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THE NATURE OF MATHEMATICS AS VIEWED FROM
MATHEMATICS EDUCATION RESEARCH

Introduction
Lyn English, Queensland University of Technology
Gerald A. Goldin, Rutgers University

How we conceive of mathematics has a major bearing on our educational
efforts. The nature of the mathematical ideas we consider essential for success
in the new century, and the ways in which these ideas are conveyed during the
school years, can facilitate or impede students' lifelong mathematical
understanding, learning, and communicating. Though we have made significant
advances in mathematics education research, fundamental issues of intellectual
importance having political, social, and economic ramifications, continue to be
debated. These issues include: (a) What counts as mathematics? (b) What is the
nature of mathematical ideas? (c) What is the relative importance of these ideas
to society? (d) What is the nature of the various representations these
mathematical ideas may take (both internal and external to the student)? (e)
What are the processes by which these ideas are understood by students? (f)
How might we maximize students' understanding of these mathematical ideas?

Among the viewpoints are those that consider mathematics and the direction of
its growth to be shaped by a complex system of cultural, social, and political
forces (e.g., D'Ambrosio, 1999; Skovsmose & Valero, 2002). Lerman (2000)
refers to the "social turn" in mathematics education, which came into being
towards the end of the 1980s. The social turn saw the emergence of theories
that view mathematics and mathematical meaning and reasoning as products of
social activity. Social constructivists, for example, emphasize the processes
through which consensus develops in determining the nature of mathematical
knowledge and how it is constructed.

Complementing the sociocultural perspectives are those that draw on advances
in cognitive science to explain aspects of the structure of mathematics and its
development. Included here are analyses of external mathematical
representational  systems (e.g., mathematical symbolism, computer
microworlds, structured analogues, diagrammatic structures) and internal
systems (e.g., verbal/syntactic systems, imagistic systems, conceptual
metaphors, mental models). The nature of the interactions within and between
these representational systems is considered to play a powerful role in learners'
mathematical growth.
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Theories that lie within the broad sociocultural framework, along with the more
cognitively oriented theories, are contributing to current debates about what
mathematics students should learn, how they should learn it, and the extent to
which school mathematics curricula should capture the essence of workplace
mathematics (e.g., see Stevens, 2000).

A comparatively recent and controversial cognitive perspective on the nature of
mathematics is that of "mind-based mathematics" (Lakoff & Nunez, 2000).
Here mathematics is not inherent in the universe, nor is it merely a cultural
artifact; rather it is shaped essentially by the nature and structure of human
brains and minds via "conceptual metaphors."

There are varying perspectives among both mathematicians and mathematics
educators on the aforementioned issues. It is important for educators to
consider mathematicians' points of view, especially in light of the current
curriculum debates highlighted by the media in several nations. Will
mathematics educators and mathematicians find intellectually sound ways of
connecting differing perspectives, or will existing gaps widen further?

The papers in this Forum provide critical debate on the issues we have
addressed. Brian Greer argues that mathematics, mathematics education, and
mathematics education research are situated in “sociohistory, culture, and
politics.” On a somewhat different note, Laurie Edwards presents a “personal
journey” on the nature of mathematics, where she illustrates the perspective
that mathematical ideas are shaped in fundamental ways by our embodied
experience in the world. The importance of communication is emphasised in
Anna Sfard’s paper, where mathematics is seen as a discursive activity, that is,
“a special way of communicating.” Within her communicational framework,
thinking is regarded as a special case of communicative activity. Another
interesting perspective is presented by Shlomo Vinner who addresses
boundaries, identities, and mathematical objects in his discussion of
mathematics and mathematics education. Hartwig Meissner, on the other hand,
explores the distinctions among “Einstellung” (attitude), “Vorstellung”
(internal image) and “Darstellung” (external representation) in addressing
mathematics and the processes of mathematics learning. Gerald Goldin extends
Meissner’s ideas in his discussion of representational systems, and provides
critical thought on the sources of the “widening chasm” between mathematics
and mathematics education.
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Complexity of Mathematics in the Real World
Brian Greer, San Diego State University

Perception of the relationships among mathematics, mathematics education,
and mathematics education research used to be simple.

Mathematics was seen as a relatively well-defined, hierarchically structured,
body of knowledge. Mathematics education meant transmitting this body of
knowledge to each student up to an appropriate level in the hierarchy.
Psychological research was expected to provide general theories of cognitive
development and learning, with the assumption that these theories could be
applied to the learning of mathematics as a domain and the improvement of
(mathematics) education through generating hypotheses testable via standard
experimental designs. Many mathematicians and psychologists taking a more
or less informed interest in mathematics education feel comfortable with this
simplicity (for example, in the context of the Californian Math Wars, see the
analysis of the unholy alliance between psychologists and mathematicians by
Jacob and Akers (1999)).

However, the situation has become more complicated.

First, mathematics continues to grow fast and computers have changed both its
content and its methods. Consequently, questions of selection and arrangement
arise — what parts of mathematics should be chosen and how should they be
reorganized for education? Typically, curricula are largely the result of
tradition and inertia and, insofar as growth occurs, it is mainly through
accretion without radical restructuring. There is very little by way of principled
design — consider the limited adaptation to the new representational systems
afforded by computers, for example.

Second, the first wave of the cognitive revolution generated disequilibrium
when it became clear that there was “de-emphasis on affect, context, culture
and history” (Gardner, 1985, p. 41). The outcome was the “second wave” (De
Corte, Greer, & Verschaffel, 1996, p. 497) which mathematics education
research both contributed to, and was influenced by, in major ways.
Methodologies became interpretative rather than scientific, with results that are
liberating or anarchical, depending on your point of view. The work of some
researchers now exemplifies Engestrom’s proposed methodology for activity
theory that puts it to “the acid test of practical validity and relevance in
interventions that aim at the construction of new models of activity jointly with
the local participants” (Engestrom, 1999, p. 35).
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Inevitably, mathematics education researchers’ views of mathematics have
been complicated by their immersion in activity systems, including exposure to
the culture of the classroom, the nature of schooling, and the politics of
mathematics education. Mathematics, mathematics education, mathematics
education research are all situated in sociohistory, culture, and politics.

To illustrate the foregoing comments, I offer sketchy outlines of three key
characteristics of mathematics (revealing my own biases, naturally) and how
they play out in mathematics education and mathematics education research.

The Two Faces of Mathematics

On the one hand, mathematics is rooted in the perception and
description of the ordering of events in time and the arrangement of
objects in space, and so on ("common sense -- only better organized",
as Freudenthal (1991, p. 9) put it), and in the solution of practical
problems. On the other hand, out of this activity emerge symbolically
represented structures that can become objects of reflection and
elaboration, independently of their real-world roots. In the process,
common sense is soon transcended, yet, time and again, the results of
such elaborations have proved (often after a considerable lag in time)
useful in theoretical descriptions of real-world phenomena and solution
of real-world problems. (De Corte, Greer, & Verschaffel, 1996, p.
500).

The link between the two faces of mathematics is the activity of modeling.
Typically, the modeling of a real-world situation leads to a range of solutions
that need to be judged in terms of human criteria such as utility, purpose, and
complexity. Introducing pupils early to this perspective may be considered part
of the process of enculturation into the practices of mathematicians, yet until
relatively recently, it has not received much attention (Niss, 2001; Verschaffel,
2002).

The Developmental Nature of Mathematics

“Mathematics grows ... by its self-organizing momentum” (Freudenthal, 1991,
p. 15). In the course of the sociohistorical construction of mathematics, several
developmental mechanisms may be identified:

(a) The disequilibrium that comes from lack of closure. The obvious example is
the extension of the concept of number from its origins in natural numbers. (It
seems to me that there is a clear parallel with Piagetian theory but I am not
aware of anyone who has explored this idea in depth).
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(b) Metaphorical extension, which has been elaborated in the recent book by
Lakoff and Nunez(2000) (and see Edwards). Why are all those different things
all called “numbers™? (Poincare defined mathematics as the art of giving the
same name to different things).

(c) Variations on the theme of reification (e.g. Sfard, 1991, and see Vinner).

(d) Mediation by cognitive tools, as illuminated by the Vygotskian tradition —
language (see Sfard), symbols, representational systems (see Goldin,
Meissner).

(e) Systematization, including the development of axiom systems. The history
of attempts to teach mathematics on this basis is well known.

It has been pointed out that a major reason for the difficulty of mathematics
education is that children are expected to master in a few years concepts that
took humankind millennia to develop. All of the above developmental
processes have ramifications at the ontological level. In particular, analyses of
developmental obstacles represent one broad focus for the continuing relevance
and usefulness of cognitive analyses (Greer, 1996).

Mathematics as Cultural Construction

“Mathematics as a human activity” has become a principle cutting across
developments in mathematics education, new directions in the philosophy of
mathematics education (e.g. Hersh), and influences on mathematics education
from critical pedagogy, ethnomathematics, feminist critiques, historical
perspectives, and so on.

For balance, it should be remembered that the proof of Fermat’s last theorem,
and the pages of complex formulae that Ramanujan sent to Hardy also
represent human activity and require an account of the coherence and
continuity of cognitive processes within an individual brain over an extended
period of time however mediated by social environments (Greer, 1996).

Mathematics as a Form of Communication
Anna Sfard, The University of Haifa, Israel

Many different answers have been offered to the question What is
mathematics? throughout history, but the definition given by Henri Poincare is
the one which I find particularly useful. According to the French
mathematician, mathematics is the science of calling different things the same
name. This deceptively simple statement, if interpreted in a way not necessarily
intended by Poincare himself, can be seen as a forerunner of the
communicational vision of mathematics. In what follows, I outline this special
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approach in general terms. The presentation is organized as a series of
questions and answers.'

Q.. What is mathematics?
A;: It is a kind of discourse (a way of communicating)

The first thing to notice in Poincare’s definition is that by putting the issue of
naming in the center of our attention, it implies that mathematics is, in
principle, a discursive activity. In other words, mathematics is a special way of
communicating. One can oppose saying that it is thinking rather than
communicating that should be given prominence in the definition. My answer
to this is that thinking is already included in the term communication. Indeed,
according to the basic tenet of the communicational framework, thinking can
be regarded as a special case of communicative activity.

Q>. What renders mathematical discourses their unique identity?
Ay. Their use words, their visual mediators, and their special routines.

After bringing the discursive activity to the foreground, Poincare gives a hint as
to what makes mathematical communication distinct: It is the mathematicians’
special propensity for unifying many different things under the same name
which is the hallmark of the mathematical discourse. True, using the same
word as a signifier for many different signifieds is not unique to mathematics —
this activity is the very essence of conceptualization, and as such it is a vital
ingredient of any communication. Mathematics, however, exceeds all the other
types of discourse in the range of things included under each of its terms. This
special tendency of mathematicians to speak of sameness even when what
reveals itself to their eyes (and ears) appears different, is known as their
propensity for abstracting.

Please note that within the communicational approach, the adjective
‘abstract’ refers to the way words are being used in the discourse, and not, as is
often the case within other conceptual frameworks, to a special property of
objects that are being talked about. More generally, the use of words is the first
of several properties that one has to consider while trying to decide whether the
given discourse can be called mathematical. While becoming a participant of
the mathematical discourse, the learner often modifies her uses of known
words and then introduces new words which from now on will serve as
common names for sets of things that until now were never considered as “the
same”.

Two additional dimensions along which mathematical discourse can be
distinguished from other types of communication are their special mediating
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tools (or simply mediators), that is, visual means with which people help
themselves while communicating; and their distinct discursive routines with
which the participants implement well defined types of tasks. Let us say a few
words about each of these special discursive features.

Mediators. Unlike in the less abstract, more concrete discourses which
can be visually supported with objects existing independently of the discourse
itself, mathematical communication is mediated also, and sometimes
exclusively, by symbolic artifacts specially designed for the sake of
communication. Contrary to what is implied by a common understanding of a
tool in general and of symbolic tools in particular, within the communicational
framework one does not conceive of the communication mediators as mere
auxiliary means that come to provide expression to pre-existing, pre-formed
thought. Rather, one thinks about them as a part and parcel of the act of
communication and thus of cognition.

Discursive routines are patterned discursive sequences that the
participants use to produce in response to certain familiar types of utterance
expressing a well-defined type of request, question, task or problem". In the
case of mathematical discourses, the routines in question are those that can be
observed whenever a person performs such typically mathematical tasks as
calculation, estimation, explanation (defining), justification (proving),
exemplification, etc. The routines with which interlocutors react to the given
type of request (e.g. “estimate” or “justify”) may vary considerably from those
employed in response to a similar question asked in everyday setting. One of
the special characteristics of full-fledged mathematical discourse is that its
routines are particularly strict and rigorous.

Finally, let me explain why the question I am answering now speaks of
“mathematical discourses”, with the plural form implying that there is more
than one type of communication that can count as mathematical. Although the
same words can be used on many occasions, the rules that regulate this use may
vary from one setting to another. Similarly, although seemingly speaking of the
same things (quantities, geometric shapes) discourses may differ in their
mediators and in their routine interpretation of what appears as the same tasks.
Thus, we have a good reason to speak of different types of mathematical
discourse, distinguish between everyday mathematical discourses, school
mathematical discourse, and the discourse of professional mathematicians (cf.
Rittenhouse, 1998).

Q3. Why do we need mathematical discourse?
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Az For the sake of economy of communication, for its maximal
effectiveness, and to solve problems that could not be solved before.

The brief answer A4; above points to three reasons because of which
mathematical discourses came into being and developed the way they did. The
last of these reasons seems quite obvious, so I will elaborate here only on the
other two.

The economy of communication is attained by the very property
Poincare was talking about: By calling different things the same name,
mathematical discourse subsumes several former, independently existing
discourses, turning them into discourses “about the same thing” and making it
possible to express in the new language everything that can be said in any of
them with their own special signifiers. For instance, while saying that “three
and two equals five” we simultaneously express a truth about fingers, dollars,
kilograms, and infinity of other countable objects. The successive discursive
“squeezing” exists also within the mathematical discourse itself. For example,
the discourse about functions subsumes discourses about graphs and the
discourse about algebraic expressions.

The issue of effectiveness must be considered when one asks why the
meta-rules of mathematical discourse developed the way they did. It seems that
it has always been an undeclared hope of the mathematicians to create a
discourse that would leave no room for personal idiosyncrasies and would
therefore lead to unquestionable consensus. Such consensus would imply
certainty of mathematical knowledge. The exacting rules of the modern
mathematical discourse are the result of unprecedented efforts of 19th- and
20th-century mathematicians to attain this unlikely goal.

Q4. What is mathematics learning?
A4. To learn mathematics means to change one’s discourse

Learning mathematics may now be defined as an initiation to mathematical
discourse. It is important to note that the introduction to a new form of
communication never starts from zero. Whether the discourse to be learned is
on fractions, triangles, functions or complex numbers, it will be developed out
of the discourses in which the children are already fluent. If so, to investigate
learning means getting to know the ways in which children modify and extend
their discursive ways in the following three respects: in vocabulary they use, in
the mediators they employ, and in the discursive patterns (routines) they
follow.

Q5. How does the learning occur and what can we say about teaching?
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This is the very central question math ed researchers are asking. The issue is
extremely complex and it would be imprudent to try to summarize it in a few
sentences. I thus leave this last question without an answer. Here, let me just
say a few words about the expected impact of the communicational
conceptualization on the vision of learning and teaching mathematics.

Perhaps the most dramatic difference between the more traditional,
cognitivist vision of mathematical thinking and the one discussed in this paper
lies in their conception of the origins of mathematical learning: The traditional
approaches assume that learning results from the learner’s attempts to adjust
her understanding to the externally given, mind independent truth about the
world, and thus imply that, at least in theory, the learning could occur without
the mediation of other people. In contrast, the idea of mathematics as a form of
discourse stresses that individual learning originates in communication with
others and is driven by the need to adjust one’s discursive ways to those of
other people.

What is the added value of this conceptual shift? First, if we agree that
the site of mathematical learning is between people rather than beyond them,
we also realize that social and cultural factors are those that enable the process
of learning in the first place. Second, the communicational conceptualization
helps us to see an inherent complexity of learning: The idea of thinking as a
form of communication and of mathematics as a kind of discourse, if taken
seriously, makes us realize that in the process of learning mathematics, the
students’ awareness of the proper use of words and symbols must precede their
ability to account for this use. This vision of learning is bound to entail a
revision of some popular interpretations of the idea of learning-with-
understanding. Finally, the communicational approach brings second thoughts
about many other pedagogical believes as well. As has been argued in many
places, some of these beliefs must be modified, while some others would better
be abandoned altogether. Much work is yet needed to examine the practical
value of this theoretical change.

The Nature of Mathematics: A Personal Journey
Laurie D. Edwards, St. Mary’s College of California
What counts as mathematics? What is the nature of mathematical ideas?

The questions that frame this Research Forum are clearly foundational to the
practice of mathematics education. I would like to address these questions not
by proposing definitive answers, but by reflecting on my own experience as a
researcher over the past 18 years. During this time, my own thinking about the
nature of mathematics has evolved, in parallel with the emergence of the

PME26 2002 I -149



theoretical frameworks discussed in this Forum. I hope that the examination of
a particular "case" of changing theoretical perspectives in a single body of
research may be instructive.

My first major research project involved the creation of a computer-based
learning environment for a specific mathematical domain, transformation
geometry. As with many studies of students' mathematical thinking, the
research revealed "errors" in the children's thinking, interpretations that
differed from accepted mathematical truth. An example of such an "error" is
described in this passage:

The rotate bug...is an error in conceptualizing a transformation...Instead of
imagining the entire plane rotating around the center point...these students
thought that the shape would first slide over to the specified point, and then
turn around it in place." (Edwards, 1989, p. 107-8).

The characterization of the students' interpretation of rotation as an error, as
well as the entire framing of the research, reflected an objectivist view of
mathematics (Edwards & Nuilez, 1995); indeed, it exemplified what Lakoff
and Nufiez call "the Romance of Mathematics" (Lakoff & Nuiiez, 2000).
According to this view, "Mathematics is an objective feature of the universe;
mathematical objects are real; mathematical truth is universal, absolute, and
certain" (ibid., p. 339). In other words, mathematics has a transcendent
existence, apart from any human knowledge of it. The implication of this view
is that our role as educators and researchers is to design more effective
instruction about, and representations of, this mathematical reality.

Lakoff and Nufiez acknowledge that there is no way to determine, empirically,
whether mathematics indeed has such a transcendent existence. However, it is
clear that the teaching and learning of mathematics always takes place within
specific social contexts, and that simply characterizing students' understandings
as "correct" or "incorrect" does not go very far in helping to improve learning.
Thus what Lerman has called "the social turn" in mathematics education has
come to the fore (Lerman, 2000). This change in focus from evaluating the
adequacy or inadequacy of individual cognition to investigating the irreducibly
social nature of learning and teaching emerged in my own research as well,
One specific area in which this framework became important was in the
investigation of mathematical explanation and informal proof. I first used the
transformation geometry microworld with 11-year-olds. In addition to the
occasional "bug" in the students' understanding of the transformations, I also
found that few students were able, independently, to generate explanations or
informal proofs for the patterns they were guided to discover in the
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microworld. At the time, I attributed this to the students' age and level of
intellectual development. I expected that when I used the microworld with
older students, they would be able to, fairly spontaneously, notice and explain
these informal theorems that seemed so obvious in the microworld. This turned
out not to be the case: the older students behaved very much like the younger
children with regard to their mathematical explanations — neither group was
able to produce such explanations without some degree of scaffolding and
interaction with the researcher. This led me to reconsider the nature of
mathematical explanation and proof. Rather than expecting that, given a
dynamic and accurate representation of a domain, students would be able to
discover and explain pre-existing mathematical truths, I came to think of
proving as a social process, one which needs to be explicitly modeled and
scaffolded (Edwards, 1997).

Thus, in my own personal journey in thinking about the nature of mathematics,
I moved from assuming that mathematical ideas were "out there," waiting to be
discovered, to thinking of mathematics as a product of social interaction, a kind
of language, a human practice with norms that must be learned over time. Yet
the fact that mathematics is learned and practiced within social contexts begs
an important question: within a given social context, why is it that
mathematical ideas take the form that they do? And how is it that humans, as
cognizing creatures, are able to co-construct systems of mathematical
knowledge that are mutually intelligible? One answer, of course, might be that
mathematical ideas take the form they do simply because of their objective,
transcendent reality, that human beings are simply "perceiving" the way things
are, mathematically. I found this answer unsatisfying, in part, because it
seemed to set mathematics apart from all other products of human history and
cognition. Instead, I found work on conceptual metaphor (Lakoff, 1987; Lakoff
& Johnson, 1980) and embodiment (Varela, Thompson & Rosch, 1991) to be
evocative, in pointing to a deeper level of cognitive structure upon which much
of human thought and language is construc-ted. The reason that mathematical
ideas take the form that they do, and the reason they are mutually intelligible, is
because they are, at a foundational level, built upon the common experience of
being humans, with the same kinds of minds and bodies, living and growing in
the same physical world (Lakoff & Nufiez, 2000; Nufiez, 2000, Nufiez,
Edwards & Matos, 1999).

A concise statement of the implications of embodiment for understanding
mathematics can be found in the work of Lakoff and Nufiez:

» Mathematics, as we know it or can know it, exists by virtue of the
embodied mind.
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* All mathematical content resides in embodied mathematical ideas.

* A large number of the most basic, as well as the most sophisticated,
mathematical ideas are metaphorical in nature.

(Lakoff & Nugiez, 2000, p. 364).

I would like to offer an example of the application of this perspective by
returning to the "rotate bug", described above. This interpretation arose after
the students were introduced to what was, for them, a new mathematical idea —
they had never been taught about geometric transformations before. Yet the
"idea" of turning was not new to them — indeed, the embodied experience of
moving through the world, from a very early age, includes innumerable
instances of turning one's own body. However, this experience of turning is
different in an important way from the mathematical version of rotation
instantiated in the microworld. This general transformation, or mapping of the
plane, could take place around any arbitrary center point, whether this point
was part of, or distant from, the block letter L used to show the
transformations.

The conceptual construction that the students made of the new mathematical
idea of rotation of the plane was shaped by their embodied experience of
turning in the physical world: the rotate "bug," in which rotations always take
place around a point on the L-shape, can be seen as a metaphorical mapping
from the experience of turning one's own body in place. It is worth pointing out
that this metaphorical mapping was unconscious: there was no socially-
communicated introduction of the metaphor; instead, the physically-grounded
source domain existed prior to the introduction of the mathematical idea, and
shaped its assimilation in the children's minds.

In fact, the researcher did introduce an explicit metaphor or image to help the
students extend and generalize their understanding of rotation. I asked the
students to think about an object at the end of a string, which could be turned,
with the other end of the string being fixed in place. This explicit, socially
communicated metaphor helped, I believe, to bridge students' initial "local"
interpretation of rotation to the more general or global mathematical one.

These remarks are intended to communicate aspects of a personal intellectual
journey, yet this journey is not one in which prior theoretical commitments are
left completely behind. Putting aside the question of the objective existence of
mathematics (which seems to be something of a religious question), I still
believe that much of mathematics is socially constructed, and that in
understanding teaching and learning, we must attend to particular social and
cultural contexts. However, what is constructed, within these contexts is not
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arbitrary: mathematical ideas, as they exist within, and are shared between,
actual human minds, are shaped, in fundamental ways which we are still in the
process of understanding, by our embodied experience in the world.

Boundaries, Identities and Mathematical Objects —
Should we bother?
Shlomo Vinner, University of Israel

The proposal for this research forum raises the question whether mathematics
educators and mathematicians will find intellectually sound ways of connecting
their differing perspectives and reinforce each other’s ideas, or whether the
existing gaps will widen further. I assume that the mathematicians mentioned
here are the university mathematicians who teach tertiary mathematics. Some
of them are not interested in teaching mathematics since their main interest is
mathematical research. Others, in case they care about teaching, have their
own views on how to do it and do not believe that mathematics educators have
useful advice for them. Usually, mathematicians have vague ideas about who
we are and what we do (there might be some exceptions). So, who is going to
listen to us? One answer is that we can listen to each other. This is quite
common for academic circles. A parody about such circles appears in Davis
and Hersh (1981) where a handful of devoted mathematicians who work on the
decision problem for non-Riemannian hypersquares is described (pp. 34-39). If
we do not want to stay like them in the isolated ivory academic towers the
alternative is to look for communities who can use our research findings. Such
a community, and perhaps the only one, is the community of mathematics
teachers. However, if we want to approach them it should be done within their
intellectual frameworks and in their language. The nature of mathematics is
undoubtedly an issue with which they have to be involved. But to what extent?
Thus, this forum, whose title is The Nature of Mathematics as Viewed from
Mathematics Education Research, is a good opportunity to raise some
questions about mathematics education research that deals with the nature of
mathematics. To be more specific, my question is the following: What aspects
of the nature of mathematics are relevant to the community of mathematics
teachers, and what aspects should be kept for our closed circles where we can
discuss any subject at any level of sophistication. Asking that, I am, in fact,
raising two questions. One is about boundaries and the second one is about
identity. The one about boundaries is: What are the boundaries of mathematical
education research that are relevant and meaningful to mathematics teachers.
The one about identity is: What is the purpose of mathematical education
research? In fact, this is an identity question about our group and it has been
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raised in the past several times by several people. One of them was in
Ballachef’s letter from 1996. Questions about boundaries and identity have
more than one answer. So, what I suggest here is only one possible answer out
of many. I suggest trying to define a restricted domain of mathematical
education research which I will call the core and which will have an immediate
simple application to the practice of teaching. Some other issues, which imply
a level of sophistication that teachers do not have, will be considered as
peripheral.

The nature of mathematics has many aspects. One of them is the nature of
mathematical objects. Some time ago, a student of mine (she is a junior high
mathematics teacher) came to me complaining: “You sent us to take a course
in the philosophy of mathematics,” she said, “and the lecturer spent three
weeks discussing the question: what are objects and what are mathematical
objects? What is the point of it?” I was quite irritated by the question but as a
teacher, I have trained myself to control my reactions and to try to tolerate and
to understand my students’ views. “Isn’t this question relevant to our research
forum?” I asked myself and decided to discuss it here. First of all, I would like
to explain why the question of mathematical objects is such a crucial question
in the philosophy of mathematics. According to mathematical logic and model
theory, mathematics is a collection of theories about mathematical systems. A
mathematical system is a set of abstract objects with relations and operations
that fulfill certain primary conditions. The mathematician’s task is to discover
some interesting claims about the mathematical systems implied by these
primary conditions. Whether you accept this or not, it can explain why the
problem of mathematical objects is so crucial for the philosophy of
mathematics. But is it also so crucial to mathematics education research?
Even a short literature survey will show us that many mathematics educators
are involved in investigations about this issue. In a paper by Tall et al (2000),
there is an attempt to draw certain boundaries between some approaches to
mathematical objects in mathematical education research. When one speaks
about boundaries one has to speak also about territories, but Tall et al. (p.233)
speak about scopes, not about territories. Hence, what I say here is my
interpretation of their formulation. Their paper discusses three approaches to
mathematical objects: In the first two, an attempt is made to explain how
mathematical objects come into being in the human mind: it is either by
encapsulation (Dubinsky, 1991) or by reification (Sfard, 1991). The third one
(Gray and Tall, 1994) does not bother with the question of how mathematical
objects come into being. It assumes that people think and speak about
mathematical objects. However, it draws our attention to the fact that some
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mathematical terms and mathematical symbols are ambiguous. These terms
and symbols denote both processes and objects or, if you wish, both processes
and concepts. This led Tall and Gray to invent the notion of procept. If you
look at it this way, the discussion in the above paper (Tall et al, 2000) is, in
fact, about boundaries. If you agree to accept mathematical objects without
trying to ask how they are formed then some controversies are moved from the
core to the periphery. A serious objection to excluding the mathematical
objects from the core might claim the following:

People fail in mathematics because they have not constructed in their mind the
mathematical objects required in order to perform the mathematical tasks
imposed on them. We should lead them through well-designed activities in
order to construct in their mind the required mathematical objects. Therefore,
these activities should be an essential part of the mathematical education
research core. More specifically, we should make our students go through
many processes that will eventually become (by encapsulation or reification)
mathematical objects.

Since I wish to avoid controversies I will not argue with this claim. I would
only suggest, as an alternative working assumption, a different view.
Mathematical objects are a special case of abstract objects. The problem of
abstract objects is widely discussed in the philosophy of language. There is the
classical distinction between concrete nouns and abstract nouns. Please, note
that we are speaking here about nouns and not about objects. Some nouns or
noun phrases denote well-defined concrete objects. For instance: The dog of
my mother in law. On the other hand, many nouns do not denote any object.
For instance, is there any object in our world that is denoted by the noun milk?
The question becomes even more embarrassing when abstract nouns are
discussed. Are there objects in the world denoted by love, peace or
compassion? Surprisingly enough, in our thoughts we relate to these nouns as
if they denote objects. This is reification. The Webster’s Ninth New
Collegiate Dictionary suggests that the word “reification” is in use at least
since 1846 and it is the process or result of reifying. To reify is to regard
something abstract as a material or concrete thing. Thus the working
assumption which I suggest claims the following:

(1) There is a is a tendency in languages to introduce nouns even when no
objects are involved (it probably facilitates talking about certain things.)

(2) Reification occurs spontaneously the moment a noun is introduced.

Because of time limitation I will bring only two short examples to support the
above claim. 1. When teaching limits in Calculus, many of us use the term
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“infinity” instead of saying “increasing unboundedly.” However, in calculus
(contrary to set theory), there is no object the name of which is infinity. In
spite of that, many calculus students think of infinity as an object. 2. Even
languages of primitive cultures have abstract terms. Levi-Strauss, the famous
French anthropologist, in his book The Savage Mind (1966) illustrates this by
some examples. Two of them are the following: In Chinook, a language
widely spoken in the north-west of North—America, the proposition “The bad
man killed the poor child” is rendered as: “The man’s badness killed the
child’s poverty.” And for “The woman used too small a basket” they say: She
puts the potentilla-roots into the smallness of a clam basket” (p.1). (The issue
of reification is widely discussed in the major works of Quine (1960), 1981,
1995)). Finally, I would like to relate again to the claim that people fail in
mathematics because they fail to construct the mathematical objects involved
in their mathematical tasks. There are so many potential reasons for failure that
it is impossible to isolate one factor and to claim that it is the cause for failure.

The way I suggest to understand the procept paradigm by Tall and Gray allows
us to speak about processes, objects and concepts as primary notions. Namely,
we do not have to explain what processes, concepts and abstract objects are.
On the other hand, the procept theory points at a major obstacle in the learning
of mathematics - ambiguity. Ambiguity is a serious obstacle in communication.
On the other hand, it also enriches communication immensely. 1 suggest,
however, that this issue will not be included in the core of mathematical
education research.

Einstellung, Vorstellung, and Darstellung
Hartwig Meissner, Westf. Wilhelms-Univ. Muenster, Germany

Einstellung, Vorstellung, and Darstellung are keywords to describe the
process of learning and understanding mathematics. Analyzing this process we
do not rely on philosophical theories (Kant's ontology). We base our theory of
learning and understanding mathematics on the following assumptions:

(1)Mathematics is "something" which exists independent from human beings
or from human brains like trees, birds, genetic codes, time, space,
electricity, gravity, infinity, ...

(2) There are external representations of mathematical ideas, Darstellungen,
which we can read, or see, or hear, or feel, or manipulate, ... These
Darstellungen can be objects, manipulatives, activities, pictures, graphs,
figures, symbols, tags, words, written or spoken language, gestures, ... In a
Darstellung the mathematical idea or example or concept or structure is
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hidden or encoded. There is no one-to-one-correspondence between a
mathematical idea, concept, etc. and a Darstellung.

(3)Human beings are able to "associate" with these objects, activities, pictures,
graphs, or symbols a meaning. That means each Darstellung evokes a
personal internal image, a Vorstellung (cf. concept image, Tall & Vinner,
1981). Thus Vorstellung is a personal internal representation, which can be
modified. Or the learner develops a new Vorstellung. A Vorstellung in this
sense is similar to a cognitive net, a frame, a script or a micro world. That
means the same Darstellung may be associated with many individual
different internal representations, images. Each learner has his/her own
Vorstellung. And again here, there is no one-to-one-correspondence
between a Darstellung and a Vorstellung.

(4) The process of building up a Vorstellung depends very much on the basic
mentality of the learner, i.e. on his or her Einstellung. The Einstellung
includes affective components like attitudes, beliefs, emotions, values
(Goldin). The Einstellung affects attitudes towards learning in general,
towards mathematics in general, towards problem solving, or towards the
specific learning "environment". The Einstellung is a product of social
interactions (with parents, teachers, peers, etc.), of genetic factors, of
cultural or historical impacts, etc. Positive Einstellungen in the class room
are necessary for a successful teaching-learning process. A learner with a
negative Einstellung probably will not be very successful. Einstellungen
work like a filter or a catalytic converter in the transformation processes
Darstellungen <» Vorstellungen.

In this paper I concentrate on Vorstellungen and Darstellungen. The process of
building up a Vorstellung very much depends on the already existing internal
representations  ("assimilation, accommodation" according to Piaget,
"coherence, connectedness" according to Greeno) and on the already existing
"subjective domains of experiences" (Subjektive Erfahrungsbereiche,
Bauersfeld). Learning mathematics now means that the learner has to build up
a Vorstellung which "corresponds"” (especially in the sense of Greeno) as much
as possible to the mathematical idea / concept / structure. But the learner does
not experience the mathematical idea / concept / structure directly, the learner
only is confronted with (different types of) Darstellungen. Figure 1 presents a
summary of these ideas.
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We are interested in the cognitive processes'. What does "learning" mean? And
when do we "understand"? Learning obviously is the process of building up an
"adequate" Vorstellung of a given mathematical situation (by means of
"appropriate" Darstellungen). But the Vorstellung is individual and cannot be
inspected or evaluated directly. With other words, there is no direct way to
evaluate "adequate" or, there is no direct way to evaluate the degree of
"understanding".
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Figure 1: Examples of Vorstellungen and Darstellungen

We only can judge a Vorstellung by a corresponding Darstellung, that means
"communication" is necessary. To prove understanding the learner must
transform the individual Vorstellung into a Darstellung. And when the learner's
Darstellung corresponds with one of the expected Darstellungen we may
assume that the learner did understand. The problem is obvious. We do not
judge a Vorstellung but we interpret a performance.

! Despite a suggestion from the IC to "facilitate greater insight and engagement" we will continue the paper
with the German words which are more precise than English translations.
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To distinguish the Vorstellung from the performance we will speak of a
conceptual understanding’ when the learner has an adequate Vorstellung, i. e.
his or her internal representation corresponds appropriately to the given
situation. A conceptual understanding also may be intuitive or unconscious.
And of course, a conceptual understanding only can be demonstrated indirectly
up to a certain degree, consciously or unconsciously, see examples.

To detect the student’s conceptual understanding we still need Darstellungen
from the student. But we must allow flexibility in the use of Darstellungen.
Not the Darstellung itself is important but the Vorstellung behind that
Darstellung. When there are misunderstandings concerning a specific
Darstellung just change the Darstellung to clarify if the misunderstanding
originates from the Vorstellung or from the Darstellung. Of course also non-
standard Darstellungen can be used. Clinical interviews with experienced
interviewers - and also experienced class room teachers - can identify the
student's conceptual understanding. Written tests - like TIMSS or PISA -
usually cannot help to prove conceptual understanding’.

Skemp distinguished between instrumental understanding and relational
understanding. Instrumental understanding is characterized by selecting and
applying appropriate rules to solve the problem without knowing why ("rules
without reasons"). In our terminology specific Darstellungen are expected and
it is necessary to (re-)produce them: "Tell me what to do and I will do so".
There is no adequate mathematical Vorstellung behind.

An understanding with more Vorstellung behind it, was termed a relational
understanding by Skemp (1978): "knowing both, what to do and why". Here an
adequate Vorstellung leads to an expected Darstellung. We want to call this a
communicable understanding. It combines both, the conceptual understanding
with the ability to communicate in a wanted or given format. A person with
communicable understanding is able to communicate flexibly in those
Darstellungen which are expected or - according to the specific problem - in
Darstellungen which fit best to the problem. We will give some examples to
illustrate these various aspects of understanding”.

2 In earlier papers we called this a relational understanding (which is different to SKEMP’s relational
understanding).

3 HosPESOVA and TICHA found through interviews examples for both, "good conceptual understanding, but
no expected TIMSS-Darstellung" and "correct TIMSS-Darstellung, but no adequate conceptual

understanding".
4 For more details on the role of communication and communicational conflicts see Anna Sfard and Gerald

Goldin in this Forum-paper.

PME26 2002 1-159



Example 1 (Sorting objects)

A teacher and about 25 students (age ~9) are sitting around a set of about 40
geometrical solids. Teacher: "I have a rule in my mind to sort these solids.
These two solids follow my rule. Who can find other solids which follow my
rule?" Only directed by the teacher's YES or NO without any further
explanations the set gets sorted into the set of solids which follow the rule and
a second set (of counterexamples). This non verbal process of sorting objects
by guess and test may lead to an intuitive concept (of polyhedra or rectangular
solid or rectangle or ...), i.e. an (partly unconscious) conceptual understanding
develops. But during the process of sorting in the classroom also discussions
start to guess the "rule", to verbalize the situation. The concept becomes more
conscious and a communicable understanding develops.

Example 2 (Linear functions, discuss possible Vorstellungen)

To draw the graph of 1.5x -8y = -3 we get the following
Darstellungen:

—

Example 3 (Interpreting functions, analyze the conceptual understanding)

Student A draws the correct graph of a given function and determines correctly
by computation the maximum at x=5. Student B draws the same graph and
determines the minimum at x=5 (by applying the correct algorithms with a
computational mistake).

Example 4 (Procepts)

A keyword or symbol or tag as a Darstellung can serve as a stimuli to evoke
proceptual thinking (Gray & Tall, 1994). Here the Vorstellung involves both, a
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procedural and a conceptual aspect. E.g. y=f(x) may be seen as an assignment
(process) or a function (concept).

Connecting Understandings from Mathematics and
Mathematics Education Research
Gerald A. Goldin, Rutgers University

The perspective I bring to this discussion may be a controversial one, but I
shall start noncontroversially by building on Hartwig Meissner’s
accompanying presentation. Meissner highlights differences among the notions
of Einstellung (attitude), Vorstellung (internal representation), and Darstellung
(external representation) as descriptors of processes in mathematical learning
and understanding, and takes mathematics to be something that “exists
independently” of these. Before considering aspects of the nature of
mathematics, let me continue with two further, important ideas about
representation.

First, I would emphasize that individual representational configurations,
whether external or internal, cannot be understood in isolation. Rather they
occur within representational systems. The latter are not mere collections of
representations, but have complex structures that in practice may be
ambiguously defined or context-dependent (Goldin, 1998). Thus words and
sentences occur within natural language systems, having conventional
grammatical and syntactic structural features that can be characterized as
external to any one cognizing individual. Internal, verbal representational
configurations also occur in each individual, within a personal system of
linguistic competencies encoded in the brain that has its own structural
features. All these depend on context in various ways. The “communicational
approach” in Anna Sfard’s accompanying presentation, at least tacitly, involves
such structural features of language. Likewise in mathematics, we have
conventional, external systems of representation including base ten numeration,
rules for arithmetic operations, ways of denoting rational numbers, Cartesian
graphs, a system of algebraic notation, etc., with accompanying verbal
descriptions, all usefully regarded as external to the individual. And we have
the visual imagery, notation-images, kinesthetic encodings, and so forth,
occurring within personal systems that may be partially-developed and embody
misconceptions, contradictions, and idiosyncratic structural features. We might
use the terms Darstellungsysteme and Vorstellungsysteme to refer respectively
to external and internal representational systems.
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In my work I have found it useful to distinguish five different types of
Vorstellungsysteme that come into play in learning and doing mathematics: (1)
verbal/syntactic systems, referring to internal natural language competencies,
(2) imagistic systems, including visual/spatial representation, kinesthetic
representation, and auditory/rhythmic representation, (3) formal notational
systems, referring to internal procedural/structural competencies associated
with the conventional representations of mathematics, (4) a system of heuristic
planning and executive control, including configurations for strategic decision-
making that govern problem-solving activity, and (5) an affective system
including rapidly-changing emotional states as well as more stable, multiply-
encoded constructs such as attitudes, beliefs, and values. A psychologically
adequate description of mathematical learning, development, and problem
solving requires that we take account of all five types of Vorstellungsysteme in
interaction with each other and with Darstellungsysteme. Here 1 think
Meissner’s term Einstellung usefully distinguishes certain more stable aspects
of affect and related cognition that individuals bring to mathematical situations.

The second idea I want to emphasize is the strong psychological role that the
initial assignment of meaning, or semiotic step, plays in the individual’s
developing Vorstellungsysteme. Understanding this is important not only to
education, but to grasping how mathematics itself has evolved.

For example, children frequently learn that multiplication of natural numbers
(“times”) is an abbreviation for repeated addition: i.e. ‘3 x 5’ means ‘5 +5+5’
(three fives). The formal notational and imagistic representational subsystems
associated with the operation of multiplication then develop structurally,
making use of this ‘meaning’. The usual multiplication tables are constructed,
and patterns found in them. The commutative and associative properties of
multiplication, and the distributive property of multiplication across addition,
are verified and illustrated. As more structure is built on the initial meaning, its
psychological persuasiveness increases. Repeated addition becomes for the
learner what multiplication really is. But the moment comes when the meaning
fails! A child may interpret ‘3 x %’ as ‘%2 + % + 2, but ‘%% x 3’ is
problematic—what does it mean to ‘add three one half of a time’? The
structural commitment to the commutative property suggests a value for %2 x 3,
but the absence of the original meaning leaves a gap in understanding—a
cognitive obstacle. We have well-documented related misconceptions, such as
the idea that “multiplication always makes larger,” which may persist until
some reconceptualization has occurred.

Similar obstacles occur not only in individuals learning mathematics, but in the
history of the mathematical field. They have their origins in the structural
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extensions of mathematical systems that require relinquishing the necessity of
the original semiotic connections—so that the mathematical structures are
abstracted, and the ways in which the mathematical notations function as
representations of imagistic configurations are generalized. Mathematicians of
earlier eras struggled mightily with the concepts we today call irrational
numbers, imaginary numbers, negative numbers, and non-Euclidean
geometries, due in part to the psychological difficulty of abandoning the initial,
“real” meanings attributed to numbers, to points and lines, and so on. The
necessity for such reconceptualization is well understood now, and has
influenced our evolving notions of “mathematical existence” and
“mathematical truth.”

This brings me to the major point in my presentation—the notion of
mathematical truth, its recent unfortunate downplay in mathematics education,
and the consequent widening chasm between the fields of mathematics and of
mathematics education. I view the gulf that has developed as both damaging
and unnecessary. Although the divide has reached a depth that seriously
impedes our common educational goals, I do not think the sociological reasons
for rivalry are so strong as to generate inevitable conflict. For both
communities, and for the next generation of students, the value of achieving
meaningful improvement is extremely high, providing a powerful incentive for
real collaboration. I want to focus on what I perceive to be intellectual reasons
for division, intending my comments to be strongly critical.

At the root of the problem in each community is a willingness fo deny or
dismiss the very integrity of the knowledge generated by the other. It is not
always apparent to mathematicians when they do this in relation to
mathematics education research, nor is it always apparent to non-
mathematicians when they do this in relation to mathematics. Sometimes,
however, it seems to be done consciously and opportunistically, as a way of
inviting attention and gaining a following—with a kind of wilfully-maintained
ignorance of the other discipline.

On the one hand, some in the mathematical sciences community insist on
imposing—with unwarranted confidence—tacit but naive models of what it
means to learn mathematics. It is straightforward for mathematicians to focus
on building powerful competencies in formal notational systems, as these are
culturally agreed to be part of mathematics, and competencies in them can
usually be tested straightforwardly. Powerful problem-solving strategies and
heuristic planning techniques that work in various mathematical domains
(Polya, 1954, 1962, 1965), including proofs, are likewise generally agreed to
be part of, or closely related to, mathematics, though techniques such as “work
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backward from the goal” or “solve a simpler, related problem” are difficult to
test. But for many mathematicians the traditional view of mathematics as
consisting of abstract systems encoded formally accords only casual or
unimportant status to all but the most standard of representations. The power of
formal, logical reasoning when applied to abstract mathematical entities,
together with the fact appreciated in mathematics that visual intuitions can
mislead, creates a reluctance to place a high, explicit value on imagistic
representation, especially non-standard representation with accompanying
differences in individual learning styles, or on affect. Visualization, metaphor
and metonymy, emotions, and the relation between feeling and mathematical
imagination, are dismissed or relegated to incidental status, despite growing
empirical evidence for their fundamental roles in the learning of mathematics.

One extreme position is to discretize, take as “given”, and value very highly in
defining the curriculum a collection of standard mathematical material, in
disregard of the complexity of the processes through which mathematical
understanding develops in students of diverse abilities and motivations. This
view has energized the “traditionalist” side of the recent “math wars” in the
United States. Skills are seen as prerequisites to conceptual understanding, and
are thus to be taught first. Mathematical achievement manifests itself through
speed and accuracy in answering test questions. Mathematical ability is seen as
an innate, unitary characteristic of individual students, describing the rapidity
with which they acquire formal notational competencies when trained in them.
Of course I am not saying that all or most mathematicians adopt such
dismissive positions, though some educators have sought to establish this
stereotype. Some mathematicians do, and the fact that they do offers a
convenient rationale for counterpart dismissive fashions in education.

Fundamental to the integrity of mathematical knowledge is the notion of
“truth”, which has evolved significantly by virtue of mathematical insights
achieved over millenia (Kline, 1980). Let me use this term in a certain way that
mathematicians typically use it. The field of mathematics has been
characterized by many as the study of pattern (e.g. Sawyer, 1955). This
includes pattern detected in the natural world, and pattern in systems invented
by human beings. To study patterns, mathematicians seek to characterize them
as precisely as possible. One way this is done is to formulate definitions and
axioms or postulates that describe a system or class of systems incorporating a
pattern. We then have a collection of mathematical statements taken from the
outset as true. Further propositions (called theorems), often not at all obvious,
can be proven from the axioms by means of well-defined rules of inference and
are thus demonstrated to be true. Truths in mathematics occur within systems
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of assumptions. In developing such systems, our concepts change and evolve.
Some lines of reasoning turn out to be valid, while others are demonstrated to
be invalid. Often our initial conceptions turn out to be too limited, or even self-
contradictory. Sometimes imagistic thinking guides us to mathematical truths,
and sometimes it misleads us. In short, there exist essentially objective answers
to important mathematical questions. Furthermore the system we create is
abstract, and not necessarily restricted to apply only to the original, motivating
conceptual domain—other, unexpected models are likely to exist! And there
are fundamental, logical limits—proven limits—to the possibility of
demonstrating the completeness or consistency of mathematical axiom
systems.

The fashionable but dismissive intellectual trends influencing mathematics
education research have in the past two decades been wultrarelativist. Such
views are ideological (in the sense of being nonfalsifiable), since a contrary
argument can never be more than an alternative viewpoint. They include
radical constructivism, radical social constructivism, and variations of
postmodernism, each in its own way denying the very possibility of objective
truth, knowledge, or validity, and thus dismissing from the outset the central
construct of mathematical inquiry. These have energized extremes on the
“reform” side of the “math wars.” Most recently we have the grand claim that
mathematics consists entirely in “conceptual metaphors” (Lakoff, G. & Nufiez,
R., 2000), predictably attracting favor among some mathematics education
researchers. Here there are only conceptions, no misconceptions. Ideas and
visualizations (familiar to mathematicians) that underlie and motivate abstract
constructions are renamed as metaphors, presented as if newly-discovered, and
taken to be the mathematics—with those mathematicians who might disagree
caricatured as Platonists, naive realists, or empty formalists. In this view
mathematics cannot possibly “exist” independently of human metaphors, so the
initial point in Meissner’s presentation is be rejected entirely.

Of course, the definitive characterization of mathematical truth and the validity
of mathematical reasoning are far from a solved philosophical problem. We
have a lot to learn about it, and many unanswered questions remain. However,
we must distinguish between the assumptions, definitions, conventions, and
rules of inference chosen to characterize some visualized or imagined patterns
(socially constructed, subject to negotiation in their framing, and possibly
“metaphorical”) and their logical consequences (now “true” in an important,
“objective” sense). Denying or dismissing the very construct—replacing
“mathematical truth” by “social consensus” or “stability of human metaphor”,
replacing “validity” by “viability”, and so on—makes no contribution to our
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mathematical understanding. Rather it seems to make deeper mathematical
understanding unnecessary. Some version of ultrarelativism may be a tempting
response to closed-minded or “absolutist” views among mathematicians. It may
seem to justify our being open to students’ various ways of thinking
mathematically, to our emphasizing in education the ideas of mathematics,
imagery and metaphor, open-ended problem solving, discovery processes,
social and cultural environments, and various systems of belief—all that I
strongly favor! But ultrarelativist “isms” undermine what should be central
goals of mathematics education—conveying the nature of mathematical truth
and the power of valid, objective mathematical reasoning, bringing learners to
experience the processes of abstraction and proof, and helping students to
identify the same abstract mathematical constructs in a variety of different
conceptual domains.

In my studies of mathematics and of students’ processes of learning and
problem solving in mathematics, I have never found what we learn validly as
mathematicians and what we learn validly as researchers in the psychology of
mathematics education to contradict each other. Both sets of understandings are
needed. Mathematicians who are “absolutists” nevertheless offer important
mathematical insights. “Ultrarelativist” educational researchers have designed
and reported on ground-breaking studies. Progress is made when
mathematicians and educational researchers communicate effectively and learn
from each other, so that our understandings of difficult notions are enhanced—
not when we erase distinctions or dismiss centrally important constructs.

To conclude, then, it is time that mathematics education researchers exercise
far greater discernment than we have in the past. Let us knowledgeably and
thoughtfully abandon the dismissive fads, fashions, and “paradigms” in
mathematics education, in favor of a unifying scientific and eclectic approach.

Concluding Points
Lyn D. English, Queensland University of Technology

The papers of this Forum have presented a range of perspectives on the nature
of mathematics as viewed from mathematics education research. The authors
have raised controversial and, at times, opposing viewpoints on the issues
presented in the introudction. The ideas expressed by each of the authors
provide a rich basis for tackling the numerous debates emerging within and
beyond our discipline, debates that are being fuelled by the increasing scrutiny
of mathematics education by the public, by governments, by mathematicians,
and by school systems. Such debates include the nature of the mathematical
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content we should teach, how and when we should introduce this content, how
we can provide all students with access to powerful mathematical ideas, and
how we can encourage more students to undertake courses in mathematics. We
face many challenges as we attempt to deal with these concerns. The question
remains as to how effectively we are meeting these challenges.

Although not denying the importance of diversity in our perspectives and the
richness this brings to mathematics education, I believe we have become too
divided and too insular in many of our beliefs, theories, and ideologies. We
seem to be addressing only those questions that fall readily within our
particular ideological stance while ignoring other important issues. While
following a particular social-constructivist perspective in exploring children's
mathematical learning, for example, we often overlook the inherent structure of
the mathematical tasks or at least give it superficial treatment. So we might
argue for the richness of children’s learning through their classroom
interactions, while failing to recognize the mathematical inadequacies of the
tasks being explored.

As no one perspective can provide a satisfactory answer to all of our research
and teaching issues, we need to be more cognizant of alternative viewpoints
and incorporate the best of our own ideas with those of others. This Forum
represents an important step in this direction. There still remain, though, many
issues in need of attention as we continue to foster the growth of our teaching
and research communities. Some of these issues are listed below for further
debate.

e To what extent are our theoretical bases addressing the mathematical
needs of society in the new millennium?

e How are our existing ideologies impacting on students, teachers, and on
the community at large?

e How can we ensure a closer match between what we believe about
mathematics and mathematics education and the goods we deliver?

e To what extent are we dismissing one another’s perspectives and
philosophies, both within our own mathematics education community
and with our neighbours, the mathematicians?

e Mathematics continues to grow rapidly. How is this growth changing our
views on the nature of mathematics and what we consider important to

know and understand?
References

PME26 2002 1-167



Ballacheff, N. (1996). A4 letter to the president of PME. The PME News Letter.

Bauersfeld, H. (1983). Subjektive Erfahrungsbereiche als Grundlage einer
Interaktionstheorie des Mathematiklernens und -lehrens. Lermen und Lehren von
Mathematik, Bd. 6 (pp. 1-56). Aulis Verlag Deubner & Co KG, Koeln.

D’ Ambrosio, U. D'Ambrosio, U. (1999). Literacy, Matheracy, and Technoracy: A trivium
for today. Mathematical Thinking and Learning, 1(2), 131-154.

Davis, P.J., & Hersh, R. (1981), The Mathematical Experience. Houghton Mifflin.

De Corte, E., Greer, B., & Verschaffel, L. (1996). Learning and teaching mathematics. In D.

Berliner & R. Calfee (Eds.), Handbook of educational psychology, (pp. 491-549). New
York: Macmillan.

Dubinsky, E. (1991). Reflective Abstraction in Advanced Mathematical Thinking. In Tall,
D. O. (Ed.), Advanced Mathematical Thinking (pp.95 — 123). Kluwer.

Edwards, D. (1997). Discourse and cognition. London: Sage.

Edwards, L. D. (1989). Children's learning in a computer microworld for transformation
geometry, unpublished Ph.D. dissertation, University of California, Berkeley.

Edwards, L. D. (1997). Exploring the territory before proof: Students' generalizations in a
computer microworld for transformation geometry. International Journal of Computers for
Mathematical Learning, 2,187-215.

Edwards, L. D., & Nuiiez, R. E. (1995). Cognitive science and mathematics education: A
non-objectivist perspective. In D. Carraher & L. Meira (Eds.), Proceedings of the 19"
International Conference for the Psychology of Mathematics Education, Vol. I (pp. 79-87).
Recife, Brazil: Universidade Federale de Pernambuco.

Engestrom, Y. (1999). Activity theory and individual and social transformation. In Y.
Engestrom, R. Miettinen, & R-L. Punamaki (Eds.) Perspectives on activity theory (pp. 19-
38). Cambridge: Cambridge University Press.

Freudenthal, H. (1991). Revisiting mathematics education. Dordrecht, The
Gardner, H. (1985). The mind’s new science. New York: Basic Books.

Goldin, G. A. (1998). Representational systems, learning, and problem solving in mathema-
tics. Journal of Mathematical Behavior 17(2), 137-165.

Goldin, G. A. (2001). Affect, Meta - Affect, and Mathematical Belief Structures. Preprint,
Rutgers University.

Gray, E., & Tall, D. (1994). Duality, Ambiguity and Flexibility: A proceptual view of
simple arithmetic. The Journal for Research in Mathematics Education. 26, 115 — 141.

Greeno, J. G. (1978). Understanding and Procedural Knowledge in Mathematics Instruction.
Educational Psychologist, 12(3), 262-283.

Greer, B. (1996). Theories of mathematics education: The role of cognitive analyses. In L.
Steffe, P. Nesher, P. Cobb, G. Goldin, & B. Greer (Eds). Theories of mathematics
education, (pp. 179-196). Hillsdale, NJ: Lawrence Erlbaum Associates.

Hersh, R. (1997). What is mathematics, really? New York: Oxford University Press.

1-168 PME26 2002



Harre, R., & Gillet, G. (1995). The discursive mind. Thousand Oaks: SAGE Publications.

Hospesova, A., & Ticha, M. (2002). Komparative Studien - Aufgaben - Kinder. Beitrdge
zum Mathematikunterricht 2002. Klagenfurt, Austria.

Jacob, B., & Akers, J. (1999, April). “Research based” mathematics education policy: The
case of California 1995-1998. Paper presented at the Research Presession of the National
Council of Teachers of Mathematics Conference, San Francisco.

Kline, M. (1980). Mathematics: The Loss of Certainty. Oxford, UK: Oxford Univ. Press.

Lakoff, G. (1987). Women, fire and dangerous things: What categories reveal about the
mind, Chicago, University of Chicago Press.

Lakoff, G., & Johnson, M. (1980). Metaphors we live by, Chicago, University of Chicago
Press.

Lakoff, G., & Nunez, R. (2000). Where mathematics comes from. New York: Basic Books.

Lerman, S. (2000). The social turn in mathematics education research. In J. Boaler (Ed.),
Multiple perspectives on mathematics teaching and learning (pp. 19-44). Westport: Ablex.

Levi-Strauss, C. (1966). The Savage Mind. The University of Chicago Press.

Meissner, H. (2001). Encapsulation of a Process in Geometry. Proceedings of the 25th
Conference of the International Group for the Psychology of Mathematics Education, Vol. 3
(pp- 359-366). Utrecht, The Netherlands: Kluwer.

Niss, M. (2001). Issues and problems of research on the teaching and learning of
applications and modelling. In J.F. Matos, W. Blum, S.K. Houston, & S.P. Carreira (Eds.),
Modelling and mathematics education. ICTMA 9: Applications in science and technology
(pp. 72-89). Chichester, U.K.: Horwood.

Nifiez, R. E. (2000). Mathematical idea analysis: What embodied cognitive science can say
about the human nature of mathematics. In T. Nakahara & M. Koyama (Eds.), Proceedings
of the 24" International Conference for the Psychology of Mathematics Education, Vol. L
(pp. 3-22). Hiroshima, Japan.

Nufiéz, R.E, Edwards, L.D., & Matos, J.F. (1999). Embodied cognition as grounding for
situatedness and context in mathematics education. Educational Studies in Mathematics,
39(1-3), 45-65.

Polya, G. (1954). Mathematics and Plausible Reasoning. Vol. I: Induction and Analogy in
Mathematics; Vol. II: Patterns of Plausible Inference. Princeton, NJ: Princeton Univ. Press.

Polya, G. (1962, 1965). Mathematical Discovery: On Understanding, Learning, and
Teaching Problem Solving, Vols. I and II. New York, NY: John Wiley & Sons.

Quine, W.V. 0. (1960). Word and Object. The M.LT. Press.
Quine, W.V. O. (1981). Theories and Things. Harvard University Press.
Quine, W.V. O. (1995). From Stimulus to Science. Harvard University Press.

Rittenhouse, P.S. (1998). The teacher’s role in mathematical conversation: Stepping in and
stepping out. In M. Lampert & M. L. Blunk (Eds.), Talking mathematics in school: Studies
of teaching and learning. (163-189). Cambridge, Mass.: Cambridge University Press.

PMEZ26 2002 1-169



Sawyer, W. W. (1955). Prelude to Mathematics. Harmondsworth, Middlesex, UK: Penguin
Books.

Sfard, A. (1991). On the Dual Nature of Mathematical Conceptions: Reflections on
Processes and Objects as Different Sides of the Same Coin. Educational Studies in
Mathematics, 22, 1-36.

Sfard, A. (2001). There is More to Discourse than Meets the Ears: Learning from
mathematical communication things that we have not known before. Educational Studies in
Mathematics,46(1/3),13-57.

Sfard, A. (2000a). Symbolizing mathematical reality into being: How mathematical
discourse and mathematical objects create each other. In P. Cobb, K. E. Yackel, & K.
McClain (Eds), Symbolizing and communicating: perspectives on Mathematical Discourse,
Tools, and Instructional Design (pp. 37-98). Mahwah, NJ: Erlbaum.

Sfard, A.(2000b). On reform movement and the limits of mathematical discourse.
Mathematical Thinking and Learning 2(3), 157-189.

Skemp, R. R. (1978). Relational Understanding and Instrumental Understanding. Arithmetic
Teacher, 26, 9-15.

Skovsmose, O., & Valero, P. (2002). Handbook of international research in mathematics
education (pp. 383-408). Mahwah, NJ: Lawrence Erlbaum.

Stevens, R. R. (2000). Divisions of labor in school and the workplace: Comparing
computer and paper-supported activities across settings. The Journal of the Learning
Sciences, 9(4),373-402.

Tall, D., Thomas, M., Davis, G., Gray, E., & Simpson, A. (2000). What is the Object of the
Encapsulation of a Process? Journal of Mathematical Behavior, 18 (2), 223 — 241.

Tall. D. O., & Vinner, S. (1981). Concept image and concept definition in mathematics, with
special reference to limits and continuity. Educational Studies in Mathematics, 12, 151-169.

Varela, F., Thompson, E. & Rosch, E. (1991) The embodied mind: Cognitive science and
human experience, Cambridge, MA: MIT Press.

Verschaffel, L. (2002). Taking the modeling perspective seriously at the elementary school
level: Promises and pitfalls. Plenary address at 26"™ Annual Meeting of PME, University of
East Anglia, England.

I Needless to say, this extremely concise exposition cannot possibly count as a proper introduction of the
comprehensive conceptual framework. The interested reader may turn for elaboration to Harre & Gillett
(1995), Edwards (1997), and Sfard (2000 a, b; 2001a).

i Two discursive sequences will be regarded as being instances of the same discursive routine if they
comply with the same set of meta-discursive rules. This latter term refers to principles that help the
observer to account for the regularities she spots in the behavior of the interlocutors. Rather, than being
prescriptions which the speakers follow in a conscious way, these are propositions that help the analyst
encapsulate the discursive flow the way the formula of free fall helps physicist to encapsulate the
movement of falling bodies (cf. Sfard, 2000b; Sfard & Kieran, 2001a).

1-170 PME26 2002





