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This paper reports on the results of a study of the beliefs of College Algebra students. Subjects 
came from College Algebra classes at two universities in the southern United States. A total of 
115 subjects participated in the study. Data sources included both a mathematical beliefs and 
attitudes survey instrument and on-going individual interviews conducted with 25 of the 
students.  Drawing from the episodes of two students, Brad and Carrie, the analysis 
demonstrates and explains how the students’ mathematical beliefs about formal algebraic 
concepts influence and sustain their problem solving actions.  

 
Introduction. Among four-year universities, the number of students required to 
enroll in College Algebra classes forms a critical mass that presents unique 
challenges for the mathematics faculty whose mission it is to provide quality 
instruction. The large numbers of College Algebra students enrolled in these 
classes can be traced back to the 1970s, when remedial enrollments increased 
72% as non-science academic programs such as Nursing and Business looked to 
mathematics departments to provide the necessary mathematics preparation for 
their students (Leitzel, 1987). In the most recent survey of the mathematics 
preparation of incoming students, the National Center for Education Statistics 
reported that 34% of entering freshmen at two-year public colleges were required 
to take remedial coursework in mathematics as were 18% of the freshmen 
enrolling at public four-year institutions (NCES, 1995). Other sources have 
placed similar figures much higher (Watkins, 1993). Because College Algebra 
serves as the core mathematics requirement for many majors, both universities 
and community colleges are looking for innovative ways to address the needs of 
College Algebra students.  
 The research conducted on the College Algebra population includes studies 
which surveyed the mathematical beliefs of these students (see for example the 
work of Peskoff, 1998), studies which have documented the fragmented 
conceptual understandings that many of these students possess (Carlson (1997), 
and studies which examined the effectiveness of specific instructional strategies 
(Underwood Gregg and Yackel, 2000; Yackel and Underwood, 1998). However, 
there have been no studies examining how the mathematical beliefs and 
conceptions of these students influence the ways they conceptualize 
mathematical situations and pose mathematics problems to solve. The role of 
mathematical beliefs in the evolution of mathematical activity needs to be 
documented and explored.  
Purpose and Theory. The purpose of the study was to examine the beliefs and 
conceptions of College Algebra students, with the view that their mathematical 
conceptions and beliefs interact to influence their cognitive actions in 
mathematical learning situations. Drawing from the work of Cooney, Shealy, and 



Arvold (1998), we focus on the learner’s beliefs as mental structures which aid 
his/her interpretations in mathematical situations. According to Schoenfeld 
(1985), the mathematical beliefs of students help constitute their “mathematical 
world view” (Schoenfeld, 1985, p. 157), and hence play a crucial role in the ways 
they “see” the mathematical problems they face. This view is compatible with 
Vergnaud’s (1984) notion that exists a formal connection between the learner’s 
mathematical beliefs and conceptual actions; he asserted that problem solvers 
often demonstrate their “mathematical beliefs-in-action” as they solve problems, 
and that these beliefs serve them as conceptual models upon which they can 
develop successful solution strategies (1984, p.7). Given these theoretical 
underpinnings, the study examined the role played by the students’ mathematical 
beliefs in the evolution of their mathematical problem solving activity.  
Methods. Subjects came from College Algebra classes at two universities in the 
southern United States. A total of 115 subjects completed a mathematics beliefs 
and attitudes survey developed by Yackel (1984). While the survey would yield a 
snapshot of sorts of the students’ mathematical beliefs, we wanted to observe the 
reasoning activity of individual students as they solved mathematics problems. 
Hence, 25 of the students participated in a series of individual teaching 
interviews, which occurred bi-weekly and lasted about 40 minutes each. Each 
interview included approximately 20 minutes where the students solved algebra 
tasks given by the researchers; during the remaining time, the students 
introduced their own problems and questions.  
Analysis. The analysis proceeded as follows. First, the survey of beliefs and 
attitudes was compared with students’ activities in the interviews. Next, the 
interview data were examined through protocol analysis. The video-taped 
recordings were examined to identify instances where significant conceptual 
structuring activity appeared to occur. This enabled the researchers to focus on 
episodes of novel activity, and make inferences about the constructive role 
played by the subject’s mathematical beliefs in the evolution of their conceptual 
knowledge. In addition to the video protocols, transcripts of the videos, 
paper-and-pencil records, the researchers’ field notes, and the subjects’ written 
tests were examined and used to develop case studies.  
 Given the space limitations here, we will only mention highlights of the 
analysis of the survey data, and then devote the remainder of the paper to 
episodes from the student interviews.  Briefly, our survey results are consistent 
with what other researchers have found regarding the nature of mathematical 
beliefs and its impact on performance (Frank, 1986; Sackur and Drouhard, 1997; 
Schoenfeld, 1985). For example, 90% of the students demonstrating high-level 
achievement in the classes demonstrated flexible mathematical beliefs, viewing 
mathematics as a tool of their reasoning that is supposed to make sense to them, 
and that the teacher’s way of solving math problems represents only one of many 
possible solutions. In contrast, 88% of the students demonstrating low-level 
achievement in the classes appeared to have more rigid beliefs about 
mathematics, viewing mathematics as a collection of rules and tricks, where the 
teacher determines what is correct and the student’s goal is to imitate the actions 
of the teacher. 



 
 In this paper we focus on the mathematical activity of two subjects by 
examining episodes that illustrate the significant interplay between the students’ 
beliefs, their conceptions, and their demonstration of mathematical structure 
through their problem-solving activities. We will discuss these episodes in terms 
of 1) how the students conceived of and interpreted their problems initially; 2) 
the complexities of their mathematical ideas; and 3) how they worked through 
the dilemmas and difficulties they faced as they solved their problems.  
An Interview with Brad: Brad was a first-year Business major who had taken 
College Algebra the previous semester and earned a grade of D.  He was 
repeating the class, a practice common among College Algebra students, because 
he needed a grade of C to satisfy his academic major.  
 During the first interview, Brad worked a series of tasks that involved 
simplifying radicals and applying the laws of exponents.  After completing the 
tasks, Brad asked a question from the current homework on radicals.  Brad had 
tried to simplify the expression 812502 ++++  using the laws of radicals, and he 
was concerned that his answer, 34, did not agree with the answer given in the 
book, 234 .  The interviewer asked Brad to re-work the problem at the 
blackboard. 
 

  Brad: I’ve worked it out twice but I didn’t get the answer that’s in the back of the book.  
First thing I do is look at radicals and see if I can simplify anything, just to drop 
one of the radicals.  And um ..., you can’t  break these down into terms that can’t 
so ...  50 will break down into 2 and 25, which are both perfect squares (sic),  so 
that’s what I went ahead and did.  (Writes  2252 ∗∗∗∗ )  Some people like to break 
them up, I’ll keep them together.  And 8 is not a perfect square either, but I know 
that 2 and 4 are (sic), which are factors of 8, so I went ahead and wrote that 
down (Writes  4212 ∗∗∗∗ ) (Re-writes entire expression) 
 

 
 

Brad’s retrospective reporting of how he tried to solve the problem 
demonstrated an overall understanding of the task -- that he could both 
re-capitulate and monitor his prior activity in an objective manner.  In addition, 
while Brad invoked an appropriate strategy, his problem involved making sense 
of a discrepancy between his answer and that given in the back of the book.     
 
 Brad: And from here I just go ahead and take the square root of this,  25 , which would 
bring  

the 5 out front, which would leave me ... 2⋅⋅⋅⋅5 and go ahead and bring the 2 out 
which would be 1, right ? ... or now it’d just be a 2, right ?...(stares in space, 
rolls eyes) ... and then plus 12 then ... that that’ll just be 1 and bring out a  4, 
which will be 2, and we multiply by 2, ...  2 x 5 will be 10, and 12 x 2 will be 24, 
which will leave you with 34, but that’s not what the book got. 

 
Brad’s solution is summarized below (#1-4). Step #3 includes Brad’s erroneous 
action, 12 ==== ) . 

 
Brad’s Solution 
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Brad’s hesitation in asserting that he could simplify 12 ====  (“go ahead and 

bring the 2 out which would be 1, right ?”) indicated that he was becoming aware 
of the probable source of his problem, that 2  may not simplify to 1 as he had 
previously thought. 
 
 Brad: The book got 234 .  I can’t figure where 2  is ? 
 
 Interviewer: It looks awfully close, only thing is the 2 there in the answer. Why don’t 

you  
look back at an earlier step and see if there’s some place where there 
could’ve been a 2  and maybe it got lost in the shuffle when you reduced 
things. Where do you think the 2 might be ? 

 
 Brad: (reflects) ... There and there.  (points to  225 ∗∗∗∗ and  4212 ∗∗∗∗  )  

 Interviewer:  So, what did you do at that point in the process ? 

 Brad: I just took the square root of 25, which was 5 and the square root of 2, ... (long 
 reflection here) ...  that’s not perfect! ..., yes, it’s perfect, ... yeah for some 
reason, I cannot ... (realizes he has a problem here, but tries to work it out)   

  
 Interviewer: So the question is, is  2 perfect ? 

 Brad: ... no, it’s not, is it. You know what I was getting confused with ?  ... is because that  
(writes 2 2 ) and for some reason I thought I could cancel  (cancels 2s in 
expression 2 2 ,e.g., 2 2 ).  Maybe that’s where I got lost, that has to be it, 
because there’s no other place. 

 
 Interviewer:  So why don’t you fix it from this point on ? 
 
 Brad:  OK, so just go from this line ?  (goes back to his board work and starts with 

42122252 ∗∗∗∗++++∗∗∗∗ )   Um.   252 ∗∗∗∗ .   Still gonna keep the 2 and it’s gonna 
be plus 12, um 4  is 2, still have 2 there. Then we go ahead and multiply that 
to be 2 ,   225 ∗∗∗∗  plus  2212 ∗∗∗∗ , that stays there. (writes 224210 ++++ ). 

 
 
 
 
Brad: (several seconds of reflection) I guess this is just like 10X + 24X, the X stays the 

same   
and you just go ahead and bring down the radical. Then  24 and 10 is 34 (writes 

234 )  O.K.  That’s what I was doing.  That’s the kind of mental lapse I’ll have, 
that right there. ... that’s crazy, for some reason it didn’t register with me on the 
homework And that’s the kind of crazy thing I do ... crazy little careless mistakes 
like that.  It kills me on the test. I usually catch it on the homework, I checked it 
twice. 



 
We believe that Brad’s episode is noteworthy for the following reasons.  First, 

Brad was able to distance himself from his prior activity and objectively review, 
monitor, and then report results to the interviewer.  College Algebra students are 
seldom  able to engage in such retrospective analysis of their actions.  That Brad 
was able to demonstrate such a grasp over his actions indicates both the robust 
nature of his conceptions (his knowledge of what he needed to do) and the 
strength of his convictions about how these types of problems are to be solved.  
He systematically set about to simplify the radicals (#2-3) and never wavered 
from his belief that his overall reasoning was sound  -- he knew what he needed 
to do to solve the problem with the radicals and could carry out and evaluate the 
efficacy of his actions.  Second, Brad’s inability to self-diagnose and correct his 
erroneous idea about cancellation of radicals ( 122 ==== ), suggests that his 
misunderstandings were deep-rooted  within his flow of continuous action.  
While Brad could “see” an overall structure of appropriate solution activity to 
carry out, he had great difficulty isolating the source of error even after repeated 
attempts.  It was only with the intervention of the interviewer’s questions that 
Brad became aware of the error and set about to correct his solution accordingly.    
An Interview with Carrie: Carrie was a 2nd year student whose performance in 
the class was consistently in the B to upper C range. Carrie’s responses on the 
beliefs survey indicated that she believed mathematics to be difficult because in 
order for one to be successful solving problems, one must remember many rules 
and procedures. She indicated that she thought mathematics was important for 
many careers but that she personally took mathematics courses only because they 
were required.  She also indicated that she thought some people were naturally 
better at mathematics than others but she strongly disagreed when asked if 
mathematical ability was determined by gender. During the latter part of the first 
interview, Carrie introduced a rather difficult complex fraction problem from 
homework that had puzzled her.  Her solution is summarized below as a series of  
simplifications (#1-5) of the original problem. 
 
         Carrie’s Solution 
   1.    2.     3.     4.    5. 
 

 

 
 
Summary of activity. Carrie began her work on this problem by factoring m2-4 
(#2). Immediately thereafter, Carrie came to her first major decision - was this a 
division problem? Initially, Carrie stated that she did not know what to do with 
the denominator, 1/(m+2). In describing her source of indecision, it appeared that 
the numerator posed the more immediate problem for her. Carrie stated that she 
wanted to work on the numerator using the least common denominator which she 
identified very quickly as (m+2)(m-2). While Carrie had some difficulty 
describing what she wanted to do, her actions indicated that she understood the 
process for combining rational expressions. She correctly combined the terms in 
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the numerator (#3); however, she also altered the denominator from 1/(m+2) to 
m+2.  The interviewer intervened with a question and the subsequent episode 
served as a second major decision point for Carrie as she solved her problem. 
 

Interviewer: How did you get this in the denominator (points to m+2)?   

Carrie: Do I apply the same LCD to this part or do I do it separately? Basically I get 
the LCD which is that [points to (m-2)(m+2)] and so all it is going to be is 1.  
(m+2), it’s already there, so it’s like..one. 

 
Interviewer: You keep saying one, I’m not sure what you mean. 
[The interviewer inferred that Carrie was mentally dividing out (m+2)]. 
 
Carrie: (pause) O.K. see my LCD for this part, 1/(m+2)? 

Interviewer: Yes, what are you going to do with it?    

Carrie: (pause) Here it is simplified?   

Interviewer: Yes. 

Carrie: Should I leave it as it is?   
 
Interviewer: Yes. What should you do now?   

Carrie: Well, you don’t want to mark it out (Indicates cancellation in the numerator). 
So I want to multiply it out. 

 
The interviewer’s interpretation of Carrie’s activity was that she had confused 

the two common methods for simplifying complex fractions and was trying to 
apply both methods simultaneously. In her first attempt (#3), Carrie appeared to 
be trying to mentally multiply both the numerator and denominator with the 
LCD, (m+2)(m-2). In the subsequent attempt, she considered the denominator 
separately and determined that her simplification of the denominator was 
incorrect. Carrie then returned to the numerator and addressed the issue of how 
to multiply m(m-2)(m+2). She noted that she understood how to apply the 
“FOIL method”1 but she wasn’t sure if she should multiply by the m first.    

 
After the interviewer suggested that she could multiply in any order that she 

wished, Carrie wrote:  (m3 - 4m - 1)/(m-2)(m+2) (#4) and then mused as to how 
this answer should be written in relation to the rest of the problem. At this time, 
Carrie reached the third major decision point of her problem solving process, 
when she again reflected as to the kind of problem she was faced with.  She 
immediately declared that it was a division problem and began to work on it 
using the invert and multiply method. Carrie hesitated for a moment as she 
considered whether or not she should try to factor m3 - 4m - 1. After deciding 
against factoring, she divided out the common factor of m+ 2 and wrote her final 
answer, m3- 4m - 1/m-2.  

Carrie’s activity indicated that she had possession of some basic mathematical 
tools that many students at this level have not yet mastered. Carrie could factor 

                                                           
1 The FOIL method refers to a memory device used by algebra  students in the U.S. to remind them how to 
mutliply together a pair of binomials -- First, Outer, Inner Last. 



polynomials, combine rational expressions, and simplify algebraic expressions. 
However, on the basis of her survey responses and interview data, we claim that 
her “mathematical world view” (Schoenfeld, 1985, p. 157) is procedurally based. 
For example, in utilizing her rules to simplify the complex fraction, she 
demonstrated solution activity that ultimately led to results that did not make 
sense to her.  In order for her to resolve the confusion regarding what she 
perceived as similar solution paths, she was unable to mentally coordinate the 
two methods, one against the other, and determine which one to apply.  Rather, 
she needed to choose one of the paths and physically carry out the process. She 
appeared unable to mentally carry out a process and evaluate the results it would 
yield. Finally, we noted that while Carrie immersed herself within the problem, 
she sometimes became lost inside the details of specific sub-tasks. We contend 
that one reason for this is that Carrie does not see mathematics as a world of 
connected mathematical ideas. Survey data revealed that she believes that 
“mathematics consists of many unrelated topics” (Yackel, 1984).  
Conclusions. We posit that the experiences of Brad and Carrie are somewhat 
typical of College Algebra students. Such students enter college with a collection 
of mathematical rules, procedures and rigid expectations concerning what it 
means to do mathematics. As a result, the mental structures they invoke to help 
them organize and direct their mathematical actions are often fragmented. For 
example, memorizing the definition of a linear equation may help students 
recognize when they have a linear equation;  however, it does not ensure that 
they will be able to mentally reflect upon, critically examine, and choose from 
among potential solution strategies. While memorizing definitions and rules is an 
important part of learning mathematics, it is not sufficient for the development of 
such reflective activity. For students such as Brad and Carrie, instructional 
practices that merely review and reinforce procedural tasks are not likely to 
benefit their mathematical development.  Rather, these students need to face 
mathematical tasks that present dilemmas for them, the resolution of which 
contributes to their evolving awareness of algebraic concepts and, hence, to their 
evolving mathematical knowledge.  Our continued work in this area is directed at 
developing instructional activities of this nature.  
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