
THE AESTHETIC IS RELEVANT   

Nathalie Sinclair 
Queen’s University, Kingston, ON 

Many would agree that we need to make more mathematics relevant and 
interesting to students, yet most recommendations for increased relevance have 
ignored the aesthetic dimension of student interest and cognition. In this paper, I 
argue that the aesthetic dimension plays a central role in determining what 
mathematics is personally or epistemologically relevant to children. I present an 
example of a learning environment that attempts to explore this dimension—both 
mathematically and pedagogically—and then briefly describe a small study that 
examined the responses of middle school students to this environment.  

Recently, researchers have argued that all human abstract thinking is 
metaphorical, based on our sensory-motor experiences (Lakoff and Johnson, 1999) 
and that humans possess an innate aesthetic sensibility that acts as one of our 
primary meaning-making capacities (Dissanakye, 1992; Wilson, 1998). This 
conception of aesthetics is not limited to the formal, detached, and objective 
judgements of beauty and elegance. Rather, an aesthetic response is a cognisance of 
fit, of structure or order, perceived in part as being intuitive and recognised at an 
emotional level as being pleasurable. It is reflective in the sense of resulting from 
an awareness of the perceiver in relation to the environment. The role of the 
aesthetic in mathematics has been explored by many mathematicians (e.g. Penrose, 
1974; Poincaré, 1956 Tymoczko, 1993). The emerging picture is that aesthetics is 
involved in: (a) motivating the choice of certain problems to solve; (b) guiding the 
mathematician to discovery; and (c) helping a mathematician decide on the 
significance of a certain result (Sinclair, 2000). In a challenge to traditional 
epistemologies, some researchers have argued that the aesthetic is in fact a mode of 
cognition used by scientists and mathematicians (Burton, 1999; Papert, 1978; 
Weschler, 1978). Based on these claims, and more generally on aesthetics’ 
perceived role in learning (Dewey, 1933; Eisner, 1985), a growing number of 
educators have argued that aesthetic considerations should be of primary 
importance in children’s learning of mathematics (e.g. Brown, 1993; Silver 1994; 
Whitcombe, 1988). However, adequate understandings of how aesthetic 
considerations play into mathematics learning have yet to be developed.   

I propose that aesthetically rich learning environments enable children to 
wonder, to notice, to imagine alternatives, to appreciate contingencies, and to 
experience pleasure and pride. They are characterised by two facets; first, they 
legitimise students’ expressions of innate sensibilities and subjective impressions—
they “work with” such perceptions rather than exclude or deny them. Second, they 
uphold Dewey’s (1933) sense of the fourfold interests of children: communicating, 
finding things out, making things, and expressing themselves artistically. These 
dual facets—of perception and of action—permit children to become absorbed in 
and identify themselves with some object or idea, to become interested. 

I wanted to explore the possibility of creating an aesthetically rich learning 
environment that would make accessible to middle school students the pattern 



possibilities of the real numbers and to explore the potential of students’ aesthetic 
engagement with the much abhorred topic of fractions and decimals. I therefore 
developed an internet-based calculator1 designed to facilitate the visualisation and 
manipulation of real numbers. 
Description of the Colour Calculator 

The Colour Calculator (CC) is a regular calculator that produces numerical 
results, but that also outputs its results in a colour-coded table. Conventional 
operations are provided; the division operation allows rational numbers while the 
square root operator  allows irrational numbers. Each digit of the result corresponds 
to one of ten distinctly coloured swatches in the table, as shown in Figure 1. The 
calculator operates at a precision of 100 decimals digits, and thus each result 
represented by a (long) decimal string and an array or matrix of colour swatches. It 
is also possible to change the dimension, or the width, of colour table.  

 
Figure 1. The Colour Calculator 

In this following screenshot, 1/7 has been typed into the calculator with the table 
width set at 20. The associated table of colour has been generated: 

 
Figure 2. The Colour Calculator outputting 1/7 

Using the button that controls the width of the table of colours, the student can 
create different colour patterns, some which highlight different aspects of the 
number’s period.  

  
                                                 
1 The calculator is part of a larger project called Alive Maths (on-line at http://math.ai.iit.nrc.ca) which, as an internet 
–based environment is not only platform independent and freely accessible by students both at school and at home, 
but allows students to chronicle—in writing and through activity recording—their discoveries and questions on their 
own personalised web pages. This work was funded by SchoolNet through the National Research Council of Canada. 



Figure 3. Different tabular representations of 1/7: widths 18 and 17 
I designed the environment with three hypotheses in mind: 
1. The pattern-rich table of colours patterns resulting from rational number 

calculations would surprise and engage the students.  
2. The students’ sensitivity to visual patterns would prompt and facilitate their 

sense-making of some characteristics and relationships of rational numbers 
3. The CC would provide a setting in which students could develop more 

positive relationships with fractions and decimals. 
The structure of the CC mathematical environment emphasises two aspects of 

learning. The first is to encourage students to make sense of mathematical ideas 
such as fractions, which they often find almost repelling, using some of their 
aesthetic sensitivities such as symmetry, repetition, rhythm, and pattern. This type 
of sense-making is part of the cognitive processes that students use to understand 
the form and meaning of objects and ideas. The second is to facilitate a process—
one of exploration, research, and discovery—that potentially gives rise to a chain of 
sensory and emotive responses (Dewey, 1934). ). This process is initiated by 
surprise (or novelty) and ambiguity. It culminates in the grasping of new 
knowledge that has been experientially developed. 
Methodology 

I conducted structured task-based interviews with 15 middle school students, 8 
male and 7 female, of mixed ability (as rated by their regular classroom teacher). 
The students were all in grade 8, and came from lower to middle class, small town 
backgrounds. The interviews were task-based in that each student worked through a 
mathematical task using the CC as I observed and asked questions. They were 
structured in the sense of my facilitating the problem-posing and problem-solving 
process for each student. Each interview began with the student reading the 
instructions for the CC out loud. The student then started on the task while I asked 
a series of questions designed to elicit some of her thought processes as well as to 
guide her through the exploration. I occasionally intervened to provide guidance, 
following a set sequence of prompts that were only given when I judged that the 
student could no longer progress either in identifying a problem or solving it. The 
interview continued until the student had concluded at least one exploration; that is, 
until the student had resolved one problem. Following this, I asked each student to 
reflect on their experience, first asking them what they thought about what they had 
just done, then asking them to compare what they had just done with their other 
mathematics activities, and finally asking them how they felt about the open-ended 
nature of the activity. Each interview lasted between 20 and 30 minutes. 

The interviews were all audio-taped and then transcribed. In addition, while 
interviewing, I kept notes of their facial and bodily reactions as they interacted with 
the environment, particularly at the beginning when they tried their first fraction 
and also when they were approaching the resolution of their problem. 
Findings 



I will discuss each of the three hypotheses presented above about how students 
would interact with the CC environment. At an obvious and almost trivial level, 
every student expressed that they had never seen fractions or decimals like this, 
together and with colours—many of them realised for the first time that a fractional 
and its corresponding decimal are the same2, one student noting “you never see 
them together like this.”  Every student also expressed how different this type of 
mathematical activity was from their regular classroom work, one explaining that 
“you actually have to do things” while another observed that “you have to notice 
things.” 

Of the 15 students I interviewed, thirteen of them showed obvious physical 
signs of surprise, which they expressed either through one or more of the following 
actions: widening their eyes, sitting upright or moving forward, making a sound 
such as “ooh,” or saying some form of “wow.” One student, whom I will call 
Nadia, showed no physical surprise at all, and answered “I don’t see anything” 
when I asked her what she saw in the table of colours. Nadia was either completely 
insensitive to the patterns in the table or, because of her timidity and lack of 
confidence, she may have been under too great of an affective barrier to even 
attempt to engage. The other student who showed no physical reaction was 
Cameron, a very ends-oriented student, who remarked flatly: “there are lots of 
colours and patterns there.” 

Of course, initial surprise is only desirable if its effect is to engage the student in 
sense-making; that is, if it prompts the student to try to understand something about 
what they are seeing. This was easiest to observe with the more articulate students 
who provided a running commentary of their thought processes, like Sean:  

Okay. Ah. It looks like an abstract painting. Not exactly like a math problem. 
I’m trying to figure out how it calculates that. Uh. Well, it says that the 
results are 0.142857 and it repeats. So this is a repeating pattern. I can see it 
because the red sticks out and the purple, and ooh the green. They kind of go 
in a diagonal which shows a standard repeating pattern but I’m trying to 
figure out how things are working. So the number corresponds to the 
colour… 

There were a few other students who provided such spontaneous descriptions of 
their thought processes, but most of the students had to be prompted to share their 
thoughts and perceptions. All the students quickly made the connection between 
the table of colours and the colour legend (Figure 1), and between the decimal 
number and the table of colours. A few of the students failed to see the connection 
between the fraction and the table of colours, needing some further experimentation 
to be able to conceive of them as the same number. However, beyond suggesting 
these obvious relationships, I wanted to know whether the CC environment would 
produce a generative engagement: for example, would the students wonder why the 

                                                 
2 It is interesting in fact to recall that a regular calculator replaces its input with its output so that a student calculating 
1/7 on the calculator never actually sees both the fraction 1/7 and its decimal expansion simultaneously. Though I am 
sure that the students think that a fraction and its decimal are equal, they seemed struck by an ontological 
equivalence.  



1/7 fraction produced the table of colour or why the table showed the patterns it 
did?  

I judged a student to be generatively engaged if, after their initiation to the CC, 
they made observations or took actions that indicated an emerging question or 
conjecture. For example, Ann’s observation that “every seventh box is a purple” 
indicated a conjecture that the period of 1/7 is 6, and was followed by her 
experimentation with the width of the table (which, perhaps not surprisingly, she 
first tried at 7 before realising she really wanted 6). Sean’s immediate 
experimentation with 1/3, then 1/2 indicated an emerging question of how other 
fractions will contrast with 1/7. Julie took a slightly different approach by 
experimenting first with the width of the table of colours, describing a width of 7 as 
“it’s like a staircase” and a width of 3 as “it’s doubled up,” indicating an emerging 
question about the types of possible patterns. She went on to characterise diagonal 
patterns as those that were one more or less than the width that makes the colours 
of the table line up. Four other students each embarked on explorations similar to 
the three described above.  

The other students either paused, waiting for instructions or guidance, or asked 
me whether I wanted them to make the colours line up (as was suggested in the 
instructions to the activity). These students, either because of their ends-oriented 
approach, their lack of confidence, or a lack of interest in the activity, did not 
quickly become generatively engaged. Four students required some guidance and 
prompts, as if they needed to know what was interesting or significant enough to 
pursue. After they had formed a question or conjecture, they were able to 
experiment and all but one of them added a personal variation to their 
experimentation. For example, Robert started by following my prompt of figuring 
out what kinds of numbers are non-terminating, but then decided to investigate 
what kinds of fractions gave solid tables of colours, discovering that n/9 (for 0 < n 
< 9) would always give a solid table in the colour corresponding to n.  

I now turn to my second hypothesis about whether the students’ sensitivity to 
visual patterns and engagement would prompt and facilitate their sense-making of 
some of the characteristics and relationships of rational numbers. There were two 
types of sense-making exhibited by the students. The first type was around the 
characteristics and relationships of rational numbers that these students had 
encountered or “already learned” in their regular mathematics classes. The second 
type was around the characteristics and relationships of rational numbers that were 
new to them, and mediated by the CC environment.  

Of course, not all the students made the same inquiries and discoveries; In fact, 
the wide range of inquiries and discoveries made by the revealed much of the 
students’ existing understanding of fractions and decimals. Within the first type of 
sense-making, the majority of the students realised, some to a greater extent than 
others, that fractions aren’t just the canonical 1/2, 2/3, 3/4, 1/10 numbers they have 
often encountered during “fraction class,” but that they can have a denominator 
greater than 10, and that they can even be any integer over any integer, as Steve’s 
question shows: “You mean I can put any number on the bottom?” Several students 
also expressed surprise at seeing the fraction and the decimal at the same time—as 



I mentioned above—and seemed to gain a new understanding of their equivalency, 
as Alice concluded: “they mean the same number.” Related to this understanding of 
equivalence, a few of the students became intrigued with trying several equivalent 
fractions to see what the table of colours would depict, allaying any small doubts 
they were having that 1/2, 5/10, 20/40 were really the same number. A few of the 
students were somewhat fluent at the outset with decimals (i.e., knowing that 1/2 is 
0.5 and that 1/3 is 0.33…) but most of the students seemed to have very little sense 
of which decimal would result from a given fraction, even with fractions whose 
denominators were multiples of 10. This is perhaps due to the situatedness of their 
fraction-decimal knowledge in classroom worksheets but it would be interesting to 
see what impact their brief exposure to fraction-decimal pairs has on their future 
classroom work with fractions and decimals. These findings highlight some of the 
basic conceptions with respect to fractions and decimals that students rarely have a 
chance to develop, yet that are almost assumed to be part of their ability to operate 
on fractions, convert them, and estimate them.  

I now turn to sense-making of the second type. Since many of the students 
experimented with changing the width of the table, they were able to see what the 
period of a fraction is, how long the period of 1/7 is, and how any multiple of the 
period of the fraction makes the colours in the table line up. These are not typically 
the kind of rational number characteristics and relationships taught in school 
curricula, but are ones that were both accessible and interesting for this group of 
students in the CC environment. Other than making these common realisations, the 
students embarked on quite individual investigations. The different investigations 
were entirely student generated in that I only proposed questions during the 
interviews that had already been posed by other students in this study. Here is an 
incomplete list of the topics explored by the students, to various degrees of 
generality: What values of the width of the table would create diagonal patterns? 
What values of the denominator yield non-terminating decimals? What values yield 
terminating decimals? How is the period of the fraction related to its denominator? 
When does the decimal only start repeating after a certain point? What kinds of 
numbers neither terminate nor repeat? How can you get a solid red (or blue or 
green) table of colour? What is the effect when you square a fraction that has a 
certain period? 

This environment certainly prompted the students to make new understandings 
of fractions and decimals and in particular, to explore characteristics and 
relationships they are not usually encouraged to explore. The CC environment 
highlighted some of the incomplete fraction and decimal understanding that 
students have and allowed them to gain a new understanding of what a fraction is, 
as opposed to what you can do to fractions—add them, generate equivalent ones, 
etc. Additionally, the CC appears to be an environment in which students are 
interested and motivated to discover certain things about numbers, using fractions 
and decimals, that are different than what is emphasised in current school curricula. 
The ideas explored by these students are not easier than the ones we typically 
emphasise, but, in this CC environment, they are perhaps more relevant to students’ 
personal and epistemological interests.  



This brings me to my third hypothesis, of whether the CC would provide a 
setting in which students could develop a more positive relationship with fractions 
and decimals. The only data I collected that is useful in verifying this hypothesis is 
the students’ reflections at the end of their interviews. In these reflections, I asked 
them how they compared what they had just done with their usual mathematics 
activities. I found it difficult to determine the cause of their unanimous beliefs that 
this environment provided them with a more positive experience. Comments such 
as it’s “fun because you can work with patterns,” or “good because it helps you out 
more,” or “creative because you can make patterns” or “fun because you don’t just 
have to look at numbers” suggest that the colourful patterns were enjoyable but do 
not ascertain whether the students have a different relationship with fractions and 
decimals now than they did before. Some students may also have had positive 
experiences just because they like working on the computer or because they like 
having an adult’s attention and help. And still, for others, the fact that they weren’t 
set up for failure at the outset (as often is the case in mathematics class) may have 
made their experiences more enjoyable. That this third hypothesis remains 
unclearly substantiated is due both to the paucity of data in this particular study and 
partly to the methodological challenges of assessing students’ emotional responses.  
Conclusions  

A majority of the 15 students called upon their aesthetic modes of cognition to 
explore and make sense of the visual patterns depicted by the CC. An even larger 
majority of the students initially became engaged either through surprise, novelty, 
or perceptual attraction, prompting them into a varying degree of sophisticated 
mathematical meaning making about fractions and decimals. These are promising 
findings given that each student had less than half an hour to interact with this 
aesthetically rich learning environment.  
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