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This paper reports recent findings from a project which investigates the mathematics 
subject knowledge of prospective elementary school teachers, and how this relates to 
classroom teaching performance. The project was initiated in 1997 in the context of UK 
government policy to introduce subject content knowledge as an explicit dimension of 
the ‘standards’ for the award of Qualified Teacher Status in England. We present some 
findings about topics that trainees find difficult and show that the extent and security of 
their subject matter knowledge is related to their teaching competence.  

BACKGROUND 
Recent changes in the curriculum for Initial Teacher Training (ITT) in England 
incorporate a stronger focus on trainees’1 subject matter knowledge (SMK). 
Notwithstanding the complex relationship between SMK and pedagogical content 
knowledge (PCK), there is evidence from the UK and beyond which would seem to 
support this shift of emphasis (Ball, 1990; Kennedy, 1991; Alexander, Rose and 
Woodhead, 1992; Ofsted, 1994; Simon and Brown, 1996). Government Circular 4/98 
(DfEE, 1998) sets out what is considered to be the “knowledge and understanding of 
mathematics that trainees need in order to underpin effective teaching of mathematics at 
primary [elementary] level”, and charges ITT providers with the audit and remediation 
of students’ SMK. 

Providers must audit trainees’ knowledge and understanding of the mathematics content in 
the National Curriculum Programmes of Study for mathematics at KS1 and KS22, and that 
specified in paragraph 13 of this document. Where gaps in trainees’ subject knowledge are 
identified, providers of ITT must make arrangements to ensure that trainees gain that 
knowledge during the course … (DfEE, 1998, p. 48) 

In this paper, we describe our approach to the audit of the mathematics SMK of 173 
primary trainees in 1998-99. This was the first cohort of students following the one-year 
Postgraduate Certificate in Education (PGCE) course to whom the requirements of 
Circular 4/98 applied by statute. We had, however, piloted the audit and a draft version 
of the ‘standards’ on a voluntary basis the previous year. We present here some findings 
related to the trainees’ knowledge and understanding of proof. Currently, there is 
evidence for concern in the UK about students’ facility with mathematical proof, both at 
school and at university level (Coe and Ruthven, 1994; London Mathematical Society, 
                                           
1 The official discourse in England refers to students undergoing pre-service preparation for school 
teaching as ‘trainees’. In this paper, we speak of ‘students’ and ‘trainees’ synonymously.  
2 In England and Wales, Key Stage 1 (KS1) is the first phase of compulsory primary education, between 
the ages of five and seven. Similarly, KS2 covers ages seven to 11. 



  
1995; Healy and Hoyles, 1998). One argument suggests that curriculum and assessment 
reforms in the 1970s and 1980s promoted investigational approaches to school 
mathematics at the same time as Euclidean point-line geometry went into decline, 
favouring inductive reason at the expense of deduction. One requirement of Circular 
4/98 (detailed later) can be seen as an attempt to address a deficit in the current 
generation of prospective primary school teachers.  
A number of PME papers have considered aspects of elementary teachers’ SMK, such as 
divisibility (Zazkis, 1994), ratio (Klemer and Peled, 1998), place value (McClain and 
Bowers, 2000), with comment on the relevance of SMK to the professional role of their 
participants.  

OVERVIEW OF GOALS AND METHODS 
The project sets out to investigate:  
1. those areas of SMK required by Circular 4/98 which prove to be problematic for significant 

numbers of trainees; 
2. whether the expectations of Circular 4/98 are well-founded insofar as secure SMK (or 

otherwise) is reflected in classroom performance; 
3. ways in which trainees’ practice in school-based placements is informed by their SMK; 
4. the process and effectiveness of SMK remediation through peer tutoring. 
Some findings with respect to the first year and the first three goals of the project, 
incorporating trainees’ ability to perceive and express generalisation, can be found in 
Rowland, Martyn, Barber and Heal (2000). Preliminary findings concerning the fourth 
goal were reported in Barber, Heal, Martyn and Rowland (1999). 
The structure of the primary PGCE under consideration is such that by the middle of 
January, with fully six months of the course remaining, the main content areas – number 
concepts and operations, data handling, mathematical processes, shape and space, 
measures, algebra, probability – have been ‘covered’ in lectures and workshops, giving 
the trainees opportunity to recall those topics they have forgotten (for lack of use) since 
they did mathematics at school. A 90-minute written assessment consisting of 16 test 
items in mathematics is administered at this point of the course. Each trainee’s response 
to each question includes a self-assessment of their ability to complete it successfully.  
The course includes two extended ‘practicum’ placements in schools in the latter parts of 
the second and third terms. Given these and other demands of the course, the major 
SMK remediation opportunity comes between the first and second placements. 
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Table 1: The chronology of the PGCE course 



  
From this second project cohort, 34 students who were assessed as secure in nearly all of 
the topics audited became mathematics peer tutors. Following training for this task, they 
conducted peer tutoring sessions with those students (at most two per peer tutor) who 
experienced most difficulty with the audit. These peer tutors wrote a feedback sheet on 
the post-audit progress of each of their tutees. In addition, 12 students acted in a looser 
‘on demand’ support capacity to a self-support group of about five students. Members of 
these groups self-reported their progress with mathematics SMK.  
During school placements, each student works under the joint supervision of a school-
based mentor and a university tutor. For the purposes of the project, the two supervisors 
agreed on assessments of the student’s performance in teaching mathematics towards the 
end of (and in the context of) each placement, against the standards of Circular 4/98. 

TRAINEES’ MATHEMATICAL THINKING: ASPECTS OF PROOF 
One dimension of our research has been to identify what mathematics (within the remit 
of Circular 4/98) primary trainees find difficult, and the nature of their errors and 
misconceptions in these areas. Facilities in the four ‘easiest’ and ‘hardest’ of the 16 items 
in the 1998-99 audit are shown in Table 2. 

HIGHEST FACILITY  LOWEST FACILITY 
% 

secure1 
Mean 
score2 TOPIC  

% 
secure 

Mean 
score TOPIC 

983 1.96 Inverse operations   52 1.17 Pythagoras, area 

95 1.92 Ordering decimals  49 1.15 Generalisation  

93 1.90 Divide 4-digit number by 2-
digit  33 0.87 Reasoning and proof 

92 1.90 Problem solving in a money 
context  30 0.73 Scale factors, percentage 

increase 

1 The written response gives a high level of assurance of the knowledge being audited. 
2 A secure response scores 2, which is therefore the maximum possible for the mean. 

Table 2: Audit topics with the highest and lowest facility ratings 
The table demonstrates some striking similarities with that for the previous 1997-98 
cohort (Rowland et al, 2000) although facility with the more difficult items is lower. We 
discuss here aspects of the trainees’ understanding of reasoning and proof as evidenced 
in the audit. At another UK university, Goulding and Suggate (in press) have found, as 
we did, that proof is a source of particular difficulty for trainees. They add that these 
difficulties are particularly resistant to remediation within the span of the PGCE course. 
Circular 4/98 requires that trainees demonstrate: 

That they know and understand […] methods of proof, including simple deductive proof, 
proof by exhaustion and disproof by counter-example (DfEE, 1998, p. 62) 

The following item was designed to audit this ‘standard’. 

                                           
3 All cohort percentages have been rounded to the nearest integer. 



  

A rectangle is made by fitting together 120 square tiles, each 1 cm2. For example, it could be 
10cm by 12 cm. State whether each of the following three statements is true or false for 
every such rectangle. Justify each of your claims in an appropriate way:  
 (a) The perimeter (in cm) of the rectangle is an even number. 
 (b) The perimeter (in cm) of the rectangle is a multiple of 4. 
 (c) The rectangle is not a square. 

More than one mode of justification is possible for each part, and a proof by exhaustion 
(listing the 8 possible rectangles) would meet the requirements of all three. We 
anticipated some deductive arguments for (a), counterexamples for (b) and perhaps 
contradiction (√120 is not an integer) for (c).  
Table 2 shows that only one-third of the students made a secure response to the whole 
question. 30% gave insecure (or blank) answers to all three parts. The percentage of 
secure4 responses to the three individual parts were 59, 44 and 52 respectively. In the 
self-assessment referred to earlier, students indicated a lower level of confidence in their 
ability to tackle this question than any of the others. Only two percent declared 
themselves confident to do it, whereas 35% reported that they didn’t think they could do 
it, or didn’t understand it, or were too terrified to think about it.  
We proceed here with further consideration of part (b) of the question, which fewer than 
half of the students were able to manage to our satisfaction. The difficulty with counter-
examples encountered by the majority of students is consistent with the findings of 
Zaslavsky and Ron (1998) with top-level 9th and 10th grade school students.  
Each student’s response to part (b) was categorised and assigned to one of eleven codes 
(the first column below, Table 3). The second column describes the type of response for 
each code; the third column gives the percentage of students making that response. 
Code 9 No response to part (b) 6% 
 NOT SECURE, INCORRECT ANSWER (‘true’)   
Code 10 States without explanation/justification 6% 
Code 11 Refers only to the 10x12 case 10% 
Code 14 Because 4 divides 120 (including confuses perimeter with area) 6% 
Code 15 Rectangle has 4 sides so 4 divides the perimeter 5% 
Code 19 other 5% 
 NOT SECURE, CORRECT ANSWER (‘false’) WITHOUT JUSTIFICATION  
Code 0 States without explanation/justification 3% 
Code 2 Hints that a counterexample exists but doesn’t give one 12% 
Code 4 other 3% 
 SECURE: CORRECT ANSWER (‘false’) WITH JUSTIFICATION  
Code 30 Gives one counterexample 34% 
Code 32 Gives two or more counterexamples 10% 

Table 3: Percentage responses to the proof item part (b), by code.  

                                           
4 We describe responses as ‘secure’ rather than ‘correct’, because some answers were correct (e.g. that 
statement (a) is TRUE) but not adequately justified (e.g. “because 120 is even”). A response that we are 
calling ‘secure’ would consist of a correct true/false judgement and a valid justification.  



  
Each type of response other than code 9 corresponds to a student judgement concerning 
the validity of the statement that the perimeter of (every) rectangle is a multiple of 4, and 
– codes 0 and 10 apart – to a decision concerning an appropriate means of justifying that 
judgement. A variety of misconceptions seem to underpin invalid arguments, and we 
consider some of the more interesting ones. 
The fact that one third of the students erroneously believe the statement to be true 
resonates strongly with the findings of Zaslavsky and Ron (1998). Ten per cent of the 
students seemed to base this conclusion on the fact that it holds true for the 10x12 
rectangle given as an example. Perhaps some of these students genuinely believed that 
the question required them to consider only this particular rectangle, and interpreted 
“every such rectangle” to mean “every 10x12 rectangle”, although this raises interesting 
questions about when they might consider two such rectangles to be different. Such an 
interpretation is supported by the response of students such as the one who wrote “The 
perimeter is 44. 44 is a multiple of 4. 44÷4=11 or 4x11=44.” The peer tutor report on 
another such student read “(she) did not understand what was expected … (she) read the 
question as though it referred to only one possibility, now sees the need to investigate 
further”. A rather different diagnosis is implied by those students who seemed to be 
drawing on a ‘false conservation’ misconception (Lunzer, 1968) i.e that once the area is 
fixed, so is the perimeter. One wrote “The perimeter has to stay the same otherwise the 
area will change … the perimeter is always in total 44.” 
Some students (code 15) argued that (b) must be true because a rectangle has four sides. 
Again, we can only speculate from their written responses, but these suggest an 
epistemological orientation which views mathematics as a non-empirical discipline, one 
in which truth can only be arrived at – or even guessed - by appeal to deductive 
argument, albeit argument of a spurious kind. There is little or no sense of mathematics 
as an experimental test-bed, in which they might confidently respond to an unexpected 
student question “I don’t know, let’s find out.” Likewise, the suggestion that the 
perimeter is a multiple of 4 because 120 is a multiple of 4 (code 14) seems in some cases 
to privilege ‘argument’ over evidence. In others there is a clear case of confusing 
perimeter with area. Thus, one student wrote “the perimeter is always 120” and another 
“perimeter = a x b”. Confusion between perimeter and area is well-researched and 
documented e.g. Foxman, Joffe, Mason, Mitchell, Ruddock, and Sexton (1987). 
The secure responses all gave counter-examples. Ten per cent chose to give more than 
one counter-example, even though one is sufficient. A quarter of these described the 
general characteristics of a counter-example, such as “As the addition of the two 
different side lengths does not have to be an even number (if one length is odd and the 
other is even, it won’t be) the perimeter will not necessarily be divisible by 2(2)=4.” 
Whilst such an analysis exceeds the requirements of the refutation, it seems to point to a 
desire for explanation – why it is that some perimeters are multiples of 4 and others are 
not. If a counter-example is deemed to be a kind of proof (that not ∀xP(x)), then a single 
example might typically fall short of one of the purposes of proof – to explain (de 
Villiers, 1990). Just under a fifth of the 44% who successfully refuted statement (b) with 



  
one or more counter-examples actually used the word ‘counter-example’ in their 
response, exposing some awareness of the ‘syntactic’ structure of the discipline 
(Grossman, Wilson and Shulman, 1989) i.e. the nature of enquiry in the domain of 
mathematics, and how new knowledge is introduced and warranted. 

SUBJECT KNOWLEDGE AND CLASSROOM PERFORMANCE 
We move on now to data which have enabled us to build on and update our earlier 
findings (Rowland et al., 2000) associated with the second of our project goals – 
investigating the relation between trainees’ SMK and their teaching competence. To 
summarise those findings: with the first project student cohort (N=154), the level of each 
student’s subject knowledge (based on the audit) was categorised as low, medium or 
high, corresponding to the need for significant remedial support, modest support (or self-
remediation), or none. Towards the end of that course, specific assessments of the 
students’ teaching of number5 were made on the second and final school placement 
(against the standards set out in Circular 4/98) on a three-point scale 
weak/capable/strong. These data did not support a null hypothesis that the spread of 
performance in the teaching of number was the same for the three categories identified 
in the subject knowledge audit. There was an association between mathematics subject 
knowledge (as assessed by the audit) and competence in teaching number. Further 
analysis (Goodman, 1964) pinpointed the source of rejection of the null hypothesis: 
students obtaining high (or even middle) scores on the audit were more likely to be 
assessed as strong numeracy teachers than those with low scores; students with low audit 
scores were more likely than other students to be assessed as weak numeracy teachers. 
In effect, there is a risk which is uniquely associated with trainees with low audit scores.  
For the second cohort considered in this paper, more extensive data from school 
placements enabled comparison of mathematics subject knowledge with teaching 
performance (a) on both first and second placements (b) with respect to both ‘preactive’ 
(related to planning and self-evaluation) and ‘interactive’ (related to the management of 
the lesson in progress) aspects of mathematics teaching (Bennett and Turner-Bisset, 
1993). For reasons of space, Tables 4 and 5 below show two of the four 3 by 3 
contingency tables, those for Placement 2 (N=164: nine students had withdrawn from 
the course), together with expected frequencies (in parentheses) based on the null 
hypothesis that audit performance and teaching performance are independent.  
Each table has df=4, and values of χ2 less than 9.5 support the null hypothesis against the 
alternative that audit performance and teaching performance are in some way linked 
(p<0.05). The χ2 values for the preactive and interactive data are 17.8 and 13.6 
respectively. In fact, the association between audit score and teaching performance was 
significant for each of the four analyses. These results confirm our earlier finding and 

                                           
5 The restriction to ‘number’ rather than mathematics was a pragmatic decision determined by the fact 
that, in that year,  the PGCE course was subjected to scrutiny by a government agency, the Office for 
Standards in Education. The inspectors’ brief was to focus on Reading and Number. 



  
point to the positive effect of strong SMK in both the planning and the ‘delivery’ of 
elementary mathematics teaching. 

 TEACHING PRACTICE PERFORMANCE   TEACHING PRACTICE PERFORMANCE 

 Strong Capable Weak   1 (strong) 2 (capable) 3 (weak) 

High 12 (8.1) 18 (14.1) 4 (11.8)  A (high) 13 (8.5) 19 (18.2) 2 (7.3) 

Middle 20 (18.5) 33 (32.3) 25 (27.1)  B (middle) 21 (19.5) 42 (41.9) 15 (16.6) SU
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Low 7 (12.4) 17 (21.6) 28 (18.1)  
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C (low) 7 (13.0) 27 (27.9) 18 (11.1) 

Table 4: Placement 2, preactive   Table 5: Placement 2, interactive 

CONCLUSION 
We have chosen here to highlight the problematic nature of proof as a component of the 
mathematics SMK of pre-service elementary teachers, adding further weight to the 
doubts of Goulding and Suggate (in press) that much can be done to remedy trainees’ 
difficulties with proof within initial training, especially given the multiple demands on 
them in all areas of the curriculum in an intensely pressured course. We would expect 
that clarity of understanding of the nature of proof and refutation in mathematics would 
inform the trainees’ approach to questioning and enquiry with their students, and we are 
struck by the robustness under replication of our earlier finding (Rowland et al., 2000) 
that effective classroom teaching of elementary mathematics is associated with secure 
SMK at a level beyond the elementary curriculum. It may be that, even within the 
constraints of PGCE courses, greater priority could be given to syntactic dimensions of 
SMK, although inevitably this would be at the expense of substantive elements. In the 
light of Goulding and Suggate’s comment above, we observe that the second school 
placement occurred after the remediation sessions, yet the association between 
classroom performance and the audit some five months earlier was maintained. It seems 
clear that there is need for the development of teachers’ SMK as a component of longer-
term continuing professional development. With this in mind, it might be more honest 
and realistic if the attainment of the full range of SMK standards (DfEE, 1998) were re-
conceptualised as an ongoing professional process rather than a hurdle to be crossed in 
initial training. 
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