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Associations between mathematically insightful behaviour and student affect are
studied. A tool is developed to identify this behaviour and study its association with
positive affect. Mathematically insightful behaviour displayed by a collaborative pair
of senior secondary calculus students is used to illustrate this tool and discuss a
situation in which student autonomy, spontaneity and creativity accompanied positive
affect. The tool builds upon the ideas of Dreyfus, Hershkowitz, and Schwarz (2001),
the concept of ‘flow’ (Csikszentmihalyi & Csikszentmihalyi, 1992), and the
identification of student engagement as they discover complexities (Williams, 2000).

INTRODUCTION

This paper illustrates associations that can exist between positive affect in students
and the creative development of a new cognitive structure (a mathematically
insightful process of abstraction). An analytical tool that simultaneously displays
student cognition, social interaction patterns (Dreyfus, Hershkowitz et al., 2001) and
affective indicators (Csikszentmihalyi & Csikszentmihalyi, 1992; Williams, 2000)
was used. Attention to whether the dialectic interaction occurred in response to
earlier dialogue within the interaction under study facilitated identification and
analysis of student spontaneity and student autonomy. An interaction was seen to be
more autonomous and spontaneous where the students within the pair responded to
interaction from within rather than outside the pair. Where autonomous and
spontaneous behaviours were exhibited, further analysis was undertaken to find
evidence of creativity. The simultaneous display of affective indicators ‘made
visible’ associations between engagement with the task and students’ autonomy and
spontaneity in the process of ‘abstraction’ (Dreyfus, Hershkowitz et al., 2001). It is
recognised that the cognitive artefacts students assemble during the creative process
could include strategies, ideas and concepts that relied upon contributions from
individuals external to the group prior to this interaction. In relation to the
interaction under study, these previous influences contribute to the cognitive
artefacts students assemble (Dreyfus, Hershkowitz, et al., 2001). The extent to which
an interaction is seen as creative in this study depends partly on the spontaneity with
which students assemble these artefacts and the students’ prior knowledge of their
relevance.
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LITERATURE REVIEW AND THEORETICAL FRAMEWORK

Student alienation with school is an issue of current concern (Marks, 2000) and one
solution is to create enhanced learning situations where positive affect is linked with
new learning (Csikszentmihalyi & Csikszentmihalyi, 1992). The presence of positive
affect associated with mathematics learning has been identified in Nicholls’ (1983)
task-centred rather than ego-centred learning. The characteristics of students
undertaking task-centred learning can be seen in instances of learning through
‘discovered complexity’ as identified by Williams (2000). Discovered complexity
occurs during task completion where a group of problem solvers perceive intellectual
and conceptual complexities not evident at the commencement of the task. When a
complexity is discovered, the group spontaneously formulate a question that leads to
higher level thinking (analysis, analytical-synthesis, synthesis, and evaluative-
synthesis) in the domain of mathematics. The resolution of the question leads to an
abstraction associated with this complexity. Both Nicholls (1983) and Williams
(2000) linked student learning accompanied by positive affect to ‘flow’
(Csikszentmihalyi & Csikszentmihalyi, 1992). Flow is an optimal learning condition
that may occur when a person works just above their present skill level on a
challenge almost out of reach. Individuals or groups in flow become so engrossed
with the task at hand that they lose awareness of self, time and the world.
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Figure 1. Representation of associations between discovered complexity and flow
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Williams (2000) illustrated the fit between discovered complexity and the conditions
for flow by modifying the schematic representation (Figure 1) developed by
(Csikszentmihalyi & Csikszentmihalyi, 1992). A student’s perceived level of skills
and concepts and perceived challenge comfortably overcome are represented by A
and M respectively. Students in flow are seen as working to achieve a goal
represented by a point within the shaded region of flow (B, N). This goal is just
above their perceived skills and concepts level and involves a challenge perceived to
be almost out of reach (flow). Once this goal is achieved, each student’s perceived
skills and concepts level is B and they can comfortably achieve a challenge of N.
The shaded region representing flow is now located to the right of B above N
between the parallel lines. To sustain flow would require a discovered complexity
that led to a goal represented by a point like (C, P).
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By definition (Williams, 2000), the mathematical ideas in a discovered complexity
are new to all students in the group and the teacher does not contribute new
mathematical ideas during the interaction. Before the present interaction, other class
members, the teacher, or another source may have contributed to the cognitive
artefacts the students chose to assemble. In such situations where the student group
develops new concepts through discovered complexity, the type of student response
described is seen to be partially attributable to the task and the implicit pedagogical
approach (Williams, 2000). The process students enact when working with
discovered complexity is an insightful process of autonomous, spontaneous, and
creative abstraction similar to the activity described by a research mathematician
(Chick, 1998). Dreyfus, Hershkowitz and Schwarz (2001) are interested in
‘abstraction’—an activity of vertical reorganisation of ‘previously constructed
mathematical knowledge into a new structure’ (p. 377). (Vertical refers to a new
mathematical structure as opposed to strengthened connection between a
mathematical structure and a context (‘horizontal’)). They have diagrammatically
represented a simultaneous display of cognitive activity and social interaction present
during the abstraction process. Six categories of dialogue were used in the analysis
of social interaction—control, elaboration, explanation, query, agreement and
attention. Through analysis of the dialogue of participants as they undertake the
social process of critical inquiry, the cognitive elements of the process of abstraction
were made more visible. These nested elements of the process of abstraction as
identified were: (a) ‘recognising’—seeing a previously known mathematical
structure within a new context or realising a previously known mathematical
structure fits a new context; (b) ‘building-with’—using a combination of previously
generated abstracted entities in a new context; and (c) ‘constructing’—use of
assembled resources to vertically re-organise a mathematical structure.

Discovered Complexity: autonomous,
spontaneous and creative mathematicall
insightful process of abstraction

v Constructing

Activity of a
research
mathematician

Recognising

Figure 2: Relationship between nested elements of abstraction and discovered complexity

Figure 2 illustrates the relationship between discovered complexity, the activities of
a research mathematician (Chick, 1998), and the epistemic elements in the
abstraction process. In examining the process of creation of mathematical concepts,
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Chick (1998) reported the presence of positive affect as strategies, ideas and concepts
were synthesised to produce a novel mathematical insight about the complexities in a
mathematical structure. This is consistent with Krutetskii's (1976) description of the
mental activity of combining concepts to create a new idea.

Engagement in a task was monitored by Williams (2000) through observation of
video data to identify indicators of positive affect: (a) eyes on the task; (b) pens on
the task page or bodies leaning in towards the task; (c) unaware of the world around;
(d) participating in the interaction; (e) students building on each others’ ideas
(latching comments); (f) exclamations of pleasure.

Analysis of what triggered each part of the dialectic interaction and the nature and
source of the conceptual artefacts upon which students draw will facilitate the
identification of insightful mathematical behaviour.

BACKGROUND ORIENTATION FOR THE ILLUSTRATIVE TRANSCRIPT

Three students, William, Talei and Gerard were videotaped working as a
collaborative group to solve the unfamiliar challenging problem ‘Understanding the
Double Derivative’. The teacher selected the groups, provided the task sheet and
stated that f’(x) meant the derivative of f'(x). Students followed a familiar
classroom-working pattern; they worked in groups for twelve minutes then made
their first brief report to the class as a whole. The interaction reported occurred
eleven and a half minutes into group-work and continued for one and a half minutes.

In the previous twelve months, all three students had worked briefly with sign
diagrams and extensively with gradients of curves in individual and group settings
through investigation and exercises. The students had not previously encountered
second derivatives. Gerard had not been exposed to the term ‘curvature’ in a
mathematical context. Talei and William were working to mathematically formulate
‘curvature’ in another mathematics subject studied simultaneously (with another
teacher). At the time of this research, they had not achieved their goal. The teacher
made no reference to the idea of curvature or to the other subject.

y =f(x)

N
N

Figure 3: The shape of y = f(x) in the ‘Understanding the Double Derivative Task’

The task ‘Understanding the Double Derivative’ required students to use the graph
(Figure 3) as a starting point. By sketching the graphs of f'(x) and f’(x) and the
sign diagrams to the three graphs and generating other information if they chose to
do so, students were required to investigate links between f"'(x) and f(x). The task
sheet contained general suggestions and questions about possible ideas to explore but
these were not prescriptive and did not provide hints or directions about specific
ideas to explore, strategies to use or pathways to follow. They included questions
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and statements like: “What happens to key features on one graph in another graph?’
‘Search for patterns and reasons why these patterns exist’. ‘Predict’. ‘Check’. ‘Is the
f’(x) graph sufficient information to be able to generate the f(x) graph? Explain’.

Key to transcript: ¢}’ one individual completed or extended the previous statement (latch);
¢/’ one individual cuts across the statement of another (cut).

1 William: The shape. [Time 11 min. 30 secs.]

2 Talei Uh hu.

3 William: To there.

4  Buzzer: [Denotes the end of collaboration time].

5  Teacher: [Begins to organise the reporting phase. No mathematical talk, just
organisational. Continues simultaneously with interaction to Line 24]

6  William: Well if you look between there and there it is curving}

7  Talei: {Yes.

8  William: The curve is getting less and less}

9  Talei: {Yes ... it’s the gradient yes it’s}

10 William: {’till there which means it’s negative ... it’s steep}

11 Talei: {Yes}

12 William: {’till there when it starts to get more}

13 Talei: {So when the curvature is

14 William: and more}

15 Talei: {smaller but that’s

16  William: but what about between there and there ... what happens? Why is
that?/

17  Gerard: /What are we going to talk about? Do you want/

18 William: /Why is that ... a positive?/

19  Gerard: /to talk?

20 Talei: It’s sort of ... that is ... that’s true .../

21  Gerard: /Do you want to talk?/

22 William: /Tt turns there but it doesn’t turn and go the other way ... it always

turns the same way- THAT’S IT! [Moves his hand in the shape of a
minimum turning point and watches his hand move]

23 Talei: Yes} [Smaller hand movement in the shape of a minimum turning
point without appearing to see William’s hand movement]
24 William: {It’s positively turning that way. [Time 13 mins.]

By the eleventh minute, the group had found several patterns through the discovery
of six successive complexities (Williams, 2001). William then commented ‘there
must be something more’. William’s focus of attention on a level beyond searching
for patterns and towards finding an over-arching reason for why these patterns
occurred produced the implicit spontaneous focus question to another discovered
complexity. It appears the pair were responding to an implicit question like ‘why do
the patterns we have found exist? Gerard did not participate in this final
collaboration because his attention was drawn back to the class task (and away from
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the spontaneous question explored by William and Talei) by the buzzer (signalling
the end of group-work) and the organisational comments of the teacher preparing
students for the reporting session. For this reason, in this paper Talei and William
have been described as a collaborating pair and Gerard as an outsider for this final
one and a half minute interaction where ‘constructing’ occurred between Talei and
William. William and Talei gave no indication that they were aware of the activity
around them; they did not respond to the external attempts to focus their attention on
the reporting process (buzzer, teacher, or Gerard).

Key: Cognitive C B R (constructing, building-with, recognising). Social O W T External // Internal.
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Figure 4. Tool to aid identification of student autonomy, spontaneity, and creativity in the
abstraction process (from Dreyfus, Hershkowitz & Schwarz; 2001; Williams, 2000)
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DISCUSSION AND CONCLUSIONS

The analysis tool (Figure 4) used to explore associations between student affect and
the creative process of abstraction is a diagrammatic representation displaying the
cognitive, social, and affective features of the interaction. Numbers down the left
hand side of the diagram represent the line of transcript. The shaded squares in the
first column indicate the inferred presence of epistemic cognitive elements in the
process of abstraction for the individual speaking in that line of transcript. The
centre column contains a vertical line that separates the small circles representing
those within the collaborating pair from those outside the collaborating pair. The
numbered arrows indicate the individuals to whom the speaker appears to attend and
the social interaction category to which those prior statements belong. The number
of ticks in the grids on the right hand side provides an indication of task
engagement. Arrows that cross the separating line in the centre column suggest less
spontaneity and autonomy than when the arrows from members of the collaborating
pair are directed to dialogue within the pair. By considering cognitive activity in
conjunction with social interactions, inferences can be drawn about student creative
behaviour. Where students are constructing and the social interaction pattern
indicates students are responding only to sources internal to the group, the students
display autonomous, spontaneous behaviour that may be creative. The pattern
shown by the directions of the arrows from William and Talei (Figure 4, centre
column) indicate the pair responded only to each during the interaction. William’s
first statement is in response to the overall task and the pair’s discovered complexity
within it (Q in Figure 4). They displayed numerous indicators of positive affect
(Figure 4, right column) as this autonomous, spontaneous pair employed
mathematically insightful behaviour whilst constructing a new mathematical insight.
Evidence of creative behaviour exists and requires further exploration.

William explored the complexity by directing attention to a feature of a segment of
the graph using common language to elaborate ideas (Transcript Lines 1,3,6 and 8
categorised as attention in Figure 4). The use of common language rather than
precise mathematical language indicated the presence of an amorphous idea rather
than a well-structured mathematical idea. Talei recognised the mathematical
significance of William’s comment (Transcript Line 9); she synthesised the
amorphous structure of ‘curvature’ she recognised as applicable and built-with this
as she elaborated further (Transcript Line 13 & 15). Talei and William now moved
their pen along the curve undertaking evaluative-synthesis between the f(x) graph
(Figure 3) and f""(x) graph. Almost simultaneously they found the minimum point
in f(x) (Figure 3) appeared to contradict their theory (the ‘but’ in Line 15 and 16).
Their subsequent behaviour suggested they explored ‘Why doesn’t the minimum
point on f(x) show as a key feature on {"’(x)?” William's exclamation and comment
framed partially in common language (Line 22) and Talei and William’s hand
movements (Line 23, 24) provide evidence of vertical cognitive reorganisation.
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A more detailed characterisation of the factors that contributed this student
interaction would require exploration of factors such as classroom culture, task
characteristics, and the teacher’s introduction to the task. This brief illustrative
example shows how this tool can be applied to distinguish between the processes of
‘abstraction’ in general and a subset of that process where student behaviour is
spontaneous and creative. Further work is required to extend the tool to examine the
nature of dialectic intervention from an ‘outsider’ who stimulates rather than inhibits
spontaneity and creativity. The tool presents possibilities for examining such
incidents and has been designed for use with the video and interview data in the
Learners’ Perspective Study of Year 8 Mathematics classrooms being conducted in
ten countries.
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