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Geometry is a field, which is a good starting point to teach and learn mathematical argumen-
tation, to explore mathematical concepts, to fill the gap between every day life and mathemat-
ics, and to value mathematics as a part of human culture. Accordingly, geometrical compe-
tence has to be regarded as an important prerequisite of understanding mathematics. Our re-
search aims at identifying aspects of geometrical competence. Based on empirical data from 
upper secondary school, we argue that high level geometrical competence is specifically in-
fluenced by spatial ability, declarative knowledge, and methodological knowledge. 

 
1  Theoretical framework  
The role of geometry in the German mathematics classrooms has changed considera-
bly in the last decades. Despite the fact that geometry is part of the regular curricu-
lum, it is often regarded by teachers as a less important topic. While this is well 
known for primary schools there is little research concerning secondary schools. In 
contrast, mathematicians as well as mathematics educators agree that geometry should 
be an important part of mathematics education (Lehrer & Kazan, 1998).  
1.1  Understanding of proof and geometrical competence 
Proofs and mathematical argumentations play an important role in the geometry class-
room. Particularly in recent years, many researchers contributed to the description of 
the role of proofs for the development of mathematical competence. Authors like 
Hanna and Jahnke (1993), Hersh (1993), Moore (1994), Hoyles, (1997), Harel and 
Sowder (1998) have pointed out that in both, mathematical research and school in-
struction, proving spans a broad range of formal and informal arguments and that be-
ing able to understand or generate such proofs is an essential component of mathe-
matical competence. In constructivist-oriented mathematics instruction, the critical 
exchange of arguments and elements of proof is accorded new significance. 
Some empirical surveys of North American high school students (Senk, 1985; 
Usiskin, 1987) and pre-service teachers (Martin & Harel, 1989) have revealed wide 
gaps in respondents' understanding of proofs. Healy and Hoyles (1998) made a sig-
nificant contribution to the field with their recent systematic investigation of students' 
understanding of proofs, ability to construct proofs, and views on the role of proof. 
Their empirical study was conducted in various types of schools spread across Eng-
land and Wales. Almost 2,500 tenth grade students, nearly all of them from the top 
mathematics set, participated in the study. The results show that even these high-



 

  

attaining students had great difficulties in generating proofs. The students were far 
from proficient in constructing mathematical proofs, and were more likely to rely on 
empirical verification. However, most of them were well aware that once a statement 
has been proved it holds for all cases within its domain of validity. Moreover, they 
were frequently able to recognise a correct proof, though their choices were influ-
enced by factors other than correctness, such as perceived teacher preference. Stu-
dents considered that their teachers would be more likely to accept formally-presented 
proofs, though they were personally more likely to construct proofs which they 
deemed to have an explanatory character. In all domains, students with higher levels 
of mathematical competence outperformed less able students.  
Recent research in the field of cognitive psychology has focused on the cognitive 
processes and specific knowledge structures needed to solve geometry problems. 
Geometrical reasoning has been investigated in detail by setting various types of test 
items, observing students and experts working on the items by means of think-aloud 
protocols, and computer simulation of thought processes. Koedinger and Anderson 
(1990) emphasize that when experts construct geometrical proofs, they do not merely 
retrieve definitions, axioms and theorems from the memory and combine these to 
make logical deductions. On the contrary, they skip details of the proving process, and 
outline their argumentation in broad terms, taking a constructivist approach. They use 
visual models, in which they are able to "see" properties and connections, and "prag-
matic reasoning schemas" such as set patterns for individual steps in the proving pro-
cess. As stated by Koedinger (1998), this indicates that geometrical competence is not 
merely a question of talent, but of specific skills and knowledge.  
Geometrical competence does require specific knowledge; it is based on general psy-
chological mechanisms that are central to other domains of mathematics as well as to 
thinking and problem solving in general. Where geometrical knowledge is concerned 
– as shown by the cognitive psychological research cited above – a distinction must 
be drawn between declarative knowledge and methodological knowledge. Moreover, 
metacognition can be identified as a general mechanism. Various components of gen-
eral intelligence are relevant; according to Clements and Battista (1992), spatial rea-
soning is of particular importance for geometrical competence. They suggest that 
geometrical competence is largely dependent on spatial visualisation skills, but that 
spatial ability can also be enhanced by exposure to geometry. 
1.2  Research Questions  
The present study integrates the lines of research described above. Geometrical com-
petence and its cognitive prerequisites are investigated by reference to TIMSS items, 
with a particular focus on respondents' understanding of proof. The research questions 
to be addressed in this paper are as follows: 
• Is geometrical competence dependent on students' declarative knowledge, meth-

odological knowledge, metacognitive competences and spatial abilities? What is 



 

  

the relative importance of each of these factors in explaining interindividual differ-
ences in geometrical competence? 

• Can Healy and Hoyles' (1998) findings on the connection between students' ability 
to construct proofs and their views of the role of proof be replicated in another in-
structional culture, namely the German mathematics classroom? Is is possible to 
identify prerequisites for the correct understanding of proof?  

2. Design of the Study 
In the present study, geometrical competence was assessed using nine TIMSS items 
from the so-called advanced mathematics domain in the upper secondary level. The 
sample consisted of 81 students from German schools (48 female), 59 of them attend-
ing a regular mathematics course and 22 an advanced course, who tackled selected 
TIMSS items as well as additional tests (metacognitive assessment, declarative 
knowledge, understanding of proof, spatial reasoning), and were videotaped as they 
worked on the geometry items using the think-aloud method. Based on analyses of the 
entire set of TIMSS items, the nine items were allocated to two proficiency levels 
(Klieme, 2000). The lower level items were answered correctly by more than half of 
the students in the international TIMSS population, the three higher level items by one 
third or less of the students.  
The first prerequisite of geometrical competence to be measured independent of the 
TIMSS items was declarative geometrical knowledge. Linking up with earlier work 
on the conceptual knowledge required for mathematical problem-solving tasks 
(Klieme, 1989; Reiss, 1999), we chose a central concept of school geometry, namely 
"congruence", for the evaluation of students' declarative knowledge. Students were 
asked to give a definition, an example, a visual or graphic portrayal of the word "con-
gruent", and to name a mathematical theorem in which the concept features. The stu-
dents' open-ended answers were coded according to a specially developed category 
system; one point could be earned for each of the four aspects.  
Methodological knowledge was assessed using an item from Healy and Hoyles' 
(1998) proof questionnaire. The item dealt with the question of whether a given trian-
gle could be proved to be isosceles. Students were presented with a correct formal 
proof, a correct narrative proof and two incorrect arguments. They were then asked to 
assess the correctness and generality of each of the four arguments.  
As a measure of general intellectual abilities, particularly of spatial ability, an instru-
ment which is well-known in Germany – Stumpf and Fay's so-called Schlauchfiguren-
Test – was administered. Schlauchfiguren presents different views of complex tubular 
figures, which have to be judged with respect to the specific point of view. This kind 
of task has been shown to predict mathematical problem-solving competence 
(Klieme, 1989). Validiation studies have shown that the test calls for both spatial abil-
ity and deductive reasoning. It is therefore a suitable instrument to capture those as-
pects of general intellectual ability which are cognitive prerequisites of geometrical 
competence.  



 

  

 
Scale Number 

of items 
Theoretical 
maximum 

Mean Standard 
deviation 

Reliability 
(Cronbach`s α) 

Geometrical        
competence 

Level I/II 
Level III/IV 

9 
 
6 
3 

14 
 
8 
6 

6,90 
 

5,67 
1,23 

2,60 
 

1,77 
1,49 

.53 
 

.49 

.35 
Methodological 

knowledge  
8 

 
8 3,52 2,14 .68 

Declarative knowl-
edge 

4 4 1,49 0,95 .47 

Spatial 
reasoning 

21 21 13,17 3,95 .76 

Table 1: Distributional parameters and reliability of scales  

Table 1 provides an overview of the various scales, the number of items in each, and 
the most important distributional parameters. The estimated reliability (Cronbach’s α) 
for our sample is also shown. Because of the limited test time, we were only able to 
administer short tests, particularly for conceptual knowledge and the two levels of 
geometrical competence, the scales for which consisted of only three to six items. The 
estimated reliability for these scales is correspondingly low. If extrapolated to tests of 
the standard 20-item length, however, an acceptable α of between .71 and .84 
emerges in all cases. This suggests that the constructs behind the indicators represent 
dimensions of ability which may be regarded as reliable. If significant correlations are 
found in spite of the technical limitations and the associated lack of reliability of our 
instruments, it can be assumed that these are valid findings with relevant effect sizes.  
3. Results 
3.1  Descriptive findings 

In the following we will report on certain aspects of our findings. Figure 1 shows the 
percentage of students providing correct solutions for each of the nine geometry items 
administered in our study, along with the corresponding results for the international 
TIMSS sample and the German national TIMSS sample.  
The results show a remarkably high level of correspondence across the three samples, 
both in the average achievement level and in the performance in each of the nine 
questions. Averaged out across the nine items, 53% of the students in our sample pro-
vided correct solutions, compared to 51% in the international sample and 47% in the 
German sample. Across the nine items, the correlations between the performance in 
our sample on the one hand and in the representative German and international 
TIMSS samples on the other amount to .97 and .89 respectively; both of these correla-
tions are highly significant. The relative strengths and weaknesses of the German stu-
dents are thus also reflected in our small sample.  



 

  

 Figure 1: Solutions of TIMSS Items  

In view of the observation that very few students (20% and 35% of the representative 
German and international TIMSS samples respectively) were able to construct correct 
Euclidean geometry proofs, we also expected the levels of performance to be rather 
unsatisfactory in students' understanding of proof and their views of the role of proof 
(taken from Healy and Hoyles, 1998). Interestingly, our students also found it much 
easier to judge given proofs than to construct their own proofs. This confirms the re-
sults of Healy and Hoyles (1998).  

Proof / feature Relative frequency 
(in percent) 

Corrected item          
total-correlation 

Correct formal proof 
/ correct 
/ general 

 
57 
57 

 
.49 
.45 

Correct narrative proof 
/ correct 
/ general 

 
42 
30 

 
.45 
.38 

Empirical argument 
/ incorrect 
/ not generalizable 

 
46 
60 

 
.13 
.26 

Formal, circular argument 
/ incorrect 
/ not generalizable 

 
33 
27 

 
.39 
.40 

Table 2: Components of methodological knowledge (understanding proof) 
As shown in Table 2, 57% of our respondents recognised the correct formal proof (us-
ing congruence) to be correct, and the same proportion of participants correctly appre-
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ciated its generality. A similar proportion of respondents recognised a purely exem-
plary, empirical argumentation to be incorrect: 46% said that the argument was incor-
rect, and 60% recognised that it was not generalisable. However, the low item-total 
correlations of these two answers (see right-hand column of Table 2) showed that 
even students with a low general understanding of proof were aware the purely em-
pirical argument was incorrect and not generalisable. Our findings on the respondents' 
declarative knowledge, are also less than satisfactory from the standpoint of mathe-
matics education. When asked to describe the concept of "congruence", 82% of re-
spondents were able to illustrate the concept in a sketch, most of them drawing con-
gruent triangles. Less than half of the respondents were able to give an example of 
congruence, however. Only about one in ten of the students mastered the mathemati-
cally central components of the concept, i.e., were able to provide a definition of the 
concept and name a mathematical theorem in which it features (e.g., a theorem of tri-
angular congruence).  
3.2  Explaining Geometrical Competence 
We will now explore the relations between the scales for geometrical competence, 
methodological knowledge and declarative knowledge. Table 3 shows the intercorre-
lations, calculated as rank-correlation coefficients (Kendall's tau), on which this dis-
cussion is based. In addition to the mathematical dimensions of competence and 
knowledge, the two general psychological predictors – metacognition and spatial rea-
soning – are also included in the table. 
 

Scale (2) (3) (4) (5) (6) (7) 

(1) Geometrical Competence 

(2) Geometry, level I/II 

(3) Geometry, level III/IV 

(4) Methodological knowledge 

(5) Declarative knowledge 

(6) Metacognition 

(7) Spatial reasoning 

.76** .62*** 

.27** 

.20* 

.10 

.22** 

.24** 

.18* 

.23** 

-.01 

.24** 

.21* 

.21* 

.05 

-.02 

.33*** 

.23** 

.37*** 

.12 

.09 

.09 

Table 3: Intercorrelations of scales (Kendall’s tau – b)  *) p< .05   **) p< .01   ***) p< .001 
The most important finding is that all four predictors exhibit significant correlations 
with geometrical competence. This lends support to our basic hypothesis that geomet-
rical competence is dependent on methodological knowledge, declarative knowledge, 
metacognition, and spatial reasoning.  The correlation matrix does not actually allow 
such causal interpretations to be made; but interpreting the results in the light of other 
research on geometrical knowledge (Reiss & Abel, 1999; Reiss & Thomas, to appear) 
makes it plausible to assume that scales (4) to (7) tap the prerequisites, and scales (1) 
to (3), the results of development of geometrical competence. 



 

  

As expected, stronger correlations with the predictors emerge at the higher levels of 
geometrical competence (items on TIMSS proficiency levels III and IV) than at the 
lower levels of geometrical competence (levels I and II). Understanding of proof is a 
vital ingredient at the higher levels of competence, but is irrelevant to performance in 
the easier TIMSS geometry items. This confirms our assumption that the TIMSS pro-
ficiency levels really do reflect different standards of (geometrical) competence.  
4. Discussion  
In our study, students were presented not only with TIMSS geometry items, but with a 
number of additional test components. This enabled us to assess various types of 
mathematics-related skills and general psychological competencies that could possi-
bly be prerequisites of geometrical competence. Where the geometry items are con-
cerned, the performance of the students in our sample was well in line with the profile 
of results obtained for the national and international TIMSS samples. It is thus possi-
ble to assume that our findings can be generalised to these study populations. 
Our findings provide evidence for the validity of the TIMSS advanced mathematics 
tests. In particular, we were able to demonstrate that items from the higher levels on 
the TIMSS proficiency scale really do make more complex demands on the problem 
solvers, calling for a broader base of declarative knowledge (e.g., comprehension of 
geometrical concepts such as congruence) and methodological knowledge (e.g., an 
understanding of proofs, their generality, etc.).  
Investigation of individual items has shown that the demands made by each item vary 
greatly. In some cases, only spatial and deductive reasoning ability is required, in 
other cases conceptual and/or methodological knowledge is also essential. In other 
words, TIMSS items make different demands, and cover many different facets of 
geometrical (or general) mathematical competence. The test is nonetheless one-
dimensional, as model testing indicated. This means that the various facets of mathe-
matical competence are not independent of one another, but rather that they are highly 
correlated. In the German school system at least, high levels of geometrical compe-
tence are accompanied by high levels of overall mathematical competence, a good 
understanding of proof, and differentiated conceptual knowledge. In other words, 
geometrical competence does not develop in isolation. 
These findings, revealing the students' inadequate understanding of proof, can be re-
garded as an important indication of where the problem areas in mathematics instruc-
tion lie. Indeed, this was the basic approach taken by Healy and Hoyles (1998). In the 
context of a theory of situated cognition, however, the discrepancy between abstract 
knowledge about the correct construction of proofs and (at least partly) erroneous per-
sonal preferences is easy to understand and can be positively evaluated: students bear 
the context in mind when evaluating differing formulations of mathematical argu-
ments. This is precisely the sort of approach encouraged in modern, reform-oriented 
conceptions of mathematics instruction. After all, students should not only experience 
mathematics as a set of fixed rules. On the contrary, they should be able to construct 



 

  

appropriate mathematical arguments both in school and in applied contexts. Our find-
ings indicate that the topic of "proof in mathematics instruction" is particularly well 
suited as an introduction to mathematical argumentation – precisely because of this 
juxtaposition of views and preferences. "The goal is to help students refine their own 
conception of what constitutes justification in mathematics from a conception that is 
largely dominated by surface perceptions, symbol manipulations, and proof rituals, to 
a conception that is based on intuition, internal conviction, and necessity" (Harel & 
Sowder 1998, p. 237).  
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