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This report considers the appropriateness of modelling and of a radical situated
paradigm for working out advanced (non-intuitively obvious) mathematical tasks in
work contexts. A case study of vocational school students and expert practitioners
solving geometry problems in a computer-drafting context indicates that neither of
these paradigms is appropriate. For the students school mathematics and drafting
context are, above all, important as frames of reference. The practitioners do employ
school mathematics but their way of mathematising undergoes a complex
transformation that cannot be simply explained by either paradigm and which
requires further conceptualisation and research.

INTRODUCTION

The relation between school and out-of-school mathematics is an important issue
which has been the object of many research studies. The apparently self-evident idea
that mathematical knowledge, learnt at school, is simply applied in out-of-school
practices via some sort of mathematical modelling is more of a myth than a matter of
empirical observation (Bishop, 1988, p. 8). Situated cognition and related theories
have pointed to a marked discontinuity between school and out-of-school practices
(Lave, 1988). In short, mathematical practices in specific activities, e.g. in work or
buying context, were found to have 'little' in common with school-learnt
mathematics. Many studies (e.g. Masingila, 1993; Millroy, 1992; Scribner, 1984)
have confirmed that contextual activities impose many conventions, social and
activity-related constraints, indeed, different conceptualisations of apparently purely
mathematical problems, and that practitioners, as they solve such problems, do not
base their mathematical reasoning on school-learnt knowledge.

In this report I present a self-contained part of a recently completed broader study
about geometric thinking in an out-of-school context. The research was motivated by
the observation that studies about the discontinuity between school and out-of-school
mathematics considered mathematical practices where it would hardly make sense to
use school-learnt procedures, for they are either ineffective or the problems are too
complicated to be solved by analytical means or they are so simple that the solutions
can be easily learnt from peers or can be even self-invented. The research considers
the situated vs. modelling dichotomy in activities and situations where advanced (i.e.
non-intuitively obvious) school-like mathematical knowledge could be profitably
applied. Several aspects of the situated vs. modelling paradigm of mathematisation in
out-of-school contexts are examined: the mathematical actions in activities (Magajna
& Monaghan, 1998), learning mathematical concepts in activities (Magajna, 1999),
and mathematical reasoning in activities. In this report I focus on the last issue: how
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do people reason when they solve non-trivial geometric problems which arise in the
case of designing geometric shapes on computers using professional software for
computer aided design (CAD). In particular I consider the following questions:

1. Do practitioners in working out geometric problems (where school
mathematical knowledge can be profitably used) switch to school mathematics
by using some sort of modelling or do they stick to activity practices?

2. Do practitioners, as they solve geometric problems in context, take into
consideration, in any way, the context (e.g. the available tools, allowed ways
of working, the required precision)?

3. How does personal mathematical knowledge and work expertise reflect in the
way practitioners work out geometric problems in activity?

METHODOLOGY

The research questions were explored in two activities closely related to computer
technical drafting: designing moulds for glass containers (a work activity) and
learning computer-drafting in a school for machine technicians (a school-learning
activity). Since the aim of the study was to find cases of qualitatively different ways
of mathematical reasoning in context the participants were purposefully selected
from those that took part in the broader research. In this part of the research eight
participants were studied as they solved problems given in a computer-drafting
context. Two of the participants were machine technicians with six and 15 years of
experience, selected from a group of six designers and technologists in a small
mould-making factory in Slovenia. As part of the broader research the group was
studied using several techniques (interviews, ethnographic observations, scheduled
observations, document analysis). The other six participants were selected from a
class of 22 students, aged 18, from a vocational school of machine technicians in
Slovenia. The students attended a computer-drafting course, which lasted several
months (two hours per week) and were observed as part of the broader research. The
six participants were selected on the basis of a special filtering procedure aimed at
selecting students that avoid and students that are inclined to use non-intuitively
obvious ideas in computer-drafting.

The participants' reasoning in solving geometric problems was studied by analysing
verbal protocols of participants’ speech as they solved geometric tasks in a drafting
context under think-aloud instructions. In simple terms, the method consists in
recording and analysing the vocalisations of subjects who work out a task and
simultaneously talk, i.e. they are verbalising what is 'going through their mind' as
they work on a task. More details about the method are in (Ericsson & Simon, 1985).

Each of the eight participants was asked to work out, under think-aloud instruction,
3-6 drafting tasks which contained non-trivial geometric problems. Figure 1 shows
two examples of such tasks. The participants worked in front of a computer using the
drafting program they commonly used. Their utterances (while thinking aloud) were
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tape-recorded, and their hand-sketched and computer drafts were also recorded. The
protocols were literarily transcribed and segmented using easily applicable criteria of
pauses between thoughts and the timing of each segment was measured.

Task 3. From a CAD you have imported Task 6. On your CAD you have got a
a shape representing a 5 mm thick metal drawing, like shown  below,
plate to be milled. representing two separate pieces to
be machined. Your task is to find out
whether you should machine two
copies of the same piece or should
you machine two different pieces.

Your task is to find out whether the plate
was designed as a perfect rectangle.

Figure 1. Two examples of tasks used for verbal protocols.

ANALYSING THE PROTOCOLS AND RESULTS

Of the eight selected participants one was not able to think aloud. The other seven
participants solved altogether 32 geometric problems. The recorded protocols gave
rise to 2843 segments, 773 of which were excluded from further consideration
because were not directly related to the solved problems (e.g. comments on saving
files to the computer disk). The analysis proceeded along two directions: a
qualitative analysis of the solutions of the tasks, based on clustering techniques, and
a quantitative analysis of the protocols, which is described below.
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Figure 2. The assumed processes in reasoning.
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The quantitative analysis of the protocols has to be considered to be exploratory
because of the small number of observed tasks and because of the fact that the
participants were purposefully selected. In the analysis two elements were
considered: 1. the cognitive processes during the problem solving, and 2. the context
(school mathematics or computer-drafting) to which the participants were referring
while solving the tasks. The cognitive processes were analysed using a cognitive
model, based on Saxe’s (1991, p. 16-23) description of cognition. Figure 2 shows a
simplified schema, derived from the model. The related categories used for coding
the protocol segments are listed in Table 1.

Category Description of segments

Context Referring to the problem at a meta-level, e.g. any reference to drafting
or school-learning activity, tools, artefacts, conventions, or social
relations.

Ignored Making statements related to the problem but not to the solving process,
e.g. students' utterances solicited by experimenter for clarification.

Orient Looking for a goal or method; stating given, observed or inferred facts;
quoting facts or methods without relating them to the worked task.

Select Selecting, declaring, naming a goal or method with the expressed
intention to work on it or to consider it as a possible direction of work.

Execute Executing a method either mentally, on paper or on computer.

Validate Checking whether the selected goal or method would lead to the desired

result, e.g. expressing arguments, questions or confirmations about the
correctness or appropriateness of a goal or method.

Table 1. Categories related to the assumed cognitive model.

The assumed cognitive model and the categorisation were satisfactory in the sense
that the segments could be reliably coded and reasonably followed the flow from
Figure 2. For example, the segments from the Orient category were followed by
another Orient segment in 61% of cases, by a Select segment in 15% of cases, by an
Execute segment in only 6% of cases and by a Validate segment in 3% of cases.

Another categorisation of the segments of the verbal protocols, shown in Table 2,
was related to the important issue of whether participants, in solving a geometric
problem in a drafting context, were ‘reasoning’ in terms of school mathematics or in
terms of contextual (drafting) activity. It was initially envisaged that it would be
extremely difficult, if not impossible, to determine whether someone is referring to
one or another context but this was not the case because there are concepts and
operations in computer-drafting that are very unusual or not even meaningful in
school-geometry context (e.g. setting the snap interval of the computer mouse — an
important issue in defining geometric entities in computer-drafting) and vice versa
(e.g. quoting a theorem or writing down an equation). However, in most cases the
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segments are meaningful in both contexts (e.g. measuring a distance or drawing a
line segment). It was fortunate that the participants were thinking aloud in Slovenian
while the software they were using was in English, so that it was easy to identify
segments that certainly referred to drafting commands on computer.

Category Description of segments

Context Referring to the problem at a meta-level, e.g. any reference to drafting or
school-learning activity, tools, artefacts, conventions, or social relations.

Ignored Making statements related to the problem but not to the solving process,
e.g. students' utterances solicited by experimenter for clarification.

School Referring to geometry related ideas which are clearly not meaningful or

geometry common in computer-drafting activity and which are clearly not related

to any computer (drafting) command.

Unclear Referring to geometry related ideas that are meaningful in the context of
school geometry as well as in relation to computer-drafting.

Drafting Referring to geometry related ideas that are clearly not meaningful in the
context of school geometry.

Table 2. Categories related to the context of thinking.

Here is a brief summary of the results of the (exploratory) quantitative analysis of the
32 geometric tasks. Recall that the tasks were solved by eight participants (one of
which was not able to think aloud). The quantitative and qualitative analysis of the
protocols (as well as other performances not considered in this report) indicated that
the participants clearly split into three groups: the two expert practitioners (the
WORK group), three students that avoided using advanced mathematics (the CAD
group), and two students that showed a preference for applying advanced
mathematics in drafting context (the GEO group). The unit of analysis used in
comparing the three groups was the solved task. For each solved task the fractions of
time spent in each category related to cognitive processes was computed (and
similarly for categories related to contexts). To determine significant differences in
the distributions of codes between tasks worked out in the three groups a one way
ANOVA was performed for each code. The results are presented in Table 3. From
the table it can be read, for example, that validation took on average 16% of time for
the students from the CAD group, on average 13% of time for the students of the
GEO group, and on average 21% of time for the participants of the WORK group.
The value p (p=0.297>0.05) indicates that in this respect the groups do not differ
significantly. From Table 3 it is evident that the three groups do not significantly
differ with respect to the assumed cognitive model. However, the participants from
the three groups behaved quite differently regarding the context they referred to as
they were solving the tasks.
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Common Cognitive model Context of thinking

Group Context | Ignore | Orient | Select | Exe | Vali | Draft | Unc | Sch
(Tasks) cute | date lear | ool
All (32) 1% 13% 23% | 10% | 35% | 17% | 27% | 50% | &%

CAD (13) 2% 16% | 20% 9% | 37% | 16% | 40% | 40% | 2%

GEO ®) 0% 15% 26% | 12% | 34% | 13% | 25% | 50% | 10%

WORK (11) 2% 9% 24% | 10% | 34% | 21% | 13% | 63% | 13%

Significance p 0.475 | 0.387 | 0.687 | 0.609 | 0.949 | 0.297 | 0.004 | 0.031 | 0.119

Table 3. Average fractions of time per task spent by participants of different groups in
categories related to cognitive model and the categories related to context of thinking.

DISCUSSION OF THE RESULTS

School mathematics in drafting context. In spite of the fact that in drafting activity
procedures tend to be routinised and, for the sake of productivity, reduced to push-
button operations, some students and practitioners use methods and reasoning
patterns similar to those commonly found in school mathematics. A practitioner, for
example, solved Task 3 (see Figure 1) by measuring the lengths of both diagonals:
since they were not congruent, he deduced that the quadrangle is not a rectangle.
Practitioners and some students also wrote down equations containing trigonometry
functions or ratios related to similar triangles and tried to solve them. In general, the
students from the GEO group and the practitioners from the WORK group did not
hesitate to draw attention away from the computer drawing and to study the
geometric properties of the figures. In contrast, the students from the CAD group, in
general, tried to solve the problems by looking for appropriate computer commands.
Though the tasks were set in computer-drafting context, some participants did not
automatically stick to the computer-drafting practices.

The role of the context. The practitioners very sporadically mentioned anything
about context. Altogether they spent only 1% of time on segments anyhow related to
the contextual activity, this occurred mostly when they were stuck. The fact that the
participants did not reason about the context at the beginning of the task (and
similarly not at the end of the tasks) by itself indicates that they their way of working
out geometric tasks was not based on mathematical modelling.

Though the participants spent very little time considering anything related to the
context, the context played an essential role in solving geometric problems. The
students from the GEO group evidently placed the task immediately (without even
thinking about it) in school-geometry context, and similarly the students form the
CAD group placed the tasks in drafting context. The students from the GEO group
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spent significantly less time in drafting considerations (e.g. looking for an
appropriate command, working on a command) and used more advanced
mathematical ideas than the students from the CAD group. This indicates that, for
students (novices), the context serves as a frame of reference in making sense of a
task and in indicating the way of working out the task. Though the tasks were given
in a drafting context, some students perceived them as ‘purely’ mathematical tasks to
be solved with mathematical means, and some perceived them as drafting tasks to be
solved with techniques specific to the used software or activity. Typically, the
students from CAD group solved Task 3 by interactively rotating the figure to an
almost horizontal position and reasoning about whether the line segments are parallel
on the basis of the discontinuities of lines due to the resolution of computer display.

Expert practitioners regarded the context quite differently than the students. On one
hand they had considered the broad context of the task — in solving Task 6 (see
Figure 1) a practitioner, for example, asked whether the shapes have to be milled
from inside or from outside and he mentioned what one should take care of when
positioning the workpieces on the milling machine. On the other hand, though the
practitioners claimed they had forgotten all mathematics they learnt in school, in
solving the tasks the mathematics they used was much richer than even those of the
students from the GEO group. They used trigonometry, wrote equations and made
non-trivial deductions. This apparently paradoxical behaviour is perhaps due to two
causes. First, the practitioners spent very little time on drafting considerations (see
Table 3), for they used the software in a very fluent, almost automatised way. The
fluency in managing the activity-related apparatus seems to be a necessary condition
for ‘advanced mathematical reasoning’ in other activities. Second, compared to the
students, the two participants used many mathematical ideas and procedures similar
to those found in school classes even though they did not perceive these to be
mathematical. T hypothesise that, as participants join an activity, their mathematical
knowledge undergoes a transformation. Apparently, on one hand their visible
mathematics reduces to some more or less routinised practices, but on the other they
learn to relate school mathematics to the activity environment, how to ‘reason
mathematically’ using the structural resources found in their activity and how to
govern their mathematical thinking by the contextual activity.

Individual differences in solving mathematical tasks in context. One of the aims
of the research was to point to different ways of using school mathematics and
activity-related knowledge in solving mathematical tasks that occur in other
activities. The most important differences in this respect have been considered
above, but other differences between the participants from the three groups also
emerged. Expert practitioners, for example, in solving harder tasks worked in parallel
on two or more different directions, while the students commonly stick just to one
solution. Another interesting trait of expert practitioners was to work on solutions for
which they knew in advance to be only apparently correct. Usually they were able to
use such solutions as a step towards the final solution. Such differences are probably
due to the expertness of the practitioners.
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FINAL REMARKS

This study indicates that when the use of advanced mathematical ideas in out-of-
school practices is considered neither the radical situated view (according to which
people work out tasks by relying on activity-related practices) nor the modelling
paradigm (according to which tasks in activities are worked out by applying school-
learnt knowledge) seem to be valid. Inexperienced students solve geometric
problems given in an out-of-school activity by placing them in a context - which can
be school mathematics as well as the contextual activity - and solve them according
to conventions common to the considered context. For them, the context is, above
all, a frame of reference for setting the meaning of the task and for setting the way of
working out the task. As practitioners acquire expertise their school mathematical
knowledge and mathematical reasoning appear to undergo a complex transformation
which is not explained by either paradigm. Further research and different
conceptualisations are required to describe mathematical thinking in (work) context
(Noss, Hoyles & Pozzi, 1998).
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