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By applying symbolic computation and graphics, we tried to enhance students’ ability 
to go from visual interpretation of the limit concept to formal reasoning. While being 
taught the topic “approximations of functions by Taylor polynomials”, the students 
analyzed the remainder and performed animations that illustrated its convergence. 
They used the Mathematica software for manipulating algebraic expressions and for 
generating a wide variety of dynamic graphics. We observed that the graphics 
produced by the animations were in a sense present in the students' minds even when 
the computer was turned off.  Here we describe a situation in which the interaction 
with computer graphics helped the students overcome confusion caused by 
misleading images of the limit concept.              

 

Introduction 

This paper deals with the conceptual understanding of the convergence process 
obtained by approximating a function by means of Taylor polynomials. Central 
concepts in analysis such as limit and infinite sum are very much related to 
approximation theory. Therefore, by means of polynomial approximations, we tried 
to clarify the limit concept. We analyzed students’ perceptions of the limit concept in 
the context of a computer-based mathematics laboratory program. For this purpose, 
we used Mathematica software (Wolfram Research), which permits symbolic 
computation, graphics, and animation. Special attention was given to using animation 
in order to visualize and analyze the dynamic process of convergence.                 
Our research focused on the question to what extent did the use of symbolic 
computation and dynamic graphics actually help the students in the transition from 
their visual intuitive interpretation of the limit concept to formal reasoning.   

This paper describes some research that examined an approach to teaching analysis at 
the high school level. The main topics taught were Approximation and Interpolation, 
from which we explored the issue of Approximation theory in connection to the limit 
concept. High school students learning at the highest level (Age 16-17, N=84) were 
involved in the research.   



  

Theoretical Background 

In studying students’ perceptions of the limit concept, it is important to take into 
consideration the intuition of infinity. Our logical schemes are naturally adapted to 
finite realities. As Fischbein, Tirosh, and Hess (1979) observed, the natural concept 
of infinity is the concept of potential infinity. Openhaim (1986) noticed students’ 
difficulties in grasping that the behavior of a sequence with regard to convergence is 
unaltered if we omit a finite number of the terms. Davis & Vinner (1986) noticed 
some unavoidable misconception stages in understanding the limit concept. In trying 
to understand the difficulties in learning the limit concept, Cornu (1981) described  
“spontaneous models” that pre-exist before learning the limit notion. Moreover, the 
definition of limit is formulated in terms of an unencapsulated process (given ε , an N 
can be found such that…) rather than being described explicitly as an object (Cornu, 
1991).  

In attempting to overcome such difficulties, Dubinsky & Tall (1991) proposed using 
computers in order to enable the students to make constructions on the computer 
screen leading to corresponding constructions in their minds. Li & Tall (1993) 
discussed three approaches to teach the limit concept: (1) a (formula-bound) dynamic 
limit approach, (2) a functional/numeric computer approach, and (3) the formal Nε −  
approach. Monaghan et al. (1994) added a key stroke computer algebra approach. We 
suggest an additional approach: the use of animation to visualize the processes of 
convergence and to interact with the dynamic graphics. The “Calculus & 
Mathematica” course (Brown et al., 1991) and Devitt’s “Calculus with Maple” course 
(1993) helped us in preparing the chapters on approximation by expansions. The 
reference to Euler analysis (Brown et al., 1990) was especially helpful. We used 
Mathematica for animating the remainder. For analyzing the results we were aided by 
Verillon & Rabarbel’s article (1995) on cognition and artifacts. Assuming that 
cognition evolves through interaction with the environment, the authors studied the 
effect of accommodating to artifacts on cognitive development, knowledge 
construction and processing, and on the nature of the knowledge generated. They 
stressed the difference between the artifact, as a man-made material object, and the 
instrument, as a psychological construct.  

The Teaching Experiment  

The first author taught the students mathematics six hours a week, two of the six 
hours in the PC lab. The laboratory consists of 20 PCs, each equipped with 
Mathematica and a hardware system (called classnet) that permits transmitting the 
content of the screen of each computer to all the computers in the classroom. A 
pedagogical strategy in the experiment was to use the technology to follow great 
mathematicians’ thought processes. For example, two different approaches were used 
to approximate a given function by polynomials: analytical and algebraic. In the 
analytical approach the notion of order of contact was introduced, and as an 
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application the students were required to find the polynomials of degree 2, 3, 4,…. 
that have the highest possible order of contact with a given function at x=0. 
Mathematica helped the students to solve the relevant systems of equations. In the 
algebraic approach Taylor polynomials were introduced by using the intuitive idea of 
Euler: to express non-polynomial functions as polynomials with "an infinite number 
of terms". The students used Mathematica to follow the original text of Euler 
described in Euler (1988). Following Euler’s “experimentalist” thinking, the students 
used his algebraic approach to represent infinite sums: they used Mathematica syntax 
in order to expand functions as power series, applying the method of undetermined 
coefficients exactly as Euler did. Both approaches converged to the coefficients of 
the Taylor series but each one has its own characteristics: the analytical approach 
describes the process of the different polynomials approaching a given function; the 
algebraic approach represents the polynomials with "an infinite number of terms" as 
an object. The students made a graphical representation of the results. By means of 
animation (Kidron, 2000 - Example 1), they were asked to “encapsulate” the process 
into an object. For example, Figure 1 shows a “dynamic” plot that illustrates the fact 
that in a given interval, the higher the degree of the approximating polynomials, the 
function f(x)=Sin(x) and the approximating polynomial are closer. 

 

                                                                            f (x) and (x)Pn  for n=1,3,5      

 

                                                                                        f (x) and (x)Pn  for n=7,9,11 

         

 Figure 1   a "dynamic" plot of sin (x) and the approximating polynomials for ππ ≤≤− x  

The animation permitted the students to see the dynamic process in one picture: they 
were also requested to stop the animation and observe the different steps of the 
dynamic picture. In the laboratory, the teacher demonstrated a full process, by means 
of animation, followed by a group discussion using the classnet. The students noticed 
that for x values nearer to 0, the function f(x) and the approximating polynomial 

(x)Pn are closer. In order to clarify the meaning of “closer”, the teacher had the 
students analyze the remainder. The students were given the proof of Taylor's 
theorem at x = 0 and they computed the expansion of sin (x) around x=0 up to 

exponent 5. The error ( (x)P-f(x) n ) - the remainder of Lagrange - is 
6!

 x(c)f 6(6)

 for some 

c value between 0 and the current x value. The 
absolute value of the error as a function of x and c 
with πcπ-     ,  πxπ ≤≤≤≤−  was plotted. Because 
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the c value in πcπ- ≤≤  that corresponds to the exact error is an unknown number, 
the students were requested to look at all pairs (x, c) such that πcπ-    ,  πxπ ≤≤≤≤− . 

The following 3-dimension graphics (see Figure 2) represents the error (in fact, an 
upper estimate on the error) as a function of the two variables x and c. 

                                                                                              Figure 2 the error as a function of x and c 

In this plot the upper estimate of the error is obtained, for example for πx = and 

2
πc = .   In the laboratory, the teacher demonstrated that in the example f (x)= sin(x):  

0x)(Rlim nn
=

∞→
, )xa...........xaxa(af(x)(x)R n

n
2

210n ++++−= .                                                                

Using animations of 3-dimensional plots in a fixed domain, the students saw with 
f(x)=sin(x), how the upper estimate of the error gets smaller when the degree of the 
approximating polynomial is increased (Kidron, 2000 - Example 2). One student 
raised an interesting question: Suppose that the degree of the approximating 
polynomial is fixed; could we obtain the animation with the domain as a variable? At 
this stage of the course the students could use Mathematica as a programming 
language to obtain the dynamic graphical output. The teacher encouraged them to 
construct a visual representation of 0x)(Rlim n0x

=
→

by animation, where the domain of 
x)(R n is variable (Kidron, 2000 - Example 3).  

Research methodology and data analysis  

The methodology adopted for evaluating the students’ work and for research 
purposes was as follows: the teacher demonstrated an idea in the PC lab. The students 
were then asked to explore the idea by applying their examples with Mathematica. 
The teacher collected three types of data: (1) students’ questions and remarks during 
the sessions, (2) the Mathematica files of the students’ examples, and (3) written tests 
without the use of Mathematica. We present here a class discussion and some 
findings from a written test. The following class discussion demonstrates the way the 
students used Mathematica to interact with the dynamic graphics produced, in order 
to re-construct their knowledge of the limit concept.                  

The class discussion     The task given to the students in the lab was as follows: 
Select a function f (x) and illustrate 0  (x)R

)(nn ∞→
→ . Most of the students dealt with 

functions similar to the example 
given in the class. Here we 
describe the class discussion that 
followed the presentation of an 
example by one of the students, 
Matan. His example was: f(x)= 



  

cos(2x) for πxπ ≤≤− (see Figure 3). He animated (Kidron, 2000 – Example 4) the 

plots of the absolute value of the error 
1)!(n
  x(c)f 1n1)(n

+

++

 as a function of two variables x 

and c, 

πcπ-  ,   πxπ ≤≤≤≤−  

where n grows from 3 to 13  

 with  step =  +2                            Figure 3 "animation" illustrating  0  (x)R
)(nn ∞→

→  for 
f(x)=cos(2x) 

                                                                                                   

In the example that was demonstrated in the laboratory, (f(x)=sin(x)), when n was 
increasing, the upper estimate of the error was steadily decreasing for every n. This 
was not the case in Matan’s example, f(x)=cos (2x), as is seen for n = 5.                 
We quote students' reactions:  

Nimrod:  When the degree n of the approximating polynomial is increasing, the 
approximation must be better. 

Nimrod tried to explain what he meant by "the approximation must be better". 

Nimrod: In some place in the infinite they will be the same. I mean by "better" that 
when n is increasing the error is decreasing. It could not be that the error is getting 
bigger! Maybe the error is not getting smaller. I mean that maybe we cannot see it in 
the graph but the error is getting smaller all the time when n is increasing.  

We noticed some confusion in Nimrod’s reactions. He did not expect that the error 
would suddenly increase for n=5.He attributed the surprising effect to some 
limitations of the graphics.   

Matan: f(x) = cos(2x) is an even function. An even function is expanded in a power 
series with even exponents. I should have given values to n that go from 2 to 14 with 
step +2 instead of taking n from 3 to 13.           

 Matan connected this surprising effect to an irrelevant fact. He used Mathematica to 
check his conjecture. He chose even values for n but the surprising effect remained 
unchanged. 

Hannah: Let us look at the different graphs that produced the animation. They do fill 
the requirement that  (x)R n approach 0 as n ∞→ . The problem is with the degree n = 
3 and not with n = 5.  From the fifth degree and all the degrees onwards we got 
exactly what we expected: the error becomes smaller as n increases. We say 



  

0(x)R n →  if (x)R(x)R 1nn +>  and this happened from a certain value of n onward. In 
Matan's example n>3.     

Tomer: How could we know from which n=N the process begins? 

Nili: Could it be that from a certain N the error will get smaller for a few steps and 
afterwards the error will get bigger? We could not find the N graphically. How could 
we know from which N the error becomes smaller all the time?      

Hannah: Something disturbs me - if the accuracy (ε) is 0.8, for example, and you find 
N, for example, N=10 such that for all Nn ≥ , 0.8(x)R n < , then you will not see the 
phenomenon we described for n = 3. This means that for every ε  there will be the N 

that belongs to it.  Maybe we will find N if we will compare 
1)!(n
  x(c)f 1n1)(n

+

++

 with ε  and 

we will look for the first n for which this expression is smaller than ε. 

 The students gave other examples that demonstrated that (x)R n was not always 
decreasing. Motivated by these examples, the students searched for the N from which 
onwards, the absolute value of the remainder decreased. 

The written test   We were interested in two aspects: 

 (1) The students’ ability to visualize the process described by the formal definition of 
limit, and (2) their ability to express the formal definition correctly.                 
One of the written tests dealt with the notion of the limit, 0(x)Rlim n0x

=
→

.                 
The test checked the students’ ability to connect the visual and the analytical aspects 
of the limit concept. The students (N=84) worked on the test without using 
Mathematica. We identified different ability levels of connecting the visual and 
analytical aspects of the limit concept.  

Most of the students (81%) were able to visualize the process described by the formal 
definition of the limit and to translate visual pictures to analytical language: “We are 
given ....,ε,ε,ε 32 1  find the appropriate ..,..δ,δ,δ 321 ”. They had no difficulty in 
proceeding step by step through a discrete sequence of ....,ε,ε,ε 32 1  finding the 
appropriate ..,..δ,δ,δ 321  and were aware that this process is infinite, probably in the 
sense of “potential infinity”. “You can always find a number which is smaller than 
the previous one, and so on infinitely”…. “To every nε  there is nδ “.                 
A smaller number of the students (68%) were able to express the formal definition: 
"to every positive number ε , there is a positive number δ  such that…".                   
Some of the students who failed to express the formal definition wrote:                 
“δ  is not dependent on ε . ε  is dependent on δ ”.  "δ  is not dependent on the error, 
since δ  is fixing the error: the nearer we approach the point x=0 about  which                 
the function was expanded, the smaller is the error".                 
These students remembered the order in which they worked in the laboratory - 



  

beginning with domain and finding the error. The Cauchy’s definition begins with 
ε… It was difficult for them to reverse the order!  

Discussion and Conclusions  

The class discussion around Matan’s example related to the concept of the limit, 
0x)(Rlim nn

=
∞→

. The surprising effect of the dynamic graphical feedback that 
Mathematica provided was very important for the students’ learning experience. The 
students expected, as in the example demonstrated in the lab, that x)(R n  will 
approach 0, steadily decreasing for every n. The unexpected effect of the little jump 
back when n=5 in Matan's example, f (x) = cos(2x), was stronger while observing the 
animation than in the static plots (Kidron, 2000 - Example 4). The contribution of 
such feedback to the learning process is particularly effective if it is surprising 
(Dreyfus & Hillel, 1998). The result could be a re-construction of the meaning of 
some mathematical notions. Mathematica helped the students to identify "that 
something is not going as they expected". They had to understand by themselves the 
cause of the confusion. The way the students used the dynamic graphical feedback 
enabled them to realize that the behavior of the sequence with regard to convergence 
is unaltered if we omit a finite number of the terms nR .  

The students used Mathematica to follow Euler’s reasoning. In Euler’s approach 
(Euler, 1988) infinite sums were represented as an object: the polynomials with an 
“infinite number of terms”. The students used Mathematica also as a symbolic 
language to generate dynamic graphics, which enabled illustrating the convergence 
process. Using animation only to visualize the process of convergence was not 
enough in order for the process to become a concept, the concept of limit. In addition, 
the students had to interact with the dynamic graphics, to have control over the 
dynamic representations. Actions on the dynamic representations aided the students 
in developing their own reasoning. We could clearly see that the students’ use of the 
artifact influenced the nature of the generated knowledge. In order to overcome their 
pre-conceptions of limit, the students were encouraged to further construct and re-
construct their knowledge using the dynamic graphics approach to handle the limit 
concept explicitly.  

We were interested in determining to what extent this re-construction of their 
knowledge helped the students in their transition from visual intuitive interpretation 
of the limit concept to formal reasoning. The class discussion around Matan’s 
example enabled the students to modify the misleading idea that they could observe 
the approach 0(x)R n → as n is increasing in the sense that (x)R n  steadily decreases 
for every n. The class discussion paved the way to the formal definition of 

0x)(Rlim nn
=

∞→
(beginning by ε , then finding N such that…). However, in the written 

test, only 2/3 of the students were able to write correctly the formal definition of 



  

0x)(Rlim n0x
=

→
. The dynamic graphics produced by the animations were present in the 

students' minds even when the computer was turned off. Some even remembered the 
order in which they worked in the lab (beginning with domain and finding the error) 
and had difficulties in reversing the order. To overcome this difficulty, additional 
tasks are being prepared for use in further applications of the program.  
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	This paper deals with the conceptual understanding of the convergence process obtained by approximating a function by means of Taylor polynomials. Central concepts in analysis such as limit and infinite sum are very much related to approximation theory.

