
 

 

Visualisation in Geometry : Multiple Linked Representations? 
 

G. Kadunz (Klagenfurt) & R. Sträßer (Bielefeld/Gießen) 
 

At a first glance, geometry seems to be the most appropriate field for 
visualising problems and supporting its solutions. The paper looks into 
this statement by analysing the role of multiple (sometimes: linked) 
representations, especially in computer environments like Dynamical 
Geometry Software (DGS). Using a prototypic example, the essay throws 
some doubts on the above optimism and gives reasons for a more sceptical 
evaluation of the role of visualisation in geometry and its learning. 

  
1 The field of interest and related literature 
Visualisation is a continuous field of interest within the PME community (see the 
plenary session by Dreyfus 1991, the plenary panel in 1992, pp.3-191ff of the 
PME16-proceedings, or  the papers of  the research forum in  the 1999-proceedings, 
pp. I-197ff). “Imagery and Visualization” since long is a category in the “index of 
presentations by research domain” in the PME-proceedings. It is also a constant field 
of interest in the broad community of mathematics education research (see for 
instance the handbook edited by Zimmermann&Cunningham 1991).  
At a first glance, geometry is an easy domain for studying visualisation because, 
traditionally, geometry is THE mathematical domain where imagery abounds. It is 
often described as the field where icons, imagery and their inherent relations are 
studied - but: research in geometry education seems not to have an accepted 
description of the role of visualisation in geometry. Even historically we find times 
when geometry relies on visualisation via numerous drawings which alternate with 
periods or authors widely refusing the use of diagrams (see e.g. the well-known case 
of  Lagrange’s introduction to the “Mécanique analytique”). 
 
2 The focus of the study and its framework 
Within the field of visualisation and geometry, the paper tries to better understand 
the role of the variety of (sometimes, especially in computer environments: linked) 
representations of a geometrical problem in order to better understand visualisation 
in the field of geometry. The (non-surprising !) guess that this also throws some light 
on a more general idea of visualisation will not be treated here (for this, see Kadunz 
2000). 
The framework of the essay is the idea that -for the purpose of the study- it helps to 
distinguish between a human being (sometimes: a learner) and mathematical (in the 
essay normally) geometrical knowledge which are linked by external and/or internal  
representations (for this concept of representations see e.g. Goldin 1992). 
Consequently, the reader should not infer any special position of the authors with 



 

 

respect to epistemological questions (like for instance the adherence or degree of 
adherence to constructivism) from this study.  
3 A prototypic example 
3.1 The problem 
Segment AE is the diameter of a circle with centre C, B and D are midpoints of the 
segments AC and CE. With respective circles around B and D through A and E, we 
come to a configuration represented in drawing 1a. How to construct a circle which 
only touches the circles around B, C and D (for a "solution" see drawing 1b). 

 
3.2 The drawing 
Drawing 1a is an easy construction task with points, segments, circles and their 
names - the signs of standard elementary geometry. The fourth circle touching the 
first three circles may be arranged using ruler and compass or appropriate geometry 
software (like Dynamic Geometry Systems -"DGS"). A DGS-solution could place 
the centre M on the mid-perpendicular of segment AE (as a variable point on the 
perpendicular) and an additional point H in the intersection of the circle around C 

and the mid-perpendicular. Dragging M then 
arranges an appropriate circle with centre M 
through H to touch the circles around B and D. 

 
3.3 An algebraic  solution 
The problem solver can use drawing 1b as a plan 
for an exact construction: Because of symmetry, 
the centre M of the fourth circle must be on the 
mid-perpendicular to segment AE - giving rise to a 
numerical solution if the radius of the circle is 
known. As the circles around D and M have only 
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one point in common, the intersection and points D and M have to be collinear - 
offering a right-angled triangle DCM (see drawing 2). With R as radius of the circle 
around C and x as radius of the circle with centre M, we come to the equation (*) 
below and its easy and simple solution of x=R/3. 

(*)  (x+R/2)2 = (R-x)2+(R/2)2 

The algorithmic transposition of the formula could even be handed over to a 
Computer Algebra System (CAS) - and drawing 3 gives the commands for the CAS-
"Derive". 

By concentration onto the 
algebraic solution of the equation 
(*), the original problem 
disappears. The equation does 
not tell its genesis and could be 
given as a drill-and-practice 
problem on equations without 

showing its geometrical origin. This is the price to pay for the use of the algorithmic 
solution - and only the unexpected result x=R/3 (only one solution of a quadratic 
equation - and a “simple” one!) may motivate the question why this special result 
had to be calculated. The algebraic solution does not offer a clue to an answer of this 
question and may come as a surprise because it can hardly be anticipated from 
drawing 1a/b. On the other hand,  the algebraic solution by means of the Pythagorean 
theorem offers no clue or interpretation of this rather "simple" solution. Even the 
effective construction does not offer a hint to embed the solution x : R = 1 : 3 into a 
broader geometrical context. Nevertheless, it is easy to end the construction by using 
the mid-perpendicular of AE and a circle around A with radius 2R/3 for finding the 
centre and then the radius of the inscribed circle. 
 

3.4 A geometric solution 
The solution using the algebraic information x=R/3 did not 
offer a geometrical interpretation for the solution. So we 
look for a way to cope with the construction of  a circle 
tangent to three other circles. Within the range of 
elementary geometry, a productive method to cope with 
problems like these is the inversion of circles and we will 
use it to explore the  problem - even if inversion is no more 
part of the elementary school geometry. With DGS and its 
power to group chains of constructions by means of a 
"macro"-definition, by means of modularising a 
construction, we have a chance to solve the problem (we 
will not elaborate on inversion because of the abundance of 
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appropriate literature on this topic; see for instance Lindner, 1999, pp.336-341; 
Coxeter, 1989, pp.104-117). 
Let us take the "large” circle with centre C as the circle of inversion. The circle 
around M and tangent to the other three circles is transformed into a circle tangent to 
the images of the other three circles. The images of the these three circles are the 
circle of inversion itself and two tangents (straight lines !) to the circle of inversion 
(!!). In short: as images of the circles around B and D we have perpendiculars f(B) 
and f(D) to segment AE through A and E because they touch the circle of inversion 
in A and E and go through the centre C of inversion. 
Now the image of the circle CM with centre M (a circle again!) has to touch these two 
perpendiculars and the circle of inversion. Its centre f(M) must be on the mid-parallel 
between f(B) and f(D). Consequently, the image of the fourth circle has the same 

radius R as the circle of inversion. The construction of it 
is very easy and the inversion of it immediately gives the 
solution CM of our problem. Symmetry adds the other 
solution (as in drawing 5). 
The only information lacking now is the value x = R/3 of 
the radius of the circle CM - and one could even doubt 
the necessity of knowing the numerical value because 
the construction is already finished. But inversion can 
inform us about this radius with the following argument: 
The image f(CM ) has the same radius as the circle of 
inversion around C. If one additionally constructs a 
circle around C with radius 3R, this circle will 
(obviously!) touch the image f(CM ) of the solution of 
our problem. The image of this larger circle around C 
also has to touch the circle with centre M and has the 
same centre as the circle of inversion. If we consult the 
definition of the inversion, this image has to have a 
radius of R/3 - hence our solution as well. 
With this, we solved the problem by means of geometry  
in a double sense: We found, we geometrically 
constructed the circle around M we looked for AND we 
deduced its radius from the characteristics of the 
inversion. Inversion was the key to our geometrical 
solution. 
 

4 On visualisation in geometry 
If we look back to the solution process, we can clearly distinguish three phases: At 
first we constructed an “empirical” solution using the drag-mode of the DGS, this 
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offered a clue for the second phase, namely an algebraic calculation for the radius of 
the inscribed circle (and a consecutive construction of it). The third phase 
deliberately put aside this numerical/algebraic solution while inversion offered a 
purely iconic, geometrical solution with the length of the radius as an additional 
information from a careful analysis of the inversion. 
 
4.1 Traditional representations 
The succession of the different phases is clearly marked by the use of different types 
of representations: at first, the solution is sought in the “register” of geometrical, 
iconic representations (for the concept of “register” see DUVAL 2000), we 
“visualised” the problem. Unfortunately, this only leads to an empirical solution (the 
drag-mode solution), but also produces the drawing, the graphical representation 
which opens the door for the second representation: the algebraic, symbolic 
description of the problem. In some sense, the algebraic description hides the initial 
problem, but offers powerful means to solve it - namely: the transposition of 
equations - and a surprisingly and numerically simple solution. The effective 
construction in the iconic representation “degenerates” to a mere technical process. It 
was exactly the change of register, the change of representation which made possible 
a solution of the problem. The interplay of the iconic representation of the empirical 
“solution” and the symbolic representation of the situation (via equations) and its 
rule governed manipulation produced the exact and elementary solution of the 
problem.  
But this change of representations (from iconic to symbolic registers), the algebraic 
solution of the problem and its iconic realisation have a severe deficit: The symbolic 
representation put aside and masked the initial problem, offered a general and 
effective solution - but no clue to understand this solution in terms of (synthetic, 
iconic) geometry. Having found a symbolic solution, we now looked for an iconic 
one, i.e. after the change from iconic to symbolic representation, we turned back to 
the iconic representation to “understand” our solution in terms of geometry. The 
driving force of this return to geometry may have been the simplicity of our algebraic 
solution (or the love of geometry and consequently a search for a geometrical 
solution). In all, the symbols of the algebraic result made us go back to icons and 
forced us back into geometry. And with the use of a somewhat more advanced tool 
like inversion, we came across a “purely” iconic solution and could even give a 
geometrical reason for the simple algebraic result. 
 
4.2 Representations with DGS 
In both “icons phases”, the first as well as the third phase of the solution process, the 
special features of DGS were of special help: In phase 1 the drag-mode helped  to 
produce the empirical solution. If we additionally go into technical details of 
Dynamic Geometry Software, we come across a representation behind the iconic 



 

 

representation on screen: invisible for the user, but nevertheless essential for DGS, 
there is a “second” representation inside every DGS “behind” the visible 
representation on screen. Parallel to the construction of the user, DGS save all input 
(like position, shape and measures of the constructed objects), including information 
on relations between parts of the geometrical construction. This representation is 
kept hidden from the “normal” user – but makes possible the drag-mode by the quick 
and iterated recalculation of the whole construction depending on the position of 
basic objects. The high calculation power of modern hardware enables the computer 
to produce a quasi-continuous movement on screen when varying basic objects of a 
construction. Following the functional dependencies of the other objects, the DGS 
produces an actualisation of the representation on screen following the new position 
of basic elements. The visible iconic representation is internally controlled by an 
invisible algebraic representation of relations. This algebraic representation in return 
obviously depends on the position values of the user input for basic objects. It is this 
power which – on the other hand – in some sense prevents the problem solver from 
searching for more general, geometrical means to solve the problem because the 
power of the algorithms of analytic geometry make the drag-mode so simple and 
comfortable. As a consequence, the user is kept inside the icons of geometry – the 
concepts simulated by the drag-mode remain blind, whereas the solution in phase 2 
is conceptually void. Nevertheless, the surprisingly simple solution is a good reason 
to continue working on the problem. 
For an effective realisation of the inversion in phase 3, the macro-functionality of the 
DGS is crucial. To state it in more general terms: The offer of a modularization of 
the solution by means of appropriate “macros” (like “inversion of a circle or straight 
line at a given circle of inversion”) is crucial for an effective and swift construction 
in phase 3. Traditional paper&pencil constructions would be very tedious and time 
consuming (and be definitely out of reach in a normal school context already because 
of a lack of exactness). With macros, more general: a cognitively appropriate 
modularization of the construction, the iconic register becomes more manageable 
and flexible to use it in as tentative, but rule-governed way as we are used to when 
transforming equations. 
So the third phase of the solution is characterized by a constant change between the 
iconic representation of the problem and its solution, represented by the drawing, and 
the reflections and theoretical concepts (mainly from the geometrical inversion) to 
further the solution process. The drawing is (re-)structured by means of conceptual 
entities (“modules”) like “inversion of a line / a circle at a given circle of inversion”. 
These modules are used to guide the continuation of the construction by “offering” 
new concepts/modules to advance the solution process. On the one hand, they offer a 
possibility to an economical construction, hiding those objects which are only 
intermediate states of a given construction (like a mid-perpendicular if only a 
midpoint of a segment is to be constructed). In addition to that, they give way for a 



 

 

look onto the overall structure of a complex construction, hiding those elements 
which conceptually are not needed for it. In some sense, they do the same job in a 
geometrical construction as algebraic expressions (“terms”) do in algebraic 
transformation of equations. So they deeply influence the conceptual understanding 
and making of a (complex) construction. In our example, the modules act as links 
between the actual drawing and the geometrical theory of inversion, sometimes even 
motivating the use of additional modules. They are “only” heuristical tools which - 
in contrast to algorithms - offer hints how to continue the solution, they do not 
prescribe the next step (as would have to do algorithms). Within this complex, 
heuristical process, an iconic solution is embedded into the geometrical theory. 
4.3 On visualization 
From a more or less phenomenological angle, the first two phases of the solution are 
clearly different: the first one is marked by iconic, whereas the second phase heavily 
relies on symbolic manipulation. Icons offer an elementary heuristic to prepare for 
the second symbolic phase. Using elementary algebra, symbols produce a numerical 
solution, which can easily be transformed into an (iconic) construction. Following a 
simple, traditional visualisation concept, the first phase “visualises” the problem, 
while the second phase brings into being a non-visual, algebraic solution. Such a 
traditional concept of visualisation is inappropriate to fully understand the third 
phase, but opens a way to describe the interaction of “external” representations as 
opposed to “internal” representations (for the distinction cf. Goldin 1992). 
We now concentrate on the third phase to understand the solution. On the one hand, 
we find constructions in the sense of traditional geometry. On the other hand and at 
turnings points of this phase, we interpreted our constructions by means of concepts 
from the theory of transformation geometry, especially the theory of inversion. We 
condensed parts of the drawing into a distinct “Gestalt”, a module which could be 
understood as an instance of a concept from inversion theory. So we linked the 
iconic representation with a conceptual one, the construction was seen as an external 
representation of the concepts of inversion, which were the respective internal 
representation. And DGS-macros could additionally represent these concepts as 
simple software commands. Software offered (or could offer) an additional external 
representation of the theoretical concepts. The solution process was a constant to-
and-from between external representations (on paper and/or machine-based) and 
internal, conceptual representations. Concepts grounded the solution process because 
they linked the solution with a geometrical theory – and led to the development of 
new icons and images which had to be interpreted within the theory of inversion to 
further the solution process. Looking onto the external, iconic representation had a 
heuristical function to decide which concepts were appropriate to bring forward the 
solution process. With a decision on the “next” concept to use, an algorithm - with 
necessity – defined the next iconic representation which in turn grounded the next 



 

 

heuristical step. This process of constant move between iconic and conceptual 
representations lasted until a complete and satisfactory solution was reached. 
The interaction between the two representations (internal/symbolic and 
external/iconic and linked by the problem solver) can be taken as an enlarged 
concept of visualisation. This view of visualisation is characterised by a continuous 
interaction of perspectives, a constant change to be decided on using geometrical 
knowledge (and – in learning, especially school contexts: the support of a an external 
mediator, for instance a teacher). Visualisation is constant interaction of iconic, 
external and other (external and/or internal) representations.  
 
5 Consequences for research 
For (research within the field of) geometry, especially school geometry, the above 
view on visualisation can “explain” some difficulties: If change between different 
representations is a, if not the key to progress in a problem solution, the only type of 
geometrical representation, the iconic one, and its continuous use will not advance 
the solution process. Geometry as such, inherently, has to overcome a specific 
difficulty: Already working in an iconic mode does not offer a chance to change 
representations to make available different registers to bring forward the solution 
process. Taken in a more constructive way, developmental research in geometry 
teaching and learning should deliberately further the change of representations, 
especially leaving the realm of geometrical, iconic representations and has to 
diligently analyse the consequences of such an effort. 
More globally, research on visualization must look into both directions of change of 
representations - and not only analyze the change from other, especially symbolic 
representations to iconic ones. A perspective on visualization not only taking into 
account one direction of a necessarily two-way process to and from visual, iconic 
representations is needed to better understand the links between multiple 
representations, to better understand visualization.  
 
 
 
 
 
 
 
 
 
 
 
 

References 
Coxeter, H. S. M. (1989). Introduction to Geometry, New York et al., John Wiley & 

Sons, Inc. (2nd edition). 
Dreyfus, T. (1991). On the Status of Visual Reasoning in Mathematics and 

Mathematics Education. Proceedings of the Fifteenth PME Conference. F. 
Furenghetti. Genova, Dipartimento di Matematica dell'universitá di Genova. 
vol. 1, 1-33 - 1-46. 

Duval, R. (2000). Basic Issues for Research in Mathematics Education. 24th 
Conference of the International Group for the Psychology of Mathematics
Education (PME 24), Hiroshima, vol. 1, 1-55 –1-69. 

Goldin, G. A. (1992). On Developing a Unified Model for the Psychology of 
Mathematical Learning and Problem Solving. PME 16, Durham, New 
H hi / USA P C itt f th 16th PME C f ( d ) l



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 


	Visualisation in Geometry : Multiple Linked Representations?
	G. Kadunz (Klagenfurt) & R. Sträßer (Bielefeld/Gießen)
	At a first glance, geometry seems to be the most appropriate field for visualising problems and supporting its solutions. The paper looks into this statement by analysing the role of multiple (sometimes: linked) representations, especially in computer en
	1 The field of interest and related literature
	Visualisation is a continuous field of interest within the PME community (see the plenary session by Dreyfus 1991, the plenary panel in 1992, pp.3-191ff of the PME16-proceedings, or  the papers of  the research forum in  the 1999-proceedings, pp. I-197ff
	3 A prototypic example
	The algorithmic transposition of the formula could even be handed over to a Computer Algebra System (CAS) - and drawing 3 gives the commands for the CAS-"Derive".
	By concentration onto the algebraic solution of the equation (*), the original problem disappears. The equation does not tell its genesis and could be given as a drill-and-practice problem on equations without showing its geometrical origin. This is the
	With this, we solved the problem by means of geometry  in a double sense: We found, we geometrically constructed the circle around M we looked for AND we deduced its radius from the characteristics of the inversion. Inversion was the key to our geometric
	4 On visualisation in geometry
	5 Consequences for research
	For (research within the field of) geometry, especially school geometry, the above view on visualisation can “explain” some difficulties: If change between different representations is a, if not the key to progress in a problem solution, the only type of


