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Flexibility in strategy choice in mental computation is considered to be a component
of number sense. This paper reports on an investigation into cognitive,
metacognitive, and affective factors that support both flexibility and accuracy in
mental addition and subtraction in Year 3 students. While some factors appeared to
be essential for flexibility, additional factors were necessary for accurate
employment of strategies. Further, there were qualitative differences between the
mental strategies employed by the students who were accurate and those who were
inaccurate.

While standard computational algorithms (both written and mental) are still taught in
many classrooms around the world, there is reduced emphasis on the importance of
these algorithms and increased emphasis on “number sense” (e.g., National Council
of Teachers of Mathematics, 1989). Several interpretations exist for number sense;
however, “flexibility” and “inventiveness” seem appropriate ones in this discussion
(Anghileri, 2001). It has been recognised that the development of flexible mental
computation strategies are a component of number sense (e.g., Klein & Beishuizen,
1994; MclIntosh, 1998; Reys, Reys, Nohda, & Emori, 1995), and that when children
are encouraged to formulate their own mental computation strategies, they learn how
numbers work, develop number sense and develop confidence in their ability to
make sense of number operations (Kamii & Dominick, 1998).

It would appear that the purpose of the inclusion of mental computation in any
mathematics curriculum would be to develop flexible computational strategies, and
thus promote number sense. Some teaching experiments have focused on the
successful development of students’ flexible computational strategies (e.g., Buzeika,
1999; Kamii, 1989). Other literature reports that children have the ability to develop
their own efficient mental strategies, even without instruction (e.g., Heirdsfield,
1999). While flexibility might be one of the foci of this research, proficiency
(defined here as both flexibility and accuracy) would appear to be important as well.
It is posited that the study of proficiency in mental computation extends beyond the
development of flexible mental strategies, but also encompasses the study of
associated factors that might contribute to both flexibility and accuracy.

Associated factors have been reported elsewhere (e.g., Heirdsfield, 1996; Kamii,
Lewis, & Jones, 1991; Sowder, 1994; Van der Heijden, 1994). These include (a)
number sense (number fact knowledge, estimation, numeration, effects of operation
on number), (b) affective factors (beliefs, attributions, attitudes, self efficacy, social
context), (c) metacognitive processes (strategies, beliefs, knowledge), and (d)
memory (short term memory, long term memory — knowledge base).
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This paper reports on a study of Year 3 children’s mental computation (addition and
subtraction), which was conducted in three classrooms (2 schools, A and B). In all
of these classrooms, students were taught traditional pen and paper algorithms
(mental computation is not mentioned in the existing Queensland Years 1-10
mathematics curriculum document and is not treated consistently in Queensland
schools). Mental computation appeared to only refer to number facts and extended
number facts (e.g., 30+40=70, because 3+4=7). However, in one of the classrooms
(School B), students were also encouraged to consider alternative strategies, and
would have been permitted to use them. Of interest here is those students who were
identified as being flexible in their mental addition and subtraction strategies. While
it appears that the students developed their own flexible mental strategies, not all
were successful (i.e., accurate) in applying them. It could also be argued that not all
were “efficient” either.

THE STUDY

Participants. Seven flexible Year 3 students were selected from three classes in two
Brisbane Independent schools (Schools A and B) that served high and middle
socioeconomic areas. The students were selected on the basis of their responses to a
structured addition and subtraction mental computation selection interview. All
students were identified as being flexible in their employment of mental strategies, 4
were accurate (2 from School A and 2 from School B) and 3 were inaccurate (School
A). Accurate computers were those who were more than eighty percent correct in
their responses on both the addition and subtraction selection items. Inaccurate
students generally attained between thirty and eighty percent accuracy on either the
addition and subtraction items (more errors were made on the subtraction items).

Procedure and instruments. All students from the three classes were withdrawn
from class and interviewed individually in a structured mental computation
interview. Students who employed a variety of strategies were selected to participate
in further interviews. These interviews constituted a series of videotaped semi-
structured clinical interviews in a quiet room in the school. The interviews
addressed mental computation strategies, number facts, computational estimation,
numeration, effect of operation on number, metacognition, affect, and memory.
These have been described in more depth elsewhere (Heirdsfield, 2001; Heirdsfield
& Cooper, 1997).

Analysis. For the purposes of identifying flexibility in mental computation, mental
computation strategies were identified using the categorisation scheme (based on
Beishuizen, 1993; Cooper, Heirdsfield, & Irons, 1996; Reys, Reys, Nohda, & Emori,
1995; Thompson & Smith, 1999) that divided the strategies into the following
categories: (1) separation (e.g., 38+17: 30+10=40, 8+7=15=10+5, 40+10+5=55); (2)
aggregation (e.g., 38+17: 38+10=48, 48+7 = 55); (3) wholistic (e.g., 38+17 =
40+17-2 = 57-2 = 55); and (4) mental image of pen and paper algorithm — following
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an image of the formal setting out of the written algorithm (taught to almost
automaticity in the schools the students attended).

Mental computation responses were analysed for strategy choice, flexibility,
accuracy, and understanding of the effects of operation on number, numeration,
computational estimation, and number facts. Analysis of the interviews investigating
these individual factors was also undertaken, with the intention of exploring
connections with mental computation. Students’ responses were also analysed for
metacognition and affects, and scores and strategies were recorded for the memory
tasks. Each student’s results for aspects of number sense, metacognition, affects and
memory were summarised. These summaries were combined for each of the
computation types: accurate/flexible and inaccurate/flexible, so that comparisons
could be made between the two types. The knowledge shown by the students of each
type were analysed for commonalities and these commonalities were used to develop
a composite picture of a typical student of that type. The two resulting knowledge
structures, one for accurate and one for inaccurate, were depicted by networks.

RESULTS

Both the accurate and inaccurate students spontaneously employed a variety of
strategies (separation, aggregation, and wholistic) although the inaccurate students
tended to have less variety, using predominantly separation strategies. When
encouraged to access different strategies, both accurate and inaccurate students were
able to do so but with different outcomes. The accurate students were successful in
their use of the new strategies while the inaccurate experienced difficulties in
completing the strategies (although they had sufficient understanding to access the
strategy).

Accurate students. Although both accurate and inaccurate students were identified
as flexible, there was little in common between the two groups. The students who
were accurate showed in their responses to the interviews that they possessed
well-integrated knowledge bases. The composite picture of their knowledge is
depicted as a network in Figure 1.

As can be seen in the figure, the accurate mental computers were fast and accurate
with their number facts, used efficient number facts strategies (e.g., 8+6=14, because
double 6 and 2 more make 14) when facts were not known by recall, and had
extended their number facts strategies to efficient mental computation strategies
(e.g., 9+6=10+6-1=15 is similar to 246+99=246+100-1). Although it might have
been expected that estimation would contribute to mental computation, only one of
the accurate students exhibited proficiency in estimation. This student also
employed estimation in mental computation to get a feel for the answer and check
the solutions.

The accurate students used good numeration understanding (particularly canonical,
noncanonical, multiplicative, and proximity of number) and some understanding of

PME26 2002 3-91



the effect of operation on number to support their efficient use of a variety of
strategies. This was particularly so for the wholistic compensation strategy (e.g.,
246+99=246+100-1) for which numeration understanding (particularly proximity of
number) and understanding of the effect of operation on number appeared to be
essential. The accurate students had accurate perceptions of their ability to solve the
mental computation tasks (metacognitive beliefs), and they used metacognitive
strategies (e.g., monitoring, reflecting, regulating, and evaluation). Beliefs in self
seemed to be associated with a belief about the place of the teacher in the student’s
learning; for instance, accurate students tended to have confidence in self-initiated
strategies (c.f., teacher-taught strategies). Although there was not always evidence
of the belief that mathematics makes sense, that belief was strong in one student.

Figure 1. Network showing knowledge for accurate/flexible mental computation
(shaded - present, speckled - partially present)

Accurate students showed reasonable short-term memory (STM) and central
executive functioning. This would have provided them with efficient retrieval of
number facts from long-term memory (LTM), effective holding and rehearsal of
interim calculations, and efficient processing and coordinating of strategies.
However, the study also showed that STM was not as important as might be
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predicted as efficient mental strategies place less demand on STM and require fewer
interim calculations.

In summary, the composite accurate/flexible mental computer was shown to have a
rich integrated network of cognitive, metacognitive and affective components.

Inaccurate students. Although the inaccurate students in this study were
categorised as flexible, they did not exhibit the same degree of flexibility as the
accurate students. They did employ a variety of strategies, but they tended not to be
high-level strategies (e.g., wholistic), and there was very little in common between
the two groups. The composite picture of their knowledge is depicted as a network
in Figure 2. It shows that the inaccurate students had much less knowledge and
fewer connections between factors than the accurate students.

All knowledge exhibited by inaccurate students seemed to be at a threshold level,
rather than at an optimum. The inaccurate students exhibited some flexibility and
efficiency (although not always speed and accuracy) in number fact strategies.
However, these strategies did not always support interim calculations in mental
computation, as the students often calculated interim calculations by counting, rather
than by employing more efficient derived facts strategies, which they used in the
number facts test. Similarly, numeration understanding was evident at a threshold
level, particularly, canonical and noncanonical. A further attribute of numeration,
proximity of number appeared to be at a threshold level, as the students attempted to
use this when accessing the wholistic compensation strategy. However, their
knowledge of the effect of operation on number did not support high-level strategies
and their estimation was poor. There was evidence of some metacognitive strategies,
such as reflection, evaluation, and checking solutions. However, unlike the accurate
students, metacognitive beliefs were poor.

Beliefs, in general, were difficult to elicit from the inaccurate students, and when
elicited, were inconsistent. There might have been several reasons this. These
students might not have held any strong beliefs about themselves, about mathematics
(e.g., whether mathematics should make sense), or about teaching. Also, they might
have been unaccustomed to verbalising their beliefs.

Finally, as with the accurate students, the inaccurate students had reasonable STM
and central executive functioning (e.g., planning and allocation of attention).
However, these abilities were little help to the students because number facts were
not sufficiently well known to be retrieved by STM, interim calculations were
completed so slowly that they placed a heavy load on STM, and the students’
knowledge base was so poor that the central executive could not successfully retrieve
information.

The question remains: Why were the inaccurate students flexible? The answer might
lie in what appeared to be the lack of understanding of taught procedures. When
these students were unable to use these procedures, they compensated by inventing
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strategies. These strategies tended to be lower level (i.e., separation) and their use
unsuccessful, as the inaccurate students’ knowledge (particularly of numeration and
effect of operation on number) was insufficient to enable higher-level strategies to be
attempted and any calculation to be completed accurately.
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Figure 2. Network showing knowledge for inaccurate/flexible mental computation
(shaded - present, speckled - partially present, clear - absent)

In summary, the composite inaccurate/flexible mental computer was shown to have
knowledge at a threshold level that was insufficient for employment of advanced
mental strategies and accurate use of other strategies.

DISCUSSION

Although flexible use of mental computation strategies is an important component of
the development of numbeér sense, this study shows that it is not sufficient for
accurate computation. A well-connected knowledge base (where number facts,
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numeration, number and operation, and to less extent, estimation were part of that
knowledge base), metacognitive strategies and beliefs, and an efficient central
executive (to coordinate retrieval from LTM and allocation of strategies and facts for
short-term storage and manipulation of numbers) supported accuracy and flexibility
in mental computation. Without this knowledge base, students were inaccurate.

It seems that with a strong connected knowledge, accurate students had more options
available for mental strategies. With a less connected and weaker knowledge base,
inaccurate students’ use of strategies was an attempt to compensate for their lack of
knowledge. The inaccurate students compensated by inventing strategies when the
teacher-taught strategies could not be followed. However, although STM was
sufficient, these students’ knowledge base was so minimal and disconnected that the
use of the strategies was not efficient, and resulted in errors. Further, the knowledge
base did not support high-level strategies.

This demonstrates the need for teaching practices to go beyond developing flexible
use of strategies in mental computation. The practices should not focus on the
strategies in isolation; they have to focus on the development of an extensive and
integrated knowledge base to support the strategy use. This means covering number
facts, numeration, effect of operation on number, and estimation. Other factors that
need to be addressed are metacognition and affects.

Students can and do formulate their own strategies and this should be encouraged
because of the learning that results with respect to number sense (e.g., Reys, Reys,
Nohda, & Emori, 1995). However, if accuracy in mental computation is one of the
aims of computation, more has to be done than encouraging students to formulate
their own strategies. While research (e.g., Buzeika, 1999; Kamii, 1989) has reported
success with teaching experiments that encourage students to formulate their own
strategies, it is obvious that other cognitive, metacognitive and affective factors
come into play. In this study, it was shown that accurate (and flexible) mental
computation was supported by a complex interaction of cognitive, metacognitive and
affective factors. Further research is warranted as to teaching practices that can
develop flexibility and the supporting knowledge necessary for accuracy and
flexibility, possibly following the lines of Cognitive Guided Instruction (Carpenter,
Fennema, Franke, Levi, & Empson, 1999), but including children’s affects and
metacognition.
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