
 

 

Relationships between embodied objects and symbolic procepts: 
an explanatory theory of success and failure in mathematics  

Eddie Gray and David Tall 

 Mathematics Education Research Centre 
University of Warwick, UK 

<E.M.Gray@warwick.ac.uk>, <David.Tall@warwick.ac.uk> 

In this paper we propose a theory of cognitive construction in mathematics 
that gives a unified explanation of the power and difficulty of cognitive 
development in a wide range of contexts. It is based on an analysis of how 
operations on embodied objects may be seen in two distinct ways: as embodied 
configurations given by the operations, and as refined symbolism that dually 
represents processes to do mathematics and concepts to think about it. An 
example is the embodied configuration of five fingers, the process of counting 
five and the concept of the number five. Another is the embodied notion of a 
locally straight curve, the process of differentiation and the concept of 
derivative. Our approach relates ideas in the embodied theory of Lakoff, van 
Hiele’s theory of developing sophistication in geometry, and the process-
object theories of Dubinsky and Sfard. It not only offers the benefit of 
comparing strengths and weaknesses of a variety of differing theoretical 
positions, it also reveals subtle similarities between widely occurring 
difficulties in mathematical growth. 

Introduction 
The theory presented here builds on work that has developed steadily over the last two 

decades (Gray, 1991; Tall & Thomas, 1991; Gray & Tall, 1994; Tall, 1985, 1995).  But 
it is not a simple restatement of earlier theories. A simple switch of viewpoint is seen to 
reveal powerful insight into very different ways in which individuals construct 
mathematical concepts. To gain insight into this viewpoint, we consider the situation in 
which embodied objects are perceived by and acted upon by individuals. (The precise 
nature of embodied objects will be discussed in more detail shortly, but essentially they 
begin with human perceptions using the fundamental senses, and become more mentally 
based through reflection and discussion over time.) Our viewpoint then compares the 
developing embodied meanings of the objects and their configurations with other mental 
constructions relating processes and concepts through the use of symbolism. Our 
purpose is to compare the meaning embodied in the objects and their configurations on 
the one hand with process-object abstraction on the other. We seek a theory with the 
power of both explanation and prediction of the varied nature of cognitive development 
throughout mathematics. We require a viewpoint that is theoretically sound yet has a 
simple and practical meaning relevant to the spectrum of practitioners from teachers of 
young children to university mathematicians.  



 

 

One of our hypotheses is that the theorised encapsulation (or reification) of a process 
as a mental object is often linked to a corresponding embodied configuration of the 
objects acted upon (which we henceforth refer to as base objects). We observe that the 
embodied configurations are more primitively meaningful than the encapsulated mental 
objects and yet lack the flexibility and power of the distilled essence of the symbolism 
that links dually to both mathematical concept and mathematical process. The 
consequence is that the embodied approach can give fundamental meaning to 
mathematical ideas but that such embodied representations prove to be complex to 
handle when they are applied to increasingly sophisticated problems. Progress to more 
subtle levels of mathematical thinking requires eventual access to the powerful and 
compact use of symbolism. We observe that a practical, real world understanding of 
simple mathematics can very well benefit from a focus on the operations on the base 
objects, and such a perspective is satisfactory, even insightful in everyday situations. 
However, an exclusive focus at this level can act as an epistemological obstacle barring 
the way to the more sophisticated theory that is required for subtle technical and 
conceptual thinking. As was observed in Gray, Pitta, Pinto & Tall (1999), those students 
who consider only their perceptions of embodied objects remain at a more primitive 
level, whilst those who succeed move on to more sophisticated levels, with an easy 
movement forward to focus on the symbolism or back to consider the configurations of 
the base objects. Some of those with a developing hierarchy maintain the full range 
(being ‘harmonic’ in the sense of Krutetskii (1976)), others become successful by 
focussing on the higher levels (increasingly ‘analytic’ according to Krutetskii), losing 
contact with the real world and becoming ‘formal’ thinkers (Pinto & Tall, 1999). 

Embodied objects 
We take the notion of ‘embodied object’ to begin with the mental conception of a 
physical object in the world as perceived through the senses. Examples include a Jersey 
cow, a hamburger, a paper bag, geometric objects such as triangles, arrays of objects 
such as the dots on a domino, the drawing of a graph of a function, a Venn diagram, and 
so on. In addition to our direct perceptions through our physical senses, we also think 
about what we perceive, compare our sense of one embodied object with another and 
share these ideas with others. In this way our perceptions take on an increasingly subtle 
meaning.  On the one hand our mental conception may be in the form of a “skeleton” or 
a prototype, having general properties that provide a basis for communication until the 
addition of specific properties lead to the particular. (For instance, the word ‘dog’ may 
bring to mind a domestic animal with fur that barks; but as we consider new information, 
such as a dog whose fur is cropped into artistic shapes, we might then home in on a 
poodle, or to a specific poodle belonging to a friend.) On the other—and this is highly 
relevant to the development of mathematics—our perceptions may become abstractions 
which no longer refer consciously to the specific objects in the real world. An example 
of the latter is the idea of a ‘straight line’ which is initially seen as a line drawn with a 
tool such as a ruler that makes it ‘look straight’. By talking about the idea we move on to 



 

 

consider a mental concept that is ‘perfectly straight’, ‘having no width’, ‘arbitrarily 
extensible in either direction’. None of these properties is true of an actual line in the real 
world, but it is based on real-world perception and can only be constructed mentally by 
building on the human acts of perception and reflection. In this way we see an increasing 
sophistication in the notion of ‘embodied object’ that begins with sensory perception and 
is refined in mental thought through the use of language to give increasingly refined 
precision and hierarchies of meaning. This gives an increasingly sophisticated 
conception of embodied objects in a general manner which has been specifically 
described by van Hiele (1985) with reference to geometric objects.  

We use the term ‘embodied object’ in a manner similar to the theory of Lakoff and his 
colleagues who speak of ‘embodied cognitive science’ (Lakoff & Johnson, 1999; Lakoff 
& Nunez, 2000). However, we note that Lakoff’s  theory does not explicitly use the 
notion of ‘embodied object’—the term does not appear in the index of either Lakoff & 
Johnson (1999) or Lakoff & Nunez (2000). 

Our approach makes a closer analysis of the nature of mathematical concepts and sees 
a significant distinction between embodied objects (such as a triangle or a graph) on the 
one hand and the symbols of arithmetic and algebra on the other. The latter symbols act 
as pivots between processes and concepts in the notion of procept (Gray & Tall, 1994), 
providing a link between the conscious focus on imagery (including symbols) for 
thinking and the unconscious interiorized operations for carrying out mathematical 
processes. In particular, we empathise with Dörfler (1993) who claims that, although he 
can imagine five objects, nowhere in his mind can he imagine a mental object for the 
number ‘‘five’. From the perspective we are adopting in this paper, we agree that the 
imagery for the number ‘five’ is not an embodied object, although a mental image of 
‘five fingers’ clearly is. This emphasises that thinking involving embodied objects is 
likely to differ significantly from the kind of thinking involved in the successful 
development of arithmetic and algebra. However, it does not mean that we cannot call a 
number an ‘object’ to manipulate, simply that it is not an embodied object. In fact, our 
linguistic use of number as a noun—‘five is a number’—gives it a semblance of being an 
entity, even though this is no more an embodied object than the gerund ‘running’ in 
‘running is good for you’. We refer to a number as ‘it’, we operate on ‘it’ and with ‘it’ in 
arithmetic and—far more important—the symbol for the number allows us to switch 
flexibly between mental concept and mental process. 

Encapsulation of procedure - process - procept 
Gray & Tall (1994) adopted the distinction between procedure and process of Davis 
(1983, p. 257) whereby the term procedure is a step-by-step algorithm in which the 
individual needs to complete each step before taking the next. A process occurs when 
one or more procedures (having the same overall effect) are seen as a whole, without 
needing to refer to the individual steps, or even the different procedures. For example, 
“count-all”, “count-on”, “count-on-from-largest”, “known fact”, are all different 
procedures for the process of adding two numbers. When the symbols act freely as cues 



 

 

to switch between mental concepts to think about and processes to carry out operations, 
they are called procepts, These can be composed and decomposed at will to derive new 
facts. For instance, 8+6 may be calculated by decomposing 6 into 2+4, composing 8 and 
2 as 10, and 10 and 4 as 14, or as decomposing 8 into 4+4, then recomposing 4+6 as 10, 
and then the other 4 plus the 10 makes 14. More particularly, it is now relatively easy to 
see the implications of the distinctions we make between the process of addition and the 
concept of sum. The former suggests doing the arithmetic whereas the latter emphasises 
a proceptual structure that consists of a theory of related procepts, including the base 
objects on which the processes act, the symbols as process and object, and the concept 
image related to the use and meaning of the procepts. Thus, in the example above, the 
procepts are symbolised whole numbers with the related process of addition; the base 
objects are initially physical objects, but then become figural objects and later become 
redundant as they are subsumed in a counting process which is itself compressed into the 
concept of sum. 

It is clear from this discussion that the spectrum of procedure-process-procept is not a 
classification into disjoint classes; we explicitly mentioned the ambiguity of the 
symbolism as process or concept in the title of our paper (Gray & Tall, 1994). It is a 
categorization into a spectrum of improving sophistication in which the categories blend 
one into another, even regressing on occasion to a more primitive case. One of us 
remembers adding up marks in mathematics examinations and getting to ‘know’ most of 
the required facts, yet regressing to add 89 and 2 with a quick count-on as ’89, 90, 91’. 
What matters with the increasing sophistication is that a ‘process’ usually (but not 
always) may be performed by a specific finite procedure (a counter-example lies in the 
general process of convergence to a limit). A ‘procept’ relates to a thinkable concept and 
a process carried out by its corresponding procedures. 

What is clear, however, is the steady development of entities operated on, from 
physical objects including fingers, to imagined fingers or configurations of counters, to 
mentally operations with the number symbols themselves. The increasingly sophisticated 
arithmetical knowledge developed by children (see Steffe et al., 1983) is exemplified by 
an increasing detachment from immediate experience, the development of different 
aspects of counting and a change in the form of unit counted. Within four of the counting 
types, the perceptual, figural, motor and verbal we may see the gradual shift in the nature 
of the base object from a perceptual unit to a mental embodied object. Cobb (1987), has 
suggested that it is “only at the level of abstract counting that number words or numeral 
signify conceptual entities that appear to exist independently of the child’s actual or 
represented sensory motor activity” (p.168). We suggest that it is at this stage that the 
transition from process to concept can occur that forms the basis for understanding the 
numeration system. Though the system is straightforward for those who understand it, it 
remains a source of difficulty for many, particularly when shifted beyond whole numbers 
and extended to decimals. We suggest that it is the formation and reliance upon 
embodied configurations in the whole number context that is the basis for this difficulty. 
The recognition of proceptual structures provides the flexibility. 



 

 

Sophistication and a spectrum of performance 
Figure 1 (expanded from figure 1 of Gray, Pitta, Pinto & Tall, 1999) shows the possible 
outcomes of different levels of sophistication from pre-procedure through to procept. It 
shows that a problem requiring only a routine procedural solution will distinguish 
between failure and success only in terms of the change from pre-procedure to 
procedure. The availability of different routes at the process level introduces the 
possibility of alternative methods allowing checking for possible errors in execution, 
even to an underlying unconscious feeling that something is wrong when an error is 
made (Crowley & Tall, 1999). The procept level moves to a higher plane where the 
symbols act dually as process and concept, allowing the individual to think about 
relationships between the symbols in a manner which transcends process alone.  

For example, we may recognise that the procedure ‘add 3 to a number and double the 
result’ and the procedure ‘double a number and add 6’ both give the same process. 
Symbols can be effective for these two procedures in terms of the expressions (3+n)×2 
and 2×n+6, or the more standard notations, 2(3+n) and 2n+6. These all represent the 
same input-output process operating on the (value of) the number n. A student still at the 
procedure level might find these various expressions and their procedural meanings a 
considerable barrier to understanding expressions as processes. 

 
Figure 1:  A spectrum of performance (taken from Gray, Pitta, Pinto & Tall, (1999, p.121)). 



 

 

Refocusing – a possible explanation 
How does this process of refocusing from operations on physical objects, to operations 
on mental entities, to operations with mental entities occur. A probable solution is given 
by Edelman & Tononi (2000, p.57) who report many studies that show that initial 
problem solving causes activity in a wide range of brain centres, measurable using brain 
scans, but, as the solution processes become more routine, the required brain areas 
become fewer as alternatives are no longer required. Edelman and Tononi hypothesise 
that conscious thought requires a combination of both high correlation between different 
areas of the brain (which they term ‘integration’) at the same time as there is a range of 
possible choices to make (termed ‘differentiation’). Routine mathematics becomes 
unconscious because it requires little differentiation in parts of its activity, only coming 
to the surface when a particular decision must be consciously made. Thus it becomes 
possible—but not inevitable—that the focus on the basic objects being manipulated 
becomes less necessary, and the links, first to inner perceptions, then to increasingly 
unconscious processes, gives a natural sequence of development for the human brain. 

The relationship between embodied objects and encapsulation of processes 
It is at this stage that our theoretical positions begin to diverge from both embodied 
object theory and process-object theory. The former could be a viewpoint in which all 
mathematical concepts are embodied objects. Such a view fails because the concept of 
number is not an embodied object, although the concept of ‘five things’ is. In saying this 
we misinterpret Lakoff and his colleagues who say that all thought is embodied rather 
than all we think about is embodied. However, we consider it important to lay the ghost 
of the idea that all mathematical concepts are conceived as embodied objects. For several 
years now (for example, Tall, 1995; Gray et al 1999; Tall et al 2000), we have been 
homing in on three (or perhaps four) distinct types of concept in mathematics. One is the 
embodied object, as in geometry and graphs that begin with physical foundations and 
steadily develop more abstract mental pictures through the subtle hierarchical use of 
language. Another is the symbolic procept which acts seamlessly to switch from a 
‘mental concept to manipulate’ to an often unconscious ‘process to carry out’ using an 
appropriate cognitive algorithm. The third is an axiomatic concept in advanced 
mathematical thinking where verbal/symbolical axioms are used as a basis for a logically 
constructed theory. (Here the fourth type of concept might occur by distinguishing 
between those concepts evolving from embodied objects and those from encapsulated 
processes (Tall, et al, 2000).) Expanding the theory based on ‘perception, action and 
reflection’, we see the different kinds of mental entities arising as in figure 2 (overleaf). 

We begin by considering the classical situation where the individual performs 
operations on embodied objects. We have already considered the case of number 
concepts where the base objects are physical objects and the encapsulated concepts are 
number concepts represented by number symbols. Here we note an interesting fact. 
Because the counting process operates on physical objects, the seemingly abstract 



 

 

concept of number, theoretically formed 
by a process of encapsulation, already 
has a primitive existence in the physical 
configurations of the base objects. It is by 
elaborating this simple idea that we come 
to a distinct view of the role of base 
objects in the formation of the higher 
order encapsulated concept. Essentially 
we see this role of the base objects as a 
stepping stone to the higher order 
concept, whilst at the same time having 
specific meanings for some individuals 
that act as epistemological obstacles 
preventing the hierarchical development 
that is essential for progress to more 
sophisticated mathematics. 

Consider, as a second example, the idea 
of ‘rate of change’ and the subtle 
mathematical process of differentiation and its related concept of derivative. Here we see 
the picture of a graph as an embodied object that represents the function concept 
visually. It can be drawn and seen either with a pencil or with a wave of the hand in the 
air. This embodied action conveys the sense of the changing gradient of the graph as it 
changes slope. It proves to be natural for many students to develop an insight into the 
changing gradient by simply ‘looking along the curve’ and plotting the visual numerical 
value of the (signed) gradient as a graph. This can be done visually and enactively 
without any numerical calculation or symbolic manipulation. The more formal ideas can 
come (shortly) after the fundamental embodied activity has been constructed with 
support from the bodily movement of the individual. 

This brings us to our major difference with theories of process-object encapsulation, 
particularly formulated in the sequence action-process-object-schema (Czarnocha et al, 
1999; Sfard, 1991). Our observations of human activity reveal that the ‘encapsulated 
object’ is not simply produced by ‘encapsulation’ or ‘reification’ of process into object, 
but is greatly enhanced by using the configuration of the base objects involved as a pre-
cursor of the sophisticated mental abstraction. 

This is not to say that the higher sophistications of calculus and analysis always 
remain consciously linked to fundamental embodied objects. They don’t. The 
connections may remain but become unconscious, so that the brain can move on to focus 
on essential details selected as the basis of axiomatic development. This starts with 
formal definitions (based on useful, generative, properties) and continues by a process of 
formal deduction of theorems. Each established theorem then becomes available as a 
concept for use in the proof of later theorems. Different students learn formal 
mathematics in different ways. Many do not develop beyond their existing embodied 

 
Figure 2: different kinds of mental entities 

arising through perception, action and reflection 



 

 

perception. Some build on their concept imagery, modifying and extending their 
conceptual hierarchy to grow naturally into the formal ideas. Others have grown in 
sophistication and no longer evoke conscious links to their embodied sense of the world, 
extracting meaning from the formal definitions by formal deduction (Pinto, 1998).  

In this way we see abstractions rooted in embodied objects of the biological brain 
providing a basis not only for geometric thought in a developing van Hiele sense, but 
also a foundation for symbolic process-object encapsulation and on to axiomatic thought. 
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