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In England and Wales, the introduction of a National Numeracy
Framework for the teaching of mathematics from ages 4 to 13 has
placed a very strong emphasis on teachers’ planning of objectives. By
looking retrospectively at the design of computer-based tasks that have
underpinned our research for many years, we recognise a theme of
purposeful activity, leading to a planned appreciation of utilities for
certain mathematical concepts. We discuss how the identification of
objectives needs to go hand-in-hand with careful consideration of the
planning of tasks, and propose two constructs to guide that planning.

BACKGROUND

The National Numeracy Framework (NNF) (DfEE, 1999a) was introduced to
England and Wales in 1999. By defining how teachers should plan, assess and teach
mathematics, this initiative extends the previously established National Curriculum
for Mathematics (DfEE, 1999b), which merely set out to define a syllabus of content.
The NNF is organised around sets of yearly objectives based on the content of the
National Curriculum. The NNF also emphasises short-term planning based around
tasks and activities:

short-term plans: weekly or fortnightly notes on tasks, activities, exercises, key questions
and teaching points for 5 to 10 lessons, including how pupils will be grouped, which of
them you will work with, and how you will use any support. (p 41)

For clarity, within this theoretical paper, we use the term “task” for what is set by the
teacher, and reserve the term “activity” for what subsequently takes place in the
classroom setting. The planning emphasis in the NNF makes it opportune to reflect
on the complexity of connecting objectives to the design of tasks. We believe that,
though this reflection has stemmed from a phase in the development of curricula in
England and Wales, in fact the arguments and principles elaborated below will have
relevance to mathematics educators and teachers across international boundaries. We
begin by problematising the procedure of setting objectives in mathematics lessons,
~and later we look retrospectively at the design of tasks that have played a significant
part in our own research in order to propose two constructs that can guide the
connecting of objectives to the design of tasks.

THE PLANNING PARADOX

We begin with a statement of what we call the planning paradox.
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If teachers plan from objectives, the tasks they set are likely to be un;r_ewa;ding; for -
the children and mathematically impoverished. But if teachers plan from tasks, the
children’s activity is likely to be unfocussed and learning difficult to assess.

To elaborate a little, we offer two contrasting examples. The teacher begins the

lesson by saying, “Today, we are going to work on adding two-digit numbers
together”. The lesson proceeds with some explanation and then practice. The task.
has been determined by the objective in a narrow and constrained way. Such a
teacher has fallen foul of the first part of the planning paradox. Now--consider-a

teacher who, as the focus of the mathematics lesson, asks the children to design their - -

‘ideal bedroom. The children may become highly engaged in a meanlngful act1v1ty,
but the teacher may find it difficult to monitor any mathematical thmkmg

TASKS INSIDE AND OUTSIDE THE CLASSROOM

In recent years, mathematics educators have taken a great 1nterest in SItuated
cognition research (for example, Lave, 1988, and Nunes et al, 1993). Such studies

‘argue that everyday tasks (street mathematics) lend an authenticity to activity that -

provides not only purpose but also meaning. A possible implication is that we should - "

~ attempt to offer such authenticity to children in classrooms. Whilst we would agree -
with Schliemann (1995) that ‘for meaningful mathematical learning to.take place in-* +
the classroom, reflection upon mathematical relations must be embedded -in.. . -

“meaningful socially relevant situations’, we see the provision of ‘authentic’ tasks as
inherently problematic. : . .

“Teachers often provide children with tasks that may superficially offer authenticity.
For example, a teacher of young children may set up a play shop in the corner of the
classroom to encourage some mathematical learning. However, the - structuring

resources provided by this situation will be very different from those offered when
the child is really shopping with a parent. For example, in the play—shop task,

emphasis may be placed on number, and so the prices of items on sale are simplified
" to an extent that even young children will recognise as unrealistic. Even with an
element of role-play, the social interactions of the play-shop will not provide .the
structure and constraints experienced in a real shopping trip. | | |

'Sltuated ‘cognition research has typically studied the act1v1t1es of master- and“‘-
apprentice. In such situations, the master and the apprentice have a common goal,

~ which in the short-term is typically to make some product (so the tailor and his
apprentice may aim to make a waistcoat), and in the longer-term is to make a profit.. - -

We question whether teachers and children can have common goals. The teacher’s
agenda must be to focus on their pupils’ learning (and the children know this),
whereas the children’s agenda will be to complete the task, hopefully to the
satisfaction of the teacher. This leads us to question what kinds of products teachers
and children might make together. We now consider approaches that do place
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product creation at the forefront of children’s activity, though in ways which differ ...
significantly from the tailoring workshop. ' ‘

Our focus over many years has been on the use of technology in the- learmng of s

“mathematics, and so 1t 1s natural for us to look towards the 11terature in that field for.
1nsp1rat10n : :

" The constructionist movement (Harel & Papert, 1991a) has proposed that tasks in 7

“which children make products, generally through programming computers, are’
partlcularly conducive to learning. Thus, in one sense the constructionists replace the -

“waistcoat” with a product that is programmed by the child into theé computer. Inour - -

experience (for example, as reported in Pratt & Ainley, 1997, and Ainley et al, 2000),

such programming tasks can generate activity that has some of the characteristics of = - -

- everyday activity studied in the research of situated cognitionists. For example,
teachers often become engaged in working with the child to make the virtual

product, reminiscent of the tailor and apprentice collaboratlng to make the waistcoat.”» =7

The task, rather than the externally set objectives, takes on the role of being the

arbiter of what counts as progress. Thirdly, any mathematical learning that takes =
place is contextualised within the activity of making the product, which" provrdes o

meaning for the mathematics, but perhaps limits its apparent range of* apphcablhty

o Harel and Papert (1991b) also recognise the connection between constructlonlsm and
~ situated cognition, and at the same time signal some differences in empha31s A

We see several trends in contemporary educational discussion such as. ‘situated learmng -
-and ‘apprenticeship learning’... as being convergent with our approach, but different in
other respects... our emphasis_(is) on developing new kinds of act1v1t1es 1n “which
children can exercise their doing/ learning/ thinking...(and) on pI‘Q]CCt act1V1ty Wthh is h
self directed by the student... (p42) ’

We believe that the constructionist approach recognises that the classroom is not the B

‘market place, and does not attempt to place emphasis on authentlcrty, but by placmg,;
emphasis on the creation of products, it positions consideration of meanmgfulness e

-and motivation high on the agenda for the design of tasks that are likely to promote

- mathematical learning. Our aim is to draw out from these ideas constructs that 1nform__ o

the teachers” problem of connecting objectives to task design (the plannlng paradox)

"CONNECTING OBJECTIVES AND TASK DESIGN

Schliemann (1995) concludes a discussion of the problems of brlngmg everyday o

mathernatlcs into the classroom with the statement that ‘we need school s1tuat10ns

that are as challenging and relevant for school children as getting the correct amount - ':
of change is for the street seller and his customers’. In - con51der1ng both o

-constructionist approaches and ‘authentic’ settings for learnlng mathematics, we

identify a common feature, which may provide this challenge and relevance as the B

purposeful nature of the learners’ activity. We see this feature of purpose for the
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- learner, within the classroom environment, as one key construct informing pedagogic ,
task design. It is important to note that purpose, as we use. the term here, is-not. - .
necessarily linked to ‘real world’ uses of mathematics. Indeed, there is considerable
evidence of the problematic nature of pedagogic materials which contextuahse B

mathematics in supposedly real-world settings, but fail to prov1de purpose (see for
example Ainley, 2001, Cooper and Dunne, 2000). We define a purposeful task as one
- which has a meanmgﬁﬂ outcome for the learner, in terms of an. actual or v1rtual :
product, or the solution of an engaging problem. -

Thus the purpose of a task, as perceived by the learner, may be quite distinct from” o

. any objectives identified by the teacher. In a classroom situation, this maybe trueina

trivial sense: learners may construct the purpose of any task in ways other than those ~
intended by the teacher. However, we are saying something more than this: w1th1n‘ '

our framework for task design, purpose is a distinct element that needs to be_' ‘
. considered separately from, but in parallel with, objectives.

‘However, a focus on purpose in isolation may produce tasks Wthh are nch and: -
 motivating, but fall foul of the second part of our planning paradox, by lacking
mathematical focus. We therefore introduce into our framework a second construct -

of utility. Within pedagogic tasks that are designed to have purpose for learners, we -

have found that it is possible to plan for opportunities for learners to appreciate the

~ utility of mathematical concepts and techniques. Whilst engaged in a purposeﬁll task,
~ learners may learn to use a particular mathematical idea in ways that allow them to
" understand not simply how to carry out a technique, but how and why that idea is -

 useful, by applying it in that purposeful context. This parallels closely the way n
- which mathematical 1deas are learnt in out-of-school settmgs - :

A TASK DESIGNED WITH PURPOSE AND UTILITY

An example may help to clarify the related constructs of purpose and ut111ty A task -
which we have used (and -written ‘about) on a number of occasions, is that of -

designing a paper spinner, or ‘helicopter’ (see Ainley et al, 2000). In this task the: -

~ purpose for the learners is-clear: to make a spinner that will stay in the air for as long- -

as possible. In investigating aspects of the design, for example by changing the:
length of the wings, children record results of test flights on a spreadsheet, (for -
example, the wing length and time of flight). Their activity offers opportunities to
use a number of mathematical ideas, including measurement of length and time,
" decimal notation, graphing. From these we now describe two examples of utility.

Initially it is difficult for children to see patterns in the numerical data on the

spreadsheet, partly because the data is not usually collected in a systematic way, and-

partly because of experimental inaccuracy. Using a scatter graph to display the -

results at intervals during the experiment makes it easier to see emergmg patterns‘in-~
the time of flight as the wing length varies. Information from the scatter graph is =~

used to make conjectures about the effects of changing the wing length, and which
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spinners will prove most efficient, and also to identify further areas for experimental - -

- investigation. Using a-scatter graph in this purposeful way offers opportunities to- -
. learn ‘about the conventions of this particular graph, but also to understand.that - .
graphing is an analytical tool, which can inform the process of domg an expenment STt

that is, the children are given clear opportunities to construct a utility of graphing. -

Discussion of the ;expenmental inaccuracies in the activity leads us to—mtroduceathe .
idea of taking the mean value of several experiments with each wing length to. -

produce a ‘better’ graph. This can be done quickly and easily using the AVERAGE -

function of the spreadsheet. Children are able to use their everyday knowledge of the .

meaning of ‘average’ to understand enough about this process to appreciate a utility -

- of average (which does indeed produce a clearer graph) even though they do not, .

know the detail of how the mean was calculated.

These two instances of introducing the utility of mathematical ideas both involve =~ -
‘situations in which the use of technology means that mathematical ideas-(graphing, =~

average) can be used without children having learned the skills and .techniques that -
underpin them (constructing a graph, calculating the mean). This is not co-incidental,

and we return to further discussion of this point later in the paper. What we wish to - -

L emphasise here is-that the opportunity to understand the utility of these ideas arises: -

‘because of the purposeful nature of the task set, and of the learners’® activity in - .

response to these tasks. Without the underlylng purpose of producing an efficient -
spinner, graphing experimental results and using average values could only have

been introduced as isolated techniques. Their usefulness might be described through.

‘imagined applications, but could not be experienced in Ways that allowed: 1eamers to
construct rich meanings for the mathematical ideas.

- 'RESOLVING THE PLANNING PARADOX

The two constructs of purpose and utility offer a framework for task des1gn that may -

resolve the planning paradox. Designing tasks-that are purposeful for learners. .
_ensures that the activity will be rich and motivating. Such purposeful tasks provide- .-
opportunities to-learn about the utility- ef partlcular ideas, which will give the focus -

that may otherwise be absent.. -~ = - : -

1t is widely recognised that constructing meaning for a mathematlcal idea involves
many related elements. The distinction is often made between those e¢lements relating

to procedures or techniques, and those concerned with coneeptual or relational -~ -
-understanding. We propose here a third cluster of elements: those relating to the

utility of an idea. A rich understanding of a mathematical idea involves procedural

and conceptual elements; but also understanding why that idea is useful, how it can . ;
be used and what it can be used for. We conjecture that understanding mathematical -

ideas without an- understanding- of their utility leads to significantly impoverished -
learning. Unlike ‘street’ mathematics, ideas in school mathematics. .are frequently -
-learnt in contexts where they are divorced from aspects of utility. Within the -

PME26 2002 2-21



classroom, opportun1t1es to- understand ut111ty can only be prov1ded through'

purposeful tasks.

"'However ‘the design of tasks that offer both purpose and utlhty is challenglng It

requires the teacher to imagine the trajectory of a learner’s act1v1ty, ‘takmg both a

mathematical and a learner-centred perspective. In order to tease out aspects of the

- design of such tasks, we will discuss our own struggle to create a task with purpose: -

and utility in a particular enwronment (for an extended discussion of thJS task see
Pratt and Ainley, 1997). , VRN P

~ As part of a long-term project, a group of children in our research school had been
given access to dynamic geometry software (the original version of Cabri), and had =~~~
- explored its use as a drawing package with little intervention from their teacher The_f“" R

~ children had explored many of the features of the software, and produced 1mpres31ve° |
drawings, but had actually made no use of construction. Their (self-selected) tasks -

- were purposeful, with clear end products (drawings of a football pitch, a clown, and = -

“motorcycle and- rlder) but we felt ‘that the chlldren were not leammg any

mathematlcs

~ We set out to design tasks that would be equally purposeful for the children, bt also':f‘ B
,introduce the idea of geometric construction in a way ‘that allowed children tof‘" -
understand  its utility.” This proved problematic. It was easy to design tasks that
~ involved constructlon (such as creating a square which couldn’t be ‘messedup’) but
_ such tasks had no purpose for the children — except to satisfy the teacher. We knew
~ that the children found creating drawings ‘purposeful, but for such tasks placmg

b 'pomts by eye, rather than constructlng them, was perfectly satlsfactory

Eventually, we came upon the idea of hamessmg the children’s interest in drawmg |

C by settmg them the task of producing a ‘drawing kit’ for younger chlldren to use.

, squares d1amonds etc ) from Wthh young children could create the1r own plctures

~ For this task, there was a real purpose behind constructing a square, which could be. b |

reproduced many times and mampulated without being messed up by the youngerf B

children. As the children worked on making their drawmg k1ts the utility of .
- construction for producmg perfect’ robust shapes became clear.

- : The de81gn of the drawmg k1t task embodles some elements wh1ch we offer here as » '} : V.f‘,t

~ heuristics for creatlng purposeful tasks.

i) It has an expllclt end product that the children cared about (a feature incommon -

with the ‘spinner’ task described earlier). -

It 1nvolves making somethmg for other children to use. In th1s case the fact that'l_“f“" h

2-22 PME26 2002



~-iii) It was well focussed, but still contained opportunities for children to make: -

meaningful decisions: although most of the drawing kits produced contain a similar
- set of-basic shapes, many groups added their own designs, such as wheels or roofs. .

- "To these, we add two other heuristics, which we know to be effective.

iv) Purposeful tasks are often based on an intriguing questlon The Splnners task D

may be seen as an example: how does wing length affect the spmner‘? Questlons hke -
this, which are solved through optimisation, seem to be partlcularly r1ch '

v) Tasks which involve children arguing from a particnlar pomt of view can

_engage children purposefully in contexts which may be unfarmhar (see for example ‘}

McClam and Cobb, 2001, Ben—Zv1 and Arcavi, 2001). o
A SHIFT IN EMPHASIS INVERTING A PEDAGOGIC TRADITION

_The two examples given. above of tasks designed using the constructs of purpose and'_g ,,

| ] ut111ty exemphfy the role of technology in supporting a shift in pedagoglc empha51s L :

which we see as lying at the heart of opportunity for. powerﬁll mathematlcal learning
offered by this approach Mathematical ideas (such as average, graphlng or

- geometrical construction) are rich and complex composed of different elements, =
which here we categorise very roughly as procedures (techmques and algorithms, =

- specific rules of formulae), relationships (links within mathematics, internal structure
 and consistency), and utilities (why, how and ‘when the idea may be useful). As'a”
learner constructs meaning for a new mathematical idea, mental connections-will be

* made with existing knowledge, but the pedagog1c emphasis placed on the dlfferent e

- elements will affect the ways in which those links are made.

It is generally acknowledged that pedagogic approaches that focus mainly, ~or
exclusively, on procedures will result in impoverished learning.” However, even -

~approaches that emphasise relationships tend-to give little attention to utilities. The -

pedagogic tradition, embodied in textbooks around the world, is to begin with

- procedures and relationships,-and to .address utilities as the final stage in the -

- pedagogic sequence (if at all). We -suggest that this results in ‘mathematical
- knowledge becoming-isolated as weak-connections are made to the learner 'S ex1st1ng o
knowledge of the contexts 1n which it may be usefully applied. ~

- In learning mathematics in out-of-school contexts, we ‘believe that immediate

connections between the learner’s existing knowledge and the utilities of the new

~.-idea. are - established -in -ways which enrich mathematical learning. In.school.. -

mathematics, the initial links are generally made to procedures and relationships.

Pedagogic design based on the framework of purpose and utility,. with the support of

~technology, inverts the pedagogic tradition of school mathematics by placing the ~
emphasis primarily on the utilities-of a new mathematical idea. Thus the learner is

able to construct meanings that are shaped by strong connections to the application
of that idea.
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-~ This inversion is made possible largely (though not exclusively) by the power of .. .

technology to offer-opportunities- for using a mathematical idea before-you .leam .. '_ |
about its-procedures and relationships. Technology affords..the ‘possibility of ..

- pursuing purposeful tasks by working with. mathematical tools, instantiated on the
‘screen, whilst simultaneously coming to appreciate the utility of those tools, in ways
which lead to powerful mathematical learning. Ongoing research is developing: and
refining this framework for the design of pedagoglc tasks in var1ous areas of the"
mathematics curriculum. - = EENT 3
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