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The activity of abstraction is central to mathematization. In the past, it has been 
discussed but generally not studied experimentally. The following study exemplifies a 
way for tracing processes of mathematization. We extend the nested model of 
abstraction elaborated by Hershkowitz, Schwarz, & Dreyfus (in press), to study 
successive activities of two Grade 7 students collaborating to solve algebra tasks in 
technological learning environment. The analysis demonstrates the consolidation of 
abstractions among the activities.  

 

Theoretical framework 
Mathematical activity, like any other human activity, is embedded in a socio-cultural 
environment (e.g., Voigt, 1995). This view is increasingly accounted for by the 
mathematics education community, which sees learning as a culture of 
mathematization in practice. Such an enculturation gains from alternating collective 
with individual activities, analytic with reflective stages, and integrating intra with 
inter-processes that are at the root of mathematical development (Hershkowitz & 
Schwarz, 1999a, see related ideas in scientific enculturation in classrooms in 
Woodruff & Meyer, 1997). A crucial issue concerns the relationship between 
construction of shared knowledge and the contribution of the individual 
(Hershkowitz, 1999). This issue is “hot”, especially when the analysis does not focus 
on sole activities but on a series of activities.  
Like in several other studies conducted in the CompuMath project (e.g., Hershkowitz 
& Schwarz, 1999a, 1999b; Schwarz & Hershkowitz, in press), we adopted the 
activity theory perspective (Leonte’ev, 1981), as a framework for studying different 
forms of practice of the individual and of the group within an between activities. The 
activity theory is a descriptive tool appropriate for socio-cultural analysis. The unit 
of analysis is not the individual human action but the activity as a whole, that is, “the 
minimal meaningful context for understanding individual action” (Kuutti, 1996, p. 
28). An activity is a chain of actions done (cooperatively or individually) on the 
same object. Participant's motives determine their actions. Artifacts mediate actions 
on objects. Activities are under continuous change and development, where parts of 
previous activities are often embedded in following ones.  
Mathematisation is central in mathematical enculturation. Abstraction is at the heart 
of mathematisation (Freudenthal, 1991; Gravenmeyer, 1995). To study abstraction 
experimentally, Hershkowitz, Schwarz, and Dreyfus (2001) gave an operational 
definition of abstraction: an activity of vertically reorganising previously constructed 



 

 

 

 

mathematical knowledge into a new structure. The suggested model is based on three 
observable epistemic actions, which are nested in each other: Constructing (C) is the 
central action of abstraction. It consists of assembling knowledge artefacts to 
produce a new structure with which the participants become acquainted. The action 
of Recognising (R) a familiar mathematical structure, occurs when a student realises 
that the structure is relevant to the problem situation on which participants are 
engaged. The Building-With (B) action consists of combining existing artefacts in 
order to comply with a goal such as exploiting a strategy or justifying a statement. 
The RBC model of abstraction will be used in this article to trace the construction of 
new mathematical knowledge between different activities.  
Collaborative problem solving in an interactive setting takes many forms. Kieran and 
Dreyfus (1998) recognised different types of peer interaction. The types designate 
the interaction itself and the same pair may adopt various types of interaction during 
the same setting (Kieran, 1999).  
The study 
We focus here on the work of two Grade 7 students who participated in a one-year 
algebra course. The basis for the selection of these two students was that they were 
used to talk to each other. Five activities were chosen out of an algebra course. The 
algebra course, an introductory course in the Compu-Math project (Hershkowitz et 
al, in press) consists of a sequence of activities organized around problem situations. 
Students had a spreadsheet program (Excel) at their disposal.  The tasks in the 
algebra course were designed to give opportunities to students' construction of 
structures of mathematical concepts (algebraic variables and models) and of various 
mathematical processes (hypothesizing, making generalizations, testing hypotheses, 
interpreting representational information, solving and justifying). In the present 
study, we examine one socio-cultural setting in which these constructions took place. 
That is, we observe (a) the types of interactions while collaborative work is taking 
place and (b) the construction of a shared knowledge of the pair and, the contribution 
of each participant, as well as what is left of it in the individual. All these aspects are 
examined within and between five activities as one continuum along the academic 
year. 
All activities were open - no guidance for solution was provided, neither instruction 
for making use of the Excel. The tasks in each activity were of increasing difficulty.  
The work of the pair in the class was videotaped and written work was collected. The 
videotapes were transcribed. Following Chi (1997), the protocols were divided into 
"cognitive segments". The dimension of interaction was considered and analyzed as 
well (Resnick et al., 1993; Hershkowitz, 1999), so that the chronological flow of the 
interaction and its logical flow might be seen clearly, including the underlying 
assumptions and motives of the students.  
In this presentation we will analyze selected parts from the last activity (The 
Sequences of Dots activity) in which the creation of new structures of knowledge 



 

 

 

 

takes place while students collaborate together. Conclusions concerning knowledge 
constructing and ways of interacting will be drawn. 
The Sequences of Dots’ activity.  
This activity took place at the last month of the year while students were quite 
familiar with the spreadsheet, and were accustomed to work pair with dedicated 
peers. The activity consists of 6 tasks, two of which we focus on here. In each of the 
first two tasks students observed a sequence of dots (see Figure 1a & 1b), were 
asked to discover a pattern for the number of dots in the shapes of the sequence, and 
to express it algebraically. Such a kind of activity was quite new to students.  
 
 
 

 
 

Figure 1 – a. the first three shapes in Task 1; b.  the third and fifth shapes in Task 2. 

 
Possible path for solving the tasks. 
Note: Students may obtain a sequence of numbers describe a given pattern on a 
spreadsheet by using one of the following generalizations methods: (a) Relating 
recursively to the previous number in the sequence (usually appearing in the 
previous cell of the same column) (b) The explicit generalization - using the position 
numbers (usually appearing in the same row in an adjacent column).  Whenever 
possible, most students tend to use the recursive method, in which they consider 
locally the difference between two consecutive numbers of the sequence. With the 
spreadsheet tool, the recursive strategy, which is primarily local, may turn to be 
global when the dragging operation is used, thus leading to a recursive 
generalization. It is obvious that educators valorize more explicit generalization - the 
position number method - in an algebra course, because it articulates the algebraic 
method of modeling which is general, and can be used in learning equations and 
functions. 
Each of the first two tasks in the Dots activity was designed to promote generalizing 
of the dot pattern into an explicit algebraic expression, using the position number 
method (b). The design of the task supports the connection between a specific 
counting method of the dots number in the specific elements of a given dotted 
sequence and the corresponding algebraic expression. For example, in the sequence 
in Figure 1b one may see a central dot and four "arms" each of which containing n 
dots, leading then to the expression 1 + 4n. Alternatively, one may count the 
horizontal "arm" with 2n + 1 dots, and the vertical "arm" with 2n + 1 dots, and 
subtracting one dot counted twice. This counting method is reflected in the 



 

 

 

 

expression 2*(2n + 1) - 1.  In short, various counting methods lead to different 
expressions, which are all equivalent. Linking together the counting method and the 
algebraic expression may support and help student at an early stage of instruction to 
generate symbolic generalizations. 
In the first sequence (Figure 1a), the three first shapes are presented, to help students 
to familiarize with the idea of sequence of shapes. In the second task (Figure 1b), 
two non-consecutive shapes are presented. Our experience from experimental 
classes, showed that presenting a sequence of consecutive elements leads students to 
express the pattern they could  generalize through a recursive method.  
 
Analysis of the collaborative work of a dyad on the first and second task 
In this part we will describe shortly the work done by a pair of students Avi&Ben on 
the task. We will present selected parts from the full transcript of their work in this 
activity. 
Avi (A) & Ben (B) started working on the first task of the activity (Figure 1a). They 
made several trials to generalize the given sequence of dots. Some of the trials were 
wrong. Finally they counted the first sequence of dots systematically in a correct 
way, generalized it through the use of verbal informal explanations, but failed to 
generate an algebraic expression. They moved on to the second sequence, and 
initiated a correct counting method.  Yet, as Ben himself mentioned it, they did not 
generate an algebraic expression. Following the intervention of the teacher (T), they 
succeeded in finding an expression using the position number method. Then, they 
voluntary went back to the first task, counted it globally, using a correct method -- in 
a sense an application of the method they used in the second task, to generate also an 
explicit algebraic expression, using the position number method. 
We go through some episodes to clarify the above general description: 
In the first episode Avi is about to find a correct way to count the number of dots in 
each shape of the first sequence (Figure 1a) using the position number method. 
 

A52     I think I found something here 
B53    What? 
A54    In the first we add 4, in the second we add 6, in the third we add 8, in the fourth we add 10. Its 
place A… 
A55   I don’t know how to write this expression. I found the pattern: the first add 4, the second, you 
take the second and add to it 6, the third, you take the third and add 8, the fourth, you take the four 
that is its place and add 10.  
…  
B87   I know what can we do 
 A88   What? 
 B89  =A1+, NO, it will not do it. We need something that each time what we are adding will grow by 
2. 



 

 

 

 

We see that Avi generates a systematic counting method (A54-A55),  and expresses 
it by using the positing number. But, he does not know how to formulate it as an 
algebraic expression (A55). 
After a while (B87-B89), Ben tries to write Avi's idea on the spreadsheet and fails as 
well. 
The two boys move to the second task (Figure 1b). So far, Avi was dominant. We 
will see in the next episode that this dominance will vanish. Both students observe 
the shapes in Task 2, and try to find how many dots there are in the 20th shape. 
 

A105  How do you know that there are 81? 
B106  What? Because always on each line there are three at each side, or one, it depends on n, it 
depends on the number, it depends on the order.  
A107  If it is 3 you add 1? 
B108  No, here, this is the third place, so I have here 3, 3, 3, 3 and here another one. [Ben waves his 
hand successively to the left, right, up, down, and finally points to the central dot.]  
…..  
B114  Did you find the expression? 
A115  No. 
T118  Can you describe how the fourth shape is going to look like? 
B119  Yes, four, that’s like, four from every side, and here, an extra dot. [pointing to the central point] 
T120  Four on every side and… 
B121  And one point in the middle. 
T122  And at the 200th place? 
B123  Then it will be, how much is 199 divided by four?  
T124  Wait, how the shape is going to look like at the 200th place, not the one that is made of 200 
dots. 
A125  Yes, a dot and another 200 on each side. [draws in the air, lines at every side. Ben acquiesces]  
T126  A point in the middle and… 
A127  200 on the right, 200 on the left, 200 up and 200 down. 
B128  No 
T129  Do you agree? Yes or not? 
B130  Oh, yes, yes. 
T131  So how would the n shape look like? 
AB132  Oh, one plus n times 4. 
A133  No, a dot  and n here, n here, n here and n here [show with his hand] 
 

As we can see here, Ben is aware that he is invited to construct an algebraic model of 
the pattern. He fully understands of the pattern governing the sequence of shapes 
(B106, B108). He explains it to Avi, and yet, cannot find the algebraic expression 
(B114). We can see that Ben Recognizes the structure of the given shape in the 
sequence as being symmetric, consisting of four equal sides with one dot at its 
middle. Ben can Build-With it numerical solutions for various elements (B119, 
B123). The intervention of the teacher (T124) pushed the students to work on the 
shape at the 200th place. The students cannot use direct counting strategies anymore 
and are led to imagine the 200th shape, which is a significant step towards 
generalization. In this intervention, the teacher helps them to consolidate the pattern 
constructed before. Ben is even able to answer a question requiring "backwards" 
numerical thinking (B123), but he needs the support of the teacher in order to 
express the algebraic expression explicitly with the position number method. Both 



 

 

 

 

peers show understanding of the expression (AB132). The mediation of the teacher 
makes it possible for them to make the necessary Construction that leads from the 
verbal model to the algebraic model based on the position number method.  
In the next episode, the two boys are going back voluntarily to the first task, in which 
they failed generalizing the given pattern algebraically: 
 

B155  So here, that’s what I'm saying, each time it's like, here we have to add four, here six and here 
eight. 
…  
T173  The counting method that was used there didn't give you any idea? What was the idea there?  
B174  Oh, I get it. I know what. It is like one of the lines, and we can double , 
A175  Oh, I found it, here we add one, one here and one here. =A1 + 3 
 [writes the expression in the computer and drags down], oh, no! 
B176  OK, I found it 
A177  Yes? 
B178  N + (N + 1) * 2 

We can see that Ben capitalizes on Avi's idea in their last attempt of generalizing the 
sequence (B155). Following an additional intervention from the part of the teacher 
(T173), Avi phrases a wrong generalization, combining together generalization by 
recursion and generalization by position number (A175). Ben implements 
successfully the Construction he made by himself in the second task, and generates a 
correct explicit algebraic expression, based on the position number. The knowledge, 
which was constructed in the second task, was recognized here, in a similar 
mathematical task, and was used for Building-With the needed generalization. 
Conclusion remarks 
We described here a pair of students working in collaboration in order to solve a 
problem. Both of them were determined to solve it, listened to each other, and tried 
to explain their ideas to each other. Kieran and Dreyfus (1998) designate this 
interacting style as inhomogeneous, each of the student trying to make an effort to 
understand his partner’s thought (Trognon, 1993).  
The analysis of the collaborative work of Avi&Ben is an additional example in 
which the RBC nested model of abstraction (Hershkowitz, Schwarz, & Dreyfus, in 
press) can be used. Here as well we can see that the first two actions (Recognizing & 
Building-with) are nested at the Construction action. Hershkowitz, et al. did not 
show that newly created knowledge structures are consolidated, as they are used as 
artifacts in further activities. In the present we succeeded to show how such a 
transition may happens; where the previous Constructed knowledge is becoming 
Building-with in the second cycle of the pair work on Task 1. The importance of this 
example is beyond the specific knowledge that was constructed and used later on in 
the activity. It shows that the suggested RBC model can be used as a methodological 
tool, by which consolidation of abstracted knowledge can be observed and 
investigated.  
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