HEURISTICS OF TWELFTH GRADERS BUILDING
ISOMORPHISMS®

Arthur B. Powell and Carolyn A. Maher
Rutgers University

This report analyzes the discursive interactions of four students to understand what
heuristic methods they develop as well as how and why they build isomorphisms to
resolve a combinatorial problem set in a non-Euclidian context. The findings suggest
that results of their heuristic actions lead them to build isomorphisms that in turn allow
them to justify a conjecture of theirs, using transitivity.

This research report focuses on four twelfth graders who, in an extended, self-structured
problem-solving session, build heuristics and isomorphisms. The study arises from our
general research program into the development of mathematical ideas by individual
students as they work collaboratively in a small group. Specifically, this investigation
connects to our inquiry into students’ discursive practices (Powell & Maher, 2002) and
how through their discursive practices they structure their own investigation and build
mathematical practices and ideas appropriate for their problem task. The data is part of
an ongoing, fifteen-year longitudinal, cross-sectional research project of the Robert B.
Davis Institute for Learning, directed by Maher, that has been conducted in public
elementary and secondary schools in a suburban, working-class, and immigrant town of
New Jersey. Overall, our longitudinal study aims to contribute basic scientific
understanding of cognitive behaviors as well as pedagogical conditions for which
mathematics learning occurs as a process of sense making.

The participants in the present study are four students, Brian, Jeff, Michael, and Romina,
in their senior year of high school who, from their entry into first grade have participated
in mathematical activities of our longitudinal study. Over the years, these students have
engaged tasks from several strands of mathematics, including algebra, combinatorics,
probability, and calculus both in the context of classroom investigations as well as in
after school settings (Maher, 2002). In this study, during an after-school problem-solving
session, the students collaborate on a culminating task—The Taxicab Problem—of the
research strand on combinatorics:

A taxi driver is given a specific territory of a town, shown below. All trips originate at the taxi
stand. One very slow night, the driver is dispatched only three times; each time, she picks up
passengers at one of the intersections indicated on the map. To pass the time, she considers all
the possible routes she could have taken to each pick-up point and wonders if she could have
chosen a shorter route.

What is the shortest route from a taxi stand to each of three different destination points? How
do you know it is the shortest? Is there more than one shortest route to each point? If not,
why not? If so, how many? Justify your answer.

Accompanying this problem statement, the participants have a map, actually, a 6 x 6
rectangular grid on which the left, uppermost intersection point represents the taxi stand.
The three passengers are positioned at different intersections as blue, red, and green dots,

* We are grateful to Hanna N. Haydar for his discerning comments and suggestions.
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respectively, while their respective distances from the taxi stand are one unit east and
four units south, four units east and three units south, and five units east and five units
south.

Besides the new, non-Euclidean geometric setting, this task has an underlying
mathematical structure and encompasses concepts that resonate with those of other
problems the participants have worked on in the longitudinal study. They, therefore,
potentially revisit and deepen mathematical ideas they have already built as well build
new ideas. Their implicit task was to formulate and test conjectures. We explicitly
announced that they were to explain and justify conclusions. After they worked on the
problem for about an hour and a half, we listened as they presented their resolution and
asked questions to follow movements in their discourse toward further justification of
their solution. Their resolution goes beyond the problem task to generalize it and to
propose isomorphic propositions. A research objective is to inquire into and track how
the participants develop their resolution of the problem task. Expressly for this report, we
explore the following two questions: What heuristics do the participants employ? How
and why do they build an isomorphism between the problem task and other problems on
which they have worked?

THEORETICAL FRAMEWORK

Our theoretical perspective involves notions concerning the development of
representations, models of the growth of understanding, and ideas about the generation of
meaning references for which are detailed in Maher (2002). Here we build on this
perspective and incorporate into it specific criteria for noticing, within the fine details of
discourse, propositions that lead toward building isomorphisms. We explore a
conceptual category about the contents of mathematical experience as proposed by
Gattegno (1987). He theorizes how the human capacity to be aware of something and
attach importance to can beget different sciences. For him, the instrument of knowing
that allows scientists to be cognizant of the content of their awareness is “a dialogue of
one’s mind with one’s self” (p. 6). Different sciences develop from the repeatable
findings that stem from dialogues of minds with themselves specializing, for instance, on
different human senses and on specific ways of knowing. He discusses a special
“conquest of the mind at work on itself”:

mathematics...is the clearest of the dialogues of the mind with itself. [It] is created by
mathematicians conversing first with themselves and with one another....Based on the
awareness that relations can be perceived as easily as objects, the dynamics linking different
kinds of relationships were extracted by the minds of mathematicians and considered per se.

(pp. 13-14).

From Gattegno’s view on the psychological and dialogic development of mathematics,
three notions of the contents of human experiences upon which the discipline is built can
be identified: objects, relations among objects, and dynamics linking different relations.
As the data from this study show, an additional category concerns heuristics. It pertains
to methods of responding to questions raised in dialogues of the mind with the self.
Extending Gattegno’s categories, in mathematics, the content of experiences, whether
internal or external to the self, can be objects, relations among objects, and dynamics
linking different relations, and heuristics.
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The notion of dynamics linking different relations provides guidance for identifying
isomorphic propositions. Powell (1995) gives an example of this notion. It concerns the
correspondence one can perceive between the two processes of (a) raising 2 to
consecutively increasing integral powers and (b) the multiplicative process of doubling.
In each process, we have objects (2 and the implicit objects ... ¢, +, 3,1,2,4,8...)and a
relation (raising to a power and doubling). In the study, we employ this notion to identify
and then analyze the propositions of participants that contribute to building of
isomorphisms.

METHOD

Our data sources consist of the problem task; a video record of about 100 minutes of the
activity of the four participants from the perspective of two video cameras; a transcript of
the videotapes combined to produce a fuller, more accurate verbatim record of the
research session; the participants’ inscriptions; and researcher field notes. The
participants’ inscriptions are scanned and saved as picture documents. The video
recordings are digitized, compressed, and stored on five compact disks as MPEGI files.
The transcript is a textual rendering of verbal interactions, specifically, turn exchanges
among the participants and between them and researchers and in all consists of 1,619
turns at talk. Our analytic method employs a sequence of phases, informed by grounded
theory (Charmaz & Mitchell, 2001), ethnography and microanalysis (Erickson, 1992),
and approaches for analyzing video data (Pirie, 1996). Specifically, our method of data
analysis involves the following nine non-linear, interacting phases: (1) attentively
viewing the videotapes several times without intentionally imposing a specific analytic
lens; (2) describing consecutive time intervals; (3) identifying critical events; (4)
transcribing the video record; (5) inductive and deductive synchronous coding of
transcript, videotape, and inscriptions; (6) writing analytical memoranda; (7) categorizing
codes, identifying properties, and dimensionalizing properties within categories; (8)
constructing a storyline; and (9) composing a narrative. (For an elaboration and
examples of these phases, see Powell, Francisco, & Maher, 2001).

RESULTS

The problem-solving session lasted for approximately 1 hour and 40 minutes. Analysis
of the video data reveals that, without assistance from the researchers, the participants
through their conversational exchanges structure their own investigation. Further
analyses of their discourse and inscriptions reveal that they use their time to understand
and plan how to resolve the problem task; develop problem-solving strategies and
overcome heuristic hurdles; hypothesize and create combinatorial algorithms; build
explanations and justifications of their ideas; challenge each other to clarify their
explanations and justifications as well as accept challenges of the same from researchers;
and formulate isomorphisms, focusing on the one between the Taxicab Problem and the
Towers Problem.'

' The Towers Problem is to build towers (for example, with Unifix cubes) of particular heights when
selecting from a certain number of colors. From grades 3 to 10, the participants have worked on versions
of this problem with varied conditions.
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During the session, the participants develop and employ sixteen heuristics. The
following are their different heuristics with indication of when ([hours:minutes:seconds])
from the start of the session they initially implement each one: (1) counting routes from
the taxi stand to a pick-up point while outlining without drawing the routes [0:02:30]; (2)
traveling on the grid lines only east and south [0:04:41]; (3) parceling out different mini-
tasks among group members as well as collecting and recording the data they generate
[0:05:59]; (4) counting routes to a pick-up point while drawing the routes on the same
sub-grid [0:06:15]; (5) attending to dynamical links among objects and relations between
two systems [0:07:31]; (6) attending to numeric patterns in generated data [0:12:10]; (7)
doing easier sub-problems; counting routes from the taxi stand to nearby intersection
points while outlining without drawing the routes [0:14:53]; (8) counting routes from the
taxi stand to nearby intersection points while drawing the routes on the same sub-grid
[0:16:12]; (9) parceling out the same mini-task, each counting routes to intersection
points nearby the taxi stand, drawing them on the same sub-grid, as well as recording and
comparing resulting data [0:16:50]; (10) planning to count systematically points nearby
the taxi stand and anticipating that a numerical pattern will emerge [0:22:12]; (11) talking
aloud how one is finding all shortest routes an intersection point [0:24:23]; (12) drawing
each route between the taxi stand and an intersection point on a separate sub-grid
[0:24:23]; (13) finding opposite routes to each drawn route to ensure that all possible
routes are found [0:25:00]; (14) parceling out mini-tasks to compare the data generated
from different combinatorial algorithms [0:39:08]; (15) building isomorphisms among
the Taxicab, Tower, and Pizza Problems, using Pascal’s triangle as an iconic
representation upon which to build the isomorphisms [1:02:37]; and (16) processing their
findings with researchers to see where they lead themselves through their presentation of
their ideas [1:04:34]. Some participants supplant some heuristics with others, and some
heuristics once initiated remain active strategies for some participants.

With these heuristics, the participants generalize the problem task and propose
isomorphic propositions. They notice relational connections between this problem task
and others on which they have worked. They develop combinatorial algorithms with
which they generate reliable data from which to perceive numerical patterns. Based on
these patterns, they conjecture that the underlying mathematical structure is Pascal’s
triangle of binomial coefficients. To convince themselves of the veracity of their
conjecture, they build an isomorphism between the problem task and the Towers
Problem. They know from previous work on block-tower tasks that Pascal’s triangle
underlies their mathematical structure. In what follows, we further focus our analysis on
the isomorphism they build by identifying their discursive propositions about dynamical
links that establish one-to-one correspondences between, on the one hand, objects and
relations or actions in one system and, on the other hand, objects and relations of another
system in such a way that an action on objects of one system maps to an analogous action
on the corresponding objects in the other system.

A prerequisite to articulating a proposition that indicates an isomorphism is to attend to
particular features of objects and relations among the objects within each system to
determine whether dynamical links can be formulated between the systems. Early in the
session, the participants manifest embryonic thinking about an isomorphism.
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Romina wonders aloud: “can’t we do towers on this” (turn 159).” Her public query
catalyzes a negotiatory interlocution among Michael, Jeff, and her. Jeff, responding
immediately to Romina, says, “that’s what I’'m saying,” (turn 160) and invites her to
think with him about the dyadic choice (“there or there” turn 162) that one has at
intersections of the taxicab grid. Furthermore, he wonders whether one can find the
number of shortest routes to a pick-up point by adding up the different choices one
encounters in route to the point (turn 162). Romina proposes that since the length of a
shortest route to the red pick-up point is 10, then “ten could be like the number of blocks
we have in the tower” (turn 169). Romina’s query concerning the application of towers
to the present problem task prompts Michael’s engagement with the idea, as well. As if
advising his colleagues and himself, he reacts in part by saying, “think of the possibilities
of doing this and then doing that” (turn 180). While uttering these words, he points at an
intersection; from that intersection gestures first downward (“doing this”), returns the to
point, and then motions rightward (“doing that”). Similar to Jeff’s words and gestures,
Michael’s actions also acknowledge cognitively and corporally the binomial aspect of the
problem task. He, Jeff, and Romina have put into circulation the prospect of as well as
insights for building an isomorphism between the Taxicab and Towers Problems.

The prospect and work of building such an isomorphism reemerges several more times in
the participants’ interlocution. With each reemergence, the participants further elaborate
their insights and advance more isomorphic propositions. Eventually the building of
isomorphisms dominates their conversational exchanges. Approximately thirty-five
minutes after Romina first broached the possibility of relating attributes of the Towers
Problem to the problem at hand, the participants reengage with the idea. Romina
speculates that between the two problems one can relate “like lines over” to “like the
color” and then “the lines down” to the “number of blocks”(turn 738). What is essential
here is Romina’s apparent awareness that each of the two different directions of travel in
the Taxicab Problem needs to be associated with different objects in the Towers Problem.

Romina uses this insight later in the session. She transfers the data that she and her
colleagues have generated from a transparency of a 1-centimeter grid to plain paper.
Their data are equivalent to binomial coefficients. She identifies one unit of horizontal
distance with one Unifix cube of color A and one unit of vertical distance with one Unifix
cube of color B:
Like doesn’t the two- there’s- that I mean, that’s one- that means it’s one of A color, one of B
color [pointing to the 2 in Pascal’s triangle]. Here’s one- it’s either one- either way you go.
It’s one of across and one down [pointing to a number on the transparency grid and motions
with her pen to go across and down]. And for three that means there’s two A color and one B
color [pointing to a 3 in Pascal’s triangle], so here it’s two across, one down or the other way
[tracing across and down on the transparency grid] you can get three is two down [pointing to
the grid]. (turn 1210)

? For Romina and other participants in the longitudinal study, this comment is pregnant with mathematical
and heuristic meaning derived from their constructed, shared experiences with tasks and inscriptions in the
combinatorial and probability strands of the study (see, for instance, Kiczek, 2000; Martino, 1992; Muter,
1999).
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Furthering the building of their isomorphism, Michael offers another propositional
foundation. Pointing at their data on the transparency grid and referring to its diagonals
as rows, he notes that each row of the data refers to the number of shortest routes to
particular points of a particular length. For instance, pointing the array—1 4 6 4 1—of
their transparency, he observes that each number refers to an intersection point whose
“shortest route is four” (turn 1203). Moreover, he remarks that one could name a
diagonal by, for example, “six” since “everything [each intersection point] in the row
[diagonal] has shortest route of six”(turn 1205). In terms of an isomorphism, Michael’s
observation points in two different directions: (1) it relates diagonals of information in
their data to rows of numbers in Pascal’s triangle and (2) it notes that intersection points
whose shortest routes have the same length can have different numbers of shortest routes.

k 1

q .
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Figure 1. Participant’s data arrays (from their perspective): (A) In green, empirical data
of shortest routes between the taxi stand and nearby intersection points. Jeff wrote the
ones in blue to augment the appearance of the numerical array as Pascal’s triangle. From
the participant perspective, to the left of Jeff’s numbers, Romina wrote in green the
numbers 1, 2, and 3 to indicate the row numbers of the triangular array. (B) The first five
rows contain empirical data; the remaining two rows contain assumed data values based
on the addition rule for Pascal’s triangle.

Later in responding to a researcher’s question, the participants develop a proposition that
relates how they know that a particular intersection in the taxicab grid corresponds to a
number in Pascal’s triangle. They focus their attention on their inscriptions, A and B, in
Figure 1. Michael and Romina discuss correspondences between the two inscriptions.
Referring to a point on their grid that is five units east and two units south, Romina
associates the length of its shortest route, which is seven, to a row of her Pascal’s triangle
by counting down seven rows and saying, “five of one thing and two of another
thing”(turn 1313). Michael inquires about her meaning for “five and two” (turn 1314).
Both Romina and Brian respond, “five across and two down”(turns 1317 and 1318). She
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then associates the combinatorial numbers in the seventh row of her Pascal’s triangle to
the idea of “five of one thing and two of another thing,” specifying that, left to right from
her perspective, the first 21 represents two of one color, while the second 21 “is five of
one color” (turn 1320), presuming the same color. Using this special case, Romina hints
at a general proposition for an isomorphism between the Taxicab and Towers Problems.

The above presents evidence that students work to build an isomorphism during the
course of the problem-solving session. The content of the phases include the following
with indication of when from the start of the session each occurs: (1) there exists a
relationship between the Towers and Taxicab Problems, [0:07:37]; (2) Similar to the
Towers Problem, the Taxicab Problem has a dyadic choice or binomial aspect, [0:07:39
and 0:08:55]; (3) The length of a shortest route to an intersection point corresponds to the
height of a tower, [0:08:15]; (4) Each of the two different directions of travel in the
Taxicab Problem needs to be associated with different objects in the Towers Problem,
[0:44:26]; (5) Rebuild the meaning of 2 to the n in the environment of the Towers
Problem, [0:08:26 and 0:44:51]; (6) Identify one unit of horizontal distance with one
Unifix cube of color A and one unit of vertical distance with one Unifix cube of color B,
[1:14:59]; (7) A row “diagonal” of their data contains the number of shortest routes for
intersection points whose shortest distance from the taxi stand is n, [1:16:00]; (8)
Intersection points whose shortest routes have the same length can have different
numbers of shortest routes, [1:16:37]; (9) A tower 3-high with 2 of one color and 1 of
another color, to routes to a point 2 down and 1 across, [1:18:40]; and (10) Intersection
point five units east and two south from the taxi stand corresponds to five of one thing
and two of another thing and, therefore, go the seventh row of Pascal’s triangle and the
second and fifth entries of the triangle to find the number of shortest routes from the taxi
stand to the intersection point five units east and two south from the taxi stand, [1:22:40].

DISCUSSION

The forgoing has presented the mathematical processes and strategies that participants
employ as they resolve the problem task. Through their various heuristic actions, among
other consequences, the participants generate data that they consider reliable. Reflecting
on numerical patterns in their data, they conjecture that Pascal’s triangle is the underlying
mathematical structure of the problem task. How do they justify this conjecture? The
data suggest that to justify their conjecture is the reason why the participants build an
isomorphism between the problem task and the Towers Problem. Furthermore, to
understand how they build their isomorphism, we have focused analytic consideration on
one of their heuristics: attending to dynamical links among objects and relations between
two systems. By doing so, we have identified the locus of how they build an
isomorphism. We observe that early in the problem-solving session by attending to
dynamical links three participants —Romina, Jeff, and Michael —articulate awareness of
object and relational connections between their current problem task and a former one,
the Towers Problem. Later, upon noticing that their array of data resembles Pascal’s
triangle and conjecturing so, the participants embark on building an isomorphism
between the Towers Problem and the Taxicab Problem as an approach to justifying their
conjecture since from previous experience they know that Pascal’s triangle underlies the
mathematical structure of the Towers Problem. In this sense, their strategy can be
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interpreted as justifying their conjecture by transitivity: (a) Pascal’s triangle is equivalent

to Towers and (b) Towers is equivalent to Taxicab; therefore implying that (c) Pascal’s

triangle is equivalent to Taxicab. They know (a) is true and embark on demonstrating (b)

to justify and conclude (c).
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