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Abstract: We examine new activity structures that involve aggregating personal
mathematical constructions built on hand-held devices such as graphing calculators
on larger computers in publicly shared displays. Among the many possible
applications of classroom connectivity, we focus on situations engineered to require
students to coordinate mathematical ideas and representations within systematically
varying families of functions.

INTRODUCTION: THE CONTEXT AND GOALS FOR THE STUDY
Data, Subjects, Course-Context, and Technology

The context for the study is the same as reported in (Hegedus & Kaput, this PME).
In particular, video, field notes and student work in a course for academically weak
university freshmen were analyzed. The 12 students reported on here, averaging 19
years of age, were mathematically similar to 14-16 year olds. The three 1-hour
sessions from which the observations were made followed those reported on in the
accompanying paper, and occurred slightly past the midway point of a 15 class
SimCalc exploratory teaching experiment. Students sat at tables in groups of 3-5ina
crowded space, where each used a TI-83Plus graphing calculator running
MathWorlds software. Calculators could be connected, by 2m wire, to a hub that
could serve up to 4 wires “quadrapus”-style, where different calculators might be
interchanged to use a single wire if needed. The hub, in turn, could wirelessly send
to and receive data from an external server. This was a prototype version of the TI-
Navigator™ system. At the front of the class, in control of the teacher and his
assistant, was a computer with display that could upload and aggregate (as described
below) student work from the server while running a computer version of
MathWorlds. The actual mechanics of the prototype system are ignored for the
purposes of this description since they are subject to change as the system evolves.

Goals of the Study

Our aim was to understand the affordances of this level of classroom connectivity,
both in terms of the new kinds of activity structures it could support as well as the
teaching and learning opportunities it might support, both planned and spontaneous.
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COORDINATING MULTIPLE DESCRIPTIONS OF SITUATIONS IN
SIMCALC CLASSROOMS

Essential Goals of the SimCalc Project

The SimCalc Project, underway for almost a decade as of this writing, seeks to
democratize access, beginning at as early an age as possible, to the core ideas of the
mathematics of change and variation, especially the ideas underlying calculus
(Kaput, 1994; Kaput & Roschelle, 1997; Kaput, Roschelle & Stroup, 2000). The
essential means for the effort are a combination of representational and curricular
strategies beginning with two foundational representational strategies that change the
representational infrastructure embodying the ideas, from algebraic to visual:

(1) To use interactive simulations hot-linked to new forms of visually editable
graphs and visualization tools, and

(2) To build the fundamental relationships between rates and accumulations (what is
normally referred to as the “Fundamental Theorem of Calculus”) into both the
software and associated curriculum.

Much of the student work using these representational strategies takes the form of
coordinating multiple descriptions of the physical or simulation phenomena
involved. For example, relating to #1, students must connect time-based coordinate
graphs of position or velocity functions to screen animations driven by those
functions, e.g., understanding that where a velocity graph is flat, the object must be
moving at constant velocity, and when a position graph is flat, the object must be
stationary. Relating to #2, they must learn to coordinate velocity and position
descriptions of the same motions (or rate-accumulation relationships for other
change-phenomena), e.g., understanding that a horizontal velocity graph corresponds
to a straight-line position function, and vice-versa.

Further, students must also coordinate multiple representations of the same
functions, e.g., algebraic formulas and coordinate graphs. Not only is the
coordination among different descriptions and representations an essential part of the
SimCalc strategy, it is also a more general goal of mathematics education extending
well beyond the mathematics of change and variation.

Exploiting Diverse Devices and Classroom Connectivity

Technologically, the SimCalc Project has built software to support the above
representational strategies, first for computers, and more recently for hand-helds,
particularly the popular TI-83Plus graphing calculator (see www.simcalc.umassd.edu
for downloadable software and curriculum materials for each). Most recently, we
have begun development and extension of technologies that attempt to exploit the
strengths of these different kinds of hardware platforms by using them in
combination, particularly where each student has the personal at-handedness of a
graphing calculator, and where the teacher has available the processing power and
high resolution/color display of a larger computer. Further, we attempt to exploit the
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newly available classroom connectivity as sketched above. Other work exploiting
classroom connectivity and diverse hardware platforms is underway by Stroup and
Wilensky (Wilensky & Stroup, 2000) and Resnick and Collela (Collela, 1998),
where the focus is also on integrating individual student constructions into larger
classroom structures, especially participatory simulations, where each student plays
the role of an agent in a larger system with emergent behavior.

The Set-Up: Unique Two-Digit Student Identifiers to Support Aggregation

We used the same three levels of activity-organization as described in Hegedus and
Kaput (this PME). Individual, small-group (students sharing a hub, so we refer to
these as “hub-groups”), and whole-class. Each student in the class has a unique 2-
digit identifier rather arbitrarily defined as follows. The first digit is determined by
their hub-group number (which ranged from 1 to 3 for these sessions), and the
second digit is determined by simply counting-off in each hub-group beginning with
1. The 3 respective hub-groups had 5, 3 and 4 members for these sessions, so the
identifiers ranged from 11 to 34 and were fixed across the three sessions because the
students stayed in the same groups, with the same count-off numbers.

The Two-Prior Aggregation Activities

In Hegedus and Kaput (this PME), we described two initial aggregation activities
using the 2-digit identifiers to create parametrically varying families of linear
position functions where the variation depends directly on the students’ identifiers,
which in turn means that the variation depends on the students themselves. The
Staggered Start, Staggered Finish activity involved a simulated “race” with a Y=2X
target position function controlling the motion of one screen object (“4”), where
each students created, in Y=mX+b form, a linear function controlling a second
screen object (“B”) where their second object B started at their count-off number but
traveled at the same rate as 4. Thus they finish at the same distance apart as they
were when they started. Within a hub-group each student’s function was different
from each other student’s function, varying in the Y-intercept, so each was parallel to
A’s Y=2X function. Each student then sent their position function for B to the
teacher where it was aggregated with all the other students’ position functions.
While each student’s object B was represented as a dot in the aggregated collection
of objects, there were only 5 different (parallel) position functions because there
were only 5 count-off numbers. Part of the whole-class discussion involved
identifying each student’s dot and function-graph, where as many as three students’
position graphs overlapped.

The next aggregation activity was a more challenging variation, the Staggered Start,
Simultaneous Finish activity, where each student started at 3 times their count-off
number and was to finish in a tie with 4. After aggregation in this case, the motion
showed a series of dots starting in staggered positions and traveling at constant
velocities which depended on how far they needed to travel in the given 6 seconds.
And the slopes of their respective Position functions likewise varied depending on
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the starting positions (Y-intercepts) since all the graphs “focus” in to intersect at the
common (6, 12) endpoint, reflecting that the race must end in a tie.

Of special interest in this paper is how we are able to exploit further the students’
personal connection with their constructions in the aggregated publicly displayed set
of student constructions in order to serve developing the two kinds of critically
important coordination skills described above.

AGGREGATION-BASED ACTIVITY STRUCTURES: WHERE ARE YOU?
New Student Coordination Activities: Where Are You?—Example 1

These activities move to a higher level of complexity by involving both the student’s
count-off number and their hub-group number in their individual mathematical
constructions. Each activity was designed to put the student in the position of
needing to coordinate important information about their mathematical construction in
order to identify either their motion-object, their function, or a closely related
function in the aggregated set in the classroom display — to “find yourself.” The first
case involves coordinating position graph information with motion information.
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Position function formula for a 5-
second motion for B, where your
starting point is your count-off
number and your slope is your
group number. Then send it up and
we will examine where you are.
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Figure 1: Initial Positions Equal to Count-off Numbers at Time = 0 Sec

In Figure 1, is what the students saw when the functions were first aggregated. In
particular, note that we deliberately did not show their function graphs, which they
had already seen on their calculators, and, in fact could—and did—refer to as the
discussion proceeded. In response to the teacher’s question “Where are you,” there
followed an animated 30 minute discussion that occurred in 3 stages, the latter two of
which were based on revealing, respectively, additional information when a
consensus was formed that the information was needed: (a) initial position as shown
in Figure 1, (b) approximate velocities and ending points, and (c) exact velocities as
shown by the “Marks” in Figure 2. Also revealed in stage (b) was the fact that one
student had created a 6-second motion and that one student had entered an incorrect
slope (2, which should have been 3). Space limitations prevent inclusion of the
transcript of the extremely rich classroom discussion (a full account is in progress),
although a few observations are central to understanding the activity design and how
the students responded.

In stage (a) students recognized those dots that might represent them but decided that
they could not exactly identify themselves, except to know that their companions on
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the “starting-line” all shared their count-off number. The one exception was Clive,
who was the lone member of the class with count-off number equal to 5. He appears
in the bottom position, and, when he identified himself, seemed to stimulate and
consolidate the consensus that more information was needed by the remainder of the
class. Interestingly, Clive had been among the quietest students in the class and
barely spoke publicly during the first 6 weeks of the course. By the end of the 3™
class where he was the only student with 5 as a count-off number, he was
acknowledged as “famous” by another student and frequently contributed to

el

In stage (b), as the class came to
recognize that some groups would be
faster than others and hence would
yield greater total distances traveled,
they were able to make progress in
identifying themselves, although the
errors mentioned above added
sufficient uncertainty, as did the fact
Figure 2: Ending Positions with Marks Shown  that the starting positions disappear

L L s

when the animation is run. The need for specific identification forced a move from
qualitative analyses (e.g., “He went the farthest so is probably in Group 3”) to
quantitative analysis.

An important visualization feature built into MathWorlds is to have the moving
objects “drop marks” (location-traces) for specified time intervals as they move, with
the default being 1 second. The students had come to use this feature regularly when
the velocity of an object was in question. Hence they called for marks to be dropped.
This resulted in Figure 2, which shows the positions of each object at 1-second
intervals from the initial position to the ending position.

Since the velocities are constant in this case, we can now read off the respective
velocities of each object and coordinate it with the starting position to uniquely
identify the identity of each dot.

Reflections on Example 1: Using Personal Identity to Coordinate Linear
Function & Motion Information, Especially X-Coefficient & Rate-of-Change

Example 1 indicates how, by selectively hiding certain information, in this case the
coordinate graphs for the algebraically defined linear functions, and revealing
additional information about the associated motion in a pedagogically functional
way, students’ personal identities act to motivate and focus attention on key features
of a display. Exactly the kinds of cognitive things we want to happen in traditional
motion-representation coordination activities at the heart of SimCalc representation
strategy #1 identified above (e.g., identify the motion that goes with this formula, or
make a formula that matches this motion) can occur very naturally when the activity
is of the Where Are You? type. Far less obvious in this sketchy, abbreviated and
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static-medium account is the high level of personal engagement of the students, and,
more importantly, how that engagement helped structure the coordination process.

Example 2: Coordinating Velocity & Position Descriptions of Motion—Part 1

S

Example 2: Make a 2-step velocity
function, each step 3 seconds long, where
your velocity for the 1% segment is your
Group # and your velocity for the 2™
segment is your Count-off # in the group.
Everyone starts at 0. Send it up and we
will look at the position functions and
examine where you are.

Figure 3: Branching Position Graphs — Group # = First Velocity

MathWorlds on the calculator (as on the computer) enables students to make step-
wise varying graphs directly by systematically adding and manipulating segments.
We displayed the dots and position graphs for the whole class and then asked
"Where Are You?" The goal here was to coordinate velocity and position
descriptions of a motion—using the ideas that velocity is slope of position graphs
and that area under velocity graph segments gives the position-change during those
segments. In this case the geometry of the configuration comes to play an interesting
role relative to the motion.

Note that Figure 3 is a cleaned-up version of the initial one that appeared—one
student sent up a constant velocity graph steeper than the rest and was discovered to
be in error. The set of position graphs consist of a 3-branched tree from the origin,
one branch for each of the 3 groups, each of which then branches for each of the
counting numbers in the group, which varied from 3 to 5. The discussion leading to
the identification of individuals was extraordinarily rich, and filled with excitement
as the students gradually recognized the two separate roles for their two numbers in
the shape of the graphs and the resulting motions. Interestingly, as can be seen from
Figure 3, all members of a group travel together, side-by-side, for the first 3 seconds,
at which time they diverge to travel at their different count-off number velocities, a
fact noted by the students.

Note that Clive, the only "5" was an outlier, and went the fastest at the end of the
trip, tied for the longest distance, etc. One student observed that those people with
straight graphs and constant motions were those whose count-off number equalled
their group number. They also kept their velocity graphs available for reference in
the coordination and used the motion information to anchor the two descriptions,
exactly as we use it in our traditional SimCalc activities, most of which take the form
of matching activities (e.g., make a position function for B to match A’s motion
exactly, where A’s motion is given by the given velocity graph).

Example 3: Coordinating Velocity & Position Descriptions of Motion—Part 2.

3-182 PME26 2002



Here, members of a group split apart at the outset, where student with the same
count-off number were side-by side. This version involved a very different
configuration of graphs and motions appearing—see Figure 4—except, of course,
for those students whose Group # = their Count-off #. Of interest is how group
identity was vocalized in this case, as each group “broke apart” in the 1* 3 seconds
and never came together, despite the fact that they all traveled at the same velocity
for the last 3 seconds. It appears that these kinds of activities also provide a prime
context for purposeful and logical problem solving, because both their and their
classmates’ identities are involved. In this case, there was someone unaccounted for
and that person was identified by elimination that involved coordination between the
slope-information on the position graphs and the velocity information.

Example 3: Make a 2-step velocity function,
each step 3 seconds long, where your
velocity for the 1% segment is your Count-off
# and your velocity for the 2™ segment is
your Group #. Everyone starts at 0. Send it
up and we will look at the position functions
and examine where you are.

Figure 4: Position Graphs With Count-off #’s as 1* Slope.
Example 4: Velocity Graphs Provide No Position Information.

In this case, we included the example to drive home the point, which had arisen
previously, that velocity information tells us “how fast” but not “where.” This shows
up quite dramatically where we showed what appears to be a single velocity graph
(they all overlapped—See Figure 5) and asked “Where are you?” We temporarily
hid the dots, which would have given away the position information. Of course, it is
still inconclusive in this case even when coupled with the motion shown—where all
the dots move at the same velocity, and end in the same configuration in which they
started.

T e W AT YR s o G e

Example 4: Make a 2-part position function, where
you start at the sum of your count-off and group
numbers, and each part is 3 seconds long. The
slope of the first segment should be 1 and the slope
of the second should be 2. Send it up and we will
look at the velocity functions and examine where
you are.

Figure 5: Velocity Functions for 12 Students—all overlapping
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REFLECTIONS ON THE EXAMPLES: USING TECHNOLOGICAL
CONNECTIVITY TO GENERATE PERSONAL CONNECTIVITY

These early examples only scratch the surface of what we believe to be possible in
exploiting new classroom connectivity for educational purposes by tapping into
personal identity as a resource for focusing attention and generating engagement in
complex mathematical activity. Many more examples are being examined, and the
reader could surely generate more. For example, we are currently studying the use of
CBR-based data, where groups separately create motions based on their own
physical motion, which are then aggregated in a class to form dances and marches
and then re-animated on the computer screen. Again, the kind of thinking needed to
plan out a dance that, of course, is executed simultaneously, but produced serially, is
exactly the kind that we would want to produce by traditional means.

As pointed out by Donald (2001), humans accomplish extraordinarily complex tasks
of management of their mental resources and communication in everyday social
contexts using the cultural tools of language and, as needed, other representational
tools. Most mathematical activity ignores these resources despite the unanimity of
recognition of the power of classroom talk and norms that support inquiry and
purposeful discussion. The kinds of aggregation activity structures described above
deliberately build systematic mathematical variation, personal identity and
ownership into a functional classroom role by making them an intrinsic part of the
activity structure itself at one or another levels of group organization. Future work
will continue to explore and map out this extremely rich opportunity space.

1. This work was funded by National Science Foundation Grant # REC-0087771, Understanding
Math Classroom Affordances of Networked, Hand-Held Devices. Assertions and conclusions are
those of the authors and not necessarily those of the Foundation.
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