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Based on a national survey and some further studies of mathematical proof and 
refutation of 7th through 9th graders, this paper will show evidence of the existence of 
continuity between refuting as a learning strategy and the production of conjectures, 
and between a more effective teaching strategy and the traditional teaching strategy. 
A detailed analysis of students’ refutation schemes will be presented, and a model of 
their refuting process will be described based on both their refutation schemes and 
an expert’s thinking process on refutation. 

INTRODUCTION   
Connecting Teaching with Students’ Cognition 
Research on students’ mathematics cognition usually aims to investigate students’ 
thinking and the strategies used, and further to show what guides students’ thinking 
and why the strategies are used. Information about students’ cognition can then 
naturally be applied to redesigning teaching strategies for enhancing students’ 
learning in mathematics classrooms. Both the students’ mathematics cognition and 
the related teaching modules associated with empirical evidence on its effectiveness 
are meaningful resources for teachers to learn teaching. Indeed, results of research on 
students’ mathematics cognition proved to be key resources for redesigning teaching 
modules and reforming curriculum to ensure effective learning (Hart, 1980, 1984; 
Lin, 1991, 2000; Harel, 2002; Boero et al., 1998, 2002; Duval, 2002).  

This paper focuses on investigating teaching and learning strategies to connect 
students’ mathematics cognition for enhancing learning on mathematical proof and 
refutation. We will analyze cognition on proof and refutation in a specific group of 
students (about one third of their age population). And, for easy implementation in 
school practices, we chose the coloring strategy for learning proving, and the refuting 
strategy for learning conjecturing; both strategies are economic and innovative with 
new thinking. The evidence of using refuting as a learning strategy to generate 
innovative conjectures shall be presented.    

A Research Program on Argumentation and Mathematics Proof 
An ongoing two-staged research program on the development of proof and proving is 
the main reference in this paper. The first stage (2000~03) studied junior high 
students’ understanding of proof and proving. The second stage (2003~07) is 
studying teaching and learning of mathematics proof. Three phases were carried out 
during the first stage: instrument development, pilot study, and national survey. Six 



Lin 

 

PME29 — 2005 1- 4 

booklets comprising of algebra and geometry questions for 7th, 8th, and 9th graders 
were developed for the national sampling survey, and the survey involved 1181 
seventh, 1105 eighth, and 1059 ninth graders respectively from 61, 60 and 61 classes 
in 18 sample schools. Most of the items developed in the English study (Healy & 
Hoyles, 1998) were adopted and modified based on Taiwan students’ responses in the 
pre-pilot study during the first phase of the first stage. In addition, some new tasks 
were evolved from our interviews, which enabled the features of students’ pre-formal 
reasoning to come through in both the instrument and coding system. 

The second stage, teaching and learning mathematics proof, is comprised of an 
integrated project and four subprojects focusing on algebra (Lin, et al., 2004), 
geometry (Cheng & Lin, 2005), reading comprehension of geometry proof (Yang & 
Lin, 2005), and teaching and learning the validity of conditional statements (Yu Wu 
et al., 2004). The studies are strongly influenced by the work of many current 
researchers, such as the classification of student proof scheme (Harel & Sowder, 
1998) and its application on teacher education (Harel, 2002), the cognitive analysis of 
argumentation and mathematical proof (Duval, 1998, 1999, 2002), the framework of 
proof and proving (Healy & Hoyles, 1998), the complexity of students understanding 
proving (Balacheff, 1987), the function and value of proof (Hanna, 1996, de Villiers, 
1991, Hanna & Jahnke, 1993), and the theoretical validation approach of the Italian 
school (Garuit, Boero & Lemut, 1998).  

ONE MORE STEP TOWARD AN ACCEPTABLE PROOF 
The Incomplete Proof Group 
When the national survey was administered in December 2002, the 9th graders had 
just learned formal proof in geometry for three months, while the 7th and 8th graders 
had not yet learned it. Based on the detailed coding schemes, students’ performances 
on geometry proving were regrouped into four types: acceptable, incomplete, 
improper and intuitive proof. Students missing one step in their deductive reasoning 
is a typical incomplete proof. Students reasoning non-deductively or based on 
incorrect properties or with correct properties that do not satisfy with the given 
premises are codes of the improper proof. Students reasoning based on visual 
judgment or authority are typical codes of the intuitive proof. 

The terminology “acceptable proof” derived from a statement by Clark and Invanik 
(1997): “Writing, for both students and researchers, is not just about communicating 
mathematical subject matter. It is also about communicating with individual readers, 
including powerful gatekeepers such as examiners, reviewers and editors.” We took 
into account teachers’ views for assessing whether a proof was acceptable or not. 

Students in the incomplete proof category were able to recognize some crucial 
elements for their reasoning (Kuchemann & Hoyles, 2002). They were able to 
distinguish premises from conclusions in the task setting. Particularly, on the two-
step proof items, they were even mindful to check conditions of the theorems applied, 
i.e., micro reasoning (Duval, 1999.) They were also able to organize statements 
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according to the status, premise, conclusion and theorem into a deductive step. Duval 
(2002) named such competency as the first level in geometrical proof. The second 
level is the organization of deductive steps into a proof. From the first step 
conclusion to the target conclusion, valid deductive reasoning generally moves 
forward through either successive substitution of intermediary conclusion or 
coordination of some conclusions. Duval (2002) pointed out that students might have 
“gaps in the progress of reasoning which makes the attempt of proving failed.” This 
arises either from misunderstanding of the second level organization or from the 
context of the problem. We shall carefully examine Duval’s statement above for the 
group of students who performed incomplete proofs in the two-step proof tasks. 

The data from our national survey showed that one quarter of 9th graders could 
construct acceptable proofs in a two-step unfamiliar item; approximately one third 
was able to perform incomplete proofs; and one third did not have any responses at 
all. 

It is obvious that educators would like to focus on this one third of 9th graders who 
were able to perform incomplete proofs, and to develop a learning strategy for them 
to fill the gap, i.e., develop one more step toward an acceptable proof. An effective 
learning strategy should promise that nearly a half of 9th graders will be able to 
construct a two-step unfamiliar geometry proof. 

Incapability of Students with Incomplete Proof Performance 
The two-step unfamiliar question used in the survey is as follows. 

 

 

 

 

 

 

Two types of incomplete proofs were observed. One type was missing the ending 
process. Students showed that AC=BC and AC=AB, but did not conclude that the 
three sides were equal. From a deductive point of view, they were ritually incomplete 
with the ending process, i.e., if a=b and b=c then a=b=c. Do these students who 
performed two valid deductive steps still have difficulty in the ending process, a 
classical syllogism? Or might these students simply be thinking that the two 
conclusions were too obvious for implying the target conclusion? Should one write 
this obvious step down? Would this be just an issue in the conventions of 
mathematical writing? Studies of students’ understanding of proof by contradiction 
(Lin et al., 2002) and mathematical induction (Yu Wu, 2000) showed that senior high 
students who concluded their proofs without the ending process using either method, 
very often developed a ritual view about the methods. And the principle of the 

A is the center of a circle and AB is a radius. C is a 
point on the circle where the perpendicular bisector 
of AB crosses the circle. Please prove that triangle 
ABC is always equilateral.  
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methods was not understood (Lin et al., 2002). If a teacher considers the two valid 
deductive steps as an acceptable proof, would the teacher create learning difficulties 
on mathematical proof for some students? A general question can be asked: How 
many students who can perform every valid deductive step necessary for a proof task 
also have difficulty organizing the deductive steps into a proof? Interview data 
showed that there were students behaving as such. 

The other type of incomplete proof was missing one step, either AB=AC or AC=BC. 
The information “AC is a radius” was implicitly situated within the given premise. 
This information was invisible for students who did not conclude AB=AC. The 
property of the perpendicular bisector of a segment seemed unclear for students who 
did not draw the conclusion AC=BC. Some students of this type might not be aware 
of the need to derive the equality of all three sides for an isosceles triangle. Thus, the 
group of students with incomplete proof performance might not be able to: 

(1) organize the deductive steps into a proof, or 

(2) visualize some implicit information in the given premise, or  

(3) recognize a needed mathematics property, or 

(4) be aware of all necessary statements/deductive steps. 

These four cognitive gaps are due not only to: 

(1) misunderstanding of the organization of deductive steps into a proof, 

(2) the content of a problem, but also 

(3) the context knowledge, and 

(4) the epistemic value, i.e., the degree of trust of an individual in a statement, 
from likely or visually obvious, to a statement becomes necessary (Duval, 
2002). 

For teaching experiments, one needs to rethink a learning strategy to ensure that 
students can cross these cognitive gaps. 

A Learning Strategy for Promoting One More Deductive Step 
Using X as learning strategy for students within their mathematics proof activities is 
an active research issue. Fifteen paper presentations that dealt with this issue in PME 
22~28 are reviewed. The different Xs used in those papers include: arranging the 
context of proof situations (Garuti et al., PME26) and encouraging interactive 
discursion to create students’ cognitive confliction (Boufi (PME26), Krummheuer 
(PME24), Douek et al. (PME24), Sackur et al. (PME24), Antonini (PME28)), 
learning within an ICT environment for conjecturing (Miyazaki (PME24), Gardiner 
(PME22), Hoyles et al. (PME23), Sanchez (PME27), Hadas (PME22)), emphasizing 
teachers’ questioning as scaffolding (Blanton et al. (PME27), Douek et al. (PME27)), 
and using metaphors (travel) for setting target goals (Sekiguchi (PME24)). Note that 
the notation (PME24) indicates the paper appeared in the Proceedings of PME24. We 
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exercised a “thought experiment”(Gravemeijer, 2002) with each of those strategies in 
addition to typical geometry teaching strategies used in Taiwan secondary 
mathematics classroom, to match the characterization of the incomplete proof group 
and enhance them to move one more deductive step. Finally, we chose two strategies 
that are commonly observed in typical Taiwanese 9th grade geometry classrooms and 
tested them for helping students achieve one more deductive step. The reading and 
coloring strategy means that students are asked to read the question, label the 
mathematical terms, and draw or construct this information on the given figure by 
color pens. The analytic questioning strategy means that students are asked to reply 
on what the question asked you to prove, and what conditions in the premise can be 
useful. 

Several phases were conducted in our teaching and learning study: 

• Phase (1): A three-item diagnostic assessment paper was developed for 
identifying sample subjects of the focus group. All three items share a common 
feature with implicitly necessary information. 

• Phase (2): An instructional interview was conducted on 9 samples individually 
to examine the effectiveness of implementing both learning strategies 
simultaneously. 

• Phases (3) and (4): A small group teaching experiment was carried out to study 
the effectiveness of only implementing one of the two learning strategies. 

• Phase (5): A set of learning tasks on geometry proving was developed. 
Based on the data resulting from phase (3), we will analyze the function of coloring 
the mathematical terms in proving. Turning implicit information into explicit 
information is definitely one function of the strategy. What else happened so that the 
subjects were able to complete an acceptable proof? It is noteworthy to interpret this 
with the data collected in the phase (3).  

The three items, including the two-step unfamiliar item (G2) used in the national 
survey, were used in both phases (1) and (2). Nine samples were identified and 
interviewed. Their performances before the instructional interviews (Pre-I) and after 
intervening with the reading and coloring strategy (R-C) and analytic questioning 
strategy (A-C), respectively, during the interviews are presented in Table 1. 

The notation (31) denotes the sample who performed an incomplete proof without the 
ending process due to omission (sample 02) or students’ epistemic value that the 
ending process is unnecessary (sample 05, 06, 09). The notation 31* indicates that 
sample 01 would not agree with the syllogistic rule “if a=b and b=c then a=b=c” 
during the interviews, but agreed that “a=b and b=c” are the conditions for an 
equilateral triangle with sides a, b and c. The behavior of sample 01 on the syllogistic 
rule reveals one kind of reason for missing the ending process. 

Sample Performance G1 G2 G3 G1 G2 G3 Sample 

01 Pre-I 0 32 0 4 32 32 06 



Lin 

 

PME29 — 2005 1- 8 

R-C 4 32 4  32 32  

A-Q  31*   (31) (31) 

 

Pre-I 0 (31) 0 0 32 0 

R-C 4 4 32 4 32 32 02 

A-Q   4  4 4 

07 

Pre-I 0 0 32 0 32 4 

R-C 4 32 4 4 32  03 

A-Q  4  4   

08 

Pre-I 32 21 32 0 (31) 32 
04 

R-C   4   4 

 A-Q       

09 

Pre-I 4 (31) 32    

R-C   (31)    
 

05 

A-Q        

Note: Definition of codes: 4 denotes an acceptable proof; 31 denotes incomplete, missing the 
ending process; 32 denotes incomplete, missing one deductive step; 21 denotes improper, using an 
incorrect property; 0 denotes no response.  

Table 1: Students’ performance with/without the learning strategies R-C and A-Q 

 

Table 1 shows that among the 24 (27-3) positions of students’ performances which 
need to move towards an acceptable proof, 15 positions were successfully moved 
before or after the intervening of only the reading and coloring strategy. Since this 
coloring strategy is procedural in nature, the cognitive demand on learners for using 
this strategy is much lighter than using the analytic questioning strategy, which 
demands quite heavy analytical thinking. So, it is worthy to further explore the extent 
to which the reading and coloring strategy can enhance students’ proving 
performance. Which kind of proof content will be effective by using this strategy? 
And a further interpretation of the effectiveness also seems interesting. This is the 
phase (3) study. 

Effects of the Coloring Strategy 
During the phase (3) study, four two-step unfamiliar new items were developed for 8 
new participants. Before intervening with the reading and coloring strategy, out of 32 
(8 × 4) performances, 10 were acceptable proofs and 22 were unacceptable, i.e., 
incomplete, or improper or had no response. Each participant had at least two 
unacceptable performances. One week later, 8 participants worked on the same items 
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after intervening with the reading and coloring strategy. As a result, 16 out of the 22 
unacceptable proofs had progressed to acceptable proofs. However, 4 out of 10 
acceptable proofs became unacceptable, in which 3 out of 4 negative effects were 
coded from the same item 3. 

 

Item 3. 

Points A, E, C are collinear,  

and �ABC is congruent to �ADC.  

Show that: BE=DE 

 

Two students misinterpreted the equality signs labelled on ∠ABC and ∠ADC as 
∠CBE =∠CDE. The other student associated the sign around point C, with the angle 
bisector theorem and applied it improperly. Indeed, colored signs labelling on sub-

figures which cross each other would generate a disturbance that 
affects visualizers’ interpretation on the explicit information 
transmitted from the sub-figures. 

Among the non-effected performance, all six were collected from item 2. 

Item 2. 

Points B, E, C are collinear,  

and �ABE is congruent to �DEC.  

Show that: AD//BC 

When the equality signs were colored on the six elements, sides and angles of each 
triangle, the colored signs produced superfluous relations among the elements. 
Whenever a relation matching his/her target goal was observed by a student, it 
became active and operational. Students then applied it without justifying 
deductively. This seemed to be the pattern among those non-effected unsuccessful 
performances. Analyzing the negative effects and non-effects of the coloring label 
strategy, a criterion could be used by teachers to restrict the tasks on using the 
strategy. If a disturbance or superfluous relation from the coloring strategy were 
intentionally generated onto an item, it may backfire and result in negative effects or 
non-effects; in this case, the strategy may not be suitable for this item. 

Transmission of the Subfigure with Relation to the Theorem Image 
In spite of the negative and non-effects of the coloring strategy, we are interested in 
how the effectiveness (16/22) of the reading and coloring strategy takes place. From 
neuro-psychological perspectives, “Learning occurs… when transmitter release rate 
increases make signal transmission from one neuron to the next easier. Hence 

A 

B

C

D 

E

A 

B C 

D 

E 
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learning is, in effect, an increase in the number of ‘operative’ connections among 
neurons” (Lawson, 2003). 

Learning was indeed achieved by those subjects who applied the coloring strategy 
and were able to perform an acceptable proof. How were the operative connections 
increased among the statements according to specific status and the use of theorems? 
The necessary theorems existed previously in the subjects’ mental structure, but were 
inoperative before they applied the coloring strategy. The result of the coloring 
process revealed subfigures with notable relations that may also correspond to the 
theorem. If this happens, then learners have increased the relation between the 
subfigure and the needed theorem. To make it clear, we shall use the term theorem 
image, similar to the term concept image (Tall & Vinner, 1981), to describe the total 
cognitive structure that is associated with the theorem, which includes all the mental 
pictures and associated examples, relations, process and applications. A theorem 
image is built up over years of learning experiences. It is personal and constantly 
changing as the individual meets new stimuli. Different stimuli can activate different 
parts of the theorem image. The stimulus resulting from coloring of mathematical 
terms in the premise is functioning to lead the transmitter of the revealed subfigure 
with relation to the corresponding part of his/her theorem image. This leads the effect 
of the organization of one deductive step.  

MAKING DECISIONS ON FALSE CONJECTURES 
Some items in each of the six booklets were connected to how students reason to 
make their decisions on a given false conjecture. Students were asked to make a 
decision among two (three) choices – agree, disagree, or uncertain (algebraic item) – 
and then give explanations on their choices. A unity of coding schemes was evolved 
for both geometry and algebra surveys. The coding schemes were used to analyze the 
students’ performances. Based on this coding scheme, a model of refuting will be 
discussed. Firstly, for researchers to make sense of the thinking process in 
mathematical refutation, an expert was interviewed.   

Mr. Counter-Example’s Thinking Process on Refutation 
A mathematician, nicknamed Mr. Counter-Example by his peers during his graduate 
studies, was interviewed to reveal the thinking process of an expert on refutation.     

“Suppose an unfamiliar mathematics proposition is proposed by myself or peers. Reading 
it and without having much sense with the proposition, the doubtfulness of its truth 
usually does not arise in my mind. To make sense of the proposition, very often I’ll 
substitute some individual examples. Then, I will find more and more examples to satisfy 
the premise. Naturally those examples will be classified according to certain 
mathematical property. As long as the property is grasped, all kinds of examples will be 
considered. Finally, a specific kind of example will be identified to counter the 
conclusion if the proposition is false.” 

According to Mr. Counter-Example’s description, his refuting process covers five 
sequential processes: 



Lin 

 

PME29 — 2005 1- 11 

1. Entry 

2. Testing some individual examples point-wisely for sense making 

3. Testing with different kinds of examples 

4. Organizing all kinds of examples 

5. Identifying one (kind of) counterexample when realizing a falsehood 

This expert’s thinking process on refutation can be inferred to analyze students’ 
reasons on refuting.  

On Geometrical False Conjectures 
Two conjectures in geometry were adopted from the English study (Healy & Hoyles, 
1998): 

“Whatever quadrilateral I draw with corners on a circle, the diagonals will always cross 
at the center of circle?” (7G1, Geometry) 

“Whatever quadrilateral I draw, at least one of diagonals will cut the area of the 
quadrilateral in half?” (8G1, Geometry) 

Three false conjectures were evolved from the interviews carried out during the pilot 
study phase of the first stage. The following one was included in geometry booklets 
for both 7th and 8th graders who were the subjects concerned in this section. 

“A quadrilateral, in which one pair of opposite angles are right angles, is a rectangle.” 
(7&8 G5, Geometry) 

This coding scheme was evolved according to the performances of the national 
representative sample and the expert’s thinking process on refutation, and is more 
detailed than the schemes developed in the English study (Hoyles & Kuchemann, 
2002), which only focused on high-attainers (top 20~25% of the student population). 

On geometrical false conjectures, students either confirmed or refuted it. Comparing 
the frequency on G5 of 7th and 8th graders’ performances, there is no evidence of 
progress with correct decisions over the year (37% for 8th graders, even more than 
26% for 7th graders). Based on the words provided by students who ticked disagree, 
we classified them into three subcategories: rhetorical argument, correcting the given 
information, and generating counterexamples. Duval (1999, 2002) classified the 
relationship between a given statement A and another statement B into two types – 
the derivation relationship and the justification relationship. For each type, there are 
two kinds of reasoning that are practiced or required in mathematics teaching and 
learning. Semantic inference and mathematical proof support the derivation 
relationship; heuristic argument and rhetorical argument support the justification 
relationship. In our code scheme, codes c2, c3, c4, g1, g2 are the so-called heuristic 
arguments that take into account the constraints of the situation in the task. Generally, 
an argument is considered to be anything that is advanced or used to justify or refute 
a proposition. This can be the statement of a fact, the result of an experiment, or even 
simply an example, a definition, the recall of a rule, a mutually held belief or else the 
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presentation of a contradiction (Duval, 1999). Reasons relative to the person spoken 
to or beliefs of the interlocutor are the rhetorical arguments. Therefore, code d4 is a 
rhetorical argument, and d3 is a heuristic argument. 

False Conjectures if P then Q 

Code Frequency (%) 

 7G1 7G5 8G1 8G5 

Confirmation 44 26 31 37 
d0 – Misunderstanding the given information 1 2 2 1 
d1 – Much ado about nothing 23 5 12 9 
d2 – Confirm Q with incorrect reason 9 3 8 6 
d3 – Giving P’ s.t. P’�Q 3 12 3 17 
d4 – Authority 0.1  0.2 1.1 

Refutation 52 67 68 59 
Rhetorical argument 8 8 17 11 
Correcting the given information 15 51 12 33 

c0 – Criticizing the given information 9 13 3 5 
c1 – Non-example 3 3 5 9 
c2 – Providing alternative Q  32  16 
c3 – Characterizing Q s.t. P’ Q→  2 3 3 2 
c4 – Empirical decision 0.3  0.5 0.1 

Generating (a) counterexample(s) 24 4 34 11 
g0 – Do not believe it is always true 3 1 5 3 
g1 – Giving the possibility of a counterexample 5 0.6 13 4 
g2 – Giving the way of generating a counterexample 4 0.3 4 1 
g3 – Explicit, clear counterexample 12 2 10 3 
g4 – Counterexample with mathematical proof  0.1 0.9 0.1 

Note: Non-responses are not included 

Table 2: 7th and 8th graders Code Frequencies on items G1 and G5 
(N7=1146, N8=1050) 

Our coding scheme with code frequencies cover three out of four kinds of reasoning 
practiced by our 7th and 8th graders on refuting false conjectures: rhetorical argument, 
heuristic argument and mathematical proof (clear counterexample counts). The 
relatively high frequency of code c2 in 7G5 was contributed by students who 
reasoned that under the assumption, a quadrilateral can be either a square or a 
rectangle. This reason reflects the prevalence of students who misunderstand the 
inclusion relationship between squares and rectangles. Putting the number of students 
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with codes c2, c3, c4, g1 and g2 together, and computing its frequency, we found that 
11% and 36% of 7th graders and 20% and 24% of 8th graders were able to make a 
heuristic arguments for refuting G1 and G5, respectively. 

On Algebraic False Conjectures 
Three false conjectures in algebra survey for 7th and 8th graders were chosen for 
discussion. 

A3 “If the sum of two whole numbers is even, their product is odd?” (Both 7th and 8th 
graders, adopted from Küchemann & Holyes, 2002.) 

A6b “The sum of a multiple of 3 and a multiple of 6 must be a multiple of 6?” (8th 
graders) 

The data (3,6,6) in A6b was replaced by (3,6,9) in A6c for 8th graders, and 
respectively by (2,4,4) and (2,4,6) in A6b and A6c for 7th graders. Students’ works on 
algebraic false conjectures were analyzed with this code scheme: “g3: explicit, clear 
counter example, can be distinguished into three subcodes,” “g31: counterexample 
without reason,” “g32: both supporting and counterexamples,” and “g33: 
counterexample with analytic reasons,” which often is a rule for generating a specific 
counterexample. Referring to the expert’s thinking process on refutation, both 
processes (2) and (5) will be coded by g31. Thus, without words, code g31 could 
result from primitive or advanced thinking.  

Instead of presenting the national survey data, we’ll present a brief description of the 
students’ words to model their refutation schemes on algebra. On confirmation: (1) “I 
believe that only true statements will be presented in my learning” (code d1); (2) “I 
consider it correct, because its familiar format is akin to statements in textbooks” 
(code d4); (3) “I had supporting examples, e.g., 3+6=9 and 3×2+6×2=18, they are 
multiples of 9” (A6c) (code d3). On uncertain responses: (1) “I am not certain because 
the multiple is not given,” students interpreted the term multiple in “a multiple of 3” 
as specific numbers, a misconception (code r1); (2) “I had both supporting and 
counterexamples,” in ordinary language, this statement is uncertain (code g32). On 
refutation performances: (1) “The statement is so elegant, I must have learned it 
before. But, I did not. So it can’t be always correct” (code g0); (2) Simply adding a 
negation without reasons (code r1). Beyond the above beliefs and rhetorical 
arguments, the students’ refutation schemes are coded by g1, g2, g31, g32, g33 and 
g4. Their thinking process then is similar to certain points in the expert’s thinking 
process. 

Refuting Generates Conjectures 
When students gave their explanations for refuting, many gave heuristic arguments 
and explicit counterexamples with reasons, and we observed that some of these 
students had even produced relations, known properties evidences, general rules, etc. 
Buying the notion of “Cognitive Unity of Theorems” from the Italian school (Garuti 
et al., 1998; Boero, 2002), instead of the concerns of the possible continuity between 
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some aspects of the conjecturing process and some aspects of the proving process, we 
would like to investigate the possible production of conjectures derived from the 
aspect of the refuting process. 

The activity of refuting in mathematics is considered an economic way of helping 
students to develop competency in critical thinking. Competency of critical analyses 
has been recognized as a deficit in Taiwan education and is now emphasized in the 
school curriculum (Ministry of Education, 2003). Two refuting-conjecture tasks in 
algebra and geometry respectively were developed for the investigation. Each task is 
comprised of several items. The first item is making decisions on relatively easy false 
conjectures that aim to motivate students to be aware that the task is on refuting. The 
second item is given some false conjecture used in the national survey for refuting. 
The third and fourth items ask students to produce one conjecture and more 
conjectures, based on their refuting processes. 

All nine 7th graders who participated in the investigation with the algebra task 
produced meaningful conjectures. Three of them even produced a general rule for a 
whole number m that is divisible by the linear combination of whole numbers byax+ . 

Seventy-five 9th graders from two classes were asked to participate in the geometry 
task investigation. The four false conjectures used in the tasks were 7G1 (denotes 
item G1 in the 7th grade survey), 8G1, 8G5, 9G6, respectively. According to the code 
of frequencies of refutation schemes, 76%, 73%, 53%, and 60% of their 
performances were in the category “generating counterexamples” with respect to 
those false conjectures 7G1, 8G1, 8G5, and 9G6 respectively. The conjectures 
produced by this group are presented in Table 3. 

% 7G1 8G1 8G5 9G6 

Thm. 33 20 52 7 

New statement 17 8 7 1 

Innovation 5 33 8 56 

Total 55 61 67 64 
Note: Thm. denotes the conjecture is a theorem. New Statement denotes the conjecture is a new 
writing of learned properties. Innovation denotes the conjecture is an innovative one. 

Table 3: Frequency (%) of different type of conjectures. N=75, 9th graders 

Table 3 shows that the success rate for producing correct conjectures on these four 
tasks was approximately 60% or more. Different frequencies of each type of 
conjectures imply that 8G1 and 9G6 are excellent for creating brand new conjectures 
by 9th graders. The item 9G6 is quoted here. 
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9G6. 

A square is cut along the dotted line, then inverted. Is the resulting figure a rhombus? 

 

 

 

 

 

 

 

The conjectures produced by students were further distinguished into “correlating” or 
“not correlating” to their explanations for refuting. 

The relatively high percentages in Table 4 show the continuity of the refuting process 
and conjecturing process. This claims that refuting is an effective learning strategy 
for generating conjectures. To create innovative conjectures, the content in the given 
false conjecture needs to be well-designed, and 9G6 is a good example.  

 7G1 8G1 8G5 9G6 

T1 40 57 38 69 

Table 4: The percentages of conjectures that correlate to refuting 

Boero (2002) reported that the Italian school has identified four kinds of inferences, 
intervening in conjecturing processes: (1) inference based on induction, (2) inference 
based on abduction, (3) inference based on a temporal section of an exploration 
process, and (4) inference based on a temporal expansion of regularity. Reading 
students’ productions in the refuting-conjecture tasks, we observed that false 
conjectures in numbers 7A3 and 8A6 can enhance the generation of conjectures that 
are inferences based on induction, abduction (e.g., a narrative) and even deduction 
(e.g., 3h+6k=3(h+2k)); the task with figure dissection 9G6 can generate conjectures 
that are inferences based on a temporal section of an exploration process (the 
dissection), and tasks with 7G1 and 8G1 are relatively effective on generating 
conjectures that are based on the expansion of regularity (such as new statements of 
some properties). The following excerpt is from 9G6. 

If a line cuts a rectangle along the pair of longer sides into two parts so that the cross 
segment is equal to the longer side, then the two parts can be inverted to form a rhombus.  

This conjecture is produced in association with sequential operations on a rectangle. 

� 

B 

A 

B 

A 

B 

A 
�  
�  

�  
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CONCLUSION 
Based on our study, there is evidence showing the existence of continuity in different 
aspects of mathematics education. In the mathematics learning aspect, a rather high 
percentage of students were able to produce correct conjectures when working on 
refuting-conjecture tasks; this shows the existence of continuity between the refuting 
process and the production of truth statements. For some students, this continuity can 
even extend to their proving process. Indeed, some students have already provided 
counterexamples with analytic or mathematical proofs to refute false conjectures. In 
the mathematics teaching aspect, the effectiveness of the reading and coloring 
strategy on geometrical two-step proving shows that teachers can keep their 
traditional teaching approach, in which they can encourage students to label 
meaningful information within the given premise and conclusion and then seek 
linkages between the premise and the conclusion. Without disturbing their approach 
but suggesting students to use color pens for labelling, teachers can enhance students’ 
proving competencies. This demonstrates continuity between a more effective 
teaching strategy and the traditional teaching strategy. In the aspect of research in 
mathematics education, there is continuity between the investigating processes by 
educators in mathematics education research and by mathematicians in mathematics 
proving. The six phases of mathematicians in proving identified by Boero (1999) is 
indeed shared by mathematics educators in their studies, such as the study presented 
in this paper. Formulating on-going investigating issues is always considered to be 
connected with reflections on previous phases.  

Carrying out more testing on the effectiveness of the refuting-conjecture tasks will 
create an equilibrated set of conjecturing tasks suitable for activating different types 
of inferences.  

Several phases of research in mathematics education presented in this paper are rather 
traditional, such as (1) Identifying 1/5~1/3 of students in their age population, whose 
mathematics understanding are more likely to be enhanced. (2) Characterizing those 
students’ competencies. (3) Carrying out an experimental study with a redesigned 
learning strategy that connects to the characteristics of their cognition. 

This approach can frame local (geological and societal) education issues in the wider 
context of collaborative international studies, for the purpose of improving mutual 
education. The experience seems to be a very healthy and effective approach. 
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TRAVELLING THE ROAD TO EXPERTISE:  
A LONGITUDINAL STUDY OF LEARNING  

Kaye Stacey 

University of Melbourne, Australia 
 
A longitudinal study of students’ developing understanding of decimal notation has 
been conducted by testing over 3000 students in Grades 4 to 10 up to 7 times.  A 
pencil-and-paper test based on a carefully designed set of decimal comparison items 
enabled students’ responses to be classified into 11 codes and tracked over time. The 
paper reports on how students’ ideas changed across the grades, which ways of 
thinking were most prevalent, the most persistent and which were most likely to lead 
to expertise. Interestingly the answers were different for primary and secondary 
students. Estimates are also given of the proportion of students affected by particular 
ways of thinking during schooling. The conclusion shows how a careful mapping can 
be useful and draws out features of the learning environment that affect learning. 

In this presentation, we will travel on a metaphorical seven year journey with over 
3000 students. As they progress from Grades 4 to 10, learning mathematics in their 
usual classrooms, we will think of these students as travelling along a road where the 
destination is to understand the meaning of decimals. The noun “decimal” means a 
number written in base ten numeration with a visible decimal point or decimal 
comma. It may be of finite or infinite length. Different students take different routes 
to this destination, and we will follow these different routes through the territory that 
is the understanding of decimal numbers and numeration. Of course, the students are 
simultaneously travelling to many other mathematical and non-mathematical 
destinations, but our information enables us to follow just one of these journeys. The 
benefit in following one journey derives from the knowledge that we gain of their 
paths on this journey, how to help them reach the destination securely and also from 
being able to generalise this knowledge to understanding their likely paths on their 
other mathematical journeys. 

Our travelling companions: the students 
In preparation for our journey, we need to find out about our travelling companions, 
the transport that is available to them, how we will map their progress, the nature of 
their destination and the territory through which they travel. Our travelling 
companions are 3204 Australian students from 12 schools in Melbourne. The schools 
and teachers volunteered their classes for the study. The youngest students were in 
Grade 4, the grade when most schools are just beginning to teach about decimals.  
The oldest students were in Grade 10, two or three years after teachers generally 
expect their students to have fully developed understanding of decimals. The data is 
from a cohort study, which tracked individual students for up to 4 years, testing them 
with the same test each semester (i.e. twice per year). Students entered the study at 
any grade between Grade 4 and 10, and continued to be tested until they left Grade 
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10, or until they left the schools or classes in the study, or until the end of the data 
collection phase of the study. In total, the 3204 students completed 9862 tests, and 
when allowing for absences from class on the testing days, the tests were an average 
of 8.3 months apart. The schools come from a representative range of socio-economic 
backgrounds, and were chosen in six geographical groups so that many students 
could be tracked across the primary-secondary divide. Nearly 60% of the 1079 
students who were first tested in primary school (i.e. elementary school, Grades 4 to 
6) were also tested in secondary school. More than 600 students completed 5, 6 or 7 
tests during the study. The detailed quantitative analyses of the test results presented 
in this paper are taken from the PhD thesis of Vicki Steinle (2004), whose careful and 
imaginative contribution to our joint work on students’ understanding of decimals is 
acknowledged with gratitude and admiration.  

The transport: their teaching 
The transport available to the students along this journey is principally the teaching 
of decimals that was provided at their schools. In the absence of a prescriptive 
national curriculum or recommended textbooks in these schools, teaching approaches 
are selected by teachers. This variety makes it difficult to give a comprehensive 
picture. Instruction will generally begin by introducing one place decimals as an 
alternative notation for tenths (e.g. 0.4 is 4 tenths, 1.8 is one plus 8 tenths) in Grades 
3 or 4. Dienes’ multibase arithmetic blocks and area models are the most common 
manipulatives used. In some programs, calculations are done with one place decimals 
(e.g. 0.24, 4.79) in the early years, followed by calculations with two place decimals 
treated exclusively later. In secondary school, textbooks very frequently ask that all 
decimal calculations are rounded to two decimal places.  Brousseau (1997) is among 
the authors who have commented that teaching which works exclusively with 
decimals of a fixed length is likely to support overgeneralisation of whole number 
properties. In the course of our wider work on teaching and learning decimals, our 
team has designed and trialled a range of teaching interventions, including use of 
novel manipulatives based on a length model (Stacey, Helme, Archer & Condon, 
2001b) and we have created a set of computer games using artificial intelligence 
techniques (Stacey, Sonenberg, Nicholson, Boneh & Steinle, 2003b), but only a very 
tiny percentage of students from the cohort study were involved in trialling any of 
these interventions.  The teaching that the students received in the longitudinal study 
can therefore be assumed to be a representative sample of teaching across Melbourne. 

The destination: understanding decimal notation 
What is the destination for this journey? Students will have arrived at the final 
destination when they have a full understanding of the meaning of decimal notation. 
For the purpose of our wider work on teaching and learning about decimals, full 
understanding means that they should be able to interpret a number such as 17.373 in 
terms of place value in several ways (as 17 + 3 tenths + 7 hundredths + 3 thousandths 
or as 17 + 373 thousandths, etc) and to appreciate that it is less than halfway between 
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17 and 18, close to 17.4 but with an infinite number of numbers between it and 17.4. 
At this point, it is worth noting that decimal notation, as a mathematical convention, 
involves a mix of arbitrary facts that have to be learned and deep mathematical 
principles. It is not merely a convention. Some aspects are completely arbitrary, for 
example identifying the units column by the contiguous placement of a decimal point 
(or a decimal comma in many countries) or placing the larger place value columns on 
the left rather than the right. However, the notation also embodies deep mathematics, 
such as the uniqueness of the decimal expansion, with the consequence that all 
decimals of the form 2.37xxxx are larger than all decimals of the form 2.36xxxx 
except that 2.369 2.37 2.370= =�  etc. It is this property that makes the decimal 
comparison task so easy for experts. In the sense of Pea (1987), decimal notation is 
an invented symbolic artefact bearing distributed intelligence.  

Early explorers mapping the territory 
The description of the territory through which students pass is strongly linked to the 
way in which their progress can be mapped. This is a basic feature of science: there is 
a two-way interaction between knowledge of a phenomenon and having instruments 
to observe it. In mathematics education, knowledge of students’ thinking depends on 
asking good questions, and we only know what the good questions are by 
understanding students’ thinking. In the context of students’ understanding of 
decimals, Swan commented on this phenomenon in 1983:  

“It is only by asking the right, probing questions that we discover deep misconceptions, and 
only by knowing which misconceptions are likely do we know which questions are worth 
asking”, (Swan, 1983, p65).  

Cumulative research on students’ understanding of decimals has broken this cycle to 
advantage. The task of comparing decimal numbers (e.g. deciding which of two 
decimals is larger, or ordering a set) has been used since at least 1928 (Brueckner, 
1928) to give clues as to how students interpret decimal notation. Refinements to the 
items used, especially since 1980, improved the diagnostic potential of the task and 
provided an increasingly good map of the territory of how students interpret decimal 
notation.  For example, Foxman et al (1985), reporting on large scale government 
monitoring of mathematics in Britain, observed a marked difference in the success 
rates of apparently similar items given to 15 year old students. Asked to identify the 
largest in the set of decimals {0.625, 0.5, 0.375, 0.25, 0.125}, the success rate was 
61%. Asked to identify the smallest, the success rate was a surprisingly much lower 
37%. Note that this paper presents all sets from largest to smallest, not in order 
presented. Further analysis led to the first confirmation in a large scale study that 
whilst some students consistently interpret long decimals (e.g. 0.625, 0.125) as larger 
numbers than short decimals (e.g. 0.5), which was well known at the time, a 
significant group interpret them as smaller numbers.   

“Despite the large proportions of pupils giving this type of response very few teachers, 
advisors, and other educationalists are aware of its existence – the monitoring team were 
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among those unaware of the ‘largest is smallest’ response at the beginning of the series of 
surveys.” (Foxman et al, 1985, p851) 

Asking students to identify the smallest from this set of decimals was used again as 
an item by the international “Trends in Mathematics and Science Study” (TIMSS-R, 
1999) Table 1 gives the percentage of the international and Australian students giving 
each response, alongside Foxman et al’s 1985 data. The existence of the same 
general patterns in the selection of responses across countries and times shows that 
there is a persistent phenomenon here to be studied.  There is also a good fit between 
the results from the TIMSS-R random Australian sample and a prediction made from 
the Grade 8 sample of the present longitudinal study (re-calculated from Steinle, 
2004, Appendix 4, Table 19), which confirms that the results of the longitudinal 
study presented in this paper are representative of today’s Australian students.  

Table 1:  Percentage response to the item: Which of these is the smallest number?  
{0.625, 0.5, 0.375, 0.25, 0.125} from TIMSS-R (age 13), APU (age 15) and with 
prediction from present longitudinal study (Grade 8).   

Option TIMMS-R 
International 

TIMMS-R 
Australia 

Foxman et al. 
APU, age 15 

Prediction 
(Grade 8) 

0.125 46% 58% 37% 60% 

0.25 4% 4% 3% 2% 

0.375 2% 1% 2% 2% 

0.5 24% 15% 22% 18% 

0.625 24% 22% 34% 17% 

 

Working at a similar time to Foxman et al, Sackur-Grisvard and Leonard (1985) 
demonstrated that examination of the pattern of responses that a student makes to a 
carefully designed set of comparison or ordering tasks could reveal how the student 
was interpreting decimal notation reasonably reliably and they documented the 
prevalence of three “errorful rules” which students commonly use.  This provided a 
rudimentary map of the territory through which students pass on their way to 
expertise in understanding decimal notation.  Sackur-Grisvard and Leonard’s test was 
later simplified by Resnick et al (1989) and has been steadily refined by our group to 
provide an instrument which can map where students are on their journey to 
expertise. Current researchers, such as Fuglestad (1998), continue to find that decimal 
comparison tasks provide a useful window into students’ thinking and progress.  

 

The territory and the mapping tool 
Measuring the progress of a large cohort of students along the journey to 
understanding decimal notation required a mapping tool that is quick and easy to 
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administer, and yet informative. The version of the instrument used in our 
longitudinal study is called Decimal Comparison Test 2 (DCT2). It consists of 30 
pairs of decimals with one instruction: “circle the larger number in each pair”. The 
pattern of responses (not the score) on 5 item-types (subsets of items with similar 
mathematical and psychological properties) enables classification of students into 4 
“coarse codes” (A, L, S and U) which are further broken down into 11 “fine codes” 
(A1, A2, L1, etc) to describe likely ways of thinking about decimals. Figure 1 gives 
one sample item from each item-type in DCT2 and shows how students in 7 of the 
fine codes answer these items. Students are classified into the coarse codes on the 
basis on their answers to the first two item-types (shaded in Figure 1) whereas the 
fine codes use all item-types. In summary, we map where students are on their 
journey by administering a test that is simple to do, but has a complex design and a 
complex marking scheme. Details of the sampling, the test and its method of analysis 
and many results have been described elsewhere; for example, Steinle and Stacey 
(2003) and Steinle (2004). We can think of the 11 fine codes as the towns that 
students might visit on the journey, although, as in most adventure stories, these 
towns are mostly not good places to be. The 4 course codes are like shires; 
administrative groupings of towns (fine codes) that have some connections. 

Comparison Item A1 A2 L1 L2 S1 S3 U2 
4.8 4.63 √√√√    √√√√ ×××× ×××× √√√√ √√√√ ×××× 

5.736 5.62 √√√√ √√√√ √√√√ √√√√ ×××× ×××× ×××× 

4.7 4.08 √√√√ √√√√ ×××× √√√√ √√√√ √√√√ ×××× 

4.4502 4.45 √√√√ ×××× √√√√ √√√√ ×××× ×××× ×××× 

0.4  0.3 √√√√ √√√√ √√√√ √√√√ √√√√ ×××× ×××× 

Figure 1.  Sample items from DCT2 and the responses for the specified codes.  

Some of the ways of thinking that lead to these patterns of responses are briefly 
summarised in Table 2.  In the presentation, some of these ways of thinking will be 
illustrated with case studies from Steinle, Stacey and Chambers (2002). The L 
behaviour (generally selecting a longer decimal as a larger number) was widely 
known long before the S behaviour (generally selecting a shorter decimal as a larger 
number) was documented as reported above. Neither coarse code A nor U students 
choose on length. Students coded A are correct on straightforward comparisons, and 
U is a mixed group making other responses. The ways of thinking that lie behind 
these behaviours (other than U) have been identified by interviews with students, 
supported by close analysis of response patterns to identify the characteristics of 
apparently similar items to which groups of students react differently. Behind the 
codes, there are often several different ways of thinking that result in the same 
patterns of responses to the DCT2. Later refinements of the test enable some of these 
different ways of thinking to be separated. Space forbids a full description here. 
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Table 2: Matching of codes to the ways of thinking 

Coarse 
Code 

Fine 
Code 

 
Brief Description of Ways of Thinking 

A1 Expert, correct on all items, with or without understanding. A 
apparent 
expert 

A2 Correct on items with different initial decimal places. Unsure 
about 4.4502 /4.45. May only draw analogy with money. May 
have little understanding of place value, following partial rules. 

L1 Interprets decimal part of number as whole number of parts of 
unspecified size, so that 4.63>4.8 (63 parts is more than 8 parts). 

L 
longer-is-
larger L2 As L1, but knows the 0 in 4.08 makes decimal part small so that 

4.7>4.08. More sophisticated L2 students interpret 0.81 as 81 
tenths and 0.081 as 81 hundredths etc resulting in same responses.  

S1 Assumes any number of hundredths larger than any number of 
thousandths so 5.736 < 5.62 etc. Some place value understanding. 

S 
shorter-
is-larger S3 Interprets decimal part as whole number and draws analogy with 

reciprocals or negative numbers so 0.3>0.4 like 1/3>1/4 or -3>-4. 
U2 Can “correctly” order decimals, but reverses answers so that all 

are incorrect (e.g. may believe decimals less than zero) 
U 

U1 Unclassified – not fitting elsewhere. Mixed or unknown ideas. 
 

How adequate is DCT2 as an instrument to map where students are on their journeys 
to full understanding? Clearly it has limitations, but it also has many strengths. Its 
ease of administration made the longitudinal study of a large number of students 
possible. The test can reliably identify a wide range of student responses, as 
illustrated in Table 2.  Test-retest agreement is high. Even after one semester, when 
one would expect considerable learning to have occurred, 56% of students re-tested 
in the same fine code (calculation from data in Steinle 2004, Table 5.17). Where we 
have interviewed students shortly after testing, they generally exhibit the diagnosed 
way of thinking in a range of other items probing decimal understanding. There is 
one important exception. Very frequently, students whom the test diagnoses as expert 
(A1) are (i) not experts on other decimal tasks and (ii) it is also sometimes the case 
that they can correctly complete comparison items but do not have a strong 
understanding of decimal notation.  For this reason our code for expertise is A1, with 
A standing for apparent task expert.  In relation to point (i), our intensive use of one 
task has highlighted for us that expertise in one task does not necessarily transfer to 
related tasks without specific teaching. For example, A1 students being expert in the 
comparison test would be able to order books in a library using the Dewey decimal 
system. However, they may have little idea of the metric properties of decimals: that 
0. 12345 is very much closer to 0.12 than it is to 0.13, for example, and they may not 
be able to put numbers on a number line.  We therefore make no claim that our 
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apparent task experts in A1 are expert on other decimal tasks. In relation to point (ii), 
students with either good or poor understanding can complete DCT2 correctly by 
following either of the two expert rules (left-to-right digit comparison or adding zeros 
and comparing as whole numbers e.g. compare 63 and 80 to compare 4.63 and 4.8). 
DCT2 therefore over-estimates the number of experts. As a tool to map students’ 
progress it overestimates the numbers who have arrived at the destination. Its strength 
is in identifying the nature of erroneous thinking. Some mathematics educators may 
be inclined to dismiss DCT2 as “just a pencil-and-paper test” and take the position 
that only an interview can give reliable or deep information about student thinking.  I 
contend that carefully designed instruments in any format with well studied 
properties, are important for advancing research and improving teaching. Many 
interviews also miss important features of students’ thinking and unwittingly infer 
mastery of one task from mastery of another.    

THE JOURNEYS 
Some sample journeys 
Table 3 shows the journeys of 9 students in the longitudinal study. It shows that 
Student 210403026 completed tests each semester from the second semester of Grade 
4 to the first semester of Grade 7, and was absent on one testing day in Grade 5.  
Student 300704112 always tested in the L coarse code, which is an extreme pattern 
that sadly does not reveal any learning about this topic in two and a half years of 
school attendance.  Student 310401041 completed 7 tests, being diagnosed as either 
unclassified or in the L coarse code. Student 410401088, however, moved from L 
behaviour to expertise in Grade 7. Some of the students in Table 3 have been chosen 
to illustrate how many students persist with similar ways of thinking over several 
years. The average student showed more variation than these. In addition, there is 
always the possibility that changes between tests have been missed, since students 
were tested at most twice per year. Some students show movement in and out of A1. 

Table 3: A sample of students’ paths through the study 

ID Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 Grade 9 Grade 10 
210403026  L1  A1 S3 S5 S1        
300704112       L1 L4 L4 L2 L1    
310401041  L2  L1 U1 U1 L4 U1 U1      
390704012       L1 A1 U1 A1 S3    
400704005       A1 A2 A1 A2 A1    
410401088  L1 L1  L4 L1 L2 A1 A1      
500703003        S1 S5  S3 S3 U1  
500703030        S3 S5  S1 A2   
600703029        A1  U1 A1 A1 A3  
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Prevalence by grade: where the students are in each year of the journey 
Figures 2, 3a and 3b show the percentage of students who are in each of the codes by 
grade level. This data is the best estimate available from the longitudinal study 
(technically, the improved test-focussed prevalence of Steinle (2004)). As expected, 
the percentage of experts on the test (A1 in Figure 2) grows markedly in the early 
years, rising steadily until Grade 8. However, at Grade 10, which is regarded as the 
end of basic education, it is still only at 70% indicating that there are likely to be 
many adults without a strong understanding of decimal numbers. This observation is 
reinforced by studies of teacher education students (Stacey et al, 2001c) and nurses 
where “death by decimal” (Lesar, 2002) is a recognised phenomenon.  Measuring 
expertise with the DCT2 over-estimates, we summarise by noting that one quarter of 
students attain expertise within a year or so of first being introduced to decimals (i.e. 
in grade 5), a further half of students attain expertise over the next 5 years, leaving a 
quarter of the school population who are not clear on these ideas by the end of Grade 
10. 
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Figure 2: Best estimate of the prevalence of A codes by grade  
(from Figure 9.3, Steinle, 2004) 

 

Figure 2 also shows that the percentage of students in the non-expert A group 
remains (i.e. A2/A3) at about 10% from Grade 6 throughout secondary school, and 
for reasons related to the test construction, we know this to be an under-estimate. 
These students operate well on the basic items, but make errors on what could be 
expected to be the easiest comparisons, such as 4.45 and 4.4502. We believe there are 
several causes: an over-reliance on money as a model for decimal numbers; over-
institutionalisation of the practice of rounding off calculations to two decimal places; 
and use of partially remembered, poorly understood rules for comparing decimals.  
A2 and A3 students function well in most circumstances, but may in reality have very 
little understanding. We have several times overheard teachers describing their A2 
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students as having “just a few more little things to learn”. In fact these students may 
have almost no understanding of place value.  

Figure 3a shows how that the prevalence of L codes drops steadily with grade. As 
might be expected, the naïve misconception that the digits after the decimal point 
function like another whole number (so that 4.63 is like 4 and 63 units of unspecified 
size and 4.8 is 4 plus 8 units of unspecified size), is an initial assumption about 
decimal numbers, and Foxman et al (1985) demonstrated that it is exhibited mainly 
by low achieving students. The fairly constant percentage of students in category L2 
(around 4% up to Grade 9) provides an example of how students’ knowledge 
sometimes grows by just adding new facts to their accumulated knowledge, rather 
than building a consistent understanding based on fundamental principles.  One cause 
of code L2 is that L1 students simply add an extra piece of information to their pre-
existing way of thinking – commonly in this case, the information that a decimal 
number with a zero in the tenths column is small so that 4.08 < 4.7 even though 8>7.   

Figure 3b shows the best estimate of prevalence of the S codes.  These codes are less 
common, but there is no consistent trend for them to decrease: instead about 15% of 
students in most grades exhibit S behaviour at any one time. The largest group is in 
code S3, which is again a naïve way of thinking not appreciating place value.  That 
over 10% of Grade 8 students (those in S3) will consistently select 0.3 as smaller than 
0.4 is an extraordinary result. Earlier studies had omitted these items from tests, 
presumably because they were thought to be too easy. We believe that S thinking 
grows in junior secondary school largely because of interference at a deep 
psycholinguistic or metaphorical level from new learning about negative numbers, 
negative powers (e.g. 10^(-6) is a very small number) and more intense treatment of 
fractions, and a strange conflation of the spatial spread of place value columns with 
number-lines.  These ideas are explained by Stacey, Helme & Steinle (2001a).  

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

Gr4 Gr5 Gr6 Gr7 Gr8 Gr9 Gr10

L4

L2

L1

 
0%

5%

10%

15%

20%

25%

Gr4 Gr5 Gr6 Gr7 Gr8 Gr9 Gr10

S5
S3
S1

 

Figure 3a: Prevalence of L codes by 
grade (from Figure 9.7, Steinle, 2004) 

Figure 3b: Prevalence of S codes by 
grade (from Figure 9.10, Steinle, 2004) 
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Student-focussed prevalence: how many students visit each town? 
The data above have shown the percentage of students testing in various codes – in 
the journey metaphor, a snapshot of where the individuals are at a particular moment 
in time. This is one way to answer to the question “how prevalent are these ways of 
thinking”. However, it is also useful to see how many students are affected by these 
ways of thinking over their schooling, which is analogous to asking how many 
students visited each town sometime on their journey. Figure 4 shows the percentage 
of students who tested in each coarse code at some time in primary school, or at some 
time in secondary school. These percentages add up to more than 100% because 
students test in several codes. This data in Figure 4 is based on the 333 students in 
primary school and 682 students in secondary school who had completed at least four 
tests at that level of schooling. Had any individual been tested more often, he or she 
may have also tested in other codes. Hence it is evident that the data in Figure 4 are 
all under-estimates.  

This new analysis gives a different picture of the importance of these codes to 
teaching. For example, less than 25% of students exhibited S behaviour at any one 
test, but 35% of students were affected during primary school. Similar results are 
evident for the fine codes, although not presented here. For example, Fig. 3b shows 
that about 6% of students were in S1 at any one time, but at least 17% of primary and 
10% of secondary students were in S1 at some time. As noted above, these are 
underestimates. 

 

Student-focussed prevalence of codes amongst 
primary (left side) and secondary (right side) students
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Figure 4: The percentage of students who test in given codes at some stage in primary 
and secondary school (derived from Steinle, 2004, Ch 9).  
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Persistence: which towns are hard to leave? 
The sections above show where students are at various stages on their journeys. In 
this section we report on how long they stay at each of the towns on their journey. 
These towns are not good places to be, but how attractive are they to students? Figure 
5a shows that around 40% of students in the L and S codes retested in the same code 
at the next test (tests averaged 8.3 months apart). The figure also shows that after 4 
tests (averaging over two and a half years) still about 1 in 6 students retest in the 
same code. It is clear from this data that for many students, school instruction has 
insufficient impact to alter incorrect ideas about decimals.  

Fortunately, expertise is even more persistent than misconceptions. On a test 
following an A1 code, 90% of A1 students rested as A1 and the best estimate from 
Steinle (2004) is that 80% of A1 students always retest as A1. This means that about 
20% of the DCT2 “experts” achieve this status by less than lasting understanding 
(e.g. by using a rule correctly on one occasion, then forgetting it).  

Figure 5b shows an interesting phenomenon. Whereas persistence in the L codes 
decreases with age (Figure 5b shows L1 as an example), persistence in the S and A2 
codes is higher amongst older students. This might be because the instruction that 
students receive is more successful in changing the naive L ideas than S ideas but it is 
also likely to be because new learning and classroom practices in secondary school 
incline students towards keeping S and A2 ideas. The full data analysis shows that 
this effect occurred in nearly all schools, so it does not depend on specific teaching.  
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Figure 5a: Persistence in L, S and U 
codes after 1, 2, 3 or 4 semesters 

(adapted from Steinle, 2004, Fig. 6.5) 

Figure 5b: Persistence in A2, L1, S3 and S5 
over one semester by grade of current test 

(adapted from Steinle, 2004, Fig. 6.1) 
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Proximity to expertise: which town is the best place to be? 
A final question in describing students’ journeys is to find which town is the best 
place to be. In other words, from which non-A1 code is it most likely that a student 
will become an expert on the next test? Figure 6 shows the best estimates of Steinle 
(2004) from the longitudinal data. For both primary and secondary students the A 
codes and the U codes have the highest probabilities.  The case of the A codes will be 
discussed below.  The vast majority of students in U (“unclassified”) do not respond 
to DCT2 with a known misconception: they may be trying out several ways of 
thinking about decimals within one test, or simply be guessing. Figure 5a shows that 
the U coarse code is the least persistent, and the data in Figure 6 shows that there is a 
relatively high chance that U students will be expert on the next test. It appears that it 
is worse to have a definite misconception about decimals than to be inconsistent, 
using a mix of ideas or guessing. Perhaps these students are more aware that there is 
something for them to learn and are looking for new ideas. 
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Proximity to A1 (secondary)
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Figure 6:  Chance that the next test is A1, given there is a change of code, for primary 
and secondary cohorts. (Codes ordered according to combined cohort proximity.)  

 

Students in the L codes generally have only a low chance of moving to expertise by 
the next test. This bears out predictions which would be made on our understanding 
of the thinking behind the L codes.  Since L1 identifies students who generally think 
of the decimal part of the number as another whole number of parts of indeterminate 
size, L1 is rightly predicted to be far from expertise. The L2 code (see Table 2) 
consists of at least two groups: one who graft onto L1 thinking an isolated fact about 
numbers with a zero in the tenths columns and a more sophisticated group of students 
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with some place value ideas. Is the much greater chance of L2 students becoming 
expert over L1 students attributable to both or to the more sophisticated thinkers 
only? This is an example of a question that needs a more refined test than DCT2.  

In the above section on persistence, I commented that the S codes behave differently 
in primary and secondary schools. This is again the case in Figure 6. Whereas 
primary students in S codes have a better chance than L students to become experts, 
this is not the case in secondary school. This is not because S students are more likely 
to stay in S, because the analysis has been done by removing from the data set those 
students who do not change code. Exactly what it is in the secondary school 
curriculum or learning environment that makes S students who change code more 
likely to adopt ideas which are not correct, is an open question.  

The A codes have very high rates of progression to A1. This is of course good, but 
there is a caution. As noted above, students who have tested as A1 on one test 
generally stay as A1 on the next test, but 10% do not (see for example, students 
400704005 and 600703029 from Table 3). The A2 and A3 codes are over-
represented in these subsequent tests. This indicates to us that some of the A1 
students are doing well by following partly understood and remembered versions of 
either of the two expert rules, possibly so partial as to simply make a decision on the 
first one or two decimal places (e.g. by analogy with money), truncated or rounded. 
In a “tricky” case such as the comparison 4.4502/4.45, these partially remembered 
rules fail. Truncating or rounding to one or two decimal digits gives equal numbers 
and to carry out the left-to-right digit comparison rule, the 0 digit has to be compared 
with a blank. Poorly understood and remembered algorithms are likely to fail at this 
point, resulting in ad hoc guessing. As students complete subsequent tests in A1, A2 
and A3, moving between them, we see examples of Brown and VanLehn’s (1982) 
“bug migration” phenomenon. There is a gap in students’ understanding or in their 
memorised procedures, and different decisions about how to fill this gap are made on 
different occasions. Our work with older students (e.g. Stacey et al, 2001c) shows 
that these problems, evident in comparisons such as 4.45/4.4502, remain prevalent 
beyond Grade 10. The movement between the A codes is evidence that a significant 
group of the DCT2 “experts” have little place value understanding.  

The study of student’s thinking especially in the A and S codes has highlighted 
difficulties associated with zero, both as a number and as a digit, that need attention 
throughout schooling (Steinle & Stacey, 2001). Zeros can be visible or invisible and 
represent the number between positive and negative numbers, or a digit. As a digit, 
zero operates in three ways numbers; to indicate there are zero components of a given 
place value, as a place holder to show the value of surrounding digits, and also to 
indicate the accuracy of measurement (e.g. 12 cm vs 12.0 cm) although the latter 
interpretation has not been explored in our study. Improved versions of the decimal 
comparison test, especially for older students, include more items involving zeros in 
all of these roles, and allow the comparisons to be equal (e.g. 0.8 with 0.80). 
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HOW IS A DETAILED MAP OF LEARNING USEFUL?  
The research work in the 1980s using comparison of decimals identified three 
“errorful rules”. The map of the territory of learning decimals at that stage therefore 
divided it into four regions (expertise and three others). DCT2 can diagnose students 
into 12 groups (the 11 of the longitudinal study and one other).  As we interviewed 
students who tested in different codes on DCT2 and examined responses to the sets of 
items more closely, we came to realise that several ways of thinking lay behind some 
of our codes (e.g. L2, S3), which opened up the possibility of making further 
refinements to DCT2 to separate these groups of students. We also discovered other 
ways of thinking that DCT2 did not properly identify, such as problems with 0. We 
refined DCT2 to better identify some of these groups. However, the important 
question which is relevant to all work on children’s thinking is how far it is useful to 
take these refinements.  How fine a mapping tool will help students on the journey? 

For teaching, it is common for people to say that only the coarsest of diagnoses is 
useful. The argument is that busy teachers do not have the time to carefully diagnose 
esoteric misconceptions, and in any case would be unable to provide instruction 
which responded to the information gained about an individual student’s thinking. I 
agree. Our experience in teachers’ professional development indicates that they find 
some knowledge of the misconceptions that their students might have to be extremely 
helpful to understand their students, and to plan their instruction to address or avoid 
misinterpretations. Hence they find that the coarse grained diagnosis available for 
example from the Quick Test and Zero Test (Steinle et al, 2002) is of practical use.  

However, in many countries, we will soon be going beyond the time when real-time 
classroom diagnosis of students’ understanding is the only practical method. The 
detailed knowledge of student thinking that has been built up from research can be 
built into an expert system, so that detailed diagnosis can be the province of a 
computer rather than a teacher. Figure 7 shows two screen shots from computer 
games which input student responses to a Bayesian net that diagnoses students in real 
time and identifies the items from which they are most likely to learn. Preliminary 
trials have been promising (Stacey & Flynn, 2003a). Whereas all students with 
misconceptions about decimal notation need to learn the fundamentals of decimal 
place value, instruction can be improved if students experience these fundamental 
principles through examples that are individually tailored to highlight what they need 
to learn. Many misconceptions persist because students get a reasonable number of 
questions correct and attribute wrong answers to “careless errors”. This means that 
the examples through which they are taught need to be targeted to the students’ 
thinking. An expert system can do this (Stacey et al, 2003b). 
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In Hidden Numbers, 
students pick the relative 
size of two numbers, 
revealing digits by opening 
the doors. This task reveals 
misconceptions e.g. when 
students select by length or 
open doors from the right. 
An expert system diagnoses 
thinking and provides tasks 
for teaching or diagnosis.   

 

The Flying Photographer 
has to photograph animals 
(e.g. platypus) from an 
aeroplane, given decimal 
co-ordinates (e.g. 0.959). 
This task uses knowledge of 
relative size, not just order.  
An expert system tracks 
responses (e.g. if long 
decimals are always placed 
near 1) and selects new 
items to highlight concepts.  

Figure 7.  Screen shots from two games which provide diagnostic information to an 
expert system which can diagnose students and select appropriate tasks. 

LESSONS ABOUT LEARNING 
An overview of the journey 
The longitudinal study has examined students’ progress in a specific mathematics 
topic, which complements other studies that have tracked growth in mathematics as a 
whole or across a curriculum area.  The overall results demonstrate the substantial 
variation in ages at which expertise is attained, from a quarter of students in Grade 5 
to about three quarters in Year 10. The good alignment of data from the longitudinal 
study and the random sample of TIMSS-R shows that we can confidently recommend 
that this topic needs attention throughout the grades in most secondary schools. The 
fact that about 10% of students in every grade of secondary school (fig. 2) are in the 
non-expert A codes (A2 and A3) shows that many students can deal apparently 
expertly with “ordinary” decimals, which conceals from their teachers and probably 
from themselves, their lack of understanding of fundamental decimal principles.   

Moreover, the fact that many students retain the same misconception over long 
periods of time (e.g. about 20% in the coarse codes over 2 years, and around 30% in 
some fine codes over 6 months) demonstrates that much school instruction does not 
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make an impact on the thinking of many students. Our study of proximity to expertise 
provides empirical support for the notion that it is harder to shake the ideas of 
students who have a specific misconception than of those who do not; again this 
points to the need for instruction that helps students realise that there is something for 
them to learn, in a topic which they may feel they have dealt with over several years. 

One important innovation of this study is to look not just at the prevalence of a way 
of thinking at one time, but to provide estimates of how many students are affected in 
their schooling, which provides a different view of the practical importance of 
phenomena. 

How the learning environment affects the paths students take 
Another important result of this study is that in the different learning environments of 
primary and secondary school, students are affected differently by various 
misconceptions. For example, the S misconceptions in primary school are relatively 
quickly overcome, being not very persistent and with high probability of preceding 
testing as an expert, but this is not the case in secondary school.  

The very careful study of the responses to DCT2 and later comparison tests has 
revealed a wide range of students’ thinking about decimals.  As demonstrated in 
earlier studies, some students (e.g. L1) make naïve interpretations, overgeneralising 
whole number or fraction knowledge. Others simply add to a naïve interpretation 
some additional information (e.g. some L2, and see below). We have proposed that 
some false associations, such as linking numbers with whole number part of 0 with 
negative numbers, arise from deep psychological processes (Stacey et al, 2001a). 
Other students (e.g. some A2) seem to rely only on partially remembered rules, 
without any definite conceptual framework.  We explain the rise in the prevalence 
and persistence of S and non-expert A codes in the secondary school mainly through 
reinforcement from new classroom practices, such as rounding to two decimal places 
and interference from new learning (e.g. work with negative numbers). This shows 
that other topics in the mathematics curriculum, and probably also other subjects, 
affect the ideas that students develop and the paths that they take among them.  

Learning principles or collecting facts 
Although understanding decimal notation may appear a very limited task, just a tiny 
aspect of a small part of mathematics, full understanding requires mastery of a 
complex web of relationships between basic ideas. From the perspective of the 
mathematician, there are a few fundamental principles and many facts are logically 
derived from them. From the point of view of many learners, however, there are a 
large number of facts to be learned with only weak links between them. This is 
demonstrated by the significant size of codes such as A2 (e.g. with secondary 
students confident only with tenths, without having made the generalisation of 
successive decimation). Teaching weakly linked facts rather than principles is 
inherent in some popular approaches, such as teaching one-place decimals first, then 
two-place decimals the next year, without exposing what we call the “endless base 
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ten chain”.  Artificially high success in class comes by avoiding tasks which require 
understanding the generalisation and principles, and concentrating on tasks with 
predictable surface features (e.g. Brousseau, 1997; Sackur-Grisvard et al, 1985).  

For mathematics educators, the challenge of mapping how students think about 
mathematical topics is made considerably harder by the high prevalence of the 
collected facts approach. As the case of decimal numeration illustrates, we have 
tended to base studies of students’ thinking around interpretations of principles, but 
we must also check whether that current theories apply to students and teachers who 
are oriented to the collected facts view, and to investigating how best to help this 
significant part of the school population.  

Tracing the journeys of students from Grade 4 to Grade 10 has revealed many new 
features of how students’ understanding of decimals develops, sometimes progressing 
quickly and well, but for many students and occasionally for long periods of time, not 
moving in productive directions at all. The many side-trips that students make on this 
journey point to the complexity of the learning task, but also to the need for improved 
learning experiences to assist them to make the journey to expertise more directly.   

Acknowledgements 
The decimals work was funded through a series of projects by Australian Research 
Council and University of Melbourne, with contributions from V. Steinle, E. 
Sonenberg, A. Nicholson, S. Helme, and Melbourne and Monash research and 
honours students. Teachers and children generously gave their time to do the tests.   

REFERENCES 
Brousseau, G. (1997). Problems with Teaching Decimal Numbers, Didactical Problems 

with Decimals. In N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield (Eds.), Theory 
of Didactical Situations in Mathematics:  Didactique des Mathematiques, 1970-1990 (pp. 
117-232). Dordrecht, The Netherlands: Kluwer Academic. 

Brown, J. S., & VanLehn, K. (1982). Towards a Generative Theory of "Bugs". In T. P. 
Carpenter, J.M. Moser, & T. A. Romberg (Eds.), Addition and subtraction:  A cognitive 
perspective (pp. 117-135). Hillsdale, New Jersey: Lawrence Erlbaum. 

Brueckner, L. J. (1928). Analysis of Difficulties in Decimals. Elementary School Journal, 
29, 32-41. 

Foxman, D., Ruddock, G., Joffe, L., Mason, K., Mitchell, P & Sexton, B. (1985). A Review 
of Monitoring in Mathematics 1978 to 1982. (Vol. 1). London: Dept of Ed. & Science. 

Fuglestad, A. B. (1998). Computer Support for Diagnostic Teaching.  A case of decimal 
numbers. Nordic Studies in Mathematics Education (Nordisk Matematikk Didaktikk), 
6(3-4), 25-50. 

Lesar, T. (2002). Tenfold medication dose prescribing errors. Annals of Pharmacotherapy, 
36, 1833-1839. 

Pea, R. (1987) Practices of distributed intelligence and designs for education. In G. Salomon 
(Ed) Distributed cognitions: Psychological and educational considerations. (pp 47 - 87) 
C.U.P., Cambridge.  



Stacey 

 

PME29 — 2005 1- 36 

Resnick, L. B., Nesher, P., Leonard, F., Magone, M., Omanson, S., & Peled, I. (1989). 
Conceptual Bases of Arithmetic Errors:  The Case of Decimal Fractions. Journal for 
Research in Mathematics Education, 20(1), 8-27. 

Sackur-Grisvard, C., & Leonard, F. (1985). Intermediate Cognitive Organizations in the 
Process of Learning a Mathematical Concept:  The Order of Positive Decimal Numbers. 
Cognition and Instruction, 2(2), 157-174. 

Stacey, K. & Flynn, J. (2003a) Evaluating an adaptive computer system for teaching about 
decimals: Two case studies. In V. Aleven, U. Hoppe, J. Kay, R. Mizoguchi, H.Pain, F. 
Verdejo,  & K. Yacef (Eds) AI-ED2003 Supplementary Proceedings of the 11th 
International Conference on Artificial Intelligence in Education.(pp  454 – 460), Sydney: 
University of Sydney. 

Stacey, K., Helme, S., & Steinle, V. (2001a). Confusions between decimals, fractions and 
negative numbers: A consequence of the mirror as a conceptual metaphor in three 
different ways. In M. v. d. Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference 
of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 
217-224). Utrecht: PME. 

Stacey, K., Helme, S., Archer, S., & Condon, C. (2001b). The effect of epistemic fidelity 
and accessibility on teaching with physical materials: A comparison of two models for 
teaching decimal numeration. Educational Studies in Mathematics, 47, 199-221. 

Stacey, K., Helme, S., Steinle, V., Baturo, A., Irwin, K., & Bana, J. (2001c). Preservice 
Teachers’ Knowledge of Difficulties in Decimal Numeration. Journal of Mathematics 
Teacher Education, 4(3), 205-225. 

Stacey, K., Sonenberg, E., Nicholson, A., Boneh, T., Steinle, V. (2003b) A teacher model 
exploiting cognitive conflict driven by a Bayesian network. In Lecture Notes in Artificial 
Intelligence (Series: Lecture Notes in Computer Science Vol 2702/2003). (pp 352-362) 
Heidelberg: Springer-Verlag. 

Steinle, V. & Stacey, K. (2003). Grade-related trends in the prevalence and persistence of 
decimal misconceptions. In N.A. Pateman, B.J. Dougherty & J. Zilliox (Eds.), 
Proceedings of the 27th Conference of the International Group for the Psychology of 
Mathematics Education (Vol. 4, pp. 259 – 266). Honolulu: PME. 

Steinle, V. (2004). Changes with Age in Students’ Misconceptions of Decimal Numbers. 
Unpublished PhD, University of Melbourne, Melbourne. 

Steinle, V., & Stacey, K. (2001). Visible and invisible zeros: Sources of confusion in 
decimal notation. In J. Bobis, B. Perry & M. Mitchelmore (Eds.), Numeracy and Beyond. 
Proceedings of the 24th Annual Conference of the Mathematics Education Research 
Group of Australasia (Vol. 2, pp. 434-441). Sydney: MERGA. 

Steinle, V., Stacey, K., & Chambers, D. (2002). Teaching and Learning about Decimals 
[CD-ROM]: Department of Science and Mathematics Education, The University of 
Melbourne. Online sample http://extranet.edfac.unimelb.edu.au/DSME/decimals/ 

Swan, M. (1983). Teaching Decimal Place Value:  A Comparative Study of “Conflict” and 
“Positive Only” Approaches. Nottingham: Shell Centre for Mathematical Education. 

TIMSS-R. IEA’s Repeat of the Third International Mathematics and Science Study at the 
Eighth Grade. Retrieved, 29th February, 2004, from the World Wide Web: 
http://timss.bc.edu/timss1999i/pdf/t99math_items.pdf 

 



 

 

2005. In Chick, H. L. & Vincent, J. L. (Eds.). Proceedings of the 29th Conference of the International 
Group for the Psychology of Mathematics Education, Vol. 1, pp. 37-52. Melbourne: PME.  1- 37 
 

IDENTITY THAT MAKES A DIFFERENCE: 
SUBSTANTIAL LEARNING AS CLOSING THE GAP BETWEEN 

ACTUAL AND DESIGNATED IDENTITIES 
 

Anna Sfard Anna Prusak 

The University of Haifa & Michigan 
State University 

Oranim Teachers College 

 

In the attempt to account for striking differences between learning activities of 
immigrant mathematics students from the former Soviet Union and of their native 
Israeli classmates, we introduce the notions of actual and designated identities. These 
identities are subsequently presented as important factors that mold learning and 
influence its effectiveness. Since designated identities may be seen as personalized, 
“customized” versions of people’s cultural heritages, ours is the story of the wider 
culture making its way into individual learning processes. 

 [For me,] school mathematics was … something that one cannot escape and must try to 
be done with as quickly as possible… The numbers did not scare me; rather the scary 
part was my complete lack of interest in them… All that I remember now is my constant 
effort to match formulas with exam questions. 

This quote from a retrospective account of a successful university student1 is unlikely 
to surprise a person who knows a thing or two about mathematics learning and 
teaching. We are all only too familiar with this kind of unhappy reminiscences. Much 
less common are reports about mathematics-related experiences of interest and joy, 
such as the one provided by another high-school graduate:   

Mathematics lessons were my favorites. If they were difficult, I saw them as a challenge, 
as a puzzle to cope with. I was ready to invest time and effort in solving special bonus 
problems.  

What is it that makes some students learn mathematics willingly and with interest 
while leaving many of their peers indifferent, if not openly resistant? How does this 
difference influence the learning practices of the student? These questions are 
certainly not new. They have been fueling mathematics education research ever since 
its inception. The study to be presented in this talk is a result of yet another attempt to 
come to grips with the long-standing quandaries.  

                                                 
1 This and the following excerpt are taken from autobiographical accounts of students who 
participated in university courses given by the first author in the Education Department at the 
University of Haifa. 
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Our research project was occasioned by the recent massive immigration from the 
former Soviet Union to Israel.2 More specifically, it was triggered by a spontaneous, 
yet-to-be-tested observation that a disproportionately large portion of this particular 
group of immigrants could pride itself with impressive results in mathematics, and 
not just in school, but also in national and international mathematical competitions.3 
We began asking ourselves whether there was anything unique about the immigrant 
students’ mathematics learning and if there was, how this uniqueness could be 
accounted for. The conjecture we wished to test while launching our investigation 
was that dissimilarities in learning processes, rather than being a simple outcome of 
cognitive differences between individual learners, are a mixed product of individual 
and collective doing. Such differences, we believed, are often reflective of differing 
sociocultural histories of the learners.  

In what follows, we try to substantiate this hypothesis on the basis of our findings. 
We begin with detailed examples of the two types of learning, the ritualized and the 
substantial, signaled by the students’ testimonies quoted above. In our study, both 
kinds of learning have been found in one class consisting of native Israelis and 
immigrant mathematics students. The dissimilarities in learning paralleled the 
difference in the students’ sociocultural background. In the attempt to understand 
how sociocultural factors made their way into the learners’ individual activities, we 
introduce the notions of actual and designated identities which then serve as the 
“missing link” between culture and learning.  

TWO TYPES OF LEARNING: SUBSTANTIAL AND RITUALIZED  
Example to think with: NewComers and OldTimers as mathematics learners  
The study began in fall of 1998 and focused on one 11th grade class that followed an 
advanced mathematics program. 9 out of the 19 students were NewComers – recent 
immigrants from big cities in the former Soviet Union such as Moscow, Kiev and 
Tbilisi. The rest were native Israelis, whom we call OldTimers. All of the students 
came from well-educated families. The second author, a one-time immigrant from the 
Soviet Union, served as the teacher. In the course of the entire school year all 
classroom processes were meticulously observed and documented. Numerous 
interviews with the students, with their parents and with other teachers constituted 
additional data.  

                                                 
2 According to the leading Israeli newspaper Haaretz, “Approximately 200 thousand children 
immigrated to Israel in 11 years, most of them from the former Soviet Union; they constitute 15% 
of the Israeli youth”(31.08.2001). 
3 This conjecture should not be misread as saying that the immigrants from the former Soviet 
Union are generally highly successful in mathematics. This said, “[t]here are [immigrant] children 
who arrive at the highest places in international competitions in mathematics and physics and 
thanks to them, Israel climbed from 24th to 13th place in the 1995 international championship” 
(Haaretz, 2 August 1996).   
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The salience of the differences between the learning processes of the two groups 
exceeded our expectations. In this article we present only a tiny vignette from this 
extensive research project (the full report can be found in Prusak 2003). It must be 
stressed, however, that the striking intra-group homogeneity and the significant inter-
group difference reported on these pages is representative of all our results, whatever 
the particular aspect of learning considered in the analyses.  

The sub-study in question focused on independent learning. Our story begins in the 
tenth week of the school year, on the day when the class got the unusual homework 
assignment: After having learned trigonometry for two months and, in particular, 
after being introduced to the theorem known as law of sines, the learners were asked 
to study the new subject, law of cosines and its applications, with the help of a 
textbook. To guide their independent learning, the teacher proposed a work plan, 
which was presented as a series of questions to be answered in the course of the 
study: (1) How can the law of cosines be presented in words?(2) How can it be 
formulated in the language of algebra? (3) How can it be proved? (4) What is its 
importance? The teacher advised that the students write their answers to the 
questions once they were sure they understood the subject.  

The first difference between the two groups has shown when, a few days later, the 
teacher asked to see the notes made by the learners as a part of their homework 
assignment. This request surprised some students. After all, the teacher did not 
request the written answers, she had only recommended them as potentially helpful. 
And yet, whereas only 4 out of the 9 NewComers had anything written to show, the 
OldTimers, with no exception, were able to come up with the kind of notes the 
teacher was asking for. The two groups differed further in the nature of the available 
record. As a rule, the OldTimers’ answers to the teacher’s questions were simply the 
relevant passages copied from the textbook. Of the four NewComers who did make 
notes, only one answered all four questions, whereas the sole focus of the other three 
sets of records was the proof of the cosine law (question 3 in the work plan.) Two of 
these proofs were quite unlike anything that could be found in other students’ 
notebooks, so it was clear that these were students’ reconstructions rather than quotes 
from the book.   

Impressed by this visible disparity, the teacher asked whether anybody in the class 
felt a need for an additional explanation. This time, there was no difference between 
the OldTimers and NewComers: All the students felt that the topic has been 
understood. In spite of this, the teacher declared her wish to probe a bit further. She 
asked the class to formulate the law of cosines and to prove it in writing. The request 
was accompanied by a blackboard drawing of a triangle, marked with letters different 
from those that appeared in the textbook. The following passage from the teacher’s 
journal presents students’ reaction to the previously unannounced test:  

Several OldTimers started complaining: “We learned at home with the letters A, B, C 
and we got used to them”… The Newcomers did not show any sign of surprise. All of 
them, even Boris, usually the slowest, finished quickly. 
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Number of responses Type of response 
OldTimers NewComers 

Full proof, textbook version 1 6 
Full proof, modified version - 2 
Partial, erroneous proof 1 - 
No proof 8 1 

Table 1: Students’ responses to the request to prove the law of cosines 

As shown in Table 1, the results attained by the two groups could hardly be more 
dissimilar: While all NewComers but one succeeded in the task, only one of the 
OldTimers was able to produce a reasonable proof. Moreover, two of the 
NewComers came up with their own versions of the proof, the type of response that 
is usually taken as the most persuasive evidence of understanding.  

OldTimers (translated from Hebrew) NewComers (translated from Russian) 

Ada, who did not succeed in 
reproducing the proof: 
I read the chapter in the book and 
tired to understand 
When I felt I understood, I copied the 
proof to the notebook 

Sonya, who succeeded in reproducing the 
proof: 
I read the proof a number of times, trying to 
remember and making notes on a separate page. 
I reproduced the proof without writing and I 
wrote the proof from memory with the book 
closed. I compared the proof to the one in the 
book. I then read and tried to understand the 
examples [of application] in the book 

Liora, who did not succeed in 
reproducing the proof: 
Copied the verbal formulation [of the 
cosine law], drew a triangle in the 
head [the student’s own emphasis], 
read the verbal presentation and 
translated to letters in the head. 
Compared the formula to the one in 
the book and copied into the 
notebook. Read the proof and 
understood what they did. Solved the 
problems with the help of the 
formula. In case [I] could not do it, 
read the solved example.  

Misha, who succeeded in reproducing the 
proof: 
I began by translating [to Russian] of all the 
words in the theoretical text that were unclear to 
me. I read the theorem again until I understood 
its proof. When I was sure I understood the 
theorem, I drew a triangle with vertices marked 
differently than in the book and I wrote the new 
proof without looking into the book. After I 
finished, I checked the correctness of the proof 
with the help of the book. I read and understood 
the solved examples [of problems] in the book 
and began solving the homework problems.  

Table 2: Representative responses to the question  
How did you learn? Describe the process in some detail. 

Once they completed their proofs, the students were asked to describe in writing the 
steps they performed while implementing the homework assignment. The 
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NewComers were allowed to respond in Russian. The English version of 
representative answers can be found in Table 2. The two columns give rise to two 
strikingly different pictures of the learning process: Whereas the OldTimers satisfied 
themselves with reading the book and answering the teacher’s four questions by 
copying the relevant passages from the book, the NewComers intertwined reading the 
textbook exposition with their own independent attempts to formulate and prove the 
theorem.  

We may now sum up and say that the OldTimers and NewComers differed in a 
consistent manner both in the way they learned and in the results attained. The 
learning process of the NewComers was clearly associated with their greater success 
on the test. The fact that the sequence of steps performed by the only OldTimer who 
managed to produce a correct proof was closer to that of NewComers than to that of 
OldTimers confirms this latter claim: There seems to be a tight correspondence, 
perhaps even a causal relationship, between the way NewComers learned and the 
effectiveness of their learning.  

DEFINING SUBSTANTIAL AND RITUALIZED LEARNING 
The first thing that strikes the eye in our data is that NewComers’ and OldTimers’ 
actions seem to have been directed at different recipients. The fact that the OldTimers 
implemented all the tasks required by the teacher apparently without asking 
themselves why they were performing these particular steps shows that, for these 
learners, the teacher was the ultimate addressee. NewComers, unlike OldTimers, did 
not perform all the prescribed tasks, and if they did, they did not leave any written 
records, evidently not being bothered about showing their work to the teacher. Thus, 
whatever these latter students did at home, they did it for themselves, according to 
their own assessment of its importance. In this activity, they were their own judges, 
and we have grounds to suspect that in this role, some of them were more exacting 
than anybody else, including the teacher.  

Activities that have different addressees are usually perceived as having different 
goals. Clearly, in the eyes the OldTimers the process of learning was the end in itself, 
whereas the only thing that really counted for the NewComers was a certain product 
of the process, one that could be trusted to outlast the activity itself. In other words, 
the NewComers wanted the learning-induced change to be robust and durable. The 
desired lasting transformation can best be described in terms borrowed from what 
Harré & Gillet (1995) call discursive psychology and what was named 
communicational approach to cognition by other writers (Sfard 2001, Sfard & Lavi 
2005; Ben Yehuda et al. 2005). According to the basic tenet of this approach, 
thinking can be usefully conceptualized as a form of communication, with this latter 
term signifying interaction that does not have to be audible, verbal, synchronic or 
directed at others. Within this framework, school learning becomes the activity of 
changing one’s discursive ways in a certain well defined manner. In particular, 
learning to think mathematically is tantamount to being initiated into a special form 
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of discourse, known as mathematical. Armed with this conceptual apparatus we may 
now say that for the NewComers, learning was the activity of introducing a lasting 
change into their own discursive activity, whereas for OldTimers it meant an 
episodic, ritualized participation in a discourse initiated by others.  

We decided to call the two types of learning substantial and ritualized, respectively. 
In ritualized learning the learner engages in the mathematical discourse only in 
response to other person’s request and for this other person’s sake. In contrast, 
substantial learning may be defined as one that results in turning the new discourse 
from its initial status of a discourse-for-others into a discourse-for-oneself, that is, 
into a discourse in which this person is likely to engage spontaneously while solving 
problems and trying to answer self-posed questions.4 This special kind of learning 
has a lasting effect on one’s communication with oneself, that is, on this person’s 
thinking.  

The NewComer’ strenuous effort toward substantial learning, noticed in the learning 
episode reported above, could be observed all along our extensive study, whatever 
the aspects of learning considered in its different segments. This effort was clear 
whether we were watching the students simplifying a complex algebraic expression, 
proving a trigonometric identity or trying to collaborate with others in solving a non-
standard problem. On these diverse occasions, the NewComers’ wish to turn the new 
discourse into a communication with themselves was evidenced also by their constant 
backtracking and self-examination, by their conspicuous preference for individual 
work, by their care for the appropriateness of their mathematical expression, and 
more generally, by their insistence on following all those rules of communication 
which they considered as genuinely ‘mathematical’.  

DEFINING IDENTITY5  
Why talk about identity? 
The striking dissimilarities between the OldTimers’ and NewComers’ learning called 
for explanation. Although we had a basis on which to claim the existence of some 
systematic differences in the teaching practices in the former Soviet Union and in 
Israel, these differences did not seem to tell the whole story. A teaching approach 
might have been responsible for the NewComers’ acquaintance with certain 
techniques, but this fact, per se, did not account for the students’ willingness to use 
these methods. We felt that to complete the explanation, we needed to clarify why the 

                                                 
4 The term discourse-for-oneself is close to Vygotsky’s idea of speech-for-oneself, introduced to 
denote a stage in the development of children’s language (see e.g. Vygotsky 1987, p.71). Our 
terms also brings to mind the Bakhtinian distinction between authoritative discourse, a discourse 
that “binds us, quite independently of any power it might have to persuade us internally”; and 
internally persuasive discourse, one that is “tightly woven with ‘one’s own world.’ (Bakhtin, 
1981, pp. 110-111.) 
5 For a more extensive presentation of the topic see Sfard & Prusak 2005. 
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participants of our study were among those students who actually took advantage of 
the learning opportunities created by their teachers.  

Yet another obvious explanation for the effectiveness of the NewComers’ learning 
was that their immigrant status amplified their need for success.6 Although certainly 
true, this account did not seem to be telling the whole story since it did not explain 
why school mathematics was singled out by the immigrant participants of our study 
as the medium through which to exercise their pursuit of excellence. Indeed, no other 
immigrant population, of which Israel has always had many, displayed a comparable 
propensity for mathematics. We decided to turn to the notion of identity, viewing it as 
a conceptual link between the collective and the individual. 

Although the term “identity” is not new, it is only quite recently that it began drawing 
attention of educators at large, and of researchers in mathematics education in 
particular (see e.g., Boaler & Greeno, 2000; Nasir & Saxe, 2003; Cobb, 2004; Roth, 
2004). Its new prominence is reflective of the general sociocultural turn in human 
sciences. The related time-honored notions of personality, character, and nature, 
being irrevocably tainted with connotations of natural givens and biological 
determinants, are ill-suited to the sociocultural project. In contrast, identity, which is 
thought of as man-made and as constantly created and re-created in interactions with 
others (Holland & Lave, 2003), seems just perfect for the task. Together with the 
acceptance of identity as the pivotal notion of the new research discourse comes the 
declaration about humans as active agents who play decisive roles in determining the 
dynamics of social life and in shaping individual activities.  

We believe that the notion of identity is a perfect candidate for the role of “the 
missing link” in the researchers’ story of the complex dialectic between learning and 
its sociocultural context. However, we also believe that this notion cannot become 
truly useful unless it is provided with an operational definition.  

Defining identity  
Its current popularity notwithstanding, the term ‘identity’ is usually employed 
without being operatively defined. The few defining attempts that can be found in the 
literature appear to be a promising beginning, but not much more than that. Gee 
(2001), who declares that “Being recognized as a certain ‘kind of person’ in a given 
context” (p. 99) is what he means by ‘identity’ also relates this notion to “the 
person’s own narrativization” (p. 111), that is, to stories a person tells about herself. 
The motif of “person’s own narrativization” recurs in the description proposed by 
Holland et al. (1998), even if formulated in different terms: 

                                                 
6 As observed by Ogbu (1992), the status of minority is a doubly-edged sword. As shown by 
empirical findings, belonging to minority may, in some cases, motivate hard work and eventual 
success, whereas in some others it would have an opposite effect. Immigrants, whom Ogbu calls 
“voluntary minorities” as opposed to those whose minority status was imposed rather than chosen, 
are more likely than the others to belong to this former group. 
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People tell others who they are, but even more importantly, they tell themselves and they 
try to act as though they are who they say they are. These self-understandings, especially 
those with strong emotional resonance for the teller, are what we refer to as identities. (p. 
3) 

If we said that these two descriptions are “promising beginnings” rather than fully 
satisfactory definitions, this is because of one feature that they have in common: 
They rely on the expression “who one is” or its equivalents. Unfortunately, neither 
Gee nor Holland and her colleagues make it clear how one can decide about “who” or 
“what kind of person” a given individual is. This said, their descriptions have an 
important insight to offer: By foregrounding “person’s own narrativizations” and 
“telling who one is,” these definitions link the notion of identity to the activity of 
communication. In an attempt to arrive at a more operational definition of identity we 
decided to build on the idea of identifying as communicational practice, thereby 
rejecting the notion of identities as extra-discursive entities which we merely 
“represent” or “describe” while talking.  

In concert with the vision of identifying as a discursive activity, we suggest that 
identities may be defined as collections of stories about persons or, more specifically, 
as those narratives about individuals that are reifying, endorsable and significant. The 
reifying quality comes with the use of verbs such as be, have or can rather than do, 
and with the adverbs always, never, usually, etc. that stress repetitiveness of actions. 
A story about a person counts as endorsable if the identity-builder is likely to say, 
when asked, that it faithfully reflects the state of affairs in the world. A narrative is 
regarded as significant if any change in it is likely to affect the storyteller’s feelings 
about the identified person. The most significant stories are often those that imply 
one’s memberships in, or exclusions from, various communities.  

As a narrative, every identifying story may be represented by the triple BAC, where A 
is the identified person, B is the author and C the recipient. Within this rendering it 
becomes clear that multiple identities exist for any person. Stories about a given 
individual may be quite different one from another, sometimes even contradictory. 
Although unified by a family resemblance, they depend both in their details and in 
their general purport on who is telling the story and for whom this story is meant. 
What a person endorses as true about herself may be not what others see enacted. To 
ensure that this last point never disappears from our eyes, we denote the different 
identities with names that indicate the relation between the hero of the story, the 
storyteller, and the recipient: AAC, a story told by the identified person herself, will be 
called A’s first-person identity (1st P); BAA, a story told to its main character, will be 
named second-person identity (2nd P); finally, BAC, a story told by a third party to a 
third party, will be referred to as third-person identity (3rd P). Among all these, there 
is one special identity that comprises the reifying, endorsable, significant 1st P stories 
the storyteller addresses to herself (AAA). It is this last type of stories that is usually 
intended when the word identity is used unassisted by additional specifications. Being 
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a part of our ongoing conversation with ourselves, the first-person self-told identities 
are likely to have the most immediate impact upon our actions. 

With the narrative definition, human agency and the dynamic nature of identity are 
brought to the fore, whereas most of the disadvantages of the traditional discourses 
on “personality”, “nature” or “character” seem to disappear. The focus of the 
researcher’s attention is now on things said by identifiers and no essentialist claims 
are made about narratives as mere “windows” to an intangible, indefinable entity. As 
stories, identities are human-made and not God-given, they have authors and 
recipients, they are collectively shaped even if individually told, and they can change 
according to the authors’ and recipient’ perceptions and needs. As discursive 
constructs, they are also reasonably accessible and investigable.7 

Toward a theory of (narrative defined) identity 
Since questions about identity can now be translated into queries about the dynamics 
of narratives, and since this latter phenomenon is amenable to empirical study, the 
narrative definition may be expected to catalyze a rich theory of identity. Much can 
now be said about identities simply by drawing on what is known about human 
communication and on how narratives interact one with another. Let us present some 
initial, analytically derived thoughts on how identities come into being and develop.  

Actual and designated identities. The reifying, significant narratives about a person 
can be split into two subsets: actual identity, consisting of stories about the actual 
state of affairs, and designated identity, composed of narratives presenting a state of 
affairs which, for one reason or another, is expected to be the case, if not now then in 
the future. Actual identities are usually told in present tense and are formulated as 
factual assertions. Statements such as I am a good driver, I have an average IQ, I am 
army officer are representative examples. Designated identities are stories believed to 
have the potential to become a part of one’s actual identity. They can be recognized 
by their use of the future tense or of words that express wish, commitment, obligation 
or necessity, such as should, ought, have to, must, want, can/cannot, etc. Narratives 
such as I want to be a doctor or I have to be a better person are typical of designated 
identities.  

The scenarios that constitute designated identities are not necessarily desired, but are 
always perceived as binding. One may expect to “become a certain type of person,” 

                                                 
7 For all these obvious advantages, one may claim that “reducing” identity to narratives 
undermines its potential as a sense-making tool. Story is a text, the critic would say, and identity 
is also, maybe even predominantly, an experience (see e.g. Wenger, 1998). Although we agree 
that identities originate in daily activities and in the “experience of engagement”, we also posit 
that it would be a category mistake to claim that these characteristics disqualify our narrative 
rendering of identity. Indeed, it is our vision of our own or other people’s experiences, and not 
these experiences as such, that constitutes identities. Rather than viewing identities as entities 
residing in the world itself, our narrative definition presents them as discursive counterparts of 
one’s lived experiences. 
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that is, to have some stories applicable to oneself, for various reasons: because the 
person thinks that what these stories are telling is good for her, because these are the 
kinds of stories that seem appropriate for a person of her sociocultural origins or just 
because they present the kind of future she is designated to have according to others, 
in particular to those in the position of authority and power. More often than not, 
however, designated identities are not a matter of a deliberate rational choice. A 
person may be led to endorse certain narratives about herself without realizing that 
these are “just stories” and that they have alternatives.  

Designated identities give direction to one’s actions and influence one’s deeds to a 
great extent, sometimes in ways that escape any rationalization. For every person, 
some kinds of stories have more impact than some others. Critical stories are those 
core elements, which, if changed, would make one feel as if one’s whole identity 
changed: The person’s ‘sense of identity’ would be shaken and she would lose her 
ability to tell in the immediate, decisive manner which stories about her are 
endorsable and which are not. A perceived persistent gap between actual and 
designated identities, especially if it involves critical elements, is likely to generate a 
sense of unhappiness.  

Where do designated identities come from? The role of significant narrators. Being a 
narrative, the designated identity, although probably more inert and less context-
dependent than actual identities, is neither inborn nor entirely immutable. Like any 
other story, it is created from narratives that are floating around. One individual 
cannot count as the sole author even of those stories that sound as if nobody has told 
them before.  

To put it differently, identities are products of discursive diffusion – of our tendency 
to recycle strips of things said by others even if we are unaware of these texts’ 
origins. Paraphrasing Mikhail Bakhtin, we may say that any narrative reveals to us 
stories of others.8 Identities coming from different narrators and being addressed at 
different audiences are in a constant interaction and feed one into another. These 
stories would not be effective in their relation-shaping task if not for their power to 
contribute to the addressees’ own narratives about themselves and about others. Thus, 
the people to whom our stories are told, as well as those who tell stories about us, 
may be tacit co-authors of our own designated identities. Either by animating other 
speakers or by converting their stories about us to the first person, we incorporate our 
2nd and 3rd person identities into our self-addressed designated identities.  

Another important sources of one’s own identity are stories about others. There are 
many possible reasons for turning such narratives into first person and incorporating 
them into one’s own designated identity. Thus, for example, the identity-builder may 
be attracted either to the heroes of these narratives or to their authors. Another reason 
may be one’s conviction about being “made” in the image of a certain person (e.g., of 

                                                 
8 Bakhtin (1999) spoke about utterances and words rather than stories. 
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socially deprived parents, alcoholic father or academically successful mother) and 
“doomed” to a similar life. Whether a story told by somebody else does or does not 
make it into one’s own designated identity depends, among other things, on how 
significant the storyteller is in the eyes of the identified person. Significant narrators, 
the owners of the most influential voices, are carriers of those cultural messages that 
will have the greatest impact on one’s actions. 

Learning as closing the gap between actual and designated identities. It is now not 
unreasonable to conjecture that identities are crucial to learning. With their tendency 
to act as self-fulfilling prophecies, identities are likely to play a critical role in 
determining whether the process of learning will end with what counts as success or 
with what is regarded as failure.  

These days, in our times of incessant change, when the pervasive fluidity of most 
social memberships and of identities themselves is a constant source of fears and 
insecurities, the role of learning in shaping identities may be greater than ever. 
Learning is our primary means for making reality in the image of fantasies. The 
object of learning may be the craft of cooking, the art of appearing in media or the 
skill of solving mathematical problems, depending on what counts as critical to one’s 
identity. Whatever the case, learning is often the only hope for those who wish to 
close a critical gap between their actual and designated identities.  

IDENTITY AS AN INTERFACE BETWEEN CULTURE AND LEARNING  
The designated identities of NewComers and of OldTimers 
Let us go back to our study on NewComers and OldTimers learning mathematics 
together and show how our conceptual apparatus helps us in answering the question 
about cultural embeddeddness of learning. Below we argue that designated identities 
of the OldTimers and of NewComers were the channel through which these students’ 
cultural background was making its way into their mathematical learning.  

To map NewComers’ and OldTimers’ designated identities, we listened to their 
stories about themselves told to their teacher on various occasions. True, what we 
really needed were self-addressed stories of the type AAA rather than AATeacher, 
because this former type of narrative was more likely to interact significantly with 
one’s actions. This preference notwithstanding, we were confident that the teacher-
addressed designated identities would prove informative, especially if they displayed 
diversity paralleling the observed differences in learning. Further, we made certain 
deductions regarding the NewComers’ and OldTimers’ expectations from themselves 
on the basis of their self-referential remarks, of their comments about others (e.g. the 
teacher of fellow students), and of our own observations on the ways they acted. As a 
background, we used interviews with the students’ parents and with other teachers. 
What was found with the help of this multifarious evidence displayed intra-group 
uniformity and inter-group differences comparable in their salience to those observed 
previously in the context of the students’ learning.  
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 OldTimers NewComers 

Future plans 
(“What do 
you want to 
do in 
future?”) 

• [What I want to do] changes, 
because I change 

• For me, the only important 
thing is to be happy, and I 
don’t have any particular 
profession in mind. 

• In Russia I knew all the time 
that I’ll follow in my brother’s 
footsteps and learn computers. 

• From the earliest childhood I 
dreamt to be a medical doctor, 
like my mother. 

The reasons 
for learning 
mathematics 
(“I learn 
mathematics 
because…) 

• matriculation certificate with 
advanced mathematics will 
help me to get to the 
university, especially if the 
grade is high 

• I have to pass matriculation 
examination if I want to 
achieve anything in life. 

• it is obligatory 

• I need knowledge and good 
education, and I love learning. 

• mathematics is my favorite 
school subject  

• I need to be a “full-fledged 
human being” and I want to 
feel I did something in life. 

• for me learning mathematics 
means creativity 

• mathematics is important and I 
like it very much 

Table 3: Elements of OldTimers’ and NewComers’ designated identities 

As can be seen from the students’ responses to the question “What do you want to do 
in future?” presented in Table 3, probably the most obvious critical element of the 
NewComers’ vision of themselves in the future was their professional career. Their 
tendency to identify themselves mainly by their designated professions stood in stark 
contrast to the OldTimers’ declarations on their need “to be happy” and the latter 
interviewees’ adamant refusal to specify any concrete plans for the future. The 
professions desired by the NewComers (e.g., computer scientist, medical doctor, 
engineer) were all related to mathematics, and this appeared to account for these 
students’ special mathematical proclivity. And yet, there seemed to be more to these 
students’ inclination toward mathematics than just the wish to promote their 
professional prospects. According to the NewComers’ frequent remarks, the special 
attraction of mathematics was in the fact that its rules could be seen as universal 
rather than specific to a particular place or culture. While explaining why they chose 
to learn advanced mathematics (see students’ completions of the sentence “I learn 
mathematics because…” in Table 3), the NewComers spoke about the knowledge of 
mathematics as a necessary condition for her becoming “a fully-fledged human 
being.” We have thus reason to claim that mathematical fluency as such, and not just 
anything that could be gained through it, constituted the critical element in the 
NewComers’ 1st P designated identities. In contrast OldTimers, in explaining their 
choice of advanced mathematics course, stressed the fact that matriculating in this 
subject with high grades would largely increase their chances for being accepted to 
the university. In other words, if OldTimers were attracted to mathematics it was 
mainly, perhaps exclusively, because of its role as a gatekeeper.  
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To sum up, the NewComers’ designated identities portrayed their heroes as 
exemplars of what the immigrant students themselves described as “the complete 
humans,” with this last term implied to have a timeless, universal, generally accepted 
meaning, and with mathematical fluency being indispensable for the completeness. In 
contrast, the OldTimers expected to have their future life shaped by their own wishes 
and needs, which, at this point in time, were seen as fluid and, in the longer run, 
unforeseeable. This also points to a distinct meta-level difference between the two 
groups: Whereas the NewComers saw their highly prescriptive designated identities 
as given and apparently immutable, just like the mathematics they wanted to master, 
the OldTimers’ expected their 1st P identities to evolve with the world in tandem. 

In accord with our expectations, all this seemed to account, at least in part, for our 
former findings about the difference between OldTimers’ and NewComers’ learning. 
The NewComers needed mathematical fluency in order to close the critical gap 
between their actual and designated identities. For the OldTimers, this fluency was 
something to be shown upon request, like an entrance ticket that could be thrown 
away after use and that had no value of its own. Since mathematical skills did not 
constitute a critical element of the OldTimers’ designated identities, these skills’ 
absence or insufficiency did not create any substantial learning-fuelling tension.  

On the cultural roots of designated identities 
Where does the disparity between NewComers’ and OldTimers’ designated identities 
come from? was the last question we had to address in order to complete our story of 
designated identity as a link between learning and its sociocultural setting. More 
specifically, we needed to account for the fact that mathematical fluency constituted 
the critical element of the NewComers’ designated identities but did not seem to play 
this role in the identities of OldTimers. 

The first thing to say in this context is that given the NewComers’ immigrant status, 
their being well versed in mathematics appeared of a redemptive value: The 
universality of mathematical skills was likely to constitute an antidote to these 
students’ sense of local exclusion. To put it in terms of identity, we conjecture that 
whereas NewComers were bound to identify themselves as outsiders to their local 
environment, mathematical prowess was one of those properties that compensated 
them with the more prestigious, place-independent status of “people of education and 
culture.” 

Clearly, the idea that education at large, and the fluency in mathematics in particular, 
might counterbalance the less advantageous elements of their identity was not the 
young NewComers’ original invention. In general, what the participants of our study 
expected for themselves was not unlike what their parents and grandparents wished 
for them. This is what transpired in both groups from the students’ assertions about 
the full accord between their own and their parents’ expectations, and from their 
remarks about the parents’ impact on their choices (see sample responses to the 
question about the parents’ expectations in Table 4). This said, there was an 
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important difference between our two populations. Unlike in the case of NewComers, 
the OldTimers’ parents were described as willingly limiting the area of their 
influence and leaving most decisions in the young people’s own hands. We also 
found it quite telling that parents were rarely mentioned in the OldTimers’ 
autobiographical testimonies, whereas the NewComers’ accounts were replete with 
statements on the elders’ authority and with explicit and implicit assertions on the 
parents’ all-important role in their children’s lives. Obviously, the OldTimers’ 
parents’ stories about their children’s future were not as prescriptive as those of the 
NewComers, nor was the influence of these stories equally significant. 

OldTimers NewComers 

• My parents want for me 
what I want myself. They 
want me to do what I want. 

• What is good for me – 
that’s what they want for 
me. I also think that they 
find my plans appropriate. 

• My parents want me to be 
happy, so it is not so 
important for them what 
I’m going to do.  

• They want me to be what I 
want to be. 

• My mother wants me to get good education. 
The process of learning itself, this is what is 
important to her. But a good matriculation 
certificate too, of course. She also wants me to 
study in the university. 

• I chose studying computers because my parents 
“pushed” in this direction. 

• My parents know best what’s good for me. 
• For me, my grandma is the greatest authority 
• My mother tells me that if I meet an obstacle, 

I’ll fail because of my laziness. I am lazy. 

Table 4: Students’ responses to the question about the parents’ expectations  
regarding their children’s future  

Narratives about education as a universal social lever and about knowledge of 
mathematics as one of the most important ingredients of education evidently 
constituted a vital part of the NewComers’ cultural tradition. In their native countries, 
their families belonged to the Jewish minority. According to what we were told both 
by the students and by their parents, these families had typically identified 
themselves as locally excluded but globally “at home” thanks to their fine education. 
Their sense of only partial attachment to the ambient community was likely the 
reason for the young people’s relative closeness to their families. In the interviews, 
both the parents and the children sounded fully reconciled with their status of local 
outsiders. Proud of their cultural background and convinced about its universal value, 
they seemed to consider this kind of exclusion as the inevitable price for, and thus a 
sign of, the more prestigious, more global cultural membership. It seems, therefore, 
that the NewComers’ identities as local outsiders destined to overcome the exclusion 
with the help of place-independent cultural assets such as mathematics were shaped 
by their parents’ and grandparents’ stories prior to the students’ immigration to Israel.  
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Since significant narrators can count as voices of community, all these findings 
corroborate the claim that designated identities are products of collective storytelling 
– of both deliberate molding by others and of incontrollable diffusion of narratives 
that run in families and in communities. This assertion completes our empirical 
instantiation of the claim on designated identity as “a pivot between the social and the 
individual” aspects of learning (Wenger, 1998, p. 145). 

CONCLUDING REMARKS  
In this study, the narrative-defined notion of identity allowed us to get an insight into 
the mechanism through which the wider community, with its distinct cultural-
discursive traditions, impinges on its members’ mathematics learning. On this 
occasion, we presented substantial learning as an activity propelled by the tension 
between actual and designated identities. Let us conclude this talk with two 
comments on practical and methodological implications of this study. 

First, although our account may sound as a praise of the NewComers’ learning, there 
is, in fact, no side-taking in this report. Even if the NewComers’ practices can count 
as somehow superior to those of the OldTimers in that they proved more effective in 
attaining the official goals of school instruction, we are well aware that the goals 
themselves may be a subject to critical reappraisal. In addition, the price to be paid 
for this type of learning practice may, for some students, be too high to be worthy. 
Although carefully crafted stories about one’s “destiny” may sometimes work 
wonders, they are also likely to backfire when the burden of too ambitious, too tightly 
designated, or just ill-adjusted identities becomes unbearable.  

Second, while constructing the conceptual framework supposed to help us in 
justifying the claim about the cultural embeddeddness of mathematics learning, we 
switched from the talk about identity as a “thing in the world” to the discourse in 
which this term refers to a type of narrative. The difference between these two 
renderings is subtle. The kinds of data the narratively-minded researcher analyzes in 
her studies is the same as everybody else’s: these are stories people tell about 
themselves or about others to their friends, teachers, parents, and observers. The only 
distinctive feature of the narrative approach is that rather than treat the stories as 
windows to some other entity that stays the same when “the stories themselves” 
change, the adherent of the narrative perspective is interested in the stories as such, 
accepting them for what they appear to be: Words that are taken seriously and shape 
one’s actions. Mapping the intricate relations between different kinds of narratives 
and fathoming the complex interplay between stories told and deeds performed was 
the sole focus of this study. By taking a close look at the narratives’ movement 
between one generation to another and between the level of community to that of an 
individual and back, we hoped to be able to account for both the uniformity and the 
diversity typical of human ways of acting. 
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Computer-based learning environments for science and mathematics education 
support predominantly individual learning; from first generation drill and practice 
programs to today’s advanced, knowledge-based tutorial systems, one learner 
interacting with one computer has been the typical setting. Mathematics educators, 
however, increasingly appreciate the value of collaborative learning and include 
team-learning activities in their lessons. In this presentation, drawing on our 
research in science and design areas, an overview is provided of the approaches and 
lessons learned regarding computer-supported collaborative learning and a number 
of design guidelines for computer-supported collaborative learning environments are 
suggested. Since equations and graphs are so important in mathematics, particular 
attention is paid to the role of external representations (and their co-construction) for 
computer-mediated collaboration. 

APPROCHES TO FOSTER COLLABORATIVE LEARNING 
Why foster collaboration? There are two arguments for supporting individuals as well 
as groups in cooperative behavior. First, cooperative behavior and, thus, collaborative 
learning leads to better performance of students compared to individual or 
competitive learning (Barron & Sears, 2002; Johnson & Johnson, 2004). Second, 
individuals in a group do not automatically cooperate and act as a group. A huge 
amount of contributions is dedicated to enhance collaborative learning in computer-
mediated and residential cooperative learning. Johnson and Johnson (2004) 
distinguish four different basic types of cooperative learning:  formal cooperative 
learning, informal cooperative learning, cooperative base groups and academic 
controversy. Mostly, formal and informal cooperative learning are addressed by 
methods fostering collaborative behavior. In some cases, the different types of 
cooperative learning represent several steps in the progress of a group (e.g., a group 
starts with informal cooperative learning, establishes formal cooperative learning 
afterwards and, finally, builds a cooperative base group). While informal cooperative 
learning according to the definition of Johnson and Johnson (2004) is restricted to 
short time intervals, most programs and assistance focus on the enhancement of 
formal cooperative learning. 

Numerous methods of assisting learners in small group formal cooperative learning 
have been proposed. Some approaches are on the level of instructional design 
demanding specific cooperation patterns such as Group Jigsaw, Reciprocal Teaching 
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or Problem-Based Learning. Other approaches are direct teaching of cooperative 
behavior, modeling, or scripting (e.g. Rummell et al., 2002). Especially for groups 
that are beginning a “collaborative episode” (i.e., there are no or little experiences in 
cooperative learning and the building of social relationships is at its beginning) such 
direct intervention is appropriated in order to avoid frustration and to reduce 
cognitive load. Even more experienced learners may benefit form assistance in 
cooperation:  Especially in groups with many degrees of freedom related to 
cooperation and task fulfillment little or poor interaction is reported (e.g. Cohen, 
1994).  

The problem of poor peer interaction is well known in residential collaborative 
learning, but with the use of typed text-based computer-mediated communication this 
problem is likely to be increased. It is much more difficult to establish, perform and 
maintain basic cognitive mechanisms like turn-taking or grounding. But also and in 
particular social mechanisms like building positive interrelationships, establishing a 
group identity etc. are afflicted. Major causes for these difficulties derive from a lack 
of external cues as described in models of cues-filtered out and canal reduction.  

Recent research in CMC-based (computer-mediated communication) collaborative 
learning has contributed a variety of technological/instructional approaches and 
solutions to overcome these problems. Especially scripting of collaboration (as a 
scaffolding mechanism) has gained attention in order to enhance turn-taking (Pfister 
& Mühlpfordt, 2002; Reiserer, Ertl & Mandl, 2002), design rationale (Buckingham-
Shum, 1997) or reflection (Diehl, Ranney & Schank, 2001). Reiser (2002) 
differentiates between two basic mechanisms of these scaffolding techniques: 
Providing structure and problem orientation. Structured communication is one 
method to guide learners in the sense of an optimized behavioral model (e.g. problem 
solving heuristics) or a coordinated exchange between several learners. Furthermore, 
attention of learners can be drawn to relevant aspects or elements of a collaborative 
problem-solving process. Thus, scaffolding and scripting can avoid irrelevant or 
distracting tasks, strategies and processes.  

Scripting as a scaffolding mechanism, however, is not always beneficial. Learner 
guidance in problem solving can also limit the degrees of learners’ freedom. Reiser 
(2002, p. 263) states: “However, given the importance of connecting students’ 
problem solving work to disciplinary content, skills, and strategies, it may also be 
important to provoke issues in students, veering them off the course of non-reflective 
work, and forcing them to confront key disciplinary ideas in their solutions to 
problems.” In addition, when structuring interaction and discourse for learners, we 
always run the risk of interrupting spontaneous discourse. Scripting implies external 
guidance on sequence or categorization of contributions, but it is very difficult to 
identify discourse and patterns that are generally appropriate and effective.  

In our recent research, we tried to avoid such a drastic and direct intervention that 
limits learner control by providing an inflexible structure. Instead of pre-structuring, 
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we pursue what we call a “post-hoc structuring”, i.e., we take the data derived form 
interactions (and additional variables assessed from learners) and re-use them for 
scaffolding. This way we avoid direct interference with the communication process, 
provide authentic material (based on learners’ own contributions) and, hopefully, 
help students to become more self-efficient. Furthermore, this approach provides 
learners with accurate information about their current status within a group and 
group’s progress and also with information on possible further directions that can 
optimize group functions (e.g., communication, group-members’ interrelationships 
and learning or problem-solving outcomes). Before we have a closer look at our 
methods of collaboration management, a study is presented that analyses a discourse 
structuring approach.  

SCAFFOLDING  
In this study, we9 analysed a scaffolding approach that is typical for what Reiser 
(2002) coined “providing structure”. In this case, structure is provided on how 
student can communicate with each other. In particular, we looked at three levels of 
structuring (electronic) communication: Unstructured – a chat tool was provided to 
groups of (three) students; Simple-Structure: A graphical argumentation schema was 
provided on a shared whiteboard with four types of “nodes” (claim, pro- and contra-
argument, sub-claim; Full-Structure: in this condition, seven node types had to be 
used (question, pro-and contra argument, idea, decision, fact, and miscellaneous, see 
Fig. 1) following the IBIS notational conventions (see Buckingham-Shum, 1996). 

We ran an experiment with three conditions (Chat, Simple-Structure, Full-Structure) 
and 5 groups of 3 participants in each condition. Participants had to develop 
collaboratively an argument for a “wicked” environmental issue, the benefits and 
risks of transporting oil on sea with tankers. Our expectation was that the higher the 
degree of argument structure, the better the quality of the arguments a group will 
produce. In order to evaluate the quality of the arguments, we used the coding 
scheme of Newman and colleagues (Newman, Johnson, Webb & Cochrane, 1997) 
that has been developed to assess the quality of arguments exchanged in computer-
mediated communication. This method yields a “critical thinking index” which varies 
between 0.0 and 1.0, with values close to 1.0 indicating higher argument quality.  

Argument quality did indeed increase as a function of scaffolding through argument 
structuring, with a significant differences between all three conditions. It is worth 
noting, however, that increasing the structure led to a decrease in the frequency of 
arguments.  

 

                                                 
9 Oliver Orth helped with the experimentation and data analysis.  
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Figure 1: Argument graph using the full-structure (IBIS) notation 

  

FEEDBACK AND GUIDANCE 
Substantial research has been dedicated to find support mechanisms for online 
collaborators. Many authors discuss possibilities of scaffolding by structuring 
computer-mediated communication (e.g. Dobson & McCracken, 1997; Jonassen & 
Remidez, 2002; Reiser, 2002). Common to all these approaches is the provision of a 
structure for discourse and/or problem-solving. Instead of pre-structuring we pursue a 
way of post-hoc structuring interaction in online learning groups.  

CMC itself provides the basis for this approach. During computer-mediated 
communication, all data can easily be stored and re-used for feedback purposes. In 
addition, software interfaces designed for CSCL (computer-supported collaborative 
learning) allow collecting individual quantitative data that can be used for further 
calculations in real time. Both data sources combined can easily be used to analyze 
individuals’ as well as groups’ performance automatically. In this way online 
learning groups provide the basis for feedback on their process without further 
interventions.  
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For instance, Barros and Verdejo (2000) describe an approach to provide feedback of 
group characteristics and individual behavior during computer-supported 
collaborative work based on a set of attributes that are computed out of data derived 
from learners’ interactions. Their automatic feedback gives a qualitative description 
of a mediated group activity concerning three perspectives: a group’s performance in 
reference to other groups, each member in reference to other members of the group, 
and the group by itself. Their approach allows extracting relevant information from 
online collaboration at different levels of abstraction. Although this approach seems 
to be very advantageous for enhancing online collaborators, Barros and Verdejo 
(2000) give no empirical evidence for the effectiveness of their asynchronous system. 
Jermann (2002, 2004) describes another possibility of providing feedback based on 
interaction data. He provides feedback on quantitative contribution behavior as well 
as learner-interaction during a synchronous problem solving task (controlling a traffic 
sign system). In an experiment, Jermann compared a group that received feedback 
about each individual learner’s behavior. Another experimental group received 
feedback about the whole groups’ success. He could show that a detailed feedback 
containing each individual’s data enhanced learners’ use of meta-cognitive strategies 
regarding problem-solving as well as discourse.  

Our research group follows this line of feedback research. We10 conducted studies to 
examine feedback effects on online collaborators during CSCL. One purpose of these 
investigations is to provide post-hoc scaffolding for subsequent problem solving. 
Another purpose is to use CMC, extract data from discourses and to provide 
abstracted views as a substitute for missing communication cues. In particular we 
investigated how the interaction in and the performance of small problem-based 
learning groups that cooperate via internet technologies in a highly self-organized 
fashion can be supported by means of interaction feedback as well as problem-
solving feedback. Since the possibility of tracking and maintaining processes of 
participation and interaction is one of the advantages of online collaboration, 
ephemeral events can be turned into histories of potential use for the groups. We 
chose two ways to analyze how such group histories can be used for learning 
purposes. First, parameters of interaction like participation behavior, learners' 
motivation (self-ratings) and amount of contributions were recorded and fed back in 
an aggregated manner as an additional information resource for the group. This data 
could thus be used in order to structure and plan group coordination and group well-
being. Second, we tracked group members' problem solving behavior during design 
tasks and provided feedback by means of problem-solving protocols. These protocols 
can be used to enhance a group's problem solving process for further tasks. Two 
studies testing our methodology in a synchronous and an asynchronous setting, 
respectively, are described next. 

                                                 
10 The research reported in this section has been conducted in cooperation with Joerg Zumbach. 
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Automatic feedback in synchronous distributed Problem-Based Learning 
The first laboratory experiment (Zumbach, Muehlenbrock, Jansen, Reimann & 
Hoppe, 2002) was designed as an exploratory study to test specific feedback 
techniques and their influence in an online collaboration learning environment.  

For this purpose we designed a dPBL-learning environment. In a sample of 18 
students of the University of Heidelberg we evaluated six groups of three members 
each. All students worked together synchronously via a computer network solving an 
information design problem. Each group was collaborating for about 2,5 hours 
(synchronously in one session). The task was to design a hypertext course for a 
fictitious company. All necessary task materials were provided online. In addition, all 
learning resources related to online information design were accessible as hypertext. 

As a communication platform, the software EasyDiscussing was specifically 
developed for this experiment in cooperation with the COLLIDE-research group at 
Duisburg University, Germany. This Java-tool makes it possible to display a shared 
workspace to the whole group that can be modified by each member simultaneously. 
It contains drag-and-drop functions, thematic annotation cards like "text" (for general 
comments or statements), "idea", “pro” and “con” to structure the discussion, and it 
offers a chat opportunity as well (see Figure 2). All parameters are recorded in so-
called "action protocols" and analyzed either directly or after the study. This makes it 
possible to check certain argumentative structures that become obvious during the 
course work, and also opens up the possibility to provide feedback based on the data 
produced. 

Feedback parameters were gained in the following way: every 20 minutes students 
were asked about their motivation and their emotional state on a five item ordinal 
scale (parameters relating to the well-being function: “How motivated are you to 
work on the problem?” and “How do you feel actually?”). These were displayed to 
the whole group by means of dynamic diagrams (see Figure 3), showing each group 
member's motivation and emotional state with the help of a line graph. As a 
quantitative parameter supporting the production function two diagrams showed each 
group member's absolute and relative amount of contributions. 

In order to test feedback effects we divided the groups into experimental groups that 
received feedback and into control groups which did not receive any feedback. Both 
groups had to do a pre- and post knowledge test, a test about attitudes towards 
cooperative learning (Neber, 1994), as well as some questions about their current 
motivation and emotional state. Besides our plan to test the techniques of how to 
provide feedback, we assumed that the experimental groups would be more 
productive since they were given parameters that would enable them to fulfill their 
well-being and production functions more easily, they. That means, they were 
assumed to contribute more ideas in an equally distributed manner, and show a 
greater amount of reflection, as far as interaction patterns were concerned, as opposed 
to the control groups.  
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Figure 2. The design of the communication platform EasyDiscussing 

 

 

The results of subjects’ performance in the pre-test revealed no significant 
differences concerning domain knowledge. There were also no differences between 
both groups in post-test performance. Both groups mastered the post-test significantly 
better than the pre-test. There was no significant interaction between both tests and 
groups. We also found no significant differences regarding subjects’ emotional data. 
The groups also showed no differences in pre- and posttests regarding motivation 
except a significant interaction between groups and time of measurement. While 
subjects in the control condition without feedback did not show differences in 
motivation, experimental groups had an increase from pretest to posttest. A closer 
look for interaction patterns in subjects’ discussions revealed a significant difference 
in the number of dyadic interactions in groups that received feedback on their 
contributions.  

Overall, the effects of this study indicate that some processes in computer-supported 
collaboration can be influenced in a positive manner by means of a steady tracking of 
parameters outside the task itself and immediate feedback of these to a group. 
Although intervention time in this experiment was short, we found positive influence 
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of motivational feedback as well as feedback on contributions: communication 
patterns showed more interactive behavior for subjects of the experimental group. As 
a consequence of these effects, which indicate that our mechanisms have a positive 
influence on groups’ production-function as well as group well-being, we decided to 
examine these feedback strategies further. For that purpose we arranged a long-time 
intervention study containing the same kind of visual feedback. 

 

 

Figure 3. Feedback on emotion and motivation 

 

Investigating the role of feedback mechanisms in  
long-time online learning 
Our main objective in this study was to test different treatment conditions concerning 
feedback with groups that collaborated solely through an asynchronous 
communication platform over a period of four months. In this study we examined 
groups from three to five members – 33 participants overall. These groups 
participated in a problem-based course about Instructional Design that was conceived 
a mixture of PBL and Learning-By-Design. Learners were required to design several 
online courses for a fictitious company. These tasks have been presented as problems 
within a cover story. Each problem had to be solved over periods of two weeks (i.e. 
an Instructional Design solution had to be presented for the problem). As in study 
one, all materials were accessible online and, additionally, tutors were available 
during the whole course to support the students if questions emerged. At the end of 
each task, the groups presented their results to other groups. The asynchronous 
communication facility was based on a Lotus Notes® platform merging tools that can 
manage documents with automatic display possibilities for interaction parameters and 
problem-solving protocols (see Figure 4).  

All documents as well as attachments were accessible over the collaboration 
platform. Meta-information showed when a document was created and who created 
it, so that interaction patterns became obvious and could be recorded. With the same 
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technique of diagrams as in the former study, motivational and quantitative 
production parameters can be fed back to the user, referred to as interaction histories. 
Students' problem-solving behavior, however, had to be analyzed by the tutors 
themselves and had to be provided as text documents (design histories) in the group's 
workspace. Invisible for the students, a detailed action protocol was recorded in the 
background and was available later for analysis. 

The groups were randomly assigned to one of four treatment conditions: with 
interaction history only, with design-history only, with both histories and without any 
feedback histories, i.e. a 2x2 design with the factors interaction history and design 
history. Several quantitative and qualitative measures to assess motivation, 
interaction, problem solving, and learning effects were collected before, during and 
after the experimental phase on different scales such as the student curriculum 
satisfaction inventory (Dods, 1997) or an adapted version of the critical thinking 
scale (Newman et al., 1997). We tried to answer the following question: What kind of 
influence does the administration of feedback in form of design and interaction 
histories, as well as their different combinations, have on students' learning? 
Generally, we assumed that groups with any form of histories would perform better 
than those without, especially as far as the motivational and emotional aspects 
supporting the well-being function and the production aspects supporting the 
production function of a group are concerned. 

The results show encouraging outcomes in favor of the application of feedback 
within the group process. Groups that were shown design histories on their 
workspaces present significantly better results in knowledge tests, created 
qualitatively better products in the end, had produced more contributions to the task, 
and expressed a higher degree of reflection concerning the groups' organization and 
coordination. At the same time, the presence of interaction histories influenced the 
group members' emotional attitude towards the curriculum and enhanced their 
motivation for the task. Slight influences of the interaction history’s visualization 
regarding number of contributions were also found on the production-function: 
Learners receiving this feedback produced more contribution than their counterparts 
without feedback. So far, it seems reasonable to conclude that the different kinds of 
feedback influence different aspects of group behavior. Whereas feedback in form of 
design histories seem to influence a group's production function according to 
McGrath's (1991) conception of group functions, feedback in form of interaction 
histories seems to have an effect also on the production-function, but mainly on the 
group's well-being function 
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Figure 4. Asynchronous collaboration platform with feedback mechanisms. 

 

 

TOWARDS ADAPTIVE VISUALISATION SUPPORT 
In authentic, long term group work, it is the norm that people make use of a rich, 
diverse collection of communication systems, such as chat, discussion forums, and 
video conferencing. It is also typical that they make use of a range of tools and 
representational notations within one medium including, for example, written text 
and diagrams. We (Reimann, Kay, Yacef & Goodyear, in press) believe it is critical 
to begin to explore group support systems that can operate in the context of such 
media richness, exploiting the potentially huge amounts of data that could be 
available. We are particularly interested in three classes of learning that could occur 
in such situations:  
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• Learning to solve problems in a domain more effectively; 
• Learning about the team, its members, and effective ways of cooperating and 

collaborating; 
• Learning to use communication media and representational notations that match 

the demands of the tasks at hand, including tasks of member and collaboration 
management.  

 

A number of researchers in the field of Computer-Supported Learning (CSCL) have 
begun to address this issue of collaboration management. Managing on-line 
collaboration by means of intelligent support can take a number of forms: mirroring, 
metacognitive and advice tools (Jermann, Soller & Muehlenbrock, 2001). They all 
require the ability to trace the interaction between the team members at some level of 
detail. We are building upon this work and intend to extend it into two directions: 
Firstly, in addition to supporting member interaction directly with feedback and/or 
advice systems, there is a need for learners to develop skills in choosing the right 
communication medium and tool for the situation at hand. Approaches to 
collaboration management that rely on a single communication medium, and/or on 
strongly restricted notational systems used for communicating (Conklin, 1993; 
Kuminek & Pilkington, 2001) need to be extended, because groups typically do not 
accept such limitations over longer stretches of time (Buckingham Shum, 1997). 
Having the choice among various communication and representation systems, 
however, adds to the demands groups face: they now have to deal with the additional 
issues of task-to-media fit (Daft & Lengel, 1984) and task-to-representation fit 
(Suthers, 2001). Secondly, we address human-computer interface issues extensively; 
not only because the management of task and interaction information distributed 
across various communication media raises serious attention and cognitive load 
issues, but also because of the social signals that come with using certain media 
(Robert & Dennis, 2005) and which have not been reflected sufficiently in research 
on computer-supported learning. We suggest an approach where the shared interface 
can be adapted to the needs of the work on the task as well as to the needs of 
interaction and member management. In the absence of a conclusive research base to 
derive advice from, our short term goal is to create an environment where such 
phenomena can be studied under controlled conditions and to experiment with 
various ways of visualizing information for groups and facilitators/moderators.  

Adaptive Collaboration Visualisation 
There has already been some work towards adaptive systems to provide advice on 
collaborative learning, for example (Constantino-Gonzalez, Suthers & Escamilla, 
2003). There has also been recognition of the importance of social parameters, such 
as participation patterns (Barros & Verdejo, 2000). We will explore the use of 
adaptive information presentation using visualisations of the collaboration. These 
seem particularly promising because they are easier to implement than advice 
systems and no normative model of collaboration is required.  
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What to record. We are working on finding research-based answers to three 
questions around the process: (1) What to record about the learners’ performance; (2) 
How to aggregate and then analyse the traced information; (3) What and how to 
visualize the results from step 2, in a manner that is adapted to the group’s needs. 
With respect to question (1), we propose to capture all task- and group-related 
exchanges available, regardless of whether these involve the whole group, sub-
groups, or individual members. Since we expect to be able to motivate the group 
members to help monitor their own interactions, we will be able to encourage the use 
of tools that we have set up to capture a rich record of interactions.  

How to aggregate. An immediate effect of this is that we have to deal with large 
amounts of information. This must be analysed and summarised. Our approach with 
respect to question (2) is to collect the full set of available, un-interpreted data and 
then to perform a series of analyses to create both individual learner models and 
collective group models. We will use machine learning and data mining techniques 
(association rules, classification and clustering techniques such as hierarchic 
clustering, k-means, decision trees and data visualisation in particular) to identify 
patterns in groups’ performance and relate those to outcome measures such as the 
quality of the groups’ decision models and participants’ satisfaction with the group 
process. Data mining and machine learning techniques have been successfully used 
for user modelling and, to a lesser extent, in education contexts. In particular, mining 
data based upon learners’ interactions with a learning environment is promising 
(Bull, Brna, & Pain, 1995a). 

Since a user model captures the system’s beliefs about the learner’s knowledge, 
beliefs, preferences and other attributes, it has the potential to play an important role 
in providing external representations of the individual and group learner models 
relevant to the group interaction and learning. There has been a growing appreciation 
of this possibility, with learner models being shared with learners in order to support 
reflection (Bull et al., 1995a; Bull, Brna, & Pain, 1995b, Crawford & Kay, 1993; 
Kay, 1995) and to help learners work collaboratively (Bull & Broady, 1997). The 
challenges in this project are to mine the available data sources to support the 
construction of a student model (Kay & Thomas, 1995), to provide natural interfaces 
that enable learners to see and understand the externalised form of that model (Uther 
& Kay, 2003), to explicitly contribute to it and, finally, but most importantly, to 
improve our understanding of the ways that this externalised user model can support 
learning and as well as the operation of the group.  

What and how to visualize. Once relevant information is identified, the challenge 
remains how to communicate this back to the group (question 3). While the question 
of information visualisation has been researched before, including our own work 
(Uther & Kay, 2003; Zumbach & Reimann, 2003), research has so far been mainly 
limited to analysing individual displays of task and participation parameters 
(Jermann, 2004). The overall configuration of information displays – the interface 
elements that make up the shared work space – has been assumed as being static. We 
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propose to dynamically adapt not only the content of individual information displays, 
but the overall configuration of information displays. For instance, when the group 
has to work on complex information together, social information should be reduced 
(in the absence of conflicts or member problems) so that all the cognitive resources 
can go into task information processing.  Similarly, if interaction problems require 
attention, then the task information should temporarily be reduced and social 
information should be displayed with greater salience and detail. If both the task 
representation(s) and the social information representation(s) are properly adapted, 
then it should be feasible to provide suitable tradeoffs between the cognitive effort 
for the core task versus that for processing group and member information.  

We also propose to differentiate more systematically between ‘person awareness’ and 
‘team awareness’. For instance, the video/audio display of a user – as a “rich” 
medium (Daft & Lengel, 1984) – primarily provides information about an individual 
group member. It does not depict information about the team as such. The user lists 
that are part of most chat tools, however, are a rudimentary team awareness 
component – showing who is currently “in” the group activity. Visualisations can, 
and probably should, play a much stronger role in supporting team awareness. For 
instance, Erikson and Kellogg (2000) make a number of suggestions on how to 
visualize social configurations of team members in digital spaces such as chat rooms.  

Our current prototype collaboration environment comprises various synchronous and 
asynchronous communication and information representation tools, including a 
“digital table” that allows for co-located teamwork. We are experimenting with a 
number of computational approaches to aggregate collaboration information and 
identify psychologically and pedagogically meaningful patterns and trajectories. We 
are also developing means for visualising information relevant for task-, team-, and 
person-awareness. Building on these, we will experiment with ways to dynamically 
modify the respective information displays to make the overall interface adaptive to 
situational parameters (cognitive load, social conflicts, member problems) and to 
group members’ preferences and individual needs. 

CONCLUSIONS 
In this paper, we have mainly looked at factors that apply to all forms of distributed 
collaborative learning, and have in particular dealt with issues that result from a lack 
of social awareness. While net-based group learning offers exciting opportunities to 
foster communication and reflection, one should not ignore the psychological 
challenges that arise from loosing face-to-face contact. In our recent work, we are 
also devoting increasing attention to the management of the user interface since 
adding all kinds of meta-information (helpful for reflection) to an already crowded 
screen space raises serious usability issues.  

More would need to be said about the function of shared external representations, 
such as the symbols that appear on a shared whiteboard. Such shared representations 
do not only serve as a representation of shared knowledge, and thus play an pivotal 
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role for grounding, they also help the group members to co-ordinate their work and to 
drive the agenda. The relation between such representations and the actions taken by 
group members need more attention in future research.  
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WHAT DO STUDIES LIKE PISA MEAN TO THE MATHEMATICS 
EDUCATION COMMUNITY?  

Graham A. Jones 

Griffith University, Gold Coast, Australia 
 
In a real sense, PISA 2003 has touched the mathematics education community by 
stealth rather than by storm. Although PISA brings “baggage” commonly associated 
with international assessments, it takes some refreshing perspectives especially in the 
way that it envisions and assesses mathematical literacy. In this panel discussion we 
focus on some of the issues associated with PISA: scrutiny of student performance, 
construct and consequential validity, what makes items difficult for students and the 
potential impact of PISA on mathematics education research. In selecting these 
issues we merely begin the debate and open the way for your participation.       

WHAT IS PISA? 
The Programme for International Student Assessment ([PISA], OECD, 2005) is an 
international standardized assessment in reading literacy, mathematical literacy, 
problem-solving literacy and scientific literacy. It started in 1997 when OECD 
countries began to collaborate in monitoring the outcomes of education and, in 
particular, assessed the performance of 15-year-old school students according to an 
agreed framework. Tests have typically been administered to 4,500-10,000 students 
in each country. The first assessment in 2000 which focused mainly on reading 
literacy surveyed students in 43 countries while the second assessment in 2003 
involved 41 countries and focused mainly on mathematics and problem solving. The 
third assessment in 2006 will largely emphasize scientific literacy and is expected to 
include participants from 58 countries. In this panel discussion we will concentrate 
on PISA 2003 and those aspects of it that deal with mathematical literacy.    

THE PISA MATHEMATICAL LITERACY ASSESSMENT 
In describing their approach to assessing mathematical performance, PISA 
documents (e.g., OECD, 2004a) highlight the need for citizens to enjoy personal 
fulfilment, employment, and full participation in society. Consequently they require 
that “all adults–not just those aspiring to a scientific career–be mathematically, 
scientifically, and technologically literate” (p. 37).  This key emphasis is manifest in 
the PISA definition of mathematical literacy: “ …an individual’s capacity to identify 
and understand the role that mathematics plays in the world, to make well-founded 
judgments and to use and engage with mathematics in ways that meet the needs of 
that individual’s life as a constructive, concerned, and reflective citizen” (OECD, p. 
37; see also Kieran, plenary panel papers).  

Reflecting this view of mathematical literacy, PISA documents (e.g., OECD, 2004a) 
note that real-life problems, for which mathematical knowledge may be useful, 
seldom appear in the familiar forms characteristic of “school mathematics.” The 
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PISA position in assessing mathematics was therefore designed “to encourage an 
approach to teaching and learning mathematics that gives strong emphasis to the 
processes associated with confronting problems in real-world contexts, making these 
problems amenable to mathematical treatment, using the relevant mathematical 
knowledge to solve problems, and evaluating the solution in the original problem 
context” (OECD, 2004a, 38). In essence, mathematical literacy in the PISA sense 
places a high priority on mathematical problem-solving and even more sharply on 
mathematical modelling. 

Although PISA’s devotion to mathematical modelling has my unequivocal support, 
my experience tells me that it is not easy to incorporate effective mathematical 
modelling problems in a test that has fairly rigid time constraints. In addition, 
although the term mathematical modelling is relatively new in school mathematics 
(Swetz & Hartzler, 1991), there are instances of mathematical modelling even in the 
notorious public examinations of more than 50 years ago. I well remember the 
following problem in an examination that I took in 1953. It seems to me that it is a 
genuine modelling problem and it was certainly not a text book problem or a problem 
that anyone of that era had practised. Moreover, the fact that less than 10% percent of 
the 15 to 16-year-old students taking the examination solved the problem is both déjà 
vu and prophetic for those setting the directions for the PISA enterprise.  

In a hemispherical bowl of radius 8 inches with its plane section horizontal stands water 
to a depth of 3 inches. Through what maximum angle can the bowl be tilted without 
spilling the water? Give your answer to the nearest degree (University of Queensland, 
1953) 

 Accordingly, even though members of our panel valued the PISA emphasis on real-
world problems and mathematical modelling, there was no shortage of issues to 
debate. In particular, there were issues about the framework, the validity of the 
assessment, the construction of items, the measurement processes, the conclusions 
and the interpretations especially interpretations that cast the findings into the realm 
of an international “league table”. Consequently, we faced a problem in selecting 
which issues to examine. Let me presage the papers of the other panellists by 
providing an entrée of the issues that reverberated over our internet highways.    

WHAT ISSUES DOES PISA RAISE FOR MATHEMATICS EUDCATION? 
As the conference theme was learners and learning we questioned whether PISA 
assessment really was designed to support a real-world approach to mathematics 
teaching and learning. We also raised questions about whether student performance 
in the PISA assessments mirrored student performance in other mathematics 
education research on learning and teaching. Although appropriate data was not 
easily accessible, we wondered what the PISA study told us about patterns of 
classroom activity in different cultures. Yoshinori Shimizu (plenary panel papers) did 
examine this from a cultural perspective by scrutinizing Japanese students’ responses 
to some PISA items. 
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Issues associated with item validity, item authenticity, and item difficulty were 
consistently part of our discussions. The “triangular park problem” (see Williams, 
plenary panel papers) was hotly debated and members of the team even spent 
considerable time looking for triangular parks or car parks. This was part of our 
conversation on real world or authentic assessment and this issue is taken up further 
by Julian Williams under the broader topic of construct validity. Carolyn Kieran (see 
plenary panel papers) takes up the issue of “what makes items difficult for students?” 
She observes that the difficulty levels of some PISA items are problematic and raises 
doubts about how much we know about what students find difficult in certain 
mathematical tasks. 

The politics of international assessment studies like PISA (OECD, 2004a) and Trends 
in International Mathematics and Science Study ([TIMSS], Mullis et al., 2004) were 
high on our debate list. Not only do these debates raise highly volatile issues and 
national recriminations, they also generate profound questions for those countries that 
are doing well and for those who are not. In addition to issues that focus specifically 
on the international league, assessment studies like PISA produce a range of related 
debates about factors such as gender, ethnicity, socio-economic status, systemic 
characteristics, approaches to learning, student characteristics and attitudes, and of 
course fiscal support (OECD, 2004b). Julian Williams (see plenary panel papers) 
tackles a number of these political issues especially those related to accountability: 
managing targets, dealing with league tables, and performance-related reviews. 

There was considerable interest in discussing the impact of international assessment 
studies on mathematics education research. At the forefront of such issues is the 
question: What does PISA say to researchers interested in assessment research? 
Yoshinori Shimizu (see plenary panel papers) will talk about this more specifically as 
he refers to the benefits that can be gleaned by researchers through an examination of 
PISA’s and TIMSS’s theoretical frameworks, methodologies, and findings. For 
example, he notes that the detailed item scales and maps in PISA will enable 
researchers to perform a secondary analysis of students’ thinking and accordingly 
gain a deeper understanding of learners and learning. Michael Neubrand (see plenary 
panel papers) also looks at the potential of PISA to stimulate research in mathematics 
education. He focuses on the structure of mathematical achievement especially in the 
way that PISA conceptualizes achievement through the aegis of a mathematical 
literacy framework. This gives rise to an interesting dialogue with respect to both 
individual and systemic (collective) competencies in mathematics and how they can 
be measured. There are of course other important questions such as “What do studies 
like PISA say to mathematics education researchers about methodological issues such 
as qualitative versus quantitative research?” Although this particular question is not 
directly addressed, the panel refers frequently to methodological issues and as such 
issues a challenge to the participants for further engagement and debate.   
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CONCLUDING COMMENTS 
I believe that this panel discussion is most timely as I am not convinced that 
mathematics educators are as cognizant as they might be about the impact of the 
burgeoning industry that encompasses international studies like PISA (OECD, 2003) 
and TIMSS (Mullis et al., 2004). Although the build up and dissemination of PISA 
has been slow to take root in the mathematics education research community, the 
findings have certainly not gone unnoticed by national and state governments, 
educational systems, business leaders and parent groups. They know where their 
nation or their state came in the “league stakes” but they have little understanding of 
the intent and limitations of such studies. Accordingly, an important aim of this panel 
is to encourage mathematics education researchers to be more proactive not only in 
publicly illuminating and auditing research like PISA but also in identifying ways in 
which PISA can connect with and stimulate their own research. In the words of Sfard 
(2004, p. 6) we should exploit these special times in mathematics education:  

Confronting the broadly publicized, often disappointing, results of the international 
measurements of students’ achievements, people from different countries started 
wondering about the possibility of systematic, research-based improvements in 
mathematics education  
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FROM A PROFILE TO THE SCRUTINY OF STUDENT 
PERFORMANCE: EXPORING THE RESEARCH POSSIBILITIES 
OFFERED BY THE INTERNATIONAL ACHIEVEMENT STUDIES  

Yoshinori Shimizu 

Faculty of Education, Tokyo Gakugei University 
 
The recent release of two large-scale international comparative studies of students’ 
achievement in mathematics, the OECD-PISA2003 and the TIMSS2003, has the 
potential to influence educational policy and practice. A careful examination of their 
findings, theoretical frameworks, and methodologies provides mathematics education 
researchers with opportunities for exploring research possibilities of learners and 
learning. 

BEYOND THE COMPETITIVE EMPHASIS IN REPORTS 
The release of results of the OECD-PISA2003 (Programme for International Student 
Assessment, OECD, 2004) and the TIMSS2003 (Trends in International Mathematics 
and Science Study, Mullis, et al., 2004) in December 2004 received huge publicity 
through the media in Japan. The purposes of international studies such as PISA and 
TIMSS include providing policy makers with information about the educational 
system. Policy makers, whose primary interest is in such information like their own 
country’s relative rank among participating countries, welcome a simple profile of 
student performance. Also, there is a close match between the objectives of PISA, in 
particular, and the broad economic and labour market policies of host countries. The 
match naturally invites a lot of public talk on the results of the study with both 
competitive and evaluative emphasis. This was the case in Japan. 

There was one additional large-scale study in 2003 of student performance in 
mathematics in Japan. In the National Survey of the Implementation of the 
Curriculum, which has also been released recently (NIER, 2005), the students from 
grades 5 through 9 (N>450,000) worked on items that are closely aligned with the 
specific objectives and content of in Japanese mathematics curriculum. TIMSS2003 
sought to derive achievement measures based on the common mathematical content 
as elaborated with specific objectives, whereas PISA2003 was explicitly intended to 
measure how well 15-years-olds can apply what they have learned in school within 
real-world contexts. The recent release of these studies should shed light on the new 
insight into learners and learning from multiple perspectives.  

The large-scale studies, conducted internationally or domestically, provide a profile 
of a population of students from their own perspectives. We need to go beyond 
competitive emphasis in the reports of such studies to understand more about the 
profile of students’ performance and to explore the possibilities of further research 
that such studies provide.  
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In this short article, a few released items of PISA2003 are drawn upon to propose that 
a careful examination of the findings, the theoretical framework and the methodology 
used as well, provides mathematics education researchers with opportunities to 
examine further research questions that might be formulated and addressed. 

THE SCRUTINIES NEEDED 
One of the distinct characteristics of the PISA2003, having mathematics as the major 
domain in the recent cycle of the project, is the way in which the results of student 
performance are described and reported. The mathematics results are reported on four 
scales relating to the overarching ideas, as well as on an overall mathematics scale. 
The characteristics of the items as represented in the map, which shows the 
correspondence between the item and the scale, provide the basis for a substantive 
interpretation of performance at different levels on the scale.  

We can now take a closer look at the profile of students’ response to the released 
items. Even the results of a few released items from PISA2003 suggest possibilities 
for conducting a secondary analysis and further research studies in order to develop 
deeper understanding of learners and learning. In particular, such items, or 
overarching ideas, as follows raise questions for Japanese mathematics educators, in 
particular, and mathematics education researcher, in general, to consider.  

An Illuminating Example: SKATEBOARD 
One of the items on which Japanese student performance looks differently from that 
of their counterparts elsewhere is in Question 1 of the item called SKATEBOARD 
(OECD, 2004, p.76). This short constructed response item asks the students to find 
the minimum and the maximum price for self-assembled skateboards using the price 
list of products given in the stimulus. The item is situated in a personal context, 
belongs to the quantity content area, and classified in the reproduction competency 
cluster. The results show that the item has a difficulty of 464 score points when the 
students answer the question by giving either the minimum or the maximum, which 
locates it at Level 2 proficiency. On the quantity scale, 74% of all students across the 
OECD community can perform tasks at least at Level 2. The full credit response has 
a difficulty of 496 score points, which places it at Level 3 proficiency. On the 
quantity scale, 53% of all students across the OECD community can perform tasks at 
least at Level 3.  

When we look into the data on the students’ response rate in each country, a different 
picture appears. Japan’s mean score was significantly lower than the OECD average 
for the item (See Table 1) and the pattern in the percentages for students’ responses 
look different from their counterparts in other countries. 

Of note among the numbers in Table 1 is the lower percentage of correct responses 
from Japanese students than from their counterparts, as well as the higher no response 
rate. Students can find the minimum price by simply adding lower numbers for each 
part of the skateboard and the maximum price by adding larger numbers. 
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Country Full Credit Partial Credit No Response Correct 

Australia 74.1 9.3 1.8 78.7 

Canada 74.9 9.1 2.0 79.4 

Germany 71.7 11.5 5.2 77.5 

Japan 54.5 8.0 10.6 58.5 

OECD Average 66.7 10.6 4.7 72.0 

Table 1: The percentage of students’ response for SKATEBOARD, Question1 (An 
excerpt from National Institute for Educational Policy Research, 2004, p. 102.) 

The results suggest that some students, Japanese students, in this case, may be weak 
in handling multiple numbers where some judgment is required, assuming that they 
have little trouble in the execution of the addition procedure. We need an explanation 
with scientific evidence for the results. 

Another Example: NUMBER CUBES 
Another example comes from the result of the item called NUMBER CUBES 
(OECD, 2004, p.54). This item asks students to judge whether the rule for making a 
dice (that the total number of dots on two opposite faces is always seven) applies or 
not with the given four different shapes to be folded together to form a cube.  The 
item is situated in a personal context, belongs to the space and shape content area, 
and classified in the connection competency cluster. The results show that the item 
has a difficulty of 503 score points, which places it at Level 3 proficiency. On the 
space and shape scale, 51% of all students across the OECD community can perform 
tasks at least at Level 3.  

Students’ Choice of Correct Judgments  

Country Four (Full) Three  Two One None No Res. 

Australia 68.6 14.1 7.2 6.4 2.4 1.2 

Canada 69.6 14.0 7.3 6.3 2.1 0.6 

Germany 69.0 13.9 7.3 5.6 2.3 1.9 

Japan 83.3 8.9 4.2 2.0 0.9 0.7 

OECD Average 63.0 16.0 8.9 7.2 2.7 2.3 

Table 2: The percentage of students’ response for NUMBER CUBES (An excerpt 
from National Institute for Educational Policy Research, 2004, p. 108.) 

The result shows that Japan’s mean score was significantly higher than the OECD 
average as well as being higher than other participating countries (See Table 2). Also, 
the pattern of students’ choice is slightly different from other countries. 
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In order to complete the item correctly, we need to interpret the two dimensional 
object back and forth by “folding” it to make the four planes of the cube mentally as 
a three-dimensional shape. The item requires the encoding and spatial interpretation 
of two-dimensional objects.  Why did a group of students, once again Japanese 
students, perform well on this particular item? Does the result suggest that those 
students have a cultural practice with number cubes, or Origami, inside and outside 
schools? A further exploration is needed to explain the similarities and differences in 
students’ responses among participating countries. 

There are other insights offered by the recent international studies. The TIMSS2003 
collected information about teacher characteristics and about mathematics curricula. 
The PISA2003 also collected a substantial amount of background information 
through the student questionnaire and the school questionnaire. These data on 
contextual variables as well as performance data related to the cognitive test domain 
give us rich descriptions of the learning environments of the learners. 

As was mentioned above, the recent release of the two large-scale international 
achievement studies provides mathematics education researchers with opportunities 
for exploring research possibilities in relation to learners and learning. While we need 
to examine the results from each study carefully, we also need to synthesize the 
results from different perspectives as a coherent body of description of the reality of 
the learners. 
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THE PISA-STUDY: CHALLENGE AND IMPETUS TO RESEARCH 
IN MATHEMATICS EDUCATION 

Michael Neubrand 

Dept. of Mathematics, Carl-von-Ossietzky-University, Oldenburg (Germany) 
 
Beyond the results, a large scale study like PISA may also stimulate the area of 
research in mathematics education. Since an empirical study needs a sound 
conceptualization of the field - “mathematical literacy” in the case of PISA - 
mathematics education research and development may benefit from the structures of 
mathematical achievement defined for PISA. Further research can build upon the 
work done in PISA. 

PISA, the “Programme for International Student Assessment” (OECD, 2001, 2004) 
came into the public focus mainly for the results and the prospective consequences to 
be drawn: “All stakeholders – parents, students, those who teach and run education 
systems as well as the general public – need to be informed on how well their 
education systems prepare students for life” (OECD, 2004, p 3). However, the PISA 
study deserves interest also from the point of view of research in mathematics 
education. This perspective is inherent to PISA: The PISA-report “considers a series 
of key questions. What is meant by ‘mathematical literacy’? In what ways is this 
different from other ways of thinking about mathematical knowledge and skills? Why 
is it useful to think of mathematical competencies in this way, and how can the 
results be interpreted?” (OECD, 2004, p 36)  

This paper draws attention to some of the impulses and challenges to mathematics 
education research coming from the PISA studies. We recognize both, the 
international study, and the national option in Germany which was based on an 
extended framework and included additional components. 

SYSTEM RELATED DIAGNOSIS OF MATHEMATICAL ACHIEVEMENT 
What are the aims of PISA? PISA’s main focus is to measure the outcomes of the 
whole educational systems in the participating countries, and choses, as the most 
sensible group to investigate, the group of the 15 years olds in the countries. The key 
question therefore is on the system level: What do we know about the mathematical 
achievement and its conditions in an educational system compared to what one can 
observe in an international overview? 

Apparently, this is not thoroughly in tune to the mainstream of mathematics 
education research. There are long and ongoing traditions in mathematics education 
which point to a contrasting aspect: What are an individual’s thoughts, difficulties, 
sources, and strategies when learning mathematics? Our common interest is often 
more on an individual’s understanding, or on the misunderstandings in the social 
communication among the individuals in the classroom. Thus, it does not wonder that 
international comparisons found and still find critical reactions, going back as far as 
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Hans Freudenthal's fundamental critique in the beginning of comparative studies in 
mathematics (Freudenthal, 1975). 

Contrasting that tradition, the complementary question towards a systems’ efficiency 
in mathematics teaching and learning is not less challenging. One has to define 
appropriate concepts and instruments to answer the question on a basis which 
incorporates the knowledge mathematics education research has given us so far. In 
fact, PISA took that challenge serious in a twofold way: The concept “mathematical 
literacy” forming the basis for testing mathematics achievement is explicitly bound to 
the mathematics education tradition (OECD, 2003; Neubrand et al., 2001); and vice 
versa, the PISA test gave rise to further developments of conceptualizing 
mathematical achievement (Neubrand, 2004). Thus, PISA provides theoretically 
based, and empirically working conceptualizations of mathematical achievement, 
which can be seen as an impetus to mathematics education research.  

CONCEPTUALIZING MATHEMATICAL ACHIEVEMENT 
Sources of the concept “mathematical literacy” 
The specific idea of PISA is that the outcomes of an educational system should be 
measured by the competencies of the students. The key concept is “literacy”. Three 
roots can be traced back: a tradition of pragmatic education (e.g., Bybee, 1997), 
Freudenthal’s conception that “mathematical concepts, structures and ideas have been 
invented as tools to organise the phenomena of the physical, social and mental world“ 
(Freudenthal, 1983), and considerations on what mathematics competencies are about 
(Niss, 2003). From there the PISA-framework developed that PISA aims to test the 
capability of students “to put their mathematical knowledge to functional use in a 
multitude of different situations” (OECD, 2003). 

Conceptualizing „mathematical literacy“ in the international PISA study 
The domain “mathematical literacy” was conceptualized and related to the test items 
(problems) in the international PISA study by three components (Fig. 1).  

 

 

 

 
Figure 1. Components of mathematical problems as conceptualized by the 

international PISA framework (OECD, 2003, p. 30). 
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that (and if) a list of mathematical competencies, accumulated in the Competency 
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test mathematical achievement. In 2004 PISA reported countries’ achievement 
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differentiated by the content-dimension, and it will be a matter of further research to 
clear how far the competencies itself are present in the countries. 

Conceptualizing mathematical achievement in the German national PISA option 
Even stronger than PISA-international, the German national option capitalizes that an 
achievement test like PISA should map mathematics as comprehensively as possible. 
Therefore, typical ways of thinking and knowing in mathematics should be present in 
the test items. This model of the test tasks formed the basis (Fig. 2): 
 

 

 

 

 

 

 

 

 

Figure 2. The model of a mathematical problem used in PISA-Germany: The core, 
and examples of characteristic features (Neubrand, 2004) 
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the mathematical point of view the three classes realize the full range of 
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modes of thinking, i.e., procedural vs. conceptual thinking (Hiebert, 1986). 

ANALYTIC RESULTS OF PISA 
The defined structures of mathematical achievement express themselves also in the 
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OIs “change and relationships” and “space and shape”; and (relative) weaknesses in 
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stochastics items. Results like these give hints what fields of mathematics should earn 
greater emphasis in curriculum and teaching. (See OECD, 2004 for details.) 

Difficulty of a problem: A question of various features 
Analyses done after PISA-2000 in Germany revealed some insight into the processes 
which make the solution of an item more difficult. However, as said in the beginning, 
due to the nature of the data, one can get information on mathematical learning and 
thinking in the whole, and not information of an individual’s ways of thinking. 
Nevertheless, there are interesting results to obtain. 

(a) Not the same features make a problem difficult in any of the three “types of 
mathematical activities” (J. & M. Neubrand in Neubrand, 2004). As a consequence, 
mathematic teaching cannot restrict itself to only a limited scope of mathematics. 
(b) There is a competency specific to mathematics, that influences the difficulty of 
problems, even of those problems which call for modeling processes: the capability 
to use formalization as a tool (Cohors-Fresenborg & al. in Neubrand, 2004). 
(c) Different didactical traditions and ways of teaching lead to different “inner 
structures” of mathematical achievement, made visible by different performance in 
the types of mathematical activities (J. & M. Neubrand in Neubrand, 2004).  
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SOME RESULTS FROM THE PISA 2003 INTERNATIONAL 
ASSESSMENT OF MATHEMATICS LEARNING: WHAT MAKES 

ITEMS DIFFICULT FOR STUDENTS? 
Carolyn Kieran 

Université du Québec à Montréal 

Département de Mathématiques 
 
With the announcement of the 2003 PISA results in December 2004, we can now take 
a closer look at the released items and at how the 15-year-olds of the PISA 
assessment fared. A brief examination of item difficulty within the “change and 
relationship” scale suggests that we still know little about what it is that students find 
difficult in certain mathematical tasks. 

MATHEMATICAL LITERACY IN PISA 
The PISA concept of mathematical literacy is concerned with “the capacity of 
students to analyse, reason, and communicate effectively as they pose, solve and 
interpret mathematical problems in a variety of situations involving quantitative, 
spatial, probabilistic or other mathematical concepts” (OECD, 2004, p. 37). More 
precisely, mathematical literacy is defined as “an individual’s capacity to identify and 
understand the role that mathematics plays in the world, to make well-founded 
judgments and to use and engage with mathematics in ways that meet the needs of 
that individual’s life as a constructive, concerned and reflective citizen.” The 
objective of the PISA 2003 assessment was “to obtain measures of the extent to 
which students presented with problems that are mainly set in real-world situations 
can activate their mathematical knowledge and competencies to solve such problems 
successfully” (OECD, 2004, p. 57).  

HOW MATHEMATICAL LITERACY WAS MEASURED 
Students’ mathematics knowledge and skills were assessed according to three 
dimensions: mathematical content, the processes involved, and the situations in 
which problems are posed. Four content areas were assessed: shape and space, 
change and relationships, quantity, and uncertainty – roughly corresponding to 
geometry, algebra, arithmetic, and statistics and probability. The various processes 
assessed included: thinking and reasoning; argumentation; communication; 
modeling; problem posing and solving; representation; and using symbolic, formal, 
and technical language and operations. The competencies involved in these processes 
were clustered into the reproduction, connections, and reflection clusters. The 
situations assessed were of four types: personal, educational or occupational, public, 
and scientific. Assessment items were presented in a variety of formats from multiple 
choice to open-constructed responses.  
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The PISA 2003 mathematics assessment set out to compare levels of student 
performance in each of the four content areas, with each area forming the basis of a 
separate scale. Each assessment item was associated with a point score on the scale 
according to its difficulty and each student was also assigned a point score on the 
same scale representing his or her estimated ability. Student scores in mathematics 
were grouped into six proficiency levels, representing groups of tasks of ascending 
difficulty, with Level 6 as the highest. The mathematics results are reported on four 
scales relating to the content areas mentioned above. As will be seen, an examination 
of item-difficulty within these scales reveals some surprises that, in turn, suggest that 
we, as researchers, may not really know what makes some mathematical tasks more 
difficult than others for students.  

ITEM DIFFICULTIES FOR SAMPLE ITEMS FROM THE CHANGE AND 
RELATIONSHIP CONTENT AREA: THE WALKING UNIT 
The Walking unit (OECD, 2004, p. 64) begins as follows: 

 
Items 4 and 5 from this unit, along with the respective item difficulties and discussion 
of the competency demands, are presented in Figure 1. The level of difficulty 
ascribed to Item 4 is difficult to fathom: 611, which places it at Level 5 proficiency – 
a level at which only 15 % of OECD area students are considered likely to succeed. 
Yet, the item requires simply substituting n by 70 in the given formula n/p = 140, and 
then dividing 70 by 140. Its difficulty would seem closer to a Level 2 proficiency 
item, which according to the OECD report typically involves the “interpretation of a 
simple text that describes a simple algorithm and the application of that algorithm” 
(p. 69) – a task that 73% of OECD area students would be likely to solve. While 
students might attempt to solve the equation 70/p = 140 by a cross-multiplication 
technique, they could also think about the task in terms of proportion (70/p=140/1, 
i.e., 70 is to 140 as p is to 1) or arithmetically in terms of division (70 divided by 
what number yields 140?).  
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Figure 1. Items 4 and 5 of the Walking unit (OECD, 2004, p. 65) 
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Curiously, a response earning a partial score of 2 on the seemingly much more 
difficult Item 5 – at least more difficult from an a priori perspective – places it at 
Level 5 as well, albeit nearer the upper boundary of Level 5. But, it is not clear why a 
response that is deemed incomplete (and receives a score of 2) because the “112 steps 
per minute was not multiplied by .80 to convert it into metres per minute” – a 
conceptual demand that is at the core of Item 5 – is considered superior to the 
response “n = 140 x .80 = 112,” which appropriately receives a partial score of 1. 
Notwithstanding the argument that could be made for both of these responses” to 
Item 5 receiving the same score of 1, the main issue concerns the conceptual 
demands that are inherent in Item 5, but which are lacking in Item 4. Why do students 
find Item 4 just about as difficult as Item 5? 
While some might claim that the procedural demands of Item 4 (with the unknown in 
the position of denominator) explain to a certain extent why the difficulty level is 
611, results from past research studies of equation-solving errors suggest that the 
difficulty level of this item should not be so high. For example, Carry, Lewis, and 
Bernard (1980) reported the following success rates for the solving of the given 
equations among students who covered a range from strong to very weak in algebra 
skills (e.g., 82%: 9(x+40) = 5(x+40); 76%: 1/3 = 1/x + 1/7; 76% 5/10 = (x-
10)/(x+5)). In another study involving classes of 6th to 8th grade students, younger 
than those tested within PISA, Levin (1999) reported that 30% of the students 
correctly answered the following question by setting up and solving a proportion 
using cross multiplication (5/9=2/n): “On a certain map, the scale indicates that 5 cm 
represents the actual distance of 9 miles. Suppose the distance between two cities on 
this map measures 2 cm. Explain how you would fine the actual distance between the 
two cities.” The equation was not unlike the one involved in Item 4; moreover, the 
students had to generate it themselves from the problem situation. One can only 
conclude that if the PISA results for this item and related symbolic representation 
items represent a trend with respect to students’ abilities to handle rather simple 
symbolic forms, it is indeed a disturbing one. While Nathan and Koedinger (2000) 
noted that students find symbolically-presented problems more difficult than story 
problems and word-equation problems, the PISA results suggest that the discrepancy 
may be much greater than that reported by these researchers.  
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THE FOUNDATION AND SPECTACLE OF [THE LEANING 
TOWER OF] PISA 

Julian Williams 

University of Manchester  

I raise questions about the construct and consequential validity of international 
studies such as PISA, and about PISA itself. I suggest a fault line runs through the 
construct ‘mathematical literacy’, but more importantly, through mathematics 
education generally, distinguishing ‘Realistic’ mathematics and ‘Authentic’ 
mathematics. I then ask questions about the political consequences of PISA in an 
audit culture in which targets beget processes. The aim to influence policy is 
identified with perceptible shifts in PISA discourse. As an instrument in the global 
education market, with its theft of critical theorists’ rhetorical resources, is PISA re-
invigorating the spectacle of international league tables? 

INTRODUCTION 
When I was a boy I visited Pisa and was very impressed by the leaning tower. I recall 
imagining that one could walk up the tower by spiralling up the outside, and was 
slightly disappointed by the reality. Later I learned that the inclination of the tower 
was annually increasing, and engineers feared that it would eventually fall over: they 
planned to strengthen the foundations to stop this, but did not straighten it. The tower 
has become a global spectacle, even featuring in jokes etc. (what did Big Ben say to 
the leaning tower of Pisa? I’ve got the time if you’ve got the inclination). The tower 
of Pisa became globally spectacular because of its dodgy foundations, not despite 
them. 

I aim to raise questions about the validity of PISA (capitals now). First, I examine the 
construct validity of the foundation of PISA, ‘mathematical literacy’; second, I 
address the consequential validity of PISA, its political consequences, as spectacle. 

CONSTRUCT VALIDITY: THE FOUNDATION OF ‘MATHEMATICAL 
LITERACY’ 
A confession: I find some of the items in PISA seductive, especially some of the 
Problem Solving items. In one the student is asked to diagnose a faulty bicycle pump, 
in another they are asked to evaluate some information on various drugs and select an 
appropriate pain-killer for 13 year old George, an asthmatic child with a sprained 
ankle. At face value, these represent a kind of functional ‘literacy’. Turning to the 
mathematical literacy item used to explain the notion of mathematical modelling and 
mathematisation, one finds the park problem: where should a street-light be placed to 
illuminate a park? The park is mathematised as a triangle, the area lit is a circle, and 
the solution is the triangle’s circumcentre (as long as the park is not obtuse-angled, 
explains PISA, 2003, p26). 
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I may be obtuse, but … our parks in English towns are usually locked at night, not lit. 
Perhaps they mean a car park? But … how many triangular car parks have you seen? 
I looked around and noticed that the lights were often on the perimeter of the park, 
which is in turn usually made up of rectangular blocks. For obvious reasons one 
might expect car parks to be rectangular, especially in modern countries where road 
systems are grid based. Perhaps one would find them in towns where road networks 
crystallised on the basis of clusters of medieval villages, like Chester or York? Both 
these towns are a long way from Manchester, so this prompted me to email my co-
presenter from Japan and… he found one! (But where was the lighting?)… 

Does the validity of Euclid really lie in such considerations? How has this come to 
be? I fantasise: Euclid, on a trip to visit the leaning tower, finds a triangular car park 
and noticing the light at the midpoint of one side… “Eureka: the circumcentre of a 
right-angled car park lies at the mid-point of the hypotenuse.” 

But Realistic Mathematics Education (RME) does not require that mathematics be 
authentic in this ‘real’ sense: only that the situation is realistic for the entry of the 
student into a world that begs to be mathematised. The validity test for RME then is 
(i) mathematical, rather than ‘real’ functionality, and (ii) empirical (i.e., do the 
students experience the problem in an intuitive way). Many of the PISA items appear 
to have this quality, at least to some degree. 

I suggest that Realistic mathematics is primarily embedded in a scholastic, 
pedagogical activity system and is essentially embedded in the students’ imaginary, 
experiential world: the object of activity is, in the end, to learn mathematics. On the 
other hand, I suggest Authentic mathematics is used as an instrument within an 
Activity System whose object is not essentially to learn mathematics, but to achieve 
some ‘real’ objective in a world outside mathematics. To become Authentically 
functional is to break out of the scholastic straitjacket and requires what Engestrom 
(e.g., Engestrom, 1987) called ‘expansive’ activity: at the very least, the class that 
‘plans a party’ has to really have the party. 

I prefer to think of this distinction as a fault line deep underneath the surface of the 
concept of ‘mathematical literacy’, rather than a dichotomy as such. Does this line 
undercut the mathematics education literature too? 

And where is PISA? I’d say some of the best tasks are Realistic, but never quite 
Authentic (you would hope George’s 15 year old literate elder sibling would think to 
ask a good pharmacist before deciding which painkiller to buy his asthmatic younger 
brother, wouldn’t you? Sorry, ‘code 0: no credit’). Could they be?  

DISCOURSE AND SPECTACLE OF PISA: POLITICAL CONSEQUENCES 
PISA has a political aim, that is, it seeks to influence policy. Thus on the one side, we 
have mathematics-literacy tasks, and the identification of learning outcomes for 
students. But on the other, we have summative statistics that ‘count’ for policy. This 
entails an interesting discursive shift. Initially, PISA (e.g., 2005) suggest that 
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correlations display ‘associations’ that cannot be assumed to be ‘causal’, but later 
these associations become ‘influences’ that policy makers might find ‘interesting’. 
What is the difference for policy, i.e. what is the political difference between an 
influence and a cause? I see from the dictionary (OED) that an influence is in its 
original usage an astrological one, and later became political: it is essentially the 
exertion of an action whose mechanism is ‘unseen’ except in its effects. 

This is significant because it determines to some extent the ‘consequences’ of PISA. 
How can policy makers be expected to read PISA’s results on the influence of SES or 
softer variables such as ‘school climate’ on learning outcomes? We see from the 
PISA-2000 study, for instance PISA (2005), that school climate explains significant 
variation in outcomes, but not that school climate is a possible ‘associate’ of high 
learning outcomes, and in Gill et al. (2002), associations with school background 
become ‘attributable’ to school background (p xvi).  

Michael Power, who calls himself a professor of critical accountancy, has described 
the discourse of performativity in our audit culture (i.e., that of managing targets, 
league tables, performance-related reviews, etc.) as a Foucaultian discourse of (mis-) 
trust (Power, 1999). He and others have pointed to the way measurement constructs 
become targets and begin to dominate processes: thus as I write Prime Minister Tony 
Blair is felled by an angry electorate in debate on TV. He is accused of being 
responsible for the fact that in some doctors’ surgeries patients are not allowed to 
book an appointment to see their doctor more than 2 days ahead. Why? Because the 
government had introduced a performance target for the percentage of patients that 
have to wait more than 2 days. In vain he protests that this was not his intention! How 
will PISA measures be used, and what will be their unintended consequences? 

Stronach (1999) in ‘Shouting theatre in a crowded fire’ construes the international 
tests and league table performance as a global spectacle, with ‘pupil warriors’ doing 
their sums for Britain. There’s England in the Premier league, 3 up on old rivals 
Germany, there’s a cluster of Confucian Pacific rim teams in the lead, but here comes 
Finland from nowhere suddenly challenging them. Is it social democracy or Nokia 
that ensures the team’s strength? 

The association between PISA/TIMSS league tables and football competitions, the 
Olympics, horse races etc. is too strong to be denied, and ‘England’ in the tables 
becomes metonymically the nation and its education system per se, competing in the 
game with the rest of the world. One forgets that in fact the order of the names in the 
table are mostly not statistically significant, of course. What else is a table of scores 
actually for except to emphasise the ordinal at the expense of the complexity of the 
underlying data/reality? (That is intended to be a mathematically literate observation, 
if you like.) 

The tabloid/redtop press are masters of this spectacle, but we all become implicated: 
government funding for research (at least in the UK) is increasingly predicated on 
‘making a difference’ to learning outcomes in practice, and hence fulfilling political 
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demands to become ‘world class’. But how can world class be judged, except by 
international competition and league tables, and hence comparative measurement? 

With what consequence? Is there no going back? Has the spectacle seduced our 
rationality? Pisa will always be the place with the leaning tower. While PISA 
challenges TIMSS by engaging with some ‘literacy’ rhetoric drawn from critical 
theory, the source of much that seems seductive in it, one reading of this move might 
be, as Gee et al. (1996) and others have suggested with ‘fast capitalism’, that the 
system steals critical theorists’ rhetorical resources and emerges all the stronger for it. 

So, where next? Could an expanded Authentic mathematics assessment emerge to 
confront the Realistic PISA, and in whose interest might that be? 
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Afterword 
Is the metaphoric association of Pisa and PISA – their foundations and their glorious 
spectacles – valid? If the consequence is that one is inclined to believe that there is a 
fault underlying ‘mathematical literacy’, I suggest yes. If one is led to think that this 
fault is implicated in the faux-spectacle of PISA, perhaps: the argument is that the act 
of global assessment becomes false by virtue of its becoming a political spectacle.  

[Acknowledgements: to Google.com for suggesting the Pisa=PISA metaphor, and Ian Stronach for 
the introduction to this notion of spectacles.] 

 



 

 

 
 


