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This is a report of a study examining students' understanding of the concept of definite integral. 
Using APOS, a specific framework for research and curriculum development in collegiate 
mathematics education, as a guide in investigation, we analyze and interpret students' responses 
to the interview questions. The analyses of the interviews and the results of other studies 
indicate that the coordination between the visual schema of the Riemann sum and the schema of 
the limit of the numerical sequence is necessary for developing a good understanding of the 
concept of definite integral. Consequently, we give suggestions for didactic and curricular 
changes when teaching the concept. 
 

In communicating mathematics to students, the professor presents concepts 
as a combination of (a) his or her understanding (b) the understanding established 
by the mathematical community, and (c) the pedagogical values the professor 
incorporates into his or her teaching. Communication however is a two-way 
process, and hence an important question arises: does the communication initiated 
by the professor achieve its objective?  In particular, in the realm of the definite 
integral, do students indeed think along the lines defined by the classroom 
instruction?  Is there a lack of understanding of some key concepts? Do 
modifications need to be made to our communication, our sequencing of topics 
that lead to the definite integral? What can we incorporate into our teaching that 
we learn from our current students thinking?  

 
The definite integral is the composition of two distinct constructions: (1) the 

geometrical one, ultimately based on1e principle of exhaustion, and (2) the 
numerical one of the infinite converging sequences and their limits. The problems 
encountered in the understanding of the sequences and their limits are quite widely 
investigated, the understanding of the definite integral has received much less 
attention, while the combination of sequences and limits leading upto the definite 
integral has received the least attention. Because of the dependence of the definite 
integral on the notion of the limit of the sequence, one can suspect that the 
problems in understanding the limit of a sequence will create difficulties in the 
understanding of the definite integral as well. One of the main goals of our paper is 
to demonstrate how this suspicion bears out.  Thus, we report in this article, our 
findings of student understanding of the Riemann sum as revealed in the 
interviews, the need for a more  intensive treatment of sequences and limits of 

                                                 
1 Our appreciation goes to  Ed Dubinsky for his helpful suggestions during numerous conversations. 



sequences prior to the treatment of Riemann sums and the justification for this 
suggestion.    

 
As stated earlier, inspite of being one of the essential concepts developed 

during the first two semesters of college mathematics, there are comparatively few 
articles investigating the understanding of the definite integral by students. One of 
the most interesting works is the article by Orton who points out students' 
difficulties in using the limit process for their understanding of the concept of the 
definite integral. The analysis of our data expands and builds upon Orton's 
findings, presents the evidence of students’ successes and difficulties and offers 
suggestions concerning significant changes in the instruction design.  

 
Literature review 

Two articles that deal with pedagogy as relates to the definite integral are by 
Orton [1983], and Davis and Vinner [1986].  Articles that shed light on student 
understanding of sequences and limits of sequences and functions are by 
Sierpinska [1987], Williams [1991], and Cornu[1992]. 

 
One of the interesting tools of analysis in mathematics education is that of a 

cognitive obstacle. According to Cornu [1992] there are the following types of 
cognitive obstacles: genetic, didactical and epistemological.  A cognitive obstacle 
helps to identify the difficulties encountered by students in the learning process, 
and to determine appropriate strategies for teaching.  Genetic and psychological 
obstacles arise as a result of the personal development of the student, didactical 
obstacles arise as a result of the nature of teaching and epistemological obstacles 
arise as a result of the nature of mathematical concepts themselves.  It is equally 
interesting that according to Cornu, the concept of the limit has been fraught with 
several major epistemological obstacles in the course of history of which we 
mention two that are of significance to our work: a) the failure to link the 
geometry with numbers; and b) The difficulties with the last term, can one reach it 
or not? 

 
Davis and Vinner [1986] report on a special 2-year Calculus course, in 

which they included a brief treatment of sequences and limits of sequences.  
Sierpinska’s [1987] study was intended to explore the possibilities of elaborating 
didactical situations that would help students overcome epistemological obstacles 
related to limits.  She lists several epistemological obstacles encountered by 
students, related to limits, obstacles that maybe due to a lack of rigor, due to 
incomplete induction, due to notions that limits only amount to approximating, etc.  
Orton [1983] reports on a study investigating students’ understanding of 
integration and differentiation.  He thinks it would be very unlikely that the 
introduction of integration can be made easy.  He feels that the topic of limits is 
one of the most neglected topics at the school level, which in turn does not help 
the introduction of integration.  



 
Framework 

The study reported in this article, used APOS [Asiala, M., Brown, A., 
DeVries, D. J., Dubinsky, E., Mathews, D., & Thomas, K., 1996], a specific 
framework for research and curriculum development in collegiate mathematics 
education, as a guide to investigating students' understanding of the definite 
integral. The premise of this framework is that educators can develop knowledge 
about students' learning of mathematical concepts by going through a cycle of 
theoretical analysis, instructional treatment, and observations and assessment of 
student learning. The initial step in our approach, which we refer to as theoretical 
analysis, is to hypothesize about mental constructions that a student might make 
when learning a specific mathematical concept. We refer to this structured set of 
mental constructions as a genetic decomposition. The researcher's own 
understanding of mathematics along with her or his learning and teaching 
experiences are the most important components for this step of the framework. 
Subsequent iterations of the framework lead to an evolving genetic decomposition 
of the concept and an instructional treatment.  

 
The present study is at the point of analyzing data collected during and after 

the instructional treatment in the first iteration of the teaching cycle. In the process 
of analyzing data and answering our research questions, we describe our 
observations in terms of actions, processes and objects [Asiala, M. et. al., 1996]. 
Figure 1 shown below represents the initial genetic decomposition of definite 
integral that was hypothesized by the instructor/researcher and used in developing 
instructional treatment and interview questions. This genetic decomposition 
assumed that students would have an object level understanding of functions, 
partitions, and would develop their understanding of Riemann sums by the usual 
approach of an action, process and object level progression.  It ended by assuming 
that students would apply a limit schema to obtain a number.  It was not clear at 
that point how this particular limit schema would enfold, and how it would affect 
the development of the entire Riemann sum schema.  Thus, it seems that this 
particular development in the instruction would have to be determined by the 
enfolding illustrated by the students. 

 
1. Object level of function 
2. Object level of partition 
3. Action on a function and a partition. 
      Construct one Riemann sum of one function with one partition. 
4. Process conception of Riemann sum. 
      Coordinate the process of a function and the process of a partition via the Riemann  
      sum formula 
5. Object conception of Riemann sum 
      Encapsulate 4. 
      Variations of the sum (Left, Right, Trap, Mid) 



      Dependence on n. 
6. Action on Riemann sum 
      Compare with an area or a solution to a differential equation. 
      This is done on a vague, pictorial, intuitive level. 
      Improve the approximation. 
7. Process on Riemann sum 
      Interiorization of 6. 
8. Apply limit schema to obtain a number. 
    At this point, very few students will have a strong limit schema so it is unclear how 

the  
     concept of definite integral will grow for them.  It needs study. 
 
Figure 1: Initial genetic decomposition of definite integral 
 

The setting and data gathering  
Data for this research were collected during the fall semester of 1992. The 

participants were 32 engineering, science and mathematics students who had, 
during the previous year, taken two semesters of single variable calculus at a large 
mid-western university.  The interview consisted of 10 questions about the concept 
of integral.  On the average, each interview lasted for approximately one hour. The 
interviews were audio taped and tapes were transcribed by paid student aides.  

 
In this paper we attempt to answer the following three research questions: 

What is the relationship between the preliminary genetic decomposition and the 
students' mental constructions of the definite integral? What are the mental 
constructions that were not made by students? What should the modified genetic 
decomposition be to accommodate for the possibility of making the required 
mental constructions?  

 
To answer the above research questions, we will analyze the responses to 

Questions 4, 6, 7, 9, and 10 from the interviews. Analysis of the remaining items 
will be presented in other studies. Below are the interview questions on which this 
study is based.  

 Interview Question 4. What is the mathematical meaning of  dx
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Interview Question 6. Suppose that an object moves in a straight line at a velocity 
which is a function of time, v = V(t). Write a formula for the net distance which the object 
moves starting at time t = t0 and ending at time t = t1. 

Interview Question 7. Explain why your formula gives the distance. 
Interview Question 9. Suppose now that you have a region S in space which is a body 

of density ρ which has a different value at different points in the region. Write a formula for the 
mass of this body. 

Interview Question 10. Explain why your formula gives the mass. 



 
Initially the students were given the opportunity to answer each question 

without prompting. Based on their response the interviewer asked additional 
questions or provided hints or clarification. The interviewer encouraged any kind 
of student's response (verbal, written, graphical) that might help to explain her or 
his ideas.  

 
Data Analysis 

In the excerpts of student interviews, we see instances of student thinking 
that follow the steps outlined in the genetic decomposition, viz., in achieving an 
object level of function and partition, an action and process level of Riemann sum.   
The next step students would need to make is to have an object level 
understanding of the Riemann sum.  A student with an object level understanding 
of the Riemann sums should be able to talk and think about a Riemann sum on a 
partition of size 2, 3, 4…n and be able to realize that the size of the partition needs 
necessarily to be finite.   However, it is in demonstrating an object level of the 
Riemann sum that we notice difficulties that are principally related to the limit 
concept in the following two ways:  

1. The limit of the Riemann sum is seen as the infinite sum of the rectangles 
of small width.   

2. The limit of the Riemann sum is seen as the sum of lines, i.e., as the 
infinite sum of rectangles of zero width. (i.e., rather than the limit of the sum of the 
areas of n rectangles, students state it as the sum of the limit of the areas of  the 
rectangles.) 

 
The student Kenard reveals the first difficulty.  When questioned about what 

is being done to the Riemann sums in order to make it basically equivalent to the 
definite integral, he states: 

S: For instance if you are using Riemann sums, you take infinity number of rectangles, 
you will get almost exactly the same thing because there won't be as much error.   

 
Jernau when questioned about how he reconciles the two different meanings 

mentioned earlier, states 
S: Right.  Um… well, the Riemann sum breaks this up into n, an infinite number of 

rectangles.  And, it's difficult to use the theory behind it.  It is difficult for me. 
 
Dadgaron reveals the second difficulty in response to the question of how 

one goes from the Riemann sum to make it equal 2/3, he replies 
S: By making these rectangles infinitesimally small…smaller and smaller, I mean almost 

until they are a line they are a unit… and then you are just adding up these units and like, the 
smaller this empty area is the more exact the estimation until you get to a point where there is 
no empty space to be accounted for and that will give you an exact number.  

 



In both of the above difficulties demonstrated by students, they (students) 
sense a correct need for fitting their intuitive tools, be it rectangles or lines, in the 
region under the curve, which can be pictorially seen as the area under the curve, 
however, they are unable to connect that area to the numerical sequence of partial 
sums. The best example of the absence of connection to the concept of the 
sequence is the following fragment of an A student (Jasarx) :  

S: Um, well the integral is, is um, basically the sum of f(xi) for i in this case –3 < i < -1 – 
not necessarily integers but every number, every single point between –3 and –1 is going to have 
an f(x) value… 

I: Okay. 
S: …and if you add all of these together… 
I: Um-hum. 
S: …you should get the area under the curve, … 
 
Clearly the student sees area as all the parallel lines contained in it, but in 

the next sentence where he notices his mistake in the formula he wrote, he 
immediately moves to the Riemann approach, without however anywhere 
indicating the presence of the sequence of which that limit is the limit of. 

S: … and the integral is just, um, actually it’s f(x i+1) - , okay it’s f(x) times x(i+1)-x(i).  
Okay so now you have got, you’ve got a height which is f(x) times i, which is somewhere 
between x(i) and x(i+1). 

I: Um-hum. 
S: And so that would be your height and then your width would be, or your base would 

be x(i+1) – x(i), and so if you multiply those together you’re gonna get some kind of little area… 
I: Um-hum. 
S: …within that section.  So if you sum up all of the little areas between –3 and –1 you 

should get a certain value.  Now when you take the integral of that same function, it’s still f(x*) 
if you want to say that, and the x(i+1) - x(i) the integral makes it get --- takes the limit as, takes 
the limit of that sum as x(i+1) – x(i) goes to zero.    

 
One might then suspect that an integrated approach which from the start 

correlates the pictorial representation with the numerical sequence of partial 
Riemann sums, would provide an answer to students difficulties.  Such an 
integrated approach was investigated by Orton.  In his work, Orton identified 
several key ingredients of the conceptual (or structural) problems students have 
with the definite integral. One of them was the difficulty "students have with the 
power of the limiting process in mathematics" and in particular in calculus. The 
majority of students, who in one of Orton's investigational tasks, obtained initial 5 
terms of the sequence Riemann Sums - which were understood as the 
approximations to the area under the curve f(x) = x2, on the interval [0, 1], 
appeared to grasp that this sequence consisted of better and better approximations 
and that it was possible to continue improving them. They were asked whether that 
sequence could be used to obtain the exact area under the curve. However, he 
states that the students "quite rightly pointed out that such a procedure would 



never produce the correct answer, and were unable to state that the limit would 
provide the answer."  We see then that such an integrated approach still does not 
solve the students' difficulty, it has the effect of allowing students to construct the 
first few terms of the sequence without being able to see how the sequence could 
ever converge to the number which is the exact area under the curve.   

This is in direct opposition to our students who can see the limit without 
having access to the sequence that converges to the limit.   

 
Both difficulties appear to be grounded in the same inability to separate the 

concept of a limit from the last term of the sequence.  Our group influenced by the 
pictorial image of the area would like to take the infinite sum which fits under the 
given curve, Orton's group on the other hand which also sees the area under the 
curve as the last term to reach, cannot get to it due to the infinite number of steps 
required to reach there.   Therefore it seems essential to take the precise e-n 
mathematical definition of the limit of a sequence as a base foundation on which to 
build the notion of the limit of a sequence and of the definite integral as the limit 
of partial sums, which bypasses the issue of reaching or not reaching the limit and 
instead focuses on a process of approach [Sierpinska].     

 
Refining theory with pedagogical implications 

Based on the data analysis we suggest that the preliminary genetic 
decomposition (Figure 1) should be modified as follows: 

 
 2. Object level of sequence 
 9. Schema of the limit of a sequence 
     The distance between the term and the limit of the sequence; 
      The notion of the measure of the distance 
10. Schema of the Riemann sum 
11.  Coordination between the schema of the Riemann sum and the schema of the limit 
of       the sequence 
 
The numbers in front of the new items added to the initial genetic 

decomposition denote the position of the entries in the initial genetic 
decomposition illustrated in Figure 1. We wish to emphasize that the requirement 
of an 'object level of sequences' is a major change from the existing curriculum in 
the order of the concepts necessary to understand the definite integral as a limit of 
the Riemann sum. Currently, in a typical calculus course, the topic of sequences is 
studied in detail after the concept of the definite integral is studied extensively. 
Our proposed genetic decomposition requires a certain rearrangement of the order 
of the topics, with other emphasis as suggested above.  

 
Our article emphasizes the pictorial understanding of the limit of the 

sequence of Riemann sums while Orton's emphasized understanding of the limit of 
a numerical sequence. The results of both studies point to difficulties by students 



when only one of them is seen separately. We conclude  that there must be a 
coordination between the visual schema of the Riemann sum and the schema of 
the limit of the sequence. The source of students’ difficulties can well be in the 
didactic and curriculum which a) doesn't develop the connection between the two 
in the design of the curriculum, and b) does not propose an alternative to the 
second by eliminating the precise defintion eps-N of the limit of the sequence. 
This definition, the Weierstarss definition of the limit of the sequence was created 
especially to bypass the problem of reaching or not reaching the limit, as 
Sierpinska points out. Hence the absence of the instruction of the formal definition 
is leaving our students on the pre-modern level. 
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