pattern imagery a graphic scheme where the problem’s terms 
and relations are represented in a visually schematic way. Memory images of 
symbolic notation refer to the visualization of formal mathematical expressions, as 
Presmeg reports students who describe “seeing” a mental picture of a formula and 
“reading” the image. In dynamic imagery there is active movement or change in all or 
part of the image (Thomas & Mulligan, 1995). Mental operations or transformations 
refer here to visualized purposeful acts by the imager that modify or transform the 
image, suggesting but not requiring dynamic imagery (as they can also be visualized 
as a succession of static images). Presmeg also uses the term “kinaesthetic imagery” 
because of associated physical actions; Owens’ term is “action imagery.” 
As our study of imagery is centered in the domain of fractions (Behr, Lesh, Post, & 
Silver, 1983; Behr, Wachsmuth, & Post, 1988), we consider the children’s imagery 
in relation to various possible conceptual models: e.g. discrete (set) vs. continuous 
quantity or spatial extent (area or volume, sometimes termed “region”) models; part/ 
whole vs. comparison or ratio relationships; mental operations such as partition. We 
also focus on understandings of fractional symbolic notation through visual imagery. 

Research questions and design of the study 

The following questions motivated our analysis. (1) Inferring internal imagery. Can 
we create explicit criteria for inferring from hand gestures, body movements, paper 
and pen or marker diagrams, pictures, and charts, and physical manipulations of 
concrete materials, the five characteristics of visual imagery discussed above? Do we 
find consistency among these in the individual child? (2) Relation between internal 
and external imagistic representation. What relationship can be discerned between 
the child’s internal visual representational capability and her facility in constructing 
external imagistic representations?  How does the use of paper and pencil or marker 
to draw pictures, diagrams, and/or create charts, or the use of concrete manipulative 
materials, assist in or influence the visual imagery used in the problem solving? (3) 
Relation between internal visual imagery and strategy. Heuristic strategies of interest 
include drawing diagrams, working backward, solving simpler or similar problems, 
guess and check, subproblem decomposition, etc. How does the child’s internal 
imagery interact with or influence strategy use? (4) Relation between internal 
imagery and inference of mathematical patterns. How is the child’s facility in 
constructing or recognizing a mathematical pattern influenced by her imagery. Which 
imagery characteristics are important here? (5) Internal imagistic representation and 



mathematical conceptual development. Is there a relation between the child’s internal 
imagery and the development of her conception of a fraction over time? 
In a longitudinal study of individual children’s mathematical development, whose 
design has been described in greater detail elsewhere (Goldin, DeBellis, DeWindt-
King, Passantino, & Zang, 1993; Goldin, 1997), 22 children ages 8 to 10 years at the 
outset were selected to participated in five highly structured task-based interviews 
over three school years. Interviews #2 and #5 involved non-routine problems about 
and with fractions. A broad, cognitive analysis with respect to fraction representations 
and strategies of all 20 children who participated in these two interviews has been 
completed (Passantino, 1997; see also Goldin & Passantino, 1996). The present report 
is part of a study focusing in greater depth on the visual imagery of a cross-sectional 
subset of four children. Below we discuss brief excerpts from interviews with two of 
them, Marcia and Londa, inferring some contrasting representational characteristics. 
The interview scripts were developed at Rutgers by a team of experienced teachers 
that included the clinicians, and revised after rehearsal and pilot testing to incorporate 
many different contingencies. Free problem solving is encouraged throughout--after 
posing a question, the clinician allows for spontaneous response before questioning to 
explore the child’s answer or request an external representation. If the child is not 
engaged or seems at impasse, planned suggestions/hints are offered. The clinicians 
are not to impose their methods or correct or confirm the child’s solution, as it is not 
the goal here to teach rational number concepts. At certain points, decided in advance 
and described in the interview script, the children are guided toward particular 
understandings essential for subsequent questions to be meaningful. Two video-
cameras operated simultaneously during each interview, one focusing on the child’s 
work and the other showing the interaction of the clinician with the child. Outlined 
below are elements of the two interview scripts needed for the discussion; the 
complete scripts are in Passantino (1997), or available from the authors. 
In task-based interview #2, materials placed before the child include a pad, pencil, 
markers, and red and black chips (checkers). Some preliminary, non-mathematical 
questions precede a sequence of mathematical questions posed by the clinician. For 
each one, the follow-up includes, as appropriate, “Can you help me understand that 
better?” “Why?” and/or “Are there any other ways to take one half (one third)?” [The 
first such questions are:]  “When you think of one half, what comes to mind?”  
“When you think of one third, what comes to mind?”  “Suppose you had twelve 
apples. How would you take one half?”   “... one third?”  [Cutouts are presented in 
succession: a square, a circle, a 6-petal flower. For each the child is asked:] “Here is a 
shape. How would you take one half?”  “... one third?”  ...  [Part way through:] 
“What was on your mind when you were answering the questions up to this point?” 
and if no image is described, “Did you have a picture in your mind while you were 
answering any of the questions?” with follow-up.  [The interview continues:] “Can 
you write the fraction one half?” “What does this fraction mean to you?” (similarly 
for one third)  ...  The clinician then goes on with more complicated exploratory 



activities that involve taking one half and one third of an array, and visualizing the 
cutting of a cube into fractional parts. At the end of the interview retrospective 
questions again address the child’s visual imagery. 
Task-based interview #5 re-explores specific topics from interview #2, and extends to 
further rational number problems. Materials at the outset include red and white chips, 
paper circles, squares, and triangles, markers, pencil and paper, a calculator, a ruler, 
ribbon, scissors, and other items specific to later questions. The follow-up for each 
question includes, as appropriate, “Why?” “Why not?” “Can you show me what you 
mean?” “Can you show me [using] the materials?” [The main questions begin:]  
“When you think of a fraction, what comes to mind?”  [Bold-face printed 
expressions in vertical format for five fractions, 1/2, 1/3, 2/3, 3/4, and 4/6, are 
presented on a sheet of paper:] “What fractions do you see here?”  “Can you explain 
... what one of these fractions means?”  “Why is it written this way?”  ...  [Several 
main questions later, the clinician asks:] “Imagine a big birthday cake shaped like a 
rectangle. Can you imagine what it looks like?”  “Describe what it looks like.”  
“Now imagine that there are 12 people coming to the birthday party and they each 
want a piece of cake. Your job is to cut the cake so that each person gets the same 
size piece. How will you cut the cake?”  ...  “Are there any other ways to cut it?”  
“Now think about the icing. Suppose the cake has icing on the top and side.”  ...  At 
the end of the interview further retrospective questions address visual imagery. 
Observations and inferences: Londa 
At the time of interview #2 Londa was 9 yrs. 8 mos. old, in the 4th grade of a school 
in a low-income, urban district. Her spontaneous representations of “one half” and 
“one third” are verbal: “a cookie, split in half” “... and then when you split it in half, 
it’s two ... Two smaller pieces,” and “Half of our classroom, kids in our classroom,” 
“... we have 19 kids in our classroom so half of that would be 9 ... no, we have 18, 
half of that would be 9,” followed by “box cut in threes … because I think a box 
would be easy to picture,” “one-third of an orange,” and “one-third of an apple. 
Really one-third of anything.” All these phrases suggest 3-dimensional, concrete/ 
pictorial imagistic representation, drawn from familiar real-life contexts, with inter-
pretation of the fraction based on a mental operation of partition of a whole into equal 
parts. All but the second provide a “spatial extent” or continuous quantity model. The 
“kids in our classroom” can be characterized as a “set” or discrete quantity model. 
Asked to take one-half of 12 apples, she replies, “Split all of the apples in half.” 
Showing with checkers, “Well, take 12 of these” [takes 6 red, 6 black] “I would split 
them all in half. So then there’d be 24” [she counts the 12 checkers, assigning a value 
of two to each] “’Cause you cut this in half this would be two ... four, six, eight” [she 
continues to 24]. When asked to take one-third, “Cut them all into threes” [she 
counts by threes with the 12 checkers, to 36]. Londa never explicitly states what 
would be one-third. Her external representations to this point suggest mental 
operations visualized through a succession of static, 3-dimensional concrete/pictorial 
image-configurations, using exclusively a continuous quantity model for “fraction.” 



She does not come back to a “set” model; having acted to transform her image from 
12 apples into 24 pieces, she does not seem to treat the latter as equivalent elements 
but retains the pairing derived from the apple at which they originated. 
Asked to write the fractions one-half and one-third, Londa does so correctly in a 
vertical format, symbolic notation. Interpreting what she wrote, she explains, “This 
[the 2] means that you have two parts, and this [the 1] being one whole. One whole 
and two parts.” She explains one-third as “one whole, three parts.” [Clinician:] “Is 
there any other way you can think of what those fractions mean?” [Londa:] “Either 
that or three wholes and one part.” She explains, “if I had one cookie, two cookies, 
three cookies” [draws three circles], “and I take one cut, part out of each of them”  
[makes a small wedge at the top of each circle]. Londa translates consistently but with 
some instability among verbal expressions, pictorial images with mental operations, 
and memory images of symbolic notation. Her interpretation of the numerator as 
representing the whole and the denominator as the number of parts is consistent with 
her first answers, and with her method of taking one-half and one-third of twelve 
apples. She does not show evidence of a ratio or comparison model for fractions. 
At the time of interview #5 Londa was 11 yrs. 0 mos. old, in the 5th grade in the same 
school. Her initial statement of what comes to mind for a fraction is, “I think about 
how the denominator means that it’s the whole and the numerator means how many 
parts are out of it.” ... “Like two thirds, the three is the denominator, that means the 
whole thing; and two means how many, um, two pieces out of the three whole.” 
[Clinician:] “Could you show me using some of these materials perhaps?” [Londa:] 
“Okay, this is two, [picks up two yellow cutout circles] this is the two-thirds, and then 
you have three on the bottom, you have three all together [puts a third circle with the 
others] and then you have this is two [indicates the two circles] and then you have one 
left over [indicates the third circle]. So, well, like, if you say two-thirds minus, um, 
one-third you have two-third, no, two-thirds minus one-third you have one third and 
that’s it.” [without further action with the circles] Londa’s first words suggest a 
memory image of symbolic notation related directly to part-whole imagery. Her use 
of the circles makes no further reference to “pieces of the whole,” but suggests a 
possible relation to a set model, even the genesis of a ratio model, but with additive 
imagery. She evidences a memory image of an algorithmic procedure for fractions. 
Later, asked to visualize the rectangular birthday cake, Londa describes it, explains 
that “Since it’s a rectangle you can divide it into equal parts,” shows its height with 
the ruler perpendicular to the table, “It’s about two inches thick,” and draws a 
rectangle with two rows and six columns to show exactly how to cut it in 12 equal 
pieces. Asked if there are other ways, she replies, “I don’t think so because that’s the 
way we cut my birthday cake. I, [shakes her head] I don’t think so.” Asked how 
many, and then what fraction, of her pieces would have icing on exactly two sides 
and the top, she (correctly) explains “Just the four, because … you can’t put icing on 
the inside of a cake …” and “one-third, well, four-twelfths you can reduce it, four-
twelfths can be reduced by four and it’d be one-third.” Her verbal and external 



pictorial representations of how she cut the cake, and her way of determining the 
number of pieces with icing on exactly two sides and the top, suggest static, internal 
3-dimensional, real-life pictorial imagery, with operations of partition and counting 
closely embedded in the context. Londa uses her imagistic part-whole model and an 
internal algorithm to obtain the desired fraction of the pieces. 
Observations and inferences: Marcia 
At the time of interview #2 Marcia was 10 yrs. 4 mos. old, in the 5th grade in a small, 
lower middle income school district. Her spontaneous, verbal representations of “one 
half” and “one third” are “a half of a circle,” “a half of a triangle,” and “a third of a 
circle.” These suggest possible internal pattern or pictorial imagery with a region 
model for the fraction. Asked about the 12 apples, Marcia replies, “Count ’em.  Well 
if you know there’s 12, and 6 ... and since 6 and 6 is 12, take 6 of them if you want 
half.” [arranging 12 red checkers in two rows of 6, and counting them] “... you know 
that 6 and 6 is 12 you could just take half of them away and you would have half.” 
[She pushes the 6 checkers from the top row into a casual irregular group. Clinician:] 
“Why is it one half?” [Marcia:] “Because, well, if you place it like this and you add 
the 12 to your 6 here” [she arranges the two rows of 6 again, indicating that taking 
the bottom row of checkers is equivalent to taking the top row, and counts] “... it’s 
the same amount the other way.” For one-third of twelve apples Marcia replies, “if 
you knew 4 times 3 was 12, you could take 4 away and you would know it was a third 
... because 4 and 4 is 8 and then another 4 is 12.” [pushes 4 checkers to the right, 
then separates the remaining 8 into two groups of 4, maintaining the row and column 
structure] Marcia’s external representations suggest memory images of notation, and 
additive and multiplicative structures for part-whole relation in a “set” model. She 
focuses on the numbers of apples, doing some mental computation; importantly, her 
physical manipulation of the checkers suggests an internal pattern image that includes 
operational one-to-one correspondence between items in parallel rows. 
Later Marcia correctly writes the fractions one-half and one-third in vertical-format 
symbolic notation, explaining, “well, I can tell that it's one-half because like this is a 
two [points to denominator] and it’s a one [points to numerator] and if you add one 
and one it would equal two,” and “if you could times one times three or one and one 
and one is three so it would be one-third” Her repeated addition of the numerator to 
reach the denominator value is suggestive of her earlier pattern imagery.  
At the time of interview #5 Marcia was 11 yrs. 8 mos. old, in the 6th grade in the 
same community. She now describes a fraction in quite general terms, “like a part of 
a whole of something” [writes the fraction three-fifths] and explains, “like three-fifths 
it’s like the five-fifths is the whole, and it’s like that’s part of the whole of whatever 
the thing is.” To us this suggests not just internal memory images of notation, but 
also a level of abstraction that includes a pattern image of a fraction as an operator. 
Marcia initially responds to the birthday cake question verbally, kinesthetically, and 
with a drawing: “Well, um, it’s like this [tries to indicate with her hands how the cake 



would look, then draws a triangle] like, a, uh, oh a rectangle” [draws a long, thin 
vertical rectangle]. After some dialogue she measures and redraws a horizontal 
rectangle 4 inches long. “... and like you would divide the four into half ... which is at 
two [draws a vertical line at 2 inches, dividing the rectangle in half] and then you 
would divide each of these into halves [draws vertical lines dividing each section in 
half] ... so you’d have four pieces ... and then you divide these, which is at the half an 
inch, ’cause the other one was at the inch to divide ... and then you have to divide 
these which is at a fourth of an inch” [counts 16 pieces]. ... “But there's more than 
twelve so ...” Prompted to redraw freehand, Marcia suggests, “it would depend on 
like how big the cake is ’cause like if the cake is, like, um, 24 inches long then you 
would have to divide them each into two inches” ... “So, it depends how long the cake 
is.” Further encouraged to redraw freehand, Marcia again considers halving, “... there 
would be 16 ... since there’s 8 now ... so it would double it so like you ...” [Clinician:] 
“Yeah, could you do it?” [Marcia:] “... would have to divide the cake into thirds” 
[draws a long horizontal rectangle, with vertical lines dividing it in thirds] “… and 
then divide these so then there’s 6 [draws vertical lines dividing each of the 3 sections 
in half] and then you divide these into half [draws additional vertical lines dividing 
each of the six sections in half] which would make that 12 pieces.” Marcia does not 
think of other ways to cut the birthday cake into 12 equal pieces. Asked how many, 
and then what fraction, of her pieces would have icing on exactly two sides and the 
top, she answers (correctly), “there would be 10, ’cause there, it would be on the top 
here [points to interior of the rectangle] and then it would be on this side and this side 
[points to the upper and lower horizontal edges] but you can’t count these sides 
[points to the right and left vertical edges] ’cause there would be three since there’s 
the edges.” She continues, “10 out of 12, or five-sixths,” explaining, “you divide the 
10 and the 12 by two and you get five-sixths.” Space permits no further detail, but 
from this and other evidence we infer internal visual and kinesthetic pattern imagery 
based on linear and region models, interacting with the “trial and evaluate” halving 
strategy. We think her linear model stems from her measurement process. 
Comparison and conclusion 
We infer a close relation between the children’s internal imagery and their conceptual 
development of fraction, based not only on the presented excerpts but on our analyses 
of the full interviews. Londa’s imagery is predominantly pictorial, centered in 
familiar concrete objects. She consistently connects her memory images of symbolic 
notation with just a part/whole conceptual model for fractions, relating each problem 
directly to a real-life embodiment. Her use of pattern imagery, which might help her 
abstract and connect different ideas or metaphors of fraction, is not well developed. In 
contrast, Marcia evidences predominantly pattern imagery, connected with memory 
images of symbolic notation. She uses part/whole, operator, additive, multiplicative, 
and linear conceptual models for fractions, and is not “stuck” in particular contexts. 
Her frequent pattern imagery and her wider range of conceptual models suggest that 
for her symbolic notation is more flexibly representational of her imagery. Both 
children show consistent visual imagery characteristics from the first interview to the 



second, with evidence of developing memory images of symbolic notation and 
school-taught algorithms between the two interviews. 
While initial verbal responses usually allow us to infer some imagery, the planned 
prompts for additional external representational forms yield evidence of different 
internal imagery, not easily discernible from the purely verbal descriptions. Through-
out the interviews Londa’s and Marcia’s drawn pictures and physical manipulations 
of concrete materials suggest concrete/pictorial and/or pattern imagery; their hand 
gestures and body movements suggest dynamic imagery and/or mental operations; 
and their notations suggest memory images of symbols and algorithmic operations. 
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