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The notion of definition is central in the study of mathematics. Several researchers 
discuss the significant role definitions play in understanding mathematical concepts, in 
problem solving and in proving.  This work deals with mathematics teachers’ 
conceptions of a mathematical definition. Their conceptions of definition were 
revealed through individual and group activities in which they were asked to consider 
a number of possible definitions of a square. Data were collected from written 
questionnaires and recorded observations. The findings point to a number of 
perspectives underlying teachers’ conceptions of an acceptable mathematical 
definition. 
 

Theoretical Background  
 

Mathematical definitions play a central role in mathematics and in 
mathematics education. According to Pimm (1993) “The mathematical 
term definition is one of a meta-mathematical marker terms (others 
include axiom, theorem, proof, lemma, proposition, corollary), terms 
which serve to indicate the purported status and function of various 
elements of written mathematics” (p. 261-262 ibid). 
 

The following citation from Wilson (1990) expresses the motivation for 
the current study: 

“Although we frequently use definitions, we rarely focus on the 
nature of definitions. There is little agreement on what constitutes 
a good definition” (p. 33, ibid). 

 

A definition is a way to create uniformity in the meaning of concepts, it is 
a tool for communication among human beings, and it is a foundation for 
proving and problem solving. Pimm (1993) brings the following citation 
of Ludwig Wittgenstein when speaking about definitions “… in order to 
communicate, people must agree with one another about the meaning of 
words” (p. 272, ibid). Borasi (1992) refers to the uniformity aspect of 
definitions through students’ thoughts regarding the use of definitions in 
geometry:   “So we bring unity, to make things uniform…” (p. 14, ibid). 
Moore (1994) discusses the connections between definitions and proving. 
According to Moore, there are three possible ways of operating with 
definitions in doing proofs: (a) using definitions for generating examples; 
(b) using definitions for justifying steps in a proof; and (c) using 
definitions for planning an overall structure of a proof.  
 

There is a body of research dealing with the role definitions play in 
mathematical concept formation and concept understanding. Feldman 



(1972) reports on three experiments done to determine the effect of several 
instructional variables on concept attainment. According to Feldman, 
providing a rational set of positive and negative instances with a definition 
was significantly more facilitative in promoting concept learning than a 
rational set alone. According to Wilson (1990) definitions, examples and 
non-examples are the building blocks needed to construct mathematical 
concepts. Klausemeier & Feldman (1975) and Sowder (1980) suggest a 
model of concept learning, which includes the following steps: 
recognizing examples, classifying examples and non-examples, and 
stating a definition of the concept. Vinner (1991) presents the notions of 
concept image and concept definition as two cells in which the knowledge 
about the concept is located. He adds, “the ability to construct a formal 
definition is a possible indication of deep understanding” (p. 79, ibid). 
Moore (1994), based on Vinner’s and others work, suggests a ‘concept 
understanding scheme’, which consists of a third aspect - concept usage - 
in addition to concept images and concept definitions.  
 

In spite of the significant roles definitions play in learning and doing 
mathematics, many students have difficulties in understanding and using 
definitions. In a study dealing with classification of students’ 
mathematical errors, Movshovitz-Hadar, Zaslavsky, and Inbar (1987) 
found that many of the errors students perform are related to distortion of 
definitions. Moore (1994) found that mathematics and mathematics 
education undergraduate students, who either lack the knowledge of 
certain mathematical definitions or do not know how definitions may be 
used, have difficulties in constructing mathematical proofs. Many 
difficulties students have in constructing meaning of a mathematical 
concept are related to the compartmentalization between the formal 
definition of a concept and the (personal) concept image (Tall & Vinner, 
1981; Vinner & Dreyfus, 1989; Vinner, 1991).  
Several aspects of mathematical definitions are discussed by a number of 
mathematics educators (Leikin & Winicki-Landmean, 2000; van 
Dormolen & Zaslavsky, 1999; Pimm, 1993; Borasi, 1987, 1992; Vinner, 
1991; Or-Bach, 1991; Leron, 1988). Most of the aspects discussed are 
considered critical requirements for a mathematical definition.  Thus, a 
mathematical definition must be: hierarchical (i.e., based on previously 
basic or defined terms), existent (i.e., having at least one existing 
instance), noncircular, non-contradicting (i.e., all conditions of the 
definitions may co-exist), unambiguous, and independent of the 
representation used. In addition, two definitions of the same concept must 
be logically equivalent. There are two aspects on which there is no 
consensus regarding their ultimate need, that is, it is not commonly agreed 
whether or not a mathematical definition must be minimal (i.e., 
economical, with no superfluous conditions or information), and elegant 



(this is the most subjective aspect that is hard to articulate). Leron (1988) 
and Pimm (1993) discuss another relevant feature that distinguishes 
between definitions: a definition can be either procedural or structural 
(according to Leron). In Pimm’s terms, it can be either by genesis or by 
property. Generally, the discussions on features of mathematical 
definitions distinguish between mathematical requirements and 
pedagogical choices.  
A number of recent studies, which relate to the features mentioned above, 
propose ways to facilitate the understanding of definitions in mathematics. 
Leikin & Winicki-Landman (2000) presented teachers with a number of 
equivalent definitions of a certain concept (e.g., absolute value). Each 
definition used a different term for the defined concept. The teachers, who 
were not aware that the definitions were equivalent and that all define the 
same concept, were asked to investigate the mutual logical relationships 
between every two definitions. Through these activities they developed an 
understanding of equivalent definitions and discussed the freedom to 
choose a definition from a collection of equivalent statements.  
In another study Furinghetti and Paola (2000) asked students to consider 
two alternative non-equivalent definitions of a trapezoid. The authors 
point to the value of the group discussions focusing on the advantages and 
disadvantages of each definition. In this study, similar to the work of 
Leikin and Winicki-Landman, students became aware of the issue of 
arbitrariness of a definition and the underlying considerations in 
determining what definition to accept.   
De Villies (1998) asked students to define quadrangles. Following their 
responses, activities and classroom discussions were conducted focusing 
on the advantages of economical definitions. Through these activities 
students’ tendency to suggest more economical definitions increased.  
The current study focuses on ways in which secondary mathematics 
teachers view a mathematical definition, particularly, the aspects of a 
mathematical definition they consider critical, from both mathematical and 
pedagogical points of view.   

The Study  
The aim of the current study was to investigate mathematics teachers’ 
conceptions of a mathematical definition, through their justifications for 
accepting or rejecting specific statements as possible definitions of a 
certain mathematical concept. 
 

In order to focus on the notion of definition rather than on the defined 
concept, it was important to use a simple and familiar concept. Thus, the 
square was chosen as the focal concept for the study. The research 
instrument consisted of a questionnaire with eight equivalent statements, 
all of which describe a square (see Table 1). For each statement, the 



participating teachers were asked to determine whether they would accept 
it as a definition of a square. All along they were prompted to provide 
justifications for their responses.  
 

In constructing the different statements for the research instrument, 
attention was given to several features. The statements differed from each 
other with respect to whether it is minimal or not, whether it is procedural 
or structural, and the degree of hierarchy in the statement (see below). 
 

As mentioned above, one of the requirements of a definition is heirarchy. 
However, the kind of heirarchy for a given concept may vary. We 
distinguish between different levels of heirarchy. For example, we can 
define an isosceles triangle as a triangle that has two equal sides. We can 
go one step back and define it as a polygon with three sides, two of which 
are equal. The further back we go, the degree of heirarchy decreases. The 
focal concept of the present study – a square – can be defined based on a 
rectangle or on a rhombus (this is the 1st and highest level of heirarchy), 

on a parallelogram (the 2nd 
level), on a quadrangle (the 
3rd level), on a polygon (the 
4th level), and so on. Figure 
1 illustrates the different 
levels of heirarchy that are 
associated with the notion 
of a square.  

 
The statements in the research instrument appear in Table 1. The level of 
hierarchy in statements 2, 3, and 6 is 1, the level of hierarchy in statements 
1, 5, and 8 is 3, and the level of hierarchy of statement 4 is lower than 4. 
However, the level of hierarchy of statement 7 is not decisive, since it 
relies also on the location of the notion of locus in the hierarchy of 
geometric concepts.   
All except statement 1 are minimal statements in terms of a definition of a 
square. Statement 4 is the only procedural statement.  
Twenty-four secondary mathematics teachers participated in the study. 
The participants took part in a 90-minute workshop dealing with 
alternative ways for defining a square. At the beginning, each teacher 
received a written questionnaire that contained the eight equivalent 
statements, and was asked to reply to it individually. Then, the teachers 
were divided into groups of 3-5, and were requested to discuss their 
answers to the written questionnaire and to try to reach an agreement. The 
third and last stage was a full classroom discussion, based on reports from 
the small groups. 
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Findings 
 
For each statement, there were 4 kinds of responses: (1) accept the 
statement as a definition of a square; (2) do not accept the statement as a 
definition of a square; (3) not decisive; (4) no reply. Table 1 presents the 
distribution of responses to the eight statements in the questionnaire.  

 
The Statement 

Accept as 
Definition 

of a 
Square 

Do Not 
Accept as 
Definition 
of a Square 

Not 
Decisive 

No 
Reply 

22 1 1 - 1.  A square is a quadrangle in which all  
sides are equal and all angles are 90º. (92%) (4%) (4%) - 

5 15 4 - 2.  Of all the rectangles with a fixed 
perimeter, the square is the rectangle with 
the maximum area. 

(21%) (62%) (17%) - 

20 3 1 - 3.  A square is a rhombus with a right angle. 
(83%) (13%) (4%) - 

7 14 1 2 4.  A square is an object that can be 
constructed as follows: Sketch a segment, 
from both edges erect a perpendicular to 
the segment, each equal in length to the 
segment. Sketch the segment connecting 
the other 2 edges of the perpendiculars. 
The 4 segments form a quadrangle that is a 
square. 

(29%) (58%) (4%) (9%) 

14 7 - 3 5.  A square is a quadrangle with diagonals 
that are equal, perpendicular, and bisect 
each other. 

(58%) (29%) - (13%) 

18 6 - - 6.  A square is a rectangle with perpendicular 
diagonals. (75%) (25%) - - 

10 12 1 1 7.  A square is the locus of points for which 
the sum of their distances from two given 
perpendicular lines is constant. 

(42%) (50%) (4%) (4%) 

19 2 1 2 8.  A square is a regular quadrangle. 
(78%) (9%) (4%) (9%) 
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Table 1: Distribution of Teachers’ Responses to the Statement
 all the given statements are equivalent to a well-known and 
ly accepted definition of a square, and all constitute a necessary 
icient condition for a square, only 5 teachers accepted all 8 
ts as possible definitions. Moreover, there was no unanimous 
nt among the teachers about acceptance or rejection of any of the 
tements. The percent of agreement on acceptance varied from the 
 of 21% for statement 2 to the maximum of 92% for statement 1. 
s also little agreement on the reasons for acceptance or rejection 
tements as possible definitions of a square. The written responses 
 65 arguments justifying the acceptance and 54 arguments 
 the rejection of a statement as a possible definition. These 

ts were classified into 7 reasons for acceptance and 7 reasons for 



rejection (Table 2) (it was mere coincidence that in both cases there was 
the same number of types of arguments). A further analysis grouped the 
different kinds of arguments according to their underlying perspective: 
Mathematical, pedagogical, both - mathematical and pedagogical, and 
embodied cognition. Table 2 presents the distribution of types of 
arguments that teachers used to support their decisions. 
 

Underlying 
Perspective 

Reasons for Acceptance: 
The statement is … N Reasons for Rejection: 

The statement is … N 

A necessary and sufficient 
condition for a square 

24 
(37%) Not minimal 3 

(5.5%) Mathematical 
Equivalent to a known 
definition of a square 

8 
(12%)   

Simple or clear 15 
(23%) Long or complicated 7 

(13%) 
Based on students’ previous 
knowledge 

6 
(9%) 

Not based on students’ 
previous knowledge 

22 
(41%) Pedagogical 

Familiar  5 
(8%) 

Not obvious – it requires 
more work in order to 
check  

5 
(9%) 

Both - 
Mathematical 
& Pedagogical 

A procedural description 3 
(5%) A procedural description 3 

(5.5%) 

Embodied   
Based on properties of 
parts that are not integral 
parts of a square∗ 

8 
(15%) 

Other Other 4 
(6%) Other 6 

(11%) 

 Total 65 
(100%) Total 54 

(100%) 
Table 2: Arguments for Accepting or Rejecting a Statement as 

Definition of a Square   
Note that about half the arguments (49%) for accepting a statement were 
based on mathematical arguments, while there was hardly any 
mathematical support (5.5%) for rejecting a statement. On the other hand, 
pedagogical considerations played a significant role both in accepting 
(40%) as well as in rejecting a statement (63%).   

Discussion  
We begin by pointing to the potential of the activity described in this 
paper as a vehicle for professional development, in addition to its power of 
eliciting teachers’ conceptions of a mathematical definition and the role 
definitions play in teaching mathematical concepts. It is not surprising that 
many teachers drew on pedagogical considerations, which they are 

                                                           
∗ For example, some teachers, in reflecting on their ways of thinking about a square, referred to the 

diagonals of a square as non-integral parts of a square (opposed to the sides and angles of a square). 



accustomed to take into account, even though they were asked to respond 
from their personal perspective, not necessarily as teachers.  
We turn to a short discussion of the different perspectives that were 
identified, and offer some explanatory comments regarding each one.  
The mathematical considerations teachers employed for accepting a 
statement as definition indicate their logical oriented view that there is a 
degree of arbitrariness in the choice of a definition. For them, an 
equivalent statement to a well-known definition, or a statement that 
constitutes a necessary and sufficient condition for a square, qualifies as a 
definition. Those who rejected a statement for mathematical reasons were 
convinced that a mathematical definition must be minimal (although, all of 
them probably teach their students the classical definition of congruent 
triangles that is not a minimal definition).  
The pedagogical considerations that were given by the teachers indicate 
their expectation that a mathematical definition should be easily 
comprehended by students. For this reason a definition should be simple, 
clear, familiar, not complicated, and obvious.  In addition, it should be 
based on students’ previous knowledge. The requirement for previous 
knowledge may be seen as an extension and application of the 
mathematical hierarchy criterion to the mathematics curriculum, that is, to 
the order in which students learn (geometrical) concepts.   
Procedural definitions seem to cause disagreement. Some teachers 
accepted the procedural statement from a mathematical standpoint and 
favored it from a pedagogical point of view, because it portrays the 
underlying structure of the object and lends itself well to construction of a 
mental image of the object. However, those who rejected the procedural 
statement rested mainly on mathematical grounds, and argued that a 
mathematical definition cannot be procedural. This view reflects the fact 
that procedural definitions are not very common in high school 
mathematic textbooks, and it is likely that many of them never came 
across a procedural definition before.   
The last, but probably one of the more interesting considerations, is the 
embodied one. People are exposed to squares rather frequently in real life 
contexts, from early childhood. Thus, they probably conceptualize the 
technical mathematical concept of a square making use of their everyday 
concept of a square (Núñez, 2000), which appears without its diagonals. 
Statements 5 & 6 define a square through properties of its diagonals. For a 
number of teachers this was illegitimate, because the diagonals of a square 
are not perceived as integral parts of a square.   
In this paper we reported findings of one part of a larger study dealing 
with what constitutes a (good) mathematical definition. Similar findings 



were obtained for other mathematical concepts in other groups of in-
service and prospective mathematics teachers.   
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