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We detail one young woman’s journey in a 16 week mathematics content course for 
pre-service teachers. We analyse her initial efforts at problem solving in groups, 
and her ability to see and recall explicitly connections that were inherent in the in-
structor’s conceptions of the problems. Using her writing during the course, we 
compare her memories with those of other students of differing achievement, and 
infer that she made remarkable strides in coming to terms with the language of and 
ideas of mathematics, and understanding how engaging with those can help her be 
a better teacher. 

Correct answers and mathematical connections 
Pre-service elementary teachers want to get mathematical answers right. 

They want to know which formulas to use, and how to get the correct answer. A 
typical comment about their perceptions of mathematics on entering a 
mathematics content class is: “Coming into this class, I was under the impression that 
finding a formula to solve a problem was, in reality, the answer to the problem.”  

This is where many of them stop in their understanding of mathematics. A 
strict utilitarian perspective often limits their mathematical vision. We are con-
cerned when pre-service teachers figure the answer to 9+35/8 by reducing the 
problem to one of “how many eighths?” We are frustrated when they justify 
their answer that there are 16 ways of building towers of height 4 using blocks 
of 2 colors with the statement: “I know I have found all possible towers 
because every other group in the classroom got the exact same answer as us.”  

Changing what students value in mathematics is frequently a much harder 
challenge than teaching them mathematical procedures and application of for-
mulas. We need an antidote to a severely procedural orientation to mathematics 
focused on ‘correct answers’ that prospective teachers have learned to value 
above all. How can we explicitly emphasize connections, and assist students to 
construct relationships between parts of mathematics that they see as different?  

 We addressed this issue with a class of pre-service elementary teachers at 
Harper College, Illinois (www.harper.cc.il.us), during the Fall 2000 semester. The 
two authors co-taught the first three weeks of a 16 week course on 
mathematical content for pre-service elementary teachers. Differences between 
this and previous classes of the second author are in the explicit and intensive 
focus on building connections in the early part of the course. The emphasis in 



the first three weeks of the course was on making connections between 
different combinatorial problems and on multiple ways of interpreting answers.  
Theoretical background 

We wanted to know whether the problems we set could promote the 
formation of useful long-term mathematical memories. We followed the model 
of Davis, Hill and Smith (2000) in assisting students to make their implicit, 
procedural memories declarative (Squire, 1994). The latter are memories we are 
capable of expressing in words, drawings or gestures. They are to be 
distinguished from implicit, or non-declarative, memories that assist us to carry 
out routine procedures and habits. There are three major types of declarative 
memories relevant to mathematics. Two of these are familiar from everyday 
memory, whilst the third is more commonly seen in its full form in mathematics 
and science. 

Episodic memory is the system of memory that allows us to explicitly recall 
events in time or place in which we were personally involved. (Tulving, 1983; 
Tulving & Craik, 2000, and references). Semantic memory is the memory 
system that deals with our knowledge of facts and concepts, including names 
and terms of language. (Tulving, 1972, p. 386; Tulving, 1983; Tulving & Craik, 
2000, and references). Explanative memory is that part of declarative memory 
dealing with explanations for facts. Davis, Hill, Simpson, & Smith (2000) 
present a case that explanative memory is a separate memory system, linked to, 
but different from episodic or semantic memory.  

Most psychological studies of memory are oriented to memory for language. 
Studies in memory for mathematics are much less common. A semantic 
memory such as ‘Paris is the capital of France’ has quite different content to 
one such as ‘the number of prime numbers less than n is asymptotically 
n/log(n)’. The first is a linguistic convention, the other expresses a deep, non-
obvious fact. Our experience with student mathematical writing and verbal 
recall suggests that there are, at least, the following distinctions in memory for 
mathematical facts: 
(1) Memories of labels, customs, and conventions. For example: A prime 

number is a whole number with exactly 2 factors. This sets up ‘prime 
number” as a conventional term. We refer to these memories as semantic 
labels. 

(2) Factual memories of things sensed, or done. For example: The proportion 
of prime numbers less than 500 is 19%. One might recall this as a fact from 
having done a series of calculations: the recollection is of the fact, not the 
episode of calculation. We refer to these as semantic actions. 

(3) Memories of things believed. For example: There are infinitely many prime 
numbers: one recalls this from a book on number theory. We refer to these 
as semantic beliefs. 



(4) Memories of explanations. For example: A proof that there are infinitely 
many prime numbers: one recalls an explanation. We refer to these as explana-
tive memories. 
Method 

We set a number of connected problems in the first three weeks of the 
course. These were specifically designed to set up strong episodic memories as 
a result of students discussing their solutions in class. For example, after 
students had attempted the problem of finding how many towers of heights 4 
and 5 they could build using blocks of 2 colors, they were shown, and 
discussed, a video clip of three grade 4 students attempting the same problem. 
This problem and its connections with algebra, which we utilized, has been 
reported on by Maher & Speiser (1997). For a detailed description of these, and 
other problems set in the course, see: www.soton.ac.uk/~plr199/algebra.html 

The combinatorial problems we set for the students in the first three weeks 
were connected in our minds: they all deal with different aspects and 
representations of a systematic counting problem related to binary choices. We 
focused on students’ written expressions of memories of the course. The reason 
for this is that long-term declarative memories are mediated by protein 
formation, following gene expression, to stimulate novel neuronal connections 
(Squire and Kandell, 2000). The relevance of this neurological fact is that long-
term memory formation is an energetic, committed process for an individual. 
Long-term memories - certainly those sustained over two months - are therefore 
a good indicator of what a student values. 

Students worked on the problems in groups. After completing the sequence 
of problems, they explained connections as a homework exercise. We asked 
them to write reflectively after each of the combinatorial problem sessions, and 
re-writes were encouraged. Opportunities for making connections with their 
earlier work were provided during the semester in questions on three group and 
two individual exams students hadn’t seen previously. Students also wrote mid-
term and end-of course self-evaluations. Twenty-two students began the course 
and nineteen completed. Their writings provided us with a great deal of data for 
analysis. We present a preliminary analysis of some of that data by focussing on 
the development of one student: Jennifer. For fuller details of these and other 
student’s written statements see: www.soton.ac.uk/~plr199/algebra.html  
Results and analysis 

We begin by placing Jennifer in the class in terms of her initial and final test 
scores. Table 1 shows the initial and final test results for Jennifer and two other 
selected students as well as the shift statistic, defined, as follows: 

shift = (final test % – initial test %)/(100-initial test %) 
 



We interpret shift as how much a student has moved form their initial test re-
sult to their final test result. Of course, a student who has a relatively high 
initial test score does not have as much room for improvement as a student with  
a low initial test score. The other two students - Allison and Rebecca - we use 
to compare with Jennifer were chosen to be representative of students with a 
middle and low shift value, respectively. 

 
 

 

 

 

 

 
 
 
 
Building towers and the grade 4 video clip 

Jennifer focussed on building towers of height 4 by swapping colors, a strat-
egy used commonly by pre-service elementary teachers. They refer to this as 
“being systematic”: when challenged as to why they have all possible towers 
they commonly reply that they systematically swapped colors. Every group in 
the current study used this strategy. 
“We began with combinations of 3 red and 1 blue. We then altered the placing of the one blue 
cube which resulted in 4 different combinations. Second, we alternated the colors and made 4 
combinations of 3 blue and 1 red cube, which gave us 4 combinations. Third, we made two 
groups of cubes, alternating between red and blue with a total of 4 in each tower. … After 
building several towers, we realized that each tower had an opposite.”  

Working in her group she came up with a formula based on opposites that did 
not, however, extend to the case of towers of height 5 

“… if you multiplied the number of blocks in a tower by the number of options, you would 
have the number of combinations possible. Then you would double that number because each 
combination has an opposite: Ex: 4 high x 2 = 8; 8 x 2 = 16. However, this formula does not 
hold up for 5-high towers.”  

Jennifer realized that the number of towers had something to do with 
doubling. She gave no reason or explanation, other than empirical evidence, as 
to why this might be so: 

 

Table 1: (a) Initial and final test scores for the 3 students. (b) Distribution of  
the shift statistic for the whole class. Note that shift scales linearly with rank: r2 = 0.93 

(a) 
 
Student Initial Final Shift 
Jennifer 63 92 0.78 
Allison 13 64 0.59 
Rebecca  63 75 0.32 
 

Jennifer Allison Rebecca 

(b) 



“It appears that you are doubling the possibilities when adding a cube to each tower. The 
formula we discussed in class appears to make sense where when you add a level to each 
tower, the possibilities double.  1 level = 2 possible; 2 levels = 4 possible; 3 high = 8 possible; 
4 high = 16 possible; 5 high = 32 possible, etc.”  

She recognized some system in the grade 4 students’ explanations, but she 
did not relate this precisely to her group’s approach and she was – mistakenly – 
under the impression that she solved the problem as Stephanie did in the video 
clip: 
“… I now realize that there are several patterns and options to solving this type of problem. 
Each of us in class recognized patterns, but not one formula could clearly explain or define 
our cases. When building my towers, I looked for patterns similar to the way Stephanie did. 
My pattern differed in that I grouped my towers by building towers with one blue, and then 
built those with one red. I continually built towers and followed them with their opposites.” 

After building towers and watching the grade 4 students argue why they 
found all towers of a given height Jennifer stuck to her belief that building 
opposites is a key to systematically building towers. From our perspective the 
pre-service teachers were uniformly unsystematic in their attempts to build 
towers and to explain why they had built all possible and not repeated any. 
Jennifer was not alone in expressing the sentiment that since they did not know 
how to tackle this problem “mathematically” they would approach it through 
common sense: 
“Instead of looking at it as a math problem, I was looking at it as a building exercise. I first 
attempted the problem by guessing and testing. Tony and I first attempted the problem of four 
high by creating combinations of four that would design an obvious pattern.” 

Seeing and valuing connections 
Jennifer did not immediately see connections between the problems set in the 

first 3 weeks of the course. Some of those connections she learned about 
through class discussions, following insights of other students. At the time of 
writing these reflections, however, she was able to articulate a common vision 
of “algebra” in all the problems. Not the algebra she initially imagined, namely 
2n as the formula for the number of towers of height n, but algebra based on 
multiple interpretations. The algebraic expansion worksheet showed (a+b) 2 = 
a2 + 2ab + b2 and asked students to similarly expand (a+b)3 and (a+b) 4. Only 
one student in the class (not Jennifer) could do this problem. The tunnels 
problem was to figure how many ways there are to run through a series of 4 
tunnels if each could be black or white. 
“The algebraic expansion worksheet threw everyone off at first. We really were not sure how 
it related to the first three exercises. What we did not see was that the “towers” were actually 
algebraic expansion. If two different color cubes can make 16 different towers four high, how 
do you mathematically write this out?  Answer: 24. Let’s say that the cubes are the colors 
black and white...then the formula would be written (w + b) 2. This is how exercise one and 



exercise four relate. Tunnel travel led us to a new discovery. A student can look at the prob-
lem and sketch the different possibilities just as he/she did with the tower building exercise or 
they can apply the algebraic expansion (w + b)4 where w = white; b = black, 4 = number of 
tunnels and (w+b)4 = w4 + 4w3b + 6w2b2 + 4wb3 + b4.” 

Jennifer was able to use her insights to help her solve two further problems: 
(a) how many pizzas can be made from 8 toppings, and (b) how many towers of 
a given height can be built using at most 3 colors? 

(a) “This situation is similar to the former exercises of building towers, the committee 
vote exercise, the grid walk problem, and the tunnel exercise with Mork.  The “‘with” 
or “without” question resembles the two color combination for the tower building ex-
ercises, the “yes” or “no” vote of the committee members, the “up” or “right” direction 
for the grid walk and the alternating pattern of the tunnels. ... The “with” or “without” 
strongly indicated powers of two as in the tower exercise. We extrapolated this to 
apply to the Pascalini’s dilemma, so we figured that 28 = 256, therefore, there are 256 
combinations for pizza made of 8 toppings.”  

(b) “34 = 81, n = # of cubes high; x = # of color choices; formula:  xn  There are 81 towers that 
can be built. This is similar to white and black (2 colors) as we did in class. In class we built 
towers of four and five high with the combination of two colors (two choices).We also 
worked on committee votes of YES or NO (two choices). … This problem also relates to the 
pizza problem. Instead of 8 choices of toppings you would use 3.They differ in their number 
of choices.” 

Jennifer valued the insights she gained by seeing connections. At the conclu-
sion of the course she articulated a different vision of mathematics: 
“When I joined this class in August, I thought of math as a series of formulas, each of which 
should be followed in order to find an “answer”. It was working on the tower building inves-
tigation and traveling through tunnels that I discovered how each relates… My original ap-
proach to the tower building revealed that instead of looking at the small picture (i.e., What do 
I really have in front of me? What is it I’m trying to solve?), I just dove in expecting multiple 
patterns. When our class finally concluded that the towers, tunnels, grids and Pascal’s 
Triangle were all about “choices”, everything seemed to fall into place. … my perspective of 
mathematics changed over this semester. The changes occurred due to learning that my 
mathematical understanding was instrumental and not relational. I had to re-learn basic math 
in order to eventually teach it to children.” 

Memory types 

Table 2, below shows the number of different types of memory statements 
made by the 7 students for whom we currently have transcribed data. For these 
students the shift statistic correlates moderately well with the total number of 
semantic statements (semantic action + semantic belief + semantic label; r2 = 
0.77, p < 0.0001). Whether this correlation holds more generally we do not yet 
know.  
 Memory type Jennifer Jim Amy Shanno

n 
Allison Michelle Rebecca 

Episodic 80 14 26 17 49 25 36 
Semantic action 90 78 127 102 85 83 46 
Semantic belief 55 15 2 6 24 25 22 
S ti l b l 31 23 23 12 3 6 4



 
 
 
 
 
 
 
 
For this group of students the number of semantic labels correlates almost as 
well with the shift statistic: r2 = 0.71, p < 0.02. Recall that semantic labels are 
memories of conventional facts: their mathematical depth is negligible. Some 
examples given by Jennifer are listed below. Bear in mind that these statements 
may also contain connotations of other types of memory (episodic, for 
example). 

“All problems assigned present two choices or a binomial.” Jennifer illustrates here 
that she knows the meaning of the conventional term ‘binomial’.  

“...place value as we know it today is also known as the Hindu-Arabic numeration sys-
tem.” She shows that she knows another conventional name for the place value 
system. 

A number is considered a factor of another when it can divide that number without a re-
mainder. This shows that Jennifer has a meaning for the term ‘factors. 

We used proof by exhaustion when working with a finite set of numbers; listing all of the 
possible cases. Here she is able to explain ‘proof by exhaustion’ in other terms. 

Examples such as these are significant: they show that Jennifer is coming to 
terms with the language of mathematics, that she is able to interpret and use 
conventional mathematical terms. They show, we believe, that she has accepted 
her entry into the mathematical community and now feels part of it; perhaps a 
small part, but a part nonetheless. Compare this with part of her final written 
reflection, at the end of the course: 
“One issue I have always had problems with in mathematics is definitions. I can physically 
work through a math problem, but to try to put my efforts into words is a challenge.  Defini-
tions in mathematics play a vital role in building a solid base of one’s knowledge and abili-
ties. It is the basis of your criteria. The mistakes our class made in defining even numbers 
were (a) we assumed that we were working in base ten and (b) we tried to define even num-
bers by using the word “even.”! If definitions are the base of our mathematical foundation, 
then algorithms are the brick in the bridge of our mathematical path...an algorithm is a sys-
tematic procedure that one follows to find the answer to a computation.”(Our italics). 



Conclusion 
Jennifer made a significant change in her understanding of mathematics. She 

began, as many pre-service elementary teachers do, expecting to apply formulas 
and get correct answers in order to be “mathematical”. By the end of the 16 
week course Jennifer expressed a different view of mathematics: one that she 
herself characterized as more relational. She established manifold long-term 
memories of mathematics: factual, episodic, and relating to the conventional 
use of mathematical language. Her tests score improved from not satisfactory to 
excellent. 

How important were the experiences of the first 3 weeks in setting Jennifer 
on a path to seeing and valuing connections, and establishing lasting useful 
mathematical memories? In her words: 

“I feel this was the most productive experience I have ever had in my educational 
career. I deeply feel that I will be a better educator because of it.” 

The beautiful phrase: “If definitions are the base of our mathematical foundation, 
then algorithms are the brick in the bridge of our mathematical path,” is a sharp 
illustration of how well she assimilated the mathematical experiences of 
the semester, and how these assisted in deepening her understanding of 
and competence in mathematics. 
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