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We take abstraction to be an activity of vertically reorganising previously 
constructed mathematical knowledge into a new structure. Abstraction is thus 
a context dependent process. During group work, peer interaction is an 
important component of the context. In a previous publication, we proposed a 
model for processes of abstraction. The model is operational in that its 
components are observable epistemic actions. Here we use the model to 
analyse an interview with a pair of grade seven boys collaboratively 
constructing an algebraic proof. The analysis of the interview reveals subtle 
links between the abstraction process and the peer interaction. 
Abstraction is a central process in learning mathematics; however, it is 

notoriously difficult to observe. In a previous paper (Hershkowitz, Schwarz & 
Dreyfus, 2001, referred to below as HSD), we have proposed a model for abstraction 
that is operational in the sense that its components are three observable epistemic 
actions. The model considers abstraction as a process occurring in context. Although 
our outlook is theoretical, our thinking about abstraction has emerged from the 
analysis of experimental data from the CompuMath curriculum development project 
(Hershkowitz & Schwarz, 1997). Group work in a computer-rich environment is a 
prominent feature of CompuMath and thus part of the context for the processes of 
abstraction we observe. In this paper, we briefly review our definition and model of 
abstraction (see HSD for a more detailed description), and illustrate them by means 
of processes of abstraction by an interacting pair of students working on an algebra 
problem with a spreadsheet. 

Mathematics educators have proposed that abstraction consist in focusing on 
some distinguished properties and relationships of a set of objects rather than on the 
objects themselves. Abstraction is thus a process of decontextualization. According to 
Davydov (1972/1990), on the other hand, abstraction starts from an initial, 
undeveloped form and ends with a consistent and elaborate final form. Similarly, 
Ohlsson and Lehtinen (1997) see the cognitive mechanism of abstraction as the 
assembly of existing ideas into more complex ones. Noss and Hoyles (1996) go even 
further. They situate abstraction in relation to the conceptual resources students have 
at their disposal and see it as attuning practices from previous contexts to new ones. 
Therefore, according to Noss and Hoyles, students do not detach from concrete 
referents at all. Leaning on ideas of these and other authors, we define abstraction as 
an activity of vertically reorganising previously constructed mathematical knowledge 
into a new structure. The use of the term activity in our definition of abstraction is 
intentional. The term is directly borrowed from Activity Theory (Leont’ev, 1981) and 
emphasises that actions occur in a social and historical context. The reorganisation of 
knowledge is achieved by means of actions on mental (or material) objects. Such 



reorganisation is called vertical (Treffers and Goffree, 1985), if new connections are 
established, thus integrating the knowledge and making it more profound. 

According to this definition, abstraction is not an objective, universal process but 
depends strongly on context, on the history of the participants, on their interactions, 
and on artefacts available to them. As abstraction is an activity consisting of actions, 
our research included the identification of actions involved in abstraction. We 
focussed on epistemic actions, that is actions relating to the acquisition of knowledge 
(Pontecorvo & Girardet, 1993). In many social contexts, such as small group problem 
solving, participants’ verbalisations may attest to epistemic actions thus making them 
observable. The three epistemic actions we identified as related to processes of 
abstraction are Recognising, Building-With and Constructing, or RBC. 

Constructing is the central step of abstraction. It consists of assembling 
knowledge artefacts to produce a new structure to which the participants become 
acquainted. Recognising a familiar mathematical structure occurs when a student 
realises that the structure is inherent in a given mathematical situation. The process of 
recognising involves appeal to an outcome of a previous action and expressing that it 
is similar (by analogy), or that it fits (by specialisation). Building-With consists of 
combining existing artefacts in order to satisfy a goal such as solving a problem or 
justifying a statement. The same task may thus lead to building-with by one student 
but to constructing by another, depending on the student’s personal history, and more 
specifically on whether or not the required artefacts are at the student’s disposal. 
Another important difference between constructing and building-with lies in the 
relationship of the action to the motive driving the activity: In building-with 
structures, the goal is attained by using knowledge that was previously acquired or 
constructed. In constructing, the process itself, namely the construction or 
restructuring of knowledge is often the goal of the activity; and even if it is not, it is 
indispensable for attaining the goal. The goals students have (or are given) thus 
strongly influence whether they build-with or construct. 

The three epistemic actions are the elements of a model, called the dynamically 
nested RBC model of abstraction. According to this model, constructing incorporates 
the other two epistemic actions in such a way that building-with actions are nested in 
constructing actions and recognising actions are nested in building-with actions and 
in constructing actions. The genesis of an abstraction passes through (a) a need for a 
new structure; (b) the construction of a new abstract entity; (c) the consolidation of 
the abstract entity through repeated recognition of the new structure and building-
with it in further activities with increasing ease. We have argued in HSD that this 
model fits the genesis of abstract scientific concepts acquired in activities designed 
for the special purpose of learning. In such activities the participants create a new 
structure that gives a different perspective on previous knowledge. The model is 
operational: It allows the researchers to identify processes of abstraction by observing 
the epistemic actions and the manner in which they are nested within each other. 



In the remainder of this paper, we will illustrate the model and its use for studying 
processes of abstraction by an interacting pair of students.  For this purpose, we focus 
on a pair of grade 7 boys who will be identified as Yo and Ra, or collectively as 
Yo&Ra. These students’ CompuMath algebra curriculum consisted of a sequence of 
activities, most of them with a spreadsheet, in which they learned to use algebra and 
the spreadsheet to express generality. On the other hand, they were not asked to 
justify general properties by using algebraic manipulation. The students usually 
worked in pairs. In an interview situation, Yo&Ra were presented with an activity 
that presented a definite potential for abstraction to them. The activity was designed 
for students from whom the use of algebra for proving properties could possibly be 
expected but who had never actually done it. The activity was intended to lead 
students into a situation, in which they felt the need to justify a property whose proof 
requires algebraic manipulation. Students were asked to investigate properties of 
rectangles of same type as the following ones: 
 

7 13 
9 15 

 
3 9 
5 11  

After creating (in the spreadsheet) a ‘seal’ that generates such rectangles upon input 
of any number into the upper left cell, and after discovering and investigating 
properties of such rectangles, students’ attention was drawn to the difference between 
the products of the diagonals. When they claimed that this difference equals 12 for all 
such rectangles (the diagonal product property or DPP), they were asked to justify 
their claim. The easiest way of justifying the DPP is to use algebraic manipulation 
and compare X(X+8) (the expression for the main diagonal) to (X+6)(X+2) (the 
expression for the secondary diagonal). While reorganising their knowledge so as to 
arrive at a proof of the DPP, this activity presented two opportunities for abstraction 
to the students. The first such opportunity is the construction of the extended 
distributive law (a+b)(c+d)=ac+ad+bc+bd: The students had never used that law yet 
but needed it in the present activity to transform the expression for the secondary 
diagonal.  The second opportunity for abstraction more global in that it concerns the 
entire proof task, namely the establishment of the general perspective that algebra can 
serve as a tool for the justification of general properties. 

In order to study abstraction by interacting pairs of students one needs to study 
simultaneous cognitive and social processes. For this purpose, we videotaped and 
transcribed Yo&Ra's work on the seals activity and then carried out two analyses of 
the interview protocols, one that analyses the cognition and one that analyses the 
interaction. Our aim was not to give precedence to either of these analyses, but to 
carry them out as independently from each other as feasible, and then to compare the 
resulting patterns.  

We first produced a coarse segmentation of the protocol into cognitive segments. 
Next, we proceeded to two independent analyses. On the one hand, we identified 



interaction patterns between the peers. We categorised the students’ conversational 
moves according to their function into six categories to be discussed below. On the 
other hand, we closely followed the methodology we used in HSD for the 
identification of the students’ epistemic actions. For pairs of students, this 
identification poses problems, which were not present in the previous study. Because 
of the subjectivity of the epistemic actions, what is constructing for one student may 
be building-with or recognising for the other. We classified such cases as 
constructing for the pair. 

Yo&Ra began by generalising the pattern of the seal so that the spreadsheet 
produces the entire seal from the left upper cell. When asked to find properties of the 
seal, they found many simple ones and some more complex ones. In particular, they 
found the DPP and verified it inductively by substituting numbers in the left upper 
cell of the generalised seal. When asked to justify the DPP, they produced, after some 
difficulties, the algebraic expressions X(X+8) and (X+2)(X+6) for the diagonal 
products. They were unable to progress further because they faced the algebraic 
obstacle of comparing these expressions. The interviewer's suggestion to end the 
interview triggered the segment Y263-R290, transcribed below, and three more 
segments, which together constitute a justification of the DPP. 

Yo263 Oh, I know: You can do the distributive law here. 
Int264 Yes. 
Yo265 X times 8 plus X times X ... 
Int266 Yes. 
Yo267 Here one can do … 
Int268 Here I’ll write X times 8 … 
Yo269 Yes, plus … 
Int270 Plus X times X, yes? 
Yo271 Now, here one can do X times X … 
Ra272 …plus X times  
Yo273 … plus X times 6 plus 2 times X plus 2 times 6. 
Ra274 Why? You are using too many factors! 
Yo275 No, it’s OK. 
Int276 Yes [writes], don’t you agree? 
Ra277 No, there are too many factors! 
Yo278 It’s correct! 
Ra279 We already used the …, I don’t understand what the 8 is for, first of 

all 
Int280 This? 
Ra281 Yes! 
Int282 Ah, yes! 
Ra283 We have X times X … 
Int284 Yes! 
Ra285 plus X times 6, and then the normal continuation will be X times 2. 



Int286 X times 2, OK! 
Yo287 Why X times 2? 
Ra288 Because I go according to how you do it, then this is X times X, X 

times 6, X times 2... 
Yo289 No, this is X plus 2. Look, you do, this is the distributive law, and you 

do X times X plus X times 6; now you pass to the 2; 2 times X and 2 
times 6. 

Ra290 Ah, logical!  I got it. 
Because of space limitations, we analyse only this segment in the present paper, 

although some of the conclusions we will draw will be partially based on other 
segments as well.  Our main tools of analysis are presented in the following figure: 
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The analysis will be presented in three stages: Interaction patterns, epistemic 
actions, and relationships between them. 

Interaction patterns: At the beginning of the interview Yo and Ra both have the 
mathematical curiosity and the drive to complete the mathematical activity. In 
addition, each of them is conscious about his mathematical potential, and likes it to be 
seen by the other and by the interviewer and even the future video observers. At the 
same time each of them is quite aware of his friend’s mathematical ability. Both 
students are assertive and try to convince the other from time to time. 

Details of the interaction patterns in this segment are coded in the central part of 
Figure 1. They show an interaction pattern that is very typical for Yo&Ra. Although 
the “seen interaction” indicates mostly individual work done by each student, the 
conclusions are at the end agreed on by both of them. A thorough analysis suggests a 
quite intensive type of interaction between them: In 263, Yo makes a proposal 
(category 1) that he elaborates step by step (category 2), while Ra is silent but follows 
very carefully the proposal and the elaboration. Then (274) Ra starts his elaboration 
of the same proposal by opposing it (category 4). This opposition expresses his 
struggle to understand the elaboration, which Yo just completed. Only then Ra 
elaborates it at his own speed. He completes this process by expressing his agreement 
with the process (290). During Ra’s elaboration Yo is silent. Each of them has the 
need to elaborate a given idea in his own way. By remaining silent for a while, each 
student respects his peer’s need. But both of them reach a point where they refer 
explicitly to the other’s elaboration and criticise it, until they reach an agreement 
(category 5). This agreement appears within a collaborative explanation (category 3) 
of the original claim (Y263, as elaborated in Y273). 

Epistemic actions of abstraction: In HSD we showed that constructing is a 
combination of the three epistemic actions where recognising actions are nested in the 
two others, and building-with actions are nested in constructing actions. Here, we 
show that the nested model is even more intricate. The constructing action may be 
quite long and contain shorter segments, which themselves are constructing actions. 
For example, in the case of Yo&Ra the main constructing action (which we will 
name C1) occurs along the entire justification process, and includes the construction 
of the extended distributive law (which we will name C2, see the right side of the 
Figure). C2 is nested in C1. Building-with and recognising actions are nested in C1 as 
well as in C2. In other words, constructing actions, like building-with and recognising 
actions, may be nested in a more global constructing action. 

The Figure (right hand side) describes the model for our segment. Level 1 
represents the whole process of C1 (only part of it can be seen in this segment), in 
which the epistemic actions of level 2 are nested. In the present segment, all level 2 
actions are constructing actions (C2). In other segments, building-with and 
recognising actions also occur at level 2.  



The construction of the extended distributive law starts with Yo’s breakthrough 
suggestion to use the distributive law. The students both recognise the structure of the 
expression X(X+8) as appropriate to apply the (simple) distributive law. Yo then 
builds-with the elements of (X+6)(X+2) and obtains the correct expansion (Y273); in 
other words, he constructs the expanded distributive law. Although he makes no 
explicit reference to the simple law, we surmise that the immediately preceding use of 
the simple law has guided him in building the more complex expression. Now Ra 
takes over. After being momentarily confused by the many addends, he goes through 
the same constructing process Yo went through, step by step building up the 
expanded law with the elements of the expression (X+6)(X+2). This lower level (C2) 
construction does not occur in the void but as a crucial part of the justification of the 
DPP. It is therefore nested in the higher-level (C1) construction of the algebraic 
justification of the DPP. 

From the beginning of their struggle to construct the DPP justification, the 
students are at the level of the C1 construction. On this C1 level their progress is 
controlled and monitored by their awareness and their need to accomplish the DPP 
justification. During this process, they face algebraic obstacles, which are quite 
unfamiliar to them. Overcoming these obstacles necessitates the construction of new 
mathematical structures, which are the C2 level constructions. These C2 constructions 
are controlled only indirectly by the motive of the C1 construction. The students enter 
these C2 level “adventures” without any knowledge about the needed mathematical 
structures, and they have to discover as well as to construct them. The C2 
constructions thus make the C1 level into a deep holistic construction, which goes 
beyond the specific construction of the DPP justification, and in which the 
constructions of unfamiliar algebraic structures are nested. In this sense C1 is an 
activity of vertically reorganising previously constructed mathematical knowledge 
into a new mathematical structure, which fits our definition of abstraction. 

Relationships between epistemic actions and interaction patterns: The Yo&Ra 
interview is a case of collaboration between the two students. This collaboration finds 
its expression in the students’ cognitive RBC actions on one hand and in their pattern 
of interaction on the other hand. The RBC flow and the flow of the interaction 
patterns are developing in parallel. There are no clear causal relationships between 
the two of them. It rather seems that both of them are different “indications” of the 
single collaborative process revealed in the interview. Our understanding of this 
process is dependent on our understanding of both, the RBC flow and the interaction 
patterns, as well as the relationships between them. In the following we will try to 
throw some light on these relationships. 

Globally, Yo&Ra share the activity, because they share the motives of searching 
for the mathematical properties of the “seals” and of justifying these properties; they 
also share the justification processes themselves, as well as their conclusions. We 
claim that the students constructed a global structure of meaning for algebraic 
justification (the C1 action, which can be seen only partially in this paper). From the 



interaction perspective, there are long-range control (category 1) and explanation 
(category 3) arrows that can be considered as the “glue” that ties this justification 
process together. The diagram of the entire process reveals that these long-range 
interaction arrows are connected to the beginning and/or end of the main cognitive 
segments.  The part of the diagram in the figure of this paper shows a category 1 
arrow emanating from the beginning of the segment to an earlier segment, and a 
category 3 arrow concluding this segment. 

Hence, long-range interactions occur between statements that are milestones in 
the RBC flow. In this sense the interaction pattern has nesting characteristics similar 
to the RBC flow, where various patterns of interaction are nested in the overall global 
collaboration. And the cutting edges of the interaction patterns are those that at the 
same time define the different segments of the RBC flow. In other words, the 
cognitive segmentation we started out from fits the interaction as well. 
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