
MOVING BEYOND PHYSICAL MODELS IN LEARNING 
MULTIPLICATIVE REASONING 

PETER SULLIVAN DOUG CLARKE 
AUSTRALIAN CATHOLIC UNIVERSITY AUSTRALIAN CATHOLIC UNIVERSITY 

JILL CHEESEMAN JOANNE MULLIGAN 
AUSTRALIAN CATHOLIC UNIVERSITY MACQUARIE UNIVERSITY 

 

A key stage in learning multiplication and division is a capacity to move 
beyond reliance on physical models of problem situations and to form mental 
images to seek solutions. Some longitudinal data are presented to suggest that 
young children (5 to 8 years) progress through identifiable key stages in 
learning multiplicative concepts. One of these key stages is represented by 
movement away from a need to refer to physical models, and some children 
progress to this stage within the first three or four years of schooling. A clear 
finding is that teacher interventions facilitate this progression.  

This paper reports results from the Early Numeracy Research Project1  (ENRP) that 
examined the effect on student learning of a whole school approach to improvement 
of teaching and learning (Hill & Crevola, 1998). As a measure of student learning, 
the project collected data across nine domains of mathematics, one of which was 
multiplication and division. The data suggest that a key stage in the learning of 
multiplicative concepts, termed here abstracting, presents a significant barrier to 
many students, but that this barrier can be overcome with teacher support. This key 
stage, abstracting, is characterised by students moving beyond a need to create 
physical models as a prerequisite to solving multiplicative problems. It is conjectured 
that the necessary steps include developing a conceptualision of multiplication and 
division that allows students to deal with different situational contexts (e.g., partition 
and quotition) and generalising the concepts in a way that prepares them for future 
learning (Sullivan & Beesey, 2000). 
It seems, for example, that there are many students in the later primary years (ages 9 
to 12) who can cope with multiplication and division concepts with natural numbers, 
but who experience difficulty not only with multiplication and division of decimals 
but also with the very nature of fractions and decimals (e.g., Baturo, 1997). It is 
possible that the semantic complexity of the question forms and associated physical 
models used to assist the learning of multiplicative concepts in the early years 
themselves contribute to these difficulties (e.g., Mulligan & Mitchelmore, 1997; 
Verngaud, 1988). This paper suggests that students will develop more robust 

                                           
1 The project, titled Early Numeracy Research Project (ENRP) was established in 1999 by the (then) Victorian 
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Association of Independent Schools Victoria. The ENRP Project is directed by Doug Clarke, and the team includes 
Barbara Clarke, Jill Cheeseman, Ann Gervasoni, Donna Gronn, Marj Horne, Andrea McDonough, Pam Montgomery, 
Anne Roche, Glenn Rowley and Peter Sullivan. 



conceptualisations of multiplication and division if teachers pose problems that 
gradually but explicitly remove physical prompts or supports, and encourage 
students to form mental images, in multiplicative situations. 
Early Learning of Multiplication and Division  
Over the past decade, there has been considerable attention to research on 
multiplication and division concepts in early mathematical learning (e.g., Anghileri, 
1989; Carpenter, Ansell, Franke, Fennema, & Weisbeck, 1993; Kouba, l989; 
Mulligan & Mitchelmore, 1997; Steffe, 1994; Wright, Mulligan, & Gould, 2000).  
Studies focused largely on the analysis of counting, calculation and modelling 
strategies from children’s solutions to problem solving tasks.  
There has also been some emphasis on the importance of developing conceptual 
structures for multiplication and division (Greer, 1992). In longitudinal analyses of 
young children's intuitive models for multiplication and division problems, Mulligan 
and Mitchelmore (1997) found that the intuitive model employed to solve a 
particular problem did not necessarily reflect any specific problem feature but rather 
the mathematical structure that the student was able to impose on it. Students 
acquired increasingly sophisticated strategies based on an equal groups structure, and 
calculation strategies that reflected this.  
The acquisition of an equal-grouping (composite) structure is at the heart of 
multiplicative reasoning. For example, a composite is a collection or group of 
individual items that must be viewed as one thing. To understand multiplication and 
division the child needs eventually to co-ordinate a number of equal sized groups and 
recognise the overall pattern of composites of composites, such as  "three sixes".  
Steffe (1994) described the demand on students as follows:  

For a situation to be established as multiplicative, it is necessary at least to co-ordinate 
two composite units in such a way that one of the composite units is distributed over 
elements of the other composite unit. (p. 19)   

The key issue is that co-ordinating these two composite units is complex, and 
physical models can help initially. Clearly students must move beyond physical 
models partly because such models do not easily represent all multiplicative 
situations (e.g., Greer, 1992), and partly because these models become less feasible 
with large numbers and inappropriate with rational numbers. We suspect that some 
teachers avoid these difficulties by using limited situational contexts of 
multiplication and division and continuing to rely on physical models, generally 
restricted to repeated addition. Since the form of the models is likely to be 
representative of the problem structure, we argue that it is preferable to encourage 
students to create models or mental images of a variety of multiplicative situational 
contexts and to use these models or images in solving the problems. It seems 
desirable to pose tasks that specifically remove elements of physical models, even 
within the first three or four years of schooling, and to emphasise movement towards 
use of mental images. 



The Data Collection 
In order to explore various aspects of numeracy learning, the ENRP project created a 
framework of key “growth points” that can be thought of as conceptual signposts on 
the road to children’s development as mathematical thinkers. The focus of interest 
here is on what the data can tell us about the learning of multiplicative concepts in 
the early years of schooling. 
The source of data was a one-to-one interview over a 30 to 40 minute period with 
every student in the first three year levels in 35 trial schools at the beginning and end 
of the school year. Note that the Australian school year is February to December. 
Although the full text of the interview involves around 50 tasks (with several sub-
tasks in many cases), no student moves through all of these. Given success with a 
task, the interviewer continues with the next task in the given mathematical domain 
as far as the student can go with success (see Clarke, Sullivan, Cheeseman, & Clarke, 
2000 for a fuller discussion). Many of the interview questions invited the children to 
solve problems using small plastic teddy bears. 
Interviews were conducted by the classroom teacher, who was trained in all aspects 
of interviewing and recording. As well as moving carefully through the 18-page 
interview schedule, the teacher completed a four-page Student Record Sheet.  
Some Growth Points and Items for Assessing Multiplication and Division 
The ENRP project developed sets of growth points in nine domains of mathematics, 
one of which is multiplication and division. The multiplication and division domain 
includes seven growth points, only four of which are relevant here.  

Growth Point 0 – Not apparent 
Not yet able to create and count the total of several small groups. 

Growth Point 1 – Counting group items as ones 
To find the total in a multiple groups situation, refers to individual items only. 

Growth Point 2 – Modelling multiplication and division (all objects perceived) 
Can successfully determine totals and shares in multiplicative situations by modelling. 

Growth Point 3 – Abstracting multiplication and division 
Can solve multiplicative problems, where objects are not all modelled or perceived. 

These are presented as a conjectured sequence of development. It is accepted that 
students can follow different pathways in their learning, but nevertheless the 
intention is to describe a learning trajectory (Cobb & McClain, 1999) of the majority 
of the students.  
The four questions that addressed these aspects of multiplication and division are 
shown in Figure 1. It is noted that these questions address only two of the four 
multiplicative situational contexts proposed by Greer (1992). Multiplicative 
comparison (I have 3 times as many as you), and Cartesian product (2 cones, 3 
flavours, how many possible combinations?) were not included. 
23. Teddy cars 

Put four matchboxes in a line. 
24. Sharing teddies 

Show the child the picture of four “teddy 



Here are four teddy cars. 
Please put two teddies in each car. 
a) How many teddies is that altogether? 
b) Tell me how you worked that out. 
c) If the child appear to be counting all, ask: 
Could you do that another way, without 
counting them one by one? 

mats”. Put out 12 teddies. 
a) Here are 12 teddies. Share the 12 teddies 
between the four mats so that there is the same 
number of teddies on each mat. 
How many teddies go on each mat? 
b) How did you work that out? 

 
25. Dots task 

Here are some dots. Show card (4 x 5 array of 
dots) for an instant. I’m going to hide some. 
Cover the bottom 3 x 3 section. 
a) How many dots are there altogether on the 
whole card? 
b) How did you work that out? 

26. Teddies at the movies 
Here comes another story. 
a) 15 teddies are sitting in rows at the movies. 
The teddies are sitting in three equal rows. 
How many teddies are in each row? 
b) How did you work that out? 

Figure 1: Multiplication and division questions. 
Materials were provided for the first three 
questions. The interviewers asked the first 
two questions for all students, but only 
proceeded to the latter two if the responses 
to both the first two were correct.  

 
 
 

The instruction provided to the coders for this domain was to rate a student at the: 
- Counting group items as ones growth point if they responded to the Teddy cars and 

Sharing teddies questions correctly;  
- Modelling growth point if they used a non-count-all strategy in Teddy cars and 

answered Sharing teddies correctly; and  
- Abstracting growth point if responses to Dots task and Teddies at the movies 

questions were correct, although count by ones strategies were not allowed. 
Indicators of Student Growth 
To examine the way the growth points portray the nature of the increasing 
sophistication of the students’ strategies, the following presents a profile of students’ 
achievement over the grade levels. Table 1 shows the percentage of students at their 
highest achieved growth point both by grade level and overall in the March 1999 
interview. “Prep” refers to students about 5 years old, in their first year of school; 
Grades 1 and 2 are the next years. 
Table 1: Students (%) Coded at the Multiplication and Division Growth Points (March ‘99) 

 Prep 
(n=1237) 

Grade 1 
(n=1233) 

Grade 2 
(n=1168) 

Total 
(n=3638) 

Not apparent 71 37 12 41 
Counting group items as ones 24 26 14 21 

Modelling 5 36 66 35 
Abstracting 0 1 7 3 

Basic strategies + 0 0 1 0 



There are significant numbers of students at each of the first three growth points 
overall and by grade level. It can be inferred that the first four points, at least, are 
necessary to describe the growth of such students. 
To consider whether the growth points represent a sequence, it is appropriate to 
consider the way the students develop. Given that the questions were asked in such a 
way that if students made an error in an early item, they were not asked the latter 
ones, it is not possible to draw inferences on the sequence merely from the 
percentages of students answering the questions correctly. To allow consideration of 
the growth, Table 2 presents the ratings of all students in November 1999. 
Table 2: Students (%) Coded at the Multiplication and Division Growth Points (November ‘99) 

 Prep 
(n=1257) 

Grade 1 
(n=1225) 

Grade 2 
(n=1170) 

Total 
(n=3652) 

Not apparent 26 8 2 12 
Counting group items as ones 27 12 6 16 

Modelling 44 73 61 59 
Abstracting 1 6 18 8 

Basic strategies + 0 2 14 5 
An indicator of the sequential nature of the growth points is the extent to which 
students progress from one point to subsequent points. Note that a better sense of the 
growth of the students can be gained by comparing Tables 1 and 2 than merely by 
comparing across grade levels within either table because the comparisons are 
between the same groups of students. 
At each of the three levels, students progressed through the growth points.  Few 
students in either Prep or Grade 1 progressed to Abstracting, and only one third of 
the Grade 2 students reached that point by the end of the year.  
The Abstracting Barrier 
The project team examined whether the conjectured growth points are sufficient to 
describe growth within each domain or whether more growth points are needed in 
between. One possible indicator of the need for an additional growth point could be 
that students take too long to move from one point to the next. It can be noted that 
the points as conjectured represent quite major growth stages since it takes the group, 
on average, just over 12 months to progress one growth point. 
Of a total of 3410 students, 841 were rated at Modelling in both March and 
November. This represents 24% of all students, and 70% of the students rated at 
Modelling in March were still rated at that level in November. This implies that these 
students were able to represent the Teddy cars question and skip count or use other 
multiplicative strategies for calculating the total, and to represent and solve the 
Sharing teddies task, but were not able to answer both the Dots task or Teddies at the 
movies in a non count-by-ones manner.  
Not only is the next growth point, Abstracting, an important goal for most students, it 
seems also to present a significant barrier. There are a number of components of this 



barrier. These could include the problem structure, the semantic subtlety of words 
like each and between, the calculation demand, and the need for the students to form 
some sort of mental image of the problem statement. 
To explore further the nature of the development needed between these two growth 
points, the following tables present some characteristics of the 841 students who 
were rated at Modelling in both March and November.  
One of the possible contributors to the barrier is the counting demand of the tasks. To 
examine this, Table 3 presents the responses of the students on the Counting growth 
points, from the same interview, for the 841 students rated as Modelling on the 
Multiplication and Division domain in both March and November.  

Table 3: The Modelling students (%) at each Counting growth point (n=841) 
 March November 

Not yet able to count to 20 1 0 
Can say number sequence to 20 2 0 

Can count a collection of 20 objects 50 13 
Counts forwards and backwards by 1s 19 7 

Counts from 0 by 2, 5, 10 26 54 
Count from x by 2, 5, 10 2 25 

These data suggest that over three quarters of these students are able to skip count 
and one quarter are able to skip count from variable starting points by November. 
While the Sharing teddies task prompts counting by 3, it seems that these Modelling 
students are able to calculate at a level sufficient for either the Dots task or Teddies 
at the movies. This suggests that the difficulty with those tasks may be related to the 
way the students interpreted the questions or their capacity to form the necessary 
mental images. To explore this further, Table 4 presents the growth points for 
Addition and Subtraction for these Modelling students. 

Table 4: The Modelling students (%) at each Addition and Subtraction growth point (n=841) 
 March November 

Not apparent 1 1 
Count all  27 5 
Count on  52 39 

Count back 18 42 
Basic strategies 2 12 

Derived strategies + 0 2 
To be rated at Count on, students find the total of nine teddies that are screened and 
four that are shown. This appears to require a similar imagining of the elements of 
the problem as the Dots task. Most of these Modelling students seemed able to do 
this. 
To be rated at Count back, the students answer two questions about subtraction 
situations posed as stories but not modelled (8 – 3; 12 – 9). This seems to require 
similar interpreting and imagining of the representation as the Teddies at the Movies 
task. Of the Modelling students, over one quarter were able to do this. 



It is possible that it is not so much the abstract dimension of the task, or the need to 
form some mental image, as it is the multiplicative conceptualisation that creates the 
barrier for these Modelling students.  In other words, it might not be imagining 
generally that is required, but imagining of particular multiplicative situations. 
A key issue, of course, is the extent to which the particular growth point Abstracting 
is defined and measured appropriately, and whether it has implications for teaching. 
On one hand, it is possible that there is an interim step between Modelling and 
Abstracting. On the other hand, it may be that the step is appropriate but the apparent 
barrier is as much an artefact of the curriculum and teaching approaches, or even that 
this is a single step but it takes time. 
There are two further investigations that are appropriate to explore these possibilities. 
The first of these relates to the nature of any interim steps between modelling and 
abstracting. In examining the questions, it seems that the two division questions 
represent the growth being posed by the framework. However the growth between 
the two multiplication questions might have provided some unintended hurdles.  
A second possible investigation relates to whether the issue is related to curriculum 
and teaching approaches. It appears that teachers do make a powerful difference. For 
each teacher, the number of students who moved from Modelling or below to 
Abstracting or above over the course of the year (March to November) was counted. 
Table 5 presents the number of students per grade, for just the straight Grade 2 
classes and the Grade 1 and 2 composites, who progressed beyond this Modelling 
barrier over the year.  

Table 5: Number of students per grade moving beyond Modelling 
Number of students Grade 1/2 classes Grade 2 classes 

Above 13 0 4 
11 or 12 0 0 
9 or 10 4 1 
7 or 8 5 3 
5 or 6 11 3 
3 or 4 15 3 
1 or 2 14 2 

0 4 0 
Clearly there is a broad spread. In some Grade 2 classes more than half of the 
students crossed the barrier, whereas in others it was only a few. It would be 
interesting to examine the approaches of the more successful of the teachers, in terms 
of the number of students progressing beyond Modelling, and whether this is a result 
of specific or intended actions on their part. Certainly these data suggest that the 
barrier is not impenetrable for students at these levels.  
Summary and Implications 
This paper reported one aspect of a project investigating the learning of mathematics 
in the early years of schooling. Data from individual interviews with over 3000 
students confirmed that the conjectured growth points in multiplication and division 



represent key stages or goals for students. It seems that the Abstracting growth point 
represents a significant barrier, and that, to achieve this growth point, students need 
to move towards solving problems without using physical models. Further, students 
may need experiences both with forming mental images to solve problems, as well as 
with various multiplicative situational contexts. For students who can solve 
multiplicative problems by modelling, some specific activities prompting 
visualisation of multiplicative situations, broadly defined in groups, and arrays, 
multiplicative comparisons and Cartesian products seem desirable (see Sullivan et al. 
(2000) for examples of such tasks). Tasks that explicitly remove the materials seem 
desirable as a first step. It also seems that some teachers are much more successful 
than others in terms of the number of students who cross the Abstracting barrier. 
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