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The notion of definition is central in mathematics. We notice differences and
analogies between axiomatic definitions in education (which often come at the
beginning of a lesson) and definitions in mathematical research (which come
generally at the end of a research process). The core of this paper concerns the
activity for constructing a definition (called definition-construction). We aim to study
a situation of definition-construction and to bring up conclusions about the nature
and functions of definitions (constructed by students).

THEORETICAL FRAMEWORK AND EXISTING RESEARCH

In the usual mathematical activity of a researcher, a dialectic exists between the
concept in construction as well as its definition which is constructed, too. According to
Kahane (1999, p11):

la transposition didactique est de régle en sciences: (...) I’exposé d’un sujet prend pour
point de départ un aboutissement historique et réécrit I’histoire 4 I’envers. En
mathématique, ce point de départ est une définition. [1]

Besides, Lakatos recommends a heuristic approach, in opposition to the usual
deductivist one and underlines the dialectic between the construction of definition and
the construction of concept within the framework of problems resolution. He develops
two concepts in his thesis (1961): zero-definitions and proof-generated definitions.
Thereby two functions of definition appear in a problem-situation: on one hand, zero-
definitions, so called alluding to their place at the start of the investigation, are initial
and tentative definitions and “the different choices of zero-definitions do not affect the
domain of the proof” (p.71,ibid). They must be a little vague, and their heuristic rules
correspond to Popper’s remark [2]. This notion of zero-definition does not thwart
Vygotsky’s idea about language and verbal definitions; indeed Vygotsky (1962)
studies the capacity to use language as a problem-solving tool and accounts for the
importance of the naming process: the word guides and determines the course of
action. Furthermore, Vergnaud (1991) describes three functions of language:
communication, representation and contribution to the conceptualisation. On the other
hand, Lakatos underlines the importance of the relation between proof and definition,
and presents a new concept: the proof-generated concepts (i.e. generated by proof: it
consists in establishing the domain of validity of a primitive conjecture) and their
definitions, the proof-generated definitions. According to Pimm (1993), this notion

... seems particularly problematic in terms of teaching mathematics, because of needing
to perceive the definition as a tool custom-made to do a particular job that cannot be
known by those trying to learn it, certainly not with an order of presentation that seems to
require definitions to come first (p.272).
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We keep this idea of concept generated by proof as a possible situation for
constructing a definition. We know that a lot of difficulties exist in teaching about
understanding a concept with a formal definition. Annie and John Selden [3] focus
their attention on the role of examining examples and non-examples in order to help
students to understand definitions and ask how to help them to understand newly-
defined concepts. Furthermore, we retain Vinner’s hypothesis (1991,p79), who notes
that “the ability to construct a formal definition is for us a possible indication of deep
understanding” and explains the “scaffolding metaphor” which presents the role of a
definition as a moment of concept formation. Vinner assumes that “to acquire a
concept means to form a concept image for it (...) but the moment the image is
formed, the definition becomes dispensable” (p.69,ibid) and proposes some interplay
between definition and image. We suppose that concept image and concept definition
are necessary to analyze an activity of definition-construction. Moreover, we share
Vergnaud’s idea (1991,p.135): “un concept ne peut étre réduit a sa définition; c’est a
travers des situations et des problémes a résoudre qu’un concept acquiert du sens” [4]

An activity for constructing a definition

For the purpose of this article, to construct a definition is an activity which could
concern three types of problems. P1 = the request of a definition (starting from given
examples and counterexamples); P2 = a problem-situation whose resolution passes by
the construction of an object (or a concept) and its definition (alluded to by Lakatos);
P3= a situation of modelling. We will retain several aspects concerning the definition
of a mathematical object : characterization of this object, naming process, relations
between definition and proof.

About the naming process, two aspects emerge : the importance of the denomination
(when the mathematical concept is of interest in that it can be used usefully) and, on
the other hand, a denomination allows two mathematicians to speak about the same
thing. And the expression “good definition” is frequently used, it means “precise
definition” according to the mathematical accuracy and the arbitrary character of
definitions, as they are presented in axiomatic form.

To consider an activity of definition-construction requires a change of point of view
(relatively to handbooks) which consists in accepting the provisional status of a
definition, the multiplicity of the definitions of the same object (thus equivalent
definitions), the dialectic between definition and properties and the operational aspect
of a definition in a proof. We will explain our point of view about definition-
construction and possible analysis with the presentation of an activity (type P1).

PRESENTATION OF THE ACTIVITY

For the activity of definition-construction the mathematical object that was selected
was the tree, for several reasons: in France, it is a familiar object in teaching, used in
the handbooks as a tool of representation (it is recommended by the official secondary
syllabus), however it is absent as a mathematical object, hence there is no
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institutionalised definition (before University). An experimentation by Balmand (2001)
proved that definitions and properties of this mathematical object are unknown to
French teachers (discrete mathematics are not learnt in France before University).
However, the tree is a “natural tool” of representation and resolution, which can be
used in restricted fields (combinatory, probabilities).

From a mathematical point of view, it is an accessible object (by its representations)
but hard to theorize and to define owing to the difficult concept of connectivity. Let us
notice that the students did know neither the word ‘connected’ nor the concept
‘connectivity’ before our activity. Moreover, the tree has equivalent definitions which
are different in nature. We don’t claim to construct all the aspects of the mathematical
concept ‘tree’ but some of them, and we assume that the construction of a
mathematical concept is required for knowing and mastering this concept.

We chose to call it “thingummy” (a neutral name, whose semantic meaning is attached
to nothing) to avoid students connecting too quickly with the meaning of tree as it is
used in probability (otherwise we assume that it would stall the situation).
Etymologically, to define means to delimit (one defines an object compared to another
in order to find out a criteria of recognition) and we believe the construction of a
definition is possible starting from examples and counterexamples.

Presentation

First, 4 examples and 2 counterexamples were proposed to students, with the question

1- How could you
define the
/S \/ mathematical

object
‘thingummy’,
T1 knowing that :
T2 T3 ¢
T1,T2,T3 and T4

are representations
of ‘thingummy’
and T5,T6 are not

representations
of it ?

T4 T5 Té

Figure 1 : examples and counterexamples of “thingummy” (first question)

We think that a definition is not a finished product in itself, so we proposed a second
question (when the students think they have done with the definition): “2- Exercise : Let
G be a graph (i.e. a collection of dots and lines between two dots) connected (i.e. in only
one piece). Prove that G admits a spanning tree (i.e. a tree with same vertex set than G)” [5]
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Analysis

There are a lot of mathematical definitions of “tree”: let G be a graph on n vertices.
Then G is a tree if and only if one of the following equivalent assertion holds:

Definitions Nature of the definition

Defl- G is connected without cycle. Perceptive

Def2- Between any two vertices of G, there exists a unique path. |  Perceptive

Def3- G has no cycle and n-1 edges combinative (counting)

Def4- G is a connected graph with n-1 edges combinative (counting)

Def5- G has no cycle and if we add a new edge then we create a | Dynamical definition: re-
unique cycle (which means that G is a maximal acyclic graph). quires action on the object

Def6- G is connected and if we remove any vertex v then G-v is | Dynamical definition
disconnected (which means that G is a minimal connected graph).

Def7- A tree is a vertex (basis) or a tree T for which we adda | Constructive, inductive
new vertex adjacent to only one vertex of T (induction step). and dynamical definition

Table 1 : mathematical definitions of ‘tree’

The exercise has two aims. First, it allows students to return to the definition, and
second, to use (and perhaps reconstruct) the definition. To achieve the proof means to
use a definition to plan an overall structure of the proof [6]. Two definitions of a tree
are particularly “effective” to write the proof. We propose the main ideas of these
proofs:

Resolution with inductive definition : we search the tree directly and we avoid cycles ;
we choose a vertex and we connect it (by edges) to its neighbours which are not yet
connected (it is possible because the graph is connected) and so one.

Resolution with connected minimal definition : the idea is to remove some edges of the
given graph in order to obtain a tree. We search if an edge exists of which suppression
does not disconnected the graph: if such an edge does not exist, we have a tree (with
def6). If such an edge exists, we remove it and we search a new one to remove. When
we can not remove any edge, we have a tree whose same set of vertices than G.

RESULTS

Devolution of the problem

The students were not reluctant to do the first question. We note that to define is not
an activity strictly reserved for mathematics and this can support the devolution of the
problem. Moreover the examples and counterexamples allow a process of comparison.
Lastly, the students feel they have enough elements. In order to explain the main
results, we will study three representative groups (called group 1, 2 and 3).
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Defining-methods: defining by genus and differentia

Aristotle’s defining method by genus and differentia [7] is to indicate what specific
object a word means (‘thingummy’ here), to take a bigger class (graph) within which
that object falls, and then to try and see what distinguishes it from the rest of that class.
For Aristotle, a definition is a discourse according to specific rules (about language,
syntactic and semantic rules). The chosen activity of definition-construction is by
genus and differentia, so called because the students try to distinguish the examples
from the counterexamples. But their regulations are not specifically like Aristotle’s
rules. Let us describe some of the main students’ regulations and conceptions.

The two expressions “sufficient definition” and “minimal definition” were often used.
These search for a sufficient definition proves that they seek a sufficient condition
allowing the recognition and/or the construction of the mathematical object i.e. they
evaluate up to what point their definition does not relate to too large a class of objects.
When the students talked about ‘minimal definition’, it was not a matter of minimal
sufficient condition, but short sentence. Moreover, the two properties ‘connected’ and
‘acyclic’ were mixed-up (conceptually and at the linguistic level) as testified by this
extract (the student does not distinguish ‘connected’ and ‘acyclic’) :

Yohan: a unique path: that leads to only one condition. Instead of having two
conditions to check on each figure each time.

The wish to define the “vague” terms of their definition was expressed by the students
rather quickly when they defined ‘thingummy’ as a “set of dots and lines without cycle
and in only one piece”. This last property was “fuzzy” for them and some of them
worked on the definition of connectivity to redefine “in only one piece” by “a path
exists between two unspecified dots of the figure”. We assume that when the students
have given a name to a property (“in only one piece” for connectivity and “closed
polygon” or “circuit” for cyclic), that allows them to work on this property (cf.
Vygotsky) and to overstep simply verbalising the representation.

Produced definitions

Vygotsky notes the deep discrepancy between the formation of a concept and its
verbal definition. With the examples and counterexamples, the students described the
representation of ‘thingummy’: “in only one piece, without cycle”. We notice that this
zero-definition was as narrow as to coincide with defl (tablel). But the students did
not agree to accept this assertion as a mathematical definition (although it could be a
“good” one for a researcher because it gives the structure of the mathematical object)
in accordance with one of their conceptions: a mathematical definition should be
specified. So they questioned the mathematical object, its properties and its
representation. In the table 2, unfinished proof-generated definition concerns the
proof-generated definition and means that it was unfinished in terms of its form and its
use. We notice that def5 (tablel) was not constructed by the students: this is an
inappropriate exercise to make it worthwhile.
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Students’ Group | Reference | Production | The role in exercise | Qur  status
statement definition Pphase stand point
In only one|l1,2,3 |Defl 1 Idea of the proof|Zero-
piece without (students‘understood” | definition
cycle the proof but did not
know how to say it.)
Inductive def. |2,3 Def 7 1 Proof Definition
A unique path |1,2,3 |Def2 1 Idea of the proof Definition
1 Def3or4 |2 Proof Property

n dots and
(@-Dlines 13 Ipefq  |They add|Usable only for a|Definition

‘connected’ |small graph in order

(end of 2) to obtain a tree.
Minimal con-|1,3 Def 6 2 Unused Unfinished
nected graph proof-
Remove a line |3 Def 6 2 Unused generated
it disconnects definitions

Table 2 : description of students’ statements
Functions of produced definitions

The research of a definition was guided here by functions of definition : to

communicate, to recognize, to build and to prove.

Definition in order to communicate means to explain to another persons what a tree is
i.e. the properties and the construction of the mathematical object.

Definition in order to build is alluded to by these students (group3):

Armaud: here is the definition to create a thingummy, and there the definition to

know if we have a thingummy or not.

Yohan: but to check, I prefer the idea of the path. If one wants to check whether the
figure is a thingummy or not, one takes the first definition (a unique path),

and if one wants to build a thingummy, one takes the inductive definition.
Group3 spoke about “good definition”. For us it means algorithmic definition,

Yohan: It is a good mathematical definition when one can make a program [...] One

can make a data-processing program which checks the thingummy, if it
gives the good result each time, that means that the definition is good,
inevitably since the computer does not think.

and/or it allows the recognition of the object :
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Fabien: lets consider one must give a definition. If I, who don’t know the
thingummy, I have it explain to me by somebody, I inevitably see what it is.

The last function of a definition was to prove: the interest of equivalent definitions
(multiplicity of the possibilities in a demonstration) is alluded to by groupl and we find
the connection between a definition and the function which it will be able to have, in
particular in a proof (operational definition) :

Arnaud: And then finally, especially the inductive definition, that facilitated the
second exercise to us.

Yohan: Yes, one can choose a definition to prove. In fact a few moments ago, it
was not useful. If you want to draw a tree, you don’t need to know that.

DISCUSSION AND CONCLUSION

We raised some properties in the protocols, for example: “when one adds a dot to a
tree, one always has a tree”. Another property emerges at the time of the proof: “when
a line is removed, that disconnects”. Why did these “potential” definitions not emerge
under the status of definition? Which leads us back to the question: which criteria
allow a definition to be recognized (perceived) as such? Let us notice perhaps that
these two characterization properties of the tree alluded to above contain a dynamic
aspect in opposition to the static representation of the tree available to the students’
experience. Moreover, we already mentioned the gap between definition and
characterization properties which can be one of the causes of the non-emergence of
these definitions as such. This gap means that a definition is enough, what can appear
later only represents properties, as testified by this extract (group2):

Vincent: That will be included in the first definition (...) I have the impression that
we have finished our work.

Angelique: It will be the same thing. Actually it all boils to giving properties. Finally
they are not definitions, but properties for me.

We would like to stress the following : groupl has not reconstructed an appropriate
definition in order to solve the exercise because the constructed definition (first
question) has a form and a content that institutionalised it. Moreover, the definition
represents a common knowledge for the resolution of a problem (Balacheff,1987).

It’s possible to make students construct a definition of an object which is accessible by
its representations. It was through examples, counterexamples and the produced
definition that the students were able to build their concept images. We assume that a
definition is not a finished product, so the necessity of the exercise. It appears that this
activity of definition-construction could be a part of a process of concept acquisition.
We would like to study the dialectic between the formation of a mathematical concept
and its definition (with definition-constructions’ activities) or more precisely the role
of a definition-construction in learning. And also, the students’ conceptions on
mathematical definitions could be an obstacle to the concept formation. These
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conceptions concern the dynamic and static points of view, the functions of a definition
and the gap (and the relations) between a definition and characterization properties.
NOTES

1. “the didactical transposition is the rule in sciences : (...) the presentation of a subject takes as
a starting point a historical result and rewrites the history in reverse. In mathematics, this
starting point is a definition”.

2. “we are always conscious that our terms are a little vague... and we reach precision not by
reducing their penumbra of vagueness, but rather by keeping well within it, by carefully
phasing our sentences in such a way that the possible shades of meaning of our terms do not
matter. That is how to avoid quarrelling about words.” (p19. Popper (1945) The Open
Society, VolIl — London ; Henley : Routledge & Kegan Paul)

3. See columns of research sampler (Www.maa.org).

4. “a concept cannot be restricted to its definition (...) it is through situations and problems to
be solved that a concept acquires meaning”.

5. A graph is made up of dots (vertex/vertices) connected by lines (edges).
6. For the possible ways of operating with definitions in doing proofs, see Moore.

7. Topiques & Seconds Analytiques (in Aristote, Organon, trad. J.Tricot, Paris, Vrin, Ed.1965).
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