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In response to the misconceptions students are experiencing in the algebraic domain, 
there has been a call to begin algebraic thinking early.  Kaput (1999) believed that 
algebraic understanding evolves from viewing algebra as the study of structures 
abstracted from computation and relations, and as a study of functions (a static and 
dynamic dimension).  The arithmetic knowledge base that is needed for algebra 
comprises an understanding of (i) arithmetic operations, (ii) the equal sign as 
equivalence, (iii) the operational laws, and (iv) the concept of variable (Ohlsson, 
1993).  Usiskin (1988) argued that the notion of variable could be introduced through 
three approaches:  solving equations with unknowns; generalisations of patterns; and 
relationships between quantities.  He contended that, in the long run, these notions 
had to be combined and abstracted to develop the concept that variable was a member 
of an abstract system.  While some researchers (e.g., Chalouh & Herscovics, 1988) 
argued that unknown was not an appropriate algebraic conception for variable as it 
does not represent multiple meanings, Graham and Thomas (1997) contended that an 
appreciation of unknown could allow students to better assimilate later concepts.  For 
this to happen, they argued that activities with unknown should cover a wide variety 
of situations including recognising unknown situations, substituting for unknowns, 
considering solutions as values that make the equation true, and finding solutions 
through arithmetic and algebraic methods.  
Carraher, Schliemann, and Brizuela's paper explores young students’ ability to 
operate on and represent unknowns in a relational situation as a precursor to 
developing understanding of the variable.  They describe an example of classroom 
activity (two children starting with the same unknown amount of money) to provide 
evidence that “children as young as eight and nine years can learn to comfortably use 
letters to represent unknown values, and can operate on representations involving 
letters and numbers without having to instantiate them” (p. 7).   
Power, formal letters and the limits of number lines 
The power of the activity.  We applaud the power of Carraher, Schliemann, and 
Brizuela's classroom activity.  First, it presents arithmetic as change rather than solely 
as relationship; that is, it is a dynamic form of arithmetic in that it represents +3 as a 
movement on the number line from 2 to 5.  Second, because of this focus on change, 
it allows the notion of backtracking (undoing the changes) to be introduced.  
Although limited (Stacey & McGregor, 1999), backtracking is a useful procedure for 
solving equations with one instance of unknown.  Third, it involves sequences of 
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operations which, initially, are not capable of closure.  Fourth, it encourages children 
to interrelate a rich array of representations when articulating their understanding 
(e.g., verbal and written language, diagrams, number lines, and symbols), thus 
developing rich representational scheme.  All these signify a significant move away 
from the traditional approach most children of this age experience in their everyday 
classroom. 
The use of N.  However, the use of the symbol N in the activity is a concern and raises 
questions.  Even though the activity reflects Herscovics and Linchevski (1994) 
suggestion that the transition to formal algebra involves considering numerical 
relations of a situation, discussing them explicitly in simple everyday language, and 
eventually learning to represent them with letters, we wonder whether the use of N in 
the activity reflects a limited view of algebra (as “arithmetic with letters” rather than 
as the “mathematics of generalization”).  Do you need letters to do algebra?  To us, 
the answer is no; we see algebraic thinking as predominantly the ability to operate in 
generalized abstraction and prefer that the students use normal language (e.g., “the 
beginning money”) or their own invented "symbolisation/notation" (e.g., “apb” - 
amount in piggy bank).  We believe this use of language or invented terms are as 
algebraic as “N”, and maybe less dangerous.  We are not convinced that the children 
in the activity are not seeing the “N” as “the piggy bank” or as a specific number, 
understandings of N that are inappropriate for algebra (Küchemann, 1978).   
The number line representation.  The use of the number line in the activity also raises 
questions and concerns.  While the number line contextualisation of the activity is 
very powerful, the change represented is linear movement (back and forward on the 
number line for addition and subtraction).  How do we deal with situations where the 
change involves multiplication and division (e.g., he doubles the amount of money in 
the piggy bank or shares it among three friends)?  How do we prevent prototypic 
thinking (Schwarz and Hershowitz, 1999).  The number line also seems to restrict the 
type of problem that children can explore.  It is difficult to see how the number line 
will model a problem where the unknown is not the starting point or it appears more 
than once.  For example, Mary had $15 in her piggy bank on Sunday, was given some 
money on Monday, spent $6 on Tuesday, and opened her piggy bank to find $30 on 
Thursday?  And with the unknown as the starting point, closure is available for all 
other computations.  In fact, it is possible to simply ignore the unknown.   
Unknowns, young students’ understanding and equals 

The approach to variable used in the Carraher, Schliemann, and Brizuela's classroom 
activity falls into the category of unknown (Usiskin, 1988).  While the activity uses a 
dynamic broader understanding of arithmetic that offers opportunities for developing 
algebraic ideas not available in traditional classrooms, we have concerns with young 
students’ capacity to understand unknown.  We have recently investigated this with a 
sample of 87 children of average age 8 years and 6 months attending four schools 
across metropolitan Brisbane.  In an interview, the children were asked to explain 
how they could find the unknown in the following two situations:   



16 +      = 49  54 =      - 12 

The script was as follows:  What is the card asking you to do?  How can you find the 
missing number?  What is the missing number?   
Initial analysis of the scripts indicated that all the children understood that the task 
was to find the missing number, and most could do this for the first example.  For this 
example, the common strategy was counting on and the common response was:  You 
go 16 and then you count from 16 to 49.  Can I do it in my head - can I just count in 
my head 17, 18, 19, 20.  Most difficulties involved keeping track of how many had 
been counted on, I just keep losing track of it.  Some simply counted from 6 to 9 and 
from 1 to 4 giving the solution of 33, put a 3 on the 6 equals 9, put a 3 on the 1 equals 
4.  Only four students found the unknown by using subtraction, you can find the 
something by taking 16 from 49.  Very few children could find the unknown in the 
second task, for a variety of reasons that all seemed to relate to everyday classroom 
experiences.  A common obstacle was the non-standard formatting of the question:  
12 minus can't equal this.  This is a wrong one because 12 minus can't equal 54.  It's 
backwards.  Many children could not go beyond this point.  This seemed to occur for 
two reasons.  First the position of the = sign caused difficulties.  When directed to 
explain what the problem was asking them to do, many said:  Fifty four take 
something equals 12 - you have to find the something.  Second, the position of the 
unknown also seemed to cause problems:  It is all mixed around.  You can't have 12 
minus something.  Most believed that the unknown should occur on its own after the 
equal sign:  12-54 = something.  It would be a little number – it would be 0 because if 
you get 12 and take away a big number you would only get 1 and then an extra 
number would be 0 it would be 1 or 0.  Some simply dealt with this problem by:  
flipping it over, 
54-12=42.  Or you could just do 54-42=12.  Only two students found the missing 
number by converting the problem into the correct addition situation:  You find the 
missing number by adding 12 onto 54. Understandings abstracted from classroom 
experiences seemed to be acting as cognitive obstacles to solving equations with 
unknowns. 
Conclusions 
Commonly, classroom activities present arithmetic equations in the form 3+4=7, 
computation on the left and solution on the right.  Unknowns presented in the same 
format (e.g., +6=11) are simpler for young children.  Different formats, sequences 
of operations that cannot be closed (e.g. 4+ +9) or two or more instances of 
unknowns (e.g., +7+ =15) are much more difficult.  “I am a number” activities 
can work at quite young ages because the “unknown” is first and can be ignored while 
the numbers are computed (e.g., I am a number.  I have been multiplied by 3 and 5 
has been added.  I am now 23, what was I?).  Does replacing  by “N” make the 



activity more algebraic?  Does drawing a number line with N in the middle mean that 
the students are handling unknowns and understand the meaning of N+3?  
Carraher, Schliemann, and Brizuela's classroom activity prepares students for algebra 
in its dynamic presentation of sequences operations, its potential to prevent closure (at 
least in the first operation), and its integration of problems, language and activity.  
However, the activity’s use of N is not compelling and the number line places 
limitations on the position of the unknown that means it does not have to be known 
during the remainder of the operations.  The activity should be extended to include all 
the components suggested by Graham and Thomas (1997) and combined with activity 
on operations that prepares students for non-standard formats and a variety of 
positions of unknowns.  The challenge is to develop a number and operations sense 
that leads to algebra (and algebraic sense).   
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