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This paper presents a semiotic analysis of the (often claimed) potential of computer
algebra systems (CAS) for enabling mathematical activity on a higher conceptual
level than wusual. Theoretical points are illustrated by an example from a
development project in the context of a first year university course on calculus. We
also discuss how they may be used in ‘a posteriori’ didactical analysis.

DREYFUS’ POTENTIAL.

Broadly speaking, there are two main types of issues relating to the use of standard
CAS, such as Maple or Mathcad, in undergraduate mathematics teaching:

e Pragmatic issues, concerning the competencies that students need in present
and future mathematics-related practice, where CAS is or could be a relevant
tool,

o Didactical issues, concerning the actual or potential impact of CAS-use on the
students’ learning of mathematics.

In the first case, we are talking about needs for actual practice, such as solving
concrete mathematical problems, while in the second case, CAS is viewed as a
vehicle for learning.

We shall discuss, in this paper, the didactical aspects of Dreyfus’ potential, defined
as the possibility that CAS may serve as follows:

The idea is for students to operate at a high conceptual level; in other words, they can
concentrate on the operations that are intended to be the focus of attention and leave the
lower-level operations to the computer. [Dreyfus (1994) p. 205]

The didactical interest of Dreyfus’ potential is rather obvious, in particular it is likely
to reflect the ideal of most CAS-using university teachers. However, as it stands, it is
exactly ‘an idea’ that may or may not ‘appeal’ to their colleagues, depending on their
experience and personal preferences. In order to rationally discuss, plan, implement
and document realisations of this idea, we need to formulate it in terms of a clear
theoretical framework. In particular we need to clarify the notion of a ‘high
conceptual level’ in its (potential) relation to CAS use in university education. This
is where the analytic tools of semiotics come in; specifically, we draw mainly on
Duval’s semiotic analysis of mathematical cognition (cf. the next section). Of course,
we must also relate the theoretical model with actual practice; at the end of this
paper, we give examples of how it may be used in didactical analysis and design
based on semiotic variables.
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SEMIOTICS AS AN ANALYTIC TOOL FOR DIDACTICS.

Duval (2000) points out three major cognitive functions related to the semiotic
registers used in mathematics: representation (e.g. a graph representing a function),
processing (e.g. computation with number symbols) and conversion (change of
register of representation). Even though students do not acquire mastery of these
functions separately, their separate analysis proves useful for our purposes.

Semiotic representations in mathematics do not ‘represent’ in the naive sense: the
entire discourse refers to...nothing other than its own signs (Rotman, 1988).
Mathematical objects are created and invoked through semiotic representations
(Sfard, 1999). Yet in many (if not all) mathematical contexts it is crucial not to
confuse an object with a particular representation (Duval, 2000), e.g. not to identify a
‘triangle’ with a concrete drawing. In fact, particular representations are less
important than the changes (processing, conversion) of such representations that
might be effected, while retaining a representation of the object. A simple semiotic
description of an individuals’ conceptual image of an object can thus be said to be a
class of representations invariant under some class of transformations (processing,
conversion). These classes will typically be implicit for the learner, and will develop
gradually through actual instances of representing, processing and converting,
briefly, through semiotic activity. This provides a theoretical basis for the need that
students engage in such activity using a wide range of relevant registers and
transformations. It may, in particular, challenge the modern contempt of ‘training
exercises’ to the extent these exhibit such variation — even if variation pertains only
to processing. However, as pointed out by Duval (1995, pp. 45-59), many of the
most interesting and persistent learning difficulties arise in the context of conversion.
Hence the ‘degree of freedom’ of the individual with respect to conversion
(coordination of registers pertaining to the same conceptual object) is essential for
the individual’s conceptual development (opus cit., p. 69).

In university level mathematics, patterns of relations among different conceptual
objects are at the heart of the learning enterprise. To establish and develop such
relations coherently, very specific forms of discourse — involving more or less formal
uses of natural language in coordination with ‘simple’ semiotic registers — are
needed. These forms may be classified as apophantic, expansive and reflective
functions of discourse (opus cit., chap. II). While a ‘high conceptual level’ may be
indicated in semantic terms, it is usually accompanied by (at least implicit) semiotic
and discursive complexity, and so its realisation in undergraduate mathematics
education is intrinsically linked to developing the students’ degree of semiotic
freedom within this larger discursive framework. This implies the need for a careful
design of learning situations centred on specific discursive and semiotic functions,
where the latter includes pertinent forms of processing and conversion. It points to
semiotic activity and discursive functions as crucial variables in didactical
engineering (Artigue, 1989 and Brousseau, 1997, pp. 24f) at the undergraduate level.

The semiotic activity of students serves pragmatic as well as didactic purposes.
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Pragmatic, because mathematical competencies are articulated — and can only be
observed and evaluated — through discursive and semiotic performance (e.g. Sfard,
1999). Didactic, because an individual’s conceptual development depends on his
effective range of semiotic activity, as explained above. Notice that this is by no
means a denial of the social nature of the learning enterprise, as semiotic activity to a
large extent derives its meaning from a social context (interchange with other
agents). Moreover, semiotic activity is influenced by the social context in the forms
of agents, media and codes (the latter being a matter of consensus but also a
condition for semiotic activity). Only codes may be independent of the context, that
is, they belong to a large extent to a global context of mathematical discourse
(Duval, 1995, p.225). The shared perception — largely implicit — of codes among
participating agents is, on other hand, decisive for their potential for engaging in
shared semiotic activity.

SEMIOTIC VIEW OF DREYFUS’ POTENTIAL.

In a semiotic interpretation, the basis of Dreyfus’ potential is that a CAS may
provide a higher degree of semiotic freedom, primarily by facilitating processing,
and — in a few cases, such as plotting — conversion. To ‘operate on a high conceptual
level’ implies, in functional terms: to engage in discourse involving complex
semiotic activity. The ‘lower level operations’ — carried out by the CAS — consist
mainly of the processing parts of this activity. Typically, the explicit complexity of
semiotic activity is reduced by the use of CAS, as the CAS tends to leave out several
intermediate steps that may, or may not, be made explicit at wish. In fact, the ‘black
box issue’ (Dreyfus, 1994) arises to the extent this is the case.

It follows from the above interpretation that the use of a CAS — at least, a priori —
facilitates neither coordination of registers nor the main discursive functions. The
simple representation of objects and transformations is not simplified, either. On the
contrary, we have an extra medium (the computer), an additional special code
(depending on the CAS) for semiotic activity, and a kind of ‘automatic semiotic
agent’ with a potential influence on discourse (Winslew, 2000). These additions may
be particularly disturbing for novice users of CAS, but their influence remains
important even in a context with experienced CAS-users.

An example.

Our key example is an event observed during a development project (Solovej et al.,
2001) in the context of a freshman calculus unit. It occurred towards the end of a
two-hour class session, in which students had presented and discussed a number of
exercises on linear differential equations. In this unit, Maple was generally used by
students in their homework, and it was demonstrated and used as illustrating device
during lectures. In class, the computer was mainly used as a medium for presenting
homework (students bring floppy disks to the class) and, occasionally — but with
increasing frequency — as a semiotic agent in ‘whole-class’ exploring. There was one
PC in the classroom, connected to a screen projector; both students and teacher used
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this PC to present their work and ideas. At the point we shall consider, all exercises set
for that day have been treated. Then a student — let us call him Peter — raises a
question. He has been working on an exercise from the book (in the same section, but
not among those given as homework), concerning the initial value problem

*) w'(f) + u(f) = sin vt, w(0)=1, w(0)=0

“where v is an undefined parameter. Using Maple’s routine (dsolve) for solving
ordinary differential equations, he had obtained the output [copied from Maple]:

v sin(t) 3 sin(v t)
-1+v? 2

1) u(t)=cos(?)+ Ly
and then wondered how this should be interpreted in the case v = 1. The teacher asks
Peter to show his solution, as outlined above, to the class (which he does). The teacher
then proposes to let Maple solve the problem (*) with v substituted by 1. Peter copies
the first input to a separate input line, and makes the proposed change. This results in
the following new output:

2) u(t):%sin(t)—%cos(t)t+ cos(?)

which, on the face of it, seems quite different from the first answer. The students are
confused. Peter comments: ‘That looks strange’. The teacher says: ‘Clearly, one
cannot simply substitute v by 1 here [points to the first output, then hesitates for a
while]. But how about taking a limit of it as v tends to 1?7’ The student at the PC
copies (1) to a new command line and ads the said limit. This gives the second output
(2). The teacher says a few words about the possibility of studying the ‘continuity of
solutions’ with respect to a parameter before the lesson is over.

This appears to be a fairly clear-cut example of how the processing powers of CAS
may be used to realise Dreyfus’ potential. The teacher suggests the coordination of the
(for the students at this level) separate registers of ‘ODE solving operations’ and ‘limit
operations’, in order to enrich the concept of ‘solution’ with a relation to ‘con-tinuity’;
the didactic intention of the teacher is served by CAS as ‘processing agent’. While the
students had some hands-on experience with using the standard procedure for solving
inhomogeneous ODE’s, the discussion — that occurred during the last 5 minutes of a
lesson — can be ‘lifted’ to a higher conceptual level (discussion of solu-tions in terms
of a parameter) only because semiotic processing is left to the CAS.

THE ROLE OF TEACHER CONTENT KNOWLEDGE.

In the classroom example outlined above, the discussion (discourse beyond simple
semiotic activity) is entirely governed by the teacher. However, Dreyfus’ potential
talks about students operating on a higher conceptual level, while in the situation just
described, these operations are only formally performed by the student (assisted by

PME26 2002 4-413



CAS). The students do not actively participate in the ‘higher level’ discourse about
‘continuity of solutions’, and it is not clear to what extent they are informed by
attending it. In a pessimistic evaluation, we may thus have a CAS version of the
Jourdain effect (Brousseau, 1997, p. 26): students are led to perform certain CAS-
assisted semiotic actions, and are then told ‘what they have done’ in terms of a
higher-level discourse that is essentially beyond their reach.

In the example, this does not quite seem to be a fair evaluation of the situation. The
discourse was indeed initiated by the student’s question on the special case v =1 of
the solution. The students understand the solution of the special case, but Peter’s
comment (‘That looks strange’) certainly calls for an explanation; one input (ODE)
is a special case of the other, yet the two outputs (solutions) look different. Given the
impending end of the class, the teachers’ choice of a quick explanation cannot
surprise, except perhaps that it is both improvised and correct. However, in
retrospect, the question could be made useful in many different ways, and this might
be a starting point for CAS-based didactical engineering.

In another class, Maple was only used by the teacher as an alternative way of
processing (within one register, except for standard plots of functions), usually
demonstrated just after ‘blackboard presentation’ of the same problem. Discussions
of an abstract nature never involved use of CAS. Students in this class primarily saw
CAS as a quicker and easier means of reaching a pragmatic goal (processing), and
their expressed motivation for trying to use it was almost exclusively the advantage
they supposed to achieve for the upcoming written exam. Their conceptual
understanding was most likely not enriched by the repetitive demonstration that a
CAS can do in seconds what they had struggled to do on paper. One may say that, in
this case, CAS was allowed as a semiotic agent only in cases where it ‘echoed’ other
agents. The teacher repetitively used expressions like ‘finally, it’s nice to see these
calculations in reality’ (meaning, on the blackboard rather than on the screen).

While the teacher of the first class happens to be an eminent researcher of
mathematics with a deep and flexible knowledge of mathematics, the teacher of this
second class was a TA with his main occupation in high school teaching, and a
strong focus on formal aspects (procedures, ‘official’ definitions etc.) of the topics
taught. Throughout the project, he maintained a pessimistic view of the effect of
CAS use on students’ performance and understanding. The importance of teacher
content knowledge — and its flexibility — is often found to be a main determinant for
the development of CAS-based pedagogy (see Kendal et al., 2001). It may, in our
framework, be interpreted as the importance of the teachers’ own freedom of
semiotic action within the discourse that he should help students to engage in.

TOWARDS CAS-BASED DIDACTICAL ENGINEERING.

We now return to the key example from the first class in order to sketch how this
didactical situation could be improved by didactical engineering based on semiotic
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and discursive variables, in order to more fully realise Dreyfus’ potential. This
discussion is partially based on a conversation with the teacher, a few days after. It is
important that in this a posteriori analysis, the situation must be conceived in its
total discursive context, which we can only describe here to the extent it enters our
discussion. It must also be stressed that this kind of analysis and design depends
crucially on collaboration with teachers who, based on their own agency in
mathematical discourse, are aware of the importance of the variables mentioned.
This awareness is, initially, likely to be mainly non-explicit, but it is an important
part of collaboration to change that.

Processing and the ‘black box’ issue

In order to achieve an inclusive mode of discourse, where students participate
actively, it is clearly desirable to maintain coherence with previous (not too distant)
elements of discourse that included the students. In the class situation considered, the
previous discourse focused on the problem of solving linear differential equations
with constant coefficients (in the sequel, abbreviated LODE). In particular, the focus
had been on: the solution of homogeneous LODE, partial solutions to
inhomogeneous LODE (obtained by ‘informed guessing’), and the principle for
finding the complete solution to inhomogeneous LODE (sum of two previous). The
black box issue was partially mitigated in the case of homogeneous LODE’s, by
reading off the characteristic polynomial from the coefficients of the equation, and
then use the solve routine to find its roots. This way, the form of the solution of the
LODE could be related to intermediate steps of the solution process. After
identifying the ‘homogenous part’ of the general solution of an inhomogeneous
LODE, the partial solution could be motivated as the result of an appropriate ‘guess’
based on the form of the right hand side. A strategy for dealing with Peter’s question
might thus be to suggest a comparison between the two problems that result from (*)
in the special cases v = 1 and (for example) v = 2, rather than between the two
solutions (1) and (2), directly. Using the same patterns of analysis as previously, the
students would find the crucial difference between the problems: in case v = 1, the
right hand side, sin vz, is a homogenous solution, while it is not in case v = 2. Then
the different forms of (1) and (2) may be explained by differences in the ‘good
guess’ for a partial solution. And this might bring forward the point of knowing (in
principle, and perhaps a choice of) the intermediate steps of processing involved in
the solution process — and their function in discourse — for the task of evaluating and
comparing solutions, and otherwise reflect on their status. Notice that while this does
not prevent usage of Maple as a semiotic agent, it requires a more flexible and
informed usage than simply asking for final solutions.

One might also proceed with the original suggestion of taking a limit, and then use
the reaction of Peter (‘That looks strange’) to bring out the point above, by asking
the question: how could one proceed to justify this limit? Incidentally, the students
learned about I’Hospital’s rule 6 weeks before this event, and about partial
derivatives just 3 weeks ago. This might, for instance, lead to a discussion involving
the following two events of Maple processing:
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>diff (nu*sin(t) -sin(nu*t) ,nu) /diff (-1+nu”*2,nu) ;
1 sin(#) —cos(v )¢t
2 %

>1limit (%, nu=1);
1. 1
—2—sm(z‘)—§cos(t)t

o(vsint —sinvt)/ov

(Here, the first line is Maple input code for: .
a(-1+v2)/ov

Conversion and coordination

Continuing with the idea of simply exploring the relation between (1) and (2), one
might profit from the fact that the students had studied functions of several variables
4 weeks before, in particular they were familiar with the conversion of algebraic to
graphical representations of functions of two variables. In order to connect with this
idea, one might suggest that the right hand side of (1) be regarded as the algebraic
representation of a function of the two variables ¢ and v, and see if one might use the
corresponding graph to relate it with (2). After a little experimentation with the
settings, one might then produce the following two graphs of (1) and (2),
respectively, understood as above, and with the domains [-3, 3] for ¢ and [-1,1] for v:

In Maple (not here!) the left image may be rotated in space, but even in the above
‘static’ form, it is not difficult to see the similarity between the ‘upper edge’
(corresponding to fixing v = 1) and the graph to the left. The discussion that could
evolve from this would have, as its main point, to provide an exercise in the
(difficult) coordination of algebraic and graphical registers that is motivated by a
concrete problem. It is facilitated by CAS as an agent of conversion.

Expansive and reflective discursive functions

In order to avoid the Jourdain effect described in the previous section, the students
must be acquainted with — and ideally control — the discursive contexts of the
proposed semiotic activities. Notice that the actual devolutions have yet to be
devised (for an example, see Brousseau, 1997, 33-35). Typically, students must be in
the presence of (or have access to) a number of discursive units (apophantic
sequences of phrases, including semiotic elements) on which they will, in the
adidactical situation, have to expand discursively, using their observation of
similarity (semantic or semiotic) among these elements, or to produce reflective
discourse concerning the status (logical, semantic) of these elements. In the case of
the example discussed above, the units present a priori may not suffice for the
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students to expand on (1) and (2) in order to relate them, and we have only outlined
possible extensions of this fragment of the ‘given’ discursive inventory. The talk will
present results (in terms of realised discursive expansion) from planned classroom
experiments with more concrete extensions of this discursive basis of evolution.

But, in terms of discursive functions, the above expansions do not quite cover what
the teacher, in the example, had in mind. Namely, once it has been established that
(2) may be seen as the limit of (1) — and one has done similar investigations with
other LODEs as well — one might try to help students proceed to a new kind of
expansion: to develop (perhaps also prove) hypotheses in terms of more general
forms of the problem (*) and its solutions. We then approach the professional
mathematicians’ (pragmatic!) version of Dreyfus’ potential: studying ‘concrete’
examples using CAS as a ‘semiotic slave’ in order to generate hypotheses at a ‘high
conceptual level’.

REFERENCES.

Artigue, M. (1989). Ingénerie didactique. Recherches en Didactique des Mathémati-
ques 9 (3), 281-308.

Brousseau, G. (1997). Theory of didactical situations in mathematics. Kluwer,
Dordrecht.

Dreyfus, T. (1994). The role of cognitive tools in mathematics education. In: R.
Biehler et al. (eds): Didactics of Mathematics as a scientific discipline, pp. 201-
211. Kluwer, Dordrecht.

Duval, R. (1995). Sémiosis et pensée humaine. Registres sémiotiques et
apprentissages intellectuels. Peter Lang, Bern.

Duval, R. (2000). Basic issues for research in mathematics education. In: T.
Nakahara et al. (eds), Proc. of PME 24, vol. 1, 55-69. Hiroshima University.

Kendal, M. and Stacey, K. (2001) Influences on and factors changing technology
privileging. In: M. van den Heuvel-Panhuizen (ed.), Proc. of PME 25, vol. 3,
217-224. Freudenthal Inst., Utrecht.

Rotman, B. (1988). Toward a semiotics of mathematics. Semiotica 72, 1-35.

Sfard, A. (1999) Symbolizing mathematical objects into being — or how mathema-
tical discourse and mathematical objects create each other. In: P. Cobb et al.
(eds), Symbolizing and communicating: perspectives on Mathematical Discourse,
Tools, and Instructional Design, 37-98. Mahwah, NJ: Erlbaum.

Solovej, J. and Winslew, C. (2002). Maple pa forste drs matematik (Danish). Report
no. 14, Centre for Educational Development in University Science, Aalborg.

Winslew, C. (2000). Linguistic aspects of computer algebra systems in higher
mathematics education. In: T. Nakahara et al.(eds), Proc. of PME 24, vol. 4, 281-
288. Hiroshima University.

PME26 2002 4-417





