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Many secondary school students have a strong tendency towards improper linear
reasoning in the domain of geometry, e.g. by believing that if the sides of a figure are
doubled, the area is also doubled. In this paper, the evidence for this "illusion of
linearity" is expanded to a new application domain: probabilistic reasoning. The
paper reports an empirical investigation on the ability of 10" and 12" grade students
to compare the probabilities of different situations. It is shown that most students
have a good capability of comparing two events qualitatively, but at the same time
incorrectly quantify this qualitative understanding into linear relationships between
the varying quantities. It is shown how the research findings can shed a new light on
some well-known probabilistic misconceptions.

THEORETICAL AND EMPIRICAL BACKGROUND

Because of its wide applicability for understanding problems in mathematics and
sciences, the linear (or proportional) relationship is a key concept in primary and
secondary education. However, together with its intrinsic simplicity and self-evidence
(see, e.g., Rouche, 1989) the reinforcement of the linear model may lead students to
"the seduction to deal with each numerical relation as though it were linear"
(Freudenthal, 1983, p. 267), a tendency which is sometimes referred to as the
"illusion of linearity". This phenomenon can appear at different levels and in many
domains of mathematics and science education, such as elementary arithmetic,
geometry, algebra, probability and physics (see, e.g., De Bock, Verschaffel, &
Janssens, 1999). The best-known case of the overreliance on the linear model is
situated in the domain of geometry: many students of different educational levels
believe, for example, that when the sides of a figure are doubled, the area and volume
will be doubled too (National Council of Teachers of Mathematics, 1989). In the past
years, we performed a series of empirical studies to evidence this irresistible tendency
in secondary school students, to identify influencing task variables (see, e.g., De
Bock et al.,, 1999) and to unravel the underlying problem-solving processes (De
Bock, Van Dooren, Verschaffel, & Janssens, 2001).

Besides continuing our studies in the domain of geometry, we set up a new line of
research which aims at searching for the illusion of linearity in other mathematical
domains. The first new domain that we chose for exploration of the
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overgeneralization of proportionality, is probabilistic reasoning. As explained in

Van Dooren, De Bock and Verschaffel (in press), this domain is particularly
interesting since the learning of probability is often hindered by students' primitive
conceptions, wrong intuitions, fallacies, etc. (see, e.g., Shaughnessy, 1992).
Moreover, the notion of chance itself shows some very strong similarities to the
notion of proportion (Fischbein, 1975; Truran, 1994), suggesting that the overreliance
on proportions might very well occur when students approach probabilistic situations.
Recently, we have performed a review of the literature on probabilistic
misconceptions, and made an inventory of those specific misconceptions which are
conceptually related to the (unwarranted) application of proportions. This inventory
contains a wide variety of erroneous reasonings (both famous and intensively studied
misconceptions and anecdotal phenomena) for which the illusion of linearity yields a
proper explanation (see Van Dooren et al., in press; Van Dooren, De Bock,
Verschaffel, & Janssens, 2001). The current paper reports the next phase in this new
research line: after the conceptual analysis of linearity-related probabilistic
misconceptions, we empirically tested whether the overreliance on the linear model is
actually present in students' probabilistic thinking.

FOCUS OF THE CURRENT PAPER

The empirical study reported in the current paper focuses on one particular class of
misconceptions that was distinguished in the theoretical inventory (Van Dooren et al.,
2001, in press): the scope is on those misconceptions that could possibly be explained
by erroneously assuming a linear relationship between the variables (n, k and p) of a
binomial chance situation, on the one hand, and the final chance for success (), on
the other hand, and that can be illustrated by the following example:

The participants in a television game can roll 12 times with a fair die. If they obtain at
least 4 times a six, they win a car. At Christmas day, the game leader is in a generous
mood and tells the participants that they get 24 instead of 12 trials, so that their chance
for winning the car is doubled.

The probability P of winning the car in the regular game is about 12.5 %, and it is
determined by three variables: # is the number of allowed trials (12), & is the required
number of successes (4) and p is the probability for success in a single trial (the
chance to obtain a six with a fair die is 1/6). The game leader is mistaken, however,
when he claims that the chance P for winning the Christmas game is doubled at the
moment when the number of trials is doubled (n = 24). He wrongly assumes a linear
relationship between n and P, and he would be surprised that in fact, the probability
of winning the Christmas game is not 2 x 12.5 =25.0 % but 58.4 %!

In the above example, the mistake was a wrongly assumed proportional relationship
between n and P. Analogously, we can think of situations where a variation of & or p
is expected to have a proportional effect on P: the game leader might think that the
chance for winning the car (P) is doubled when & is halved (e.g. only 2 instead of
4 sixes are needed to win the car), or that P is tripled when p is tripled (e.g. the goal is
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to obtain even numbers instead of sixes). Moreover, also the combination of two
variables can lead to erroneous reasonings. For example, one could reason that the
regular game is equally favourable as a game in which you get 24 trials, but have to
obtain at least 8 sixes (» and k are doubled), or a game in which you have to obtain
4 even numbers, but at the same time get only 4 trials (p is tripled, » is divided by
three).

RESEARCH QUESTIONS AND HYPOTHESIS

The goal of the current study is to test to what extent the above-mentioned linear
misconceptions in binomial chance settings are actually present among secondary
school students with and without formal instruction in probability in general and in
the binomial probability model in particular. More specifically, the study aims at
answering the following research questions:

- Do secondary school students have a good qualitative insight in the effect of a
variation of the different variables (n, £ and p) that determine a binomial
chance setting?

- To what extent do these students have a tendency to quantify these qualitative
insights as proportional relationships between n, k and/or p, on the one hand,
and P, on the other hand?

Our hypothesis is the following. Since several authors (e.g., Fischbein, 1975) have
claimed that even very young children have an elementary understanding of
probability, we expect secondary school students to have a good qualitative insight in
probabilistic situations. But because of the intrinsic simplicity and self-evidence of
the linear model and students' well-established tendency to overrely on the
proportional model in other mathematical subdomains, we expect that most of them
will erroneously translate these correct qualitative insights into linear relationships
between the available variables.

More concretely, we make the following predictions: First, we expect that the
students will be able to make appropriate judgements when they have to qualitatively
compare the probability of two events that differ with respect to one of the variables
n, k or p. We expect that this capacity is present in students without formal
probability instruction, and that the formal learning of probability will have an
additional positive effect on it. Second, we predict that the large majority of the
students will quantify these correct qualitative insights in terms of a linear function
between n, k and/or p on the one hand and P on the other hand. We expect this
tendency to be persistent: it will be present in students with and without formal
instruction in the binomial probability model.

METHOD

A paper-and-pencil test was taken from 225 secondary school students divided in two
age groups: 107 10™ graders and 118 12" graders'. Participants had one hour to solve
a test consisting of 7 experimental items and 3 buffer items, which were offered in
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n k p nxk randomised order. The 7

Qualitative items 1 1 1 experimental items were multiple-
Quantitative choice problems in which the
items 1 1 1 1 students had to compare the

probability of two specific events.
All 10 problems were situated in the
context of rolling fair dice. The design of the test is shown in Table 1. It can be seen
that for each of the variables #, k and p there were two sorts of items: students had to
make either a qualitative or a quantitative comparison between two situations.
Additionally, there was one item in which  and k were varied simultaneously®. Table
2 gives an example of a qualitative item, a quantitative item (in which the variable n
is varied), and the item where » and k are varied simultaneously.

Table 1 : Design of the experimental items

Variation of n x k
Quantitative

Variation of n
Qualitative Quantitative

I roll a fair die several

times. The chance to have
at least two times a three if
I can roll four times is

a larger than

o smaller than

a equal to
the chance to have at least
two times a three if I can

I roll a fair die several
times. The chance to have
at least two times a six if I
can roll twelve times is

three times as large as
the chance to have at least
two times a six if I can roll
four times.

a This is true

I roll a fair die several
times. The chance to have
at least two times a five if
I can roll six times is
equal to
the chance to have at least
once a five if I can roll
three times.
a This is true

roll five times. a This is not true a This is not true

Table 2 : Examples of experimental items

For the qualitative items, the student had to indicate whether the first event had a
higher, lower or equal probability as the second event. The correct answer always
was either "larger than" or "smaller than". The quantitative items were necessarily
formulated differently: they contained an explicit quantified comparison of the
probabilities of the two events, and the students had to judge the correctness of this
statement. The quantification was always done proportionally (e.g., in the example in
Table 2: » is tripled, thus P is tripled). As a consequence, the correct answer always
was "This is not true" *. For each item, the students were asked to indicate the correct
alternative and, moreover, to write down an explanation for their answer.

RESULTS

Tables 3 and 4 give an overview of the answers of the 10" and 12" grade students
respectively on the seven experimental items.

As predicted, the large majority of the students in both age groups performed very
well on the qualitative items. In about 90 % of the cases, the correct alternative was
chosen, indicating that even before formal instruction in probability, students have a
good qualitative understanding of how the probability in a situation evolves when an
aspect (n, k or p) of this situation changes. Contrary to our prediction, the 12
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Qualitative items Quantitative items
Variable Correct Incorrect No answer Correct Incorrect No answer

n 87.9 10.3 1.9 15.9 84.1 0.0
k 83.2 15.9 0.9 17.8 81.3 0.9
P 93.5 6.5 0.0 16.8 82.2 0.9
nxk 224 77.6 0.0
Total 88.2 10.9 0.9 18.2 81.3 0.5

Table 3 : Frequency (in %) of correct and incorrect answers of the 10" graders on
the experimental items

Qualitative items Quantitative items

Variable Correct Incorrect No answer Correct Incorrect No answer
n 92.4 6.8 0.8 18.7 76.3 5.1
k 78.8 19.5 1.7 38.1 61.9 0.0
p 97.5 2.5 0.0 16.1 83.1 0.8
nxk 30.5 67.8 1.7
Total 89.5 9.6 0.8 25.8 72.4 1.9

Table 4 : Frequency (in %) of correct and incorrect answers of the 12" graders on
the experimental items

graders, who had already met the binomial probability distribution in their
curriculum, performed only slightly better on these qualitative problems than the 10™
graders (89.5% versus 88.2% correct answers), but considering the already high
performance of 10™ grade students, there might have been a ceiling effect. This good
qualitative understanding of the chance situation was present for all of the three
items. For the k-problem, there was a higher error rate which is probably due to the
inversed effect of k£ on P: if more successes are needed, there is less chance of
succeeding.

As expected, the high performance on the qualitative items is in sharp contrast with
the low score on the quantitative problems. For this last category, the students most
frequently chose for the incorrect alternative, which expressed a proportional
relationship between n, k or p and P. Apparently, the vast majority of the students
agreed with a proportional quantification of their correct quantitative insights. Also
for the problem in which » and k were varied simultaneously (see Table 2), most of
the students believed in the linear effect. The 12™ graders performed slightly better on
the quantitative problems (on the average, 25.8 % correct answers) than 10™ graders
(18.2 % correct answers) but as expected, the tendency towards linear modelling is
still strongly present in these students. In particular, 12" grade students had a better
score on the k-problem than 10" graders. Apparently, after instruction in probability,
more students were aware that when the number of required successes is doubled, the
probability is not necessarily halved.

We will also perform a qualitative analysis of the written notes and explanations of
the students to investigate what specific strategy led the students towards the correct
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or incorrect answering alternative. A first round of qualitative analysis of the written

notes and explanations accompanying the incorrect answers on the quantitative
problems already revealed that more than 80 % of the incorrect answers on the
quantitative problems can be clearly identified as resulting from students'
overreliance on the linear model. Examples of such statements — referring to a linear
relationship between the variables in the n-problem in Table 2 — are:

In the first case, you can try three times more to obtain the same result (two sixes), so it is
evident that you have three times more chance of winning.

The chance of getting 2 sixes in 12 trials is a lot bigger than getting 2 sixes in 4 trials.
And 12 is three times larger than 4, so the statement is true.

A more fine-grained analysis of students' written notes and explanations will provide
richer data on the mechanisms and origins of students' improper proportional
reasoning in binomial probability situations.

CONCLUSIONS AND DISCUSSION

The results of this study have confirmed our global hypothesis. Secondary school
students have a good qualitative understanding of probabilistic situations, and are
able to compare two such situations that differ in one variable. The understanding is
even present in students without formal instruction in probability. At the same time,
however, most students have a strong tendency to incorrectly quantify their correct
qualitative insights as linear relationships between the variables in a binomial chance
situation. In our multiple-choice items, the large majority of students chose for the
alternative that stated a linear increase (or decrease) of the probability of the
described event if one or two variables in the situation were increased (or decreased).
This tendency towards linear reasoning is strongly present in all students in the
research group, even those who met the binomial probability distribution in their
mathematics curriculum.

Further qualitative analyses of the answers, as well as in-depth interviews with
selected students will have to clarify how different components in the students'
mathematical knowledge base lead them towards unwarranted linear reasoning.

Another remaining question, which we will address in our future research, is to what
extent our findings are significantly affected by the way in which the test items were
administered to the students. It could be argued that so many students fell into the
linearity trap because they were seduced to do so, by confronting them with
proportional statements with which they either had to agree or disagree. The tendency
to reason linearly might considerably decrease when an open-answer format is used.

Finally, we want to show in an exemplary way how our research can shed some new
light on a number of other well-documented misconceptions in the domain of
probability, by looking at them from the perspective of the improper assumption of
linear relationships between quantities. A first example is a problem used by Tirosh
and Stavy (1999, p. 190):
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The Carmel family has two children, and the Levin family has four children. Is the
probability that the Carmels have one son and one daughter larger than/equal to/smaller
than the probability that the Levins have two sons and two daughters?

More than half of the 7™ to 12" grade students in their study answered that the
probabilities are the same. According to Tirosh and Stavy (1999, p. 190), students
here applied the intuitive rule Same 4—-Same B: "Because the target boys:girls ratio in
the two families was the same (1:2), the probability would therefore be the same.”
A second example comes from Fischbein (1999), who found that the majority of 5®
to 11™ grade students answered erroneously on the following problem:

The likelihood of getting heads at least twice when tossing three coins is smaller
than/equal to/greater than the likelihood of getting heads at least 200 times out of 300
times.

For a similar problem, Fischbein and Schnarch (1997, p. 103) argue that "The
principle of equivalence of ratio imposes itself as relevant to the problem and thus
dictates the answer."

Taking into account our own research findings, we believe that these misconceptions
can be explained in a related, but somewhat different way, with a stronger emphasis
on linear functions instead of ratios. In the study reported above, we observed that
many students believe that (1) P is doubled when # is doubled (2) P is halved when &
is doubled and (3) these two effects can also play simultaneously. The improper
assumptions of linearity might also be a valid explanation for Tirosh and Stavy's and
Fischbein's findings. We are even able to provide a useful framework for
understanding a famous historical problem: Chevalier de Méré knew that it was
advantageous to bet on at least one six in 4 rolls of a single die. He deduced that it
should be equally advantageous to bet on at least one double-six in 24 rolls of a pair
of dice. This did not yield the financial gain he had hoped for... Probably, most of
our students would also agree that multiplying # by 6 and dividing p by 6 is a neutral
operation for P.
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