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Abstract 

This paper addresses a study on assessing student learning in mathematics education. The 
study is connected to a teacher enhancement project at primary schools in New York City. 
The eventual goal of the project was to improve the students’ mathematical achievements. 
Among other things, this goal includes the use of clever ways of applying mathematics for 
solving problems. Because standardized tests are not an adequate tool for revealing this kind 
of student learning a test was developed by means of which the process of mathematization 
was supposed to become visual. Results gained from this test in 17 classrooms with students 
ranging from grades 3 through 5 show that strategy-focused assessment is a valuable 
extension of the regular answer-focused assessment. 
 
Introduction 
The dichotomies product-process and answer-strategy play an important role in the 
assessment of mathematics achievements. If not earlier, this became apparent in the recent 
worldwide reform of mathematics education. One of the characteristics of the new approach 
to mathematics education is that it gives more room to processes and strategies. Nevertheless 
there is yet a large distance between both ends of the respective dichotomies. The answers 
belong to the product side and the strategies to the process side, and answers and strategies 
each have their own purposes. The gap is reflected above all in the difference that still exists 
between standardized tests and tools for classroom assessment.  
 Although the ways in which students solve mathematical problems are regarded as 
important information for educational decisions, solution strategies are scarcely covered by 
standardized tests. More often than not achievement scores are purely related to the number of 
correct answers. In tests, the answer is usually considered as the ultimate indication of the 
achievement level. The strategies that the students applied to find this answer are generally 
beyond the scope of standardized testing and belong more to the field of interviews and 
observations.  
 For a long time, only within the context of diagnostic testing, attention was paid to strategies. 
Data about the process of solving problems, and especially data about errors, was used to identify 
students’ misunderstanding and find indications for remedial teaching. Errors in strategies were 
regarded as “windows on children’s internal thought processes” (Baroody, 1987). 
 As said earlier, the reform in mathematics education has opened the door now for strategies 
as a more general focal point of assessment. They are no longer restricted to a remedial 
setting. As expressed in standards and curriculum documents of many countries, the new 
ideas about mathematics education emphasize that in addition to product information, process 



 

 

information is needed to get insight in the students’ thinking. This particularly implies that 
special attention is paid to the various ways by which the students solve mathematical 
problems. A wide range of alternative assessment tasks and formats has been developed to 
reveal strategies. The main purpose of this alternative assessment is to inform the teachers 
about the students’ way of thinking in order to provide clues for further teaching. 
 In other words, there is, nonetheless, a distinction between process and product. Strategies 
are still considered as a process variable and the answers are still the pivot of all. They are 
considered as the real output variable that counts for determining the achievement level. The 
question is, however, how tenable this is. Is this strict distinction not an unnecessary 
curtailment of the assessment of mathematics achievements? 
 The present paper cannot answer this question extensively. It only reports about a study in 
which was tried to use the students’ strategies as an output variable, or – adapting Baroody’s 
words – as “windows on achievements level”. 
 
The MiTC project 
The study was part of the “Mathematics in the City” (MiTC) project. The MiTC Project is a 
large-scale project on teacher enhancement project funded by the National Science 
Foundation and the Exxon Educational Foundation (see Fosnot and Dolk, 2001). The City 
University of New York and the Freudenthal Institute of Utrecht University carried out the 
project jointly. Over a period of five years, the project worked on systemic reform in 
mathematics education from pre-kindergarten through grade 5 in five school districts in 
Manhattan. The project started with ten schools and in the last stage of the project about forty 
schools were involved. 
The two key points that characterize the MiTC project are its model of improving teachers’ 
classroom practice and its idea about mathematics education.  
 
Approach to teacher enhancement 
The heart of the project consisted of a very intensive collaboration between staff members of 
the project and the participating teachers. The mathematics classrooms in the project were co-
taught by the project staff and the school teachers. Through joint observations and discussions 
between teachers and staff members the team worked continually on the development of 
better ways of teaching. By means of a two-week summer institute in the beginning of the 
school year, followed by weekly-organized institutes during the year, the teachers were 
offered opportunities for further deepening their professional knowledge and abilities. The 
structure of the project was that after a year of participation some of the teachers became staff 
members, which implied that they coached new teachers in the project. This mushrooming 
pattern meant that the initial number of forty involved teachers rose up to four hundred. 
 
Approach to mathematics education 
The project was strongly related to both the constructivist and the “realistic” view on 
mathematics education. Moreover, a strong basis was found in the Piagetian and Vygotskian 
theories on children’s cognitive development. These two theories actually constitute the 



 

 

socio-constructivist to mathematics education (see Cobb, 1996). 
 The socio-constructivist view in the MiTC project is recognizable in the fact that the 
students are seen as active learners within the social community of the classroom. The 
mathematics “congresses”, in which the students, while seated on a rug, share their thinking 
and build up new understanding, reflect this approach to mathematics education exceedingly. 
In addition to this, within MiTC classrooms the Piagetian concepts of assimilation and 
accommodation play an important role. Teachers have to recognize the present cognitive 
schemes and structures of the students and must learn how to design problems and situations 
that can evoke new or re-ordered schemes and structures. 
 The key beliefs about what should be taught, and how it should be taught, are heavily 
inspired by Realistic Mathematics Education (RME), which is based on Freudenthal’s view 
that mathematics must be connected to reality, stay close to children and be relevant to 
society, in order to be of human value (Freudenthal, 1977). Instead of seeing mathematics as 
subject matter that has to be transmitted, Freudenthal stressed the idea of mathematics as a 
human activity. Education should give students the “guided” opportunity to “re-invent” 
mathematics by doing it. This means that in mathematics education, the focal point should not 
be on mathematics as a closed system but on the activity, on the process of mathematization 
(Freudenthal, 1968).  
 Actually this mathematizing ability, including also attitude to mathematize, is the overall 
core goal of mathematics education. In short, this ability involves that students can use and 
develop mathematical tools, including models and strategies, which can help to organize and 
solve real life problems and pure mathematical problems.  
 
Evaluation of student learning 
In year five of the project an evaluation was planned. Because of the large-scale character of 
the project with its focus on change at different levels, i.e. students, teachers, and whole 
schools, a uni-dimensional evaluation was felt to be insufficient. Instead a multi-focus 
assessment was designed including macroscopic and microscopic lenses (Van den Heuvel-
Panhuizen, Dolk, Fosnot, and Glick, 2000). This approach to assessment was based on the 
belief that the different perspectives would provide a fuller understanding of the effectiveness 
of the in-service intervention. The assessment contained the following three foci: student 
learning, teacher change, and school change. Each of them has various aspects to be examined. 
The present paper will only deal with the assessment of student learning and will concentrate 
on student competence deduced from the strategies they applied to solve the problems.  
 The main question to be answered about the student learning was what the project students 
gained from the project. To answer this question the achievements of the students from grades 
3, 4 and 5 were compared to the achievements of non-project students. 
 
Comparison by means of the standardized tests 
The first analysis was done based on the results from the Corrected Terra Nova Math Test 
(for third-grade and fifth-grade students) and the Corrected New York State Math Test (for 
fourth-grade students). Although these standardized tests are not entirely in line with the 



 

 

project goals of mathematics education, it was decided to have the test scores from these tests 
as one criterion for evaluation. If students in reform project do not score well on mandated 
tests, the reform will fail simply because of political forces at play regarding testing. 
Moreover, results on sub test items can be helpful in understanding how well the reform 
project appears to be aligned with standardized achievement outcomes. The comparison of 
the tests scores revealed that in all the three grades the project students (experimental group) 
scored significantly better than a group of non-project students (control group). A covariance 
analysis controlling for entering score at the beginning of the year (which only was possible 
for grades 4 and 5) showed also significantly better results for the experimental group 
(Fosnot, Dolk, van den Heuvel-Panhuizen, Hilton, Wolf, and Bailey, under review).  
 
Comparison by means of the MiTC test 
From the very beginning of the project it was planned to have an additional evaluation of 
student learning more aligned with the goals of the project than the regular standardized tests 
mostly comprised of closed and answer-based items. 
 For this purpose an alternative test on number sense was developed for grades 3 through 5 
using a RME assessment paradigm (van den Heuvel-Panhuizen, 1996).  
 
Assessing mathematizing 
Assessment grounded in the RME theory of mathematics education requires that the 
assessment tool must provide information about the process of mathematization, since that is 
considered as the overall core goal of mathematics education. The ability of mathematizing 
involves that students can solve problems by means of mathematical knowledge and concepts 
that can lead to models and strategies that are adequate for the problem to be solved. This goal 
is different from the goal of most traditional assessments, where strategies are assessed but 
only as process, or as a bi-product, or as an additional proof that the student had a clear 
understanding of what he or she was doing. In contrast, when mathematizing becomes the 
goal of instruction, the strategies are seen as an outcome, as the goal itself. 
 Within the process of mathematization several levels can be distinguished, each reflecting a 
certain level of the students’ understanding. Regarding the content domain of number sense 
related to operations with numbers up to one thousand the mathematization includes concrete 
or mental activities ranging from carrying out a standard algorithm to making use of number 
relations and properties of operations in order to find shortcuts and clever and elegant 
procedures by means of which the answers can come across. Crucial for evaluating the 
mathematizing activity is to what degree the strategies show a level of maturity that includes 
both flexibility and effectiveness. Simply carrying out a standard procedure without taking 
into account the numbers involved is not judged as a high level of mathematizing.  
 For paper-and-pencil assessment to capture genuine mathematizing it is necessary that 
the students’ own mathematical activity becomes visual on paper. Therefore all problems 
were put in a work area that the students could use as scratch paper. Another requirement 
for assessing mathematization is that the tasks allow several levels of mathematizing. The 
most important requirement, however, is that there is something to mathematize.  



 

 

 The following two problems may illustrate the kind of problems that were used in 
this test. The long addition problem that was in the test for grade 3 (see Figure 1) 
looks like an ordinary bare number problem and can trigger an algorithmic procedure. 
A student with number sense, however, will recognize how nicely the numbers fit 
together, and will adapt her or his strategy to this knowledge. 
 

38 + 39 + 40 + 41 + 42 = 
 

Figure 1   Problem included in the MiTC test for grade 3  
 
In the problem on the chain of beads (see Figure 2) the students have to figure out the color of 
the 1000th bead. In addition to this the students have to explain why they are sure about their 
answer. In this problem, that is from the test for grade 5, the students can apply their 
knowledge of multiples of three. But other, less advanced ways of working are also possible. 
Again, this inherent multi-level quality of the problem makes it very suitable for providing 
information about the students’ achievements. 

 
Figure 2   (Part of the) Problem included in the MiTC test for grade 5 

 
Data collection 
The MiTC test was administered in 17 classrooms in spring. The classrooms ranged from 
grade 3 through grade 5. Eight of the classrooms had a teacher from the control group and 
nine had a teacher from the experimental group. In total four schools were involved, situated 
in three school districts. The control classrooms were selected to match the experimental ones. 
In order to avoid large differences between the background of the students and the general 
school environment, the control teachers and the experimental teachers, in some cases, came 
from the same school or from the same school district. In both groups two teachers had a 
mixed-grade classroom. This means that in total 21 grade groups with a total of 17 teachers 
were involved in the data collection (see Table 1).  
 

Table 1   Number of teachers, students, and grade groups involved in the data collection 
Control group Experimental group Total  

Teachers Students Teachers Students Teachers Students 
Grade 3 3 61 6 75 9 136 
Grade 4 4 72 3 43 7 115 
Grade 5 3 55 2 36 5 91 
 10 (8) 188 11 (9) 154 21 (17) 342 



 

 

Together with the development of the test a double coding system was developed: one for the 
answers and one for the strategies. For the answers, the literal answer given by the student 
could be coded. The strategy coding was done by means of a two-digit code. The first digit 
referred to a general description of the strategy and the second digit specified a particular way 
of working within this category. It is important to explain that the categories and in particular 
the subcategories are not holistic but task-specific rubrics.  
 The coding of the students response was done blindly. The coder (1) did not know whether 
the students belonged to the control group or to the experimental group.  
 
Results 
A t-test analysis showed that the average percentage of correct answers in the addition 
problem (grade 3) did not differ significantly between the two groups (see Table 2). For the 
beads problem (grade 5) this is slightly different (see Table 3), but on the whole the control 
students and the experimental students did not diverge with respect to the total number of 
correct answers (see Table 4). The latter means that if this test would only have focused on the 
answers, the two groups might have been considered as equal in achievement.  
 

Table 2   Answer and strategy results from the grade 3 problem (see Figure 1) 
Grade 3 problem 
 

Control 
group (n = 61) 

Experimental 
group (n = 75) 

 
 

answer 48 %  correct 60 %  correct n.s. (t-test) 
strategy   5 %  tinkering 17 %  tinkering 
 15 %  decomposing 45 %  decomposing 
 62 %  ciphering 20 %  ciphering 
 18 %  other 17 %  other 

p < .001 
(Chi-square) 

 

Table 3   Answer and strategy results from the grade 5 problem (see Figure 2) 
Grade 5 problem 
 

Control 
group (n = 55) 

Experimental 
group (n = 36) 

 
 

answer 73 %  correct 92 %  correct p < .05 (t-test) 
strategy 42 %  reasoning 75 %  reasoning 
   9 %  counting on/ 

           multiplying on 
14 %  counting on/ 
           multiplying on 

   4 %  long division   0 %  long division 
   7%  wrong operation   3 %  wrong operation 
   2 %  guessing   0 %  guessing 
   2 %  other   0 %  other 
 16 %  unclear strategy   8 %  unclear strategy 
 18 %  no strategy   0 %  no strategy 

p < .05 
(Chi-square) 

 
However, the situation with the applied strategies is quite different. Here, a Chi-square 
analysis showed highly significant differences between the two groups (see also table 4). 
 In the addition problem (grade 3) the majority of the control group students used column 
arithmetic. An example of such a ciphering strategy is shown in Figure 3. 



 

 

  
            Figure 3   Example of ciphering strategy Figure 4   Example of tinkering strategy 
 
The students from the experimental group, in contrast, brought their number and operation 
knowledge into play and applied a smart calculation strategy that is called “tinkering” (see 
Figure 4) or they used either a stringing strategy (e.g. 38 + 30; + 9; + 40;  
+ 40; + 1; + 40; + 2) or a splitting strategy (e.g. 30 + 30 + 40 + 40 + 40 and 8 + 9 + 1 + 2). 
The stringing and splitting strategies are summarized by the term “decomposing”. 
 For the beads problem (grade 5) three quarter of the experimental students used a 
reasoning strategy based on knowledge of number relations. For instance, one student said:  
 

“I counted 10 and I know 10 go into 1000, so the last color for 10 which is 
white is the same color for 1000”.  

 
Compared to the experimental group, the control group contained more 
students who, for instance, could not explain their strategy or students who 
did a long division (see Figure 5) together with the following explanation: 
 

“There are 2 white beads between each black bead that’s why I did 2 ÷ 
1000. Then I did 1 ÷ 1000 which gave me my answer”.  

 

 
 

Figure 5   Example of student work that showed a long division 
 
As is shown in Table 4 the difference in strategies was consistent in the study. Sensible 
tinkering strategies were applied more often by the experimental students (E+) and the 
ciphering strategies – in problems in which these strategies are not the most adequate solution 
strategies – were more often found in the work of control students (C+). 
 
 



 

 

Table 4   Answer and strategy results in total for each grade 
 
 

Grade 3 
11 problems 

Grade 4 
8 problems 

Grade 5 
11 problems 

Difference in total number 
CORRECT ANSWERS           (t-test) 

 
E + (p < .10) 

 
E = C 

 
E = C 

Difference in STRATEGIES    (Chi-square)    
• tinkering E + (p < .001) E + (p < .001) E + (p < .001) 
• decomposing E + (p < .001) E + (p < .10) E + (p < .001) 
• ciphering C + (p < .001) C + (p < .001) C + (p < .001) 
• other E = C E = C E = C 

 
Concluding remarks 
The data need further analysis (e.g. correlation between correct answer and strategy; influence of 
particular teachers) to conclude what the students gained from the MiTC project. The results so far 
give strong support to the idea that the mathematics achievements of the students in the 
experimental group are higher than those of the non-project students. Regarding assessment this 
study made clear that the measurement of mathematics achievements cannot be restricted to the 
answers only. This thinking fits with other developments in this area, like the work done by Suzuki 
(2000) who is developing a new assessment methodology in which the process of thinking in 
problem solving can be scored. Suzuki used the QUASAR general scoring rubric as a bedrock to 
develop a scale that can identify characteristics of achievement levels. In contrast with Suzuki’s 
scale, in the MiTC study the categories were more mathematical and task-specific. The future will 
show what approach will be most helpful for understanding mathematics achievement. 
 
Note 
1. The coding was done by Chantal van Rooijen. 
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