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This paper presents an analysis of interaction between levels of answers and
respective certainty estimations in a number concept test participated by
pupils at upper secondary school. In the analysis four different profiles of
interaction were found and they are explained by various pupils’
characteristics (prior knowledge, achievement level in mathematics, gender
and test effort). The results refer to significant differences in the sensitivity to
the need for conceptual change and tolerance for ambiguity, which seem to be
essential for a conceptual change.

INTRODUCTION

The crucial idea in the theory of conceptual change is the radical
reconstruction of prior knowledge which is not adequately taken into account
in traditional teaching. In educational contexts, mathematics is considered to
form a hierarchical structure in which all new concepts logically follow from
prior ones, which allows students to enrich their knowledge step by step.
The transitions from the domain of natural numbers to the domains of more
advanced ones, are often treated as a continuous growth of knowledge. From
a cognitive point of view, however, they are better described as a radical
reconstruction, because every enlargement requires fundamental changes in
the previous thinking of numbers.

In previous research (Merenluoto & Lehtinen, in press; Merenluoto, 2001)
about conceptual change needed in enlargements of the number concept, the
majority of upper secondary school pupils had not restructured their prior
beliefs on numbers in order to understand the concepts of rational or
irrational numbers even on the preliminary level. The results refer to a
mistaken transfer by the pupils from natural numbers to the domains of more
advanced numbers. This suggests a low sensitivity by most of the pupils to
the needed change in thinking the numbers. We explained these results with
the theories on conceptual change (see Carey, 1985; Chi, Slotta, & de Leeuw,
1994; Vosniadou, 1994; 1999; Duit, 1995), which consider the relationship
between the learners’ prior knowledge and information to be learned as one of
the most crucial factors in determining the quality of learning. In previous
studies it has also been found that conceptual change involves not only
change in specific beliefs and presumptions but also development of
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metaconceptual awareness and consideration of metacognitive effects
(Vosniadou, Ioannides, Dimitrakopoulou & Papademetriou, 2001; Limon,
2001).

Hence in the case of numbers, the major obstacle in understanding the
advanced concepts is the quality of students’ prior knowledge and beliefs on
numbers. But there seem to be three distinctly different components in this
obstacle, where the first component is cognitive, but the two others clearly
metacognitive (see Flavell, 1987) and motivational (Pintrich, 1999).

From the cognitive viewpoint, the enlargements of the number concept
require drastic changes in the very thinking of numbers. For example, the
fundamental ideas of natural numbers, as the concept of a successor, are
necessary for learning the notion of natural numbers. But in the domains of
rational and real numbers the principle of a successor is not defined, but
infinite successive division is possible. Thus some of these basic concepts are
in serious conflict with the very character of both rational and real numbers
(Sowder, 1992). Therefore in order to understand these concepts, a very
profound change in thinking of numbers is necessary.

Secondly, small natural numbers and the concept of a successor seem to be
among those special concepts which have a high unconditional certainty
attached to them. This kind of certainty seems to be a result from innate
cognitive mechanism relate to numeral reasoning principles (Gallistel, &
Gelman, 1992) but also from the everyday experiences and the linguistic
operations (Wittgenstein, 1969). It has a subjective nature with the feeling of
self-evidence. Because these concepts seem self-evident, self-justifiable or
self-explanatory, they easily lead to overconfidence (Fischbein, 1987). As
such they might act as an obstacle for conceptual change or lead to mistakes
and misunderstandings on more advanced domains of numbers. This is the
case, when it does not even occur to the pupils that they need to rethink their
knowledge and logic on numbers even though it would be necessary. In other
words, the self-evident nature of this kind of certainty means that the students
might have a low sensitivity to the need for a change.

Thirdly, because of the drastic nature of the needed change, the process seems
to be related to pupils subjective experiences with mathematics (Merenluoto,
2001) and to their tolerance of ambiguity (Lehtinen, 1984; Stark, Mandl,
Gruber & Renkl, 2002). Experiences in mathematics have been studied from
many different viewpoints: In the analysis of feeling of difficulty in
mathematics (Efklides, Akilina & Petropoulou, 1999) the results suggest that
these kind of feelings form a system of their own, which is mainly influenced
by performance and. cognitive ability rather than affective factors. The
certainty estimated by the boys were more typical than those of the girls,
which seemed to me more context-related. Certainty experiences in
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mathematics have been studied also from the viewpoint of self-efficacy, self-
awareness, self-regulation and math anxiety (Pajares, 1996; Schoenfeld,
1987). These studies are based on the assumptions that the personal
confidence, which has earlier been experienced in mathematics has causal
effects on the performance or certainty feelings later.

Thus we have a hypotheses that in process of a radical change in the thinking
of numbers the students are forced to tolerance the ambiguity which comes
from newly learned operations and characteristics of numbers while they do
not yet fully understand the concepts.

The aim of this paper is to analyse the data from our previous research to
find the factors referring to the sensitivity to the needed change in thinking of
the numbers and to find the factors related to the tolerance of ambiguity.

METHOD

Subjects and procedure: The data used is from a number concept test, given to
537 students (mean age 17.2 years) from 24 randomly selected Finnish upper
secondary schools (see Merenluoto & Lehtinen, in press). The students, who
participated in the test after their first calculus course, were asked to estimate
their certainty while answering the questions. In this estimation they were
asked to use a scale from 1 to 5, where 1 meant that their answer was a wild
guess, and 5 that they were absolutely sure, as sure as they know that 1+1=2.
In this paper only the critical questions (table 1) pertaining to the density of
the number line are discussed.

Scoring and variables: The performance in the tasks was measured with a 5-
point scale, from 0 (no answer) to 4 (Table 1). The certainty scores were
multiplied with 4/5 in order to set them to the same scale. Certainty bias: the
task scores were subtracted from the certainty scores in each task. The
negative values on this variable respond to uncertainty, the positive ones to
overconfidence. Test effort: a percentage of answered items was calculated
for every student. Achievement level in mathematics: students mark in
mathematics was calculated as percentages from maximum. Group position:
the group mean of achievement level in mathematics was subtracted from the
respective pupils’ mark in mathematics. The negative values refer to a group
position below average, positive values to a position above average. Gender:
there were 335 boys (62.4%) and 202 (37.6%)girls.

RESULTS

Identification of profiles: On the basis of interaction of the task scores (Table
1) with the respective certainty estimations, a cluster analysis was used and
four different profiles were found. The general difference in the quality of
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conceptual change is obvious in the profiles of the answers (Fig. 1), where
there is a significant difference between the tasks 2 - 3 compared to the tasks
4 - 5. This difference is due to the quality of conceptual change. Although
there were question about the concept of infinite divisibility (and limit) in all
the tasks, it is possible to answer at a high level without making any notable
change in thinking of numbers in tasks 2-3. Whereas it requires a radical
change in order to answer, that the “next” or “closest” is not defined in Q or
R. The different level of task scores was obvious in the profiles (Fig. 1) but
the appearance of the difference was clearer in the certainty bias profiles (Fig.

2).

TABLE 1. The critical questions pertaining to the number line and the
scoring based on the level of answers.

Incorrect'  Superficial

The critical questions (scored 1) (scored 2-3)° Correct (scored 4)
1. Interval. Define on which
interval on the number line is 5.005- .
the number, which has the >-6 5.01499... [5.005; 5.015(

approximate value: 5,01.

2. Density in Q. How many
rational numbers there are on 6 “several” There are infinite
the number line between the number of rational/

numbers 3/5 and 5/6? Why? many real numbers,

o . “infinite” . .
3. Density in R. How many - It is always possible
real numbers there are on the withorno - to add numbers
number line between the None €Xplanations between any two.
numbers 0,99 and 1,007 Why?
4. Limit in Q. Which fraction “ " The “next” or “the
is the “next” after 3/5? Why? 4/5 none closest” number are

“all of them” not defined in Q or R,
it’s always possible to
find numbers that a
closer .

5. Limit in R. Which real
number is “the closest” to
1,00? Why?

"The answer is based on the logic of whole numbers.
*The answers with no or meaningless explanations was scored as 2, answers with
explanations like “infinite, because it is possible to make the numbers more exact”

etc. were scored as 3.

'with or no
0,999... explanations

The factors behind the profiles (table 2) indicate in the profiles the difference
in pupils’ prior achievement level in mathematics, his/her group position, test
effort and certainty bias was significant. Whereas gender difference was
significant between profiles 2 and 3 (%2 (1) =14.34; p<.001).
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TABLE 2. The means of variables behind the profiles and means of
certainty bias and test effort.

Profile N Mark' Group Gender Test  Cert.
position’ % of | % of | effort’  bias’
girls | boys

Profile 1 135 54% -49 31 21 54% -.06
Profile 2 161 61% -.06 37 26 72% 27
Profile 3 188 64% 13 25 41 82% .84
Profile 4 54 78% 1.08 7 12 94% 34
All 538 62% .01 100 100 | 74% 40

Significant (p<.00) difference between profiles: 'F(3, 525)=17.5, n.s.
between profiles 2 and 3; °F(3, 525)=16.2, n.s. between profiles 2 and 3;
*F(3, 534)=112.9; p<.001; ‘F(3, 534)=53.2;n.s. between profiles 2 and 4.

For the pupils in profile 1 (n =135; 25.1%) the quality of answers and the
estimated certainty level was low. They identified numbers only by their
superficial features as whole numbers, fractions and decimal numbers. The
profile is characterised by answers based on the logic of whole numbers,
where there was a negative bias in certainty except for the tasks 2 and 4 where
the word “fraction” was used instead of “rational number”. Their low level
of answers suggest a low level of sensitivity for a need for change in thinking,
which seems to be due to the serious deficiency in their prior knowledge
about numbers. Their low level of test effort (Table 2) together with low
estimations of certainty and low achievement level in mathematics suggest a
low tolerance of ambiguity.
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-#- Profile 3
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25
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0.5

Task1 Task 2 Task 3 Task 4 Task 5

FIGURE 1. Profiles of the task scores, cluster means.
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The profile 2 (n = 161; 29.9%), is characterised by a positive certainty bias in
tasks which seemed familiar (tasks 1-2 and 4), but negative bias in task 3,
where the set of numbers was referred to as “real numbers”. They mainly used
the logic of whole numbers in their answers and were sensitive to the
difference in tasks 2-3 compared to the tasks 4-5 (Fig. 1), where the questions
were very different (Table 1) compared to the ordinary questions they had
been used to in school. This suggests a context-related tolerance of ambiguity.
The level of answers refer to a low sensitivity to a needed conceptual change.

The profile 3 (n = 188; 34.9%), is characterised with systematic over-
estimation of certainty. The levels of answers were significantly better than
for the students in profile 2, but the difference in the certainty bias was still
higher. This refers to a high context-independent tolerance of ambiguity,
which is suggested also by their achievement level in mathematics and high
test effort (Table 2). Their answers to the tasks, though they were better than
in the previous profile, however, refer to a superficial level of conceptual
change: to an enrichment kind of learning which in turn refers to a superficial
level of sensitivity to the needed change. The difference between the profiles
2 and 3 has also a significant reference to the gender of the pupils.
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;| - Profile 3
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Task 1 Task 2 Task 3 Task 4 Task 5

FIGURE 2. Certainty bias profiles in the tasks, cluster means.

The pupils in profile 4 (n = 54), who gave the highest level of answers to the
questions, had a positive certainty bias in seemingly familiar tasks (2-3 and
5). But they were sensitive in their certainty estimations in more difficult
tasks (4-5), where their explanations clearly referred to a more radical change
in their thinking of numbers and the density of number line, compared to the
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pupils in the other clusters. This kind of change seemed to yield to a very
significant difference in the certainty bias profiles between the profiles 4 and
3. The best answers had significantly lower certainty estimations because of
the novelty of the ideas and radical nature of the change experienced. These
students had a high sensitivity to the needed change, which was obvious in the
quality of their explanations. Their achievement level in mathematics, their
group position and high test effort refers to a high tolerance of ambiguity.

CONCLUSION

The results give a suggestion that the conceptual change is related to
metacognitive and motivational aspects, which still needs further studies. The
students in profile four had high sensitivity to the needed change combined
with high tolerance of uncertainty, a combination which seems to be optimal
for a conceptual change. These pupils had a quite high level of understanding
of the density of the number line. Whereas the superficial level of sensitivity
combined with the high tolerance of ambiguity seem to be restrictive to a
more radical change and deeper understanding of the concepts. Their thinking
of the density of the number line was based on operational thinking (making
numbers more exact, adding decimals, etc.) without any references to the
structural differences between the numbers. These students have an illusion of
understanding and do not necessarily see any reason to strengthen their
metaconceptual thinking. The majority of students (profiles 1 and 2) had
serious problems in their prior formal understanding of numbers, which is an
obstacle for their conceptual change also. Their thinking of the density of the
number line was more or less based on thinking of whole numbers.

These results refer to the necessity to consider the metacognitive and
motivational aspects in future research on conceptual change. They also
suggest that process of conceptual change, altogether, is a complex and a
gradual affair, which needs to be taken care of also when planning learning
environments which support conceptual change.
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