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This talk will report on a study of students’ understanding of school algebra from two
aspects. The first presents research which I carried out in order to probe students’
understanding of literal symbols. The resulting analysis shows that many students in
Jjunior high school appear to have a very poor grasp of what literal symbols denote and
how they are to be treated in mathematical expressions. In the second part, an attempt is
made to show how the curriculum of the elementary school can offer better opportunities
for young people to think algebraically. Utilizing the potentially algebraic nature of
arithmetic is one way of building a stronger bridge between early arithmetical
experiences and the concept of a variable. In this paper I use the terms generalisable
numerical expressions or quasi variable expressions to make a case for a needed reform
to the curriculum of the elementary school. Videotape records and written evidences are
presented to show students’ understanding of algebra and then we seek to an alternative
way of teaching of school algebra.

INTRODUCTION

Understanding of algebra in school mathematics is one of the most important goals for
secondary mathematics education. On the other hand, algebra has been a critical wall for
students. In fact, many reports identify specific difficulties of learning of algebra:
cognitive obstacles (Herscovics, 1989), lack of closure (Collis, 1975), name-process
dilemma (Davis, 1975), letter as objects (Kuchemann, 1981), misapplication of the
concatenation notation (Chalouh & Herscovics, 1988), misinterpretation of order system
in number (Dunkels, 1989) and so on. Matz (1979) also has identified inappropriate but
plausible use of literal symbols in the process of transforming algebraic expressions.

In Japan, we are facing with the same problem that many students in junior high school
are still confusing unknown numbers and variables. However we need to be careful of
diagnosing of their nature of understanding, simply because students seem to be good at
solving conventional school type problems. Although ratios of correct answers in
mathematics achievement tests such as IEA results and PISA results are high, Japanese
mathematics educators suspect that limited understanding may coexist with this apparent
success story. We need therefore to devise an instrument that can probe the understanding
lying behind students’ apparent procedural efficiency. To this end, the author has been
developing cognitive conflict problems as tools to elicit and probe students’
understanding. The first part of this paper will focus on the function of cognitive conflict
problems and survey data collected by the author himself to illustrate Japanese students
understanding of algebra.
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The second part of this paper focuses on some ways of laying foundations for algebraic
thinking from the early years of schools by attempting to bridge to the divide which exists
between arithmetic and algebra. Some researchers in the past, for example Collis (1975),
have tended to suggest that the notion of variable is linked to an extended abstract
thinking - a conclusion that is not surprising given that many students in junior high
schools show an incomplete understanding of a variable. This conclusion may not be so
clear, and that the concept of a variable number may be accessible to students at a much
younger age. Many currently used approaches to early algebra appear to focus
exclusively on introducing frame words and literal symbols as devices for solving simple
number sentences. Essentially, these problems require students to supply a missing or
unknown number to a mathematical sentence, such as 7 + [] = 11. Sentences such as this
are often called “missing number sentences”, which we suspect some students solve by
trial and error or guesswork. Number sentences of this type may be quite effective in
promoting knowledge of simple number facts, but they are quite limited in developing
algebraic thinking. Algebraic thinking necessarily involves students in patterns of
generalization. In the second half of this paper, I will present some approaches to
introducing algebraic thinking in the elementary and junior high school curriculum using
generalisable numerical expressions based on a concept of a quasi-variable. I argue that
the problem we are facing might be more related to curriculum than to any supposed
cognitive level.

A FRAMEWORK OF PROBING STUDENTS’ UNDERSTANDING OF
ALGEBRA

Algebra in secondary school mathematics can be described as learning how to use
symbolic expressions. These symbolic expressions are composed of numerals and
mathematical signs together with alphabetical letters. We can represent the process of
using symbolic expressions in terms of a mathematical modeling process. That is, starting
from a situation, we express the situation in terms of mathematical expressions, then
transform them to get a mathematical conclusion. Finally we need to read or interpret the
mathematical conclusion into the original situation to get insight or new interpretation or
discoveries. T. Miwa (2001) has illustrated the process as the scheme of use of symbolic
expressions as shown below:

Symbolic Expressions
To express
Situation To trans
(New Discoveries & Insight) v\
Toread Symbolic Expressions*
Fig. 1 Scheme of Use of Symbolic Expressions

In this paper, the scheme of use of symbolic or mathematical expressions regarded as a
framework of probing students’ understanding of algebra. Let me start with the
introduction of letter x in early algebra.
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STUDENTS’ UNDERSTANDING OF LITERAL SYMBOL X: EXPRESSING
AND INTERPRETING OF LITERAL SYMBOLS

In the process of learning and teaching of algebra, many misconceptions have been
identified by teachers and researchers. Here I focus on the conventions or rules in the
expression and interpretation of literal symbols. One of the well-documented
misconceptions is the convention of interpreting letters, namely a belief that different
letters must represent different values. This misconception is illustrated by students’
responses of “never” to the following question:

When is the following true — always, never or sometime?
L+M+N=L+P+N

Kuchemann (1981) reported in the CSMS project that 51% of students answered “never”
and Booth (1984) reported in SESM project that 14 out of 35 students (ages 13 to 15
years), namely 40%, gave this response on interview. Olivier (1988) reported that 74% of
13 year olds also answered “never”. He suggested that the underlying mechanism for not
allowing different literal symbols to take equal values stems from a combination with
other valid knowledge, that is, the correct proposition that the same literal symbols in the
same expression take the same value. In other words, some students who are aware of the
proposition that the same letter stands for the same number, they tend to think that the
converse of this proposition is also correct. The author claims that the convention, the
same letter stands for the same value, is not grasped well by students, based on a survey
conducted with Japanese and American students (Fujii, 1993, 2001). In some situations,
students conceive that the same letter does not necessarily stand for the same number.
Focusing on this incorrect convention, this section of the paper aims to clarify students’
understanding of literal symbols in algebra through two studies: a preliminary written
survey identifying interview subjects and a subsequent clinical interview with students.

Preliminary written survey aimed to identify interview subjects

The written survey task is aimed at identifying students’ understanding of literal symbols
in order to pair students with different understandings. Specifically, "different" in this
context means that the paired students held inconsistent conceptions. The interview
context created a conflict that allowed students to express their ideas explicitly to each
other. The methodology of this careful and purposeful identification of subjects for
interview is one of the characteristic features of the study. The written survey problem
tasks are shown below.

Problem 1
Mary has the following problem to solve:
“Find value(s) for x in the expression: x + x + x = 12”

She answered in the following manner.

a. 2,5,5
b. 10,1, 1
c. 4,44

Which of her answer(s) is (are) correct? (Circle the letter(s) that are correct: a,b,c)
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State the reason for your selection.

Problem 2
Jon has the following problem to solve:
“Find value(s) for x and y in the expression: x +y = 16"
He answered in the following manner.

a. 6, 10
b. 9,7
c. 8,8

Which of his answer(s) is (are) correct? (Circle the letter(s) that are correct: a,b,c)
State the reason for your selection.

Results of the Written Survey

Initially, the author intended to analyze separately data from these two problems..
However, results showed that problem 1 and 2 are related and need to be considered as a
related set. For Problem 1, some students chose only the same value item c (4,4,4) and in
Problem 2 they chose only the different value items a (6, 10), b (9, 7). The reason for this
kind of response appears to be that "The same letter stands for the same number" in
Problem 1, and "Different letters stand for different numbers" in Problem 2. Based on this
conception, some students had Problem 1 correct, but Problem 2 incorrect. We call this
type of response Type A.

On the other hand, there were other students who selected all items in Problem 1 and also
selected all items in Problem 2. The reason for this kind of selection appeared to be that "
All add up to 12" for Problem 1 and " All add up to 16" for Problem 2. These students
seem to ignore differences in the letters and seem to consider that letters can stand for any
numbers. Based on this conception, they had Problem 1 incorrect, but Problem 2 correct.
We call this type of response Type B.

In summary, the written survey identified Type A and Type B responses as described
below:

Type A: Holding the misconception that different letters stands for different numbers.
Student had Problem 1 correct.
Student had Problem 2 incorrect by rejecting (8, 8).

Type B: Holding the misconception the same letter does not necessarily stand for the same
number.

Student had Problem 1 incorrect by accepting all items.
Student had Problem 2 correct.

It is interesting to note that both Japanese and American students showed a similar
tendency (Fujii, 1992, 2001). It is also important to note that it is rare for students to get
both problems correct, which was also consistent with the data for both countries. Let me
select the Athens (GA) 6th, 8th and 9th graders from the American data, simply because
these students have a common educational environment. The percentages of correct
answers for 6th, 8th, and 9th grade are 11.5%, 11.5% and 5.7% respectively. For
Japanese students, the correct response from 5th, 6th, 7th, 8th, 10th and 11th grades are
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0%, 3.7%, 9.5%, 10.8%, 18.1% and 24.8% respectively (Fujii, 1993). For both countries,
the percentages of correct response are disturbingly low and the percentages do not
dramatically increase according to the grades as we may expect. Mathematics educators
from both countries may have to reconsider this fact seriously.

Students Interview Tasks and Procedures

Paired students for the interview were chosen one each from the two groups: Type A and
Type B. The interview context was designed to include conflicting points of view in the
hope that students would express their ideas explicitly to each other. Here, I am going to
show the U.S. data, one group from 6th grade consisting of, as it happens, three students,
one from Type A and two from Type B.

While the written survey task such as problems 1 and 2 were used in the interview, an
additional task was used in interviews by modifying the task used in the study conducted
by Takamatsu (1987). Takamatsu reported that some 6th grade student expressed the
relation between the sides and perimeter of a square by using X, as x+x+x+x=x. In the
first stage of the interview, subjects were introduced to this expression with a square,
both were written on a paper, and an explanation as follows:

A Japanese student expressed the relation between the sides and perimeter of a square by
using x as x+x+x-+x=x. Is this a correct or incorrect expression?

In the second stage of the interview, subjects were asked about any inconsistencies
between their responses in the interview and those in the preliminary survey task results.
For instance, if a student identified the expression x+x+x+x=x as incorrect, then his/her
responses on the expression x+x+x=12which had been interpreted as 2+5+5=12,
10+1+1=12 besides 4+4+4=12 were critically examined. On the other hand, if a student
identified the expression x+x+x+x=x as correct by saying, for example, that the letter x
can be any number, then his/her responses on the expression that the expression
x+x+x=12 which had been interpreted 4+4+4=12 were critically examined.

RESULTS OF THE INTERVIEW

Analysis on the Same Letter: On the expression x+x+x+x=x

Asked about the correctness of the expression x+x+x+x=x, the Type B (boy) stated
“correct” and gave this reason:” Because x is a variable.”

The other type B (girl) recommended that the right hand side x could be 4x. Then she
tried to substitute number 4 into x. At this stage the Type A student become articulate and
stated her idea as follows:

But, this is, in that sentence x has to be the same number, doesn’t it?

Based on this comment the Type B (girl) suggested to replace x into a or y, who was
trying to be consistent with the Type A (girl). The Type B (boy) seemed to think that it
was not necessary to do that. Eventually the three concluded as follows:

Type A (girl): “Because x is supposed to be the same thing in whole sentence.”
Type B (boy): “It doesn’t have to be the same thing. It’s a variable.”
Their final comments on the correctness of the expression x+x+x+x=x are shown below:
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Type A (girl): “No, because x has to be the same thing.”
Type B (boy): “I think its right.”
Type B (girl): “I think its right.”

Analysis on the expression x+x+x=12

Through interpreting the letter x in the expression x+x+x=12, students’ ideas became
more explicit by expressing their own words. In fact, the Type B (boy) gave a reason why
he thought items (2,5,5) and (10,1,1) were acceptable which was:

x is unknown so it could be anything.
The type A (girl) responded as follows:

I think that since in this sentence there are 3 x’s, all of the x’s have to be the same number,
even though they are unknown, so that would have to be just the three numbers that add up to
12.

The Type B (boy) insisted that whether we would replace x+x+x into 3x depend on what
x stands for as saying below:

It can, but it can also be wrong. It depends on what x equals, which, because x can equal 10,
the first x, and then second x can equal 2.

The type A (girl) disagreed with it and stated that:
I think that all the x’s are the same number and so you can write 3x.
She added an explanation as follows:

I will say that x is a variable and if it is in the same problem with another x then it has to be
the same number.”

Although the Type B (boy) used same word “variable” and saying that “Because x is a
variable”, he meant x could be any number in the same problem.

Analysis of different letters in the expression x+y=16

Concerning the different letter, the Type A (girl) stated clearly that:

They have to be different numbers because they are different variables, and so the first two fit
that and the last one doesn’t.

The type A (girl) did not accept the item (8,8) for x+y=16, because, she said, x and y are
different. This explanation is a typical for Type A students. On the other hand, the Type
B student accepted the item (8,8) without hesitation by saying that* I think all three of
them are right.”

DISCUSSIONS
The relationship between the same letter and different letter

Based on the written survey and the following interview, students who consider that the
same letter stands for the same number appear to think that different letters must stand for
different numbers. The type A (girl) stated that:
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I am not so absolutely positive that I am right, it just makes more sense, (be)cause if there are
two different variables, they probably (re)present two different numbers.

It is interesting to note that this tendency was common to both American and Japanese
students (Fujii, 1992, 2001).

The misconception with the same letter

The written survey and the interview revealed that many Japanese and American students
tend to have a misconception that the same literal symbol does not necessarily stand for
the same number. This misconception has not been explicitly reported by English
speaking researchers. However, we could identify the tendency that appeared in the past
research that students consider the same letter does not necessarily stand for the same
number. For instance, in the context of solving equations such that: x + x/4 = 6 + x/4,
Filloy, E & T. Rojano(1984) reported that the student considered that the x on the left
hand side must be 6 and the x expressed in the x/4 on both sides could be any number.
Similarly, given the equation: x + 5 = x + X, students interpreted that x in the left side can
be any number, but the second x on the right side must be 5.

The rule that the same letter stands for the same number is a basic one in the process of
interpreting letters in mathematical expressions. These studies show that this basic
convention has not been grasped by students in the USA and in Japan. Understanding the
convention that same letter stands for the same number is crucial for both American and
Japanese students.

The levels of Understanding of Literal Symbols

The concept of variable has been discussed for a long time in mathematics education
community. The definition of variable given in the SMSG (School Mathematics Study
Group) Student’s Text was “the variable is a numeral which represents a definite through
unspecified number from a given set of admissible number” (School Mathematics Study
Group, 1960, p.37). Although the ideas definite and unspecified appear to be in tension,
the concept of variable needs to include these different aspects (Van Engen, 1961a, b).
Let me now consider the survey and interview results from these aspects.

Data from two surveys are evidence that students appear to lack one or both aspects. The
“definite” aspect of the concept of variable is most clearly embodied in the convention
that the same letter stands for the same number. Students’ misconceptions described as "x
can be any number" emphasizes only the “unspecified” aspect of a variable. This
misconception is not likely to be revealed in expressions that contain only one literal
symbol. Students’ responses that x+x+x+x=x is correct, and their interpretation of
x+x+x=12 as 2+5+5=12 appear to result from considering only the “unspecified” aspect
of the concept of variable.

On the other hand, the misconception, different letters stand for the different numbers,
could be characterized as an unduly strict interpretation of the “definite” aspect of
variable by students who persistently reject substituting the same number for different
literal symbols. Although the domain of variable does not depend on the literal symbol
itself, the interview revealed that students tend to focus on the surface character of literal
symbols, such as differences in letter, within the domain of variables.
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In the analysis of the written and interview survey, four responses were identified: “both
problems are correct”, “Type A”, “Type B” and “other”. These four groups appear to
show levels of understanding of literal symbols. These levels can be described as follows:
Level 0, which is “the other” responses in the survey, where students have a vague
conception of literal symbols. There are no rules to interpret literal symbols, or no rules
for substituting numbers into literal symbols. We could not identify an explicit rule for
choosing items in the problem 1 and problem 2 in the written survey.

On the other hand, in Level 1, Type B, there is some logic behind students’ responses. At
this level the “unspecified” aspect of variable is dominant, but the “definite” aspect is
missing.

In Level 2, Type A, the “definite” aspect of variable appears to become dominant, and
items are chosen by the convention that the same letter stands for the same number.
However, there are misconceptions in dealing with the different letters based on the
premise that different letters must stand for different numbers. These students focus on
the “definite” aspect of variable but they are not able to consider the “unspecified” aspect
at the same time.

Level 3, students are able to attend to both aspects of variable, which, as I remarked
before, have to be seen in some tension with each other. The students can consider that
the same letter stands for the same number, and also that different letters do not
necessarily or always stand for different numbers.

These four levels of understanding of literal symbols may serve to help teachers see
clearly the diverse conceptual demands of teaching school algebra from its beginnings. In
particular, teachers may have to consider how best to promote students’ progress in
understanding from Level 2 to Level 3. This seems especially important given that the
American and Japanese surveys both show that moving from Level 2 to Level 3 is hard
for many students. This evidence raises the question of what teaching approaches might
bring a more substantial change of levels of understanding. It is important for teachers to
use teaching approaches that help to integrate the “definite” and “unspecified” aspects of
variable.

STUDENTS’ UNSERSTANDING UNDERLYING PROCEDURAL EFFICIENCY

Algebra embodies a critical difference from other language, in that it can be transformed
according to certain rules without changing connotations. This feature makes algebra a
powerful tool for mathematical problem solving. Because of this feature, teaching and
learning of procedural efficiency in algebra are highly valued, and students need to be
trained up to a certain level of skills. In Japan, a country where students face high-stakes
exams to enter upper secondary schools or universities, students have no choice about
mastering these skills to solve problems within a certain fixed time. As an outcome,
Japanese students seem to be good at solving mathematic problems presented in school
algebra. But is this really any indication that students have a deep understanding of the
subject matter or is it only superficial understanding? R. Skemp (1976) called this
“Instrumental Understanding”. Instrumental understanding means knowing what to do
but without knowing why. On the other hand; the “Relational Understanding means
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knowing what to do and why (Skemp, 1976). Although the instrumental understanding is
shallow, it can still work effectively in almost all conventional school mathematical
problems.

The author has been developing set of cognitive conflict problems, where cognitive
conflict is regarded as a tool to probe and assess the depth and quality of students’
understanding (Fujii, 1993). Problems on linear equations and inequalities were
developed. In solving linear equalities and inequalities in which the solution set contain
all numbers, clearly the ‘disappearance’ of x was expected to provoke cognitive conflict
in students. By analyzing how students went about resolving this conflict, it was possible
to identify the nature of their understanding behind procedural efficiency.

The Problems

Problems on linear equations and inequalities were given to the 7" and 8" graders. Here
is one of the inequality problems (other problems are quite similar).

Mr. A solved the inequality 1 — 2x <2(6 —x) as follows:

1 -2x<2(6-%)

1 -2x<12-2x

—2x+2x<12-1
0<11

Here Mr. A got into difficulty.
1 Write down your opinion about Mr. A’s solution.
2 Write down your way of solving this inequality 1 — 2x < 2(6 — 2x) and
your reasons.

The problem was designed to include “the disappearance of x”, with the verbal
expression “Here Mr. A got into difficulty”, and the mathematical expression “0 < 11 to
highlight the nature of the problem. The expression could have been written as “Ox < 11.
Whether the students had been provoked or not could be determined by examining their
reactions to the problem. Students’ conflicts regarding Mr. A’s difficulty caused were
evident in the following responses: “I also got stuck here”, and “At the moment I have no
idea what to do”. However, students’ comments such as “I do not know why Mr. A got
into difficulty here” was identified as a sign for not being provoked by the conflict.
Unprovoked responses were found in only 3.5% of students, while most students, 96.5%,
seemed to be genuinely provoked by the conflict. Almost all students wrote some
conclusion in their papers. Whether these conclusions were correct or not, they were
considered a necessary condition for resolving the conflict.

Analysis of Students’ Answers

Students’ responses were further classified into five categories. Category A (13%)
consisted of responses where the conflict was able to resolve by giving the correct
answer. Among lower secondary second graders (n = 123), very few were included in this
category. Other students’ rationales reflected two ways of resolving the cognitive conflict
produced by the disappearance of x. The first was exhibited in the students’ persistence
of coming up with an answer that contained x. This group comprised Category B(34%).
Category B was further sub-divided into two groups B1(26%) and B2(8%). Students in
Blgroup, persisted in having x in the final answer by using irrelevant procedures, while
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students in B2 who expected to get an answer containing x but couldn’t retain an x finally
give up by concluding that “there is no solution”. Category C (18%) consisted of students
who reached a final answer not containing x. Category D (3%) gave no answer or
solution (Fujii, 1989).

For students in Category B, the goal of solving an inequality was intended to obtain a
form such as x > a. Though one such student knew that —2x + 2x = 0 is true, but in this
instance the students claimed that a final answer without x is not possible. Thus, the
student wrote x>18/11.

Students in Category C seemed to consider that solving equations and inequalities needed
to follow the rules of equations and inequalities, and whatever the last expression was,
even if it did not contain x, it should be the final answer. Students in Category C seemed
to accept a final expression without x believing that to solve equations and inequalities
means transforming the expre ssion into its simplest form. Category C students showed
only a vague understanding of the meaning of the solutions of equations and inequalities.
These students consider x to be no more than an object in transforming the expression. It
is likely that these students have been successful in solving the equations with procedural
efficiency without any understanding of what the solution means or should look like.
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On the other hand, students who can think of x as a variable can come up with the correct
answer by interpreting x to take a definite but unspecified value. Student I wrote the
expression: 1-2x < 12-2x, replacing —2x with [], then re-expressing the original
expression as 1 + []<12 + []. Student I explained as follows: “The sign of the inequality
remains the same even if we add the same number to, or subtract it from both sides of the
expression. Any number will do for []; hence the same applies for x." Note that this
student focuses on the calculation of adding —2x to both sides without seeing any need to
find a concrete number for —2x or x. By re-expressing the original expression, this student
seemed able to pay more attention to the operation itself and to the structure of the
expression than to the objects of calculation such as —2x, 1-2x and 12-2x. This approach
is clear evidence of understanding of x as a variable.
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CREATING A BRIDGE BETWEEN EARLY ALGEBRA AND ARITHMETIC

Any improvement in the teaching of algebra must focus on how children are introduced
to express quantitative relationships that focus on general mathematical relationships,
how they read or interpret algebraic expressions, and how they can calculate algebraic
expressions based on the attributes of equality. The remainder of this paper focuses on
how children from a quite young age can be introduced to algebraic thinking through
generalisable numerical expressions. The aim is to show that this fundamental aspect of
algebraic thinking should be cultivated systematically at all stages of schooling.

There is a reluctance to introduce children to algebraic thinking in the early years of
elementary school where the focus for almost all teaching of early number is on
developing a strong foundation in counting and numeration. Yet Carpenter and Levi
(1999) draw attention to “the artificial separation of arithmetic and algebra” which, they
argue, “deprives children of powerful schemes for thinking about mathematics in the
early grades and makes it more difficult for them to learn algebra in the later grades™ (p.
3)..In their study, they introduced first and second-grade students to the concept of true
and false number sentences. One of the number sentences that they used was 78 — 49 + 49
= 78.When asked whether they thought this was a true sentence, all but one child
answered that it was. One child said, “I do because you took away the 49 and it’s just like
getting it back”.

It was never the intention of Carpenter and Levi to introduce first and second-grade
children to the formal algebraic expression, a — b + b = a. These children will certainly
meet it and other formal algebraic expressions in their later years of school. What
Carpenter and Levi wanted children to understand is that the sentence 78 — 49 + 49 = 78
belongs to a type of number sentence which is true whatever number is taken away and
then added back. This type of number sentence is also true whatever the first number is,
provided the same number is taken away and then added back. Fujii (2000) and Fujii &
Stephens (2001) refer to this use of numbers as quasi-variables. By this expression, we
mean a number sentence or group of number sentences that indicate an underlying
mathematical relationship which remains true whatever the numbers used are. Used in
this way, our contention is that generalisable numerical expressions can assist children to
identify and discuss algebraic generalisations long before they learn formal algebraic
notation. The idea behind the term “quasi-variable” is not a new one in the teaching of
algebra. In his history of mathematics, Nakamura (1971) introduces the expression
“quasi-general method” to capture the same meaning.

We argue that the use of generalisable numerical expressions can provide an important
bridge between arithmetic and algebraic thinking which children need to cross
continually during their elementary and junior high school years. The concept of a quasi-
variable provides an essential counterbalance to that treatment of algebra in the
elementary and junior high where the concept of an unknown often dominates students’
and teachers’ thinking. As Radford (1996) points out, “While the unknown is a number
which does not vary, the variable designates a quantity whose value can change” (p. 47).
The same point is made by Schoenfeld and Arcavi (1988) that a variable varies (p. 421).
The use of generalisable numerical sentences to represent quasi-variables can provide a
gateway to the concept of a variable in the early years of school.
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Research into Children’s Thinking

Currently Fujii and Stephens are working together with children in Year 2 and 3 in
Australia and Japan using an interview-dialogue based on a method actually used by a
student called Peter in subtracting 5. The purpose of the interview is to see how readily
young children are able to focus on structural features of Peter’s Method. In other words,
can they engage in quasi-variable thinking as outlined in this paper and in Fujii &
Stephens (2001), and how do they express that thinking?

The interview-dialogue starts with Peter subtracting 5 from some numbers..

37-5=32
59-5=54
86 —-5=281

He says that these are quite easy to do. Do you agree?

But some others are not so easy, like:

32-5
53-5
84 -5

Peter says, “I do these by first adding 5 and then subtracting 10, like
32 -5=32+5-10..Working it out this way is easier.”

Does Peter’s method give the right answer? Look at the other two questions Peter has.
Can you use Peter’s method? Rewrite each question first using Peter’s method, and then
work out the answer.

Some children have difficulty re-writing the questions in a form that matches Peter’s
Method. They go straight to the answer. When asked how to explain why Peter’s method
works, they say it works because it gives the right answer. The interview does not point
children in one direction or the other. But if children follow this kind of thinking, where
their focus is on following a correct procedure for subtraction, the interview does not
continue any further.

On the other hand, Alan (8 years and 10 months, at end of Year 2) gives a quite different
explanation when he says:
Instead of taking away 5, he (Peter) adds 5 and then takes away 10. If you add 5 you need to
take away 10 to equal it out.

This explanation appears to attend more closely to the structural elements of Peter’s
Method, and suggests that Peter’s Method is generalisable. Those children who give an
explanation which attends to the structural features of Peter’s Method are asked to create
some examples of their own for subtracting 5 using Peter’s Method, and are then asked to
consider how Peter might use his method to subtract 6. The interviewer asks:

What number would Peter put in the box to give a correct answer?
73-6=73+[-10

If students answer this question successfully, they are asked to create some other
examples showing how Peter’s Method could be used to subtract 6. Finally, students are
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told: “Peter says that his method works for subtracting 7, and 8 and 9.” They are then
asked to show how Peter’s Method could be used to re-express subtractions, such as.

83 -7,
123 — 8, and
235-9.

The final part of the interview invites students to explain how Peter’s Method works in all
these different cases. Alan, who was quoted above, said:

For any number you take away, you have to add the other number, which is between 1 and 10
that equals 10; like 7 and 3, or 4 and 6. You take away 10 and that gives you the answer.

Alan’s thinking seems very clearly to embody quasi-variable thinking. He sees that
Peter’s Method does not depend in any way on the initial number (83, 123, or 235).
Alan’s explanation also shows that Peters” Method can be generalised for numbers
between 1 and 10..Zoe, aged 8 years and 4 months, gives a similar explanation:

Whatever the number is you are taking away, it needs to have another number to make
10..You add the number to make 10, and then take away 10. Say, if you had 22 — 9, you know
9+1=10, so you add the 1 to 22 and then take away 10.

Another student, Tim, (age 9 years and 1 month at the start of Year 3) says:
Here is an explanation for all numbers. Whatever number he (Peter) is taking away, you plus

the number that would make a ten, and you take away ten. The bigger the number you are
subtracting, the smaller the number you are pulsing. They all make a ten together.

Japanese student, Kou, (age 9 years and 6 month at the start of Year 3) says:” It does not
matter what number is taken way, when (the) adding number makes a ten the answer is
always the same whatever the subtracting number is increasing or decreasing.”

’D\hﬁz%k " f)ﬁﬁsz@\L Y CHES L0
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All these students are able to ‘ignore’ for the purposes of their explanation the value of
the ‘starting number’. They recognize that it is not important for their explanation. In this
sense, they show that they are comfortable with “a lack of closure”. Their explanations
focus on describing in their own language the equivalence between the expressions that
experts would represent as a—b and a + (10 — b) - 10 where b is a whole number between
1 and 10. These children show algebraic thinking in so far as they are able to explain how
Peter’s Method always works “whatever number he is taking away” (Tim), “whatever the
number is you are taking away” (Zoe), “for any number you are taking away” (Alan),
“there is always a number to make ten” (Adam), “whether the subtracting number is
increasing or decreasing” (Kou).
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On the other hand, other students needed to close the sentence, by first deciding to
calculate the results of 83 —7, 123 — 8, and 235 — 9, and then tried to calculate the number
to place in the + [] on the right hand side. Eventually, some came up with a correct
number, but interestingly, none could answer the question which asked them to explain
how this method always works. Those who first calculated the left side of the equal sign
seemed unable to ignore the ‘starting number’ and unable to leave the expression in
unexecuted form. There were clear differences between these students and those who
were comfortable with “a lack of closure”. The present elementary school curriculum
does little to shift students who are inclined to “close” away from this thinking.

IMPLICATIONS FOR THE REFORM OF ELEMENTARY SCHOOL
MATHEMATICS

A conclusion of our research is the importance of recognizing the potentially algebraic
nature of arithmetic, as distinct from trying to move children from arithmetic to algebra.
Specific algebraic reasoning opportunities need to be engineered for use in the primary
grades. These are needed to assist teachers and students to see numbers algebraically.

Quasi-variable or generalisable numerical expressions can be developed in many settings
of elementary and junior high school mathematics, and allow teachers to build a bridge
from existing arithmetic problems to opportunities for thinking algebraically without
having to rely on prior knowledge of literal symbolic forms. These expressions are
usually written in uncalculated form in order to disclose the relationships between the
numbers involved. When a student explains the truth of the expression or statement by
reference to its structural properties, then quasi-variable thinking is shown. This kind of
reasoning appears to be quite different from that shown by students who rely on
calculating the numerical values of expressions in order to determine their truth. Quasi-
variable thinking, as we are investigating it, does not require the use of algebraic
symbols. Further research is needed to show how young children identify and explain
these relationships..

This is not an easy task when teachers’ vision has for so long been restricted to thinking
arithmetically. In the elementary school, this means attending to the symbolic nature of
arithmetic operations. Research suggests that many of today’s students fail to abstract
from their elementary school experiences the mathematical structures that are necessary
for them to make a later successful transition to algebra. As Carpenter and Franke (2001)
point out: “one of the hallmarks of this transition from arithmetic to algebraic thinking is
a shift from a procedural view to a relational view of equality, and developing a relational
understanding of the meaning of the equal sign underlies the ability to mark and represent
generalizations”(p. 156). Here are three suggestions for ways to smooth this transition:

* Describing and making use of generalisable processes and structural properties of
arithmetic, generally; and of quasi-variable expressions in particular.

* Generalising solutions to arithmetic problems that assist students to develop the concept
of a variable in an informal sense.

* Providing opportunities for students to discuss their solution strategies to these problems
in order to highlight fundamental mathematical processes and ideas.

Blanton and Kaput (2001) remark, teachers in the elementary school, especially, need to
grow “algebra eyes and ears” (p. 91) in order to see and make use of these opportunities.
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This is not an easy task when teachers’ vision has for so long been restricted to thinking
arithmetically. In a mathematics curriculum for the primary school of the 21* century,
teachers and students need to explore the potentially algebraic nature of arithmetic. This
can provide a stronger bridge to algebra in the later years of school, and can also
strengthen children’s understanding of basic arithmetic. Any reform of the arithmetic
curriculum in the elementary school must address these two objectives.

FINAL REMARKS

Three processes - expressing, transforming, and to reading - are all important elements of
mathematical activity, and need to be related each other in how mathematics is described
in curriculum documents and in how it is taught and learned . Particularly, the process of
transformation needs to connect with the expressing and reading process. The research
data in this paper have illustrated students' tendency to transform literal symbols without
reading them carefully. This appears also to be true for numerical expressions. When
students are dealing with generalizable numerical expressions or quasi-variable
expressions as I have called them, teachers have to assist students not to read these
expressions as commands to calculate. Identifying the critical numbers and the relational
elements embodied in these expressions requires students to focus especially on
expressing and transforming the underlying structure. This has important implications for
teaching and learning.

Many reports have confirmed that school algebra is difficult for students to understand.
The problem should not be construed simply in terms of the cognitive demands that
pertain to algebraic thinking as opposed to arithmetical thinking. Important as those
cognitive elements are, there is also a serious problem in the way that algebraic thinking
and arithmetical thinking have been separated in the school curriculum, especially in the
elementary school. In a mathematics curriculum for elementary and secondary schools of
the 21st century, we need to develop teaching approaches to connect these three
processes of mathematical activity. Starting in the elementary years, this can be achieved
by exploring the potentially algebraic nature of arithmetic. Any reform of the curriculum
of the elementary and secondary school must consider the role of algebra as a tool for
mathematical thinking about numerical expressions long before children are introduced to
formal symbolic notation. The latter particularly can provide a stronger bridge to algebra
in the later years of school, and can also strengthen children's understanding of basic
arithmetic.
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