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This paper reports on a study of Year 3 children's addition and subtraction mental 
computation abilities, and the complexity of interaction of cognitive and affective factors 
that support and diminish their ability to compute proficiently (accurately and flexibly).  
In particular, the study investigated the part played by number sense knowledge (e.g., 
numeration, number facts, estimation and effects of operations on number), 
metacognition, memory and affects (e.g., beliefs, attitudes).  It found that proficient 
mental addition and subtraction was a consequence of the integration of all factors, but 
that accurate mental addition and subtraction could occur when some factors were 
impoverished if there was compensation.   
Skilled mental computers are disposed to making sense of mathematics; they use a 
variety of strategies in different situations (depending on numbers and context) (Sowder, 
1994).  Thus, proficiency in mental computation involves both accuracy (achieving the 
correct answer) and flexibility (using a variety of strategies as efficiency requires).  This 
paper looks at why some children are more proficient (more accurate and flexible) at 
mental addition and subtraction than others.  In particular, a fundamental aim was to 
identify factors, and relationships among factors, that influence this proficiency.   
Research on mental computation has proposed specific connections among mental 
computation and aspects of number sense, in particular, number facts and estimation 
(e.g., Heirdsfield, 1996).  Other research relating to computation (in particular, 
children’s natural strategies) has reported connections with numeration (e.g., place 
value) and effects of operation on number (e.g., Kamii, Lewis, & Jones, 1991).   
Relationships have been posited between mental computation and affects (e.g., Van der 
Heijden, 1994), where affects cover beliefs (with respect to mathematics, self, teaching, 
and social context), attitudes (including self efficacy and attribution) and emotions 
(McLeod, 1992).  Beliefs about the nature of mathematics can be manifested in a 
student’s disposition – mastery orientation or performance orientation (Prawat, 1989).  
In relation to computation, mastery oriented students would aim for understanding and 
flexibility.  Here, monitoring, checking, and planning might be evident.  Whereas, 
performance oriented students would tend to aim to complete a task as quickly as 
possible, and not attend to understanding and reflection.   
Proficient mental computers are flexible in their choice of strategies.  Such effortful, 
reflective and self-regulatory behaviour should involve metacognition (e.g., Sowder, 



1994).  Metacognition can be considered to have three components: metacognitive 
knowledge (knowledge of own thinking), metacognitive strategies (planning, 
monitoring, regulating and evaluating), and metacognitive beliefs (perception of own 
abilities and perception of a particular domain) (Paris & Winograd, 1990).  It is believed 
that metacognition, particularly metacognitive knowledge, is domain specific or even 
task specific (Lawson, 1984).   
With regard to memory, Hope (1985) argued that superior short term memory was not 
necessary for proficient mental computation; rather, interest, practice, and knowledge 
were more important factors.  Heirdsfield (1999) found that a superior short term 
memory was unnecessary for a student who was accurate and flexible with mental 
addition and subtraction.  A well-connected and accessible knowledge base and efficient 
mental strategies were sufficient for the student.  However, Heirdsfield also found that 
the mental image of pen and paper algorithm strategy always used by accurate/inflexible 
students tended to place heavy demand on short term memory.   
Two aspects of memory seemed to be significant for mental computation: retrieval of 
facts and strategies, and concurrent calculation.  Hunter (1978) suggested that the first 
aspect, demand for retrieval of facts and strategies, is met by long term memory.  In his 
study of expert mental calculators, Hunter posited that these experts not only build up 
vast resources of numerical equivalents (e.g., number facts and other more complicated 
numerical equivalents), but also a vast store of ingenious strategies.  In this way, 
complex calculations can be handled more easily by accessing long term memory for 
facts and strategies, thus eliminating the need for massive calculations and demands on 
temporary storage.  However, his model did not account for the second aspect, 
concurrent processing of calculations.  To encompass this, a model for working memory 
(Baddeley, 1992; Logie, 1995) consisting of a central executive, a phonological loop and 
a visuospatial scratchpad has been proposed.  The central executive provides a 
processing and co-ordinating function, including information organisation, reasoning, 
retrieval from long term memory (access), and allocation of attention.  The phonological 
loop (PL) is responsible for storage and manipulation of phonemic information, for 
instance, rehearsal of interim calculations.  The visuospatial scratchpad (VSSP) deals 
with holding and manipulating visuospatial information.  This may involve 
representation of numbers in the head, or positional information of algorithms.    
In summary, research on mental computation and number has proposed connections 
among mental addition and subtraction, number sense (e.g., number facts, estimation, 
numeration, effects of operations on number), affective factors (including beliefs, 
attributions, self efficacy, and social context in classroom and home); and metacognitive 
processes.  Further, it appeared that memory might have an effect on mental 
computation.  



The study 
The research consisted of two studies, a pilot study and a main study.  Both studies were 
based on interviews developed to investigate mental computation (strategies and 
accuracy) and other aspects that were identified from the literature.  The findings of the 
pilot study informed the main study.  For the purposes of this paper, findings of both the 
pilot and main studies will be combined. 
Subjects.  The subjects were Year 3 students from two Brisbane independent schools 
that served high and middle socioeconomic areas.  The students (13 in all) were selected 
(from a population of 3 classes, 60 students in all) after participating in a structured 
mental computation selection interview.  As proficiency in mental computation was 
defined in terms of both flexibility and accuracy, both these factors were considered 
when selecting the students.  As a result of their performance on the selection items, 
students were identified as accurate and flexible (4 students), accurate and inflexible (2 
students), inaccurate and flexible (3 students), and inaccurate and inflexible (4 students).  
Instruments.  The students participated in a series of semi-structured clinical interviews 
that:  (1) addressed mental computation strategies, number facts, computational 
estimation, numeration, and number and operations, (2) investigated metacognition and 
affect; and (3) administered memory tasks.  The number sense, metacognition and affect 
tasks have been described elsewhere (Heirdsfield & Cooper, 1997).  The memory tasks 
(Lezak, 1995) consisted of:  (1) the Digit Span Test, a test of short term recall that 
requires verbal rehearsal and/or verbal recall; (2) a modified version of a short term 
retention test; and (3) a mazes test that addresses the central executive, for example, 
planning and decision-making.   
The Digit Span Test specifically addressed the phonological loop (Gatherole & 
Pickering, 2000).  Evidence from research investigating working memory in six- and 
seven-year old children found that existing visuospatial tests did not actually measure 
visuospatial memory (Gatherole & Pickering, 2000).  Therefore, for the purposes of this 
study, no specific tests addressing visuospatial memory were administered.  However, 
evidence of this component of memory was sought from observations of students’ 
responses as they computed mentally.  In a similar manner, evidence for the utilisation 
of the phonological loop and the central executive came from witnessing students’ 
rehearsal of interim calculations, students’ self-reports of “seeing things/numbers in the 
head”, evidence of planning and choosing strategies, and other elicitations.  
Interview procedures.  The students were withdrawn from class to a quiet room in the 
school for the interviews.  For most students, the series of interviews took four sessions 
of twenty minutes each.  All interview sessions were videotaped.   
Analysis.  Students’ responses on the interviews were analysed for:  (1) accuracy and 
strategy choice for mental addition and subtraction (which, in turn, was used to 



determine flexibility, the use of a variety of strategies); (2) knowledge and strategies for 
numeration, number facts and computational estimation, and knowledge of the effects of 
operation on number; (3) metacognition and form and extent of affects; and (4) scores 
and strategies on memory tasks.  For the purposes of identifying flexibility, mental 
computation strategies were classified using a scheme (based on Beishuizen, 1993; 
Cooper, Heirdsfield, & Irons, 1996; Reys, Reys, Nohda, & Emori, 1995) that divided 
strategies into the following categories: (1) separated (e.g., 38+17: 30+10=40, 8+7 = 15 
= 10+5, 40+10+5 = 55); (2) aggregation (e.g., 38+17: 38+10=48, 48+7 = 55); (3) 
wholistic (e.g., 38+17 = 40+17-2 = 57-2 = 55); and (4) mental image of pen and paper 
algorithm – following an image of the formal setting out of the written algorithm (taught 
to almost automaticity in the schools the students attended).  
Each student’s ratings for number sense, metacognitive, affective and memory factors 
were summarised.  These summaries were combined for each of the computation types: 
accurate and flexible, accurate and inflexible, inaccurate and flexible, and inaccurate and 
inflexible to produce a composite figure to represent that type.  Factors were identified 
as commonly present (representing), varying and not present for each type.  Analysis 
then moved from within types to across types to identify factors which by their presence 
or absence would show a relationship to accuracy and flexibility.  Analysis focused on 
what was not present during failure as well as what was present during success.   

Results 
In this study, accurate/flexible mental computers employed a variety of efficient mental 
strategies to alleviate demands on working memory, while accurate/inflexible students 
resorted to one automatic strategy (mental image of pen and paper algorithm).  Only one 
other student reported using automatic strategies.  She was an accurate/flexible student, 
but her “automatic” strategies included a variety of efficient mental strategies.  
Inaccurate/flexible students also employed a variety of strategies (but low level 
strategies), while inaccurate/inflexible showed little in terms of strategies.  This last 
group of students possessed poor knowledge, metacognition and memory.   
Comparing accurate/flexible and accurate/inflexible students’ responses, accuracy in 
mental computation was found to relate predominantly to fast and accurate number 
facts.  Those students who scored poorly in the number facts test (slow and/or 
inaccurate) were inaccurate in mental computation.  This would make sense, as fast and 
accurate recall of number facts from long term memory would result in less load on 
working memory, when more complex calculations are involved.  Thus, fast and 
accurate number facts were found to be essential knowledge for accuracy in mental 
addition and subtraction.  
In contrast, comparing accurate/flexible and inaccurate/flexible students’ responses, 
flexibility in mental computation was found to relate to a mixture of factors, to number 



facts strategies and numeration, and, in part, to understanding the effects of operations 
on number, and metacognition.  Fast and accurate number facts were not found to be 
related to flexibility (inaccurate/flexible students often had poor number facts).  Students 
who were flexible in mental computation employed a variety of efficient number facts 
strategies (derived facts strategies) in the number facts test.  Some students (particularly 
those who were flexible/accurate) applied some number facts strategies to mental 
computation strategies.  In the case of flexible/inaccurate students, using derived facts 
strategies in the test did not help them in mental computation, as derived facts strategies 
were not used in interim calculations – instead, count was often used. 
Efficient mental strategies (e.g., wholistic and aggregation) were found to require good 
numeration understanding.  Lower level alternative mental strategies (e.g., separation) 
also were found to require some numeration understanding (canonical and 
noncanonical).  However, accurate/inflexible students, who tended to use the mental 
image of pen and paper algorithm strategy, did not require the same level of numeration 
understanding, although a threshold knowledge was essential for procedural 
understanding (e.g., canonical understanding).  Inaccurate/inflexible students were found 
to have very poor numeration understanding.  
The relationship of flexibility to understanding of number and operation was not so 
straightforward.  Students who exhibited good understanding in number and operation 
were found to employ high-level strategies (e.g., wholistic).  It appeared that both 
numeration and number and operation understanding was required for successful 
employment of the wholistic strategy.  Research has found that an understanding of the 
effects of operation on number would be important for efficient mental computation 
(e.g., Reys, 1992).  In particular, understanding how changing the addend and 
subtrahend affects the result of addition and subtraction examples is the basis of the 
ability to employ some wholistic strategies.   
Similar to number and operations, the effect of metacognition on mental computation 
was mixed.  In this study, metacognition was not directly related to either accuracy or 
flexibility, although accurate/flexible students showed evidence of metacognitive 
strategies, especially monitoring and checking.  Research findings support a relationship 
with flexibility, that metacognition aids skilled mental computers (e.g., McIntosh, Reys, 
& Reys, 1992; Sowder, 1994).  The reasons for this study not showing a clear relation 
between flexibility and metacognition might lie in the young age of the students and 
their lack of metacognitive knowledge (in particular, their unawareness of their 
metacognitive strategies).  On the other hand, the students were able to verbalise their 
metacognitive beliefs (perceptions of their abilities).   
Neither accuracy nor flexibility was found to be related to estimation.  This finding was 
in contrast to the findings of Reys, Bestgen, Rybolt, and Wyatt (1982) and Heirdsfield 



(1996).  In the present study, even the most accurate/flexible mental computers did not 
exhibit proficiency in estimation.  One reason could be the students were too young to 
have developed estimation strategies.  Estimation is not part of Queensland’s present 
Year 3 syllabus (Department of Education, Queensland, 1991).  Heirdsfield (1996) 
found that, even in Year 4, most students with estimation strategies had developed them 
from out of classroom experiences.   
Exceptional short term recall and retention were found not necessary for mental 
computation; however, threshold levels were necessary.  These findings support those of 
Hunter (1978).   
The expert (mental calculator) goes quite a way to meet these demands (of working 
memory), partly by the speed and quality of working, and partly by devising calculative 
methods which evade an excess of interrupted working.  (p. 343) 
Of course, poor working memory resources might contribute to a poor knowledge base 
in long term memory and poor connections between this knowledge, resulting in the 
diminished performance of inaccurate/inflexible students.  Further, these students scored 
poorly on the working memory tasks.  Thus, working memory might be a stronger 
influence of proficiency in mental addition and subtraction than the evidence of this 
study showed.  To check this requires a look at the different tests used in the memory 
component of the interviews.   
The results for Digit Span Test indicated that, for most students (other than 
inaccurate/inflexible), the phonological loop could support retrieval of number facts 
from long term memory, and holding and rehearsal of interim calculations.  However, 
inaccurate/flexible students did not have number facts in long term memory, so the 
phonological loop could not retrieve these.  The results from the other tests indicated 
that the visuospatial scratchpad only supported strategies such as the mental image of 
pen and paper algorithm, which meant there was little evidence of the use of the 
visuospatial scratchpad for accurate/flexible students, even though it was expected that 
some numbers would be represented in some visual form.  However, because of their 
age, the students using strategies other than the mental image of pen and paper 
algorithm, might have been unaware of their use of mental imagery (or so preoccupied 
with their strategies, that they could not remember using any mental imagery).   

Conclusions 
The study showed that students proficient in mental computation (accurate and flexible) 
possessed integrated understandings of number facts (speed, accuracy, and efficient 
number facts), numeration, and number and operation.  These proficient students also 
exhibited some metacognitive strategies and possessed reasonable short term memory 
and executive functioning.   



Where there was less knowledge and fewer connections between knowledge, students 
compensated in different ways, depending on their beliefs and what knowledge they 
possessed.  Accurate/inflexible students used the teacher taught strategy of mental image 
of pen and paper algorithm in which strong beliefs were held.  Combined with fast and 
accurate number facts and some numeration understanding, their familiarity (almost 
automaticity) with this strategy enabled the students to complete the mental computation 
tasks with accuracy.  Working memory was sufficient to use an inefficient mental 
strategy accurately.  The visuospatial scratchpad was used as a visual memory aid.  The 
inaccurate/flexible students compensated for their poor number facts and minimal and 
disconnected knowledge base by using a variety of mental strategies in an endeavour to 
find one that would enable them to reduce the difficulty of calculation.  Although their 
limited numeration understanding and memory (including executive functioning) were 
sufficient to support the development of some alternative strategies, these were not high 
level strategies.  In particular, access to wholistic strategies was only partially 
successful.  Finally, the inaccurate/inflexible students who exhibited deficient and 
disconnected understanding tried to compensate by using teacher-taught procedures 
(similar to the accurate/inflexible students), but they were unsuccessful, as they 
possessed no procedural understanding and also had poor working memory.  
The importance of connected knowledge for proficient mental computation 
demonstrates the need for teaching practices to focus on the development of an 
extensive and integrated knowledge base.  Students can and do formulate their own 
strategies, but do not always use them accurately.  Therefore, students should be 
encouraged to formulate their own strategies but in a supportive environment that assists 
them to use strategies appropriately.  Because of memory load, students should be 
permitted to use external memory aids (e.g. pen and paper) to assist mental computation.  
This has a second payoff in that efficient mental strategies are, at times, also efficient 
written strategies.  By having students formulate mental strategies, they have to call 
upon number sense knowledge, thus acquiring connected knowledge while they develop 
computational procedures.  This is in contrast to students using teacher-taught 
procedures, which require little connected knowledge. 
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