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Abstract. This paper describes an in-depth investigation (through individual 
interviews) of the problem-solving processes of 12–16-year old pupils who 
improperly apply linear models when solving problems involving lengths, areas 
and volumes of similar plane figures and solids. The results showed that the 
linear model was used in a spontaneous and self-confident way by almost all 
pupils, and that these pupils were almost insensible to the confrontation with 
conflicting data. Furthermore, it was shown that the poor results were due to a 
bad understanding of the principles governing the enlargement (or reduction) of 
geometrical figures, to pupils’ inadaptive beliefs about and attitudes towards 
mathematical problem-solving, and to their poor use of heuristics and of 
metacognitive strategies. 
 

1. Theoretical and empirical background 
Pupils’ tendency to apply proportional or linear reasoning in non-proportional 
problem situations was already exemplarily described in several mathematical 
domains, such as elementary arithmetic, algebra, probability and geometry. 
Best-known in the domain of geometry and measurement is pupils’ improper 
application of linearity in problems about the relationships between the lengths 
and the area and/or volume of similarly enlarged or reduced figures. In the 
NCTM Standards, for instance, it is stated that “… most students in grades 5–8 
incorrectly believe that if the sides of a figure are doubled to produce a similar 
figure, the area and volume also will be doubled.” (NCTM, 1989, pp. 114–115). 
Gaining insight in the quadratic, respectively, cubic growth rates of areas and 
volumes, appears to be a slow and difficult process, and, therefore, it deserves 
our close attention, both from a phenomenological and a didactical point of 
view. According to Freudenthal (1983, p. 401), “this principle deserves (…) 
priority above algorithmic computations and applications of formulae because it 
deepens the insight and the rich context in the naive, scientific and social reality 
where it operates.” 
Recently, several studies have shown that – in the context of enlargements or 
reductions of plane figures and solids – the “illusion of proportionality” (or 
linearity) is a widespread and almost irresistible tendency among pupils (see, 
e.g., De Bock, Verschaffel & Janssens, 1998; De Bock, Verschaffel, Janssens & 
Claes, 2000). In these studies, large groups of 12–16-year old pupils were 



  

administered (under different experimental conditions) a written test consisting 
of proportional and non-proportional word problems about lengths, areas and/or 
volumes of different types of regular and irregular figures. The majority of the 
pupils in these studies failed on the non-proportional problems because of their 
alarmingly strong tendency to apply proportional reasoning “everywhere”. Even 
with considerable support (such as the provision of drawings, of metacognitive 
stimuli in the form of an introductory item accompanied with both a correct and 
an incorrect solution, or embedding the problems in an authentic problem 
context), only very few pupils appeared to make the shift to the correct non-
proportional reasoning.  
Despite our rather extensive knowledge about the phenomenon of the “illusion 
of linearity” in this domain, the research method used so far, namely 
administering a collective test of large groups of pupils under different 
experimental conditions, did not yield adequate information on the problem-
solving processes underlying improper proportional responses. This is one of the 
main reasons that the data could not provide a satisfying answer to the question 
why and how so many pupils fell into the “proportionality trap”. Therefore, we 
made a shift in our methodology by having exploratory in-depth interviews with 
individual pupils who fall into the “proportionality trap”. 
 
2. Method 

To obtain in-depth information about pupils’ problem-solving processes, semi-
standardized individual interviews were performed with eighteen 12–13-year 
olds and twenty-three 15–16-year olds. During Phase 1 of the interview, each 
pupil had to solve one non-proportional word problem from a set of problems 
involving irregular plane figures or solids. Previous research had shown that the 
vast majority of pupils from these age groups solves these problems in a 
proportional way. Below, we give two examples of such problems.  
 

 
By asking each pupil to “think aloud” (Ginsburg, Kossan, Schwartz & Swanson, 
1982) while solving the problem, we could retrieve (parts of) the solution 
process. The interviewer also asked well-specified questions to make (parts of) 
the reasoning process more transparent. The pupil was asked how (s)he exactly 

Problem with irregular plane figure Problem with irregular solid 
A publicity painter needs 5 ml paint to make 
a drawing of a 40 cm high Santa Claus on a 
store window. How much paint does he need 
to make a drawing of a Santa Claus with the 
same shape, but a height of 120 cm? 

In a perfume store, bottles of “Eau Fraîche” 
are sold. The bottles have a height of 8 cm 
and contain 10 cl perfume. In the store 
window, a publicity bottle is shown with the 
same shape, but enlarged, and also filled with 
“Eau Fraîche”. This bottle has a height of 
24 cm. How much perfume will this large 
bottle contain? 



  

calculated the answer, why (s)he thought his or her answer was correct, and how 
sure (s)he was about the correctness (using a five-point scale from “certainly 
wrong” to “certainly correct”).  
In Phase 2, we tried to raise a first, weak form of cognitive conflict by 
confronting the proportional reasoning pupils with a fictitious frequency table of 
the answers given by a group of peers. There were two major answer categories 
in this fictitious frequency table: 41% of the peers gave an incorrect, linear 
answer (i.e., respectively 15 ml and 30 cl in the examples given above), but 
another 41% gave the correct, non-linear answer (i.e., respectively, 45 ml and 
270 cl). Then, the pupil was asked to re-evaluate his or her own initial answer. 
If the pupil dit not change his or her answer, a stronger conflict was elicited in 
Phase 3 by giving the argumentation of a fictitious peer from the 41% who 
answered the problem correctly (e.g. in the first example: “one pupil told me 
that if the Santa Claus becomes three times as high but keeps the same shape, 
not only his height is multiplied by 3, also the width has to be multiplied by 3, so 
that you have to multiply by 9”). Again, the pupil was asked to re-evaluate his or 
her own answer. Pupils who had exchanged their original linear answer for the 
correct non-linear one in Phase 2 or 3, were interrogated at the end of the 
interview about the origin of their initial wrong answer. 
 
3. Results  
The table below presents the (cumulative) number of pupils who chose the 
correct answer in each phase. The tendency to give a linear answer was strongly 

present in both age groups. All pupils spontaneously gave the wrong linear 
answer. Even in Phase 2, only one pupil realised that his original answer was 
wrong. In Phase 3, finally, only another nine pupils changed their answer to the 
correct one, so that in sum only ten pupils (24%) accepted the non-linear answer 
as the correct one. Most of these pupils belonged to the older age group. We 
now will look at each phase in more detail. 
 

Phase 1: Solving the word problem 
The mean response time after the first confrontation with the word problem was 
one minute. During this minute, none of the pupils made a drawing or any other 
kind of external representation involving more than the three given numbers. 
They mainly read and re-read the problem, wrote down the numerical data, and 
performed calculations on these numbers to obtain the answer. Hereby, thirty-
seven pupils calculated the ratio of the given lengths of the two figures, and 
thought that the ratios of the areas or the volumes (or their indirect parameters: 

Age group N Phase 1 Phase 2 Phase 3 
12–13-year 18 0 0 3 
15–16-year 23 0 1 7 



  

paint or content) should be the same. Four pupils applied formally the so-called 
“rule of three”: first calculating “the amount of paint (or the content of the 
bottle) needed for 1 cm”, and then multiplying the result with the height of the 
large figure. The use of one of these strategies led all pupils to an improper 
linear answer, as expected on the basis of earlier studies by De Bock et al. 
(1998, 2000).  
Most pupils had great difficulties explaining why their method was the correct 
one. After insisting, most pupils (a) referred to the fact that their solution is the 
most logical one, (b) explained that they solved the problem as they had learned 
to do at school or (c) simply repeated how they carried out their computations. 
These superficial answers seem to indicate that pupils do not spontaneously 
check whether a model is applicable in a given situation or not. Pupils do not 
seem to have clear arguments justifying its use, or do not realise there are other 
possible models too. It seems that the linear model is used in an implicit, routine 
and mindless way.  
Despite this difficulty in justifying the correctness of their answers, most pupils 
were very or quite sure they were correct. Twenty-one pupils said their answer 
was “certainly correct”, fifteen said it was “probably correct” and only five “had 
no idea”. The alternatives “probably wrong” and “certainly wrong” were never 
chosen. If pupils had reasons to doubt about their solutions, these reasons were 
mainly superficial and general (e.g., “word problems are difficult”, “I am not 
good in math”, “I might have made a calculation mistake”). None of the 
argumentations expressed any doubt about the correctness of the applied model. 
 
Phase 2: Reactions to a weak form of cognitive conflict 
For the majority of the pupils, the confrontation with the frequency table really 
induced a cognitive conflict: they started wondering where the alternative 
frequently-chosen answer could come from. However, the search for its origin 
was done – again – in a very superficial way. The single pupil who made a 
drawing of the small and large figure in this phase, chose the correct answer, but 
all other pupils limited themselves to “randomly” trying out several 
combinations with the basic arithmetical operations (+, –, ×, :) and the given 
numbers to obtain the other answer, regardless of their contextual meaning (e.g., 
some pupils added 40 cm and 5 cl to obtain the alternative answer 45). Only in 
very rare cases, we observed pupils re-evaluating their own strategy, searching 
for the meaning of the alternative answer or representing the problem. The 
superficial strategies used by most pupils were not very helpful. All pupils 
(except for one of the oldest group) persisted in their original linear solution.  
A further deduction from the fact that the pupils did not immediately change 
their incorrect answer is that the mistake was not simply caused by an 
underestimation of the difficulty level of the word problem. In the latter case, 
the correct solution (strategy) would have been a sufficient scaffold to choose 
the correct answer.  



  

 
Phase 3: Reactions to a strong form of cognitive conflict 
In the third phase, another nine pupils (three of the youngest and six of the 
oldest age group) changed their incorrect answer into the correct one. 
Apparently, the given argumentation provided them the insight that, to maintain 
the same shape a figure has to be enlarged in all dimensions. The nine pupils 
who changed their answer were asked to explain why they originally gave the 
wrong linear solution. Their explanations referred to the fact that (1) they did not 
solve the problem in a reflective manner but immediately (a pupil called it 
“instinctively”) started calculating or (2) they had made no real mental 
representation of the problem, but just were fixating on the formulation of the 
word problem (which only referred to the height). 
The thirty-one pupils who still chose to withhold their original answer after the 
argumentation of the fictitious peer, made serious efforts to justify their choice. 
Their reactions were diverse, but can be grouped into three different categories 
(each covering about one third of the reactions). 
A first group of pupils justified their answer by referring to the implicit rules for 
solving school mathematics word problems. Often a simplistic view was shown, 
assuming that all word problems can be solved using simple mathematical 
calculations, and that real-world knowledge should not be involved in the 
solution process. Some examples are: “I think you don’t have to use such a 
complex solution to solve a word problem”, “you have to calculate only with the 
data that are given”, “if they wanted you to calculate the width too, they should 
have explicated that in the problem statement”.  
A second group of pupils violated the mathematical principles relevant to this 
problem. The first principle that is ignored or not understood is that if a figure is 
enlarged (or reduced) but maintains its shape, all dimensions (height, width and 
depth) are enlarged (or reduced) by the same factor. Some pupils reacted that 
“if you only know the height, you can’t know the width”, “height and with are 
not that much related to each other”, or “the width and depth will change too, 
but you cannot know how much”, and used these arguments to simply ignore 
that the width (and depth) also change and determine the solution. The second 
principle pupils seemed to struggle with is that if the linear measurements of a 
figure are enlarged (or reduced) by a factor k, its area is enlarged (or reduced) 
by k2 (and its volume by k3). Typical examples are: “the width is already 
incorporated in the small one, so it isn’t necessary to calculate it in for the big 
one again”, “the Santa Claus is not a spatial object where you have to calculate 
the volume, it is flat; consequently, only the height plays a role”, “I think 270 cl 
actually is quite a lot”. 
After being confronted with the argumentation for the correct solution, a third 
group of pupils tried to give an alternative interpretation to the word problem. 
As already said earlier, most pupils did not construct any mental representation 
about the problem before the third stage of the interview. Once they were 



  

confronted with an argumentation rejecting their answer, many pupils looked for 
an alternative interpretation in which their incorrect solution still would make 
sense: “the figure is stretched, only the height changes and the rest remains the 
same”, “if you make it higher, that doesn’t mean it becomes wider”, “it says 
with the same shape, so it only is a higher one, not wider or deeper”. We cannot 
absolutely exclude that some pupils may have held this alternative interpretation 
of the problem situation already earlier during the interview, but our data 
indicate that they form only a small minority. Moreover, when the interviewer 
confronted pupils with the concrete consequences of their alternative 
interpretation (by means of a drawing or a description) most pupils admitted the 
strangeness of it (e.g. a very high but narrow Santa Claus, a copy of a perfume 
bottle that isn’t really a copy with the same design). Analogous defensive 
reactions of students, who try to withhold an original erroneous answer, even if 
they realise this answer is untenable, have also been observed in other studies. 
E.g. Verschaffel, De Corte and Vierstraete report that pupils “tirelessly came up 
with contextual considerations in which their unrealistic response would still 
hold. (…) These far-fetched context-based considerations were (…) only made 
during the whole class discussions by pupils who became aware their group had 
answered the problem in an uncritical, stereotyped manner” (Verschaffel, De 
Corte & Vierstraete, 1997, p. 595).  
 
4. Conclusions and discussion 

The interviews provided a lot of information about the actual process of 
problem-solving from pupils falling into the “proportionality trap” and the 
mechanisms behind it.  
First of all, several possible causes were rejected by the research data. From the 
collective tests (De Bock et al., 1998, 2000), it was impossible to find out (1) 
whether pupils gave the wrong linear answer reluctantly by lack of a better 
alternative or (2) whether pupils gave the wrong linear answer because of the 
expectation that the test would contain routine tasks only. We think both 
possible explanations can be refuted, the first one because most pupils declared 
to be sure about their initial incorrect answer, the second one since the 
confrontation with the correct solution (even with an accompanying 
explanation) was not sufficient to make them change their answer. 
Second, there is a parallel between the problem-solving processes observed in 
the first phase of the interview and the “intuitive rules” theory developed by 
Tirosh and Stavy (1999). These authors claim that there are some common, 
intuitive rules that come in action when students solve problems in mathematics 
and sciences. These rules appear to be self-evident (i.e. true without a need for 
further justification), receive great confidence, and are persistent despite formal 
learning. All these characteristics seem to apply to the incorrect reasonings of 
the interviewed pupils too. More specifically, Tirosh and Stavy have 
distinguished two schemes that (whether correct or not) frequently come in 



  

action in an intuitive way: “Same A – same B” (while in fact A1 = A2, but 
sometimes B1 ≠ B2) and “More A – more B” (while in fact A1 < A2, but 
sometimes B1 ≥ B2). In our case, pupils seem to apply first the “More A – 
more B” rule (which is correct for this problem: the more height, the more 
area/volume). The mistake happens, however, during the intuitive quantification 
when applying the “Same A – same B” rule: pupils reason that the figures share 
the same shape, so all measures (length, area and/or volume) enlarge by the 
same factor. This is illustrated in the following quotations: “I knew it was 
enlarged, but not how much, so I calculated 180 : 60 and then I knew the 
multiplier”, “because the picture becomes larger, you need more paint, so you 
have to multiply by 3”, “it has the same shape, but is enlarged, so you have to 
multiply the content by the same number”. The specific connection between the 
“illusion of linearity” and the “intuitive rules” theory certainly needs further 
investigation.  
Third, we found that many pupils (as well the younger as the older ones) 
struggled with the principles behind the enlargement of figures/objects and the 
relationship between length and area/volume. They had already learned these 
principles in school, but nevertheless they seemed to have a bad or weak 
understanding of them, or at least they were not able to apply them correctly. 
Further research should determine whether the struggling really is a cause of the 
mistakes or rather that pupils post hoc violate the principles in a self-defensive 
attempt to save their original answer. The same goes for the alternative 
interpretations some pupils gave to the word problem after they heard the 
interpretation for the correct answer. Some pupils may have had it in advance, 
but most of them had made no real representation of the problem until the third 
phase. 
We want to argue that the described findings are also related to the fact 
(supported by a vast amount of research, see, e.g., Verschaffel, Greer & De 
Corte, 2000; Wyndhamn & Säljö, 1997) that many pupils have inadaptive 
beliefs and attitudes towards mathematical problem-solving, and have a poor use 
of heuristics and metacognitive strategies. The intuitive reasoning in the first 
phase and the small impact of the conflict in the second and third phase only 
could occur because the pupils approached the word problem in a superficial 
way, only looking at the numbers without making a clear and realistic problem 
representation, assuming that all application problems can be solved with some 
simple mathematical operations on the given numbers, and without any control 
of the correctness of their answer afterwards. Further research will have to 
evidence if stimulating realistic modelling in pupils has a beneficial impact on 
overcoming the “illusion of linearity’1. 

                                                 
1 We found some evidence for this supposition since we asked several pupils – after the 
interviews were finished – to make a drawing for the word problem. At that moment, nearly 
all of them then really “discovered” that a figure with the same shape must enlarge in all 
dimensions, so that the area/volume enlarge by a larger factor. 
 



  

A final remark concerns the educational value of the cognitive conflict to 
enhance pupils’ metacognitive awareness or to provoke cognitive change (see, 
e.g., Forman & Cazden, 1985). Our experiences show that it is very difficult to 
induce an effective cognitive conflict in pupils if they have no minimum 
metacognitive awareness about their problem solving process. 
 
Note 
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