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This paper investigates the development of university students’ understanding 
on ‘equivalence relations & partitions’ over a period of time. Although these 
ideas are taught in the same topic, they have quite different cognitive  
properties. We find that, although the concept of ‘relation’ can be visualised, 
an ‘equivalence relation’ is more subtle. A partition, however, is more easily 
visualised than remembered formally. Our focus is on if and how these 
different properties influence students’ concept development. 

Introduction 
Chin & Tall (2000) focused on a theory in which informal mathematics becomes 
formalised by introducing definitions, proving theorems and compressing formal 
concepts into cognitive units appropriate for powerful formal thinking. The theory was 
tested by a questionnaire filled in by 36 students after 6 weeks studying the formal 
theory of equivalence relations and partitions. It was found that: 

Less than half gave formal responses in terms of definitions or theorems. […] This confirms a 
picture in which the majority of students following a formal course at a highly rated university 
responded at an informal level after several weeks’ experience of formalism. At the same time, 
two able students worked in a different way using the compressed concept that encompassed 
both equivalence relation and partition. Chin & Tall, 2000, p. 183 

In this paper we follow the development over a longer time period to gain further insight 
into the students’ constructions. We focus on fifteen students, of whom ten were tutored 
by the first author for an hour per week during the first two terms and on into the second 
year. Data was collected through audio-taping tutorials and in-depth interviews, with a 
second application of the questionnaire to determine long-term changes in conceptions. 

An evaluation of the Foundations course by the students at its conclusion in the first 
year revealed that the students considered ‘relations’ to be the most difficult topic—a 
comment that had been repeated for several previous years of assessment. Summarising 
the perceptions of the students, the annual report commented that ‘Euclid’s algorithm 
and symbolic logic were well understood, basic set theory and functions generally 
required extra work, but the topic on relations was often poorly understood.’ On an 
average, only about 20% of students declared that they understood relations well with 
nearly a third of students claiming that, even after extra study, they only understood the 
topic poorly. It was this observation that drew us to study the topic of ‘equivalence 
relations and partitions’. We considered that an understanding of students’ difficulties in 
this topic that they found most problematic might shed light into wider difficulties in the 
understanding of formal mathematics. In particular, why do the students claim to have 
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such difficulty with ‘relations’? We now focus on the longer-term development from the 
first to second year of the course. 

Analysis and comparison 
The subjects are 15 second year mathematics students following a course in the highest 
ranked pure mathematics department in the whole of the UK. Their marks for the first 
year are widely distributed—three are over 80, four between 70 to 79, four between 60 
to 69, one between 50 to 59, three between 40 to 49. They answered the same 
questionnaire on the topic of ‘equivalence relations & partitions’ that they have already 
learnt for about a whole year and were interviewed during the first term in their second 
year. 

The formal definition of equivalence relation 
The formal definition of equivalence relation in terms of being ‘symmetric, reflexive, 
transitive’ proves to be relatively easy for students to learn and reproduce, though the 
precise use of quantifiers in each part of the definition is a little more subtle. Table 1 
shows that 14 out of the 15 students reproduced a definition although only 5 of these 
gave the full quantified definition, 4 gave the formal definition without quantifiers and 5 
gave an informal response in terms of the three words ‘reflexive, symmetric, transitive’. 

 

 First Year (N=15) Second Year (N=15) 
Formal/detailed 5 9 
Formal/partial 4 5 
Informal/outline 5 1 
Total definition 14 15 
Example 0 0 
Picture 0 0 
Other 1 0 
No response 0 0 

Table 1: Responses to ‘equivalence relations’ 

Only one student—whom we shall call ‘Arthur’— did not give the formal definition in 
the first year. He explained later that he could not remember the definition at the time; 
instead he attempted to explain the notion of equivalence classes in terms of a partition: 

 
Note the imprecision of the language here, for example ‘generates a subset’ and ‘divides 
the set into partitions’. Arthur obtained 50% in the end of year examination and had to 
resit one of his courses. Nevertheless, even he was able to give a formal detailed 
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response in the second year. This gives us our first major piece of evidence: all of the 
students could reproduce the definition of equivalence relation; 9 out of 15 gave a 
complete version, the other 6 at least remembered ‘reflexive, symmetric, and transitive’. 

This was reflected in responses to an informal question asking if the relation ‘has the 
same surname as’ is an equivalence relation on the set of students in the class (Table 2). 

  First Year (N=15) Second Year (N=15) 
Informal Definition 2 1 
Other 0 1 

Informal 

No response 0 0 
Definition 12 13 
Theorem 0 0 

Formal 
perhaps with some 
informal language 

Partition 1 0 

Table 2: Responses to the informal ‘surnames’ question 

Both the students giving informal responses in the second year were able to give a full 
formal response in interview. Both thought the question too trivial to merit a detailed 
response in writing. For instance, John (whose response was classified as ‘other’) wrote: 

 
He was a talented student with a mark of 68% in the first year examination who showed 
his understanding to be definition-based on all his assignments and in tutorials. Thus all 
fifteen students were capable of a formal definition response by the second year. 

Table 3 shows the responses to the following question: 
A relation on a set of sets is obtained by saying that a set X is related to a set Y if there is a 
bijection f : X → Y . Is this relation an equivalence relation? 

 

  First Year (N=15) Second Year (N=15) 
Informal Definition 3 0 
Other 1 1 

Informal 

No response 0 0 
Definition 7 2 
Theorem 3 12 

Formal 
perhaps with some 
informal language 

Partition 1 0 

Table 3: Responses to the formal ‘bijection’ question 

This data shows that after being given a period of time to digest what they had been 
taught, whilst only 3 were theorem-based in the first year test, 12 are able to upgrade 
their understanding to the theorem-based level in the second. This is consistent with the 
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successive move from definition-based conceptions to theorem-based conceptions over 
a time in which the ideas are being used formally. 

The definition of equivalence relation on a set S as a subset of S××××S 
When responding to the notion of equivalence relation, none of the selected fifteen 
students used the general notion of relation as a set of ordered pairs in their definition. 
Only one student (Nathan) in the first year alluded to the idea as follows: 

 
Even here the notion is an afterthought following the definition in terms of the notation 
aρb, for the relation ρ rather than the notation (a,b)∈ρ which was given initially in the 
lectures. Notice that even here Nathan used the notation {a,b} (used in the course for 
unordered pairs) rather than the correct notation (a,b). 

In the second year, only one student (Simon, the most successful with a mark of 85%) 
referred to a relation as ‘a subset of A×A’ in his response to the meaning of ‘equivalence 
relation’. He also was the only student to give a satisfactory answer to the following: 

A = (x, y) ∈R2 | 0 ≤ x ≤ 10, 0 ≤ y ≤ 10{ }. Is A an equivalence relation on R? 

In the first year no student responded positively to this question. Several wrote 
explicitly that they did not understand what the question meant:  

 
In the second year, Simon responded as follows: 

 
He described an equivalence relation as ‘a subset of A×A’ with reflexive, symmetric and 
transitive properties that can divide a set into a partition. He also offered the formal 
definition with all the detail. He therefore had a conception of equivalence relation and 
partition as a rich cognitive unit. 
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We therefore obtain our second major piece of evidence: all but one of the students 
did not relate the notion of relation as a set of ordered pairs with the notion of 
equivalence relation. 

The gap between relations and equivalence relations 
We see that all fifteen students could work with the notion of equivalence relation using 
the notation a~b, but only one evoked the notion of relation on a set S as a subset R of 
S×S . On reflection, one can see that the notion of ‘equivalence relation’ on a set S does 
not have an easy visual image. Seen as a subset R of S×S, the reflexive law can be 
pictured by saying that the diagonal elements (x,x) are all in R, the symmetric law can be 
seen in terms of reflection of the element (a,b) ∈R in the diagonal to also give (b,a) ∈R, 
but the transitive law (a,b), (b,c) ∈R implies (a,c) ∈R is a little more sophisticated. (The 
transitive law moves horizontally from (a,b)—maintaining the second coordinate b—to 
the diagonal then vertically to the point (b,c), completing the rectangle to give the third 
point (a,c).)(Figure 1).  

 
Figure 1: Visual representations of the three axioms for an equivalence relation R on a set S. 

The complexity of the visual representation is such that it was not taught in the course. 
Thus, although the notion of relation on a set S is given in terms of a subset of S×S, it is 
never represented as a visual picture. In this way there is a complete dichotomy 
between the notion of relation (interpreted as a subset of S×S) represented by pictures 
and the notion of equivalence relation which is not. 

Furthermore, the topic of ‘relations’ also includes order relations. We hypothesise 
that the typical student will find it difficult to give a coherent overall meaning to the 
notion of ‘relation’ that encompasses both order relations and equivalence relations. 
Partial support for this hypothesis is the students almost total failure to respond to the 
equivalence relation defined as a set of ordered pairs compared with almost total success 
with questions using the form a~b. 

After interviewing 10 of the 15 students, the authors find that these students learnt the 
definition of relation on a set formally as: ‘a subset of the cartesian product of the set 
itself’. But they learnt the definition of ‘equivalence relations’ focused on the three 
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properties of reflexive, symmetric and transitive. The following conversation recorded 
in an interview with two students (whom we name Jack and Nathan, respectively) offers 
some evidence. Jack and Nathan were being asked about the question in which the 
relation A is defined as the subset A = (x, y) ∈ R2 | 0 ≤ x ≤ 10, 0 ≤ y ≤ 10{ } of R2 . 

Jack: Sorry! I can’t understand what this question means? 
Interviewer: O. K. Nathan, can you understand it? 
Nathan: Well, umm…(Pondering for a while.) No, I don’t think so. 
I: Can you think of the formal definition of ‘relations’ first? 
They started trying to recall their memory of ‘relations’. 
N: I think it’s a sort of ordered pairs, isn’t it? 
I: Yes. You are right. Can you say it more formally? 
J: Let me think. It’s ages ago, I don’t think I can remember it. 
I: How about you, Nathan? 
N: (Shaking his head.) 
I: O.K. Let me write it down on the board.  
The interviewer wrote the definition (Stewart & Tall, p.69) on the board and explained it to them. 
J: Yes. I see. That should be what we learnt in the lecture a long time ago.  
I: O.K. Now, can you try to answer this question again? 
Nathan immediately made the whole deduction, answering ‘yes’ after checking the three conditions 
although he did not include the quantifier in ‘reflexivity’. Jack still seemed confused. 

  
J: I still can’t see how to check A is an equivalence relation in R. 
I: You can understand the definition of ‘relations’ we just reviewed, can’t you? 
J: Yes. I think so. 
I: ‘Equivalence relation’ is just a kind of ‘relation’ but with some more properties, isn’t it? 
J: Yes. 
I: Just add the three properties to the definition of ‘relation’, then try to answer this question again. 
Jack was stuck checking ‘reflexivity’. 
J: I’m getting confused. What’s the point of checking ‘reflexive’? 
I: Nathan has finished his deduction. Let’s have a look at his answer then I’ll answer you, Jack. Do 
you think  Nathan’s answer is correct? 
J: mmm…(Pondering for a while.) Yes, I think so. 
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I: O. K. Let’s have a careful look at ‘reflexivity’. What is the quantifier for it? 
N: For all the elements in A? 
I: What do you think, Jack? 
J: Should be ‘for all the elements in R’. 
I: Do you agree with Jack, Nathan? 
N: mmm…Yes. Yes. I think he’s right. 
I: So, do you think A is ‘reflexive’ now? 
J: I see. No. Because A doesn’t cover the whole plane, so it won’t be ‘reflexive’. 
N: mmm… So the answer should be ‘no’. 
I: I think you both get the point. Now can you check if A is ‘symmetric’ or ‘transitive’? 
N: Yes, both of them. I think I used the wrong notations. They should be A, not R. 
I: Well done! Jack, could you make a conclusion of this question? 
J: You mean A is not an equivalence relation because it is symmetric and transitive but not reflexive. 

This data seems to suggest that even students who do not have a formal concept image of a 

former idea (like the idea of ‘relations’) can still build up their understanding of the next 

relevant idea without having much particular difficulty (like the idea of ‘equivalence 

relations’) if the two definitions are not directly related. 

Partitions 
The development of the notion of partition also improved over the year (table 4). 

 

 First Year (N=15) Second Year (N=15) 
Formal/detailed 2 8 
Informal/outline 6 3 
Total definition 8 11 
Example 0 0 
Picture 1 1 
Other 4 3 
No response 2 0 

Table 4: Responses to ‘partitions’ 

The number of detailed formal definitions increases from 2 to 8 and the overall definitions 

increase from 8 to 11. However, 4 students fail to give a definition for partition when all can 

give a definition for ‘equivalence relation’. Looking closely at the responses reveals that the 

majority of students tried to use their own language to interpret the definition of ‘partitions’ 

so that their answers were highly varied. 
Interestingly, all ten students interviewed said they had a mental picture of a partition. 

Nine of them thought they understood ‘partitions’ better than ‘equivalence relations’. The 

exception, Jack, explained that although he could picture partitions, he still did not know the 

formal definition and was happier handling the formal definition of equivalence relation. Of 

the other nine, Arthur was typical in saying that he felt he understood ‘partitions’ better than 
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‘equivalence relations’ because he could visualise ‘partitions’ but not ‘equivalence 

relations’. 
When asked to give examples of partitions, twelve out of fifteen gave satisfactory 

answers. The other three revealed an interesting misconception. Jack wrote: 

 
At first sight this may seem as if Jack has written down one correct partition. However, in 

interview, he explained that he thought that his two partitions were P1 and P2. All three of the 

students giving unsatisfactory responses shared the same misconception: that the term 

‘partition’ referred to each individual subset, not to the collection of all subsets. 
In this way we see that the class as a whole retain their understanding of ‘equivalence 

relation’ at the definition level and apparently shift their perception of partition to the 

theorem-level, whilst some are still having difficulty with the definition of partition. 

Conclusion 
In this paper we have been considering the development of ‘equivalence relations’ and 

‘partitions’ a year after the students first met the concepts in the Foundations course. During 

this time they would have met the ideas in other courses and revised for the end of year 

examinations. We questioned why the students claimed that the notion of ‘relation’ was the 

most difficult in the whole of the Foundations course. We found that, after a year, although all 

15 students could give the definition of equivalence relation using the notation a~b, only one 

could respond to a question where an equivalence relation was given in terms of a subset of 

the cartesian product. We showed that, although the notion of relation is easily visualised, 

the notion of equivalence relation is difficult to visualise but easy to remember as a verbal 

definition. We also hypothesised that the introduction of the very different notion of order 

relations at the same time gives little common ground amongst the examples of relation to 

allow a coherent link to be made between the examples and the general concept. 
We note that nine out of ten students interviewed claimed that they felt they understood 

partition better than equivalence relation, whereas in fact their performance on the test 

showed that they were able to handle equivalence relation better than partition. This is 

accompanied by the observation that they say they can visualise a partition, but not an 

equivalence relation. We consider this to be consistent with the notion of ‘embodied 

mathematics’ (Lakoff & Johnson, 1999; Lakoff & Nunez, 2000) giving a deeper human 

sense of meaning. Thus the development of the formal thinking characteristic of the ‘rigour 

prefix’ (Alcock & Simpson, 1999) is here underpinned by the embodied concept-image and 

formal concept-use in the sense of Moore (1994). 
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Over the year there is a general shift from ‘definition-based’ deduction referring 

specifically to the formal definition to ‘theorem-based’ deduction, using already proven 

theorems. One student clearly had the composite notion of equivalence relation and partition 

as a rich cognitive unit. The investigation of whether others have such a cognitive structure is 

more likely to arise in interview rather than standard written questions. This remains a topic 

of our current research. 
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