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On this appropriate occasion of the 25th annual meeting of PME, at the Freudenthal 
Institute where Leen Streefland carried out his work, this Research Forum describes and 
commemorates some of the aspects of the Realistic Mathematics Education research in 
which he was engaged, and illustrates projects in which that work is being continued in 
The Netherlands and in the USA. Core constructs that Streefland’s legacy addresses 
include the centrality of the learner, rooting of learning in prior or current experiences 
of the learner, mathematics education research as a developmental process, learning 
communities and interactive learning environments, learning from history, didactising 
and guided reinvention in developmental mathematics courses, argumentation and 
discourse in classroom mathematical practices, social learning trajectories and the role 
of teachers in guided reinvention. 
 

Introduction: A focus on experiences – my experience with Leen. Willi Dörfler 

 

It has been very good luck for me to have the opportunity for enjoying a close 
cooperation with Leen Streefland. We got to know and appreciate each other in the 
context of PME. When I was entrusted with editing Educational Studies of Mathematics 
(ESM) I decided to share this demanding task. It was absolutely clear to me that Leen 
had to be my first choice and I was very happy that he agreed. Thus we had six years 
from 1990 until 1995 jointly dedicated to the journal and to the enhancement of maths 
education research. Over this time, of course partly together with Gila Hanna as the third 
editor and with the members of the editorial board, Leen and I had a fruitful and 
productive exchange of ideas and opinions about questions like: main issues of 
mathematics education research, basic orientations, criteria for quality of research, role 
of theories in maths education, policy of the journal. Mostly these questions and issues 
were discussed with respect to submitted papers and thus they were not just esoteric 
deliberations but had a strong relevance for concrete action. 

It is against this background of shared experiences that I will now turn to some traits 
of the personality of Leen which could be found in his personal life, in his academic life 
and in his so highly valuable work in mathematics education. Leen`s interest in and 
concern for people had a strong influence on what he did, what he said, what he wrote, 
in short on how he lived his life. Foremost there was the feeling that you really matter as 
a person and a human being which you had when sharing your time with Leen. This was 
never an abstract or detached interest, say, just in your academic work but it took into 
account the complex living conditions, the emotions, fears and wishes of the respective 
other. One can read this general attitude from many letters by Leen to authors of papers 
submitted to ESM. In those he tried to establish a communicative basis on which to 



negotiate about the content, style or quality of the paper. Leen never forgot that it always 
is a concrete person who writes and that a judgement on a paper implies a judgement on 
the author. This should not be misinterpreted as a tendency to lowering standards. Quite 
to the contrary, it was the struggle to guide authors in matching high standards.  

The concern for people be they pupils, authors, colleagues or friends in my view 
most prominently resides in Leen`s own work in mathematics education. This research 
in the context of Realistic Mathematics Education (RME) genuinely and seriously puts 
the learner into the center. And again it is not an abstract or epistemological subject from 
which maths education is stipulated to start. The subjective, individual and personal 
experience of the learner is on the one hand the background and the basis for all 
(mathematical) learning. On the other hand learning mathematics according to RME is 
to be organized by making new experiences possible, by engaging students in reflections 
on their personal experiences in mathematical ways of thinking. This reflects a deep 
respect for the individual student and his or her faculty for building up mathematical 
meaning provided adequate experiential situations are offered. It also expresses a view 
on mathematics as originating out of human experiences and their description, 
organization, structuring and planning. That this nowadays is a broadly accepted stance 
can be attributed to the insistence with which Leen and other representatives of this 
school of thought have expounded their position: mathematics is relevant for the future 
lives of our students and can be experienced as being meaningful by them. But for this to 
occur the widespread separation and isolation of school mathematics have to be 
overcome. Leen`s work impressively shows us a way to attain that goal and convinces us 
that it really is attainable. The related demands Leen did not only impose on his own 
work, but he always tried to urge the authors of papers submitted to ESM to think about 
consequences of their work for the students in the classroom and how it relates to their 
struggles with making their mathematics meaningful to themselves. When admitting that 
there is a multitude of possibilities for approaching that goal this could and should mean 
a basic guiding framework and orientation for future research in mathematics education: 
to make the mathematics experientially real to the learner. 

A related feature of Leen`s thinking about research and scientific theories in 
general and specfically in maths education is the following one: As the learning of 
mathematics itself, also the development of theories about it has to be experientially 
grounded. This attitude of Leen`s showed itself in a kind of doubtfulness and 
suspicion of what he sometimes called a jargon. By this he labeled texts that used 
vague or opaque concepts too much detached from the concrete realities of the 
mathematical classrooms to have any sensible implications for the organization of the 
latter. In other words the basic tenets of RME in Leen`s view have also to be applied 
to maths education research. As the teaching of mathematics in school has to be 



rooted in prior or current experiences of the learner, a valuable piece of research and 
its presentation in a paper has to be related to the experiences of the readers. It must 
make sense by making clear the meaning of used notions and terms and should have 
the potential to change the experience of the reader. As the relevance of most 
mathematical concepts and methods resides in their potential to structure and 
organize the experience and activity of the learner, research and theories in 
mathematics education should have analogous implications for the practice of school 
mathematics. I remember various vivid discussions on this issue that showed us both 
that such general tenets have to be substantiated in each single case, such as a specific 
contribution to ESM. It also became clear that experience is not a given which 
passively is imposed on the individual but that it is something that is actively 
constructed and developed by the latter in his/her social context. This inherent 
indeterminacy of individual experience, be it by the pupil in the classroom or by the 
reader of a journal article, brings in notions such as affordances and constraints. 
Whatever a teacher does in the class or an author writes in a paper establishes 
affordances and constraints for the thinking and understanding on the part of the 
students or of the readers. This might make teaching and writing a daunting 
endeavour; but only if one believes in fixed and absolute meanings (in mathematics 
and mathematics education), which have to be acquired and transmittered adequately. 
Contrary to that, Leen`s conception of RME and of mathematics education research is 
that of a developmental process that leaves room for interpretations, negotiations, 
inventions, deviations and the like, which yet constantly  and consciously is devoted 
to sense-making. And in this framework a jargon is a way of teaching, speaking or 
writing which inhibits or even prevents the above cognitive and communicative 
processes. And I take it as a kind of legacy from Leen to avoid jargon in this sense 
because it acts against the interest in people as learners, readers and researchers. 

 

Social interaction as reflection: Leen Streefland as a teacher of primary school 
children. Ed Elbers 

 

Leen Streefland did pioneer work in creating a community of inquiry in the 
mathematics classroom. He encouraged students to “do research” and to adopt the 
attitude of researchers. The task of the teacher was to guide and assist students who had 
been given considerable responsibility for their own learning. Streefland was convinced 
that creating a learning community in which students had ample opportunity to produce 
and discuss ideas would allow their mathematical creativity to blossom. Interaction and 



collaborative learning would stimulate children to make their own mathematical 
constructions and to discuss them in what amounted to a social process of reflection. 
Streefland was involved not only as a researcher but also as a teacher. He worked with 
the primary school teacher Rob Gertsen for about 15 years. 

I shall present a case study of a lesson co-taught by Leen Streefland and Rob 
Gertsen. In this lesson Streefland alternated whole class discussions with individual 
or group work. I want to use this particular case as an illustration of Streefland’s 
ideas about mathematics education. Moreover, I shall analyse the relationship 
between whole class discussions and learning processes of individual students and the 
tension between teacher’s guidance and students’ invention. 

Three principles of realistic mathematics education form the basis of this lesson. 
Firstly, the starting point is the problem instead of the mathematical strategy or 
solution. The teacher introduces a meaningful problem, which the students use as a 
source for constructing mathematical understanding. Secondly, a basic element in 
realistic mathematics education is to motivate students to ‘mathematize’, to turn 
everyday issues into mathematical problems and use the mathematics resulting from 
these activities to solve other problems. Thirdly, the students do not depend on the 
teacher to find out whether their ideas are correct. Part of their task is to develop good 
arguments to support their approach and solutions. 

Streefland’s lessons had a basic format (Elbers & Streefland, 2000a, b). They started 
with a statement of the principle of a community of inquiry: “We are researchers, let us 
do research.” The students were given a topic or problem as the subject of their research 
(often with reference to some example from everyday life, a newspaper clipping, a 
photograph, etc.). After the introduction of the topic, the students were invited to 
formulate research questions and develop answers to these questions. Work in small 
groups of 4 or 5 students, and sometimes individual work, alternated with class 
discussions in which the results were made available for discussion in the whole class. 
Leen Streefland and Rob Gertsen worked as a team. They introduced themselves not as 
teachers, but as senior researchers. This role allowed them to participate in the discussion 
themselves. The students knew, of course, that they could expect assistance and 
guidance by their teachers. However, by acting as they did the teachers gave the students 
responsibility for their work and made it clear that the validation of their solutions comes 
from mathematical argument and not from the teacher’s authority. 

 

The case study 

The lesson was taught in a combined seventh and eighth grade class at a primary 



school in the Netherlands (children between 11 and 13 years of age). It was part of a 
short series of lessons in June, at the end of the school term, when the students had 
already completed their regular mathematics curriculum for that year. An activity 
sheet was used with the problem and its variations printed on it, leaving space for the 
students to write down their own solutions. My presentation is based on an analysis 
of the video recording of this lesson, a transcript and a short Dutch article Leen 
Streefland wrote about this lesson in 1997. The case is divided into a number of 
Episodes. The problem introduced in the classroom was set in a pharmacy and 
involved calculating the number of tablets prescribed by a physician. 

“Elisa works at a pharmacist’s. She is preparing medicines prescribed by 
Doctor Sterk for Mrs. Jansen. 

For Mrs. Jansen: 40 falderal tablets. 

6 tablets a day for 2 days; 

then 5 tablets a day for 2 days; 

then 4 tablets a day for 2 days; 

then 3 tablets a day for 2 days; 

then 2 tablets a day for 2 days; 

then 1 tablet a day for 2 days. 

Elisa thinks: ‘This isn’t right! The doctor has made a mistake.’ 

What do you think? Is Elisa right?” 

 

During the lesson variations on the original problem were given which amounted to 
changes in the number of tablets. The students, first, had to solve the original version of 
the problem (starting with 6 tablets), next they had to calculate the number of tablets in a 
prescription starting with 8 tablets (8 tablets for the first two days, 7 for the next two 
days, etc.) and then the number of tablets in a prescription starting with 10 tablets. For 
reasons of space, I shall restrict my presentation here to Episodes 5, 6 and 7. In the 
preceding Episodes 1 to 4, the students, in order to solve the problem in its original form, 
had developed two approaches: (1) multiplying the various numbers of tablets (2x6; 2x5; 
etc.) and adding them up (12 + 10 + etc.), and (2) adding up the numbers (6 + 5 + etc) 
before multiplying them (2 x 21). In Episode 4, which consisted of individual and group 
work, students worked on the version of the problem starting with 8 tablets. Episode 5 is 
a class discussion immediately following Episode 4. 

 



Episode 5. One of the children showed his solution to the whole class. He used the 
solution to the original version (starting with 6 tablets) as a starting point for solving 
the new problem (starting with 8 tablets): 42 + 2x7 + 2x8. After this, the teachers 
asked who had applied a different approach. One of the children showed that she had 
made combinations of tens (8+2=10, 7+3=10 etc.) in order to add up quickly: “I took 
out the tens”. In the ensuing discussion about this approach, Streefland asked: “What 
shall we call this approach? Can we invent a name for it?” The children proposed 
expressions such as “making tens”, “jumping to tens” and “bridges of ten”. Leen 
Streefland concluded this discussion by suggesting they call this method: “making 
combinations” and “making clever combinations”. 

The third variant of the problem was then introduced, starting with 10 tablets. But 
before the students started their work on the activity sheets, the teachers presented a 
challenge:  

 

Sequence 1. 

Gertsen: You can solve the next problem. Just try to solve it: if I start with 10 tablets, 
how many do I need? The children who have found the answer quickly, then think 
about this extra question: can I find the answer without making the calculation? 
I’ll give you a hint: compare the three numbers. When I start with 6 tablets..., 
when I start with 8..., when I start with 10... When you compare, you may come to 
a conclusion, a discovery. After all, you are researchers, aren’t you? 

Streefland: I would like to add that it may be fun to try out other combinations. Try to 
experiment with combinations. Maybe you’ll discover something surprising. If 
you discover that, the problem is a piece of cake. 

 

Episode 6. In this Episode, some students invented a new solution to the problem. 
Their invention was the result of a discussion in a group of four boys. 

 

Episode 7. In the subsequent class discussion, these boys’ solution was presented by 
one of them in the following way: 

 

Sequence 2. 

Gertsen: Researcher Tom, show your solution on the blackboard. 



Tom:  If you start with 42, it is 6x7. If you look at 72, that is 9x8. Beginning with 10, 
that is 10x11. (He writes these numbers on the blackboard).(...) 

Streefland: Be consistent: 6x7, 8x9, 10x11. 

Gertsen: Put the smaller number first. 

Streefland: It is very nice to do it this way. 

Gertsen: I can know the next one, too, because, look, (pointing at the numbers on the 
blackboard) here is 6, 8, 10, and the next one should be: 12x13. (...) 

Streefland: That is very good, but I think that he should show it by writing it out in 
full. Because it does not appear out of the blue, of course! 

Gertsen (addressing Tom): Show it, prove it. 

 

With some help Tom succeeded in showing on the blackboard that 6+5+4+3+2+1 
= 3x7  (6+1, 5+2, etc.), and because the numbers should be doubled, the result is 6x7. 
Next, Gertsen demonstrated this way of calculating for other variants of the problem. 
The prescription starting with 8 tablets can be solved by making combinations of 9. 
With many students participating, the teachers demonstrated the outcome of the 
problem starting with 12 and with 14 tablets. 

Analysis of the activity sheets demonstrates a clear and direct influence of the 
solutions discussed in the whole class on the individual work. The majority of 
students adjusted their solutions on their activity sheets and adopted the strategies 
developed just before in the whole class. The sheets show that, in three episodes of 
individual work, 26, 19 and 16 (of 28) students appropriated the strategies discussed 
in the whole class. The activity sheets also show that students did not stick to one 
strategy once they had invented it and found it to be correct. They acted in line with 
the teachers’ encouragement to continue finding other, more efficient and clever, 
solutions. 

Discussion. 

At first sight the results would seem to fit into a two level approach (suggested by 
Inagaki et al., 1998): understandings are first constructed collectively, and then 
appropriated by individual students. This theory would seem to apply here, since the 
case study showed that the majority of students accommodated their solutions on the 
worksheets to the previous collective argumentation in the whole classroom. The 
difficulty with an account in terms of a two level approach is that it is not so easy to 
tell where the collective work ends and individual learning begins. Both collective 
argumentation and individual work took place within a discursive structure with rules 



such as: find out for yourself, choose a practical solution, present it understandably. 
These rules structured the students’ work, both in the whole class discussions and 
during their work on the activity sheets. In their individual work, students applied the 
same kind of arguments which they had to use in the class discussions. Students’ 
achievements are best understood by referring to this discursive structure. Individual 
work is to be considered as an anticipation of a class discussion or a reconstruction of 
it. Given this discursive structure, there is no priority for individual or collective 
work; they are two sides of the same coin. 

Students did not just internalize or incorporate the outcomes of the class 
discussion, they had to reconstruct them (cf. Elbers, Maier, Hoekstra & Hoogsteder, 
1992). Even the use of the outcomes of class discussions for writing an answer on 
their sheets was not a reproduction, but demanded creativity. Students’ creation of 
novel solutions, as in Episodes 6 and 7, can illustrate this. The discursive structure of 
the interaction was the outcome of the teachers’ transformation of the mathematics 
class into a community of inquiry. At the beginning of the lesson Streefland told the 
students: “I am convinced that, if you have the courage to figure out something, you 
can do much better than you thought you could!” Addressing the class as a learning 
and researching community created roles and responsibilities for the teachers and the 
students which differed from a conventional classroom (Ben-Chaim et al, 1998; 
Elbers and Streefland, 2000b). 

Because of the students’ contribution to the class, the teachers faced a problem 
originating from their double role. On the one hand, they were in charge and 
responsible for the students’ activities. They decided what topics would be worked on 
and they had their ideas of what knowledge students should acquire during the 
lessons. On the other hand, they wanted the students to find out for themselves: to 
invent solutions to problems and to prove their validity. They did not want to frustrate 
children’s creativity by using their authority for supporting certain answers instead of 
others. For solving the problem originating from this double role, the teachers used 
three strategies to channell the discussion. Firstly, the teachers selected students to 
give a presentation in front of the whole class. During the parts of the lesson in which 
students worked on their worksheets the teachers walked around and sometimes 
asked individual students to show and explain their work. During these episodes, the 
teachers observed what solutions the students were trying to work out and they 
singled out students with novel solutions rather than with familiar ones to present 
their work to the whole class. Secondly, the teachers stimulated variation in solutions. 
Students trying to discover a different solution from one already found were 
rewarded with compliments and enthusiasm by the teachers. Thirdly, the teachers 
made general suggestions to help students to view the problem from a different 



perspective. An example of this can be seen in Episode 5 above. The children, who at 
this stage had only made combinations of ten, proposed calling this procedure: taking 
out tens, etc. Streefland taught them to use the term: making combinations. In this 
way he paved the way for students to find out that they could make combinations 
which add up to numbers other than ten. Using these strategies, the teachers could 
direct the discussion and at the same time leave the students ample freedom to find 
out and make inventions. After having worked out a correct solution, there was no 
reason for students to stop, since there was always an even more efficient solution to 
be found.  

The case demonstrates how students in an atmosphere of collaboration and 
interaction contributed to their learning and how the teachers exploited the various 
productions and constructions made by the students to structure the learning process. 

 

Learning from history to solve equations. Barbara van Amerom 

 

Several research projects of recent years report on learning difficulties related to 
algebraic equation solving (Kieran 1989, 1992; Filloy & Rojano 1989; Sfard 1991, 
1996; Herscovics and Linchevski,1994, 1996; Bednarz et al. 1996). These difficulties 
include constructing equations from arithmetical word problems, as well as 
interpreting, rewriting and simplifying algebraic expressions. According to some 
researchers part of the problem is caused by fundamental differences between 
arithmetic and algebra. A good starting point for an investigation into this issue could 
be a return to the roots. By looking into the past we shall try to gain insight into the 
differences and similarities between arithmetic and algebra and learn from the 
experiences of others. Streefland emphasized the value of ‘reciprocal shifting’: 
changing one’s point of view, looking back at the origins in order to anticipate 
(Streefland 1996). Such a change of perspective can propel the learning process of 
the researcher, the teacher and the student alike. 

Algebra and arithmetic 

A closer look at the similarities and differences between algebra and arithmetic 
can help us understand some of the problems that students have with the early 
learning of algebra. Arithmetic deals with straightforward calculations with known 
numbers, while algebra requires reasoning about unknown or variable quantities and 
recognizing the difference between specific and general situations. There are 
differences regarding the interpretation of letters, symbols, expressions and the 
concept of equality. For instance, in arithmetic letters are usually abbreviations or 



units, whereas algebraic letters are stand-ins for variable or unknown numbers. 
According to Freudenthal (1962), the difficulty of algebraic language is often 
underestimated and certainly not self-explanatory: ‘Its syntax consists of a large 
number of rules based on principles which, partially, contradict those of everyday 
language and of the language of arithmetic, and which are even mutually 
contradictory’ (p. 35). He continues:  

The most striking divergence of algebra from arithmetic in linguistic habits is a 
semantical one with far-reaching syntactic implications. In arithmetic 3 + 4 
means a problem. It has to be interpreted as a command: add 4 to 3. In algebra 
3 + 4 means a number, viz. 7. This is a switch which proves essential as letters 
occur in the formulae. a + b cannot easily be interpreted as a problem” 
(Freudenthal 1962, p. 35). 

Several researchers (Kieran 1989; Sfard 1991) have studied problems related to 
the recognition of mathematical structures in algebraic expressions. Kieran speaks of 
two conceptions of mathematical expressions: procedural (concerned with operations 
on numbers, working towards an outcome) and structural (concerned with operations 
on mathematical objects). But despite the contrasting natures of algebra and 
arithmetic, they also have definite interfaces. For example, algebra relies heavily on 
arithmetical operations and arithmetical expressions are sometimes treated 
algebraically. Arithmetical activities like solving open sentences and inverting chains 
of operations prepare the studying of linear relations. Furthermore, the historical 
development of algebra shows that word problems have always been a part of 
mathematics that brings together algebraic and arithmetical reasoning.  

Cognitive obstacles of learning algebra 

An enormous increase in research during the last decade has produced an 
abundance of new conjectures on the difficult transition from arithmetic to algebra. 
For instance, with regard to equation solving there is claimed to be a discrepancy 
known as cognitive gap (Herscovics & Linchevski 1994) or didactic cut (Filloy & 
Rojano 1989). They point out a break in the development of operating on the 
unknown in an equation. Operating on an unknown requires a new notion of equality. 
In the transfer from a word problem (arithmetic) to an equation (algebraic), the 
meaning of the equal sign changes from announcing a result to stating equivalence. 
And when the unknown appears on both sides of the equality sign instead of one side, 
the equation can no longer be solved arithmetically (by inverting the operations one 
by one). Sfard (1996) has compared discontinuities in student conceptions of algebra 
with the historical development of algebra. She writes that rhetoric (in words) and 
syncopated algebra (involving abbreviated notations) is linked to an operational (or 



procedural) conception of algebra, whereas symbolic algebra corresponds with a 
structural conception of algebra. Da Rocha Falcaõ (1995) suggests that the disruption 
between arithmetic and algebra is contained in the approach to problem-solving. 
Arithmetical problems can be solved directly, possibly with intermediate answers if 
necessary. Algebraic problems, on the other hand, need to be translated and written in 
formal representations first, after which they can be solved. Mason (1996, p.23) 
formulates the problem as follows: ‘Arithmetic proceeds directly from the known to 
the unknown using known computations; algebra proceeds indirectly from the 
unknown, via the known, to equations and inequalities which can then be solved 
using established techniques.’ 

‘Reinvention of algebra’ 

Recent research on the advantages and possibilities of using and implementing 
history of mathematics in the classroom has led to a growing interest in the role of 
history of mathematics in the learning and teaching of mathematics. Inspired by 
Streefland’s work as well as the HIMED (History in Mathematics Education) 
movement, a developmental research project called ‘Reinvention of Algebra’ was 
started at the Freudenthal Institute in 1995 to investigate which didactical means 
enable students to make a smooth transition from arithmetic to early algebra. 
Specifically, the ‘invention’ of algebra from a historical perspective will be compared 
with possibilities of ‘re-invention’ by the students. The historical development of 
algebra indicates certain courses of evolution that the individual learner can reinvent. 
Word or story-problems offer ample opportunity for mathematizing activities. 
Babylonian, Egyptian, Chinese and early Western algebra was primarily concerned 
with the solving problems situated in every day life, although they also showed 
interest in mathematical riddles and recreational problems. Fair exchange, money, 
mathematical riddles and recreational puzzles have shown to be rich contexts for 
developing handy solution methods and notation systems and are also appealing and 
meaningful for students. Another possible access is based on notation use, for 
instance comparing the historical progress in symbolization and schematization with 
the contemporary one. 

The learning strand: pre-algebra as a link between arithmetic and equation solving 

The barter context in particular appears to be a natural, suitable setting to develop 
(pre-)algebraic notations and tools such as a good understanding of the basic 
operations and their inverses, an open mind to what letters and symbols mean in 
different situations, and the ability to reason about (un)known quantities. The 
following Chinese barter problem from the ‘Nine Chapters on the Mathematical Art’ 



has inspired Streefland (1995a, 1996a) and the author to use the context of barter as a 
natural and historically-founded starting point for the teaching of linear equations: 

 

By selling 2 buffaloes and 5 wethers and buying 13 pigs, 1000 qian 
remains. One can buy 9 wethers by selling 3 buffaloes and 3 pigs. By 
selling 6 wethers and 8 pigs one can buy 5 buffaloes and is short of 
600 qian. How much do a buffalo, a wether and a pig cost? 

 

In modern notation we can write the following system: 

 

2b + 5w = 13p + 1000 (1) 

3b + 3p = 9w (2) 

6w + 8p + 600 = 5b (3) 

 

where the unknowns b, w and p stand for the price of a buffalo, a whether and a pig 
respectively. The example is interesting especially when looking at the second 
equation, where no number of ‘qian’ is present. In this ‘barter’ equation the 
unknowns b, w and p can also represent the animals themselves, instead of their 
money value. The introduction of an isolated number in the equations (1) and (3) 
therefore changes not only the medium of the equation (from number of animals to 
money) but also the meaning of the unknowns (from object-related to quality-of-
object-related). Streefland (1995) has found in his teaching experiment on candy that 
the meaning of literal symbols is an important constituent of the vertical 
mathematizing process (progressive formalization) of the pupils. “The changes of 
meaning that letters undergo, need to be observed and made aware very carefully 
during the learning process. In this way the children’s level of mathematical thinking 
evolves.” (Streefland 1995, p 36, transl.).  

We also intend to investigate how notation and mathematical abstraction are 
related. The categorization rhetoric – syncopated – symbolic is the result of our 
modern conception of how algebra developed, and for this reason it is often mistaken 
for a gradation of mathematical abstraction (Radford 1997). When the development 
of algebra is seen from a socio-cultural perspective, instead, syncopated algebra was 
not an intermediate stage of maturation but it was merely a technical matter. As 
Radford explains, the limitations of writing and lack of book printing quite naturally 
led to abbreviations and contractions of words. Perhaps our students will reveal 



similar needs for efficiency when they develop their own notations (from context-
bound notation to an independent, general mathematical language), but this may or 
may not coincide with the conceptual development of letter use.  

Classroom examples 

The first version of the experimental learning strand for primary level was tried 
out in 1997-1998 in two primary school classes grade 5-6 pupils (combined). The 
general topic of the primary school lesson series is recognizing and describing 
relations between quantities using different representations: tables, sums, rhetoric 
descriptions and (word) equations. No prior knowledge was required apart from the 
basic operations and ratio tables. The study is based on data collected through the 
observation and analysis of classroom work and the evaluation of a written 
assessment test taken by the students after the last lesson. 

Shortened notations form one of the spear points in the learning strand. One of 
the units for grade 5-6 is centered on the context of a game of cards. In one of the 
lessons children suggested what could be the meaning of the expression ‘pA = 3 × 
pJ’. Our decision to use this kind of symbolism is based on other pupils’ free 
productions in a preliminary try-out. The letter combination maintains the link with 
the context: the letter p stands for ‘number of points belonging to’ and the capital 
letter stands for the person in question, in this case Ann and Jerry. In the expression, 
such a letter combination behaves like a variable for which numbers can be 
substituted. When the score of one of the players is given, the expression becomes an 
equation which can be solved. The teacher asked the children for an example that will 
illustrate that the relation between the variables pA and pJ is ‘3 times as much’: 

 
 
 

Teacher: ‘If we think of points, what would be possible? You have to write it down in a handy way, just like in 
Pocket Money, which numbers are possible.’ 

Yvette: ‘3 and 9’. 
Teacher: ‘Who has 3 and who has 9?’ 
Yvette: ‘Annelies has 9’. 
Teacher: ‘How would you write it down? Why don’t you show us on the blackboard.’ 
Yvette writes: A – 9 p j – 3 p 
Sanne: ‘I would write an equal sign,  not a line.’ 

 
Figure 1: inconsistent symbolizing 

 

Figure 1 illustrates three samples of inconvenient symbolizing: Yvette’s choice to 
write a capital letter A and then a small letter j, her use of the letter p as a unit even 
though it is already part of the variable, and Sanne’s suggestion at the end. 
Apparently it was not a problem to the children that letters mean different things at 



the same time. As long as the pupils and the teacher are all conscious of this fact, the 
development and refinement of notations is a natural process. On the other hand, it is 
not our intention to cause unnecessary confusion regarding the meaning of letters. It 
was decided that if children have a natural tendency to use the letter p as a unit, p 
should not be included in the expressions and formulas.  

The lesson materials were adjusted and tested again in 1999. The dual character 
of the learning strand – to develop reasoning and symbolizing skills in the study of 
relations – was maintained but placed in a more problem-oriented setting and with a 
more explicit historical component. We have selected two examples of student work 
from the final classroom experiment to demonstrate that (pre-)algebraic symbolizing 
tends to be more difficult for students than reasoning. 

 

Symbolizing versus reasoning 

The project’s final experiment was conducted in three primary schools (grade 6) 
and two secondary schools (grade 7). Encouraged by the ideas and results of the 
classroom experiment on candy by Streefland (1995), a grade 7 unit on equation 
solving was designed based on the mathematization of fancy fair attractions into 
equations. One of the tasks in the written test was:  

Sacha wants to make two bouquets using roses and phloxes. The florist replies: 
‘Uhm ... 10 rozes and 5 phloxes for f15,75, and 5 roses and 10 phloxes for 
14,25; that will be 30 guilders altogether please.’  

What is the price of one rose? And one phlox? Show your calculations. 

 

One of the outcomes of the experiment is that algebraic equation solving need not 
necessarily develop synchronously with algebraic symbolization. For instance, we 
have observed student work where a correct symbolic system of equations was 
followed by an incorrect or lower order strategy, or where the student proceeded with 
the solution process rhetorically. The student in figure 2 mathematizes the problem 
by constructing a system of equations, and then applies an informal, pre-algebraic 
exchange strategy which is developed in the unit. Below the equations she writes: 
‘We get 5 roses more and 5 phloxes less, the difference is 1.50. We get 1 rose more 
and 1 phlox less, the difference is 0.30.’ The calculations show that she continues the 
pattern to get 15 roses for the price of 17.25 guilders, and then she determines the 
price of 1 rose and 1 phlox. The level of symbolizing may appear to be high at first 



due to the presence of symbolic equations, but the student does not operate on the 
equations. The equations may have helped her structurize the problem but they are 
not a part of the solution process. And even though the unknown numbers of flowers 
are an integral part of her reasoning, the letters representing them are not needed in 
the calculations. There is a parallel here with the historical development of 
symbolizing the solution. In the rhetoric and syncopated stages of algebra the 
unknown was mentioned only at the start and at the end of the problem; the 
calculations were done using only the coefficients. 

 
Figure 2: symbolic notations and informal reasoning Figure 3: informal notations and algebraic 

 reasoning 
 

Alternatively the solution in figure 3 illustrates how the level of reasoning can be 
higher than the level of symbolizing. This student solves the system of equations  

2 × h + 2 × k =  66 

3 × h + 4 × k = 114 

by doubling the first equation and then subtracting the second from it. First he deals 
with the right hand sides of the equations (66 × 2 and 132 − 114). In between the two 
horizontal lines we observe how he multiplies the terms with the unknowns. Then he 
writes ‘but the task says 3h so 18 is 1 h’. Finally he substitutes the value 18 to solve 
for k.  A remarkable contrast presents itself. This student successfully applies a 
formal algebraic strategy of eliminating one unknown by operating on the equations, 
while his symbolizing is still at a very informal level. Again the unknown is only 
partially included in the solution process; it appears only where necessary. In other 
words, both examples of equation solving illustrate that competence of reasoning and 
symbolizing are separate issues.  



Conclusion 

Difficulties in the learning of algebra can be partially ascribed to ontological 
differences between arithmetic and algebra. The project ‘Reinvention of algebra’ uses 
informal, pre-algebraic methods of reasoning and symbolizing as a way to facilitate 
the transition from an arithmetical to an algebraic mode of problem solving. We have 
shown some examples where informal notations deviate from conventional algebra 
syntax, such as inconsequent symbolizing and the pseudo-absence of the unknown in 
solving systems of equations. These side effects bring new considerations for 
teaching: how can we bridge the gap between students’ intuitive, meaningful 
notations and the more formal level of conventional symbolism. The observation that 
symbolizing and reasoning competencies are not necessarily developed at the same 
pace − neither in ancient nor in modern times − also has pedagogical implications. It 
appears that equation solving does not depend on a structural perception of equations, 
nor does it rely on correct manipulations of the equation. In retrospect we can say that 
knowledge of the historical development of algebra has led to a sharper analysis of 
student work and the discovery of certain parallels between contemporary and 
historical methods of symbolizing. Streefland’s notice to look back at the origins in 
order to anticipate has turned out to be a valuable piece of his legacy. 

 

 

Didactising: Continuing the work of Leen Streefland 

Erna Yackel, Diana Underwood, Michelle Stephan, & Chris Rasmussen 

 

When we think of the work of Leen Streefland we think of his seminal work in 
developing prototypical courses and instructional sequences (fractions, negative 
numbers and algebraic expressions and equations). In developing these courses and 
sequences Streefland was not only putting into practice the general principles of 
Realistic Mathematics Education (RME) that had been set forth by Freudenthal and 
Treffers but he was demonstrating how these principles might be realized in practice 
over an extended period of instructional time. In doing so, he went beyond earlier 
work that demonstrated one or more of the principles for individual problems, such as 
the van Gogh sunflower problem (Treffers, 1993). However, Streefland viewed his 
work as much more than the development of prototypical courses and sequences. In 
the abstract of his paper, The Design of a Mathematics Course, A Theoretical 
Reflection, Streefland (1993) pointed to what he saw as the major contribution of this 
work, namely operationalizing RME instructional design theory and thereby raising it 



to a higher level. As the title of the paper indicates, Streefland's purpose was to reflect 
on the development process and identify strategies used in the design of the 
exemplary materials. To this end, he analyzed his fractions course and other 
examples of prototypical instructional sequences that were developed following the 
principles of RME. As Streefland noted,  

In consequence an important theoretical change of perspective looms ahead. 
Where the theory was first an after-image, it can now act as a pre-image, i.e., as a 
model for realistic mathematics education in advance (p. 109). 

The activity of developing such after-images that then can be used as pre-images in 
future work is what Streefland called didactising. 

In one sense, the work of our research group might be thought of as applying the 
model that Streefland has articulated since we are developing prototypical courses in 
mathematics for various audiences, including university students. However, the 
intention of our work extends beyond applying Streefland's model. We prefer to view 
our work as having the same character as Streefland's in that as we engage in the 
process of the developmental research that is required to develop prototypical 
courses, we are continually analyzing aspects of our own activity for potential after-
images that might be useful as pre-images in other situations. In this sense, we, too, 
are engaged in didactising. 

Each of the researchers in this session will describe their didactising activities 
within the context of their respective research. First, Underwood will discuss 
designing instructional sequences so that students' mathematical understanding grows 
out of their development of symbolic representations while at the same time 
contributes to the development of those representations. Next, Stephan argues that 
argumentation analyses are useful not only for analyzing students' learning as they 
engage in prototypical courses, but also as a tool for the designer in her attempts to 
anticipate the quality of the social interaction and discourse associated with the 
instructional sequences under development. Stephan's work is a form of didactising in 
the sense that she is using argumenation theory as a tool for describing how the 
conditions for learning the desired mathematics can be created and sustained in social 
interaction (Streefland, 1993). Rasmussen uses different modes of "listening" as a 
conceptual tool for describing aspects of the activity of analysing the vast amounts of 
data collected from developmental research for the purposes of informing and 
revising the development of instructional sequences. As an after-image, these 
different modes of listening have the potential to be useful pre-images for others 
engaged in RME-based instructional design. 



Thus, each of the three researchers demonstrates a form of didactising. In doing 
so, each goes beyond treating the development of prototypical courses for various 
mathematical content areas and various audiences as a simple matter of applying 
Streefland's model. In each case, the researcher gives explicit attention to reflecting 
on critical aspects and strategies of the design process which includes: developing 
means of recording and notating that can describe informal activity and that have the 
potential to lead to formal and/or conventional mathematical notation, anticipating 
the classroom discourse that can emerge as students solve problems, and selecting or 
designing "realistic" contexts that have the potential to lead to formal mathematizing.  

Emergent Models in a Context of Linear Equations 

 The purpose of this section is to illustrate how mathematics instruction might be 
designed to facilitate the emergence of conventional symbolism for linear equations 
from students’ ways of representing and notating their reasoning in situations of 
linear change.  This approach is in contrast to much of the recent reform curricula 
concerning linear functions that focus on facilitating students' ability to move flexibly 
within and across tabular, symbolic, and graphical representations.  While it is 
important that students are able to interpret linear functions in a variety of ways, a 
problem with this approach is that the student still needs to integrate them.  For 
example, even when students are able to describe slope graphically as “rise over run" 
and are provided opportunities to “discover” that the number representing the slope is 
the coefficient of x in the equation for a line, they usually cannot explain a basis for 
this relationship. 

 One explanation for this difficulty is that students are asked to create and use the 
graphs of functions on a Cartesian plane as a model for reasoning about quantities 
without first facilitating development of the plane as a model of anything.  The 
Cartesian plane is a symbol system used in creating a visual (dynamic) representation 
of the relationship among quantities.  According to the principles of RME, this 
symbolism should emerge from students' mathematical activity (Gravemeijer, 1994) 
rather than be given to them prepackaged. 

The Stacking Cubes instructional sequence attempts to promote students' 
understanding of a coordinate system while simultaneously facilitating their 
understanding of linear relationships.  Our inspiration for creating this sequence grew 
out of noting students’ solutions to a data recording and graphing activity.  In this 
activity from the Connected Mathematics series (Lappan, Fey, Fitzgerald, Friel, & 
Phillips, 1998), students were asked to flip a coin for 90 seconds, record the 
cumulative number of flips at 10-second intervals, and make a graph of the data.  
Many students generated bar graphs to represent their data. In an earlier instructional 



sequence adapted from the Mathematics in Context series (Wijers, Roodhardt, van 
Reeuwijk, Burrill, Cole, & Pligge, 1997), students had successfully developed 
formulas for growing spatial patterns.  By combining the idea of writing formulas for 
growing patterns with the idea of bar graphs, our goal was to design an instructional 
sequence that would help students develop a conceptually-based understanding of 
linear relationships, thereby enabling the symbolic representation of a linear function 
to grow naturally out of graphical representations.   

 The instructional design was based on the tenets of RME emphasizing that 
through engaging in realistic tasks, students create models of/for their mathematical 
activity (Gravemeijer, 1994). In the initial activity students were presented with a 
sequence of “towers,” asked to draw the next few towers in the sequence, and figure 
out the number of cubes that would be in the 100th tower in the sequence (see Figure 
A).  The spatial arrangement of the towers resembled the bar graphs that students had 
drawn in their prior data recording and graphing activity.  As the instructional 
sequence progressed, students were asked similar questions, but were given less 
information to answer them.  At the same time, the notation used to represent the 
stacking cubes evolved to look more like ordered pairs.  For example, towers were 
first replaced by "sticks" and the sticks were ultimately replaced by points on the 
Cartesian grid: 

 

 

 

The students' descriptions of the spatial patterns also evolved.  Initially they gave 
detailed verbal descriptions such as, I figured out that the change between the towers 
was 2 and then I counted back to the zero building, which is one.  So I know that the 
100th building is 2 times 100 plus 1, or 201 cubes high.  Later, this type of description 
was generalized to height of the nth building = zero building + pattern number * 
change.  Eventually students developed the symbolic notation H = a + bP to represent 
the relationship that was illustrated in the graph.   

# 1 # 2 # 3 # 4
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 While the bar graphs/towers initially served as models of students' thinking in the 
graphing activity, the sticks/points became models for their reasoning about the 
relationship between height and pattern number.  This symbolic progression can be 
thought of as a chain of signification (Cobb et. al, 1997; Gravemeijer, 1999): 

 

 {pictures of cubes signified 1-pictures of sticks signifier 1} signified 2   -   graphs of points signifier 2 

 

In a similar way, the verbal/symbolic descriptions of the patterns that the students 
developed were models of their reasoning about the graphical representations of the 
patterns.  Here again, the progression from an extended verbal description to a verbal 
formula to a symbolic formula can also be viewed as a second chain of signification.   

The two chains of signification are intertwined in the sense that the symbolic 
representation of the relationship grew out of the students’ thinking about the 
different graphical representations (towers of cubes, sticks, points) while at the same 
time the graphical representations enabled students to develop meaning for the 
different components of the equation H = a + bP. In contrast to the multi-
representational approach, the two chains of signification are not two separate ways 
to represent a linear relationship.  Instead, the instructional goal is that students' 
concept of a linear relationship will grow out of their development of symbolic 
representations while at the same time contributing to the development of those 
representations.  That is, they evolved together as a dynamic, interactive system.   

Under the guidance of the RME emergent models heuristic, we designed the 
Stacking Cubes sequence to support students’ moving beyond using symbolic 
descriptions as models of patterns in towers to using them as models for reasoning 
about linear relationships. We believe that the approach that we take can be viewed 
more broadly as a pre-image for designing instruction that provides students with 
opportunities to create and reason with conventional symbols.   

Argumentation as a Tool for Didactising 

The purpose of this section is to show how analyzing students' argumentations 
impacts the design of instructional activities within a broader instructional sequence. 
Generally, argumentation has been used to analyze students' learning (e.g., 
Krummheuer, 1995; Yackel, 1997). In addition to this function, we will argue that 
argumentation analyses can serve to provide feedback to the RME designer by 
informing her of the nature of the justifications that students provide as they engage 
in the designed activities. The justifications may not be those that are anticipated by 
the designer and thus, she can revise the sequence by constructing tasks that better 



provide students the opportunity to construct mathematical justifications that are 
more in keeping with the overall mathematical goals for the instructional sequence. 
To begin this conversation, we first describe Toulmin's (1969) scheme for analyzing 
argumentation. 

For Toulmin, an argument consists of at least four parts: the data, claim, warrant 
and backing. In any argument, the speaker makes a claim and, usually presents 
evidence or data to support that claim. Even so, a listener may not understand what 
the data presented has to do with the conclusion that was drawn and, therefore, 
challenges the presenter to clarify the role of the data in making a claim, a warrant. 
Perhaps the listener understands why the data supports the conclusion but does not 
agree with the mathematical content of the warrant used. The authority of the warrant 
can be challenged and the presenter must provide a backing to justify why the 
warrant, and therefore the entire argument, is valid mathematically.  

In general we have found that students' warrants consist of further elaboration of 
their methods for solving a problem and that backings involve justifying why their 
method or interpretation should be mathematically acceptable in the classroom. In 
this section we would like to explore the usefulness of Toulmin's model of 
argumentation from a design perspective. In other words, what kinds of reasoning 
might the designer/teacher find useful to capitalize on in whole class discussions and 
what warrants and backings for a particular type of task are productive for learning? 
Do the instructional tasks she has designed provide the opportunity for such 
justifications to arise?  Anticipating the nature of the warrants and backings that we 
think could be useful for supporting the classroom argumentation can aid in the 
development of mathematically productive instructional tasks. We will illustrate this 
with an example from the Stacking Cubes sequence. On the first day that students 
engaged in the Stacking Cubes sequence, the diagram shown in Figure D was drawn. 

 
                               Figure D 

 

 The teacher explained that the picture showed a series of buildings constructed by 
a company and asked, "How many more little blocks do I need to make the 13th 
building?" While some students attempted to count how many increases of two there 



would be to get to the 13th building, one student explained that she found a formula 
for finding the number of floors in any building. 

Abby: I tried to figure out how many blocks would zero have. And it would be 1. 
Each building as you go down is decreasing by 2, so I just subtract the 2 [to get 
the 1]…2P + 1. 

Teacher: How did you get the 2P + 1 part of it though? That's the part I don't 
understand. 

Abby: They are each increasing by 2. So I just figured we’re going to multiply by 
2. And I know there is just 1, because the zero. That one has 1. So, 1 is already 
there. So you would be adding 1. 

Teacher: She’s going to be adding 1. Do you know what she means when she says 
that she is going to be adding 1? Do you know? Do you want to say something 
about that, Terry? 

Terry: She is adding the 1 because it is…[inaudible]…you still have to add the 1 
that was like the odd man out…1 times 2 is 2, but you have to add that 1 man in 
building 2 because of the one block in the zero building. 2 times 2 is four, plus 1 
which is 5 in building 2. 

Analyzing the structure of the argumentation above, we see that Abby provided a 
claim that consisted of her formula, 2P + 1. She provided data for her claim when she 
explained, "I tried to figure out how many blocks would zero have." Once Abby 
explained her claim, the teacher challenged Abby to explain how finding the plus one 
led her to the formula 2P + 1. In other words, she was asking for Abby to make the 
warrant, how the data "+1 leads to the formula 2P + 1," more explicit. Abby 
responded by explaining the origin and necessity of each term in the formula. In 
Toulmin's terms, Terry provided a backing regarding why multiplying by 2 and 
adding the "odd man out" each time led to the desired results in each pattern ("2 times 
2 is four, plus 1 which is 5 in building 2").  

This type of argumentation for generating a formula was typical early in the 
instructional activity. The backing provided justification for the origin of the formula, 
but it was grounded in the specific example of the first and second buildings. As 
students' understanding becomes more general, we would expect that the backings to 
become more general in nature, i.e., the buildings are increasing by 2 floors per 
pattern number (a rate) from the original pattern (the "zero building"). However, this 
type of backing never arose in the course of instruction. As a consequence, we 
created two new tasks designed to provide students the opportunity to construct 
justifications for the formula that were based more explicitly on rates of change. 
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Task 1: Show students a picture of a building 
pattern that increases by 2 floors per day and 
starts at 4 floors. Only show the first three 
days. On which day will you have 14 more 
floors than the original? The teacher can draw a 
horizontal line on top of the 0 building and also 
notate each jump of two as pictured: 
Task 2: Some construction workers get 
paid by the day but the foreman lost the 
record of how many days the company 
has worked since they started building 
onto the original. He knows that the 
current building is 32 floors tall at the 
end of the day and that they've been 
putting 3 floors on per day from the 
original building that was two floors tall. 
How many days has the crew been 
working? 
 

In new Task 1, students may either draw subsequent buildings, counting the extra 
rs each time until they have 14 more floors than the original, or they might 
ble count, keeping track of the number of twos and the number of days increased 
il they have counted 14. Double counting in this manner might allow students to 
w attention to the 2 floors per day justification. The dashed line might support 
dents constructing the backing described above: a rate of change of 2 floors per 
 added onto the original 4 floors. The dashed line might also support students 
ing the original building as nested in each subsequent building. 

In Task 2, some students might actually draw every building between the original 
 the last day while others may simply double count again to find how many counts 
ize three can be found between the last day and the original. The teacher might 
n symbolize those double counts by circling 10 groups of three blocks on the last 
 only (see figure accompanying Task 1). She might also ask students to explain 
at each number means as they double count. In this case, the intent again is to 
g attention to the constant rate of change as it goes on from the original number 
loors. 



The point of this short excerpt is to bring attention to the role of argumentation in 
the designer's activities. By examining students' argumentations as they engage in 
tasks, we can discover the nature of the students' current justifications and the range 
of potentially productive justifications. This type of examination can lead to revisions 
in the instructional activities within a sequence. 

Listening as a Conceptual Tool 

The purpose of this section is to describe how the construct of "listening" to data 
can be used as a conceptual tool for the purposes of instructional design. As 
Streefland’s work demonstrated, paying close attention to students’ reasoning has 
always been a fundamental characteristic of RME based instructional design work. 
Using our developmental research efforts in differential equations as an example, we 
use different modes of "listening" as a lens to reflect on our retrospective analysis of 
the data collected during a semester-long classroom teaching experiment. In 
particular, a mode of listening that we call generative listening helps shape and 
clarify our thinking about realistic starting points for instruction that are mathematical 
in nature. 

Within the theory of RME, realistic starting points for instruction refer to 
situational contexts that can serve as a building block for students’ mathematical 
development. For example, Streefland (1990) discussed how distribution situations, 
like sharing 3 candy bars among 4 friends, can serve as a realistic starting point for 
students’ learning the concept of fraction. Although this example of a realistic 
starting point is characterized by a real-world situation, the term “realistic" is 
intended to be broad enough to include mathematical situations that are experientially 
real for students. Relatively few examples, however, of realistic starting points that 
are themselves mathematical currently exist.  

As researchers begin to explore ways in which the theory of RME can inform 
instructional design at the university level, it will be useful to have images of 
strategies that others find useful in locating realistic starting points that are 
mathematical. To begin to address this need, we use the notion of generative listening 
as a means to bring to light aspects of our developmental research activity that has 
yielded mathematical starting points that are experientially real for students.  

Generative listening is intended to reflect the negotiated and participatory nature 
of interacting with data. This type of listening, which Davis (1997) called 
hermeneutic, is “an imaginative participation in the formation and transformation of 
experience” (p. 369). The notion of generative listening can be clarified by 
comparing it with what Davis calls interpretive listening and evaluative listening. In 
comparison with generative listening, where the purpose is to learn something new 



about one's own thinking, interpretive listening is to decipher the sense that students 
appear to be making of the mathematics under discussion. Davis posits that within 
interpretive listening, mathematics is still about constructing conventional 
associations between signifiers. Finally, evaluative listening is characterized by the 
fact that the listener is listening for something in particular. The motivation for 
evaluative listening is to evaluate the correctness of the contribution by judging it 
against a preconceived standard (Davis, 1997). 

During the spring of 2000, we conducted a 15-week classroom teaching 
experiment in differential equations. At the commencement of the teaching 
experiment, we conjectured that population situations would serve as an 
experientially-real starting point for the development of students’ concept of the 
solution space for differential equations, where solutions to these differential 
equations are functions of time. Note that the nature of this starting point has the 
same real-world character as Streefland’s distribution situations for fractions. After 
engaging in extensive retrospective listening to the data collected during this teaching 
experiment, what students had to say transformed our thinking about what we could 
take as an experientially-real starting point. 

To illustrate the notion of listening generatively to data, we use an excerpt from 
an end-of-the-semester interview with Marta, one of the students in the class. In the 
excerpt that follows, we asked Marta if she now thinks about the concept of function 
differently than she did before taking the differential equations course. We asked her 
this question because we take the viewpoint that solutions to differential equations 
are functions and thus the study of differential equations may provide opportunities 
for students’ to deepen their notions of function. At the time of the interview, we 
were curious about students’ evolving notions of function through their study of 
differential equations. That is, our listening was more interpretive and evaluative. 
Only later, upon retrospective analysis, did we listen generatively to this piece of 
data. 

Marta: I can think of it more as, when you say this function, I can think of it more 
as instead of three x squared, I can think of it more as a motion, more as some 
kind of change. More as something that’s actually going on opposed to, yeah, 
these are some numbers and this is what it looks like on a piece of paper…when I 
say 3 x squared, what I’m really talking about is, I’m talking about this marble 
moving from here to here and how it got there, you know? 

Although we think it is useful for developmental researchers to listen evaluatively 
and interpretively to data, we restrict the discussion to generative listening because 
when we listened generatively to this piece of data, we began to think differently 



about the possibilities for starting points in differential equations. In particular, our 
own thinking was transformed by engaging imaginatively in Marta’s description of 
motion and of a “marble moving from here to here.” We began to think about how 
the movement from “here to here” stems from conceptualizing rate of change and 
how solution functions can, for students, grow out of their mental and bodily 
experiences with rate of change. That is, the mathematical construct of rate of 
change, when coupled with population situations, can serve as an experientially-real 
starting point. 

To take rate of change as an integral component of an experientially-real starting 
point is not to say that all students have a full conception of rate of change that is in 
line with expert notions. It is to say, however, that students’ at this level have some 
way to conceptualize rate of change as a mathematical construct so that they can 
proceed with a problem situation. For example, students might conceptualize rate of 
change as an intensive quantity by which a different quantity changes over time or 
they might view rate of change as a ratio of two co-varying quantities that gives rise 
to motion or movement and involves directionality. Although beyond the scope of 
this paper, we should note that the transformation in our thinking about taking rate of 
change as an experientially-real starting point has also led to revisions in the 
sequence of instructional activities. 

The intention of this short example was to describe how we can use listening as a 
conceptual tool for reflecting on our developmental research efforts at the university 
level. Although we used the construct of listening to crystallize our efforts at locating 
experientially-real starting points that are mathematical in nature, the different modes 
of listening, generative, interpretive, and evaluative, may serve as a broader image for 
others engaged in developmental research. 

Conclusion 

As these three examples show, didactising can take a variety of forms depending 
on the mathematical content, on the student audience for the prototypical courses or 
instructional sequences, and on the interests of the researcher. At the same time, the 
researchers' interests evolve as the developmental research progresses. In this way 
there is an evolution of the nature of the after-images that researchers develop that 
then become pre-images for future work. Thus, in a sense Leen Streefland's work has 
set in motion a cyclic process that has the potential to move the field of mathematics 
education forward in substantive ways. 

 

 



Reaction  Koeno Gravemeijer 

 

The work on RME at the Freudenthal Institute constitutes the heart of what 
people at the institute call, "educational development". The term educational 
development has been introduced to indicate an all-embracing process of educational 
innovation, encompassing both the actual enactment of the innovation in the 
classroom and an open dialogue between researchers and practitioners. 
Developmental research is conceived of as a catalyst of innovation. The results of 
developmental research are meant to function as a source of inspiration for 
practitioners. What we aim for is re-enactment of instructional sequences in various 
situations, adapted to those situations, and shaped according to the insights and 
preferences of the practitioners involved. This then is seen as an extension of the 
original developmental research, which produces feedback that will contribute to an 
enrichment of the original findings. Leen Streefland would be pleased to see how 
efforts to explicate the RME design theory with help of exemplary materials have led 
to a similar process in the mathematics education research community. To see that 
other researchers are inspired, experiment with, and expand RME theory. in this 
respect, the Purdue-Calumet research group has much to offer. Moreover, they 
address issues that were near to Leen Streefland’s heart: - the perspective of a 
reflexive relation between the development of symbols/models and meaning, which 
fits so well with the quotation of Leen Streefland on page 1; - the focus on the role of 
argumentation within whole-class discussion, which is in line with Leen Streefland's 
research activities on the basis of the idea of a community of researchers; - the 
proposal to integrate generative listening as a conceptual tool in developmental 
research, which he would have welcomed as a valuable contribution to his effort to 
bring the RME design theory to a higher level. In conclusion, we may truly say: Leen 
Streefland's work continues.  

 

 
Epilogue  Marja van den Heuvel-Panhuizen 

 

As Freudenthal stressed once, it was Leen Streefland who opened our eyes to the 
anticipatory learning of concepts that will develop in full at a later time. From the 
very beginning of his work in the field of mathematics education Leen was focused 
on where and how education can anticipate the learning process that is coming into 
view in the distance. This anticipatory perspective was not only true for Leen’s ideas 
about how to teach mathematics to students, but is as true for Leen’s role within our 



research group at Utrecht University and the international community of researchers 
of mathematics education. The concepts, the language, the way of thinking with 
which Leen provided us, turned out to be strong and continuing guides for deepening 
our understanding of the learning and teaching of mathematics. The contributions to 
this PME Research Forum prove this.  
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1 This Research Forum was initiated by Marja van den Heuvel-Panhuizen, who worked together with Leen 
Streefland on many projects. 
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