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We report a study of 14-15 year old children’s graphical conceptions and 
misconceptions using a diagnostic instrument developed from the research literature 
to suit the UK National Curriculum.  Rasch measurement methodology was used to 
develop the instrument with a pilot sample and the final instrument and resulting 
scale is here evaluated and reported based on the full sample of 425 children.  The 
result is that a hierarchy of responses is confirmed, each level of which is described 
as a characteristic performance including key misconceptions.  We compare this 
with previous work on graphs and functions, explore a small group of teachers’ 
knowledge and discuss the applications of the work in schools in the present stage of 
the programme. 

Introduction and background 
This study builds on previous work on misconceptions in children's graphical 
thinking, and especially in their interpretations of graphs (Clement, 1985; Even, 
1998; Janvier, 1981; Kerslake, 1993; Sharma, 1993).  Unfortunately, as Leinhardt et 
al (1990) said, “of the many articles we reviewed almost 75% had an obligatory 
section at the end called something like ‘Implications for teaching’ but few dealt 
directly with research on the study of teaching these topics” (p.  45).  We would add 
that the ‘teaching implications’ drawn from research on the psychology of learning 
mathematics are in any case in general problematic: for many reasons these 
implications rarely impact on practice.  Williams and Ryan (2000) argued that 
research knowledge about students’ misconceptions and learning generally needs to 
be located within the curriculum and associated with relevant teaching strategies if it 
is to be made useful for teachers.  This involves a significant transformation and 
development of such knowledge into pedagogical content knowledge (Even, 1998) 
which requires its own study.  In particular teachers need to know at which stages of 
their development pupils are likely to exhibit the researched misconceptions and 
errors and where in the curriculum they are relevant.  Ryan and Williams (2000) 
produced such data for errors scattered across the curriculum.  The present study 
develops this work by focussing in depth on the area of ‘graphical understanding and 
interpretation’ relevant to years 9 and 10 of the mathematics curriculum, and by 
connecting the research with teachers’ knowledge of these misconceptions.  In 
particular this study: 
� developed an instrument from the research literature to assess children's learning 

and misconceptions on a scale related to their curriculum, which we claim is a 
prerequisite for transforming this knowledge into professional practice, and 



� explored the development of this into an instrument for assessing teachers' 
pedagogical content knowledge. 

The development of the assessment instrument involved the tuning of, or the 
development of, diagnostic items from the research literature on graphicacy to fit the 
school curriculum.  This developed from an analysis of the key work in the field of 
children’s thinking, identifying items which related appropriately to: 
� slope-height confusion: the height is a distracting feature when interpreting the 

slope (Clement, 1985); 
� linearity-smooth prototypes: pupils tend to sketch linear graphs and expect some 

form or  reasonableness, such as ‘smooth', ‘symmetrical’, ‘continuous’ (Leinhardt 
et al, 1990); 

� the ‘y=x’ prototype: pupils’ tendency to construct the y=x graph;  
� the ‘Origin’ prototype: graphs are drawn through the origin;  
� graph as ‘picture’: many pupils, unable to treat the graph as an abstract 

representation of relationships, appear to interpret it as a literal picture of the 
underlying situation (Clement, 1985); 

� co-ordinates: pupils’ tendency to reverse the x and the y co-ordinates and their 
inability to adjust their knowledge in unfamiliar situations (Kerslake, 1993); 

� scale: pupils prototypically read a scale to a unit of one or ten (Williams and Ryan, 
2000). 

Originally it was also intended to incorporate the misconception related to 
misinterpreting time-dependent and time-independent graphs (Hitt, 1998), but the 
items did not work effectively with our sample in the pilot and this was dropped 
from the study. 
The scaling of the test provides a measure on which pupils, item-difficulty and errors 
can be located (following the methodology described in Ryan and Williams, 2000 
and Ryan et al 1998).  The pilot study, previously reported in Hadjidemetriou and 
Williams (2000), involved: 
� interviewing 4 teachers about these items to confirm their curriculum relevance; 
� testing 50 pupils, identifying errors and development of a possible hierarchy into a 

measurement ‘scale’ using Rasch methodology, and  
� interviewing the children who made the expected errors to validate the error 

categories as significant misconceptions in the children's reasoning which are in 
accord with the literature. 

This paper reports the confirmation of the instrument in the main study of 450 pupils, 
and the beginnings of our research into teachers’ related pedagogical content 
knowledge (the instrument and report of the pilot will be found at 
http://www.man.ac.uk/cme/ch). 

http://www.man.ac.uk/cme/ch)


Method 
The two study samples (pilot: n=50 and main: N=425) were all of year 10 pupils in 
the North West of the UK, whose teachers were interviewed (n=4 and N=12) to 
check that the test was regarded as fair and valid.  The test results were subjected to a 
Rasch analysis in the usual way, including the coding and analysis of errors on the 
same scale as the items.  (For a summary of this method see Williams and Ryan, 
2000: the Rasch scaling is the modern stochastic development of the Guttman 
scaling model used in the CSMS studies in Hart, 1981).  The result is a single 
difficulty estimate for each item and an ability estimate for each child consistent with 
the Rasch measurement assumptions, (only 4 mark points fell outside a model ‘infit’ 
tolerance of mean square 0.7 to 1.3 in the pilot, and one in the main study).  Several 
items were modified between the pilot and main study, as described in detail in the 
pilot report in Hadjidemetriou and Williams (2000).  The main study data was used 
also to scale the ‘common’ errors on the same scale (using the average ability 
parameter of the children who made the error).  We are aware of the debate in 
mathematics education about the nature of such hierarchies: we accept that there may 
be serious dangers in fixing such constructs which may make improvements in 
curriculum and methods difficult.  On the other hand teaching in the UK is 
dominated by a national curriculum which is so structured, and the engagement of 
teachers in practice requires us to adapt to this. 
In addition to the test analyses, we drew on interviews with groups of children about 
the test items to gain some insight into the cause of the errors and their relation to 
significant misconceptions.  In these interviews children were selected who made the 
interesting errors and discussions were organised in groups which allowed us to 
confirm our diagnoses of the children's thinking (along the lines described in 
Williams and Ryan, 2000).  Furthermore we interviewed teachers and asked them to 
complete a questionnaire in which they were asked to suggest how difficult their 
children would find the items on the pupils’ test, and to suggest likely errors and 
misconceptions the children would make.  This data is used here to explore the 
validity of the research data on misconceptions and also the state of knowledge of 
this small group of teachers. 

Results  
The table below (Table 1) shows the resulting hierarchy of children's performance 
and thinking.  A comparison with CSMS results reveals a comparability between the 
CSMS levels 1 and 2 and our own levels 1 and 2.  The underlined statements in the 
figure are common to the hierarchy that Kerslake assembled (Kerslake, 1981; 
Sharma, 1993).  However the emphasis is different in our test, because we included 
many more items which involved interpretation and sketching of graphs within 
contexts involving understanding of rates of change and associated misconceptions.  
Therefore our hierarchy at level 3 branches from the relatively common levels 1 and 
2. 



Interviews with children to validate the instrument 
The main purpose of the pupil interviews was validation of the test, in particular our 
interpretation that the errors in the test are symptomatic of the misconception 
discussed in the literature.  In this section we illustrate with interviews of a couple  
 

Level  Typical performance at each level 
(Performance descriptions underlined are 
descriptors of the parallel levels in Kerslake’s 
heirarchy for comparison.) 

Typical common errors (Scaling logits 
are in italics) 

5  
(Logit: 1.6 
– inf) 

 

4  
(0.4 to 1.6 
logits) 

 

3  
(-0.5 to 
+0.4 
logits) 

 

2 (-1.5 to 
–0.5 
logits) 

 

 

1(-Inf to –
1.5) 

 
Sketching complex graphs to tell a story, 
including non-linear, two part and interpreting 
discontinuous graphs. 
 
Understanding calculation of gradient of a graph 
(y=4x) 
 
Harder interpretation of ‘constant rate’ graphs. 
Overcoming the ‘graph as picture’ misconception 
by pointwise interpretation. 
Interpreting the meaning of (0,0) in context. 
Harder interpolation on y=x-squared. 
Sketching linear graphs to tell a story. 
 
Parallel graphs have the same gradient, speeds 
interpreted as slopes: same speeds are drawn 
parallel on graphs. 
Understands varying slope of a curve (eg y=x-
squared) and rate of change in an interval. 
Compares y-ordinates of two graphs in context. 
Distinguish slope from height. 
(Graph and its algebraic expression… not in our 
test) 
 
Reading coordinates off a graph by interpolation 
and extrapolation. 
Recognise the slope as rate of change in 
interpretation of graphs of y on x: eg negative 
slope is decrease and steeper slope is greater rate 
of change than shallower. 
Use of scales in graph reading, interpretation of 
simple travel graphs. 
 
Understanding of coordinates (interpret in 
context), and change or no change and 
‘steepness’ of a graph.  Use of unfamiliar coords. 
 

 
 
 
 
Gradient = x/y instead of y/x (logit 1.2) 
 
 
Linear prototype errors.  (in drawing a graph 

where a curve is expected: 0.5, 0.92, 1.2) 
 
Constant rate  graphed as y=x prototype (0.6) 
 
 
 
Unit (or tens) prototype for scales (0.2 and 0.4 

logits) 
 
 
 
y=x prototype (graph is linear and through the 

origin) (logit 0, 0) 
graph interpreted as picture (-0.2) 
slope-height confusion in context and out of 

context (-0.2, -0.2, -0.3) 
 
 
Confusion of axes (logit –0.5, also 0.1 a harder 

case where Sq-root 6 = 36) 
Misinterpretation of the origin (0,0) in context 

(-.55) 
 
Reversal of coordinates (-0.7, -0.8) 

 Performance of children at higher levels 
includes those indicated for lower levels. 

The errors listed are most likely to be made 
by children at the level adjacent or below 

 

Table 1: Hierarchy of performance and errors 



of children’s slope-height confusion in relation to their errors in interpreting a graph 
of the growth of girls and boys in their teenage years.  From the graph presented it 
can be concluded that the girls at age 14 are bigger (graph height) but the boys are 
growing faster (graph slope).  The item (question 7 of the test) was developed from 
one of from Janvier's, and is designed  to probe for slope-height confusion: 

INT:  So ‘which group is growing faster at the age of 14’.  You have ‘girls’ and why did 
you choose girls? 

Nicole: Went up 14 and it’s more than the boys. 
INT:  It is more… 
Nicole: It is more than the boys at the age of 14.   
INT:  Right, and what do you understand when I am asking you ‘which group is growing 

faster at the age of 14’? 
Nicole: Which one is growing faster, which one is heavier.   
INT:  Which one is heavier.  All right, is that what you understand Sara? 
Sara: Yeah yeah 
INT:  Which group is growing faster?  You went for the one which is growing, who is… 
Sara: Heavier 
INT:  Heavier.  So you put girls.   
Sara: Yeah 

Later when asked to interpret the curve of the graph for boys’ growth, Sara 
effectively explained that their growth was slow up to the age of 12 and then grew 
fast, then stopped: 

Sara: They grow quite quickly 
INT:  Quickly? Till which age do they grow quickly? 
Sara: ‘Till about 12  
INT:  12.  And then what happens after 12? 
Sara: They are growing even quicker.   
INT:  Even quicker.  And then? 
Sara: The line just like … stops.   

The interviewer subsequently confirmed that both girls Sarah and Nicole thought 
that the ‘girls’ were growing faster and would not change their minds.  It seems 
clear that the classic ‘slope height’ confusion operated, in that the height of the 
graph serves as a powerful distractor in interpretation of the graph, leading to the 
error we sought to confirm. 
Interviews and questionnaires with teachers 
In the main study the test was given as a questionnaire to the teachers with 
instructions that they should record their perception of the difficulties of the items on 
a Likert scale, and suggest misconceptions students might have that would cause 
difficulty.  We built a rating scale from these data and the item-perception-difficulty 
measures that resulted were correlated with the children’s actual difficulty as 
estimated by the test analysis (rho = 0.395).  In addition we sought to confirm the  
teachers' responses through informal interviews, where we also began to explore 
their teaching practices. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, the teachers’ estimates were significantly awry on a number of items (see 
figure, in which teachers’ ratings of difficulty were scaled on a rating scale analysis, 
and plotted against 'actual' scaled values of the pupils difficulties). 
The ‘discrepant’ items were examined for face validity and found perfectly 
acceptable as test items.  However, the teachers’ mis-estimation of their (relative) 
difficulty could be explained by one of two reasons: 
(a) in at least three items the teachers underestimated the difficulty for the children 

because they apparently misunderstood the actual question themselves, i.e.  they 
had the misconception the item was designed to elicit, or they had a limited 
understanding that did not receive full credit; or 

(b) on two items the teachers' overestimated the difficulty because they did not 
realise the children could answer the question without a sophisticated 
understanding of gradient. 

In the questionnaire and interviews, the teachers were encouraged to list the 
misconceptions that children might exhibit.  Here we summarise the misconceptions 
mentioned by the 12 teachers we worked with: 
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Figure: Teacher estimate and actual pupil difficulty 
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Teacher 

Misconception 1 2 3 4 5 6 7 8 9 10 11 12 

Slope height             
Linearity             
Y=X prototype             
Origin prototype             
Picture as graph             
Co-ordinates             
Scale             

Table 2: Misconceptions mentioned by 12 teachers in interview or in the questionnaire 

Conclusions and discussion 
We have developed an instrument and a hierarchy describing children’s graphical 
thinking and misconceptions which respects their curriculum and is regarded as valid 
by the, admittedly small, sample of teachers involved.  The hierarchy summarised in 
the chart in this paper suggests how more and less sophisticated pupils behave with 
graphs and what their main misconceptions are.  This is linked approximately at the 
lowest levels with the hierarchy for graphs described by Kerslake, but covers the 
literature on graphical interpretation. 
The evidence causes us to doubt whether teachers are aware of the common 
misconceptions the instrument reveals in this field, and we believe that many 
teachers would benefit from using the instrument in their teaching.  In our current 
work we are investigating this.  In small numbers of observations of lessons, we have 
not yet seen teaching which takes account of the major misconceptions 
spontaneously. 
We are aware of the criticism that the misconceptions children exhibit may arguably 
be strongly associated with the particular problems they are presented with and the 
tools they are given to handle them with.  Indeed Roth's work (see 
http://www.educ.uvic.ca/faculty/mroth/Papers_Available) has shown that even 
expert scientists exhibit misconceptions when presented with tasks which demand 
interpretation in contexts outside their familiar experience.  We agree also with 
Ainley (2000) that graphical work in general and interpretation skills in particular 
become transparent or fused when children embed them in their activity or social 
practice.  This is entirely consistent with our other work (eg, Wake et al, 2000; 
Williams et al, in press) which suggests that experts interpret and use graphs 
effortlessly in their daily practice, when the graph as a semiotic tool is fused with its 
interpretant.  Nevertheless we believe that learning to interpret graphs in new 
contexts is an important, if demanding skill, which requires its own practice.  The 
difficulty of research on mathematics in use is that only rarely do we see 
mathematics actually being learnt rather than used. 

http://www.educ.uvic.ca/faculty/mroth/Papers_Available


We therefore persist in believing that work in academic settings which purports to 
represent unfamiliar situations is a valuable part of the curriculum, and that 
children’s difficulties therein need charting and pedagogical attention.  In the next 
stage of our work we will examine more closely teachers’ use of such  diagnostic 
instruments and how they might develop their practice in this respect. 
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